
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Beginner's Guide 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright: © 2011, 2012, 2013, 2014, 2015, 2016 Anywhere Software  Edition 3.3 

 

Last update :  2016.10.26 

  



Table of contents 2 B4A   Beginner's Guide 

1 Getting started .............................................................................................................................. 9 
1.1 Trial version ....................................................................................................................... 10 

1.2 Installing B4A and Android SDK ...................................................................................... 11 
1.2.1 Install and configure B4A .............................................................................................. 13 

1.3 Installing B4A Bridge ........................................................................................................ 14 
2 My first program  (MyFirstProgram.b4a) .................................................................................. 15 

3 Second program  (SecondProgram.b4a) .................................................................................... 40 
4 The IDE ...................................................................................................................................... 54 

4.1 Menu and Toolbar .............................................................................................................. 55 
4.1.1 Toolbar ........................................................................................................................... 55 
4.1.2 File menu ........................................................................................................................ 56 

4.1.3 Edit menu ....................................................................................................................... 56 
4.1.4 Project menu................................................................................................................... 57 

4.1.4.1 Add a new module ................................................................................................. 57 

4.1.5 Tools menu ..................................................................................................................... 57 
4.1.5.1 IDE Options ........................................................................................................... 58 

4.1.5.1.1 Themes ............................................................................................................. 58 
4.1.5.1.2 Font Picker ....................................................................................................... 59 

4.1.5.1.2.1 Word wrap ................................................................................................. 59 

4.1.5.1.2.2 Configure Process Timeout ....................................................................... 59 
4.1.5.1.2.3 Disable Implicit Auto Completion ............................................................ 59 

4.1.5.2 Take Screenshot ..................................................................................................... 60 

4.1.5.3 Create Video........................................................................................................... 61 
4.1.5.4 Clean Files Folder (unused files) ........................................................................... 62 
4.1.5.5 Clean Project .......................................................................................................... 62 

4.2 Code area ............................................................................................................................ 63 
4.2.1 Split the code area .......................................................................................................... 63 

4.2.2 Code header Project Attributes / Activity Attributes ..................................................... 64 
4.2.2.1 Project Attributes ................................................................................................... 64 

4.2.2.2 Activity Attributes .................................................................................................. 64 

4.2.3 Undo – Redo   ...................................................................................................... 66 
4.2.4 Collapse a subroutine ..................................................................................................... 66 

4.2.5 Collapse a Region .......................................................................................................... 67 
4.2.6 Collapse the entire code ................................................................................................. 68 

4.2.7 Copy a selected bloc of text ........................................................................................... 69 
4.2.8 Find / Replace ................................................................................................................ 70 

4.2.9 Commenting and uncommenting code    ............................................................. 71 

4.2.10 Bookmarks   ........................................................................................................... 72 

4.2.11 Indentation   ..................................................................................................... 73 
4.2.12 Documentation tool tips while hovering over code elements .................................... 75 
4.2.13 Auto Completion ........................................................................................................ 76 

4.2.14 Built in documentation ............................................................................................... 80 
4.2.14.1 Copy code examples .......................................................................................... 81 

4.2.15 Jump to a subroutine .................................................................................................. 82 
4.2.16 Highlighting occurrences of words ............................................................................ 83 
4.2.17 Compiler mode ........................................................................................................... 83 

4.2.17.1 Release and Release (obfuscated) modes ........................................................... 84 

4.2.18 Breakpoints ................................................................................................................ 85 
4.2.19 Color Picker ............................................................................................................... 87 

4.2.20 Colors in the left side ................................................................................................. 88 
4.2.21 URLs in comments and strings are ctrl-clickable ...................................................... 89 

4.3 Tabs .................................................................................................................................... 90 



Table of contents 3 B4A   Beginner's Guide 

4.3.1 Floating Tab windows .................................................................................................... 91 

4.3.2 Float   ........................................................................................................................ 92 

4.3.3 Auto Hide   ................................................................................................................ 95 
4.3.4 Close ............................................................................................................................... 97 

4.3.5 Modules and subroutine lists   ...................................................................... 98 
4.3.5.1 Find Sub / Module (Ctrl + E) ................................................................................. 99 

4.3.6 Files Manager   .................................................................................... 100 

4.3.7 Logs   ............................................................................................................... 102 

4.3.7.1 Compile Warnings ............................................................................................... 103 
4.3.7.1.1 Ignoring warnings ........................................................................................... 104 
4.3.7.1.2 List of warnings .............................................................................................. 105 

4.3.8 Libraries Manager   ........................................................................ 111 

4.3.9 Quick Search   ...................................................................................... 112 

4.3.10 Find All References (F7)    .................................................. 114 
4.4 Navigation in the IDE ...................................................................................................... 115 

4.4.1 Alt + Left  / Alt + Right  Move backwards and forwards ............................................ 115 
4.4.2 Alt + N   Navigation stack menu .................................................................................. 115 

4.4.3 Split the screen ............................................................................................................. 115 
4.4.4 Multiple windows ........................................................................................................ 116 

4.4.5 Ctrl + E  Search for sub or module .............................................................................. 116 
4.4.6 Ctrl + Click on any sub or variable .............................................................................. 116 

4.4.7 F7 - Find all references ................................................................................................ 116 
4.4.8 Ctrl + F  Quick Search ................................................................................................. 116 

5 Screen sizes and resolutions ..................................................................................................... 117 

5.1 Special functions  like 50%x,  50dip ................................................................................ 122 

5.1.1 PerXToCurrent, PerYToCurrent - 50%x ..................................................................... 122 
5.1.2 DipToCurrent - 50dip ................................................................................................... 122 
5.1.3 LayoutValues.ApproximateScreenSize ....................................................................... 123 

5.1.4 ActivitySize in the DesignerScripts ............................................................................. 123 
5.2 Working with different screen sizes / number of layouts ................................................ 124 

5.3 Screen orientations ........................................................................................................... 131 
5.4 Supporting multiple screens - tips and best practices ...................................................... 132 

5.4.1 Advices ......................................................................................................................... 132 

5.4.1.1 'dip' units .............................................................................................................. 132 
5.4.1.2 Use only a few layout variants ............................................................................. 132 

5.4.1.3 Understand the meaning of scale (dots per inch) ................................................. 132 
5.4.1.4 "Normalized" variants .......................................................................................... 132 

5.4.1.5 Scaling strategy .................................................................................................... 133 
5.4.1.6 How to change the views size and text size?   AutoScale .................................... 133 

6 Connecting a real device .......................................................................................................... 134 
6.1 Connecting via B4A Bridge ............................................................................................. 134 

6.1.1 Getting started with B4A-Bridge ................................................................................. 134 

6.1.2 Run B4A-Bridge on your device.................................................................................. 135 
6.1.3 Wireless connections .................................................................................................... 136 
6.1.4 Bluetooth connections .................................................................................................. 138 

6.1.4.1 Bluetooth tips ....................................................................................................... 139 
6.2 Connecting via USB ......................................................................................................... 140 

7 Emulators ................................................................................................................................. 141 
7.1 Genymotion Emulator ...................................................................................................... 141 

7.2 Android Emulator............................................................................................................. 142 

7.2.1 Create a new Emulator ................................................................................................. 142 



Table of contents 4 B4A   Beginner's Guide 

7.2.2 Launch an Android Emulator ....................................................................................... 145 
7.2.3 Android Emulator problems ......................................................................................... 148 

7.2.4 Process timeout ............................................................................................................ 149 
7.2.5 Exchanging files with the PC ....................................................................................... 150 

8 The Visual Designer ................................................................................................................. 153 
8.1 The menu .......................................................................................................................... 154 

8.1.1 File menu ...................................................................................................................... 154 
8.1.2 AddView menu ............................................................................................................ 155 
8.1.3 WYSIWYG Designer menu ......................................................................................... 155 
8.1.4 The Tools menu............................................................................................................ 156 
8.1.5 Windows menu ............................................................................................................ 156 

8.2 Visual Designer Windows ............................................................................................... 157 
8.2.1 Views windows  Views Tree  /  Files  /  Variants ........................................................ 157 

8.2.1.1 Views Tree window ............................................................................................. 157 

8.2.1.2 Files Windows ...................................................................................................... 157 
8.2.1.3 Variants window .................................................................................................. 158 

8.2.2 Properties window ........................................................................................................ 159 
8.2.3 Script (General) / (Variant) windows ........................................................................... 159 
8.2.4 Abstract Designer window ........................................................................................... 160 

8.3 Floating windows ............................................................................................................. 161 
8.3.1 Float ............................................................................................................................. 161 
8.3.2 Dock ............................................................................................................................. 162 

8.3.3 Dock as Document ....................................................................................................... 162 
8.3.4 Auto Hide ..................................................................................................................... 163 
8.3.5 Maximize...................................................................................................................... 164 

8.3.6 New Horizontal / Vertical Tab Group .......................................................................... 165 
8.4 Tools ................................................................................................................................. 166 

8.4.1 Generate Members ....................................................................................................... 166 
8.4.2 Connect device or emulator ......................................................................................... 167 

8.4.3 Change grid .................................................................................................................. 168 
8.5 Image files ........................................................................................................................ 169 

8.6 Properties list .................................................................................................................... 170 
8.6.1 Main properties ............................................................................................................ 171 
8.6.2 Common properties ...................................................................................................... 172 
8.6.3 Activity properties ........................................................................................................ 173 

8.6.4 Color properties ............................................................................................................ 174 
8.7 Layout variants ................................................................................................................. 176 
8.8 The Abstract Designer...................................................................................................... 180 

8.8.1 Selection of a screen size ............................................................................................. 181 

8.8.2 Zoom ............................................................................................................................ 181 
8.8.3 Context menus .............................................................................................................. 182 

8.8.3.1 Add View ............................................................................................................. 183 

8.8.3.2 Cut ........................................................................................................................ 184 
8.8.3.3 Copy ..................................................................................................................... 184 
8.8.3.4 Paste ..................................................................................................................... 184 
8.8.3.5 Duplicate .............................................................................................................. 184 
8.8.3.6 Undo / Redo ......................................................................................................... 184 

8.8.3.7 Horizontal Anchor ................................................................................................ 184 
8.8.3.8 Vertical Anchor .................................................................................................... 185 
8.8.3.9 Bring To Front ..................................................................................................... 185 

8.8.3.10 Send To Back ................................................................................................... 185 
8.8.3.11 Generate ........................................................................................................... 186 

8.8.4 Select views .................................................................................................................. 187 



Table of contents 5 B4A   Beginner's Guide 

8.8.5 Example........................................................................................................................ 189 
8.9 Adding views by code ...................................................................................................... 191 

8.10 Designer Scripts ............................................................................................................... 194 
8.10.1 The menu .................................................................................................................. 196 
8.10.2 Supported Properties ................................................................................................ 200 
8.10.3 Supported Methods .................................................................................................. 200 

8.10.4 Supported Keywords ................................................................................................ 200 
8.10.5 Autocomplete ........................................................................................................... 201 
8.10.6 Notes and tips ........................................................................................................... 201 

8.11 Anchors ............................................................................................................................ 202 
8.11.1 Horizontal Anchor .................................................................................................... 202 

8.11.2 Vertical Anchor ........................................................................................................ 203 
8.11.3 First example ............................................................................................................ 205 
8.11.4 Second example ....................................................................................................... 213 

8.12 AutoScale ......................................................................................................................... 216 
8.12.1 Simple AutoScale example with only one layout variant ........................................ 217 
8.12.2 Same AutoScale example with portrait and landscape layout variants .................... 222 
8.12.3 AutoScale more advanced examples ........................................................................ 225 

8.13 UI Cloud ........................................................................................................................... 230 

9 Process and Activity life cycle ................................................................................................. 232 
9.1 Program Start ................................................................................................................... 233 
9.2 Process global variables ................................................................................................... 234 

9.3 Activity variables ............................................................................................................. 234 
9.4 Starter service ................................................................................................................... 235 
9.5 Program flow .................................................................................................................... 236 

9.6 Globals versus FirstTime ................................................................................................. 237 
9.7 Sub Activity_Create (FirstTime As Boolean) .................................................................. 237 

9.8 Variable declaration summary ......................................................................................... 238 
9.9 Sub Activity_Resume Sub Activity_Pause (UserClosed As Boolean) ............................ 239 

9.10 Activity.Finish  /  ExitApplication ................................................................................... 240 
10 Variables and objects ............................................................................................................... 241 

10.1 Variable Types ................................................................................................................. 241 
10.2 Names of variables ........................................................................................................... 243 
10.3 Declaring variables........................................................................................................... 243 

10.3.1 Simple variables ....................................................................................................... 243 

10.3.2 Array variables ......................................................................................................... 244 
10.3.3 Array of views (objects) ........................................................................................... 246 
10.3.4 Type variables .......................................................................................................... 247 

10.4 Casting ............................................................................................................................. 248 

10.5 Scope ................................................................................................................................ 249 
10.5.1 Process variables ...................................................................................................... 249 
10.5.2 Activity variables ..................................................................................................... 250 

10.5.3 Local variables ......................................................................................................... 250 
10.6 Tips ................................................................................................................................... 250 

11 Modules .................................................................................................................................... 251 
11.1 Activity modules .............................................................................................................. 252 
11.2 Class modules .................................................................................................................. 253 

11.3 Code modules ................................................................................................................... 254 
11.4 Service modules ............................................................................................................... 255 
11.5 Shared modules ................................................................................................................ 258 

12 Help tools ................................................................................................................................. 259 
12.1 Search function in the forum ............................................................................................ 259 

12.2 B4x Help Viewer.............................................................................................................. 261 



Table of contents 6 B4A   Beginner's Guide 

12.3 Help documentation - B4A Object Browser .................................................................... 266 
12.4 Useful links ...................................................................................................................... 267 

12.5 Books ............................................................................................................................... 268 
13 Debugging ................................................................................................................................ 269 

13.1 Debug mode ..................................................................................................................... 270 
13.1.1 Debugger advantages ............................................................................................... 270 

13.1.2 Debugger Limitations............................................................................................... 271 
13.1.3 Debug Toolbar ......................................................................................................... 272 

13.1.3.1 Run    F5 ...................................................................................................... 272 

13.1.3.2 Step In    F8 ................................................................................................. 273 

13.1.3.3 Step Over    F9 ............................................................................................ 274 

13.1.3.4 Step Out    F10 ............................................................................................ 274 

13.1.3.5 Stop   ........................................................................................................... 275 

13.1.3.6 Restart    F11 ............................................................................................... 275 
13.1.4 Small debug example ............................................................................................... 276 
13.1.5 Watch Expressions feature ....................................................................................... 279 

13.2 Debug (legacy) mode ....................................................................................................... 280 
14 Example programs ................................................................................................................... 281 

14.1 User interfaces .................................................................................................................. 281 

14.1.1 Menu example  (UserInterfaceMenu.b4a) ............................................................... 283 
14.1.2 TabHost example   (UserInterfaceTabHost.b4a) ..................................................... 284 

14.1.3 Button toolbox example  (UserInterfaceButtonToolbox.b4a) ................................. 285 
14.2 Program with 3 Activities  (ThreeActivityExample.b4a) ................................................ 286 
14.3 ScrollView examples ....................................................................................................... 293 

14.3.1 ScrollView example program .................................................................................. 294 

15 Basic language ......................................................................................................................... 305 
15.1 Expressions ...................................................................................................................... 306 

15.1.1 Mathematical expressions ........................................................................................ 306 

15.1.2 Relational expressions .............................................................................................. 307 
15.1.3 Boolean expressions ................................................................................................. 307 

15.2 Conditional statements ..................................................................................................... 308 
15.2.1 If – Then – End If ..................................................................................................... 308 
15.2.2 Select – Case ............................................................................................................ 310 

15.3 Loop structures ................................................................................................................. 312 

15.3.1 For – Next ................................................................................................................ 312 
15.3.2 For - Each ................................................................................................................. 313 
15.3.3 Do - Loop ................................................................................................................. 314 

15.4 Subs .................................................................................................................................. 316 

15.4.1 Declaring .................................................................................................................. 316 
15.4.2 Calling a Sub ............................................................................................................ 316 
15.4.3 Calling a Sub from another module ......................................................................... 316 

15.4.4 Naming ..................................................................................................................... 317 
15.4.5 Parameters ................................................................................................................ 317 
15.4.6 Returned value ......................................................................................................... 317 

15.5 Events ............................................................................................................................... 318 
15.6 Libraries ........................................................................................................................... 321 

15.6.1 Standard libraries ..................................................................................................... 321 
15.6.2 Additional libraries folder ........................................................................................ 322 
15.6.3 Load and update a Library ....................................................................................... 323 

15.6.4 Error message "Are you missing a library reference?" ............................................ 323 

15.7 String manipulation .......................................................................................................... 324 
15.8 Number formatting ........................................................................................................... 325 



Table of contents 7 B4A   Beginner's Guide 

15.9 Timers .............................................................................................................................. 326 
15.10 Files .............................................................................................................................. 327 

15.10.1 File object ................................................................................................................. 327 
15.10.2 Filenames ................................................................................................................. 329 
15.10.3 Subfolders ................................................................................................................ 329 
15.10.4 TextWriter ................................................................................................................ 330 

15.10.5 TextReader ............................................................................................................... 331 
15.10.6 Text encoding ........................................................................................................... 332 

15.11 Lists .............................................................................................................................. 334 
15.12 Maps ............................................................................................................................. 336 

16 Graphics / Drawing .................................................................................................................. 338 

16.1 Overview .......................................................................................................................... 338 
16.2 Drawing test programs ..................................................................................................... 340 

16.2.1 First steps ................................................................................................................. 340 

16.2.1.1 Start  and Initialisation ..................................................................................... 341 
16.2.1.2 Draw a line ....................................................................................................... 341 
16.2.1.3 Draw a rectangle .............................................................................................. 342 
16.2.1.4 Draw a circle .................................................................................................... 343 
16.2.1.5 Draw a text ....................................................................................................... 344 

16.2.2 Drawing rotating bitmaps / RotatingNeedle ............................................................ 345 
16.2.3 Simple draw functions.............................................................................................. 350 

17 VB6 versus B4A ...................................................................................................................... 359 

18 FAQ .......................................................................................................................................... 364 
18.1 "Please save project first"   message ................................................................................ 364 
18.2 "Are you missing a library reference"   message ............................................................. 364 

18.3 How loading / updating a library ..................................................................................... 365 
18.4 When do we need to  'Initialize'  and when not ................................................................ 365 

18.5 Split a long line into two or more lines ............................................................................ 366 
18.6 Avoid closing an application / capture keycodes like Back / Menu ................................ 366 

18.7 Unwanted events like Click, Touch or others .................................................................. 367 
18.8 Adding a Menu item......................................................................................................... 367 

18.9 How do I remove a View with the Designer .................................................................... 368 
18.10 "Process has timeout"   message .................................................................................. 368 
18.11 Getting a picture from the gallery ................................................................................ 369 
18.12 How to delete  x.bal  files or other files from a project ............................................... 370 

18.13 Block a screen orientation ............................................................................................ 371 
18.14 Close second Activity .................................................................................................. 372 
18.15 Taking a screenshot programaticaly............................................................................. 372 
18.16 After compiling, where are the files ............................................................................. 373 

18.17 Run an application from another one ........................................................................... 373 
18.18 How to pass an Array to a Sub ..................................................................................... 374 
18.19 Getting language and country from device .................................................................. 374 

18.20 Where is the apk file .................................................................................................... 375 
18.21 Why is my apk filename result.apk .............................................................................. 375 
18.22 Why is my apk filename xxx_DEBUG.apk ................................................................. 375 
18.23 Select True / Case trick ................................................................................................ 375 
18.24 Fill an array with random numbers without repetition................................................. 376 

18.25 Detect screen orientation .............................................................................................. 376 
18.26 Some functions don't work in Activity_Pause ............................................................. 377 
18.27 Calling the internal Calculator ..................................................................................... 377 

18.28 Get the Alpha / Red / Green / Blue values ................................................................... 378 
18.29 Get device type ............................................................................................................. 378 

18.30 Generate a Click event ................................................................................................. 378 



Table of contents 8 B4A   Beginner's Guide 

18.31 "Out of memory" Error / Bitmaps ................................................................................ 379 
18.32 Get consumed memory ................................................................................................ 379 

18.33 Remove the scrollbar from a ScrollView ..................................................................... 380 
18.34 Check if directory exists............................................................................................... 380 
18.35 Set Full Screen in code ................................................................................................. 380 
18.36 Change EditText input modes ...................................................................................... 381 

18.37 Sorting a file list according to last modified time ........................................................ 382 
18.38 Get the dpi values of the device (dots per inch) ........................................................... 383 
18.39 Finding java program lines........................................................................................... 383 

19 Glossary ................................................................................................................................... 384 
20 Index ......................................................................................................................................... 385 

 

 

 

Main contributors:  Klaus Christl  (klaus), Erel Uziel  (Erel) 

Reviewers : Hubert Brandel, David Williamson, Bill Mackin, Narayanan Neelakantan. 

 

To search for a given word or sentence use the Search function in the Edit menu. 

 

All the source code and files needed (layouts, images etc.) of the example projects in this guide are 

included in the SourceCode folder. 

 

Updated for B4A version 6.30 . 

 

A more advanced guide can be downloaded User's Guide. 

http://www.basic4ppc.com/android/files/UserGuide.zip


1  Getting started 9 B4A   Beginner's Guide 

1 Getting started 
 

B4A is a simple yet powerful development environment that targets Android devices. 
B4A language is similar to Visual Basic language with additional support for objects. 

B4A compiled applications are native Android applications; there are no extra runtimes or 

dependencies. 

Unlike other IDE’s, B4A is 100% focused on Android development. 

B4A includes a powerful GUI designer with built-in support for multiple screens and orientations. 

No XML writing is required. 
You can develop and debug with: 

- a real device connected via B4Abridge 

- a real device connected via USBcable 

- or an Android emulator. 

 

B4A has a rich set of libraries that make it easy to develop advanced applications.  

This includes: SQL databases, GPS, Serial ports (Bluetooth), Camera, XML parsing, Web services 

(HTTP), Services (background tasks), JSON, Animations, Network (TCP and UDP), Text To Speech 

(TTS), Voice Recognition, WebView, AdMob (ads), Charts, OpenGL, Graphics and more.  

 

Android 1.6 and above are supported (including tablets). 

 

http://www.basic4ppc.com/android/screenshots.html#designer
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/9032-debugging-android-applications.html
http://www.basic4ppc.com/android/help/sql.html
http://www.basic4ppc.com/android/help/gps.html
http://www.basic4ppc.com/android/help/serial.html
http://www.basic4ppc.com/android/help/camera.html
http://www.basic4ppc.com/android/help/xmlsax.html
http://www.basic4ppc.com/android/help/http.html
http://www.basic4ppc.com/android/help/http.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7542-service-modules.html
http://www.basic4ppc.com/android/help/json.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6967-android-views-animation-tutorial.html
http://www.basic4ppc.com/android/help/network.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7043-android-text-speech-example.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7043-android-text-speech-example.html
http://www.basic4ppc.com/android/help/phone.html#voicerecognition
http://www.basic4ppc.com/android/help/views.html#webview
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7300-admob-tutorial-add-ads-your-application.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8260-android-charts-framework.html
http://www.basic4ppc.com/android/help/opengl.html
http://www.basic4ppc.com/android/help/drawing.html
http://www.basic4ppc.com/android/documentation.html


1  Getting started 10 B4A   Beginner's Guide 

1.1 Trial version 

 

Look at this page for instructions how to use the trial version: www.b4x.com/b4a.html 

 

 

 

 

 

www.b4x.com/b4a.html


1  Getting started 11 B4A   Beginner's Guide 

1.2 Installing B4A and Android SDK 

 

B4A depends on two additional (free) components: 

- Java JDK 

- Android SDK 

 

Installation instructions: 

The first step should be to install the Java JDK, as Android SDK requires it as well. 

Note that there is no problem with having several versions of Java installed on the same computer. 

 

- Open the Java 8 JDK download link. 

- Check the Accept License Agreement radio button. 

- Select "Windows x86" in the platforms list (for 64 bit machines as well). 

Android SDK doesn't work with Java 64bit JDK.  

You should install the regular JDK for 64-bit computers as well. 

 

- Download the file and install it. 

 

The next step is to install the Android SDK and a platform: 

 

- Install the SDK . The SDK doesn't always behave properly when it is installed in a path with 

embedded spaces (like Program Files). It is recommended to install it to a custom folder 

similar to C:\Android. 

- You should now install the platform tools and at least one platform image. Use the latest one or at 

least API 8. 

You can also install Google USB Driver if you need to connect a physical device with USB. A list 

of other drivers is available here.  

Note that B4A allows you to connect to any device over the local network with B4A-Bridge tool. 

 

 

 

 

 

 

 

 

 

A screen similar to this will be shown. 

 

Select the API version you want to download. 

In the example, I choose API 24. 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://dl.google.com/android/installer_r23.0.2-windows.exe
http://developer.android.com/intl/fr/sdk/oem-usb.html
http://www.basic4ppc.com/forum/showthread.php?p=45042


1  Getting started 12 B4A   Beginner's Guide 

 

 

 

 

 

 

 

You can select several APIs and install them in 

parallel. 

 

In this example, API 22 is also selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that you can install more packages later. 

 

- Press on Install Selected and install both packages. 

 

If you want to connect a device with USB you might also download the Google USB driver. 

 

 

 



1  Getting started 13 B4A   Beginner's Guide 

1.2.1 Install and configure B4A 

 

- Download and install B4A. 

- Open B4A. 

- Choose Tools menu - Configure Paths. 

 

 
 

- Use the browse buttons to locate "javac.exe" and "android.jar" 

javac is located under <java folder>\bin. 

android.jar is located under <android-sdk-windows>\platforms\android-21. 

The folder depends on where you installed the Android SDK,  

It should be: C:\Android\platforms\android-21\android.jar 

or C:\Android\platforms\android-8\android.jar. 

The number depends on the Android version you loaded. 

 

On older versions it could be under: 

C:\Android\android-sdk-windows\platforms\android-8\android.jar. 

On Windows 64 bit, Java will probably be installed under C:\Program Files (x86). 

 

It is recommended to create a specific folder for Additional libraries.  

B4A utilizes two types of libraries:  

 Standard libraries, which come with B4A and are located in the 

Libraries folder of B4A.  

These libraries are automatically updated when you install a new version of B4A. 

 Additional libraries, which are not part of B4A, and are mostly written by members. These 

libraries should be saved in a specific folder different from the standard libraries folder.  

More details in Chapter 14.7.2 Additional libraries folder. 

 

Shared modules: Module files can be shared between different projects and must therefore be saved 

in a specific folder. More details in 11.5 Shared modules. 

 

Common errors 

 - Windows XP - "Basic4Android.exe Application could not be initialised correctly error 

0xc0000135" on start-up. B4A requires .Net Framework 4.0 or above.  

Windows XP users who didn't install it before should first install the framework.

http://www.b4x.com/b4a.html


1.3  Installing B4A Bridge 14 B4A   Beginner's Guide 

1.3 Installing B4A Bridge 

 

B4A Bridge is the advised link between B4A and your device(s).  

 

It is made of two components. One component runs on the device and allows the second component 

which is part of the IDE to connect and communicate with the device. 

The connection is done over the local network or with a Bluetooth connection. 

 

Once connected, B4A-Bridge supports all of the IDE features which include: installing applications, 

viewing the logs, debugging and the visual designer (taking screenshots is not supported). 

 

Android doesn't allow applications to quietly install other applications, therefore when you run your 

application using B4A-Bridge you will see a dialog asking you to approve the installation. 

 

Getting started with B4A-Bridge 
1. First you need to install B4A-Bridge on your device. 

B4A-Bridge can be downloaded here: http://www.basic4ppc.com/android/files/b4a_bridge.apk. 

Some browsers may treat this file as a zip file. In that case you should restore its apk extension. 

 

B4A-Bridge is also available in Google Play and Amazon Market. Search for: B4A Bridge. 

Note that you need to allow installation of applications from "Unknown sources". This is done by 

choosing Settings from the Home screen - Manage Applications. 

 

B4A-Bridge requires writable storage card. It is not possible to install applications without it. 

 

See chapter  onnecting a real device via B4A Bridge on how to connect your device to the IDE. 

 

http://www.basic4ppc.com/android/files/b4a_bridge.apk


2  My first program 15 B4A   Beginner's Guide 

2 My first program  (MyFirstProgram.b4a) 
 

Let us write our first program. The suggested program is a math trainer for kids. 

 

The project is available in the SourceCode folder:  

SourceCode\MyFirstProgram\ MyFirstProgram.b4a 

 

The look of the screen is different depending on the Android version of the devices, also with 

Emulators. 

  

 

       
 

Sony xperia z1        Emulator Android version 4.2      Emulator Android version 2.2 

 

On the screen, we will have: 

- 2 Labels displaying randomly generated numbers (between 1 and 9) 

- 1 Label with the math sign (+) 

- 1 EditText view where the user must enter the result 

- 1 Button, used to either confirm when the user has finished entering the result or generate a new        

  calculation. 

- 1 Label with a comment about the result. 

 

In Android: 

-  Label is an object to show text. 

-  EditText is an object allowing the user to enter text. 

-  Button is an object allowing user actions. 

 

We will design the layout of the user interface with the VisualDesigner and go step by step through 

the whole process. 

 



2  My first program 16 B4A   Beginner's Guide 

Run the IDE     
 

When you open the IDE you will see on the top left two Tabs Main and Starter. 

 

  
Is the Main module for B4A which is the normal starting 

module. Its name cannot be changed. 

  
Is a Service, which is startet when the program is lauched. 

 

 

For our first program we don’t need this Starter service, so we delete it. 

 

 

 

Click on  tab to select 

the service. 

 

 

 

 

 

 

 

In the menu   

click on . 

 

 

 

 

 

 

 

 

You are asked if you really want to 

remove it. 

Click on OUI (YES) 

 

 

 

 

 

 

The Starter service module is 

removed. 

 

 

 

You could also leave the Starter service, the removal is not mandatory. 

 



2  My first program 17 B4A   Beginner's Guide 

Save the project. 

 

You must save the project before you can run the Designer. 

 

 

Create a new folder MyFirstProgram and save the project with the name MyFirstProgram. 

 

 

Set the Package Name. 
 

Each program needs a package 

name. 

 

 

 

In the menu  click on 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This window appears: 

 

 

 

 

 

 

The default name is  

b4a.example. 

 

 

 

 

 

 



2  My first program 18 B4A   Beginner's Guide 

 

 

 

 

 

We will change it to 

b4a.MyFirstProgram. 

 

And click on . 

  

 

 

 

 

 

Set the Application Label. 

 

The Application label is the name of the program that will be shown on the device. 

 

On top of the code screen you see these two lines showing two 'regions'. 

 

       

 

 

 

Regions are code parts which can be collapsed or 

extended.  

Clicking on  will expand the Region. 

Clicking on  will collapse the Region. 

Regions are explained in Chapter Collapse a Region. 

 
#Region  Project Attributes  
 #ApplicationLabel: B4A Example 
 #VersionCode: 1 
 #VersionName:  
 'SupportedOrientations possible values: unspecified, landscape or portrait. 
 #SupportedOrientations: unspecified 
 #CanInstallToExternalStorage: False 
#End Region 
 
#Region  Activity Attributes  
 #FullScreen: False 
 #IncludeTitle: True 
#End Region 
 

The default name is  B4A Example, but we will change it to  MyFirstProgram  for naming 

consistency. 

 

Change this line: 
 #ApplicationLabel: B4A Example 

to 
 #ApplicationLabel: MyFirstProgram 

 

The other lines are explained in Chapter Code header Project Attributes / Activity Attributes. 



2  My first program 19 B4A   Beginner's Guide 

Connect a device 

 

To test the program you should connect a device to the IDE. 

The best connection is via B4A-Bridge. 

 

It is also possible to connect an Emulator. 

 

On the device run B4A-Bridge. If you haven’t it on your device it’s the right moment to install it. 

 

 

 

 

 

 

 

Click on . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

You will see  on top. 

 

 

 

 

In the IDE click on the address of the device you want to connect.  

The address is shown on the B4A-Bridge screen on the device. 

 

 



2  My first program 20 B4A   Beginner's Guide 

In the IDE run the Designer. 

 

  

 

 

Click on . 

 

The Visual Designer looks like this. 

 

 
 

There are different windows: 

 Views Tree  shows all views as a tree. 

 Properties  shows all properties of the selected view. 

 Abstract Designer shows the views on a screen 

 Script - General allows to ‘fine tune’ the layouts. 

 

The Designer is explained in detail in the chapter The Designer. 

 



2  My first program 21 B4A   Beginner's Guide 

In this first project we will only look at the three first windows. 

 

So we hide the Script- General window to increase the size of the two other windows on top. 

Click on . 

 

 
 

And on  . 

 

 
 

The Designer will look like this. 

 

 
 

 

 



2  My first program 22 B4A   Beginner's Guide 

To shows the views on the device you must connect the device to the Designer. 

 

 
 

Wait until the Designer and the device are connected. This can take some time, so be patient. 

 

You will see the state of the Designer here on the bottom of the Designer with the parameters of the 

connected device: 

 

 
  

 

 

 



2  My first program 23 B4A   Beginner's Guide 

Now we will add the 2 Labels for the numbers. 

In the Designer, add a Label. 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

We see the Label with the default name Label1 in following windows: 

 

    Properties   Abstract Designer 
    with its default  at its default position and 

 Views Tree  properties.   Default dimensions. 

 

 

 



2  My first program 24 B4A   Beginner's Guide 

Resize and move the Label with the red squares like this. 

 

 

The new properties Left, Top, Width and Height are directly updated in the Properties window. 

You can also modify the Left, Top, Width and Height properties directly in the Properties window. 

 

Let us change the properties of this first Label according to our requirements. 

 

By default, the name is Label with a number, here Label1, let us change its name to lblNumber1. 

The three letters 'lbl' at the beginning mean 'Label', and 'Number1' means the first number. 

It is recommended to use meaningful names for views so we know directly what kind of view it is 

and its purpose. 

 

 
 

Pressing the 'Return' key or clicking elsewhere will update the name in the other windows and 

change the Event Name property. 

 

Main: Main module. 

Name: Name of the view. 

Type: Type of the view. In this case, Label, which is not editable. 

Event Name: Generic name of the routines that handle the events of the Label. 

Parent: Parent view the Label belongs to. 

 

 



2  My first program 25 B4A   Beginner's Guide 

 

 

To better see the other properties we enlarge the Properties window. 

 

 

 

Let us check and change the other properties: 

 

 
 

Left, Top, Width and Height are OK. 

Or if the values are not the same you should change them. 
 
 
 
 
 
 
 

Enabled, Visible are OK 
 
 

Tag, we leave empty. 

Text, we set a default number, say 5 

 

   Typeface, Style are OK 
 
 

Horizontal Alignment, we set to CENTER_HORIZONTAL 

Vertical Alignment, we leave CENTER_VERTICAL. 

Size, we set to 36 

 

We leave all the other properties as they are. 

 

 

 

 

 

 

 

 

 

 

 



2  My first program 26 B4A   Beginner's Guide 

We need a second Label similar to the first one. Instead of adding a new one, we copy the first one 

with the same properties. Only the Name and Left properties will change. 

 

Right click in the Abstract Designer on lblNumber1 and click on  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click somewhere else in the Abstract Designer and right 

click again and click on . 

 

The new label covers the previous one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see the new label added in the Views Tree. 



2  My first program 27 B4A   Beginner's Guide 

 

 

 

Change its name to lblNumber2. 

 

 

 

 

 

 

 

 

Change the Left property to 180. 

 

 

 

 

 

 

 

The new label with its new 

name and at its new position  

 

 

 

 

 

 

Now we add a 3rd Label for the math sign. We copy once again lblNumber1. 

In the Abstract Designer right click on lblNumber1, click on . 

Click somewhere else, right click again and click on . 

 

 

 

The new label covers lblNumber1. 

 

 

 

 

Position it between the first two Labels and 

change its name to lblMathSign and its  

Text property to '+'. 

 

 

 

 

 

 

 

 

 

 

 



2  My first program 28 B4A   Beginner's Guide 

 

Now let us add an EditText view.  

In the Designer menu 

click on . 

 

 

Position it below the three 

Labels and change its name to 

edtResult. 'edt' means 

EditText and 'Result' for its 

purpose.  

 

 

 

 

Let us change these properties. 

Name  to  edtResult 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Horizontal Alignment     to CENTER_HORIZONTAL 
 
 

Text Size to 30 

 

Input Type to  NUMBERS 

Hint Text to  Enter result 

 

Setting Input Type to NUMBERS lets the user enter only 

numbers. 

 

Hint Text represents the text shown in the EditText view if 

no text is entered. After making these changes, you should 

see something like this. 

 



2  My first program 29 B4A   Beginner's Guide 

Now, let's add the Button which, when pressed, will either 

check the result the user supplied as an answer, or will 

generate a new math problem, depending on the user's input. 

 

 

 

 

 

 

 

 

 

 

 

Position it below the EditText view. Resize it 

and change following properties: 

 

 

 

Set the properties like below. 

 

 

 

 

Name  to  btnAction 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Text  to   O K  (with a space between O and K) 

 

 

 

 

 
 
 

Text  Size  to  24 

 

 

 



2  My first program 30 B4A   Beginner's Guide 

Let us add the last Label for the comments. Position it below the Button and resize it. 

 

 

 

Change the following properties: 

Name to   lblComments 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Horizontal Alignment  CENTER_HORIZONTAL 
 
 
 
 

Text Color  to  #000000 

We set the Text Color property to Black (#000000). 
 

Color  to  #FFFFFF 

Alpha  to  255 

 

By default, the Label background color is black and 

transparent.  

We set it to white and opaque Alpha = 255. 

 



2  My first program 31 B4A   Beginner's Guide 

 

 

 

 

 

 

The result will look like this 

in the Designer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And on a device or Emulator. 

 

                 
 

  Sony xperia z1     Android 4.2 Emulator       Android 2.2 Emulator 

  



2  My first program 32 B4A   Beginner's Guide 

Let us save the layout in a file. 

 

 

 

 

 

In the  menu click on    and save it with the 

name 'Main'. 

 

 

 

 

 

 

 

Click on  . 

 

 

 

 

To write the routines for the project, we need to reference the Views in the code. 

This can be done with the Generate Members tool in the Designer. 

 

 

 

 

 

 

 



2  My first program 33 B4A   Beginner's Guide 

The Generate Members tool automatically generates references and subroutine frames.  

 

In the  menu click on 

 to open the 

generator.  

 

 

 

 

 

 
 

 

Here we find all the views added to the current layout. 

We check all views and check the Click event for the btnAction Button. 

Checking a view  generates its reference in the Globals Sub routine in the code.  

This is needed to make the view recognized by the system and allow the autocomplete function. 

 
 Private btnAction As Button 
 Private edtResult As EditText 
 Private lblComments As Label 
 Private lblMathSign As Label 
 Private lblNumber1 As Label 
 Private lblNumber2 As Label 

Clicking on an event of a view  generates the Sub frame for this event. 

 
Sub btnAction_Click 
 
End Sub 
 

Click on  to generate the references and Sub frames. 

 



2  My first program 34 B4A   Beginner's Guide 

Now we go back to the IDE to enter the code. 

First, we need our Activity to load our layout file. Within the “Activity_Create” sub, do the 

following. You can remove the lines in green. 

We will enter this line of code Activity.LoadLayout(“Main”). 

 

- Enter 'A’, as soon as you begin typing the autocomplete function shows you all keywords 

beginning with ‘a’. 

 

 
 

- Continue typing ‘Act’. 

 

 
 

- Press ‘Return’ or click on . 

 

 
 

- We have the word Activity, now enter a dot. 

 

 
 

- The autocomplete function shows all the possible properties of the view. 

- Enter 'L' , and the autocomplete function shows the properties beginning with 'L' 

 

 



2  My first program 35 B4A   Beginner's Guide 

- Press the down arrow key, and LoadLayout will be highlighted with the online help for the given 

property or method. 

 

 
 

 

- Press 'Return' to add LoadLayout. 

 

 
 

- Press '(' to display the online help showing the needed properties for the method. 

 

 
 

- Enter   "Main") 

 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Main") 
End Sub 

 

We want to generate a new problem as soon as the program starts. Therefore, we add a call to the 

New subroutine. 

 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Main") 
 New 
End Sub 
 

Generating a new problem means generating two new random values between 1 and 9 (inclusive) 

for Number1 and Number2, then showing the values using the lblNumber1 and lblNumber2 ‘Text’ 

properties. 

 



2  My first program 36 B4A   Beginner's Guide 

To do this we enter following code: 

In Sub Globals we add two variables for the two numbers. 

 
 Public Number1, Number2 As Int 
End Sub 

 

And the 'New' Subroutine: 

 
Sub New 
 Number1 = Rnd(1, 10)   ' Generates a random number between 1 and 9 
 Number2 = Rnd(1, 10)   ' Generates a random number between 1 and 9 
 lblNumber1.Text = Number1  ' Displays Number1 in label lblNumber1 
 lblNumber2.Text = Number2  ' Displays Number2 in label lblNumber2 
 lblComments.Text = "Enter the result" & CRLF & "and click on OK" 
 edtResult.Text = ""   ' Sets edtResult.Text to empty 
End Sub 
 

The following line of code generates a random number from '1' (inclusive) to '10' (exclusive): 
Rnd(1, 10) 
The following line displays the comment in the lblComments view: 
lblComments.Text = "Enter the result" & CRLF & "and click on OK" 

CRLF is the LineFeed character. 

 

Now we add the code for the Button click event. 

 

We have two cases: 

- When the Button text is equal to "O K" (with a space between O and K), it means that a new 

problem is displayed, and the program is waiting for the user to enter a result and press the Button. 

- When the Button text is equal to "NEW", it means that the user has entered a correct answer and 

when the user clicks on the Button a new problem will be generated. 

 
Sub btnAction_Click 
 If btnAction.Text = "O K" Then 
  If edtResult.Text = "" Then 
   Msgbox("No result entered","E R R O R") 
  Else 
   CheckResult 
  End If 
 Else 
  New 
  btnAction.Text = "O K" 
 End If 
End Sub 
 

If btnAction.Text = "O K" Then checks if the Button text equals "O K" 

If yes then we check if the EditText is empty. 

 If yes, we display a MessageBox telling the user that there is no result in the EditText view. 

 If no, we check if the result is correct or if it is false. 

If no then we generate a new problem, set the Button text to "O K" and clear the EditText view. 

 

 



2  My first program 37 B4A   Beginner's Guide 

The last routine checks the result. 

 
Sub CheckResult 
 If edtResult.Text = Number1 + Number2 Then 
  lblComments.Text = "G O O D  result" & CRLF & "Click on NEW" 
  btnAction.Text = "N E W" 
 Else 
  lblComments.Text = "W R O N G  result" & CRLF & "Enter a new result" & CRLF & "and click OK" 
 End If 
End Sub 

 

With  If edtResult.Text = Number1 + Number2 Then we check if the entered result is correct. 

 

If yes, we display in the lblComments label the text below: 

'G O O D  result' 

'Click on NEW' 

and we change the Button text to "N E W ". 

If no, we display in the lblComments label the text below: 

W R O N G result 

Enter a new result 

and click OK 

 

On the left side of the editor you see a yellow line. 

This means that the code was modified. 

 

 
 

If we click on  to save the project the yellow line becomes green showing a modified code but 

already saved. You can also press Ctrl + S to save the project. 

 

        
 

If we leave the IDE and load it again the green line disappears. 

    



2  My first program 38 B4A   Beginner's Guide 

Let us now compile the program and transfer it to the Device. 

In the IDE on top click on    : 

 

 
 

The program is going to be compiled. 

 

 
 

When the Close button becomes enabled as in message box, above, the compiling and transfer is 

finished. 

 

Looking at the device, you should see something similar to the image below, with different 

numbers. 

 

 

 

 

 

 

The screenshot may look different depending on the device and the 

Android version. 

 

 

Of course, we could make aesthetic improvements in the layout, but 

this was not the main issue for the first program. 

 

 

 

 

 

 

 

 

 

 



2  My first program 39 B4A   Beginner's Guide 

 

 

 

 

On a real device, you need to use the virtual keyboard. 

Click on the EditText view to show the keyboard. 

 

On some devices the current layout has the disadvantage 

that the comment label is covered by the virtual keyboard. 

 

This will be improved in the next chapter, 

'Second program', where we create our own keyboard. 

 

 

 

 

 

 

 

 

 

 



3  Second program 40 B4A   Beginner's Guide 

3 Second program  (SecondProgram.b4a) 
 

The project is available in the SourceCode folder:  

SourceCode\SecondProgram\SecondProgram.b4a 

 

 

Improvements to “ My first program”. 

 

We will add a numeric keyboard to the layout to avoid the use of 

the virtual keyboard. 

 

 

 

Create a new folder called “SecondProgram”. Copy all the files 

and folders from MyFirstProgram to the new SecondProgram 

folder and rename the program files MyFirstProgram.b4a to 

SecondProgram.b4a and MyFirstProgram.b4a.meta to 

SecondProgram.b4a.meta. 

 

Load this new program in the IDE. 

 

We need to change the Package Name. 

 

 

 

 

 

In the IDE  menu. 

 

Click on   

 

 

 

 

 

 

 

 

 

 

 

 

Change the Package name to  

 

b4a.SecondProgram. 

 

 

Click on . 

 



3  Second program 41 B4A   Beginner's Guide 

Then we must change the ApplicationLabel on the very top of the code. 
 

#Region  Project Attributes 
 #ApplicationLabel: SecondProgram 
 

We want to replace the edtResult EditText view by a new Label. 

Run the Visual Designer. If you want you can already connect the device or an Emulator. 

In the Abstract Designer, click on the edtResult view. 

 

 

 

Right click on edtResult and click on . 

 

 

Right click on lblNumber1 to select it. 

 

Click on .  

 

 

 

 

Right click somewhere else outsides a View. 

 

 

 

 

 

And click on . 

 

 

 

 

The new label covers lblNumber1. 

 



3  Second program 42 B4A   Beginner's Guide 

 

 

 

 

Move it between the upper labels and the button  

and resize it. 

 

 

 

 

 

 

 

Modify the following properties: 

 

Name    to  lblResult 

 

 

 

 

 

 

 

Change the Left, Top, Width and Height properties if 

they are not the same as in the image. 

 
 
 
 
 
 
 
 
 
 

Text    to  " "  blank character 

 

 

 

 

 

 

 
 

Text Color   to  Black  #000000 

 
 
 

Color    to  White  #FFFFFF 

 

Alpha    to  255 

 

Corner Radius     to  5 

 

  

 



3  Second program 43 B4A   Beginner's Guide 

 

 

 

Now we add a Panel for the keyboard buttons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Position and resize it as in the image. 

 

 

 

 

 

 

 

 

Change its Name to pnlKeyboard 

"pnl" for Panel, the view type. 

 

 

 

 

 

 

Change  

Color    to  #8C8C8C 

Corner radius   to  0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3  Second program 44 B4A   Beginner's Guide 

 

We will move the btnAction button from the Activity 

to the pnlKeyboard Panel. 

 

Click on btnAction. 

 

 

 

 

 

 

 

 

and in the Parent list click on . 

 

 

 

 

 

 

 

 

 

The button now belongs to the Panel. 

 

 

 

 

 

 

Now we rearrange the views to get some more space 

for the keyboard. 

 

Set the Height property of the 4 Labels to 50 instead 

of 60. 

Set the Top property of label lblResult to 60. 

Set the Top property of label lblComments to 120. 

Set the Top property of panel pnlKeyboard to 210. 

Set the Height property of panel pnlKeyboard to 180. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3  Second program 45 B4A   Beginner's Guide 

 

 

 

Right click on the pnlKeyboard 

and click on  

And click on . 

 

 

to add a new button. 

 

 

 

 

 

 

The new button is added. 

 

 

 

 

 

 

 Change the following properties: 

 

Name  to btn0 
 

Event name to  btnEvent 

 

 

 
 
 
 

Left  to   0 

Top  to 120 

Width  to   55 

Height  to   55 

 
 
 
 
 

Tag  to  0 

Text  to  0 

 

 

 

 

 
 
 

Size  to  24 

TextColor to  Black #000000 

 



3  Second program 46 B4A   Beginner's Guide 

 

Now we want to change the button colors. 

 

Click on . 

 

 

 

 

In Enabled Drawable 

click on . 

 

 

 

Change the following properties: 

 

 
 
 

Orientation to   TOP_BOTTOM 

First Color 
Second Color 

 

 

 

Pressed Drawable to  GradientDrawable 

 

Orientation to   TOP_BOTTOM 
First Color 
Second Color 
 

 

 

     

If you have connected a device the button looks now like 

this. 

 



3  Second program 47 B4A   Beginner's Guide 

Now we duplicate btn0 and position the new one 

beside button btn0 with a small space. 

 

Right click on btn0 and click on . 

 

 

 

 

Click on the pnlKeyboard view and click 

on . 

 

 

Move the new Button next to the previous 

one. 

 

                         

              

Change the following properties: 

 

 Name  to  btn1 

 

 

 

 

Tag  to  1 

Text  to  1 

 

And the result. 

 

In the Abstract Designer    and  on the device. 

 

      
 

 

Let us add 8 more Buttons and position them like in the image. 

 

 

Change following properties: 

Name  btn2 , btn3   ,  btn4  etc. 

Tag      2   ,     3     ,    4   etc. 

Text       2   ,     3     ,    4   etc. 

 

 

 

 

 

 



3  Second program 48 B4A   Beginner's Guide 

To create the BackSpace button, duplicate one of the 

number buttons, and position it like in the image. 

 

Resize and position btnAction. 

 

Change the pnlKeyboard Color to Black #000000. 

 

Change their Name, Tag, Text and Color properties as 

below. 

 

  btnBS   <   btnAction   O K   

            

       
 

Set the Color property of panel pnlKeyboard to Black.



3  Second program 49 B4A   Beginner's Guide 

The finished new layout. 

In the Abstract Designer   and  on the device. 

 

       
 

Now we will update the code. 

First, we must replace the edtResult by lblResult because we replaced the EditText view by a Label. 

 

  

 

 

Double click on edtResult to select it. 

 

 

 

 

 

 

 

 

 

 

In the Edit menu click on  or press F3. 

 



3  Second program 50 B4A   Beginner's Guide 

 

 

 

 

 

 

 

Enter ‘lblResult’ in the Replace with field. 

 

 

 

 

 

 

Click on  

 

 

We also need to change its view type form EditText to Label. 

 
Private lblResult As Label 

 

Now we write the routine that handles the Click events of the Buttons. 

The Event Name for all buttons, except btnAction, is "btnEvent". 

The routine name for the associated click event will be btnEvent_Click.  

Enter the following code: 

 
Sub btnEvent_Click 
 
End Sub 
 

We need to know what button raised the event. For this, we use the Sender object which is a special 

object that holds the object reference of the view that generated the event in the event routine. 

 

Sub btnEvent_Click To have access to the properties of the view that raised the 

 Private btnSender As Button event we declare a local variable 

     Private btnSender As Button. 

 btnSender = Sender And set btnSender = Sender. 
  

 Select btnSender.Tag Then, to differentiate between the backspace button and 

 Case "BS" the numeric buttons we use a Select / Case / End Select 

 Case Else structure and use the Tag property of the buttons. 

