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Preface
The creation of this book has been for me, Mike McGrath, an exciting
personal journey in discovering how the R programming language can be
used today for data analysis and the production of beautiful data
visualizations. Example code listed in this book describes how to produce R
Scripts in easy steps – and the screenshots illustrate the actual results. I
sincerely hope you enjoy discovering the exciting possibilities of R
programming and have as much fun with it as I did in writing this book.
In order to clarify the code listed in the steps given in each example I have
adopted certain colorization conventions. Components and keywords of the
R programming language are colored blue, programmer-specified names
are colored red, literal numeric values and literal character string values are
colored black, and comments are colored green, like this:
# Write the traditional greeting.
greeting = “Hello World!”
print( greeting )
Additionally, non-literal values are colored gray like this: color=”Red”
In order to readily identify each source code file described in the steps a file
icon and file name appears in the margin alongside the steps:

Script.R
For convenience I have placed source code files from the examples featured
in this book into a single ZIP archive. You can obtain the complete archive
by following these easy steps:

Browse to www.ineasysteps.com then navigate to Free Resources
and choose the Downloads section
Find R for Data Analysis in easy steps in the list, then click on the
hyperlink entitled All Code Examples to download the archive
Next, extract the “MyRScripts” folder to a convenient location on
your system
Now, follow the steps to call upon the R program interpreter and see
the output

http://www.ineasysteps.com/
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Getting started

Welcome to the exciting world of R programming. This chapter describes

how to set up an R environment and demonstrates how to create a first R
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Summary



Understanding data
The term “data” refers to items of information that describe a (qualitative)
status or a (quantitative) measure of magnitude. Various types of data is
collected from a huge range of sources and reported for analysis to reveal
pattern and trend insights:

This illustration depicts only some of the many data types that can
be reported for analysis.
Data is increasingly being collected by devices that are able to report
measurements for analysis via the internet (“The Cloud”). For example,
devices that have temperature and humidity sensors can report
measurements for instant analysis of climate conditions. The recent rapid
decline in the cost of device sensors has given rise to the “Internet of
Things” (IoT) that can easily and cheaply report vast amounts of data – this



is often referred to as “big data”. Big data consists of extremely large data
sets that can best be analyzed by computer to reveal pattern and trend
insights.

Around 13 billion devices are connected to the internet today. This is
predicted to grow to 50 billion by 2020.
Data analysis (a.k.a. “data analytics”) is the practice of converting collected
data into information that is useful for decision-making. The collected
“raw” data will, however, typically undergo two initial procedures before it
can be explored for insights:
• Data processing – the raw data must be organized into a structured

format. For example, it may be arranged into rows and columns in a
table format for use in a spreadsheet.

• Data cleaning – the organized data must be stripped of incomplete,
duplicated, and erroneous items. For, example, by the removal of
duplicated rows in a spreadsheet.

“Data Science” is the study of how data can be turned into a valuable
resource.
After the data has been processed and cleaned it can be explored to discover
its main characteristics. This may require further data cleaning to refine the
data to specific areas of interest, or may require additional data to better
understand its messages. Descriptive statistics, such as average values,
might be calculated to understand the data. Algorithms might be used to
identify associations within the data. Data visualization might also be used
to produce a graphical representation of the data for examination.
After the data has been analyzed, the results can be communicated using
data visualization to present tables, plots, or charts that clearly and
efficiently convey the key messages within the data. Tables provide
information in which the user can look up a specific number, whereas plots



and charts provide information in a way that encourages the eye to make
comparisons.
“R” is an interpreted programming language and software environment that
is widely used for data analysis and visualization. The “RStudio” Integrated
Development Environment (IDE) is often used with R, as RStudio provides
a code editor, debugging features, and visualization tools that make R easier
to use. The popularity of R has grown rapidly in recent years as the increase
in big data has made data analysis more important than ever.
The R programming software and RStudio IDE are both available for
Windows, Linux, and macOS operating systems, and both are used
throughout this book to demonstrate R for data analysis.

“Data Mining” is the process of searching large data sets to identify
patterns.

“Data Product” is digital information that can be purchased.



Installing R
The R programming language and software environment is freely available
open source software that you can install onto your computer from the
Comprehensive R Archive Network (CRAN):

Open a web browser and visit cran.r-project.org

If you are having difficulty downloading R click the CRAN Mirrors
link at cran.r-project.org then choose a server near to your location.

Select the link appropriate for your computer operating system. For
example, click Download R for Windows

Next, select the link for the base R distribution

Now, select the link to download the R installer

http://www.cran.r-project.org/
http://www.cran.r-project.org/


You can click the link for Installation and other instructions for
more help with installation.

When the download has completed, run the installer to open the R
Setup Wizard and click the Next button
Read the License information, then click the Next button to
continue
Accept the suggested installation location, then click the Next
button to continue
Choose to install Core Files and 32-bit Files for a 32-bit machine,
or choose to install Core Files and 64-bit Files for a 64-bit
machine, then click the Next button to continue

You can install Message translations for error messages, warning
messages, and menu labels in languages other than English.

Choose No (accept defaults) to not customize startup options, then
click the Next button to continue
Enter a name for a Start Menu folder (such as “R”), then click the
Next button to continue
Choose additional tasks (such as Create a desktop icon), then click
the Next button to begin the installation
When installation has completed, launch the R environment from
the Start Menu folder you named



You can type expressions in the R Console to see their result – but
the RStudio IDE is a much more effective programming environment.

You can find the System Type on Windows by pressing WinKey + R
then entering msinfo32.



Installing RStudio
The RStudio IDE has a freely available open source edition that you can
install onto your computer from the RStudio website:

Open a web browser and visit the RStudio downloads page at
rstudio.com/products/rstudio/download

The RStudio software is available in Desktop and Server versions
with Open Source Licenses and Commercial Licenses for each
version – be sure to download the Desktop version with the Open
Source License to try the examples in this book for free.

Scroll down the page and select the Installer download link
appropriate for your computer operating system. For example, click
the edition for Windows Vista/7/8/10

When the download has completed, run the installer to open the
RStudio Setup Wizard – then click Next

http://www.rstudio.com/products/rstudio/download


You must have R installed before you install RStudio. See pages 10-
11 for the R software installation procedure.

Accept the suggested installation location and click the Next button
to continue
Accept the suggested Start Menu folder name “RStudio” and click
the Install button to continue



The items listed in this dialog box are the names of your existing
Start Menu folders and will vary according to what you have installed
on your computer.

When the installation has completed, click the Finish button to close
the Setup Wizard
Launch the RStudio IDE from the Start Menu folder created by the
Setup Wizard

You can type expressions in the RStudio Console to see their result,
just as you can in the R Console – but the RStudio IDE can do so
much more.



Exploring RStudio
The RStudio interface consists of a menu bar and toolbar positioned at the
top of the window, and four main panes whose position can be adjusted to
suit your preference. When you launch RStudio only three panes may be
visible until you select File, New File, RScript on the menu bar to open the
“Code Editor” pane. The default layout positions the four panes as shown
below:

When the mouse pointer is placed on the border between any two panes, the
pointer changes to a four-pointed “Drag Handle”. This allows you to drag
the vertical border to adjust the width of the left and right panes, and to drag
the horizontal border to adjust the height of the top and bottom panes. The
size of each pane can also be adjusted by clicking the Maximize and
Minimize buttons.
Each RStudio pane can contain multiple tabs, and it is useful to initially
explore each RStudio pane to understand its purpose:
Code Editor pane
The Code Editor is where you type or edit R Script code, and you see it
automatically colored to highlight syntax – click this pane’s Run button to



see the script output appear in the Console pane.
Console pane
• Console tab – This is where you can directly enter commands for

immediate execution by the R interpreter.
• Terminal tab – This is where you can directly enter commands for

execution by the operating system shell.
Workspace pane
• Environment tab – This is where you will see available objects such as

variables and datasets.
• History tab – This is a list of your past commands executed by the R

interpreter in the Console pane.
• Connections tab – This tab enables you to connect to databases to

explore the objects and data inside the connection.
Notebook pane
• Files tab – This is a file browser, which by default lists all the files in

your working directory.
• Plots tab – This exciting tab is where your plots, graphs, and charts will

appear as output from an R Script.
• Packages tab – This tab lists available packages that you can install to

extend RStudio’s functionality.
• Help tab – This is where you can seek assistance on the R language and

RStudio IDE.
• Viewer tab – This is where you can see local HTML content that has

been written to the session temporary directory.

R Script code can be saved as a file for later use, and multiple R
Script files can be open on separate tabs in the Code Editor pane.

You can click on a data set listed in the Environment tab to open a
spreadsheet of that data in the Code Editor pane.



You can click on an R Script file in the Files tab to open that file in
the Code Editor pane.



Setting preferences
RStudio is highly customizable and it is worth setting up its features to
better enjoy your R programming environment:

Create a new directory on your computer in which to save the R
Scripts you will write. For example, on Windows you might create a
directory of C:\MyRScripts
Launch RStudio then select Tools, Global Options on the menu bar
– to open the “Options” dialog

Select General in the left panel of the “Options” dialog, then enter
the path to the directory you created into the Default working
directory box



Next, select Appearance in the left panel, then click items in the
Editor theme box to preview possible color themes
Use the Editor font and Editor font size drop-down menus to
choose your font preferences

Your home directory is set as the default working directory until you
specify an alternative.

Themes with dark backgrounds, such as the “Cobalt” theme shown
here, are often considered to be more restful on your eyes than
those with white backgrounds.

Click the Apply button to change the RStudio settings
Click the OK button to close the “Options” dialog and see your
preferences have been applied – the working directory path appears
on the Console title bar



You next need to select a pane to work with in RStudio – click on
the Console pane to select it
Click the  brush button on the Console pane’s title bar, or press
Ctrl + L keys, to clear existing Console content
Now, type version at the Console prompt, then hit Enter to run the
command – see the R interpreter output version details in the
Console window

You can click the  arrow button on the Console pane title bar to
reveal the working directory’s files in the Files pane.

Commands typed at the Console prompt must be entered again to
run the command once more – whereas commands typed in the
Code Editor can be run repeatedly.



Dark background themes are great for on-screen viewing but all ensuing
screenshots throughout this book use a white background theme (TextMate)
for better on-page clarity.



Creating an R Script
Unless you simply want to test a snippet of code directly at a Console
prompt, you should always create an R Script using the Code Editor – so
that your code can be run whenever required:

Launch RStudio, then click File, New File, R Script on the menu
bar to open the Code Editor pane

Hello.R
Click on the Code Editor pane to select it and see a blinking cursor
appear – here, type the command print( )
Type a “ double-quote character between the command’s
parentheses and see RStudio automatically add a second character
after the cursor – so you cannot forget the final double-quote that is
required to enclose a text string

Next, type the traditional program greeting Hello World! text string
between the double-quotes
IMPORTANT: Ensure that the cursor is now positioned on the same
line as your code



The command here is calling the built-in R print( ) function. The R
language is case-sensitive, so typing the command as Print( ) or
PRINT( ) will simply produce an error.

The R interpreter will only run code on the line containing the cursor
or multiple lines that you have selected (highlighted) by dragging the
cursor over them.

Click the  Run button in the Code Editor, or press the Ctrl +
Enter keys, to run the code – see the R interpreter repeat the code
and display its output in the Console pane

Click the  Save button in the Code Editor, or press the Ctrl + S
keys, to open the “Save File” dialog
Save the R Script as a file named “Hello.R” in the current working
directory



Edit the command in the Code Editor by adding a second argument
between the parentheses to become
print( “Hello World!”, quote=FALSE )
Run the code again – see the R interpreter repeat the code and
display its output with quotes now suppressed

The bracketed number [1] that appears before the output indicates
that the line begins with the first value of the result. Some results
may have multiple values that fill several lines, so this indicator is
occasionally useful but can generally be ignored.

Click the  Open button in the Code Editor, or press the Ctrl + O
keys to open the “Open File” dialog then choose a saved R Script file
to reopen in the Code Editor. Click the arrow button beside the Open
button to see a list of recently opened files that you can select to
quickly reopen.



Summary
• Data is items of information that describe a qualitative status or a

quantitative measure of magnitude.
• Devices that are connected to the internet are able to report sensor

measurements for analysis in The Cloud.
• The decline in the cost of device sensors has given rise to the Internet of

Things that can report on vast amounts of data.
• Big data consists of large data sets that can best be analyzed by

computer to reveal pattern and trend insights.
• Data analysis is the practice of converting collected raw data into

information that is useful for decision-making.
• Before analysis, raw data must be organized into a structured format and

cleaned to remove incomplete, duplicated, and erroneous items.
• After data has been analyzed, the results can be communicated using

data visualization to present tables, plots, or charts that efficiently
convey the messages within the data.

• R is an interpreted programming language and software environment for
data analysis and data visualization.

• RStudio is an Integrated Development Environment for R that provides
a code editor, debugger, and visualization tools.

• The RStudio interface consists of a menu bar and toolbar, plus Code
Editor, Console, Workspace, and Notebook panes.

• R Script code typed into the Code Editor can be run to see its output
appear in the Console.

• Code snippets can be typed at the Console prompt for immediate
execution by the R interpreter.

• RStudio’s Global Options let you choose colorization themes, font
settings, and default working directory.

• R Script in the Code Editor can be saved as a file with a .R file
extension so the code can be re-run whenever required.



2
Storing values

This chapter demonstrates how to store data values in R Script programs

and how to output stored data values in a simple plotted graph.
Storing a single value
Adding comments
Recognizing data types
Storing multiple values
Storing mixed data types
Plotting stored values
Controlling objects
Getting help
Summary



Storing a single value
In R programming a “variable” is simply a useful container in which a
value may be stored for subsequent use by the program. The stored value
may be changed (vary) as the R Script program executes its instructions –
hence the term “variable”.

A variable is created in R Script by writing a unique identifier name of your
choice in the Code Editor, then assigning an initial value to be stored within
the variable. The stored value can subsequently be retrieved using the given
variable name.
The value can be assigned to a variable in R programming using the <-
assignment operator. For example, to assign a number to a variable named
“dozen”, like this:
dozen <- 12
Variable names are chosen by the programmer but must adhere to certain
naming conventions. The variable name may only begin with a letter, or a
period followed by a letter, and may subsequently contain only letters,
digits, periods, or underscore characters. Names are case-sensitive, so “var”
and “Var” are distinctly different names, and spaces are not allowed in
names.
Variable names should also avoid the reserved words, listed in the table
below, as these have special meaning in the R language.

if else repeat while

function for in next

break TRUE FALSE NULL

Inf NaN NA NA_integer

NA_real NA_complex NA_character return



It is good practice to name variables with words that readily describe that
variable’s purpose. For example, revenue and expenses to describe income
and costs. Lowercase letters are preferred by many R programmers, and
variable names that consist of multiple words can separate each word with a
period character. For example, a variable named net.profit to describe profit
after costs deducted from income.

Values can also be assigned using the = assignment operator, but
this is best used only to assign default values to function parameters
– see here.

Enter the ?reserved command in the Console at any time to see the
list of reserved words appear on the Help tab in the Notebook pane.

Open RStudio then click File, New File, R Script, or press Ctrl +
Shift + N, to open a new Code Editor pane

FirstVariable.R
In the Code Editor, type name as the variable name
Type <- or press Alt + - to add the assignment operator
Next, press the “ key to add two double quotes, then type Username

between the quotes
Ensure that the cursor is positioned on the same line as your code,
then click Run, or press Ctrl + Enter – see the variable and its
value now appear on the Environment tab



Back in the Code Editor, move to the next line and write
name <- ““
Insert your own name between the quotes, then click Run to assign
a new value to the variable – see the value change instantly on the
Environment tab

Move to the next line and write print( name ), then click Run to
output the variable value in the Console

The Alt + - keyboard shortcut adds the <- assignment operator and a
space at each side.

You can click the Save button to save the R Script for later use.



Adding comments
When programming, in any language, it is good practice to add comments
to program code to explain each particular section. This makes the code
more easily understood by others, and by yourself when revisiting a piece
of code after a period of absence.
In R Script programming, comments can be added by beginning a line with
the # hash character. All subsequent characters on that line will be
completely ignored by the R interpreter. Unlike other programming
languages there is no support for multi-line comments between /* and */ .
RStudio does, however, provide a handy Ctrl + Shift + C keyboard
shortcut that enables you to easily insert a # hash character on multiple lines
in a single action.

The R interpreter also ignores tabs and spaces (whitespace) in R
Script code, so you can safely space your code to your preferred
coding style.
If your R Script will be shared with others, it is a great idea to document the
code by including a header comment. This should include such details as:
• The name of the script
• The date the script was created
• The author of the script
• The purpose of the script
• The history of revisions made to the script
The header might also include any special instruction as to how the script
should be executed. For example, an R Script that requests user input will
need to wait until the user has entered the input before proceeding. In
RStudio, this requires the entire script be sent to the Console rather than
running it as usual. This technique is called “sourcing the script” and a
notice to this effect could be included in the script header as a special
instruction:



Comment.R
In the RStudio Code Editor, begin an R Script by typing lines of
header information
Script name: Comment.R
Created on: March 1, 2019
Author: Mike McGrath
Purpose: Echo user input
Version: 1.0
Execution: Must be run as Source to await user input.
Drag the cursor across the entire header to select it, then press Ctrl
+ Shift + C to comment-out all selected lines
Next, add a comment and instruction to request user input
# Request user input.
name <- readline( “Please enter your name: “ )
Now, add a comment and instruction to paste the user input into a
string
# Concatenate input and strings.
greeting <- paste( “Welcome”, name, “!” )
Finally, add a comment and instruction to print out the entire string
# Output concatenated string.
print( greeting )

Following the header instruction, click the  Source button in the
Code Editor, or press Ctrl + Shift + S, to execute the script, then
enter input when requested



The built-in readline( ) function accepts a string argument within its
parentheses to output as a prompt, then it awaits user input for
assignment to a variable.

The built-in paste( ) function accepts a comma-separated list of
strings within its parentheses to join (concatenate) into a single string
for assignment to a variable.

You can see the variables and their current values on the
Environment tab in the Workspace pane.



Recognizing data types
Variables in R can contain data of various types. The most frequently used
data types of variables in R programming are listed in the table below,
together with a brief description:

Data type: Description: Example:

Character A text character or string “R”
“R string”

Double A decimal number 3.14

Integer A whole number 5

Boolean A logical value TRUE

These four data types are sometimes referred to as the “atomic” or
“primitive” data types as they represent the lowest level of data
detail.
Unlike many other programming languages, which require the programmer
to explicitly specify the data type when creating a variable, R automatically
determines the variable data type according to the value it contains. The
data type of a variable can be revealed by specifying its name as the
argument to the built-in typeof( ) function.
It is important to recognize that numeric variables are, by default, always
created as a double data type unless an assigned integer value is suffixed by
a letter L. For example, number = 5L creates an integer data type, but number =
5 creates a double data type. More memory is allocated for the double data
type, so integer values can be stored more efficiently if they are explicitly
assigned to the integer data type.
R provides several built-in functions to test the data type of a variable. The
name of a variable can be specified as the argument to the is.character( )
function, which will return a Boolean value of TRUE or FALSE according to
the data type of the variable. There are also is.double( ), is.integer( ), and
is.logical( ) functions that can be used in a similar manner to test the data
type of a variable.



Boolean values can be assigned to a variable using either the keywords
TRUE and FALSE, or simply by using the letters T and F.

Note that in R the Boolean values must appear in uppercase.
Open the RStudio Code Editor and create a variable that contains a
text string value
title <- “R for Data Analysis”

DataType.R
Assign a string and data type to a second variable
result <- paste( “Type of title:“, typeof( title ) )
Output the combined string to see the variable’s data type
print( result )
Next, create a variable containing a double value and a variable
containing an integer value
pi <- 3.14159265
dozen <- 12L
Output the data type of each variable in the previous step
print( paste( “Type of pi:“, typeof( pi ) ) )
print( paste( “Type of dozen:“, typeof( dozen ) ) )
Now, create a variable containing a logical value and output the
result of a data type test on this variable
flag <- T
print( paste( “Is flag logical:“, is.logical( flag ) ) )
Click the  Source button in the Code Editor, or press Ctrl +
Shift + S, to execute the script



Notice how this example includes function calls as arguments to
other functions. The innermost function calls are executed first,
passing their result to the outer function as their argument value.

The Environment tab lists the variables in alphabetical order, not in
the order in which they are created.



Storing multiple values
As the R programming language is designed to handle sets of data, a
variable is actually a “vector” that can contain multiple values. Each value
is contained within an “element” of the vector.

A vector structure in R is similar to the “array” structure found in
other programming languages.
Multiple values are assigned to a variable using the built-in combine
function c( ) that accepts a comma-separated list of values to be assigned to
the vector elements. For example, to assign three values with month = c(
“Jan”, “Feb”, “Mar” ).
Vectors in R are indexed starting at one, so the first value stored in a vector
is contained in element one, the second value is contained in element two,
and so on. In code, the vector elements are addressed by placing the desired
index number in [ ] square brackets after the variable name. For example,
month[ 1 ] would retrieve the value contained in the first element of the
month variable – the character string value “Jan” in this case.
New values can be assigned to individual elements using the variable name
and index number. For example, to replace the value contained in the third
element with month[ 3 ] = “March”.
The length of a vector can be found by specifying the variable name as the
argument to the built-in length( ) function. For example, length( month ) would
reveal a length of three elements.
Vectors are flexible so are able to automatically expand when a value is
assigned to an index number beyond the vector’s current length. For
example, the assignment month[ 4 ] = “Apr” would automatically expand the
vector, and length( month ) would now reveal a length of four elements.

You can retrieve all values except a specified element by prefixing a
minus sign to an index number. For example, month[ -3 ] retrieves



all values except that in the third element.
It is important to recognize that each vector can only contain values of the
same data type. If you assign a mixture of integers and doubles, all elements
will contain doubles (integers converted). If you assign a mixture of
numbers and characters, all elements will contain characters (numbers
converted). The built-in typeof( ) function can be used to establish the data
type of all elements.
R provides several other structures in which data can be stored in addition
to the vector variable, so it is sometimes useful to establish if a particular
object is a vector. The name of the object can be specified as the argument
to the is.vector( ) function, which will return a Boolean value of TRUE or
FALSE according to the whether the object is indeed a vector variable or not.

A vector cannot contain mixed data types – the numeric value 5 will
be converted to a character value “5” if mixed with character data
types in the same vector variable.

Open the RStudio Code Editor and create a variable that contains
multiple text string values
alphabet <- c( “Alpha”, “Bravo”, “Charlie” )

Multiple.R
Output the entire content of all elements of the variable
print( alphabet )
Output a string and the value contained in one element
print( paste( “2nd Element: “, alphabet[ 2 ] ) )
Output a string and the number of elements in the vector
print( paste( “Vector Length: “, length( alphabet ) ) )
Assign another value to expand the vector, then output its entire
content and length once more
alphabet[ 5 ] <- “Echo”
print( alphabet )



print( paste( “Vector Length Now: “, length( alphabet ) ) )
Output the result of a data type test on the variable
print( paste( “Is alphabet a Vector: “, is.vector( alphabet ) ) )
Click the  Source button in the Code Editor, or press Ctrl +
Shift + S, to execute the script

Notice here that the empty fourth element is represented by the NA
keyword to indicate the value is Not Available.



