Mike McGrath

covers R Programming essentials

|
*N1steps

PLAIN ENGLISH
EASY TO FOLLOW

FULLY ILLUSTRATED

Data Analysis

In easy steps is an imprint of In Easy Steps Limited
16 Hamilton Terrace - Holly Walk - Leamington Spa
Warwickshire - CV32 4LY

www.ineasysteps.com

Copyright © 2018 by In Easy Steps Limited. All rights reserved. No
part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, without
prior written permission from the publisher.

Notice of Liability

Every effort has been made to ensure that this book contains
accurate and current information. However, In Easy Steps Limited
and the author shall not be liable for any loss or damage suffered by
readers as a result of any information contained herein.

Trademarks
All trademarks are acknowledged as belonging to their respective
companies.

http://www.ineasysteps.com/

1 Getting started
Understanding data
Installing R
Installing RStudio
Exploring RStudio
Setting preferences
Creating an R Script
Summary

2 Storing values
Storing a single value
Adding comments
Recognizing data types
Storing multiple values
Storing mixed data types
Plotting stored values
Controlling objects
Getting help
Summary

3 Performing operations
Doing arithmetic
Making comparisons
Assessing logic
Operating on elements
Comparing elements
Recognizing precedence
Manipulating elements
Summary

4 Testing conditions
Seeking truth
Branching alternatives
Chaining branches
Switching branches
Looping while true
Performing for loops
Breaking from loops

Summary

5 Employing functions
Doing mathematics
Manipulating strings
Producing sequences
Generating random numbers
Distributing patterns
Extracting statistics
Creating functions
Providing defaults
Summary

6 Building matrices
Building a matrix
Transposing data
Binding vectors
Naming rows and columns
Plotting matrices
Adding labels
Extracting matrix subsets
Maintaining dimensions
Summary

7 Constructing data frames
Constructing a data frame
Importing data sets
Examining data frames
Addressing frame data
Extracting frame subsets
Changing frame columns
Filtering data frames
Merging data frames
Adjusting factors
Summary

8 Producing quick plots
Installing packages
Scattering points
Smoothing lines
Portraying stature

Depicting groups
Adding labels
Drawing columns
Understanding histograms
Producing histograms
Understanding box plots
Producing box plots
Summary

9 Storytelling with data
Presenting data
Considering aesthetics
Using geometries
Showing statistics
lllustrating facets
Controlling coordinates
Designing themes
Summary

10 Plotting perfection
Loading the data
Retaining objects
Overriding labels
Adding a theme
Restoring the Workspace
Comparing boxes
|dentifying extremes
Limiting focus
Zooming focus
Displaying facets
Exporting graphics
Presenting analyses
Summary

Preface

The creation of this book has been for me, Mike McGrath, an exciting
personal journey in discovering how the R programming language can be
used today for data analysis and the production of beautiful data
visualizations. Example code listed in this book describes how to produce R
Scripts in easy steps — and the screenshots illustrate the actual results. |
sincerely hope you enjoy discovering the exciting possibilities of R
programming and have as much fun with it as I did in writing this book.

In order to clarify the code listed in the steps given in each example I have
adopted certain colorization conventions. Components and keywords of the
R programming language are colored blue, programmer-specified names
are colored red, literal numeric values and literal character string values are

colored black, and comments are colored green, like this:

Write the traditional greeting.
greeting = “Hello World!”
print(greeting)

Additionally, non-literal values are colored gray like this: color="Red”
In order to readily identify each source code file described in the steps a file
icon and file name appears in the margin alongside the steps:

L

9
Script.R
For convenience I have placed source code files from the examples featured
in this book into a single ZIP archive. You can obtain the complete archive
by following these easy steps:

Browse to www.ineasysteps.com then navigate to Free Resources

and choose the Downloads section
Find R for Data Analysis in easy steps in the list, then click on the

hyperlink entitled All Code Examples to download the archive
Next, extract the “MyRScripts” folder to a convenient location on

your system
Now, follow the steps to call upon the R program interpreter and see

the output

http://www.ineasysteps.com/

1
Getting started

Welcome to the exciting world of R programming. This chapter describes
how to set up an R environment and demonstrates how to create a first R

program.

Understanding data
Installing R
Installing RStudio
Exploring RStudio
Setting preferences
Creating an R Script
Summary

Understanding data

The term “data” refers to items of information that describe a (qualitative)
status or a (quantitative) measure of magnitude. Various types of data is
collected from a huge range of sources and reported for analysis to reveal
pattern and trend insights:

Geographical

b

Transport

Cultural

Scientific

Natural

Meteorological Financial

Statistical

) 4

po’

g
This illustration depicts only some of the many data types that can
be reported for analysis.
Data is increasingly being collected by devices that are able to report
measurements for analysis via the internet (“The Cloud”). For example,
devices that have temperature and humidity sensors can report
measurements for instant analysis of climate conditions. The recent rapid
decline in the cost of device sensors has given rise to the “Internet of
Things” (IoT) that can easily and cheaply report vast amounts of data — this

is often referred to as “big data”. Big data consists of extremely large data
sets that can best be analyzed by computer to reveal pattern and trend
insights.

N

ot op

Around 13 billion devices are connected to the internet today. This is

predicted to grow to 50 billion by 2020.

Data analysis (a.k.a. “data analytics”) is the practice of converting collected

data into information that is useful for decision-making. The collected

“raw” data will, however, typically undergo two initial procedures before it

can be explored for insights:

- Data processing — the raw data must be organized into a structured
format. For example, it may be arranged into rows and columns in a
table format for use in a spreadsheet.

« Data cleaning — the organized data must be stripped of incomplete,
duplicated, and erroneous items. For, example, by the removal of
duplicated rows in a spreadsheet.

N

wot op

“Data Science” is the study of how data can be turned into a valuable
resource.

After the data has been processed and cleaned it can be explored to discover
its main characteristics. This may require further data cleaning to refine the
data to specific areas of interest, or may require additional data to better
understand its messages. Descriptive statistics, such as average values,
might be calculated to understand the data. Algorithms might be used to
identify associations within the data. Data visualization might also be used
to produce a graphical representation of the data for examination.

After the data has been analyzed, the results can be communicated using
data visualization to present tables, plots, or charts that clearly and
efficiently convey the key messages within the data. Tables provide
information in which the user can look up a specific number, whereas plots

and charts provide information in a way that encourages the eye to make
comparisons.

“R” 1s an interpreted programming language and software environment that
is widely used for data analysis and visualization. The “RStudio” Integrated
Development Environment (IDE) is often used with R, as RStudio provides
a code editor, debugging features, and visualization tools that make R easier
to use. The popularity of R has grown rapidly in recent years as the increase
in big data has made data analysis more important than ever.

The R programming software and RStudio IDE are both available for
Windows, Linux, and macOS operating systems, and both are used
throughout this book to demonstrate R for data analysis.

N

ot B°

| —

“Data Mining” is the process of searching large data sets to identify
patterns.

LN

ot e

“Data Product” is digital information that can be purchased.

Installing R

The R programming language and software environment is freely available
open source software that you can install onto your computer from the
Comprehensive R Archive Network (CRAN):

o Open a web browser and visit cran.r-project.org

o

If you are having difficulty downloading R click the CRAN Mirrors
link at cran.r-project.org then choose a server near to your location.
o Select the link appropriate for your computer operating system. For

example, click Download R for Windows
Download and Install R

Precompiled binary distributions of the base system and contributed packages,
Windows and Mac users most likely want one of these versions of R:

* Download R for Linux
* Download R for (Mac) OS X
* Download R for Windows

R is part of many Linux distributions, you should check with vour Linux
package management system in addition to the link above.

o Next, select the link for the base R distribution

R for Windows
Subdirectories:

Binaries for base distribution This is what you want to

install E‘Eor the first time.

o Now, select the link to download the R installer
R-3.4.3 for Windows (32/64 bit)

base

Download R 3.4.3 for Windows (75 megabytes, 32/64 bit)

/[nstallation and other instructions
New features in this version

e

http://www.cran.r-project.org/
http://www.cran.r-project.org/

You can click the link for Installation and other instructions for
more help with installation.

When the download has completed, run the installer to open the R
Setup Wizard and click the Next button

Read the License information, then click the Next button to
continue

Accept the suggested installation location, then click the Next
button to continue

Choose to install Core Files and 32-bit Files for a 32-bit machine,

© O o

or choose to install Core Files and 64-bit Files for a 64-bit
machine, then click the Next button to continue

ws 343

Select Components
Which corponants shoud be instaled? :R

Select the components you want to install; dear the components you do not want o
instal. Clide Next when you are ready o continue.

N

ot e

You can install Message translations for error messages, warning
messages, and menu labels in languages other than English.
Choose No (accept defaults) to not customize startup options, then
click the Next button to continue

Enter a name for a Start Menu folder (such as “R”), then click the

Next button to continue
Choose additional tasks (such as Create a desktop icon), then click

the Next button to begin the installation
When installation has completed, launch the R environment from

©O6e 60

the Start Menu folder you named

R version 3.4.3 (2017-11-30) —- "Hite-Eating Tree"
Copyzight (C) 2017 The B Foundation for Statistical Computing

PlacTorm: XBE_64-WE4-MINgW3Z/X64 (€4-D1T)

R iz free software and comes with ABSOLUTELY NO WARRANTY . —
You ere welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collsborative project with many contributors.
Type ‘contributors()' for more information and
‘citztion()' on how to cite R oI R packagss in publicatioesT

Type 'demo()' for some demos, 'help()' fer~8a-line h=lp, or
*help.scarc()' for an HIML brogser~Tnterface to help.

Type 'q()' to guit R,
>4 8

[1] 3z
>

Aot B9
| —

You can type expressions in the R Console to see their result — but
the RStudio IDE is a much more effective programming environment.

N

\tﬁtﬂ?
| —

You can find the System Type on Windows by pressing WinKey + R
then entering msinfo32.

Installing RStudio

The RStudio IDE has a freely available open source edition that you can
install onto your computer from the RStudio website:

o Open a web browser and visit the RStudio downloads page at

rstudio.com/products/rstudio/download

Studio‘

The RStudio software is available in Desktop and Server versions
with Open Source Licenses and Commercial Licenses for each
version — be sure to download the Desktop version with the Open
Source License to try the examples in this book for free.

o Scroll down the page and select the Installer download link

appropriate for your computer operating system. For example, click
the edition for Windows Vista/7/8/10

Studio rstudio:conf Products
RStudio Desktop 1.1.383 — Release Notes
RStudio requires R 3.0.1+. If you don't already have R, download it here.

Installers for Supported Platforms

&5 ME

o When the download has completed, run the installer to open the
RStudio Setup Wizard — then click Next

http://www.rstudio.com/products/rstudio/download

Choose Install Location
Choose the folder in which to install RStudio.

Setup will install RStudio in the following folder. To install in a different folder, dick Browse
and select another folder. Click Next to continue.

Destination Folder

C:\Program Files\RStudio | Browse... |

Space reguired: 489.2MB
Space avallable: 104.4G8

@

gewa™®

| —

You must have R installed before you install RStudio. See pages 10-
11 for the R software installation procedure.

o Accept the suggested installation location and click the Next button
to continue

o Accept the suggested Start Menu folder name “RStudio” and click
the Imstall button to continue

Choose Start Menu Folder
Choose a Start Menu folder for the RStudio shortouts.

Select the Start Menu folder in which you would like to create the program's shortcuts. You
can also enter a name to aeate a new folder.

Studiol |
Abyss Web Server ~
Accessibility

Accessories

Administrative Tools

Android Studio

Go Programming Language

Java

Java Development Kit

Maintenance

Microsoft Office 2016 Tools

Python 3.6 bt

Do not create shortcuts
Nullsoft Tnstall System v2.50

=

The items listed in this dialog box are the names of your existing

Start Menu folders and will vary according to what you have installed
on your computer.

When the installation has completed, click the Finish button to close
the Setup Wizard

o Launch the RStudio IDE from the Start Menu folder created by the
Setup Wizard

File Edit Code View Plots Session Suld Debug Profle Tools Help
[- =

* Addins - £ Project Mong) -
Console Terminal 5 Environment History Comnecfions
= H | P mportDotaset - | o List -
% clobal Environmarnt -
R version 3.4.3 (2017-11-30) -- "Kite-cating Tree”

(npyr ght (€] 2017 the R F:Jundat on fur Statistical Computing
Form: x86_G4-wed-mingwi2/xE4 (EL-bit)

R 1s free software and comes with ABSOLUTELY MO WARRANTY.
vou are vreTcome to red1str1bute it under certain conditions.
Type “license()” or “licence()"™ for distribution details.

eollabor many contributors.
Tyne .:on:rm \'.0 s() for' more 1n§nmar.1on and
tation()' on how ite R or R packages in publications.

Files Plots Padeges Help Viewer
=5 Bport -

Type “dema(}’ for so e dems he'\p() fnr on-Tine hel
‘help.start()" fur an bro

Type 'g()’ to qui
>4 "B
1 32
>

“pgﬁ?

You can type expressions in the RStudio Console to see their result,

just as you can in the R Console — but the RStudio IDE can do so
much more.

Exploring RStudio

The RStudio interface consists of a menu bar and toolbar positioned at the
top of the window, and four main panes whose position can be adjusted to
suit your preference. When you launch RStudio only three panes may be
visible until you select File, New File, RScript on the menu bar to open the
“Code Editor” pane. The default layout positions the four panes as shown

below:
Code Editor Menu Bar Toolbar Workspace

Eile Edit Code View Plots Session Build ebug Profile Tools Help

o - X > - ~ Addins - ¥ Project: (None) -
@ | untitled1 =] Environment History Connections =
Source on Save P “ Run A 4 Source ~ e '] #* Import Dataset ~ s List «
1] 7k Global Environment -
121 Mop Level) = R Script =
Console Terminal P | Files Plots Packages Help Viewer — |
% Export -

Copyright (C) 2017 The R Foundation for Statistical Computing A

Platform: xB86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "Ticense()' or 'licence()" for distribution details.
R is a collaborativéproject with many contributors.
Type ‘contributors() "“or more information and
‘citation()" on how to &jte R or R packages in publications.
Type ‘demo()"' for some demdg, "help()’ for on-line help, or
‘help.start()" for an HTML browser interface to help.
v

Type 'q()" to quit R.

Console Drag Handle Notebook Maximize/Minimize

When the mouse pointer is placed on the border between any two panes, the
pointer changes to a four-pointed “Drag Handle”. This allows you to drag
the vertical border to adjust the width of the left and right panes, and to drag
the horizontal border to adjust the height of the top and bottom panes. The
size of each pane can also be adjusted by clicking the Maximize and
Minimize buttons.

Each RStudio pane can contain multiple tabs, and it is useful to initially
explore each RStudio pane to understand its purpose:

Code Editor pane

The Code Editor is where you type or edit R Script code, and you see it
automatically colored to highlight syntax — click this pane’s Run button to

>

see the script output appear in the Console pane.

Console pane

* Console tab — This is where you can directly enter commands for
immediate execution by the R interpreter.

» Terminal tab — This is where you can directly enter commands for
execution by the operating system shell.

Workspace pane

* Environment tab — This is where you will see available objects such as
variables and datasets.

« History tab — This is a list of your past commands executed by the R
interpreter in the Console pane.

* Connections tab — This tab enables you to connect to databases to
explore the objects and data inside the connection.

Notebook pane

 Files tab — This is a file browser, which by default lists all the files in
your working directory.

* Plots tab — This exciting tab is where your plots, graphs, and charts will
appear as output from an R Script.

« Packages tab — This tab lists available packages that you can install to
extend RStudio’s functionality.

* Help tab — This is where you can seek assistance on the R language and
RStudio IDE.

* Viewer tab — This is where you can see local HTML content that has
been written to the session temporary directory.

N

ot e

R Script code can be saved as a file for later use, and multiple R
Script files can be open on separate tabs in the Code Editor pane.

N

ot e

You can click on a data set listed in the Environment tab to open a
spreadsheet of that data in the Code Editor pane.

You can click on an R Script file in the Files tab to open that file in
the Code Editor pane.

Setting preferences
RStudio is highly customizable and it is worth setting up its features to
better enjoy your R programming environment:

Create a new directory on your computer in which to save the R

Scripts you will write. For example, on Windows you might create a
directory of C:\MyRScripts
Launch RStudio then select Tools, Global Options on the menu bar

— to open the “Options” dialog

Inztall Packages...

Check for Package Updates...

Version Control »
Shell...

Terminal 3
Addins »

Keyboard Shortcuts Help Al Shift=K
Medify Keyboard Shorteuts...

Project Dptions.

Global Options.. %

Select General in the left panel of the “Options™ dialog, then enter

the path to the directory you created into the Default working
directory box

Options

Ge |
N | [Defaul] [64-bit] CAPrpgram Files\RIR-342

. Default workinggfifectory (when not in a project):

™ Appearance

+ Re-use idle sessions for project links
rec

PaneLayout | 7t

Packages

eat startup
@ RMsridown | Save workspaceto RData on it Ak~

=

@ sweave + Always save history (even when not saving .RData)
Remove duplicate entries in history
¥ Spelling
Show Last.value in environment listing
‘ Git/SVN ¥ Use debug en it ors

Automatically exp
“% Publishing
Wrap around when navigating to previous/next tab

W Temine! 7 Automatically notify me of updates to RStudio

oK Canc

Apply

Options

General

Code

7 Appearance

Pane Layout

| Packages

@ ~Markdown

@ sweave
¥ Spelling
W s

“Sy Publishing

W Eminal

RStudio theme:

Clouds

- plot <- function (x, y, ...)
f
{

f (is.function(x) &&
is.nu
f

f (missing(y))
y <

hasylab <- function(...)
lall(is.

f (hasylab(...))
-function(x, vy, ..

oK Cancel Apply

o Next, select Appearance in the left panel, then click items in the

Editor theme box to preview possible color themes
o Use the Editor font and Editor font size drop-down menus to

choose your font preferences

ll "
poract

Your home directory is set as the default working directory until you

specify an alternative.

ot e

Themes with dark backgrounds, such as the “Cobalt” theme shown
here, are often considered to be more restful on your eyes than
those with white backgrounds.

Click the Apply button to change the RStudio settings

Click the OK button to close the “Options” dialog and see your

preferences have been applied — the working directory path appears

on the Console title bar

You next need to select a pane to work with in RStudio — click on
the Console pane to select it

Click the ¥ brush button on the Console pane’s title bar, or press
Ctrl + L keys, to clear existing Console content

Now, type version at the Console prompt, then hit Enter to run the

command — see the R interpreter output version details in the
Console window

[« s/

® 00

aot 6P
You can click the Il arrow button on the Console pane title bar to
reveal the working directory’s files in the Files pane.

ge\"a"e

| —

Commands typed at the Console prompt must be entered again to
run the command once more — whereas commands typed in the
Code Editor can be run repeatedly.

Dark background themes are great for on-screen viewing but all ensuing
screenshots throughout this book use a white background theme (TextMate)
for better on-page clarity.

Creating an R Script

Unless you simply want to test a snippet of code directly at a Console
prompt, you should always create an R Script using the Code Editor — so
that your code can be run whenever required:

o Launch RStudio, then click File, New File, R Script on the menu

bar to open the Code Editor pane

L

Hello.R

Click on the Code Editor pane to select it and see a blinking cursor

appear — here, type the command print()
Type a *“ double-quote character between the command’s

parentheses and see RStudio automatically add a second character
after the cursor — so you cannot forget the final double-quote that is

required to enclose a text string

Eile [Edit Code Yiew Plots Jession PBuild Debug Profile JTools Help
o - it - Addins -

@] Untitled1* M

Source on Save AL S = Run e, Source
1 print(])

1:8 (Top Level) = R Seript =

Next, type the traditional program greeting Hello World! text string

between the double-quotes
IMPORTANT: Ensure that the cursor is now positioned on the same

line as your code

Bile Edit Code View Plots Session Build Debug Profile~Tools Help
LERE + . ~ Addins ~

@] Untitled1* M,

Source on Save Q, - =+ Run =) Source
1 print("Hello world!™)

1:23 {Top Level) = R Script =

1

| —

The command here is calling the built-in R print() function. The R
language is case-sensitive, so typing the command as Print() or
PRINT() will simply produce an error.