 End Select Remember, when we added the different buttons we 

End Sub  set their Tag property to BS, 0, 1, 2 etc. 

 

 Select btnSender.Tag sets the variable to test. 

 Case "BS" checks if it is the button with the "BS" tag value. 

 Case Else handles all the other buttons. 



3  Second program 51 B4A   Beginner's Guide 

Now we add the code for the numeric buttons. 

We want to add the value of the button to the text in the lblResult Label.  

 
 Select btnSender.Tag    
 Case "BS"     
 Case Else     
  lblResult.Text = lblResult.Text & btnSender.Text 
 End Select    
End Sub      

 

This is done in this line  
 lblResult.Text = lblResult.Text & btnSender.Text 

 

The "&" character means concatenation, so we just append to the already existing text the value of 

the Text property of the button that raised the event. 

 

Now we add the code for the BackSpace button. 
 Select btnSender.Tag    
 Case "BS"     
  If lblResult.Text.Length >0 Then 
   lblResult.Text = lblResult.Text.SubString2(0, lblResult.Text.Length - 1) 
  End If 
 Case Else     
  lblResult.Text = lblResult.Text & btnSender.Text 
 End Select    
End Sub      

 

When clicking on the BS button we must remove the last character from the existing text in 

lblResult.  

However, this is only valid if the length of the text is bigger than 0. This is checked with: 
If lblResult.Text.Length >0 Then 
 

To remove the last character we use the SubString2 function. 
lblResult.Text = lblResult.Text.SubString2(0,lblResult.Text.Length - 1) 

 

SubString2(BeginIndex, EndIndex) extracts a new string beginning at BeginIndex (inclusive) until 

EndIndex (exclusive). 

 

Now the whole routine is finished. 

 
Sub btnEvent_Click 
 Private btnSender As Button 
  
 btnSender = Sender 
  
 Select btnSender.Tag 
 Case "BS" 
  If lblResult.Text.Length >0 Then 
   lblResult.Text = lblResult.Text.SubString2(0,lblResult.Text.Length - 1) 
  End If 
 Case Else 
  lblResult.Text = lblResult.Text & btnSender.Text 
 End Select 
End Sub 



3  Second program 52 B4A   Beginner's Guide 

We can try to improve the user interface of the program by adding some colors to the lblComments 

Label.  

Let us set: 

- Yellow for a new problem 

- Light Green for a GOOD answer 

- Light Red for a WRONG answer. 

 

Let us first modify the New routine, where we add the line lblResult.Text = "". 

 
Sub New 
 Number1 = Rnd(1, 10)  ' Generates a random number between 1 and 9 
 Number2 = Rnd(1, 10)  ' Generates a random number between 1 and 9 
 lblNumber1.Text = Number1 ' Displays Number1 in label lblNumber1 
 lblNumber2.Text = Number2 ' Displays Number2 in label lblNumber2 
 lblComments.Text = "Enter the result" & CRLF & "and click on OK" 
 lblComments.Color = Colors.RGB(255,235,128) ' yellow color 
 lblResult.Text = ""  ' Sets lblResult.Text to empty 
End Sub 
 

And in the CheckResult routine we add lines 76 and 80. 

 
Sub CheckResult 
 If lblResult.Text = Number1 + Number2 Then 
  lblComments.Text = "G O O D  result" & CRLF & "Click on NEW" 
  lblComments.Color = Colors.RGB(128,255,128) ' light green color 
  btnAction.Text = "N E W" 
 Else 
  lblComments.Text = "W R O N G  result" & CRLF & "Enter a new result" & CRLF & "and click OK" 
  lblComments.Color = Colors.RGB(255,128,128) ' light red color 
 End If 
End Sub 

 

     
    

 

 



3  Second program 53 B4A   Beginner's Guide 

Another improvement would be to hide the '0' button to avoid entering a leading '0'. 

For this, we hide the button in the New subroutine in line btn0.Visible = False. 

 
Sub New 
 Number1 = Rnd(1, 10)  ' Generates a random number between 1 and 9 
 Number2 = Rnd(1, 10)  ' Generates a random number between 1 and 9 
 lblNumber1.Text = Number1 ' Displays Number1 in label lblNumber1 
 lblNumber2.Text = Number2 ' Displays Number2 in label lblNumber2 
 lblComments.Text = "Enter the result" & CRLF & "and click on OK" 
 lblComments.Color = Colors.RGB(255,235,128) ' yellow color 
 lblResult.Text = ""  ' Sets lblResult.Text to empty 
 btn0.Visible = False 
End Sub 
 

In addition, in the btnEvent_Click subroutine, we hide the button if the length of the text in 

lblResult is equal to zero and show it if the length is greater than zero, lines 98 to 102. 

 
Sub btnEvent_Click 
 Private btnSender As Button 
  
 btnSender = Sender 
  
 Select btnSender.Tag 
 Case "BS" 
  If lblResult.Text.Length >0 Then 
   lblResult.Text = lblResult.Text.SubString2(0,lblResult.Text.Length - 1) 
  End If 
 Case Else 
  lblResult.Text = lblResult.Text & btnSender.Tag 
 End Select 
 
 If lblResult.Text.Length = 0 Then 
  btn0.Visible = False 
 Else 
  btn0.Visible = True 
 End If 
End Sub 
 

As we are accessing btn0 in the code we need to declare it in the Globals routine. 

 

Modify line 25 like below: 

 
 Private btnAction, btn0 As Button 

 

 

Run the program to check the result. 

 

 



4  The IDE 54 B4A   Beginner's Guide 

4 The IDE   
 

The Integrated Development Environment. 

 

When you run the IDE you will get a form like the image below: 

 

 

 

 

You see 3 main areas: 

 Code area  The code editor 

 

 Tab area  The content of this area depends on the selected Tab.  

 

 Tabs   Tabs for different settings. 

 

 



4  The IDE 55 B4A   Beginner's Guide 

4.1 Menu and Toolbar 

 

 
 

 
 

4.1.1 Toolbar 

 

Generates a new empty project [Ctrl + N]. 

 Loads a project. 

 Saves the current project [Ctrl + S]. 

 Export As Zip. 

 Copies the selected text to the clipboard [Ctrl + C]. 

 Cuts the selected text and copies it to the clipboard [Ctrl + X]. 

 Pastes the text in the clipboard at the cursor position [Ctrl + V]. 

 Undoes the last operation [Ctrl + Z]. 

 Redoes the previous operation [Ctrl + Shift + Z]. 

 Navigate backwards [Alt + Left]. 

 Navigate forwards    [Alt + Right]. 

 Block Comment [Ctrl + Q]. 

  Block Uncomment [Ctrl + W]. 

 Decrease the indentation of the selected lines. 

 Increase the indentation of the selected lines. 

 Runs the compiler [F5]. 

  

  Step In     [F8]. 

 Step Over [F9]. 

 Step Out   [F10]. These 5 functions are active only when the debugger is active. 

 Stop. 

 Restart      [F11]. 

 

 Compiler options list and  Debugging. 

 

 Conditional compiling options. 

 

 

 

 

 



4  The IDE 56 B4A   Beginner's Guide 

4.1.2 File menu 

 

 

New Generates a new empty project. 

Open Source   Loads a project. 

Save  Saves the current project. 

Export As Zip Exports the whole project in a 

zip file. 

Print Preview Preview of the print. 

Print Prints the whole code of the 

selected Module. 

Exit Leaves the IDE. 

 

List of last loaded programs. 

 

 

 

4.1.3 Edit menu 

 

 

Cut Cuts the selected text and copies it to the 

clipboard. 

Cut Line Cuts the line at the cursor position. 

Copy Copies the selected text to the clipboard. 

Paste Pastes the text in the clipboard at the 

cursor position. 

Undo Undoes the last operation. 

Redo Redoes the previous operation. 

Move Line(s) Up Moves the selected lines 

upwards. 

Move Line(s) Down Moves the selected lines 

downwards. 

Find / Replace  Activates the Find and Replace 

function. 

Quick Search                 Quick Search 

Find All References       Find All References 

Find Sub                         Find Sub 

Block Comment / Uncomment  
Comment / Uncomment the selected lines. 

Remove All Breakpoints  Breakpoints. 

Outlining   Collapse the whole code. 



4  The IDE 57 B4A   Beginner's Guide 

4.1.4 Project menu 

 

 

Adds a new module 

Adds an existing module 

 

Changes the module name 

Removes the current module 

 

Chooses an icon for the program. 

Changes the package name. 

Runs the Manifest Editor. 

 

Compile and run the project. 

Compile and run the project in the background. 

Compile to a library. 

 

 

4.1.4.1 Add a new module 

 

 

Activity module 

Class module 

Code module 

Service module 

 

 

4.1.5 Tools menu 

 

 

IDE Options  see below 

 

B4A Bridge, connection with Bluetooth or Wifi 

Clean Files Folder (unused files) 

Clean Project  

Configure Paths 

 

Run AVD Manager 

 

 

Take Screenshot 

Capture a video 

 

Show the Color Picker 

 

 



4  The IDE 58 B4A   Beginner's Guide 

4.1.5.1 IDE Options 

 

 

 

 

 

 

 

 

 

 

 

Themes. 

Font Picker. 

Auto Save    Saves the program every time you run it. 

Configure Process Timeout 

Clear Logs When Deploying  Removes all Log statements when compiled in Release mode.  

Disable Implicit Auto Completion. 

Use Legacy Debugger  Use the legacy Debugger instead of the rapid Debugger.  

 

4.1.5.1.1 Themes 

 

 

 

You can select different 

themes for the IDE. 

 

The default theme is 

MetroLight. 

 

When you select one you 

see directly the new colors. 

 

 

 

 

 

 

 

 

 



4  The IDE 59 B4A   Beginner's Guide 

4.1.5.1.2 Font Picker 

 

You can select the target Code Editior or Logs. 

 

 

 

 

Different fonts. 

Enter the text size. 

Select WordWrap 

Enter the Tab size. 

 

 

 

 

 

4.1.5.1.2.1 Word wrap 

 

 
Without word wrap. The end of the line is hidden. 

 

 
 

With word wrap.  The end of the line is wrapped to the next line. 

 

4.1.5.1.2.2 Configure Process Timeout 

 

Sometimes the compilation needs more 

time. If you get a message ‘Process 

timeout’ you can increase the time. 

 

 

 

 

4.1.5.1.2.3 Disable Implicit Auto Completion 

 

 

If    

is unchecked you will see a drop down list 

with possible words during typing. 

 

 

 

 

If checked  you won’t see the auto completion list. 

 

 



4  The IDE 60 B4A   Beginner's Guide 

4.1.5.2 Take Screenshot 

The function can be called from the: 

 Tools menu when the IDE is in edit mode 

 Debug menu when the IDE is in debug mode 

 

Note: This function works only with USB connetion not with B4A-Bridge ! 
 

 

Clicking on  

shows this window. 

 

 

 

Click on  to take the screenshot 

picture from the device. 

 

You can resize the image with the cursor on the 

left side. 

 

You can save the image with   

as a PNG file. 

 

And you can change the 

orientation  

of the picture. 

 

 

 

  

 

 

Right click on the image to copy the image to 

the clipboard.  

 

 

 

 

 

 

 

 



4  The IDE 61 B4A   Beginner's Guide 

4.1.5.3 Create Video 

You can run your program and record a video when you use it. 

 

Note: This function works only with USB connetion not with B4A-Bridge ! 
 

 

 

In the  menu click on . 

 

 

 

 

 

 

 

 

 

 

 

The sceen below will be dispayed: 

 

 

 

Click on  to 

begin recording. 

 

 

 

 

 

 

 

 

 

 

A screen similar to this one will be dispaled: 

 

 

Click on  to 

stop recording. 

 

You will be asked where 

you want to save the file 

on the computer. 

 

 

 

 

 

 



4  The IDE 62 B4A   Beginner's Guide 

4.1.5.4 Clean Files Folder (unused files)  

Deletes files that are located under the Files folder but are not used by the project (it will not delete 

any file referenced by any of the project layouts). A list of unused files will be displayed before 

deletion (and you may cancel the operation). 

 

4.1.5.5 Clean Project   

Deletes all files that are generated during compilation. 

 

 

 



4  The IDE  /  4.2  Code area 63 B4A   Beginner's Guide 

4.2 Code area 

 

The code of the selected module is displayed in this area and can be edited. 

The examples below are based on the code of the SecondProgram.  

 

4.2.1 Split the code area 

 

It is possible to split the code area into two parts allowing to edit two different code parts at the 

same time. 

 

Move the small rectangle below the zoom level. 

 

 
 

And the result. 

 

 
 

 



4  The IDE  /  4.2  Code area 64 B4A   Beginner's Guide 

4.2.2 Code header Project Attributes / Activity Attributes 

 

A code header, with general settings, is added at the beginning of the code. 

 

4.2.2.1 Project Attributes 

Attributes that are valid for the whole project. Displayed only in the Main module. 

 
#Region  Project Attributes 
 #ApplicationLabel: SecondProgram 
 #VersionCode: 1 
 #VersionName: 
 'SupportedOrientations possible values: unspecified, landscape or portrait. 
 #SupportedOrientations: unspecified 
 #CanInstallToExternalStorage: False 
#End Region 

 

#ApplicationLabel: The name which will be displayed below the program icon on the device. 

#VersionCode: The version of the code, it is not displayed. 

#VersionName: You can add a name for the version. 

#SupportedOrientations: You can limit the whole program to a given orientation. 

#CanInstallToExternalStorage: If you want to install the program on an external  storage card  

               you must set this attribute to True. 

 

You can add or change the values to your needs. 

4.2.2.2 Activity Attributes 

Valid for the current activity. 
#Region  Activity Attributes 
 #FullScreen: False 
 #IncludeTitle: True 
#End Region 

 

When you add a new Activity you'll find the Activity Attributes region on top. 
#Region  Activity Attributes  
 #FullScreen: False 
 #IncludeTitle: True 
#End Region 
 

When you add a new Service you'll find the Service Attributes header. 
#Region  Service Attributes  
 #StartAtBoot: False 
#End Region 
 



4  The IDE  /  4.2  Code area 65 B4A   Beginner's Guide 

When you want to add a new Attribute you can just write # and the inline help shows all 

possibilities. 

 

 

Note the two different icons: 

 

  Attributes. 

 

  Conditional compilation and region keywords. 

 

When you load a project saved with a version of B4A older than 2.5 then the header will look like 

this: 
#Region Module Attributes 
 #FullScreen: False 
 #IncludeTitle: True 
 #ApplicationLabel: MyFirstProgram 
 #VersionCode: 1 
 #VersionName:  
 #SupportedOrientations: unspecified 
 #CanInstallToExternalStorage: False 
#End Region 
 

 

 

  

 

 

 



4  The IDE  /  4.2  Code area 66 B4A   Beginner's Guide 

4.2.3 Undo – Redo   

 

In the IDE it is possible to undo the previous operations and redo undone operations. 

Click on   to undo and on  to redo. 

 

4.2.4 Collapse a subroutine 

 

A subroutine can be collapsed to minimize the number of lines displayed. 

 

 

The btnAction_Click routine expanded. 

 

 

 

Click on  to collapse the subroutine. 

 

 

 

 

 

 

 

 

The btnAction_Click routine 

collapsed. 

 

 

 

Hovering with the mouse over the collapsed routine 

name shows its content. 

 

 

 

 



4  The IDE  /  4.2  Code area 67 B4A   Beginner's Guide 

4.2.5 Collapse a Region 

 

You can define ‘Regions’ in the code, which can be collapsed. 

 

Example: 

 

#Region GPS sets the beginning of a region and 

#End Region the end 

 

 

 

 

 

Then you can add the subroutines between the two limits. 

 

 

 

 

 

 

 

 

 

 

 

    Then click on    to collapse the whole region. 

 

 

 

Hovering over  GPS   

 

 

 

 

 

 

 

 

shows the code. For big regions not all the code is displayed. 

 

 

 



4  The IDE  /  4.2  Code area 68 B4A   Beginner's Guide 

4.2.6 Collapse the entire code 

 

 

 

In the Edit / Outlining menu there 

are three functions: 

 

- Toggle All 

Expands the collapsed routines and 

collapses the expanded routines and 

regions. 

 

- Expand All 

Expands the entire code 

 

- Collapse All 

Collapses the entire code. 

 

 

Click on   Collapse All . 

 

 

 

 

 

 

The whole code collapsed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hovering with the mouse over 

a subroutine shows the 

beginning of its content. 



4  The IDE  /  4.2  Code area 69 B4A   Beginner's Guide 

4.2.7 Copy a selected bloc of text 

 

It is possible to copy a selected bloc of text to the clipboard. 

 

To select the bloc press Alt and move the mouse cursor. 

 

 
 

 

 

 

 



4  The IDE  /  4.2  Code area 70 B4A   Beginner's Guide 

4.2.8 Find / Replace 

 

The example uses the code from the SecondProgram project. 

 

Let’s replace  lblResult  by  edtResult. 

 

 In the code select lblResult. 

 

 

 

Press F3 or click on  in the  menu. 

 

 

This window will be displayed 

 

Enter edtResult in the ‘Replace with’ field. 

 

Now, you can either: 

  find the next occurrence. 

  replace the current occurrence and find the next 

one. 

  replace all occurrencies. 

 

 

 

 

 

 

 

 

You can search either in a Selection or in the Document, which 

means in the selected module not the whole document. 

 

 

 

 

You can select Find options, click on . 

 

 

 

 

 

 

 

These options are self-explanatory.



4  The IDE  /  4.2  Code area 71 B4A   Beginner's Guide 

4.2.9 Commenting and uncommenting code    

 

A selected part of the code can be set to comment lines or set to normal.  

 

 

 

Original code 

 

 

 

 

 

Select the code. 

 

Click on  or Ctrl + Q. 

 

 

 

 

The selected lines set as comments. 

 

To set the lines to normal, 

select the lines and click on  or Ctrl + W. 

 

 

 



4  The IDE  /  4.2  Code area 72 B4A   Beginner's Guide 

4.2.10 Bookmarks   

 

You can set 'bookmarks' anywhere in the code and jump forward and backwards between these 

bookmarks. 

 

To set or clear a bookmark, select the line and press Alt + B. 

 

Or right click on the line where you want to set a bookmark. 

 

You will get a pop up menu, click on 

 
to activate or deactivate a bookmark. 

 

 

 

 

 

You will see this mark  on the left of the line and a small black line  in the right slider: 

 

 
 

To jump to the next bookmark press Alt + PageDown  

or right click and click on   

 

To jump to the previous bookmark press on Alt + PageUp  

or right click and click on  

 

To clear all bookmarks right click and click on  

 

 

 

 



4  The IDE  /  4.2  Code area 73 B4A   Beginner's Guide 

4.2.11 Indentation    

 

A good practice is to use indentation of code parts. 

For example for subroutines, loops, structures etc.  

 

 

This code is difficult to read 

because the structure of the 

code is not obvious. 

 

 

 

 

 

 

 

 

 

 

 

 

This code is much easier to 

read, the structure of the 

code is in evidence. 

 

A tabulation value of 2 for 

the indentation is a good 

value. 

 

 

 

 

 

 

 

Example with an 

indentation of 4 

 

Personally,  

I prefer a value of 2. 

 

 

 

 

 

 



4  The IDE  /  4.2  Code area 74 B4A   Beginner's Guide 

Whole blocks of code can be indented forth and back at once. 

 

 

Original code. 

 

 

 

 

 

Select the code block. 

 

Click on . 

 

 

 

The whole block has moved one tabulation to 

the right. 

 

To move a block to the left. 

Select the code block and click on  . 

 

 

The indentation value can be changed in the Tools menu IDE Options / Font Picker.  

 

 
 

 

 

 

 

 

 

 

 

 

Enter the value and click on  . 

 

 

 
 



4  The IDE  /  4.2  Code area 75 B4A   Beginner's Guide 

4.2.12 Documentation tool tips while hovering over code elements 

 

When you hover over code elements the on line help is displayed. 

 

Examples: 

 

Hovering over Globals: 

 

 
 
Hovering over Private: 

 

 
 
 
 
 



4  The IDE  /  4.2  Code area 76 B4A   Beginner's Guide 

4.2.13 Auto Completion   

 

A very useful tool is the Auto Completion function. 

Example with the SecondProgram code: 

 

Let us write lblN. 

 

All variables, views and property names beginning 

with the letters already written are shown in a 

popup menu with the online help for the 

highlighted variable, view or property name.  

 

To choose lblNumber1 press Return. 

 

     

The selected name is completed. 

 

To choose lblNumber2  double click on it or press the down arrow and press Return. 

 

 

 

 

 

 

 

After pressing "." all properties and methods of the 

view are displayed in a popup menu. 

 

 

 

 

 

When selecting an item, 

the internal help is 

displayed  

 

Pressing on the up / down 

arrows selects the previous 

or next item with its help. 

 

Pressing a character 

updates the list and shows 

the parameter beginning 

with that character. 

 



4  The IDE  /  4.2  Code area 77 B4A   Beginner's Guide 

Structures are also completed. 

 

Examples: 

 

For / Next 

 

Tpye Fo 

 

 

 

You get For with the help. 

 

 

Press Return. 

 

 

For is completed. 

 

Write the rest of the instruction. 

And press Return. 

 

Next is automatically added and the 

cursor is in the next line idented. 

 

 

If  / Then 

 

 

 

 

Type ‘if’. 

 

You get If with the help. 

 

Press Return and continue typing like in 

the example. 

 

 

After th you get Then with its help. 

 

Press Return. 

 

 

And press Return again. 

 

 

End If is automatically added 

and the cursor is in the next line idented. 

 

 

 

The best way to learn it is to 'play' with it. 



4  The IDE  /  4.2  Code area 78 B4A   Beginner's Guide 

Another very powerful Autocomplete, function allows you to create event subroutines. 

 

In the example below we want to create the Click event for the bntOK button. 

Write ’Su’ and the Auto Completion displays all keywords containing the two characters. 

 

 
 

Press Return to select Sub. 

 

 
 

Press blank. 

 

 
 

Press Tab and select the view type, select Button. 

 

 
 

All events for a Button are displayed, select Click. 

 



4  The IDE  /  4.2  Code area 79 B4A   Beginner's Guide 

The subroutine frame is generated. 

 

 
 

Modify 'EventName' to the event name of the button, in our example btnOK. 

 

 
 

Press Return and the routine is ready. 

 

 
 



4  The IDE  /  4.2  Code area 80 B4A   Beginner's Guide 

4.2.14 Built in documentation 

 

Another useful function is the built-in documentation. 

 

Comments above subs, such as: 

 
'Draws a cross at the given coordinates with the given color 
'x any y = coordinates in pixels 
'Color = color of the two lines 
Sub DrawCross(x As Int, y As Int, Color As Int) 
 Private d = 3dip As Int 
  
 cvsLayer(2).DrawLine(x - d, y, x + d, y, Color, 1) 
 cvsLayer(2).DrawLine(x, y - d, x, y + d, Color, 1) 
End Sub 
 

Will automatically appear in the auto complete pop-up window: 

 

 
 

 

If you want to add a code example you can use <code> </code>  tags: 

 
'Draws a cross at the given coordinates with the given color 
'x any y = coordinates in pixels 
'Color = color of the two lines 
'Code example: <code> 
'DarwCross(20dip, 50dip, Colors.Red) 
'</code> 
Sub DrawCross(x As Int, y As Int, Color As Int) 
 Private d = 3dip As Int 
  
 cvsLayer(2).DrawLine(x - d, y, x + d, y, Color, 1) 
 cvsLayer(2).DrawLine(x, y - d, x, y + d, Color, 1) 
End Sub 

 

 The code will be syntax highlighted: 

 

 

 

 

 

 

 

 



4  The IDE  /  4.2  Code area 81 B4A   Beginner's Guide 

4.2.14.1 Copy code examples 

 

You can copy the code example in your code. 

 

When hovering over (copy) you can copy the code example to the clipboard. 

 

 
 

 

Remove Draw  

 

 
 

And copy. 

 

 
 



4  The IDE  /  4.2  Code area 82 B4A   Beginner's Guide 

4.2.15 Jump to a subroutine 

 

Sometimes it is useful to jump from a subroutine call to the subroutine definition. 

This can easily be done : 

 

 

Select the text of the subroutine call. 

 

 

 

Press Ctrl and Click. 

 

 

 

And you are there. 

 

 

 

Another method. 

Select the text of the subroutine call. 

 

Right click on the selected text. 

 

Click on Goto Identifier. 

 

 

 

 

 

And you are there. 

  

 



4  The IDE  /  4.2  Code area 83 B4A   Beginner's Guide 

4.2.16 Highlighting occurrences of words 

 

When you select a single word, it is highlighted in dark blue and all the other occurrences in the 

code are highlighted in light blue and in the scroll view on the right side. 

With the slider you can move up or down the code to go to the other occurrences. 

 

 
 

 

4.2.17 Compiler mode  

 

Besides the toolbar there is a drop down list to select the compiler mode. 

 

Thes are: 

 Debug  

 Release 

 Release (obfuscated) 

 

 

 

Debugging is explained in detail in the Debugging chapter. 



4  The IDE  /  4.2  Code area 84 B4A   Beginner's Guide 

4.2.17.1 Release and Release (obfuscated) modes 

 

To distribute your project you must compile it with:  

 Release 

The debugger code will not be added to the apk file. 

 Release (obfuscated)  

The debugger code will not be added to the apk file, 

but the program file will be modified. See below. 

 

During compilation B4A generates Java code which is then compiled with the Java compiler and 

converted to Dalvik (Android byte code format). 

There are tools that allow decompilation of Dalvik byte code into Java code. 

 

The purpose of obfuscation is to make the decompiled code less readable, harder to understand and 

make it more difficult to extract strings like developer account keys. 

 

It is important to understand how the obfuscator works. 

The obfuscator does two things: 

 

Strings obfuscation 
Any string written in Process_Globals sub (and only in this sub) will be obfuscated, making it much 

harder to extract important keys. The strings are deobfuscated at runtime. 

Note that several keys are used during obfuscation including the package name, version name and 

version code. Modifying these values with the manifest editor will break the deobfuscation process. 

 

Variables renaming 
The names of global variables and subs are converted to meaningless strings. Local variables are 

not affected as their names are lost anyway during the compilation. 

The following identifiers are not renamed: 

- Identifiers that contain an underscore (required for the events handlers). 

- Subs that appear in CallSub statements. When a sub name appears as a static string, the identifier 

be kept as it is. 

- Designer views names. 

 

Tip: If, for some reason, you wish to prevent obfuscation of an identifier, include an underscore 

character in the name. 

 

A file named ObfuscatorMap.txt will be created under the Objects folder. This file maps the 

original identifiers names to the obfuscated names. This mapping can be helpful in analysing crash 

reports. 

 



4  The IDE  /  4.2  Code area 85 B4A   Beginner's Guide 

4.2.18 Breakpoints 

 

Clicking on a line in the left margin adds a breakpoint. When the program is running it stops at the 

first breakpoint.  

Breakpoints are ignored in Globals, Process_Globals and Activity_Pause. 
The IDE behaves differently depending on the debug mode. The examples below are for the  

rapid debug mode.  

 

 
 

Run the program, the program stops at the breakpoint and the IDE looks like below. The line where 

the program stops is highlighted in yellow. 

 

 
 

At the bottom of the IDE you find other information. 

 

 
     

The Debugger is connected. In the left part of the Debugger window we find: 

 

  A button to update the program after a code modification. 

  The name of the routine where the Debugger stopped the  

     program. New in the module Main in line 46. 

  Caller of the “New” routine:  

     Activity_Create in the module Main routine in line 32. 

 

Clicking on these links moves the cursor to the given line. 



4  The IDE  /  4.2  Code area 86 B4A   Beginner's Guide 

In the right part of the Debugger window we find the list of all Views and Variables with their 

values. 

 

 
 

In the Toolbar, at the top of the IDE the navigation buttons are enabled. 

 

 

 Run the program Runs the program, no action in Debug (rapid) 

 Step In F8 Executes the next statement. 

 Step Out F9 Leaves the current subroutine. 

 Step Over F10 Steps over the subroutine call. 

 Stop Stops the program. 

 Restart F11 Restarts the program. 

 

For more details look at Debug (rapid) mode. 

 

 

 



4  The IDE  /  4.2  Code area 87 B4A   Beginner's Guide 

4.2.19 Color Picker 

 

In the code, right click to show the popup  

menu below.       Or, in the menu Tools. 

 

          
 

Click on   to show the Color Picker. 

 

 

 

You can move the cursor in the 

square and the rectangular areas. 

 

Or enter the A R G B values. 

 

 

 

 

 

Copy the value to the Clipboard.  

 

You can then paste the value into 

the code. 

 

 

 

 
 



4  The IDE  /  4.2  Code area 88 B4A   Beginner's Guide 

4.2.20 Colors in the left side 

 

Sometimes, you will see yellow or green vertical lines in the left side od the IDE. 

 

As soon as you modify a line it will be marked with a yellow vertical line on the right of the line 

number meaning that this line was modified. 

 

 
 

If we click on  to save the project the yellow lines become green showing a modified code but 

already saved. You can also press Ctrl + S to save the project. 

 

               
 

If we leave the IDE and load the project again the green lines disappear. 

 



4  The IDE  /  4.2  Code area 89 B4A   Beginner's Guide 

4.2.21 URLs in comments and strings are ctrl-clickable 

 

URLs in comments and strings are ctrl-clickable. 

 

In a comment: 

 

 
 

If the cursor is on the line and you press Ctrl the url is highlighted in blue and if you click on it the 

url it is executed. Hovering over the line with Ctrl pressed does also highlight the url. 

 

 
 

 

In a String: 

 

 
 

The cursor must be over the String variable and not over text. 

 

 
 

 

 

 

 

 

 

 



4  The IDE  /  4.3  Tabs 90 B4A   Beginner's Guide 

4.3 Tabs 

 

There are 6 tabs at the bottom right corner of the IDE that displays different windows.  

 

 

The short version. 

 

 

The wide version. 

 
 

The 6 Tabs are: 

 Modules 

 Files Manager 

 Libraries Manager 

 Logs 

 Quick Search 

 Find All References 

 

 

Each Tab has its own window.  

By default they are displayed in the Tab area on the right side of the IDE, only one at the same time. 

These windows can be closed, hidden or floating, see next chapter.



4  The IDE  /  4.3  Tabs 91 B4A   Beginner's Guide 

4.3.1 Floating Tab windows 

 

When you start the default IDE all Tab windows are docked in the Tab area. 

 

 
 

You can set each Tab window as a separate floating window. 

 

 

 



4  The IDE  /  4.3  Tabs 92 B4A   Beginner's Guide 

4.3.2 Float   

 

To set the Modules Tab window to floating click in the title on . 

 

 
 

Click on . 

 

 
 

 

The Modules Tab Window is now floating, you can place it where you want on the screen even on a 

second monitor. 

 

 
 

 

To dock it back to the Tab area click on . 

 

 
 

To show the Tabs again click either on Dock in the Options or on Reset in the IDE Window menu. 

 



4  The IDE  /  4.3  Tabs 93 B4A   Beginner's Guide 

You can also click on a Tab and while maintaining the mouse down, move the Tab. 

 

 
 

 This will show you all the possible ‘docking’ areas. 

 

 
 

 

Docking areas: 

 

 

Top 

 

 

Left 

 

 

Right 

 

 

Bottom 

 

 



4  The IDE  /  4.3  Tabs 94 B4A   Beginner's Guide 

If you mouve the mouse onto one of the docking area symbol, the Tab window will be either on top, 

on the left, the right or on the bottom. 

 

 
 

And the result. 

 

 
 

To bring it back to the Tabs, click on the window title and move it back to the Tabs. 

 

 
 



4  The IDE  /  4.3  Tabs 95 B4A   Beginner's Guide 

4.3.3 Auto Hide   

 

Click on  in the title or click on  in the Options. 

 

 
 

 

The Tabs move from the bottom of the screen vertically on the right side of the 

screen and the Tab window is hidden. 

 

Hovering over a Tab highlights it in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click on a Tab to show it. 

 

 

 

 

 

The selected Tab is displayed. 

 

 

 

 

 

 

 

 

 

 

 

As soon as you click on something in the IDE the Tab is hidden again.  

 



4  The IDE  /  4.3  Tabs 96 B4A   Beginner's Guide 

To move the Tabs back to the lower right corner: 

 

Click on  in the Options. 

  

            
 

Or click on  in the IDE Windows menu. 

 

 
 

  

 

 

 



4  The IDE  /  4.3  Tabs 97 B4A   Beginner's Guide 

4.3.4 Close 

 

You can close a window, hide it. 

 

Click on  in the title or on  in the Options. 

 

 
 

 

 

 

To show it again, in the Windows menu click on the module 

name you want to show,  in our example. 

 

 

 

 

 



4  The IDE  /  4.3  Tabs 98 B4A   Beginner's Guide 

4.3.5 Modules and subroutine lists    

 

All the modules of the project and all subroutines of the selected module are listed in the Modules 

window. The picture below has been reduced in height. 

 

Find Sub / Module (Ctrl + E) 

 

Module list on top. 

Clicking on a module shows its code in the code area. 

 

Find Sub Tool (Ctrl + E) see below 

Find All References (F7) see below 

 

Subroutine list of the selected module. 

Clicking on a subroutine shows its code in the middle of 

the code area. 

 

In the IDE, in the bottom right corner. 

 

To show a hidden module, click on the module name in 

the module list. 

 

 

 



4  The IDE  /  4.3  Tabs 99 B4A   Beginner's Guide 

4.3.5.1 Find Sub / Module (Ctrl + E) 

 

The Find Sub / Module function is a search engine, on the Top of the Modules Tab, to find 

subroutines or Modules with a given name or with a given part of the name. 

 

You can press Ctrl + E in the code to select the Modules Tab with the Find Sub / Module function.  

 

Example with the code of the SecondProgram example. 

 

No text   only the character ‘a’   text  ‘act’ 

 

   
 

Shows all modules and all  Shows all modules and  Shows all modules and 

routines of the selected routines containing ‘a’. routines containing ‘act’. 

Module. 

 

Clicking on one item shows the code of the selected module or routine, even if it's in another 

module than the current one. 

 

 

 

 

 

 

 



4  The IDE  /  4.3  Tabs 100 B4A   Beginner's Guide 

4.3.6 Files Manager   

 

This window lists all the files that have been added to the project.  

These files are saved in the ‘Files’ subfolder under your main project folder. 

These can be any kind of files: layouts, images, texts, etc. 

 

 

Click on  to add files to the list. 

The files in that subfolder can be accessed from your 

program by using the reference File.DirAssets. 

 

Or click on  to add all the files from the projects Files 

folder into the File Tab. 

 

 

In the IDE, in the bottom right corner. 

 

 

 

 

 

 

 

Checking one or more files enables the  

 

  button. 

 

 

Clicking on this button removes the selected files from the 

list and, if you want, from the Files folder of the project. 

 

 

 

 

You are asked if you want to 

delete the files from the 'Files' 

folder. 

Oui   = Yes 

Non   =  No 

Annuler = Cancel 

 

 

 

Make sure to have a copy of the files you remove, because they are removed from the Files 

folder, but not transferred to the Recycle Bin, which means that they are definitely lost if you 

don't make a copy. 

 

See chapter Files for file handling. 



4  The IDE  /  4.3  Tabs 101 B4A   Beginner's Guide 

On top of the Files Manager window you can filter the files list. 

 

 

 

Enter ‘.bal’ to filter all layout files, 

 

 



4  The IDE  /  4.3  Tabs 102 B4A   Beginner's Guide 

4.3.7 Logs        

 

Display of Log comments generated by the program when it is running. 

 

We add the two lines 44 and 46 in the program 'SecondProgram' in the 'New' routine. 

The number of the lines may be different from yours. 

 

 
 

Run the program. 

Click on   to connect the logger. 

 

The top area of the window shows Compile Warnings 

see next page. 

 

In the lower area of the window we see the flow of the 

program. 

 

Installing file. 

** Activity (main) Pause, UserClosed = false ** 

Package Added: package:b4a.secondprogram 

** Activity (main) Create, isFirst = true ** 

Number1 = 6   First log message 

Number2 = 5  Second log message 

** Activity (main) Resume ** 

 

  When Filter is checked you will only see 

messages related to your program. When it is 

unchecked you will see all the messages running in the 

system. If you are encountering an error and do not see 

any relevant message in the log, it is worth unchecking 

the filter option and looking for an error message 

 

Click on  to clear the Logs window. 

 



4  The IDE  /  4.3  Tabs 103 B4A   Beginner's Guide 

4.3.7.1 Compile Warnings 

 

B4A includes a warning engine. The purpose of the warning engine is to find potential 

programming mistakes as soon as possible. The examples are from the Warnings project. 

 

 

 

The compile-time warnings appear above the logs and in the code itself when hovering with the 

cursor above the code line. 

The code lines which cause a warning are underlined like this  . 

 

 
 

Clicking on the warning in the list will take you to the relevant code. 

 

The warning engine runs as soon as you type. 

 

 
 

Typing for example ‘lbl’ at the beginning of a line shows immediately: 

 lbl in red, because lbl was not declared. 

 a warning   

 the auto complete pop up window with suggestion containing the written characters. 

 

 



4  The IDE  /  4.3  Tabs 104 B4A   Beginner's Guide 

4.3.7.1.1 Ignoring warnings 

You, as the developer, can choose to ignore any warning. Adding an "ignore" comment will disable 

all the warnings for that specific line: 
 

     
 

You can also disable warnings from a specific type in the module by adding the #IgnoreWarning 

attribute in the Project Attributes or Module Attributes regions. 

 

For example, to disable warnings #10 and #12: 

 
#Region  Project Attributes  
 #ApplicationLabel: Warnings 
 #VersionCode: 1 
 #VersionName:  
 'SupportedOrientations possible values: unspecified, landscape or portrait. 
 #SupportedOrientations: unspecified 
 #CanInstallToExternalStorage: False 
 #IgnoreWarnings: 10, 12 
#End Region 
 

You find the warning numbers at the end of each warning line. 

 



4  The IDE  /  4.3  Tabs 105 B4A   Beginner's Guide 

4.3.7.1.2 List of warnings 

 

1: Unreachable code detected. 

2: Not all code paths return a value. 

3: Return type (in Sub signature) should be set explicitly. 

4: Return value is missing. Default value will be used instead. 

5: Variable declaration type is missing. String type will be used. 

6: The following value misses screen units ('dip' or %x / %y): {1}. 

7: Object converted to String. This is probably a programming mistake. 

8: Undeclared variable '{1}'. 

9: Unused variable '{1}'. 

10: Variable '{1}' is never assigned any value. 

11: Variable '{1}' was not initialized. 

12: Sub '{1}' is not used. 

13: Variable '{1}' should be declared in Sub Process_Globals. 

14: File '{1}' in Files folder was not added to the Files tab.\nYou should either delete it or add it to 

the project.\nYou can choose Tools - Clean unused files. 

15: File '{1}' is not used. 

16: Layout file '{1}' is not used. Are you missing a call to Activity.LoadLayout? 

17: File '{1}' is missing from the Files tab. 

18: TextSize value should not be scaled as it is scaled internally. 

19: Empty Catch block. You should at least add Log(LastException.Message). 

20: View '{1}' was added with the designer. You should not initialize it. 

21: Cannot access view's dimension before it is added to its parent. 

22: Types do not match. 

23: Modal dialogs are not allowed in Sub Activity_Pause. It will be ignored. 

24: Accessing fields from other modules in Sub Process_Globals can be dangerous as the 

initialization order is not deterministic. 

28: It is recommended to use a custom theme or the default theme. 

Remove SetApplicationAttribute(android:theme, “@android:style/Theme.Holo”) from the manifest 

editior. 

32: Library ‘xxxx’ is not used. 

 

'Runtime warnings 

1001: Panel.LoadLayout should only be called after the panel was added to its parent. 

1002: The same object was added to the list. You should call Dim again to create a new object. 

1003: Object was already initialized. 

1004: FullScreen or IncludeTitle properties in layout file do not match the activity attributes 

settings. 

 

 

1: Unreachable code detected. 

 

There is some code which will never be executed. 

This can happen if you have some code in a Sub after a Return statement. 

 



4  The IDE  /  4.3  Tabs 106 B4A   Beginner's Guide 

2: Not all code paths return a value. 

 
Sub Calc(Val1 As Double, Val2 As Double, Operation As String) As Double 
 Select Operation 
 Case "Add" 
  Return (Val1 + Val2) 
 Case "Sub" 
  Return (Val1 - Val2) 
 Case "Mult" 
  Return (Val1 * Val2) 
 Case "Div" 
  
 End Select 
End Sub 
 

In the Case "Div" path no value is returned ! 

 

Other example: 

Wrong code 
Sub Activity_KeyPress(KeyCode As Int) As Boolean  
 Private Answ As Int 
 Private Txt As String 
  
 If KeyCode = KeyCodes.KEYCODE_BACK Then' Checks if the KeyCode is BackKey 
  Txt = "Do you really want to quit the program ?" 
  Answ = Msgbox2(Txt,"A T T E N T I O N","Yes","","No",Null) ' MessageBox  
  If Answ = DialogResponse.POSITIVE Then ' If return value is Yes then 
   Return False ' Return = False  the Event will not be consumed 
  Else   ' we leave the program 
   Return True  ' Return = True   the Event will be consumed to avoid  
  End If   ' leaving the program 
 End If 
End Sub 
 

Correct code 
Sub Activity_KeyPress(KeyCode As Int) As Boolean  
 Private Answ As Int 
 Private Txt As String 
  
 If KeyCode = KeyCodes.KEYCODE_BACK Then' Checks if the KeyCode is BackKey 
  Txt = "Do you really want to quit the program ?" 
  Answ = Msgbox2(Txt,"A T T E N T I O N","Yes","","No",Null) ' MessageBox  
  If Answ = DialogResponse.POSITIVE Then ' If return value is Yes then 
   Return False ' Return = False  the Event will not be consumed 
  Else   ' we leave the program 
   Return True  ' Return = True   the Event will be consumed to avoid  
  End If   ' leaving the program 
 Else 
  Return True  ' Return = True   the Event will be consumed to avoid  
 End If   ' leaving the program 
End Sub 
 

3: Return type (in Sub signature) should be set explicitly. 

 

Wrong code 
Sub Calc(Val1 As Double, Val2 As Double, Operation As String) 

 

Correct code 
Sub Calc(Val1 As Double, Val2 As Double, Operation As String) As Double 

The return type must be declared !



4  The IDE  /  4.3  Tabs 107 B4A   Beginner's Guide 

4: Return value is missing. Default value will be used instead. 

 

Wrong code 
Sub CalcSum(Val1 As Double, Val2 As Double) As Double 
 Private Sum As Double 
  
 Sum = Val1 + Val2 
 Return 
End Sub 
 

Correct code 
Sub CalcSum(Val1 As Double, Val2 As Double) As Double 
 Private Sum As Double 
  
 Sum = Val1 + Val2 
 Return Sum 
End Sub 
 

5: Variable declaration type is missing. String type will be used. 

 

Wrong code 
Sub Calc(Val1, Val2 As Double, Operation As String) As Double 

 

Correct code 
Sub Calc(Val1 As Double, Val2 As Double, Operation As String) As Double 

 

In sub declarations each variable needs its own type declaration. 

But in Private, Public or Dim declarations it's allowed, in the line below both variables are Doubles: 
Private Val1, Val2 As Double 
 

6: The following value misses screen units ('dip' or %x / %y): {1}. 

 

Wrong code 
Activity.AddView(lblTest, 10, 10, 150, 50) 
 

Correct code 
Activity.AddView(lblTest, 10dip, 10dip, 150dip, 50dip) 
 

In the example above you will get four warnings, one for each value. 

For view dimensions you should use dip, %x or %y values. 

See chapter  5.1 Special functions  like 50%x,  50dip 

 
7: Object converted to String. This is probably a programming mistake. 

 

8: Undeclared variable '{1}'. 

 

Wrong code 
Sub SetHeight 
 h = 10dip 
End Sub 
 

Correct code 
Sub SetHeight 
 Private h As Int 
 h = 10dip 
End Sub 
The variable h was not declared. You see it also with the red color.



4  The IDE  /  4.3  Tabs 108 B4A   Beginner's Guide 

9: Unused variable '{1}'. 
 

Sub SetHeight 
 Private h As Int 
 h = 10dip 
End Sub 
 

This warning tells that the variable h is not used.  

It is declared and assigned a value, but it is not used ! 

 

This code gives no warning because variable h is used: 
Sub SetHeight 
 Private h As Int 
 h = 10dip 
 lblTest.Height = h 
End Sub 

 

10: Variable '{1}' is never assigned any value. 

 
Sub Test 
 Private h As Int 
 
End Sub 

This warning shows that the variable h is declared but not assigned any value. 

Correct code see above. 

 

11: Variable '{1}' was not initialized. 

 

Wrong code 
 Private lst As List 
 lst.Add("Test1") 

 

Correct code 
 Private lst As List 
 lst.Initialize 
 lst.Add("Test1") 

 

Variables (objects) like List or Map must be initialized before they can be used. 

Views added by code must also be initialized before they can be added to a parent view. 

 

12: Sub '{1}' is not used. 

 

This warning is displayed if a Sub routine is never used. 

 

13: Variable '{1}' should be declared in Sub Process_Globals. 

 

Wrong code : 
Sub Globals 
 Public Timer1 As Timer 
 Public GPS1 As GPS 

 

Correct code : 
Sub Process_Globals 
 Public Timer1 As Timer 
 Public GPS1 As GPS 

 

Certain objects like Timers and GPS should be declared in Process_Globals, not in Globals. 



4  The IDE  /  4.3  Tabs 109 B4A   Beginner's Guide 

14: File '{1}' in Files folder was not added to the Files tab. 

 

You are using a file which is in the Files folder, but was not added to the Files tab. 

You should: 

- Make a backup copy. 

- Delete it from the Files subfolder. 

- Add it to the project in the Files tab. 

- Use Clean Files Folder (unused files) in the Tools menu. 

 
 

15: File '{1}' is not used. 

 

You have files in the Files folder that are not used. 

You should remove them from the Files folder. 

Or you can clean the Files folder from within the Tools menu (see above). 

 

16: Layout file '{1}' is not used. Are you missing a call to Activity.LoadLayout? 

 

You have a layout file in the Files folder that is not used. 

You should add LoadLayout or you can remove the layout file from the Files folder. 

Or you can clean the Files folder in the Tools menu. 

 
 

17: File '{1}' is missing from the Files tab. 

 

The given file is in the Files tab but is missing in the Files folder. You should add it. 

See chapter  4.3.2 Files 

 

18: TextSize value should not be scaled as it is scaled internally. 

 

Wrong code 
lblTest.TextSize = 16dip 

 

Correct code 
lblTest.TextSize = 16 
 

TextSize values are pixel and density independent. Their unit is the typographic point, a 

typographic unit, and must be given absolute values and not dip values. 

 

http://en.wikipedia.org/wiki/Point_(typography)


4  The IDE  /  4.3  Tabs 110 B4A   Beginner's Guide 

19: Empty Catch block. You should at least add Log(LastException.Message). 

 

Wrong code 
 Try 
  imvImage.Bitmap = LoadBitmap(File.DirRootExternal, "image.jpg") 
 Catch 
   
 End Try 

 

Correct code 
 Try 
  imvImage.Bitmap = LoadBitmap(File.DirRootExternal, "image.jpg") 
 Catch 
  Log(LastException.Message) 
 End Try 

 

It is recommended to add at least Log(LastException.Message) in the Catch block instead of 

leaving it empty. 

 

20: View '{1}' was added with the designer. You should not initialize it. 

 

A View defined with the Designer in a layout file must not be initialized ! 

Only views added by code need to be initialized. 

 

21: Cannot access view's dimension before it is added to its parent. 

 

You must add a view to a parent view before you can access its dimensions. 

When you add a view by code its dimensions are defined when you add it with AddView. 

 

22: Types do not match. 
 

23: Modal dialogs are not allowed in Sub Activity_Pause. It will be ignored. 

 

Modal dialogs like MessageBox should not be used in the Activity_Pause routine. 

 

24: Accessing fields from other modules in Sub Process_Globals can be dangerous as the 

initialization order is not deterministic. 

 
28: It is recommended to use a custom theme or the default theme. 

Remove SetApplicationAttribute(android:theme, “@android:style/Theme.Holo”) from the 

manifest editior. 

 

This was set automatically in older versions of B4A. No more needed. 

 

32: Library ‘xxxx’ is not used. 

 

Remove the unused library. 
 



4  The IDE  /  4.3  Tabs 111 B4A   Beginner's Guide 

4.3.8 Libraries Manager   

 

The “Libraries Manager” Tab contains a list of the available libraries that can be used in the project. 

 

Check the libraries you need for your project. 

Make sure that you have the latest version of the libraries. 

 

 

 

 

The used libraries are shown on top of the list. 

As soon as you select one it moves to the top of the 

list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the top of the Tab you find a field to filter the 

libraries. 

 

 

 

Enter ‘AH’ and you get all libraries beginning with 

AH. 

 

The list of all additional libraries can be found here: 

Additional Libraries. 

 

The documentation for libraries can be found here:  
B4A - Libraries. 

Clicking on a link in the list shows the documentation. 

 

Look also at chapter Libraries. 
 

 

 

http://www.basic4ppc.com/android/wiki/index.php/Libraries
http://www.basic4ppc.com/android/documentation.html#libraries


4  The IDE  /  4.3  Tabs 112 B4A   Beginner's Guide 

4.3.9 Quick Search   

 

Quick Search allows to search for any text occurrences in the code of the whole project. 

Examples with the SecondProgram code. 

 

Several possibilities to select the Quick Search function: 

 Ctrl + F, the easiest and most efficient way. 

 Click on the  Tab in the lower right corner of the IDE. 

 Click on  in the Edit menu.  

 

 

Example: 

 

In the code double click on btnAction to select it and 

press Ctrl + F. 

 

You get the window below in the Tab area. 

 

 

The list shows the occurrences in all 

Modules. 

 

In each line you find the Module 

name and the line content.   

 

     

 

   

 

 

 

Clicking on a line in the list moves the cursor directly to the selected occurrence in the code. 

 

 
 

 

 

To remove the selection click on on the top 

right corner of the Quick Search window. 

 



4  The IDE  /  4.3  Tabs 113 B4A   Beginner's Guide 

You can also enter any text in the search field: 

 

As an example, enter lbl in the Search field and you get the window below where you find all lines 

containing the text you entered, lbl in this example. 

 

The search text is highlighted in all code    Clicking on one of the lines in the list 

lines containing this text.      jumps directly to this line in the IDE. 

 

 
 

 

 

 

 

Click on  to remove a search.  

 

 

 

 

 

 

You will see a list of the last searches. 

 

 

 

 

 

 

 

Click on  to remove all recent 

searches. 

 

 

 

Items are added to the recent items when: 

1. You select one of the results or click enter which selects the first result. 

2. You select text in your code and click on Ctrl + F to search for it. 

 

 

 

 

 

 

 



4  The IDE  /  4.3  Tabs 114 B4A   Beginner's Guide 

4.3.10 Find All References (F7)    

 

This is a search engine to find all references for a given object (view, variable). 

 

Click on the   Tab or press F7 to get the screen below showing a list of all 

code lines with the selected reference or the first object in the current line. 

 

Example with the code of SecondProgram. 

 

Select in the code in line 49   Number1. 

