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Preface

Vision-based motion analysis aims to detect, track and identify objects, and more
generally, to understand their behaviors, from image sequences. With the ubiquitous
presence of video data and its increasing importance in a wide range of real-world
applications such as visual surveillance, human-machine interfaces and sport event
interpretation, it is becoming increasingly important to automatically analyze and
understand object motions from large amount of video footage.

Not surprisingly, this exciting research area has received growing interest in re-
cent years. Although there has been much progress in the past decades, many chal-
lenging problems remain unsolved, e.g., robust object detection and tracking, un-
constrained object activity recognition, etc. Recently, statistical machine learning
algorithms, such as manifold learning, probabilistic graphical models and kernel
machines, have been successfully applied in this area for object tracking, activity
modeling and recognition. It is fully believed that novel statistical learning tech-
nologies have strong potential to further contribute to the development of robust yet
flexible vision systems. The process of improving the performance of vision sys-
tems has also brought new challenges to the field of machine learning, e.g., learning
from partial or limited annotations, online and incremental learning, and learning
with very large datasets. Solving the problems involved in object motion analysis
will naturally lead to the development of new machine learning algorithms. In re-
turn, new machine learning algorithms are able to address more realistic problems
in object motion analysis and understanding.

This edited book highlights the development of robust and effective vision-based
motion understanding algorithms and systems from a machine learning perspective.
Major contributions of this book are as follows: (1) it provides new researchers
with a comprehensive review of the recent development in this field, and presents
a variety of study cases where the state-of-the-art learning algorithms have been
devised to address specific tasks in human motion understanding; (2) it gives the
readers a clear picture of the most active research forefronts and discussions of
challenges and future directions, which different levels of researchers might find
to be useful for guiding their future research; (3) it draws great strength from the
research communities of object motion understanding and machine learning and
demonstrates the benefits from the interaction and collaboration of both fields.

v



vi Preface

The targeted audiences of this edited book are mainly researchers, engineers as
well as graduate students in the areas of computer vision, pattern recognition and
machine learning. The book is also intend to be accessible to a broader audience
including practicing professionals working with specific vision applications such as
surveillance, sport event analysis, healthcare, video conferencing, and motion video
indexing and retrieval.

The origin of this book stems from the great success of the first and second
International Workshop on Machine Learning for Vision-Based Motion Analysis
(MLVMA’08 and MLVMA’09), held respectively in conjunction with the European
Conference on Computer Vision 2008 (ECCV’08) and the IEEE International Con-
ference on Computer Vision 2009 (ICCV’09). These workshops gathered experts
from different fields working on machine learning, computer vision, pattern recog-
nition, and related areas.

The book comprises both theoretical advances and practical applications. The
organization of the book reflects the combination of analytical and practical topics
addressed throughout the book. We have divided the book chapters into four parts
as follows; each addresses a specific theme.

Part I: Manifold Learning and Clustering/Segmentation

Chapter “Practical Algorithms of Spectral Clustering: Toward Large-Scale Vision-
Based Motion Analysis”, presents some practical algorithms of spectral clustering
for large-scale data sets. Spectral clustering is a kernel-based method of grouping
data on separate nonlinear manifolds. Reducing its computational expense without
critical loss of accuracy contributes to its practical use. The presented algorithms
exploit random projection and subsampling techniques for reducing dimensionality
and the cost for evaluating pairwise similarities of data. The resulting computation
time is quasilinear with respect to the data cardinality, and it can be independent of
data dimensionality in some appearance-based applications. The efficiency of the
algorithms is extensively demonstrated in appearance-based image/video segmen-
tation.

Chapter “Riemannian Manifold Clustering and Dimensionality Reduction for
Vision-Based Analysis” focuses on the topic of segmentation, one fundamental as-
pect of vision-based motion analysis. The goal of segmentation is to group the data
into clusters based upon image properties such as intensity, color, texture or motion.
Most existing segmentation algorithms proceed by associating a feature vector to
each pixel in the image or video and then segmenting the data by clustering these
feature vectors. This process can be phrased as a manifold learning and cluster-
ing problem, where the objective is to learn a low-dimensional representation of
the underlying data structure and to segment the data points into different groups.
Over the past few years, various techniques have been developed for learning a low-
dimensional representation of a nonlinear manifold embedded in a high-dimensional
space. Unfortunately, most of these techniques are limited to the analysis of a single
connected nonlinear manifold and suffer from degeneracies when applied to linear
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manifolds. To address this problem, algorithms for performing simultaneous non-
linear dimensionality reduction and clustering of data sampled from multiple linear
and nonlinear manifolds have been recently proposed. In this chapter, a summary of
these newly developed algorithms are given and their applications to vision-based
motion analysis are demonstrated.

Chapter “Manifold Learning for Multi-dimensional Auto-regressive Dynamical
Models”, presents a general differential-geometric framework for learning distance
functions for dynamical models. Given a training set of models, the optimal metric
is selected among a family of pullback metrics induced by the Fisher information
tensor through a parameterized automorphism. The problem of classifying motions,
encoded as dynamical models of a certain class, can then be posed on the learnt
manifold. In particular, the class of multidimensional autoregressive models of or-
der 2 is considered. Experimental results concerning identity recognition are shown
that prove how such optimal pullback Fisher metrics greatly improve classification
performances.

Part II: Tracking

When analyzing motion observations extracted from image sequences one notes that
the histogram of the velocity magnitude at each pixel shows a large probability mass
at zero velocity, while the rest of the motion values may be appropriately modeled
with a continuous distribution. This suggests the introduction of mixed-state ran-
dom variables that have probability mass concentrated in discrete states, while they
have a probability density over a continuous range of values. In the first part of
chapter “Mixed-State Markov Models in Image Motion Analysis”, a comprehen-
sive description of the theory behind mixed-state statistical models, in particular the
development of mixed-state Markov models that permits to take into account spatial
and temporal interaction, is given. The presentation generalizes the case of simul-
taneous modeling of continuous values and any type of discrete symbolic states.
For the second part, the application of mixed-state models to motion texture anal-
ysis is presented. Motion textures correspond to the instantaneous apparent motion
maps extracted from dynamic textures. They depict mixed-state motion values with
a discrete state at zero and a Gaussian distribution for the rest. Mixed-state Markov
random fields and mixed-state Markov chains are defined and applied to motion
texture recognition and tracking.

Chapter “Learning to Track Objects in Surveillance Image Streams at Very Low
Frame Rate”, studies on the problem of object tracking. Some camera surveillance
systems are designed to be autonomous—both from the energy and memory point of
view. Autonomy allows operation in environments where wiring cameras for power
and data transmission is neither feasible nor desirable. In these contexts, for cameras
to work unattended over long periods requires choosing an adequately low frame
rate to match the speed of the process to be supervised while minimizing energy
and memory consumption. The result of surveillance is then a large stream of im-
ages acquired sparsely over time with limited visual continuity from one frame to the
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other. Reviewing these images to detect events of interest requires techniques that
do not assume traceability of objects by visual similarity. If the process to be sur-
veyed shows recurrent patterns of events over time, as it is often the case in industrial
settings, other possibilities open up. Since images are time-stamped, this suggests
techniques which use temporal data to help detecting relevant events. This contribu-
tion presents an image review tool that combines in cascade a scene change detector
(SCD) with a temporal filter. The temporal filter learns to recognize relevant SCD
events by their time distribution on the image stream. The learning phase is sup-
ported by image annotations provided by end-users during past reviews. The con-
cept is tested on a benchmark of real surveillance images stemming from a nuclear
safeguards context. Experimental results show that the combined SCD-temporal fil-
ter significantly reduces the workload necessary to detect safeguards-relevant events
in large image streams.

In chapter “Discriminative Multiple Target Tracking”, a metric learning frame-
work is introduced to learn a single discriminative appearance model for robust
visual tracking of multiple targets. The single appearance model effectively cap-
tures the discriminative visual information among the different visual targets as
well as the background. The appearance modeling and the tracking of the multi-
ple targets are all cast in a discriminative metric learning framework. An implicit
exclusive principle is naturally reinforced in the proposed framework, which ren-
ders the tracker to be robust to cross occlusions among the multiple targets. The
efficacy of the proposed multi-target tracker is demonstrated on benchmark visual
tracking sequences and real-world video sequences as well.

Guidewire tracking in fluoroscopy is important to image guided interventions. In
chapter “Applications of Wire Tracking in Image Guided Interventions”, a semantic
guidewire model, is introduced, based on which a probabilistic method is presented
to integrate measurements of three guidewire parts, i.e., a catheter tip, a guidewire
body and a guidewire tip, in a Bayesian framework to track a whole guidewire. This
tracking framework is robust to measurement noises at individual guidewire parts.
Learning based measurement models are used to track the guidewire. The learning-
based measurement models are trained from a database of guidewires, to detect
guidewire parts in low-quality images. The method further incorporates online mea-
surement models, which are based on guidewire appearances, as a complementary to
learning based measurements to improve the tracking robustness. A hierarchical and
multi-resolution scheme is developed to track a deforming guidewire. By decom-
posing the guidewire motion into two major components, the hierarchical tracking
starts from a rigid alignment, followed by a refined nonrigid tracking. At each stage,
a multi-resolution searching strategy is applied by using variable bandwidths in a
kernel-based measurement smoothing method, to effectively and efficiently track
the deforming guidewire. The guidewire tracking framework is validated on a test
set containing 47 sequences that are captured in real-life interventional scenario.
Quantitative evaluation results show that the mean tracking error on guidewires is
less than 2 pixels, i.e., 0.4 mm.
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Part III: Motion Analysis and Behavior Modeling

Chapter “An Integrated Approach to Visual Attention Modeling for Saliency De-
tection in Videos”, presents a framework to learn and predict regions of interest in
videos, based on human eye movements. The eye gaze information of several users
are recorded as they are watching videos that belong to a similar application do-
main. This information is used to train a classifier to learn low-level video features
from regions that attracted the visual attention of users. Such a classifier is combined
with vision-based approaches to provide an integrated framework to detect salient
regions in videos. To date, saliency prediction has been viewed from two different
perspectives, namely visual attention modeling and spatiotemporal interest point de-
tection. These approaches have largely been pure-vision based. They detect regions
having a predefined set of characteristics such as complex motion or high contrast,
for all kinds of videos. However, what is ‘interesting’ varies from one application to
another. By learning features of regions that capture the attention of viewers while
watching a video, this chapter aims to distinguish those that are actually salient in
the given context, from the rest. The integrated approach ensures that both regions
with anticipated content (top–down attention) and unanticipated content (bottom–
up attention) are predicted by the proposed framework as salient. In the experiments
with news videos of popular channels, the results show a significant improvement
in the identification of relevant salient regions in such videos, when compared with
existing approaches.

Chapter “Video-Based Human Motion Estimation by Part-Whole Gait Manifold
Learning”, presents a general gait representation framework for video-based human
motion estimation that involves gait modeling at both the whole and part levels. The
goal is to estimate the kinematics of an unknown gait from image sequences taken
by a single camera. This approach involves two generative models, called the kine-
matic gait generative model (KGGM) and the visual gait generative model (VGGM),
which represent the kinematics and appearances of a gait by a few latent variables,
respectively. Particularly, the concept of gait manifold is proposed to capture the gait
variability among different individuals by which KGGM and VGGM can be inte-
grated together for gait estimation, so that a new gait with unknown kinematics can
be inferred from gait appearances via KGGM and VGGM. A key issue in generating
a gait manifold is the definition of the distance function that reflects the dissimilar-
ity between two individual gaits. Specifically, three distance functions each of which
leads to a specific gait manifold are investigated and compared. Moreover, this gait
modeling framework from the whole level to the part level has been extended by
decomposing a gait into two parts, an upper-body gait and a lower-body gait, each
of which is associated with a specific gait manifold for part level gait modeling.
Also, a two-stage inference algorithm is employed for whole-part gait estimation.
The proposed algorithms were trained on the CMU Mocap data and tested on the
HumanEva data, and the experiment results show promising results compared with
the state-of-the-art algorithms with similar experimental settings.

Extremely crowded scenes present unique challenges to motion-based video
analysis due to the excessive quantity of pedestrians and the large number of oc-
clusions they produce. The interactions between pedestrians, however, collectively
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form a crowd that exhibits a spatially and temporally structured motion pattern
within the scene. In chapter “Spatio-Temporal Motion Pattern Models of Extremely
Crowded Scenes”, a novel statistical framework is presented for modeling this struc-
tured motion pattern behavior, or steady state, of extremely crowded scenes. The
key insight is to model the crowd by the spatial and temporal variations of the local
non-uniform motion patterns generated by pedestrian interactions. The pedestrian
activity is represented by modeling the rich motion information in local space-time
volumes of the video. In order to capture the motion variations of the scene, a novel
distribution-based hidden Markov model that encodes the temporal variations of lo-
cal motion pattern is introduced. It is demonstrated that by capturing the steady-state
behavior of a scene, the proposed method can naturally detect unusual activities as
statistical deviations in videos with complex activities that are hard for even human
observers to analyze.

Chapter “Learning Behavioral Patterns of Time Series for Video-Surveillance”,
deals with the problem of learning behaviors of people activities from (possibly
big) sets of visual dynamic data, with a specific reference to video-surveillance ap-
plications. The study focuses mainly on devising meaningful data abstractions able
to capture the intrinsic nature of the available data, and applying similarity mea-
sures appropriate to the specific representations. The methods are selected among
the most promising techniques available in the literature and include classical curve
fitting, string-based approaches, and hidden Markov models. The analysis considers
both supervised and unsupervised settings and is based on a set of loosely labeled
data acquired by a real video-surveillance system. The experiments highlight dif-
ferent peculiarities of the methods taken into consideration, and the final discussion
guides the reader towards the most appropriate choice for a given scenario.

Part IV: Gesture and Action Recognition

Chapter “Recognition of Spatiotemporal Gestures in Sign Language Using Ges-
ture Threshold HMMs”, proposes a framework for automatic recognition of spa-
tiotemporal gestures in sign language. An extension to the standard HMM model to
develop a gesture threshold HMM (GT-HMM) framework is implemented which
is specifically designed to identify inter gesture transitions. The performance of
this system, and different CRF systems, is evaluated, when recognizing gestures
and identifying inter gesture transitions. The evaluation of the system included test-
ing the performance of conditional random fields (CRF), hidden CRF (HCRF) and
latent-dynamic CRF (LDCRF) based systems and comparing these to the presented
GT-HMM based system when recognizing motion gestures and identifying inter
gesture transitions.

Learning-based approaches for human action recognition often rely on large
training sets. Most of these approaches do not perform well when only a few training
samples are available. Chapter “Learning Transferable Distance Functions for Hu-
man Action Recognition”, considers the problem of human action recognition from
a single clip per action. Each clip contains at most 25 frames. Using a patch based
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motion descriptor and matching scheme, promising results on three different action
datasets with a single clip as the template can be achieved. The results are com-
parable to previously published results using much larger training sets. A method
for learning a transferable distance function is also presented for these patches. The
transferable distance function learning extracts generic knowledge of patch weight-
ing from previous training sets, and can be applied to videos of new actions without
further learning. Experimental results show that the transferable distance function
learning not only improves the recognition accuracy of the single clip action recog-
nition, but also significantly enhances the efficiency of the matching scheme.
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Practical Algorithms of Spectral Clustering:
Toward Large-Scale Vision-Based Motion
Analysis

Tomoya Sakai and Atsushi Imiya

Abstract This chapter presents some practical algorithms of spectral clustering for
large-scale data. Spectral clustering is a kernel-based method of grouping data on
separate nonlinear manifolds. Reducing its computational expense without critical
loss of accuracy contributes to its practical use especially in vision-based applica-
tions. The present algorithms exploit random projection and subsampling techniques
for reducing dimensionality and the cost for evaluating pairwise similarities of data.
The computation time is quasilinear with respect to the data cardinality, and it can
be independent of data dimensionality in some appearance-based applications. The
efficiency of the algorithms is demonstrated in appearance-based image/video seg-
mentation.

1 Introduction

Clustering is a fundamental technique of machine learning for finding unknown
patterns by grouping data. When one wants to detect motion segments latent in im-
age sequences by clustering techniques, the algorithms are required to be fast and
scalable. Especially for the vision-based motion analysis, one needs to handle thou-
sands of images with an intolerably large number of pixel values. Such large-scale
data often exhibit manifold structures in a feature space. For example, sequential
video frames form trajectories if the frames are represented as high-dimensional
feature vectors with pixel values. Clustering of large-scale data on distinct nonlin-
ear manifolds is therefore a fundamental problem in vision-based motion analysis.
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Clustering methods should efficiently detect nonconvex patterns and linearly non-
separable clusters in a high-dimensional space.

Spectral clustering [9, 12, 18, 22, 24, 25, 31, 33] is one of the recent approaches
to nonlinear separation of data. Its algorithms were derived from graph-cut energy
minimization for clustering. A popular energy function is the normalized cut (Ncut)
[22, 25, 33], which yields clusters with high compactness and isolation. The major
drawback of the spectral clustering algorithms is a large computational overhead.
The bottleneck lies in computation of a matrix of pairwise similarities as well as its
eigenvalue decomposition.

In this chapter, we address the scalability problem of the spectral clustering.
We design fast and reliable computation of spectral clustering by introducing ran-
dom projection and subsampling techniques. We present some practical algorithms:
a time and memory efficient random projection and spectral clustering using a bi-
partite graph. The computational expense of our clustering algorithms is quasilin-
ear with respect to data cardinality. We also show that the random pixel sampling
in appearance-based image processing is effective for removing the dependence
of data dimensionality on the computational cost. The performance of the present
algorithms is demonstrated in appearance-based image and video shot segmenta-
tion.

2 Spectral Clustering

2.1 Principle

Let P be a set of n data points in a d-dimensional feature space, and let wij be the
similarity between the data points pi and pj ∈ P , measured by a predefined kernel
function K as

wij =
{

K(pi ,pj ) (i �= j),

0 (i = j).
(1)

A similarity graph G is defined as a complete graph whose vertices represent the
data points and edges are weighted by the corresponding similarities as shown
in Fig. 1.

Fig. 1 Clustering by cutting
complete graph G. The nodes
represent p ∈ P . The gray
level of the edges indicates
the measured similarity (the
darker the higher)
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The spectral clustering yields a set of data clusters {C1, . . . ,Ck ⊂ P } by cutting
the edges of G so as to minimize a graph-cut energy function. Several energy func-
tions have been proposed in the literature [9, 18, 25]. A popular algorithm of k-way
graph cut for data clustering is the normalized cut (Ncut) [22, 25, 33], of which
energy function is described as

Ncut(C1, . . . ,Ck) =
k∑

l=1

cut(Cl,P \Cl)

cut(Cl,P )
. (2)

Here, cut(X,Y ) is the sum of the edge weights between pi ∈ X and pj ∈ Y . P \Cl

is the complement of Cl ⊂ P . In (2), the numerator cut(Cl,P \Cl) quantifies the
connectivity of the cluster Cl by the sum of weights between its internal and external
vertices. The denominator cut(Cl,P ) can be regarded as the degree of Cl , measured
as the total sum of edge weights related to any vertex in Cl . The minimization of
Ncut therefore encourages the graph partition to yield isolated clusters with large
cardinality.

Let hl be an n-dimensional vector indicating the members of the cluster Cl by
its discrete components such that the ith component is 1/

√
cut(Cl,P ) if pi ∈ Cl

and 0 otherwise. We define the matrix of cluster indicators Hk := [h1, . . . ,hk] and
the affinity matrix W := [wij ]. The minimization of Ncut can be then written as a
constrained trace minimization [29]:

min
C1,...,Ck

Ncut ⇔ min
Hk

tr H�
k LHk subject to H�

k DHk = I. (3)

Here, the matrix D is a diagonal matrix with the row sums of W on its diagonal:

D := diag

(
n∑

j=1

w1j , . . . ,

n∑
j=1

wnj

)
, (4)

and the matrix L := D − W is known as the graph Laplacian of G.
Although finding the matrix Hk is NP hard, relaxation of the discreteness of hl

gives us a generalized eigenvalue decomposition (GEVD) problem [25, 33]

LHk = DHk�, (5)

where Hk ∈ R
n×k after the relaxation is composed of the eigenvectors associated

with the k smallest generalized eigenvalues, and � ∈ R
k×k is the diagonal matrix

containing the k eigenvalues. Replacing Hk = D−1/2Xk , one can convert the GEVD
in (5) into a usual eigenvalue decomposition (EVD) problem:

SXk = Xk�. (6)

Here, � := I − �, and

S = D−1/2WD−1/2 (7)
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is the so-called normalized affinity matrix. The eigenvectors of S with the k largest
eigenvalues are therefore calculated as the cluster indicators instead of Hk . The
clusters are obtained from Xk : the normalized n row vectors of Xk exhibit the k

tight clusters in k-dimensional space.

2.2 Algorithm

A spectral clustering algorithm basically consists of three procedures: (i) computa-
tion of pairwise similarities, (ii) GEVD of (L,D), or EVD of the normalized affinity
matrix S, and (iii) assignment of data points to the clusters using the eigenvectors.
We present a typical algorithm of k-way spectral clustering proposed by Ng et al.
[22] in Algorithm 1.