ﬁ‘gl"‘

The R interpreter will only run code on the line containing the cursor
or multiple lines that you have selected (highlighted) by dragging the
cursor over them.

o Click the -+ Run button in the Code Editor, or press the Ctrl +

Enter keys, to run the code — see the R interpreter repeat the code
and display its output in the Console pane

Console C:/MyRScipts/ = [
> print("Hello world!™)

[1] "Hello world!"

> |

Click the 1y Save button in the Code Editor, or press the Ctrl + S

keys, to open the “Save File” dialog
o Save the R Script as a file named “Hello.R” in the current working

directory

[> ThisPC » OS(C) > MyRScripts v © | Search MyRScripts »

Organize * New folder =~ @
MyDatabases
MyGo
Mylava
MyKeystare
MyPrograms
MyRScripts
MyScripts
MyWebsites
OneDriveTemp
Perflogs

Program Files

File name: | Hello.R v‘

Save as fype: sl

~ Hide Folders

Edit the command in the Code Editor by adding a second argument

©

between the parentheses to become
print(“Hello World!”, quote=FALSE)

@ Run the code again — see the R interpreter repeat the code and
display its output with quotes now suppressed

Console C:/MyRScripts =

> print("Hello world!",quote=FALSE)
“ng‘ﬁ?
| —

[1] Hello world!
> |

The bracketed number [1] that appears before the output indicates

that the line begins with the first value of the result. Some results

may have multiple values that fill several lines, so this indicator is

occasionally useful but can generally be ignored.

N

“ﬁgﬂ'ﬂ
| —

Click the = ™ Open button in the Code Editor, or press the Ctrl + O
keys to open the “Open File” dialog then choose a saved R Script file
to reopen in the Code Editor. Click the arrow button beside the Open
button to see a list of recently opened files that you can select to
quickly reopen.

Summary

Data is items of information that describe a qualitative status or a
quantitative measure of magnitude.

Devices that are connected to the internet are able to report sensor
measurements for analysis in The Cloud.

The decline in the cost of device sensors has given rise to the Internet of
Things that can report on vast amounts of data.

Big data consists of large data sets that can best be analyzed by
computer to reveal pattern and trend insights.

Data analysis is the practice of converting collected raw data into
information that is useful for decision-making.

Before analysis, raw data must be organized into a structured format and
cleaned to remove incomplete, duplicated, and erroneous items.

After data has been analyzed, the results can be communicated using
data visualization to present tables, plots, or charts that efficiently
convey the messages within the data.

R is an interpreted programming language and software environment for
data analysis and data visualization.

RStudio is an Integrated Development Environment for R that provides
a code editor, debugger, and visualization tools.

The RStudio interface consists of a menu bar and toolbar, plus Code
Editor, Console, Workspace, and Notebook panes.

R Script code typed into the Code Editor can be run to see its output
appear in the Console.

Code snippets can be typed at the Console prompt for immediate
execution by the R interpreter.

RStudio’s Global Options let you choose colorization themes, font
settings, and default working directory.

R Script in the Code Editor can be saved as a file with a .R file
extension so the code can be re-run whenever required.

2
Storing values

This chapter demonstrates how to store data values in R Script programs

and how to output stored data values in a simple plotted graph.

Storing a single value
Adding comments
Recognizing data types
Storing multiple values
Storing mixed data types
Plotting stored values
Controlling objects
Getting help

Summary

Storing a single value

In R programming a “variable” is simply a useful container in which a
value may be stored for subsequent use by the program. The stored value
may be changed (vary) as the R Script program executes its instructions —
hence the term “variable”.

A variable is created in R Script by writing a unique identifier name of your
choice in the Code Editor, then assigning an initial value to be stored within
the variable. The stored value can subsequently be retrieved using the given
variable name.

The value can be assigned to a variable in R programming using the <-
assignment operator. For example, to assign a number to a variable named

“dozen”, like this:
dozen <-12

Variable names are chosen by the programmer but must adhere to certain
naming conventions. The variable name may only begin with a letter, or a
period followed by a letter, and may subsequently contain only letters,
digits, periods, or underscore characters. Names are case-sensitive, so “var”
and “Var” are distinctly different names, and spaces are not allowed in
names.

Variable names should also avoid the reserved words, listed in the table
below, as these have special meaning in the R language.

if else repeat while
function for in next

break TRUE FALSE NULL

Inf NaN NA NA_integer
NA_real NA_complex NA_character return

It is good practice to name variables with words that readily describe that
variable’s purpose. For example, revenue and expenses to describe income
and costs. Lowercase letters are preferred by many R programmers, and
variable names that consist of multiple words can separate each word with a
period character. For example, a variable named net.profit to describe profit
after costs deducted from income.

gewd’™®

Values can also be assigned using the = assignment operator, but
this is best used only to assign default values to function parameters
— see here.

N

wot ue

Enter the ?reserved command in the Console at any time to see the
list of reserved words appear on the Help tab in the Notebook pane.
o Open RStudio then click File, New File, R Script, or press Ctrl +

Shift + N, to open a new Code Editor pane

FirstVariable.R
In the Code Editor, type name as the variable name

Type <- or press Alt + - to add the assignment operator
Next, press the “ key to add two double quotes, then type Username
between the quotes

e Ensure that the cursor is positioned on the same line as your code,

then click Run, or press Ctrl + Enter — see the variable and its

value now appear on the Environment tab
"} Global Environment =
values

name "Username"

Back in the Code Editor, move to the next line and write

name <_ 1113
o Insert your own name between the quotes, then click Run to assign

a new value to the variable — see the value change instantly on the
Environment tab

"} Global Environment «
values

name "Mike McGrath"
o Move to the next line and write print(name), then click Run to
output the variable value in the Console

@] FirstVariable.R

=
] Source on Save @{ S = Run e d < Source = =
1 name <- "Username"
2 name <- "Mike McGrath"

3 print(name)|

Console C:/MyRScripts/

> print(name)
[1] "Mike McGrath"
>

N

“Dgﬂl‘
| —

=

The Alt + - keyboard shortcut adds the <- assignment operator and a
space at each side.

Y.

goroet

| —

You can click the Save button to save the R Script for later use.

Adding comments

When programming, in any language, it is good practice to add comments
to program code to explain each particular section. This makes the code
more easily understood by others, and by yourself when revisiting a piece
of code after a period of absence.

In R Script programming, comments can be added by beginning a line with
the # hash character. All subsequent characters on that line will be
completely ignored by the R interpreter. Unlike other programming
languages there is no support for multi-line comments between /* and */ .
RStudio does, however, provide a handy Ctrl + Shift + C keyboard
shortcut that enables you to easily insert a # hash character on multiple lines
in a single action.

LN

ot 6P

The R interpreter also ignores tabs and spaces (whitespace) in R
Script code, so you can safely space your code to your preferred
coding style.

If your R Script will be shared with others, it is a great idea to document the
code by including a header comment. This should include such details as:
* The name of the script

* The date the script was created

* The author of the script

* The purpose of the script

* The history of revisions made to the script

The header might also include any special instruction as to how the script
should be executed. For example, an R Script that requests user input will
need to wait until the user has entered the input before proceeding. In
RStudio, this requires the entire script be sent to the Console rather than
running it as usual. This technique is called “sourcing the script” and a
notice to this effect could be included in the script header as a special
instruction:

-

=)

Comment.R

6

In the RStudio Code Editor, begin an R Script by typing lines of

header information

Script name: Comment.R

Created on: March 1, 2019

Author: Mike McGrath

Purpose: Echo user input

Version: 1.0

Execution: Must be run as Source to await user input.

Drag the cursor across the entire header to select it, then press Ctrl

+ Shift + C to comment-out all selected lines
Next, add a comment and instruction to request user input

Request user input.
name <-readline(“Please enter your name: “)

Now, add a comment and instruction to paste the user input into a

string

Concatenate input and strings.

greeting <- paste(“Welcome”, name, “!”")

Finally, add a comment and instruction to print out the entire string

Output concatenated string.
print(greeting)

@ | Comment.R =1m
Source on Save Q - = Run %= | | Source ~
1 # Script name: Comment.R
2 # Created on: March 1, 2019
3 # Author: Mike McGrath
4 # Purpose: Echo user input
5 # Version: 1.0
6 # Execution: Must be run as Source to await user 1input.
7
8 # Request user input.
9 npame <- readline("Please enter your name: ")
10
11 # Concatenate input and strings.
12 greeting <- paste("welcome"”, name,"!™)
13

14 # Output concatenated string.
15 print(greeting)

Following the header instruction, click the Source button in the

Code Editor, or press Ctrl + Shift + S, to execute the script, then
enter input when requested

Console C:/MyRScripts/

> source('C:/MyRScripts/Comment.R")
Please enter your name: Mike

[1] "welcome Mike !"

> |

=0

"} Global Environment =

vValues
greeting "Welcome Mike !"
name "Mike"

The built-in readline() function accepts a string argument within its
parentheses to output as a prompt, then it awaits user input for

assignment to a variable.

The built-in paste() function accepts a comma-separated list of
strings within its parentheses to join (concatenate) into a single string

for assignment to a variable.

You can see the variables and their current values on the

Environment tab in the Workspace pane.

Recognizing data types

Variables in R can contain data of various types. The most frequently used
data types of variables in R programming are listed in the table below,
together with a brief description:

ovaoe— Jowerpter | oamie
Character A text character or string :E”string”

Double A decimal number 3.14

Integer A whole number 5

Boolean A logical value TRUE

N

ot e

These four data types are sometimes referred to as the “atomic” or
“primitive” data types as they represent the lowest level of data
detail.

Unlike many other programming languages, which require the programmer
to explicitly specify the data type when creating a variable, R automatically
determines the variable data type according to the value it contains. The
data type of a variable can be revealed by specifying its name as the
argument to the built-in typeof() function.

It is important to recognize that numeric variables are, by default, always
created as a double data type unless an assigned integer value is suffixed by
a letter L. For example, number = 5L creates an integer data type, but number =
5 creates a double data type. More memory is allocated for the double data
type, so integer values can be stored more efficiently if they are explicitly
assigned to the integer data type.

R provides several built-in functions to test the data type of a variable. The
name of a variable can be specified as the argument to the is.character()
function, which will return a Boolean value of TRUE or FALSE according to
the data type of the variable. There are also is.double(), is.integer(), and
is.logical() functions that can be used in a similar manner to test the data
type of a variable.

Boolean values can be assigned to a variable using either the keywords
TRUE and FALSE, or simply by using the letters T and F.

Y.

pore
Note that in R the Boolean values must appear in uppercase.
o Open the RStudio Code Editor and create a variable that contains a

text string value
title <- “R for Data Analysis”

N

O

ataType.R

Assign a string and data type to a second variable

result <- paste(“Type of title:“, typeof(title))

Output the combined string to see the variable’s data type

print(result)

Next, create a variable containing a double value and a variable
containing an integer value

pi <- 3.14159265
dozen <-12L

Output the data type of each variable in the previous step

print(paste(“Type of pi:“, typeof(pi)))

print(paste(“Type of dozen:“, typeof(dozen)))

Now, create a variable containing a logical value and output the
result of a data type test on this variable

flag<-T
print(paste(“Is flag logical:“, is.logical(flag)))

Click the Source button in the Code Editor, or press Ctrl +
Shift + S, to execute the script

© 00 000

Console C./MyRScripts

> source('C: /MyRScripts/DataType.R")
[1] "Type of title: character”

[1] "Type of pi: double"

[1] "Type of dozen: integer"

[1] "1s flag logical: TRUE"

>

Environment History Connections - |

“# | | "7 Import Dataset - & = List ~
"k Global Environment ~ Q
values

dozen 12L

flag TRUE

pi 3.14159265

result "Type of title: character"

title "R for Data Analysis"

N

ot 6P
| —
Notice how this example includes function calls as arguments to

other functions. The innermost function calls are executed first,
passing their result to the outer function as their argument value.

1

The Environment tab lists the variables in alphabetical order, not in
the order in which they are created.

Storing multiple values

As the R programming language is designed to handle sets of data, a
variable is actually a “vector” that can contain multiple values. Each value
is contained within an “element” of the vector.

LN

wot op

——

A vector structure in R is similar to the “array” structure found in
other programming languages.

Multiple values are assigned to a variable using the built-in combine
function ¢() that accepts a comma-separated list of values to be assigned to
the vector elements. For example, to assign three values with month = ¢(
“Jan”, “Feb”, “Mar”).

Vectors in R are indexed starting at one, so the first value stored in a vector
1s contained in element one, the second value 1s contained in element two,
and so on. In code, the vector elements are addressed by placing the desired
index number in [] square brackets after the variable name. For example,
month[1] would retrieve the value contained in the first element of the
month variable — the character string value “Jan” in this case.

New values can be assigned to individual elements using the variable name
and index number. For example, to replace the value contained in the third
element with month[3] = “March”.

The length of a vector can be found by specifying the variable name as the
argument to the built-in length() function. For example, length(month) would
reveal a length of three elements.

Vectors are flexible so are able to automatically expand when a value is
assigned to an index number beyond the vector’s current length. For
example, the assignment month[4] = “Apr” would automatically expand the
vector, and length(month) would now reveal a length of four elements.

LN

wot op

| —

You can retrieve all values except a specified element by prefixing a
minus sign to an index number. For example, month[-3] retrieves

all values except that in the third element.

It i1s important to recognize that each vector can only contain values of the
same data type. If you assign a mixture of integers and doubles, all elements
will contain doubles (integers converted). If you assign a mixture of
numbers and characters, all elements will contain characters (numbers
converted). The built-in typeof() function can be used to establish the data
type of all elements.

R provides several other structures in which data can be stored in addition
to the vector variable, so it is sometimes useful to establish if a particular
object is a vector. The name of the object can be specified as the argument
to the is.vector() function, which will return a Boolean value of TRUE or
FALSE according to the whether the object is indeed a vector variable or not.

e
—

A vector cannot contain mixed data types — the numeric value 5 will
be converted to a character value “5” if mixed with character data
types in the same vector variable.

Open the RStudio Code Editor and create a variable that contains

multiple text string values
alphabet <- c(“Alpha”, “Bravo”, “Charlie”)

L
Multiple.R
o Output the entire content of all elements of the variable
print(alphabet)
e Output a string and the value contained in one element
print(paste(“2nd Element: “, alphabet[2]))
o Output a string and the number of elements in the vector
e print(paste(“Vector Length: “, length(alphabet)))

Assign another value to expand the vector, then output its entire

content and length once more
alphabet[5] <- “Echo”
print(alphabet)

print(paste(“Vector Length Now: “, length(alphabet)))
Output the result of a data type test on the variable

print(paste(“Is alphabet a Vector: “, is.vector(alphabet)))
Click the -+ Source button in the Code Editor, or press Ctrl +

Shift + S, to execute the script

Console C:/MyRScripts/ | .
> source('C:/MyRScripts/Multiple.R")
[1] "Alpha" "Bravo"™ "Charlie"

[1] "2nd Element: Bravo"

[1] "vector Length: 3"

[1] "Alpha" "Bravo" "Charlie" NA "Echo"
[1] "vector Length Now: 5"

[1] "1Is alphabet a Vector: TRUE"

>

") Global Environment ~

values
alphabet chr [1:5] "Alpha" "Bravo" "Charlie" NA "Echo"

N

‘ujt1ap
Notice here that the empty fourth element is represented by the NA
keyword to indicate the value is Not Available.

Storing mixed data types

As items of different data types cannot be stored in a single vector, R
provides a useful alternative “list” structure, whose elements can each
contain values of any data type.

LN

ot 6P

A list structure in R is similar to the “associative array” (dictionary)
structure found in other programming languages.

Lists are indexed starting at one, just like vectors, and values are assigned to
list elements by specifying them as a comma-separated list of arguments to
the built-in list() function. For example, you can create a list containing
values of each main data type, like this:

data <- list(12, 3.14, “Mike”, TRUE)

The list length and structure type can be revealed using the length() function
and typeof() function as with vectors, and there is an is.list() function to
establish whether an object is a list.

Like vectors, you can address each individual list element by specifying its
index number within [] square brackets. For example, data[3] to retrieve the
string in the list created above.

Unlike vectors, lists are not flexible, which means you cannot assign a
value to an index number beyond the list’s current length. You can,
however, use the ¢() function to combine an existing list with additional
values, or other list, to extend the list length.

Most importantly, you may optionally name each element in a list by
specifying key=value pairs as a comma-separated list of arguments to the
built-in list() function, like this:

data <- list(dozen=12, pi= 3.14, user="Mike”, flag=TRUE)

With a named element you can retrieve its value by specifying the list name
and element name separated by the $ dollar operator. For example, data$user
to retrieve the string in the list above.

R provides two built-in functions especially for lists that contain key=value
pairs. The names() function retrieves all the keys in the order they appear in
the list. The unlist() function returns a vector of all keys and values in order,
but the names can be explicitly ignored by including a use.names=FALSE
argument.

The sum() function can be used to total up the numeric values contained in a
vector, and the mean() function can be used to calculate an average of the
numeric values contained in a vector.

Y.

=
Named elements can also be addressed using their index number or
their element name within square brackets, such as data[3] and
data[“user”] — but remember that this will retrieve both the key and
value, not just the value.
o Open the RStudio Code Editor and create a list that contains

multiple key=value pairs
~sales <-list(Jan=1500, Feb=1300, Mar=2400)

N

FirstPlot.R
o Combine the list with an additional key=value pair list to extend the

length of the original list, then output all pairs
sales <- ¢(sales, list(Apr=1800))
print(unlist(sales))

Assign the list values only to a vector variable

monthly.sales <- unlist(sales, use.names=FALSE)
Next, assign the calculated total of the list values to a variable, then

output the total value
total.sales <- sum(monthly.sales)
print(paste(“Total Sales: ”, total.sales))

Now, assign the calculated average of the list values to a variable,
then output the average value

average.per.month <- mean(monthly.sales)
print(paste(“Monthly Average: ”, average.per.month))

Output the result of a data type test on the list

print(paste(“Is sales a List: “, is.list(sales)))
Click the Source button in the Code Editor, or press Ctrl +

Shift + S, to execute the script

Q0 O 00

Console C:/MyRScripts/ =]

> source('C:/MyRScripts/FirstList.R") '
Jan Feb Mar Apr

1500 1300 2400 1800

[1] "Total Sales: 7000"

[1] "Monthly Average: 1750"

[1] "Is sales a List: TRUE"

>

7% Global Environment =

List of 4 Q
values
average.per.month 1750
monthly.sales num [1:4] 1500 1300 2400 1800
total.sales 7000

RN

W

“. ﬂﬁlﬂP
| —

Click this button to expand the sales object and see its key=value
pairs. Click the button once more to collapse the sales object.

Plotting stored values

The power of R programming lies in its ability to easily provide graphic
depictions of the data stored within R Script structures. You can specify a
vector argument to the built-in plot() function to produce a scatter plot
depicting data magnitude versus index. More typically, you can specify two
vector arguments to the plot() function to be represented on the plot’s X and
Y axes, and a third argument type="0” can be included to overplot points and
lines:

o Open the RStudio Code Editor and create two vectors

x<-¢(1,3,5,7,9)
y<'C(8,0,4,6,2)

e Next, add an instruction to depict the vector values, then select all

three lines in the Code Editor
plot(x, y, type="0"
o Click the Source button, or press Ctrl + Shift + S to execute the

script — see a graph appear on the Plots tab
Files Plots Packages Help Viewer -

/& Zoom | - Export + | © ¥ “, Publish ~

The graph depicts annotations based upon the range of the vector values,
and the axes labels are simply the variable identifier names. But you can do
better than this by taking control of annotation, axes labels, title, point
character, and colors. Further arguments can be added to the plot() function
to specify the line color and point character, and built-in title() and axis()
functions can be used to specify a main title, annotation, and axes labels.