Storing mixed data types
As items of different data types cannot be stored in a single vector, R
provides a useful alternative “list” structure, whose elements can each
contain values of any data type.

A list structure in R is similar to the “associative array” (dictionary)
structure found in other programming languages.
Lists are indexed starting at one, just like vectors, and values are assigned to
list elements by specifying them as a comma-separated list of arguments to
the built-in list( ) function. For example, you can create a list containing
values of each main data type, like this:
data <- list( 12, 3.14, “Mike”, TRUE )
The list length and structure type can be revealed using the length( ) function
and typeof( ) function as with vectors, and there is an is.list( ) function to
establish whether an object is a list.
Like vectors, you can address each individual list element by specifying its
index number within [ ] square brackets. For example, data[ 3 ] to retrieve the
string in the list created above.
Unlike vectors, lists are not flexible, which means you cannot assign a
value to an index number beyond the list’s current length. You can,
however, use the c( ) function to combine an existing list with additional
values, or other list, to extend the list length.
Most importantly, you may optionally name each element in a list by
specifying key=value pairs as a comma-separated list of arguments to the
built-in list( ) function, like this:
data <- list( dozen=12, pi= 3.14, user=”Mike”, flag=TRUE )
With a named element you can retrieve its value by specifying the list name
and element name separated by the $ dollar operator. For example, data$user
to retrieve the string in the list above.
R provides two built-in functions especially for lists that contain key=value
pairs. The names( ) function retrieves all the keys in the order they appear in
the list. The unlist( ) function returns a vector of all keys and values in order,
but the names can be explicitly ignored by including a use.names=FALSE
argument.



The sum( ) function can be used to total up the numeric values contained in a
vector, and the mean( ) function can be used to calculate an average of the
numeric values contained in a vector.

Named elements can also be addressed using their index number or
their element name within square brackets, such as data[ 3 ] and
data[ “user” ] – but remember that this will retrieve both the key and
value, not just the value.

Open the RStudio Code Editor and create a list that contains
multiple key=value pairs
sales <- list( Jan=1500, Feb=1300, Mar=2400 )

FirstPlot.R
Combine the list with an additional key=value pair list to extend the
length of the original list, then output all pairs
sales <- c( sales, list( Apr=1800 ) )
print( unlist( sales ) )
Assign the list values only to a vector variable
monthly.sales <- unlist( sales, use.names=FALSE )
Next, assign the calculated total of the list values to a variable, then
output the total value
total.sales <- sum( monthly.sales )
print( paste( “Total Sales: ”, total.sales ) )
Now, assign the calculated average of the list values to a variable,
then output the average value
average.per.month <- mean( monthly.sales )
print( paste( “Monthly Average: ”, average.per.month ) )
Output the result of a data type test on the list
print( paste( “Is sales a List: “, is.list( sales ) ) )
Click the  Source button in the Code Editor, or press Ctrl +
Shift + S, to execute the script



Click this button to expand the sales object and see its key=value
pairs. Click the button once more to collapse the sales object.



Plotting stored values
The power of R programming lies in its ability to easily provide graphic
depictions of the data stored within R Script structures. You can specify a
vector argument to the built-in plot( ) function to produce a scatter plot
depicting data magnitude versus index. More typically, you can specify two
vector arguments to the plot( ) function to be represented on the plot’s X and
Y axes, and a third argument type=”o” can be included to overplot points and
lines:

Open the RStudio Code Editor and create two vectors
x <- c( 1, 3, 5, 7, 9 )
y <- c( 8, 0, 4, 6, 2 )
Next, add an instruction to depict the vector values, then select all
three lines in the Code Editor
plot( x, y, type=”o” )
Click the  Source button, or press Ctrl + Shift + S to execute the
script – see a graph appear on the Plots tab

The graph depicts annotations based upon the range of the vector values,
and the axes labels are simply the variable identifier names. But you can do
better than this by taking control of annotation, axes labels, title, point
character, and colors. Further arguments can be added to the plot( ) function
to specify the line color and point character, and built-in title( ) and axis( )
functions can be used to specify a main title, annotation, and axes labels.



Other possible values for the type argument include “p” points only,
“l” lines only, “b” both points and lines, “s” steps, “h” histogram-like
vertical lines.

A box is drawn around the graph by default, but if you turn off
annotations the box will not be drawn unless you call the built-in
box( ) function.

Open the RStudio Code Editor and create four lists
qtr.1 <- list( Jan=1500, Feb=1300, Mar=2400 )
qtr.2 <- list( Apr=1800, May=1700, Jun=2800 )
qtr.3 <- list( Jul=3100, Aug=3800, Sep=3200 )
qtr.4 <- list( Oct=2600, Nov=2200, Dec=2400 )

CustomPlot.R
Combine the four lists above into a single vector
year <- unlist( c( qtr.1, qtr.2, qtr.3, qtr.4 ) )
Plot the vector specifying type, color, and point character, and turn
off automatic annotation and axes labels
plot( year, type=”o”, col=”Blue”, pch=15, ann=FALSE, axes=FALSE )
Next, specify the range and annotation for the X axis, but allow R to
automatically annotate the Y axis
axis( 1, at=1:12, lab=c( names( year ) ) )
axis( 2 )
Now, add labels for each axis and a main graphic label, then draw a
box around the graph
title( xlab=”Month”, ylab=”$”, main=”Yearly Sales”, col.main=”Red” )
box( )



Click the  Source button in the Code Editor, or press Ctrl +
Shift + S, to execute the script and see the graph

Experiment with the point character by specifying a numeric value in
the range 0-25 in the pch argument.

Color values can be specified by name “Red”, or hexadecimal
“#FF0000”, or RGB components rgb(1,0,0).



Controlling objects
When you execute R code to store data in any structure, such as a variable
or list, a data structure object is created in the RStudio environment. These
objects appear listed on the Environment tab in the Workspace pane in one
of two possible views – List view or Grid view. Large data structures are
collapsed to save space in List view but you can expand them to reveal their
contents. In Grid view, large data structures can be examined by producing
an expanded list in the Code Editor pane.
You can call the built-in ls( ) function to list all objects within the current
environment in the Console. Individual objects can be removed from the
environment by specifying their name as a comma-separated argument to
the built-in rm( ) function, or all objects can be removed by specifying a
list=ls( ) argument:

Open the RStudio Code Editor and create a list and two variables
iso.codes <- list( “United Kingdom”=”UK”, “United States of America”=”US”,
France=”FR”, Germany=”DE” )
iso.japan <- “JP”
iso.china <- “CN”

Environment.R
Next, press Ctrl + A to select all the code, then press Ctrl + Enter
to run the code and create the objects
Open the Environment tab in List view, then click the button to
expand the list object and see its key=value pairs



Now, click the arrow button on the tab’s menu bar and switch to
Grid view

If the ls( ) function is called from within a user-defined function it will
only list that function’s local variables.

You must enclose list names within quotes to include space
characters.

The R Script that created objects can be closed and another R Script
started to work with those objects as they are retained in the current
environment.



Click the spyglass icon beside the list in Grid view to produce an
expanded list in the Code Editor pane

Return to the Code Editor and enter an instruction to list the current
environment objects
ls( )
Add an instruction to remove both variable objects, then list the
current environment objects to confirm removal
rm( iso.japan, iso.china )
ls( )
Select the three instructions, then click the Run button, or press Ctrl
+ Enter, to execute the code



You can also click the brush icon on the tab’s menu bar to remove all
objects from the current environment.

You can use the Save button on the Environment tab’s menu bar to
save objects in an RData file, and the Open button to restore objects
to the environment.



Getting help
There are a number of ways to seek help in RStudio. The most obvious one
is to enter the name of the topic you want help on into the Search box on the
Help tab. This will search through the help files and present the results on
the Help tab.
Alternatively, you can supply the topic name as a string argument to the
built-in help( ) function. This will search the help files for a word or phrase
and present the results on the Help tab. Additionally, you can seek help
about any built-in function by entering its name preceded by a ? character
or ?? characters.
Typing the beginning of a built-in function name into the Code Editor
produces an auto-completion popup box, from which you can select an
option to complete the name of the function. This is accompanied by a brief
description of that function and an invitation to “Press F1 for additional
help”. Pressing the F1 key will then present relevant documentation on the
Help tab:

Open the Help tab, then type “list” into the Search box and hit
Enter to see information on the list( ) function

Help.R

Open the Code Editor and run the command help( “color” ) to seek
help on how to specify colors



The help( “color” ) and ?color commands produce the same result,
as ? is a shorthand method for calling the help( ) function.

The search fails to get help but suggests an alternative search – run
the suggested command ??color to see the results

Choose a link from the search results to open relevant
documentation on a particular topic, such as how to create RGB
colors.

Type “plo” in the Code Editor, then choose the plot option on the
auto-completion popup



Press the F1 key to see information on the plot( ) function appear on
the Help tab

The help files contain links you can click to get help on specific
items, and there are forward and back buttons on the Help tab, just
like those on a web browser.



Summary
• A variable is a container in which a value may be stored for subsequent

use in an R Script program.
• The name of a variable is a unique identifier that must avoid the R

keywords.
• An identifier name in R must begin with a letter (or a period followed by

a letter) and may subsequently contain only letters, digits, periods, or
underscore characters.

• Identifier names are case-sensitive, and those with multiple words can
separate each word with a period character.

• Values are assigned to variables in R programming using the <-
assignment operator.

• The R interpreter ignores whitespace and ignores comments on lines that
begin with a # hash character.

• The four main data types in R programming are character, double,
integer, and Boolean.

• Each R variable is a vector that can contain multiple values.
• A vector may only contain values of the same data type, but a list

structure may contain values of mixed data types.
• A list is created by specifying values as a comma-separated list of

arguments to the built-in list( ) function.
• Vectors and lists both store values within elements that are indexed

starting at one.
• Single values in vectors and lists can be retrieved using the identifier

name and an index number in [ ] square brackets.
• Single values in named elements can be retrieved using the identifier

and element name separated by the $ operator.
• The built-in plot( ) function produces a scatter plot depicting data

magnitude versus index.
• Data stored in any R structure creates an object in the RStudio

environment.
• Help can be sought in RStudio on its Help tab, or using the help( )

function, or via the auto-completion popup box.



3
Performing operations

This chapter demonstrates how to manipulate stored data in R Script

programs.
Doing arithmetic
Making comparisons
Assessing logic
Operating on elements
Comparing elements
Recognizing precedence
Manipulating elements
Summary



Doing arithmetic
Arithmetical operators, listed in the table below, are used to create
expressions in R Script programs that return a single resulting value. For
example, the expression 4 * 2 returns the value 8.

Operator: Operation:

+ Addition

- Subtraction

* Multiplication

/ Division

%/% Integer division

^ Exponentiation

%% Modulus

All arithmetic operators return the result of an operation performed on two
given operands, and act as you would expect. For example, the expression 4
+ 3 returns 7.
The / division operator divides the first operand by the second operand and
returns the result as a decimal number. For example, the expression 4 / 3
returns 1.333333. Conversely, the %/% integer division operator divides the
first operand by the second operand and rounds down the result to a whole
number. For example, the expression 4 %/% 3 returns 1 – not 1.333333.
The ^ exponentiation operator returns the result of raising the first operand
to the power of the second operand. For example, the expression 4 ^ 3
returns 64 – 4 cubed (4x4x4).
The %% modulus operator divides the first operand by the second operand
and returns the remainder of the operation. For example, % 3 returns 1 – 3
divides into 4 once, with 1 remainder.

Integer division with the %/% operator will truncate any decimal part.
For example, 11 %/% 4 = 2 but division with the / operator will retain



the decimal part, so that 11 / 4 = 2.75.

The R documentation calls %% the “modulus” operator, whereas the
operation it performs is typically called “modulo”.

Open the RStudio Code Editor and create two variables containing
integer values for arithmetic
large <- 5
small <- 2

Arithmetic.R
Next, add statements to output the result of some basic arithmetical
operations
print( paste( “Addition:”, large + small ) )
print( paste( “Subtraction:”, large - small ) )
print( paste( “Multiplication:”, large * small ) )
Now, add statements to output the result of the two types of division
operations
print( paste( “Division:”, large / small ) )
print( paste( “Integer Division:”, large %/% small ) )
Then, add a statement to output the result of an exponentiation
operation
print( paste( “Exponentiation:”, large ^ small ) )
Finally, add a statement to output the remainder after performing a
division operation
print( paste( “Remainder:”, large %% small ) )
Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the arithmetical output



Unlike other programming languages that support a ++ increment
operator and -- decrement operator, there is no increment operator
or decrement operator in R.



Making comparisons
Comparison operators, listed in the table below, are used to compare two
values in an expression and return a single Boolean value of TRUE or FALSE
– describing the result of that comparison.

Operator: Comparison:

== Equality

!= Inequality

> Greater than

>= Greater than, or equal to

< Less than

<= Less than, or equal to

The == equality operator compares two operands and will return TRUE if
both are exactly equal in value. If both are the same number they are equal,
or if both are text strings containing the same characters in the same order
they are equal. Boolean operands that are both TRUE, or that are both FALSE,
are equal.
Conversely, the != inequality operator returns TRUE if two operands are not
equal – applying the same rules as those followed by the equality operator.
Equality and inequality operators are useful in testing the state of two
variables to perform “conditional branching” of a program – proceeding in
different directions according to the condition.
The > “greater than” operator compares two operands and will return TRUE
if the first is greater in value than the second.
The < “less than” operator makes the same comparison but returns TRUE if
the first operand is less in value than the second.
Adding the = assignment operator after the > “greater than” operator, or
after the < “less than” operator, makes it also return TRUE when the two
operands are exactly equal in value.



The conditional operators are also known as the “relational”
operators.

The < less than operator is typically used to test a counter value in a
loop – an example of this can be found here.

Open the RStudio Code Editor and create three variables containing
integer values for comparison
nil <- 0
num <- 0
max <- 1

Comparison.R
Next, create two variables containing character values for
comparison
cap <- “A”
low <- “a”
Now, add statements to output the result of equality comparison of
integer and character values
print( paste( “0 == 0 Equality:”, nil == num ) )
print( paste( “A == a Equality:”, cap == low ) )
Add a statement to output the result of inequality comparison of
integer values
print( paste( “0 != 1 Inequality:”, nil != max ) )
Then, add statements to output the results of greater than and less
than comparisons of integer values
print( paste( “0 > 1 Greater:”, nil > max ) )
print( paste( “0 < 1 Less:”, nil < max ) )
Finally, add statements to output the results of greater or equal and
less or equal comparisons of integer values
print( paste( “0 >= 0 Greater or Equal:”, nil >= num ) )
print( paste( “1 <= 0 Less or Equal:”, max <= nil ) )



Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the comparison output

The ASCII code value for uppercase “A“ is 65 but for lowercase “a”
it’s 97 – so their comparison here returns FALSE.

When comparing numbers, remember to test for equality as well as
testing for higher and lower values.



Assessing logic
Logical operators, listed in the table below, can be used to combine multiple
expressions that each return a Boolean value into an expression that returns
a single Boolean value.

Operator: Operation:

! Logical NOT

&& Logical AND

& Element-wise Logical AND

|| Logical OR

| Element-wise Logical OR

Logical operators are used with operands that have the Boolean values of
TRUE or FALSE, or values that can convert to TRUE or FALSE. In R
programming, zero is considered to be FALSE and all other numbers are
considered to be TRUE.
The logical ! NOT operator is a “unary” operator that is used before a single
operand. It returns the inverse Boolean value of the given operand –
reversing TRUE to FALSE, and FALSE to TRUE.
The logical && AND operator will evaluate the first element of two
operands and return TRUE only if both operands are themselves TRUE.
Otherwise the logical && operator will return FALSE. The element-wise
logical & operator performs the same operation but on all elements of the
operands.
Unlike the logical && operator, which needs two operands to be TRUE, the
logical || OR operator will evaluate the first element of its two operands and
return TRUE if either one of the operands is TRUE – it will only return FALSE
when neither operand is TRUE. The element-wise logical | operator performs
the same operation but on all elements of the operands.
If the two operands have a different number of elements, the result will be
of the same length as the operand with the most elements.



The term “Boolean” refers to a system of logical thought developed
by the English mathematician George Boole (1815-1864).

Open the RStudio Code Editor and create a variable containing a
Boolean value
active <- TRUE

Logic.R
Next, add a statement to output the inverse of the stored Boolean
value
print( paste( “NOT logic !active:”, !active ) )
Now, create two more variables that each contain multiple Boolean
values or values than can convert to Booleans
flags <- c( TRUE, TRUE, FALSE, ( 1 > 0 ), 0 )
marks <- c( FALSE, TRUE, TRUE, 16, FALSE )
Add a statement to output the result of logical AND and logical OR
evaluation of first elements only
print( paste( “AND logic:”, flags && marks ) )
print( paste( “OR logic:”, flags || marks ) )
Finally, assign the result of logical AND and OR evaluation of all
elements to two further variables
and.result <- flags & marks
or.result <- flags | marks
Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the output and results



The value returned by the ! NOT logical operator is the inverse of the
stored value – the stored value itself remains unchanged.

Notice that the variables containing multiple values are stored
numerically as they contain numbers and an expression that can
convert to Boolean values.



Operating on elements
The elements of a vector can be easily filled with a numeric sequence using
the : colon operator. A numeric “from” operand is required before the :
operator, and a numeric “to” operand is required after the : operator to
specify a range. The operation generates an inclusive sequence, in steps of
one, between the specified range. The generated sequence will be either
ascending or descending according to the specified “from” and “to” values.
A numeric sequence can be specified as the argument to the combining c( )
function to fill the elements of a vector. Additionally, a numeric sequence
can be specified within [ ] square brackets to specify an index range – to
copy a “slice” of a vector.
When you want to output all elements of a vector to the Console, the
combination of print( ) and paste( ) functions will be called for each element.
For example, consider this statement and its output:

This may not be what you want, but R provides a useful built-in cat( )
function that concatenates (joins) together its arguments then outputs them
to the Console, like this:

One of the great advantages of R variables is the ability to perform vector
arithmetic on all their numeric element values simply by placing any
arithmetic operator between variable names. If the vectors have an equal
number of elements, the operation will be performed between the
corresponding element in each vector. If the vectors have an unequal
number of elements, the shorter one will be “recycled” in order to match the
longer vector length. Where the size of the longer vector is not an exact
multiple of the shorter vector, the operations will be performed but the R
interpreter will provide a warning.



Note that the cat( ) function provides no quotes in the output and
does not automatically add a newline after its output. You can
include a final “\n” escape sequence argument to manually add a
newline.

Open the RStudio Code Editor and create a variable containing a
numeric sequence from one to nine
series <- c( 1:9 )

VectorArithmetic.R
Next, add a statement to output a text string, the numeric sequence,
and a newline
cat( “Series:”, series, “\n” )
Now, create a second variable containing a slice of the first
variable’s element values, then output that sequence
slice <- series[ 1:3 ]
cat( “Slice:”, slice, “\n” )
Create a third variable containing the total of element values in the
other two variables, then output the totals
totals <- series + slice
cat( “Totals:”, totals, “\n” )
Extend the slice, then output that sequence
slice <- series[ 1:4 ]
cat( “New Slice:”, slice, “\n” )
Recalculate the total of element values that are now in the other two
variables, then output those totals
totals <- series + slice
cat( “New Totals:”, totals, “\n” )
Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the values and a warning



The vector arithmetic in this example simply uses the + operator for
addition, but you can use any arithmetical operator to perform an
operation on the element values within two specified vector
variables.

Notice that the length of the series in this example is an exact
multiple of three times the length of the original slice, which gets
recycled twice. The length of the series is not an exact multiple of the
extended slice.



Comparing elements
Just as arithmetical operators can be used to perform arithmetic on elements
within two vectors, so can comparison operators be used to perform
comparison of elements within two vectors. Comparisons can be made of
both numeric and text string values. The result is returned as a vector of
Boolean TRUE and FALSE values indicating each corresponding element
comparison.
In comparing short vectors of just a few elements, it’s easy to determine the
result by examining the returned vector of Booleans but this becomes more
difficult when comparing larger vectors. Happily, R provides a built-in
which( ) function for this purpose. This function accepts a Boolean vector as
its argument and returns a list of the index numbers containing a TRUE
value.
Comparison of text strings to discover matching values within
corresponding elements of two vectors can be made with the == equality
operator, but the character case and order must be precisely identical for the
comparison to return a TRUE value.
Comparison of text strings to discover matching values within any elements
of two vectors can be made with the built-in intersect( ) function. This
accepts the names of two vector variables as a comma-separated list, and
returns all values that precisely match:

Open the RStudio Code Editor and create two variables that each
contain a numeric sequence
ascend <- c( 1:5 )
descend <- c( 5:1 )

VectorComparison.R
Next, add a statement to output a text string and the numeric
sequences, formatted with newlines
cat( “Vectors:\n”, ascend, “\n”, descend )
Now, compare the numeric values within each corresponding
element of the two vectors
result <- ascend > descend
Then, output the returned vector of Boolean values



cat( “\n1st Vector Greater?:”, result )
Also, output the index numbers containing a TRUE value
cat( “\nAt Index No.:”, which( result ) )

You can change the > comparison to the >= operator to also produce
a TRUE result for the third elements here.

Next, create two variables that each contain string values within
each element
pets <- c( “Dog”, “Cat”, “Gerbil”, “Rabbit” )
animals <- c( “Lion”, “Tiger”, “Cat”, “Rabbit” )
Now, add a statement to output a text string and the element values,
formatted with newlines
cat( “\n\nVectors:\n”, pets, “\n”, animals )
Compare the character string values within each corresponding
element of the two vectors
result <- pets == animals
Then, output the returned vector of Boolean values
cat( “\nElement Match?:”, result )
Also, output the index numbers containing a TRUE value
cat( “\nAt Index No.:”, which( result ) )
Finally, output the matching values within any elements of the two
vectors
cat( “\nCommon:”, intersect( pets, animals ) )
Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the comparison results



You can also include the \t tab escape sequence to format output.

Although “Cat” is contained in both vectors, it is not contained in
corresponding elements.



Recognizing precedence
Operator precedence determines the order in which R evaluates
expressions. For example, the expression 1 + 5 * 3 evaluates to 16, not 18,
because the * multiplication operator has a higher precedence than the +
addition operator. Parentheses can be used to specify precedence, so that ( 1
+ 5 ) * 3 evaluates to 18.
When operators have equal precedence, their “associativity” determines
how expressions are grouped. For example, the - subtraction operator is
left-associative, grouping left-to-right (LTR), so 8 - 4 - 2 is grouped as ( 8 - 4 )
- 2 and thus evaluates to 2. Other operators are right-associative, grouping
right-to-left (RTL).
The table below lists common operators in order of precedence, with the
highest-precedence ones at the top. Operators on the same line have equal
precedence, so operator associativity determines how expressions are
grouped and evaluated.

Category: Operator: Associativity:

Subset $ LTR

Exponent ^ RTL

Sign (unary) + - LTR

Sequence : LTR

Modulus %% (and %/%) LTR

Multiplicative * / LTR

Additive + - LTR

Comparative < <= > >= == != LTR

Logical NOT ! LTR

Logical AND && & LTR

Logical OR || | LTR

Assignment = RTL

Assignment <- RTL



Help ? ?? LTR

The * multiply operator is on a higher row than the + addition
operator – so in the expression num <- 1 + 5 * 3 multiplication is
completed first, before the addition.