Algorithm 1: Spectral clustering (by Ng, Jordan and Weiss, 2001)
Input: P = {p1, . . . ,pn}: dataset, k: number of clusters, σ : scale
1 construct the affinity matrix W ∈ R

n×n whose (ij)th entry is the similarity
measured as K(pi ,pj ;σ) for i �= j , and zero otherwise

2 compute the diagonal matrix D ∈ R
n×n whose (ii)th entry is the sum of the ith

row of W
3 form the normalized affinity matrix S := D−1/2WD−1/2

4 compute the top k eigenvectors Xk ∈ R
n×k of S

5 form a matrix Yk ∈ R
n×k by normalizing each row vector of Xk

6 execute k-means clustering for n row vectors of Yk

7 assign pi to the cluster Cl iff the ith row vector of Yk is in the lth cluster
Output: C = {C1, . . . ,Ck}: set of clusters

The Gaussian kernel function

K(pi ,pj ;σ) = exp

(
−‖pj − pi‖2

2

2σ 2

)
(8)

is used in this algorithm.
If the data cardinality n and dimensionality d are both large, Algorithm 1 involves

two computationally intensive tasks. One is the construction of the affinity matrix
W at Step 1, which requires O(dn2) computation time and O(n2) memory space.
The other task is the eigenvalue decomposition (EVD) at Step 4. The EVD of size n

matrix S takes O(n3) flops.

2.3 Related Work

Fast algorithms of spectral clustering have been proposed by different authors [10,
13, 15, 21, 26, 36]. Their algorithms are based on fast eigenvector computation of
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the affinity matrix. The Krylov subspace-based methods, for example, the Lanczos
method [16], are the iterative algorithms for finding leading eigencomponents of a
sparse matrix as used in [15, 21, 26]. However, those algorithms require O(kdn2)

computation time for the top k eigenvectors if the matrix is dense. Even if it is
sparse, the convergence speed and accuracy highly depend on the sparsity [6, 16].

The Nyström approximation [10, 13, 32, 36] is another approach to fast compu-
tation of the eigencomponents of a large matrix. In the Nyström approximation, the
eigenvectors are estimated by interpolating and orthogonalizing the eigenvectors of
a randomly subsampled small submatrix. Its computation time is O(dm3 + dnm2)

where m is the size of submatrix. Although the Nyström-based Ncut runs in linear
time of the data cardinality n, its performance is contingent on m. Recently, Zhang
and Kwok [36] improved the Nyström method using density-weighted kernel com-
putation. Their algorithm achieves a higher accuracy without the orthogonalization,
and runs in O(dm3 + dnm) time if d is small. This chapter provides another im-
provements of the Ncut algorithm similar to these Nyström-based approaches, but
with some practical advantages in simplicity, accuracy, and stability for practical
uses.

The prior works mentioned above focus on large cardinality n and not on high
dimensionality d of the data. The computational cost for evaluating the pairwise
similarities scales as the dimensionality. For avoiding this problem, the PCA-based
dimensionality reduction are unendurable because the PCA itself is an intensive
EVD task. Random projection [1, 4, 7, 14, 20, 28] is an efficient dimensionality re-
duction technique for approximation of the affinity matrix. We will show an efficient
algorithm of random projection and apply to the Ncut algorithm.

3 Dimensionality Reduction by Random Projection

In this section, we address the computational cost caused by high dimensionality.
We introduce the random projection, and discuss its implication for vision-based
analysis. We also present an efficient algorithm of random projection and demon-
strate it.

3.1 Random Projection

Random projection is a simple technique for projecting a set of data points from a
high-dimensional space to a randomly chosen low-dimensional linear subspace. Let
R be a d̂ × d matrix whose d̂ row vectors span the d̂-dimensional subspace in R

d

(d̂ < d). We obtain a low-dimensional representation p̂i of each pi ∈ P as

p̂i = Rpi . (9)

The Johnson–Lindenstrauss lemma [20] and its proofs [1, 7, 28] ensure the follow-
ing important possibility.
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Theorem 1 (Johnson–Lindenstrauss embeddings) For any ε > 0, P = {p1, . . . ,

pn ∈ R
d}, and d̂ < d , one can map P to P̂ = {p̂1, . . . , p̂n ∈ R

d̂} by random pro-
jection in (9) so that the pairwise distances are approximately preserved as

(1 − ε)‖pj − pi‖2 ≤ ‖p̂j − p̂i‖2 ≤ (1 + ε)‖pj − pi‖2 (10)

with probability (1 − e−O(d̂ε2)).

It has been proved that a random projection by the matrix R of i.i.d. normal
random variables with mean zero and variance 1/d̂ satisfies the above theorem with
d̂ ≥ d̂0 = O(ε−2 logn). The known lower bound is d̂0 = 4(ε2/2− ε3/3)−1 logn [7].
Clearly, the dimensionality d̂ of the low dimensional space is independent of d . The
lower bound d̂0 is derived from the Markov inequality, and the actual approximation
errors are much smaller than ε in most practical cases. Achlioptas [1] proposed an
efficient random projection by the sparse matrix with (ij)th entry

rij =
√

3

d̂
·

⎧⎪⎨
⎪⎩

+1 with probability 1/6,

0 with probability 2/3,

−1 with probability 1/6.

(11)

This projection can be performed with partial sums of the vector components. The-
orem 1 holds without loss of the approximation accuracy. Watanabe et al. [30] have
suggested that the entries of the random matrix must be at least 4-wise independent
to approximately preserve the pairwise distances. Theorem 1 can be proven even if
four or more arbitrary entries in every row of the random matrix R are statistically
independent.

The random matrix R defines a d̂-dimensional random subspace independent of
the dataset P . The random projection reduces the dimensionality without any con-
sideration of data distribution. This is a major difference of the random projection
from the other feature selection and reduction techniques by mining important data
attributes. We would like to make some remarks on random projection for vision-
based analysis.

3.1.1 Acceleration of Kernel Computation

Since the kernel function in (8) can be evaluated by pairwise distances, one can use
the low-dimensional dataset P̂ instead of the high dimensional dataset P . The n×n

affinity matrix can be approximately computed in O(ε−2n2 logn) time. The addi-
tional cost of random projection of n data points, O(d̂dn), is reduced to O(nd logd)

by an efficient algorithm we introduce later.

3.1.2 Random Sampling as Random Projection

The random projection can be regarded as random sampling of d̂ coordinates after
random rotation of the original space R

d . The random rotation provides random or-
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thogonal coordinates, and the random sampling picks up the d̂-dimensional linear

subspace R
d̂ . As suggested in [1], the random rotation only serves as the random-

ization of coordinate directions so that all coordinates contribute equally likely to
the corresponding pairwise distance. We may therefore omit the random rotation if
we know in advance that the coordinates of pi ∈ P , that is, features or attributes,
contribute roughly equally likely to the similarity measurements. In such case, the
random sampling of coordinates takes the place of the random projection, which
reduces the cost from O(d̂dn) to O(d̂n) = O(ε−2n logn) independent of the data
dimensionality d .

3.1.3 Using a Minority of Image Pixels

We suppose that the random sampling of coordinates is fairly effective for
appearance-based vision techniques where pixel values compose the vector pi rep-
resenting an image. In fact, Sakai [23] has achieved appearance-based image clas-
sification by random sampling of image pixels. The random projection reduces the
dimensionality by converting a large number of features to a small number of hash
features which equally likely contribute to the similarity measurements. Presuming
the pixel values to contribute roughly equally likely to the similarity measurements,
one can utilize random sampling of pixels instead of random projection.

3.2 Efficient Random Projection

We offer a time and memory efficient algorithm for random projection.
Algorithm 3 is based on linear projection by a random matrix

R := 1√
d̂

�C diag(s), (12)

where diag(s) ∈ R
d×d is a diagonal matrix of a random vector s = [s1, . . . , sd ]�,

and matrices � ∈ R
d̂×d and C ∈ R

d×d denote a random sampling matrix and a

Algorithm 2: Generating random vectors

Input: d , d̂ : dimensionalities
1 s = [s1, . . . , sd ]� where si (i = 1, . . . , d) are i.i.d. random variable values with

mean 0 and deviation 1, or random signs {+1,−1}
2 c = [c1, . . . , cd ]� where ci (i = 1, . . . , d) are i.i.d. random variable values with

mean zero and deviation 1/
√

d̂

3 ĉ = F [c]: FFT of c
4 L = {l1, . . . , ld̂} ⊂ {1, . . . , n}: a set of d̂ indices without replacement

Output: {ĉ, s,L}
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Algorithm 3: Efficient random projection (p̂i = Rpi )

Input: P = {p1, . . . ,pn ∈ R
d}: dataset,

{ŵ, s,L}: a triplet generated by Algorithm 2
1 for ∀pi ∈ P do
2 ξ = s � pi : spectrum spreading with element-by-element multiplication
3 η = F −1[ĉ � F [ξ ]∗]: circular convolution
4 p̂i = [ηl1, . . . , ηl

d̂
]�

5 end for
Output: P̂ = {p̂1, . . . , p̂n ∈ R

d̂}

back-circulant matrix1 of a random vector c = [c1, . . . , cd ]�:

� =

⎡
⎢⎢⎣

0 1 0 · · · 0 · · · 0
0 · · · 0 · · · 0 1 0

· · · · · ·
0 · · · 0 1 0 · · · 0

⎤
⎥⎥⎦ and

C =

⎡
⎢⎢⎢⎣

c1 c2 · · · cd−1 cd

c2 c3 · · · cd c1
...

. . . · · · . . .
...

cd c1 . . . cd−2 cd−1

⎤
⎥⎥⎥⎦ .

(13)

One can also set � = [I O]. We define that the vector components ∀ci and ∀si are
statistically independent. If we set E[c] = E[d] = 0 and E[cc�] = E[ss�] = I, then
we have E[‖Rp‖2

2] = E[‖p‖2
2]. The d-dimensional d̂ row vectors of the matrix �C

act as the orthogonal coordinates of a random subspace in expectation. The diagonal
matrix diag(s) enhances the statistical independence of the entries rij enough for R
to satisfy Theorem 1.

For the random projection of pi , the multiplication by diag(s) costs O(d). This
process is a modulation technique called the direct sequence spread spectrum, which
densifies the spectrum of pi so that all the Fourier components of the random vec-
tor c are involved in the subsequent convolution. The multiplication by C, or the
circular convolution with c, costs O(d logd) using a fast algorithm of orthogonal
transform such as the fast Fourier transform (FFT) or the Walsh-Hadamard trans-
form. Consequently, we do not have to generate and store a huge d̂ × d random ma-
trix. Altogether, Algorithm 3 requires O(nd logd) time and O(d) space for n data
points. We would note that Algorithm 3 is more efficient than the random projec-
tion of the sparse matrix as (11). We also remark that Algorithm 3 is quite practical
because it can be easily implemented by FFT using GPGPU (general-purpose com-
puting on graphics processing units), although we do not evaluate the performance
on GPU in this work.

1C can be a forward circulant matrix. We prefer the back-circulant matrix just because it is sym-
metric.
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Fig. 2 Distance preservation.
The histograms show the
distributions of relative errors
in pairwise distances after
random projection by
(a) a random matrix and by
(b) Algorithm 3

Fig. 3 Computation time
(per sample) with respect to
original dimensionality d

We demonstrate the performance of Algorithm 3. We set n = 300, d = 65,536,
and d̂ = 634 (ε = 0.3), and generated a dataset P using Gaussian random variables.
Figure 2 compares the distributions of relative errors in the pairwise distances. We
confirmed that both projections by (a) a random matrix with i.i.d. Gaussian entries
and (b) Algorithm 3 could approximately preserve all the distances to within ±ε or
a much smaller interval.

We also evaluate the computation time on Core i7 2.93 GHz with a single core
running. We set n = 300, d̂ = 634 (ε = 0.3), and d = 1,024 to 262,144. It is im-
practical to generate and store the random matrix with a higher dimension beyond
the range studied in this experiment. On the other hand, Algorithm 3 can afford to
run at higher dimensions without generating and storing the random matrix. Algo-
rithm 3 outperforms at any dimension as shown in Fig. 3. It would run in real-time
for videos whose frames are represented as pi containing pixel values.

4 Size Reduction of Affinity Matrix by Sampling

The computational cost of the spectral clustering quadratically grows with respect to
the cardinality n as long as we compute all the entries of n×n affinity matrix. In this
section, we aim to compute the eigenvectors of the normalized affinity matrix from a
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part of it. The key idea is to estimate the clusters not from the complete graph G but
from another graph with less edges. We introduce two methods of obtaining such
graphs: random subsampling for a high-dimensional dataset and pre-clustering for
a low-dimensional dataset.

4.1 Random Subsampling

We will prune the edges of the similarity graph G by random subsampling. Let
Q̂ be a set of m subsamples randomly chosen from the low-dimensional dataset P̂ .
We measure the similarities only between p̂i ∈ P̂ and q̂j ∈ Q̂. Figure 4 illustrates an
incomplete similarity graph whose vertices represent p̂i ∈ P̂ and edges are weighted
by the measured similarities. One can observe in Fig. 4(a) that there are two clusters,
and the data points in each cluster are strongly connected each other through the
randomly chosen points. If Q̂ roughly exhibits the data clusters, one can extract the
clusters from P̂ by cutting this incomplete graph in the same manner as spectral
clustering.

The incomplete graph can be converted into a complete bipartite graph between
P̂ and Q̂ as shown in Fig. 4(b). The affinity matrix of this bipartite graph with
(n + m) nodes is described as

W
P̂∪Q̂

=
[

O W
P̂ Q̂

W�
P̂ Q̂

O

]
∈ R

(n+m)×(n+m). (14)

Here, W
P̂ Q̂

is an n × m rectangular affinity matrix whose (ij)th entry is calculated

as K(p̂i , q̂j ) where p̂i ∈ P̂ and q̂j ∈ Q̂ for p̂i �= q̂j , and zero otherwise. The eigen-
value decomposition of W

P̂∩Q̂
after normalization as in (7) can be performed by

the singular value decomposition (SVD) of the normalized rectangular matrix

S
P̂ Q̂

= D−1/2

P̂
W

P̂ Q̂
D−1/2

Q̂
∈ R

n×m. (15)

Fig. 4 Approximation of the similarity graph G. (a) Incomplete similarity graph. Open circles
indicate the randomly chosen data points q̂ ∈ Q̂. (b) Complete bipartite graph equivalent to (a)
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Here, D
P̂

∈ R
n×n and D

Q̂
∈ R

m×m are diagonal matrices with the row and column
sums of W

P̂ Q̂
on the diagonals, respectively

D
P̂

= diag(W
P̂ Q̂

1r ), (16)

D
Q̂

= diag
(
1�
n W

P̂ Q̂

)
. (17)

We denote the SVD of S
P̂ Q̂

as

S
P̂ Q̂

= U�V�. (18)

The n row vectors of the matrix of the top k left singular vectors, Uk , provide the k

clusters in P̂ . The right singular vectors indicate the clusters in Q̂. This clustering
method using a bipartite graph is known as the co-clustering [8].

Note that the number of randomly chosen subsamples, m, is independent of the
cardinality n, because the role of Q̂ is to sketch roughly the k clusters. One may set
m ≥ m0 = αk where α is constant independent of n if the clusters are well detached
from each other. The full SVD of n×m matrix S

P̂ Q̂
needs O((n+m)min2(n,m)) ≈

O(α2k2n) computation time and O(nm) = O(αkn) memory space [16, 17]. That is,
the cost of computing the eigenvectors is linear with respect to the data cardinality
n even if we calculate all m left singular vectors.

4.2 Pre-clustering

Pre-clustering is another approach to obtaining an incomplete graph. We divide P̂

into m � k groups as pre-clusters, and use the m pre-cluster centers as Q̂ in place
of the random subsamples. The pre-cluster centers can be thought of as local cen-
ters found by importance sampling because the over-clustering of P̂ estimates local
density of P̂ . This approach can therefore achieve better performance than random
subsampling.

According to the recent work by Zhang and Kwok [36], the affinity matrix can
be well approximated by using m-means cluster centers of P̂ as Q̂ if the similarity
is defined as a radial-based function such as the Gaussian. We can adopt the m-
means pre-clustering, and approximate the Ncut spectral clustering using a complete
bipartite graph as shown in Fig. 5. Let ωj (j = 1, . . . ,m) denote the cardinality of
the j th pre-cluster. Then, n × m rectangular affinity matrix W

P̂Q̂
is calculated as

W
P̂ Q̂

= [
ωjK(p̂i , q̂j )

]
. (19)

In the same manner as described in Sect. 4.1, the EVD of the affinity matrix of the
bipartite graph between P̂ and the m-means pre-cluster centers Q̂ boils down to the
SVD of S

P̂ Q̂
as in (15).

Note that the m-means pre-clustering is effective only if the dimensionality of P̂

is low (d̂ < O(101)). The pre-clustering generally suffers from the so-called curse
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Fig. 5 Approximation of the similarity graph G by pre-clustering. (a) Complete bipartite graph
between P̂ and pre-cluster centers. Open circles indicate the m-means pre-cluster centers. (b) Com-
plete bipartite graph equivalent to (a)

of dimensionality. We also remark that the advantages of the use of SVD derived
from a bipartite graph are in the clustering accuracy and stability. The singular vec-
tors are always orthogonal while the Nyström methods have to orthogonalize the
eigenvectors to improve the accuracy. Besides, we conjugate that the left singular
vectors of the n × m normalized affinity matrix are more stable than the eigenvec-
tors estimated from a m × m affinity matrix by the Nyström methods. The stability
is experimentally confirmed in Sect. 6.

5 Practical Ncut Algorithms

Using the reduction techniques shown in the previous sections, we present time
and memory efficient algorithms of Ncut spectral clustering for large-scale data.
We utilize random projection and random subsampling techniques to reduce the
computational expense owing to the high dimensionality and large cardinality. The
resulting algorithm is Algorithm 4, which uses an efficient algorithm of the random
projection as shown in Algorithm 3. We also present an algorithm specialized for
low-dimensional data in Algorithm 5.

5.1 Randomized Ncut Algorithm

The spectral clustering using random projection and subsampling is shown in
Algorithm 4. This algorithm first reduces the dimensionality of the given dataset P

at Step 1, which costs O(nd logd) flops using Algorithm 3 or O(ε−2n logn) by
random sampling of coordinates. The construction of the affinity matrix at Step 3
costs O(ε−2αkn logn) flops. The computation of left singular vectors at Step 6 can
be done in O(α2k2n) flops. The cost of k-means clustering is negligibly small. Con-
sequently, Algorithm 4 works in quasilinear time and space with respect to the data
cardinality n for fixed k. The dimensionality d concerns only the cost of random
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Algorithm 4: Randomized Ncut algorithm

Input: P = {p1, . . . ,pn ∈ R
d}: dataset, k: number of clusters, σ : scale, ε: distor-

tion; α: constant factor
1 perform random projection by Algorithm 3 or random sampling to obtain d̂ =

O(ε−2 logn)-dimensional dataset P̂

2 set Q̂ to be a set of m = αk data points randomly chosen from P̂

3 construct the affinity matrix W
P̂ Q̂

∈ R
n×m whose (ij)th entry is K(p̂i ∈ P̂ ,

q̂j ∈ Q̂;σ) for p̂i �= q̂j , and zero otherwise
4 compute the diagonal matrix D

P̂
and D

Q̂
in (16) and (17), respectively

5 form the matrix S
P̂ Q̂

in (15)

6 compute the k leading left singular vectors Uk ∈ R
n×k

7 form the matrix Yk ∈ R
n×k by normalizing each row vector of Uk

8 execute k-means clustering for n row vectors of Yk

9 assign pi to the cluster Cl iff the ith row vector of Yk is in the lth cluster
Output: C = {C1, . . . ,Ck}: set of clusters

projection, which is avoidable by the random sampling in appearance-based appli-
cations, expectedly.

We give some remarks on our Algorithm 4.

5.1.1 Invocation of Dimensionality Reduction

The dimensionality reduction at Step 1 should be performed only when the data
dimensionality d is intractably high. Otherwise, use P as P̂ . The time complexity
becomes linear to n. For a low-dimensional dataset, Algorithm 5 is effective unless
cursed by dimensionality.

5.1.2 Relation to the Original Algorithm

Algorithm 4 is equivalent to Algorithm 1 if Q̂ = P̂ = P . That is, if we skip the
dimensionality reduction at Step 1 and choose all data points as Q̂ at Step 2, Algo-
rithm 4 provides the same clustering result as the original Ncut algorithm without
any disadvantage.

5.1.3 Scale Selection

The scale parameter σ can be automatically tuned by local scaling [35]. The local
scaling can be easily incorporated in the algorithm as

W
P̂ Q̂

= [
K(p̂i , q̂j ;√σiσj )

]
(20)
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at Step 3. Here, σi and σj are ν-nearest neighbor distances (ν = 7 in [35]) of p̂i and
q̂j for P̂ , respectively. The average distance of ν-nearest neighbors is also useful
when we assume the clusters have almost the same spatial densities. The nearest
neighbor search, however, could be the most intensive task for large d̂ .

5.1.4 Number of Clusters

In substitution for the k-means at Step 8, it is possible to classify the samples by
binarization of the entries of Yk after orthogonal transformation. The cluster number
k can be automatically found by a method of recovering the aligning rotation of
eigenvectors [35]. The number k can also be found by observing the compactness
of the k clusters exhibited by the n row vectors of Yk with increasing k > 1. One
can plug the algorithm into these methods of finding k.

5.2 Ncut Algorithm with Pre-clustering

The spectral clustering using pre-clustering is shown in Algorithm 5. For low-
dimensional datasets, this algorithm effectively works with a smaller constant α

compared to Algorithm 4. Time complexity is linear with respect to the cardinal-
ity n. For the parameters σ and k, the same remarks as on Algorithm 4 are applicable
to Algorithm 5.