N

“ogﬂ'P
| —

Other possible values for the type argument include “p” points only,

“I” lines only, “b” both points and lines, “s” steps, “h” histogram-like
vertical lines.

@

gewa™

| —

A box is drawn around the graph by default, but if you turn off
annotations the box will not be drawn unless you call the built-in
box() function.

Open the RStudio Code Editor and create four lists

gtr.1 <- list(Jan=1500, Feb=1300, Mar=2400)

qtr.2 <- list(Apr=1800, May=1700, Jun=2800)

qtr.3 <- list(Jul=3100, Aug=3800, Sep=3200)
qtr.4 <- list(Oct=2600, Nov=2200, Dec=2400)

N
N
L\

CustomPlot.R

Combine the four lists above into a single vector

year <- unlist(¢(qtr.1, qtr.2, qtr.3, qtr.4))

Plot the vector specifying type, color, and point character, and turn
off automatic annotation and axes labels

plot(year, type="0", col="Blue”, pch=15, ann=FALSE, axes=FALSE)

Next, specify the range and annotation for the X axis, but allow R to
automatically annotate the Y axis

axis(1, at=1:12, lab=c(names(year)))
axis(2)

Now, add labels for each axis and a main graphic label, then draw a

box around the graph

title(xlab="Month”, ylab="$", main="Yearly Sales”, col.main="Red”)
box()

o Click the -+ Source button in the Code Editor, or press Ctrl +
Shift + S, to execute the script and see the graph

Files Plots Packages Help Viewer =
= A Zoom | -SExpot - | © | & /5, Publish ~

Yearly Sales

3500

2500
L

1500

I I T I I T I I I I T I
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

“ngﬂ'ﬂ

—

Experiment with the point character by specifying a numeric value in
the range 0-25 in the pch argument.

N

wﬂ?

Color values can be specified by name “Red”, or hexadecimal
“#FF0000”, or RGB components rgb(1,0,0).

Controlling objects
When you execute R code to store data in any structure, such as a variable
or list, a data structure object is created in the RStudio environment. These
objects appear listed on the Environment tab in the Workspace pane in one
of two possible views — List view or Grid view. Large data structures are
collapsed to save space in List view but you can expand them to reveal their
contents. In Grid view, large data structures can be examined by producing
an expanded list in the Code Editor pane.
You can call the built-in Is() function to list all objects within the current
environment in the Console. Individual objects can be removed from the
environment by specifying their name as a comma-separated argument to
the built-in rm() function, or all objects can be removed by specifying a
list=Is() argument:

Open the RStudio Code Editor and create a list and two variables

iso.codes <- list(“United Kingdom”="UK”, “United States of America”’="US”,
France="FR”, Germany="DE”)

iso.japan <- “JP”

iso.china <- “CN”

N

Environment.R
o Next, press Ctrl + A to select all the code, then press Ctrl + Enter

to run the code and create the objects
o Open the Environment tab in List view, then click the button to

expand the list object and see its key=value pairs

Envirpnment History Connections =C|

== [' [Import Dataset ~ | & = List ~
7k /Global Environment = Q
Data

iso.codes List of 4 Q
United Kingdom : chr "UK"

United States of America: chr "us"

France : chr "FR"

Germany : chr "DE"

'values
iso.china "CN"
iso.japan "ip"
o Now, click the arrow button on the tab’s menu bar and switch to
Grid view

@

geware
| —
If the Is() function is called from within a user-defined function it will

only list that function’s local variables.

N

\tﬁtﬂ?

| —
You must enclose list names within quotes to include space

characters.

) 4

foroet

| —
The R Script that created objects can be closed and another R Script

started to work with those objects as they are retained in the current
environment.

Environment History Connections

=
1 * Import Dataset ~ __*’ Grid ~
"} Global Environment ~
Name A Type Length Size Value
iso.china charact.. 1 96 B "CN"
is0.codes Tist 4 864 B List of 4
iso.japan charact.. 1 96 B

e Click the spyglass icon beside the list in Grid view to produce an
expanded list in the Code Editor pane

iso.codes =l
Show Attributes
Name Type Value
© iso.codes list [4] List of length 4
United Kingdom character [1] UK
United States of America character [1] 'us'
France character [1] 'FR'
Germany character [1] 'DE’

®

Return to the Code Editor and enter an instruction to list the current

environment objects
Is()
Add an instruction to remove both variable objects, then list the

current environment objects to confirm removal
rm(iso.japan, iso.china)

Is()
o Select the three instructions, then click the Run button, or press Ctrl

+ Enter, to execute the code
Console C:/MyRScripts/ =]

> 1s()

[1] "iso.china" "iso.codes" "iso.japan"
>

> rm(iso.japan,iso.china)

> Is0)
[1] "iso.codes"
> |

Environment History Connections

1]

= # Import Dataset ~ & List -
™} Global Environment «
Data

Jiso.codes List of 4

You can also click the brush icon on the tab’s menu bar to remove all
objects from the current environment.

You can use the Save button on the Environment tab’s menu bar to

save objects in an RData file, and the Open button to restore objects
to the environment.

Getting help

There are a number of ways to seek help in RStudio. The most obvious one
is to enter the name of the topic you want help on into the Search box on the
Help tab. This will search through the help files and present the results on
the Help tab.

Alternatively, you can supply the topic name as a string argument to the
built-in help() function. This will search the help files for a word or phrase
and present the results on the Help tab. Additionally, you can seek help
about any built-in function by entering its name preceded by a ? character
or ?? characters.

Typing the beginning of a built-in function name into the Code Editor
produces an auto-completion popup box, from which you can select an
option to complete the name of the function. This 1s accompanied by a brief
description of that function and an invitation to “Press F1 for additional
help”. Pressing the F1 key will then present relevant documentation on the
Help tab:

o Open the Help tab, then type “list” into the Search box and hit

Enter to see information on the list() function

N

|y
Help.R

Files Plots Packages Help Viewer =

D list

R: Lists - Generic and Dotted Pairs ~

list {base} R Documentation

Lists — Generic and Dotted Pairs

Description
Functions to construct, coerce and check for both kinds of ® lists
Usage

list{...)
pairlisc({...)

e Open the Code Editor and run the command help(“color”) to seek
help on how to specity colors

Console C:/MyRScripts/ -]
> help("color™)
No documentation for ‘color’ in specified

packages and libraries:
you could try ‘??color’
> |

N

“ﬂgﬂﬂ'
The help(“color”) and ?color commands produce the same result,

as ? is a shorthand method for calling the help() function.
o The search fails to get help but suggests an alternative search — run

the suggested command ??color to see the results |
Files Plots Packages Help Viewer 5]

= o

R: Search Results =

Help pages:

colorspace.:HLS Create HLS Colors
colorspace::HSV Create HSV Colors
colorspace: .l AB Create LAB Colors
colorspace:.lUV Create LUV Colors
colorspace:-:RGB reate RGB Colors

colorspace: b /7

N

“ﬂgﬂﬂ'
Choose a link from the search results to open relevant
documentation on a particular topic, such as how to create RGB

colors.
o Type “plo” in the Code Editor, then choose the plot option on the

auto-completion popup

@] Help.R? —}
; H sourceonsave | @ 2 » | | <+ Run | *= | 4 Source =
help("color™)

iy

L
Z
3 7?color
4
5 plo
« plogis [stats} | plotlx, ¥, ...)
p'zﬂwﬁ {g raph'iﬂ} Genenc function for plotting of E objects. For more detzils about the
&.' p-}..ot._ d.efau__l . I ::-.;-aph . 1 gra p|:1rca| parameter arguments, see par. :
: = For simple scatter plots, plot.defaulc will be used. However, there are
¢ plot.design {graphics} plot methods for many R objects, including functions, data. frames,
& p} ot.ecdf {stats} density objects, etr. Usemethods (plot) and the documentation for
" these.
¢ plot_function {graphics}
Pracz F1 for additional help
plot_new {graphics}

o Press the F1 key to see information on the plot() function appear on
the Help tab

Files Plots Packages Help Viewer =
e B :

R: Generic X-Y Plotting =

plot {graphics} R Documentation

Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter
arguments, see par.

For simple scatter plots, plot.default will be used. However, there are plot methods for
many R objects, including functions, data.frames, densitcv objects, etc. Use
methods (plot) and the documentation for these.

Usage

plot(x, ¥, .-.)

Y.

pont,

| —
The help files contain links you can click to get help on specific
items, and there are forward and back buttons on the Help tab, just

like those on a web browser.

Summary

* A variable is a container in which a value may be stored for subsequent
use in an R Script program.

* The name of a variable is a unique identifier that must avoid the R
keywords.

* An identifier name in R must begin with a letter (or a period followed by
a letter) and may subsequently contain only letters, digits, periods, or
underscore characters.

» Identifier names are case-sensitive, and those with multiple words can
separate each word with a period character.

* Values are assigned to variables in R programming using the <-
assignment operator.

* The R interpreter ignores whitespace and ignores comments on lines that
begin with a # hash character.

* The four main data types in R programming are character, double,
integer, and Boolean.

* Each R variable is a vector that can contain multiple values.

* A vector may only contain values of the same data type, but a list
structure may contain values of mixed data types.

* A list is created by specifying values as a comma-separated list of
arguments to the built-in list() function.

* Vectors and lists both store values within elements that are indexed
starting at one.

* Single values in vectors and lists can be retrieved using the identifier
name and an index number in [] square brackets.

+ Single values in named elements can be retrieved using the identifier
and element name separated by the $ operator.

* The built-in plot() function produces a scatter plot depicting data
magnitude versus index.

» Data stored in any R structure creates an object in the RStudio
environment.

« Help can be sought in RStudio on its Help tab, or using the help()
function, or via the auto-completion popup box.

3

Performing operations

This chapter demonstrates how to manipulate stored data in R Script

programs.

Doing arithmetic

Making comparisons
Assessing logic
Operating on elements
Comparing elements
Recognizing precedence
Manipulating elements
Summary

Doing arithmetic

Arithmetical operators, listed in the table below, are used to create
expressions in R Script programs that return a single resulting value. For
example, the expression 4 * 2 returns the value 8.

+ Addition
- Subtraction

*

Multiplication

/ Division
%/% Integer division
A Exponentiation
%% Modulus

All arithmetic operators return the result of an operation performed on two
given operands, and act as you would expect. For example, the expression 4
+ 3 returns 7.

The / division operator divides the first operand by the second operand and
returns the result as a decimal number. For example, the expression 4/3
returns 1.333333. Conversely, the %/% integer division operator divides the
first operand by the second operand and rounds down the result to a whole
number. For example, the expression 4 %/% 3 returns 1 — not 1.333333.

The # exponentiation operator returns the result of raising the first operand
to the power of the second operand. For example, the expression 4 A 3
returns 64 — 4 cubed (4x4x4).

The %% modulus operator divides the first operand by the second operand
and returns the remainder of the operation. For example, % 3 returns 1 — 3
divides into 4 once, with 1 remainder.

@

pewd™®

| —

Integer division with the %/% operator will truncate any decimal part.
For example, 11 %/% 4 = 2 but division with the / operator will retain

the decimal part, so that 11 /4 = 2.75.

N

“ogﬂ'P

The R documentation calls %% the “modulus” operator, whereas the
operation it performs is typically called “modulo”.

Open the RStudio Code Editor and create two variables containing

integer values for arithmetic
large <-5

small <-2

Arithmetic.R

3

® @ ©

Next, add statements to output the result of some basic arithmetical

operations

print(paste(“Addition:”, large + small))
print(paste(“Subtraction:”, large - small))
print(paste(“Multiplication:”, large * small))

Now, add statements to output the result of the two types of division

operations

print(paste(“Division:”, large / small))
print(paste(“Integer Division:”, large %/% small))

Then, add a statement to output the result of an exponentiation

operation
print(paste(“Exponentiation:”, large * small))

Finally, add a statement to output the remainder after performing a

division operation
print(paste(“Remainder:”, large %% small))
Save the R Script file then click the Source button, or press Ctrl +

Shift + S, to see the arithmetical output

Console C:/MyRScripts/ |
> source('C: /MyRScripts/Arithmetic.R")

[1] "Addition: 7"

[1] "Subtraction: 3"

[1] "Multiplication: 10"
[1] "Division: 2.5"

[1] "Integer Division: 2
[1] "Exponentiation: 25"
[1] "Remainder: 1"

>

A A

Unlike other programming languages that support a ++ increment
operator and -- decrement operator, there is no increment operator
or decrement operator in R.

Making comparisons

Comparison operators, listed in the table below, are used to compare two
values in an expression and return a single Boolean value of TRUE or FALSE
— describing the result of that comparison.

== Equality

I= Inequality

> Greater than

>= Greater than, or equal to
< Less than

<= Less than, or equal to

The == equality operator compares two operands and will return TRUE if
both are exactly equal in value. If both are the same number they are equal,
or if both are text strings containing the same characters in the same order
they are equal. Boolean operands that are both TRUE, or that are both FALSE,
are equal.

Conversely, the != inequality operator returns TRUE if two operands are not
equal — applying the same rules as those followed by the equality operator.
Equality and inequality operators are useful in testing the state of two
variables to perform “conditional branching” of a program — proceeding in
different directions according to the condition.

The > “greater than” operator compares two operands and will return TRUE
if the first is greater in value than the second.

The < “less than” operator makes the same comparison but returns TRUE if
the first operand is less in value than the second.

Adding the = assignment operator after the > “greater than” operator, or
after the < “less than” operator, makes it also return TRUE when the two
operands are exactly equal in value.

wot ue

The conditional operators are also known as the “relational”
operators.

N

‘Wtﬂ?
The < less than operator is typically used to test a counter value in a

loop — an example of this can be found here.
o Open the RStudio Code Editor and create three variables containing

integer values for comparison
nil <-0

num <-0

max <-1

Comparison.R
o Next, create two variables containing character values for

comparison
cap <_ “A”
Iow <_ “a”

e Now, add statements to output the result of equality comparison of

integer and character values

print(paste(“0 == 0 Equality:”, nil == num))

print(paste(“A == a Equality:”, cap == low))

Add a statement to output the result of inequality comparison of

integer values
print(paste(“0 != 1 Inequality:”, nil I=max))

e Then, add statements to output the results of greater than and less

than comparisons of integer values
print(paste(“0 > 1 Greater:”, nil > max))
print(paste(“0 <1 Less:”, nil <max))

Finally, add statements to output the results of greater or equal and

less or equal comparisons of integer values

print(paste(“0 >= 0 Greater or Equal:”, nil >= num))
print(paste(“1 <=0 Less or Equal:”, max <= nil))

o Save the R Script file then click the Source button, or press Ctrl +

Shift + S, to see the comparison output
Console C:/MyRScripts/ .
> source('C:/MyRScripts/Comparison.R")
[1] "0 == 0 Equality: TRUE"
[1] "A == a Equality: FALSE"
[1] "0 != 1 Inequality: TRUE"
[1] "0 > 1 Greater: FALSE"
[1] "0 < 1 Less: TRUE"
[1] "0 >= 0 Greater or Equal: TRUE"
[1] "1 <= 0 Less or Equal: FALSE"
>

Y.

iy

The ASCII code value for uppercase “A* is 65 but for lowercase “a
it's 97 — so their comparison here returns FALSE.

@

gewa™®

| —

When comparing numbers, remember to test for equality as well as
testing for higher and lower values.

Assessing logic

Logical operators, listed in the table below, can be used to combine multiple
expressions that each return a Boolean value into an expression that returns
a single Boolean value.

! Logical NOT

&& Logical AND
& Element-wise Logical AND
[Logical OR

| Element-wise Logical OR

Logical operators are used with operands that have the Boolean values of
TRUE or FALSE, or values that can convert to TRUE or FALSE. In R
programming, zero is considered to be FALSE and all other numbers are
considered to be TRUE.

The logical ! NOT operator is a “unary” operator that is used before a single
operand. It returns the inverse Boolean value of the given operand —
reversing TRUE to FALSE, and FALSE to TRUE.

The logical && AND operator will evaluate the first element of two
operands and return TRUE only if both operands are themselves TRUE.
Otherwise the logical && operator will return FALSE. The element-wise
logical & operator performs the same operation but on all elements of the
operands.

Unlike the logical && operator, which needs two operands to be TRUE, the
logical || OR operator will evaluate the first element of its two operands and
return TRUE if either one of the operands is TRUE — it will only return FALSE
when neither operand is TRUE. The element-wise logical | operator performs
the same operation but on all elements of the operands.

If the two operands have a different number of elements, the result will be
of the same length as the operand with the most elements.

N

ot Ll

The term “Boolean” refers to a system of logical thought developed
by the English mathematician George Boole (1815-1864).

o Open

RStudio Code Editor and create a variable containing a
Boolean value

_ active <- TRUE

N

Logic.R
o Next, add a statement to output the inverse of the stored Boolean

value
print(paste(“NOT logic !active:”, lactive))
Now, create two more variables that each contain multiple Boolean

values or values than can convert to Booleans
flags <- ¢(TRUE, TRUE, FALSE, (1>0),0)
marks <- ¢(FALSE, TRUE, TRUE, 16, FALSE)

Add a statement to output the result of logical AND and logical OR

evaluation of first elements only
print(paste(“AND logic:”, flags && marks))
print(paste(“OR logic:”, flags || marks))

Finally, assign the result of logical AND and OR evaluation of all

elements to two further variables
and.result <- flags & marks
or.result <- flags | marks

Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the output and results

® ® @ 6

Console C:/MyRScripts/ =]
| > source('C:/MyRScripts/Logic.R") '
[1] “NOT logic lactive: FALSE"

[1] "AND Tlogic: FALSE"

[1] "OR logic: TRUE"

>

: "k Global Environment = - Q
values
active TRUE
and.result 'Iogi [1:5] FALSE TRUE FALSE TRUE FALSE
flags num [1:5] 11010
marks num [1:5] 01116 0
or.result Togi [1:5] TRUE TRUE TRUE TRUE FALSE

The value returned by the ! NOT logical operator is the inverse of the
stored value — the stored value itself remains unchanged.

\ \
L

h wﬂ?
| —
Notice that the variables containing multiple values are stored

numerically as they contain numbers and an expression that can
convert to Boolean values.

Operating on elements

The elements of a vector can be easily filled with a numeric sequence using
the : colon operator. A numeric “from” operand is required before the :
operator, and a numeric “to” operand is required after the : operator to
specify a range. The operation generates an inclusive sequence, in steps of
one, between the specified range. The generated sequence will be either
ascending or descending according to the specified “from” and “to” values.
A numeric sequence can be specified as the argument to the combining ¢()
function to fill the elements of a vector. Additionally, a numeric sequence
can be specified within [] square brackets to specify an index range — to
copy a “slice” of a vector.

When you want to output all elements of a vector to the Console, the
combination of print() and paste() functions will be called for each element.
For example, consider this statement and its output:

Console

> print(paste("Series:", c(1:3)))
[1] "Series: 1" "Series: 2" "Series: 3"
> |

This may not be what you want, but R provides a useful built-in cat()
function that concatenates (joins) together its arguments then outputs them
to the Console, like this:

Console

> cat("Series:", c(1:3))
Series: 1 2 3
_";.

One of the great advantages of R variables is the ability to perform vector
arithmetic on all their numeric element values simply by placing any
arithmetic operator between variable names. If the vectors have an equal
number of elements, the operation will be performed between the
corresponding element in each vector. If the vectors have an unequal
number of elements, the shorter one will be “recycled” in order to match the
longer vector length. Where the size of the longer vector is not an exact
multiple of the shorter vector, the operations will be performed but the R
interpreter will provide a warning.