 

 
 

Click on  or press F7 and you get the list below with all code lines containing 

the selected object. 

 

 

 

 

Clicking on a line in the list shows that line 

in the middle of the IDE code area. 

 

 

 



4  The IDE  /  4.3  Tabs 115 B4A   Beginner's Guide 

4.4 Navigation in the IDE 

 

4.4.1 Alt + Left  / Alt + Right  Move backwards and forwards 

 

Moves backwards and forwards based on the navigation stack. This is useful to jump back and forth 

between the last recent subs. 

 

4.4.2 Alt + N   Navigation stack menu 

 

Opens the navigation stack menu. You can then choose the location with the up and down keys. 

 

 
 

4.4.3 Split the screen 

 

If you are working on two locations in the same module then you can split the code editor (it can be 

split again vertically): 

 

    

    
  Horizontally         Vertically  

   

          You can also double click on the small rectangles to split the screen. 

 

 

 



4  The IDE  /  4.3  Tabs 116 B4A   Beginner's Guide 

4.4.4 Multiple windows 

 

If you are working with multiple modules you can move the modules out of the main IDE as 

separate windows. 

 

 
 

4.4.5 Ctrl + E  Search for sub or module 

 

Ctrl + E - searches for sub or module. Very useful when working with large projects. 

 

4.4.6 Ctrl + Click on any sub or variable 

 

Ctrl + Click on any sub or variable to jump to the declaration location. 

 

4.4.7 F7 - Find all references 

 

Not exactly related to navigation but is also useful when working with large projects. 

Details in Find all references. 

 

4.4.8 Ctrl + F  Quick Search 

 

Ctrl + F - Index based quick search. Details in Quick Search. 

 
 
 
 
 
 



5  Screen sizes and resolutions 117 B4A   Beginner's Guide 

5 Screen sizes and resolutions 
 

There exist many different screen sizes with different resolutions and pixel densities. 

We must explain the difference between the following parameters. 

- Physical screen size  Ex:  3.6 '' diagonal  

- Resolution in pixels  Ex:  320 / 480   

- Density pixels per inch Ex:  160 

- Scale    Ex:  1    

 

The standard screen is 320 / 480 pixels, density 160 pixels/inch and scale 1. 

There exist other screens with almost the same physical size but with a higher resolution (for 

example 480 / 640 pixels with a density of 240 pixels/inch and a scale of 1.5). 

Tablets have bigger physical sizes but can have a density similar to the standard screen. 

Example: 7.2 '' screen diagonal, 640 / 960 pixels and a density of 160 pixels/inch. 

 

A non-exhaustive list of screens: 

 

Diagonal Resolution Density Scale W / H Ratio 

3.5 320 / 480 160 1 3 / 2 

3.5 480 / 720 240 1.5 3 / 2 

3.9 480 / 800 240 1.5 5 / 3 

3.5 240 / 320 120 0.75 4 / 3 

5 1080 / 1920 480 3 4 / 3 

7 640 / 960 160 1 3 / 2 

7 800 / 1280 160 1 16 / 9 

  10 768 / 1024 160 1 4 / 3 

10 800 / 1280 160 1 16 / 10 

10 1200 / 1920 240 1.5 16 / 10 

 

Let us compare the following resolutions: 

1) 320 / 480 / 160 screen ~3.5'' standard density 160 scale 1 

2) 480 / 800 / 240 screen ~3.5'' density 240  scale 1.5 

3) 640 / 960 / 320 screen ~3.5'' density 320  scale 2 

4) 640 / 960 / 160 ~7'' screen   standard density 160  scale 1 

 

In cases 1) 2) and 3) the physical sizes of the screens are the same but the density of the pixels is 

different.  

In cases 1) and 4) the densities are the same, but the physical dimensions of the screen in case 4) 

are double the dimensions of screen 1), yielding 4 times the area, and 4 times total number of 

pixels. 

 

Let us look at the physical size of a button with 80 / 80 dip (dip = density independent pixel). 

 dips  pixels  inch 

1)  80    80  0.5 

2)  80  120  0.5 

2)  --    80  0.375  dimension given in pixels not in dips 

3)  80   160  0.5 

3)  --    80  0.25  dimension given in pixels not in dips 

4)  80    80  0.5 

 

It is possible to generate special Emulators with special sizes, resolutions and densities. 



5  Screen sizes and resolutions 118 B4A   Beginner's Guide 

A same layout can fit into different screen resolutions, but with some restrictions. 

 

We will use the TestLayouts program to test the same layout with different screen resolutions. 

The source code is in the <Guide>\SourceCode\TestLayouts directory. 

 

The different resolutions are: 

 

Screen 

resolution 

Density H / W ratio Equivalent 

height pixels 

Pixel diff. 

240 / 320 120 4 / 3 360 - 40 

320 / 480 160 3 / 2 480 0 

480 / 800 240 5 / 3 720 + 80 

 

The reference resolution is 320 / 480 with a density of 160. 

If we calculate, for the two other resolutions, the equivalent height using the same H/W ratio we get 

the equivalent height in pixels and the difference in pixels. 

This means that with the same layout file for all three resolutions there will be 40 pixels missing 

with the 240/320 resolution and 80 extra pixels with the 480/800 resolution.  

 

 

 

The original layout in the standard 320/480 pixels density 160 

Emulator is the following. 

 

To make the tests we need three emulators: 

- 320 / 480 density 160 

- 240 / 320 density 120 

- 480 / 800 density 240 

 

If you do not have these emulators, you must create them in the AVD 

Manager. Look here to Create a new Emulator. 

 

 

And the code is: 
Sub Globals 
' These global variables will be redeclared each time the activity Is created. 
' These variables can only be accessed from this module. 
 Private ListView1 As ListView 
 Private pnlToolBox As Panel 
End Sub 
 

Sub Activity_Create(FirstTime As Boolean) 
 Private i As Int 
  
 Activity.LoadLayout("MainLayout") 
 
 For i=0 To 10 
  ListView1.AddSingleLine("Test "&i) 
 Next 
 If Activity.Height > Activity.Width Then 
'  pnlToolBox.Top = Activity.Height - pnlToolBox.Height 
'  ListView1.Height = pnlToolBox.Top - ListView1.Top - 10dip 
 Else 
'  pnlToolBox.Left = Activity.Width - pnlToolBox.Width 
'  ListView1.Width=pnlToolBox.Left - ListView1.Left - 10dip 
 End If 
End Sub 



Table of contents 119 B4A   Beginner's Guide 

Note that lines 38 and 39 are commented out (lines 41 and 42 too for landscape)!  

 

Tests with the three Emulators with different resolutions and different densities. 

 

   
 

       480 / 800  240   320 / 480  160   240 / 320  120 

 

The image sizes are reduced by a factor of 0.5 for easier comparison. 

 

What we see: 

- with the standard resolution, the image in the emulator is equal to the original layout. 

- with the 240/320 resolution we see that there are the 'expected' 40 pixels missing. 

- with the 480/800 resolution, we see that there are the 'expected' 80 extra pixel. 

 

The numbers of items in the ListView are the same for all three resolutions. 

 



5  Screen sizes and resolutions 120 B4A   Beginner's Guide 

Second test with lines 38 and 39 activated (and 41 and 42 for landscape). 

 
 If Activity.Height > Activity.Width Then 
  pnlToolBox.Top = Activity.Height - pnlToolBox.Height 
  ListView1.Height = pnlToolBox.Top - ListView1.Top - 10dip 
 Else 
  pnlToolBox.Left = Activity.Width - pnlToolBox.Width 
  ListView1.Width = pnlToolBox.Left - ListView1.Left - 10dip 
 End If 
 

In line 38 we calculate the top of the pnlToolBox panel according to the screen height. 

In line 39 we calculate the ListView height according to the top of the pnlToolBox. 

 

Another solution to this problem is using Anchors. 

 

   
 

What we see: 

- with the standard resolution, the image in the emulator is still equal to the original layout. 

- with the 240/320 resolution we see that the buttons are at the bottom of the screen but the 

ListView height is shortened. 

- with the 480/800 resolution we see that the buttons are at the bottom and the ListView is 

higher. 

 

The numbers of items in the ListView is different in the three layouts because the ListView height 

has been adapted to the different relative screen heights. 

 

In the first test, the number of items in the ListView were the same ! 

 

These examples show that it is not easy to have one layout for different screen resolutions. 

In the example above it was relatively easy because the view in the middle is easily adjustable. 

 

 

   



5  Screen sizes and resolutions 121 B4A   Beginner's Guide 

Even when we load the layout file in the three emulators with resolutions 480 / 800, 320 / 480 and 

240 / 320 pixels the layout is stretched or compressed according to the screen size, but of course we 

also see extra or missing pixels depending on the different relative screen heights. 

 

The Android OS auto scale system adjusts the Left, Top, Width, Height, FontSize and other 

properties with the scale factor but does NOT resize the vertical positions nor the heights of the 

views proportional to the screen height. The same is valid for the width in landscape mode. 

 

   
 

 

Using Anchors. 

 

Another and better solution to adjust and position the views according to the different screen 

heights is to use the Anchor function in the Designer. Anchors are described in detail in the Anchors 

chapter. 

 

The TestLayoutsAnchors project shows it. 

 

In the Designer we set: 

 

We set: 

 The vertical Anchor for pnlToolBox to BOTTOM. 

 The horizontal Anchor for ListView1 to BOTH. 

 The vertical Anchor for ListView1 to BOTH. 

 

 



5  Screen sizes and resolutions 122 B4A   Beginner's Guide 

5.1 Special functions  like 50%x,  50dip 

 

There are special functions to accommodate different screen sizes and resolution. 

 

5.1.1 PerXToCurrent, PerYToCurrent - 50%x 

 

PerXToCurrent(Percentage As Float) or 50%x 

 

PerXToCurrent(50) means 50% of the Activity width. 

It can be written as a shortcut: 50%x. 

50%x is equal to Activity.Width * 0.5 

 

PerYToCurrent(30) means 30% of the Activity height. 

It can be written as a shortcut: 30%y. 

30%y is equal to Activity.Height * 0.3 

 

In the Designer Scripts 100%x and 100%y refer to the dimensions of the view where the layout file 

is loaded. 

If the layout file is loaded: 

 onto the Activity then 100%x = Activity.Width and 100%y = Activity.Height 

 onto a Panel then 100%x = Panel.Width and 100%y = Panel.Height 

 

5.1.2 DipToCurrent - 50dip 

 

DipToCurrent(Length As Int) or  50dip 

 

DipToCurrent calculates a dimension with the given Length according to the scale of the current 

device. 

 

DipToCurrent(50) is equal to 50 * DeviceScale 

It can be written as a shortcut: 50dip density independent pixel 

 

The 'standard' resolution is 160 dpi (dots per inch) and scale 1. 

No spaces between the number and dip! 

If we have a Button with a dimension of 50 * 50 pixels standard scale, to define its dimensions we 

should set Button1.Width = 50dip and Button1.Height = 50dip. 

Depending on the scale, the Button dimension will be: 

Scale  Pixels 

1  50 * 50 

1.5  75 * 75  

 

Example: 
Private Button1 As Button 
Button1.Initialize("Button1") 
Activity.AddView(Button1, 20%x, 30%y, 100dip, 50dip) 
 

The values for the Left, Top, Width and Height properties in the Designer are considered as 

dip values. 

 



5  Screen sizes and resolutions 123 B4A   Beginner's Guide 

5.1.3 LayoutValues.ApproximateScreenSize 

 

To get the approximate screen size in the code you should use the LayoutValues object. 

 
Private lv As LayoutValues 
lv = GetDeviceLayoutValues 
 

lv.ApproximateScreenSize returns the approximate screen size, it’s the size of the screen without 

the soft buttons area. The values can be somewhat different in portrait and in landscape. On some 

devices the soft buttons area is smaller in landscape than in portrait. 

 

       
  Portrait    Landscape 

 

5.1.4 ActivitySize in the DesignerScripts 

 

In the DesignerScripts exist the ActivitySize keyword which returns the size of the Activity. 

This value is different from GetDeviceLayoutValues, which returns the screen size and not the 

Activity size. 

The values in portrait and in landscape are also slightly different, look above. 

 

 



5  Screen sizes and resolutions 124 B4A   Beginner's Guide 

5.2 Working with different screen sizes / number of layouts 

 

With the big number of devices, screen sizes, and resolutions on the market, it becomes more and 

more complicated to design a project that looks nice on all available devices. 

There is no universal method to manage this problem. The method you choose depends on: 

 What kind of project you are designing. 

 What devices and screen sizes you are targeting. 

 What you want to show on the different screens. 

 The same layout but stretched according to the screen sizes, or  

 Different layout variants for the different sizes. On a big screen more views can be 

displayed at the same time. 

 

Summary of the different physical screen sizes, where each size can have different resolutions, 

densities scales and aspect ratios. 

 resolution    density   scale aspect ratio 

 ~ 3.0'' - 4.0 '' 

 320 / 240 120 0.75 4 / 3 1.333 

 480 / 320 160 1 3 / 2 1.5 

 640 / 480 240 1.5 4 / 3 1.333 

 800 / 480 240 1.5 5 / 3 1.667 

 854 / 480 240 1.5 16 / 9 1.78 

 960 / 540 240 1.5 16 / 9 1.78 

 960 / 640  240 1.5 3 / 2 1.5 

 1280 / 720 320 2 16 / 9 1.78 

 ~ 5.5 '' 

 1280 / 800 240 1.5 16 / 10 1.6 

 ~ 7 '' 

 1024 / 600 160 1  1.71 

 1280 / 800 160 1 16 / 10 1.6 

 ~ 10 '' 

 1024 / 600 160 1  1.71 

 1024 / 768 160 1 4 / 3 1.333 

 1280 / 800 160 1 16 / 10 1.6 

 1920 / 1200 240 1.5 16 / 10 1.6 

 

 

Depending on what you want to display on the different screens you can either: 

 Design different layout variants. 

Two layout variants (portrait and landscape) for each dimension. 

The views are automatically resized for the different densities. 

However, you may need to take into account different width/height ratios (aspect ratios). 

These adjustment could be done in the code or would need two more layout variants. 

 Calculate all view dimensions and positions in the code using %x , %y and dip dimensions. 

 

For comparison: 

 A  5.5’’ screen has a surface about 2.5 times bigger than a 3.5'' screen.  

 A  7'' screen has a surface about 4 times bigger than a 3.5'' screen. 

 A  10'' screen has a surface about 9 times bigger than a 3.5'' screen. 

 

 



5  Screen sizes and resolutions 125 B4A   Beginner's Guide 

The examples below show the same layout stretched in the code to fit the different screen sizes. 

The source code is OneLayoutStretched, the images are Emulator screenshots. 

 

       
~3.5'' 240 / 320        ~3.5'' 320 / 480       ~3.5'' 480 / 800 ~5.5'' 800 / 1280 / 240 

 

   
 7 ''   800 / 1280 / 160    10 ''   800 / 1280 / 160 

 

It's probably not the best solution to have the same layout stretched for all screen sizes. 

It could be more interesting to show more views on bigger screens.   



5  Screen sizes and resolutions 126 B4A   Beginner's Guide 

Code to adjust the layout, we adjust the views positions and dimensions according to the Activity 

size in pixels and the text sizes according to the approximate screen size. 

 
Sub InitLayout 
 ' Gets the approximate screen size  
 ' and calculates the screen size ratio  
 ' according to the current screen size 
 lv = GetDeviceLayoutValues  
 ScreenSizeRatio = lv.ApproximateScreenSize / 3.5 '3.5 = standard screen size 
  
 Private Width, Height As Int 
  
 If Activity.Width > Activity.Height Then 
  Height = 100%y / 4 
  ' if the height is smaller than 80dip we set the width to 80dip 
  Width = Max(80dip * ScreenSizeRatio, Height)  
 
  pnlToolbox.Left = 100%x - Width 
  pnlToolbox.Width = Width 
  pnlToolbox.Height = 100%y 
  pnlToolbox.Top = 0 
  
  btnTest1.Left = 0 
  btnTest1.Width = Width 
  btnTest1.Top = 0 
  btnTest1.Height = Height 
 
  btnTest2.Left = 0 
  btnTest2.Width = Width 
  btnTest2.Top = Height 
  btnTest2.Height = Height 
 
  btnTest3.Left = 0 
  btnTest3.Width = Width 
  btnTest3.Top = 2 * Height 
  btnTest3.Height = Height 
 
  btnTest4.Left = 0 
  btnTest4.Width = Width 
  btnTest4.Top = 3 * Height 
  btnTest4.Height = Height 
  
  lblTitle.Left = 10%x 
  lblTitle.Width = 80%x - Width 
  lblTitle.Top = 0 
  lblTitle.Height = 100%y / 8 
  
  lstTest.Left = 5%x 
  lstTest.Width = 90%x - Width 
  lstTest.Top = lblTitle.Height 
  lstTest.Height = 100%y - lstTest.Top 
   
  lstTest.TwoLinesLayout.Label.Height = 12%y 
  lstTest.TwoLinesLayout.Label.Top = 0 
  lstTest.TwoLinesLayout.SecondLabel.Height = 10%y 
  lstTest.TwoLinesLayout.SecondLabel.Top = 12%y 
  lstTest.TwoLinesLayout.ItemHeight = 24%y 
 Else  
 



5  Screen sizes and resolutions 127 B4A   Beginner's Guide 

  'Width and height are the same 
  Height = 100%x / 4 
  pnlToolbox.Left = 0 
  pnlToolbox.Width = 100%x 
  pnlToolbox.Height = Height 
  pnlToolbox.Top = 100%y - Height 
  
  btnTest1.Left = 0 
  btnTest1.Width = Height 
  btnTest1.Top = 0 
  btnTest1.Height = Height 
 
  btnTest2.Left = Height 
  btnTest2.Width = Height 
  btnTest2.Top = 0 
  btnTest2.Height = Height 
 
  btnTest3.Left = 2 * Height 
  btnTest3.Width = Height 
  btnTest3.Top = 0 
  btnTest3.Height = Height 
 
  btnTest4.Left = 3 * Height 
  btnTest4.Width = Height 
  btnTest4.Top = 0 
  btnTest4.Height = Height 
  
  lblTitle.Left = 10%x 
  lblTitle.Width = 80%x 
  lblTitle.Top = 0 
  lblTitle.Height = 100%x / 8 
  
  lstTest.Left = 5%x 
  lstTest.Width = 90%x 
  lstTest.Top = lblTitle.Height 
  lstTest.Height = pnlToolbox.Top - lstTest.Top 
 
  lstTest.TwoLinesLayout.Label.Height = 12%x 
  lstTest.TwoLinesLayout.Label.Top = 0 
  lstTest.TwoLinesLayout.SecondLabel.Height = 10%x 
  lstTest.TwoLinesLayout.SecondLabel.Top = 12%x 
  lstTest.TwoLinesLayout.ItemHeight = 22%x 
 End If 
 
 btnTest1.Text = "Test 1" 
 btnTest1.TextSize = 16 * ScreenSizeRatio 
 btnTest2.Text = "Test 2" 
 btnTest2.TextSize = 16 * ScreenSizeRatio 
 btnTest3.Text = "Test 3" 
 btnTest3.TextSize = 16 * ScreenSizeRatio 
 btnTest4.Text = "Test 4" 
 btnTest4.TextSize = 16 * ScreenSizeRatio 
 
 lblTitle.Text = "Test layout" 
 lblTitle.TextSize = 20 * ScreenSizeRatio 
  
 lstTest.TwoLinesLayout.Label.TextSize = 20 * ScreenSizeRatio 
 lstTest.TwoLinesLayout.Label.Gravity = Gravity.CENTER_VERTICAL 
 lstTest.TwoLinesLayout.Label.Color = Colors.Blue 
 lstTest.TwoLinesLayout.SecondLabel.TextSize = 16 * ScreenSizeRatio 
 lstTest.TwoLinesLayout.SecondLabel.Gravity = Gravity.CENTER_VERTICAL 
 lstTest.TwoLinesLayout.SecondLabel.Color = Colors.Green 
End Sub



5  Screen sizes and resolutions 128 B4A   Beginner's Guide 

A better approach is to use DesignerScripts in the Visual Designer to separate layout adjustments 

from the code. 

Part of the code from the InitLayout routine will be moved to the DesignerScripts. 

This is shown in the OneLayoutStretchedDS project. 

 

Code which remains in the InitLayout routine, this is needed for the ListView layout. 

 
Sub InitLayout 
 ' Gets the approximate screen size  
 ' and calculates the screen size ratio  
 ' according to the current screen size 
 lv = GetDeviceLayoutValues  
 ScreenSizeRatio = lv.ApproximateScreenSize / 3.5 '3.5 = standard screen size 
  
 If Activity.Width > Activity.Height Then 
  lstTest.TwoLinesLayout.Label.Height = 12%y 
  lstTest.TwoLinesLayout.Label.Top = 0 
  lstTest.TwoLinesLayout.SecondLabel.Height = 10%y 
  lstTest.TwoLinesLayout.SecondLabel.Top = 12%y 
  lstTest.TwoLinesLayout.ItemHeight = 24%y 
 Else  
  lstTest.TwoLinesLayout.Label.Height = 12%x 
  lstTest.TwoLinesLayout.Label.Top = 0 
  lstTest.TwoLinesLayout.SecondLabel.Height = 10%x 
  lstTest.TwoLinesLayout.SecondLabel.Top = 12%x 
  lstTest.TwoLinesLayout.ItemHeight = 22%x 
 End If 
 
 lstTest.TwoLinesLayout.Label.TextSize = 20 * ScreenSizeRatio 
 lstTest.TwoLinesLayout.Label.Gravity = Gravity.CENTER_VERTICAL 
 lstTest.TwoLinesLayout.Label.Color = Colors.Blue 
 lstTest.TwoLinesLayout.SecondLabel.TextSize = 16 * ScreenSizeRatio 
 lstTest.TwoLinesLayout.SecondLabel.Gravity = Gravity.CENTER_VERTICAL 
 lstTest.TwoLinesLayout.SecondLabel.Color = Colors.Green 
End Sub 
 

The code in the DesignerScripts is almost the same as in the code, the only difference is that we use 

the ActivitySize value instead of  the lv.ApproximateScreenSize value.  



5  Screen sizes and resolutions 129 B4A   Beginner's Guide 

In the examples below we see the display of a grid with buttons. The physical button dimensions are 

almost the same. The source code is CodeLayout.  

 

     
 3.5''   5.5''      10'' 

 

The source code: 

 
 Private i, j, k, nx, ny, x0, x1, x2 As Int 
  
 x0 = 4dip 
 x1 = 60dip 
 x2 = x0 + x1 
  
 nx = Floor(Activity.Width / x2) - 1 
 ny = Floor(Activity.Height / x2) - 1 
 k = 0 
 For j = 0 To ny 
  For i = 0 To nx 
   k = k + 1 
   Private btn As Button 
   btn.Initialize("btn") 
   btn.Color = Colors.Red 
   Activity.AddView(btn, x0 + i * x2, x0 + j * x2, x1, x1) 
   btn.Text = k 
   btn.TextSize = 20 
  Next 
 Next 
 



5  Screen sizes and resolutions 130 B4A   Beginner's Guide 

If you want to display more views on bigger screens you must define two layout variants (one for 

portrait and one for landscape) for each screen size and resolution. This can become quite 

cumbersome. 

A compromise could be made by defining the layouts partly in the layout and partly in the Designer 

Script.  

The adaptation of different aspect ratios could be done in the Designer Script rather than in separate 

layout variants. 

 

As already mentioned, there is no universal rule, the solution depends on different factors.  

As a developer, you must define your needs and requirements as a function of : 

 What kind of project you are designing. 

 What kind of data you are treating, displaying, editing, etc. 

 What devices and screen sizes you are targeting. 

 What you want to show on the different screens. 

 The same layout, but stretched according to the screen size, or  

 Different layout variants for different sizes. On a big screen more views can be displayed 

at the same time. 

 

 

 

 



5  Screen sizes and resolutions 131 B4A   Beginner's Guide 

5.3 Screen orientations 

 

Three different screen orientation values can be defined: 

 Portrait only 

 Landscape only 

 Both 

 

These orientations can be defined either: 

 In the code on top in the Project Attributes region. 

 
#Region  Project Attributes 
 #ApplicationLabel: MyFirstProgram 
 #VersionCode: 1 
 #VersionName: 
 #SupportedOrientations: unspecified 
 #CanInstallToExternalStorage: False 
#End Region 

 

In this line: 
 #SupportedOrientations: unspecified 
 

The possible orientation values are : 

 #SupportedOrientations: unspecified Both 
 #SupportedOrientations: portrait 
 #SupportedOrientations: landscape 

 

 In the code with the Phone library 

 Landscape 
Phone1.SetScreenOrientation(0) 
 

 Portrait 
Phone1.SetScreenOrientation(1) 
 

 Both 
Phone1.SetScreenOrientation(-1) 

 



5  Screen sizes and resolutions 132 B4A   Beginner's Guide 

5.4 Supporting multiple screens - tips and best practices 

 

There are several features in B4A and the Visual Designer that help you target Android phones and 

tablets with different screen sizes and resolutions. The purpose of this page is to collect tips and best 

practices that will help you create flexible layouts. 

 

If you are not familiar with the designer script feature then please read this chapter 

Designer Scripts 

 

5.4.1 Advices 

Below a few advices. 

5.4.1.1 'dip' units 

It is very simple. You should always use 'dip' units when specifying the size or position of a view 

(control). This way the view's physical position and size will be the same on any device. 

This is correct for both regular code and designer script. The IDE gives a Warning for that. 

 
Button1.Width = 100  'WRONG! 
Button1.Width = 100dip  'Good job! 
 

Note that text size is measured in physical units. So you should NOT use 'dip' units with text size 

values. 

 

5.4.1.2 Use only a few layout variants 

It is easy to create many variants. However it is very difficult to maintain a layout made of many 

variants. You should use anchors and the designer script feature to adjust (or fine tune) your layout 

instead of creating many variants. 

 

5.4.1.3 Understand the meaning of scale (dots per inch) 

There are many questions starting with "I have a device with 480x800 screen...". There is no 

meaning to these dimensions without the scale value. 

 

A scale of 1.0 means that there are 160 dots (pixels) per inch.  

The scale values can be one of the following values: 0.75, 1.0, 1.5, 2 and 3. 

Most phones today have a scale of 1.5 (160 * 1.5 = 240 dots per inch). 

Most tablets have a scale of 1.0, and some have a scale of 1.5. 

 

5.4.1.4 "Normalized" variants 

Normalized variants are variants with a scale of 1.0. 

The layout you create with the designer is scaled (not stretched or resized) automatically. This 

means that the layout will look exactly the same on two phones with the same physical size. The 

scale doesn't matter.  

It is highly recommended to work and design your layout with normalized variants only. 

For example a variant of 480x800, scale=1.5 matches the normalized variant: 320x533, scale=1.0 

(divide each value by the scale value). Now it is easy to see that this device is slightly longer than 

the "standard" variant: 320x480, scale=1.0. 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/16120-designer-scripts-tutorial-post91582.html


5  Screen sizes and resolutions 133 B4A   Beginner's Guide 

5.4.1.5 Scaling strategy 

 

You should decide what will happen with your layout when it runs on a larger device. 

Usually some views will be docked to the edges. This can be done easily with the designer script. 

For example, to dock a button to the right side: 
Button1.Right = 100%x 
 

Some views should fill the available area. 

This is done with SetTopAndButton and SetLeftAndRight methods. 

 
'Make an EditText fill the available height between two buttons: 
EditText1.SetTopAndBottom(Button1.Bottom, Button2.Top) 
 
'Make a Button fill the entire PARENT panel: 
Button1.SetLeftAndRight(0, Parent1.Width) 
Button1.SetTopAndBottom(0, Parent1.Height) 

5.4.1.6 How to change the views size and text size?   AutoScale 

Larger devices offer a lot more available space. The result is that even if the physical size of a view 

is the same, it just "feels" smaller. 

Some developers use %x and %y to specify the views size. However the result is far from being 

perfect. The layout will just be stretched. 

The solution is to combine the "dock and fill" strategy with a smart algorithm that increases the 

views size and text size based on the running device’s physical size. 

This is done with the AutoScale algorithm in the Designer Scripts. 

 

We treat the standard variant (320 x 480, scale = 1.0) as the base variant.  

AutoScale calculates a scale with the equations below: 

 
delta = ((100%x + 100%y) / (320dip + 430dip) - 1) 
rate = 0.3 'value between 0 to 1.  
scale = 1 + rate * delta 
 

You can play with the value of  'rate'. The rate determines the change amount in relation to the 

device physical size. 

Value of 0 means no change at all. Value of 1 is similar to using %x and %y: If the physical size is 

twice the size of the standard phone then the size will be twice the original size. 

Values between 0.2 and 0.5 seem to give good results. 

The abstract designer is useful to quickly test the effect of this value. 

 

If done properly this saves the need to create many variants.  

Your layout will look good on all devices. 



6  Connecting a real device 134 B4A   Beginner's Guide 

6 Connecting a real device 
 

There are different means to connect a real device: 

 USB 

Needs that the device supports ADB debugging. 

Need to activate USB Debugging on the device. 

 B4A Bridge 

o via WiFi 

o via Bluetooth till B4A version 4.3 it is no more available since version 5.00.  

 

6.1 Connecting via B4A Bridge 

 

It is always recommended to use a real device instead of an Android emulator which is very slow 

compared to a real device (especially with applications installation). 

 

However not all devices support ADB debugging. This is the reason for the B4A-Bridge tool. 

B4A-Bridge is made of two components. One component runs on the device and allows the second 

component which is part of the IDE to connect and communicate with the device. 

The connection is done over a network (B4A-Bridge cannot work if there is no network available). 

 

Once connected, B4A-Bridge supports all of the IDE features which include: installing applications, 

viewing LogCat and the visual designer. 

 

Android doesn't allow applications to quietly install other applications, therefore when you run your 

application using B4A-Bridge you will see a dialog asking for your approval. 

 

6.1.1 Getting started with B4A-Bridge 

 

First you need to install B4A-Bridge on your device. 

 

B4A-Bridge can be downloaded here: http://www.basic4ppc.com/android/files/b4a_bridge.apk. 

 

B4A-Bridge is also available on Play Store. Search for: B4A Bridge. 

Note that you need to allow install of applications from "Unknown sources". This is done by 

choosing Settings from the Home screen - Manage Applications. 

 

B4A-Bridge requires writable storage card. It is not possible to install applications without it. 

 

http://www.basic4ppc.com/android/files/b4a_bridge.apk


6.1  Connecting via B4A Bridge 135 B4A   Beginner's Guide 

6.1.2 Run B4A-Bridge on your device.  

 

 

 

It will display a screen similar to:  

 

Status will be: Press on Start to listen for connections. 

 

Since B4A version 5.00 Bluetooth is no more supported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Press  for wireless connection.  

The status will change to Waiting for wireless connections 

 

With B4A till version 4.30 you could also select . 

The Make Discoverable checkbox will make your device Bluetooth discoverable for 5 minutes. 

This is only needed if the device and computer weren't paired before. 

 

Note that B4A-Bridge was written with B4A. 

 



6.1  Connecting via B4A Bridge 136 B4A   Beginner's Guide 

6.1.3 Wireless connections 

 

In the IDE menu Tools select .  

If the address already exists click directly on this address.  

If this device was already connected before you can simply press F2 to connect it. 

 

 

Enter the IP of the device, you find it on top of the B4A-Bridge screen on the device. 

 

In some cases the address displayed may be the mobile network address. In that case you can find 

the local wireless address in the wireless advanced settings page. 

 

   
 

Click on , the device is connected to the IDE. 

 

You see that the status changed on both,  

the device   and the IDE in the lower left corner. 

   .  

 

 

B4A-Bridge keeps running as a service until you press on the Stop button. 

 

You can always reach it by opening the notifications screen. 

 

 
 

 

 

You see B4A-Bridge with the current status. 

 

 

 

 

Note that the Internet permission are automatically added in debug mode. 



6.1  Connecting via B4A Bridge 137 B4A   Beginner's Guide 

 

 

 

 

 

 

 

 

When you run an application you are required to approve 

the installation. You will usually see a screens like the 

picture. 

 

Press on  to install the program. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you pressed on  you will see a screen like in 

picture. 

 

 

 

 

On this screen you should choose to start the 

application. 

If you try to install an existing application signed with a 

different key, the install will fail (without any meaningful 

message). You should first uninstall the existing 

application. Go to the home screen - Settings - 

Applications - Manage applications - choose the 

application - Uninstall. 
 

Once you finished developing you should press on the Stop 

button in B4A-Bridge in order to save battery. 

 

 



6.1  Connecting via B4A Bridge 138 B4A   Beginner's Guide 

6.1.4 Bluetooth connections 

 

Since B4A version 5.00 Bluetooth is no more supported. 

 

In the IDE menu Tools click on . 

 

 
 

 

 

Fist click on Find Devices. 

 

All paired devices and new devices in discoverable 

mode will be listed. 

You should choose the correct one and press on 

Connect. 

 

 

 

 

 

 

 

 

 

Assuming that the connection succeeded the dialog 

will be closed. 

 

The status bar at the bottom of the screen shows the current status: 

 

     or    

 

When B4A-Bridge gets connected it first checks if the designer application needs to be updated. In 

that case it will first install the designer application. 

 

B4A-Bridge keeps running as a service until you press on the Stop button. 

You can always reach it by opening the notifications screen: 



6.1  Connecting via B4A Bridge 139 B4A   Beginner's Guide 

6.1.4.1 Bluetooth tips 

 

 - Unfortunately many devices, especially older devices running Android 2.1 or 2.2 have all kinds of 

issues with Bluetooth connections and especially with multiple connections. All kinds of 

workarounds were implemented because of these issues. Still however there are devices (HTC 

desire for example) that do not work reliably enough. 

 

- The Reset Bluetooth button disables and then enables the Bluetooth adapters. You should try it if 

there are connections problems. 

 

- If your connection is not stable then you should avoid using the debugger or designer. Both the 

debugger and the designer create an additional connection. 

 

Note that the Bluetooth permission and Internet permission are automatically added in debug mode. 

 

 

 
 



6.2  Connecting via USB 140 B4A   Beginner's Guide 

6.2 Connecting via USB 

 

You should download Google USB Driver in the Android SDK Manager. 

If this driver doesn't work you must search for a specific driver for your device. 

 

To be able to connect a device with USB you must activate USB Debugging. 

This is also need if you use an Emulator. 

 

In this state on some older devices you will not be able to access the SD card from the PC. 

If you want to access the SD card you must uncheck USB Debugging. 

 

 

Launch Settings   

 

 

 

 

 

 

 

 

 

 

 

In System, select Developer options. 

 

 

 

 

 

Select On.   

 

 

 

  

 

 

 

   

 

 

 

 

 

Check USB Debugging  

 

 

 

 

The device will automatically be recognized by the IDE. 

  



7  Emulators 141 B4A   Beginner's Guide 

7 Emulators 
 

The Emulator or Virtual Device is a program that simulates devices on the PC. 

It is always better to use real devices to test your projects. But in some cases, to test it on other 

‘devices’ it could be useful. 

 

There exist two emulators: 

 The Android Emulator, which is very very slow you should use it only if there is no other 

solution. 

 The Genymotion Emulator, it’s a third party emulator much faster than the Android 

emulator. 

 

7.1 Genymotion Emulator 

 

You can download the Genymotion Emulator HERE. 

 

 
 

The User’s Guide is HERE. 

 

 

 

 

 

https://www.genymotion.com/#!/store
https://www.genymotion.com/#!/developers/user-guide


7  Android Emulator 142 B4A   Beginner's Guide 

7.2 Android Emulator 

 

7.2.1 Create a new Emulator 

 

Let us add a new Emulator with a resolution of 480 / 800 pixels, density 240. 

 

In the IDE menu Tools click on  to run the AVD Manager. 

 

 
 

Be patient it’s everything but fast. 

 

In the AVD Manager Click on . 

 

 
 

 

 

 

 

 

 



7  Android Emulator 143 B4A   Beginner's Guide 

 

AVD Name:   

Enter the name Emul480_800 

No spaces ! 

 

Device: Select 5.1 WVGA 

 
 

Target:  

Select Android 4.4.2 – API Level 19 

 
 

CPU/ABI: Will be set automatically. 

 

Skin: Select WVGA800 

HVGA  320 / 480 

QVGA   240 / 320 

WQVGA400 240 / 400 

WQVGA432 240 / 432 

WVGA800 480 / 800 

WVGA854 480 / 854 

 

 

Memory Options: Are set by default, but can be changed. 

RAM: 512  VM Heap : 16 

 

 

 

 

 

 

 

 



7  Android Emulator 144 B4A   Beginner's Guide 

You will see a window similar to this. 

 

 
 

Click  

 

 

The new Emulator is added. 

 

 
 



7  Android Emulator 145 B4A   Beginner's Guide 

7.2.2 Launch an Android Emulator 

 

To launch an Emulator click in the IDE in the Tools menu on Run AVD Manager. 

 

 

Select the desired emulator. 

 

 

 

The Android 4.4.2 portrait Emulator in this case.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click on   

 

 

 

 

 

 

 

 

 

 

 

 

 



7  Android Emulator 146 B4A   Beginner's Guide 

 

 

 

Click on   

 

 

 

 

You will see a window like this: 

 

 
 

Wait until the Emulator is ready, this will take quite some time can be several minutes !?. 

The screen is different for different versions of Android. 

 

 
 



7  Android Emulator 147 B4A   Beginner's Guide 

The physical size of the Emulator on the computer screen can be changed in the Launch Option 

window. This can be useful for big screen emulators. 

 

 

 

 

 

 

 

 

 

In the example the size is set to 3.5 inches. 

 

 

 

 

 

 

 

 

 

 

 



7  Android Emulator 148 B4A   Beginner's Guide 

7.2.3 Android Emulator problems 

 

Unfortunately, the Emulator is quite slow and sometimes a pain. 

 

When you either run the program or connect to the Emulator from the Designer, sometimes you will 

see the message below. 

 

 

You have two options: 

- Yes  (Oui) to cancel the process. 

- No   (Non) Continue the process. 

 

 

 

 

 

 

Most times when clicking ,  the process will succeed. 

 

However, even after having clicked , sometimes you will see following message. 

 

 
 

In most cases, if you run the program once more, the connection to the Emulator will be established 

and it will work properly. 

 

This often happens when the Emulator is still running a program or if the Emulator is still 

connected to another project. In this case press the back button until you reach the Emulator's home 

screen and try again.  

 

If this happens for a second time, close the current Emulator and run it again from the AVD 

Manager. 

 

If the first message above appears too often you can increase the process timeout value. 

 



7  Android Emulator 149 B4A   Beginner's Guide 

7.2.4 Process timeout 

 

In the IDE Tools menu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set the ProcessesTimeout (seconds) 

parameter to a higher value. 

I set it to 45 seconds. 

 



7  Android Emulator 150 B4A   Beginner's Guide 

7.2.5 Exchanging files with the PC 

 

To get access to files in the Emulator you can use the Dalvik Debug Monitor. 

The name is ddms.bat and it is located in the folder where you copied the Android SDK. 

Example: C:\Android\android-sdk-windows\tools. 

 

Make sure that Emulator is running. 

Run the ddms.bat file: 

 

 

 

A window like this one will appear. 

 

 

 

 

 

 

 

 

Wait a moment. 

 

 

 

The Dalvik Debug Monitor will be displayed. 

 

 
 



7  Android Emulator 151 B4A   Beginner's Guide 

 

 

 

 

 

In the upper left corner you should see a 

reference to the Emulator. 

  

Select it. 

 

 

 

  

 

Then in the menu Device 

 

select File Explorer... 

 

 

 

 

 

 

 

The Device File Explorer will be displayed: 

 

 

 

 

You see several 

folders. 

 

In  data\app  you'll 

find applications. 

 

 

 

 

 

 

 

mnt\sdcard 

is the 

DirRootExternal 

folder. 

In the example the 

file persons.db is a 

database copied in a 

B4A program from 

DirAssets to 

DirRootExternal. 



7  Android Emulator 152 B4A   Beginner's Guide 

In the upper left corner you see three icons: 

 

 
 

 Pull file from device, copies the file to the PC 

 Push file onto device, copies a file to the device 

 Deletes the file 

 

Clicking on either  or  shows the standard Windows file explorer to select the destination or 

source folder for the selected file. 

 

 

If the Dalvik Debug Monitor doesn't run you need to add the path where the ddms.bat file is located 

to the environment variables. 

  From the desktop, right-click My Computer and click Properties.  

  In the System Properties window, click on the Advanced tab.  

  In the Advanced section, click the Environment Variables button.  

  Finally, in the Environment Variables window (as shown below), highlight the Path variable in 

the Systems Variable section and click the Edit (Modifier) button. Add or modify the path lines 

with the paths you wish the computer to access. Each different directory is separated with a 

semicolon as shown below. 

 

 
 

 

 



8  The Designer 153 B4A   Beginner's Guide 

8 The Visual Designer 
 

The Visual Designer allows generating layouts with either the Abstract Designer or with a real 

device. You can also use Emulators. 

 

Launch the Designer in the IDE Menu Designer. 

 

 
 

The default Visual Designer looks like this, the layout in the Abstract Designer is from the 

SecondProgram project. 

 

 
 

 
 



8  The Designer  /  8.1  The menu 154 B4A   Beginner's Guide 

8.1 The menu 

 

8.1.1 File menu   

 

 

New  Opens a new empty layout. 

Open  Opens an existing layout. 

Save  Saves the current layout. 

Save As… Saves the current layout with a new name. 

Remove Layout Removes the layout from the Files directory. 

Close Window Closes the Visual Designer. 

Main  Layout file list, in this case only one file, 'Main'. 

 

 

 

 

 

 

 

 

 

 

 



8  The Designer  /  8.1  The menu 155 B4A   Beginner's Guide 

8.1.2 AddView menu 

 

This menu allows you to add views to the current layout. 

 

       

AutoCompleteEditText adds an AutoCompleteEditText 

Button adds a Button 

CheckBox adds a CheckBox 

CustomView adds a CustomView 

EditText adds an EditText  

HorizontalScrollView adds a HorizontalScrollView 

ImageView adds an ImageView 

Label adds a Label 

ListView adds a ListView 

Panel adds a Panel 

ProgressBar adds a ProgressBar 

RadioButton adds a RadioButton 

ScrollView adds a Scrollview 

SeekBar adds a SeekBar 

Spinner adds a Spinner 

TabHost adds a TabHost 

ToggleButton adds a ToggleButton 

WebView adds a WebView 
 

 

 

8.1.3 WYSIWYG Designer menu 

  

Connects a real device or an Emulator. 

 

 
Connects a device or an Emulator to the Visual Desiger. 
Disconnect From Device  / Emulator. 
 

 

For details on how to connect a device look at chapter 

6 Connecting a real device or at chapter 7 Emulators. 

 

 

 

 

 



8  The Designer  /  8.1  The menu 156 B4A   Beginner's Guide 

8.1.4 The Tools menu 

 

 

Generate Members Members generator 

Change Grid  Allows to change the grid size 

Send To UI Cloud. 

 

 

 

 

Bring to Front Brings the selected View to front 

Send To Back Sends the selected View to back 

Duplicate Selected View Duplicates the selected View 

Remove Selected View Removes the selected View 

 

8.1.5 Windows menu 

 

 

 

Shows the Abstract Designer window. 

Shows the Properties window. 

Shows the Variants window. 

Shows the Files window. 

Shows the Script (General) window. 

Shows the Script (Variant) window. 

Shows the Views window. 

Resets the Visual Designer layout to the default layout. 

 

 

 

 



8  The Designer  /  8.2  Designer Windows 157 B4A   Beginner's Guide 

8.2 Visual Designer Windows 

 

The Visual Designer is composed of different windows. 

 

8.2.1 Views windows  Views Tree  /  Files  /  Variants 

 

 

 

 

 

 

 

 

 

In this Window three windows are combined: 

Files, Variants and Views Tree. 

 

8.2.1.1 Views Tree window 

 

Shows all views of the selected layout in a tree. 

 

When you select a view in the list, all the properties of the 

selected view are displayed in the Properties window. 

 

You can select several Views at the same time and change 

common properties. 

 

The selected views are highlighted in the Abstract Designer. 

 

 

8.2.1.2 Files Windows 

 

Used to add or remove files to the Visual Designer, mainly image 

files. 

  

File handling is explained in the Image Files chapter. 

 

These files are copied to the Files folder of the project and can be 

accessed in the code in the File.DirAssets folder.  

 

 

 

 

 



8  The Designer  /  8.2  Designer Windows 158 B4A   Beginner's Guide 

8.2.1.3 Variants window 

 

 

 

Used to add and remove layout variants. 

 

Layout variants are explained in the Layout variants chapter. 

 

 

 

 

 

 

 

 



8  The Designer  /  8.2  Designer Windows 159 B4A   Beginner's Guide 

8.2.2 Properties window 

 

 

The Properties window shows all properties of the selected View. 

 

The Properties are explained in the Properties list chapter. 

 

 

 

 

 

 

 

 

8.2.3 Script (General) / (Variant) windows  

 

In the Scrip windows you can add code to position and resize Views. 

Two windows are available: 

 Script - General Code valid for all layout variants. 

 Script - Variant Specific code for the selected variant. 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Script code is explained in the Designer Scripts chapter. 

 

 
 
 



8  The Designer  /  8.2  Designer Windows 160 B4A   Beginner's Guide 

8.2.4 Abstract Designer window 

 

The Abstract Designer allows to select, position and resize Views. 

It is not a WYSIWYG Designer, for this you need to connect a real device or an Emulator. 

 

The displayed layout in the picture below is from the SecondProgram project. 

 

 
 

 

 

 

 



8  The Designer  /  8.3  Floating windows 161 B4A   Beginner's Guide 

8.3 Floating windows 

 

You can define your own Visual Designer layout, rearrange the windows in size and position, 

docked or floating. 

 

On top of each window two icons allow you to manage the behaviour of this window. 

 

      
 

   Options. 

 

Example with the Files window: 

 

 Float sets the window to Float, 

independent of the Visual Designer window. 

 

Dock as Document  

 

Auto Hide 

 

 

 

 

 

 

 

8.3.1 Float 

 

Clock on . 

 

The Files windows is independent from the Visual Designer and is removed from the Views 

window. 

 

   



8  The Designer  /  8.3  Floating windows 162 B4A   Beginner's Guide 

8.3.2 Dock 

 

Click on . 

 

The window is moved back to the Views window. 

  

 

8.3.3 Dock as Document 

 

Click on . 

 

The window is removed from its parent window and added to the Abstract Designer window. 

 

      
 

 

Right click on   and on  to move it back to its parent 

window. 

 

 
 

 

 

 



8  The Designer  /  8.3  Floating windows 163 B4A   Beginner's Guide 

8.3.4 Auto Hide 

 

Click either on    or   on . 

 

    
 

The three windows Files, Variants and Views Tree are moved as Tabs to the left border of the 

Visual Designer. The Properties window width is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click on a Tab to show the window. 

 

 
 

When you click somewhere else, outsides the selected window, hides it automatically. 

 

Click on  in the title to move the windows back to their previous position. 

 

 



8  The Designer  /  8.3  Floating windows 164 B4A   Beginner's Guide 

8.3.5 Maximize 

 

Floating windows can be maximized. 

 

 
 

 

 



8  The Designer  /  8.3  Floating windows 165 B4A   Beginner's Guide 

8.3.6 New Horizontal / Vertical Tab Group 

 

When a window is set as Dock as Document two other options are available.  

 

 

 

 

 

 

 

 

New Horizontal Tab Group 

New Vertctal Tab Group 

 

 

New Horizontal Tab Group    New Vertctal Tab Group 

 

 

To remove Tab Group right click on  and click on . 

 

 
 

 



8  The Designer  /  8.4  Tools 166 B4A   Beginner's Guide 

8.4 Tools 

 

8.4.1 Generate Members 

 

Generates declaration statements and subroutines frames. A similar function exists in the Abstract 

Designer context menu. The example is based on the MyFirstProgram project. 

 

 

 

Click on    to 

open the generator.  

 

 

 

 

 

Here we find all the views added to 

the current layout 

(MyFirstProgram). 

We check all views and check the 

Click event for the btnAction 

Button. 

Checking a view  

generates its reference in the 

Globals Sub routine in the code.  

This is needed to make the view 

recognized by the system and allow 

the autocomplete function. 

 

 

 

 

Variable declarations in Globals 
Sub Globals 
 Private btnAction As Button 
 Private edtResult As EditText 
 Private lblComments As Label 
 Private lblMathSign As Label 
 Private lblNumber1 As Label 
 Private lblNumber2 As Label 

Clicking on an event of a view  generates the Sub frame for this event. 

 
Sub btnAction_Click 
 
End Sub 
 

Click on   to generate the references and Sub frames. 

Click on  to select all vies in the list, 

Click on   to clear the current selections. 

     



8  The Designer  /  8.4  Tools 167 B4A   Beginner's Guide 

8.4.2 Connect device or emulator 

 

To connect a device or an emulator click  in the 

WYSIWYG Designer menu or pres F2. 

 

 

 

If different devices or Emulators are connected, you will be asked which device or Emulator you 

want to connect to. 

 

 

 

 

 

Select an emulator or a device 

in the list. 

 

 

 

 

 

 

Click on    to confirm. 

 

 

 

To disconnect it click on  in the WYSIWYG Designer menu  

or press SHIST + F2. 

 



8  The Designer  /  8.4  Tools 168 B4A   Beginner's Guide 

8.4.3 Change grid 

 

The grid is an invisible grid with a given size. The default grid size is 10 pixels. That means that all 

positions and dimensions of a view will be set to values in steps corresponding to the grid size. 

Moving a view will be done in steps equal to the grid size. 

 

 

In the Tools menu click on .  

 

 

 

 

You can change the grid size to the value you want. 

 

 
 

 

The value is saved in the layout file, you will get the same value when you reload this layout. 

 

The default value when you start a new project is 10. 



8  The Designer  /  8.5  Image files 169 B4A   Beginner's Guide 

8.5 Image files 

 

 

You can add image files to the layout.  

Click on   to select the files(s) to add. 

 

These files will be listed in the Image Files list. 

 

These files are saved to the Files folder of the project and can 

be accessed in the code in the Files.DirAssets folder. 

 

 

 

 

 

 

To remove files, check the files to remove and click on  . 

 

  
 

 



8  The Designer  /  8.6  Properties list 170 B4A   Beginner's Guide 

8.6 Properties list 

 

  
 

Select for example lblNumber1 in the list. 

 

All the properties of lblNumber1 are displayed. 

These are organized in groups. 

 

All properties can be modified directly in the list. 

  

All properties in the Main group and some of the 

properties in the other groups are common to all view 

types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explanation of some general properties for all types of Views: 

 



8  The Designer  /  8.6  Properties list 171 B4A   Beginner's Guide 

8.6.1 Main properties 

 

Name   Name of the view. It is good practice to give meaningful names. Common 

usage is to give a 3 character prefix and add the purpose of the view. In the example, the view is of 

type Label and its purpose is to enter a result. So we give it the name "lblResult", "lbl" for  

Label and "Result" for the purpose. This does not take much time during the design of the layout 

but saves a lot time during coding and maintenance of the program.  

 

Type   Type of the view, not editable. It is not possible to change the type of a view. 

If you need to, you must remove the view and add a new one. 