Algorithm 5: Ncut algorithm with pre-clustering

Input: P = {p1, . . . ,pn ∈ R
d}: dataset, k: number of clusters, σ : scale, ε: distor-

tion; α: constant factor
1 set P̂ = P or perform random projection if necessary
2 set Q̂ and {ω1, . . . ,ωm} to respectively be the sets of the centers and cardinali-

ties of the m-means clusters of P̂ where m = αk

3 construct the affinity matrix W
P̂ Q̂

= [ωjK(p̂i ∈ P̂ , q̂j ∈ Q̂;σ)] ∈ R
n×m

where K is the kernel function in (8)
4 compute the diagonal matrix D

P̂
and D

Q̂
in (16) and (17), respectively

5 form the matrix S
P̂ Q̂

in (15)

6 compute the k leading left singular vectors Uk ∈ R
n×k

7 form the matrix Yk ∈ R
n×k by normalizing each row vector of Uk

8 execute k-means clustering for n row vectors of Yk

9 assign pi to the cluster Cl iff the ith row vector of Yk is in the lth cluster
Output: C = {C1, . . . ,Ck}: set of clusters
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6 Experiments

We experimentally evaluate the performance of the spectral clustering algorithms.
We also show some applications of our algorithms to appearance-based motion seg-
mentation and video shot segmentation. We implemented Algorithms 1, 4, and 5
using MATLAB. Note that we used SVD that computes all singular vectors of a full
matrix for numerical reliability. The computation time would be further reduced by
computing only the top k singular vectors in practice.

6.1 Performance Tests

6.1.1 Error Analysis

We experimentally compared the clustering errors of our Algorithms 4, 5, and Ncut
with Nyström approximation [13], referring to the clustering result of Algorithm 1
as optimal. Figure 6 shows the result of Algorithm 1 with k = 3, σ = 3 applied to a
synthetic dataset P (n = 3,000) used for the evaluation.

We examined two clustering measures: normalized mutual information (NMI)
and conditional entropy (CE) for different numbers m of subsamples. See Appendix
for the definitions of these measures. Figure 7 shows the average scores over
one hundred trials. It reveals slightly better performance of Algorithm 4 than the
Nyström-based Ncut. The deviation of NMI indicates the stability of each algo-
rithm. While the Nyström-based Ncut estimates the eigenvectors from those of a
m×m affinity matrix, Algorithm 4 obtains the eigenvectors from a n×m rectangu-
lar affinity matrix, which results in more stable performance. We can also observe
that Algorithm 5 achieves accurate and stable clustering with a significantly small
number of pre-cluster centers. The pre-clustering approach can therefore drastically
reduce the computational cost if the pre-clustering itself is inexpensive. Since SVD

Fig. 6 Test dataset P

clustered by Algorithm 1



18 T. Sakai and A. Imiya

Fig. 7 Clustering scores with
respect to subsample
number m. (a) Conditional
entropy (CE), (b) normalized
mutual information (NMI)
and deviation. The smaller
the CE is, or the larger the
NMI is, the better the
clustering solution is. For
Algorithm 5, m indicates the
number of pre-cluster centers

Fig. 8 Computation time
with respect to m

requires quadratic time in m, Algorithm 5 is about a hundred times faster than Al-
gorithm 4 to achieve a comparable accuracy in this experiment.

6.1.2 Computational Cost

We show, in Fig. 8, the computation time with respect to the subsample number m

under the same condition as described in Sect. 6.1.1. Algorithms 4, 5, and Nyström-
based Ncut run in linear time O(n), but the Nyström-based Ncut requires cubic
time in m. We remark that Algorithm 4 runs always faster than the Nyström-based
Ncut, which implies Algorithm 4 can afford to use more subsamples to improve the
accuracy.
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Fig. 9 Computation time
with respect to cardinality n

Fig. 10 A baseball scene
(216 × 147 gray image), and
the segmentation result by
Algorithm 4. Open circles in
the right image indicate the
pixels corresponding to the
randomly chosen data points

We also confirmed the computation time with respect to the cardinality n. By
random sampling of coordinates, Algorithm 4 actually runs in O(n) time as shown
in Fig. 9. Even if we compute all the eigenvectors by the direct method of SVD for a
full n×m matrix, our algorithm is faster than Algorithm 1 implemented by a Krylov
subspace-based method (e.g., Lanczos method of EVD). This outperformance is
apparent unless the matrix S

P̂ Q̂
is sparse. If S

P̂ Q̂
is sparse, the state-of-the-art SVD

driver routines for a sparse matrix, for example, [3], would be helpful for further
acceleration.

Another advantage of Algorithm 4 is the low memory consumption. The experi-
ments could be performed on large datasets with up to O(105) cardinality even on a
32 bit system. Such system can hardly run the EVD of a full matrix of O(104) size
by in-memory algorithms.

6.2 Image Segmentation

We perform image segmentation by clustering the image pixels. The purpose of
this experiment is to confirm that sparse pixel sampling has potential to achieve the
segmentation. For more practical approach, see [6]. Figure 10 shows an example
of the image segmentation by Algorithm 4. The left image is the classical baseball
image introduced in [25]. We expressed this image as a set of n = 216 × 147 =
31,752 data points in d = 3-dimensional space (i/σX, j/σX, I (i, j)/σI ). Here,
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(i, j) and I (i, j) are the pixel position and corresponding gray value, respectively.
We set the scales σX = 0.6

√
n and σI = 0.3 max I (i, j). Algorithm 4 with k = 7,

σ = 1, and α = 40 extracts the seven major segments: three parts of backwall
around the top player, two grassy regions around the bottom player, and each
of the two players’ uniforms. The top and bottom players’ undershirts are re-
spectively detected as disjoint parts of the ground and backwall. The execution
time was about ten seconds. It is impossible to run Algorithm 1 on a 32 bit sys-
tem.

6.3 Motion Segmentation

Motion segmentation is a fundamental task for computer vision and video analysis.
Clustering image pixels using optical flow vectors is one of the common approaches
to the motion segmentation. As evaluated in [11], spectral clustering has a potential
for grouping dominant optical flow fields according to the motion of individual ob-
jects.

We show in Fig. 11 an example of the motion segmentation by spectral clus-
tering using optical flow. The left image is a sample frame of a 480 × 360 image
sequence PedCross taken from the UCF crowd dataset [2]. For each pair of sub-
sequent frames of this sequence, we computed the dense optical-flow field by a
TV-L1 approach presented in [34]. Using the flow vectors with norm larger than
0.5 (a half pixel size), we represented the flow field as a set of data points in
d = 4-dimensional space (i/σX, j/σX,uij /σF , vij /σF ). Here, (i, j) and (uij , vij )

are the pixel position and corresponding flow vector, respectively. We set the scales

σX = 0.6
√

#pixels and σF = 0.3 max
√

u2
ij + v2

ij in the same way as the image seg-

mentation. As shown in the right panel of Fig. 11, Algorithm 4 with k = 3, σ = 1,
and α = 100 classifies the regions of moving objects with three dominant flows:
two spatially mixed flows of pedestrians in opposite directions and a flow associ-
ated with car arrival at the crossing. The execution time was about four seconds.
We have confirmed that Algorithm 5 with α = 10 runs about twice as fast as Al-
gorithm 4, and provides the segmentation result with a comparable quality. It is
intolerable to run Algorithm 1 due to the large cardinality n = O(104) in this exper-
iment.

Fig. 11 A sample frame of
PedCross sequence and the
segmentation result by
Algorithm 5
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6.4 Video Shot Segmentation

We show two examples of appearance-based video shot segmentation by spectral
clustering. We used video sequences Mountain Skywater and level3, publicly avail-
able on the websites of [5] and [19], respectively. Although both sequences are in
color, we used the grayscale values for simplicity.

6.4.1 Segmentation Using Appearance-Based Similarities

The sequence Mountain Skywater consists of six shots with dynamic objects and
camera motions. Figure 12(a) shows typical video frame of each shot. Each pair of
successive shots are connected with cross-fade transition (except an abrupt transition
between the 2nd and 3rd shots).

We represented each frame of this video as a d = 352 × 240 = 84,480 dimen-
sional data point storing the grayscale values, and treated the set of all n = 1,188
frames as the dataset P . We applied Algorithm 1 to this dataset P with k = 6 and
σ = 3 × 104. The resulting six clusters were sets of sequential frames as shown in
Fig. 12(b). We could stably extract almost the same clusters by Algorithm 4 with
ε = 0.3 (d̂ = 786, random sampling) and α = 100 (m = 600). The differences of
the clustering results are a few frames during the transitions. The computation time
is reduced from about four minutes to five seconds, excluding time of loading data
and estimating σ .

We have also confirmed that the dimensionality reduction down to d̂ = 300 is
effective for the segmentation of this dataset. We conclude from this fact that the
similarities between frames are efficiently estimated from a minority of pixels. The
random sampling of pixels capably plays the role of random projection because the
pixels contribute roughly equally likely to the similarity measure between frames.

In this experiment, we achieved the video shot segmentation by clustering frames
without relying on the frame numbers or the order of the frames. Figure 12(c) plots
the six clusters on randomly chosen 2D spaces. One can observe that the clusters are
detected as curved manifolds. This implies that the manifold structures are preserved
in d̂ dimensional space, and are recognized as the groups of similar images by the
spectral clustering with random projection.

6.4.2 Segmentation with Local Scaling

If a video sequence contains a variety of transition effects or fast camera motions,
the shot segmentation using the similarities measured with a fixed scale σ may fail
to detect the correct shot boundaries. In that case, the local scaling technique in-
troduced in Sect. 5.1 improves the robustness of the shot segmentation. The video
frame numbers (sequential frame IDs) can also be used for incorporating tempo-
ral distances in the similarity measure as follows: We represent the ith frame as
a d-dimensional vector pi with d pixel values, and compute the d̂-dimensional
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Fig. 12 Video shot segmentation of Mountain Skywater sequence. (a) Typical six frames: the 100,
200, 400, 600, 800, and 1,000th frame from left to right, top to bottom. (b) Segmentation result. The
video frames were classified into six shots: frames 1–122, 123–239, 240–497, 498–686, 687–887,
and 888–1188. (c) Scatter plots of P on random 2D spaces (random sampling)
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vector p̂i by random projection. Using the νth nearest neighbor distance σi in the
d̂-dimensional space, we append the (d̂ + 1)th component as a temporal position

p̂i+1(d̂ + 1) = p̂i (d̂ + 1) +
√

σi+1σi

d̂ + 1
. (21)

We deal with the resulting dataset as P̂ at Step 1 in Algorithms 4 or 5.
We performed the shot segmentation of level3 video sequence using the local

scaling. This sequence consists of seven scenery shots with wide panning and long
zooming out. They are connected by fade, dissolve, and wipe transition effects. For
the dataset of d = 720 × 480 = 345,600 pixels and n = 3,207 frames of this se-
quence, we set ε = 0.3 (d̂ = 897) and α = 100 (m = 700) for the dimensionality
and cardinality reduction, and ν = 7 for the nearest neighbor search. Figure 13(a)
shows the clustering result by Algorithm 4 with the local scaling. A tiny fragment
of the frames 2184–2186 does not cause any problem because it is in a transition.
We can find a long shot with successive frames in each cluster. Thus, all of the
shots were detected, correctly. The computation time was twelve seconds while Al-
gorithm 4 without any reduction or Algorithm 1 took about 10 minutes. We would
remark that the shot segmentation of Mountain Skywater was also successful with
the local scaling in the same way.

For comparision, we show a k-means clustering result of the level3 dataset
in Fig. 13(b). As observed in Fig. 13(c), the clusters in this dataset are nonconvex,
and k-means clustering cannot detect them.

7 Conclusions

We designed practical Ncut algorithms of spectral clustering. The data dimension-
ality is reduced by random projection, and the spectral analysis is accelerated by
approximation of the similarity graph by incomplete one. The random projection
and random subsampling in Algorithm 4 resolve the two major problems of spec-
tral clustering: intensive computations of the affinity matrix and its eigenvectors.
Present spectral clustering algorithms run at most in quasilinear time with respect
to the number of samples. The algorithms are highly scalable, simple to implement,
fairly stable and accurate because it utilizes SVD, and not orthogonalization or in-
terpolation of the eigenvectors as the Ncut with Nyström approximation.

In the applications to appearance-based image and video shot segmentation, a mi-
nority of pixels provide enough information for similarity measurement. The ran-
dom projection explains and ensures the performance. The random sampling of pix-
els plays the role of dimensionality reduction in the video shot segmentation, and of
cardinality reduction in the image segmentation. Since the random projection of a
feature vector is the random sampling of features after random rotation of the feature
space, the random sampling of pixels can be considered as the random projection
without random rotation. If it is presumable that the pixels contribute equally likely
to the similarity measure used for the clustering, hundreds of pixels are enough to
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Fig. 13 Video shot segmentation of level3 sequence. (a) Segmentation result using local scal-
ing and the frame numbers. The detected shot boundaries are all in the transitions (697–729,
1086–1118, 1443–1475, 2156–2188, 2369, and 2732–2764). (b) Segmentation result by k-means
clustering of P̂ . (c) Scatter plots of P on random 2D spaces (random projection)

evaluate the similarity because its accuracy is guaranteed in the same fashion as the
Johnson–Lindenstrauss lemma.

This chapter focused on the acceleration of the spectral clustering. Of course, the
selection of the cluster number and design of the similarity measure still remain to be
addressed. These issues should be carefully resolved according to the applications,
and the prior work introduced in this chapter would be helpful. We have no doubts
that vision-based motion analyses require nonlinear machine learning methods that
can handle large-scale data. We expect that the present clustering algorithms will
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contribute to the scalability for computer vision applications in general, and the
motion analyses in particular.
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Appendix: Clustering Scores

The conditional entropy (CE) and the normalized mutual information (NMI) [27]
are defined as follows.

CE =
k∑

i=1

|Ci |
−n logk

k∑
j=1

|Xij |
|Ci | log

|Xij |
|Ci | ,

NMI =
∑k

i=1
∑k

j=1
|Xij |

n
log

n|Xij |
|Ci‖Aj |√

(
∑k

i=1
|Ci |
n

log |Ci |
n

)(
∑k

j=1
|Aj |
n

log
|Aj |
n

)

.

Here, |Ci | and |Aj | are the numbers of samples in the estimated cluster Ci and the
optimal cluster Aj , respectively. Xij = Ci ∩ Aj is the set of common samples. The
smaller the CE is, or the larger the NMI is, the better the clustering result is. The
NMI takes a value between 0 and 1.
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Riemannian Manifold Clustering
and Dimensionality Reduction
for Vision-Based Analysis

Alvina Goh

Abstract Segmentation is one fundamental aspect of vision-based motion analy-
sis, thus it has been extensively studied. Its goal is to group the data into clusters
based upon image properties such as intensity, color, texture, or motion. Most ex-
isting segmentation algorithms proceed by associating a feature vector to each pixel
in the image or video and then segmenting the data by clustering these feature vec-
tors. This process can be phrased as a manifold learning and clustering problem,
where the objective is to learn a low-dimensional representation of the underlying
data structure and to segment the data points into different groups. Over the past
few years, various techniques have been developed for learning a low-dimensional
representation of a nonlinear manifold embedded in a high-dimensional space. Un-
fortunately, most of these techniques are limited to the analysis of a single connected
nonlinear manifold. In addition, all these manifold learning algorithms assume that
the feature vectors are embedded in a Euclidean space and make use of (at least
locally) the Euclidean metric or a variation of it to perform dimensionality reduc-
tion. While this may be appropriate in some cases, there are several computer vision
problems where it is more natural to consider features that live in a Riemannian
space. To address these problems, algorithms for performing simultaneous nonlin-
ear dimensionality reduction and clustering of data sampled from multiple subman-
ifolds of a Riemannian manifold have been recently proposed. In this book chapter,
we give a summary of these newly developed algorithms as described in Goh and
Vidal (Conference on Computer Vision and Pattern Recognition, 2007 and 2008;
European Conference on Machine Learning, 2008; and European Conference on
Computer Vision, 2008) and demonstrate their applications to vision-based analy-
sis.
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1 Introduction

Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a low-
dimensional representation for a set of points lying in a nonlinear manifold embed-
ded in a high-dimensional space. This question of how to detect and represent low-
dimensional structure in high-dimensional data is fundamental to many disciplines
and several attempts have been made in different areas to address this question. For
example, the number of pixels in an image can be rather large, yet most computer
vision models use only a few parameters to describe the geometry, photometry and
dynamics of the scene. Since most datasets often have fewer degrees of freedom
than the dimension of the ambient space, NLDR is fundamental to many problems
in computer vision, machine learning, and pattern recognition.

When the data lives in a low-dimensional linear subspace of a high-dimensional
space, simple linear methods such as Principal Component Analysis (PCA) [26] and
metric Multi-Dimensional Scaling (MDS) [11] can be used to learn the subspace and
its dimension. However, when the data lies in a low-dimensional submanifold, its
structure may be highly nonlinear, hence linear dimensionality reduction methods
are likely to fail. This has motivated extensive efforts toward developing NLDR
algorithms for computing low-dimensional embeddings.

A huge family of such algorithms computes a low-dimensional representation
from the eigenvectors of a matrix constructed from the local geometry of the man-
ifold. Such algorithms include ISOMAP [42], Kernel PCA (KPCA) [38], locally
linear embedding (LLE) [35], and its variants such as Laplacian Eigenmaps (LE)
[5], Hessian LLE [14], Local Tangent Space Alignment (LTSA) [50], maximum
variance unfolding [47], and conformal eigenmaps [39]. A recent survey of many
of these algorithms can be found in [8]. Most of these NLDR techniques can be
categorized into two main groups: global and local techniques.

Global techniques attempt to preserve global properties of the data lying in a sub-
manifold, similar to what PCA attempts to preserve for data lying in a linear sub-
space. In addition, they are also capable of constructing a nonlinear transformation
between the high-dimensional data and the low-dimensional representation. Two
of the best-known examples of this family of algorithms are ISOMAP and KPCA.
ISOMAP attempts to preserve the geodesic distance between two data points on a
manifold by approximating it as the length of the shortest path in the graph connect-
ing the two points. KPCA reformulates linear PCA in a high-dimensional space via
the kernel trick. Rather than considering the covariance matrix, KPCA computes the
principal components of the kernel matrix. The kernel function allows KPCA to con-
struct nonlinear mappings from the high-dimensional space to the low-dimensional
space.

Local techniques are based on the preservation of local properties obtained from
small neighborhoods around the data points. The key idea of such techniques is that
by preserving local properties of the data, one can also retain global properties of
the data. LLE, LE, Hessian LLE and LTSA fall under this category of algorithms. It
has been proven that LLE is a special form of kernel principal component analysis
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(KPCA) [23]. However, unlike conventional KPCA where one defines a kernel func-
tion in order to map the input space to a higher dimensional feature space, deriving
the analytic form for the LLE kernel is not straightforward.

Although the goals of dimensionality reduction, classification and segmentation
have always been intertwined with each other, considerably less work has been done
on extending NLDR techniques for the purpose of clustering data living on different
manifolds. For linear manifolds, there are many existing subspace clustering meth-
ods including K-subspaces [25], Local Subspace Affinity [49], Mixtures of Prob-
abilistic PCA (MPPCA) [43], Generalized Principal Component Analysis (GPCA)
[45], Agglomerative Lossy Compression (ALC) [48], and spectral clustering [1,
10, 22]. K-subspaces [25] proceeds similarly to K-means: it is initialized with a
collection of K subspace bases of dimension d , and then it alternates between as-
signing points to their nearest subspace, and computing a subspace that minimizes
the sum-of-the-squares distance to all points in each cluster. MPPCA [43] applies
Expectation Maximization (EM) to a mixture of probabilistic PCAs. It assumes that
the distribution of the data inside each subspace is Gaussian and uses EM to learn
the parameters of the mixture model. GPCA [45] is an algebraic solution to subspace
clustering based on fitting a union of m subspaces with a polynomial of degree m.
The gradient of this polynomial at a point gives a vector normal to the subspace con-
taining that point. The subspace clustering problem is then equivalent to fitting and
differentiating a set of homogeneous polynomials. ALC [48] models each subspace
with a degenerate Gaussian, and iteratively merges pairs of points so as to minimize
the coding length needed to encode these points with a mixture of Gaussians. The
multi-way spectral clustering algorithm [10] applies spectral clustering to a multi-
way similarity that captures the curvature of a collection of points within an affine
subspace.

All the aforementioned subspace clustering methods are formulated specifically
for mixtures of linear manifolds, and thus they do not work in the presence of nonlin-
ear manifolds. Existing works that extend NLDR techniques to clustering nonlinear
manifolds include [7, 33, 40]. The work of [40] develops an EM-like extension of
ISOMAP for clustering multiple nonlinear manifolds. However, this method is very
sensitive to good initialization and is not a principled EM method as it uses heuris-
tics in the E-step to assign points to manifolds. The work of [33] applies LLE to a
manifold with m connected components. It shows that m eigenvalues of the matrix
M are zero and that the clustering of the data can be obtained from the correspond-
ing eigenvectors. However, this LLE clustering algorithm suffers from degeneracies
in the presence of linear subspaces. In [7], the authors proved that in spectral clus-
tering, it is possible to obtain a lower dimensional hypersphere representation via
an eigendecomposition of the affinity matrix. In particular, [7] shows that it is pos-
sible to find a low-dimensional embedding in spaces having a mixture of linear and
cyclic axes, and to cluster the data by repeated projection. However, the embedding
algorithm maps the data only to a mixed vector and toric space, with the linear or
cyclic nature of each axis determined from statistical tests. Also, the clustering is
done via an iterative method that requires several projections.