@

pewd™®

| —

Note that the cat() function provides no quotes in the output and
does not automatically add a newline after its output. You can
include a final “\n” escape sequence argument to manually add a
newline.

o Open the RStudio Code Editor and create a variable containing a

numeric sequence from one to nine
~series <-¢(1:9)

N

VectorArithmetic.R
o Next, add a statement to output a text string, the numeric sequence,

and a newline
cat(“Series:”, series, “\n”")

Now, create a second variable containing a slice of the first

variable’s element values, then output that sequence
slice <- series[1:3]
cat(“Slice:”, slice, “\n”")

Create a third variable containing the total of element values in the

other two variables, then output the totals
totals <- series + slice
cat(“Totals:”, totals, “\n”)

Extend the slice, then output that sequence

slice <-series[1:4]

cat(“New Slice:”, slice, “\n”)

Recalculate the total of element values that are now in the other two

variables, then output those totals

totals <- series + slice
cat(“New Totals:”, totals, “\n”)

Save the R Script file then click the Source button, or press Ctrl +

® ® e @ o0

Shift + S, to see the values and a warning

Console C:/MyRScripts/ =]

> source('C:/MyRScripts/vectorArithmetic.R")
Series: 1234567 829
Slice: 1 2 3
Totals: 24657 98 10 12
New Slice: 1 2 3 4
New Totals: 2 4 6 8 6 8 10 12 10
Warning message:
In series + slice :
Tonger object length is not a multiple of shorter object length
>

| —
The vector arithmetic in this example simply uses the + operator for
addition, but you can use any arithmetical operator to perform an

operation on the element values within two specified vector
variables.

\

| —
Notice that the length of the series in this example is an exact

multiple of three times the length of the original slice, which gets
recycled twice. The length of the series is not an exact multiple of the
extended slice.

Comparing elements
Just as arithmetical operators can be used to perform arithmetic on elements
within two vectors, so can comparison operators be used to perform
comparison of elements within two vectors. Comparisons can be made of
both numeric and text string values. The result is returned as a vector of
Boolean TRUE and FALSE values indicating each corresponding element
comparison.
In comparing short vectors of just a few elements, it’s easy to determine the
result by examining the returned vector of Booleans but this becomes more
difficult when comparing larger vectors. Happily, R provides a built-in
which() function for this purpose. This function accepts a Boolean vector as
its argument and returns a list of the index numbers containing a TRUE
value.
Comparison of text strings to discover matching values within
corresponding elements of two vectors can be made with the == equality
operator, but the character case and order must be precisely identical for the
comparison to return a TRUE value.
Comparison of text strings to discover matching values within any elements
of two vectors can be made with the built-in intersect() function. This
accepts the names of two vector variables as a comma-separated list, and
returns all values that precisely match:
o Open the RStudio Code Editor and create two variables that each
contain a numeric sequence

ascend <-¢(1:5)
descend <-¢(5:1)

L

VectorComparison.R

e Next, add a statement to output a text string and the numeric
sequences, formatted with newlines
cat(“Vectors:\n”, ascend, “\n”, descend)

o Now, compare the numeric values within each corresponding

element of the two vectors
result <- ascend > descend

o Then, output the returned vector of Boolean values

cat(“\n1st Vector Greater?:”, result)
Also, output the index numbers containing a TRUE value

cat(“\nAt Index No.:”, which(result))

Y.

fors

You can change the > comparison to the >= operator to also produce
a TRUE result for the third elements here.

6

® 660 0 O

Next, create two variables that each contain string values within

each element
pets <- ¢(“Dog”, “Cat”, “Gerbil”, “Rabbit”)
animals <- ¢(“Lion”, “Tiger”, “Cat”, “Rabbit”)

Now, add a statement to output a text string and the element values,
formatted with newlines

cat(“\n\nVectors:\n”, pets, “\n”, animals)

Compare the character string values within each corresponding
element of the two vectors

result <- pets == animals

Then, output the returned vector of Boolean values

cat(“\nElement Match?:”, result)

Also, output the index numbers containing a TRUE value

cat(“\nAt Index No.:”, which(result))

Finally, output the matching values within any elements of the two
vectors

cat(“\nCommon:”, intersect(pets, animals))

Save the R Script file then click the Source button, or press Ctrl +

Shift + S, to see the comparison results

Console C:/MyRScripts/ =]
> source('C:/MyRScripts/VectorComparison.R")
Vectors:
12845
54321
1st Vector Greater?: FALSE FALSE FALSE TRUE TRUE
At Index No.: 4 5

Vectors:

Dog Cat Gerbil Rabbit

Tiger Lion Cat Rabbit

Element Match?: FALSE FALSE FALSE TRUE
At Index No.: 4

Common: Cat Rabbit

>

(‘liiih
%,

_ ap
| —
You can also include the \t tab escape sequence to format output.

;%3 I!L:ﬂk

Although “Cat” is contained in both vectors, it is not contained in
corresponding elements.

Recognizing precedence

Operator precedence determines the order in which R evaluates
expressions. For example, the expression 1 + 5 * 3 evaluates to 16, not 18,
because the * multiplication operator has a higher precedence than the +
addition operator. Parentheses can be used to specify precedence, so that (1
+5)* 3 evaluates to 18.

When operators have equal precedence, their “associativity” determines
how expressions are grouped. For example, the - subtraction operator is
left-associative, grouping left-to-right (LTR), so 8 -4 -2 is grouped as (8 -4)
- 2 and thus evaluates to 2. Other operators are right-associative, grouping
right-to-left (RTL).

The table below lists common operators in order of precedence, with the
highest-precedence ones at the top. Operators on the same line have equal
precedence, so operator associativity determines how expressions are
grouped and evaluated.

Subset $ LTR &S~
Exponent A “IRTL
Sign (unary) + - LTR &5
Sequence : LTRES
Modulus %% (and %/%) LTRES
Multiplicative * LTRES
Additive + - LTRES=
Comparative <<=>>===|= LTRES
Logical NOT ! LTR &S~
Logical AND && & LTRES
Logical OR Il LTR &5~
Assignment = “=RTL
Assignment <- “=RTL

‘ Help 222 LTRES

Y.

pore
The * multiply operator is on a higher row than the + addition
operator — so in the expression num <-1 + 5 * 3 multiplication is
completed first, before the addition.
o Open the RStudio Code Editor and create a variable containing the

result of an arithmetical expression
sum<-1+4*3

Precedence.R
e Next, add a statement to output the result that relies upon the default

order of operator precedence
print(paste(“Default Order:”, sum))

Now, assign to the variable the result of a clarified arithmetical

expression, which forces the expression to be evaluated in a specific

order
sum<-(1+4)*3

Add a statement to output the clarified result
print(paste(“Forced Order:”, sum))
Assign to the variable the result of an expression whose arithmetical

operators have the same level of precedence
sum<-7-4+2

Next, add a statement to output the result that relies upon the default

associativity of operator precedence
print(paste(“Default Direction:”, sum))

Now, assign to the variable the result of a clarified arithmetical

expression, then output the clarified result
sum<-7-(4+2)
print(paste(“Forced Direction:”, sum))

Save the R Script file, then click the Source button, or press Ctrl +
Shift + S, to see the output and results

® © 6 g o

Console C:/MyRSaipts/ =[]
> source('C:/MyRScripts/Precedence.R")

[1] "pefault Order: 13"

[1] "Forced Order: 15"

[1] "pefault Direction: 5"

[1] "Forced Direction: 1"

>

The * multiplication operator takes precedence over the + addition
operator — so multiplication is performed first.

The - subtraction operator and the + addition operator have equal
precedence but also have left-to-right associativity — so subtraction is
performed first before addition.

It is best to clarify all expressions by adding parentheses to group
operations.

Manipulating elements

In addition to the various operators described in this chapter, R provides a

number of built-in functions that can be used to manipulate the elements

within vector variables. Each of the functions below accept a vector as their
argument:

* The sort() function sorts the element values into numerical or
alphabetical order. By default, the element values will be sorted into
ascending order, but can be sorted into descending order by including a
decreasing=TRUE argument in the function call. Elements that have
missing values, denoted in R by a NA constant value, will be
automatically removed by default, but can be retained at the end of the
order by including a na.last=TRUE argument in the function call.

* The rev() function simply reverses the order of all elements within the
vector variable.

* The unique() function removes elements containing duplicated values
from the vector variable.

o Open the RStudio Code Editor and create a vector variable

containing three text string values
fruit <- c(“Banana”, “Apple”, “Cherry”)

N

Manipulate.R

o Next, add a statement to output the values contained in each element
— in their current order
cat(“Fruit:”, fruit, “\n”")

o Now, assign a sorted arrangement of the elements to the vector
variable, using the default ascending order
fruit <- sort(fruit)

o Then, output the values contained in each element — in their new
sorted order
cat(“Sorted:”, fruit, “\n\n”")

o Create a second vector variable containing numerical values and

some elements with missing values
nums <- ¢(NA, 8:2, NA, 1:7, NA)

N

ot Ll

The sort() function can alternatively include a na.last=FALSE
argument to retain elements that have missing values at the start of
the order.

6

® 6 6 0 0 ©

Next, output the values contained in each element of the second

variable — 1n their current order
cat(“Numbers:”, nums, “\n”)

Now, assign a sorted arrangement of the elements to the variable,

using the default ascending order and placing elements with missing
values at the end

nums <- sort(nums, na.last=TRUE)

Then, output the values contained in each element — in their new

sorted order
cat(“Increasing:”, nums, “\n”")

Assign a sorted arrangement of the elements to the vector variable in

descending order, then output the values

nums <- sort(nums, decreasing=TRUE)
cat(“Decreasing:”, nums, “\n”)

Assign a reversed arrangement of the elements to the vector

variable, then output the values
nums <-rev(nums)
cat(“Reversed:”, nums, “\n”)

Assign only elements with unique values to the vector variable, then
output the values

nums <- unique(nums)
cat(“Unique:”, nums, “\n”)

Save the R Script file then click the Source button, or press Ctrl +
Shift + S, to see the output element values

Console C:/MyRScripts/ —m
> source('C: /MyRScripts/Manipulate.R")

Fruit: Banana Apple Cherry

Sorted: Apple Banana Cherry

Numbers: NA 8 7
Increasing: 1 2
Decreasing: 8 7
Reversed: 1 2 2
Unique: 1 2 3 4
>

If the call to the sort() function does not specify a na.last argument,
elements with missing values will be automatically removed.

Al1l234567NA
8 NA NA NA
1

Summary
The arithmetical operators in R programming are + addition, -
subtraction, * multiplication, / division, %/% integer division, A
exponentiation, and %% modulus.
The comparison operators in R programming are == equality, !=
inequality, > greater than, < less than, >= greater than or equal to, and <=
less than or equal to.
The logical operators in R programming are ! logical NOT, && logical
AND, & element-wise logical AND, || logical OR, and | element-wise
logical OR.
Comparison and logical operators return a Boolean value of TRUE or
FALSE as the result of their operation.
The : colon operator generates an inclusive sequence in steps of one
between the range specified by its numeric operands.
The : colon operator can be used to specify a numeric sequence within []
square brackets to copy a slice of a vector.
The cat() function concatenates its arguments for output and is a useful
alternative to the print() and paste() functions.
Vector arithmetic on numeric element values is performed by placing an
arithmetic operator between two variable names.
When performing vector arithmetic, if vectors have an unequal number
of elements, the shorter one will be recycled in order to match the longer
vector length.
The R comparison operators can be used to perform comparison of
corresponding elements within two vectors.
Operator precedence determines the order in which R evaluates
expressions.
Where operators have equal precedence, their associativity determines
how expressions are grouped.
Parentheses can be used to specify precedence, in which case
expressions within innermost parentheses are performed first.
Vector elements can be manipulated using the sort(), rev() and unique()
functions.

4
Testing conditions

This chapter demonstrates how to control the flow of R Script programs.

Seeking truth
Branching alternatives
Chaining branches
Switching branches
Looping while true
Performing for loops
Breaking from loops
Summary

Seeking truth

The if keyword performs a conditional test to evaluate an expression for a
Boolean value. A statement following the expression will only be executed
when the evaluation is TRUE, otherwise the program proceeds on to subsequent
code — pursuing the next “branch”. The if statement syntax looks like this:

if (test-expression) { code-to-be-executed-when-true }

The code to be executed can contain multiple statements if they are enclosed
within curly brackets to form a “statement block™ :

o Open the RStudio Code Editor and add a conditional test that evaluates

an expression comparing two numbers
if(5>1)

print(“Five is greater than one.”)

L}
-9

Add a second conditional test, which executes an entire statement block

Py

when one number is less than another
if(2<4)

print(“Two is less than four.”) ;
print(“Test succeeded.”) ;

}
Select all lines of both statements, then click the Run button, or press

@

Ctrl + Enter, to execute the code

Console =
> 3F L& > 1)

+ 1

+ print("Five is greater than one.™)

+ 1}

[1] "Five is greater than one."

if (2 < 4)

print("Two is less than four."™)
print("Test succeeded.”)

++ + Vv

+ }

[1] "Two is less than four."
[1] "Test succeeded.”

>

N

wot e

Expressions can utilize the TRUE and FALSE keywords. The test
expression (2 < 4) is shorthand for (2 < 4 == TRUE).
A conditional test can also evaluate a complex expression to test multiple
conditions for a Boolean value. Parentheses enclose each test condition to
establish precedence — so they get evaluated first. The Boolean && AND
operator ensures the complex expression will only return TRUE when both tested
conditions are true:
if ((test-conditionl) && (test-condition2)) { execute-this-code }
The Boolean || OR operator ensures a complex expression will only return TRUE
when either one of the tested conditions is true:
if ((test-conditionl) || (test-condition2)) { execute-this-code }
A combination of these can form longer complex expressions:
o Declare a variable containing a single integer value

num <- 8

9 Add a third conditional test that executes a statement when the value of

the num variable is within a specified range, or when it’s exactly equal to

a specified value
if((num>5)&& (num<10) || (nhum==12))

print(“Number is 6-9 inclusive, or 12”)
}
o Select the variable declaration and all lines of the third statement, then

press Ctrl + Enter or click the Run button to execute the code
Console lyRS P |
> num = 8
>
>ifC Cnum > 5) & (num < 10) || (num == 12))
+ 4
+ print("Number is 6-9 inclusive, or 12")
+ }
[1] "Number 1is 6-9 inclusive, or 12"
>

o Change the value assigned to the variable so it is neither within the

specified range 6-9, or exactly 12, then run the third statement code
again to now see the statement after the complex expression is not
executed.

The range can be extended to include the upper and lower limits using
the >= and <= operators.

The complex expression uses the == equality operator to specify an
exact match, not the = assignment operator.

Branching alternatives

The else keyword is used in conjunction with the if keyword to create if else
statements that provide alternative branches for a program to pursue — according
to the evaluation of a tested expression. In its simplest form this merely
nominates an alternative statement for execution when the test fails:

if (fest-expression)

{
code-to-be-executed-when-true
} else
{
code-to-be-executed-when-false
}

Each alternative branch may be a single statement or a statement block of
multiple statements — enclosed within curly brackets.

More powerful if else statements can be constructed that evaluate a test
expression for each alternative branch. These may have “nested” if statements
within each else block to specify a further test. When the program discovers an
expression that evaluates as TRUE it executes the statements associated with just
that test then exits the if else statement without exploring any further branches:
o Open the RStudio Code Editor and create a variable containing an

integer value
hour <- 11

L

R)

Else.R
e Insert this simple conditional test, which executes a single statement

when the value of the variable is below 13
if (hour<13)

{
print(paste(“Good Morning:”, hour))

o Click the Source button to run the code and see the statement get
executed

Console C:/MyRScripts =]
> source('C: /MyRScripts/Else.R")

[1] "Good Morning: 11"

>

o Change the variable value to 15, then add this alternative branch

immediately after the closing } curly bracket of the if statement
else

if (hour <18) print(paste(“Good Afternoon:”, hour))

o Click the Source button to run the code and see just the alternative
statement get executed

Console C:/MyRScripts =
> source('C:/MyRScripts/Else.R")

[1] "Good Afternoon: 15"

>

gev?™
| —

The else keyword must be added on the same line as the closing curly
bracket of the preceding statement block.

It is sometimes desirable to provide a final else branch, without a chained if
statement, to specify a “default” statement to be executed when no tested
expression evaluates as TRUE:

o Change the variable value to 21, then add this alternative branch

immediately after the nested if statement
else

print(paste(“Good Evening:”, hour))

o Select the entire code, then click the Run button to run the code and see
the appropriate statement get executed

Console C:/MyRScrip
> hour <- 21

=0

if(hour < 13)
{

print(paste("Good Morning:", hour))
} else

if(hour < 18) print(paste("Good Afternocon:™, hour))
else

{

print(paste("Good Evening:", hour))

Vet +++++++++ VYV

1
1] "Good Evening: 21"

Conditional branching is the fundamental process by which computer
programs proceed.

Chaining branches

When you want to provide several alternative branches, the technique of nesting
if else statements can produce code that is difficult to read. A better solution is
possible by “chaining” alternative branches using else if statements. These too
provide alternative branches for a program to pursue according to the evaluation
of a tested expression, but in a more succinct format:

if (fest-expression)

{

code-to-be-executed-when-true

} else if (fest-expression)
{
code-to-be-executed-when-true

} else if (test-expression)

{
code-to-be-executed-when-true
} else
{
code-to-be-executed-when-false
}

When the program discovers an expression that evaluates as TRUE, it executes
the statements associated with just that test then exits the if or else if statement
without exploring any further branches. The previous example that used nested
conditional tests can therefore be better written to use chained conditional tests:
o Open the RStudio Code Editor and create a variable containing an

integer value
hour <- 11

L

Elself.R
o Insert this simple conditional test, which executes a single statement

when the value of the variable is below 13
if (hour<13)
{

}
o Click the Source button to run the code

Console |
> source('C: /MyRScripts/ElseIf.R")

[1] "Good Morning: 11"

> |

print(paste(“Good Morning:”, hour))

@

gewdr®
The else keyword must be added on the same line as the closing curly
bracket of the preceding statement block.

o Change the value assigned to the variable to 15, then add this alternative

branch immediately after the closing } curly bracket of the if statement
else if (hour <18)

{

}
o Click the Source button to run the code and see just the alternative

statement get executed

Console C:/MyRScripts/ =
> source('C:/MyRScripts/ElseIf.R")

[1] "Good Afternoon: 15"

> |

print(paste(“Good Afternoon:”, hour))

o Change the value assigned to the variable to 21, then add this default

branch immediately after the closing } curly bracket of the else statement
else

{

}
o Select the entire code, then click the Run button to run the code and see

just the default statement get executed

print(paste(“Good Evening:”, hour))

Console C:/MyRScrip

=0
> hour <- 21

>
> if(hour < 13)
+1
+ print(paste("Good Morning:", hour))
+ 1 else if(hour < 18)
{

print(paste("Good Afterncon:", hour))

+
4
+ 1 else

i

+ print(paste("Good Evening:", hour))
E

[

1] "Good Evening: 21"
>

Y

'K
Doraet

The final else statement provides a default statement to execute when all
conditional tests fail.

Switching branches

Lengthy if else statements, which offer many conditional branches for a program
to pursue, can become unwieldy. Where the test expression returns an integer or
character string value, a more elegant solution can be provided by the built-in
switch() function.

The basic syntax of the switch() function looks like this:

switch (expression , list)

The list contains comma-separated items that can themselves be returned by the
switch() function, or be expressions to be executed by the function, or be named
items with associated values or expressions to be returned or executed by the
function.

The switch() function examines the value returned by the specified expression. If
the value is an integer, or can convert to an integer, the switch() function returns
the value at that index position. For example, switch(2, “A”, “B”, “C”) returns “B”.
Alternatively, list items may be complex expressions that contain code to be
executed within {} curly brackets. In this case, the switch() function will execute
the code at that index position. For example, switch(2, { print(“A”) }, { print(“B”) })
prints “B”.