Open the RStudio Code Editor and create a variable containing the
result of an arithmetical expression
sum <- 1 + 4 * 3

Precedence.R
Next, add a statement to output the result that relies upon the default
order of operator precedence
print( paste( “Default Order:”, sum ) )
Now, assign to the variable the result of a clarified arithmetical
expression, which forces the expression to be evaluated in a specific
order
sum <- ( 1 + 4 ) * 3
Add a statement to output the clarified result
print( paste( “Forced Order:”, sum ) )
Assign to the variable the result of an expression whose arithmetical
operators have the same level of precedence
sum <- 7 - 4 + 2
Next, add a statement to output the result that relies upon the default
associativity of operator precedence
print( paste( “Default Direction:”, sum ) )
Now, assign to the variable the result of a clarified arithmetical
expression, then output the clarified result
sum <- 7 - ( 4 + 2 )
print( paste( “Forced Direction:”, sum ) )
Save the R Script file, then click the Source button, or press Ctrl +
Shift + S, to see the output and results



The * multiplication operator takes precedence over the + addition
operator – so multiplication is performed first.

The - subtraction operator and the + addition operator have equal
precedence but also have left-to-right associativity – so subtraction is
performed first before addition.

It is best to clarify all expressions by adding parentheses to group
operations.



Manipulating elements
In addition to the various operators described in this chapter, R provides a
number of built-in functions that can be used to manipulate the elements
within vector variables. Each of the functions below accept a vector as their
argument:
• The sort( ) function sorts the element values into numerical or

alphabetical order. By default, the element values will be sorted into
ascending order, but can be sorted into descending order by including a
decreasing=TRUE argument in the function call. Elements that have
missing values, denoted in R by a NA constant value, will be
automatically removed by default, but can be retained at the end of the
order by including a na.last=TRUE argument in the function call.

• The rev( ) function simply reverses the order of all elements within the
vector variable.

• The unique( ) function removes elements containing duplicated values
from the vector variable.

Open the RStudio Code Editor and create a vector variable
containing three text string values
fruit <- c( “Banana”, “Apple”, “Cherry” )

Manipulate.R
Next, add a statement to output the values contained in each element
– in their current order
cat( “Fruit:”, fruit, “\n” )
Now, assign a sorted arrangement of the elements to the vector
variable, using the default ascending order
fruit <- sort( fruit )
Then, output the values contained in each element – in their new
sorted order
cat( “Sorted:”, fruit, “\n\n” )
Create a second vector variable containing numerical values and
some elements with missing values
nums <- c( NA, 8:2, NA, 1:7, NA )



The sort( ) function can alternatively include a na.last=FALSE
argument to retain elements that have missing values at the start of
the order.

Next, output the values contained in each element of the second
variable – in their current order
cat( “Numbers:”, nums, “\n” )
Now, assign a sorted arrangement of the elements to the variable,
using the default ascending order and placing elements with missing
values at the end
nums <- sort( nums, na.last=TRUE )
Then, output the values contained in each element – in their new
sorted order
cat( “Increasing:”, nums, “\n” )
Assign a sorted arrangement of the elements to the vector variable in
descending order, then output the values
nums <- sort( nums, decreasing=TRUE )
cat( “Decreasing:”, nums, “\n” )
Assign a reversed arrangement of the elements to the vector
variable, then output the values
nums <- rev( nums )
cat( “Reversed:”, nums, “\n” )
Assign only elements with unique values to the vector variable, then
output the values
nums <- unique( nums )
cat( “Unique:”, nums, “\n” )
Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the output element values



If the call to the sort( ) function does not specify a na.last argument,
elements with missing values will be automatically removed.



Summary
• The arithmetical operators in R programming are + addition, -

subtraction, * multiplication, / division, %/% integer division, ^
exponentiation, and %% modulus.

• The comparison operators in R programming are == equality, !=
inequality, > greater than, < less than, >= greater than or equal to, and <=
less than or equal to.

• The logical operators in R programming are ! logical NOT, && logical
AND, & element-wise logical AND, || logical OR, and | element-wise
logical OR.

• Comparison and logical operators return a Boolean value of TRUE or
FALSE as the result of their operation.

• The : colon operator generates an inclusive sequence in steps of one
between the range specified by its numeric operands.

• The : colon operator can be used to specify a numeric sequence within [ ]
square brackets to copy a slice of a vector.

• The cat( ) function concatenates its arguments for output and is a useful
alternative to the print( ) and paste( ) functions.

• Vector arithmetic on numeric element values is performed by placing an
arithmetic operator between two variable names.

• When performing vector arithmetic, if vectors have an unequal number
of elements, the shorter one will be recycled in order to match the longer
vector length.

• The R comparison operators can be used to perform comparison of
corresponding elements within two vectors.

• Operator precedence determines the order in which R evaluates
expressions.

• Where operators have equal precedence, their associativity determines
how expressions are grouped.

• Parentheses can be used to specify precedence, in which case
expressions within innermost parentheses are performed first.

• Vector elements can be manipulated using the sort( ), rev( ) and unique( )
functions.



4
Testing conditions

This chapter demonstrates how to control the flow of R Script programs.
Seeking truth
Branching alternatives
Chaining branches
Switching branches
Looping while true
Performing for loops
Breaking from loops
Summary



Seeking truth
The if keyword performs a conditional test to evaluate an expression for a
Boolean value. A statement following the expression will only be executed
when the evaluation is TRUE, otherwise the program proceeds on to subsequent
code – pursuing the next “branch”. The if statement syntax looks like this:
if ( test-expression ) { code-to-be-executed-when-true }
The code to be executed can contain multiple statements if they are enclosed
within curly brackets to form a “statement block” :

Open the RStudio Code Editor and add a conditional test that evaluates
an expression comparing two numbers
if ( 5 > 1 )
{

print( “Five is greater than one.” )
}

If.R
Add a second conditional test, which executes an entire statement block
when one number is less than another
if ( 2 < 4 )
{

print( “Two is less than four.” ) ;
print( “Test succeeded.” ) ;

}
Select all lines of both statements, then click the Run button, or press
Ctrl + Enter, to execute the code



Expressions can utilize the TRUE and FALSE keywords. The test
expression ( 2 < 4 ) is shorthand for ( 2 < 4 == TRUE ).
A conditional test can also evaluate a complex expression to test multiple
conditions for a Boolean value. Parentheses enclose each test condition to
establish precedence – so they get evaluated first. The Boolean && AND
operator ensures the complex expression will only return TRUE when both tested
conditions are true:
if ( ( test-condition1 ) && ( test-condition2 ) ) { execute-this-code }
The Boolean || OR operator ensures a complex expression will only return TRUE
when either one of the tested conditions is true:
if ( ( test-condition1 ) || ( test-condition2 ) ) { execute-this-code }
A combination of these can form longer complex expressions:

Declare a variable containing a single integer value
num <- 8
Add a third conditional test that executes a statement when the value of
the num variable is within a specified range, or when it’s exactly equal to
a specified value
if( ( num > 5 ) && ( num < 10 ) || ( num == 12 ) )
{

print( “Number is 6-9 inclusive, or 12” )
}
Select the variable declaration and all lines of the third statement, then
press Ctrl + Enter or click the Run button to execute the code

Change the value assigned to the variable so it is neither within the
specified range 6-9, or exactly 12, then run the third statement code
again to now see the statement after the complex expression is not
executed.



The range can be extended to include the upper and lower limits using
the >= and <= operators.

The complex expression uses the == equality operator to specify an
exact match, not the = assignment operator.



Branching alternatives
The else keyword is used in conjunction with the if keyword to create if else
statements that provide alternative branches for a program to pursue – according
to the evaluation of a tested expression. In its simplest form this merely
nominates an alternative statement for execution when the test fails:
if ( test-expression )
{

code-to-be-executed-when-true
} else

{
code-to-be-executed-when-false

}

Each alternative branch may be a single statement or a statement block of
multiple statements – enclosed within curly brackets.
More powerful if else statements can be constructed that evaluate a test
expression for each alternative branch. These may have “nested” if statements
within each else block to specify a further test. When the program discovers an
expression that evaluates as TRUE it executes the statements associated with just
that test then exits the if else statement without exploring any further branches:

Open the RStudio Code Editor and create a variable containing an
integer value
hour <- 11

Else.R
Insert this simple conditional test, which executes a single statement
when the value of the variable is below 13
if ( hour < 13 )
{

print( paste( “Good Morning:”, hour ) )
}
Click the Source button to run the code and see the statement get
executed



Change the variable value to 15, then add this alternative branch
immediately after the closing } curly bracket of the if statement
else
{

if ( hour < 18 ) print( paste( “Good Afternoon:”, hour ) )
}
Click the Source button to run the code and see just the alternative
statement get executed

The else keyword must be added on the same line as the closing curly
bracket of the preceding statement block.
It is sometimes desirable to provide a final else branch, without a chained if
statement, to specify a “default” statement to be executed when no tested
expression evaluates as TRUE:

Change the variable value to 21, then add this alternative branch
immediately after the nested if statement

else
{

print( paste( “Good Evening:”, hour ) )
}

Select the entire code, then click the Run button to run the code and see
the appropriate statement get executed



Conditional branching is the fundamental process by which computer
programs proceed.



Chaining branches
When you want to provide several alternative branches, the technique of nesting
if else statements can produce code that is difficult to read. A better solution is
possible by “chaining” alternative branches using else if statements. These too
provide alternative branches for a program to pursue according to the evaluation
of a tested expression, but in a more succinct format:
if ( test-expression )
{

code-to-be-executed-when-true
} else if ( test-expression )

{
code-to-be-executed-when-true

} else if ( test-expression )
{

code-to-be-executed-when-true
} else

{
code-to-be-executed-when-false

}
When the program discovers an expression that evaluates as TRUE, it executes
the statements associated with just that test then exits the if or else if statement
without exploring any further branches. The previous example that used nested
conditional tests can therefore be better written to use chained conditional tests:

Open the RStudio Code Editor and create a variable containing an
integer value
hour <- 11

ElseIf.R
Insert this simple conditional test, which executes a single statement
when the value of the variable is below 13
if ( hour < 13 )
{

print( paste( “Good Morning:”, hour ) )
}
Click the Source button to run the code



The else keyword must be added on the same line as the closing curly
bracket of the preceding statement block.

Change the value assigned to the variable to 15, then add this alternative
branch immediately after the closing } curly bracket of the if statement
else if ( hour < 18 )
{

print( paste( “Good Afternoon:”, hour ) )
}
Click the Source button to run the code and see just the alternative
statement get executed

Change the value assigned to the variable to 21, then add this default
branch immediately after the closing } curly bracket of the else statement

else
{

print( paste( “Good Evening:”, hour ) )
}

Select the entire code, then click the Run button to run the code and see
just the default statement get executed

The final else statement provides a default statement to execute when all
conditional tests fail.



Switching branches
Lengthy if else statements, which offer many conditional branches for a program
to pursue, can become unwieldy. Where the test expression returns an integer or
character string value, a more elegant solution can be provided by the built-in
switch( ) function.
The basic syntax of the switch( ) function looks like this:
switch ( expression , list )
The list contains comma-separated items that can themselves be returned by the
switch( ) function, or be expressions to be executed by the function, or be named
items with associated values or expressions to be returned or executed by the
function.
The switch( ) function examines the value returned by the specified expression. If
the value is an integer, or can convert to an integer, the switch( ) function returns
the value at that index position. For example, switch( 2, “A”, “B”, “C” ) returns “B”.
Alternatively, list items may be complex expressions that contain code to be
executed within { } curly brackets. In this case, the switch( ) function will execute
the code at that index position. For example, switch( 2, { print( “A” ) }, { print( “B” ) } )
prints “B”.
When the integer returned by the specified expression is beyond the final index
position of the list, the switch( ) function returns a NULL value. For example,
switch( 4, “A”, “B”, “C” ) returns NULL.
If the value returned by the specified expression is a character string, the switch( )
function seeks to match that string in the list. When it finds a match in the list,
the switch( ) function returns the value associated with that character string. For
example, switch( “bar”, foo=”A”, bar=”B” ) returns “B”.
Where the list items are complex expressions that contain code to be executed
within { } curly brackets, the switch( ) function will execute the code associated
with the character string. For example, switch( “bar”, foo={ print( “A” ) }, { bar=print(
“B” ) } ) prints “B”.
When no match is found to the character string returned by the specified
expression, the switch( ) function returns a NULL value. For example, switch(
“num”, foo=”A”, bar=”B” ) returns NULL.

Notice that the list names do not need to be enclosed within quote
marks.



Open the RStudio Code Editor and create three variables
month <- “Jan”
year <- 2020
num <- 0

Switch.R
Next, add a statement to examine the first variable and assign a new
value to the last variable
switch( month,

“Jan” = { num <- 31 },
“Feb” = { if( year %% 4 == 0 )
 num <- 29 else num <- 28 },
“Mar” = { num <- 31 },
“Apr” = { num <- 30 },
“May” = { num <- 31 },
“Jun” = { num <- 30 },
“Jul” = { num <- 31 },
“Aug” = { num <- 31 },
“Sep” = { num <- 30 },
“Oct” = { num <- 31 },
“Nov” = { num <- 30 },
“Dec” = { num <- 31 }

)
Now, add a statement to output the number of days in the specified
month
print( paste( month, year, “has”, num, “days” ) )
Click the Source button to run the code and see the output

Change the value of the first variable to match any list name, then run the
code again to see its associated output



The num variable must be created outside the switch( ) statement block
to be visible to code elsewhere – otherwise it will only be available
locally, to code inside the switch block. This is variable “scope” – see
here for details.

Notice that complex expressions containing code to be executed enclose
the code within curly brackets.



Looping while true
A loop is a block of code that repeatedly executes the statements it contains until
a tested condition is met – then the loop ends and the program proceeds on to its
next task.
The basic loop structure in R programming employs the while keyword and has
this syntax:
while ( test-expression )
{

statements-to-be-executed-on-each-iteration updater
}

The test expression must evaluate some value that gets updated in the loop’s
statement block as the loop proceeds – otherwise an infinite loop is created that
will relentlessly execute its statements.
The test expression is evaluated at the start of each iteration of the loop for a
Boolean TRUE value. When the evaluation returns TRUE, the iteration proceeds
but when it returns FALSE, the loop is immediately terminated, without
completing that iteration.
Note that if the test expression returns FALSE when it is first evaluated, the loop
statements are never executed.
A while loop can be made to evaluate a counter variable in its test expression, by
creating a counter variable outside the loop and updating its value within the
loop’s statement block that it executes on each iteration. For example, a while
loop can output the value of its counter variable on each iteration, like this:
count <- 1
while ( count < 4 )
{

print( paste( “Loop Counter =”, count ) )
count <- ( count + 1 )

}
This positions the counter externally, before the while loop structure, and its
updater within the statement block.
Loop structures may also be nested – so that an inner loop executes all its
iterations on each iteration of the outer loop.



The updater is often referred to as the “incrementer” as it more often
increments, rather than decrements, the counter variable.

Open the RStudio Code Editor and create a variable to count the total
number of loop iterations
sum <- 0

While.R
Next, create a counter variable and a loop to increment the total counter,
output this loop counter and total counter, then increment this loop’s
counter value
i <- 1
while( i < 4 )
{

sum <- ( sum + 1 )
cat( “Outer Loop i =”, i, “\t\tTotal =“, sum, “\n” )
i <- ( i + 1 )
# Nested loop to be inserted here.

}
Now, create a second counter variable and a similar loop to increment the
total counter, output this loop counter and total counter, then increment
this loop’s counter value
j <- 1
while( j < 4 )
{

sum <- ( sum + 1 )
cat( “\tInner Loop j =”, j, “\tTotal =”, sum, “\n” )
j <- ( j + 1 )

}
Click the Source button to run the code and see the output display the
counter values on each iteration of the loops



The “trivial” variables that are used as loop counters are traditionally
named i , j, and k.

You can halt execution of an infinite loop by pressing the Esc key, or by
clicking the Stop button that appears on the Console menu bar as the
loop is running.



Performing for loops
Unlike the while loop structure, which evaluates a test expression to determine
whether it should continue its iterations, R provides an alternative that is
especially useful with sequences. This loop uses the for and in keywords and has
this syntax:
for ( variable in sequence )
{

statements-to-be-executed-on-each-iteration
}
The for loop iterates over each element in a sequence and executes the statements
contained within its statement block on each iteration of the loop. When the end
of the sequence is reached, the loop ends and the program proceeds to its next
task.
The variable named in the parentheses of a for loop is assigned the value of the
current element in the sequence on each iteration of the loop. For example, a for
loop can output the value of its variable on each iteration over a vector, like this:
seq <- c( 100, 200, 300 )
for( var in seq )
{

print( paste( “Loop Variable =”, var ) )
}
The : colon operator can be used to easily specify a numeric range.
For example, to perform one hundred iterations, like this:
for( var in 1:100 )
{

print( paste( “Loop Variable =”, var ) )
}
Where the for loop is to iterate over a specified sequence whose length may vary,
the length( ) function can be used, like this:
seq <- c( 100, 200, 300, 400, 500 )
for( var in 1:length( seq ) )
{

print( paste( “Loop Variable =”, seq[ var ] ) )
}
In this case the variable is assigned the index number of the element, which is
used to retrieve its value in the statement.

It is sometimes more efficient to iterate by index number.



Open the RStudio Code Editor and create a variable to contain a list
sequence of character strings
seq <- list( A=”Alpha”, B=”Bravo”, C=”Charlie” )

ForIn.R
Next, add a loop to iterate over the sequence and output the current
element value on each iteration
for( var in seq )
{

print( var )
}
Now, assign a vector sequence of integers to the variable
seq <- c( 2, 7, 6, 8, 3, 5, 4 )
Then, add a loop to iterate over the sequence and output the current
element value and its parity on each iteration
for( var in seq )
{

if( var %% 2 == 1 )
{

cat( var, “Is Odd\n” )
} else
{

cat( var, “Is Even\n” )
}

}
Click the Source button to run the code and see the output display the
values on each iteration of the loops



In R, the execution of loops is relatively slow so it is better to use vector
arithmetic wherever possible – see here.



Breaking from loops
The break keyword can be used to prematurely terminate a loop when a specified
condition is met. The break statement is situated inside the loop statement block
and is preceded by a test expression. When the test returns TRUE, the loop ends
immediately and the program proceeds to its next task. For example, in a nested
for loop it proceeds to the next iteration of its outer loop.

Open the RStudio Code Editor and create an outer loop that will perform
three iterations
for( i in 1:3 )
{

# Inner loop to be inserted here.
}

BreakNext.R
Insert an inner loop that will also perform three iterations, and output the
variable values on each iteration

for( j in 1:3 )
{

# Statement for next to be inserted here.
# Statement for break to be inserted here.
cat( “Running i=”, i, “ j=”, j, “\n” )

}
Click the Source button to run the code and see the output display the
values on each iteration of the loops

Add this break statement to the beginning of the inner loop statement
block, to break out of the inner loop – then click the Source button to re-
run the program
if ( i == 2 && j == 1 )
{

cat( “Breaks Inner Loop at i=”, i, “ j=”, j, “\n” )
break



}

Here, the break statement halts all three iterations of the inner loop when
the outer loop tries to run it for the second time.
The next keyword can be used to skip a single iteration of a loop when a
specified condition is met. The next statement is situated inside the loop
statement block and is preceded by a test expression. When the test returns
TRUE, that iteration ends.

Add this next statement to the beginning of the inner loop statement
block, to skip the first iteration of the inner loop – then click Source to
re-run the program
if ( i == 1 && j == 1 )
{

cat( “Skips Iteration at i=”, i, “ j=”, j, “\n” )
next

}



Here, the next statement skips just the first iteration of the inner loop
when the outer loop tries to run it for the first time.



Summary
• The if keyword performs a conditional test to evaluate an expression for a

Boolean value of TRUE or FALSE.
• An if statement block can contain one or more statements that are only

executed when the test expression returns TRUE.
• The Boolean && AND operator and || OR operator can be used to perform

multiple conditional tests.
• The else keyword specifies alternative statements to execute when the test

performed by the if keyword returns FALSE.
• Multiple if else statements can be nested to test several conditions in the

process of conditional branching.
• A final else statement can be used to specify default statements to be

executed when all conditional tests fail.
• Combined else if statements can be chained to test several conditions more

succinctly than nested statements.
• The switch( ) function can sometimes provide an elegant solution to unwieldy

if else statements.
• When the value returned by the expression specified to switch( ) is an integer,

the function returns the value at that index position in its list, but when it’s a
character string, the function seeks to match that string in its list.

• A loop repeatedly executes the statements it contains until a tested expression
returns FALSE.

• Statements in a while loop must change a value used in their test expression to
avoid an infinite loop.

• The parentheses that follow the for keyword specify a variable, the in
keyword, and a sequence to iterate over.

• A loop iteration can be skipped using the next keyword.
• A loop can be terminated using the break keyword.



5
Employing functions

This chapter demonstrates how to use built-in R functions and how to

create your own functions in R Script programs.
Doing mathematics
Manipulating strings
Producing sequences
Generating random numbers
Distributing patterns
Extracting statistics
Creating functions
Providing defaults
Summary



Doing mathematics
The R programming language provides many built-in functions that are
useful to perform mathematical calculations. For example, the sqrt( )
function returns the square root of the number specified as its sole
argument. A variety of functions are provided to round decimal numbers up
or down according to your requirements.
All trigonometric operations are supported in R to return sine, cosine,
tangent, and their inverse equivalents. Conveniently, R also has a built-in
constant named pi, representing ∏ (3.14159265...).
The natural logarithm of a number is returned by the log( ) function and the
inverse of this operation can be performed using the exp( ) function.
Frequently-used mathematical R functions are listed in the table below:

Function: Returns:

abs( x ) Absolute value of x

sqrt( x ) Square root of x

ceiling( x ) Integer of x rounded up

floor( x ) Integer of x rounded down

trunc( x ) Integer of x truncated

round( x , digits=n ) Nearest number to x , to n decimal places

signif( x , digits=n ) Nearest number to x , to n significant digits

cos( x ), sin( x ), tan( x ) acos( x ), asin(
x ), atan( x )

Cosine, sine, tangent, arc-cosine, arc-sine,
and arc-tangent of x

log( x ) Natural logarithm of x

log10( x ) Common (base 10) logarithm of x

exp( x ) Exponential value of x

To discover more on trigonometric functions, enter ?Trig to see their
Help page.



Angles in R must be expressed in radians, not degrees, so degrees
must be converted to radians when specifying arguments to the
trigonometric functions.

Begin an R Script by displaying the value of the mathematical
constant of ∏
cat( “Pi Constant =”, pi, “\n” )

Math.R
Next, add statements to display the value of the mathematical
constant ∏ rounded down, rounded up, and rounded to two decimal
places
cat( “Pi Floor\t”, floor( pi ), “\n” )
cat( “Pi Ceiling\t”, ceiling( pi ), “\n” )
cat( “Pi Rounded\t”, round( pi, digits=2 ), “\n\n” )
Now, create a variable containing an integer value, then display the
square root of that value
num <- 64
cat( “Square Root of”, num, “=”, sqrt( num ), “\n\n” )
Then, assign an angle represented in radians to the variable and
display that angle’s cosine
num <- ( 120 * ( pi / 180 ) )
cat( “Cosine of 120° = ”, cos( num ), “\n\n” )
Finally, assign the natural logarithm of an integer to the variable,
then display its inverse value and the logarithm
num <- log( 100 )
cat( “Log of”, exp( num ), “=”, num, “\n” )
Run the code to see the output results from the mathematical
functions



R also supports scientific notation to represent very large numbers
as a decimal and exponent separated by the letter e. For example,
12,500 can be written as 1.25e4 – meaning 1.25 x 10^4.