A significant amount of work [4, 17, 24, 29, 31] has also been done on clus-
tering data according to the dimensionality of the manifolds that contain the data
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rather than the manifolds themselves. For example, in human activity recognition,
the videos describing different activities such as walking, jumping, and running can
be described with a different number of parameters. Barbará and Chen [4] proposes
a new clustering algorithm that is based on the use of the fractal dimension and clus-
ters the data so that points in the same cluster are more self-affine among themselves
than points in different clusters. The dimension of a manifold is estimated using a
tensor voting scheme [31]. In [17], the local correlation dimension and density of a
point is estimated and used as the input to standard clustering techniques. In [29], a
maximum likelihood estimator of the intrinsic dimension of a dataset is derived by a
Poisson process approximation. This idea is extended in [24] by modeling the high-
dimensional sample points as a mixtures of Poisson processes, with regularizing
restrictions and spatial continuity constraints. By proceeding in a EM-like manner,
it is shown that it is possible to simultaneously estimate the soft clustering and the
intrinsic dimension and density of each cluster. Even though such methods have
proven to be efficient in clustering when the manifolds are of different dimensions,
it is common in computer vision problems that this assumption is violated. In mo-
tion segmentation, for example, the manifolds for two translational motions are of
the same dimension.

Chapter summary In this book chapter, we give a summary of the newly de-
veloped algorithms for performing simultaneous nonlinear dimensionality reduc-
tion and clustering of data sampled from multiple submanifolds of a Riemannian
manifold and demonstrate their applications to vision-based analysis. More specif-
ically, this chapter first reviews how to perform locally linear manifold clustering
and dimensionality reduction for data sampled from nonlinear manifolds using the
Euclidean metric as the distance between feature vectors and its limitations [18].
Unfortunately, such manifold clustering algorithms assume that the feature vectors
are embedded in a Euclidean space and use (at least locally) the Euclidean metric
or a variation of it to perform clustering. While this may be appropriate in some
cases, there are several computer vision problems where it is more natural to con-
sider features that live in a non-Euclidean space. For example, Grassmann manifolds
and Lie groups are used for motion segmentation and multibody factorization; sym-
metric positive semi-definite matrices are common in diffusion tensor imaging and
structure tensor analysis; and the statistical manifold, that is, the space of probabil-
ity density functions, is found in texture analysis. The second part of this chapter
shows a novel algorithm for clustering data sampled from multiple submanifolds of
a Riemannian manifold [19–21]. First, a representation of the data using general-
izations of local nonlinear dimensionality reduction algorithms from Euclidean to
Riemannian spaces is learnt. Such generalizations exploit geometric properties of
the Riemannian space, particularly its Riemannian metric. Then, assuming that the
data points from different groups are separated, it is shown that the null space of a
matrix built from the local representation gives the segmentation of the data. Finally,
the applications to various vision problems are shown.
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2 Review of Local Nonlinear Dimensionality Reduction Methods
in Euclidean Spaces

In this section, we review three local nonlinear dimensionality reduction algorithms
for data lying in a single manifold. Section 2.1 reviews the classical LLE, Lapla-
cian Eigenmaps, and Hessian LLE algorithms for a nonlinear manifold. Section 2.2
shows that it is possible that such NLDR algorithms become degenerate when the
data lies in a linear subspace.

2.1 NLDR for a Nonlinear Manifold

In this section, we review three local NLDR algorithms. Let X = {xi ∈ M}ni=1 be
a set of n data points sampled from a d-dimensional manifold M embedded in
R

D , d � D. We assume that the n points are k-connected, that is, for any two
points xi ,xj ∈ X there is an ordered sequence of points in X having xi and xj as
endpoints, such that any two consecutive points in the sequence have at least one
k-nearest neighbor in common. The goal of dimensionality reduction is to find a
set of vectors {yi ∈ R

d}ni=1, such that nearby points remain close and distant points
remain far.

Locally Linear Embedding (LLE) [36] assumes that the local neighborhood of a
point in the manifold can be well approximated by the affine subspace spanned by
the k-nearest neighbors of the point, and finds a low-dimensional embedding of the
data based on these affine approximations. Laplacian Eigenmaps (LE) [6] are based
on computing the low dimensional representation that best preserves locality instead
of local linearity in LLE. Hessian LLE (HLLE) [14] bears substantial resemblance
to LLE and LE, with the main difference being that the local neighborhood is rep-
resented by the tangent space at each point and the Laplacian matrix is replaced by
the Hessian matrix. The main steps of these local NLDR algorithms are as follows:

1. Nearest neighbor search: for each data point xi ∈ X, find its k-nearest neighbors
(kNN) {xij }kj=1 according to the Euclidean distance.

2. Construction of similarity matrix: construct a weighted graph whose elements
encode the local geometry of the data. Define a similarity matrix M based on
these weights. M is symmetric and positive semidefinite.

3. Sparse eigenvalue problem: obtain the embedding coordinates, that is, the
columns of Y = [y1, . . . ,yn]� ∈ R

n×d , from the d (generalized) eigenvectors
of the matrix M associated with its second to (d + 1)th smallest (generalized)
eigenvalues. The vector of all ones, 1 ∈ R

n, is a eigenvector of M associated with
eigenvalue 0.

We now describe the construction of M for each NLDR algorithm in greater detail.
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2.1.1 Calculation of M in LLE

1. Weight matrix: find a matrix of weights W ∈ R
n×n whose entries Wij minimize

the reconstruction error

ε(W) =
n∑

i=1

∥∥∥∥∥
n∑

j=1

Wij xj − xi

∥∥∥∥∥
2

=
n∑

i=1

dist2(x̂i ,xi ), (1)

subject to the constraints (i) Wij = 0 if xj is not a k-nearest neighbor of xi and
(ii)

∑n
j=1 Wij = 1. In (1), x̂i = xi + ∑n

j=1 Wij
−−→xixj is the linear interpolation of

xi and its kNN. The solution to this problem can be computed as

[
Wi i1 Wi i2 . . . Wi ik

] = 1�C−1
i

1�C−1
i 1

∈ R
1×k, (2)

where 1 ∈ R
n is the vector of all ones, and Ci ∈ R

k×k is the local Gram matrix
at xi , that is, Ci(j, l) = (xj − xi ) · (xl − xi ).

2. Objective function: find vectors {yi ∈ R
d}ni=1 that minimize the error

φ(Y ) =
n∑

i=1

∥∥∥∥∥yi −
n∑

j=1

Wij yj

∥∥∥∥∥
2

= trace
(
Y�MY

)
, (3)

subject to the constraints (i)
∑n

i=1 yi = 0 and (ii) 1
n

∑n
i=1 yiy�

i = I . The solution
to this optimization problem is given by the d eigenvectors of M = (I − W)� ×
(I − W) associated with its second to (d + 1)th smallest eigenvalues.

2.1.2 Calculation of M in LE

1. Weight matrix: construct a matrix of weights W ∈ R
n×n where the entries of

W , Wij , measure the proximity between two points xi and xj subject to the
constraint Wij = 0 if xj is not a k-nearest neighbor of xi . A possible weight of
generating W is to use the heat kernel

Wij = exp
(−‖xi − xj‖2/σ 2). (4)

2. Objective function: find vectors {yi ∈ R
d}ni=1 that minimize the error

φ(Y ) =
∑
i,j

‖yi − yj‖2Wij = trace
(
Y�MY

)
, (5)

subject to the constraints (i) Y�D1 = ∑n
i=1 Diiyi = 0 (weighted low-dimens-

ional coordinates centered at the origin) and (ii) Y�DY = I (weighted low-
dimensional coordinates having unit covariance). In (5), M = D − W is the
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graph Laplacian matrix and D is a diagonal matrix whose entries are given by
Dii = ∑

j Wij . The solution to this optimization problem is given by the d gen-
eralized eigenvectors of (M,D) associated with its second to (d + 1)th smallest
generalized eigenvalues.

2.1.3 Calculation of M in HLLE

1. Tangent coordinates: for each data point xi , let {xij }kj=1 be its kNN. Form the

D by D covariance matrix cov(xi ) = 1
k

∑k
j=1(xij − x̄i )(xij − x̄i )

�, where x̄i is
the mean of the kNN. Perform an eigenanalysis of the matrix cov(xi ) to obtain
the d eigenvectors {uq ∈ R

D}dq=1. The tangent coordinates of the kNN are given
by the d columns of the k × d matrix V given below, where p = 1, . . . , k and
q = 1, . . . , d

Vpq = (xip − x̄i )
�uq = 〈xip − x̄i ,uq〉. (6)

2. Objective function: the embedding vectors are obtained based on the null vectors
of a matrix M that indicates the Hessian quadratic cost. While we refer the reader
to [14] for details on the estimation of M , the basic principle is as follows. We
first locally estimate a Hessian operator hi at each point xi in the manifold in a
least squares sense. In particular, consider a smooth function f : M → R. We
evaluate the function at all kNN of a point xi in the manifold and stack these
entries into a vector fi . It can be shown that hifi approximates the entries of the

Hessian, whose (p, q)th entry is given by ∂2f
∂VpδVq

. These local estimates are then
used to obtain an empirical estimate of the (i, j)th entry of M as

Mi,j =
∑

l

∑
r

((
hl

)
r,i

(
hl

)
r,j

)
. (7)

The embedding coordinates are then found by selecting a basis for the space
spanned by d eigenvectors of M associated with its second to (d + 1)th small-
est eigenvalues with the restriction that it provides an orthonormal basis to a
specific fixed neighborhood N. Let U denote the n × d matrix associated with
the second to (d + 1)th smallest eigenvectors where Ul,r is the lth entry in the

r th eigenvector of M . The embedding coordinates is obtained as UR− 1
2 , where

Rr,s = ∑
j∈N Uj,rUj,s .

2.2 NLDR for a Single Subspace

Consider now the application of NLDR to a single k-connected linear manifold. As
the goal of NLDR is to unfold a low-dimensional manifold of a high-dimensional
space into a low-dimensional linear subspace, intuitively one would expect that if
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NLDR is applied to a dataset that is already a subspace of dimension d , the output
representation should again be a subspace of the same dimension.

We will first illustrate that one of the NLDR algorithms, namely LLE, becomes
degenerate when the data lies in a linear subspace. Proposition 1 [33] below shows
that when d is known, the low-dimensional representation is indeed a subspace of
dimension d , which is contained in the null space of the matrix M representing the
local geometry of the manifold. However, since the vector 1 is also in ker(M), some
degeneracies can show up when applying LLE to data lying in a linear subspace, as
shown by the following proposition in [33].

Proposition 1 Assume that the data points xi ∈ R
D lie in a subspace of R

D of
dimension d < k − 1. Then the dimension of the null space of M is at least d + 1.

Proof Since the data lie in a subspace of R
D of dimension d < k − 1, each point

{xi} can be reconstructed with zero error in (1), that is, for all i = 1, . . . , n, there
are Wij such that xi = ∑n

j=1 Wij xj . If we let X ∈ R
n×D be the matrix whose rows

are the data points, then we have that WX = X, hence MX = 0. In other words, the
D n-dimensional vectors formed by taking each one of the D coordinates of the n

given data points are in the null space of M . Therefore, the null space of M is at least
d-dimensional, because rank(X) = d . On the other hand, since the data points live
in a subspace of dimension d , there exist a matrix T ∈ R

D×d , T �T = I and vectors
{yi} such that xi = T yi + m and

∑n
i=1 yi = 0, where m = 1

n

∑n
i=1 xi ∈ R

D is the
mean of the data. Now, by construction, the vector of all ones 1 is also in ker(M),
because

∑n
j=1 Wij = 1. This implies that X = YT � + 1m� ⇒ MX = MYT � +

M1m� = 0 ⇒ MYT � = 0 ⇒ MYT �T = 0; hence MY = 0, where Y ∈ R
n×d is

a matrix whose rows are the {yi} vectors. Since in addition
∑n

i=1 yi = 0, we have
that 1�Y = 0�, hence the vector 1 is linearly independent from the columns of Y .
Therefore, the null space of M is at least (d + 1)-dimensional. �

From Proposition 1, we see that if we apply LLE to data lying in a subspace
of dimension d and choose the second to (d + 1)th smallest eigenvectors of M for
dimensionality reduction, we might not get the correct subspace reconstruction. This
is because the embedding eigenvectors (the columns of Y ) may be mixed with the
vector 1, which is also a null vector of M and therefore, we cannot guarantee that 1
is the first smallest eigenvector given.

We will now illustrate how Proposition 1 is applicable for Laplacian eigenmaps
and HLLE as well. For the Laplacian eigenmaps, it is shown in [6] that the solution
that LLE finds is an approximation of the eigenfunctions of the iterated Laplace
Beltrami operator L2 whereas LE attempts to find the eigenfunctions of the Laplace
Beltrami operator L. Note that eigenfunctions of L2 coincide with those of L. There-
fore, depending on the approximation that is used for the graph Laplacian, it is also
possible that LE suffers from the same degeneracy. Finally, for Hessian LLE, as the

entries of the Hessian approximates ∂2f
∂VpδVq

, it is easy to see that when the function
f is linear, it becomes a null eigenfunction as well. Therefore, it is possible that the
embedding vectors are mixed with the vector 1 when we have linear manifolds for
LE and HLLE as well.
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3 Manifold Clustering and Dimensionality Reduction Using
the Euclidean Metric

This section presents an algorithm for simultaneous NLDR and manifold cluster-
ing. In Sect. 3.1, we review the algorithm for clustering nonlinear manifolds using
NLDR algorithms. This algorithm is based on the fact that the null vectors of M are
actually m membership vectors indicating the grouping of the data. In Sect. 3.2, we
show that these clustering algorithms based on NLDR can become degenerate when
applied to data lying in multiple linear subspaces. More specifically, we show that
if the data live in a k-separated union of m connected manifolds, of which m1 ≤ m

are linear subspaces of dimensions {di}m1
i=1, then, depending on the NLDR algorithm

used, the null space of M might contain m eigenvectors that give the segmentation
of the data and

∑m1
i=1 di eigenvectors that give the embedding coordinates for the

subspaces.

3.1 Manifold Clustering and Dimensionality Reduction
for a k-Separated Union of k-Connected Nonlinear Manifolds

In this section, we review an extension of the NLDR algorithm for clustering a
union of m k-connected manifolds under the assumption that the manifolds are
k-separated, that is, no kNN of a data point in a manifold lies in one of the other
(m − 1) manifolds. The following proposition shows how NLDR (LLE, LE, and
HLLE) can be extended for clustering a k-separated union of m k-connected nonlin-
ear manifolds. The proposition follows from the block-diagonal properties of M in
the presence of multiple k-separated nonlinear manifolds. Polito and Perona [33] il-
lustrates this proposition for LLE only and make use of it to cluster different groups.
Notice that, contrary to intuition, the case of nonlinear manifolds is simpler than the
case of linear subspaces, as we will see in Sect. 3.2.

Proposition 2 Let {xi}ni=1 be a set of points drawn from a k-separated union of
m k-connected nonlinear manifolds of dimension d < k − 1. There exist m vectors
{vj }mj=1 in the null space of M such that vj corresponds to the j th group of points,
that is, vj,i = 1 if the ith data point is in the j th manifold (xi ∈ Mj ), and vj,i = 0
otherwise (xi /∈ Mj ).

Proof If the data can be partitioned into m k-connected groups, then the matrix M

is block-diagonal with m blocks. This is because if points xi and xj belong to dif-
ferent groups, then they cannot be kNN of each other, hence Mij = 0. Therefore,
the matrix M is also block diagonal, and we can write it as M = diag(Mj ), where
Mj ∈ R

nj ×nj is the matrix for the j th group. Now, from the properties of the lo-
cal NLDR algorithms reviewed in Sect. 2, we know that each one of the m blocks
of M , has the vector 1 ∈ R

nj in its null space. Therefore, there are m vectors {vj } in
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Algorithm 1: Unsupervised clustering and dimensionality reduction on nonlin-
ear manifolds
Given data points x1, . . . ,xn ∈ M

1. nearest neighbors: find the kNN of each data point xi

2. construction of M : for each NLDR algorithm, construct the appropriate M

on the entire data and compute a basis B for the null space of M

3. clustering: compute the segmentation of the data by applying K-means to
the rows of B

4. low-dimensional embedding: apply NLDR as described in Sect. 2.1 to each
group to obtain a low-dimensional embedding for each submanifold

ker(M), with each vj taking the values 1 and 0, indicating the group membership,
as claimed. �

Notice that when computing a basis B ∈ R
n×m for ker(M), we do not necessarily

obtain the set {vj }mj=1, but rather linear combinations of them, including the constant
vector. Nevertheless, a generic linear combination of these membership vectors will
still contain the segmentation of the data. Hence, we can cluster the data into m

groups by applying a central clustering algorithm to the rows of B , for example,
K-means. Therefore, this algorithm can be seen as a spectral clustering algorithm
where the similarity matrix is obtained from the M matrix of NLDR. Algorithm 1
summarizes the dimensionality reduction and clustering algorithm for a union of
k-connected nonlinear manifolds.

3.2 Degeneracies for a k-Separated Union of k-Connected Linear
Manifolds

In this section, we illustrate the limitations of Algorithm 1 [18]. More precisely, we
will show that NLDR becomes degenerate when the data points {xi}ni=1 are drawn
from a union of m k-connected subspaces {Mj }mj=1 of R

D with dimensions {dj }mj=1
[18]. We first define two different types of vectors, given as follows:

Definition 1 Membership vectors vj indicate the membership of each point for
manifold Mj . That is, vj,i = 1 if xi ∈ Mj , and vj,i = 0 otherwise. Note that vj is
an n × 1 vector.

Definition 2 Embedding vectors ej give the embedding coordinates for each man-
ifold Mj . We define ej as the n × dj matrix that contains the low-dimensional
coordinates of each manifold. That is,

ej = [
0
(dj ×∑j−1

i=1 ni)
, Y�

j ,0(dj ×∑m
i=j+1 ni)

]�
. (8)
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From Propositions 1–2, we know that there are two types of vectors in the null
space of M : the embedding vectors coming from the coordinates and the member-
ship vectors coming from each one of the m connected components. However, it is
unclear if these vectors are linearly independent, and if one can recover the segmen-
tation of the data and a nonlinear embedding for each group from ker(M). That is
because an arbitrary vector in ker(M) is a linear combination of the embedding and
membership vectors. The following proposition addresses these issues in detail.

Proposition 3 Let {xi}ni=1 be a set of points drawn from a k-separated union of m

k-connected subspaces of dimensions dj < k − 1, j = 1, . . . ,m. The null space of
M is of dimension at least m + ∑m

j=1 dj and contains orthonormal zero-padded
vectors formed from the individual embedding {ej } and membership {vj } vectors.

Proof From Proposition 2, we know that M is block diagonal and can be writ-
ten as M = diag(Mj ), where Mj ∈ R

nj ×nj is the matrix for the j th group and nj

is the number of points in the j th group. From Proposition 1, we also know that
the matrix Mj has dj + 1 vectors in the null space: the vector of all ones and the
dj linearly independent columns of the matrix of coordinates Yj ∈ R

nj ×dj . That

is Mj [Yj 1] = 0. Therefore, the matrix Y = diag ([Yj 1(nj ×1)]) ∈ R
n×(

∑m
j=1 dj +m)

is such that MY = 0. Furthermore, as Y is block diagonal and rank ([Yj 1]) =
dj + 1, we have that Y is of rank

∑m
j=1 dj + m, and so the dimension of

ker(M) is at least
∑m

j=1 dj + m. Also, the matrix of embedding vectors of the

j th group ej = [0, Y�
j ,0]� ∈ R

n×dj is orthogonal to its membership vector vj =
[0,1(1×nj ),0]� ∈ R

n×1. Since ej and vj are zero-padded, they are always orthog-
onal to ei and vi for i �= j . In addition, one can choose the embedding vectors ej to
be orthogonal to each other, because the matrix M is symmetric. Therefore, we can
assume that the vectors {v1, e1, . . . ,vm, em} are orthonormal. �

Given a set of points {xi ∈ R
D}ni=1, it follows from the proof of Proposition 3,

ker(M) contains the orthonormal set of embedding vectors ej and membership vec-
tors vj . More precisely, when the points {xi}ni=1 are drawn from a k-separated union
of m k-connected manifolds, we have,

1. for m nonlinear manifolds:

{vj }mj=1 ∈ ker(M) and dim
(
ker(M)

) = m

2. for m linear manifolds of dimensions {dj }mj=1:

{vj }mj=1, {ej }mj=1 ∈ ker(M) and dim
(
ker(M)

) = m +
m∑

j=1

dj



38 A. Goh

3. for m−m1 nonlinear manifolds, and m1 linear manifolds of dimensions {dj }m1
j=1:

{vj }mj=1, {ej }m1
j=1 ∈ ker(M) and dim

(
ker(M)

) = m +
m1∑
j=1

dj

Therefore, in the presence of linear manifolds, we cannot directly obtain the seg-
mentation of the data or an embedding for each one of the subspaces from ker(M),
since an arbitrary vector in ker(M) is a linear combination of both membership and
embedding vectors. This is a limitation of Algorithm 1; for this rest of this chapter,
we assume that the data does not lie on linear manifolds.