When the integer returned by the specified expression is beyond the final index
position of the list, the switch() function returns a NULL value. For example,
switch(4, “A”, “B”, “C”) returns NULL.

If the value returned by the specified expression is a character string, the switch()
function seeks to match that string in the list. When it finds a match in the list,
the switch() function returns the value associated with that character string. For
example, switch(“bar”, foo="A”", bar="B”) returns “B”.

Where the list items are complex expressions that contain code to be executed
within {} curly brackets, the switch() function will execute the code associated
with the character string. For example, switch(“bar”, foo={ print(“A”) }, { bar=print(
“B”)}) prints “B”.

When no match is found to the character string returned by the specified
expression, the switch() function returns a NULL value. For example, switch(
“num”, foo="A”, bar="B”) returns NULL.

N

wot op

Notice that the list names do not need to be enclosed within quote
marks.

Open the RStudio Code Editor and create three variables

month <- “Jan”
year <- 2020
num <-0

(NN

Switch.R

Next, add a statement to examine the first variable and assign a new

value to the last variable
switch(month,

“Jan” = {num <-31},
“Feb” = {if(year %% 4==0)
num <- 29 else num <-28 },
“Mar” = {num <-31},
“Apr”’ = {num <-30},
“May” = {num<-31},
“Jun” = {num<-30},
“Jul” = {num<-31},
“Aug” = {num <-31},
“Sep” = {num <-30},
“Oct” = {num <-31},
“Nov” = {num <-30},
“Dec” = {num<-31}

)
Now, add a statement to output the number of days in the specified

month
print(paste(month, year, “has”, num, “days”))

Click the Source button to run the code and see the output

Console C:/MyRScripts/

> source('C: /MyRScripts/Switch.R")
[1] "2an 2020 has 31 days"

>

=

Change the value of the first variable to match any list name, then run the
code again to see its associated output

Console C:/MyRScripts/ —1!
> source('C: /MyRScripts/Switch.R")

[1] "Feb 2020 has 29 days"

> source('C: /MyRScripts/Switch.R")

[1] "mar 2020 has 31 days"

> source('C: /MyRScripts/Switch.R")

[1] "Apr 2020 has 30 days"

>

e

| —
The num variable must be created outside the switch() statement block
to be visible to code elsewhere — otherwise it will only be available
locally, to code inside the switch block. This is variable “scope” — see
here for details.

1

Notice that complex expressions containing code to be executed enclose
the code within curly brackets.

Looping while true

A loop is a block of code that repeatedly executes the statements it contains until
a tested condition is met — then the loop ends and the program proceeds on to its
next task.

The basic loop structure in R programming employs the while keyword and has
this syntax:

while (fest-expression)

{

statements-to-be-executed-on-each-iteration updater

}

The test expression must evaluate some value that gets updated in the loop’s
statement block as the loop proceeds — otherwise an infinite loop is created that
will relentlessly execute its statements.

The test expression is evaluated at the start of each iteration of the loop for a
Boolean TRUE value. When the evaluation returns TRUE, the iteration proceeds
but when it returns FALSE, the loop is immediately terminated, without
completing that iteration.

Note that if the test expression returns FALSE when it is first evaluated, the loop
statements are never executed.

A while loop can be made to evaluate a counter variable in its test expression, by
creating a counter variable outside the loop and updating its value within the
loop’s statement block that it executes on each iteration. For example, a while

loop can output the value of its counter variable on each iteration, like this:
count <-1
while (count<4)

{

print(paste(“Loop Counter =", count))
count <-(count+1)

}
This positions the counter externally, before the while loop structure, and its

updater within the statement block.
Loop structures may also be nested — so that an inner loop executes all its
iterations on each iteration of the outer loop.

N

“ov‘ﬁ?

The updater is often referred to as the “incrementer” as it more often
increments, rather than decrements, the counter variable.

Open the RStudio Code Editor and create a variable to count the total

number of loop iterations
sum <-0

While.R

Next, create a counter variable and a loop to increment the total counter,

output this loop counter and total counter, then increment this loop’s
counter value

i<-1
while(i<4)
{
sum <-(sum+1)
cat(“Outer Loop i =7, i, “\t\tTotal =, sum, “\n”")
i<-(i+1)
Nested loop to be inserted here.
}

Now, create a second counter variable and a similar loop to increment the

total counter, output this loop counter and total counter, then increment
this loop’s counter value
j<-1
while(j<4)
sum <-(sum+1)

cat(“\tinner Loop j =", j, “\tTotal =”, sum, “\n”)
j<-(j+1)

Click the Source button to run the code and see the output display the

counter values on each iteration of the loops

: Console C:/MyRScripts/ -] .
> source("C: /MyRScripts/while.R")

Outer Loop i =1 Total = 1
Inner Loop j =1 Total = 2
Inner Loop j = 2 Total = 3
Inner Loop j = 3 Total = 4

Outer Loop i = 2 Total = 5
Inner Loop j = 1 Total = 6
Inner Loop j = 2 Total = 7
Inner Loop j = 3 Total = 8

Outer Loop i = 3 Total = 9
Inner Loop j = 1 Total = 10
Inner Loop j = 2 Total = 11
Inner Loop j = 3 Total = 12

§

- ‘hﬁl*iﬂ

| —
The “trivial” variables that are used as loop counters are traditionally

named i, j, and k.

§

‘hﬁl*iﬂ

| —
You can halt execution of an infinite loop by pressing the Esc key, or by
clicking the Stop button that appears on the Console menu bar as the
loop is running.

% =]

Performing for loops

Unlike the while loop structure, which evaluates a test expression to determine
whether it should continue its iterations, R provides an alternative that is
especially useful with sequences. This loop uses the for and in keywords and has
this syntax:

for (variable in sequence)

{
statements-to-be-executed-on-each-iteration

}
The for loop iterates over each element in a sequence and executes the statements

contained within its statement block on each iteration of the loop. When the end
of the sequence is reached, the loop ends and the program proceeds to its next
task.

The variable named in the parentheses of a for loop is assigned the value of the
current element in the sequence on each iteration of the loop. For example, a for

loop can output the value of its variable on each iteration over a vector, like this:
seq <- c(100, 200, 300)
for(var in seq)

print(paste(“Loop Variable =", var))

}
The : colon operator can be used to easily specify a numeric range.

For example, to perform one hundred iterations, like this:
for(varin 1:100)
{

}
Where the for loop is to iterate over a specified sequence whose length may vary,

the length() function can be used, like this:
seq <- ¢(100, 200, 300, 400, 500)

for(var in 1:length(seq))

{

}
In this case the variable is assigned the index number of the element, which is

used to retrieve its value in the statement.

N

ot op

print(paste(“Loop Variable =", var))

print(paste(“Loop Variable =”, seq[var]))

It is sometimes more efficient to iterate by index number.

o Open the RStudio Code Editor and create a variable to contain a list

sequence of character strings
seq <- list(A="Alpha”, B="Bravo”, C="Charlie”)
(N

Forin.R
o Next, add a loop to iterate over the sequence and output the current

element value on each iteration
for(var in seq)

print(var)

o Now, assign a vector sequence of integers to the variable
seq<-¢(2,7,6,8,3,5,4)

Then, add a loop to iterate over the sequence and output the current

element value and its parity on each iteration
for(var in seq)

if(var %% 2==1)

{

cat(var, “Is Odd\n”)
} else
{

cat(var, “Is Even\n”)
}

}
9 Click the Source button to run the code and see the output display the

values on each iteration of the loops

Console C:/MyRScripts =)
> source("C: /MyRScripts/ForIn.R"))
[1] "Alpha"

[1] "Bravo"

[1] "Charlie"

2 Is Even

7 Is o0dd

6 Is Even

8 Is Even

3 Is 0dd

5 Is 0dd

4 Is Even

>

pewd™®

In R, the execution of loops is relatively slow so it is better to use vector
arithmetic wherever possible — see here.

Breaking from loops
The break keyword can be used to prematurely terminate a loop when a specified
condition is met. The break statement is situated inside the loop statement block
and 1s preceded by a test expression. When the test returns TRUE, the loop ends
immediately and the program proceeds to its next task. For example, in a nested
for loop it proceeds to the next iteration of its outer loop.

Open the RStudio Code Editor and create an outer loop that will perform

three iterations
for(iin1:3)
{
Inner loop to be inserted here.
}
(N

BreakNext.R
o Insert an inner loop that will also perform three iterations, and output the

variable values on each iteration
for(jin1:3)

Statement for next to be inserted here.
Statement for break to be inserted here.
cat(“Running i=", i, “ j=", j, “\n”)
}
o Click the Source button to run the code and see the output display the

values on each iteration of the loops

Console M ript ==
> source('C:/MyRScripts/BreakNext.R")

Running i j
Running
Running
Running
Running
Running
Running
Running
Running
> |

i,

P B LI [T [P S R
LI | | | N 1 B
WwW W NN
WNEFWNEFEWN =

e e s L, e e

o wowowowon

o Add this break statement to the beginning of the inner loop statement

block, to break out of the inner loop — then click the Source button to re-

run the program

if(i==2&&j==1)

{
cat(“Breaks Inner Loop at i=", i, “ j=", j, “\n”")
break

Console MyRScripts =]
> source('C:/MyRScripts/BreakNext.R")

Running i= 1 j=1

Running i= 1 j= 2

Running i= 1 j= 3

Breaks Inner Loop at i= 2 and j= 1

Running i= 3 j=1

Running i= 3 j= 2
Running i= 3 j= 3
>

Dot

Here, the break statement halts all three iterations of the inner loop when
the outer loop tries to run it for the second time.

The next keyword can be used to skip a single iteration of a loop when a
specified condition is met. The next statement is situated inside the loop
statement block and is preceded by a test expression. When the test returns
TRUE, that iteration ends.

o Add this next statement to the beginning of the inner loop statement

block, to skip the first iteration of the inner loop — then click Source to

re-run the program

if(i==18&&j==1)

{
cat(“Skips Iteration at i=", i, “ j=", j, “\n”")
next

Console MyRScripts, p— |
> source('C: /MyRScripts/BreakNext.R')

skips Iteration at i= 1 and j= 1

Running i= 1 j= 2

Running i= 1 j= 3

Breaks Inner Loop at i= 2 and j= 1

Running i= 3 j= 1

Running i= 3 j= 2

Running i= 3 j= 3
>

g

Here, the next statement skips just the first iteration of the inner loop
when the outer loop tries to run it for the first time.

Summary

The if keyword performs a conditional test to evaluate an expression for a
Boolean value of TRUE or FALSE.

An if statement block can contain one or more statements that are only
executed when the test expression returns TRUE.

The Boolean && AND operator and || OR operator can be used to perform
multiple conditional tests.

The else keyword specifies alternative statements to execute when the test
performed by the if keyword returns FALSE.

Multiple if else statements can be nested to test several conditions in the
process of conditional branching.

A final else statement can be used to specify default statements to be
executed when all conditional tests fail.

Combined else if statements can be chained to test several conditions more
succinctly than nested statements.

The switch() function can sometimes provide an elegant solution to unwieldy
if else statements.

When the value returned by the expression specified to switch() is an integer,
the function returns the value at that index position in its list, but when it’s a
character string, the function seeks to match that string in its list.

A loop repeatedly executes the statements it contains until a tested expression
returns FALSE.

Statements in a while loop must change a value used in their test expression to
avoid an infinite loop.

The parentheses that follow the for keyword specify a variable, the in
keyword, and a sequence to iterate over.

A loop iteration can be skipped using the next keyword.

A loop can be terminated using the break keyword.

This chapter demonstrates how to use built-in R functions and how to

create your own functions in R Script programs.

Doing mathematics
Manipulating strings
Producing sequences
Generating random numbers
Distributing patterns
Extracting statistics
Creating functions

Providing defaults

Summary

Doing mathematics

The R programming language provides many built-in functions that are
useful to perform mathematical calculations. For example, the sqrt()
function returns the square root of the number specified as its sole
argument. A variety of functions are provided to round decimal numbers up
or down according to your requirements.

All trigonometric operations are supported in R to return sine, cosine,
tangent, and their inverse equivalents. Conveniently, R also has a built-in
constant named pi, representing [(3.14159265...).

The natural logarithm of a number is returned by the log() function and the
inverse of this operation can be performed using the exp() function.
Frequently-used mathematical R functions are listed in the table below:

abs(x) Absolute value of x

sqrt(x) Square root of x

ceiling(x) Integer of x rounded up

floor(x) Integer of x rounded down

trunc(x) Integer of x truncated

round(x , digits=n) Nearest number to x , to n decimal places
signif(x , digits=n) Nearest number to x , to n significant digits

cos(x), sin(x), tan(x) acos(x), asin(Cosine, sine, tangent, arc-cosine, arc-sine,

x), atan(x) and arc-tangent of x
log(x) Natural logarithm of x
log10(x) Common (base 10) logarithm of x
exp(x) Exponential value of x
wot e

To discover more on trigonometric functions, enter ?Trig to see their
Help page.

@

gewa™®

Angles in R must be expressed in radians, not degrees, so degrees
must be converted to radians when specifying arguments to the
trigonometric functions.

o Begin an R Script by displaying the value of the mathematical

constant of ||

cat(“Pi Constant =", pi, “\n”")

Math.R

2

® ® © e

Next, add statements to display the value of the mathematical

constant [| rounded down, rounded up, and rounded to two decimal

places

cat(“Pi Floor\t”, floor(pi), “\n”")

cat(“Pi Ceiling\t”, ceiling(pi), “\n”")

cat(“Pi Rounded\t”, round(pi, digits=2), “\n\n”")

Now, create a variable containing an integer value, then display the

square root of that value
num <- 64
cat(“Square Root of”’, num, “=", sqrt(num), “\n\n”")

Then, assign an angle represented in radians to the variable and

display that angle’s cosine
num <- (120 * (pi/180))
cat(“Cosine of 120° =", cos(num), “\n\n”")

Finally, assign the natural logarithm of an integer to the variable,

then display its inverse value and the logarithm
num <- log(100)
cat(“Log of”, exp(num), “=", num, “\n”")

Run the code to see the output results from the mathematical
functions

Console C:/MyRScripts/ =]

> source('C:/MyRScripts/Math.R")
Pi Constant = 3.141593

Pi Floor 3
Pi Ceiling 4
Pi Rounded 3.14

Square Root of 64 = 8
Cosine of 120° = -0.5

Log of 100 = 4.60517
> |

S

| —
R also supports scientific notation to represent very large numbers
as a decimal and exponent separated by the letter e. For example,
12,500 can be written as 1.25e4 — meaning 1.25 x 104

Manipulating strings
The R programming language provides built-in functions to manipulate
character strings. The familiar paste() function joins strings together.
Conversely, there are several functions provided to extract substrings from a
given string to suit your requirements. The character case of a given string
can be easily transformed by toupper() and tolower() functions. Frequently-
used R functions for string manipulation are listed in the table below:

substr(x , start, stop

sub(pattern, new, x)

strsplit(x, separator)

toupper(x)

tolower(x)

) Substring of x from start to stop

String substituted first match of pattern with new in x

Substrings of x split around the specified separator

String x transformed to all uppercase characters

String x transformed to all lowercase characters

The Sys.time() function returns the current system date and time, which can
be manipulated to suit your requirements using the built-in format()
function. This requires two arguments to specify the date and time, plus a

string incorporating

format specifiers:

e S 7

%e
%a
%A
%b
%B
%H
%M
%Y

Day number (1-31)
Short day name

Full day name

Short month name

Full month name

Hour number (00-23)
Minute number (00-59)

Year number 4-digit

7

Mon
Monday
Aug
August
12

30

2018

N

“otﬂ'P

There are many other format specifiers available. Enter ?strptime to
discover more.

o Begin an R Script by assigning a character string to a variable for

A

manipulation
string <- “R for Data Analysis”

)

© © & © © O

tring.R

Next, add a statement to display an extracted substring of the

variable string
cat(“Substring:\t”, substr(string, 7, 10), “in”")

Now, add a statement to display a substring in which a matched

pattern has been replaced
cat(“Replaced:\t”, sub(“sis”, “tics”, string), “\n\n”")

Then, print substrings extracted from the variable string around each

space character
print(paste(“Split: “, strsplit(string, ““)))
Add a statement to display an uppercase version of the variable

string
cat(“\nUppercase:\t”, toupper(string), “\n\n”")
Finally, assign the current date and time to a variable, then print its

components in formatted strings

now <- Sys.time()

print(format(now, format="Date: %A, %B %e”))
print(format(now, format="Time: %H:%M”))

Run the code to see the output results from the string manipulations

Console C:/MyRScripts/ -]

> source('C:/MyRScripts/String.R")
Substring: Data
Replaced: R for Data Analytics

[1] "splits eC\"R\™y: \"For\™. \"Data\. \"Analysis\™)"
Uppercase: R FOR DATA ANALYSIS

[1] "Date: Friday, November 3"
[1] "Time: 15:12"
>

pon'’t,
| —
Notice that the strsplit() function returns a list that has \” escaped
quote marks around each item to avoid conflict with the quote marks

enclosing the entire string.

Producing sequences

The : colon operator is useful for quickly producing a sequence of numbers
in steps of one, but the built-in seq() function offers greater possibilities.
This function accepts two arguments to specify the start and end value of
the sequence, but can also accept a third integer argument to specify the
step value. Alternatively, the third argument can be length.out= to specify the
length of the sequence. In this case, R will calculate the step value to evenly
distribute the sequence between the specified start and end values. The
length may also be specified using along.with= as the third argument to
nominate a vector whose length will be matched.

Where you want to replicate items repeatedly in a sequence, you can
specify the item and sequence length as arguments to the built-in rep()
function. The item may be a single value, a vector, or a list — each element
will be repeated in turn within the sequence. Additionally, a fourth each=
argument can be included to specify how many times each element should
be repeated in the sequence.

R also provides these useful sequences as built-in constants:

‘A”,’B”,”C”,”D”, "E”, "F”, ’G”, "H”, "I”, *J”, ’K”, "L”, "M”, "N”, "O”, "P”, "Q
LETTERS R S T U V , ”Wl!, ”X”’ ”Y”, !Z
Ietters :: , b ,” d e f’”, ’,’,g::, ”h”’ ”i”, ”j”, ”k”, ”I”, ”m”, ”n”, ”o”, ”p”, ”q”, ”r” ”S”
t ’ u) ’) X) y Z

“January”, “February”, “March”, “April”, “May”, “June”, “July”, “August”,

month.name “Septembel’”, "OCtObel’”, “November”, “December”

“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”, “Jul’, “Aug”, “Sep”, “Oct’, “Nov”,

month.abb “Dec”

The built-in constants are vectors, so individual elements can be addressed
using their index number as usual. For example, writing month.name[4] to
retrieve “April”. A slice can also be addressed using the : colon operator to
specify the start and end index numbers, such as LETTERS[1:3] to retrieve
“A” “B”, “C”.

gew?’®

The built-in “constant” values in R can actually be assigned new

values so be careful to avoid using their names for your variable

names.

o Begin an R Script by assigning a slice of a constant to a variable,
then output the assigned values

half.year <- month.abb[1:6]
cat(“Constant:”, half.year, “\n”)

Sequence.R
9 Next, add statements to display sequences stepped by increments of

one and two respectively
cat(“Sequence:”, seq(1,8), “\n”)
cat(“Two Step:”, seq(1, 8,2), “\n\n”")

Now, add statements to display sequences whose element values are

distributed evenly between specified lengths
cat(“Distributed:”, seq(1, 8, length.out=4), “\n”)
cat(“Distributed:”, seq(1, 8, along.with=half.year), “\n\n”")

Then, output a replicated sequence of a specified integer nine times
cat(“Replicated:”, rep(5,9), “\n”)
Output a replicated sequence of a specified sequence that will be

repeated three times
cat(“Replicated:”, rep(1:4, 3), “\n”")
Finally, output a replicated sequence of a specified sequence that

will be repeated three times, in which each element will be repeated

twice
cat(“Replicated:”, rep(1:4, 3, each=2), “\n”)

Run the code to see the output sequences

© © ®0

Console C:/MyRScripts/ =
> source('C: /MyRScripts/Sequence.R")

Constant: Jan Feb Mar Apr May Jun

Sequence: 1 234567 8

Two Step: 1 3 57

Distributed: 1 3.333333 5.666667 8
Distributed: 1 2.4 3.8 5.2 6.6 8

Replicated: 555555555
Replicated: 123412341234
Replicated: 1122 33441122334411223344

>

The next step in the two step increment sequence (9) is not output,
as it is beyond the specified end value (8).