 

Event Name  Generic name for the subroutines that manages the view's events. By default, 

the Event Name is the same as the view's name like in the example. The Events of several Views 

can be redirected to a same subroutine. In that case you must enter the name of that routine. 

Look at the SecondProgram example for the Click event management for the buttons of the 

keyboard, the btnEvent_Click routine. 

 

Parent   Name of the parent view. Activity, in the example. The parent view can be 

changed in selecting the new one in the list. 

 



8  The Designer  /  8.6  Properties list 172 B4A   Beginner's Guide 

8.6.2 Common properties 

 

HorizontalAnchor Horizontal Anchor function. Possible values LEFT, RIGHT or BOTH 

 

VerticalAnchor Vertical Anchor function. Possible values TOP, BOTTOM or BOTH 

 

Left   X coordinate of the left edge of the View from the left edge of its parent 

                                    View, in pixels (the pixels are in reality dips, density independent pixels). 

 

Top   Y coordinate of the upper edge of the View from the upper edge of its parent    

                                   View, in pixels (the pixels are in reality dips, density independent pixels). 

 

Width   Width of the View in pixels (the pixels are in reality dips, density 

                                    independent pixels). 

 

Height   Height of the View in pixels (the pixels are in reality dips, density 

                                    independent pixels). 

 

Enabled  Enables or disables the use of the View Ex: Enabled = True 

 

Visible  Determines if the View is visible to the user or not. 

 

Tag   This is a place holder which can used to store additional data. Tag can simply 

                                    be text but can also be any other kind of object.  

                                   Tag is used in the SecondProgram example for the numeric buttons click  

                                    events management in the btnEvent_Click routine. 

 

Text   The text which will be displayed in the View, this property is only available 

                                    for views having a Text property.  

 

 



8  The Designer  /  8.6  Properties list 173 B4A   Beginner's Guide 

8.6.3 Activity properties 

 

 
 

Drawable  Sets the Activity background Drawable, the default property is 

ColorDrawable. 

 

Title   Sets the activity title text. 

 

Animation Duration   Sets the animation duration in milliseconds.  

When you launch the program the Activity is not shown directly but grows 

with the given duration. If you set this value to ‘0’ the Activity will be shown 

instantly. 

 

Show Title  Changes the Abstract Designer height.  

This setting does not change the Activity property,  

only the Abstract Designer height. 

 

Full Screen  Changes the Abstract Designer height.  

This setting does not change the Activity property,  

only the Abstract Designer height. 

 

To not show the titles or set full screen, you need to set these two properties in the Module code in 

the Activity Attributes or Module Attributes Regions: 

 
#Region  Activity Attributes  
 #FullScreen: False 
 #IncludeTitle: True 
#End Region 
 

Checking or unchecking the last two properties only changes the visible screen size in the Abstract 

Designer. 

 



8  The Designer  /  8.6  Properties list 174 B4A   Beginner's Guide 

8.6.4 Color properties 

 

For some properties, like ColorDrawable color, TextColor, you can select a color. 

 

 

 By default the Default color is selected. 

And Alpha, the transparency factor, is set to 255 which 

means fully opaque. 

 

 

 

 

 

Click on  to select another 

color. 

 

The color picker is displayed. 

 

 

 

 

 

 

You can either: 

 Move the vertical slider to 

select  a color. 

 Move the small circle to 

select  the ‘darkness’. 

 Enter the RGB values. 

 Select a predefined color. 

 Enter the hex value. 

 

 

 



8  The Designer  /  8.6  Properties list 175 B4A   Beginner's Guide 

 

Select a predefined color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To reset the default color click on . 

 

 

 

 

 



8  The Designer  /  8.7  Layout variants 176 B4A   Beginner's Guide 

8.7 Layout variants 

 

 

Different layout variants can be managed in a same layout file. 

 

 

 

 

 

 

 

 

 

 

Let us make an example based on the TestLayoutsAnchors project  

(which can be found under the Guide\SourceCode\TestLayoutsAnchors directory): 

- Create a new folder and name it TestLayoutVariants. 

- Copy the whole contents of the TestLayoutsAnchors folder. 

- Rename the TestLayoutAnchors.b4a file to TestLayoutVariants.b4a.  

- Rename the TestLayoutAnchors.b4a.meta file to TestLayoutVariants.b4a.meta. 

- Run the IDE. 

- Run the Visual Designer. 

 

The layout in the Abstract Designer should look like this. 

 

 
 



8  The Designer  /  8.7  Layout variants 177 B4A   Beginner's Guide 

 

 

 

 

 

 

 

In the Designer, click on  . 

 

 

 

 
 

Select: Phone (landscape):480 x 320, scale = 1 

 

Click on . 

 

 

 

The new variant is added. 

 

 

 

 

 

 

 

 

 



8  The Designer  /  8.7  Layout variants 178 B4A   Beginner's Guide 

In the Abstract Designer you’ll see something like this. 

 

  
 

We see that the anchors work well. 

pnlToolBox is still at the bottom of the screen and ListView1 is stretched the fill almost the whole 

screen width. 

 

But for the landscape variant we want the ToolBox at the right side of the screen. 

 

We: 

 Reduce the width of ListView1 to 

get space for the ToolBox. 

 

 Move pnlToolBox to the right 

side of the screen, change the 

Button heights and rearrange them 

vertically like in the picture. 

 

 

 

 

 

 

 

 Select pnlToolBox 

 

 

 

 

 

 

 

 

 Set the pnlToolBox Horizontal Anchor to RIGHT. 

     Set the Right Edge Distance to 0 

     Set the pnlToolBox vertical anchor to TOP. 

     Adjust the button heights and their Top  

     properties accordingly. 

 

 

 



8  The Designer  /  8.7  Layout variants 179 B4A   Beginner's Guide 

To always show pnlToolBox in the middle of the screen we add following code in the Script – 

Variant window. 

 

For portrait: 

 

Select the portrait variant. 

 

And add this code 

pnlToolBox.HorizontalCenter = 50%x. 

 

 

 

 

 

 

 

 

For landscape : 

 

Select the landscape variant. 

 

And add this code 

pnlToolBox.VerticalCenter = 50%y. 

 

 

 

 

 

 

 

 

 

 

And the result on a device. 

 

 

 

 

 

 

 



8  The Designer / 8.8 Abstract Designer 180 B4A   Beginner's Guide 

8.8 The Abstract Designer 

 

 

 

The Abstract Designer is a tool that shows 

the layout. 

Its main purpose is to create different 

layout variants. 

It is much faster than the Emulator.  

 

 

The different views are not shown with 

their exact shape but only as coloured 

rectangles. 

Clicking on a view shows its properties in 

the Designer. 

 

 

 

 

 

 

 

 

 

 

Device     Abstract Designer 

 

   



8  The Designer / 8.8 Abstract Designer 181 B4A   Beginner's Guide 

8.8.1 Selection of a screen size 

 

On top you can select different screen sizes: 

 

 

 

 

- Match chosen Variant. 

Matches the variant selected in 

the Variant window. 

- Match Connected Device. 

Matches the size of the 

connected device or emulator. 

- Different ‘standard’ sizes. 

This allows see how a layout 

looks on s different screen. 

  

 

 

 

 

8.8.2 Zoom 

 

 

 

 

With you can move the virtual screen in the four directions. 

 

 

With  you can hide the zoom cursor and show it again with . 

 

 

With the cursor you can set the zoom level you want. 

 

 

With  you can zoom to fit the selected screen size. 

With  you can reset the zoom back to 100%. 

 

 

With the bottom and side cursors you can move the layout vertically or 

horizontally. 

 

 

 



8  The Designer / 8.8 Abstract Designer 182 B4A   Beginner's Guide 

8.8.3 Context menus 

 

Right clicking on a view shows a context menu. 

 

 

 

 

 

 

Add View 

Cut 

Copy 

Paste 

Duplicate 

Undo 

Redo 

Horizontal Anchor 

Vertical Anchor 

Bring To Front 

Send To Back 

Generate 

 

 

Right clicking somewhere on the Activity area shows the context menu with some functions 

disabled which are not relevant for an Activity. 

 

 

 

 

 

 

Only Add View, Paste, Undo, Redo and Generate are 

available. 

 

 

 

 

 

 

 

 

 

 

 

 



8  The Designer / 8.8 Abstract Designer 183 B4A   Beginner's Guide 

8.8.3.1 Add View 

Right click somewhere and move the cursor onto . 

 

This function is the same as the Add View function in the Visual Designer menu. 

 

 

The list of all available views 

is displayed. 

 

Click on the desired view to 

add it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example for a Button. 

 

 

 

 

 

 

 

 

 

 

The Button is added to the layout. 

 

 

 

 

 

 



8  The Designer / 8.8 Abstract Designer 184 B4A   Beginner's Guide 

8.8.3.2 Cut 

 

 removes the selected view from the layout. 

If you selected a Panel, it will be removed with all its child views! 

If you cut it by accident click on  or press Ctrl+Z to recover it. 

 

8.8.3.3 Copy 

 

 copies the selected view into the clipboard. 

If you selected a Panel, it will be copied with all its child views! 

8.8.3.4 Paste 

 

 copies the content of the clipboard. 

If you selected a Panel, it will be pasted with all its child views! 

 

Before you paste a view you must select where you want to paste it. This can be either onto the 

Activity or onto a Panel. 

 

8.8.3.5 Duplicate 

 

 Duplicates the selected view, it is added over itself. 

Duplicate is a shortcut of Copy and Paste. 

 

If you selected a Panel, it will be duplicated with all its child views! 

 

8.8.3.6 Undo / Redo 

 

  
 

These two functions allow you to undo or redo the last operations. 

 

8.8.3.7 Horizontal Anchor 

 

You can set the horizontal anchor in the context menu instead of changing it in the Properties 

window. 

The current anchor is checked. 

 

 

 

 

 



8  The Designer / 8.8 Abstract Designer 185 B4A   Beginner's Guide 

8.8.3.8 Vertical Anchor 

 

You can set the vertical anchor in the context menu instead of changing it in the Properties window. 

The current anchor is checked. 

 

 
 

 

8.8.3.9 Bring To Front 

 

 Moves the selected View on top of the layout. 

 

 

 

In the picture ImageView2 is over ImageView1. 

You see it with the border color. 

 

 

 

 

 

Right click on ImageView1 and click on 

 to move ImageView1 to front of all 

other views. 

 

And the result: 

 

 

 

 

 

 

 

 

 

 

8.8.3.10 Send To Back 

 

 is the inverse function of Bring To Front function above. 

 

 



8  The Designer / 8.8 Abstract Designer 186 B4A   Beginner's Guide 

8.8.3.11 Generate 

 

 Generates the declaration statement or an event routine for the 

selected View. It is a shortcut of the Generate Members function in the VisualDesigner Tools menu 

but only for the selected view. 

 

A popup menu allows you to select what code you want to generate, the possibilities depend on the 

type of the selected view. 

 

Example with a Button: 

 

 
 

Dim btnAction As Button 

   Generates the declaration statement in the Globals routine. 
   Private btnAction As Button 
 

Down 

   Generates the Down event routine frame. 
  Sub btnAction_Down 
  
  End Sub 
 

Up 

   Generates the Up event routine frame. 
  Sub btnAction_Up 
  
  End Sub  
 

Click 

  Generates the Click event routine frame. 
 Sub btnAction_Click 
 
 End Sub 

 

LongClick   
  Generates the LongClick event routine frame. 
 Sub btnTest1_LongClick 
  
 End Sub 

 

 

 

Example with a Label.  

 

 



8  The Designer / 8.8 Abstract Designer 187 B4A   Beginner's Guide 

8.8.4 Select views 

 

  

 

 

 

 

 

 

Select a single view:  

 Click on the view  

 

 

 

 

 

 

 

 

Select several views: 

  Click on the first view. 

  Press the Ctrl key, 

  Click the following views. 

 

The selected views are highlighted. 

 

 

 

 

 

After the selection you can: 

 Move the selected views with the arrow keys of the keyboard in the four directions. 

 Right click on one of the selected view to show the contect menu. 

 

 

 

 

 

 

 

 

The functions are the same as for a single view, but a 

new function, GenerateDialog, is available to 

Generate Members. 

This is the same function as in the Visual Designer 

Tools menu. 

 



8  The Designer / 8.8 Abstract Designer 188 B4A   Beginner's Guide 

 In the Properties window you can change all properties common to the selected views.  

 

 

 

 

 

You can change the parent view. 

 

 

 

You can change all these properties because they are the same 

for the four views selected in the example. 

 

 

Changing, for example, the Height property will change it for 

all the selected views. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you select views of different types, only the properties 

common to the selected views can be changed. 

 

Example with a Label and a Button. 

 

 
 

 

 

 

 



8  The Designer / 8.8 Abstract Designer 189 B4A   Beginner's Guide 

8.8.5 Example 

 

Let us take a simple example with a layout in portrait mode, like the image below. 

This example project is in the SourceCode folder in the AbstractDesigner subfolder. 

 

 

 

 

Now we would like to make a landscape variant. 

 

 

 

 

 

 

 

 

 

 

 

In the Variant window click on . 

 

 

 

A selection window is displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Select . 

 

In the Variant window the new variant is displayed. 

 

 
 



8  The Designer / 8.8 Abstract Designer 190 B4A   Beginner's Guide 

The Abstract Designer looks now like this: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we rearrange the views to fit the 

new orientation. 

 

 

 

 

 

 

 

 

 

If you select in the Variant window the previous variant 

 

  
 

you will see the layout on the left. 

 

 

 

 

 



8  The Designer / 8.9 Adding views by code 191 B4A   Beginner's Guide 

8.9 Adding views by code 

 

It is also possible to add views by code instead of using the Designer with a device, the Abstract 

Designer or an Emulator. 

Advantage: you have full control of the view. 

Disadvantage: you have to define almost everything. 

 

The source code is in the source code directory: AddViewsByCode 

 

For the positions and dimensions of the views on the screen two special options are available: 

 dip  density independent pixels. 

100dip = DipToCurrent(100)  DipToCurrent is a Keyword dip is the Shortcut 

100dip = 100 / 160 * device density 

The default density is 160 dpi  dots per inch (pixels per inch) 

Densities in Android: 

o 120 scale 0.75 

o 160 scale 1 default 

o 240 scale 1.5 

o 320 scale 2 

 

 %x and %y represent distances proportional to the active screen width and height.  

20%x = 0.2 * Activity.Width 

90%y = 0.9 * Activity.Height 

20%x = PerXToCurrent(20)  PerXToCurrent is a Keyword    %x is the Shortcut 

90%y = PerYToCurrent(90) 

 

Example: 

Let us put a Label on top of the screen and a Panel below it with a Label and a Button on it: 

 
Sub Globals 
 Private lblTitle, lblPanelTitle As Label 
 Private pnlTest As Panel 
 Private btnTest As Button 
End Sub 
 



8  The Designer / 8.9 Adding views by code 192 B4A   Beginner's Guide 

Sub Activity_Create(FirstTime As Boolean) 
 lblTitle.Initialize("") 
 lblTitle.Color = Colors.Red 
 lblTitle.TextSize = 20 
 lblTitle.TextColor = Colors.Blue 
 lblTitle.Gravity = Gravity.CENTER_HORIZONTAL + Gravity.CENTER_VERTICAL 
 lblTitle.Text = "Title" 
 Activity.AddView(lblTitle, 20%x, 10dip, 60%x, 30dip) 
  
 pnlTest.Initialize("") 
 pnlTest.Color = Colors.Blue 
  
 btnTest.Initialize("btnTest") 
 btnTest.Text = "Test" 
  
 lblPanelTitle.Initialize("") 
 lblPanelTitle.Color = Colors.Red 
 lblPanelTitle.TextSize = 16 
 lblPanelTitle.TextColor = Colors.Blue 
 lblPanelTitle.Gravity = Gravity.CENTER_HORIZONTAL + Gravity.CENTER_VERTICAL 
 lblPanelTitle.Text = "Panel test" 
  
 Activity.AddView(pnlTest, 0, lblTitle.Top+lblTitle.Height+10dip, 100%x, 50%y) 
 pnlTest.AddView(lblPanelTitle, 20dip, 10dip, 100dip, 30dip) 
 pnlTest.AddView(btnTest, 50dip, 50dip, 100dip, 60dip) 
End Sub 
 

 

Declaring the views. 

 
Private lblTitle, lblPanelTitle As Label 
Private pnlTest As Panel 
Private btnTest As Button 

 

Initializing the title label: 

lblTitle.Initialize("")   Initializes the Label, no EventName required. 

lblTitle.Color = Colors.Red  Sets the Background color to red. 

lblTitle.TextSize = 20   Sets the text size to 20. 

lblTitle.TextColor = Colors.Blue Sets the text color to blue. 
lblTitle.Gravity = Gravity.CENTER_HORIZONTAL + Gravity.CENTER_VERTICAL 

      Sets the label gravity. 

lblTitle.Text = "Title"   Sets the label text to 'Title'. 

Activity.AddView(lblTitle, 20%x, 10dip, 60%x, 30dip) Adds the view to the activity. 

 

If the Label had been added in the Designer, all the above code wouldn't have been necessary 

because the properties would already have been defined in the Designer. 

In the Activity.AddView line we see that: 

 the Left property is set to 20%x, 20% of Activity.Width. 

 the Top property is set to 10dip, 10 density independent pixels. 

 the Width property is set to 60%x, 60% of Activity.Width 

 the Height property is set to 30dip, 30 density independent pixels. 

 

pnlTest.Initialize("")   Initializes the Panel, no EventName required. 

pnlTest.Color = Colors.Blue  Sets the Background color to blue. 

 

btnTest.Initialize("btnTest")  Initializes the Button, EventName = btnTest. 

btnTest.Text = "Test"   Sets the button text to "Test" 
lblPanelTitle.Initialize("")



8  The Designer / 8.9 Adding views by code 193 B4A   Beginner's Guide 

lblPanelTitle.Color = Colors.Red 
lblPanelTitle.TextSize = 16 
lblPanelTitle.TextColor = Colors.Blue 
lblPanelTitle.Gravity = Gravity.CENTER_HORIZONTAL + Gravity.CENTER_VERTICAL 
lblPanelTitle.Text = "Panel test" 
 

Similar to the title Label. 

 
Activity.AddView(pnlTest,0,lblTitle.Top + lblTitle.Height + 10dip, 100%x, 50%y) 

Adds the Panel pnlTest to the Activity. 

 the Left property is set to 0 

 the Top property is set to 10dips below the title Label 

 the Width property is set to 100%x, the total Activity.Width 

 the Height property is set to 50%y, half the Activity.Height 
 

pnlTest.AddView(lblPanelTitle, 20dip, 10dip, 100dip, 30dip) 

Adds the Label lblPanelTitle to the Panel pnlTest at the given position and with the given 

dimensions in dips. 
 

pnlTest.AddView(btnTest, 50dip, 50dip, 100dip, 60dip) 

Adds the Button btnTest to the Panel pnlTest at the given position and with the given dimensions in 

dips. 

 

And the result on the device: 

 

 
 



8  The Designer / 8.10 Designer Scripts 194 B4A   Beginner's Guide 

8.10 Designer Scripts 

 

One of the most common issues that Android developers face is the need to adapt the user interface 

to devices with different screen sizes. 

As described in the visual designer tutorial, you can create multiple layout variants to match 

different screens. 

However it is not feasible nor recommended to create many layout variants. 

 

The Designer Scripts will help you fine tune your layout and easily adjust it to different screens and 

resolutions. 

 

The idea is to combine the usefulness of the visual designer with the flexibility and power of 

programming code. 
 

You can write a simple script to adjust the layout based on the dimensions of the current device and 

immediately see the results. No need to compile and install the full program each time. 

 

You can also immediately see the results in the Abstract Designer. This allows you to test your 

layout on many different screen sizes. 

 

 
 



8  The Designer / 8.10 Designer Scripts 195 B4A   Beginner's Guide 

Every layout file can include script code. The script is written inside the Visual Designer in the 

Script window: 

 

 
 

There are two types of scripts:  

- Script – General, the general script that will be applied to all variants. 

- Script – Variant, specific code can be written for each variant. 

 

Once you press on the Run Script button (or F5), the script is executed and the connected device / 

emulator and abstract designer will show the updated layout. 

 

The same thing happens when you run your compiled program. The (now compiled) script is 

executed after the layout is loaded. 

 

The general script is first executed followed by the variant specific script. 

 

The script language is very simple and is optimized for managing the layout. 

 



8  The Designer / 8.10 Designer Scripts 196 B4A   Beginner's Guide 

8.10.1 The menu 

 

 
 

 Ctrl + C Copy 

 Ctrl + X Cut 

 Ctrl + V Paste 

 Ctrl + Z Undo 

 Ctrl + Shift + Z Redo 

 Ctrl + Q Block Comment 

 Ctrl + W Block Uncomment 

  Outdent 

  Indent 

 F3 Find / Replace 

 F5 Run 

 

 

 

 

 

 

 

 



8  The Designer / 8.10 Designer Scripts 197 B4A   Beginner's Guide 

Example 
 

In this example we will build the following layout: 

The source code is in the DesignerScripts folder. 

 

 
 

btnLeft and btnRight should be located in the top corners. 

btnDown should be located at the bottom and fill the entire width. 

ListView1 should fill the entire available area. 

ToggleButton1 should be located exactly in the centre. 

 

The first step is to add the views and position them with the visual designer (you do not need to be 

100% accurate). 

Now we will select the designer scripts tab and add the code. 

Note that the views are locked when the designer scripts tab is selected. 

 

The same can be done with Anchors, a new feature sine B4A version 3.20. 

 



8  The Designer / 8.10 Designer Scripts 198 B4A   Beginner's Guide 

The code in this case is: 

 
'All variants script 
btnRight.Right = 100%x  
 
btnDown.Bottom = 100%y 
btnDown.Width = 100%x 
 
EditText1.Width = 100%x 
EditText1.Bottom = btnDown.Top - 5dip 
 
ListView1.Width = 100%x 
ListView1.SetTopAndBottom(btnLeft.Bottom, EditText1.Top) 
 
ToggleButton1.HorizontalCenter = 50%x 
ToggleButton1.VerticalCenter = 50%y 
 

The result: 

 

 
 



8  The Designer / 8.10 Designer Scripts 199 B4A   Beginner's Guide 

10 '' tablet 

 

 
 

 

 
 



8  The Designer / 8.10 Designer Scripts 200 B4A   Beginner's Guide 

8.10.2 Supported Properties 

 

The following properties are supported: 

- Left / Right / Top / Bottom / HorizontalCenter / VerticalCenter –  

Gets or sets the view's position. The view's width or height will not be changed. 

 

- Width / Height - Gets or Sets the view's width or height. 

 

- TextSize - Gets or sets the text size.  

You should not use 'dip' units with this value as it is already measured in physical units. 
 

- Text - Gets or sets the view's text. TextSize and Text properties are only available to views that 

show text. 

 

- Image - Sets the image file (write-only). Only supported by ImageView. 

 

- Visible - Gets or sets the view's visible property. 

 

8.10.3 Supported Methods 

 

- SetLeftAndRight (Left, Right) - Sets the view's left and right properties. This method changes 

the width of the view based on the two values. 

 

- SetTopAndBottom (Top, Bottom) - Sets the view's top and bottom properties. This method 

changes the height of the view based on the two values. 

 

8.10.4 Supported Keywords 

- And / Or - Same as the standard And / Or keywords. 

 

- False / True - Same as the standard False / True keywords. 

 

- Min / Max - Same as the standard Min / Max keywords.  

 

- Landscape / Portrait - Detects if the layout is in landscape or portrait.  

   Can be used with If / Then. 
 

- AutoScale - Autoscales a view based on the device physical size. Example: AutoScale(Button1) 
 

- AutoScaleAll - Autoscales all layout views. 

 

- AutoScaleRate - Sets the scaling rate, a value between 0 and 1. The default value is 0.3 

           Example : AutoScaleRate(0.5) 
 

- ActivitySize - Returns the approximate activity size measured in inches. 

 

- If . Else If . Else . Then condition blocks - Both single line and multiline statements 

are supported. The syntax is the same as the regular If blocks. 

 



8  The Designer / 8.10 Designer Scripts 201 B4A   Beginner's Guide 

8.10.5 Autocomplete 

 

When you begin typing, the Autocomplet function shows all possible keywords or view names 

containing the written text with the help of the selected keyword.  

Example: Au, shows all AutoScale methods. 

 

 
 

Example: bt, shows all buttons. 

 
 

8.10.6 Notes and tips 

 

- %x and %y values are relative to the view that loads the layout. 

Usually it will be the activity. However if you use Panel.LoadLayout then it will be relative to this 

panel. 

 

- Use 'dip' units for all specified sizes (except of TextSize). By using 'dip' units the values will be 

scaled correctly on devices with higher or lower resolution. 

 

- In most cases it is not recommended to create variants with scales other than 1.0. When you add 

such a variant you will be given an option to add a normalized variant instead with a scale of 1.0. 

 

- Variables - You can use variables in the script. You do not need to declare the variables before 

using them (there is no Private, Public nor Dim keyword in the script). 

 

- Activity.RerunDesignerScript (LayoutFile As String, Width As Int, Height As Int) - In some cases 

it is desirable to run the script code again during the program. For example you may want to update 

the layout when the soft keyboard becomes visible. Activity.RerunDesignerScript method allows 

you to run the script again and specify the width and height that will represent 100%x and 100%y. 

In order for this method to work all the views referenced in the script must be declared in Sub 

Globals.  

Note that this method should not be used to handle screen orientation changes. In that case the 

activity will be recreated and the script will run during the Activity.LoadLayout call. 

 



8  The Designer / 8.10 Anchors 202 B4A   Beginner's Guide 

8.11 Anchors 

 

The Horizontal Anchor and Vertical Anchor properties are very powerful to adapt to different 

screen sizes. 

 

8.11.1 Horizontal Anchor 

 

 

 

The horizontal anchor property can take three 

values: 

 

 

 

  LEFT   

 

This is the default value. 

The left edge is anchored to the left edge of 

the parent view with the distance given in 

the Left property. 

  

No anchor is shown. 

 

 

 

  RIGHT  

 

The right edge is anchored to the right 

edge of the parent view with the distance 

given in the Right Edge Distance property. 

The Left property is no longer available 

because it is defined by the width and the 

right anchor ! 

The dot on the right edge 

shows the anchor.  

 

 BOTH   

  

Both edges are anchored. 

The Width property is no longer available 

because it is defined by the anchors ! 

 

Setting the Horizontal Anchor property to 

BOTH is similar to using the 

SetLeftAndRight function in the Designer 

Scripts. 

The dots on the two 

edges show the anchors. 

 



8  The Designer / 8.10 Anchors 203 B4A   Beginner's Guide 

8.11.2 Vertical Anchor 

 

 

 

 

The vertical anchor property can take three values: 

 

 

 

 

 TOP 

 

This is the default value. 

The top edge is anchored to the top edge of 

the parent view with the distance given in 

the Top property. 

 

No anchor is shown. 

 

 

 

 

 BOTTOM 

 

The bottom edge is anchored to the bottom 

edge of the parent view with the distance 

given in the Bottom Edge Distance property. 

The Top property is no longer available 

because it is defined by the Height and the 

bottom anchor ! 

The dot on the bottom 

edge shows the anchor. 

 

 

 BOTH 

 

Both edges are anchored. 

The Height property is no longer available 

because it is defined by the anchors ! 

 

Setting the Vertical Anchor property to 

BOTH is similar to using the 

SetTopAndBottom function in the Designer 

Scripts.  

The dots on the two edges 

show the anchors. 

 

 

 



8  The Designer / 8.10 Anchors 204 B4A   Beginner's Guide 

What happens when we set the horizontal anchor of the two views below to BOTH and change the 

parent view width? 

 

The left view’s right edge is anchored to the right edge of the parent view with the Right Edge 

Distance. 

The right view’s left edge is anchored to the left edge of the parent view with the Left distance. 

 

 
 

If we increase the width of the parent view we get the layout below. 

 

 
 

The left view’s right edge is still at the Right Edge Distance from the parent view’s right edge. 

The right view’s left edge is still at the Left distance from the parent view’s left edge. 

The result is an overlapping of both views. 

 

In this case you must adjust the views in the Designer Scripts with the SetLeftAndRight method! 

 

For example: 
LeftView.SetLeftAndRight(0, 67%x) 
RightView.SetLeftAndRight(33%x, 100%x) 

 

 

 

 

 

 

 

 

 

 

 

 



8  The Designer / 8.10 Anchors 205 B4A   Beginner's Guide 

8.11.3 First example 

 

The examples shown in this chapter are based on the DesignerAnchor project. 

 

First we add a label on top of the screen which should cover the whole width and stay on top. 

 

In the AbstractDesigner right-click somewhere on the screen, the menu below will be displayed: 

 

 

 

Click on . 

 

 

On the left side appears the list 

of the views you can add to the 

layout. 

 

 

Click on  . 

 

 

 

 

 
 
 
 
 

 

 

 

The Label is added. 

 

Move the label’s upper left corner to the upper 

left corner of the screen and stretch it to fill the 

whole width of the screen.



8  The Designer / 8.10 Anchors 206 B4A   Beginner's Guide 

 

Click somewhere else on the screen to 

remove the red anchors. 

 

No anchors are displayed. 

 

 

 

Click again on the Label and we see these properties: 

 

 
Left = 0 

Top = 0 

Width = 320 full layout width 

Height = 40 

 

 

Now we change the ‘Horizontal Anchor’ property : 

 

Click on . 
 
 
 
 
 

We see that the properties changed: 

Left, Top and Height are still the same. 

But Width has disappeared and is replaced by  
Right Edge Distance = 0  
Its value = 0 because the right edge is on the right edge of 

the screen.  

 

 

 

 

 

 

Set the other properties like in the picture. 

 

 

 

 

 

 

 

Now we see the two anchors on the left and the right edge. 

 

 

 



8  The Designer / 8.10 Anchors 207 B4A   Beginner's Guide 

 

Now, let us add a Panel at the bottom of the 

screen covering also the whole screen width. 

 

 

 

 

The properties look like in the picture. We set the Horizontal Anchor to BOTH. 

Same as for Label1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We set the Vertical Anchor to . 

 

 

 

 

 

 

The Top property is replaced by the:  

Bottom Edge Distance = 0 property. 

Its value = 0 because we anchor the bottom edge of Panel1 

to the screens bottom edge. 

 

        We see the three anchors. 

  

 

 

 

 

 

 

 

 

And set the other properties like this.



8  The Designer / 8.10 Anchors 208 B4A   Beginner's Guide 

 

Now we add a second label onto Panel1. 

 

 Click on Panel1 to select it. 

 
 

 

Add the label. 

 

 

Move and size the label like in the picture 

with the Left, Top, Width and Height properties 

like in the list below. 

 

 

 

In the Views Tree window we see that Label2 is shifted to the right 

because its parent view is Panel1 and not the Activity like for Label1 

and Panel1! 

 

 

 

 

Set the Horizontal and Vertical Anchors to . 

 

The properties  

Left = 10  and 

Top = 10  remain the same. 

 

Right Edge Distance = 10  and 
Bottom Edge Distance = 10 

The two values are equal to 10 because we want a ‘frame’ 

around Label2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set the other properties like in the picture. 

 

 

 

 

 



8  The Designer / 8.10 Anchors 209 B4A   Beginner's Guide 

 

And the result looks like the pictures below in portrait and landscape screen orientations. 

 

     
 

 

To demonstrate the anchor feature we move, in the Abstract Designer, the top edge of Panel1 

upwards. 

 

 

 

 

We see that the bottom edge of Label2 

remains at its place ! 

 

 

 



8  The Designer / 8.10 Anchors 210 B4A   Beginner's Guide 

 

       
 

Now, we add a ListView onto the left half of the     We set the vertical anchor to BOTH. 

screen and vertically positioned between  

Label1 and Panel1 leaving a small space.     And set the other properties like in the picture. 

 

 

    
 

Now, we add a ScrollView on the right   We set the horizontal anchor to RIGHT. 

half of the screen also positioned between  We set the vertical anchor to BOTH. 

Label1 and Panel1 leaving a small space.  And set the other properties like in the picture. 



8  The Designer / 8.10 Anchors 211 B4A   Beginner's Guide 

In the code we: 

- Load the layout. 

- Fill the ListView and the ScrollView. 

 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Main") 
 FillListView 
 FillScrollView 
End Sub 
 

The two filling routines. 

 
Sub FillListView 
 Private i As Int 
  
 For i = 0 To 20 
  ListView1.AddSingleLine("Test " & i) 
 Next 
End Sub 
 
Sub FillScrollView 
 Private i As Int 
 Private lblHeight = 30dip As Int 
  
 For i = 0 To 20 
  Private lbl As Label 
  lbl.Initialize("lbl") 
  ScrollView1.Panel.AddView(lbl, 0, i*lblHeight, 100%x-20dip, lblHeight-1dip) 
  lbl.Color = Colors.Blue 
  lbl.TextColor = Colors.White 
  lbl.Text = "Test " & i 
  lbl.Tag = i 
 Next 
 ScrollView1.Panel.Height = i * lblHeight 
End Sub 
 

And the result:  

In portrait and landscape screen orientations. 

  

   

 

 

 

 

 

 

 

 

 

 

 

We see that the anchors work fine.  

But, we see that there is a big gap between the  

ListView and the ScrollView. 



8  The Designer / 8.10 Anchors 212 B4A   Beginner's Guide 

Why do we have this gap ? 

 

Because we set the Horizontal Anchor of the ListView to LEFT  

and the Horizontal Anchor of the ScrollView to RIGHT. 

 

But the Width property remains the same and that’s why we get the gap between the two views 

when the screen width is wider than the layout screen width. 

 

To adjust the width we add two lines in the DesignerScripts. 

 

Click on    to show the DesignerScripts window. 

 

 
 

Here we comment AutoScaleAll and add the following two lines: 

 
'AutoScaleAll 
ListView1.Width = 50%x - 20dip 
ScrollView1.SetLeftAndRight(50%x + 10dip, 100%x - 10dip) 

 

The anchors are valid in the AbstractDesigner but not in Designer Scripts. 

 

For ListView1 it’s enough to set its Width property. 

But for ScrollView1 we need to define both properties Left and Right which is done with 

SetLeftAndRight because the RIGHT anchor is lost. 

 

 

And the new result in landscape orientation.



8  The Designer / 8.10 Anchors 213 B4A   Beginner's Guide 

8.11.4 Second example 

 

 

We do the same exercise as in chapter 8.10 

Designer Scripts but with the Anchor functions. 

 

 

 

This is the layout file from the DesignerScripts 

example. 

 

 

 

 

                                 Click on btnRight. 

 

 

 

 

 

And set the  
Horizontal Anchor 

property 

to  RIGHT. 

 

 

 

 

 

The RIGHT anchor arrow is now displayed. 

 

 



8  The Designer / 8.10 Anchors 214 B4A   Beginner's Guide 

 

 

 

Click on btnDown. 

 

 

 

 

Set the Horizontal Anchor property to  BOTH.      Set the Vertical Anchor property to  BOTTOM. 

 

 

 

 

 

 

 

 

 

 

Click on EditText1. 

 

 

 

 

 

Set the anchors to BOTH and BOTTOM. 

 

 

 

 

 

 

 

 

 

 

Click on ListView1 

 

Move the right edge to the right edge of the screen 

 

and set both anchors to BOTH. 

 

 

 

 



8  The Designer / 8.10 Anchors 215 B4A   Beginner's Guide 

Remains  ToggleButton1. 

For this view we need the DesignerScript we cannot adjust it with anchors. 

 
'All variants script 
 
ToggleButton1.HorizontalCenter = 50%x 
ToggleButton1.VerticalCenter = 50%y 
 

In the Designer Script window click on  to run the script. 

 

 
 

 

And the result in portrait and landscape. 

 

     

 



8  The Designer / 8.11 AutoScale 216 B4A   Beginner's Guide 

8.12 AutoScale 

 

AutoScale includes three functions: 

 AutoScaleRate(rate) 

 AutoScale 

 AutoScaleAll 

 

Larger devices offer a lot more available space. The result is that even if the physical size of a view 

is the same, it just "feel" smaller. 

Some developers use %x and %y to specify the views size. However the result is far from being 

perfect. The layout will just be stretched. 

The solution is to combine the "dock and fill" strategy with a smart algorithm that increases the 

views size and text size based on the running device physical size. 

 

The AutoScale function is based on the standard variant (320 x 480, scale = 1.0). 

Since B4A version 3.2 AutoScale takes into account the dimensions of the variant defined in the 

layout. 

For other screen sizes and resolutions AutoScale calculates a scaling factor based on the equations 

below.  

 
delta = ((100%x + 100%y) / (320dip + 430dip) - 1) 
rate = 0.3 'value between 0 to 1.  
scale = 1 + rate * delta 
 

AutoScale multiplies the Left / Top / Width and Height properties by the scale value. 

If the view has a Text property this one is also multiplied by the scale value. 

 

You can play with the 'rate' value. The rate determines the change amount in relation to the device 

physical size. 

Value of 0 means no change at all. Value of 1 is almost similar to using %x and %y: If the physical 

size is twice the size of the standard phone then the size will be twice the original size. 

Values between 0.2 and 0.5 seem to give good results. The default value is 0.3. 

Be careful when you ‘downsize’ a layout defined for a big screen to a small screen. The views may 

become very small. 

Note: The size of the CheckBox and RadioButton images is the same for all screen sizes. 

 

The abstract designer is useful to quickly test the effect of this value. 

 

Functions: 

 AutoScaleRate(rate) Sets the rate value for above equations. 

Example: AutoScaleRate(0.5)  Sets the rate value to 0.5. 

 

 AutoScale(View) Scales the given view. 

Example : AutoScale(btnTest1) 

This is equivalent to :  
 btnTest1.Left = btnTest1.Left * scale 
 btnTest1.Top = btnTest1.Top * scale 
 btnTest1.Width = btnTest1.Width * scale 
 btnTest1.Height = btnTest1.Height * scale 
 btnTest1.TextSize = btnTest1.TextSize * scale 

 

 AutoScaleAll  Scales all the views in the selected layout  



8  The Designer / 8.11 AutoScale 217 B4A   Beginner's Guide 

8.12.1 Simple AutoScale example with only one layout variant 

 

We will AutoScale a simple example with the layout below, source code AutoScaleExample1:  

 

 

We have: 

 2 Labels on the top of the screen : 

o lblTitle 

o lblSubTitle 

 

 

    

 1 ScrollView in the middle of the screen : 

o scvTest containing  

 one Panel pnlSetup with 

 10 Labels lblTest1 to lblTest10 

 10 EditTexts edtTest1 to edtTest10 

 

 

 1 Panel at the bottom of the screen : 

o pnlToolBox 

o Containing 3 Buttons 

 btnTest1 

 btnTest2 

 btnTest3 

 

 

We have two layout files Main for the main screen and Panel for the ScrollView content with only 

one layout variant 320 x 480 scale = 1 (160dip) for each. 

 

        
 



8  The Designer / 8.11 AutoScale 218 B4A   Beginner's Guide 

Main layout file: 

 

We want to have the: 

 Two Labels on the top of the screen and centred 

horizontally on the screen. 

 ToolBox Panel on the bottom of the screen and 

centred horizontally. 

 ScrollView filling the space between the 

SubTitle Label and the ToolBox Panel. 

 

Note: Look at the anchors especially for the 

ToolBox and the ScrollView. 

 

First we set the AutoScaleRate to 0.5 with: 
AutoScaleRate(0.5) 
and AutoScale all views with: 
AutoScaleAll 

 

The two Labels are already on top so there is no 

need to change the Top property for different screen 

sizes. 

 

But we need to centre them on the screen with: 
lblTitle.HorizontalCenter = 50%x 
lblSubTitle.HorizontalCenter = 50%x 

 

Then we centre the ToolBox with: 
pnlToolBox.HorizontalCenter = 50%x 

And we set the Vertical Anchor property of the ToolBox to BOTTOM to ‘anchor’ it to the bottom 

of the screen. 

This is needed because not all screens have the same width / height ratio and in landscape 

orientation it would even not be visible. 

 

Then we set the Vertical Anchor property of the ScrollView to BOTH because we want it to fill the 

space between lblSubTitle and pnlToolBox. 

We set the Bottom Edge Distance property to 60 to leave a small space of  10dip between the 

ScrollView and the ToolBox. 

Code in the Designer Scripts of the Main layout in the area for All variants script: 

 
'All variants script 
 
'Set the rate value to 0.5 
AutoScaleRate(1) 
 
'Scale all the views in the layout 
AutoScaleAll  
 
'Center the Labels horizontally to the middle of the screen 
lblTitle.HorizontalCenter = 50%x 
lblSubTitle.HorizontalCenter = 50%x 
 
'Center the ToolBox Panel horizontally to the middle of the screen 
pnlToolBox.HorizontalCenter = 50%x 
 
'Center the ScrollView horizontally to the middle of the screen 
scvTest.HorizontalCenter = 50%x  



8  The Designer / 8.11 AutoScale 219 B4A   Beginner's Guide 

 

Panel layout file: 

 

    

All the Label and EditText views are on a Panel. 

This is needed because they occupy more space than 

the screen size.  

This layout file is loaded into the ScrollView.Panel.  

 

For this layout file we set also the AutoScaleRate 

value to 0.5 with: 
AutoScaleRate(0.5) 

and AutoScale all views with: 
AutoScaleAll 
 

 

There is no need to modify any view after autoscaling. 

       

   

 

 

 

 

 

 

 

 

 

 

 

Code in the Designer Scripts of the Panel layout in the area for ‘All variants script’: 

The whole code is very simply: 
'All variants script 
AutoScaleRate(0.5) 
AutoScaleAll 
 

In the program the code is the following: 

 
Sub Activity_Create(FirstTime As Boolean) 
 ' load the Main layout file 
 Activity.LoadLayout("Main") 
  
 ' load the ScrollView.Panel layout file 
 scvTest.Panel.LoadLayout("Panel") 
  
 ' set the ScrollView.Panel.Height to the pnlSetup Panel height 
 scvTest.Panel.Height = pnlSetup.Height 
End Sub 
 

We load the Main layout file into the Activity with Activity.LoadLayout("Main"). 

We load the Panel layout file into the ScrollView with scvTest.Panel.LoadLayout("Panel"). 

We set the ScrollView.Panel.Height to the height of the Panel in the layout file with: 
scvTest.Panel.Height = pnlSetup.Height 



8  The Designer / 8.11 AutoScale 220 B4A   Beginner's Guide 

Screenshots of an 800/1280 10'' screen Emulator with different Rate values: 

All the images have been downsized. 

 

   
 

 Rate = 0         Rate = 0.1         Rate = 0.3 

 

   
 

 Rate = 0.5      Rate = 0.7          Rate = 1.0 

 

 



8  The Designer / 8.11 AutoScale 221 B4A   Beginner's Guide 

Screenshots of an 480/800  7'' screen Emulator with different Rate values: 

 

    
 

 Rate = 0     Rate = 0.1  Rate = 0.3 

 

   
 

        Rate = 0.5     Rate = 0.7  Rate = 1 

 

Screenshots of a 320/480  3.5'' screen Emulator. The Rate value has no influence. 

 

 
 

 

 



8  The Designer / 8.11 AutoScale 222 B4A   Beginner's Guide 

8.12.2 Same AutoScale example with portrait and landscape layout variants 

 

Source code AutoScaleExample2: 

 

 

 

 

 

The previous example doesn't look 

good on smartphone screens with 

landscape orientation. 

 

 

 

 

 

 

 

 

 

 

 

 

 So we make a new layout variant for 

landscape where we move the 

ToolBox with the Buttons to the right 

side of the screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The layout variant in the Main 

layout file. 

Note: Look at the anchors especially 

for the ToolBox and the ScrollView. 

 

 

 

 



8  The Designer / 8.11 AutoScale 223 B4A   Beginner's Guide 

The code in the Designer Script must be changed: 

 

For the portrait variant in the Main layout file we keep in the All variants script area only the 

code below: 
'All variants script 
AutoScaleRate(0.5) 
AutoScaleAll 
Setting the rate value and autoscaling all the views. 

 

All the other code is moved to the  Variant specific script: 320x480,scale=1 area: 

 
'Variant specific script: 320x480,scale=1 
 
'Center the Labels horizonally to the middle of the screen 
lblTitle.HorizontalCenter = 50%x 
lblSubTitle.HorizontalCenter = 50%x 
 
'Center the ToolBox Panel horizontally to the middle of the screen 
pnlToolBox.HorizontalCenter = 50%x 
 
'Center the ScrollView horizontally to the middle of the screen 
scvTest.HorizontalCenter = 50%x 

 

For the landscape variant we have in the All variants script area the same code as for the 

portrait variant: 
'All variants script 
AutoScaleRate(0.5) 
AutoScaleAll  

 

And in the 'Variant specific script: 480x320,scale=1 area: 

 

We centre the Title and SubTitle Labels to the middle of the space between the left screen border 

and the left ToolBox boarder with: 
lblTitle.HorizontalCenter = pnlToolBox.Left / 2 
lblSubTitle.HorizontalCenter = pnlToolBox.Left / 2 

 

We centre the ToolBox vertically to the middle of the screen height with: 
pnlToolBox.VerticalCenter = 50%y 
We set the right border of the ToolBox to right border of the screen with: 
pnlToolBox.Right= 100%x 
 

We set the Vertical Anchor property of the ScrollView to BOTH to fill the space between the 

bottom SubTitle Label border and the bottom screen border with.  

 



8  The Designer / 8.11 AutoScale 224 B4A   Beginner's Guide 

And the whole code: 

 
'Variant specific script: 480x320,scale=1 
 
'Center the ToolBox Panel vertically 
pnlToolBox.VerticalCenter = 50%y 
 
'Center the Labels horizontally to the middle  
'of the space between the left screen border  
'and the left boarder of the ToolBox Panel 
lblTitle.HorizontalCenter = pnlToolBox.Left / 2 
lblSubTitle.HorizontalCenter = pnlToolBox.Left / 2 
 
'Center the ScrollView horizontally to the middle  
'of the space between the left screen border  
'and the left ToolBox Panel border 
scvTest.HorizontalCenter = pnlToolBox.Left / 2 

 

 

For the Panel layout file: 

 

The code for the portrait variant remains the same. 

 

We add the same code for the landscape variant: 
'All variants script 
AutoScaleRate(0.5) 
AutoScaleAll 
 

Here too, no code in the 'Variant specific script: 480x320,scale=1 area. 

 

 

 

 

 



8  The Designer / 8.11 AutoScale 225 B4A   Beginner's Guide 

8.12.3 AutoScale more advanced examples 

 

This chapter is dedicated for more advanced users, the code is not explained here. 

Source code AutoScaleExample4. 

 

The AutoScale function in the Designer Scripts scales only views added in the Designer but not 

views added in the code. 

 

To overcome this drawback I wrote the Scale Code module included in the example code. 

 

There are two other drawbacks: 

 the internal Labels of ListViews are not scaled. 

 with the Designer Scripts AutoScale function for some smartphone screen sizes especially 

the 480 x 800 scale 1.5 screen the scaling is not optimal (at least for me).  

With AutoScale on a screen with a resolution of 480 x 800 scale 1.5 (the standard screen is 

320 x 480 scale 1) the views are stretched too much horizontally and not enough vertically 

because of the different width/height ratio. 

 

I added in the Scale Module a new set of equations with two scale factors one for X and one for Y. 

For smartphone screens (< 6'') the views are scaled according to the screen width and the screen 

height without the rate factor. For bigger screens the scale factors are modified with the rate factor. 

For the big screens a rate value of 0 means no scaling and a value of 1 is equivalent to a scaling 

with %x and %y. 

 

The AutoScale function in the code module scales also the internal views in ScrollViews, ListViews 

and scales the TextSize property of Spinners. 

 

The Scale code module contains following functions: 

 Initialize   Calculates the scale factors 

 SetRate(Rate)   Sets a new Rate value and calculates the scale factors 

 ScaleView(View)  Scales the given view with its child views 

     with the new equations. 

 ScaleViewDS(View)  Scales the given view with its child views 

    with the Designer Scripts equations 

 ScaleAll(Activity, True) Scales all views of the given Activity or Panel  

     with the new equations. 

 ScaleAllDS(Activity, True) Scales all views of the given Activity or Panel 

    with the Designer Scripts equations 

 GetDevicePhysicalSize Gets the approximate physical size of the device 

 GetScaleDS   Returns the Designer Scripts scale factor 

 GetScaleX   Returns the X scale factor 

 GetScaleX_L   Returns the X scale landscape factor  

    independant of the current orientation 

 GetScaleX_P   Returns the X scale portrait factor 

    independant of the current orientation  

 GetScaleY   Returns the Y scale factor 

 GetScaleY_L   Returns the Y scale landscape factor 

    independant of the current orientation 

 GetScaleY_P   Returns the Y scale portrait factor 

    independant of the current orientation  

 Bottom(View)   Returns the Bottom coordinate of the View



8  The Designer / 8.11 AutoScale 226 B4A   Beginner's Guide 

 

 Right(View)    Returns the Right coordinate of the View 

 HorizontalCenter(View, x1, x2) Centres the View horizontally the view between two 

coordinates 

 HorizontalCenter2(V1, V2, V3) Centres the View V1 horizontally between two views 

V2 and V3 

 VerticalCenter(View, x1, x2)  Centres the View horizontally the view between two 

coordinates 

 VerticalCenter2(V1, V2, V3)  Centres the View V1 horizontally between two views 

V2 and V3 

 IsActivity(View) Returns True if the View is an activity 

 IsPanel(View)  Returns True if the View is a Panel 

 SetRight(View, xRight) Sets the Left property of the view according to the given right 

coordinate xRight  and the views Width property. 

 SetBottom(View, yBottom) Sets the Top property of the view according to the given 

bottom coordinate yBottom and the views Height property. 

 SetLeftAndRight(View, xLeft, xRight)  Sets the Left and Width properties of view View 

according to the xLeft and xRight coordinates. 

 SetLeftAndRight2(V1, VL, dxL, VR, dxR) Sets the Left and Width properties of view V1 

between the views VL and VR with the given spaces dxL and dxR. 

 SetTopAndBottom(View, yTop, yBottom)  Sets the Top and Height properties of view 

View according to the yTop and yBottom coordinates. 

 SetTopAndBottom2(V1, VT, dyT, VB, dyB)  Sets the Top and Height properties of 

view V1 between the views VT and VB with the given spaces dyT and dyB. 

 

The module is part of the attached AutoScaleExample4 project. 

 

The project contains following activities showing different examples of the use of either Designer 

Scripts AutoScale or scaling with the Code Module. 

Activities: 

 Main  Main screen with an image and buttons. 

 Setup  The setup screen from the GPSExample program. 

 About  An about screen example. 

 DBWebView A database table in a WebView with a modified DBUtils version  

   scaling the table text size. 

 DBScrollView A database table in a ScrollView. 

 Keyboard A keyboard with views added in the code. 

 ListView A ListView with the internal Labels and Bitmap scaled. 

 Calculator A calculator layout from the RPNCalc project without the functions 

   scaled with the new equations. 

 Calculator1 Same as Calculator but scaled with the Designer Scripts equations. 

 Positionning Example with the different positioning routines. 

 

Code modules: 

 Scale  The scaling module 

 DBUtils The modified DBUtils module 

 

If you run Calculator and Calculator1 on a 480 x 800 scale 1.5 device you'll see the difference 

between Designer Scripts scaling and the scaling with the new equations. 