4 Manifold Clustering and Dimensionality Reduction Using the
Riemannian Metric

The NLDR techniques presented in Sects. 2 and 3.1 are applicable only in the pres-
ence of manifolds with unknown structure. Every operation is approximated by the
corresponding Euclidean operation as the metric is unknown. However, for Rieman-
nian manifolds with well-studied geometries, closed-form formulae for Riemannian
operations are often available. The question now is to extend NLDR techniques
for Riemannian manifolds in a way that takes into consideration the appropriate
Riemannian structure. In this section, we present an algorithm for clustering and di-
mensionality reduction on Riemannian manifolds. We first present a brief summary
of the theory of Riemannian manifolds in Sect. 4.1. For a more complete descrip-
tion, we refer the reader to [13]. Next, in Sect. 4.2, we illustrate how to extend man-
ifold clustering and dimensionality reduction algorithms to Riemannian manifolds
by adopting the framework in [21]. This framework has been applied to motion seg-
mentation in [21], diffusion tensor images in [19] and probability density functions
in [20].

4.1 Review of Riemannian Manifolds

In this section, we will give an overview of Riemannian theory and show how the
various operations such as interpolation on the manifold and computation of the
mean and principal components are carried out.

A smooth manifold is a topological space that is locally diffeomorphic to a Eu-
clidean space smooth function γ (t) : R → M. Figure 1 shows an example of a
two-dimensional manifold. The tangent space of M at a point x ∈ M, denoted as
Tx M, is then defined as the span of the tangent vectors for all the possible curves
γ passing through x. A Riemannian metric is a continuous collection of dot prod-
ucts 〈·, ·〉x. Using this metric, we define the length of a curve between two points
xi ,xj ∈ M as

Lb
a(γ ) =

∫ b

a

〈
γ̇ (t)|γ̇ (t)

〉 1
2
γ (t) dt, (9)
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Fig. 1 An example of a
two-dimensional manifold.
The tangent plane at xi ,
together with the exponential
and logarithm maps relating
xi and xj , are also shown

where γ (a) = xi and γ (b) = xj . A curve between xi and xj with minimum length is
called a geodesic. The distance between two points in the manifold is subsequently
defined as the length of the geodesic curve between them,

dist(xi ,xj ) = L1
0(γ ), γ (0) = xi , γ (1) = xj . (10)

Let v be a unit-length tangent vector in Tx M, that is, ‖v‖x = 〈v,v〉
1
2
x = 1. We

can then define the exponential map expx : Tx M → M, which maps each tangent
vector tv ∈ Tx M to the point γ (t) ∈ M obtained by following the geodesic γ (t)

(parametrized with arc-length) passing through x with direction v for a distance t .
Define the set Cx ⊂ M as the set of all the points xi = exp(t0v) such that γ =
exp(tv) is a length-minimizing geodesic for t ∈ [0, t0]. The boundary of Cx is called
the cut locus, and, intuitively, it is the set of points for which the distance from x
stops to be a differentiable function of t . The exponential map is therefore invertible
for all the points in the interior of Cx and we can define the logarithm map logx :
Cx → Tx M as logx = exp−1

x . Note that for any xi ∈ Cx and xi = expx(tv) we have
that (by definition), ∥∥ logx(xi )

∥∥
x = ‖tv‖x = dist(x,xi ) = t. (11)

Linear geodesic interpolation makes use of the exponential and logarithm maps and
is defined as x̂ = expxi

(w logxi
(xj )), w ∈ [0,1]. x̂ is the linear interpolation at t = w

of xi and xj . Finally, we recall that the Riemannian metric, exponential and loga-
rithm maps depend on the point x under consideration, hence the subscripts reflect-
ing this dependency.

We will now briefly summarize how to calculate the mean and principal compo-
nents of data points lying in a manifold. As defined by Fréchet in [16] and used in
several recent works [15, 32], the intrinsic mean x̄ is defined as the solution to the
following minimization problem

x̄ = arg min
x∈M

n∑
i=1

dist(x,xi )
2 = arg min

x∈M

n∑
i=1

∥∥ logx(xi )
∥∥2

x. (12)

Note that, unlike in the Euclidean case, in general there is no closed form for x̄.
Moreover, there is no guarantee that x̄ exists or is unique. However, one can show
the existence and uniqueness of x̄ [27] by assuming that the data lie in a small
enough neighborhood, that is, the maximum distance between any xi and xj is small
enough. Furthermore, x̄ can be computed as shown in Algorithm 2.
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Algorithm 2: Intrinsic mean
Given data points x1, . . . ,xn ∈ M, a predefined threshold ε, maximum
number of iterations T

1. initialize t = 1, x̄1 = xi for a random i, v �= 0 ∈ Tx̄1 M
2. while t ≤ T or ‖v‖x̄ ≥ ε

(a) compute tangent vector v = 1
n

∑n
i=1 logx̄t

(xi )

(b) set x̄t+1 = expx̄t
(v)

Algorithm 3: Principal geodesic analysis
Given data points x1, . . . ,xn ∈ M

1. compute intrinsic mean x̄ as in Algorithm 2
2. calculate the tangent vectors vi = logx̄(xi )about x̄
3. construct the sample covariance matrix cov(x) = 1

n

∑n
i=1 viv�

i

4. perform eigenanalysis of the matrix cov(x), with the eigenvectors {ui}di=1
giving the principal directions. {ui}di=1 forms an orthonormal basis for Tx̄ M

Table 1 Comparison of Euclidean and Riemannian operations, where {xi}ni=1, are data points

Operation Euclidean Riemannian

Subtraction −−→xixj xj − xi logxi
(xj )

Addition xj xi + −−→xixj expxi
(
−−→xixj )

Distance dist(xi ,xj ) ‖−−→xixj‖ = ‖xj − xi‖ ‖ logxi
(xj )‖xi

= √〈logxi
(xj ), logxi

(xj )〉xi

Linear interpolation x̂ xi + w
−−→xixj expxi

(w
−−→xixj )

Mean x̄
∑n

i=1
−→̄
xxi = 0

∑n
i=1 logx̄(xi ) = 0

Covariance cov(x) 1
n

∑n
i=1(

−→̄
xxi )(

−→̄
xxi )

� 1
n

∑n
i=1(logx̄(xi ))(logx̄(xi ))

�

Given x̄, the calculation of principal components on a Riemannian manifold is
not as straightforward as in the Euclidean case. It involves projecting a point onto
a geodesic curve, which is also defined as a minimization problem for which exis-
tence and uniqueness are not ensured [15]. Again, by making the assumptions that
the data lie in a small neighborhood, the projection can be shown to be unique. In
[15], it is shown that finding principal components boils down to doing PCA in the
tangent vectors logx̄(xi ) ∈ Tx̄ M about the mean x̄. This algorithm, known as Prin-
cipal Geodesic Analysis (PGA), is summarized in Algorithm 3. Table 1 compares
the standard operations in Euclidean and Riemannian spaces.
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4.2 Extending Manifold Clustering and Dimensionality Reduction
to Riemannian Manifolds

In this section, we will show how to extend manifold clustering and dimensionality
reduction to Riemannian manifolds. We assume here that the various Riemannian
operations are known and closed-form. First of all, notice that the information about
the local geometry of the manifold is essential only in the first two steps of each
algorithm and therefore, modifications are made only to these two stages. The key
issues are how to select the kNN and how to compute the matrix M representing
the local geometry. As shown in [21], the former is straightforward, while the latter
requires some thought. Given M , calculating the low-dimensional representation
remains the same as in the Euclidean case. We let X = {xi ∈ R

D}ni=1 be a set of n

data points sampled from a known Riemannian manifold.

4.2.1 Selection of the Riemannian kNN

The first step of any NLDR algorithm is the computation of the kNN associated with
each data point. We define the kNN of xi by incorporating the Riemannian distance,
that is, the kNN of xi are the k data points xj that minimize ‖ logxi

(xj )‖xi
.

4.2.2 Riemannian Calculation of M for LLE

The second step of LLE is to compute the matrix of weights W ∈ R
n×n. In order

to do so, we will answer two main questions: (1) how does one express a point as
a linear combination of its neighbors? and (2) what is the reconstruction cost? First
of all, we know that from Sect. 4.1 that

x̂Riem,i = expxi

(
n∑

j=1

Wij logxi
(xj )

)
, (13)

is the geodesic linear interpolation of xi by {xj }nj=1. Now, instead of minimizing
the Euclidean error, we rewrite (1) to minimize the Riemannian reconstruction error
and make use of the fact that exp and log are inverse mappings. Therefore, we have

εRiem(W) =
n∑

i=1

∥∥ logxi
(x̂Riem,i )

∥∥2
xi

=
n∑

i=1

∥∥∥∥∥
n∑

j=1

Wij logxi
(xj )

∥∥∥∥∥
2

xi

, (14)

subject to Wij = 0 if xj is not a kNN of xi and
∑

j Wij = 1. Using similar manipu-
lations as in the Euclidean case, the optimal weights are obtained as in (2), with the
local Gram matrix Ci ∈ R

k×k defined as

Ci(j, l) = 〈
logxi

(xj ), logxi
(xl )

〉
xi

. (15)

M is then (I − W)�(I − W).
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4.2.3 Riemannian Calculation of M for LE

Here, instead of attempting to write each data point as a linear combination of
its kNN, we find a matrix of weights W ∈ R

n×n whose entries Wij measure the
proximity between two points xi and xj as in (4). Therefore, modifying LE for
Riemannian manifolds is less involved than in the case of LLE. Instead of using
exp(−‖xi − xj‖2/σ 2) as in (4), we construct the weight matrix W using the Rie-
mannian distance as

Wij = exp

(
−distRiem(xi ,xj )

2

σ 2

)
= exp

(
−‖ logxi

(xj )‖2
xi

σ 2

)
, (16)

subject to the constraint Wij = 0 if xj is not a k-nearest neighbor of xi . As before,
M = D − W and D is a diagonal matrix, where Dii = ∑

j Wij .

4.2.4 Riemannian Calculation of M for HLLE

The second step of HLLE involves computing the tangent coordinates for each xi by
applying Euclidean PCA to its neighbors. This implicitly assumes that these local
points lie in a subspace. This assumption is no longer valid if xi and its kNN lie
in a Riemannian manifold. From Sect. 4.1, we know that in this case, calculating
the principal geodesic components and the projection coordinates is not as simple
as doing Euclidean PCA. There is a need to incorporate the correct Riemannian
metric, mean and covariance matrix.

Again, let {xi,j }kj=1 denote the set of k-nearest neighbors of xi . First, we cal-
culate the intrinsic mean x̄i of the kNN (Algorithm 2). Next, we find the tangent
vectors vj = logx̄i

(xi,j ) about x̄i and the geodesic principal directions {uq}dq=1 us-

ing PGA (Algorithm 3). Since {uq ∈ R
D}dq=1 is an orthonormal basis for Tx̄i

M, we
will rewrite the projection operator in (6) using the Riemannian metric. Thus, the
tangent coordinates of the kNN are given by the k × d matrix V , where

Vpq = 〈
logx̄i

(xi,p),uq

〉
x̄i

, p = 1, . . . , k, q = 1, . . . , d. (17)

Once the tangent coordinates are found, the estimation of the Hessian matrix M is
the same as in the Euclidean case (7).

4.2.5 Calculation of the Embedding Coordinates

The last step of NLDR is to find a Euclidean low-dimensional representation of the
data points. As this step is independent of the Riemannian structure, one can find the
embedding coordinates as described in Sect. 2. That is, the embedding coordinates
are obtained based on the d (generalized) eigenvectors of the matrix M associated
with its second to (d + 1)th smallest (generalized) eigenvalues. Finally, notice that
if the Riemannian operations are available in closed-form, then extending NLDR
to Riemannian manifolds do not require significant additional computational com-
plexity.
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Algorithm 4: Unsupervised clustering and dimensionality reduction on Rie-
mannian manifolds
Given data points x1, . . . ,xn ∈ M

1. nearest neighbors: find the kNN of each data point xi according to the
Riemannian distance

2. construction of M : for each NLDR algorithm, construct the appropriate M

described in Sect. 4.2 on the entire data and compute a basis B for the null
space of M

3. clustering: compute the segmentation of the data by applying K-means to
the rows of B

4. low-dimensional embedding: apply NLDR as described in Sect. 4.2 to each
group to obtain a low-dimensional embedding for each submanifold

4.2.6 Extending Manifold Clustering to Riemannian Manifolds

We will now consider the case when we have data lying in m submanifolds of a Rie-
mannian space. Similar to what is done in the Euclidean space, we assume that the
data is distributed in a k-disconnected union of m k-connected submanifolds of M.
Notice that just as done in the calculation of the embedding coordinate, Algorithm 1
is independent of the Riemannian structure. Therefore, it is immediate to see that
they are applicable to m submanifolds, both linear and nonlinear, of a Riemannian
space. Algorithm 4 summarizes the dimensionality reduction and clustering algo-
rithm for m submanifolds of a Riemannian space.

5 Experiments

5.1 Application and Experiments on SPSD(3) [19, 21]

This section present an application of the theory developed in Sect. 4 to the space
of 3 by 3 symmetric positive semi-definite matrices SPSD(3). It is well known [3,
15, 32, 46] that the traditional Euclidean distance is not the most appropriate metric
for SPSD matrices as they lie on a Riemannian symmetric space. An example of
such data is the well-known structure tensor found in direct 2-D motion segmen-
tation from the image intensities without extracting features such as optical flow
or point correspondences. Under the assumption that all surfaces are Lambertian,
the optical flow (u, v) between two images of a sequence is related to the image
partial derivatives ∇I = (Ix, Iy, It ) by Ixu + Iyv + It = 0 ⇒ ∇I�(u, v,1) = 0,
where (x, y) denotes pixel location and t denotes time. Premultiplying by ∇I gives
an equation of the form (∇I∇I�)(u, v,1) = 0, This system of linear equations in-
volves the spatial-temporal structure tensor (∇I∇I�). SPSD matrices also play an
important role in Diffusion Tensor Imaging (DTI). DTI is a 3-D imaging technique
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that measures the diffusion of water molecules in living tissues. Water diffusion
is represented mathematically with a symmetric positive semi-definite tensor field
T : R

3 → SPSD(3) ⊂ R
3×3 that measures the diffusion in a direction d ∈ R

3 as
d�Td.

The goal is to automatically segment a set of SPSD matrices {Tj ∈ SPSD(r)}nj=1
into different clusters, where different groups correspond to different 2-D motions
in a video or to different fiber bundles in DTI. There are many possible metrics
in SPSD(r) [3, 15, 28, 32, 46]. Each metric is derived from different geometrical,
statistical or information-theoretic considerations. The question of which one is the
best metric remains an active research area. The Riemannian metric proposed in

[32] distRiem(Ti ,Tj ) = ‖ log(T
− 1

2
i Tj T

− 1
2
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Our algorithm is tested on 2-D motion segmentation from two consecutive frames
of video sequences [21]. The spatial-temporal structure tensor is T = K ∗ (∇I∇I�),
where ∗ is the convolution operator, K is a smoothing kernel (the Gaussian kernel is
commonly used), and ∇I = (Ix, Iy, It ) is the spatial-temporal image gradient. We
use the same data set as in [12]. Figure 2 shows two examples of moving patches
of homogeneously textured wallpaper in which the different regions cannot be dis-
tinguished on the sole basis of appearance. This is because the input frames contain
regions with the same intensity and texture with no clear edges or corners. Thus, all
results are obtained exclusively from the motion information. Figure 2(a) contains
two regions, the text region with the word “UCLA” and the background. In Fig. 2(c),

Fig. 2 2-D motion segmentation using the structure tensor [21]
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there are three overlapping circles, each with its own motion, and the background.
As shown in Figs. 2(b) and 2(d), LLE yields the best results among all the alge-
braic methods, distinguishing the text “UCLA” and the three circles. As none of the
NLDR methods incorporates a smoothness constraint (as done in level set methods),
it is of no surprise that the level set method produces a cleaner segmentation. Nev-
ertheless, it is immediate that our algorithm provides a very good initialization for
iterative techniques such as level sets.

The next set of experiments is done on real video sequences [21]. The first video
involves a camera tracking a car going along a road, as shown in Fig. 3(a). There are
three different motion groups found in the two consecutive frames. The first group
contains mostly the pixels of the car, the second group contains the background
pixels where the camera movement is apparent (e.g., edges and corners), and the
last group contains the background pixels with the aperture problem (e.g., middle of
the road). The second video of a car is taken with a stationary camera, as shown in
Fig. 3(c). There are two different motion groups in this case, the first group being the
car and the second group being the background. The last video, shown in Fig. 3(e),
is taken from the Hamburg Taxi sequence. In this dataset, the moving taxi forms the
first group and the stationary background forms the second group. From Figs. 3(b),
3(d), and 3(f), it is clear that LLE is able to segment the different groups, LE gives
a reasonable segmentation but suffers from artifacts, whereas the performance of
HLLE performance is poor.

Our algorithm is also tested in the segmentation of the corpus callosum and the
cingulum from real DTI data [19]. The size of the entire DTI volume of the brain is

Fig. 3 2-D motion segmentation on real video sequences [21]
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128 × 128 × 58 voxels and the voxel size is 2 × 2 × 2 mm. From the visualization
of the tensor data, we know the approximate location of each cingulum bundle in
the left and right hemispheres. Hence, we reduce the input volume to the algorithm
by focusing in this location. In addition, we also mask out voxels with fractional
anisotropy below a threshold of 0.2 in order to separate white matter from the rest
of the brain. Also, tensors at adjacent voxels within a fiber bundle are similar (sim-
ilar eigenvectors and eigenvalues), while tensors at distant voxels could be very
different, even if they lie in the same bundle. In order to account for this fact, the
kNN {D(xj )}kj=1 of a tensor D(xi) at xi subject to ‖xj − xi‖ ≤ R is chosen. The
value of the spatial radius is set to R = 10 and the number of nearest neighbors to
k = 30.

Figure 4 shows the results of the left hemisphere. Figure 4(a) shows the sagit-
tal slices used and the ellipsoid visualization of the tensors. The corpus callosum
is the bundle with the red tensors pointing out of the plane and resembles the let-
ter ‘C’. The cingulum, which is significantly smaller, is the bundle left to the corpus
callosum with the green tensors oriented vertically. The corpus callosum and the cin-
gulum are clustered around different centers. Figure 4(b) shows the results of LLE.
The corpus callosum forms a distinct cluster (in red). Figure 4(c) shows the results
of LE. Even though it appears that the cingulum forms a distinct group, the corpus
callosum is merged into the same group as the tensors in the background. HLLE
(not shown) failed to produce any reasonable segmentation of the fiber bundles.

As our algorithm does not incorporate any smoothness constraint, the segmenta-
tion is noisier compared to energy minimization methods such as in [30]. However,
for the segmentation of the cingulum bundle in [30], a significant effort was required
to manually remove voxels in the corpus callosum before running their respective
algorithms. Our algorithm, on the other hand, is automatic. Hence, an immediate
use of our algorithm is that the output could be used as an automatic initialization
for such algorithms.

5.2 Application and Experiments on the Space of Probability
Density Functions

This section present an application of the theory developed in Sect. 4 to the space
of probability density functions. The class of constrained non-negative continuous
functions under study here is the set of pdfs defined below. Without loss of general-
ity, we can assume that these functions are defined on the interval [0, T ]. Therefore,
the set P of pdfs is given by

P =
{
p : [0, T ] → R|∀s,p(s) ≥ 0,

∫ T

0
p(s) ds = 1

}
. (18)

The question of how to regard the space of pdfs as a differential manifold en-
dowed with a Riemannian metric and a family of affine connections has a long his-
tory behind it. Nevertheless, it remains an active and important research area. Treat-
ing statistical structures as geometric structures has the advantage that geometric
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Fig. 4 Segmenting the corpus callosum and the cingulum [19]. The first row shows the visualiza-
tion of the data in five sagittal slices and the tensor at each voxel is represented by an ellipsoid. The
second row shows the clustering result given by LLE. The third row shows the clustering result
given by LE

structures remain invariant under coordinate transforms. Rao [34] first introduces
the Riemannian structure formed by the statistical manifold where each point in
the manifold denotes a pdf. In addition, [34] also shows that the Fisher–Rao metric
determines a Riemannian metric. The Fisher–Rao metric is later shown to be the



48 A. Goh

unique intrinsic metric on the statistical manifold in [9]. This study of probability
and information via differential geometry is known as information geometry. The
reader is referred to the seminal work of [2] for a complete description.

We will consider the manifold P of pdfs on the interval [0, T ]. For any point
pi ∈ P , the Fisher–Rao metric is defined as

〈qj ,qk〉pi
=

∫ T

0
qj (s)qk(s)

1

pi (s)
ds, (19)

where qj ,qk ∈ Tpi
(P) are tangent vectors and Tpi

(P) is the set containing the
functions tangent to P at the point pi . This representation turns out to be extremely
difficult to work with as ensuring the geodesic between two elements lies on P is
not easy [41].