Generating random numbers
The R programming language provides the ability to generate random
uniformly distributed numbers with its built-in runif() function, which by
default returns random numbers between zero and one. This function
requires a single argument to specify how many random numbers to
generate.
Multiplying a random number will specify a wider range. For example,
multiplying by 10 will create a random number in the range of 0 to 10.
Now, rounding the random number up with the ceiling() function will make
it within the range 1-10 inclusive:
Begin an R Script by assigning a single generated random number to
a variable, then output its value

rand <- runif(1)
cat(“Random Number:\t\t”, rand, “\n”")

N

Random.R
Next, multiply the variable value to increase its range, then output

its new value
rand <- (rand * 10)
cat(“Multiplied Number:\t”, rand, “\n”)

Now, round the variable value, then output its new value

rand <- ceiling(rand)
cat(“Random Integer:\t\t”, rand, “\n\n”)

Run the code several times to see the random numbers

Console C:/MyRScripts =]
> source('C:/MyRScripts/Random.R")

Random Number: 0.2438942
Multiplied Number: 2.438942

Random Integer: 3

> source('C: /MyRScripts/Random.R")
Random Number: 0.1112081
Multiplied Number: 1.112081

Random Integer: 2

> source('C: /MyRScripts/Random.R")
Random Number: 0.5853022
Multiplied Number: 5.853022

Random Integer: 6

>

N

‘mngiiﬂ

In statistics, a “uniform” distribution describes a probability in which
all outcomes are equally likely. For example, a coin toss has uniform
distribution, as the probability of getting heads or tails is equally
likely.
A random sample of element values can be produced by specifying a range
and the required number of element values as arguments to the built-in
sample() function. This might be used to produce a sequence of six non-
repeating random numbers within the range 1-59 inclusive for a random
lottery selection:
o Create an R Script that assigns integers 1-59 to a vector variable and
displays six random element values

nums <-¢(1:59)
~cat(“My Lucky Numbers:”, sample(nums, 6), “\n\n”")

N

Lottery.R
e Run the code several times to see the random sequences of six non-

repeating numbers within the range 1-59

Console C:/MyRScripts =]
> source('C:/MyRScripts/Lottery.R")
My Lucky Numbers: 9 23 28 38 31 20

> source('C: /MyRScripts/Lottery.R")
My Lucky Numbers: 12 30 25 5 47 20

> source('C:/MyRScripts/Lottery.R")

My Lucky Numbers: 32 14 23 20 33 50
Random normally distributed numbers can be generated with the built-in
rmorm() function. This function requires a single argument to specify how
many random numbers to generate. Optionally, it can accept two further
arguments to specify a mean value and standard deviation value. By default,
the mean= value is zero and the sd= standard deviation argument is one:
o Create an R Script that assigns three random numbers to a variable

and displays the generated values

nums <-rnorm(3)
~ cat(“Random Normal Distribution:”, nums, “\n\n”")

N

RandomNormal.R
e Run the code several times to see the random numbers

Console C:/MyRScripts
> source('C: /MyRScripts/RandomNormal.R")
Random Normal Distribution: 0.2105526 0.5252694 1.84952

=]

> source("C:/MyRScripts/RandomNormal.R")
Random Normal Distribution: -1.494349 -0.7953966 0.4204003

> source("C:/MyRScripts/RandomNormal.R")
Random Normal Distribution: -1.831296 1.170285 0.2289041

N

‘wngiiﬂ
In statistics, “mean” is the expected value and “standard deviation” is

the amount of variation. A low standard deviation indicates data
points close to the mean value.

Distributing patterns

The rmorm() function, introduced on the previous page, generates a vector of
random numbers that is sampled from a “normal distribution” of values.
The normal distribution plots all its values in a symmetrical fashion around
the specified mean value. The values are tightly grouped close to the mean,
then tail off symmetrically away from the mean, across the standard
deviation. This is represented graphically as a bell curve. The graph
illustrated below depicts the normal distribution pattern for a mean value of

zero and standard distribution of one (the defaults).
<

0.1

0.0

ot op

The o sigma character is used in math notation to denote the
standard deviation values.

The pattern demonstrates that there is a greater probability of the randomly
generated number being closer to the mean value. The probability that the
average value will be closer to the mean value increases as the number of
generated random numbers increases. This pattern is recognized by the
“Law of Large Numbers” (LLN), which is written in math notation like

this:
X, = E(X) whenn - o

The law states that the average of the actual measured values X» converges
towards the expected value E (X) when the number of values n grows
towards infinity co. The graph above shows a 34.1% probability on either

side of the mean value zero. This means that there is a total expectation of
68.2% that the generated random number will fall within the range -1 to +1.
The Law of Large Numbers can be tested by calculating the percentage of
generated random numbers that fall within the expected range as the
quantity of generated numbers increases.

N

“otﬂ'l‘
| —

To understand the Law of Large Numbers, imagine tossing a coin —
where there is a 50% chance for heads and tails. 10 coin tosses
might produce 7 heads and 3 tails (70%/30%), 100 coin tosses might
produce 55 heads and 45 tails (55%/45%), and 1000 coin tosses
might produce 510 heads and 490 tails (51%/49%) — getting
increasingly closer to average 50% as the number of coin tosses
increase.

o Begin an R Script by creating a variable to specify the quantity of

random numbers to generate
gty <-10

N

e Next, add a loop structure that will iterate to 1 million

while(gty <= 1000000)
{

Statements to be inserted here — Steps 3-6.

}
o Now, insert a variable to count the number that fall within the

expected range
num <-0

o Then, insert a nested loop to generate random numbers, and to

increment the counter for each generated random number that falls

within the expected range
for(i in rnorm(qty, mean=0, sd=1))

if((i>-1)&&(i<=1))num<-(num+1)

e Insert statements to calculate and output the percentage of values

that fall within the expected range
num <-(num/(qty/100))
cat(“For”, qty, “Generated Random Numbers:”, num, “%\n”)

Finally, insert a statement to multiply by 10 the quantity of random

e

numbers to be generated on each iteration
qty <-(qty *10)
Run the code to test the Law of Large Numbers

Console C:/MyRScripts/ e]
> source('C:/MyRScripts/LLN.R")

For 10 Generated Random Numbers: 70 %

For 100 Generated Random Numbers: 65 %

For 1000 Generated Random Numbers: 68.5 %

For 10000 Generated Random Numbers: 67.67 %

For 100000 Generated Random Numbers: 68.413 %

For 1000000 Generated Random Numbers: 68.2631 %

>

¥

You could, optionally, omit the mean and sd arguments as the
values specified here are the rnorm() default values.

Q

.

See that the percentage on the final iteration is closest to the
expectation of 68.2% — thereby demonstrating the Law of Large
Numbers.

Extracting statistics

The R programming language provides a number of built-in utility
functions that allow you to easily extract statistics from a range of values
stored within a vector variable:

Average of the values in x — computed by adding up all

mean(x) values and dividing the total by the number of values
Number at the mid-point of the values in x computed by

median(x) listing all values in ascending order then locating the central
number

sd(x) Standard deviation of the values in x

quantile(x) Cut points that divide the values in x into four equal parts

sum(x) Sum total of all the values in x

range(x) Maximum and minimum values in x

max(x) Maximum value in x

min(x) Minimum value in x

LN

mgﬂ?
—

The mean is used for normal distributions, whereas the median is
generally used for skewed distributions.
Begin an R Script by creating a variable containing 20 generated

random numbers, targeting a mean of five and a standard deviation

of two
nums <- rnorm(20, mean=5, sd=2)

™
B
N,
L\
= y

Stats.R
e Next, add statements to output the mean value and median value of

the generated random numbers

©e e o © O

cat(“Mean:\t”, mean(nums), “\n”)
cat(“Median:\t”, median(nums), “\n\n”)

Now, add a statement to output the actual standard deviation of the

generated random numbers
cat(“Actual SD:\t”, sd(nums), “\n\n”")

Add a statement to output the cut points that divide the generated

numbers into four equal parts
cat(“Cut Points:\t”, quantile(nums), “\n”")

Next, add a statement to output the sum total of all the generated

random numbers
cat(“Total:\t”, sum(nums), “\n\n”)

Now, add statements to output the minimum and maximum values

of the generated random numbers
cat(“Range:\t\t”, range(nums), “\n”")
cat(“Minimum:\t”, min(nums), “\n”")

cat(“Maximum:\t”, max(nums), “\n”)

Finally, add a statement to visualize the generated random numbers
plot(1:20, nums, type="0"
Run the code to see the extracted statistics

Console MyRScripts —
> source('C:/MyRScripts/Stats.R")
Mean: 5.935762

Median: 5.941148
Actual SD: 1.568379

Cut Points: 2.884692 5.392109 5.941148 6.900866 9.593756
Total: 118.7152

Range: 2.884692 9.593756
Minimum: 2.884692
Maximum: 9,593756
>
& —
® —
w =
E
e =2
7 3
< -
it i)
T | T T
S 10 15 20

120

Notice that the median value is also the central cut point number.

Creating functions

Previous examples in this book have featured built-in R functions, but you
can easily create your own custom functions that can be called as required
during execution of the program.

(

NG

Custom functions have a “function block” that contains one or more
statements that are executed each time the function gets called. Once the
function statements have been executed, program flow resumes at the point
directly following the function call.

Custom functions are created using the function and return keywords, and

their declaration has this syntax:
function-name <- function(arg1, arg2, arg3)

{

statements-to-be-executed
return(object)

}
The function name can be any name that adheres to the usual R identifier

naming conventions, and the object returned by the function can be of any
data type, or NULL if none is required.

A custom function is called simply by stating its name followed by
parentheses, just as built-in functions are called.

Values can be passed to custom functions by specifying valid names for
each argument in the comma-separated parameter list within the ()
parentheses that follow the function keyword. The passed values can then be
addressed within the function block using their specified names, just as
variable values can be addressed by their specified variable names. The
parameter list is optional so can be omitted from the parentheses if the
function does not require argument values to be passed when called.

Where a custom function declaration includes a parameter list, the function
call must generally include a value for each argument, and in the same order
in which they appear in the declaration.

It i1s important to recognize that variables created within a function block
have “local scope”, which means they are only visible within that function
block — they cannot be addressed from code outside the function block.

Y.

fors

The naming conventions for identifier names are described here.

N

“otﬂ'l‘
e—

If your code contains repeated statements it would be better to
enclose the statement within a function.

o Begin an R Script by declaring a custom function to print out a

message whenever this function is called
greet <- function()

{
print(“Hello from R!”)
}

FirstFunction.R

e Next, add a statement to call the custom function
greet()

o Now, declare a second custom function that will require one

argument value whenever it gets called
f2c <- function(degrees)
{

Statements to be inserted here — Step 4.
}

o Then, insert statements to assign a value to a variable using the

passed in value, then return the variable value

result <-((degrees-32)*(5/9))
return(result)

&

Next, add a statement to call the second custom function, passing in
a required argument value

cat(“Body Temperature 98.6 °F =", f2¢(98.6), “°C\n\n”)

Finally, add a statement that attempts to address the local variable
within the function block

print(result)

Run the code to call the custom functions and to see that the local

© @

variable is not visible outside the function block
Console C:/MyRScripts/ p— |

> source('C: /MyRScripts/FirstFunction.R")
[1] "Hello from R!"
Body Temperature 98.6 °F = 37 °C

Error in print(result) : object 'result' not found
>

N

“ptﬂP
| —

Variables that are created outside of function blocks are visible
throughout the R Script code and are said to have “global scope”.

Y.

goroe®

| —

Calling the f2¢() function without an argument will also produce an
error.

Providing defaults

Custom functions can allow arguments to be optional by specifying a
default value to the parameters in the declaration. Where the function call
supplies an argument value, that value will be used by the function —
otherwise the default value will be used by the function. Each default value
must be assigned to the parameter in the declaration using the = operator,
like this:

function-name <- function(arg1=value, arg2=value)

{

statements-to-be-executed
return(object)

}

Custom functions can allow an arbitrary number of arguments to be passed
from the caller by specifying a ... three dots operator parameter at the end of
the arguments list in the declaration. Typically, this is used to accept
arguments that will be passed to another function call within the function
block. The three dots operator must also be added at the end of the function

call in the function block in order to pass further arguments, like this:
function-name <- function(arg1, arg2, ...)

{

statements-to-be-executed
function-call(arg1, arg2, ...)
return(object)

N

wot up

}

The ... three dots operator is more correctly known as the “ellipsis
operator’.

A custom function block can include a function call to itself recursively, to
repeatedly execute statements within its own function block. As with loops,
it is important that the function block includes a statement to modify a test
expression to avoid continuous execution — so the function will end at some
point:

function-name <- function(arg1, arg2)

{

statements-to-be-executed

if(test-expression)

{ return(object) }

else

{ function-name(arg1, arg2) }

N

“Dgﬂl‘
—

You can halt continuous execution of a recursive function by

pressing the Esc key, or by clicking the Stop button that appears on
the Console menu during execution.

% =]
(e
o Begin an R Script by declaring a custom function to print out and

decrement an argument value when called
launch <- function(num=5)

{
cat(num, “- ")
num <-(num-1)
Statement to be inserted here — Step 2.

\
.
L\

Default.R
e Next, add a conditional test to exit the function or call the function

recursively, according to the tested value
if(num <0) { return NULL } else { launch(num) }

o Now, declare a function that will accept an arbitrary number of

arguments to be passed to another function
graph <- function(x, y, ...)

{
plot(x, y, col="Red”, type="0", ...)

o Then, insert statements to call each function

launch()
graph(1:20, rnorm(20), xlab="X Axis”, ylab="Y Axis”)

e Run the code to call the custom functions and see the default and
arbitrary argument values applied

Console C:/MyRScripts/ =]
> source('C:/MyRScripts/Default.rR")

5-4_-3-2-4-8-

>

= = },fQ\\
— =).-"f. -Q\ r/;‘\l
/ X) -
§ == ,"1 \g// \ //;\\ P /Q %, o
< N P o
s W oy . e
54 g
\ /
? &;’
T T T T
5 10 15 20
X Axis

“Dgﬂl‘
| —

Here, the ... three dots operator allows the label text to be passed to
the plot() function.

Summary
The R programming language provides built-in math functions, such as
sqrt(), for mathematical calculation.
The built-in pi constant value represents 3.141593.
The R programming language provides built-in character string
functions, such as substr(), for string manipulation.
The built-in format() function accepts format specifiers, such as %A, to
format date and time strings.
The built-in seq() function offers greater possibilities than the : colon
operator for producing sequences.
The R programming language provides built-in LETTER, letter,
month.name, and month.abb character constants.
Random uniformly distributed numbers between zero and one are
generated by the built-in runif() function.
Random normally distributed numbers can be generated by the built-in
rnorm() function.
The Law of Large Numbers recognizes that the probability that the
average value will be closer to the mean value increases as the number
of observations increase.
The R programming language provides built-in utility functions, such as
range(), for the extraction of statistics.
Custom functions are created using the function and return keywords, and
are given a user-defined identifier name.
A comma-separated parameter list can be added in a function
declaration to accept argument values from the caller.
Variables created within a function block have local scope, so they are
only visible within that function block.
Default argument values can be specified in a parameter list using the =
operator, to allow arguments to be optional.
The ... three dots operator can be used to allow an arbitrary number of
arguments to be passed from the caller.
A recursive function includes a function call to itself, to repeatedly
execute statements within its own function block.

6

Building matrices

This chapter demonstrates how to store data in matrix structures and how

to output stored data values in a plotted chart.

Building a matrix
Transposing data

Binding vectors

Naming rows and columns
Plotting matrices

Adding labels

Extracting matrix subsets
Maintaining dimensions
Summary

Building a matrix

In R programming, a “matrix” is a two-dimensional structure that stores
data in a tabular format of cell rows and cell columns. As with vector
structures, the values stored within a matrix must all be of the same data

type.
Column ————p
[0] [1]

Row
o1y 1 4
My 2 5
21 3 6

A matrix can be created in R Script by writing a unique identifier name of
your choice in the Code Editor, then assigning values using the built-in
matrix() function. This function requires a vector containing the values as its
first argument, followed by nrow= and ncol= arguments to specify the desired
number of rows and columns you wish to create. The number of rows and
columns must match the length of the assigned vector or be an exact
multiple of its length, or a warning message will appear. In this case, the
matrix will still be created but the vector values will be recycled into
additional cells. A matrix might be used to record a value for each day of a
year in a table of 52 rows (one per week) and 7 columns (one per day), like
this:

daily.record <- matrix(vector , nrow=52, ncol=7)

Individual values are addressed in a matrix using the appropriate index
numbers of the row and column. For example, in this case you can retrieve
the value for the second day in the third week using daily.record [3,2]. New
values can also be assigned to individual cells using their index number of

row and column. For example, for the first day of the sixth week, like this:
daily.record[6, 1] <- value

In order to confirm that a structure is indeed a matrix, R provides a built-in
is.matrix() function that will only return TRUE when its specified argument is
a matrix object.

Usefully, you can seek a value within a matrix using the built-in which()
function. This requires a test expression as its argument, stating the matrix

name and the value to seek. The which() function examines the cells as if
they were a vector and, if the sought value exists, returns the index numbers
at which the value i1s found within that vector. If the sought value is not
found, the function returns zero. Optionally, you can include an arr.ind=TRUE
argument to the which() function, so it will return the row and column index
number of each cell containing the sought value.

LN

ot e

A matrix in R resembles a multi-dimensional array structure found in
other programming languages.

Begin an R Script by creating a vector containing a sequence of 32
integer values
data <- seq(1:32)

(N

R)

FirstMatrix.R
o Next, create a matrix that stores the vector values in tabular format,

then output the matrix to see the cells
table <- matrix(data, nrow=4, ncol=8)
print(table)

Now, confirm the type of structure storing the values

cat(“\nVector?:”, is.vector(table),
“\tMatrix?:”, is.matrix(table))

o Retrieve a cell value, then assign a new value to that cell

cat(“\n\nCell 4,5 Contains:”, table[4,51])
table[4,5]<-10

Finally, search all cells for a specific value, and identify the location

of cells that do contain that value
cell <- which(table == 10, arr.ind=TRUE)
cat(“\n\nValue 10 Search:\n"")

print(cell)

Run the code to see the cell values and search result

Console C:/MyRScripts/ =]
> source('C: /MyRScripts/FirstMatrix.R")
[.1] [.2] (.31 [.4] (.51 [.e] [.7]1 [.8]
1.1 i | 5 9 13 17 21 25 29
[2.] 2 6 10 14 18 22 26 30
[3.] 3 7 11 15 19 23 27 31
[4,] B 8 12 16 20 24 28 32

Vector?: FALSE Matrix?: TRUE
Cell 4,5 Contains: 20
value 10 Search:

row col
[1,] 2 3
2.1 4 5

7} Global Environment ~
Data
cell
table
values

data int [1:32] 123 4567 8910 ...
| —

Note that the matrix is created with two indices— denoting rows first
then columns second.