Manipulating strings
The R programming language provides built-in functions to manipulate
character strings. The familiar paste( ) function joins strings together.
Conversely, there are several functions provided to extract substrings from a
given string to suit your requirements. The character case of a given string
can be easily transformed by toupper( ) and tolower( ) functions. Frequently-
used R functions for string manipulation are listed in the table below:

Function: Returns:

substr( x , start, stop ) Substring of x from start to stop

sub( pattern, new, x ) String substituted first match of pattern with new in x

strsplit( x, separator ) Substrings of x split around the specified separator

toupper( x ) String x transformed to all uppercase characters

tolower( x ) String x transformed to all lowercase characters

The Sys.time( ) function returns the current system date and time, which can
be manipulated to suit your requirements using the built-in format( )
function. This requires two arguments to specify the date and time, plus a
string incorporating format specifiers:

Specifier: Format: Example:

%e Day number (1-31) 7

%a Short day name Mon

%A Full day name Monday

%b Short month name Aug

%B Full month name August

%H Hour number (00-23) 12

%M Minute number (00-59) 30

%Y Year number 4-digit 2018



There are many other format specifiers available. Enter ?strptime to
discover more.

Begin an R Script by assigning a character string to a variable for
manipulation
string <- “R for Data Analysis”

String.R
Next, add a statement to display an extracted substring of the
variable string
cat( “Substring:\t”, substr( string, 7, 10 ), “\n” )
Now, add a statement to display a substring in which a matched
pattern has been replaced
cat( “Replaced:\t”, sub( “sis”, “tics”, string ), “\n\n” )
Then, print substrings extracted from the variable string around each
space character
print( paste( “Split: “, strsplit( string, “ “ ) ) )
Add a statement to display an uppercase version of the variable
string
cat( “\nUppercase:\t”, toupper( string ), “\n\n” )
Finally, assign the current date and time to a variable, then print its
components in formatted strings
now <- Sys.time( )
print( format( now, format=”Date: %A, %B %e” ) )
print( format( now, format=”Time: %H:%M” ) )
Run the code to see the output results from the string manipulations



Notice that the strsplit( ) function returns a list that has \” escaped
quote marks around each item to avoid conflict with the quote marks
enclosing the entire string.



Producing sequences
The : colon operator is useful for quickly producing a sequence of numbers
in steps of one, but the built-in seq( ) function offers greater possibilities.
This function accepts two arguments to specify the start and end value of
the sequence, but can also accept a third integer argument to specify the
step value. Alternatively, the third argument can be length.out= to specify the
length of the sequence. In this case, R will calculate the step value to evenly
distribute the sequence between the specified start and end values. The
length may also be specified using along.with= as the third argument to
nominate a vector whose length will be matched.
Where you want to replicate items repeatedly in a sequence, you can
specify the item and sequence length as arguments to the built-in rep( )
function. The item may be a single value, a vector, or a list – each element
will be repeated in turn within the sequence. Additionally, a fourth each=
argument can be included to specify how many times each element should
be repeated in the sequence.
R also provides these useful sequences as built-in constants:

Constant: Sequence:

LETTERS “A”, ”B”, ”C”, ”D”, ”E”, ”F”, ”G”, ”H”, ”I”, ”J”, ”K”, ”L”, ”M”, ”N”, ”O”, ”P”, ”Q”,
”R”, ”S”, ”T”, ”U”, ”V”, ”W”, ”X”, ”Y”, ”Z”

letters “a”, ”b”, ”c”, ”d”, ”e”, ”f”, ”g”, ”h”, ”i”, ”j”, ”k”, ”l”, ”m”, ”n”, ”o”, ”p”, ”q”, ”r”, ”s”,
”t”, ”u”, ”v”, ”w”, ”x”, ”y”, ”z”

month.name “January”, “February”, “March”, “April”, “May”, “June”, “July”, “August”,
“September”, “October”, “November”, “December”

month.abb “Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul”, “Aug”, “Sep”, “Oct”, “Nov”,
“Dec”

The built-in constants are vectors, so individual elements can be addressed
using their index number as usual. For example, writing month.name[ 4 ] to
retrieve “April”. A slice can also be addressed using the : colon operator to
specify the start and end index numbers, such as LETTERS[ 1:3 ] to retrieve
“A”, “B”, “C”.



The built-in “constant” values in R can actually be assigned new
values so be careful to avoid using their names for your variable
names.

Begin an R Script by assigning a slice of a constant to a variable,
then output the assigned values
half.year <- month.abb[ 1:6 ]
cat( “Constant:”, half.year, “\n” )

Sequence.R
Next, add statements to display sequences stepped by increments of
one and two respectively
cat( “Sequence:”, seq( 1, 8 ), “\n” )
cat( “Two Step:”, seq( 1, 8, 2 ), “\n\n” )
Now, add statements to display sequences whose element values are
distributed evenly between specified lengths
cat( “Distributed:”, seq( 1, 8, length.out=4 ), “\n” )
cat( “Distributed:”, seq( 1, 8, along.with=half.year ), “\n\n” )
Then, output a replicated sequence of a specified integer nine times
cat( “Replicated:”, rep( 5, 9 ), “\n” )
Output a replicated sequence of a specified sequence that will be
repeated three times
cat( “Replicated:”, rep( 1:4, 3 ), “\n” )
Finally, output a replicated sequence of a specified sequence that
will be repeated three times, in which each element will be repeated
twice
cat( “Replicated:”, rep( 1:4, 3, each=2 ), “\n” )
Run the code to see the output sequences



The next step in the two step increment sequence (9) is not output,
as it is beyond the specified end value (8).



Generating random numbers
The R programming language provides the ability to generate random
uniformly distributed numbers with its built-in runif( ) function, which by
default returns random numbers between zero and one. This function
requires a single argument to specify how many random numbers to
generate.
Multiplying a random number will specify a wider range. For example,
multiplying by 10 will create a random number in the range of 0 to 10.
Now, rounding the random number up with the ceiling() function will make
it within the range 1-10 inclusive:

Begin an R Script by assigning a single generated random number to
a variable, then output its value
rand <- runif( 1 )
cat( “Random Number:\t\t”, rand, “\n” )

Random.R
Next, multiply the variable value to increase its range, then output
its new value
rand <- ( rand * 10 )
cat( “Multiplied Number:\t”, rand, “\n” )
Now, round the variable value, then output its new value
rand <- ceiling( rand )
cat( “Random Integer:\t\t”, rand, “\n\n” )
Run the code several times to see the random numbers



In statistics, a “uniform” distribution describes a probability in which
all outcomes are equally likely. For example, a coin toss has uniform
distribution, as the probability of getting heads or tails is equally
likely.
A random sample of element values can be produced by specifying a range
and the required number of element values as arguments to the built-in
sample( ) function. This might be used to produce a sequence of six non-
repeating random numbers within the range 1-59 inclusive for a random
lottery selection:

Create an R Script that assigns integers 1-59 to a vector variable and
displays six random element values
nums <- c( 1:59 )
cat( “My Lucky Numbers:”, sample( nums, 6 ), “\n\n” )

Lottery.R
Run the code several times to see the random sequences of six non-
repeating numbers within the range 1-59



Random normally distributed numbers can be generated with the built-in
rnorm( ) function. This function requires a single argument to specify how
many random numbers to generate. Optionally, it can accept two further
arguments to specify a mean value and standard deviation value. By default,
the mean= value is zero and the sd= standard deviation argument is one:

Create an R Script that assigns three random numbers to a variable
and displays the generated values
nums <- rnorm( 3 )
cat( “Random Normal Distribution:”, nums, “\n\n” )

RandomNormal.R
Run the code several times to see the random numbers

In statistics, “mean” is the expected value and “standard deviation” is
the amount of variation. A low standard deviation indicates data
points close to the mean value.



Distributing patterns
The rnorm( ) function, introduced on the previous page, generates a vector of
random numbers that is sampled from a “normal distribution” of values.
The normal distribution plots all its values in a symmetrical fashion around
the specified mean value. The values are tightly grouped close to the mean,
then tail off symmetrically away from the mean, across the standard
deviation. This is represented graphically as a bell curve. The graph
illustrated below depicts the normal distribution pattern for a mean value of
zero and standard distribution of one (the defaults).

The σ sigma character is used in math notation to denote the
standard deviation values.
The pattern demonstrates that there is a greater probability of the randomly
generated number being closer to the mean value. The probability that the
average value will be closer to the mean value increases as the number of
generated random numbers increases. This pattern is recognized by the
“Law of Large Numbers” (LLN), which is written in math notation like
this:

The law states that the average of the actual measured values  converges
towards the expected value E (X) when the number of values  grows
towards infinity . The graph above shows a 34.1% probability on either



side of the mean value zero. This means that there is a total expectation of
68.2% that the generated random number will fall within the range -1 to +1.
The Law of Large Numbers can be tested by calculating the percentage of
generated random numbers that fall within the expected range as the
quantity of generated numbers increases.

To understand the Law of Large Numbers, imagine tossing a coin –
where there is a 50% chance for heads and tails. 10 coin tosses
might produce 7 heads and 3 tails (70%/30%), 100 coin tosses might
produce 55 heads and 45 tails (55%/45%), and 1000 coin tosses
might produce 510 heads and 490 tails (51%/49%) – getting
increasingly closer to average 50% as the number of coin tosses
increase.

Begin an R Script by creating a variable to specify the quantity of
random numbers to generate
qty <- 10

LLN.R
Next, add a loop structure that will iterate to 1 million
while( qty <= 1000000 )
{

# Statements to be inserted here – Steps 3-6.
}
Now, insert a variable to count the number that fall within the
expected range
num <- 0
Then, insert a nested loop to generate random numbers, and to
increment the counter for each generated random number that falls
within the expected range
for( i in rnorm( qty, mean=0, sd=1 ) )
{

if( ( i >= -1 ) && ( i <= 1 ) ) num <- ( num + 1 )
}



Insert statements to calculate and output the percentage of values
that fall within the expected range
num <- ( num / ( qty / 100 ) )
cat( “For”, qty, “Generated Random Numbers:”, num, “%\n” )
Finally, insert a statement to multiply by 10 the quantity of random
numbers to be generated on each iteration
qty <- ( qty * 10 )
Run the code to test the Law of Large Numbers

You could, optionally, omit the mean and sd arguments as the
values specified here are the rnorm( ) default values.

See that the percentage on the final iteration is closest to the
expectation of 68.2% – thereby demonstrating the Law of Large
Numbers.



Extracting statistics
The R programming language provides a number of built-in utility
functions that allow you to easily extract statistics from a range of values
stored within a vector variable:

Function: Returns:

mean( x ) Average of the values in x – computed by adding up all
values and dividing the total by the number of values

median( x )
Number at the mid-point of the values in x computed by
listing all values in ascending order then locating the central
number

sd( x ) Standard deviation of the values in x

quantile( x ) Cut points that divide the values in x into four equal parts

sum( x ) Sum total of all the values in x

range( x ) Maximum and minimum values in x

max( x ) Maximum value in x

min( x ) Minimum value in x

The mean is used for normal distributions, whereas the median is
generally used for skewed distributions.

Begin an R Script by creating a variable containing 20 generated
random numbers, targeting a mean of five and a standard deviation
of two
nums <- rnorm( 20, mean=5, sd=2 )

Stats.R
Next, add statements to output the mean value and median value of
the generated random numbers



cat( “Mean:\t”, mean( nums ), “\n” )
cat( “Median:\t”, median( nums ), “\n\n” )
Now, add a statement to output the actual standard deviation of the
generated random numbers
cat( “Actual SD:\t”, sd( nums ), “\n\n” )
Add a statement to output the cut points that divide the generated
numbers into four equal parts
cat( “Cut Points:\t”, quantile( nums ), “\n” )
Next, add a statement to output the sum total of all the generated
random numbers
cat( “Total:\t”, sum( nums ), “\n\n” )
Now, add statements to output the minimum and maximum values
of the generated random numbers
cat( “Range:\t\t”, range( nums ), “\n” )
cat( “Minimum:\t”, min( nums ), “\n” )
cat( “Maximum:\t”, max( nums ), “\n” )
Finally, add a statement to visualize the generated random numbers
plot( 1:20, nums, type=”o” )
Run the code to see the extracted statistics



Notice that the median value is also the central cut point number.



Creating functions
Previous examples in this book have featured built-in R functions, but you
can easily create your own custom functions that can be called as required
during execution of the program.

Custom functions have a “function block” that contains one or more
statements that are executed each time the function gets called. Once the
function statements have been executed, program flow resumes at the point
directly following the function call.
Custom functions are created using the function and return keywords, and
their declaration has this syntax:
function-name <- function( arg1, arg2, arg3 )
{

statements-to-be-executed
return( object )

}
The function name can be any name that adheres to the usual R identifier
naming conventions, and the object returned by the function can be of any
data type, or NULL if none is required.
A custom function is called simply by stating its name followed by
parentheses, just as built-in functions are called.
Values can be passed to custom functions by specifying valid names for
each argument in the comma-separated parameter list within the ( )
parentheses that follow the function keyword. The passed values can then be
addressed within the function block using their specified names, just as
variable values can be addressed by their specified variable names. The
parameter list is optional so can be omitted from the parentheses if the
function does not require argument values to be passed when called.
Where a custom function declaration includes a parameter list, the function
call must generally include a value for each argument, and in the same order
in which they appear in the declaration.



It is important to recognize that variables created within a function block
have “local scope”, which means they are only visible within that function
block – they cannot be addressed from code outside the function block.

The naming conventions for identifier names are described here.

If your code contains repeated statements it would be better to
enclose the statement within a function.

Begin an R Script by declaring a custom function to print out a
message whenever this function is called
greet <- function( )
{

print( “Hello from R!” )
}

FirstFunction.R
Next, add a statement to call the custom function
greet( )
Now, declare a second custom function that will require one
argument value whenever it gets called
f2c <- function( degrees )
{

# Statements to be inserted here – Step 4.
}
Then, insert statements to assign a value to a variable using the
passed in value, then return the variable value
result <- ( ( degrees - 32 ) * ( 5 / 9 ) )
return( result )



Next, add a statement to call the second custom function, passing in
a required argument value
cat( “Body Temperature 98.6 °F =”, f2c( 98.6 ), “°C\n\n” )
Finally, add a statement that attempts to address the local variable
within the function block
print( result )
Run the code to call the custom functions and to see that the local
variable is not visible outside the function block

Variables that are created outside of function blocks are visible
throughout the R Script code and are said to have “global scope”.

Calling the f2c() function without an argument will also produce an
error.



Providing defaults
Custom functions can allow arguments to be optional by specifying a
default value to the parameters in the declaration. Where the function call
supplies an argument value, that value will be used by the function –
otherwise the default value will be used by the function. Each default value
must be assigned to the parameter in the declaration using the = operator,
like this:
function-name <- function( arg1=value, arg2=value )
{

statements-to-be-executed
return( object )

}
The three dots operator
Custom functions can allow an arbitrary number of arguments to be passed
from the caller by specifying a ... three dots operator parameter at the end of
the arguments list in the declaration. Typically, this is used to accept
arguments that will be passed to another function call within the function
block. The three dots operator must also be added at the end of the function
call in the function block in order to pass further arguments, like this:
function-name <- function( arg1, arg2, ... )
{

statements-to-be-executed
function-call( arg1, arg2, ... )
return( object )

}

The ... three dots operator is more correctly known as the “ellipsis
operator”.
Recursive functions
A custom function block can include a function call to itself recursively, to
repeatedly execute statements within its own function block. As with loops,
it is important that the function block includes a statement to modify a test
expression to avoid continuous execution – so the function will end at some
point:
function-name <- function( arg1, arg2 )
{

statements-to-be-executed



if( test-expression )
{ return( object ) }
else
{ function-name( arg1, arg2 ) }

}

You can halt continuous execution of a recursive function by
pressing the Esc key, or by clicking the Stop button that appears on
the Console menu during execution.

Begin an R Script by declaring a custom function to print out and
decrement an argument value when called
launch <- function( num=5 )
{

cat( num, “- ” )
num <- ( num - 1 )
# Statement to be inserted here – Step 2.

}

Default.R
Next, add a conditional test to exit the function or call the function
recursively, according to the tested value
if( num < 0 ) { return NULL } else { launch( num ) }
Now, declare a function that will accept an arbitrary number of
arguments to be passed to another function
graph <- function( x, y, ... )
{

plot( x, y, col=”Red”, type=”o”, ... )
}
Then, insert statements to call each function
launch( )
graph( 1:20, rnorm( 20 ), xlab=”X Axis”, ylab=”Y Axis” )



Run the code to call the custom functions and see the default and
arbitrary argument values applied

Here, the ... three dots operator allows the label text to be passed to
the plot( ) function.



Summary
• The R programming language provides built-in math functions, such as

sqrt( ), for mathematical calculation.
• The built-in pi constant value represents 3.141593.
• The R programming language provides built-in character string

functions, such as substr( ), for string manipulation.
• The built-in format( ) function accepts format specifiers, such as %A, to

format date and time strings.
• The built-in seq( ) function offers greater possibilities than the : colon

operator for producing sequences.
• The R programming language provides built-in LETTER, letter,

month.name, and month.abb character constants.
• Random uniformly distributed numbers between zero and one are

generated by the built-in runif( ) function.
• Random normally distributed numbers can be generated by the built-in

rnorm( ) function.
• The Law of Large Numbers recognizes that the probability that the

average value will be closer to the mean value increases as the number
of observations increase.

• The R programming language provides built-in utility functions, such as
range( ), for the extraction of statistics.

• Custom functions are created using the function and return keywords, and
are given a user-defined identifier name.

• A comma-separated parameter list can be added in a function
declaration to accept argument values from the caller.

• Variables created within a function block have local scope, so they are
only visible within that function block.

• Default argument values can be specified in a parameter list using the =
operator, to allow arguments to be optional.

• The ... three dots operator can be used to allow an arbitrary number of
arguments to be passed from the caller.

• A recursive function includes a function call to itself, to repeatedly
execute statements within its own function block.



6
Building matrices

This chapter demonstrates how to store data in matrix structures and how

to output stored data values in a plotted chart.
Building a matrix
Transposing data
Binding vectors
Naming rows and columns
Plotting matrices
Adding labels
Extracting matrix subsets
Maintaining dimensions
Summary



Building a matrix
In R programming, a “matrix” is a two-dimensional structure that stores
data in a tabular format of cell rows and cell columns. As with vector
structures, the values stored within a matrix must all be of the same data
type.

A matrix can be created in R Script by writing a unique identifier name of
your choice in the Code Editor, then assigning values using the built-in
matrix( ) function. This function requires a vector containing the values as its
first argument, followed by nrow= and ncol= arguments to specify the desired
number of rows and columns you wish to create. The number of rows and
columns must match the length of the assigned vector or be an exact
multiple of its length, or a warning message will appear. In this case, the
matrix will still be created but the vector values will be recycled into
additional cells. A matrix might be used to record a value for each day of a
year in a table of 52 rows (one per week) and 7 columns (one per day), like
this:
daily.record <- matrix( vector , nrow=52, ncol=7 )
Individual values are addressed in a matrix using the appropriate index
numbers of the row and column. For example, in this case you can retrieve
the value for the second day in the third week using daily.record [ 3, 2 ]. New
values can also be assigned to individual cells using their index number of
row and column. For example, for the first day of the sixth week, like this:
daily.record[ 6, 1 ] <- value
In order to confirm that a structure is indeed a matrix, R provides a built-in
is.matrix( ) function that will only return TRUE when its specified argument is
a matrix object.
Usefully, you can seek a value within a matrix using the built-in which( )
function. This requires a test expression as its argument, stating the matrix



name and the value to seek. The which( ) function examines the cells as if
they were a vector and, if the sought value exists, returns the index numbers
at which the value is found within that vector. If the sought value is not
found, the function returns zero. Optionally, you can include an arr.ind=TRUE
argument to the which( ) function, so it will return the row and column index
number of each cell containing the sought value.

A matrix in R resembles a multi-dimensional array structure found in
other programming languages.

Begin an R Script by creating a vector containing a sequence of 32
integer values
data <- seq( 1:32 )

FirstMatrix.R
Next, create a matrix that stores the vector values in tabular format,
then output the matrix to see the cells
table <- matrix( data, nrow=4, ncol=8 )
print( table )
Now, confirm the type of structure storing the values
cat( “\nVector?:”, is.vector( table ) ,

“\tMatrix?:”, is.matrix( table ) )
Retrieve a cell value, then assign a new value to that cell
cat( “\n\nCell 4,5 Contains:”, table[ 4, 5 ] )
table[ 4, 5 ] <- 10
Finally, search all cells for a specific value, and identify the location
of cells that do contain that value
cell <- which( table == 10, arr.ind=TRUE )
cat( “\n\nValue 10 Search:\n” )
print( cell )
Run the code to see the cell values and search result



Note that the matrix is created with two indices– denoting rows first
then columns second.



Transposing data
When creating a matrix, the matrix( ) function will, by default, insert the data
you supply into cells arranged by column order. This means that cells in the
first column will be filled with data from the elements at the beginning of
the specified vector before filling the second column, then the third column,
and so on.
If you prefer to control how the cells are filled with data, you can include a
byrow= argument in the call to the matrix( ) function. When this is assigned a
TRUE value, the function will then insert the data you supply into cells
arranged by row order. Cells in the first row will now be filled with data
from the elements at the beginning of the specified vector, before filling the
second row, then the third row, and so on. Assigning a FALSE value to the
byrow= argument will insert the data you supply into cells arranged by
column order – the default order.
The arrangement of cells in a matrix can also be transposed, so that the
rows become columns and the columns become rows, simply by specifying
the matrix name to the built-in t( ) function.

Begin an R Script by creating a vector containing a sequence of 32
integer values
data <- seq( 1:32 )

Transpose.R
Next, create a matrix that stores the vector values in column order,
then output the matrix to see the cells
table <- matrix( data, nrow=4, ncol=8 )
cat( “\nBy Column (Default):\n\n” )
print( table )



Select the code, then click the Run button, or press Ctrl + Enter, to
execute the code.

Now, recreate the matrix to store the vector values in row order, then
output the matrix to see the cells
table <- matrix( data, nrow=4, ncol=8, byrow=TRUE )
cat( “\nBy Row:\n\n” )
print( table )

See that the cell data is rearranged when stored by row.
Finally, transpose the matrix to exchange rows and columns, then
output the matrix to see the cells
table <- t( table )
cat( “\nTransposed (Rows to Columns):\n\n” )
print( table )



See that the matrix elements are rearranged when it gets
transposed.



Binding vectors
When you need to combine data from multiple vectors into a single matrix
the R programming language offers two possibilities:
• A sequence of vector names can be specified as arguments to the built-in

rbind( ) function to create a matrix that will contain the data from each
vector on individual rows.

• A sequence of vector names can be specified as arguments to the built-in
cbind( ) function to create a matrix that will contain the data from each
vector in individual columns.