Even though the space P turns out to be difficult to work with, we know that it
is not the only possible representation for pdfs and in addition, we also know that
the Fisher–Rao metric is the only metric that is invariant to re-parameterizations
(essentially coordinate transforms) of the functions [9]. There are many different
re-parameterizations of pdfs that are equivalent representations. Depending on the
representation, the resulting Riemannian structure can have varying degrees of com-
plexity and numerical techniques may be required to compute geodesics on the
manifold. Therefore, the natural question to ask now is, is it possible to use a re-
parameterization such that the resulting manifold is simple and the Riemannian op-
erations are easy, preferably closed-form, to compute? Once an efficient representa-
tion is found, the corresponding Fisher–Rao metric, which depends on the tangent
vector, will then be used as the Riemannian metric. In a recent work [41], it is proved
that by using the square-root representation, the resulting manifold is a unit sphere
in a Hilbert space with the Fisher–Rao metric being the usual L

2 metric. Therefore,
the various Riemannian operations such as geodesics, exponential maps, logarithmic
maps are available in closed form. This is one of the most efficient representation
found to date.

The square-root density function is defined as ψ = √
p, where ψ is assumed to

be nonnegative to ensure uniqueness. The space of such functions is defined as:

� =
{
ψ : [0, T ] → R|∀s,ψ(s) ≥ 0,

∫ T

0
ψ2(s) ds = 1

}
. (20)

From (20), it is easy to see that the functions ψ lie on a unit sphere. In addition,
� forms a convex subset of the unit sphere. The advantage of choosing the square-
root density becomes immediately obvious, as many of the Riemannian expressions
for the unit sphere are well-known and closed-form. By making use of the represen-
tation in (20), we can rewrite (19) and obtain the Fisher–Rao metric as

〈vj ,vk〉ψ i
=

∫ T

0
vj (s)vk(s) ds, (21)

where vj , vk ∈ Tψ i
� are tangent vectors. Now, for any two functions ψ i ,ψj ∈ � ,

the geodesic distance between these two points on a unit sphere is simply the angle
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between them, that is,

dist(ψ i ,ψj ) = cos−1〈ψ i ,ψj 〉 = cos−1
(∫ T

0
ψ i (s)ψj (s) ds

)
, (22)

where 〈·, ·〉 is the normal dot product between points in the sphere under the L
2

metric.
From the differential geometry of the sphere, the exponential map is defined as

expψ i
(v) = cos

(‖v‖ψ i

)
ψ i + sin

(‖v‖ψ i

) v
‖v‖ψ i

, (23)

where v ∈ Tψ i
(�) is a tangent vector at ψ i and ‖v‖ψ i

= √〈v,v〉ψ i
=

(
∫ T

0 v(s)v(s) ds)
1
2 . In order to ensure that the exponential map is a bijective func-

tion, we restrict ‖v‖ψ i
∈ [0,π]. The logarithm map from ψ i to ψj is then given

by
−−−→
ψ iψj = logψ i

(ψj ) = u

(
∫ T

0 u(s)u(s) ds)
1
2

cos−1〈ψ i ,ψj 〉, (24)

with u = ψj − 〈ψ i ,ψj 〉ψ i .
We test the algorithm in the segmentation of different textures [20]. From the

Columbia-Utrecht Reflectance and Texture Database (CUReT) found at http://
www1.cs.columbia.edu/CAVE//software/curet/, we obtain samples of different tex-
tures and each grayscale image contains only one texture. In order to construct a
histogram that reflects the texture statistics in an image, we will calculate what is
commonly known as textons [44]. This is done by first applying a filter bank to all
images in the training set. We use the Schmid [37] filter banks shown in Fig. 5. This
will provide us with a feature vector f (x, y) of dimension 13 at each pixel. Next, we
apply k-means to all the vectors in the entire dataset to get 30 cluster centers, also
known as the textons. For each image in the dataset, we then compute a histogram
that contains the number of pixels corresponding to each one of these 30 bins. This
is done by assigning a pixel (x, y) to bin i if the feature vector f (x, y) is closest to
cluster center i = 1, . . . ,30, according to the Euclidean distance in R

13.
We test our algorithm on 4 sets of data containing 2 different textures each. There

are 92 images in each texture class. In these experiments, the number of nearest
neighbors is set to 10. Figure 6 shows these 4 sets with a typical example of the 2
different textures and the corresponding histograms in each set. Table 2 shows the
misclustering percentage of LLE and LE for each set.

Finally, we test our algorithm on a set of data containing 3 different textures.
Figure 7 shows a typical example of the different textures and the corresponding
histograms in each set. The error produced by LLE in clustering is 5.43% whereas
LE is significantly higher at 30.07%.

Fig. 5 Schmid filter bank that we use to generate the textons and in turn the histograms

http://www1.cs.columbia.edu/CAVE//software/curet/
http://www1.cs.columbia.edu/CAVE//software/curet/
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Fig. 6 Textures and corresponding histograms used in the two-class clustering experiments [20]

Table 2 Misclustering rates
in % for two-class
segmentation

Algorithm Set 1 Set 2 Set 3 Set 4

Riemannian LLE 0 0 1.63 0

Riemannian LE 0 0 19.68 22.9

6 Conclusion and Open Research Problems

An algorithm for simultaneous NLDR and clustering of data sampled from multiple
submanifolds of a Riemannian manifold is presented. We focused our investigation
on the three NLDR algorithms, which computes a low-dimensional embedding from
the eigenvectors of a matrix M that depends on the local properties of the data. It
is important for the user to note that, it is possible that these algorithms become
degenerate if the construction of a matrix M , which captures the local geometry
of the data, is done in the presence of linear manifolds. Presently, there are several
open research problems. First of all, notice that the various Riemmanian operations
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Fig. 7 Textures and corresponding histograms used in the three-class clustering experiment [20]

are assumed to be known and closed-form. This is not true for generic cases and
there is a question of how one would be able to perform a similar analysis when
the Riemannian operations need to be solved in an iterative manner. The next open
problem that future research efforts are focusing on is to address the assumption that
data lying on different manifolds do not intersect each other. Finally, there is also a
need to construct a large-scale version of the algorithms presented in order to handle
large datasets.
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Manifold Learning for Multi-dimensional
Auto-regressive Dynamical Models

Fabio Cuzzolin

Abstract We present a general differential-geometric framework for learning dis-
tance functions for dynamical models. Given a training set of models, the optimal
metric is selected among a family of pullback metrics induced by the Fisher infor-
mation tensor through a parameterized automorphism. The problem of classifying
motions, encoded as dynamical models of a certain class, can then be posed on the
learnt manifold. In particular, we consider the class of multidimensional autoregres-
sive models of order 2. Experimental results concerning identity recognition are
shown that prove how such optimal pullback Fisher metrics greatly improve classi-
fication performances.

1 Introduction

Manifold learning [2, 5, 12, 30, 34, 39] has become a popular topic in machine
learning and computer vision in the last few years, as many objects of interests (like
natural images, or sequences representing walking persons), in spite of their ap-
parent high dimensionality, live in a nonlinear space of usually limited dimension.
Many unsupervised algorithms (e.g., locally linear embedding [29]) take an input
dataset and embed it into some other space, implicitly learning a metric. Extensions
learning a full metric for the whole input space have been recently formulated [4].
Extremely interesting is the case in which the objects of interest (whose lower di-
mensional manifold we would like to identify) are not simple collections of real
numbers (vectors), but are complex structures such as, for instance, graphs, trees,
or graphical models. The branch of machine learning dealing with the representa-
tion and classification of such complex objects goes under the name of “structured
learning”, and has achieved widespread popularity in the last few years.
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In particular, videos or image sequences are often represented as realizations of
some sort of dynamical model, either stochastic (e.g., HMMs) or deterministic (e.g.,
ARMA). Such an approach has proven to be effective in problems such as video
coding, action recognition, or identity recognition from gait [33].

Recognizing human activities from video is indeed a significant example of such
applications. Even though the formulation of the problem is simple and intuitive,
activity recognition is a much harder problem than it may look. Motions inherently
possess an extremely high degree of variability. Methods which neglect to take into
account action dynamics for recognition have recently proven very effective. Typi-
cally, these approaches extract spatiotemporal features from the 3D volume associ-
ated with a video [19, 38].

However, encoding the dynamics of videos or image sequences by means of some
sort of dynamical model can be useful in situations in which the dynamics is criti-
cally discriminative. Chaudry et al. [8], for instance, have used nonlinear dynamical
systems (NLDS) to model times series of histograms of oriented optical flow, mea-
suring distances between NLDS by means of Cauchy kernels. Wang and Mori [35],
instead, have proposed to use sophisticated max-margin conditional random fields
to address locality by recognizing actions modeled as constellations of local motion
patterns. Generally speaking, dynamical representations are very effective in coping
with time warping or helping with the crucial issue of action segmentation. Dynamic
textures [11] based on deterministic linear dynamical systems (LDS) have proven
to be effective in video coding.

In all these scenarios, action (or identity) recognition reduces to classifying dy-
namical models. One way of doing this is to learn a new model for each test im-
age sequence, measure its distance from the old models, and attribute to the new
sequence the label of the closest model. A number of distance functions between
linear systems have indeed been introduced [6, 23, 32], and a vast literature about
dissimilarity measures between Markov models also exists [10, 36], mostly about
variants of the Kullback–Leibler divergence [20].

Consider, though, the general problem of classifying a dynamical model (as the
representative of an input image sequence). Since models (or sequences) can be en-
dowed with different labeling, while maintaining the same geometrical structure,
no single distance function can possibly outperform all the others in each and ev-
ery classification problem. A reasonable approach, when possessing some a-priori
information, consists therefore in trying to learn in a supervised fashion the “best”
distance function for a specific classification problem [2, 5, 12, 30, 34, 39]. A natu-
ral optimization criterion seeks to maximize the classification performance achieved
by means of the learnt metric. Efforts have been done in this sense in the linear case
[31, 37]. However, as even linear dynamical models live in a nonlinear space, the
need for a principled way of learning Riemannian metrics from such data naturally
arises.

Such a tool is provided by the formalism of pullback metrics. If the models be-
long to a Riemannian manifold M, any diffeomorphism of M onto itself (or au-
tomorphism) induces such a metric on M. By designing a suitable parameterized
family of automorphisms, we obtain a family of pullback metrics on M that we can
optimize upon.
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In this chapter, we propose a general framework for learning the optimal pull-
back metric for a data-set D of dynamical models. Assume each input observation
sequence is mapped to a model of a certain class by parameter identification. If such
models belong to a Riemannian manifold (for instance endowed with the Fisher
metric [1]), we can design a parametric family of automorphisms which induce a
family of pullback metrics. If the training set of models is labeled, we can then find
the parameter of the metric which optimizes classification performance by cross-
validation [7]. Otherwise, the metric which optimizes some purely geometric objec-
tive function can be sought (like, for instance, the inverse volume of the manifold
around the data-points in D [21]).

In particular, we consider here the class A R(2) of multidimensional autoregres-
sive models of order 2. We study the Riemannian structure of their manifold, and
design a number of automorphisms inducing families of parameterized pullback
metrics on A R(2). We apply this framework to identity recognition from gait. We
use the video sequences of the Mobo database [15] to prove that classifiers based on
an optimal pullback Fisher metric between stochastic models significantly improve
classification scores with respect to what obtained by standard, a-priori distance
functions.

2 Learning Pullback Metrics for Linear Models

Let us suppose a data-set of dynamical models is available. Suppose also that such
models live on a Riemannian manifold M of some sort, that is, a Riemannian met-
ric is defined in any point of the manifold. Any automorphism (a differentiable
map) from M to itself induces a new metric, called “pullback metric”. The use of
pullback metrics has been recently proposed by Lebanon [21] in the context of doc-
ument retrieval. However, pullback metrics are a well studied notion of differential
geometry [17], which has found several applications in computer vision [18].

2.1 Pullback Metrics

Formally, consider a family of automorphisms between the Riemannian manifold
M in which the data-set D = {m1, . . . ,mN } ⊂ M resides and itself:

Fp : M → M
m ∈ M �→ Fp(m).

Let us denote by TmM the tangent space to M in m. Any such automorphism F is
associated with a “push-forward” map

F∗ : TmM → TF(m)M
v ∈ TmM �→ F∗v ∈ TF(m)M

defined as F∗v(f ) = v(f ◦ F) for all smooth functions f on M (see Fig. 1). Con-
sider now a Riemannian metric

g : T M × T M → R
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Fig. 1 The push-forward
map F∗ associated with an
automorphism F on a
Riemannian manifold M

on M. Roughly speaking, g determines how to compute scalar products of tangent
vectors v ∈ TmM. The map F induces a pullback metric g∗ on M:

g∗m(u, v)
.= gF(m)(F∗u,F∗v). (1)

The scalar product of two vectors u,v of TmM according to g∗ is computed as
the scalar product with respect to the original metric g of the images F∗u,F∗v of
the vectors u,v under the push-forward map F∗. The pullback geodesic between
any two points m1, m2 of the manifold M is the geodesic connecting their images
with respect to the original metric. If we manage to define an entire class of such
automorphisms depending on some parameter λ, we get a corresponding family of
pullback metrics on M, also depending on λ. We can then define an optimization
problem over such a family in order to select an “optimal” metric, which in turn
determines the desired manifold. The nature of this manifold will depend on the
objective function we choose to optimize.

2.2 Fisher Metric for Linear Models

To apply the pullback metric framework to dynamical models, we first need to define
a structure of Riemannian manifold on them. The study of the geometrical structure
of the space formed by a family of probability distribution is due to Rao, and has
been developed by Nagaoka and Amari [1]. A family S of probability distributions
p(x, ξ) depending on a n-dimensional parameter ξ can be regarded in fact as an
n-dimensional manifold. If the Fisher information matrix

gij
.= E

[
∂ logp(x, ξ)

∂ξi

∂ logp(x, ξ)

∂ξj

]

is nondegenerate, G = [gij ] is a Riemannian metric, and S is a Riemannian mani-
fold. The Fisher information matrix for several manifolds of linear MIMO systems
has been computed in [16].

2.3 General Framework

As linear dynamical models do live in a Riemannian space, we can apply to them the
pullback metric formalism and obtain a family of metrics on which to optimize. Itoh
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Fig. 2 A bird’s eye view of the proposed framework for learning pullback metrics on dynamical
models

et al. [17] have indeed recently done some work on pullbacks of Fisher information
metrics.

Here, we design a general framework for learning an optimal pullback metric
from a training set of dynamical models, as depicted in Fig. 2.

1. A data-set Y of observation sequences {yk = [yk(t), t = 1, . . . , Tk],
k = 1, . . . ,N} of variable length Tk is available.

2. From each sequence, a dynamical model mi of a certain class C is estimated by
parameter identification, yielding a data-set of such models D = {m1, . . . ,mN }.

3. Models of a certain class C belong to a manifold M C ; its atlas of coordinate
charts has to be known.1

4. To measure distances between pairs of models on the manifold M C , either a
distance function dM or a proper Riemannian metric gM have to be defined on
it.

5. In the case of a Riemannian metric, it is necessary to know the geodesic path
between two models in order to compute the associated geodesic distance.

6. A family Fλ of automorphisms from M C onto itself, parameterized by a vec-
tor λ, is designed to provide a search space of metrics from which to select the
optimal one.

7. Fλ induces a family of pullback metrics (1) g∗λM or distances d∗λM on M,
respectively.

8. We optimize over this family of pullback distances/metrics in order to find the
optimal such function/metric, according to some objective function.

9. This yields an optimal pullback metric ĝ∗ or distance function d̂∗.
10. In the metric case, knowing the geodesics of M suffices to compute the

geodesic distances on M based on ĝ∗.
11. The optimal distance function can finally be used to cluster or classify new

“test” models/sequences.

1In the case considered here, a single coordinate chart actually spans the whole manifold.
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2.4 Objective Functions: Classification Performance and Inverse
Volume

When the data-set of models is labeled, we can exploit this information to determine
the optimal metric/distance function. In particular, we can use cross-validation [7] to
optimize its classification performance by dividing the overall sample into a number
v of folds. The models belonging to v − 1 folds are used as training sample, the
remaining fold as testing sample, and the parameter of the pullback metric which
optimizes the correct classification rate on fold v given the training set is selected.
As the classification score is hard to describe analytically, we can extract a number
of random samples from the parameter space and pick the maximal performance
sample.

When the training set is unlabeled, manifold learning has to be based on purely
geometrical considerations. Lebanon [21] has recently suggested in the context of
document retrieval an approach that seeks to maximize the inverse volume element
associated with a metric around the given training set of points [24]:

O(D) =
N∏

k=1

(detg(mk))
− 1

2∫
M(detg(m))− 1

2 dm
, (2)

where g(mk) denotes the Riemannian metric in the point mk of the data-set D liv-
ing on a Riemannian manifold M. This amounts to finding a lower dimensional
representation of the dataset, in a similar fashion to LLE [29] or Laplacian eigen-
maps [3], where dimensionality reduction is often considered a factor in improving
classification.

The computation of (2) requires that of the Gramian detg. To find the expression
of the Gramian associated with a pullback metric (1), we first need to choose a base
of the space TmM tangent to M in m. Let us denote by {∂i, i = 1, . . . ,dim M}
the base of TmM. The push-forward of the vectors of this base yields a base for
TF(m)M. By definition, the push-forward F∗λ of a vector v ∈ TmM under a an
automorphism Fλ with parameter λ is given by [21]:

F∗λ(v)
.= d

dt
Fλ(m + t · v)

∣∣∣∣
t=0

, v ∈ TmM.

The automorphism Fλ induces a base for the space of vector fields on M, wi
.=

{F∗λ(∂i)}, for i = 1, . . . ,dim M. We can rearrange these vectors as rows of a matrix:

J = [w1; . . . ;wdim M].
The volume element of the pullback metric g∗ in a point m ∈ M is the determinant
of the Gramian [21]: detg∗(m)

.= det[g(F∗λ(∂i),F∗λ(∂j ))]ij = det(J T gJ ). If J is a
square matrix (as in the rest of this chapter), we get simply:

detg∗(m) = det(J )2 · detg(m). (3)

After plugging (3) into (2), we obtain the function to minimize.
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3 Pullback Metrics for Multidimensional Autoregressive Models

In virtue of their importance as a class of dynamical models, and their relative sim-
plicity, we consider here the class of stable autoregressive discrete-time processes of
order 2, M = A R(2), in a stochastic setting in which the input signal is a Gaussian
white noise with zero mean and unit variance.

3.1 The Basis Manifold

This set can be given a Riemannian manifold structure under Fisher metric. A nat-
ural parametrization uses as coordinates the nonunit coefficients (a1, a2) of the de-
nominator of the transfer function:

h(z) = z2

z2 + a1z + a2
(4)

which corresponds to the AR difference: y(k) = −a1y(k − 1) − a2y(k − 2).
The basis manifold M and the associated Fisher metric in the scalar case have

been studied in the context of control theory [25, 27]. We build here on these re-
sults to determine a coordinate chart and a product Fisher metric on the manifold
A R(2,p) of p-dimensional AR models. We will then be able to design two differ-
ent families of automorphisms on A R(2,p), and use the framework of Sect. 2 to
determine there two families of pullback distance functions.

3.1.1 The Basis Manifold AR(2,1) in the Scalar Case

Let us consider first the scalar case p = 1 of a single output channel. To impose the
stability of the transfer function (4), the necessary conditions are 1 + a1 + a2 > 0,
1 − a1 + a2 > 0, and 1 − a2 > 0. The manifold of stable AR(2,1) systems is then
composed by a single connected component (see Fig. 3, left).

Fig. 3 The manifold of stable scalar autoregressive systems of order 2, AR(2,1), with the
nonunit coefficients of the denominator of h(z) as parameters. It forms a simplex with vertices
[−2,1], [2,1], [0,−1]. Right: effect of an automorphism of the form (10) on the AR(2,1) sim-
plex
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The Fisher tensor is [25]:

g(a1, a2) = 1

(1 + a1 + a2)(1 − a1 + a2)(1 − a2)

(
1 + a2 a1

a1 1 + a2

)
(5)

with volume element

detgAR(2,1)(a1, a2) = 1

(1 − a2)2(1 − a1 + a2)(1 + a1 + a2)
. (6)

3.1.2 The Multidimensional Case

In the multidimensional case, an autoregressive model is composed of p separate
channels, each characterized by a transfer function

hi(z) = z2

z2 + ai
1z + ai

2

(assuming their independence). When using two coefficients ai
1, ai

2 to describe
each channel, each p-dimensional AR system has coordinates a = [ai

1, a
i
2 : i =

1, . . . , p]′. A R(2,p) is therefore the product manifold

A R(2,p) = ×p

i=1 A R(2,1), (7)

that is, the Cartesian product of the manifolds associated with the individual chan-
nels. As a Cartesian product of a number of simplices (triangles), A R(2,p) turns
out to be a polytope in R

2p . Such polytope has in general n1 ×· · ·×np vertices, the
product of the number of vertices of the individual simplices. In our case, A R(2,p)

is a polytope with 3p vertices:

A R(2,p) = Cl(vi1,...,ip , ij = 1, . . . ,3 ∀j = 1, . . . , p).

Each p-dimensional AR system a also possesses, therefore, a vector of simplicial
coordinates in the polytope A R(2,p):

m = [mi1,...,ip , ij = 1, . . . ,3 ∀j = 1, . . . , p]′ (8)

such that

a =
3∑

ij =1,j=1,...,p

mi1,...,ip vi1,...,ip .