Transposing data

When creating a matrix, the matrix() function will, by default, insert the data
you supply into cells arranged by column order. This means that cells in the
first column will be filled with data from the elements at the beginning of
the specified vector before filling the second column, then the third column,
and so on.

If you prefer to control how the cells are filled with data, you can include a
byrow= argument in the call to the matrix() function. When this is assigned a
TRUE value, the function will then insert the data you supply into cells
arranged by row order. Cells in the first row will now be filled with data
from the elements at the beginning of the specified vector, before filling the
second row, then the third row, and so on. Assigning a FALSE value to the
byrow= argument will insert the data you supply into cells arranged by
column order — the default order.

The arrangement of cells in a matrix can also be transposed, so that the
rows become columns and the columns become rows, simply by specifying
the matrix name to the built-in t() function.

o Begin an R Script by creating a vector containing a sequence of 32

integer values
data <- seq(1:32)

N

Transpose.R
o Next, create a matrix that stores the vector values in column order,

then output the matrix to see the cells

table <- matrix(data, nrow=4, ncol=8)

cat(“\nBy Column (Default):\n\n"")

print(table)

Console cript

> print(table) "
(.11 [,2] [,3] [,4] [,5] [,6] [,7] L.8]

f1:0 1 5 9 13 17 21 25 29

12,1 2 10 14 18 22 26 30

[3.] 3 1 915 A% 23 27 31

[4,] - 12 16 20 24 ‘28 32

>

o~ o

"} Global Environment =

Data

table mtE s, 1:8] 1.234 5678910 ...
values

data ant [1:32] 1. 2345678910 ...

Y.

Dovect

| —

Select the code, then click the Run button, or press Ctrl + Enter, to

execute the code.

o Now, recreate the matrix to store the vector values in row order, then

output the matrix to see the cells

table <- matrix(data, nrow=4, ncol=8, byrow=TRUE)
cat(“\nBy Row:\n\n”")

print(table)
Console C:/MyRScripts/ =
> print(table) Ps

(.11 [.2] [.3] [.4] [.5] [.6] [.7] [.8]
1 & 2 32 4 § B 7 @&
2,1 9 1 11 12 13 314 15 18
3,] 17 18 19 20 21 22 23 24
4,] 25 26 27 28 29 30 31 32

V e e e

"} Global Environment -

Data

table int [1:4, 1:8] 1 9 17 25 2 18 26 3 11 ...
values

data int [1:321 1234567 8910...

N

“Dgﬂl‘
See that the cell data is rearranged when stored by row.

o Finally, transpose the matrix to exchange rows and columns, then

output the matrix to see the cells
table <- t(table)

cat(“\nTransposed (Rows to Columns):\n\n”)
print(table)

Console C:/MyRScripts/ =0

> print(table)
[,11 [,2]1 [,3] [.,4]
17 25

[1.,] 1 9
[2,] 2 10 18 26
[3.] 3 11 19 27
[4,] 4 12 20 28
[5.] 5 13 21 29
[6,] 6 14 22 30
[7.] 7 15 23 31
[8,] 8 16 24 32
z W
"} Global Environment ~ Q
Data
table int [1:8, 1:4] 1234567 8910 ...
values
data int [1:32] 1234567 8910 ...

1hit*iﬂ
| —

See that the matrix elements are rearranged when it gets
transposed.

Binding vectors

When you need to combine data from multiple vectors into a single matrix

the R programming language offers two possibilities:

* A sequence of vector names can be specified as arguments to the built-in
rbind() function to create a matrix that will contain the data from each
vector on individual rows.

* A sequence of vector names can be specified as arguments to the built-in
cbind() function to create a matrix that will contain the data from each
vector in individual columns.

The length of all specified vectors should be identical or a warning message

will appear. In this case, the matrix will still be created but the vector values

will be recycled into additional cells.

The data contained within the vectors to be combined must be of the same

data type, otherwise it may be converted so the matrix will contain cell data

of only one data type:

o Begin an R Script by creating three vectors of identical length,

containing different data types
start <- LETTERS[1:10]

finish <- LETTERS[17:26]
numeric <-seq(1:10)

L

e

Bind.R

o Next create a matrix that stores the vector values on individual rows,

then output the matrix to see the cells

table <- rbind(start, finish, numeric)
cat(“\nBind Rows:\n\n")
print(table)

Console
> source('C:/MyRScripts/Bind.R")

Bind Rows:

(.11 [.21 [.3]1 [.4]1 [.51 L[.61 [.71 [.8] [.91 [.10]
start AT URE TRg2 Bpdt SpR BER hgh Ryt bpt e
Finish "Q" "R™ "™ UTU ompr myn o omgn eyt mym o nge
numeric "1" "2" "3" mgm mgm mgn wow mgn mgu mqgw
>

o Open the Environment tab in the Workspace pane to see the vector

data types differ, but see that the matrix contains only values of the
character data type

"% Global Environment ~

Data
table chr [1:3, 1:10] AT Th' "1 Mgk Ep® MM Reh tgt Mgh

values
finish chr: [1Z10] g™ TRY e i BT Ul o it Sy e
numeric int [1:10]1 1234567 8 9 10
start chr [1:10] "a"™ "B" "c" "D" "E" "F" "G" "WH" "I" "2"

o Now create a matrix that stores the vector values in individual

columns, then output the matrix to see the cells
table <- cbind(start, finish, numeric)

cat(“\nBind Columns:\n\n"")

print(table)

Console C:/MyRScripts/ =]
Bind Columns:

> print(table)
start finish numeric

[1 '] "A" "Q" I‘ll‘
[2,] "B" "R" i
[3'] "C" lsll I‘3l‘
[4,] "D" T o 5
[5.] “E5 u S5
[6'] "F" 'lvll I‘ﬁl‘
[7,1 "e" W "7
[8'] "H" 'lxll I‘Sl‘
[9 '] "I LU "Y" I‘gl‘
(10,7 "2" 'z "10"

7} Global Environment «

Data

ta_b-le chr [1: 10' 1: 3] "A" I|BI| "C" I|DI| I|El| "F" IIG!I "H" "I"
values

f_‘l n_ish chr [1: 10] "er IIRrI "S" "T" "U" "V" "wN Hxlf I‘YI‘ I‘Z "

v“,¢1iﬂ

See that the matrix elements are arranged differently when binding
by rows or by columns.

The data type of any object can be examined by specifying that object as
the argument to the built-in typeof() function. For example, with the matrix

above typeof(table[1, 3 1) confirms that the cell contains the value “1” of the
character data type.

Character data can be converted to numeric data for use in an R Script by
the built-in as.numeric() function. For example, as.numeric(table[1,3 1)
converts to the double data type.

Naming rows and columns

The R interpreter automatically displays row labels and column headings
when a matrix is output in the Console pane. These may simply denote the
index number of each row ([1,], [2,],[3,], etc.) and each column ([,1], [
2], [,3], etc.) if the matrix() function was used to create the matrix.
Matrices created with the rbind() function will automatically display the
vector variable name in place of the index number for each row label when
output. Similarly, matrices created with the cbind() function will
automatically display the vector variable name in place of the index number
for each column heading when output.

Meaningful names can be given by specifying the matrix name as the
argument to the rownames() and colnames() functions. These can then each
be assigned a comma-separated list of names by the ¢() function, for row
labels and column headings respectively. Naturally, the length of each list
must match the number of rows and columns within the matrix.

Individual rows or columns can be addressed using their index number or
specified name. Copying data from a matrix with named rows and columns
into a vector will also copy the names to create a named vector with
key=value elements:

o Begin an R Script by creating three vectors of identical length, each

containing data of the double data type
ny <-¢(3.8, 5.5, 9.9, 15.7, 21.5, 26.3)
la<-¢(19.5,19.4,19.7, 20.8, 21.3, 22.7)

fw <-¢(13.7,15.4, 20.0, 24.6, 28.5, 32.7)

L
Name.R
o Next, create a matrix that stores the vector values on individual

rows, then output the matrix to see the cells
table <- rbind(ny, la, fw)
print(table)

o Now, assign meaningful names for the row labels and column
headings

rownames(table) <- c(“New York”, “Los Angeles”, “Fort Worth”)
colnames(table) <- month.abb[1:6]

fu,tiiﬂ
Notice how the R constant month.abb is used here to specify
column heading names.
Then, output a text string and the revised matrix

cat(“\nAverage High Temperature (°C):\n\n")
print(table)

Create a new vector to store the data from a single row of the

matrix, using either the row name or index number
nyc <-table[“New York” ,] # Or table[1,]

Next, display the data stored in the new vector variable

cat(“\nNew York:”, nyc, “\n\n”")

Now, display the entire contents of the new vector variable

print(nyc)

Run the code to see the row labels, column headings, and the named

& oe @

vector

Console C:/MyRScripts/ P

> source('C:/MyRScripts/Name.R")
E:31 21 [31 [<41 E51 E61

ny 3:B 5.5 9:945.7 21.5 26.3
Ta 19.5 19.4 19.7 20.8 21.3 22.7
fw 13.7 15.4 20.0 24.6 28.5 32.7

Average High Temperature (°C):

Jan Feb Mar Apr May Jun
New York 3-8 5.5 99057 21.5 26-3
Los Angeles 19.5 19.4 19.7 20.8 21.3 22.7
Fort worth 13.7 15.4 20.0 24.6 28.5 32.7

New York: 3.8 5.5 9.9 15.7 21.5 26.3
Jan Feb Mar Apr May Jun

3.8 5.5 9.9 15.7 21.5:26.3
>

"} Global Environment ~

Data

table num [1:3, 1:6] 3.8 19.5 13.7 5.5 19.4 15.4 9.9 19.7 ..
values

fw num [1:6] 13.7 15.4 20 24.6 28.5 32.7

la num [1:6] 19.5 19.4 19.7 20.8 21.3 22.7

ny num [1:6] 3.8 5.5 9.9 15.7 21.5 26.3

nyc Named num [1:6] 3.8 5.5 9.9 15.7 21.5 26.3

The cat() function retrieves only the stored data here, whereas the
print() function also retrieves the column headings.

The names() function can be used to retrieve the names within a
named vector. For example, names(nyc[1]) in this example
retrieves “Jan”, whereas nyc[1] retrieves the value 3.8.

Plotting matrices

The R programming language provides a matplot() function that allows you

to easily produce graphic visualizations of data contained within a matrix

structure. This function requires the matrix name as an argument, plus

several other arguments to specify how you would like the visualization to

appear:

* type= — the type of plot to be drawn. Options include “p” for points only,
“I” for lines only, and “b” for both plots and lines.

* pch=— the plotting character to use. Options are specified numerically

for one or more of the symbols below:
o1 A2 43 X4 5

V6 K7 ¥8 49 @10
X1 H12 ®13 M14 E15
@ A7 13 @19 e 20

021 022 &23 A2 725
* col= — the plotting color to use. Options are specified by name or
numerically for one or more colors, and include the basic palette below:

Hexadecimal:

Black 1 #000000
Red 2 #FFO000
Green 3 #00FF00
Blue - #0000FF
Cyan 5 #00FFFF
Magenta 6 #FFOOFF
Yellow 7 #FFFFOO
Gray 8 #BEBEBE

Y.

Pora
Multiple options may be specified as a comma-separated list of
arguments to the ¢() function, or as a sequence using the colon

operator.:

@

gew?®

Hexadecimal color values must be specified as character strings
within quote marks.

o Begin an R Script by creating three vectors of identical length, each

containing data of the double data type
ny <-¢(3.8, 5.5, 9.9, 15.7, 21.5, 26.3)
la<-¢(19.5,19.4,19.7, 20.8, 21.3, 22.7)

fw <-¢(13.7,15.4, 20.0, 24.6, 28.5, 32.7)

MatrixPlot.R
o Next, create a matrix that stores the vector values in individual

columns, then output the matrix to see the cells
table <- cbind(ny, la, fw)
print(table)

o Now, add a statement to create a graphic visualization of the data —

showing points and lines, using three different plot characters, and

drawn in three different colors
matplot(table, type="b”, pch=15:17, col=2:4)
o Run the code to see the matrix in the Console and to see its graphic

visualization on the Plots tab

Console ripts, =
> source('C: /MyRScripts/MatrixPlot.R")
ny la fw
[1.]) 988 295 437
[2,] 5.5 19.4 15.4
[3.] 9.9 19.7 20.0
[4,] 15.7 20.8 24.6
[5.] 21.5 21.3 28.5
[6:] 26.3 22.7 327

Files Plots Packages Help Viewer =
A P Zoom S bpot- | O { “5- Publish ~

]
>

1 1]

i 0

i)

b %
\
s =)

table
5 10 15 20 25 30
1 |
>]
»
[] >
‘. %

|

| —
Here, the multiple options could alternatively be specified as

pch=c(15, 16, 17) and
col=c(2, 3,4).

Adding labels

The R programming language matplot() function, introduced in the previous
example, can accept further arguments to specify labels for the plot and to
control the range along each axis:

* xlab=, ylab= — title for the x axis and y axis, respectively.

« xlim=, ylim= — range for the x axis and y axis, respectively.

* main= — headline title for the plot.

The R interpreter will automatically supply plot axes with labeled tick
marks, but you can suppress these to specify your own axes. This first
requires you to include an axes=FALSE argument in the matplot() function
call to suppress the automatic axes, then you can use the built-in axis()
function to specify each required axis. This function requires a first integer
argument to specify at which side of the plot to draw the axis — below (1),
left (2), above (3), or right (4). If no further arguments are included, the
range and labels will be automatically added. To supply your own range and
labels, an at= argument 1s required, to specify the points at which to draw
tick marks, and a labels= argument to specify label names. Label names are
assigned as a vector of comma-separated character strings whose length
must match the specified tick range. Typically, this might use the rownames(
) or colnames() functions to assign the matrix row or column names as axis
labels.

Legends

The R programming language legend() function allows you to easily add a
descriptive legend to a plot. This function requires a first argument to
specify a position at which to draw the legend. Special keywords, such as
“topleft”, can be used for this purpose. The position can be further adjusted
by including an inset= argument to distance the legend away from the plot
margins. Most importantly, the legend() function should include pch= and
col= arguments whose assigned values must precisely match those specified
to the matplot() function for correct identification of the plot’s point
characters and colors. Finally, the legend() function should include a legend=
argument to describe the plot components by assignment of a vector of
comma-separated character strings. Typically, this might use the rownames()
or colnames() functions to assign the matrix row or column names.

N

“ogﬂ'P

Available keywords for positioning legends are bottomright,
bottom, bottomleft, left, topleft, top, topright, right, and center.

o Copy the previous MatrixPlot.R script file and assign row and column

names before calling the print() function
colnames(table) <-

c(“New York”, “Los Angeles”, “Fort Worth”)
rownames(table) <- month:abb[1:6]

N

Label.R
o Modify the matplot() function call to add arguments

matplot(table, type="b”, pch=15:17, col=2:4,
xlab="Months” ylab="Average High (°C)”,
xlim=c(1, 6), ylim=c(0, 35), axes=FALSE,
main="City Temperature Comparison”)

o Create axis labels and add a descriptive legend

axis(1, at=1:6, labels=rownames(table))

axis(2)

legend(“topleft”, inset=0.02, pch=15:17, col=2:4,
legend=colnames(table))

o Run the code to see the matrix in the Console and to see its labeled
graphic visualization on the Plots tab

Console MyRScripts =]
> source('C: /MyRScripts/Label.R")
New York Los Angeles Fort Worth

Jan 3.8 19.5 13.7
Feb 5.5 19.4 15.4
Mar 9.9 19.7 20.0
Apr 5.7 20.8 24.6
May 25 21.3 28.5
Jun 26.3 22.7 327

>

Files Plots Packages Help Viewer P |
& /A Zoom T Export - | © [%+ Publish =

City Temperature Comparison

- " New York L
_ ® 7| * LosAngeles e
- | ~ Fort Worth s =
5 o ‘_.1/'
f [o I B e »--- el] e
g i . e -/
E g i ./
<
- f./
"
o =
I T T T T 1
Jan Feb Mar Apr May Jun
Months

3\ wﬂ‘

| —
The value assigned to the inset= argument is a fraction of the plot
region, not an absolute measure of length.

Insights from this plot: Los Angeles has the most consistent high
temperature, Fort Worth reaches the Los Angeles temperature in
March, but New York does not reach the Los Angeles temperature
until May.

Extracting matrix subsets

A “subset” is simply a group of data values that are part of another larger
set of data values. In R programming, it is often useful to extract subsets for
comparison of specific areas of interest. With vector variables, a subset can

be extracted by specifying the index numbers of specific elements, like this:

alphabet <- LETTERS][]
vowel.subset <- alphabet[1, 5, 9, 15, 21]

Alternatively, with named vector variables, a subset can be extracted by

specifying the index names of specific elements:
nato <- ¢(A="Alpha”, B="Bravo”, C="Charlie”, D="Delta”)
abc.subset <-nato[¢c(A,B,C)]

Subsets that are extracted from a vector have one dimension and are
returned as a vector data structure.
With matrices, a subset can be extracted by specifying the index numbers of

specific cells, like this:
table <- matrix(1:60, nrow=12, ncol=5)
table.subset <- table[1:3, 1:5]

The rows and columns of a matrix can be named using the rownames() and
colnames() functions, or by including a dimnames= argument in the call to
the matrix() function. This argument requires a list of length one to name the
rows only, or a list of length two to name both the rows and columns, like
this:
table <- matrix(1:60, nrow=12, ncol=5,

dimnames=list(month.abb[], LETTERS[1:5]))

A subset can then be extracted by specifying the row or column names of
specific cells, like this:

table.subset <- table[month.abb[1:3], LETTERS[1:5]]

When an entire row or column is to be extracted, its index number or name
can be entirely omitted from the square brackets. For example, the

assignments above can be made, like this

table.subset <- table[1:3,]
table.subset <- table[c(“Jan”, “Feb”, “Mar) ,]

Extracted subsets that contain more than one dimension (i.e. more than one
row or column) are returned as a matrix data structure.

q%?

Wt
foraet

Notice that the ¢() function must be included in the square brackets
to specify the index names of elements to be extracted.

pew?™®

A comma is still required when omitting an index name or number
from the square brackets.

Begin an R Script by creating three vectors of identical length, each

containing data of the double data type
ny <- ¢(3.8, 5.5, 9.9, 15.7, 21.5, 26.3)
la<-¢(19.5,19.4,19.7, 20.8, 21.3, 22.7)

fw <-¢(13.7, 15.4, 20.0, 24.6, 28.5, 32.7)

EF

Subset.R

Next, create a matrix that stores the vector values in individual

columns, then name the rows and columns
table <- cbind(ny, la, fw)
rownames(table) <- month.name[1:6]
colnames(table) <- ¢(“New York”,

“Los Angeles”, “Fort Worth”)

Add statements to output the entire matrix

cat(“\nMatrix...\n”")
print(table)

Now, create a subset that only stores values from the first three rows

of just two columns of the matrix
table.q1 <- table[1:3,¢(1,3)]
Add statements to output the entire subset

cat(“\nSubset...\n”")
print(table.q1)

Run the code to see the matrix and subset in the Console

Console C:/MyRScripts/ =0
> source('C: /MyRScripts/Subset.R")

Matrix...

New York Los Angeles Fort Worth
January 3.8 19.5 13.7
February 5.5 19.4 15.4
March 9.9 19.7 20.0
April 157 20.8 24.6
May 215 21.3 28.5
June 26.3 22.7 32.7
Subset. ..

New York Fort worth
January 3.8 13.7
February 5.5 15.4
March 9.9 20.0

> |

§

\ ot P
| —
Here the : colon operator is used to select rows 1-TO-3 and the ,
comma operator is used in the ¢() function to select columns 1-

AND-3.