The length of all specified vectors should be identical or a warning message
will appear. In this case, the matrix will still be created but the vector values
will be recycled into additional cells.
The data contained within the vectors to be combined must be of the same
data type, otherwise it may be converted so the matrix will contain cell data
of only one data type:

Begin an R Script by creating three vectors of identical length,
containing different data types
start <- LETTERS[ 1:10 ]
finish <- LETTERS[ 17:26 ]
numeric <- seq( 1:10 )

Bind.R
Next create a matrix that stores the vector values on individual rows,
then output the matrix to see the cells
table <- rbind( start, finish, numeric )
cat( “\nBind Rows:\n\n” )
print( table )



Open the Environment tab in the Workspace pane to see the vector
data types differ, but see that the matrix contains only values of the
character data type

Now create a matrix that stores the vector values in individual
columns, then output the matrix to see the cells
table <- cbind( start, finish, numeric )
cat( “\nBind Columns:\n\n” )
print( table )

See that the matrix elements are arranged differently when binding
by rows or by columns.
The data type of any object can be examined by specifying that object as
the argument to the built-in typeof( ) function. For example, with the matrix



above typeof( table[ 1, 3 ] ) confirms that the cell contains the value “1” of the
character data type.
Character data can be converted to numeric data for use in an R Script by
the built-in as.numeric( ) function. For example, as.numeric( table[ 1, 3 ] )
converts to the double data type.



Naming rows and columns
The R interpreter automatically displays row labels and column headings
when a matrix is output in the Console pane. These may simply denote the
index number of each row ([1, ], [2, ],[3, ], etc.) and each column ([ ,1], [
,2], [ ,3], etc.) if the matrix( ) function was used to create the matrix.
Matrices created with the rbind( ) function will automatically display the
vector variable name in place of the index number for each row label when
output. Similarly, matrices created with the cbind( ) function will
automatically display the vector variable name in place of the index number
for each column heading when output.
Meaningful names can be given by specifying the matrix name as the
argument to the rownames( ) and colnames( ) functions. These can then each
be assigned a comma-separated list of names by the c( ) function, for row
labels and column headings respectively. Naturally, the length of each list
must match the number of rows and columns within the matrix.
Individual rows or columns can be addressed using their index number or
specified name. Copying data from a matrix with named rows and columns
into a vector will also copy the names to create a named vector with
key=value elements:

Begin an R Script by creating three vectors of identical length, each
containing data of the double data type
ny <- c( 3.8, 5.5, 9.9, 15.7, 21.5, 26.3 )
la <- c( 19.5, 19.4, 19.7, 20.8, 21.3, 22.7 )
fw <- c( 13.7, 15.4, 20.0, 24.6, 28.5, 32.7 )

Name.R
Next, create a matrix that stores the vector values on individual
rows, then output the matrix to see the cells
table <- rbind( ny, la, fw )
print( table )
Now, assign meaningful names for the row labels and column
headings
rownames( table ) <- c( “New York”, “Los Angeles”, “Fort Worth” )
colnames( table ) <- month.abb[ 1:6 ]



Notice how the R constant month.abb is used here to specify
column heading names.

Then, output a text string and the revised matrix
cat( “\nAverage High Temperature (°C):\n\n” )
print( table )
Create a new vector to store the data from a single row of the
matrix, using either the row name or index number
nyc <- table[ “New York” , ]      # Or table[ 1, ]
Next, display the data stored in the new vector variable
cat( “\nNew York:”, nyc, “\n\n” )
Now, display the entire contents of the new vector variable
print( nyc )
Run the code to see the row labels, column headings, and the named
vector



The cat( ) function retrieves only the stored data here, whereas the
print( ) function also retrieves the column headings.

The names( ) function can be used to retrieve the names within a
named vector. For example, names( nyc[1] ) in this example
retrieves “Jan”, whereas nyc[1] retrieves the value 3.8.



Plotting matrices
The R programming language provides a matplot( ) function that allows you
to easily produce graphic visualizations of data contained within a matrix
structure. This function requires the matrix name as an argument, plus
several other arguments to specify how you would like the visualization to
appear:
• type= – the type of plot to be drawn. Options include “p” for points only,

“l” for lines only, and “b” for both plots and lines.
• pch= – the plotting character to use. Options are specified numerically

for one or more of the symbols below:

• col= – the plotting color to use. Options are specified by name or
numerically for one or more colors, and include the basic palette below:

Multiple options may be specified as a comma-separated list of
arguments to the c( ) function, or as a sequence using the colon



operator.:

Hexadecimal color values must be specified as character strings
within quote marks.

Begin an R Script by creating three vectors of identical length, each
containing data of the double data type
ny <- c( 3.8, 5.5, 9.9, 15.7, 21.5, 26.3 )
la <- c( 19.5, 19.4, 19.7, 20.8, 21.3, 22.7 )
fw <- c( 13.7, 15.4, 20.0, 24.6, 28.5, 32.7 )

MatrixPlot.R
Next, create a matrix that stores the vector values in individual
columns, then output the matrix to see the cells
table <- cbind( ny, la, fw )
print( table )
Now, add a statement to create a graphic visualization of the data –
showing points and lines, using three different plot characters, and
drawn in three different colors
matplot( table, type=”b”, pch=15:17, col=2:4 )
Run the code to see the matrix in the Console and to see its graphic
visualization on the Plots tab



Here, the multiple options could alternatively be specified as
pch=c( 15, 16, 17 ) and
col=c( 2, 3, 4 ).



Adding labels
The R programming language matplot( ) function, introduced in the previous
example, can accept further arguments to specify labels for the plot and to
control the range along each axis:
• xlab= , ylab= – title for the x axis and y axis, respectively.
• xlim= , ylim= – range for the x axis and y axis, respectively.
• main= – headline title for the plot.
The R interpreter will automatically supply plot axes with labeled tick
marks, but you can suppress these to specify your own axes. This first
requires you to include an axes=FALSE argument in the matplot( ) function
call to suppress the automatic axes, then you can use the built-in axis( )
function to specify each required axis. This function requires a first integer
argument to specify at which side of the plot to draw the axis – below (1),
left (2), above (3), or right (4). If no further arguments are included, the
range and labels will be automatically added. To supply your own range and
labels, an at= argument is required, to specify the points at which to draw
tick marks, and a labels= argument to specify label names. Label names are
assigned as a vector of comma-separated character strings whose length
must match the specified tick range. Typically, this might use the rownames(
) or colnames( ) functions to assign the matrix row or column names as axis
labels.
Legends
The R programming language legend( ) function allows you to easily add a
descriptive legend to a plot. This function requires a first argument to
specify a position at which to draw the legend. Special keywords, such as
“topleft”, can be used for this purpose. The position can be further adjusted
by including an inset= argument to distance the legend away from the plot
margins. Most importantly, the legend( ) function should include pch= and
col= arguments whose assigned values must precisely match those specified
to the matplot( ) function for correct identification of the plot’s point
characters and colors. Finally, the legend( ) function should include a legend=
argument to describe the plot components by assignment of a vector of
comma-separated character strings. Typically, this might use the rownames( )
or colnames( ) functions to assign the matrix row or column names.



Available keywords for positioning legends are bottomright,
bottom, bottomleft, left, topleft, top, topright, right, and center.

Copy the previous MatrixPlot.R script file and assign row and column
names before calling the print( ) function
colnames( table ) <-

c( “New York”, “Los Angeles”, “Fort Worth” )
rownames( table ) <- month:abb[ 1:6 ]

Label.R
Modify the matplot( ) function call to add arguments
matplot( table, type=”b”, pch=15:17, col=2:4,

xlab=”Months” ylab=”Average High (°C)”,
xlim=c( 1, 6 ), ylim=c( 0, 35 ), axes=FALSE,
main=”City Temperature Comparison” )

Create axis labels and add a descriptive legend
axis( 1, at=1:6, labels=rownames( table ) )
axis( 2 )
legend( “topleft”, inset=0.02, pch=15:17, col=2:4,

legend=colnames( table ) )
Run the code to see the matrix in the Console and to see its labeled
graphic visualization on the Plots tab



The value assigned to the inset= argument is a fraction of the plot
region, not an absolute measure of length.

Insights from this plot: Los Angeles has the most consistent high
temperature, Fort Worth reaches the Los Angeles temperature in
March, but New York does not reach the Los Angeles temperature
until May.



Extracting matrix subsets
A “subset” is simply a group of data values that are part of another larger
set of data values. In R programming, it is often useful to extract subsets for
comparison of specific areas of interest. With vector variables, a subset can
be extracted by specifying the index numbers of specific elements, like this:
alphabet <- LETTERS[ ]
vowel.subset <- alphabet[ 1, 5, 9, 15, 21 ]
Alternatively, with named vector variables, a subset can be extracted by
specifying the index names of specific elements:
nato <- c( A=”Alpha”, B=”Bravo”, C=”Charlie”, D=”Delta” )
abc.subset <- nato[ c( A, B, C ) ]
Subsets that are extracted from a vector have one dimension and are
returned as a vector data structure.
With matrices, a subset can be extracted by specifying the index numbers of
specific cells, like this:
table <- matrix( 1:60, nrow=12, ncol=5 )
table.subset <- table[ 1:3, 1:5 ]
The rows and columns of a matrix can be named using the rownames( ) and
colnames( ) functions, or by including a dimnames= argument in the call to
the matrix( ) function. This argument requires a list of length one to name the
rows only, or a list of length two to name both the rows and columns, like
this:
table <- matrix( 1:60, nrow=12, ncol=5,

dimnames=list( month.abb[ ], LETTERS[ 1:5 ] ) )
A subset can then be extracted by specifying the row or column names of
specific cells, like this:
table.subset <- table[ month.abb[ 1:3 ], LETTERS[ 1:5 ] ]
When an entire row or column is to be extracted, its index number or name
can be entirely omitted from the square brackets. For example, the
assignments above can be made, like this
table.subset <- table[ 1:3 , ]
table.subset <- table[ c( “Jan”, “Feb”, “Mar ) , ]
Extracted subsets that contain more than one dimension (i.e. more than one
row or column) are returned as a matrix data structure.



Notice that the c( ) function must be included in the square brackets
to specify the index names of elements to be extracted.

A comma is still required when omitting an index name or number
from the square brackets.

Begin an R Script by creating three vectors of identical length, each
containing data of the double data type
ny <- c( 3.8, 5.5, 9.9, 15.7, 21.5, 26.3 )
la <- c( 19.5, 19.4, 19.7, 20.8, 21.3, 22.7 )
fw <- c( 13.7, 15.4, 20.0, 24.6, 28.5, 32.7 )

Subset.R
Next, create a matrix that stores the vector values in individual
columns, then name the rows and columns
table <- cbind( ny, la, fw )
rownames( table ) <- month.name[ 1:6 ]
colnames( table ) <- c( “New York”,

“Los Angeles”, “Fort Worth” )
Add statements to output the entire matrix
cat( “\nMatrix...\n” )
print( table )
Now, create a subset that only stores values from the first three rows
of just two columns of the matrix
table.q1 <- table[ 1:3 , c( 1, 3 ) ]
Add statements to output the entire subset
cat( “\nSubset...\n” )
print( table.q1 )
Run the code to see the matrix and subset in the Console



Here the : colon operator is used to select rows 1-TO-3 and the ,
comma operator is used in the c( ) function to select columns 1-
AND-3.



Maintaining dimensions
When extracting subsets from a matrix it is important to recognize the type
of data structure in which the data is returned – the default behavior may
not be what you require!
If the subset has more than one dimension, the subset will be returned in a
matrix data structure, but if the subset has only one dimension, the subset
will, by default, always be returned in a vector data structure. This is
because R is trying to anticipate your requirements by automatically
dropping (deleting) dimensions that it considers to contain redundant
information.
Where the subset extracts data from a single row, the row name dimension
will be deleted, and the column names will be used as element names in the
returned vector. Conversely, where the subset extracts data from a single
column, the column name dimension will be deleted and the row names will
be used as element names in the returned vector.
The default behavior can be overridden by including a final drop=FALSE
argument within the [ ] square brackets that specify the rows or columns to
be extracted. This means that subsets that extract data from a single row, or
from a single column, will now be returned in a matrix data structure.

Begin an R Script by creating a vector containing a numerical
sequence
data <- 1:28

Dimension.R
Next, create a matrix that stores the vector values in rows, and name
the rows and columns alphabetically
table <- matrix( data, nrow=4, ncol=7, byrow=TRUE,

dimnames=list( letters[ 1:4 ], LETTERS[ 1:7 ] ) )
Add statements to output the entire matrix
cat( “\nMatrix...\n” )
print( table )
Now, create a subset that extracts data from a single row of the
matrix – using the default behavior
tier <- table[ 2, ]



The default behavior is sensible as you will generally want data from
single rows or columns of a matrix to be returned as a vector.

Add statements to output the subset
cat( “\nSubset...\n\nRow #2 (Default)...\n” )
print( tier )
Add statements to identify the subset’s data structure
cat( “\nMatrix?:”, is.matrix( tier ) )
cat( “\tVector?:”, is.vector( tier ), “\n\n” )
Then, recreate the subset that extracts data from a single row of the
matrix – overriding the default behavior
tier <- table[ 2, , drop=FALSE ]

Don’t forget the extra space and comma within the square brackets
to denote an entire row or a entire column.

Add statements to output the revised subset
cat( “\nRow #2 (Drop=FALSE)...\n” )
print( tier )
Add statements to identify the subset’s data structure now
cat( “\nMatrix?:”, is.matrix( tier ) )
cat( “\tVector?:”, is.vector( tier ), “\n” )
Run the code to see the matrix and subsets in the Console – notice
that the row name dimension is retained when the default behavior
has been overridden



Adding a drop=FALSE argument ensures that data will always be
returned in the same class of object as the one from which it has
been retrieved.



Summary
• A matrix is a two-dimensional structure that stores data in a tabular

format of cell rows and cell columns.
• The matrix( ) function requires a vector argument and arguments to

specify the desired number of rows and columns.
• Unless the number of matrix rows and columns match the length of the

vector, values will be recycled in additional cells.
• Individual matrix values are addressed by stating the index number of

their row and column within square brackets.
• The is.matrix( ) function can be used to identify a matrix object, and the

which( ) function can seek a stored value.
• The matrix( ) function can optionally include a byrow=TRUE argument to

insert data by row order, and a dimnames= argument to name the rows
and columns.

• Matrix rows and columns arrangement can be transposed using the t( )
function – so that rows become columns.

• The rbind( ) function creates a matrix of each vector on rows, and the
cbind( ) function places each vector in columns.

• The rownames( ) and colnames( ) functions can be used to name the rows
and columns of a specified matrix argument.

• The matplot( ) function can produce graphic visualizations of data
contained within a matrix structure.

• The axis( ) function can be used to specify axis appearance, and the
legend( ) function can add a descriptive legend.

• A subset is a group of data values that are part of another larger set of
data values.

• A subset can be extracted from a matrix by specifying the index
numbers of specific elements, or by stating their names.

• A subset that has one dimension will, by default, be returned as a vector
– otherwise it will be returned as a matrix.

• A drop=FALSE argument can be included within the [ ] square brackets
that specify rows or columns to be extracted from a matrix to ensure that
the subset will be returned as a matrix.



7
Constructing data frames

This chapter demonstrates how to store and manipulate data in data

frame structures.
Constructing a data frame
Importing data sets
Examining data frames
Addressing frame data
Extracting frame subsets
Changing frame columns
Filtering data frames
Merging data frames
Adjusting factors
Summary



Constructing a data frame
In R programming, a “data frame” is a two-dimensional structure that stores
data in a tabular format of cell rows and cell columns. Unlike matrix
structures, the values stored within a data frame do not need to all be of the
same data type – they may contain values of any data type. This means that
data frames are especially versatile and are the most useful data structure in
R programming.
A data frame can be created in R Script by writing a unique identifier name
of your choice in the Code Editor, then assigning values using the built-in
data.frame( ) function. This function requires vectors containing values as its
arguments. Each vector should be of the same length, or values will be
recycled in additional cells to match the length of the longest vector.

Remember to include the period character in the data.frame( ) and
is.data.frame( ) function names.
The values in each vector will appear in separate columns of the data frame,
and each column will, by default, be given the name of the corresponding
vector as its column name. Row names will, by default, be numbered in
ascending order from one. As with matrices, the arrangement of data frame
rows and columns can be transposed using the t( ) function – to switch rows
to columns.
If you prefer to supply your own names for data frame rows and columns,
these can be assigned using the rownames( ) and colnames( ) functions – as
with matrices. Alternatively, you can include a row.names= argument in the
call to the data.frame( ) function to specify a list of names for the data frame
rows.
Individual values are addressed in a data frame using the appropriate index
numbers of the row and column. New values can also be assigned to
individual cells using their index number of row and column, but care must
be taken to observe the data type of that cell.
In order to confirm that a structure is indeed a data frame, R provides a
built-in is.data.frame( ) function that will only return TRUE when its specified
argument is a data frame object.



Usefully, you can seek a value within a data frame using the built- in which(
) function to specify a logical argument and, optionally, you can include an
arr.ind=TRUE argument to return the row and column index number of each
cell containing the sought value.

Begin an R Script by creating three vectors of differing data type
values
bools <- c( TRUE, FALSE, TRUE )
chars <- LETTERS[ 1:3 ]
nums <- 1:3

FirstDataframe.R
Next, create a data frame that stores the vector values, then output
the data frame and confirm its structure
frame <- data.frame( bools, chars, nums )
print( frame )
cat( “\nData Frame?:”, is.data.frame( frame ), “\n\n” )
Now, name the data frame’s rows and columns
rownames( frame ) <- c( “Tier 1:”, “Tier 2:”, “Tier 3:” )
colnames( frame ) <- c( “Logical”, “Alphabetical”, “Numerical” )
Then, assign a new value to one cell and output the data frame once
more to see the named rows and columns
frame[ 2, 2 ] <- “A”
print( frame )
Finally, search all cells for a specific value, and identify the location
of cells that do contain that value
cat( “Search for ‘A’...\n” )
print( which( frame == ”A”, arr.ind=TRUE ) )
Run the code to see the cell values and search result



Alternatively, the row names could be assigned to a row.names=
argument in the call to the data.frames( ) function.



Importing data sets
Collections of tabular data are often stored as a “data set” in a comma-
separated values (CSV) file. These data sets can be easily imported into
RStudio and their data copied into a data frame using the built-in read.csv( )
function. This function simply requires the CSV file path as its argument.
The path to a CSV file can be supplied to the read.csv( ) function by
specifying the file.choose( ) function as its argument. This launches a “Select
file” dialog that allows you to browse to the location of the CSV file. Once
selected, the path is supplied to the read.csv( ) function so the data can be
copied into a data frame. For example, the statement frame <- read.csv(
file.choose( ) ) provides a dialog to select a CSV file whose data will
subsequently be copied into a data frame named “frame”.

You can find many free CSV data sets using a web search engine,
and spreadsheet data can be exported from Microsoft Excel in CSV
file format.



You can set the default working directory in RStudio by clicking
Tools,Global Options, and the General option.
Alternatively, the full path to a CSV file can be specified to the read.csv( )
function as its argument. For example, this statement provides the full path
to the selected CSV file illustrated above: frame <- read.csv(
“C:/MyRScripts/DataSet-Browsers.csv” ). Full path names can be lengthy, so it is
convenient to set the CSV file location as RStudio’s working directory by
specifying its directory as the argument to the setwd( ) function. The
read.csv( ) function then only requires the CSV file name as its argument.
You can discover the current working directory at any time by calling the
built-in getwd( ) function.

Paths can use the forward slash / character or escaped backslash,
such as C:\\MyRScripts\\DataSet-Browsers.csv.

Begin an R Script by setting the working directory, then confirm its
path address
setwd( “C:/MyRScripts” )
cat( “Working Directory:”, getwd( ), “\n\n” )

ImportData.R
Next, create a data frame that imports data from a CSV file located
in the working directory
frame <- read.csv( “DataSet-Browsers.csv” )
Now, output the data frame’s rows and columns
print( frame )
Run the code to see the imported data



Here, the column names are supplied by the first line of the CSV file
but the rows are automatically numbered by the R interpreter. Notice
that there are three instances of identical market share.



Examining data frames
The R programming language provides a number of functions for the
examination of data frame structures:
• nrow( ) – returns an integer that is the total number of rows within the

data frame specified as its argument.
• ncol( ) – returns an integer that is the total number of columns within the

data frame specified as its argument.
• head( ) – by default returns the top six rows of the data frame specified as

its argument, plus its column and row names. Optionally, a n= argument
can be added to specify how many rows to return. For example, n=3
returns the top three rows.

• tail( ) – by default returns the bottom six rows of the data frame specified
as its argument plus column and row names. An n= argument can be
added to specify how many rows to return. For example, n=3 returns the
bottom three rows.

• str( ) – outputs an overview of the structure of the data frame specified as
its argument – listing the total number of objects and variables it
contains, together with the number of unique factors in each column.
Internally, the factors are ranked numerically in descending order where
the top rank is level 1.

• summary( ) – outputs a summary of the contents of the data frame
specified as its argument – by default, six levels of factors are displayed
but an optional maxsum= argument can be added to specify how many
levels to display. For columns that contain numerical data, the summary
provides statistics:
Minimum – the lowest number in the column.
1st Quartile – the mid-point value between the minimum number and
the median value.
Median – the mid-point value of the column.
Mean – the average value of the numbers in the column.
3rd Quartile – the mid-point value between the median value and the
maximum number.
Maximum – the highest number in the column.



It is useful to check that the total number of imported rows and
columns match what is expected from the source data set.

In R programming, the str( ) function refers to “structure”, unlike in
other programming languages in which it refers to “string”.

Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory
frame <- read.csv( “DataSet-Browsers.csv” )

ExamineData.R
Next, display the total number of rows and columns
cat( “Rows:”, nrow( frame ), “\tColumns:”, ncol( frame ) )
Now, output the first and last three rows and columns
cat( “\nHead...\n” )
print( head( frame, n=3 ) )
cat( “\nTail...\n” )
print( tail( frame, n=3 ) )
Finally, display the structure and a summary
cat( “\nStructure...\n” )
print( str( frame ) )
cat( “\nSummary...\n” )
print( summary( frame ) )
Run the code to examine the data frame



Here, the first column contains data of the character data type,
whereas the second column contains data of the numerical double
data type – so statistics are provided for that column in the summary.



Addressing frame data
There are a number of ways to address data contained in a data frame. As
with matrices, cells can be addressed by stating their row and column index
number within [ ] square brackets. Alternatively, cells can be addressed by
stating their row and column name within [ ] square brackets. Additionally,
data frames can employ the $ dollar operator, so that a column can be
addressed with this convenient syntax:
data.frame.name$column.name
Similarly, cells can be addressed by appending [ ] square brackets to the
above syntax in which to specify row index numbers. The factor levels of a
column can be addressed by specifying the column as an argument to the
built-in levels( ) function using the same syntax:

Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory
frame <- read.csv( “DataSet-Browsers.csv” )

AddressData.R
Next, output the first three rows and columns
cat( “\nHead...\n” )
print( head( frame, n=3 ) )
Address a single cell by row and column index number
data <- frame[ 1, 2 ]
cat( “\nRow #1, Column #2:”, data, “\n” )
Now, address a single cell by row index number and column name
data <- frame[ 2, “PerCentage.Market.Share” ]
cat( “\nRow #2, Column #2:”, data, “\n” )
Then, address a single cell by column name and row index number
data <- frame$PerCentage.Market.Share[ 3 ]
cat( “\nRow #3, Column #2:”, data, “\n” )
Address an entire column by name to output all its levels
print( levels( frame$Web.Browser.Version ) )
Run the code to see the data content from the data frame



Notice how the levels are automatically created in descending
alphabetical and numerical order.