 

If you don't need all routines in the Scale module you can remove those not needed



8  The Designer / 8.11 AutoScale 227 B4A   Beginner's Guide 

The Scale module scales also ScrollView2D views, if you don't use such a view you must comment 

the corresponding lines or remove them.  

On the following pages you'll see some screenshots of following Emulators with Rate = 0.5: 

 1280 x 800   10'' tablet 

   480 x 320   3.5'' smartphone 

 

For some examples the smartphone screen is limited to portrait orientation only depending on the 

screen sizes and layouts. 

 

 

Main: 

 

 

 

    
 

 

 

Setup: 

 

 

 

 

 

 

 

    
 



8  The Designer / 8.11 AutoScale 228 B4A   Beginner's Guide 

 

 

About: 

 

 

 

    
 

 

 

DBWebView: 

 

 

 

 

 

 

 

 

    

 

 

 

 

DBScrollView: 

 

 

 

 

 

 

    
 



8  The Designer / 8.11 AutoScale 229 B4A   Beginner's Guide 

 

 

 

Keyboard: 

 

 

 

 

 

    
 



8  The Designer / 8.12 UI Cloud 230 B4A   Beginner's Guide 

8.13 UI Cloud 

 

With UI Cloud you can check how layouts look on different devices.  

 

 
 

 

When you have defined a layout in the Designer Scripts you can send it to the UI Cloud in the tools 

menu. 

 

The layout file is be sent to the B4A site and you get a page showing your layout on different 

devices with different screen resolutions and densities. 

 

It's a very convenient tool to check the layout look without needing to have physical devices. 

 

UI Cloud checks only layouts defined in the Designer, not layouts defined in the code ! 

 

 

Example of a UI Cloud screen: 

 

 



8  The Designer / 8.12 UI Cloud 231 B4A   Beginner's Guide 

Some other devices: 

 

 
 

 

You can click on an image to show it in real size: 

 



9  Process and Activity life cycle 232 B4A   Beginner's Guide 

9 Process and Activity life cycle 
 

Let's start simple: 

Each B4A program runs in its own process. 

A process has one main thread which is also named the UI thread which lives as long as the process 

lives. A process can also have more threads which are useful for background tasks. 

 

A process starts when the user launches your application, assuming that it is not running already in 

the background. 

 

The process end is less determinant. It will happen sometime after the user or system has closed all 

the activities. 

If for example you have one activity and the user pressed on the back key, the activity gets closed. 

Later when the phone gets low on memory (and eventually it will happen) the process will quit. 

If the user launches your program again and the process was not killed then the same process will 

be reused. 

 

A B4A application is made of one or more activities.  

 

Activities are somewhat similar to Windows Forms. 

 

One major difference is that, while an activity is not in the foreground it can be killed in order to 

preserve memory. Usually you will want to save the state of the activity before it gets lost. Either in 

a persistent storage or in memory that is associated with the process. 

Later this activity will be recreated when needed. 

 

Another delicate point happens when there is a major configuration change in the device. The most 

common is an orientation change (the user rotates the device). When such a change occurs the 

current activities are destroyed and then recreated. Now it is possible to create the activity according 

to the new configuration (for example, we now know the new screen dimensions). 



9  Process and Activity life cycle 233 B4A   Beginner's Guide 

9.1 Program Start  

 

When we start a new program we get following template: 

 

 

 

On the top left we see two module Tabs :  

Main Activity 

Starter Service 

 

The Starter Service is used to declare all ProcessGlobal variables and these variables are accessible 

from any module in the project. 

The Main Activity is the starting activity, it cannot be removed. 

 

Variables can be either global or local. Local variables are variables that are declared inside a sub 

other than Process_Globals or Globals. 

Local variables are local to the containing sub or module. Once the sub ends, these variables no 

longer exist. 

Global variables can be accessed from all subs in the containing module. 

 

There are two types of global variables. 

Process variables (accessible from all modules) and activity variables (accessible from a single 

module). 

 



9  Process and Activity life cycle 234 B4A   Beginner's Guide 

9.2 Process global variables  

 

These variables live as long as the process lives. 

You should declare these variables as Public inside Sub Process_Globals of the Starter Service like. 
Sub Process_Globals 
 'These global variables will be declared once when the application starts. 
 'These variables can be accessed from all modules. 
 Public MyVariable  = "Test" As String 
 

This sub is called once when the process starts. 

These variables are the only "public" variables. Which means that they can be accessed from other 

modules as well. 

 

There is also a Process_Globals routines in each Activity module. 

If you need variables, valid only in the Activity, which are initialized only once when the program 

is lauched you should put them in the Activity’s Process_Globals routine (this is true for all 

activities, not just the first activity). 

 

However, not all types of objects can be declared as process variables. 

All of the views for example cannot be declared as process variables. 

The reason is that we do not want to hold a reference to objects that should be destroyed together 

with the activity. 

In other words, when the activity is destroyed, all of the views that are contained in the activity are 

destroyed as well. If we didn't do this, and kept a reference to a view after the Activity was 

destroyed, the garbage collector would not be able to free the resource and we would have a 

memory leak.  

The compiler enforces this requirement. 

 

9.3 Activity variables  

 

These variables are owned by the activity. 

You should declare these variables inside Sub Globals. 

These variables are "Private" and can only be accessed from the current activity module. 

All object types can be declared as activity variables. 

Every time the activity is created, Sub Globals is called (before Activity_Create). 

These variables exist as long as the activity exists. 

 

 

 



9  Process and Activity life cycle 235 B4A   Beginner's Guide 

9.4 Starter service 

 

One of the challenges that developers of any non-small Android app need to deal with, is the 

multiple possible entry points. 

 

During development in almost all cases the application will start from the Main activity. 

Many programs start with code similar to: 

 
Sub Activity_Create (FirstTime As Boolean) 
 If FirstTime Then 
  SQL.Initialize(...) 
  SomeBitmap = LoadBitmap(...) 
  'additional code that loads application-wide resources 
 End If 
End Sub 
 

Everything seems to work fine during development. However the app "strangely" crashes from time 

to time on the end user device. 

The reason for those crashes is that the OS can start the process from a different activity or service. 

For example if you use StartServiceAt and the OS kills the process while it is in the background. 

Now the SQL object and the other resources will not be initialized. 

 

Starting from B4A v5.20 there is a new feature named Starter service that provides a single and 

consistent entry point. If the Starter service exists then the process will always start from this 

service. 

 

The Starter service will be created and started and only then the activity or service that were 

supposed to be started will start. 

This means that the Starter service is the best place to initialize all the application-wide resources. 

Other modules can safely access these resources. 

The Starter service should be the default location for all the public process global variables. SQL 

objects, data read from files and bitmaps used by multiple activities should all be initialized in the 

Service_Create sub of the Starter service. 

 

Notes 

 The Starter service is identified by its name. You can add a new service named Starter to an 

existing project and it will be the program entry point. 

This is done by selecting Project > Add New Module > Service Module. 

 This is an optional feature. You can remove the Starter service. 

 You can call StopService(Me) in Service_Start if you don't want the service to keep on 

running. However this means that the service will not be able to handle events (for example 

you will not be able to use the asynchronous SQL methods). 

 The starter service should be excluded from compiled libraries. Its #ExcludeFromLibrary 

attribute is set to True by default in the Service Attributes region. 



9  Process and Activity life cycle 236 B4A   Beginner's Guide 

9.5 Program flow 

 

The program flow is the following: 

 

 Main Process_Globals Process_Globals routines of the Main modules  

Here we declare all Private variables and objects for the Main module. 

 

 Starter Sevice Process_Globals If the service exists, it is run. 

Here we declare all Public Process Global variables and objects like SQL, Bitmaps etc. 

 

 Other Activity Main Process_Globals Process_Globals routines of other modules  

Here we declare all Private variables and objects for the given module. 

 

 Starter Service Service_Create If the service exists, it is run. 

Here we initialize all Public Process Global variables and objects like SQL, Bitmaps etc. 

 

 Starter Sevice Service_Start If the service exists, it is run. 

We can leave this routine empty. 

 

 Globals 
Here we declare all Private variables for the given Activity. 

 

 Sub Activity_Create 
Here we load layouts and initialize activity objects added by code 

 

 Activity_Resume 

This routine is run every time the activity changes its state. 

 

 Activity_Pause  
This routine is run when the Activity is paused, like orientation change, lauch of another 

activity etc. 

 

You can ‘play’ with the program ProgramFlow in the SourceCode folder to see the program flow in 

different situations. 

 

Look at the difference of ProcessGolbal and Global variables of the Activities. 

Run the program. 

You’ll see that: 

MainPG = 2 

MainG = 2 

Press button Change values, the two variables have now the value of 3. 

Change the orientation of the device. 

Now you’ll see that the values are: 

MainPG = 3 

MainG = 2 

Why ? 

When you change the orientation the current Activity is destroyed and regenerated. 

This means that Sub Globals is called and the variable MainG is reinitialized to the value of 2 ! 

 

The same happens of course with Activity 2. 

 

 



9  Process and Activity life cycle 237 B4A   Beginner's Guide 

9.6 Globals versus FirstTime 

 

In any Activity, Process_Globals and Globals should be used to declare variables.  

You can also set the values of "simple" variables (numeric, strings and booleans). 

 

You should not put any other code there. 

You should instead put the code in Activity_Create. 

 

9.7 Sub Activity_Create (FirstTime As Boolean) 

 

This sub is called when the activity is created. 

The activity is created  

 when the user first launches the application 

 the device configuration has changed (user rotated the device) and the activity was 

destroyed 

 when the activity was in the background and the OS decided to destroy it in order to free 

memory. 

The primary purpose of this sub is to load or create the layout (among other uses). 

The FirstTime parameter tells us if this is the first time that this activity is created. First time relates 

to the current process. 

You can use FirstTime to run all kinds of initializations related to the process variables. 

For example if you have a file with a list of values that you need to read, you can read it if 

FirstTime is True and store the list as a process variable by declaring the list in Sub 

Process_Globals 

Now we know that this list will be available as long as the process lives and there is no need to 

reload it even when the activity is recreated. 

 

To summarize, you can test whether FirstTime is True and then initialize the process variables that 

are declared in the Activity’s Sub Process_Globals. 

 

 



9  Process and Activity life cycle 238 B4A   Beginner's Guide 

9.8 Variable declaration summary 

 

Which variable should we declare where and where do we initialize our variables: 

 Variables and none user interface objects you want to access from several modules. 

Like SQL, Maps, Lists, Bitmaps etc. 

These must be declared as Public in Starter Process_Globals like: 

 
Sub Process_Globals 
  Public SQL1 As SQL 
  Public Origin = 0 As Int 
  Public MyBitmap As Bitmap 
End Sub 

 

And initialized in Starter Service_Create like: 

 
Sub Service_Create 
  SQL1.Initialize(...) 
  MyBitmap.Initialize(...) 
End Sub 
 

 Variables accessible from all Subs in an Activity which should be initialized only once. 

These must be declared as Private in Activity Process_Globals like: 

 
Sub Process_Globals 
  Private MyList As List 
  Private MyMap As Int 
End Sub 
 

And initialized in Activty_Create like: 

 
Sub Activity_Create 
  MyList.Initialize 
  MyMap.Initialize 
End Sub 
 

 Variables in a Class or Code module 

These are mostly declared as Private, you can declare them as Public if you want them 

being accessible from outsides the Class.  

Class mudules are explained in detail in the User’s Guide. 

 

 User interface objects 

These must be declared in the Activity module where they are used in Globals like: 

 
Sub Globals 
  Private btnGoToAct2, btnChangeValues As Button 
  Private lblStarterPG, lblMainPG, lblMainG  As Label 
End Sub 
   

Simple variables like Int, Double String and Boolean can be initialized directly in the declaration 

line, even in Process_Globals routines.  

Example:  
Public Origin = 0 as Int 
 

No code should be written in Process_Globals routines ! 



9  Process and Activity life cycle 239 B4A   Beginner's Guide 

9.9 Sub Activity_Resume 
Sub Activity_Pause (UserClosed As Boolean) 

 

Activity_Resume is called right after Activity_Create finishes or after resuming a paused activity 

(activity moved to the background and now it returns to the foreground). 

Note that when you open a different activity (by calling StartActivity), the current activity is first 

paused and then the other activity will be created if needed and (always) resumed. 

 

Each time the activity moves from the foreground to the background Activity_Pause is called. 

Activity_Pause is also called when the activity is in the foreground and a configuration change 

occurs (which leads to the activity getting paused and then destroyed). 

Activity_Pause is the last place to save important information. 

Generally there are two types of mechanisms that allow you to save the activity state. 

Information that is only relevant to the current application instance can be stored in one or more 

process variables. 

Other information should be stored in a persistent storage (file or database). 

For example, if the user changed some settings you should save the changes to a persistent storage 

at this point. Otherwise the changes may be lost. 

 

Activity_Pause is called every time the activity moves from the foreground to the background. This 

can happen because: 

1. A different activity was started. 

2. The Home button was pressed. 

3. A configuration changed event was raised (orientation changed for example). 

4. The Back button was pressed. 

 

In scenarios 1 and 2, the activity will be paused and for now kept in memory as it is expected to be 

reused later. 

 

In scenario 3 the activity will be paused, destroyed and then created (and resumed) again. 

 

In scenario 4 the activity will be paused and destroyed. Pressing on the Back button is similar to 

closing the activity. In this case you do not need to save any instance specific information (the 

position of pacman in a PacMan game for example). 

 

The UserClosed parameter will be true in this scenario and false in all other. Note that it will also be 

true when you call Activity.Finish. This method pauses and destroys the current activity, similar to 

the Back button. 

 

You can use UserClosed parameter to decide which data to save and also whether to reset any 

related process variables to their initial state (move pacman position to the center if the position is a 

process variable). 



9  Process and Activity life cycle 240 B4A   Beginner's Guide 

9.10 Activity.Finish  /  ExitApplication 

 

Some explanations on how and when to use Activity.Finish and ExitApplication. 

 

An interesting article about the functioning of Android can be found here: Multitasking the Android 

way. 

 

Most applications should not use ExitApplication but prefer Activity.Finish which lets the OS 

decide when the process is killed.  

You should use it only if you really need to fully kill the process. 
 

When should we use Activity.Finish and when not ? 

Let us consider following example without any Activity.Finish: 

 Main activity 

o StartActivity(SecondActivity) 

 SecondActivity activity 

o StartActivity(ThirdActivity) 

 ThirdActivity activity 

o Click on Back button 

o The OS goes back to previous activity, SecondActivity 

 SecondActivity activity 

o Click on Back button 

o The OS goes back to previous activity, Main 

 Main activity 

o Click on Back button 

o The OS leaves the program 

 

Let us now consider following example with Activity.Finish before each StartActivity: 

 Main activity 

o Activity.Finish 

o StartActivity(SecondActivity) 

 SecondActivity activity 

o Activity.Finish 

o StartActivity(ThirdActivity) 

 ThirdActivity activity 

o Click on Back button 

o The OS leaves the program 

 

We should use Activity.Finish before starting another activity only if we don't want to go back to 

this activity with the Back button. 

 

 

http://android-developers.blogspot.com/2010/04/multitasking-android-way.html
http://android-developers.blogspot.com/2010/04/multitasking-android-way.html


10  Variables and objects 241 B4A   Beginner's Guide 

10 Variables and objects 
 

A variable is a symbolic name given to some known or unknown quantity or information, for the 

purpose of allowing the name to be used independently of the information it represents. A variable 

name in computer source code usually associated with a data storage location and thus also its 

contents, and these may change during the course of program execution (source Wikipedia). 

 

B4A type system is derived directly from Java type system. 

There are two types of variables: primitives and non-primitives types. 

Primitives include the numeric types: Byte, Short, Int, Long, Float and Double. 

Primitives also include: Boolean and Char. 

 

10.1 Variable Types 

 

List of types with their ranges: 

 

B4A Type min value max value 

Boolean boolean False True 

Byte integer  8 bits 
- 2 7 2 7 - 1 

-128 127 

Short integer 16 bits 
- 2 15 2 15 -1 

- 32768 32767 

Int integer 32 bits 
- 2 31 2 31 -1 

-2147483648 2147483647 

Long long integer  64 bits 
- 2 63 2 63 -1 

-9223372036854775808 9223372036854775807 

Float 

floating point 

number 

32 bits 

- 2 -149 (2 -2 -23) * 2 127 

1.4E-45 3.4028235 E 38 

Double 

double precision 

number   

64 bits 

- 2 -1074 (2 -2 -52) * 2 1023 

2.2250738585072014 E -

308 
1.7976931348623157 E 

308 

Char character   

String array of characters   

 

Primitive types are always passed by value to other subs or when assigned to other variables. 

For example: 

 
Sub S1 
 Private A As Int 

 A = 12   The variable A = 12 

 S2(A)   It's passed by value to routine S2 

 Log(A) ' Prints 12 Variable A still equals 12, even though B was changed in routine S2. 
End Sub 
 

Sub S2(B As Int) Variable B = 12 

 B = 45   Its value is changed to B = 45 
End Sub 



10  Variables and objects 242 B4A   Beginner's Guide 

All other types, including arrays of primitive types and strings are categorized as non-primitive 

types. 

When you pass a non-primitive to a sub or when you assign it to a different variable, a copy of the 

reference is passed. 

This means that the data itself isn't duplicated. 

It is slightly different than passing by reference as you cannot change the reference of the original 

variable. 

 

All types can be treated as Objects. 

Collections like lists and maps work with Objects and therefore can store any value. 

Here is an example of a common mistake, where the developer tries to add several arrays to a list: 

 
Private arr(3) As Int 
Private List1 As List 
List1.Initialize 
For i = 1 To 5 
 arr(0) = i * 2 
 arr(1) = i * 2 
 arr(2) = i * 2 
 List1.Add(arr)  'Add the whole array as a single item 
Next 
arr = List1.Get(0) 'get the first item from the list 
Log(arr(0)) 'What will be printed here??? 

 

You may expect it to print 2. However it will print 10. 

We have created a single array and added 5 references of this array to the list. 

The values in the single array are the values set in the last iteration. 

To fix this we need to create a new array each iteration. 

This is done by calling Private each iteration: 

 
Private arr(3) As Int 'This call is redundant in this case. 
Private List1 As List 
List1.Initialize 
For i = 1 To 5 
  Private arr(3) As Int 
 arr(0) = i * 2 
 arr(1) = i * 2 
 arr(2) = i * 2 
 List1.Add(arr) 'Add the whole array as a single item 
Next 
arr = List1.Get(0) 'get the first item from the list 
Log(arr(0)) 'Will print 2 

 

Tip: You can use agraham's CollectionsExtra library to copy an array. 

 

 

 



10  Variables and objects 243 B4A   Beginner's Guide 

10.2 Names of variables 

 

It is up to you to give any name to a variable, except reserved words.  

A variable name must begin with a letter and must be composed by the following characters A-Z, a-

z, 0-9, and underscore "_", no spaces, no brackets etc. 

Variable names are case insensitive, that means that Index and index refer to the same variable. 

 

But it is good practice to give them meaningful names. 

Example:  

Interest = Capital * Rate / 100 is meaningful  

n1 = n2 * n3 / 100   not meaningful 

 

For Views it is useful to add to the name a three character prefix that defines its type. 

Examples: 

lblCapital lbl > Label  Capital > purpose 

edtInterest edt > EditText  Interest > purpose 

btnNext btn > Button  Next > purpose 

 

10.3  Declaring variables 

 

10.3.1 Simple variables 

 

Variables are declared with the Private or the Public  keyword followed by the variable name and 

the  As  keyword and followed by the variable type. For details look at chapter 10.5 Scope. 

There exist the Dim  keyword, this is maintained for compatibility. 

 

Examples: 

 

 Private Capital As Double Declares three variables as Double, 

 Private Interest As Double double precision numbers. 
 Private Rate As Double 
 

 Private i As Int Declares three variables as Int, integer numbers. 
 Private j As Int 
 Private k As Int 
 

 Private edtCapital As EditText 

 Private edtInterest As EditText Declares three variables as EditText views. 
 Private edtRate As EditText 
 

 Private btnNext As Button Declares two variables as Button views. 
 Private btnPrev As Button 

 

The same variables can also be declared in a short way. 

 
 Private Capital, Interest, Rate As Double 
 Private i, j, k As Int 
 Private edtCapital, edtInterest, edtRate As EditText 
  Private btnNext, btnPrev As Button 

 

The names of the variables separated by commas and followed by the type declaration. 

 



10  Variables and objects 244 B4A   Beginner's Guide 

Following variable declarations are valid: 
 

Private i = 0, j = 2, k = 5 As Int 

 
Private txt = "test" As String, value = 1.05 As Double, flag = False As Boolean 
 

View names must be declared if we want to use them in the code. 

For example, if we want to change the text in an EditText view in the code, like  

edtCapital.Text = "1200",   

we need to reference this EditText view by its name edtCapital, this is done with the Private 

declaration.  

If we never make any reference to this EditText view anywhere in the code no declaration is 

needed.  

Using an event routine for that view doesn't need a declaration either. 

 

To allocate a value to a variable write its name followed by the equal sign and followed by the 

value, like: 
Capital = 1200 
LastName = "SMITH" 

 

Note that for Capital we wrote just 1200 because Capital is a number. 

But for LastName we wrote "SMITH" because LastName is a string. 

Strings must always be written between double quotes. 

 

10.3.2 Array variables 

 

Arrays are collections of data or objects that can be selected by indices. Arrays can have multiple 

dimensions. 

The declaration contains the Private or the Public keyword followed by the variable name 

LastName, the number of items between brackets (50), the keyword As and the variable type String. 

For details look at chapter 10.5 Scope. There exist the Dim  keyword, this is maintained for 

compatibility. 

 

Examples: 

Public LastName(50) As String One dimension array of strings, total number of items 50. 

 

Public Matrix(3, 3) As Double Two dimensions array of Doubles, total number of items 9. 

 

Public Data(3, 5, 10) As Int Three dimensions array of integers, total number of items 150. 

 

The first index of each dimension in an array is 0.   
LastName(0), Matrix(0,0), Data(0,0,0) 

 

The last index is equal to the number of items in each dimension minus 1. 
LastName(49), Matrix(2,2), Data(2,4,9) 
 
Public LastName(10) As String 
Public FirstName(10) As String 
Public Address(10) As String 
Public City(10) As String 

 

or 

 
Public LastName(10), FirstName(10), Address(10), City(10) As String 



10  Variables and objects 245 B4A   Beginner's Guide 

This example shows how to access all items in a three dimensional array. 

 
 For i = 0 To 2 
  For j = 0 To 2 
   For k = 0 To 2 
    Data(i, j, k) = ... 
   Next 
  Next 
 Next 

 

A more versatile way to declare arrays is to use variables. 

 
 Public NbPers = 10 As Int 
 Public LastName(NbPers) As String 
 Public FirstName(NbPers) As String 
 Public Address(NbPers) As String 
 Public City(NbPers) As String 

 

We declare the variable Public NbPers = 10 As Int and set its value to 10. 

Then we declare the arrays with this variable instead of the number 10 as before. 
The big advantage is if at some point we need to change the number of items, we change only ONE 

value.   

 

For the Data array we could use the following code. 

 
 Public NbX = 2 As Int 
 Public NbY = 5 As Int 
 Public NbZ = 10 As Int 
 Public Data(NbX, NbY, NbZ) As Int 

 

And the access routine. 

 
 For i = 0 To NbX - 1 
  For j = 0 To NbY -  
   For k = 0 To NbZ - 1 
    Data(i, j, k) = ... 
   Next 
  Next 
 Next 

 

Filling an array with the Array keyword : 

 
 Public Name() As String 
 Name = Array As String("Miller", "Smith", "Johnson", "Jordan") 

 

 

 

 

 



10  Variables and objects 246 B4A   Beginner's Guide 

10.3.3 Array of views (objects) 

 

Views or objects can also be in an Array. The following code shows an example: 

 

In the example below the Buttons are added to the Activity by code. 

 
Sub Globals 
 Private Buttons() As Button 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private i As Int 
  
 For i = 0 To 6 
  Buttons(i).Initialize("Buttons") 
  Activity.AddView(Buttons(i), 10dip, 10dip + i * 60dip, 150dip, 50dip) 
  Buttons(i).Tag = i + 1 
  Buttons(i).Text = "Test " & (i + 1) 
 Next 
End Sub 
 
Sub Buttons_Click 
 Private btn As Button 
  
 btn = Sender 
  
 Activity.Title = "Button " & btn.Tag & " clicked" 
End Sub 
 

The Buttons could also have been added in a layout file, in that case they must neither be initialized, 

nor added to the Activity and the Text and Tag properties should also be set in the Designer. 

In that case the code would look like this: 

 
Sub Globals 
 Private b1, b2, b3, b4, b5, b6, b7 As Button 
 Private Buttons() As Button 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private i As Int 
  
 Buttons = Array As Button(b1, b2, b3, b4, b5, b6, b7) 
End Sub 
 
Sub Buttons_Click 
 Private btn As Button 
  
 btn = Sender 
  
 Activity.Title = "Button " & btn.Tag & " clicked" 
End Sub 
 



10  Variables and objects 247 B4A   Beginner's Guide 

10.3.4 Type variables 

 

A Type cannot be private. Once declared it is available everywhere (similar to Class modules). 

The best place to declare them is in the Process_Globals routine in the Main module. 

 

Let us reuse the example with the data of a person. 

Instead of declaring each parameter separately, we can define a personal type variable with the 

Type keyword: 

 
Public NbUsers = 10 As Int 
Type Person(LastName As String, FirstName As String. Address As String, City As String) 
Public User(NbUsers) As Person 
Public CurrentUser As Person 

 

The new personal type is Person , then we declare either single variables or arrays of this personal 

type. 

To access a particular item use following code. 
CurrentUser.FirstName 
CurrentUser.LastName 
  

User(1).LastName 
User(1).FirstName 

 

The variable name, followed by a dot and the desired parameter. 

If the variable is an array then the name is followed by the desired index between brackets. 

  

It is possible to assign a typed variable to another variable of the same type, as shown below. 

 
CurrentUser = User(1) 
 

 

 

 

 



10  Variables and objects 248 B4A   Beginner's Guide 

10.4  Casting 

 

B4A casts types automatically as needed. It also converts numbers to strings and vice versa 

automatically. 

In many cases you need to explicitly cast an Object to a specific type. 

This can be done by assigning the Object to a variable of the required type. 

For example, Sender keyword references an Object which is the object that raised the event. 

The following code changes the color of the pressed button.  

Note that there are multiple buttons that share the same event sub. 

 
Sub Globals 
 Private  Btn1, Btn2, Btn3 As Button 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Btn1.Initialize("Btn") 
 Btn2.Initialize("Btn") 
 Btn3.Initialize("Btn") 
 Activity.AddView(Btn1, 10dip, 10dip, 200dip, 50dip) 
 Activity.AddView(Btn2, 10dip, 70dip, 200dip, 50dip) 
 Activity.AddView(Btn3, 10dip, 130dip, 200dip, 50dip) 
End Sub 
 
Sub Btn_Click 
 Private  btn As Button 
 btn = Sender ' Cast the Object to Button 
 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255)) 
End Sub 
 

The above code could also be written more elegantly: 

 
Sub Globals 
 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private  i As Int 
 For i = 0 To 9 ' create 10 Buttons 
  Private  Btn As Button 
  Btn.Initialize("Btn") 
  Activity.AddView(Btn, 10dip, 10dip + 60dip * i, 200dip, 50dip) 
 Next 
End Sub 
 
Sub Btn_Click 
 Private  btn As Button 
 btn = Sender ' Cast the Object to Button 
 btn.Color = Colors.RGB(Rnd(0, 255), Rnd(0, 255), Rnd(0, 255)) 
End Sub 
 

 



10  Variables and objects 249 B4A   Beginner's Guide 

10.5  Scope 

 

10.5.1 Process variables  

 

These variables live as long as the process lives. 

You should declare these variables inside Sub Process_Globals. 

This sub is called once when the process starts (this is true for all activities, not just the first 

activity). 

These variables are the only "public" variables. Which means that they can be accessed from other 

modules as well. 

However, not all types of objects can be declared as process variables. 

For example, views cannot be declared as process variables. 

The reason is that we do not want to hold a reference to objects that should be destroyed together 

with the activity. 

In other words, once the activity is being destroyed, all of the views which are contained in the 

activity are being destroyed as well. 

If we hold a reference to a view, the garbage collector would not be able to free the resource and we 

will have a memory leak. The compiler enforces this requirement. 

 

To access process global variables in other modules than the module where they were declared their 

names must have the module name they were declared as a prefix. 

Example: 

Variable defined in a module with the name : MyModule 
Sub Process_Globals 
 Public MyVar As String 
End Sub 
 

Accessing the variable in MyModule module: 
 MyVar = "Text" 

 

Accessing the variable in any other module: 
 MyModule.MyVar = "Text" 

 

Variables can be declared with: 
Dim MyVar As String 
In this case the variable is public same as Public.  

 

It is good practice to declare the variables like this: 
Public MyVar As String 
This variable is public. 

 

It is possible to declare private variables in Sub Process_Globals like this: 
Private MyVar As String 
The variable is private to the activity or the module where it is declared. 

For Activities it is better to declare them in Sub Globals. 

 

For variables declared in Class modules in Sub Class_Globals the same rules as above are valid. 
 Public MyVarPublic As String  ' public 
 Private MyVarPublic As String  ' private 
 Dim MyVar As String   ' public like Public 

 

Using Dim in Sub Class_Globals is not recommended !  



10  Variables and objects 250 B4A   Beginner's Guide 

10.5.2 Activity variables  

 

These variables are contained by the activity. 

You should declare these variables inside Sub Globals. 

These variables are "private" and can only be accessed from the current activity module. 

All object types can be declared as activity variables. 

Every time the activity is created, Sub Globals is called (before Activity_Create). 

These variables exist as long as the activity exists. 

 

10.5.3 Local variables 

 

Variables declared in a subroutine are local to this subroutine. 

They are "private" and can only be accessed from within the subroutine where they were declared. 

All objects types can be declared as local variables. 

At each call of the subroutine the local variables are initialized to their default value or to any other 

value you have defined in the code and are 'destroyed' when the subroutine is exited. 

 

10.6  Tips 

 

A view can be assigned to a variable so you can easily change the common properties of the view. 

 

For example, the following code disables all views that are direct children of the activity: 

 
 For i = 0 To Activity.NumberOfViews - 1 
  Private  v As View 
  v = Activity.GetView(i) 
  v.Enabled = False 
 Next 

 

If we only want to disable buttons: 

 
 For i = 0 To Activity.NumberOfViews - 1 
  Private  v As View 
  v = Activity.GetView(i) 
  If v Is Button Then ' check whether it is a Button 
   v.Enabled = False 
  End If 
 Next 

 

 

 



11  Modules 251 B4A   Beginner's Guide 

11 Modules 
 

At least one module exists, the main one.  

Its name is always Main and cannot be changed. 

 

There do exist four different types of modules: 

 Activity modules 

 Class modules 

 Code modules 

 Service modules 

 

To add a new module click on either Activity, Class, Code or Service Module in the  

IDE menu Project / Add New Module. 

 

 
 

 

To add an existing module click on Add Existing Module in the IDE menu Project. 

 

 
 

 

 



11  Modules 252 B4A   Beginner's Guide 

11.1  Activity modules 

 

Each Activity has its own module. For a better knowledge of Activity life cycle have a look at the 

Process and Activity life cycle chapter.  

 

You can add either an existing module or a new module. 

 

To add a new Activity module click on: 

 

 
 

The example is explained in detail in the chapter:  Program with 3 Activities. 

 

To access any object or variable in a module other than the module where they were declared you 

must add the module name as a prefix to the object or variable name separated by a dot.  

 

Examples from the ThreeActivityExample program: 

Variables Value1 and Value2 are declared in Main module in Sub Process_Globals. 

 
Sub Process_Globals 
 Public Value1, Value2, Value3 As String 
End Sub 
 

To access these variables from another module the name is Main.Value1 or Main.Value2. 

 
Sub Activity_Pause (UserClosed As Boolean) 
 Main.Value2 = edtValue2_P2.Text ' Sets edtValue_P2.Text to the 
End Sub          ' Process Global variable Value2 

 

It is NOT possible to access any view from another activity module, because when a new activity is 

started the current activity is paused and it’s no longer accessible ! 



11  Modules 253 B4A   Beginner's Guide 

11.2 Class modules 

 

Class modules are explained in detail in the User's Guide. 

 

 

 

 

 

 
 
 
 

 
 



11  Modules 254 B4A   Beginner's Guide 

11.3  Code modules 

 

Code modules contain code only. No activity is allowed in Code modules. 

The purpose and advantage of code modules is sharing same code in different programs, mainly for 

calculations or other general management. 

Some code modules, called utilities, are already published by Erel in the forum: 

 DBUtils, Working with Android databases have been greatly simplified with the use of these 

database management utilities. 

The DBUtils module is explained in the User's Guide. 

 HttpUtils, Android web services are now simple. 

 StateManager,  helps managing Android application settings and state. 

 

 

 

 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8475-dbutils-android-databases-now-simple.html
http://www.basic4ppc.com/android/files/UserGuide.zip
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/9176-httputils-android-web-services-now-simple.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/9777-statemanager-helps-managing-android-applications-settings-state.html


11  Modules 255 B4A   Beginner's Guide 

11.4  Service modules 

 

Service modules play an important role in the application and process life cycle. 

Start with this tutorial if you haven't read it before: Android Process and activities life cycle 

Code written in an activity module is paused once the activity is not visible. 

So by only using activities it is not possible to run any code while your application is not visible. 

Services life cycle is (almost) not affected by the current visible activity. This allows you to run 

tasks in the background. 

Services usually use the status bar notifications to interact with the user. Services do not have any 

other visible elements. Services also cannot show any dialog (except of toast messages). 

Note that when an error occurs in a service code you will not see the "Do you want to continue?" 

dialog. Android's regular "Process has crashed" message will appear instead. 

 

Before delving into the details I would like to say that using services is simpler than it may first 

sound. In fact for many tasks it is easier to work with a service instead of an activity as a 

service is not paused and resumed all the time and services are not recreated when the user rotates 

the screen. There is nothing special with code written in service. 

Code in a service module runs in the same process and the same thread as all other code. 

 

It is important to understand how Android chooses which process to kill when it is low on memory 

(a new process will later be created as needed). 

A process can be in one of the three following states: 

- Foreground - The user currently sees one of the process activities. 

- Background - None of the activities of the process are visible, however there is a started service. 

- Paused - There are no visible activities and no started services. 

 

Paused processes are the first to be killed when needed. If there is still not enough memory, 

background processes will be killed. 

Foreground processes will usually not be killed. 

 

As you will soon see a service can also bring a process to the foreground. 

 

Adding a service module is done by choosing Project - Add New Module - Service Module. 

 

 

 

 

 

 

 

 

 

 

 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6487-android-process-activities-life-cycle.html


11  Modules 256 B4A   Beginner's Guide 

The template for new services is: 

 
Sub Process_Globals 
 
End Sub 
 
Sub Service_Create 
 
End Sub 
 
Sub Service_Start (StartingIntent As Intent) 
 
End Sub 
 
Sub Service_Destroy 
 
End Sub 

 

Sub Process_Globals is the place to declare the service global variables. A service module does not 

have a Globals sub because it does not support Activity objects.  

Sub process globals should only be used to declare variables. It should not run any other code as it 

might fail. This is true for other modules as well. 

Note that Process_Global variables are kept as long as the process runs and are accessible from 

other modules. 

 

Sub Service_Create is called when the service is first started. This is the place to initialize and set 

the process global variables. Once a service is started it stays alive until you call StopService or 

until the whole process is destroyed. 

 

Sub Service_Start is called each time you call StartService (or StartServiceAt). When this subs 

runs the process is moved to the foreground state. Which means that the OS will not kill your 

process until this sub finishes running. If you want to run some code every couple of minutes / 

hours you should schedule the next task with StartServiceAt inside this sub. 

 

Sub Service_Destroy is called when you call StopService. The service will not be running after this 

sub until you call StartService again (which will run Sub Service_Create followed by Sub 

Service_Start). 

 

Service use cases  
 

As I see it, there are four main reasons to use services. 

- Separating UI code with "business" or logic code. Writing the non-UI code in a service is easier  

than implementing it inside an Activity module because the service is not paused, resumed or 

(usually) recreated like an Activity.  

You can call StartService during Activity_Create and from now on work with the service module. 

A good design is to make the activity fetch the required data from the service in Sub 

Activity_Resume. The activity can fetch data stored in a process global variable or it can call a 

service Sub with CallSub method. 

 

- Running a long operation. For example downloading a large file from the internet. In this case you 

can call Service.StartForeground (from the service module). This will move your activity to the 

foreground state and will make sure that the OS doesn't kill it. Make sure to eventually call 

Service.StopForeground. 

 



11  Modules 257 B4A   Beginner's Guide 

- Scheduling a repeating task. By calling StartServiceAt you can schedule your service to run at a 

specific time. You can call StartServiceAt in Sub Service_Start to schedule the next time and create 

a repeating task (for example a task that checks for updates every couple of minutes). 

 

- Run a service after boot. Set #StartAtBoot: True  in the #Region  Service Attributes and your 

service will run after boot is completed. 

 

Notifications 
 

Status bar notifications can be displayed by activities and services. 

Usually services use notifications to interact with the user. The notification displays an icon in the 

status bar. When the user pulls the status bar they see the notification message. 

 

 

Example of a notification (using the default 

icon): 

 

 

The user can press on the message, which will 

open an activity as configured by the 

Notification object. 

 

 

 

The notification icon is an image file which you should manually put in the following folder: 

<project folder>\Object\res\drawable. 

 

Accessing other modules 

 

Process global objects are public and can be accessed from other modules. 

Using CallSub method you can also call a sub in a different module. 

It is however limited to non-paused modules. This means that one activity can never access a sub of 

a different activity as there could only be one running activity. 

However an activity can access a running service and a service can access a running activity. 

Note that if the target component is paused then an empty string returns.  

No exception is thrown. 

You can use IsPause to check if the target module is paused. 

 

For example if a service has downloaded some new information it can call: 

 

If the Main activity is running it will fetch the data from the service process global variables and 

will update the display. 

It is also possible to pass the new information to the activity sub. However it is better to keep the 

information as a process global variable. This allows the activity to call RefreshData whenever it 

want and fetch the information (as the activity might be paused when the new information arrived). 

 

Note that it is not possible to use CallSub to access subs of a Code module. 

 

Examples: 

Downloading a file using a service module 

Periodically checking Twitter feeds 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7572-downloading-files-using-service-module.html#post43109
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/7618-twitter-feed-reader.html#post43332


11  Modules 258 B4A   Beginner's Guide 

11.5 Shared modules 

 

It is possible to share modules between different applications. 

 

These module files must be stored in a specific ‘Shared Modules’ folder which must be defined in 

the IDE menu Tools - Configure Paths. 

 

 
 

You can see that a module was loaded from the shared folder in the list of modules with the icon: 

 

 Module 

 Shared module 

 Routine, the routine is in the Main module in the example. 

 

  

Adding a shared module to a project is done in the same way 

as adding a non-shared module. 

You choose Project -> Add Existing Module. If the module 

file is in the shared folder then the module will be loaded as a 

shared module and will not be copied to the project folder. 

 

If you want to convert a non-shared module to a shared 

module then you need to manually move the module file to 

the shared modules folder and reload the project 

 



12  Help Tools 259 B4A   Beginner's Guide 

12 Help tools 
 

To find answers to many questions about B4A the following tools are very useful. 

 

12.1 Search function in the forum 

 

 

 

In the upper left corner you find the searchbox 

for the forum. Depending on the window size it 

can be on the top right side. 

 

Enter a question or any keywords and press 

'Return'. 

 

The function shows you the posts that match 

your request. 

 

 

 

 

 

Example:  Enter the keyword ScrollView :  

 

 

 

A list of the result is displayed below the search box. 

 

Click on an item to show the thread. 

 

 

 

 

 

 

 

 

 

 



12  Help Tools 260 B4A   Beginner's Guide 

 

And the result: 

 

 

On the left you have a list of forums which you can filter. 

 

Click on the title to show the selected post. 

 



12  Help Tools 261 B4A   Beginner's Guide 

12.2 B4x Help Viewer 

 

This program shows xml help files. It was originally written by Andrew Graham (agrham) for B4A. 

I modified it, with Andrews’ agreement, to show B4A, B4J, B4i and B4R xml help files. 

 

The program can be downloaded from the forum. 

 

 
 

http://www.basic4ppc.com/android/forum/threads/b4i-help-viewer.46969/


12  Help Tools 262 B4A   Beginner's Guide 

On top we find:  

 

 
   

 

 

 

In the upper left corner a drop down 

list shows the different objects 

included in the selected library. 

 

 

 

 

 

 

Besides the objects list 

you find another drop 

down list with the  

 methods(M) 

 events(E) 

 properties(P)  

 fields(F)  constants 

for the selected object. 

 

 

 

 Select the standard library to display. 

 

 Select the additional library to display. 

 

  Search engine to find the object for a given keyword.  

 

  Closes B4AHelp 

 

  Launches the forum 'Online Community'. 

 

  Launches the Android Developers site. 

 

  Launches the iOS developer’s site. 

 

  B4A help files. 

  B4i help files. 

  B4J help files. 

  B4R help files. 

 

 



12  Help Tools 263 B4A   Beginner's Guide 

 Standard libraries 

 

 
 

Select the library to display and click on    (Open). 

 

Here  you can select the directory 

where the standard libraries are saved. 

 

Once selected the directory is saved for the next start of the program. 



12  Help Tools 264 B4A   Beginner's Guide 

 Additional libraries. 

 

The same also for the additional libraries. 

 

 
 

Here   you can select the 

directory for the additional libraries. 

 



12  Help Tools 265 B4A   Beginner's Guide 

 Search engine for the selected library. 

 

 

 

Example:  

Selected library: Core 

Enter  DrawRect 

 

 

 

 

 

 

 

 

And the result. 

 

 

 

We get the object Canvas and two methods. 

 

 

 

 

 

 

 

 

 

 

 
 

Click on an item in the list to show its help. 

 

Click on  to leave the search result list. 

 

 

 



12  Help Tools 266 B4A   Beginner's Guide 

12.3 Help documentation - B4A Object Browser 

 

This is also a standalone Windows program showing the help files of libraries. 

 

It has been written by Vader and can be downloaded here. 

 

A pdf documentation on how to use the program is part of the download. 

 

 
 

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/25682-help-documentation-docloader-16.html#post148746


12  Help Tools 267 B4A   Beginner's Guide 

12.4 Useful links 

 

A useful link for layout graphics.   Android cheat sheet for graphic designers 

 

Android Developers.   Design Develop Distribute 

 

Android Developers searching for any request. 

 

 
 

In the upper right corner you find the search field.  

 

Enter View in the field:  

 

Click on the link View | Android Developers. 

 

And you get all the information about Views. 

 

 
 

http://petrnohejl.github.io/Android-Cheatsheet-For-Graphic-Designers/
http://developer.android.com/design/index.html
http://developer.android.com/develop/index.html
http://developer.android.com/distribute/index.html


12  Help Tools 268 B4A   Beginner's Guide 

12.5 Books 

 

B4A book 

 

Written by Philip Brown under the pseudo Wyken Seagrave. 

 

 
 

http://www.b4x.com/android/forum/threads/book-now-available-for-b4a-version-5-02.55292/#post-

348887 

 

MagBook Build your own Android App. 

 

Written by Nigel Whitfield. 

 

 
 

http://www.magbooks.com/product/build-your-own-android-app/ 

 

 

http://www.b4x.com/android/forum/threads/book-now-available-for-b4a-version-5-02.55292/#post-348887
http://www.b4x.com/android/forum/threads/book-now-available-for-b4a-version-5-02.55292/#post-348887
http://www.magbooks.com/product/build-your-own-android-app/


13  Debugging 269 B4A   Beginner's Guide 

13 Debugging 
 

Debugging is an important part when developing. 

 

To allow debugging you must activate the debugging mode Debug on top of the IDE. 

 

 

Notes about the debugger: 

 Breakpoints in the following subs will be ignored: Globals, Process_Globals and 

Activity_Pause. 

 Services - Breakpoints that appear after a call to StartService will be ignored. Breakpoints 

set in Service_Create and Service_Start will pause the program for up to a specific time 

(about 12 seconds). This is to prevent the OS from killing the Service. 

 Events that fire when the program is paused will be executed. Breakpoints in the event code 

will be ignored (only when the program is already paused). 

 The data sent from the device to the IDE is limited in size. Long strings may be truncated. 

 When the debugger is running in rapid mode, you can change the code and run the changes. 

 When the debugger is running in legacy mode, the IDE is read-only. The user cannot change 

any of the program text. 

 

 

The two major utilities for debugging are: 

 

Breakpoints - You can mark lines of codes as breakpoints. This is done by pressing on the grey area 

left of the line. 

The program will pause when it reaches a breakpoint and will allow you to inspect the current state. 

 

Logging - The Logs tab at the right pane is very useful. It shows messages related to the 

components life cycle and it can also show messages that are printed with the Log keyword. You 

should press on the Connect button to connect to the device logs. Note that there is a Filter 

checkbox. When it is checked you will only see messages related to your program. When it is 

unchecked you will see all the messages running in the system. If you are encountering an error and 

do not see any relevant message in the log, it is worth unchecking the filter option and looking for 

an error message. 

Note that the log is maintained by the device. When you connect to a device you will also see 

previous messages. 

 

 



13  Debugging 270 B4A   Beginner's Guide 

13.1 Debug mode 

 

The debugger is very sophisticated with features not available in any other 

native Android development tool. 

 

It will increase your productivity as it makes the  

"write code -> test result" cycle much quicker. 

 

 

13.1.1 Debugger advantages 

 Very quick compilation and installation. Usually in less than one or two seconds. 

 In most cases (after the first installation) there is no need to reinstall the APK. This means 

that the deployment is much quicker. With B4A-Bridge there is no need to approve the 

installation. 

 Hot code swapping (edit and continue). You can modify the code while the app runs, hit 

Save and the code will be updated. 

 Watch Expressions feature. 

 Powerful variables browser: 

 

 



13  Debugging 271 B4A   Beginner's Guide 

13.1.2 Debugger Limitations 

 The runtime execution in this mode is almost as rapid like non debugging. The debugger is 

not suitable for debugging "real-time" games or CPU intensive tasks. This is why the 

Legacy debugger is kept. 

 Hot code swapping is very powerful. You can even add subs or modify existing subs. 

However you cannot add or remove global variables. 

 Unlike the legacy debugger, the app cannot run when the IDE is not connected. It will wait 

for 10 seconds for the IDE to connect and then exit. 

 

 

So how does the debugger work? 

 

I will start with an explanation about the legacy debugger. When you compile in Debug (legacy) the 

B4A compiler creates a regular Android APK. However in addition to the program code the 

compiler generates instrumented code. This means that for each line it adds a runtime check to test 

whether there is a breakpoint on that line. If there is a breakpoint the program pauses by showing a 

modal dialog and the variables data is sent to the IDE over the connection. 

 

The debugger works differently. When you compile your code it creates two applications. A device 

application (shell) and a standard Java application (debugger engine). 

 

Your code resides in the debugger engine. The debugger engine runs on the desktop. The shell 

application is like a mini-virtual machine. The debugger engine connects to the shell app and sends 

the instructions to the shell app. The interesting part of this is that your code is not executed on the 

device. It is executed on the desktop. 

In most cases the shell app can be reused. If for example you add a new file or edit the manifest file 

with the manifest editor then the compiler will create a new shell app and will reinstall it 

automatically during compilation. 

 

 



13  Debugging 272 B4A   Beginner's Guide 

13.1.3 Debug Toolbar 

 

The debug toolbar is at the right side of the IDE toolbar. 

 

Debug Toolbar:  

 Run the program F5 Runs the program, no action in Debug (rapid) 

 Step In  F8 Executes the next statement. 

 Step Over  F9 Executes a routine without jumping in it.  

 Step Out  F10 Finishes executing the rest of a routine. 

 Stop   Stops the program. 

 Restart  F11 Restarts the program. 

 

The examples below are shown in the SecondProgram project. 

13.1.3.1 Run    F5 

Runs the program,  

If the program is stopped at a breakpoint the program runs until the next breakpoint or completes 

running. 

 



13  Debugging 273 B4A   Beginner's Guide 

13.1.3.2 Step In    F8 

 

The debugger executes the code step by step. 

 

 

In the SecondProgram project 

we set a Breakpoint at line 32 

New. 

 

 

 

We run the program, it will stop 

executing at line 32 New. 

 

 

 

Click on . 

The debugger executes the next 

line, Sub New in this case. 

 

 

 

 

 

 

 

Click once more on . 

The debugger executes the next 

line, Number1 =… 

 

Click once more on . 

The debugger executes the next 

line, Number2 =… 

 

 

 



13  Debugging 274 B4A   Beginner's Guide 

13.1.3.3 Step Over    F9 

 

If the current line is a sub calling line the debugger executes the code in this subroutine and jumps 

to the line after the calling line. 

 

In the SecondProgram project 

we set a Breakpoint at line 32 

New. 

 

 

We run the program, it will stop 

executing at line 32 New. 

 

Click on . 

The debugger executes the code 

in New and jumpes directly to the 

next line which is 

End Sub of Activity_Create. 

 

 

13.1.3.4 Step Out    F10 

 

If the current line is in a subroutine the debugger finishes executing the rest of the code and jumps 

to the next line after the subs’ calling line. 

 

 

In the SecondProgram project 

we set a Breakpoint at line 32 

New. 

 

We run the program, it will stop 

executing at line 32 New. 

 

 

 

We go step by step with  to a 

line in the subroutine. 

 

 

Click on . 

The debugger executes the rest 

of the code in the subroutine and 

jumps to the next line which is 

End Sub of Activity_Create. 

 



13  Debugging 275 B4A   Beginner's Guide 

13.1.3.5 Stop   

 

Stops the program and leaves the Rapid Debugger. 

 

13.1.3.6 Restart    F11 

 

Restarts the program remaining in the Rapid Debugger. 

Executes Process_Globals, Globals, Activity_Create and reloads the layout. 

 

This is useful if you changed a layout file. 

 

It is different from  explained in the next chapter. 

 

 

 



13  Debugging 276 B4A   Beginner's Guide 

13.1.4 Small debug example 

 

The code used is DebugRapid.b4a is in the DebugRapid folder in the source code folder: 

 

 

 

If you click on the Draw 

button the red line is drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
 

In the code change             line 41  y1 = 150dip  to y1 = 

250dip           and hit Ctrl + s 

               or click on 

               

 

 

Click on the Draw button, a new line with the new coordinate is 

drawn without rerunning the program. 

 

In the Debug rapid mode the Restart button  allows to restart 

the program. 



13  Debugging 277 B4A   Beginner's Guide 

Changing the position of btnDraw in the code: 

   

In the code change   line 30  btnDraw.Left = 100dip  and click on    

             to btnDraw.Left = 10dip  in the Toolbar 

          to restart the program 

 

 

The Button has moved without stopping and rerunning the 

program. 

 

If you set a breakpoint in the code and run it, you will find a window in the lower part of the screen 

showing all objects with their properties and all variables with their current values. 

 

You can open and close objects or variables by clicking on    or   . 

 

Right click on an item to copy its value to the clipboard. 