Maintaining dimensions
When extracting subsets from a matrix it is important to recognize the type
of data structure in which the data is returned — the default behavior may
not be what you require!
If the subset has more than one dimension, the subset will be returned in a
matrix data structure, but if the subset has only one dimension, the subset
will, by default, always be returned in a vector data structure. This is
because R is trying to anticipate your requirements by automatically
dropping (deleting) dimensions that it considers to contain redundant
information.
Where the subset extracts data from a single row, the row name dimension
will be deleted, and the column names will be used as element names in the
returned vector. Conversely, where the subset extracts data from a single
column, the column name dimension will be deleted and the row names will
be used as element names in the returned vector.
The default behavior can be overridden by including a final drop=FALSE
argument within the [] square brackets that specify the rows or columns to
be extracted. This means that subsets that extract data from a single row, or
from a single column, will now be returned in a matrix data structure.
Begin an R Script by creating a vector containing a numerical

sequence
data <-1:28

N

Dimension.R
o Next, create a matrix that stores the vector values in rows, and name

the rows and columns alphabetically
table <- matrix(data, nrow=4, ncol=7, byrow=TRUE,
dimnames=list(letters[1:4], LETTERS[1:7]))

o Add statements to output the entire matrix

cat(“\nMatrix...\n”")
print(table)

o Now, create a subset that extracts data from a single row of the

matrix — using the default behavior
tier <- table[2,]

Y.

Tore

The default behavior is sensible as you will generally want data from
single rows or columns of a matrix to be returned as a vector.

Add statements to output the subset

cat(“\nSubset...\n\nRow #2 (Default)...\n”")
print(tier)

Add statements to identify the subset’s data structure

cat(“\nMatrix?:”, is.matrix(tier))
cat(“\tVector?:”, is.vector(tier), “\n\n”")

Then, recreate the subset that extracts data from a single row of the

matrix — overriding the default behavior
tier <- table[2, , drop=FALSE]

gewa™

Don’t forget the extra space and comma within the square brackets
to denote an entire row or a entire column.

O
o
10

Add statements to output the revised subset

cat(“\nRow #2 (Drop=FALSE)...\n”)
print(tier)

Add statements to identify the subset’s data structure now

cat(“\nMatrix?:”, is.matrix(tier))
cat(“\tVector?:”, is.vector(tier), “\n”)

Run the code to see the matrix and subsets in the Console — notice

that the row name dimension is retained when the default behavior
has been overridden

Console C:/MyRScripts/ [=1m

> source('C: /MyRScripts/Dimension.R") "~
Matrix..
A°B C D EF G
a 1 2 3 4 5 6 &
b 8 91011 12 13 14
c 15 16 17 18 19 20 21
d 22 23 24 25 26 27 28
Subset...

Row #2 (Default)...
A B C D E F G
8 910 11 12 13 14

Matrix?: FALSE Vector?: TRUE

Row #2 (Drop=FALSE)...
AB C D E F G
b 89 10 11 12 13 14

Matrix?: TRUE Vector?: FALSE
>

wﬂ?

| —
Adding a drop=FALSE argument ensures that data will always be
returned in the same class of object as the one from which it has
been retrieved.

Summary

A matrix is a two-dimensional structure that stores data in a tabular
format of cell rows and cell columns.

The matrix() function requires a vector argument and arguments to
specify the desired number of rows and columns.

Unless the number of matrix rows and columns match the length of the
vector, values will be recycled in additional cells.

Individual matrix values are addressed by stating the index number of
their row and column within square brackets.

The is.matrix() function can be used to identify a matrix object, and the
which() function can seek a stored value.

The matrix() function can optionally include a byrow=TRUE argument to
insert data by row order, and a dimnames= argument to name the rows
and columns.

Matrix rows and columns arrangement can be transposed using the t()
function — so that rows become columns.

The rbind() function creates a matrix of each vector on rows, and the
cbind() function places each vector in columns.

The rownames() and colnames() functions can be used to name the rows
and columns of a specified matrix argument.

The matplot() function can produce graphic visualizations of data
contained within a matrix structure.

The axis() function can be used to specify axis appearance, and the
legend() function can add a descriptive legend.

A subset 1s a group of data values that are part of another larger set of
data values.

A subset can be extracted from a matrix by specifying the index
numbers of specific elements, or by stating their names.

A subset that has one dimension will, by default, be returned as a vector
— otherwise it will be returned as a matrix.

A drop=FALSE argument can be included within the [] square brackets
that specify rows or columns to be extracted from a matrix to ensure that
the subset will be returned as a matrix.

7
Constructing data frames

This chapter demonstrates how to store and manipulate data in data

frame structures.

Constructing a data frame
Importing data sets
Examining data frames
Addressing frame data
Extracting frame subsets
Changing frame columns
Filtering data frames
Merging data frames
Adjusting factors
Summary

Constructing a data frame

In R programming, a “data frame” is a two-dimensional structure that stores
data in a tabular format of cell rows and cell columns. Unlike matrix
structures, the values stored within a data frame do not need to all be of the
same data type — they may contain values of any data type. This means that
data frames are especially versatile and are the most useful data structure in
R programming.

A data frame can be created in R Script by writing a unique identifier name
of your choice in the Code Editor, then assigning values using the built-in
data.frame() function. This function requires vectors containing values as its
arguments. Each vector should be of the same length, or values will be
recycled in additional cells to match the length of the longest vector.

@

pewa e

Remember to include the period character in the data.frame() and
is.data.frame() function names.

The values in each vector will appear in separate columns of the data frame,
and each column will, by default, be given the name of the corresponding
vector as its column name. Row names will, by default, be numbered in
ascending order from one. As with matrices, the arrangement of data frame
rows and columns can be transposed using the t() function — to switch rows
to columns.

If you prefer to supply your own names for data frame rows and columns,
these can be assigned using the rownames() and colnames() functions — as
with matrices. Alternatively, you can include a row.names= argument in the
call to the data.frame() function to specify a list of names for the data frame
TOWS.

Individual values are addressed in a data frame using the appropriate index
numbers of the row and column. New values can also be assigned to
individual cells using their index number of row and column, but care must
be taken to observe the data type of that cell.

In order to confirm that a structure is indeed a data frame, R provides a
built-in is.data.frame() function that will only return TRUE when its specified
argument is a data frame object.

Usefully, you can seek a value within a data frame using the built- in which(
) function to specify a logical argument and, optionally, you can include an
arr.ind=TRUE argument to return the row and column index number of each
cell containing the sought value.

Begin an R Script by creating three vectors of differing data type

values

bools <- ¢(TRUE, FALSE, TRUE)
chars <-LETTERS[1:3]

nums <-1:3

L

RS

FirstDataframe.R

® ® © ©

Next, create a data frame that stores the vector values, then output

the data frame and confirm its structure

frame <- data.frame(bools, chars, nums)
print(frame)
cat(“\nData Frame?:”, is.data.frame(frame), “\n\n”")

Now, name the data frame’s rows and columns

rownames(frame) <- ¢(“Tier 1:”, “Tier 2:”, “Tier 3:”)

colnames(frame) <- c¢(“Logical”, “Alphabetical”, “Numerical”)

Then, assign a new value to one cell and output the data frame once

more to see the named rows and columns
frame[2,2] <-“A”
print(frame)

Finally, search all cells for a specific value, and identify the location
of cells that do contain that value

cat(“Search for ‘A’..\n”)
print(which(frame == "A”, arr.ind=TRUE))

Run the code to see the cell values and search result

Console C:/MyRScripts/ = -]
> source(’'C:/MyRScripts/FirstDataframe.R")
bools chars nums
1 TRUE A 1
2 FALSE B 2
3 TRUE C 3

Data Frame?: TRUE

Logical Alphabetical Numerical

Tier 1; TRUE A 1
Tier 2: FALSE A 2
Tier 3: TRUE C 3

Search for "A'...
row col

Tier 1; 1 2

Tier 2: 2 2

> |

) A

Alternatively, the row names could be assigned to a row.names=
argument in the call to the data.frames() function.

Importing data sets

Collections of tabular data are often stored as a “data set” in a comma-
separated values (CSV) file. These data sets can be easily imported into
RStudio and their data copied into a data frame using the built-in read.csv()
function. This function simply requires the CSV file path as its argument.
The path to a CSV file can be supplied to the read.csv() function by
specifying the file.choose() function as its argument. This launches a “Select
file” dialog that allows you to browse to the location of the CSV file. Once
selected, the path is supplied to the read.csv() function so the data can be
copied into a data frame. For example, the statement frame <- read.csv(
file.choose()) provides a dialog to select a CSV file whose data will
subsequently be copied into a data frame named “frame”.

L » ThisPC > OS(C) » MyRScripts v O Search MyRScripts -]

Organize v New folder m v [N 9
Intel A uswmrwn b
Java
MinGW
MyCode
MyDatabases
MyGo
Mylava
MyKeystore
MyPregrams
MyRScripts
MyScripts
MyWebsites] DataSet-Browsers.csv v

File npame: | DataSet-Browsers.csv v‘ Allfiles (%) ~

N

wot e

You can find many free CSV data sets using a web search engine,
and spreadsheet data can be exported from Microsoft Excel in CSV
file format.

You can set the default working directory in RStudio by clicking
Tools,Global Options, and the General option.

Alternatively, the full path to a CSV file can be specified to the read.csv()
function as its argument. For example, this statement provides the full path
to the selected CSV file illustrated above: frame <- read.csv(
“C:/MyRScripts/DataSet-Browsers.csv”). Full path names can be lengthy, so it is
convenient to set the CSV file location as RStudio’s working directory by
specifying its directory as the argument to the setwd() function. The
read.csv() function then only requires the CSV file name as its argument.
You can discover the current working directory at any time by calling the
built-in getwd() function.

A

'L
Rorost

Paths can use the forward slash / character or escaped backslash,

such as C:\\MyRScripts\\DataSet-Browsers.csv.

o Begin an R Script by setting the working directory, then confirm its
path address

setwd(“C:/MyRScripts”)
cat(“Working Directory:”, getwd(), “\n\n”)

N

ImportData.R
o Next, create a data frame that imports data from a CSV file located

in the working directory
frame <-read.csv(“DataSet-Browsers.csv”)

o Now, output the data frame’s rows and columns
print(frame)

o Run the code to see the imported data

Console C:/MyRScripts/ =
> source('C: /MyRScripts/ImportData.R") ~
working Directory: C:/MyRScripts

Wweb.Browser.version PerCentage.Market.Share

1 Chrome 61.0 35.16
2 Microsoft Internet Explorer 11.0 12152
3 Chrome 55.0 7.40
4 Firefox 56 6.53
5 Microsoft Edge 14 3.60
6 Chrome 49.0 2:26
7 Chrome 60.0 2.19
8 Chrome 45.0 1.86
9 Chrome 62.0 1.76
10 safari 11.0 1:-70
11 Chrome 50.0 1.59
12 Microsoft Edge 15 1.43
13 Chrome 58.0 125
14 Firefox 55 15
15 Microsoft Internet Explorer 8.0 1.
16 Firefox 52 : 1
17 Chrome 53.0 0.
18 safari 10.0 0.
19 Opera 48 0.
20 Firefox 53 0.
21 Microsoft Internet Explorer 9.0 0.
22 Firefox 40 0.
23 Safari 10.1 0.
24 Microsoft Edge 13 0.
25 Chrome 47.0 0.
26 Chrome 59.0 0.
27 Microsoft Internet Explorer 10.0 0.
28 safari 8.0 0.
29 Chrome 56.0 0.
30 Firefox 57 0.
31 Chrome 57.0 0.
32 Chrome 43.0 0.
33 Microsoft Edge 12 0.
34 Chrome 60.4 0.
35 Safari 9.1 0.
36 Firefox 50 0.
37 Firefox 54 0.
38 Firefox 8.0 0.
39 Firefox 47 0.
40 Chrome 54.0 0.

Here, the column names are supplied by the first line of the CSV file
but the rows are automatically numbered by the R interpreter. Notice
that there are three instances of identical market share.

Examining data frames
The R programming language provides a number of functions for the
examination of data frame structures:

nrow() — returns an integer that is the total number of rows within the
data frame specified as its argument.

ncol() — returns an integer that is the total number of columns within the
data frame specified as its argument.

head() — by default returns the top six rows of the data frame specified as
its argument, plus its column and row names. Optionally, a n= argument
can be added to specify how many rows to return. For example, n=3
returns the top three rows.

tail() — by default returns the bottom six rows of the data frame specified
as its argument plus column and row names. An n= argument can be
added to specify how many rows to return. For example, n=3 returns the
bottom three rows.

str() — outputs an overview of the structure of the data frame specified as
its argument — listing the total number of objects and variables it
contains, together with the number of unique factors in each column.
Internally, the factors are ranked numerically in descending order where
the top rank is level 1.

summary() — outputs a summary of the contents of the data frame
specified as its argument — by default, six levels of factors are displayed
but an optional maxsum= argument can be added to specify how many
levels to display. For columns that contain numerical data, the summary
provides statistics:

Minimum — the lowest number in the column.

1st Quartile — the mid-point value between the minimum number and
the median value.

Median — the mid-point value of the column.

Mean — the average value of the numbers in the column.

3rd Quartile — the mid-point value between the median value and the
maximum number.

Maximum — the highest number in the column.

N

“ogﬂ'P
| —

It is useful to check that the total number of imported rows and
columns match what is expected from the source data set.

@

‘E‘l“‘ﬁr
In R programming, the str() function refers to “structure”, unlike in
other programming languages in which it refers to “string”.

Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory

frame <-read.csv(“DataSet-Browsers.csv”)

e
N
N

ExamineData.R
o Next, display the total number of rows and columns

cat(“Rows:”, nrow(frame), “\itColumns:”, ncol(frame))
o Now, output the first and last three rows and columns
cat(“\nHead...\n”)

print(head(frame, n=3))

cat(“\nTail...\n”")

print(tail(frame, n=3))

o Finally, display the structure and a summary

cat(“\nStructure...\n”)

print(str(frame))

cat(“\nSummary...\n”")
print(summary(frame))

Run the code to examine the data frame

Console C:/MyRScripts/ -
> source('C:/MyRScripts/ExamineData.R')

Rows: 40 Columns: 2
Head. ..
Web.Browser.version PerCentage.Market.Share

1 Chrome 61.0 35.16
2 Microsoft Internet Explorer 11.0 12.52
3 Chrome 55.0 7.40
Tail...

web.Browser.Version PerCentage.Market.Share
38 Firefox 8.0 0.19
39 Firefox 47 0.19
40 Chrome 54.0 0.17
Structure...
'data.frame": 40 obs. of 2 variables:
$ web.Browser.Vversion : Factor w/ 40 levels "Chrome 43.0",..:

1532 8 24 29 4 13 2 16 38 ...
$ PerCentage.Market.Share: num 35.16 12.52 7.4 6.53 3.6 ...

NULL
summary. . .
web.Browser.version PerCentage.Market.Share
Chrome 43.0: 1 Min. : 0.170
Chrome 45.0: 1 1st Qu.: 0.470
Chrome 47.0: 1 Median : 0.820
Chrome 49.0: 1 Mean + 2.373
Chrome 50.0: 1 3rd Qu.: 1.617
Chrome 53.0: 1 Max. :35.160
(Other) 134

Here, the first column contains data of the character data type,
whereas the second column contains data of the numerical double
data type — so statistics are provided for that column in the summary.

Addressing frame data

There are a number of ways to address data contained in a data frame. As
with matrices, cells can be addressed by stating their row and column index
number within [] square brackets. Alternatively, cells can be addressed by
stating their row and column name within [] square brackets. Additionally,
data frames can employ the $ dollar operator, so that a column can be

addressed with this convenient syntax:
data.frame.name$column.name

Similarly, cells can be addressed by appending [] square brackets to the
above syntax in which to specify row index numbers. The factor levels of a
column can be addressed by specifying the column as an argument to the
built-in levels() function using the same syntax:
Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory

frame <-read.csv(“DataSet-Browsers.csv”)

L

RS

AddressData.R
o Next, output the first three rows and columns

cat(“\nHead...\n”)
print(head(frame, n=3))

Address a single cell by row and column index number

data <- frame[1, 2]

cat(“\nRow #1, Column #2:”, data, “\n”)

Now, address a single cell by row index number and column name
data <- frame[2, “PerCentage.Market.Share”]

cat(“\nRow #2, Column #2:”, data, “\n”)

Then, address a single cell by column name and row index number
data <- frame$PerCentage.Market.Share[3]

cat(“\nRow #3, Column #2:”, data, “\n”)

Address an entire column by name to output all its levels

print(levels(frame$Web.Browser.Version))
Run the code to see the data content from the data frame

©e & ©

Console C:/MyRScripts/ =

> source('C:/MyRScripts/AddressData.R") ~
Head. ..
Web.Browser.version PerCentage.Market.Share
1 Chrome 61.0 35.16
2 Microsoft Internet Explorer 11.0 12.52
3 Chrome 55.0 7.40

Row #1, Column #2: 35.16
Row #2, Column #2: 12.52
Row #3, Column #2: 7.4

[1] "Chrome 43.0"
[2] "Chrome 45.0"
[3] “Chrome 47.0"
[4] "Chrome 49.0"
[5] “"Chrome 50.0"
[6] "Chrome 53.0"
[7] "Chrome 54.0"
[8] "Chrome 55.0"
[9] “Chrome 56.0"
[10] “Chrome 57.0"
[11] "Chrome 58.0"
[12] "Chrome 59.0"
[13] "Chrome 60.0"
[14] "Chrome 60.4"
[15] “Chrome 61.0"
[16] “Chrome 62.0"
[17] "Firefox 40"
[18] "Firefox 47"
[19] "Firefox 50"
[20] "Firefox 52"
[21] "Firefox 53"
[22] "Firefox 54"
[23] "Firefox 55"
[24] "Firefox 56"
[25] "Firefox 57"
[26] "Firefox 8.0"
[27] "Microsoft Edge 12"
[28] "Microsoft Edge 13"
[29] "Microsoft Edge 14"
[30] "Microsoft Edge 15"
[31] "Microsoft Internet Explorer 10.0"
[32] "Microsoft Internet Explorer 11.0"
[33] "Microsoft Internet Explorer 8.0"
[34] "Microsoft Internet Explorer 9.0"
[35] "Opera 48"
[36] "safari 10.0"
[37] "safari 10.1"
[38] “safari 11.0"
[39] "safari 8.0"
[40] "safari 9.1"

‘ydgiif

| —

Notice how the levels are automatically created in descending
alphabetical and numerical order.

Extracting frame subsets
Subsets can be extracted from data frames by stating their row and column
index numbers within [] square brackets — in the same way that subsets are
extracted from matrices. For example, using frame[1:3, 2] to extract a subset
containing only the second column of the first three rows of a data frame, or
frame[1:3,] to extract a subset containing all columns of the first three rows.
Alternatively, a subset of specific cells can be extracted using the familiar ¢(
) function. For example, using frame][¢(1, 3, 5), 2] to extract a subset
containing only the second column of the first, third, and fifth, rows of a
data frame, or frame[c(1, 3, 5),] to extract a subset containing all columns of
those specific rows.
When a subset extracts one or more rows or more than one column from a
data frame, the data is returned in a data frame object. Conversely, when a
subset extracts only one column, the data is, by default, returned in a vector
object. The default behavior can be overridden by including a final
drop=FALSE argument within the [] square brackets that specify the column
to be extracted — so the data will now be returned in a vector structure:
o Begin an R Script by creating a data frame that imports data from a
CSV file located in the working directory

frame <-read.csv(“DataSet-Browsers.csv”)

SubsetData.R
Next, extract a subset containing data in all columns of four specific

B

rows, then output the subset data
edge <-frame[c(33, 24, 5,12),]
print(edge)

From the original subset, extract a second subset containing data in
all columns of one single row

edge.row <-edge[1,]

Output the second subset data to see the column headings and row

numbering preserved

cat(“\nRow...\n”")
print(edge.row)

Confirm the data structure of the second subset

cat(“Data Frame?:”, is.data.frame(edge.row))

® © 6 e

B ©