Extracting frame subsets
Subsets can be extracted from data frames by stating their row and column
index numbers within [ ] square brackets – in the same way that subsets are
extracted from matrices. For example, using frame[ 1:3, 2 ] to extract a subset
containing only the second column of the first three rows of a data frame, or
frame[ 1:3, ] to extract a subset containing all columns of the first three rows.
Alternatively, a subset of specific cells can be extracted using the familiar c(
) function. For example, using frame[ c( 1, 3, 5), 2 ] to extract a subset
containing only the second column of the first, third, and fifth, rows of a
data frame, or frame[ c( 1, 3, 5), ] to extract a subset containing all columns of
those specific rows.
When a subset extracts one or more rows or more than one column from a
data frame, the data is returned in a data frame object. Conversely, when a
subset extracts only one column, the data is, by default, returned in a vector
object. The default behavior can be overridden by including a final
drop=FALSE argument within the [ ] square brackets that specify the column
to be extracted – so the data will now be returned in a vector structure:

Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory
frame <- read.csv( “DataSet-Browsers.csv” )

SubsetData.R
Next, extract a subset containing data in all columns of four specific
rows, then output the subset data
edge <- frame[ c( 33, 24, 5, 12 ), ]
print( edge )
From the original subset, extract a second subset containing data in
all columns of one single row
edge.row <- edge[ 1 , ]
Output the second subset data to see the column headings and row
numbering preserved
cat( “\nRow...\n” )
print( edge.row )
Confirm the data structure of the second subset
cat( “Data Frame?:”, is.data.frame( edge.row ) )



From the original subset, extract a third subset containing all data in
one single column, then output its data to see that column headings
and row numbers are not preserved
edge.col <- edge[ , 2 ]
cat( “\n\nColumn...\n” )
print( edge.col )
Confirm the data structure of the third subset
cat( “Data Frame?:”, is.data.frame( edge.col ) )
cat( “\tVector?:”, is.vector( edge.col ) )
Now, recreate the third subset to override default behavior, then
output its data to see that column headings and row numbers are
now preserved
edge.col <- edge[ , 2, drop=FALSE ]
cat( “\n\nColumn...\n” )
print( edge.col )
Confirm the data structure of the recreated third subset
cat( “Data Frame?:”, is.data.frame( edge.col ) )
cat( “\tVector?:”, is.vector( edge.col ) )
Run the code to see the data in the subset objects



Don’t forget the extra space and comma within the square brackets
to denote an entire row or a entire column.



Changing frame columns
The column names of data frames created from data imported from a CSV
file will typically be adopted from the header names specified on the first
line of the CSV file. If you prefer to ignore the header names, you can add a
header=FALSE argument in the call to the read.csv( ) function.
Column names can be added to unnamed columns, or existing column
names changed, by assigning column names to the colnames( ) function, as
with matrices.
A new column can be added to a data frame by assigning cell values to a
new column name, like this:
frame[ “New Column” ] <- 1:10
Alternatively, the $ dollar operator can be used to add a new column, but a
column name that includes spaces must be enclosed within ` backtick
characters, like this:
frame$`New Column` <- 1:10
An existing column can be removed from a data frame simply by assigning
it a NULL value:
frame$Existing.Column <- NULL
Values assigned to a new column may be copied from an existing column
and manipulated to provide new data values. For example, to total two
columns in a third column:
frame$Total <- frame$Price + frame$Tax
Numeric data can be converted to the character data type for string
manipulation by specifying the numeric data value as an argument to the
built-in as.character( ) function. It can then be concatenated to other character
data using the paste( ) function. By default, the paste( ) function will
automatically add space characters as separators between concatenated
strings. This behavior can, however, be overridden by specifying an
alternative separator to an optional sep= argument to the paste( ) function. If
you prefer to have no separator between concatenated strings, this argument
can be assigned no characters whatsoever.

The ` Backtick key is typically found at the top-left of the keyboard,
beside the number 1 key.



Arithmetical and mathematical operations can only be performed on
numerical data values, such as double or integer data type values.

Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory
frame <- read.csv( “DataSet-Browsers.csv” )

ColumnData.R
Next, create a function to output a title and the first two lines of a
data frame – including row and column names
display <- function( title ) {

cat( “\n”, title, “...\n” )
print( head( frame, n=2 ) )

}
Output two data frame rows and columns, then rename the existing
columns and output the changes
display( “Original Columns” )
colnames( frame ) <- c( “Web.Browser”, “PerCentage” )
display( “Renamed Columns” )
Copy existing numerical column data into a new column –
converted to character data and concatenated
frame$Market.Share <-

paste( as.character( frame$PerCentage ), “%”, sep=”” )
Delete the column containing numerical data, then output the
changes once more
frame$PerCentage <- NULL
display( “Switched Columns” )
Run the code to see changes to the data frame columns



Removing columns will affect their index number. For example,
removing the first column means that the second column assumes
index number one.



Filtering data frames
The data contained in the cells of a data frame can be filtered by performing
a conditional test upon the value in each cell, to select only data from cells
where the conditional test returns TRUE.
Numerical data can be filtered by comparing the value in each cell with a
value specified in a conditional test. For example, a filter might be created
for a column containing numerical data, to examine the parity of data in
each cell to select only even values with this statement filter <- frame[ , 1 ] %%
2 == 0. The filter is created as a vector of Boolean values in which even
values are represented by TRUE and odd values by FALSE. Including the
filter within the [ ] square brackets that specify an area of the data frame will
select only cells whose data passes the conditional test:

Here, the t( ) function is used to transpose the data frame, so its
columns appear as rows.
Character data can be filtered by comparing the value in each cell with a
value specified as the first argument to the built-in grep( ) function. This
function also requires a second argument to specify the area of the data
frame whose cell values are to be compared.
A filter’s conditional test result can be assigned to a variable, as in the
screenshot above, or the conditional test can be made within the [ ] square
brackets that specify an area of the data frame:

Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory
frame <- read.csv( “DataSet-Browsers.csv” )



FilterData.R
Next, add statements to output the data frame filtered by a single
conditional test of numerical values in one column
top <- frame[ frame$PerCentage.Market.Share > 10 , ]
cat( “\nTop Browsers...\n” )
print( top )
Now, add statements to output the data frame filtered by two
conditional tests of numerical values in one column
mid <- frame[ frame$PerCentage.Market.Share > 3 &

frame$PerCentage.Market.Share < 10 , ]
cat( “\nPopular Browsers...\n” )
print( mid )
Then, add statements to output the data frame filtered by a
conditional test of character values in one column
google <-

frame[ grep( “Chrome”, frame$Web.Browser.Version ) , ]
cat( “\nGoogle Browsers...\n” )
print( google )
Run the code to see the filtered output



The grep( ) function can optionally include an ignore.case=TRUE
argument if case sensitivity is not required.

The grep( ) function is used here to select all rows whose first
column cell contains the “Chrome” string.



Merging data frames
Data from two data frames can be combined into a single data frame by a
common column name or a common row name using the built-in merge( )
function. This function requires the names of the two source data frames as
its first two arguments. It also requires the names of the column or row field
containing common values to be specified to by.x= and by.y= arguments.
The common field in each data frame to be merged need not have the same
name or position, and the common values need not be in the same order, but
the case of character values needs to match in order for the fields to be
merged. Only corresponding values will be merged – other values will be
ignored by default.
If you prefer to retain all fields, regardless of whether they precisely match,
you can include an all=TRUE argument in the call to the merge( ) function. In
this case, cells that do not directly correspond in each source data frame
will be filled with the special NA (Not Available) constant in the merged
data frame.
The two common fields of the source data frames will appear as a single
field in the merged data frame, but other fields that contain data common to
both source data frames will appear in separate fields. This means that the
merged data frame can contain rows or columns of duplicated data.
Assignment of a NULL value to unnecessary fields will remove them, so that
only unique data remains in the merged data frame.
Additional columns can be added to a merged data frame as usual, and may
contain data calculated from the data supplied from each source data frame:

Begin an R Script by creating two data frames from data imported
from CSV files located in the working directory
high.temps <- read.csv( “DataSet-HighTemps.csv” )
low.temps <- read.csv( “DataSet-LowTemps.csv” )

MergeData.R
Next, create a function to output a title and a data frame when called
display <- function( frame ) {

cat( “\nAnnual Temperatures (°C)...\n” )
print( frame )

}



If merging two data frames by common fields that have identical
names, the by.x= and by.y= arguments can be replaced by a single
by= argument stating the common field name. For example,
by=”State”.

Now, add statements to output each source data frame
display( high.temp )
display( low.temp )
Then, add statements to merge the two data frames by common
column values
avg.temp <- merge( high.temp, low.temp,

by.x=”State”, by.y=”State.Code” )
display( avg.temp )
Add a statement to remove a column that contains duplicated data
avg.temp$Capital <- NULL
Add a new column containing data calculated from the data supplied
by the two source data frames, then output the combined data once
more
avg.temp$Average <- ( avg.temp$High + avg.temp$Low ) / 2
display( avg.temp )
Run the code to see the merged output



The column fields containing state abbreviations have different
names and appear in different positions within the source data
frames.

The city names are duplicated in the merged data frame so one
column is unnecessary and can be removed.



Adjusting factors
The structure of data copied into a vector variable from a data frame is
maintained, so that the factors and levels are preserved. Vectors do not
automatically provide factor categories and ranked levels, but a vector
variable name can be specified as an argument to the built-in factor( )
function to create factors and levels.
The factor( ) function will, by default, rank the factor levels in alphabetical
and numerical order. For example, given data values of “B”, “C2”, “A”, and
“C1”, the factor levels will be ranked as “A” (1), “B” (2), “C1” (3), and
“C2” (4).
You can optionally specify a ranking preference by including a levels=
argument in the call to the factor( ) function. This argument must be assigned
a vector of the data values in the descending order of your preferred ranking
level. For example, levels=c( “C1”, “C2”, “A”, “B” ) ensures that the factor
levels will be ranked as “C1” (1), “C2” (2), “A” (3), and “B” (4).
Should you wish to reverse the ranking order of factor levels, the vector of
data values can be specified as an argument to the built- in rev( ) function in
the assignment to the levels= argument:

Begin an R Script by creating a data frame
frame <- data.frame( 1:5, sizes=c( “S”,”L”,”XL”, “S”,”M” ) )

FactorData.R
Next, output the structure of one column of the data frame to see its
factors and their ranking levels
cat( “\nColumn Data...\n” )
str( frame$sizes )
Now, create a vector containing the same data values as the column
data, and in the same order
var.sizes <- c( “S”, ”L”, ”XL”, “S”, ”M” )
Then, output the structure of the vector to see it merely contains
character data with no factors or levels
cat( “\nVector Data...\n” )
str( var.sizes )
Reproduce the vector to create factors and ranking levels
var.sizes <- factor( var.sizes )



The factor( ) function produces a factor structure. You can confirm
this using the is.factor( ) function.

Output the structure of the vector once more to see it now has
factors and levels
cat( “\nFactored Vector Data...\n” )
str( var.sizes )
print( levels( var.sizes ) )
Next, reproduce the vector to create factors and levels in a preferred
ranking order
var.sizes <- factor( var.sizes, levels=c( “S”,”M”, “L”, “XL” ) )
Output the revised structure of the vector factor levels
cat( “\nRe-ordered Factored Vector Data...\n” )
str( var.sizes )
print( levels( var.sizes ) )
Finally, reproduce the vector to create factors and levels in a
reversed ranking order, then output the reversed structure
var.sizes <- factor( var.sizes, levels=rev( levels( var.sizes ) ) )
cat( “\nReversed Factored Vector Data...\n” )
str( var.sizes )
print( levels( var.sizes ) )
Run the code to see the adjusted factor levels



The levels( ) function provides access to the levels attribute of the
variable specified as its argument.

Factors are unique values. This example has five data values but
only four unique values – so there are only four factors.



Summary
• The data.frame( ) function creates a tabular data frame structure that

stores data of any type in rows and columns.
• Vectors assigned to a data frame should be the same length, or values

will be recycled to match the longest vector length.
• Data frame columns are, by default, named with their vector name, and

rows are, by default, numbered in ascending order.
• Data frame row and column names can be assigned using the rownames( )

and colnames( ) functions.
• The which( ) function can be used to seek a value within a data frame and

can identify the value’s cell location.
• Data sets stored in comma-separated value (CSV) files can be imported

using the read.csv( ) function.
• The RStudio working directory can be specified using the setwd( )

function, and discovered using the getwd( ) function.
• The str( ) function outputs the structure of a data frame, listing its unique

factors and their ranking levels.
• Data frame cells can be addressed using their row and column index

numbers or names within [ ] square brackets, and columns can be
addressed using the $ dollar operator.

• The factor levels of a column can be addressed by specifying the column
as an argument to the built-in levels( ) function.

• A data frame subset of only one field is returned as a vector object,
otherwise the data is returned as a data frame object.

• A new column can be added to a data frame by assigning cell values to a
new column name.

• Data frames can be filtered by performing a conditional test upon the
value in each cell.

• Data from two data frames can be combined into a single data frame
using the merge( ) function.

• Vectors do not automatically provide factors and levels, but the factor( )
function can be used to create factors and levels.



8
Producing quick plots

This chapter demonstrates how to create scatter plots, bar charts,

histograms, and box plots from stored data.
Installing packages
Scattering points
Smoothing lines
Portraying stature
Depicting groups
Adding labels
Drawing columns
Understanding histograms
Producing histograms
Understanding box plots
Producing box plots
Summary



Installing packages
RStudio is installed with a wide variety of built-in functions that are
contained within tried and tested binary code “packages”. Installed
packages appear as a library listed in alphabetical order on the Packages tab
in the Notebook pane, together with a brief description of the functionality
they provide:

Packages in the library list are installed but not accessible until they
have been loaded by the library( ) function.
Additional packages can be installed by specifying a package name within
quotes as the argument to the install.packages( ) function. Optionally, a
second dependencies=TRUE argument can be included to also install any
packages required by the specified package. One of the most useful
additional packages for the creation of elegant data visualizations is the
“ggplot2” package:

Ensure your computer is connected to the internet, ready to
download from the CRAN repository

InstallPackage.R
In the Code Editor, run this command to install an additional
package and its required dependencies
install.packages( “ggplot2”, dependencies=TRUE )



See the additional package, and its required packages, are now
added to the list on the Packages tab

As the list of installed packages is so extensive, RStudio does not load them
all at the start of each session in order to save time and system memory.
This means that you must specifically load an additional installed package
before you can access its functionality. An installed package can be loaded
by specifying its name as an argument to the built-in library( ) function:

In the Code Editor, run this command to load a specific package
library( ggplot2 )
See the specified package gain a check mark in the list on the
Packages tab – indicating that it is now loaded

You can also load an installed package by checking its checkbox in
the library list.
The “ggplot2” package provides a qplot( ) Quick Plot function that allows
you to quickly create a number of different types of plots using consistent
parameters:



In the Code Editor, run this command to open the Help page and
explore the possible function arguments
help( qplot )

The qplot( ) function is used throughout this chapter to demonstrate
various types of data visualization.



Scattering points
The qplot( ) Quick Plot function in the ggplot2 package can produce a simple
scatter plot by supplying two vector arguments of equal length to represent
X-axis and Y-axis coordinates:

Begin an R Script by creating two vectors of equal length
x <- 1:10
y <- x^2

ScatterPlot.R
Next, load the ggplot2 library
library( ggplot2 )
Now, call the Quick Plot function to plot the coordinates
qplot( x, y )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the graph appear on the Plots tab

Optionally, a geom= argument can be included in the function call to specify
the type of graph to produce. This can be assigned a “point” value to draw a
scatter plot, as shown above.



If both X and Y axis argument values are specified, the qplot( )
function will produce a scatter plot, but if only X argument values are
specified, the function will produce a histogram (see here).
Lines can be added between points by assigning both “point” and “line”
values to the geom= argument:

Edit the function call to add lines between the points, then execute
the code again to see the change
qplot( x, y, geom=c( “point”, “line” ) )

Specify only a “line” value if points are not required to be visible.
The color of plotted points and lines can be specified by including a color=
argument in the function call, and the value specified as an argument to the
built-in I( ) function to inhibit interpretation:

Edit the function call to specify a point and line color, then execute
the code once more to see the change
qplot( x, y, geom=c( “point”, “line” ), color=I( ”Red” ) )



Colors can be specified by name or by hexadecimal value, such as
“#FF0000” for “red”.



Smoothing lines
The qplot( ) Quick Plot function can be used to produce visualizations from
data frames by specifying the data frame name to a data= argument. Column
values can then be assigned as X-axis and Y-axis coordinates simply by
stating the column names as arguments in the function call:

Begin an R Script by importing a dataset describing the fuel
economy, engine type, and weight of several cars
frame <- read.csv( “DataSet-Autos.csv” )

SmoothPlot.R
Add a statement to output the end rows of the data frame
print( tail( frame ) )
Click the Source button to discover the column names

Next, load the ggplot2 library
library( ggplot2 )
Now, call the Quick Plot function to plot the coordinates of fuel
economy and car weight
qplot( mpg, wt, data=frame, geom=c( “point”, “line” ) )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the graph appear on the Plots tab

Notice that there are cars with engines that have 4, 6, or 8 cylinders
which might be classified as three distinct groups.



As the points on a scatter plot may contain wide variations it is often
helpful to create a smoothed line to better visualize a pattern. The qplot( )
function can add a smoothed line if you simply assign a “smooth” value to
the geom= argument:

Edit the function call in step five to replace the lines between each
point with a smoothed line
qplot( mpg, wt, data=frame, geom=c( “point”, “smooth” ) )
Execute the code once more to see how the change more clearly
illustrates a pattern

The insight here indicates that lighter cars are more fuel efficient.



Portraying stature
The size of the points drawn by the qplot( ) Quick Plot function can be
specified by including a size= argument. The value should be specified as an
numerical argument to the built-in I( ) function to inhibit interpretation of the
value. For example, size=I( 5 ) specifies larger points and size=I( 0.5 ) specifies
smaller points. The I( ) function can also be used to inhibit other values from
interpretation, such as color values.
The size of the points drawn by the qplot( ) Quick Plot function can usefully
be mapped to variable values so that those of higher stature are drawn larger
than those of lower stature:

Begin an R Script by importing a dataset describing the fuel
economy, engine type, and weight of several cars
frame <- read.csv( “DataSet-Autos.csv” )

StaturePlot.R
Next, load the ggplot2 library
library( ggplot2 )
Now, call the Quick Plot function to plot the coordinates of fuel
economy, giving prominence to greatest efficiency
qplot( mpg, wt, data=frame, size=mpg, color=I( “Green” ) )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the graph appear on the Plots tab



Notice that a legend is automatically created for mapped data.



Depicting groups
The shape of the points drawn by the qplot( ) Quick Plot function can be
specified by including a shape= argument. The value should be specified as
an numerical argument to the built-in I( ) function within the range 0-25. For
example, shape=I( 17 ) specifies triangular filled points.
The shape of the points drawn by the qplot( ) Quick Plot function can
usefully be mapped to variable values so that different groups are denoted
by the shape of their points. The vector must first be encoded as a factor
using the factor( ) function. Similarly, the color of the points drawn by the
qplot( ) Quick Plot function can be mapped to variable values using the
factor( ) function:

Begin an R Script by importing a dataset describing the fuel
economy, engine type, and weight of several cars
frame <- read.csv( “DataSet-Autos.csv” )

GroupPlot.R
Next, load the ggplot2 library and encode variable values
library( ggplot2 )
Cylinders <- factor( frame$cyl )
Now, call the Quick Plot function to plot the coordinates of fuel
economy and weight, differentiating engine types
qplot( mpg, wt, data=frame, size=I( 5 ),

shape=Cylinders, color=Cylinders )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the graph appear on the Plots tab



Multiple shapes can be specified as a range that must match the
data length. For example, shapes=I( 15:18 ) for four different points.

The insight here indicates that cars whose engines have fewer
cylinders are more fuel efficient.



Adding labels
The default labels drawn by the qplot( ) Quick Plot function on the X-axis
and Y-axis are the column names of the data set supplying the values.
Typically, you will want to provide more meaningful labels by including
xlab= and ylab= arguments to specify text strings to display on each axis.
A plot title label can be added by including a main= argument in the call to
the qplot( ) function to specify a text strings to display above the graph.
Individual points on the plot can also be labeled by assigning a “text” value
to the geom= argument and by including a label= argument in the call to the
qplot( ) function to specify text to display beside each point. This can be a
single string or can be mapped to the data set. For example, each point can
be labeled using the rownames( ) function or with values from a column.
The limit of each axis can be specified by including xlim= and ylim=
arguments in the call to the qplot( ) function. This can be useful when adding
point labels to ensure the text does not exceed the boundaries of the graph:

Begin an R Script by importing a dataset describing the fuel
economy, engine type, and weight of several cars
frame <- read.csv( “DataSet-Autos.csv” )

LabelPlot.R
Next, load the ggplot2 library and encode variable values
library( ggplot2 )
Cylinders <- factor( frame$cyl )
Now, call the Quick Plot function to plot the coordinates of fuel
economy and weight, with meaningful labels
qplot(  mpg, wt, data=frame,

geom=c( “point”, “smooth” ) ,
color=Cylinders ,
xlab=”Miles Per Gallon (US)” ,
ylab=”Weight (1000 lbs)” ,
main=”Automobile Comparison”

)
Click the Run button, or press Ctrl + Enter, to execute the code
and see the labeled graph on the Plots tab



Edit the call to the Quick Plot function to add point labels and to
extend the limit of each axis
qplot( mpg, wt, data=frame ,

geom=c( “point”, “smooth”, “text” ) ,
color=Cylinders ,
xlab=”Miles Per Gallon (US)” ,
ylab=”Weight (1000 lbs)” ,
main=”Automobile Comparison”,
label=frame$model ,
xlim=c( 8, 35 ) ,
ylim=c( 0, 6 )

)
Click the Run button, or press Ctrl + Enter, to execute the code
once more to see the changes



The colors are mapped to the engine types.

Point labels may overlap, making them difficult to read easily.