 



13  Debugging 278 B4A   Beginner's Guide 

Hovering over a variable shows its name and value in a pop up window. 

 

 
 

If the value is truncated hover over Value, the whole content will be displayed. 

 

Hovering over an object in the code, btnDraw in the example, shows all properties of this object in a 

pop up window. 

 

 
 

 

Hovering over a line in the pop up window shows its complete text. 

 

 
 

 

 



13  Debugging 279 B4A   Beginner's Guide 

13.1.5 Watch Expressions feature 

 

At the right side of the Debug window we find a TextBox Watch: 

 

 
 

To watch the Right coordinate of btnDraw we enter  

100%x – (btnDraw.Left + btnDraw.Width)  and click on   . 

 

This adds a new watch expression in the list with its value. 

 

 
 

Clicking on  removes all watch expressions. 

 

Now we want to know the length of the line in pixels: 

We add  Sqrt(Power((x2 - x1), 2) + Power((x2 - x1), 2)) 

And click on  . 

 



13  Debugging 280 B4A   Beginner's Guide 

13.2 Debug (legacy) mode 

 

In some cases the legacy Debugger can be useful, can select it in the Tools menu under IDE 

options.  

 

 
 

Debug(legacy): When this option is selected then the compiled code will contain debugging code.  

The debugging code allows the IDE to connect to the program and inspect it while it runs. 

When the program starts, it will wait for up to 10 seconds for the IDE to connect. Usually the IDE 

will connect immediately. However if you run your program manually from the phone you will see 

it waiting. 

The name of the compiled APK file will end with _DEBUG.apk. You should not distribute this apk 

file as it contains the debugging code which adds a significant overhead.  

To distribute files you must select the Release or the Release (obfuscated) option. 

 

When we run the program with the Debug (legacy) option, the IDE will open the debugger module 

at the bottom of the screen: 

 

 
 

The navigation buttons in the Toolbar are enabled  . 

These work similar to the Debug (rapid) mode. 

 

 



14  Example programs 281 B4A   Beginner's Guide 

14 Example programs 
 

14.1  User interfaces 

 

Let us make three different user interfaces to select three different screens. 

 

The three user interfaces are: 

 

        Menu          TabHost view           Button toolbox 

 

   
 

The menu layout can have different looks depending on the Android version 

 

     
 

 



14  Example programs 282 B4A   Beginner's Guide 

 For each test program there is a Main layout. 

 

    
 

For each of the three pages there are separate layout files Page1, Page2 and Page3. 

Each layout file is loaded to a Panel or a TabHost panel. 

These layouts can contain whatever views you need. 

 



14  Example programs 283 B4A   Beginner's Guide 

14.1.1 Menu example  (UserInterfaceMenu.b4a) 

 

The test program is: UserInterfaceMenu.b4a. The code is self-explanatory. 

 

1. Each page is on a Panel, pnlPage1, pnlPage2 and pnlPage3. 

2. The Panels are added by code. 

3. The page layout files are loaded to the Panels. 

4. The Menu items are added to the Activity. 

5. One Click event routine for each Menu item. 

It could also be done in one routine (like in UserInterfaceButtonToolbox.b4a). 

 
Sub Globals 
 Private pnlPage1, pnlPage2, pnlPage3 As Panel ' Declares the three panels 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Main")   ' Loads "Main" layout file 
  
 pnlPage1.Initialize("")    ' Initializes pnlPage1 
 pnlPage1.LoadLayout("Page1")   ' Loads "Page1" layout file 
 Activity.AddView(pnlPage1,0,0,100%x,100%y) ' Adds pnlPage1 to Activity 
 pnlPage1.Visible=True     ' Sets pnlPage1 to Visible 
  
 pnlPage2.Initialize("")    ' Initializes pnlPage2 
 pnlPage2.LoadLayout("Page2")   ' Loads "Page2" layout file 
 Activity.AddView(pnlPage2,0,0,100%x,100%y) ' Adds pnlPage1 to Activity 
 pnlPage2.Visible=False    ' Sets pnlPage1 to Visible 
  
 pnlPage3.Initialize("")    ' Initializes pnlPage3 
 pnlPage3.LoadLayout("Page3")   ' Loads "Page3" layout file 
 Activity.AddView(pnlPage3,0,0,100%x,100%y) ' Adds pnlPage1 to Activity 
 pnlPage3.Visible=False    ' Sets pnlPage1 to Visible 
  
 Activity.AddMenuItem("Page 1","mnuPage1") ' Adds menu item mnuPage1 
 Activity.AddMenuItem("Page 2","mnuPage2") ' Adds menu item mnuPage2 
 Activity.AddMenuItem("Page 3","mnuPage3") ' Adds menu item mnuPage3 
End Sub 
 
Sub mnuPage1_Click       
 pnlPage2.Visible = False   ' Hides pnlPage2 
 pnlPage3.Visible = False   ' Hides pnlPage3 
 pnlPage1.Visible = True    ' Sets pnlPage1 to Visible 
End Sub 
 
Sub mnuPage2_Click 
 pnlPage1.Visible = False   ' Hides pnlPage1 
 pnlPage3.Visible = False   ' Hides pnlPage3 
 pnlPage2.Visible = True    ' Sets pnlPage2 to Visible 
End Sub 
 
Sub mnuPage3_Click 
 pnlPage1.Visible = False   ' Hides pnlPage1 
 pnlPage2.Visible = False   ' Hides pnlPage2 
 pnlPage3.Visible = True    ' Sets pnlPage3 to Visible 
End Sub 



14  Example programs 284 B4A   Beginner's Guide 

14.1.2 TabHost example   (UserInterfaceTabHost.b4a) 

 

The test program is: UserInterfaceTabHost.b4a  The code is self-explanatory. 

 

1. Each page is on a TabHost panel. 

2. The TabHost view is in the Main layout. 

3. The TabHost panels are added with the Page layout files. 

 
Sub Globals 
 Private tbhPages As TabHost    ' Declares the TabHost view 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Main")   ' Loads "Main" layout file 
  
 tbhPages.AddTab("Page 1","Page1")  ' Adds Page1 on the first Tab 
 tbhPages.AddTab("Page 2","Page2")  ' Adds Page2 on the second Tab 
 tbhPages.AddTab("Page 3","Page3")  ' Adds Page3 on the third Tab 
 End Sub 
 

 



14  Example programs 285 B4A   Beginner's Guide 

14.1.3 Button toolbox example  (UserInterfaceButtonToolbox.b4a) 

 

The test program is: UserInterfaceButtonToolbox.b4a  The code is self-explanatory. 

 

1. Each page is on a Panel, pnlPage1, pnlPage2 and pnlPage3. 

2. The Panels are added by code. 

3. The page layout files are loaded to the Panels. 

4. The Buttons are in the Main layout on the pnlToolBox panel. 

5. One Click event routine for all Buttons. 

 
Sub Globals 
 Private pnlPage1, pnlPage2, pnlPage3 As Panel ' Declares the three panels 
 Private pnlToolbox As Panel 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private PanelHeight As Float 
  
 Activity.LoadLayout("Main")   ' Loads "Main" layout file 
            ' Calculates the top of the Toolbox 
 pnlToolbox.Top = Activity.Height - pnlToolbox.Height     
 PanelHeight = pnlToolbox.Top - 5dip  ' Calculates the Panel height 
                  
 pnlPage1.Initialize("")    ' Initializes pnlPage1 
 pnlPage1.LoadLayout("Page1")   ' Loads "Page1" layout file 
 Activity.AddView(pnlPage1,0,0,100%x,PanelHeight) ' Adds pnlPage1 
 pnlPage1.Visible=True    ' Sets pnlPage1 to Visible 
  
 pnlPage2.Initialize("")    ' Initializes pnlPage2 
 pnlPage2.LoadLayout("Page2")   ' Loads "Page2" layout file 
 Activity.AddView(pnlPage2,0,0,100%x,PanelHeight) ' Adds pnlPage2 
 pnlPage2.Visible=False    ' Sets pnlPage1 to Visible 
  
 pnlPage3.Initialize("")    ' Initializes pnlPage3 
 pnlPage3.LoadLayout("Page3")   ' Loads "Page3" layout file 
 Activity.AddView(pnlPage3,0,0,100%x,PanelHeight) ' Adds pnlPage3 
 pnlPage3.Visible=False    ' Sets pnlPage1 to Visible 
End Sub 
 
Sub btnPage_Click 
 Private Send As Button   ' Declares Send as a Button 
  
 Send = Sender     ' Sets Sender to Send 
           ' Sender is the view that raised the event 
 pnlPage1.Visible=False   ' Hides pnlPage1 
 pnlPage2.Visible=False   ' Hides pnlPage2 
 pnlPage3.Visible=False   ' Hides pnlPage3 
  
 Select Send.Tag     ' Selects the buttons tag 
 Case "1"       ' If Tag = 1, btnPage1 
  pnlPage1.Visible=True  ' Sets pnlPage1 visible 
 Case "2"       ' If Tag = 2, btnPage1 
  pnlPage2.Visible=True  ' Sets pnlPage2 visible 
 Case "3"       ' If Tag = 3, btnPage1 
  pnlPage3.Visible=True  ' Sets pnlPage3 visible 
 End Select 
End Sub 
 

 



14.2  Three Activity example program 286 B4A   Beginner's Guide 

14.2 Program with 3 Activities  (ThreeActivityExample.b4a) 

 

The test program is: ThreeActivityExample.b4a 

 

The goal of the program is: 

- to show how to manage several Activities. 

- working with Process Global variables across different Activities. The variables can be 

changed in different activities, but are available over the whole project. 

- change layout properties, in moving a small red panel over the screen. 

- save and load the layout properties of the small red panel with a Map object so the square 

will keep the same position after changing a page or restarting the program. 

 

 

The program looks like below: 

 

   
 

We have: 

- 3 pages, each one in its own Activity. 

- 3 process global variables, Value1, Value2 and Value3 

- on each page 1 EditText view to modify the Value variable with page index. 

- 2 Labels to display the two other variables. 

- on Page1 a small red square Panel to move around. 

 

We can: 

- Change Value1 in Page1. 

- Change Value2 in Page2. 

- Change Value3 in Page3. 

- Move the small red square over the screen. 

- Select either Page2 or Page3 on Page1. 

 

 

 



14.2  Three Activity example program 287 B4A   Beginner's Guide 

Let us take the example with the Button toolbox (UserInterfaceButtonToolbox.b4a). 

Instead of having our three pages on three panels we will use 3 activities. 

Main, Page2 and Page 3. 

 

For this we must create two new Activity Modules: Page2 and Page3. 

 

 

 

 

In the IDE click on 

.  

 

 

 

 

 

 

Enter the name Page2 

 

and click on . 

 

 

 

A new module is added to the project. 

 

 
 



14.2  Three Activity example program 288 B4A   Beginner's Guide 

Modify the code of Page2 module as below: 

 
'Activity module 
Sub Process_Globals 
 
End Sub 
 
Sub Globals 
 Private lblValue1_P2, lblValue3_P2 As Label 
 Private edtValue2_P2 As EditText 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Page2")  ' Loads "Page2" layout file 
End Sub 
 
Sub Activity_Resume 
 lblValue1_P2.Text = Main.Value1 ' Sets Main.Value1 to lblValue1_P2.Text 
 edtValue2_P2.Text = Main.Value2 ' Sets Main.Value2 to edtValue2_P2.Text 
 lblValue3_P2.Text = Main.Value3 ' Sets Main.Value3 to lblValue3_P2.Text 
End Sub 
 
Sub Activity_Pause (UserClosed As Boolean) 
 Main.Value2 = edtValue2_P2.Text ' Sets edtValue2_P2.Text to the 
End Sub      ' Process_Global variable  Value2 

 

Add now a new module "Page3" the same way as Page2 and modify the code like below: 

 
'Activity module 
Sub Process_Globals 
 
End Sub 
 
Sub Globals 
 Private lblValue1_P3, lblValue2_P3 As Label 
 Private edtValue3_P3 As EditText 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Activity.LoadLayout("Page3")  ' Loads "Page3" layout file 
End Sub 
 
Sub Activity_Resume 
 lblValue1_P3.Text = Main.Value1 ' Sets Main.Value1 to lblValue1_P3.Text 
 lblValue2_P3.Text = Main.Value2 ' Sets Main.Value2 to lblValue2_P3.Text 
 edtValue3_P3.Text = Main.Value3 ' Sets Main.Value3 to edtValue3_P3.Text 
End Sub 
 
Sub Activity_Pause (UserClosed As Boolean) 
 Main.Value3 = edtValue3_P3.Text ' Sets edtValue3_P2.Text to the 
End Sub      ' Process_Global variable  Value3 

 

These codes are self-explanatory. 



14.2  Three Activity example program 289 B4A   Beginner's Guide 

Let us modify the code of the Main module: 

 

In Sub Process-Globals we add following variables.  

Value1, Value2 and Value3 to save some values. 

mapMoveTopLeft as a Map object to save the Left and Top parameter of the small red square. 

 
Sub Process_Globals 
 Public Value1, Value2, Value3 As String ' Declares the Value variables 
         ' as Process_Global variables 
 Public mapMoveTopLeft As Map   ' Declares the Map as Process_Global 
End Sub 
 

In Globals we have the variables below: 

lblValue2_P1 is the Label to display Value2 on page1. 

lblValue3_P1 is the Label to display Value3 on page1. 

edtValue1_P1 is the EditText to enter Value1 on page1. 

pnlPage1 is the container for the Page1 layout. 

pnlMove is the small red square. 

X0, Y0, X1 and Y1 are used to memorize initial coordinates when moving the red square. 

 
Sub Globals 
 Private lblValue2_P1, lblValue3_P1 As Label ' Declares the Views 
 Private edtValue1_P1 As EditText 
 Private pnlPage1 As Panel 
 Private pnlToolbox, pnlMove As Panel 
  
 Private X0, Y0, X1, Y1 As Float   ' Coordinate variables 
End Sub 
 

Sub Activity_Create is modified like below: 

 

When the routine is called for the first time, we initialize the three Value variables. 

 
Sub Activity_Create(FirstTime As Boolean) 
 Private PanelHeight As Float 
  
 Activity.LoadLayout("Main")    ' Loads "Main" layout file 
  ' Calculates the top of the Toolbox 
 pnlToolbox.Top = Activity.Height - pnlToolbox.Height 
 PanelHeight = pnlToolbox.Top - 5dip   ' Calculates the Panel height 
 pnlPage1.Initialize("")     ' Initializes pnlPage1 
 pnlPage1.LoadLayout("Page1")    ' Loads "Page1" layout file 
 Activity.AddView(pnlPage1,0,0,100%x,PanelHeight) ' Adds pnlPage1 
  
 If FirstTime = True Then ' If Activity_Create is called the first time 
  Value1 = 1000   ' we initialize the three Values 
  Value2 = 2000 
  Value3 = 3000 
 End If 
End Sub 
 

 



14.2  Three Activity example program 290 B4A   Beginner's Guide 

In Sub Activity_Resume we initialize the properties of the views of Activity Main. 

Init.txt is the file with the Left and Top properties of the small red square pnlMove. 

If the file exists we read it and set the Left and Top properties of pnlMove. 

If the file doesn't exist we initialize the Map object and set the two first properties to the Left and 

Top properties of pnlMove. 

 
Sub Activity_Resume 
 edtValue1_P1.Text = Value1  ' Attribues Value1 to edtValue1_P1.Text 
 lblValue2_P1.Text = Value2 
 lblValue3_P1.Text = Value3 
 'If the file Init.txt exists, we read it. 
 'It contains the values of the Left and Top properties of pnlMove 
 If File.Exists(File.DirInternal,"Init.txt") Then  
  mapMoveTopLeft = File.ReadMap(File.DirInternal,"Init.txt") 
  pnlMove.Left = mapMoveTopLeft.Get("Left") ' set pnlMove.Left parameter 
  pnlMove.Top = mapMoveTopLeft.Get("Top")  ' set pnlMove.Top parameter 
 Else         ' If the file doesn't exsit 
  mapMoveTopLeft.Initialize    ' We initialize the Map 
  mapMoveTopLeft.Put("Left",pnlMove.Left)  ' Setting the Left parameter 
  mapMoveTopLeft.Put("Top",pnlMove.Top)  ' Setting the Top parameter 
 End If 
End Sub 
 

When the "Main" Activity is paused, due to either a page change or the program close, we: 

- set variable Value1 to the edtValue1.Text content. 

- save the Map to file Init.txt. 

 
Sub Activity_Pause (UserClosed As Boolean) 
 Value1 = edtValue1_P1.Text   ' get Value1 from edtValue1_P1.Text 
 File.WriteMap(File.DirInternal,"Init.txt",mapMoveTopLeft) ' Saves the Map 
End Sub 
 

To go back to Page1 from either Page2 or Page3, the user must press the Back key. To avoid that 

the program stops when the user clicks, by inadvertence, one time too much, we check in Sub 

Activity_KeyPress what key was pressed. And if it's the Back key we display a message in a 

MessageBox asking the user if he really wants to quit the program. If Yes, then we set the Return 

value to False that means that the event is sent back to the OS to close the program. If the answer is 

No, we set the Return value to True, that means that we 'consume' the event and the OS will not 

stop the program.  

 
Sub Activity_KeyPress(KeyCode As Int) As Boolean  
 Private Answ As Int 
 Private Txt As String 
  
 If KeyCode = KeyCodes.KEYCODE_BACK Then' Checks if the KeyCode is BackKey 
  Txt = "Do you really want to quit the program ?" 
  Answ = Msgbox2(Txt,"A T T E N T I O N","Yes","","No",Null) ' MessageBox  
  If Answ = DialogResponse.POSITIVE Then ' If return value is Yes then 
   Return False ' Return = False  the Event will not be consumed 
  Else    '        we leave the program 
   Return True  ' Return = True   the Event will be consumed to avoid  
  End If   '        leaving the program 
 End If 
End Sub 



14.2  Three Activity example program 291 B4A   Beginner's Guide 

To show how to manage layout properties we have the small red square, pnlMove, which can be 

moved on the screen. The position of pnlMove is handled in Sub Activity_Touch where we get 

three parameters: 

- Action  holding the value of the action the user made. 

   ACTION_DOWN the user touches the screen. 

   ACTION_MOVE the user moves on the screen  

   ACTION_UP  the user leaves the screen 

- X  the X coordinate of the finger on the screen. 

- Y  the Y coordinate of the finger on the screen. 

 

To be able to move pnlMove we do the following: 

- when Action is equal to ACTION_DOWN, the user touches the screen 

we memorize the coordinates of the finger and the coordinates of the upper left corner of 

pnlMove  (lines 76 to 79). 

 

- when Action is equal to ACTION_MOVE the user moves his finger on the screen, 

we calculate the relative displacement, dX and dY, in both directions and set the new Left 

and Top properties of pnlMove (lines 82 to 85). 

 

- when Action is equal to ACTION_UP, the user leaves the screen and 

we update the two properties in the Map object (lines 88 and 89=. 

 
Sub Activity_Touch (Action As Int, X As Float, Y As Float) 
 Private dX, dY As Float 
  
 Select Action    ' Selects the Action parameter 
 Case Activity.ACTION_DOWN  ' Checks if ACTION_DOWN  
  X0 = X     ' Memorizes the X coordinate 
  Y0 = Y     ' Memorizes the Y coordinate 
  X1 = pnlMove.Left   ' Memorizes the Left coordinate 
  Y1 = pnlMove.Top   ' Memorizes the Top coordinate 
 
 Case Activity.ACTION_MOVE  ' Checks if ACTION_MOVE  
  dX = X - X0    ' Calculates the X distance moved 
  dY = Y - Y0    ' Calculates the X distance moved 
  pnlMove.Left = X1 + dX  ' Sets the new Left coordinate 
  pnlMove.Top = Y1 + dY  ' Sets the new Top coordinate 
  
 Case Activity.ACTION_UP   ' Checks if ACTION_UP  
  mapMoveTopLeft.Put("Left",pnlMove.Left) ' Memorizes Left in the Map 
  mapMoveTopLeft.Put("Top",pnlMove.Top)   ' Memorizes Top in the Map 
 End Select 
End Sub 
 



14.2  Three Activity example program 292 B4A   Beginner's Guide 

In Sub btnPage_Click we start the Page Activity according to what button was pressed. 

- We declare a new Button object, Send.  

- We attribute Sender to Send.  

Sender is the button view that raised the event. 

- Depending on the Tag value of the sender object we start the correct Activity. 

 
Sub btnPage_Click 
 Private Send As Button  ' Declares Send as a Button 
  
 Send = Sender   ' Sets Sender to Send 
       ' Sender is the view that raised the event 
 Select Send.Tag   ' Selects the buttons tag 
 Case "2"    ' If Tag = 2, btnPage2 
  StartActivity("Page2") ' Calls Page2 Activity 
 Case "3"    ' If Tag = 3, btnPage3 
  StartActivity("Page3") ' Calls Page3 Activity 
 End Select 
End Sub 
 

We still need to modify the four layout files: 

 

Main: 

 

We remove btnPage1, as it is no longer needed. 

Enlarge the two remaining buttons and reposition them 

 

 

 

 

 

Page 1: 

 

We add the views like in the image at the left. 

 

 

Similar for Page 2 and Page 3. 

 

The layout files are in the project. 

 

 

 

 

 

 

 

 

 

 

 

 



14.3  Scrollview example program 293 B4A   Beginner's Guide 

14.3  ScrollView examples 

 

ScrollView is a very versatile view to display lists of objects holding data or user interface views. 

 

ListViews are, currently, limited to two lines of text and an image per data set. 

 

ScrollViews have an internal Panel, bigger than the screen, which can be scrolled vertically and 

holds any type of views either as one layout or as lists of view sets. 

 

Some screenshots of examples: ( a summary of ScrollView examples) 

 

Gridline in TableView …Scrollview           SQLLiteDB         ScrollView, layouts …          

 

    
 

 

  Another ScrollView example    Add imageview …         HelpScrollView 

 

    

http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/8423-scrollview-examples-summary-2.html#post47137
http://www.basic4ppc.com/forum/basic4android-updates-questions/7684-gridline-tableview-using-scrollview.html
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/10146-sqlitedb.html#post56301
http://www.basic4ppc.com/forum/basic4android-updates-questions/8546-scrollview-layouts-getting-current-selected.html#post47763
http://www.basic4ppc.com/forum/basic4android-share-your-creations/8417-another-scrollview-example.html#post47107
http://www.basic4ppc.com/forum/basic4android-updates-questions/7685-add-imageview-half-manually.html
http://www.basic4ppc.com/forum/basic4android-updates-questions/7996-real-newb-question-about-how-display-block-scrollable-text.html#post45138
http://www.basic4ppc.com/forum/attachments/basic4android-updates-questions/7324d1301153817-real-newb-question-about-how-display-block-scrollable-text-helpscrollview.jpg


14.3  Scrollview example program 294 B4A   Beginner's Guide 

14.3.1 ScrollView example program 

 

Let us make a ScrollView example with following functions: 

 

The source code is in the ScrollViewExample folder. 

 

   
 

 Read a csv file and display it in a table based on a ScrollView. 

 The ScrollView can be scrolled vertically with the standard scrolling function of the 

ScrollView. 

 The ScrollView can also be scrolled horizontally with a Seekbar or dynamically with the 

finger on the lower blue rectangle ( SeekBar visible or not). 

 Clicking on a cell highlights the row and the cell, this routine allows adding other functions 

related to a row or a cell. 

 Clicking on a header, displays the column, this routine allows adding functions related to a 

column. 

 

 



14.3  Scrollview example program 295 B4A   Beginner's Guide 

We define the following variables and assign their default values: 

StringUtils1   Used to read the csv file. 

NumberOfColumns  Number of columns.  

RowHeight   Height of a row in the ScrollView. 

RowLineWidth   Width of the lines between the rows. 

RowHeight_1   Internal height of a row   
RowHeight_1 = RowHeight - RowLineWidth  

ColLineWidth   Width of the lines between the columns.  

ColumnWidth()  Width of the different columns as an array   

ColumnWidth_1()  Internal width of the different columns.   

TotalColumnWidth()  Coordinates of the left border of a column as an array.   

HeaderColor   Headers background color. 

HeaderFontColor  Headers font color. 

HeaderLineColor  Headers line color. 

LineColor   Cell line color. 

CellColor   Cell background line color. 

FontColor   Cell font line color. 

Alignment   Text alignment of the text in the headers and cells. 

SelectedRow   Index of the selected row. 

SelectedRowColor  Color of the selected row.  

SelectedCellColor  Color of the selected cell. 
Type RowCol (Row As Int, Col As Int)  
    Define a custom variable that contains a row and  a column index.  

MoveLeft0   Used for the horizontal scrolling. 

MoveX0    Used for the horizontal scrolling. 

MoveX1    Used for the horizontal scrolling. 

DeltaScroll   Used for the horizontal scrolling. 

DeltaX    Used for the horizontal scrolling. 

Time0    Used for the horizontal scrolling. 

 

Personally, I prefer working with variables rather than with values. The maintenance and 

modification of a program is much easier with variables than with numerical values. 

 



14.3  Scrollview example program 296 B4A   Beginner's Guide 

Sub Process_Globals 
 Public StringUtils1 As StringUtils 
 
 Public NumberOfColumns = 5 As Int  
 Public NumberOfRows As Int 
 Public RowHeight = 30dip As Int  
 Public RowLineWidth = 1dip As Int 
 Public RowHeight_1 = RowHeight - RowLineWidth As Int  
 Public ColLineWidth = 1dip As Int  
 Public ColumnWidth(NumberOfColumns) As Int 
  ColumnWidth(0) = 50dip 
  ColumnWidth(1) = 100dip 
  ColumnWidth(2) = 100dip 
  ColumnWidth(3) = 150dip 
  ColumnWidth(4) = 100dip 
 Public ColumnWidth_1(NumberOfColumns) As Int 
 Public TotalColumnWidth(NumberOfColumns + 1) As Int 
  
 Public HeaderColor = Colors.Blue As Int   
 Public HeaderFontColor = Colors.Yellow As Int  
 Public HeaderLineColor = Colors.Yellow As Int  
 Public LineColor = Colors.Black As Int 
 Public CellColor = Colors.RGB(255,255,220) As Int 
 Public FontColor = Colors.Black As Int 
 Public FontSize = 14 As Float 
 Public Alignment = Gravity.CENTER As Int 
 Public SelectedRow = -1 As Int 
 Public SelectedRowColor = Colors.RGB(255,196,255) As Int 
 Public SelectedCellColor = Colors.RGB(255,150,255) As Int 
 Type RowCol (Row As Int, Col As Int) 
 Public MoveLeft0, MoveX0, MoveX1, DeltaScroll, DeltaX As Float 
 Public Time0 As Long 
 
 Public Timer1 As Timer 
End Sub 
 

 

 

Now we define the Views for the program: 

scvPersons  ScrollView to display the data.  

pnlHeader  Panel to display the headers. 

skbScroll  Seekbar to scroll the ScrollView and Header. 

pnlScroll  Panel for the 'dynamic' horizontal scrolling. 

Timer1   Timer used for the 'dynamic' horizontal scrolling. 

 
Sub Globals 
 Private scvPersons As ScrollView 
 Private pnlHeader As Panel 
 Private skbScroll As SeekBar 
 Private pnlScroll As Panel 
End Sub 
 



14.3  Scrollview example program 297 B4A   Beginner's Guide 

Now we initialize the different Views and variables, we: 

 Initialize the panel for the horizontal scrolling. 

 Initialize the SeekBar for the horizontal scrolling. 

 Initialize the ScrollView 

 Initialize the internal column width and the left coordinates for each column and the total 

width of all columns. 

 Initialize the ScrollView width. 

 Set the Max parameter for the Seekbar 

 Set the index of the selected row to -1, no row selected. 

 Load the csv file, set the headers and fill the ScrollView. 

 Initialize the Timer for the horizontal scrolling. 

 
Sub Activity_Create(FirstTime As Boolean) 
 Private i As Int 
  
 pnlScroll.Initialize("pnlScroll")  ' initialize the scroll panel 
 Activity.AddView(pnlScroll, 0, Activity.Height - 40dip, 100%x, 40dip) 
 pnlScroll.Color = Colors.Blue 
  
 skbScroll.Initialize("skbScroll")  ' initilaize the Seekbar 
 Activity.AddView(skbScroll, 0, Activity.Height - 40dip, 100%x, 40dip) 
 skbScroll.Visible = True 
  
 scvPersons.Initialize(0)   ' initialize the ScrollView 
 scvPersons.Panel.Color = LineColor 
 Activity.AddView(scvPersons,0,RowHeight,100%x,pnlScroll.Top-RowHeight) 
  
 ' initialze the internal column width and left coordinates 
 TotalColumnWidth(0) = ColLineWidth 
 For i = 0 To NumberOfColumns - 1 
  ColumnWidth_1(i) = ColumnWidth(i) - ColLineWidth 
  TotalColumnWidth(i + 1) = TotalColumnWidth(i) + ColumnWidth(i) 
 Next 
  
 ' initializes the ScrollView width 
 scvPersons.Width = TotalColumnWidth(NumberOfColumns) 
  
 ' initializes the Seekbar max value 
 skbScroll.Max = scvPersons.Width - Activity.Width 
  
 SelectedRow = -1    ' sets the selected row index to -1 
  
 ' loads the csv file 
 LoadTableFromCSV(File.DirAssets, "persons.csv", True) 
' SaveTableToCSV(File.DirRootExternal, "persons.csv") 
 
 Timer1.Initialize("Timer1",100) 
End Sub 
 

 

 



14.3  Scrollview example program 298 B4A   Beginner's Guide 

Then we read the csv file, fill the headers and the table (ScrollView). 

 First, if the headers exist, we read the csv file with the headers. 

 Or, if the headers do not exist, we read the csv file without the headers and set the default 

header names to Col1, Col2 etc. 

 Get the number of columns. 

 Display the headers  SetHeader(h). 

 Display the table, by adding the different rows to the ScrollView  AddRow(row). 

 
Sub LoadTableFromCSV(Dir As String,Filename As String,HeadersExist As Boolean) 
 ClearAll 'Clears the previous table and loads the CSV file to the table 
 Private List1 As List 
 Private h() As String 
 If HeadersExist Then 
  ' Reads the csv file  
  Private headers As List 
  List1 = StringUtils1.LoadCSV2(Dir, Filename, ",", headers) 
  ' Sets the header names of the columns  
  Private h(headers.Size) As String 
  For i = 0 To headers.Size - 1 
   h(i) = headers.Get(i) 
  Next 
 Else 
  ' Reads the csv file  
  List1 = StringUtils1.LoadCSV(Dir, Filename, ",") 
  ' Sets default header names 
  Private firstRow() As String 
  firstRow = List1.Get(0) 
  Private h(firstRow.Length) 
  For i = 0 To firstRow.Length - 1 
   h(i) = "Col" & (i + 1) 
  Next 
 End If 
 NumberOfColumns = h.Length ' Gets the number of columns 
 SetHeader(h)  ' Sets the headers 
  
 NumberOfRows = 0 
 For i = 0 To List1.Size - 1 
  ' Fills the table 
  Private row() As String 
  row = List1.Get(i) 
  AddRow(row) 
 Next 
End Sub 
 

 

 



14.3  Scrollview example program 299 B4A   Beginner's Guide 

To display the headers we: 

 Initialize the header panel. 

 Set the header panel color to the header line color. 

 Initialize a Label for each column name. 

 Set the different properties for the labels. 

 Add the Labels onto the header panel. 

 Add the header panel to the Activity 

 
Sub SetHeader(Values() As String) 
 'Set the headers values 
 If pnlHeader.IsInitialized Then Return 'should only be called once 
 pnlHeader.Initialize("") 
 pnlHeader.Color = HeaderLineColor 
 For i = 0 To NumberOfColumns - 1 
  Private l As Label 
  l.Initialize("Header") 
  l.Text = Values(i) 
  l.Gravity = Gravity.CENTER 
  l.TextSize = FontSize 
  l.Color = HeaderColor 
  l.TextColor = HeaderFontColor 
  l.Tag = i 
  pnlHeader.AddView(l,TotalColumnWidth(i),0,ColumnWidth_1(i),RowHeight_1) 
 Next 
 Activity.AddView(pnlHeader,scvPersons.Left,0,scvPersons.Width,RowHeight) 
End Sub 
 

 



14.3  Scrollview example program 300 B4A   Beginner's Guide 

Filling a row of the ScrollView with the AddRow routine: 

 First we check if the number of cells is equal to the number of columns. 

 Initialize a Label for each cell in the row. 

 Set the different properties of the cell. 

 Initialize a RowCol variable, rc, for the label tag. 

 Set rc.Row to the row index and rc.Col to the column index. 

 Set the label tag to rc. 

 Add each label to the ScrollView. 

 Set the height of the internal panel of the ScrollView. 

 
Sub AddRow(Values() As String) 
 'Adds a row to the table 
 If Values.Length <> NumberOfColumns Then 
  Log("Wrong number of values.") 
  Return 
 End If 
 
 For i = 0 To NumberOfColumns - 1 
  Private l As Label 
  l.Initialize("cell") 
  l.Text = Values(i) 
  l.Gravity = Alignment 
  l.TextSize = FontSize 
  l.TextColor = FontColor 
  l.Color=CellColor 
  Private rc As RowCol 
  rc.Initialize 
  rc.Col = i 
  rc.Row = NumberOfRows 
  l.Tag = rc 
  scvPersons.Panel.AddView(l,TotalColumnWidth(i), RowHeight * NumberOfRows, _ 
  ColumnWidth_1(i), RowHeight_1) 
 Next 
 NumberOfRows = NumberOfRows + 1 
 scvPersons.Panel.Height = NumberOfRows * RowHeight 
End Sub 
 

Note: an underscore character at the end of a line means 'continue same instruction next line'. 

 



14.3  Scrollview example program 301 B4A   Beginner's Guide 

Other functions: 

 Cell_Click 

Click event of one of the cells in the table. 

o Declare rc as a RowCol variable and declare l as a Label 

o Set l equal to the Sender, the View that raised the event 

o Set rc equal to the Sender Tag parameter 

o Call the SelectRow routine 

o Display in the Activities title the row and column indexes and the cell content. 
Sub Cell_Click 
 Private rc As RowCol 
 Private l As Label 
  
 l = Sender 
 rc = l.Tag 
 SelectRow(rc) 
 Activity.Title = "Cell: ("&rc.Row&", "& rc.Col&") "&GetCell(rc.Row, rc.Col) 
End Sub 
 

 

 Header_Click 

Click event of one of the header cells in the table. 

o Declare l as a Label and declare col as an integer. 

o Set I equal to the Sender. 

o Set col equal to the Sender Tag parameter, which is the column index. 

o Display the selected column in the Activity title. 

 
Sub Header_Click 
 Private l As Label 
 Private col As Int 
  
 l = Sender 
 col = l.Tag 
 Activity.Title = "Header clicked: " & col 
End Sub 
 



14.3  Scrollview example program 302 B4A   Beginner's Guide 

 SelectRow 

This routine manages the colors of the selected row and cell.  

It is called from the Cell_Click routine 

o Declare col as an integer. 

o If there is a row selected, set the normal cell color. 

o Set the SelectedRow variable to the new selected row index. 

o Set the selected row and selected cell colors. 

 

          
Sub SelectRow(rc As RowCol) 
 Private col As Int 
 
 'Removes the color of previously selected row 
 If SelectedRow > -1 Then 
  For col = 0 To NumberOfColumns - 1 
   GetView(SelectedRow, col).Color = CellColor 
  Next 
 End If 
 
 SelectedRow = rc.Row 
  
 'Sets the color of the selected row and selected cell 
 For col = 0 To NumberOfColumns - 1 
  If col = rc.col Then 
   GetView(rc.Row, col).Color = SelectedCellColor 
  Else 
   GetView(rc.Row, col).Color = SelectedRowColor 
  End If 
 Next 
End Sub 
 



14.3  Scrollview example program 303 B4A   Beginner's Guide 

 GetView  

Gets the Label object for the given row and column. 

o Declare l as a Label. 

o Gets the View in the given row and column, the view index in the ScrollView panel 

is equal to Row * NumberOfColumns + Col. 

o Returns the Label. 

       
Sub GetView(Row As Int, Col As Int) As Label 
 'Returns the label in the specific cell 
 Private l As Label 
  
 l = scvPersons.Panel.GetView(Row * NumberOfColumns + Col) 
 Return l 
End Sub 
 

 GetCell 

Gets the text of the Label for the given row and column. 

o Gets the View in the given row and column. 

o Return the Views Text parameter. 

       
Sub GetCell(Row As Int, Col As Int) As String 
 'Gets the value of the given cell 
 Return GetView(Row, Col).Text 
End Sub 
 

 SetCell (not used in the program) 

Sets the text of the Label for the given row and column. 

o Gets the View in the given row and column 

o Sets the Views Text parameter to the given value 

        
Sub SetCell(Row As Int, Col As Int, Value As String) 
 'Sets the value of the given cell 
 GetView(Row, Col).Text = Value 
End Sub 
 

 ClearAll 

o Removes all Views (Labels) from the ScrollView Panel 

o Sets the ScrollView Panel Height to 0 

o Sets the selected row index to -1, no row selected 

          
Sub ClearAll 
 'Clears the table 
 For i = scvPersons.Panel.NumberOfViews -1 To 0 Step -1 
  scvPersons.Panel.RemoveViewAt(i) 
 Next 
 scvPersons.Panel.Height = 0 
 SelectedRow = -1 
End Sub 
 



14.3  Scrollview example program 304 B4A   Beginner's Guide 

 Horizontal moving with the SeekBar 

o Sets the Left parameter of the Header panel and the ScrollView. 

o The SeekBar Max value was set to 
skbScroll.Max = scvPersons.Width - Activity.Width. 

      
Sub skbScroll_ValueChanged (Value As Int, UserChanged As Boolean) 
 'Moves the ScrollView horizontally 
 pnlHeader.Left = - Value 
 scvPersons.Left = - Value 
End Sub 

 

 Horizontal scrolling with the scroll panel. 

o pnlScroll_Touch and Timer1_Tick. 

o I leave it up to you to find how these work.  

 

The basic principle is to calculate the speed between ACTION_DOWN and 

ACTION_UP and in the Timer routine to move dynamically the header and the 

Scrollview and reducing the speed. 

 

For the horizontal moving we could use ScrollView2D instead of the standard vertical scrollview. 

This would allow to move the table in both directions simultaneously. 

 

Another approach could be to add a HorizontalScrollView into the vertical ScrollView, this would 

allow to move in both directions but not simultaneously. This depends on the beginning of the 

moving if it’s horizontally only horizontal moving is allowed and if it’s vertically only vertical 

moving is allowed. 

 

 

 

 

 

 

 



15  Basic language 305 B4A   Beginner's Guide 

15 Basic language 
 

In computer programming, BASIC (an acronym which stands for Beginner's All-purpose Symbolic 

Instruction Code) is a family of high-level programming languages designed to be easy to use. 

The original Dartmouth BASIC was designed in 1964 by John George Kemeny and Thomas 

Eugene Kurtz at Dartmouth College in New Hampshire, USA to provide computer access to non-

science students. At the time, nearly all use of computers required writing custom software, which 

was something only scientists and mathematicians tended to do. The language and its variants 

became widespread on microcomputers in the late 1970s and 1980s. 

BASIC remains popular to this day in a handful of highly modified dialects and new languages 

influenced by BASIC such as Microsoft Visual Basic. (source Wikipedia). 

http://en.wikipedia.org/wiki/BASIC


15  Basic language 306 B4A   Beginner's Guide 

15.1 Expressions 

 

An expression in a programming language is a combination of explicit values, constants, variables, 

operators, and functions that are interpreted according to the particular rules of precedence and of 

association for a particular programming language, which computes and then produces (returns) 

another value. This process, like for mathematical expressions, is called evaluation. The value can 

be of various types, such as numerical, string, and logical (source Wikipedia). 

 

For example, 2 + 3 is an arithmetic and programming expression which evaluates to 5. A variable is 

an expression because it is a pointer to a value in memory, so y + 6 is an expression. An example of 

a relational expression is 4 = 4 which evaluates to True (source Wikipedia). 

 

15.1.1 Mathematical expressions 

 

Operator Example 
Precedence 

level 
Operation 

+  x + y 3 Addition  

- x - y 3 Subtraction 

* x * y 2 Multiplication 

/ x / y 2 Division 

Mod x Mod y 2 Modulo 

Power Power(x,y) xy 1 Power of 

 

 

Precedence level: In an expression, operations with level 1 are evaluated before operations with 

level 2, which are evaluated before operations with level 3. 

 

Examples: 

 

4 + 5 * 3 + 2 = 21  >   4 + 15 + 2 
 

(4 + 5) * (3 + 2)  =  45 >   9 * 5 
 
(4 + 5)2 * (3 + 2)  =  405 >  92 * 5 >  81 * 5 
Power(4+5,2)*(3+2) 
 

11 Mod 4 = 3   >   Mod is the remainder of 10 / 4  

 

233 Power(23,3)   >   23 at the power of 3 

 
- 22 = - 4 
(-2)2 = 4 
 

http://en.wikipedia.org/wiki/Expression_(programming)


15  Basic language 307 B4A   Beginner's Guide 

15.1.2 Relational expressions 

 

In computer science in relational expressions an operator tests some kind of relation between two 

entities. These include numerical equality (e.g., 5 = 5) and inequalities (e.g., 4 >= 3).  

In B4A these operators return True or False, depending on whether the conditional relationship 

between the two operands holds or not (source Wikipedia). 

 

 

Operator Example Used to test 

= x = y the equivalence of two values 

<> x <> y the negated equivalence of two values 

> x > y if the value of the left expression is greater than that of the right 

< x < y if the value of the left expression is less than that of the right 

>= x >= y if the value of the left expression is greater than or equal to that of the right 

<= x <= y if the value of the left expression is less than or equal to that of the right 

 

 

15.1.3 Boolean expressions 

 

In computer science, a Boolean expression is an expression that produces a Boolean value when 

evaluated, i.e. one of True or False. A Boolean expression may be composed of a combination of 

the Boolean constants True or False, Boolean-typed variables, Boolean-valued operators, and 

Boolean-valued functions (source Wikipedia). 

 

Boolean operators are used in conditional statements such as IF-Then and Select-Case. 

 

Operator Comment 

Or Boolean Or       Z = X Or Y     Z = True if X or Y is equal to True or both are True 

And Boolean And    Z = X And Y   Z = True if X and Y are both equal to True 

Not ( ) Boolean Not     X = True    Y = Not(X)   >  Y = False 

 

 

 

 

 

 

 

 

 

 

  Or And 

X Y Z Z 

False False False False 

True False True False 

False True True False 

True True True True 



15  Basic language 308 B4A   Beginner's Guide 

15.2  Conditional statements 

 

Different conditional statements are available in Basic. 

15.2.1 If – Then – End If 

 

The If-Then-Else structure allows to operate conditional tests and execute different code sections 

according to the test result. 

General case: 

 
 If test1 Then 
  ' code1 
 Else If test2 Then 
  ' code2 
 Else 
  ' code3 
 End If 

 

The If-Then-Else structure works as follows: 

1. When reaching the line with the If keyword, test1 is executed. 

2. If the test result is True, then code1 is executed until the line with the Else If keyword. 

And jumps to the line following the End If keyword and continues. 

3. If the result is False, then test2 is executed. 

4. If the test result is True, then code2 is executed until the line with the Else keyword.  

And jumps to the line following the End If keyword and continues. 

5. If the result is False, then code3 is executed and continues at the line following the End If 

keyword. 

 

The tests can be any kind of conditional test with two possibilities True or False. 

Some examples: 

 
 If b = 0 Then 

  a = 0    The simplest If-Then structure. 
 End If 

 

 If b = 0 Then a = 0  The same but in one line. 

 
 If b = 0 Then 

  a = 0    The simplest If-Then-Else structure. 
 Else 
  a = 1 
 End If 

 
 If b = 0 Then a = 0 Else a = 1 The same but in one line. 

 

 

Personally, I prefer the structure on several lines, better readable. 

An old habit from HP Basic some decades ago, this Basic accepted only one instruction per line. 



15  Basic language 309 B4A   Beginner's Guide 

Note.  Difference between: 

B4A    VB 
Else If   ElseIf 

 

In B4A there is a blank character between Else and If. 

 

Some users try to use this notation: 

 
 If b = 0 Then a = 0 : c = 1 
 

There is a big difference between B4A and VB that gives errors : 

The above statements is equivalent to : 

 B4A       VB 
 If b = 0 Then     If b = 0 Then 
  a = 0 a = 0  
 End If c = 1      
 c = 1      End If 
  

The colon character ' : ' in the line above is treated in B4A like a CarriageReturn CR character.  

 

 

This structure throws an error. 
Sub Plus1 : x = x + 1 : End Sub 
You cannot have a Sub declaration and End Sub on the same line. 

 
 

 
 
 
 



15  Basic language 310 B4A   Beginner's Guide 

15.2.2 Select – Case 

 

The Select - Case structure allows to compare a TestExpression with other Expressions and to 

execute different code sections according to the matches between the TestExpression and 

Expressions. 

 

General case: 

 

 Select TestExpression  TestExpression is the expression to test. 
 Case ExpressionList1 

  ' code1    ExpressionList1 is a list of expressions to compare 

 Case ExpressionList2  to TestExpression 

  ' code2    ExpressionList2 is another list of expressions to compare 

 Case Else    to TestExpression 
  ' code3 
 End Select 

 

The Select - Case structure works as follows: 

 

1. The TestExpression  is evaluated. 

2. If  one element in the  ExpressionList1  matches  TestExpression  then executes  code1  

and continues at the line following the End Select keyword. 

3. If one element in the  ExpressionList2  matches  TestExpression  then executes  

code2 and continues at the line following the End Select keyword. 

4. For no expression matches TestExpression executes code3   

and continues at the line following the End Select keyword. 

 

TestExpression can be any expression or value. 

ExpressionList1 is a list of any expressions or values. 

 

Examples: 

 
 Select Value 

 Case 1, 2, 3, 4  The Value variable is a numeric value. 

 

 Select a + b  The TestExpression  is the sum of a + b 
 Case 12, 24 

 

 Select Txt.CharAt The TestExpression  is a character at 
 Case "A", "B", "C" 

 

 
Sub Activity_Touch (Action As Int, X As Float, Y As Float) 
 Select Action 
 Case Activity.ACTION_DOWN 
  
 Case Activity.ACTION_MOVE 
  
 Case Activity.ACTION_UP 
  
 End Select 
End Sub 



15  Basic language 311 B4A   Beginner's Guide 

Note.  Differences between: 

B4A    VB 
Select Value   Select Case Value 
Case 1,2,3,4,8,9,10  Case 1 To 4 , 8 To 9 

 

In VB the keyword Case is added after the Select keyword. 

VB accepts Case 1 To 4 , this is not implemented in B4A. 

 

 



15  Basic language 312 B4A   Beginner's Guide 

15.3  Loop structures 

 

Different loop structures are available in Basic. 

 

15.3.1 For – Next 

 

In a For–Next loop a same code will be executed a certain number of times. 

Example: 

 

 For i = n1 To n2 Step n3 i incremental variable 

   n1 initial value 

  ' Specific code n2 final value 

 n3 step 
 Next 
 

The For–Next loop works as below: 

1. At the beginning, the incremental variable i is equal to the initial value n1. 

i = n1 

2. The specific code between the For and Next  keywords is executed. 

3. When reaching Next, the incremental variable i is incremented by the step value n3. 

i = i + n3. 

4. The program jumps back to For, compares if the incremental variable i is lower or equal to 

the final value n2. 

test if  i <= n2 

5. If Yes, the program continues at step 2, the line following the For keyword. 

6. If No, the program continues at the line following the Next keyword. 

 

If the step value is equal to  '+1'  the step keyword is not needed. 

 
 For i = 0 To 10  For i = 0 To 10 Step 1 

  is the same as 
 Next  Next 

 

The step variable can be negative. 

 
 For i = n3 To 0 Step -1 
  
 Next 
 

It is possible to exit a For – Next loop with the Exit keyword. 

 

 For i = 0 To 10 In this example, if the variable a equals 0  

  ' code 

  If A = 0 Then Exit Then exit the loop. 
  ' code 
 Next 
 

 

 

 

 



15  Basic language 313 B4A   Beginner's Guide 

Note :  Differences between 

 B4A    VB 
 Next    Next i 
 Exit    Exit For 

 

In VB : 

 The increment variable is added after the Next Keyword. 

 The loop type is specified after the Exit keyword. 

 

15.3.2 For - Each  

 

It is a variant of the For - Next loop. 

 

Example: 

 

 For Each n As Type In Array  n  variable any type or object 

    Type type of variable n 

  ' Specific code  Array Array of values or objects 

   
 Next 
 

The For–Each loop works as below: 

1. At the beginning, n gets the value of the first element in the Array. 

n = Array(0) 

2. The specific code between the For and Next  keywords is executed. 

3. When reaching Next, the program checks if n is the last element in the array. 

4. If No, the variable n gets the next value in the Array and continues at step 2, the line 

following the For keyword. 

n = Array(next) 

5. If Yes, the program continues at the line following the Next keyword. 

 

Example For - Each : 
 Private Numbers() As Int 
 Private Sum As Int 
 
 Numbers = Array As Int(1, 3, 5 , 2, 9) 
 
 Sum = 0 
 For Each n As Int In Numbers 
  Sum = Sum + n 
 Next 
 

Same example but with a For - Next loop : 
 Private Numbers() As Int 
 Private Sum As Int 
 Private i As Int 
 
 Numbers = Array As Int(1, 3, 5 , 2, 9) 
 
 Sum = 0 
 For i = 0 To Numbers.Length - 1 
  Sum = Sum + Numbers(i) 
 Next 



15  Basic language 314 B4A   Beginner's Guide 

This example shows the power of the For - Each loop : 
 For Each lbl As Label In Activity 
  lbl.TextSize = 20 
 Next 

 

Same example with a For - Next loop : 
 For i = 0 To Activity.NumberOfViews - 1 
  Private v As View 
  v = Activity.GetView(i) 
  If v Is Label Then 
   Private lbl As Label 
   lbl = v 
   lbl.TextSize = 20 
  End If 
 Next 

 

15.3.3 Do - Loop 

 

Several configurations exist: 

 

 Do While test test  is any expression 

  ' code Executes the  code  while  test is True 
 Loop 

 

 Do Until test test  is any expression 

  ' code Executes the  code  until  test is True 
 Loop 

 

The Do While -Loop loop works as below : 

1. At the beginning, test  is evaluated. 

2. If  True, then executes code    

3. If  False continues at the line following the Loop keyword.  

 

The Do Until -Loop loop works as below : 

1. At the beginning, test  is evaluated. 

2. If  False, then executes code    

3. If  True continues at the line following the Loop keyword.  

 

It is possible to exit a Do-Loop structure with the Exit keyword. 