3.1.3 Product Metric

On the Cartesian product M1 × M2 of two Riemannian manifolds with metrics
g

M1
p and g

M2
q , respectively, one can define the product metric on M1 × M2 as

g
M1×M2
(p,q)

: T(p,q)(M1 × M2) × T(p,q)(M1 × M2),
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with

(u, v) �→ gM1
p

(
T(p,q)π1(u), T(p,q)π1(v)

) + gM2
q

(
T(p,q)π2(u), T(p,q)π2(v)

)
,

where πi : M1 × M2 → Mi is the natural projection of a point of the Cartesian
product onto one of the component manifolds. The definition can be extended to any
finite number of manifolds. The product metric gAR(2,p) is described by a 2p × 2p

block diagonal matrix, whose p 2 × 2 blocks are copies of the metric (5) valid in
the scalar case:

gAR(2,p)(a) = diag
(
gAR(2,1)

(
ai

1, a
i
2

))
.

Its volume element detgAR(2,p) is (given the expression (6) of the scalar volume
element detgAR(2,1)):

detgAR(2,p)(a) =
p∏

i=1

detgAR(2,1)

(
ai

1, a
i
2

)

=
p∏

i=1

1

(1 − ai
2)

2(1 − ai
1 + ai

2)(1 + ai
1 + ai

2)
. (9)

3.1.4 Geodesics

To compute the distance between two points of a Riemannian manifold (and there-
fore, in particular, between two dynamical models) the metric is not sufficient. It is
necessary to compute (analytically or numerically) the shortest path connecting any
such pair of points on the manifold (geodesic). All the geodesics of stable AR(2,1)

systems endowed with the Fisher metric (5) as a function of the Schur parameters
γ1 = a1/(1 + a2), γ2 = a2 have been analytically computed by Rijkeboer [27]:

4 · (γ̈1 + γ̈2) + 1

1 + (γ2)2
· γ̇1γ̇2 + γ2

1 − (γ2)2
· (γ̇2)

2 − 1

1 + γ1
· (γ̇1)

2 = 0.

In the general case AR(2,p), unfortunately, the manifold’s geodesics are not ana-
lytically known. However, [26] shows the following.

Proposition 1 The sub-manifolds of a product manifold are geodesic, that is, all
geodesic paths on the individual sub-manifolds are geodesics of the product mani-
fold too.

In our case, as A R(2,p) is itself a product manifold (7), the (known) geodesics
of the “scalar” manifold A R(2,1) are also geodesics of A R(2,p). As an ap-
proximation, therefore, we can measure the geodesic distance between two generic
p-dimensional autoregressive models by applying a generalization of Phytagoras’

theorem d(a,a′) =
√∑

p di(a,a′)2, where di(a,a′) is the distance of their projec-

tions on the ith sub-manifold.
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3.2 An Automorphism for the Scalar Case

To build a parameterized family of Riemannian metrics for A R(2,p), it is necessary
to choose a family of automorphisms of the manifold onto itself (Sect. 2). The more
sophisticated is the set of automorphisms, the larger is the search space to optimize
the metric on.

One possible choice for an automorphism of A R(2,1) is suggested by the
triangular form of the manifold, which has three vertices (see Fig. 3, left). Let
m = [m1,m2,m3]′ collect the “simplicial” coordinates of a system a ∈ A R(2,1)

in the manifold:

a = [a1, a2]′ = m1[0,−1]′ + m2[2,1]′ + m3[−2,1]′, m1 + m2 + m3 = 1.

A natural automorphism of a simplex onto itself is given by “stretching” the sim-
plicial coordinates of its point by a set of weights λ = [λ1, λ2, λ3]′ such that∑

j λj = 1, λj ≥ 0:

Fλ(m) = Fλ

([m1,m2,m3]′
) = [λ1m1, λ2m2, λ3m3]′

λ · m
, (10)

where λ · m denotes the scalar product of the two vectors λ, m. The application (10)
stretches the triangle towards the vertex with the largest λi (Fig. 3, right).

3.3 Product and Global Automorphisms for AR(2,p)

A product automorphism for the whole manifold A R(2,p) of multidimensional, p

channel autoregressive models can be obtained by using (10), designed for scalar
systems, as a building block. If we denote by mi = [mi

1,m
i
2,m

i
3]′ the simplicial

coordinates of a system a in the ith sub-manifold, such a system will be identified
by a vector m = [mi , i = 1, . . . , p]′ of 3p such coordinates.

The mapping

Fλi,i=1,...,p(m) = [
Fλi

(
mi

)
, i = 1, . . . , p

]′ (11)

with 3p parameters applies an automorphism (10) with parameter λi to the projec-
tion of m onto each sub-manifold.

In alternative, the global geometry of the product manifold A R(2,p) inspires
a global automorphism which acts on the manifold as a whole, by multiplying its
“polytopial” coordinates (8) by a set of convex weights

μ = [μi1,...,ip , ij = 1, . . . ,3 ∀j = 1, . . . , p]′.
We obtain, up to normalization:

Fμ(m) ∝ [μi1,...,ip · mi1,...,ip , ij = 1, . . . ,3 ∀j = 1, . . . , p]′. (12)
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3.3.1 Volume Element for AR(2,p) Under Product Automorphism

Assume that the data-set of models is unlabeled. To select an optimal pullback met-
ric for p-dimensional autoregressive models by volume minimization (2), we need
to find the analytical expression of the determinant of the Gramian detg∗λ (3) as
a function of the parameter vector λ. By plugging it into the expression for the in-
verse volume (2), we obtain the objective function to optimize. We consider here
the relatively simpler product diffeomorphism (11).

Notice that, in the product simplicial coordinates m = [mi , i = 1, . . . , p]′ of a
system of A R(2,p), the volume element of the product Fisher metric (9) reads as:

detgAR(2,p)(m) =
p∏

i=1

1

(mi
1)

2mi
2m

i
3

.

Theorem 1 The volume element of the Fisher pullback metric on A R(2,p) induced
by the automorphism (11) is:

detg∗λ(λ,m) = 1

22p

p∏
i=1

(λi
1λ

i
2λ

i
3)

2

(λi · mi )6
· 1

(mi
1)

2mi
2m

i
3

. (13)

Proof We need to compute the Gramian detg∗λ (3) of the pullback metric under the
automorphism (11). Following the procedure of Sect. 2, we need to choose a basis
of the tangent space

T A R(2,p) = T A R(2,1) ⊕ · · · ⊕ T A R(2,1)

of the product manifold (7). The size 2p vectors

∂i
1 = [0, . . . ,0,1/2,1/2,0, . . . ,0]′, ∂i

2 = [0, . . . ,0,−1/2,1/2,0, . . . ,0]′
whose only nonzero entries are in positions 2i − 1, 2i, form such a basis. Let us
express the product automorphism (11) in coordinates a = [a1

1, a1
2, . . . , a

p

1 , a
p

2 ]. We
have that, ∀i = 1, . . . , p:

ai
1 = 2

(
mi

2 − mi
3

)
, ai

2 = mi
2 + mi

3 − mi
1,

mi
2 = 1 + ai

1 + ai
2

4
, mi

3 = 1 − ai
1 + ai

2

4
, mi

1 = 1 − ai
2

2
.

It follows that:

Fλ1,...,λp (a)[2i − 1,2i]
= 1

Δi

[
2λi

2

(
1 + ai

1 + ai
2

) − 2λ3
(
1 − ai

1 + ai
2

)
,

λ2
(
1 + ai

1 + ai
2

) + λ3
(
1 − ai

1 + ai
2

) − 2λ1
(
1 − ai

2

)]′
,

Fλ1,...,λp (a)[h, l] = 0 (h, l) 
= (2i − 1,2i),

(14)

where Δi = 2λi
1(1 − ai

2) + λi
2(1 + ai

1 + ai
2) + λi

3(1 − ai
1 + ai

2).
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We seek for all channels i = 1, . . . , p the push-forward tangent vectors

wi
1 = d

dt
F{λj ,j}

(
a + t∂ i

1

)∣∣
t=0, wi

2 = d

dt
F{λj ,j}

(
a + t∂ i

2

)∣∣
t=0.

We get:

wi
1[2i − 1,2i] = [−2λi

1λ
i
3

(
3 − ai

2 + ai
1

) + 2λi
2

(
λi

1 − 2λi
3

)(
1 + ai

1 + ai
2

)
,

2λi
1λ

i
3

(
3 − ai

2 + ai
1

) + 2λi
1λ

i
2

(
1 + ai

1 + ai
2

)]
,

wi
1[h, l] = 0 (h, l) 
= (2i − 1,2i)

(15)

and a similar expression for wi
2.

The matrix J formed by the stacked collection of the row vectors wi
1,2,

J = [
w1

1;w1
2; . . . ;wp

1 ;wp

2

]
is clearly block diagonal. Its determinant is therefore the product of the determinants
of the blocks:

detJ = 1

2p

p∏
i=1

λi
1λ

i
2λ

i
3

(λi · mi )3
.

By plugging the expressions for detJ and detgAR(2,p) into that (3) of the pullback
volume element, we get (13). �

The function to maximize is finally obtained by plugging (13) in the general

expression (2). The normalization factor I (λ) = ∫
M(detg∗λ(m))− 1

2 dm can be ap-
proximated as:

I (λ) �
N∑

k=1

detg∗λ(λ,mk)
− 1

2 .

In the labeled case, instead, we find the optimal parameters λ by optimizing the
classification performance on the available data-set by cross-validation.

4 Tests on Identity Recognition

To test the actual, empirical effect of our approach to manifold learning on the clas-
sification of dynamical models, we considered the problem of recognizing actions
and identities from image sequences. We used the Mobo database [15], a collec-
tion of 600 image sequences of 25 people walking on a treadmill in four different
variants (slow walk, fast walk, walk on a slope, walk carrying a ball), seen from
6 different viewpoints (Fig. 4). We selected all the sequences associated with the
gaits “slow walk” and “walking on inclined slope”, simulating this way the impact
of nuisance factors actually present in gait identification, and making recognition
more challenging.
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Fig. 4 Left: location and orientation of the six cameras in the Mobo experiment (the origin of the
frame is roughly in the position of the walking person on the treadmill). Right: a sample image
sequence from the Mobo database

4.1 Feature Representation

As the Mobo database comes with preprocessed silhouettes attached to each image,
we decided to use silhouette based-features to represent images. In gait, ID images
are usually preprocessed in order to extract the silhouettes of the walking person.
However, this is by no means a limitation of the proposed approach. Indeed, more
sophisticated 3D pose estimation methods could be used to run tests on the 3D
setup [28]. We plan to run such tests in the near future.

We chose a simple but effective way of computing feature measurements for
each frame. For each silhouette, we detected its center of mass, rescaled it to the
corresponding bounding box, and projected its contours on to one or more lines
passing through its barycenter (see Fig. 5). We favored this approach after testing
a number of other different representations: the principal axes of the body-parts as
they appear in the image [22], size functions [14], and a PCA-based representation
of the contours. All turned out to be rather unstable.

4.2 Identification of a AR(2,p) Model for Each Sequence

According to the scheme of Fig. 2 each input sequence has to be represented by a dy-
namical model, in particular, an autoregressive model of order 2. Each component of
the feature/observation vector, then, is associated with a different output channel of
the AR(2,p) model (4). We used the Matlab routine M = ARX(DATA,ORDERS)

to identify by least-squares optimization the parameters ai
1, ai

2 for each output
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Fig. 5 Feature extraction. First, a number of lines passing through the center of mass of the silhou-
ette are selected. Then for each such line the distance of the points on the contour of the silhouette
from it is computed (here the segment is subdivided into 10 intervals). The collection of all such
distance values for all lines eventually forms the feature vector representing the image

channel i = 1, . . . , p. The parameters of the ARX model structure A(q)y(t) =
B(q)u(t −nk)e(t) are estimated using the classical least squares method. Both time
and frequency-domain signals are supported. The only parameters are the orders
of the different output channels: we invoked the routine as follows seqmodel =
arx(data,’na’,2*eye(p,p));, setting the order of each channel at 2.

For comparison, for each input sequence we also identified a hidden Markov
model [13] by applying the Expectation Maximization [9] algorithm.

A hidden Markov model is a statistical model whose states {Xk} form a Markov
chain, and in which only a corrupted version yk ∈ R

D of the state (“obser-
vation process”) is observable. If we associate its n states with versors ei =
[0, . . . ,0,1,0, . . . ,0]′ ∈ R

n [13], we can write the model2 as{
Xk+1 = AXk + Vk+1,

yk+1 = CXk + diag(Wk+1)ΣXk.
(16)

Given a state Xk = ej , the observations are assumed to have Gaussian distribution
p(yk+1|Xk = ej ) centered around a vector Cj = E[p(yk+1|Xk = ej )] which is the
j th column of the matrix C. The parameters of a hidden Markov model (16) are
therefore the transition matrix A = [aij ] = P(Xk+1 = ei |Xk = ej ), the matrix C

collecting the means Cj of the state-output distributions p(yk+1|Xk = ej ), and the
matrix Σ of their variances. Given a sequence of observations {y1, . . . , yT } they can
be identified by means of the EM algorithm [9, 13].

Numerous distance functions between Markov models are offered in the lit-
erature. A classical pseudo-distance in the space of HMMs is derived from the
Kullback–Leibler divergence [20] of two probability distributions. Arguably the

2Here {Vk+1} is a sequence of martingale increments and {Wk+1} is a sequence of i.i.d. Gaussian
noises N (0,1).
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simplest possible choice is to pick the product metric obtained by applying the
Frobenius norm to A and C matrices, respectively:

‖H1 − H2‖ = ‖A1 − A2‖F + ‖C1 − C2‖F , (17)

where ‖M − M ′‖F
.= √

Tr((M − M ′)(M − M ′)T ), and Tr(M) = ∑
ii M[i, i] is the

trace. The Frobenius norm is inexpensive to compute, and often produces surpris-
ingly good classification results.

4.3 Performances of Optimal Pullback Metrics

To classify the test models, we adopted standard nearest neighbor classification:
each testing sequence is attributed the label of the closest model in the training set.
Note that by no means this is a limitation of the proposed approach: any advanced
classification technique (Gaussian kernels, SVMs, etc.) can be used in cascade to
our metric learning procedure. The classification performance was measured as the
percentage of correctly classified sequences. For each run, we randomly selected a
training and a testing set in the database.

Figure 6 plots the average classification performance (over 10 runs) of the fol-
lowing metrics on the space of autoregressive models of order 2 with p outputs:
1—product Fisher metric gAR(2,p); 2—pullback Fisher metric induced by the
product automorphism (11) optimizing the classification performance after cross-
validation on the training set; 3—pullback Fisher metric induced by the global au-
tomorphism (12) for the same objective function; 4—pullback Fisher metric induced
by (11) with optimal inverse volume; 5—Frobenius distance between HMMs.

Fig. 6 In six separate experiments, the classification performance of the following metrics has
been computed for image sequences coming from a single view, from 1 to 6. Fifteen identities,
200 samples extracted from the parameter space. Line styles: basis Fisher geodesic distance, solid
black; Frobenius distance between HMMs (17), dashed black; optimal pullback Fisher under auto-
morphism (11), solid red; optimal pullback Fisher under automorphism (12), dashed red; inverse
volume optimal Fisher metric with automorphism (11), solid green
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Fifteen identities are here considered, with the parameter space sampled
200 times to detect the optimal parameters. The optimal classification pullback
Fisher metrics induced by the proposed automorphisms are clearly superior to the
standard Fisher distance over all experiments. The improvement margin ranges from
5% up to even 20%.

Fig. 7 Metrics’ classification scores plotted versus the number of identities (from 10 to 22) in the
testing set, for all viewpoints from 1 to 6. Solid black: Frobenius HMM distance. Dashed black:
classical Fisher geodesic distance between AR(2,p) models. Solid red: optimal pullback Fisher
geodesic distance induced by (11). Dashed red: optimal pullback Fisher induced by (12)
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Figure 7 plots instead the classification score of the different competing metrics
versus the number of identities considered in the experiments. We ran different tests
involving a number of subjects ranging from 10 up to 22. Again, the performance of
both pullback Fisher metrics obtained by maximizing classification score by n-fold
validation (solid red and dashed red lines) is widely superior to that of the original
Fisher distance (in solid black), or the naive Frobenius distance between HMMs
(dashed black). The approach displays an interesting robustness to the expected
decreasing performance as the problem grows more difficult, as optimal pullback
classification rates are remarkably stable compared to those of classical metrics.

4.4 Influence of Parameters

It is natural to conjecture that, when optimizing the classification performance in
the cross-validation procedure described in Sect. 2, a larger training set should lead
to identify more effective automorphism parameters. Indeed, Fig. 8(left) shows the
behavior of the considered metrics as a function of the size of the training set on
which the optimal parameters are learnt. We can notice two facts here. First, as
expected, optimization over larger training sets delivers better metrics, that is, bet-
ter classification scores. Second, with its higher-dimensional parameter space, the
global automorphism (12) of the A R(2,p) polytope generates more performing
metrics, with a margin over the simpler, product automorphism ranging from 10%
up to a remarkable 25%.

Fig. 8 Left: classification performance of the two optimal pullback Fisher metrics plotted ver-
sus increasing size of the training set over which the parameters of the optimal automorphism
are learnt. Here, 12 identities, 200 parameter samples are chosen. Abscissa: 1–28 sequences in
the training set 2–40 sequences 3–52 sequences. Red: experiment on view 1; green: view 4; blue:
view 5. Solid: optimal metric induced by product automorphism (11); dashed: global automor-
phism (12). Right: classification performance of the optimal pullback Fisher metric induced by
product automorphism, for experiments run on all viewpoints. All 25 identities are considered.
Different classification scores are plotted for a number of samples varying from 10 (red dotted
line) to 200 (solid red with squares). The score of the basis Fisher metric is plotted in black for
comparison. When the optimal parameter is the result of a more extensive search, the classification
performance is generally better
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Finally, Fig. 8(right) illustrates how sampling more densely the parameter space
when looking for the pullback metric that optimizes the n-fold classification score
improves the performance of the resulting classifier. As an example, here the optimal
pullback Fisher metric under product automorphism (11) is analyzed and compared
with the baseline results obtained by using the basis Fisher geodesic distance be-
tween AR(2,p) models. As expected, the margin of improvement increases quite
steadily as more samples are assessed in the parameter space. Here all 25 identities
are considered, the margin ranging from a minimum of 5% for view 1 (for which
the best silhouettes are available) to 15% for view 3, to a very substantial 23% for
view 5, in which case the basis metric has the worst performance.

5 Perspectives and Conclusions

In this chapter, we proposed a differential-geometric framework for manifold learn-
ing given a data-set of linear dynamical models, based on optimizing over a family
of pullback metrics induced by automorphisms. We adopted as basis metric tensor
the classical Fisher information matrix, and showed tests on identity recognition
that attest the improvement in classification performance one can gain from such
a learnt metric. The method is fully general, and easily extendible to other classes
of dynamical models or more sophisticated classifiers. For several classes of multi-
dimensional linear systems both the Fisher metric and its geodesics can still be com-
puted by means of an iterative numerical scheme [16, 25]. The extension to another
popular class of stochastic model, hidden Markov models [13] requires an interest-
ing analysis of its manifold structure and is already under way. Last but not least,
the incorporation into the framework of objective functions that take into account
a-priori knowledge on the training set, such as similarity relations [37], is highly
desirable, and will be pursuit in the near future.
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Mixed-State Markov Models in Image Motion
Analysis
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Abstract When analyzing motion observations extracted from image sequences,
one notes that the histogram of the velocity magnitude at each pixel shows a large
probability mass at zero velocity, while the rest of the motion values may be ap-
propriately modeled with a continuous distribution. This suggests the introduction
of mixed-state random variables that have probability mass concentrated in discrete
states, while they have a probability density over a continuous range of values. In
the first part of the chapter, we give a comprehensive description of the theory be-
hind mixed-state statistical models, in particular the development of mixed-state
Markov models that permits to take into account spatial and temporal interaction.
The presentation generalizes the case of simultaneous modeling of continuous val-
ues and any type of discrete symbolic states. For the second part, we present the
application of mixed-state models to motion texture analysis. Motion textures corre-
spond to the instantaneous apparent motion maps extracted from dynamic textures.
They depict mixed-state motion values with a discrete state at zero and a Gaus-
sian distribution for the rest. Mixed-state Markov random fields and mixed-state
Markov chains are defined and applied to motion texture recognition and track-
ing.
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1 Introduction

Usually in statistics one is either interested in random variables that are discrete in
nature, or that are continuous and hence they have a probability density function as
is the case, for example, of the Gaussian random variables. In some situations, one
may be interested in modeling a mixed variable that takes some discrete values in a
set with non-zero probability mass, while for the other values not in the given set,
the random variable may be modeled as a continuous distribution.

In particular, these models appear to be of interest in low level modeling of mo-
tion in computer vision [6, 14–16, 32]. When modeling the apparent motion in im-
age sequences depicting textured motion patterns, that is, motion textures, as for
example a video sequence of traffic, or a scene of a tree waving under the wind, we
experimentally observe that such motion maps exhibit values of two types: a dis-
crete component at zero (absence of motion) and continuous motion values. Both
types are present in the motion maps forming a spatial configuration similar to inten-
sity textures. Analog spatial properties as texture orientation and isotropy, repetitive
local patterns and statistical interaction, are present and are characteristic of the
dynamic content of the scene. Moreover, discrete and continuous values are not in-
dependent nor constitute two different processes. It is a single (motion) observation
process that depicts what we call mixed-state values.