Drawing columns
Where a call to the qplot( ) Quick Plot function specifies arguments for both
X-axis and Y-axis coordinates, the function will plot the intersecting points,
but if the call only specifies an argument for the X-axis, the function will
draw columns for each unique value supplied. The height of each column is
determined by counting the total frequency of each unique value.
A bar chart can be drawn when a single X-axis argument is supplied to the
qplot( ) function by specifying a “bar” value to the geom= argument. The
column appearance can be specified to fill= and color= arguments using the I(
) function to inhibit interpretation.
The built-in sample( ) function could be used to produce a randomly
distributed sequence of integers for a bar chart. This function requires three
arguments to specify a range from which to choose, the quantity of items to
choose, and whether to replace a selected item back in the range so it can be
selected again:

Begin an R Script by assigning a random sequence of thirty integers
to a vector variable, in the range 1-6
nums <- sample( 1:6, 30 , replace=TRUE )

BarPlot.R
Output the selected sequence in the Console to discover the
frequency pattern, then load the ggplot2 library
print( nums )
library( ggplot2 )
Now, call the Quick Plot function to draw a bar chart that represents
the frequency pattern
qplot( nums, geom=”bar” ,

color=I( “Blue” ) , fill=I( “Lightblue” ) ,
xlab=”Face” , ylab=”Frequency” ,
main=”30 Shakes of the Dice”

)
Click the Run button, or press Ctrl + Enter, to execute the code to
see the pattern



The tick marks on the bar chart are automatically created by R, but do not
adequately represent each column. This can be remedied using the snappily-
named scale_x_continuous( ) function – to specify the number of required
ticks to a breaks= argument, and category labels to a labels= argument:

Append the tick requirements immediately after the closing
parenthesis of the call to the Quick Plot function
+ scale_x_continuous( breaks=1:6,
labels=c( “One”, “Two”, “Three”, “Four”, “Five”, “Six” ) )
Click the Run button, or press Ctrl + Enter, to execute the code
once more and see another sequence appear



There is also a similar scale_y_continuous( ) function that can be
used to specify ticks along the Y-axis.



Understanding histograms
Bar charts and histograms are used to compare the sizes of different groups.
Although these appear similar, there are some very specific differences:
Bar chart
• Consists of columns plotted on a graph
• Columns are separated by spaces
• Columns are positioned over a category label
• The height of the column represents the size of the group defined by the

category label

Bar charts are also known as bar graphs.
The bar chart below depicts the average per capita income for four states.
Each state is a category, defined on a column label, and the height of each
column represents the size of that group.

To read a bar chart, you simply locate the category of interest on the
horizontal X-axis, then estimate the value on the vertical Y-axis that is level
with the top of that column.
It is important to recognize that bar charts have columns that represent a
group defined by a “categorical variable”. This is a variable that can take
only values that are names or labels. For example, a Blood Group
categorical variable of A, B, AB, or O label values. In the bar chart above,
the categorical variables can take only values that are the name of a state.



Bar charts are used to compare variables.
Histogram
• Consists of columns plotted on a graph
• Columns are not generally separated by spaces
• Columns are positioned over a numerical range label
• The height of the column represents the size of the group defined by the

range label
The histogram below depicts the average per capita income for five age
ranges. Each range is defined on a column label, and the height of each
column represents the size of that group.

To read a histogram you simply locate the range of interest on the
horizontal X-axis, then estimate the value on the vertical Y-axis that is level
with the top of that column.
It is important to recognize that histograms have columns that represent a
group defined by a “quantitative variable”. This is a variable that can take
only numerical values that represent a measureable quantity. For example, a
City Population quantitative variable of the number of people in a city
represents a measureable quantity of residents. In the histogram above, the
quantitative variables accept continuous numerical values for each age
group.
It can be useful to consider the “skewness” of a histogram where the height
of the columns fall more on the low end or the high end of the horizontal X-
axis to indicate a trend. This technique cannot be applied to a bar chart, as
its X-axis does not have a low end or a high end.



The ranges are also known as “bins”. Choose the best bin size
(range) to illustrate underlying patterns in the data.

Histograms are used to show the distribution of variables.



Producing histograms
The qplot( ) Quick Plot function can be made to draw a histogram by
specifying only an X-axis argument in the function call and assigning a
“histogram” value to its geom= argument. Additionally, it is recommended
that you specify how many bins (columns) to draw by assigning an integer
to a bins= argument. The color of the bins can be specified using the fill=
argument and can usefully be mapped to variable values:

Begin an R Script by creating a vector containing 1000 gender
labels and a vector containing 1000 random numbers around
different mean values
Sex <- rep( c( “Female”, “Male” ), each=500 )
height <- c( rnorm( 500, 65 ), rnorm( 500, 69 ) )

Histogram.R
Now, combine the two vectors in a data frame
frame <- data.frame( Sex, height )
Output the first and last three rows in the Console to see the data,
then load the ggplot2 library
head( frame, n=3 )
tail( frame, n=3 )
library( ggplot2 )
Now, call the Quick Plot function to draw a histogram that displays
the frequency in 40 bins – colored according to gender
qplot( height, data=frame, geom=”histogram” , fill=Sex,
bins=40,

ylab=”Frequency” , xlab=”Height in Inches” ,
main=”Average Adult Height (USA)”

)
Click the Run button, or press Ctrl + Enter, to execute the code to
see the frequency



If you omit a bins= argument, R will provide a default number of
bins, but it is better to specify how many bins you want, to display
the information most clearly.

To examine the area where the bins overlap, the same data can be redrawn
as lines in a density plot by assigning a “density” value to the geom=
argument. The width of line can be specified as a numerical argument to the
size= argument, using the built-in I( ) function to inhibit interpretation of the
value. Color and type of lines can be specified to the color= and linetype=
arguments, and can usefully be mapped to variable values:

Edit the call to the Quick Plot function to plot density, then execute
the code once more to see the overlap
qplot( height, data=frame, geom=”density” ,

size=I( 2 ), color=Sex, linetype=Sex,
ylab=”Density” , xlab=”Height in Inches” ,
main=”Average Adult Height (USA)”

)



In the USA, average female height is 65 inches and average male
height is 69 inches – the mean values specified to rnorm( ) function
calls.

The insight here indicates that both female and male averages occur
between 66-68 inches.



Understanding box plots
A box plot is a great way to present data so that numerical distribution
characteristics and levels can be easily visualized. Initially, the data values
are sorted into ascending order, then four equal-sized groups are made from
the sorted values – 25% of all values are placed in each group. The lines
dividing the groups are called “quartiles”. The groups are referred to as
“quartile groups” and are typically numbered 1 to 4, starting at the lowest
level.

• Median – the middle quartile line denotes the mid-point of the data,
where half the values are greater than or equal to this point and half are
less.

• Inter-quartile range – the box denotes the middle 50% of the data
values, between the lower quartile and upper quartile.

• Upper quartile – 75% of the data values fall below this line.
• Lower quartile – 25% of data values fall below this line.
• Whiskers – the upper and lower whiskers denote data values that fall

outside the middle 50%.

Box plots are also known as box-and-whisker plots.



The quartiles are alternatively referred to numerically, where the
Upper quartile is 1st, Media quartile is 2nd, and the Lower quartile is
3rd.
Box plots are especially useful for comparing distributions between several
groups of data. For example, the box plots below might represent student
responses on a variety of topics.

Observations
• Group 1 – the four sections of the box plot are uneven in size,

suggesting the students have similar views on some aspects of this topic
but their views differ in other aspects.

• Group 2 – the box plot is relatively short, suggesting the students hold
similar views on this topic.

• Groups 1 & 3 – the box plots are relatively tall, suggesting that the
students hold quite differing views on these topics.

• Groups 1, 2 & 3 – the box plots all have the same median, suggesting
the same average level of response but the box plots show a different
distribution of views.

• Group 4 – the box plot is lower than the others, suggesting a poor level
of response on this topic.



Whiskers often stretch over a wider range of values than those in the
inter-quartile range.



Producing box plots
The qplot( ) Quick Plot function can be made to draw a box plot by
specifying X-axis and Y-axis arguments in the function call, and assigning a
“boxplot” value to its geom= argument. The name of a data frame can be
specified to the data= argument so its column names can be used to supply
the coordinate values. The color of the boxes can be specified using the fill=
argument and can usefully be mapped to variable values.
To ensure a trend is not missed, it is useful to make the data points visible
on a box plot by also assigning a “jitter” value to the geom= argument in the
call to the qplot( ) function:

Begin an R Script by importing a dataset describing three sets of
weight results from an experiment
frame <- read.csv( “DataSet-Experiment.csv” )

BoxPlot.R
Next, output the first three rows of data in the Console to see the
column names and row values
print( head( frame, n=3 ) )
Now, load the ggplot2 library
library( ggplot2 )
Call the Quick Plot function to draw a box plot that displays the
distribution of results and data points
qplot( Group, Weight, data=frame,

geom=c( ”boxplot”, “jitter” ),
fill=Group,
main=”Experiment Results”

)
Click the Run button, or press Ctrl + Enter, to execute the code to
see the results



The order in the assignment to the geom= argument is important –
the boxes will be drawn over the points if the order is reversed from
that listed.

Do not use jitter for large data sets so that the box plot will not
display data points.
If you prefer to demonstrate the distribution without displaying individual
data points, you can produce a violin plot that indicates density by the width
of the plot. This requires a “violin” value to be assigned to the geom=
argument in the call to the qplot( ) function. The plot will be truncated,
however, unless you also include a trim= argument and assign it a FALSE
value:

Edit the call to the Quick Plot function, then execute the code again
to see the results once more
qplot( Group, Weight, data=frame,

geom=”violin”, trim=FALSE,
fill=Group,
main=”Experiment Results”

)





Summary
• Additional packages can be downloaded from the CRAN repository

using the install.packages( ) function and loaded into the RStudio
environment using the library( ) function.

• The qplot( ) function can produce a scatter plot by supplying vector
arguments to represent X-axis and Y-axis coordinates.

• Lines can be added between points by assigning both “point” and “line”
values to the geom= argument.

• The I( ) function must be used when assigning color, size, shape, and fill
values – to inhibit their interpretation.

• The qplot( ) function can produce a visualization from a data frame by
specifying column names for X-axis and Y-axis coordinates, and its
name to the data= argument.

• The qplot( ) function can add a smoothed line by assigning a “smooth”
value to the geom= argument.

• The size and shape of the points drawn by the qplot( ) function can be
specified to the size= and shape= arguments.

• Labels can be added by including main=, xlab=, and ylab= arguments in
the call to the qplot( ) function.

• Bar chart columns represent a categorical variable, but histogram
columns represent a quantitative variable.

• The qplot( ) function can produce a bar chart or histogram by supplying
an X-axis argument and a “bar” value or “histogram” value to the geom=
argument.

• The scale_x_continuous( ) function can be used to control the appearance
of X-axis ticks and labels.

• The color, size, shape, and fill values drawn by the qplot( ) function can
be mapped to variables for distinction.

• Box plots sort numerical data into ascending order separated in four
equal sized quartile groups.

• The qplot( ) function can produce a box plot or violin plot by specifying
X-axis and Y-axis arguments, and by assigning a “boxplot” or “violin”
value to its geom= argument.
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Storytelling with data

This chapter demonstrates how to produce data visualizations that most

effectively convey the messages within data.
Presenting data
Considering aesthetics
Using geometries
Showing statistics
Illustrating facets
Controlling coordinates
Designing themes
Summary



Presenting data
The visual representation of data in a graphical format enhances the human
ability to see patterns and trends. Data visualization is closely related to
information graphics (“infographics”) that can clearly and efficiently
communicate data visually. The popularity of infographics has increased
recently – but they’re not a new idea.
A French civil engineer, named Charles Minard (1781-1870), was noted for
his representation of numerical data on geographic maps. In 1869, Minard
created an influential infographic on the subject of Napoleon’s disastrous
march on Moscow:

This infographic captures six changing variables that contributed to
Napoleon’s downfall in a single two-dimensional image:
• Army size – the dwindling number as troops died from hunger and

wounds (422,000 down to 10,000).
• Direction – the army’s direction as they advanced from the Polish

border and retreated back from Moscow.
• Distance – the scaled length of the advance and retreat.
• Temperature – the freezing cold experienced by the troops as they

retreated (0° Celsius down to -30° Celsius).
• Location – the cities that the army passed through during its advance

and retreat.
• Time – the duration of the retreat (August 18-October 7).



Charles Minard worked throughout Europe on large construction
projects. Modern information scientists say his illustration may be the
best statistical graphic ever drawn.
The grammar of graphics
Plots and charts created for data visualization share many components –
data is represented by graphical elements, and labels help to make the
meaning clear. Just as the grammar of a language provides a structure in
which words of a language can be combined into meaningful sentences, the
grammar of graphics provides a structure in which graphical elements can
be combined into meaningful visualizations.
In the grammar of graphics, visualizations are comprised of seven vertically
stacked layers containing graphical elements and labels that can be arranged
and combined in different ways:



Theme – axes labels, title color and size, plus legend position.
Coordinates – focus and zoom of the plot area.
Facets – multiple plots of data subsets in individual panels.
Statistics – data transformation for computed plots.
Geometries – graphical points, lines, bars, boxes, axes labels and title text.
Aesthetics – map or set axes, plus plot color, fill, shape, and size.
Data – tidy rows of individual source values.

The grammar of graphics was introduced by Leland Wilkinson in the
late 1990s, and popularized by Hadley Wickham with the ggplot



plotting library for R programming. The latest version is the ggplot2
package.

Each grammar of graphics layer is described in detail on the ensuing
pages.



Considering aesthetics
The qplot( ) function is great for producing quick visualizations, but more
complex graphics require the power of the ggplot( ) function from within the
ggplot2 package. This requires the name of a data frame to be specified to a
data= argument to satisfy the fundamental Data layer of the grammar of
graphics.

Variables in the data can be mapped to the X-axis and Y-axis by including
an aes( ) argument in the call to the ggplot( ) function. The variable names
can be specified to x= and y= arguments in the call to the aes( ) function, but
the argument for the Y-axis can be omitted if a bar chart or histogram is
required. Calling the ggplot( ) function creates a ggplot object and satisfies
the basic requirements of the Aesthetics layer of the grammar of graphics:

Begin an R Script by importing a dataset describing the salaries of a
number of college professors
frame <- read.csv( “DataSet-ProfSalaries.csv” )

Aesthetics.R
Next, output the first 10 rows in the Console to see the column
names, then load the ggplot2 library
head( frame, n=10 )
library( ggplot2 )
Now, call the function to create a ggplot object
ggplot( data=frame, aes( x=yrs.since.phd, y=salary ) )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the axes are drawn, but no data plotted



Optionally, variable names alone can be specified as comma-
separated arguments to the aes( ) function – omitting the x= and y=
assignments. For example, in this case aes( rank, salary ).

This data set is used throughout this chapter to demonstrate data
presentation adhering to the grammar of graphics.

What’s happening here? No data has been plotted because the code does not
yet specify how to plot the mapped variable values. It is necessary to add a



function call to also satisfy the Geometries layer of the grammar of
graphics. The ggplot2 library provides functions for many geometry types,
and these can be appended after the call to the ggplot( ) function using the +
operator:

Multiple functions can be appended, so it is convenient to place the
+ operator on the same line as the previous function call, then place
the appended function call on the next line – as listed in this
example.

Append a function call to specify a point geometry
ggplot( data=frame, aes( x=yrs.since.phd, y=salary ) ) + geom_point( )
Run the code once more to see the axes drawn and now also see the
data plotted as points

The minimum layers required to create a visualization adhering to
the grammar of graphics are the Data, Aesthetics, and Geometries
layers.



Using geometries
When creating a bar chart or histogram on the Geometries layer of the
grammar of graphics, it is important to recognize the type of variable to be
specified for the X-axis:

• Discrete variable – has a limited number of values
• Continuous variable – has an infinite number of values
The aes( ) function requires a discrete variable to create a bar chart, but a
continuous variable to create a histogram.
Other aesthetic values can be specified as arguments directly in the
geometry function call if they are assigned an absolute value, such as
color=”Red”. To map an aesthetic value to a variable, the assignment must
instead be made as an argument to the aes( ) function in the geometry
function call, such as aes( color=var ):

Begin an R Script by importing the dataset describing professors’
salaries, then load the ggplot2 library
frame <- read.csv( “DataSet-ProfSalaries.csv” )
library( ggplot2 )

Geometries.R
Next, create a ggplot object using a discrete variable, then append a
function to specify a bar chart geometry – with other aesthetics
assigned absolute values
ggplot( data=frame, aes( x=rank ) ) + geom_bar( fill=”Yellow”, color=”Red” )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the bar chart appear



The fill= argument specifies the bar color, whereas the color=
argument specifies only the bar’s border color.

Edit the code to create a ggplot object using a continuous variable,
then append a function to specify a histogram geometry – with other
aesthetics assigned absolute values
ggplot( data=frame, aes( x=salary ) ) + geom_histogram( fill=”Purple”,

color=”White”, bins=20 )
Run the code once more to see the histogram appear

Further edit the code to specify a histogram geometry – with other
aesthetics mapped to a discrete variable
ggplot( data=frame, aes( x=salary ) ) + geom_histogram( aes( fill=rank) ,

color=”Black”, bins=20 )
Run the code again see the modified histogram appear



Remember to include a bins= argument to specify the number of
columns to display on a histogram.

All the geometry function names in gggplot2 begin with “geom_”.
Type this in the Code Editor to see a popup list appear of all these
functions.



Showing statistics
The Statistics layer of the grammar of graphics allows for data
transformation so that computed statistics can be drawn to summarize the
raw source data. For example, to draw a smoothed version of a histogram
displaying computed density estimates:

Begin an R Script by importing the dataset describing professors’
salaries, then load the ggplot2 library
frame <- read.csv( “DataSet-ProfSalaries.csv” )
library( ggplot2 )

Statistics.R
Next, create a ggplot object using a continuous variable, then
append a function to compute density estimates – with other
aesthetics mapped to a discrete variable
ggplot( data=frame, aes( x=salary ) ) + geom_density( aes( fill=rank) )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the computed density statistics

Similarly, the Statistics layer can be used to draw a computed smooth line
of mean values over a point geometry layer.



The location of points can also be moved to computed random positions
(“jittered”) on the Statistics layer, to avoid overplotting one point on top of
another, and a box plot geometry can be specified to summarize the
distribution of the data. Drawing boxes over points can hide the points
unless an alpha= argument is included to specify transparency for the fill
color of the boxes.

The order of function calls is important as they will be drawn in
sequence.

Edit the code to create a different ggplot object, then append
functions to specify a point geometry and a function to add lines of
computed mean values
ggplot( data=frame, aes( x=yrs.since.phd, y=salary ) ) + geom_point( aes(

color=rank ) ) + geom_smooth( aes( color=rank ) , fill=NA )
Run the code again to see the computed mean statistics

Edit the code to create another ggplot object, then append functions
to compute point locations and to specify a computed box plot
geometry – run the code
ggplot( data=frame, aes( x=rank, y=salary ) ) + geom_jitter( aes( color=rank )

) + geom_boxplot( aes( fill=rank ) , alpha=0.5 )



Include a fill=NA argument to hide the broad backgrounds that are
drawn beneath computed smooth lines by default.

Possible values for the alpha= argument range from 0 (fully
transparent) to 1 (fully opaque).



Illustrating facets
A data visualization may sometimes overplot points, rows, or columns, so
that some information is hidden. For example, the histogram below
(repeated from here) overplots some columns for the Assistant Professor
and Associate Professor ranks:

For clarity, it would be better to illustrate the information for each rank
individually as separate “facets”. The Facets layer of the grammar of
graphics allows you to create a matrix of panels to display separate
variables by appending a facet_grid( ) function. This has an unusual argument
requirement where a variable name or . period character is specified around
a ~ tilde character. Placing the variable name before the tilde maps the
values to rows, whereas placing the variable name after the tilde maps the
values to columns. The period character on the side opposite the variable
name indicates that no faceting is required in that dimension:

Begin an R Script by importing the dataset describing professors’
salaries, then load the ggplot2 library
frame <- read.csv( “DataSet-ProfSalaries.csv” )
library( ggplot2 )

Facets.R



Next, create a ggplot object, specify a histogram geometry, then
append a function to specify faceted rows
ggplot( data=frame, aes( x=salary ) ) + geom_histogram( aes( fill=rank ),

color=”Black”, bins=20 ) + facet_grid( rank~. )
Click the Run button, or press Ctrl + Enter, to execute the code
and see the rank information in separate panels

The count scale on the Y-axis is uniform for all three panels, automatically
calculated to accommodate the tallest column in the bottom panel. This
perhaps illustrates information in the other panels less clearly, but you can
have each panel’s scale calculated individually by specifying a “free” value
to a scales= argument in the call to the facet_grid( ) function:

Edit the code to allow maximum column height in each panel, then
run the code again to see the improvement
ggplot( data=frame, aes( x=salary ) ) + geom_histogram( aes( fill=rank ),

color=”Black”, bins=20 ) + facet_grid( rank~. , scales=”free” )



Switch the argument to facet_grid( .~rank ) then run the code to
see the data now displayed in columnar panels.



Controlling coordinates
It is often useful to refine a data visualization to focus on a particular area
of interest. For example, in the histogram below (repeated from here) it
might be of interest to focus on Professor salaries between
$80,000-$140,000:

The Coordinates layer of the grammar of graphics allows you to focus on a
particular area of interest in two ways. You can specify the start and end
coordinates of the area as arguments to appended xlim( ) and ylim( ) functions,
to limit the axes range.
Alternatively, you can specify the start and end coordinates of the area as
vectors to xlim= and ylim= arguments in an appended coord_cartesian( )
function, to zoom into a particular area:

Begin an R Script by importing the dataset describing professors’
salaries, then load the ggplot2 library
frame <- read.csv( “DataSet-ProfSalaries.csv” )
library( ggplot2 )

Coordinates.R
Next, create a ggplot object, specify a histogram geometry, then
append functions to specify area limits



ggplot( data=frame, aes( x=salary ) ) + geom_histogram( aes( fill=rank ),
color=”Black”, bins=20 ) + xlim( 80000, 140000 ) + ylim( 0, 40 )

Click the Run button, or press Ctrl + Enter, to execute the code
and see the limited area of interest – also notice that a warning
message has appeared in the Console!

The warning message indicates that R has removed some of the data in
preparing the visualization – this is probably undesirable:

Replace the functions that specify area limits with a function to
specify an area on which to focus
ggplot( data=frame, aes( x=salary ) ) + geom_histogram( aes( fill=rank

),color=”Black”, bins=20 ) + coord_cartesian( xlim=c( 80000, 140000 ),
ylim=c( 0, 40 ) )

Run the code again to zoom into the area of interest – without any
warning message appearing in the Console



By removing rows of data, the plot may not accurately reflect the
actual distribution.

The zoomed area reveals that a number of Assistant Professors
have salaries in excess of $100,000 – information not visible on the
other views of this histogram.



Designing themes
The final top-level layer of the grammar of graphics is the Theme layer that
allows you to specify the size and color of the axes and legend labels, and
the position of the legend on the visualization. These component features
can each be controlled by appending a theme( ) function to a ggplot object.
This function can accept arguments axis.title.x, axis.title.y, and legend.title to
specify the size and color of the axes and legend titles. It also accepts
similar arguments of axis.text.x, axis.text.y, and legend.text to specify the size
and color of the tick mark text and legend item’s text. The assignment to
each of these is made by specifying values to size= and color= arguments of
an element_text( ) function.

The theme( ) function can accept many arguments. Enter ?theme to
open its Help page and read through the list of available arguments.
The position of the legend is specified to legend.justification and
legend.position arguments as a vector of X,Y coordinates where 0 and 1
represent the start and end point of each axis respectively.
For example, specifying coordinates of 1,1 to both arguments positions the
legend at the top-right corner of the plotting area.

Specifying slightly different values to the legend.position argument allows
the legend to be inset from the edges of the plotting area. For example, in
the box plot below (repeated from here) it might be desirable to position the
legend inset at the top-left empty corner on the plotting area.



You should specify both legend.justification and legend.position
arguments to anchor the legend position.