 
 Do While test 
  ' code 

  If a = 0 Then Exit  If  a = 0  then exit the loop 
  ' code 
 Loop 

 



15  Basic language 315 B4A   Beginner's Guide 

Examples : 

 

Do Until Loop : 
 Private i, n As Int 
 
 i = 0 
 Do Until i = 10 
  ' code 
  i = i + 1 
 Loop 

 

Do While Loop : 
 Private i, n As Int 
 
 i = 0 
 Do While i < 10 
  ' code 
  i = i + 1 
 Loop 

 

Read a text file and fill a List : 
 Private lstText As List 
 Private line As String 
 Private tr As TextReader 
  
 tr.Initialize(File.OpenInput(File.DirInternal, "test.txt")) 
 lstText.Initialize 
 line = tr.ReadLine 
 Do While line <> Null 
  lstText.Add(line) 
  line = tr.ReadLine 
 Loop 
 
 tr.Close 
 

 

Note :  Difference between: 

 B4A    VB 
 Exit    Exit Loop 

 

In VB the loop type is specified after the Exit keyword. 

 

VB accepts also the following loops, which are not supported in B4A. 
Do    Do 
  ' code     ' code 
Loop While test  Loop Until test 
 

 

 



15  Basic language 316 B4A   Beginner's Guide 

15.4 Subs 

 

A Subroutine (“Sub”) is a piece of code. It can be any length, and it has a distinctive name and a 

defined scope (in the means of variables scope discussed earlier). In B4A code, a subroutine is 

called “Sub”, and is equivalent to procedures, functions, methods and subs in other programming 

languages. The lines of code inside a Sub are executed from first to last, as described in the program 

flow chapter. 

It is not recommended to have Subs with a large amount of code, they get less readable. 

 

15.4.1 Declaring 

 

A Sub is declared in the following way: 

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 
 

It starts with the keyword Sub, followed by the Sub’s name, followed by a parameter list, followed 

by the return type and ends with the keywords End Sub. 

Subs are always declared at the top level of the module, you cannot nest two Subs one inside the 

other. 

 

15.4.2 Calling a Sub 

 

When you want to execute the lines of code in a Sub, you simply write the Sub’s name.  

 

For example: 
 Interest = CalcInterest(1234, 5.2) 
 

Interest Value returned by the Sub. 

CalcInterest Sub name. 

1235  Capital value transmitted to the Sub. 

5.25  Rate  value transmitted to the Sub. 

 

15.4.3 Calling a Sub from another module 

 

A subroutine declared in a code module can be accessed from any other module but the name of the 

routine must have the name of the module where it was declared as a prefix. 

 

Example: If the CalcInterest routine is declared in module MyModule then calling the routine 

must be : 
 Interest = MyModule.CalcInterest(1234, 5.2) 

 

instead of: 
 Interest = CalcInterest(1234, 5.2) 
 

 



15  Basic language 317 B4A   Beginner's Guide 

15.4.4 Naming 

 

Basically, you can name a Sub any name that’s legal for a variable. It is recommended to name the 

Sub with a significant name, like CalcInterest in the example, so you can tell what it does from 

reading the code. 

There is no limit on the number of Subs you can add to your program, but it is not allowed to have 

two Subs with the same name in the same module. 

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 

 

15.4.5 Parameters 

 

Parameters can be transmitted to the Sub. The list follows the sub name. The parameter list is put in 

brackets. 

The parameter types should be declared directly in the list.  

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 
 

In B4A, the parameters are transmitted by value and not by reference. 

 

15.4.6 Returned value 

 

A sub can return a value, this can be any object. 

Returning a value is done with the Return keyword. 

The type of the return value is added after the parameter list. 

 
Sub CalcInterest(Capital As Double, Rate As Double) As Double 
 Return Capital * Rate / 100 
End Sub 
  

 



15  Basic language 318 B4A   Beginner's Guide 

15.5 Events 

 

In Object-oriented programming we have objects which can react on different user actions called 

events. 

The number and the type of events an object can raise depend on the type of the object. 

User interface objects are called  'Views'  in Android. 

 

Summary of the events for different views: 

 

 Events 

Views 

C
li

ck
 

L
o
n
g
C

li
ck

 

T
o
u
ch

 

D
o
w

n
 

U
p

 

K
ey

P
re

ss
 

K
ey

U
p

 

It
em

C
li

ck
 

It
em

L
o
n
g
C

li
ck

 

C
h
ec

k
ed

C
h
an

g
e 

E
n
te

rP
re

ss
ed

 

F
o
cu

sC
h
an

g
ed

 

T
ex

tC
h
an

g
ed

 

S
cr

o
ll

C
h
an

g
ed

 

V
al

u
eC

h
an

g
ed

 

T
ab

C
h
an

g
ed

 

O
v
er

ri
d
eU

rl
 

P
ag

eF
in

is
h
ed

 

Activity                   

Button                   

CheckBox                   

EditText                   

HorizontalScrollView                   

ImageView                   

Label                   

ListView                   

Panel                   

RadioButton                   

ScrollView                   

SeekBar                   

Spinner                   

TabHost                   

ToggleButton                   

WebView                   

 



15  Basic language 319 B4A   Beginner's Guide 

The most common events are: 

 

 Click  Event raised when the user clicks on the view. 

Example: 
Sub Button1_Click 
  ' Your code 
End Sub 
 

 LongClick Event raised when the user clicks on the view and holds it pressed for a while. 

Example: 
Sub Button1_LongClick 
  ' Your code 
End Sub 
 

 Touch (Action As Int, X As Float, Y As Float) 
Event raised when the user touches the screen.  

 

Three different actions are handled: 

-  Activity.Action_DOWN, the user touches the screen. 

-  Activity.Action_MOVE, the user moves the finger without leaving the screen. 

-  Activity.Action_UP, the user leaves the screen. 

 

The X an Y coordinates of the finger position are given. 

 

Example: 
Sub Activity_Touch (Action As Int, X As Float, Y As Float) 
  Select Action 
  Case Activity.ACTION_DOWN 
    ' Your code for DOWN action 
  Case Activity.ACTION_MOVE 
    ' Your code for MOVE action 
  Case Activity.ACTION_UP 
    ' Your code for UP action 
  End Select 
End Sub 
 

 CheckChanged (Checked As Boolean) 

Event raised when the user clicks on a CheckBox or a RadioButton 

Checked is equal to True if the view is checked or False if not checked. 

 

Example: 
Sub CheckBox1_CheckedChange(Checked As Boolean) 
  If Checked = True Then 
    ' Your code if checked 
  Else 
    ' Your code if not checked 
  End If 
End Sub 
 

 

 



15  Basic language 320 B4A   Beginner's Guide 

 KeyPress (KeyCode As Int) As Boolean 

Event raised when the user presses a physical or virtual key. 

KeyCode is the code of the pressed key, you can get them with the KeyCodes keyword. 

 

 
 

The event can return either: 

-  True, the event is 'consumed', considered by the operating system as already executed and    

no further action is taken. 

-  False, the event is not consumed and transmitted to the system for further actions.  

 

Example: 

 
Sub Activity_KeyPress(KeyCode As Int) As Boolean 
  Private Answ As Int 
  Private Txt As String 
   
  If KeyCode = KeyCodes.KEYCODE_BACK Then ' Checks if KeyCode is BackKey 
    Txt = "Do you really want to quit the program ?" 
    Answ = Msgbox2(Txt,"A T T E N T I O N","Yes","","No",Null)' MessageBox 
    If Answ = DialogResponse.POSITIVE Then  ' If return value is Yes then 
      Return False    ' Return = False  the Event will not be consumed 
    Else     '       we leave the program 
      Return True    ' Return = True   the Event will be consumed to avoid 
    End If     '                 leaving the program 
  End If 
End Sub 

 

 

 

 

 

 

 

 



15  Basic language 321 B4A   Beginner's Guide 

15.6  Libraries 

 

Libraries add more objects and functionalities to B4A. 

Some of these libraries are shipped with B4A and are part of the standard development system. 

Other, often developed by users like Andrew Graham (agraham), can be downloaded (by registered 

users only) to add supplementary functionalities to the B4A development environment.  

 

When you need a library, you have to: 

- Check it in the Libs Tab, if you already have the library. 

- For additional libraries, check if it's the latest version. 

You can check the versions in the B4A Documentation Page. 

To find the library files use a query like 

http://www.b4x.com/search?query=betterdialogs+library  

in your internet browser. 

- If yes, then check the library in the list to select it. 

 

 
 

- If no, download the library, unzip it and copy the 

<LibraryName>.jar and <LibraryName>.xml files to the additional libraries folder. 

- Right click in the Lib area and click on and check the library in the list 

to select it. 

 

15.6.1 Standard libraries 

 

The standard B4A libraries are saved in the Libraries folder in the B4A program folder. 

Normally in: C:\Program Files\Anywhere Software\B4A\Libraries 

 

https://www.b4x.com/android/documentation.html
http://www.b4x.com/search?query=betterdialogs+library


15  Basic language 322 B4A   Beginner's Guide 

15.6.2 Additional libraries folder 

 

For the additional libraries it is useful to setup a special folder to save them somewhere else.  

For example: D:\B4A\AddLibraries 

 

When you install a new version of B4A, all standard libraries are automatically updated, but the 

additional libraries are not included. The advantage of the special folder is that you don't need to 

care about them because this folder is not affected when you install the new version of B4A. 

The additional libraries are not systematically updated with new version of B4A. 

 

When the IDE starts, it looks first for the available libraries in the Libraries folder of B4A and then 

in the folder for the additional libraries. 

 

 

 

To setup the special additional libraries folder click in 

the IDE menu on Tools / Configure Paths. 

 

 

 

 

 

 

 

 
 

 

Enter the folder name and click on  . 

 



15  Basic language 323 B4A   Beginner's Guide 

15.6.3 Load and update a Library 

 

A list of the official and additional libraries with links to the relevant help documentation can be 

found on the B4x site in the B4A Documentation page: List of Libraries  

To find the library files use a query like http://www.b4x.com/search?query=betterdialogs+library  

in your internet browser. 

 

To load or update a library follow the steps below: 

 Download the library zip file somewhere. 

 Unzip it. 

 Copy the xxx.jar and xxx.xml files to the  

o B4A Library folder for a standard B4A library 

o Additional libraries folder for an additional library. 

 Right click in the libraries list in the Lib Tab and click on  and select the 

library. 

 

 

 

15.6.4 Error message "Are you missing a library reference?" 

 

If you get a 

message similar to 

this, means that you 

forgot to check the 

specified library in 

the Lib Tab list ! 

 

 

https://www.b4x.com/android/documentation.html
http://www.b4x.com/search?query=betterdialogs+library


15  Basic language 324 B4A   Beginner's Guide 

15.7 String manipulation 

 

B4A allows string manipulations like other Basic languages but with some differences. 

 

These manipulations can be done directly on a string. 

Example: 
 txt = "123,234,45,23" 
 txt = txt.Replace(",", ";") 

Result: 123;234;45;23 

 

The different functions are: 

 CharAt(Index)  Returns the character at the given index. 

 CompareTo(Other)  Lexicographically compares the string with the Other string. 

 Contains(SearchFor) Tests whether the string contains the given SearchFor string. 

 EndsWith(Suffix)  Returns True if the string ends with the given Suffix substring. 

 EqualsIgnoreCase(Other) Returns True if both strings are equal ignoring their case. 

 GetBytes(Charset)  Encodes the Charset string into a new array of bytes. 

 IndexOf(SearchFor)  Returns the index of the first occurrence of SearchFor in the    

string. The index is 0 based. Returns -1 if no occurrence is found. 

 IndexOf2(SearchFor, Index) Returns the index of the first occurrence of SearchFor 

in the string. Starts searching from the given index.  

The index is 0 based. Returns -1 if no occurrence is found. 

 LastIndexOf(SearchFor) Returns the index of the first occurrence of SearchFor in the 

string. The search starts at the end of the string and advances to the beginning.  

The index is 0 based. Returns -1 if no occurrence is found. 

 LastIndexOf2(SearchFor) Returns the index of the first occurrence of SearchFor in the 

string. The search starts at the given index and advances to the beginning.  

The index is 0 based. Returns -1 if no occurrence is found. 

 Length   Returns the length, number of characters, of the string. 

 Replace(Target, Replacement) Returns a new string resulting from the replacement of 

all the occurrences of Target with Replacement. 

 StartsWith(Prefix)  Returns True if this string starts with the given Prefix. 

 Substring(BeginIndex) Returns a new string which is a substring of the original string. 

The new string will include the character at BeginIndex and will extend to the end of the 

string. 

 Substring2(BeginIndex, EndIndex) Returns a new string which is a substring of the 

original string. The new string will include the character at BeginIndex and will extend to 

the character at EndIndex, not including the last character. 

Note that EndIndex is the end index and not the length like in other languages. 

 ToLowerCase Returns a new string which is the result of lower casing this string. 

 ToUpperCase Returns a new string which is the result of upper casing this string. 

 Trim   Returns a copy of the original string without any leading or trailing 

white spaces. 

 

Note: The string functions are case sensitive. 

If you want to use case insensitive functions you should use either ToLowerCase or ToUpperCase. 

 

Example: 
NewString = OriginalString.ToLowerCase.StartsWith("pre") 

 



15  Basic language 325 B4A   Beginner's Guide 

15.8 Number formatting 

 

Number formatting, display numbers as strings with different formats, there are two keywords: 

 NumberFormat(Number As Double, MinimumIntegers As Int, MaximumFractions As Int) 

NumberFormat(12345.6789, 0, 2) =  12,345.68 

NumberFormat(1, 3 ,0)   =   001 

NumberFormat(Value, 3 ,0)  variables can be used. 

NumberFormat(Value + 10, 3 ,0) arithmetic operations can be used. 

NumberFormat((lblscore.Text + 10), 0, 0) if one variable is a string add parentheses. 

 

 NumberFormat2(Number As Double, MinimumIntegers As Int, MaximumFractions As 

Int, MinimumFractions As Int, GroupingUsed As Boolean) 

NumberFormat2(12345.67, 0, 3, 3, True)  =  12,345.670 

 



15  Basic language 326 B4A   Beginner's Guide 

15.9  Timers 

 

A Timer object generates ticks events at specified intervals. Using a timer is a good alternative to a 

long loop, as it allows the UI thread to handle other events and messages. 

Note that the timer events will not fire while the UI thread is busy running other code (unless you 

call DoEvents keyword). 

Timer events will not fire when the activity is paused, or if a blocking dialog (like Msgbox) is 

visible. 

It is also important to disable the timer when the activity is pausing and then enable it when it 

resumes. This will save CPU and battery. 

 

A timer has: 

 Three parameters. 

o Initialize Initializes the timer with two parameters, the EventName and the 

interval.  

Timer1.Initialize(EventName As String, Interval As Long) 

Ex:  Timer1.Initialize("Timer1", 1000) 

 

o Interval Sets the timer interval in milli-seconds. 

Timer1. Interval = Interval  

Ex:  Timer1.Interval = 1000, 1 second 

 

o Enabled Enables or disables the timer. It is False by default. 

Ex:  Timer1.Enabled = True 

 

 One Event 

o Tick  The Tick routine is called every time interval. 

Ex:  Sub Timer1_Tick 

 

 

The Timer must be declared in a Process_Global routine. 

 
Sub Process_Globals 
 Public Timer1 As Timer 

 

But it must be initialized in the Activity_Create routine in the module where the timer tick 

event routine is used. 

 
Sub Activity_Create(FirstTime As Boolean) 
 If FirstTime = True Then 
  Timer1.Initialize("Timer1", 1000) 
 End If 
 

And the Timer Tick event routine.  

This routine will be called every second (1000 milli-seconds) by the operating system. 

 
Sub Timer1_Tick 
 ' Do something 
End Sub 
 

You find an example in the RotatingNeedle example program. 



15  Basic language 327 B4A   Beginner's Guide 

15.10   Files 

 

Many applications require access to a persistent storage. The two most common storage types are 

files and databases. 

 

Android has its own file system. Even on an Emulator a B4A program has no access to files in the 

Windows system,  

It is possible to access Android files, from the Emulator, with the Dalvik Debug Monitor,  

look at chapter 6.4 Exchanging files with the PC. 

To add files to your project you must add those in the IDE in the Files Tab. These files will be 

added to the project Files folder. 

15.10.1 File object 

 

The predefined object File has a number of functions for working with files. 

 

Files locations - There are several important locations where you can read or write files. 

 

File.DirAssets 
The assets folder includes the files that were added with the file manager in the IDE.  

It's the Files folder in the project folder. 

These files are read-only.  

You can not create new files in this folder (which is actually located inside the apk file). 

If you have a database file in the Dir.Assets folder you need to copy it to another folder before you 

can use it. 

 

File.DirInternal / File.DirInternalCache 

These two folders are stored in the main memory of the device and are private to your application. 

Other applications cannot access these files. 

The cache folder may get deleted by the OS if it needs more space. 

 

File.DirRootExternal 

The storage card root folder. 

 

File.DirDefaultExternal 

The default folder for your application in the SD card. 

The folder is: <storage card>/Android/data/<package>/files/ 

It will be created if required. 

 

Note that calling any of the two above properties will add the EXTERNAL_STORAGE permission 

to your application. 

 

Tip: You can check if there is a storage card and whether it is available with 

File.ExternalReadable and File.ExternalWritable. 

 

To check if a file already exists use: 

File.Exists ( Dir As String, FileName As String) 

Returns True if the file exists and False if not. 

 

The File object includes several methods for writing to files and reading from files. 

To be able to write to a file or to read from a file, it must be opened. 

 



15  Basic language 328 B4A   Beginner's Guide 

File.OpenOutput (Dir As String, FileName As String, Append As Boolean) 

- Opens the given file for output, the Append parameter tells whether the text will be added at the 

end of the existing file or not. If the file doesn't exist it will be created. 

 

File.OpenInput (Dir As String, FileName As String) 

- Opens the file for reading. 

 

File.WriteString (Dir As String, FileName As String, Text As String) 

- Writes the given text to a new file. 

 

File.ReadString (Dir As String, FileName As String) As String 

- Reads a file and returns its content as a string. 

 

File.WriteList (Dir As String, FileName As String, List As List) 

- Writes all values stored in a list to a file. All values are converted to string type if required. Each 

value will be stored in a separare line. 

Note that if a value contains the new line character it will saved over more than one line and when 

you read it, it will be read as multiple items. 

 

File.ReadList (Dir As String, FileName As String) As List 

- Reads a file and stores each line as an item in a list. 

 

File.WriteMap (Dir As String, FileName As String, Map As Map) 

- Takes a map object which holds pairs of key and value elements and stores it in a text file. The file 

format is known as Java Properties file: .properties - Wikipedia, the free encyclopedia 

The file format is not too important unless the file is supposed to be edited manually. This format 

makes it easy to edit it manually. 

One common usage of File.WriteMap is to save a map of "settings" to a file. 

 

File.ReadMap (Dir As String, FileName As String) As Map 

- Reads a properties file and returns its key/value pairs as a Map object. Note that the order of 

entries returned might be different than the original order.  

 

Some other useful functions: 

 

File.Copy (DirSource As String, FileSource As String, DirTarget As String, FileTarget As String) 

- Copies the source file from the source directory to the target file in the target directory. 

Note that it is not possible to copy files to the Assets folder. 

 

File.Delete (Dir As String, FileName As String) 

- Deletes the given file from the given directory. 

 

File.ListFiles (Dir As String) As List 

- Lists the files and subdirectories in the diven directory. 

Example: 
Private List1 As List 
List1 = File.ListFiles(File.DirRootExternal) 

List1 can be declared in Sub Globals 

 

File.Size (Dir As String, FileName As String) 

- Returns the size in bytes of the specified file. 

This method does not support files in the assets folder. 

http://en.wikipedia.org/wiki/.properties


15  Basic language 329 B4A   Beginner's Guide 

15.10.2 Filenames 

 

Android file names allow following characters : 

a to z, A to Z, 0 to 9 dot . underscore _ and even following characters + - % &  

Spaces and following characters * ? are not allowed. 

 

Example : MyFile.txt 

 

Note that Android file names are case sensitive ! 

MyFile.txt  is different from   myfile.txt 

 

 

15.10.3 Subfolders 

 

You can define subfolders in Android with. 
 

File.MakeDir(File.DirInternal, "Pictures") 

 

To access the subfolder you should add the subfoldername to the foldername with "/" inbetween. 
ImageView1.Bitmap = LoadBitmap(File.DirInternal & "/Pictures", "test1.png") 

 

Or add the subfoldername before the filename with "/" inbetween. 
ImageView1.Bitmap = LoadBitmap(File.DirInternal, "Pictures/test1.png") 

 

Both possibilities work. 

 

 



15  Basic language 330 B4A   Beginner's Guide 

15.10.4 TextWriter 

 

There are two other useful functions for text files: TextWriter and TextReader: 

 

TextWriter.Initialize (OutputStream As OutputStream) 

- Initializes a TextWriter object as an output stream. 

 

Example: 
Private Writer As TextWriter 
Writer.Initialize(File.OpenOutput(File.DirRootExternal, "Test.txt" , False)) 

 

Writer could be declared in Sub Globals. 

 

TextWriter.Initialize2 (OutputStream As OutputStream , Encoding As String) 

- Initializes a TextWriter object as as output stream. 

- Encoding indicates the CodePage (also called CharacterSet), the text encoding (see next chapter). 

 

Example: 
Private Writer As TextWriter 
Writer.Initialize2(File.OpenOutput(File.DirRootExternal,"Test.txt" ,False)," ISO-8859-1") 

 

Writer could be declared in Sub Globals. 

See : Text encoding 

 

TextWriter.Write (Text As String) 

- Writes the given Text to the stream. 

 

TextWriter.WriteLine (Text As String) 

- Writes the given Text to the stream followed by a new line character LF Chr(10). 

 

TextWriter.WriteList (List As List) 

- Writes each item in the list as a single line. 

Note that a value containing CRLF will be saved as two lines (which will return two items when 

reading with ReadList). 

All values will be converted to strings. 

 

TextWriter.Close 
- Closes the stream. 

 

Example: 

 
Private Writer As TextWriter 
Writer.Initialize(File.OpenOutput(File.DirDefaultExternal, "Text.txt", False)) 
Writer.WriteLine("This is the first line") 
Writer.WriteLine("This is the second line") 
Writer.Close 

 

 



15  Basic language 331 B4A   Beginner's Guide 

15.10.5 TextReader 

 

There are two other useful functions for text files: TextWriter and TextReader: 

 

TextReader.Initialize (InputStream As InputStream) 

- Initializes a TextReader as an input stream. 

 

Example: 
Private Reader  TextReader 
Reader.Initialize(File.InputOutput(File.DirRootExternal, "Test.txt")) 

 

Reader could be declared in Sub Globals. 

 

TextReader.Initialize2 (InputStream As InputStream, Encoding As String) 

- Initializes a TextReader as an input stream. 

- Encoding indicates the CodePage (also called CharacterSet), the text encoding. 

 

Example: 
Private Reader  TextReader 
Reader.Initialize2(File.OpenInput(File.DirRootExternal, "Test.txt", "ISO-8859-1") 

 

Reader could be declared in Sub Globals. 

See : Text encoding 

 

TextReader.ReadAll As String 

- Reads all of the remaining text and closes the stream. 

 

Example: 
txt = Reader.ReadAll 
 

TextReader.ReadLine As String 

- Reads the next line from the stream.  

The new line characters are not returned. 

Returns Null if there are no more characters to read. 

 

Example: 

 
Private Reader As TextReader 
Reader.Initialize(File.OpenInput(File.DirDefaultExternal, "Text.txt")) 
Private line As String 
line = Reader.ReadLine 
Do While line <> Null 
 Log(line) 
 line = Reader.ReadLine 
Loop 
Reader.Close 

 

TextReader.ReadList As List 

- Reads the remaining text and returns a List object filled with the lines. 

Closes the stream when done. 

 

Example: 
List1 = Reader.ReadList  
 



15  Basic language 332 B4A   Beginner's Guide 

15.10.6 Text encoding 

 

Text encoding or character encoding consists of a code that pairs each character from a given 

repertoire with something else. Other terms like character set (charset), and sometimes character 

map or code page are used almost interchangeably (source Wikipedia). 

 

The default character set in Android is Unicode UTF-8. 

 

In Windows the most common character sets are ASCII and ANSI. 

 ASCII includes definitions for 128 characters, 33 are non-printing control characters (now 

mostly obsolete) that affect how text and space is processed. 

 ANSI, Windows-1252 or CP-1252 is a character encoding of the Latin alphabet, used by 

default in the legacy components of Microsoft Windows in English and some other Western 

languages with 256 definitions (one byte). The first 128 characters are the same as in the 

ASCII encoding. 

 

Many files generated by Windows programs are encoded with the ANSI character-set in western 

countries. For example: Excel csv files, Notepad files by default. 

But with Notepad, files can be saved with UTF-8 encoding. 

 

Android can use following character sets: 

 UTF-8  default character-set 

 UTF -16 

 UTF - 16 BE 

 UTF - LE 

 US-ASCII  ASCII character set 

 ISO-8859-1  almost equivalent to the ANSI character-set 

 Windows-1251 cyrillic characters 

 Windows-1252 latin alphabet 

 

To read Windows files encoded with ANSI you should use the Windows-1252 character-set. 

If you need to write files for use with Windows you should also use the Windows-1252 character-

set. 

 

Another difference between Windows and Android is the end of line character: 

 Android, only the LF (Line Feed) character Chr(10) is added at the end of a line. 

 Windows, two characters CR (Carriage Return Chr(13)) and  LF Chr(10) are added at the 

end of a line. If you need to write files for Windows you must add CR yourself. 

 

The symbol for the end of line is : 

 B4A   CRLF  Chr(10) 

 Basic4PPC  CRLF  Chr(13) & Chr(10) 

 

To read or write files with a different encoding you must use the TextReader or TextWriter objects 

with the Initialize2 methods. Even for reading csv files. 

 



15  Basic language 333 B4A   Beginner's Guide 

Tip for reading Excel csv files: 

You can either: 

 On the desktop, load the csv file in a text editor like NotePad or Notepad++ 

 Save the file with UTF-8 encoding 

With Notepad++ use Encode in UTF-8 without BOM, see below. 

  

Or  

 Read the whole file with TextReader.Initialize2 and "Windows-1252" encoding. 

 Save it back with TextWriter.Initialize with the standard Android encoding. 

 Read the file with LoadCSV or LoadCSV2 from the StringUtils library. 

 
Private txt As String 
Private tr As TextReader 
tr.Initialize2(File.OpenInput(File.DirAssets, "TestCSV1_W.csv"), "Windows-1252") 
txt = tr.ReadAll 
tr.Close 
  
Private tw As TextWriter 
tw.Initialize(File.OpenOutput(File.DirInternal, "TestCSV1_W.csv", False)) 
tw.Write(txt) 
tw.Close 
  
lstTest = StrUtil.LoadCSV2(File.DirInternal, "TestCSV1_W.csv", ";", lstHead) 

 

When you save a file with NotePad three additional bytes are added . 

These bytes are called BOM characters (Byte Order Mark). 

In UTF-8 they are represented by this byte sequence : 0xEF,0xBB,0xBF. 

A text editor or web browser interpreting the text as Windows-1252 will display the characters  

ï»¿. 

 

To avoid this you can use Notepad++ instead of NotePad and use Encode in UTF-8 without BOM. 

 

 
 

 

Another possibility to change a text from Windows-1252 to UTF-8 is to use the code below. 

 
Private var, result As String 
var = "Gestió" 
Private arrByte() As Byte 
arrByte = var.GetBytes("Windows-1252") 
result = BytesToString(arrByte, 0, arrByte.Length, "UTF8") 

 

 

 

 

 

 

 



15  Basic language 334 B4A   Beginner's Guide 

15.11 Lists 

 

Lists are similar to dynamic arrays, detailed descriptions of all functions are in chapter List.  

 

Lists are often used and many examples can be found in code examples: 

 StringUtils  LoadCSV, SaveCSV 

 DBUtils module InsertMaps, UpdateRecord, ExecuteMemoryTable, ExecuteSpinner, 

   ExecuteListView, ExecuteHtml, ExecuteJSON 

 Charts module to hold different variables. 

  

A list must be initialized before it can be used. 

 Initialize Initializes an empty List. 
Private List1 As List 
List1.Initialize 
List1.AddAll(Array As Int(1, 2, 3, 4, 5))  

 

 Initialize2 (SomeArray) 

Initializes a list with the given values. This method should be used to convert arrays to lists. 

Note that if you pass a list to this method then both objects will share the same list, and if 

you pass an array the list will be of a fixed size.    

Meaning that you cannot later add or remove items. 

Example 1: 
Private List1 As List 
List1.Initialize2(Array As Int(1, 2, 3, 4, 5)) 

Example 2: 
Private List1 As List 
Private SomeArray(10) As String 
' Fill the array 
List1.Initialize2(SomeArray) 
 

You can add and remove items from a list and it will change its size accordingly. 

With either: 

 Add (item As Object)   

Adds a value at the end of the list. 
List1.Add(Value) 

 

 AddAll (Array As String("value1", "value2")) 

Adds all elements of an array at the end of the list. 
List1.AddAll(List2) 
List1.AddAll(Array As Int(1, 2, 3, 4, 5)) 

 

 AddAllAt (Index As Int, List As List) 

Inserts all elements of an array in the list starting at the given position. 
List1.AddAll(12, List2) 
List1.AddAllAt(12, Array As Int(1, 2, 3, 4, 5)) 

 

 InsertAt (Index As Int, Item As Object) 

Inserts the specified element in the specified index.  

As a result all items with index larger than or equal to the specified index are shifted. 
List1.InsertAt(12, Value) 

 

 RemoveAt (Index As Int) 

Removes the specified element at the given position from the list. 
List1.RemoveAt(12) 



15  Basic language 335 B4A   Beginner's Guide 

A list can hold any type of object. However if a list is declared as a process global object it cannot 

hold activity objects (like views). 

B4A automatically converts regular arrays to lists. So when a List parameter is expected you can 

pass an array instead. 

 

Get the size of a List: 

 List1.Size 

 
Use the Get method to get an item from the list with (List indexes are 0 based): 

To get the first item use Get(0). 

To get the last item use Get(List1.Size - 1). 

 Get(Index As Int) 
number = List1.Get(i) 
 

You can use a For loop to iterate over all the values: 
For i = 0 To List1.Size - 1 
 Private number As Int 
 number = List1.Get(i) 
 ... 
Next 

 

Lists can be saved and loaded from files with: 

 File.WriteList(Dir As String, FileName As String, List As List) 
File.WriteList(File.DirRootExternal, "Test.txt", List1) 

 File.ReadList (Dir As String, FileName As String) 
List1 = File.ReadList(File.DirRootExternal, "Test.txt") 

 

A single item can be changed with : 

 List1. Set(Index As Int, Item As Object) 
List1.Set(12, Value) 

 

A List can be sorted (the items must all be numbers or strings) with : 

 Sort(Ascending As Boolean) 

List1.Sort(True)  sort ascending 

List1.Sort(False)  sort descending 

 SortCaseInsensitive(Ascending As Boolean) 

 

Clear a List with : 

  List1.Clear 

 
 

 



15  Basic language 336 B4A   Beginner's Guide 

15.12 Maps 

 

A Map is a collection that holds pairs of keys and values, detailed descriptions of all functions are 

in chapter Map. 

 

The keys are unique. Which means that if you add a key/value pair (entry) and the collection 

already holds an entry with the same key, the previous entry will be removed from the map. 

 

The key should be a string or a number. The value can be any type of object. 

 

Similar to a list, a map can hold any object, however if it is a process global variable then it cannot 

hold activity objects (like views). 

 

Maps are very useful for storing applications settings. 

 

Maps are used in these example codes: 

 DBUtils module  

used for database entries, keys are the column names and values the column values. 

 StateManager module used for settings 

 

A list must be initialized before it can be used. 

 Initialize Initializes an empty Map. 
Private Map1 As Map 
Map1.Initialize 

 

Add a new entry : 

 Put(Key As Object, Value As Object) 
Map1.Put("Language", "English") 

 

Get an entry : 

 Get(Key As Object) 
Language = Map1.Get("Language") 

 

Get a key or a value at a given index : 

 Returns the value of the item at the given index. 

 GetKeyAt and GetValueAt should be used to iterate over all the items. 

 These methods are optimized for iterating over the items in ascending order. 

 GetKeyAt(Index As Int) 
Key = Map1.GetKeyAt(12) 

 

Get a value at a given index : 

 GetValueAt(Index As Int) 
Value = Map1.GetValueAt(12) 

 

Check if a Map contains an entry, tests whether there is an entry with the given key : 

 ContainsKey(Key As Object) 
If Map1.ContainsKey("Language") Then 
 Msgbox("There is already an entry with this key !", "ATTENTION") 
 Return 
End If 

 



15  Basic language 337 B4A   Beginner's Guide 

Remove an entry : 

 Remove(Key As Object) 
Map1.Remove("Language") 
 

Clear an entry, clears all items from the map : 

 Clear 
Map1.Clear 

 

Maps can be saved and loaded with : 

 File.WriteMap(Dir As String, FileName As String, Map As Map) 
File.WriteMap(File.DirInternal, "settings.txt", mapSettings) 
 

 ReadMap(Dir As String, FileName As String) 

Reads the file and parses each line as a key-value pair (of strings). 

Note that the order of items in the map may not be the same as the order in the file. 
mapSettings = File.ReadMap(File.DirInternal, "settings.txt") 
 

 File.ReadMap2(Dir As String, FileName As String, Map As Map) 

Similar to ReadMap. ReadMap2 adds the items to the given Map. 

By using ReadMap2 with a populated map you can force the items order as needed. 
mapSettings = File.ReadMap2(File.DirInternal, "settings1.txt", mapSettings) 

 

 

 

 

 



16  Graphics / Drawing 338 B4A   Beginner's Guide 

16 Graphics / Drawing 
 

16.1 Overview 

 

To draw graphics we need to use a Canvas object. 

Explanations from the help file. 

A Canvas is an object that draws on other views or (mutable) bitmaps. 

When the canvas is initialized and set to draw on a view, a new mutable bitmap is created for that 

view background, the current view's background is copied to the new bitmap and the canvas is set 

to draw on the new bitmap. 

The canvas drawings are not immediately updated on the screen. You should call the target view 

Invalidate method to make it refresh the view. 

This is useful as it allows you to make several drawings and only then refresh the display. 

The canvas can be temporary limited to a specific region (and thus only affect this region). This is 

done by calling ClipPath. Removing the clipping is done by calling RemoveClip. 

You can get the bitmap that the canvas draws on with the Bitmap property. 

This is an 'Activity Object', it cannot be declared under Sub Process_Globals. 

 

It is possible to draw onto the following views: 

 Activity 

 ImageView 

 Panel 

 Bitmap (mutable) 

 

In the following functions you will find a number of common parameters. 

 Bitmap1 as Bitmap   an Android bitmap 

 x, y. x1, y1, x2, y2  As Float  are coordinates, Float variables. 

 Color as Int    are color variables. Int variables 

 SrcRect, DestRact, Rect1 As Rect are rectangles, Rect objects 

 Filled As Boolean   flag if the surface is filled (True) or not (False) 

 

The most common drawing functions are: 

 DrawBitmap (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect) 

Draws the given bitmap or only a part of it.. 

SrcRect = source rectangle, can be only a part of the original bitmap.  

DestRect = destination rectangle, can be any size. 

To draw with the same size both rectangles must have same width and same height. 

If DestRect is different size than SrcRect the destination drawing is stretched or shrinked 

depending on the size ratios between the two rectangles. 

  

 Draw BitmapRotated (Bitmap1 As Bitmap, SrcRect As Rect, DestRect As Rect, Degrees 

As Float) 

Same function as DrawBitmap, but with a rotation of the given Degrees angle around the 

centre of the bitmap. 

 

 DrawCircle (x As Float, y As Float, Radius As Float, Color as Int, Filled As Boolean, 

StrokeWidth As Float) 

Draws a circle. 

x an y are the centre coordinates of the circle and Radius the circles radius. 

 



16  Graphics / Drawing 339 B4A   Beginner's Guide 

 DrawColor (Color As Int) 

Fills the whole view with the given color. 

The color can be Colors.Transparent making the whole view transparent. 

 

 DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color as Int, StrokeWidth 

As Float) 

Draws a straight line. 

 

 DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth as Float) 

Draws a rectangle with given size, color, filled or not and line width. 

 

 DrawRectRotated (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth As Float, 

Degrees As Float) 

Same as DrawRect but rotated by the given angle 

 

 DrawText (Text As String, x As Float, y As Float, Typeface1 As TypeFace, TestSize As 

Float, Color As Int Align1 As Align) 

 

 DrawTextRotated (Text As String, x As Float, y As Float, Typeface1 As TypeFace, 

TestSize As Float, Color As Int Align1 As Align, Degrees As Float) 

 



16  Graphics / Drawing 340 B4A   Beginner's Guide 

16.2 Drawing test programs 

 

16.2.1 First steps 

 

The project is in: SourceCode\Graphics\GraphicsFirstSteps.b4a 

 

To draw something we need a Canvas object which is simply a drawing tool. 

The Canvas draws onto a Bitmap. This Bitmap can be the background bitmap of views. 

 

The most common views to draw on are: Activity, Panel, ImageView or a Bitmap. 

The Canvas must be 'connected' to a bitmap or a view background image in the Initialize method. 

 Initialize(Target View) 

 Initialize2(Target Bitmap) 

If we want to draw on different views at the same time we need one Canvas for each view. 

 

In the example program we'll use several drawing functions and draw onto the Activity and onto a 

Panel pnlGraph defined in the 'main' layout file. Here we need two canvases. 

 

 

 



16  Graphics / Drawing 341 B4A   Beginner's Guide 

16.2.1.1 Start  and Initialisation 

 

First we must declare the different views and objects: 

We have: 

 the Panel pnlGraph 

 the Canvas cvsActivity for the Activity 

 the Canvas cvsPanel for the Panel 

 
Sub Globals 
 Private pnlGraph As Panel 
 Private cvsActivity, cvsGraph As Canvas 
End Sub 
 

Then we must load the layout file and initialize the two Canvases: 

 
Sub Activity_Create(FirstTime As Boolean) 
 ' load the layout file 
 Activity.LoadLayout("main") 
  
 ' initialize the Canvas for the activity 
 cvsActivity.Initialize(Activity) 
  
 ' initialize the Canvas for the pnlGraph panel 
 cvsGraph.Initialize(pnlGraph) 
End Sub 
 

16.2.1.2 Draw a line 

 

Then in Activity_Resume we draw a horizonzal line onto the Activity :  

The function is : 

DrawLine (x1 As Float, y1 As Float, x2 As Float, y2 As Float, Color as Int, StrokeWidth As Float) 

Where : 

 x1, y1 are the coordinates of the start point in pixels 

 x2, y2 are the coordinates of the end point in pixels 

 Color is the line color 

 StrokeWidth the line thickness in pixels 

 

And the code : 
 

 ' draw a horizontal line onto the Activity 
 cvsActivity.DrawLine(20dip, 20dip, 160dip, 20dip, Colors.Red, 3dip 
 

Then we draw a horizonzal line onto pnlGraph with the same coordinates :  

The coordinates are relative to the upper left corner of the view we draw on, the Panel pnlGraph in 

this case. 

 
 ' draw a horizontal line onto pnlGraph 
 cvsGraph.DrawLine(20dip, 20dip, 160dip, 20dip, Colors.Red, 3dip) 

 



16  Graphics / Drawing 342 B4A   Beginner's Guide 

16.2.1.3 Draw a rectangle 

 

Then we draw an empty rectangle onto the Activity :  

The function is : 

DrawRect (Rect1 As Rect, Color As Int, Filled As Boolean, StrokeWidth as Float) 

Where : 

 Rect1 is a rectangle object 

 Color is the border or rectangle color 

 Filled:  False = only the border is drawn  True = the rectangle is filled 

 StrokeWidth is the line thickness of the border, not relevant when Filled = True 

 

To draw a rectangle we need a Rect object. 

We : 

 Define it with the name rect1. 

 Initialize it with the coordinates of the upper left corner and the coordinates of the lower 

right corner. 

 Draw it 

 
 ' draw an empty rectangle onto the Activity 
 Private rect1 As Rect 
 rect1.Initialize(20dip, 40dip, 150dip, 100dip) 
 cvsActivity.DrawRect(rect1, Colors.Blue, False, 3dip) 

 

Then we draw a filled rectangle onto pnlGraph with the same coordinates :  

 

We don't need to define nor initialize a new rectangle because the coordinates are the same so we 

use the same Rect object. 

 
 ' draw a filled rectangle onto pnlGraph 
 cvsGraph.DrawRect(rect1, Colors.Blue, True, 3dip) 

 

 



16  Graphics / Drawing 343 B4A   Beginner's Guide 

16.2.1.4 Draw a circle 

 

Then we draw an empty circle onto the Activity :  

The function is : 

DrawCircle (x As Float, y As Float, Radius As Float, Color as Int, Filled As Boolean, StrokeWidth 

As Float) 

Where : 

 x, y are the coordinates of the center in pixels. 

 Radius is the radius in pixels. 

 Color is the border or circle color 

 Filled:  False = only the border is drawn  True = the circle is filled 

 StrokeWidth is the line thickness of the border, not relevant when Filled = True 

 

And the code: 

 
 ' draw an empty circle onto the Activity 
 cvsActivity.DrawCircle(220dip, 70dip, 30dip, Colors.Green, False, 3dip) 
 

Then we draw a filled circle with a border with a different color on the panel.  

 

There is no direct function to draw a filled circle with a border with a different colors. 

So we first draw the filled circle and then the circle border in two steps. 

Instead of using fixed values like 220dip we can also use variables like in the code below. 

When a same value is used several times it's better to use variables because if you need to change 

the value you change it only once the value of the variable all the rest is changed automatically by 

the variable.  

 
 ' draw a filled circle with a boarder onto pnlGraph 
 Private centerX, centerY, radius As Float 
 centerX = 220dip 
 centerY = 70dip 
 radius = 30dip 
 cvsGraph.DrawCircle(centerX, centerY, radius, Colors.Green, True, 3dip) 
 cvsGraph.DrawCircle(centerX, centerY, radius, Colors.Red, False, 3dip) 

 



16  Graphics / Drawing 344 B4A   Beginner's Guide 

16.2.1.5 Draw a text 

 

Then we draw a text onto the Activity.  

The function is: 

DrawText (Text As String, x As Float, y As Float, Typeface1 As TypeFace, TestSize As Float, 

Color As Int Align1 As Align) 

Where: 

 Text is the text to draw 

 x, y are the coordinates of the reference point (depending on the Align1 value) in pixels. 

The reference point is on the texts baseline. 

 TypeFace1 is the text style  

 TextSize is the text size in a typographic unit called 'point'.  

The text size is independant of the screen density ! 

Don't use dip values ! 

 Color is the text color 

 Align1 is the alignement of the text according to the refence point.  

Possible values :  "LEFT", "CENTER", "RIGHT".  

 

And the code: 
 ' draw a text onto the Activity 
 cvsActivity.DrawText("Test text", 20dip, 150dip, Typeface.DEFAULT, 20, _ 
 Colors.Yellow, "LEFT") 
 

Then we draw a rotated text onto pnlGraph.  

 

And we draw a cross on the reference point to show where it is and how the align does work. 

The function is DrawTextRotated, it's the same as DrawText but with an additional parameter 

Degrees, the rotation angle. 

Instead of using fiexd dip values in the routine we define three variables: 

refX and refY  the coordinates of the reference point 

hl   the half of the cross line length  

 
 Private refX, refY, hl As Float 
 refX = 150dip 
 refY = 180dip 
 hl = 5dip 
 ' draw a rotated text onto pnlGraph 
 cvsGraph.DrawTextRotated("Test text", refX, refY, Typeface.DEFAULT, _ 
 20, Colors.Black, "RIGHT", 45) 
  
 ' draw a cross on the reference point 
 cvsGraph.DrawLine(refX - hl, refY, refX + hl, refY, Colors.Red, 1dip) 
 cvsGraph.DrawLine(refX, refY - hl, refX, refY + hl, Colors.Red, 1dip) 

 

 

 

 

 



16  Graphics / Drawing 345 B4A   Beginner's Guide 

16.2.2 Drawing rotating bitmaps / RotatingNeedle 

 

The project is in: SourceCode\Graphics\RotatingNeedle\RotatingNeedle.b4a 

 

In the second test program we will demonstrate the DrawBitmapRotated function. 

The program has two modes: 

 A rotating needle with a static compass 

 A rotating compass with a static needle 

 

 

We have in the layout: 

 

 3 buttons 

o   
starts rotating 

 

o   
step by step moving 

 

o  
we can let turn either the needle or the compass. 

 

 2 bitmap files 

o compass.png 

o needle.png 

 

 

 

 

In the DrawBitmapRotated function the bitmap rotates around the bitmaps centre.  

 

If we had a needle image like this one, we would need to do some calculations to make sure that 

it turns around the needle centre.    

 

 

 

 

To avoid these calculations, the needle bitmap looks like this one. We added the lower part so 

that the needle centre is at the bitmap's centre.  

 

The blue pixels are, in reality, transparent pixels.  

 



16  Graphics / Drawing 346 B4A   Beginner's Guide 

Let us have a look at the code. 

 
Sub Process_Globals 
 Public AngleStep = 6 As Float 
 Public Angle = -AngleStep As Float  
 Public Mode = True As Boolean   
 Public Timer1 As Timer 
End Sub 
 

Here we define three global variables with their values. 

 AngleStep step in degrees for the angle variations from one step to the next. 

 Angle  current angle of the needle 

 Mode  program mode 

   True  = needle turns 

   False =  compass turns 
Sub Globals 
 Private btnGoStop, btnStep, btnMode As Button 
 Private cvsCompass, cvsNeedle As Canvas 
 Private bmpCompass, bmpNeedle As Bitmap 
 Private imvCompass, imvNeedle As ImageView 
 Private RectCompass, SRectNeedle, DRectNeedle As Rect 
End Sub 
 

Then we define the different objects used by the program. 

 The three buttons from the layout file. 

 Two Canvas views, one for the compass and one for the needle. 

 Two Bitmaps, one for the compass and one for the needle. 

 Two ImageViews, one for the compass and one for the needle. 

 Three rectangles, one for the compass, two for the needle source and destination. 

 One Timer, it is used to move dynamically the needle or the compass. 

 

In the Activity_Create routine we: 

 
Sub Activity_Create(FirstTime As Boolean) 
 Private x, y As Float 
  
 Activity.LoadLayout("rotatingneedle") 

 

 Define two variables used  for calculations 

 Load the layout file to the Activity 

 
 bmpCompass.Initialize(File.DirAssets,"compass.png") 
 bmpNeedle.Initialize(File.DirAssets,"needle.png") 

 

 Initialize the compass bitmap 

 Initialize the needle bitmap 



16  Graphics / Drawing 347 B4A   Beginner's Guide 

 imvCompass.Initialize("") 
 imvCompass.Bitmap = bmpCompass 
 imvNeedle.Initialize("") 
 imvNeedle.Color=Colors.Transparent 

 

 Initialize the compass ImageView. 

 Set the compass bitmap to the compass ImageView bitmap. 

 Initialize the needle ImageView. 

 Set the needle ImageView color to transparent. 

 
 x = (100%x - bmpCompass.Width) / 2 
 y = (100%y - bmpCompass.Height) / 2 
 Activity.AddView(imvCompass, x, y, bmpCompass.Width, bmpCompass.Height) 
 Activity.AddView(imvNeedle, x, y, bmpCompass.Width, bmpCompass.Height) 
 cvsCompass.Initialize(imvCompass) 
 RectCompass.Initialize(0, 0, bmpCompass.Width, bmpCompass.Height) 

 

 Calculate the Left  and Top coordinates of the compass ImageView. 

 Add the compass ImageView to the Activity. 

 Add the needle ImageView to the Activity  

with the same dimensions as the compass ImageView. 

 Initialize the compass Canvas and connect it to the compass ImageView. 

 Initialize the compass rectangle. 

 
 csvNeedle.Initialize(imvNeedle) 
 x = (bmpCompass.Width - bmpNeedle.Width)/2 
 y = (bmpCompass.Height - bmpNeedle.Height)/2 
 SRectNeedle.Initialize(0, 0, bmpNeedle.Width, bmpNeedle.Height) 
 DRectNeedle.Initialize(x, y, x + bmpNeedle.Width, y + bmpNeedle.Height) 

 

 Initialize the needle Canvas and connect it to the needle ImageView. 

 Calculate the Left  and Top coordinates of the needle ImageView. 

 Initialize the needle source and destination rectangles. 

 
 Timer1.Initialize("Timer1",200) 
 Timer1_Tick 
End Sub 

 

 Initialize the timer, set the Interval to 200 ms. 

 Call the Timer1_Tick routine to draw the needle 

 



16  Graphics / Drawing 348 B4A   Beginner's Guide 

In the Timer1_Tick routine we: 

 
Sub Timer1_Tick 
 Private Angle1 As Float 
  
 Angle1 = Angle 
 Angle = (Angle+AngleStep) Mod 360 
 If Mode = True Then 
  cvsNeedle.DrawRectRotated(DRectNeedle,Colors.Transparent,True,1,Angle1) 
  cvsNeedle.DrawBitmapRotated(bmpNeedle,SRectNeedle,DRectNeedle,Angle) 
  imvNeedle.Invalidate2(RectCompass) 
 Else 
  cvsCompass.DrawBitmapRotated(bmpCompass,RectCompass,RectCompass,-Angle) 
  imvCompass.Invalidate2(RectCompass) 
 End If 
End Sub 
 

 Define a local variable representing the current Angle 

 Calculate the new Angle using the Mod operator  

 If Mode = True, rotating needle mode we: 

o Draw a rotated transparent rectangle to erase the current needle. 

o Draw the needle with the new angle. 

o Invalidate the needle ImageView to update it. 

 If Mode = False, rotating compass mode we: 

o Draw the compass with the new angle, in our case the source and destination 

rectangle are the same.  

o Invalidate the compass ImageView to update it. 

 

In the btnStep_Click routine we: 

 
Sub btnStep_Click 
 Timer1_Tick 
End Sub 
 

 Call the Timer1_Tick routine to draw a new step. 

 



16  Graphics / Drawing 349 B4A   Beginner's Guide 

In the btnGoStop_Click routine we: 

 
Sub btnGoStop_Click 
 If Timer1.Enabled = True Then 
  Timer1.Enabled = False 
  btnGoStop.Text = "Go" 
  btnStep.Visible = True 
 Else 
  Timer1.Enabled = True 
  btnGoStop.TExt = "Stop" 
  btnStep.Visible = False 
 End If 
End Sub 
 

 If  Timer1 = True, the timer is running. 

o We set the Timer1.Enabled property to False to stop it. 

o Set the btnGoStop button text to "Go". 

o Set  the btnStep button to visible. 

 If  Timer1 = False, the timer is stopped 

o We set the Timer1.Enabled property to True to let it run. 

o Set the btnGoStop button text to "Stop". 

o Hide the btnStep button. 

 

In the btnMode_Click routine we: 

 
Sub btnMode_Click 
 Mode = Not(Mode) 
 If Mode = True Then 
  btnMode.Text = "Needle turns" 
  cvsNeedle.DrawRect(DRectNeedle, Colors.Transparent, True, 1) 
  cvsNeedle.DrawBitmapRotated(bmpNeedle,SRectNeedle,DRectNeedle,Angle) 
  cvsCompass.DrawBitmap(bmpCompass, RectCompass, RectCompass) 
 Else 
  btnMode.Text = "Compass turns" 
  cvsNeedle.DrawRectRotated(DRectNeedle,Colors.Transparent,True,1,Angle) 
  cvsNeedle.DrawBitmap(bmpNeedle, SRectNeedle, DRectNeedle) 
 End If 
 Angle = Angle - AngleStep 
 Timer1_Tick 
End Sub 
 

 We change the Mode variable from True to False or from False to True with the Not 

keyword. 