Begin an R Script by importing the dataset describing professors’
salaries, then load the ggplot2 library
frame <- read.csv( “DataSet-ProfSalaries.csv” )
library( ggplot2 )

Themes.R
Next, create a ggplot object, specify a jitter and box plot geometry,
then append a function to specify a theme
ggplot( data=frame, aes( x=rank, y=salary ) ) +
geom_jitter( aes( color=rank ) ) +

geom_boxplot( aes( color=rank ), alpha=0.5 ) +
theme(

# Assignments to be inserted here (Steps 3-4).
)

Now, insert these assignments to specify titles and text values for
axes and legend

axis.title.x=element_text( size=15, color=”Red” )
axis.title.y=element_text( size=15, color=”Blue” )
legend.title=element_text( size=15 )
axis.text.x=element_text( size=15, color=”Red” )



axis.text.y=element_text( size=15, color=”Blue” )
legend.text=element_text( size=15 )

Insert these assignments to specify the legend position
legend.justification=c( 0, 1 )
legend.position=c( 0.02, 0.97 )

Click the Run button, or press Ctrl + Enter, to execute the code
and see the theme

Here, the legend.position values inset the legend by .02 from the X-
axis starting edge at 0, and by .03 from the Y-axis finishing edge at
1.0. Experiment by changing these values to see how the position is
affected.



Summary
• The grammar of graphics defines seven vertically stacked layers for

Data, Aesthetics, Geometries, Statistics, Facets, Coordinates, and
Theme.

• The ggplot( ) function requires the name of a data frame to be specified to
a data= argument – for the Data layer.

• Variables can be mapped to axes by an aes( ) argument in the call to the
ggplot( ) function – for the Aesthetics layer.

• It is necessary to append a function call after the call to the ggplot( )
function – for the Geometries layer.

• Functions for many geometry types can be appended after the ggplot( )
function call using the + operator.

• A discrete variable has a limited number of values, whereas a
continuous variable has an infinite number of values.

• The aes( ) function requires a discrete variable to create a bar chart but a
continuous variable to create a histogram.

• Data transformation can provide computed statistics to summarize the
raw source data – for the Statistics layer.

• A data visualization can display separate variables on a matrix of
individual panels – for the Facets layer.

• The facet_grid( ) function requires an argument where a variable name or
. is specified around a ~ tilde character.

• The axes range can be limited to an area of particular interest using xlim(
) and ylim( ) functions – for the Coordinates layer.

• The coord_cartesian( ) function can be used to zoom into an area of
particular interest.

• Plot component features can each be controlled by appending a theme( )
function to a ggplot object – for the Theme layer.

• Title and text values are assigned for axes and legend arguments using
the element_text( ) function.

• Legend position is specified to legend.justification and legend.position
arguments as a vector of X,Y coordinates.



10
Plotting perfection

This chapter demonstrates how to produce multiple visualizations from

one data set for insightful analysis of various aspects of the data.
Loading the data
Retaining objects
Overriding labels
Adding a theme
Restoring the Workspace
Comparing boxes
Identifying extremes
Limiting focus
Zooming focus
Displaying facets
Exporting graphics
Presenting analyses
Summary



Loading the data
When you create an object in RStudio, it is usually retained in the
Environment, so further code in the R Script can instantly recall any object
for additional use. This means you can easily produce multiple
visualizations to illustrate different aspects of the data by reusing objects.
Objects created by an R Script are listed on the Environment tab in
RStudio’s Workspace pane. Each list item provides the object type, name,
and a brief description. Beside each object name is a drop-down button that
expands the item to reveal its contents. Typically, the first object created
will, of course, be a data object:

Begin an R Script by importing a dataset describing historical
Atlantic hurricane events
frame <- read.csv( “DataSet-Hurricanes.csv” )

MultiplePlots.R
Run the line of code to create a data frame object and see it on the
Environment tab in the Workspace pane
Click the drop-down button beside the object name to reveal its
contents

Notice that the contents of the object, revealed by clicking the drop-
down button, describe its structure – just like calling str( frame ) in
the R Script code.



Examination of the data frame object reveals that it contains the hurricane
names, the year they struck, the wind speed when they made landfall, two-
letter abbreviations of the states they hit, the number of fatalities that arose,
the gender of the name each hurricane was given, and the cost of the
damage they caused. Visualizations comparing many aspects of this data
could prove interesting, so this data object will be used, and reused
throughout this chapter.

Next, add a statement to output the first eight rows in the Console to
see the columns, then run this line of code
head( frame, n=8 )

Notice that some hurricanes affected multiple states that are listed in
a single cell.

Add a statement to load the ggplot2 library, then run this line of
code
library( ggplot2 )
Now, add function calls to create a ggplot object and specify
geometry to simply plot points
ggplot( data=frame,

aes( x=Year,
y=DamageMillions,
color=WindMPH ) ) + geom_point( )

Run the lines of code in the previous step to see the plot – but no
object is added to the RStudio Environment as this object is not
retained (the next example will fix this)



The points illustrate that the cost of damage caused by each
hurricane over the years is less than 25 billion – with three notable
exceptions.



Retaining objects
In order to retain a ggplot object in RStudio, it is necessary to assign the
call to the ggplot( ) function to a variable name of your choice. This adds the
object to the Environment tab in RStudio’s Workspace pane. The Data
contents appear as in the previous example but each of their rows now
begins with ..$ indicating they can be addressed in code using the $ dollar
operator:

Add a statement to create a ggplot object
damage_plot <- ggplot( data=frame,

aes( x=Year,
y=DamageMillions,
size=DamageMillions,
color=WindMPH ) )

MultiplePlots.R (continued)
Run the lines of code in the previous step to see the object added to
the RStudio Environment
Click the drop-down button beside the object name to reveal its
contents and see the dollar operators

Scroll down the drop-down list to see lots of object properties, such
as the addressable mapping items

As the ggplot object contains the Data and Aesthetics specifications,
Geometries can be appended to the ggplot object to create simple data
visualizations.



You can assign new values to the mapping items in R Script code to
change property values of the ggplot object.

Append a geometry specification to simply plot points – recreating
the previous plot, but with a re-usable object
damage_plot + geom_point( )
Run the line of code to see the plot appear, as before

You can confirm that an item is a ggplot object by specifying its name
as the argument to the is.ggplot( ) function.
The ggplot object can be re-used to easily add more layers to the
visualization to suit your requirements:

Append a second geometry specification to draw lines between the
points, to emphasize spikes in the pattern
damage_plot + geom_point( ) + geom_line( size=0.5 )
Run the line of code to see the revised plot appear



The spikes emphasize that the cost of hurricane damage has
generally increased since 2000.



Overriding labels
Typically, the default X-axis and Y-axis labels on a plot are simply the
names of the data fields from which the data is taken. You can override
these by specifying your own label names as the argument to xlab( ) and ylab(
) functions respectively. Additionally, you can specify a plot title as the
argument to a ggtitle( ) function. For example, to override default labels on
the previous example:

Insert function calls to override labels
damage_plot + ggtitle( “US Atlantic Hurricanes” ) +
xlab( “Event Year” ) + ylab( “Damage $ Millions” ) +
geom_point( ) + geom_line( size=0.5 )

MultiplePlots.R (continued)
Run the lines of code to see the title and new axis labels

Labels are a part of Aesthetics, so come between the Data layer and
Geometry layer in the grammar of graphics.
Alternatively, default plot labels can be overridden by specifying label
names to these arguments of the labs( ) function:
• title= – The main title above the top of the plot.
• subtitle= – Secondary heading in smaller text below the title.



• x= – The X-axis label.
• y= – The Y-axis label.
• caption= – Annotation below the Y-axis label, aligned to the right edge of

the plot panel.
The labs( ) function can therefore be used in place of ggtitle( ), xlab( ), and
ylab( ) function calls in the example above.

Replace the function calls in the previous example to override
labels, then run the code to see new labels
damage_plot + labs( title=“US Atlantic Hurricanes
”, subtitle=”1950-2012”, x=”Event Year”,
y=”Damage $ Millions”, caption=”Source: Wikipedia” ) +
geom_point( ) + geom_line( size=0.5 )

The code above that specifies the labels is becoming unwieldy and is not
convenient to type repeatedly when producing multiple visualizations from
one set of data. The solution is to create a label object that can be easily
reused, just like the ggplot object:

Assign all specified labels to a name of your choice
label_object <- labs( title=“US Atlantic Hurricanes”,
subtitle=”1950-2012”, x=”Event Year”,
y=”Damage $ Millions”, caption=”Source: Wikipedia” )
Replace the previous function call with the label object
damage_plot + label_object +
geom_point( ) + geom_line( size=0.5 )
Run the code to see the labels appear as illustrated above, and see a
reusable label object in the Environment tab



The label object created here is reused by all ensuing examples in
this chapter.



Adding a theme
The theme( ) function allows you to specify the size and color of the axes
and legend labels, and the position of the legend on the visualization.
Additionally, it can specify a particular font to a family= argument of a text
element. The assignment must be the name of a font that is installed in
RStudio. Initially, the choice of available fonts may be limited, but many
more fonts can be made available by installing the “extrafont” package:

Call a function to list all (3) currently-installed fonts
windowFonts( )

MultiplePlots.R (continued)

Ensure your computer is connected to the internet, ready to
download from the CRAN repository
Call a function to install an additional package
install.packages( “extrafont”, dependencies=TRUE )
When the download completes, load the new package into RStudio
library( extrafont )
Call a function to import the new fonts into RStudio without being
prompted for confirmation
font_import( prompt=FALSE )
Call a function to register the fonts with a device for output
loadfonts( device=”win” )
Call a function to see that the list of currently-installed fonts has
now increased greatly (presently up to 194)
length( windowFonts( ) )



Refer back to here for more on themes.

The installation of extra fonts into RStudio can take quite a while.
When producing multiple visualizations from one set of data, it is generally
desirable to format each visualization with a common theme. It is therefore
convenient to create a theme object that can be easily reused, just like the
ggplot object and labels object:

Assign all specified theme values to a name of your choice
theme_object <- theme(
plot.title=element_text( color=”Red”, family=”Wide Latin” ),
plot.subtitle=element_text( color=”Red” ),
axis.title.x=element_text( color=”Red”, face=”bold” ),
axis.title.y=element_text( color=”Red”, face=”bold” ),
plot.caption=element_text( color=”Black”, face=”italic” ),
legend.background=element_rect( color=”Gray” ) )
Run the code to see a reusable theme object now appear on the
Environment tab

Append the theme object to the previous example, then run the code
to see the theme applied
damage_plot + label_object +
geom_point( ) + geom_line( size=0.5 ) + theme_object



Use a font viewer, such as the drop-down menu in WordPad, to
preview the available fonts.

The theme object created here is reused by all ensuing examples in
this chapter.



Restoring the Workspace
Examples on the preceding pages of this chapter have described how to
build up one data visualization using data frame, ggplot, label, and theme
objects. Now, other data visualizations can be easily created to illustrate
further insights into the same dataset by creating new ggplot objects. The
same label and theme objects can be reused and axis labels updated where
necessary by appending calls to the xlab( ) and ylab( ) functions after the label
object.
If you restart RStudio you will have to rerun the lines of code to recreate the
data frame, label, and theme objects, and also reload the ggplot2 and
extrafont libraries before you can create more data visualizations:

Exit RStudio by selecting the File, Quit Session menu

MultiplePlots.R (continued)
Choose the Don’t Save option to deliberately not save the
Workspace

Restart RStudio and open the script file – see that the ggplot2 and
extrafont libraries are not checked on the Packages tab, and the
Environment tab is empty



Run the lines of code to recreate the data frame object and load the
ggplot2 and extrafont library, then run the code to recreate the label
and theme objects

You can choose the Save option on the “Quit R Session” dialog to
restart RStudio with Environment objects preserved, so you can
continue immediately.

If you close RStudio without saving the Workspace you will need to
restore objects and libraries into the Environment as described here
for all further plot examples in this chapter.



Comparing boxes
With data frame, label, theme objects, plus ggplot2 and extrafont libraries
available, a new box plot data visualization can be created:

Add a statement to output the first eight rows in the Console to see
the columns, then run this line of code
head( frame, n=8 )

MultiplePlots.R (continued)

Next, create a new ggplot object from the original data set, to
illustrate different insights, then run the code
gender_plot <- ggplot( data=frame,

aes( x=Sex, y=Deaths, color=Sex ), size=3 )
Append labels, geometries, coordinate limit, and theme to the new
ggplot object, then run the code to see the plot
gender_plot +
label_object +
xlab( “Gender” ) + ylab( “Number of Fatalities” ) +
geom_jitter( ) + geom_boxplot( alpha=0.5 ) +
ylim( 10, 200 ) + theme_object



Remember to update the axis labels from those in the label object.

A controversial paper based on an earlier version of this data
claimed that hurricanes with female names, presumably taken less
seriously, caused more deaths than hurricanes with male names.



Identifying extremes
With data frame, label, theme objects, plus ggplot2 and extrafont libraries
available, a new point plot data visualization can be created to illustrate
trends.
The average trend can be illustrated by appending a Smooth geometry to
the ggplot object so that points outside the average band are instantly
apparent.
In order to identify points, they can be labeled by mapping each point label
to a data field in the ggplot object in a call to the geom_text( ) function. As
usual, the mapping must be wrapped in an aes( ) argument to the geom_text( )
function. The field name can then be assigned to a label= argument to the
aes( ) function:

Add a statement to output the first eight rows in the Console to see
the columns, then run this line of code
head( frame, n=8 )

MultiplePlots.R (continued)
Next, create a new ggplot object from the original data set, to
illustrate different insights, then run the code
fatal_plot <- ggplot( data=frame,

aes( x=Year, y=Deaths ) )
Append labels, geometries, and theme to the new ggplot object, then
run the code to see the plot
fatal_plot +
label_object +
ylab( “Number of Fatalities” ) +
geom_point( aes( color=WindMPH ) ) +
geom_text( label=Name ) +
geom_smooth( ) +



theme_object
The labels overlap each other in the average area and overlap the points, so
it would be better to label only the extreme points.

Remember that appended functions inherit access to the field names
in the ggplot object.

A hjust= argument can be included to adjust the horizontal position of the
labels, and a conditional ifelse test can be included in the label= assignment
to label selective points. This returns factors, so text must be converted by
the as.character( ) function:

Edit the assignment in the previous step to include a conditional test
geom_text( aes( label=ifelse( Deaths > 180,

as.character( Name ), ““ ) ,
hjust=1.1 ) ) +

Run the code again to see the plot now labels only the extreme
points outside the average band



There is also a vjust= argument that can be used to adjust the
vertical position of labels. Experiment with different values to see
how they adjust the label position.

This plot illustrates that hurricane Katrina of 2005 was by far the
most devastating, and significantly more deadly than any other
hurricane.



Limiting focus
With data frame, label, theme objects, plus ggplot2 and extrafont libraries
available, a new point plot data visualization can be created to focus on a
particular area of interest by limiting the X-axis and Y-axis coordinate
ranges on the plot.
Increasing the size of points and changing their shape can sometimes be
useful to emphasize information provided by the points’ fill color when
mapped to field data in the ggplot object:

Create a new ggplot object from the original data set, to illustrate
different insights, then run the code
windspeed_plot <- ggplot( data=frame,

aes( x=Year, y=Deaths ) )

MultiplePlots.R (continued)
Append labels, a geometry, coordinate limits, and a theme to the
ggplot object
windspeed_plot + label_object +
ylab( “Number of Fatalities” ) +
geom_point( aes( color=WindMPH ), size=10, shape=17 ) +
xlim( 1980, 2000
) + ylim( 0, 65 ) +
theme_object
Run the code to see the plot display triangles filled with color
mapped to wind speed



The possible point shapes are illustrated here.

Looking at the top two strikes illustrates that hurricanes with high or
low windspeed can both be costly to human life.



Zooming focus
With data frame, label, theme objects, plus ggplot2 and extrafont libraries
available, a new bar chart data visualization can be created to focus on an
area of interest by zooming into that area.
Remember that limiting the X-axis and Y-axis coordinate ranges on the plot
R may remove some of the data in preparing the visualization. This means
that the chart may not accurately represent the data. It is, therefore,
advisable to zoom into the area of interest for accuracy:

Create a new ggplot object from the original data set, to illustrate
different insights, then run the code
strike_plot <- ggplot( data=frame,

aes( x=Year, y=Sex ) )

MultiplePlots.R (continued)
Append labels, a geometry, coordinate zoom, and a theme to the
ggplot object
strike_plot +
label_object +
ylab( “Number of Strikes” ) +
geom_bar( ) +
coord_cartesian( xlim=c( 1980, 2000 ) ) +
theme_object
Run the code to see the chart display bars filled with color mapped
to the gender of hurricane names



The xlim( ) function requires two numeric arguments, but the xlim=
argument requires a vector.

Counting the number of strikes of each gender name reveals an
equal number of strikes for male and female names (15 for each).



Displaying facets
The grep( ) function can be used to retrieve only specific data that is of
interest for comparison. For example, to retrieve data only for the state
where a hurricane made landfall and adjacent states that were affected only
by those hurricanes:

Add a statement to create a new data object containing a subset of
the original data, then run the code
frame.tx <- frame[ grep( “TX” , frame$AffectedStates ) , ]

MultiplePlots.R (continued)
Next, create a new ggplot object from the subset, to illustrate
different insights, then run the code
texas_plot <- ggplot( data=frame.tx,

aes( x=Year, y=DamageMillions,
size=Deaths, color=AffectedStates ) )

Append labels, a geometry, a facet grid, and a theme to the ggplot
object, then run the code to see the plot
texas_plot +
label_object +
geom_point( aes( size=Deaths ) ) +
facet_grid( AffectedStates~. )+
theme_object



Click the “brush” icon on the Plots tab then rerun if RStudio fails to
display all plot components.

Looking at the facets indicates that only two adjacent states were
affected by hurricanes that make landfall in the state of Texas.
Where a facet grid produces too many facets to be useful, it is often better
to produce a histogram chart for comparison of specific data. For example,
to retrieve data only for the state where a hurricane made landfall and
adjacent states that were affected only by those hurricanes – similar to the
example opposite:

Add a statement to create a new data object containing a subset of
the original data, then run the code
frame.fl <- frame[ grep( “FL” , frame$AffectedStates ) , ]

MultiplePlots.R (continued)
Next, create a new ggplot object from the subset, to illustrate
different insights, then run the code
florida_plot <- ggplot( data=frame.fl, aes( x=Year ) )
Append labels, a geometry, and a theme to the ggplot object
florida_plot +
label_object +
ylab( “Number of Strikes in Florida” ) +
geom_histogram( aes( fill=AffectedStates ), color=”Black”, bins=20 ) +
theme_object



Run the code to see the various facets of the data mapped to colors
on the plot

Looking at the stacked columns indicates that many adjacent states
were affected by hurricanes that made landfall in the state of Florida.



Exporting graphics
Having created a collection of data visualizations in RStudio, you can
export them as graphic images to present your analysis. RStudio supports
the export of BMP, JPEG, PNG and TIFF bitmap file formats, plus EPS,
EMF, SVG, and PDF formats:

Run the code to create a data visualization on the Plots tab – for
example, the histogram in the previous example

MultiplePlots.R (continued)
On the Plot’s tab menu bar, click Export, Save as Image – to
launch the “Save Plot as Image” dialog

Click the Save button to create an image at the selected location,
and see the image open in the application associated with the chosen
format on your system



You can edit the values in the Width and Height boxes, then click the
Update Preview button to see how it will look before proceeding to
create the image.

The PDF format does not appear in the drop-down list on the “Save
Plot as Image” dialog. Choose Export, Save as PDF... on the Plot
tab instead.



Deciding on an image file format in which to save your data visualizations
largely depends on how you want to use them. Simple comparisons are
listed in the table below, together with the file size of saving the image
illustrated above in each file type:

Format: Description: File
Size:

BMP Non-resizable, Windows standard and supported almost
everywhere.

275KB

JPEG Non-resizable, good for use on web pages for older web
browsers.

123KB

PNG Non-resizable, good for use on web pages for modern web
browsers.

10KB

TIFF Non-resizable, uncompressed RGB best choice for color
separation for print.

817KB

EPS Resizable, best choice for color separation for print. 7KB

EMF Resizable, best choice for use with Microsoft Office
applications.

243KB

SVG Resizable, best choice for use on web pages for modern web
browsers.

208KB

PDF Resizable, best choice for distribution such as email
attachments.

7KB

The small file size of the PNG file format shown here demonstrates
why this is generally preferred for fixed-size images.



Presenting analyses
The most effective way to communicate and distribute the results of your
analyses is to create a slide show presentation to convey insights into the
data on each slide.

Microsoft PowerPoint remains the most widely-used presentation
application so is best for distribution of your analyses. Each slide may
contain a single data visualization, with any insights it reveals annotated on
that slide. The plots should first be exported from RStudio as graphics in
the EMF metafile format, for best compatibility with the PowerPoint app:

Run the code in RStudio to create the first data visualization
analysis, then click Export, Save as Image and choose the
Metafile option

MultiplePlots.R (continued)

Save the image in a unique folder, then repeat for each plot

Launch the PowerPoint app and start a new presentation with your
preferred theme, such as “Ion Boardroom”



Complete the title page with your presentation’s title, then click
New Slide, Blank on PowerPoint’s “Home” tab
Select the Insert tab, then click the Pictures icon and choose the
first image in your unique folder

Metafile EMF images imported into PowerPoint can be converted to
Microsoft Office drawing objects for direct editing.

Next, resize the image to your preference, then drag it to your
preferred position

To annotate the slide with insights, select the Text Box icon on the
Insert tab, then click the slide and type text
Repeat the process for each plot, then select From Beginning on the
Slide Show tab to run the presentation
Adjust as required then save the file – you can now freely distribute
this as your PowerPoint analyses presentation





Summary
• Objects created in RStudio are retained in the Environment so they can

be reused to create multiple data visualizations.
• A ggplot object must be assigned to a variable name in order to retain

the ggplot object within the Environment.
• A retained ggplot object can be reused to add more layers to one data

visualization, or multiple data visualizations.
• Default axis labels can be overridden by the xlab( ) and ylab( ) functions,

and a title can be added by the ggtitle( ) function.
• A reusable label object can be created using the labs( ) function to

specify a title, a subtitle, axis labels, and a caption.
• A reusable theme object can be created using the theme( ) function to

specify label appearance and legend position.
• The “extrafont” package can be installed to extend the number of fonts

available in RStudio.
• Closing RStudio without saving the Workspace will require objects to be

recreated before more plots can be created.
• Additional visualizations may require labels to be updated by appending

calls to xlab( ) and ylab( ) after the label object.
• Plot points can be labeled by mapping each point’s label to a data field

in the ggplot object in a call to geom_text( ).
• Selective points can be labeled by including a conditional ifelse test in

the label= assignment within geom_text( ).
• Factors must be converted to strings by the as.character( ) function before

they can be applied as label text.
• The grep( ) function can be used to retrieve only specific data that is of

interest for comparison.
• RStudio supports the export of BMP, JPEG, PNG and TIFF bitmap file

formats, plus EPS, EMF, SVG, and PDF formats.
• PowerPoint is the most widely-used presentation application.
• Plots should be exported from RStudio in the EMF metafile format for

best compatibility with the PowerPoint app.
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