 If Mode = True, rotating needle, we: 

o Set the button text to "Needle turns". 

o Draw a transparent rectangle to erase the current needle. 

o Draw the needle at the new position. 

o Draw the default compass. 

 If Mode = False, rotating compass, we: 

o Set the button text to "Compass turns". 

o Erase the current needle 

o Draw the new needle. 

 



16  Graphics / Drawing 350 B4A   Beginner's Guide 

16.2.3 Simple draw functions 

 

The project is in : SourceCode\Graphics\SimpleDrawFunctions\SimpleDrawFunctions.b4a 

 

In the third drawing program, SimpleDrawFunctions, we use the other common drawing functions. 

 

The program has no other purpose than to show what can be done with drawings. 

 

The program has three Panels which we use as layers and three ToggleButtons buttons allowing us 

to show or hide each layer.  

Layer(0) has a grey background and the two other layers have a transparent background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You can play with the buttons to observe the different combinations of visible and hidden layers. 

 

 



16  Graphics / Drawing 351 B4A   Beginner's Guide 

 

 

 

 

 

In this screenshot we solely see the background image 

of the activity. 

 

We use the ToggleButtons to either show or hide the 

different layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we show only layer(0). 

 

The panel has a dark gray background with: 

 a blue circle. 

 a transparent circle, the activity's background 

  is inside this circle. 

 a blue rectangle 

 a transparent rectangle, the activity's 

  background is inside this rectangle. 

 

Touching the screen and moving the finger moves the 

blue and transparent circles on layer(0).  

 

 

 

 



16  Graphics / Drawing 352 B4A   Beginner's Guide 

 

 

 

 

Here we show layer(0) plus layer(1). 

 

The panel has a transparent background with: 

 a green circle. 

 a small copy of the activity's background image. 

 a green, rotated semi-transparent rectangle. 

 

We see that the rectangle covers the activity's 

background because layer 1 is in front of layer 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we show all three layers. 

 

The panel has a transparent background with: 

 4 lines on top. 

 3 horizontal texts with the three different 

alignments. 

 3 rotated texts with the three different 

alignments. 

 a point for each text showing the position of the 

reference point. 

 

 

 

 

You can play with the buttons to show the different 

combinations of visible and hidden layers. 



16  Graphics / Drawing 353 B4A   Beginner's Guide 

 

 

 

Touching the screen with the finger and moving it, 

moves the blue and transparent circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On each move, the backgound image of the activity 

appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16  Graphics / Drawing 354 B4A   Beginner's Guide 

Analysis of the code: 

 

There is no layout file, all views are added by code. 

 

In the Process_Globals routine we declare the bitmap. 

 
Sub Process_Globals 
 Private bmpBackground As Bitmap 
End Sub 
 

In the Sub Globals routine we declare the different views and variables: 

 
Sub Globals 
 Private pnlLayer(3) As Panel 
 Private cvsLayer(3) As Canvas 
 Private btnLayer(3) As ToggleButton 
 Private rect1 As Rect 
 Private bdwBackground As BitmapDrawable 
 Private xc, yc, x1, y1, x2, y2, r1, r2, h, w As Float 
End Sub 
 

We have: 

 3 Panels 

 3 Canvases 

 3 ToggleButtons 

 1 Rect, rectangle used to draw rectangles 

 1 Bitmap, holding the activity's background image 

 1 BitmapDrawable, holds the activity's background 

 different variables used for the drawing. 

 

Note that we use arrays of views for the three panels, canvases and togglebuttons. 

Private pnlLayer(3) As Panel  instead of Private pnlLayer0, pnlLayer1, pnlLayer2 As Panel. 

 

 

In the Sub Activity_Create routine we initialize the different views and add them to the activity: 

 
Sub Activity_Create(FirstTime As Boolean) 
 Private i As Int 
  
 If FirstTime Then 
  bmpBackground.Initialize(File.DirAssets,"Rose2.jpg") 
 End If 
 bdwBackground.Initialize(bmpBackground)  
 Activity.Background = bdwBackground 

 

We: 

 initialize the views only if FirstTime = True. 

  load the Rose2.jpg image file into the bitmap.  

 initialize the background image of the activity. 

 set the activity's background image 

 
  x1 = 2%x 
  w = 30%x 
  y1 = 100%y - 55dip 
  h = 50dip 



16  Graphics / Drawing 355 B4A   Beginner's Guide 

 initialize some variables. 

 
   For i = 0 To 2 
    pnlLayer(i).Initialize("pnlLayer" & i) 
    Activity.AddView(pnlLayer(i), 0, 0, 100%x, 85%y) 
    cvsLayer(i).Initialize(pnlLayer(i)) 
    pnlLayer(i).Tag = i 
 
    btnLayer(i).Initialize("btnLayer") 
    x2 = x1 + i * 33%x 
    Activity.AddView(btnLayer(i), x2, y1, w, h) 
    btnLayer(i).TextOn = "Layer" & i & " ON" 
    btnLayer(i).TextOff = "Layer" & i & " OFF" 
    btnLayer(i).Checked = True 
    btnLayer(i).Tag = i 
   Next 
  End If 
 End Sub 
 

In a loop we: 

 initialize the layer Panels. 

we define an individual EventName for each of the three Panels 

we use only the event for pnlLayer0.  

 add the panels to the activity. 

 initialize the layer Canvases. 

 set the Panels Tag property to the index. 

 

 initialize the layer ToggleButtons. 

we define a single EventName for all three ToggleButtons. 

we manage the showing and hiding of the Panels in one single event routine. 

 calculate the left coordinate for each ToggleButton. 

 set the texts for the two states. 

 set the Checked property to True.  

 set the Tag property to the index. 

 

 

In the Sub Activity_Resume routine we call the Drawing routine. 

 
Sub Activity_Resume 
 Drawing 
End Sub 
 

 



16  Graphics / Drawing 356 B4A   Beginner's Guide 

In the Sub Drawing routine we: 

 
Sub Drawing 
 cvsLayer(0).DrawColor(Colors.DarkGray) 
 cvsLayer(1).DrawColor(Colors.Transparent) 
 cvsLayer(2).DrawColor(Colors.Transparent) 

 

 draw the layout(0) background dark gray. 

 draw the layout(1) and layout(2) background transparent. 

 
 x1 = 10dip 
 y1 = 10dip 
 x2 = 150dip 
 y2 = 20dip 
 cvsLayer(2).DrawLine(x1, y1, x2, y2, Colors.Red, 0) 
 y1 = 30dip 
 y2 = 30dip 
 cvsLayer(2).DrawLine(x1, y1, x2, y2, Colors.Green, 0.99dip) 
 y1 = 35dip 
 y2 = 45dip 
 cvsLayer(2).DrawLine(x1, y1, x2, y2, Colors.Yellow, 0.99dip) 
 y1 = 45dip 
 y2 = 55dip 
 cvsLayer(2).DrawLine(x1, y1, x2, y2, Colors.Blue, 5dip) 

 

 draw four lines onto layer(2) 
cvsLayer(2).DrawLine(x1, y1, x2, y2, Colors.Red, 0) 
the last StrokeWidth parameter is '0', this means hairline mode, the width is one pixel. 
cvsLayer(2).DrawLine(x1, y1, x2, y2, Colors.Green, 0.99dip) 
here we use 0.99dip instead of 1dip because in some cases no line or only parts of it are 

drawn. This is a known bug in Android with a StrokeWidth of  '1'.  

 
 xc = 90dip 
 yc = 130dip 
 r1 = 70dip 
 cvsLayer(1).DrawCircle(xc, yc, r1, Colors.Green, False, 2dip) 
 r1 = 60dip 
 cvsLayer(0).DrawCircle(xc, yc, r1, Colors.Blue, True, 3dip) 
 r2 = 50dip 
 cvsLayer(0).DrawCircle(xc, yc, r2, Colors.Transparent, True, 1dip) 

 

 draw a green circle line on layer(1). 

 draw a filled blue circle on layer(0). 

 draw a filled transparent circle on layer(0). 



16  Graphics / Drawing 357 B4A   Beginner's Guide 

 rect1.Initialize(10dip, 210dip, 300dip, 350dip) 
 cvsLayer(1).DrawRect(rect1, Colors.Red, False, 2dip) 
 rect1.Initialize(40dip, 230dip, 270dip, 320dip) 
 cvsLayer(0).DrawRect(rect1, Colors.ARGB(128, 0, 0, 255), True, 2dip) 
 cvsLayer(1).DrawRectRotated(rect1, Colors.ARGB(128, 0, 255, 0),True, 2dip,10) 
 rect1.Initialize(80dip, 240dip, 230dip, 360dip) 
 cvsLayer(0).DrawRect(rect1, Colors.Transparent, True, 2dip) 

 

 define the coordinates of a rectangle. 

 draw a red rectangle on layer(1). 

 define the coordinates of a rectangle. 

 draw a semi-transparent blue rectangle on layer(0). 

 draw a semi-transparent green rotated rectangle on layer(1). 

 define the coordinates of a rectangle. 

 draw a transparent rectangle on layer(0). 

 define the coordinates of a rectangle. 

 draw a red rectangle on layer(1). 

 
 rect1.Initialize(200dip, 90dip, 280dip, 195dip) 
 cvsLayer(1).DrawBitmap(bmpBackground,Null,rect1) 

 Note: Null as the source rectangle means the whole bitmap.  

 

 define the coordinates of a rectangle. 

 draw the activity's background image in a smaller rectangle on layer(1) 

 
 x1 = 200dip 
 y1 = 30dip 
 cvsLayer(2).DrawText("Rose", x1, y1, Typeface.DEFAULT,16,Colors.Red,"LEFT") 
 DrawCross(x1, y1, Colors.Yellow) 
 y1 = 50dip 
 cvsLayer(2).DrawText("Rose", x1, y1, Typeface.DEFAULT,16,Colors.Red,"CENTER") 
 DrawCross(x1, y1, Colors.Yellow) 
 y1 = 70dip 
 cvsLayer(2).DrawText("Rose", x1, y1, Typeface.DEFAULT,16,Colors.Red,"RIGHT") 
 DrawCross(x1, y1, Colors.Yellow) 

 draw the text "Rose" with the three different possible alignments. 

 draw the reference point for each text. 

 
 x1 = 260dip 
 y1 = 30dip 
 cvsLayer(2).DrawTextRotated("Rose", x1,y1,Typeface.DEFAULT,16,Colors.Red,"LEFT",-10) 
 DrawCross(x1, y1, Colors.Yellow) 
 y1 = 50dip 
 cvsLayer(2).DrawTextRotated("Rose", x1,y1,Typeface.DEFAULT,16,Colors.Red,"CENTER",-10) 
 DrawCross(x1, y1, Colors.Yellow) 
 y1 = 70dip 
 cvsLayer(2).DrawTextRotated("Rose", x1,y1,Typeface.DEFAULT,16,Colors.Red,"RIGHT",-10) 
 DrawCross(x1, y1, Colors.Yellow) 
End Sub 

 

 same as above but rotated texts. 

 

The DrawCross routine: 
 Sub DrawCross(x As Int, y As Int, color As Int) 
  Private d = 3dip As Int 
  
  cvsLayer(2).DrawLine(x - d, y, x + d, y, color, 1) 
  cvsLayer(2).DrawLine(x, y - d, x, y + d, color, 1) 
 End Sub 



16  Graphics / Drawing 358 B4A   Beginner's Guide 

Looking closer on the displayed texts we see the reference point for each text.  
 

 cvsLayer(2).DrawText("Rose", x1, y1, Typeface.DEFAULT,16,Colors.Red,"LEFT") 
 DrawCross(x1, y1, Colors.Yellow) 

 

These are the x1 and y1 coordinates used to display the texts. 

  

 
 

 

 

LEFT      alignment. 

 

 

 

CENTER alignment. 

 

 

 

RIGHT    alignment. 

 

 

 

In the Sub btnLayer_Checked routine we: 

 
Sub btnLayer_CheckedChange(Checked As Boolean) 
 Private Send As Button 
  
 Send = Sender 
 pnlLayer(Send.Tag).Visible = Not(pnlLayer(Send.Tag).Visible) 
End Sub 
 

 declare a local Button to get the view that raised the event. 

 set Send to the Sender view 

 change the Visible property from True to False or from False to True.  

 

In the Sub pnlLayer0_Checked routine we: 

 
Sub pnlLayer0_Touch (Action As Int, X As Float, Y As Float) 
 cvsLayer(0).DrawCircle(xc, yc, r1, Colors.DarkGray, True, 3dip) 
 xc = X 
 yc = Y 
 cvsLayer(0).DrawCircle(xc, yc, r1, Colors.Blue, True, 3dip) 
 cvsLayer(0).DrawCircle(xc, yc, r2, Colors.Transparent, True, 1dip) 
 pnlLayer(0).Invalidate 
End Sub 
 

 draw a dark gray circle to erase the previous blue and transparent circle. 

 set and yc to the new coordinates of the circle centers. 

 draw a blue and transparent circle on layer(1). 

 invalidate pnlLayout(1) to force the update of the drawing. 

 



17  VB6 versus B4A 359 B4A   Beginner's Guide 

17 VB6 versus B4A 
 

Written by :  nfordbscndrd  

http://www.b4x.com/android/forum/threads/converting-vb6-to-b4a.9347/#contentcontent 

 

  VB6                  B4A 

  ===                  === 

controls            Views  (button, edittext, label, etc.) 

In the VB6 code window, the top left drop-down list contains all 

the controls you have placed in the current form and the right list 

contains all the events for each control.  The equivalent in B4A can 

be found by clicking on Designer - Tools - Generate Members. Once 

you have created Subs in the program coding window, the tab "Modules" 

on the right side will list each of the Subs. 

  

In B4A, you start by typing "Sub [viewName]" followed by a space and 

follow the prompts, pressing Enter after each selection until B4A 

ends with "EventName" highlighted. This is where you would type in 

the name of the Sub. 

  

Dim/ReDim: 

--------- 

Dim Array(n)        Dim Array(n+1) 

While "n" is the last index number in VB6, it indicates the number 

of array elements when used in B4A. For example, to Dim an array 

with 0-32 elements in VB6, you would say Dim A(32), while to convert 

this to B4A, you need to change it to Dim A(33), yet index #33 is 

never used (doing so would cause an out-of-range error). 

  

ReDim Array()       Dim Array(n+1) -- to clear an array, just Dim it again. 

  

[Dim a Int: Dim b as Boolean] 

If Not b Then...    If Not(b) Then... 

If b Then...        same 

If b = True Then    same 

If a Then...        If a > 0 Then... 

                      B4A does not treat any non-zero value as True like VB6. 

a = a + b           If b = True Then a = a - 1 

                       Boolean's value cannot be used in a math function in B4A. 

  

Global Const x=1    B4A does not have a Global Const function. 

                       In Sub Globals, you can say   Dim x as Int: x = 1 

                       but x is not a constant (its value can be changed). 

  

Loops, If-Then, Select Case: 

--------------------------- 

Do [Until/While]    same 

Loop [Until/While]  Loop  [Until/While not allowed.] 

For - Next          same 

For i... - Next i   The loop variable (i) is not allowed with Next. 

Exit Do/For         Exit 

If - Then - Else    same, except VB's ElseIf is "Else If" in B4A; ditto EndIf 

  

   ---              Continue [Skips to Next in For-Next loop] 

For i = 1 to 6        For i = 1 to 6 

  If i = 4 Then         If i = 4 Then Continue 

    ...code...          ...code... 

  End If                ... 

Next                  Next 

  

Select Case [expr]  Select [value] 

  

http://www.b4x.com/android/forum/threads/converting-vb6-to-b4a.9347/#contentcontent


16  VB6 versus B4A 360 B4A   Beginner's Guide 

Colors: 

------ 

L1.BackColor =      L1.Color = Colors.Red 

    vbRed 

L1.ForeColor =      L1.TextColor = Colors.Black 

    vbBlack 

  

Calling a sub: 

------------- 

SubName x, y       SubName(x, y) 

  

Sub SubName()       Sub SubName() As Int/String/etc.  

  

Function FName()    Sub FName() As [var.type] 

   As [var.type]       In B4A, any Sub can be used like a Function by adding a 

                       variable type such as 

                          Sub CheckX(x As Int) As Boolean 

                             ...optional code... 

                             If x = [desired value] Then Return True 

                             ...optional code... 

                          End Sub 

                       If no Return is given, then zero/False/"" is returned. 

                       The calling code does not have to reference the returned 

                       value, so that while "If CheckX(x) = True..." is valid, 

                       so is just "CheckX(x)" 

Exit Sub            Return 

Exit Function       Return [value] 

  

General: 

------- 

DoEvents            same, except that Erel says: 

                    "Calling DoEvents in a loop consumes a lot of resources and 

                    it doesn't allow the system to process all waiting messages 

                    properly." This was in response to my pointing out that 

                    while in a Do Loop with DoEvents in it, WebView could not  

                    be loaded or if loaded, would not process a hyperlink click. 

                    And Agraham says: "Looping is bad practice on mobile 

                    devices. The CPU will be constantly executing code and using 

                    battery power as the code will never get back to the OS idle 

                    loop where the hardware power saving measures are invoked." 

  

Format()            NumberFormat & NumberFormat2 [see documentation] 

  

InputBox($)         InputList(Items as List, Title, CheckedItem as Int) as Int 

                        Shows list of choices with radio buttons. Returns index. 

                        CheckedItem is the default. 

                    InputMultiList(Items as List, Title) As List 

                        Usere can select multiple items via checkboxes. 

                        Returns list with the indexes of boxes checked. 

  

MsgBox "text"       MsgBox("text", "title") 

i=MsgBox()          MsgBox2(Message, Title, Positive, Cancel, Negative, Icon) as 

Int 

                        Displays three buttons with text to display for buttons 

                           (Positive, Cancel, Negative) 

                        Icon is displayed near the title and is specified like: 

                           LoadBitmap(File.DirAssets, "[filename].gif") 

   ---              ToastMessageShow(text, b) [where b=True for long duration] 

  

Rnd is < 1          Rnd(min, max) is integer >= min to < max 

  

Round(n)            same, or Round2(n, x) where x=number of decimal places 

  

  

i = Val(string)     If IsNumber(string) Then i = string Else i = 0 -- 



16  VB6 versus B4A 361 B4A   Beginner's Guide 

                    An attempt to use i=string "throws an exception" if the 

string is 

                    not numbers. 

  

control.SetFocus    view.RequestFocus 

  

n / 0 : error       n / 0 = 2147483647 -- B4A does not "throw an exception" for 

                       division by 0, but it does return 2147483647 no matter 

                       what the value of "n" is. 

  

x = Shell("...")    See "Intent". This is not a complete replacement, but allows 

                       code such as the following from the B4A forum (by Erel): 

                    Dim pi As PhoneIntents 

                    StartActivity 

(pi.OpenBrowser("file:///sdcard/yourfile.html")) 

  

t = Timer           t = DateTime.Now ' Ticks are number of milliseconds since 1-

1-70 

  

TabIndex: 

-------- 

In VB6, TabIndex can be set to control the order in which controls get focus 

when Tab is pressed. According to Erel, in B4A: 

   "Android handles the sequence according to their position. You can set 

    EditText.ForceDone = True in all your EditTexts. Then catch the 

    EditText_EnterPressed event and explicitly set the focus to the next 

    view (with EditText.RequestFocus)." 

  

Setting Label Transparency: 

-------------------------- 

Properties - Back Style        Designer - Drawable - Alpha 

  

Constants: 

--------- 

""                  Quote = Chr$(34) 

vbCr                CRLF = Chr$(13) 

vbCrLf              none 

  

String "Members": 

---------------- 

VB6 uses a character position pointer starting with 1. 

B4A uses a character Index pointer starting with 0. 

  

        VB6                        B4A 

Mid$("abcde", 1, 1) = "a" = letter array index 0 -- "a" = "abcde".CharAt(0) 

Mid$("abcde", 2, 1) = "b" = letter array index 1 

Mid$("abcde", 3, 1) = "c" = letter array index 2 

Mid$("abcde", 4, 1) = "d" = letter array index 3 

Mid$("abcde", 5, 1) = "e" = letter array index 4 

  

     VB6                               B4A 

     ===                               === 

Mid$(text, n, 1)                    text.CharAt(n-1) 

Mid$(text, n)                       text.SubString(n-1) 

Mid$(text, n, x) [x=length wanted]  text.SubString2(n-1, n+x-1) [n+x-1=end 

position] 

Mid$(text, n, x) = text2            text = text.SubString2(0, n-2) & _ 

                                           text2.SubString2(0, x-1) & _ 

                                           text.SubString(n-1 + z)  where... 

                                             z = Min(x, text2.length) 

Left$(text, n)  [n=num.of chars.]   text.SubString2(0, n) 

Right$(text, n)                     text.SubString(text.Length - n + 1) 

If a$ = b$...                       If a.CompareTo(b)... 

If Right$(text, n) = text2...       If text.EndsWith(text2)... 

If Left$(text, n) = text2...        If text.StartsWith(text2)... 

file://///sdcard/yourfile.html


16  VB6 versus B4A 362 B4A   Beginner's Guide 

If Lcase$(text) = Lcase$(text2)...  If text.EqualsIgnoreCase(text2)... 

x = Len(text)                       x = text.Length 

text = Replace(text, str, str2)     text.Replace(str, str2) 

Lcase(text)                         text.ToLowerCase 

Ucase(text)                         text.ToUpperCase 

Trim(text)                          text.Trim 

  (no LTrim or RTrim in B4A) 

Instr(text, string)                 text.IndexOf(string) 

Instr(int, text, string)            text.IndexOf2(string, int) 

                                       Returns -1 if not found. 

                                       Returns char. index, not position. 

                                       Starts search at "int". 

If Lcase$(x) = Lcase$(y)...         If x.EqualsIgnoreCase(y)... 

text = Left$(text, n) & s &         text.Insert(n, s) 

          Right$(Text, y) 

Asc(s) [where s = a character]      same 

  

Error Trapping: 

-------------- 

VB6: 

=== 

Sub SomeSub 

   On [Local] Error GoTo ErrorTrap 

      ...some code... 

   On Error GoTo 0 [optional end to error trapping] 

   ...optional additional code... 

   Exit Sub [to avoid executing ErrorTrap code] 

ErrorTrap: 

   ...optional code for error correction... 

   Resume [optional: "Resume Next" or "Resume [line label]". 

End Sub 

  

B4A: 

=== 

Sub SomeSub 

   Try 

      ...some code... 

   Catch [only executes if error above] 

      Log(LastException) [optional] 

      ...optional code for error correction... 

   End Try 

   ...optional additional code... 

End Sub 

  

WIth B4A, if you get an error caught in the middle of a large subroutine, you 

can 

NOT make a correction and resume within the code you were executing. Only the 

code 

in "Catch" gets executed. That would seem to make Try-Catch-End Try of use 

mainly 

during development. 

  

Try-Catch in place of GoTo: 

-------------------------- 

Try-Catch can be used as a substitute for GoTo [line label] for forward, but not 

backward, jumps. It cannot be used to replace GoSub, for which B4A has no 

equivalent. 

  

Start the code with "Try" and replace the [line label] with "Catch". 

Replace "GoTo [line label]" with code which will create an exception, which 

causes 

a jump to "Catch", such as OpenInput("bad path", "bad filename"). 

  

"Immediate Window" vs "Logs" Tab 

-------------------------------- 



16  VB6 versus B4A 363 B4A   Beginner's Guide 

Comments, variable values, etc., can be displayed in VB6's Immediate 

Window by entering into the code "Debug.Print ...". 

  

In the B4A environment, the Logs tab on the right side of the IDE is a 

way to show the values of variables, etc., while the code is running. 

  

Both VB6 and (now) B4A allow single-stepping through the code while it 

is running and viewing the values of variables. VB6 also allows changing 

the value of variables, changing the code, jumping to other lines from 

the current line, etc. Because B4A runs on a PC while the app runs on 

a separate device, B4A is currently unable to duplicate all of these 

VB6 debug features. 



18  FAQ 364    B4A   Beginner's Guide 

18 FAQ 
 

Some of the chapters below have been picked up from the forum. 

 

18.1 "Please save project first"   message 

 

When I try to compile or open the Designer I see a message saying: "Please save source code first."  

A new project doesn't have a containing folder until it is first saved.  

Save your project and this error will go away. 

 

18.2 "Are you missing a library reference"   message 

 

Compiler says: "Are you missing a library reference?".  

 

Go to the Libraries tab in the right pane and check the 

required libraries.  

 

If you do not know which library a specific object type 

belongs to, you can go to the  documentation  page or  to 

the list of additional libraries.  

 

 
 

At the bottom of this page there is a long list with all the 

objects types.  

 
Pressing on any type will take you to the right library.  

Note that the trial version doesn't support libraries. Only the full version. 

http://www.basic4ppc.com/android/documentation.html
http://www.basic4ppc.com/android/wiki/index.php/Libraries


18  FAQ 365    B4A   Beginner's Guide 

18.3 How loading / updating a library 

 

See the Libraries chapter in the guide. 

 

A list of the official and additional libraries with links to the relevant help documentation can be 

found on the B4x site in the B4A Documentation page: List of Libraries  

To find the library files use a query like http://www.b4x.com/search?query=betterdialogs+library  

in your internet browser.  

 

To load or update a library follow the steps below: 

 Download the library zip file somewhere. 

 Unzip it. 

 Copy the xxx.jar and xxx.xml files to the  

o B4A Library folder for a standard B4A library 

o Additional libraries folder for an additional library. 

 Right click in the libraries list in the Lib Tab and click on  and select the 

library. 

 

 

18.4 When do we need to  'Initialize'  and when not   

 

View.  
 

For ALL Views: 

 To be able to have access to any View by its name you must declare it in the Sub Globals 

routine. 

 

Views added  

 in the Designer in a layout file MUST NOT be initialized ! 

o Just declare the View in the Sub Globals routine. 

 
Sub Globals 
 Private lblTitle As Label 
 

and nothing else. 

 

 by code it MUST be initialized. 

o Declare the View in the Sub Globals routine. 

 
Sub Globals 
 Private lblTitle As Label 
 

o Initialize it and add it to the Activity (or a Panel) in the Activity_Create routine. 

 
Sub Activity_Create(FirstTime As Boolean) 
 If FirstTime Then 
  lblTitle.Initialize("") 
  Activity.AddView(lblTitle, 10dip, 10dip, 200dip, 50dip) 
 End If 

 

List  /  Map.  List and Map objects must be initialized before they can be used. 

https://www.b4x.com/android/documentation.html
http://www.b4x.com/search?query=betterdialogs+library


18  FAQ 366    B4A   Beginner's Guide 

18.5 Split a long line into two or more lines 

 

To split a long line into two or more lines put an underscore character, seperated by a blank 

character, at the end of the line. 

 
Answ = Msgbox2("Do you want to quit the program", "A T T E N T I O N", "Yes", "", "No", Null) 

 

Becomes: 

 
Answ = Msgbox2("Do you want to quit the program", _ 
"A T T E N T I O N", "Yes", "", "No", Null) 

 

18.6 Avoid closing an application / capture keycodes like Back / Menu 

 

This can be done by intercepting the Activity_KeyPress event. 

 
Sub Activity_KeyPress (KeyCode As Int) As Boolean 'Return True to consume the event 
 Private Answ As Int 
  
 If KeyCode = KeyCodes.KEYCODE_BACK Then 
  Answ = Msgbox2("Do you want to quit the program ?", _ 
  "A T T E N T I O N", "Yes", "", "No", Null) 
  If Answ = DialogResponse.NEGATIVE Then 
   Return True 
  End If 
 End If 
 Return False 
End Sub 
 

 We check if the the KeyCode equals the Back key.  

 If yes, we ask the user if he really wants to quit the program. 

o If 'No' we return True to consume the event. 

o Otherwise we return False to transmit the event to the OS. 

 

Just as a reminder, the underscore at the end in the 5th line  
Answ = Msgbox2("Do you want to quit the program ?", _ 
means split the line and put the rest on the next line. 

 

ATTENTION : 

The Home key cannot be trapped in the Activity_KeyPress  event routine ! 

 

 

 

 



18  FAQ 367    B4A   Beginner's Guide 

18.7 Unwanted events like Click, Touch or others 

 

Proposed by alfcen: 

 

Suppose you have an Activity containing several buttons with Click events. 

Now, you add a Panel onto the Activity, thus covering buttons. As you tap on the 

panel you will see that a click event was fired on a button on the Activity. 

This is NOT a B4A bug, on the contrary, it might be quite useful.  

However, if this is not wanted, just add: 

 
Sub Panel1_Click 
 ' do nothing here or place code to be executed upon tapping on the panel 
End Sub 
 

 

18.8 Adding a Menu item 

 

You should also have a look at Example programs / User interfaces. 

 

This is done with the AddMenuItem or AddMenuItem2 methods. 

Once a menu item is added you can neither modify it nor remove or disable it. 

 
Activity.AddMenuItem("Title", "EventName") 
Activity.AddMenuItem("Title", "EventName", image) 

 

Examples: 

 
Activity.AddMenuItem("Load", "mnuLoad") 
Activity.AddMenuItem("Save", "mnuSave", image) 
 

or 

 
Activity.AddMenuItem("Load", "mnuLoad", LoadBitmap(File.DirAssets, "Load.png")) 
Activity.AddMenuItem("Save", "mnuSave", LoadBitmap(File.DirAssets, "Save.png")) 
 

 



18  FAQ 368    B4A   Beginner's Guide 

18.9 How do I remove a View with the Designer 

 

To remove a View with the Designer you must: 

 Select the View to remove either on the device, the Emulator or in the Designer. 

 Remove it, right click on the view and in the Popup menu click on Cut. 

 

 
 

 

18.10  "Process has timeout"   message 

 

If you often get this message "Process has timeout" you can change its value: 

 In the IDE menu Tools / IDE Options click on Configure Process Timeout. 

 

 

 

 

 

 

 

 

 

  

 

 And change the value: 

 

 



18  FAQ 369    B4A   Beginner's Guide 

18.11  Getting a picture from the gallery 

 

Following code allows you to load a picture from the gallery. 

 
Sub Process_Globals 
 Private chooser As ContentChooser 
End Sub 
 
Sub Globals 
 
End Sub 
  
Sub Activity_Create(FirstTime As Boolean) 
 If FirstTime Then 
  chooser.Initialize("chooser") 
 End If 
 chooser.Show("image/*", "Choose image") 
End Sub 
 
Sub chooser_Result(Success As Boolean, Dir As String, FileName As String) 
 If Success Then 
  Private bmp As Bitmap 
  bmp.Initialize(Dir, FileName) 
  Activity.SetBackgroundImage(bmp) 
 Else 
  ToastMessageShow("No image selected", True) 
 End If 
End Sub 



18  FAQ 370    B4A   Beginner's Guide 

18.12   How to delete  x.bal  files or other files from a project 

 

To delete files from the project you must use the Files Tab in the lower right corner of the IDE. 

 

 Select the files you want to delete. 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Click on  and confirm to delete the files. 

If you delete the files only in the folder, you will get a message for missing files the next 

time you start the project. 

 

 You will be asked if you want to remove the files from the Files folder. 

Oui > Yes Non > No Annuler > Cancel 

o Yes   Removes the selected files from the Files folder, be sure that you have 

  backup files somewhere else if you need them afterwards. 

o No  Removes the files from the project but leaves them in the Files folder. 

o Cancel Aborts the function. 

 

 
 

 

The files are 

removed. 

 



18  FAQ 371    B4A   Beginner's Guide 

18.13   Block a screen orientation 

 

To block the orientation either to Portrait or to Landscape. 

This is valid for the whole project. 

To define different screen orientations for different activities you must do in the code see below. 

 
#Region  Project Attributes  
 #ApplicationLabel: MyFirstProgram 
 #VersionCode: 1 
 #VersionName:  
 'SupportedOrientations possible values: unspecified, landscape or portrait. 
 #SupportedOrientations: unspecified 
 #CanInstallToExternalStorage: False 
#End Region 
 

On top of the Main module in the Project Attributes you can define the supported orientations. 

 

 

You can define screen orientations in the code with  SetScreenOrientation  from the Phone 

library: 

 

 Landscape 
Phone1.SetScreenOrientation(0) 
 

 Portrait 
Phone1.SetScreenOrientation(1) 
 

 Both 
Phone1.SetScreenOrientation(-1) 

 



18  FAQ 372    B4A   Beginner's Guide 

18.14   Close second Activity 

 

From the forum: 

Referring to the 'twoactivities' tutorial by Erel, I noticed that when back button was pressed from 

the main Activity, Activity2 was then shown again.  

 

In the code of Activity2 after StartActivity(Main) add Activity.Finish. 

 
 StartActivity(Main) 
 Activity.Finish 

 

18.15   Taking a screenshot programaticaly 

 

You can take a screenshot of the device or the Emulator with following code: 

Needs the Reflection library. 

 
Sub btnScrShot_LongClick 
 ' Take a screenshot. 
 Private Obj1, Obj2 As Reflector 
 Private bmp As Bitmap 
 Private c As Canvas 
 Private now, i As Long 
 Private dt As String 
 DateTime.DateFormat = "yyMMddHHmmss" 
 now = DateTime.now 
 dt = DateTime.Date(now) ' e.g.: "110812150355" is Aug.12, 2011, 3:03:55 p.m. 
 Obj1.Target = Obj1.GetActivityBA 
 Obj1.Target = Obj1.GetField("vg") 
 bmp.InitializeMutable(Activity.Width, Activity.Height) 
 c.Initialize2(bmp) 
 Private args(1) As Object 
 Private types(1) As String 
 Obj2.Target = c 
 Obj2.Target = Obj2.GetField("canvas") 
 args(0) = Obj2.Target 
 types(0) = "android.graphics.Canvas" 
 Obj1.RunMethod4("draw", args, types) 
 Private Out As OutputStream 
 Out = File.OpenOutput(File.DirRootExternal, dt & ".png", False) 
 bmp.WriteToStream(Out, 100, "PNG") 
 Out.Close 
End Sub 
 

For a screenshot of a Panel, even a ScrollView.Panel replace  

Obj1.Target = Obj1.GetField("vg")   by  

Obj1.Target = Panel1 or Obj1.Target = ScrollView1.Panel 



18  FAQ 373    B4A   Beginner's Guide 

18.16 After compiling, where are the files 

 

The compiler generates an *.apk file which is located in the 'Objects' folder of your project. When 

the IDE is connected to a device or to the Emulator the apk file is automaticaly uploaded to it. 

The name of the apk file is the 'Application Label' you entered when you defined the project. 

Example: GPSExample.apk 

If you have compiled in Debug mode you will get an apk file with the _DEBUG suffix. 

Example: GPSExample_DEBUG.apk 

If you want to distribute your application you should select Release or Release (obfuscated). 

 

 
 

18.17 Run an application from another one 

 

Erels' answer to the question: 

You can start any application by sending the correct Intent. 

The easiest way to see the required Intent is to look at the unfiltered logs while manually starting 

the application. 

 

The code below shows how to run an application from another one. 

The PackageManager is an object in the Phone library. 

The exact package name is needed ! 

 
Private pm As PackageManager 
Private in As Intent 
 
in.Initialize("", "") 
in = pm.GetApplicationIntent 
 
If in.IsInitialized Then 
 StartActivity(in) 
End If 
 

 



18  FAQ 374    B4A   Beginner's Guide 

18.18 How to pass an Array to a Sub 

 

It is possible to pass Arrays, also multidimensional Arrays, to a sub. 

 

Code example. 
 Private one(1), two(1,2), three(1,2,3) As String 

 
Sub Test(a() As String, b(,) As String, c(,,) As String) As String(,) 
 ... 
End Sub 
' 
' 
 Test(one, two, three) 
 

You need to specify the rank (number of dimensions) in the Sub definition with ',' . 

If you want the Sub to return an array you must also speccify it. 

 
Sub Test(a() As String, b(,) As String, c(,,) As String) As String 
Returns a single string. 

 
Sub Test(a() As String, b(,) As String, c(,,) As String) As String() 
Returns a one rank string array. 

 
Sub Test(a() As String, b(,) As String, c(,,) As String) As String(,) 
Returns a two rank string array. 

 

 

18.19 Getting language and country from device 

 

You can get the current language and country from a device with the following code. 

 
Sub Activity_Create(FirstTime As Boolean) 
 Log(GetDefaultLanguage) 
End Sub 
 
Sub GetDefaultLanguage 
 Private r As Reflector 
 r.Target = r.RunStaticMethod("java.util.Locale", "getDefault", Null, Null) 
 Return r.RunMethod("getDisplayName") 
End Sub 

 

GetDefaultLanguage returns a string with the language and the country. 

Note: getDisplayName  is case sensitive! 

 

Needs the Reflection library (available only for users who bought B4A) ! 

 

Examples: 

 

 English (United States) 

 Deutsch (Österreich) 

 français (Suisse) 

 



18  FAQ 375    B4A   Beginner's Guide 

18.20 Where is the apk file 

 

Where is the apk file: 

The apk file is located in the Objects folder of your project. 

 

18.21 Why is my apk filename result.apk 

 

The filename is the same as the main project filename but instead of the .b4a suffix it has the .apk 

suffix. 

If you enter non authorized characters, like a space, the apk filename will be result.apk. 

The apk name has no importance, the displayed name is the Label name you gave when you created 

the project. 

 

 

18.22 Why is my apk filename xxx_DEBUG.apk 

 

 

To distribute a program you must select in the IDE, in the Dropdown list, 

Release or Release (obfuscated). 

 

 

 

 

 

18.23 Select True / Case trick  

 

The question : It would be nice to be able to use Select Case using the 'greater than' and 'less than' 

operators <>. It makes for cleaner code than 'if' 'else' and 'end if' etc. 

 

This trick does it: 

 
i = 10 
Select True 
Case (i < 9) 
 Log("False") 
Case (i = 10) 
 Log("True") 
End Select 
 

 



18  FAQ 376    B4A   Beginner's Guide 

18.24 Fill an array with random numbers without repetition 

 

This code snippet from Erel is based on the Fisher-Yates shuffle algorithm. 

 
Sub Globals 
 Private numbers(10) As Int 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 'put numbers 1 - 10 in the array 
 For i = 0 To 9 
  numbers(i) = i + 1 
 Next 
 ShuffleArray(numbers) 
 For i = 0 To 9 
  Log(numbers(i)) 'print the numbers to the log 
 Next 
End Sub 
 
Sub ShuffleArray(arr() As Int) 
 Private i As Int 
  
 For i = arr.Length - 1 To 0 Step -1 
  Private j, k As Int 
  j = Rnd(0, i + 1) 
  k = arr(j) 
  arr(j) = arr(i) 
  arr(i) = k 
 Next 
End Sub 

 

18.25 Detect screen orientation 

 

The code below detects the screen orientaion, comparing if the activity width is greater than the 

activity height then the orientation is "landscape" otherwise it's "portrait". 

 
Sub Globals 
 Private Orientation As String 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 If Activity.Width > Activity.Height Then 
  Orientation = "Landscape" 
 Else 
  Orientation = "Portait" 
 End If 
End Sub 
 

http://en.wikipedia.org/wiki/Fisher%25E2%2580%2593Yates_shuffle


18  FAQ 377    B4A   Beginner's Guide 

18.26 Some functions don't work in Activity_Pause 

 

Any function that stops the program is not allowed in the Activity_Pause routine. 

Like : 

 Message boxes MsgBox 

 Modal dialogs  InputDialog, FileDialog etc. 

 Custom dialogs 

 Breakpoints 

 

Log and ToastMessage are allowed. 

 

18.27 Calling the internal Calculator 

 

The subroutine below calls the internal calculator. 

 
Sub Calculator 
 Private i As Intent 
 i.Initialize("", "") 
 i.SetComponent("com.android.calculator2/.Calculator") 
 Try 
  StartActivity(i) 
 Catch 
  ToastMessageShow("Calculator app not found.", True) 
 End Try 
End Sub 

 

Note that "com.android.calculator2/.Calculator" is case sensitive ! 

This would throw an error: "com.android.calculator2/.calculator" 

 

Some manufacturers change the name of the internal calculator. 

The code below overcomes this problem.  

Code provided by dxxxyyyzzz on the forum. 

Needs the Phone Library. 

 
Private Pm As PackageManager 
Private Inte As Intent 
Private Packages As List 
Private st As String 
 
Packages = Pm.GetInstalledPackages 
 
For i = 0 To Packages.size - 1 
 st = Packages.Get(i) 
 If st.Contains("calc") = True Then 
  Inte=Pm.GetApplicationIntent(st) 
  If Inte.IsInitialized Then     
   StartActivity(Inte) 
   Exit 
  End If 
 End If 
Next 



18  FAQ 378    B4A   Beginner's Guide 

18.28 Get the Alpha / Red / Green / Blue values 

 
Sub Activity_Create(FirstTime As Boolean) 
 Private argb() As Int 
 argb = GetARGB(Colors.Transparent) 
 Log("A = " & argb(0)) 
 Log("R = " & argb(1)) 
 Log("G = " & argb(2)) 
 Log("B = " & argb(3)) 
End Sub 
 
Sub GetARGB(Color As Int) As Int() 
 Private res(4) As Int 
 res(0) = Bit.UnsignedShiftRight(Bit.And(Color, 0xff000000), 24) 
 res(1) = Bit.UnsignedShiftRight(Bit.And(Color, 0xff0000), 16) 
 res(2) = Bit.UnsignedShiftRight(Bit.And(Color, 0xff00), 8) 
 res(3) = Bit.And(Color, 0xff) 
 Return res 
End Sub 
In line Sub GetARGB(Color As Int) As Int()  the () after Int are necessary because the return 

value is an array. 

18.29 Get device type 

 
Sub Activity_Create(FirstTime As Boolean) 
 If GetDevicePhysicalSize > 6 Then 
  '7'' or 10'' tablet 
 Else 
  'phone 
 End If 
End Sub 
 
Sub GetDevicePhysicalSize As Float 
 Private lv As LayoutValues 
 lv = GetDeviceLayoutValues 
 Return Sqrt(Power(lv.Height, 2) + Power(lv.Width, 2)) / lv.Scale / 160 
End Sub 

18.30 Generate a Click event 

 
Sub Globals 
 Private sp As Spinner 
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 sp.Initialize("sp") 
 sp.AddAll(Array As String("a", "b", "c", "d")) 
 Activity.AddView(sp, 10dip, 10dip, 200dip, 50dip) 
End Sub 
 
Sub Activity_Click 
 OpenSpinner(sp) 
End Sub 
 
Sub OpenSpinner(s As Spinner) 
 Private r As Reflector 
 r.Target = s 
 r.RunMethod("performClick") 
End Sub 



18  FAQ 379    B4A   Beginner's Guide 

18.31 "Out of memory" Error / Bitmaps 

 

Under certain circumstances the program stops with  "Out of memory" message. 

This can happen when there are big bitmaps or many bitmaps. 

 

The code below disposes the bitmap and frees the memory (code provided by agraham here) 
Private Obj1 As Reflector 
Obj1.Target = bmp ' bmp is the unwanted Bitmap 
Obj1.RunMethod("recycle") 
 

For a bitmaps of a canvas: 
Obj1.Target = canv 
Obj1.Target = Obj1.GetField("bw") 
Obj1.Target = Obj1.RunMethod("getObject") 
Obj1.RunMethod("recycle") 
 

 

18.32 Get consumed memory 

 

The routines below get different memory values.  

Needs the Reflection library 

 

Get the max memory for the application. 
Private Sub GetMaxMemory As Double 
 Private r As Reflector  
 r.Target = r.RunStaticMethod("java.lang.Runtime", "getRuntime", Null, Null)  
 Return (r.RunMethod("maxMemory") / (1024*1024)) 
End Sub 
 

Get the currently total consumed memory. 
Private Sub GetTotalMemory As Double 
 Private r As Reflector  
 r.Target = r.RunStaticMethod("java.lang.Runtime", "getRuntime", Null, Null)  
 Return (r.RunMethod("totalMemory") / (1024*1024)) 
End Sub 
 

Get the currently available free memory.  
Private Sub GetFreeMemory As Double 
 Private r As Reflector 
 r.Target = r.RunStaticMethod("java.lang.Runtime", "getRuntime", Null, Null) 
 Return (r.RunMethod("maxMemory") - r.RunMethod("totalMemory")) / (1024*1024) 
End Sub 
 

 

 

 

 

 

http://www.basic4ppc.com/forum/basic4android-updates-questions/10760-out-memory-2.html#post62144


18  FAQ 380    B4A   Beginner's Guide 

18.33 Remove the scrollbar from a ScrollView 

 

The code needs the Reflection library. 

 
Private r As Reflector 
r.Target = ScrollView1 
r.RunMethod2("setVerticalScrollBarEnabled", False, "java.lang.boolean") 

 

18.34 Check if directory exists 

 
 Private MyDirctory As String 
  
 MyDirctory = File.DirRootExternal & "/Images" 
 If File.Exists(MyDirctory, "") = False Then 
  File.MakeDir(File.DirRootExternal, "Images") 
 End If 

 

18.35 Set Full Screen in code 

 
Sub FullScreen(Active As Boolean, ActivityName As String) 
 Private obj1 As Reflector 
 Private i As Int 
 
 i = 1024  'FLAG_FULLSCREEN 
 obj1.Target = obj1.GetMostCurrent(ActivityName) 
 obj1.Target = obj1.RunMethod("getWindow") 
 If Active Then 
  obj1.RunMethod2("addFlags",i,"java.lang.int") 
 Else 
  obj1.RunMethod2("clearFlags",i,"java.lang.int") 
 End If 
End Sub 
 

Active = True  sets full screen. 

Active = False set back to show the status bar. 



18  FAQ 381    B4A   Beginner's Guide 

18.36 Change EditText input modes 

 

The EditText view has several default input modes. 

 INPUT_TYPE_NONE   No input allowed. 

 INPUT_TYPE_NUMBERS   Allows only integer numbers. 

 INPUT_TYPE_DECIMAL_NUMBERS Allows only decimal numbers. 

 INPUT_TYPE_TEXT   Allows any type of text. 

 INPUT_TYPE_PHONE   Allows phone numbers. 

 

Example: 
EditText1.InputType = EditText1.INPUT_TYPE_TEXT 
 

Other flags are available:  A complete list can be found here. 

 

INPUT_TYPE_TEXT  flag combinations: 

 

 TYPE_TEXT_FLAG_CAP_CHARACTERS  Constant Value: 4096 (0x00001000) 

Sets to upper case characters. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 4096) 

 

 TYPE_TEXT_FLAG_CAP_SENTENCES  Constant Value: 16384 (0x00004000) 

Sets the first character of a sentence to upper case. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 16384) 

 

 TYPE_TEXT_FLAG_CAP_WORDS   Constant Value: 8192 (0x00002000) 

Sets the first character of all words to upper case. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 8192) 

 

 TYPE_TEXT_FLAG_NO_SUGGESTION  Constant Value: 524288 (0x00080000) 

Sets to no suggestion. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 524288) 

 

 TYPE_TEXT_FLAG_AUTO_COMPLETE Constant Value: 65536 (0x00010000) 

Sets auto complete. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 65536) 
 

 TYPE_TEXT_FLAG_AUTO_CORRECT  Constant Value: 32768 (0x00008000) 

Sets auto correct. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 32768) 
 

 TYPE_TEXT_VARIATION_EMAIL_ADDRESS Constant Value: 32 (0x00000020) 

Sets for e-mail address. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 8192) 

 

 TYPE_TEXT_VARIATION_PASSWORD  Constant Value: 128 (0x00000080) 

Sets password mode. 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_TEXT, 128)

http://developer.android.com/reference/android/text/InputType.html


18  FAQ 382    B4A   Beginner's Guide 

INPUT_TYPE_NUMBERS flag combinations: 

 

 TYPE_NUMBER_SIGNED    Constant Value: 4096 (0x00001000) 

Allows signed integer numbers 
EditText1.InputType = Bit.Or(EditText1.INPUT_TYPE_NUMBERS, 4096) 
 

 

18.37 Sorting a file list according to last modified time 

 

Code supplied by Erel in the forum. 

 
Sub Process_Globals 
 Type FileAndTime(Name As String, Time As Long) 
End Sub 
 
Sub Globals 
     
End Sub 
 
Sub Activity_Create(FirstTime As Boolean) 
 Private files As List 
 files = ListFilesByDate(File.DirRootExternal) 
 For i = 0 To files.Size - 1 
  Private fs As FileAndTime 
  fs = files.Get(i) 
  Log(fs.Name & ": " & DateTime.Date(fs.Time)) 
 Next 
End Sub 
 
Sub ListFilesByDate(Folder As String) As List 
 Private files As List 
 files = File.ListFiles(Folder) 
 Private sortedFiles As List 
 sortedFiles.Initialize 
 For i = 0 To files.Size - 1 
  Private fs As FileAndTime 
  fs.Name = files.Get(i) 
  fs.Time = File.LastModified(Folder, fs.Name) 
  sortedFiles.Add(fs) 
 Next 
 sortedFiles.SortType("Time", False) 
 Return sortedFiles 
End Sub 
 



18  FAQ 383    B4A   Beginner's Guide 

18.38 Get the dpi values of the device (dots per inch) 

 

Needs the Reflection library. 
 Private Xdpi,Ydpi As Float 
 Private r As Reflector 
 r.Target = r.GetContext 
 r.Target = r.RunMethod("getResources") 
 r.Target = r.RunMethod("getDisplayMetrics") 
 Xdpi = r.GetField("xdpi") 
 Ydpi = r.GetField("ydpi") 
 

The different fields are : 

 density The logical density of the display. 

 densityDpi The screen density expressed as dots-per-inch. 

 heightPixels The absolute height of the display in pixels. 

 widthPixels The absolute width of the display in pixels. 

 scaledDisplay A scaling factor for fonts displayed on the display. 

 xdpi The exact physical pixels per inch of the screen in the X dimension. 

 ydpt The exact physical pixels per inch of the screen in the Y dimension. 

 

 

 

18.39 Finding java program lines 

 

Sometimes a program raises java execution error messages with the subname and a java line 

number. 

To find the given line : 

 look at the Objects\src\packagename for the activity.java file. 

 open it in a text editor showing line numbers (like notepad++) 

 look at the given line number and you find the offending code. 

 

Advice given by warwound (Martin Pearman). 

 

 

 

 



19  Glossary 384    B4A   Beginner's Guide 

19 Glossary 
 

Android Android is a software stack for mobile devices that includes an operating system, 

middleware and key applications. Google Inc. purchased, in 2005, Android Inc. the company that 

initially developed the software. 

 

Java Java is a programming language originally developed by James Gosling at Sun 

Microsystems (which is now a subsidiary of Oracle Corporation) and released in 1995 as a core 

component of Sun Microsystems' Java platform. The language derives much of its syntax from C 

and C++ but has a simpler object model and fewer low-level facilities. 

 

Activity An activity is a single, focused thing that the user can do. Almost all activities interact 

with the user, so the Activity class takes care of creating a window for you in which you can place 

your UI. 

 

View Provides classes that expose basic user interface classes that handle screen layout and 

interaction with the user. Examples: Label, Panel, Button, EditText etc. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Java_language
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/view/package-summary.html


20  Index 385 B4A   Beginner's Guide 

20 Index 
 

Will be added it he next update. 