From motion detection to optical flow estimation [2, 7, 12], efforts have been
devoted to extract reliable and representative motion quantities from a sequence of
images. In the last years, there has been an increasing interest in retrieval, indexing,
recognition, and classification of long sequences of video data for dynamic con-
tent analysis. In this context, motion information has been effectively used as a key
feature for qualitative content characterization [18–20, 26, 32, 33].

We thus search for a modeling framework that can capture the statistical proper-
ties of the observed apparent motion, effectively integrating discrete and continuous
values in a unified way. This motivates the introduction of mixed states random vari-
ables. That is, variables that have mass probability concentrated in discrete states,
while they have a probability density for the rest. Moreover, these two types of vari-
ables may more deeply reflect two different classes of information: continuous real
values (either in one-dimensional or multi-dimensional spaces) versus symbolic val-
ues (one or several symbols). These two classes should not be necessarily viewed as
two exclusive states or as consecutive states (e.g., after a decision step).

Evaluating the distribution of mixed-state values, and accounting for local con-
text, are of key importance in numerous image sequence analysis tasks (e.g., in
motion modeling, detection, segmentation, estimation, recognition, or learning is-
sues). Therefore, defining probabilistic mixed states models appears as an attractive
objective.

The first main part of the current chapter is devoted to the development of the
theory of mixed-state random fields. In dealing with mixed-state random variables,
a measure theoretic approach is considered which is described here with necessary
detail. Then, a full account is given for Markov models which includes mixed-state
Markov random fields (MS-MRF) and mixed-state Markov chains (MS-MC). Fun-
damental issues as simulation, parameter estimation and inference in mixed-state
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random fields are treated by providing algorithms as extensions of classical meth-
ods.

In the second part of this chapter, we analyze two instances of mixed-state models
for the characterization of motion textures. First, we consider the spatial modeling
of motion textures with parametric MS-MRF’s. Then we propose a motion texture
recognition method based on statistical matching of mixed-state spatial models by
means of the Kullback–Leibler divergence [13]. The advantage of our approach is
that it considers an instantaneous motion map, instead of modeling the temporal
evolution of image intensity along a video sequence as done in [9, 10, 17, 28, 41].
Consequently, a particular dynamic content can be learned and recognized in a
frame-by-frame basis. This has important implications in motion texture detection,
segmentation and tracking.

Second, we analyze the temporal modeling of motion textures with MS-MC.
This implies modeling the interaction between motion random variables at time t

and a temporal neighborhood in the previous motion map at t − 1. We then discuss
the advantages of the spatial model vs. the temporal model, particularly for motion
texture modeling and recognition. Finally, we address the problem of motion texture
tracking and we propose to use the MS-MC model as a content-characteristic feature
for window matching.

1.1 Outline of the Chapter

The rest of this chapter is organized as follows. In Sect. 2, we review some previous
work on mixed-state related approaches and dynamic texture characterization. In
Sect. 3, the proposed motion measurements are defined leading to the definition of
motion textures and the observation of their mixed-state statistical properties. This
motivates the theoretical development of mixed-state Markov models in Sect. 4, ac-
counting for mixed-state Markov random fields (MS-MRF) and mixed-state Markov
chains (MS-MC). Estimation, sampling, and inference algorithms are provided in
Sect. 5.

In Sect. 6, a MS-MRF is defined for the spatial modeling of motion textures and
its application to motion texture classification. Then in Sect. 7, a causal MS-MC is
discussed for the temporal modeling of motion textures. We compare both models
for motion texture recognition in Sect. 8. Finally, a new motion texture tracking
method is proposed in Sect. 9 based on the MS-MC model.

2 Related Work: Discrete-Continuous Models and Dynamic
Textures

As said, this chapter is developed along two main parts: (i) a general theory of
mixed-state random fields and (ii) the modeling, recognition and tracking of motion
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textures. In what follows, we briefly discuss different approaches related to both.
Though in this chapter the first provides the theoretical basis for the second, they
can be positioned in the state-of-the-art as two separate research streams.

2.1 Discrete-Continuous Approaches

Different approaches related to the concept of a random process that can take dif-
ferent types of values (either continuous or discrete) have been followed in the
computer vision literature as an evidence of the necessity of considering discrete-
continuous interaction.

In previous works on fuzzy pixels classifications as [36] and [35], the authors
introduce a class of fuzzy MRF’s or fuzzy Markov chains where each state vari-
able, or classification variable, xi ∈ [0,1] represents a classification rate. The fuzzy
principle implies that the two hard classification states xi = 0 or xi = 1 have a pos-
itive probability while all the soft classification states, that is, xi ∈ (0,1) follow a
continuous distribution with some ad-hoc density function.

Also in computer vision decision problems, we can cite other models that exploit
the interaction between symbolic and numeric values. Starting with the seminal pa-
per of Geman and Geman [22] with the introduction of a line process for modeling
edges between homogeneous image regions to be restored from different types of
degradations. They proposed to introduce an unobservable process L for edge ele-
ments and regard the original image I as a marginal process from an extended joint
field X = (I,L). Then, they obtain a MAP solution for X solving for both the line
process and the intensity process. Later in [5], for a similar problem, the line process
is viewed as a way of rejecting the outlier measurements arisen from discontinuities
between surfaces in the problem of reconstruction, giving an equivalence with ro-
bust estimators. In [39] the authors present a model for image segmentation that
introduces a boundary model between regions in a more sophisticated way.

Here, we consider random variables that may take both discrete and continuous
states and we present the theory of mixed-state random fields, generalizing previous
approaches. We share a similar measure theoretic formulation with fuzzy Markov
random fields (FMRF) and fuzzy Markov chains [35, 36] for defining mixed-state
variables. However, the construction of the Gibbs potentials in [35, 36] is specific
for the problem of image segmentation and the local conditional densities are ob-
tained from this Gibbs distribution. On the other side, many situations are better
modeled starting from the local characteristics that are of a mixed-state nature and
thus it is not clear in this case which is the general form of the associated Gibbs dis-
tribution. Moreover, these authors define a mixed-state classification variable lying
in [0,1], which although it is absolutely natural for decision rules, it is restrictive
for modeling arbitrary mixed-state data.

In [35, 36], a discrete-continuous random field is built upon classification states
that are estimated exploiting the contextual modeling provided by nearest-neighbors
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Gibbs distributions. In [22], a MAP approach exploits the line process for discon-
tinuity preserving restoration and segmentation. However, discrete-continuous ap-
proaches are not only useful for doing inference of segmentation fields but also as
generative models of mixed-state observations, which arise for example in motion
analysis.

Discrete states also include symbolic information through abstract labels that
(a) may not be numeric as in [35, 36], (b) may not appear as pairs of complementary
states (e.g., {0,1}) as in [22], (c) may have a very different physical meaning from
the continuous states, which is different from the fuzzy-hard random fields where
hard and soft values refer both to a classification rate. Though this case is not fully
developed here, the general theory of mixed-state random fields remains valid. We
refer the reader to [16] as an example of symbolic-numeric mixed-state fields.

2.2 Dynamic Texture Characterization

In the context of visual motion analysis, motion textures are closely related to
temporal or dynamic textures [9, 10, 17, 28, 41], firstly introduced by Nelson and
Polana [28]. Different from activities (walking, climbing, playing) and events (open
a door, answer the phone), temporal textures show some type of stationarity or ho-
mogeneity, both in space and time. Mostly, they refer to dynamic video contents dis-
played by natural scene elements as rivers, sea-waves, smoke, moving foliage, fire,
etc. They also encompass any dynamic visual information that, from the observer
point of view, can be classified as a texture with motion (Fig. 1). For example, con-
sider a walking person. This activity can be analyzed as attached to an articulated
motion; however a group of persons or a crowd walking, observed from a wide angle
may show a repetitive motion pattern, more adequate to be considered as a temporal
texture.

A first distinction between different approaches, lies in the type of image features
extracted from the image sequence. Soatto et al. [17] proposed the use of ARMA
models directly on image intensities for dynamic texture synthesis. In [40], an im-
provement is proposed based on a control theory approach. In [37], linear dynam-
ical systems (LDS) are also applied in combination with 2D translational models
that permits to deal with a nonstatic camera and/or moving dynamic textures. Other
intensity-based models can be found in [9, 10] for the simultaneous modeling of
multiple dynamic texture regions.

Alternatively, there has been an increasing interest in the modeling of motion
features extracted from dynamic textures instead of considering pixel-based inten-
sity values [6, 14, 20, 21, 33]. Particularly, normal flow is an efficient and natural
way of characterizing the local spatio-temporal dynamics of a dynamic texture [20].
A survey on dynamic texture characterization can be found in [11].

Much efforts on dynamic texture characterization have been devoted to the recog-
nition and classification of these types of image sequences. Recent results have
shown that methods based on motion features give the highest recognition and clas-
sification rates for dynamic textures depicting natural scenes [20, 27, 30]. They are
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Fig. 1 Top: sample images from videos of dynamic textures (swaying trees, grass, crowd, steam,
and water). Middle: scalar motion map based on normal flow computation and obtained between
two consecutive frames of the sequence, which we call a motion texture. Bottom: histograms of
motion values computed using (34) for each motion texture. Motion values display two compo-
nents: a discrete value at zero and a continuous distribution for the rest

based on computing some motion statistics across the image sequence, and using
them as class descriptors for the classification task. A different approach for dy-
namic texture recognition is proposed in [34], where a dissimilarity measure be-
tween linear dynamical models is utilized. Finally, the extension of the concept of
dynamic textures to more complex scenes sets the necessity of considering more
elaborated approaches for specific applications. See [41] as an interesting example.

The main difference of our approach with respect to existing dynamic texture
characterization methods, is that we explicitly model motion information and that
we analyze the instantaneous motion maps, instead of the temporal evolution of the
image intensity. Given this, motion texture recognition and tracking can be naturally
addressed in a frame-by-frame basis. In previous methods based on LDS, the need
of processing several frames or even the whole image sequence for identifying the
models, limits the application of such methods to complex problems as detection,
segmentation and tracking.

3 The Mixed-State Nature of Motion Measurements

By definition, a motion texture is an instantaneous motion map obtained from a dy-
namic texture. Let Ii(t) be a scalar function that represents the image intensity at
image point i ∈ S = {1, . . . ,N} for time t where S denotes the image grid. A mo-
tion texture is extracted by computing scalar motion measurements between two
consecutive images, say I (t − 1) and I (t), for some given instant.
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The Optical Flow Constraint [25] is a condition over intensity images from which
velocity fields can be effectively estimated. It states that the intensity of a moving
point remains constant along time, that is,

dIi(t)

dt
= ∂Ii(t)

∂t
+ ∇Ii(t) · υi(t) = 0, (1)

where υi(t) is the velocity at location i and ∇Ii(t) the spatial intensity gradient.
Though this condition allows to measure only the component of the velocity in
the direction of the spatial intensity gradient, that is, normal flow, locally it gives
valuable quantitative information about the spatio-temporal structure of the scene.
From (1), one obtains the normal flow as

υ
(n)
i (t) = −

∂Ii (t)
∂t

‖ ∇Ii(t) ‖
∇Ii(t)

‖ ∇Ii(t) ‖ . (2)

We introduce a weighted vectorial average of normal flow in order to smooth out
noisy measurements and enforce reliability. The result is a smoothed measure of
local motion and given by

υi(t) =
∑

j∈W υ
(n)
j (t) ‖ ∇Ij (t) ‖2

max(
∑

j∈W ‖ ∇Ij (t) ‖2, η2)
, (3)

where η2 is a regularization constant fixed to a small value, and W is a small window
centered in location i. This average results in a local estimation of normal flow.
The projection of this quantity over the intensity gradient direction gives rise to the
following scalar motion observation:

vi(t) = υi(t) · ∇Ii(t)

‖ ∇Ii(t) ‖ , (4)

with vi(t) ∈ (−∞,+∞).
Experiments obtained from computing the proposed motion quantities for sev-

eral different dynamic textures show that, if we observe the corresponding motion
histograms (Fig. 1), the statistical distribution of the motion measurements has two
elements: a discrete component at the null value vi = 0, and a continuous distribu-
tion for the rest of the motion values.

The null value appears repeatedly in the motion maps, also following a textured
binary pattern as well as it occurs for the rest of the motion values (Fig. 2). This is
a typical structural characteristic of the motion measurements extracted from mo-
tion textures and not the result of a decision process as motion detection. As such,
discrete and continuous values are not independently distributed in space, indeed
displaying a mixed-state texture pattern. In other words, we want to model motion
observations that display mixed-state values. This motivates the theoretical setting
described in the following section.
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Fig. 2 (a) Sample images from motion textures. (b) The scalar motion values are spatially dis-
tributed forming a textured pattern. Here, we mapped the motion measurements to the range of
gray [0,255] where 128 corresponds to null motion. (c) The binary motion-no motion map also is
distributed following a textured pattern. White represents a motion value different from zero

4 Mixed-State Markov Models

4.1 Mixed-State Random Variables

Mixed-state random variables are defined as to consider probability mass concen-
trated in discrete states, either symbolic labels or discrete numeric values in R

n, and
also continuous values described by a probability density function (p.d.f.). Formally:

Definition 1 (Mixed-state random variable) A mixed-state random variable is a
function from a sample space Ω to a mixed-state space M = L ∪ R

n where
L = {l1, l2, . . .} is a countable set of symbolic labels and eventually at most a count-
able number of numeric values.

Associating a probability density function to a mixed-state random variable is
not straightforward. A first direction would be to consider a generalized probabil-
ity density function pm(x) in the distributional sense, where each discrete value is
modeled by a Dirac delta “function” δ(x − l) at x = l, for each l ∈ L, loosely in the
form

pm(x) = ρ
∑
l∈L

πlδ(x − l) + ρ∗pc(x), (5)

where ρπl is the probability mass at x = l, ρ ∈ [0,1], ρ∗ = 1 − ρ,
∑

l πl = 1 and
pc(x) is a continuous p.d.f. The corresponding distribution function has the form
of the example given in Fig. 3(a). However, this formalization is only valid when
all the discrete states are numeric values, that is, when δ(x − l) is indeed defined
∀l ∈ L. In the case we want to define random variables that take symbolic discrete
values, it is not possible to reside on the Dirac delta distribution for assigning them
a positive probability mass. Hence, to correctly define these models in a general
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Fig. 3 (a) A probability distribution function for a mixed-state random variable with numeric
discrete part. (b) A mixed-state space with symbolic discrete values. A probability measure is
assigned to each subset (event) M of this space: a point mass for symbols and a Lebesgue measure
for the continuous values contained in M

formulation a more appropriate direction would be to consider a measure theoretic
approach, which is valid for any type of mixed-state random variables.

Since symbolic labels that may not have any algebraic structure are present, a dis-
tribution function cannot be defined to characterize the random variable. A possi-
bility is to proceed directly to construct a probability measure μX , for the random
variable X. Loosely, μX(M) is a function that assigns a probability in [0,1] to the
sets M ⊂ M. Note that for real random variables it is given by the distribution func-
tion so that FX(x) = Prob(X ≤ x) = μX({X ≤ x}). We can thus define μX for a
mixed-state random variable as a convex combination of measures

μX(M) = ρ
∑
l∈L

πl1M(l) + ρ∗
∫

M\L

pc(x) dx, (6)

where we define the characteristic function 1M(l) = 1 if l ∈ M and 0 otherwise,
and also its complement, 1∗

M(l) = 1 − 1M(l). In other words, μX(M) accounts
for the probability mass due to the discrete states and the continuous values in M

(Fig. 3(b)).
A probability density function can not be defined as usually done for a real-

valued random variable, by computing the derivative of the distribution function
with respect to the Lebesgue measure (the length of an interval on the real line).
We can instead construct a generalized probability density for X, defined from
μX(M) = ∫

M
pm(x)m(dx): a function that integrated across a mixed-state subset M

gives the probability of X ∈ M . Such pm(x) exists thanks to the Radon–Nikodym
theorem [38]. Here, we call m(M) a reference measure which is defined as,

m(M) =
∑
l∈L

1M(l) +
∫

M\L

dx = md(M) + λ(M), (7)
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Fig. 4 A mixed-state p.d.f.
with {0} as the discrete value
and Gaussian continuous part.
Here, ρ = P (x = 0) = 0.3.
This p.d.f. integrates to one
with respect to the measure m

where md(M) is a counting measure and λ(M) is the Lebesgue measure. With this
definition, we obtain

μX(M) =
∫

M

pm(x)m(dx) =
∑
l∈L

1M(l)pm(l) +
∫

M\L

pm(x)dx. (8)

Interpret this equation as follows: the generalized density function pm assigns a
probability mass to each of the discrete values or symbols, and acts as a continuous
density function for the continuous values. Combining (6) and (8), we get:

pm(x) = ρ
∑
l∈L

πl1l(x) + ρ∗1∗
L
(x)pc(x). (9)

Equation (9) is the general shape of a mixed-state probability density which is
valid for either numeric discrete values and/or symbolic abstract labels.

Example 1 (Mixed-state Gaussian random variable)
Consider the case of a random variable that is 0 with probability ρ or is dis-

tributed following a continuous Gaussian density with probability 1 − ρ (Fig. 4).
Hence, L = {0} and

pm(x) = ρ10(x) + (1 − ρ)1∗
0(x)

1√
2πσ

e
− (x−c)2

2σ2 . (10)

With this measure theoretic formulation, the discrete state need not be a numeric
value as 0. We can define any abstract label l indicating for example the presence of
an event of interest or some high-level state (‘motion’, ‘occlusion’, ‘discontinuity’,
‘invalid value’, ‘true’ etc.).

4.2 Mixed-State Markov Random Fields

A mixed-state random field is a collection of random variables x = {xi}i∈S on a
lattice S = {1, . . . ,N} of points or image locations, described by a joint generalized
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probability density function pm(x) with respect to the measure ν = mN with m as
in (7), and defined on a mixed-state space M.

As the Hammersley–Clifford theorem states [3], Markov random fields with an
everywhere positive density function, are equivalent to nearest neighbor Gibbs dis-
tributions. The joint p.d.f. of the random variables that compose the field has the
form p(x) = exp[Q(x)]/Z, where Q(x) is an energy function, and Z is called the
partition function or normalizing factor of the distribution. The power of these mod-
els was primarily demonstrated in [3] with the introduction of the so-called auto-
models, and its numerous applications.

Define xA as the subset of random variables restricted to A ⊂ S, that is, xA =
{xi}i∈A. Then the Markovian property yields p(xi | x{i}c ) = p(xi | xNi

) where
Ni ∈ S is a subset of S with i /∈ Ni , called the neighborhood of location i.

The Markovianity is as well expressed in the global form of the process. The en-
ergy Q(x) can be expressed as a sum of potential functions, Q(x) = ∑

C⊂S VC (xC ),
where the summation runs over those subsets C of S such that VC �= 0, called
cliques [3].

In order to construct a mixed-state Markov random field, we will assume that
we have a single discrete (symbolic or numeric) value, that is, L = {l}, avoiding to
carry a cumbersome notation. We can extend (9) to a mixed-state conditional density
by conditioning over the neighbors xNi

, giving pm(xi | xNi
), what motivates the

following definition

Definition 2 (Mixed-state Markov random field MS-MRF) A mixed-state Markov
random field or MS-MRF is a Markov random field for which the local conditional
densities are:

pm(xi | x{i}c ) = pm(xi | xNi
) = ρi(xNi

)1l (xi) + ρ∗
i (xNi

)1∗
l (xi)p

c(xi | xNi
). (11)

The symbol probability ρ(·) = Prob(xi = l | xNi
) is now a function of the neigh-

bors xNi
. The definition corresponds to the property of Markovianity as for a clas-

sical MRF.
Next, we are interested in determining the joint probability density function for

which the conditional ms-pdf take the form of (11). The equivalence between Gibbs
distributions and MRF’s is equally valid for probability densities obtained w.r.t. a
mixed-state probability measure m, as the Hammersley–Clifford theorem [3] does
not depend on the type of state space [8].

Effectively, one can define a mixed-state Gibbs distribution having the form
pm(x) = exp−Q(x)/Z, with Q : M

N → R. The partition function Z is the
normalizing factor obtained by computing the Lebesgue–Stieltjes integral Z =∫

M
exp−Q(x) dm. The shape of the mixed-state potential functions VC (xC ) is dis-

cussed in what follows.

4.2.1 The Mixed-State Gibbs Distribution

At first, the form that the potentials may take is quite general and in fact for a
given Q(x) = ∑

C VC (xC ) the conditional mixed-state density can always be ob-
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tained from:

log
pm(xi | xNi

)

pm(r | xNi
)

=
∑

C⊂S:i∈C
VC (xC ), (12)

where r is a reference value such that VC (xC ) = 0 if for any i ∈ C , xi = r . Such
potentials are called canonical w.r.t. r , as in a classical MRF, which permits to obtain
a unique expansion of the energy Q(x). Finally, it can be written as

pm(xi | xNi
) = 1l(xi)p

m(l | xNi
) + 1∗

l (xi)p
m(xi | xNi

)

= 1l(xi)ρi(xNi
) + 1∗

l (xi)ρ
∗
i (xNi

)
pm(xi | xNi

)

ρ∗
i (xNi

)
, (13)

where pm(l | xNi
) = ρi(xNi

) and by calling
pm(xi |xNi

)

ρ∗
i (xNi

)
= pc(xi | xNi

) for xi �= l,

one obtains (11). However, we will see that imposing certain additional hypothesis
on the conditional mixed-state p.d.f.’s and the shape of the mixed-state Gibbs distri-
bution, more appealing conditions appear, which in turn provide a way of designing
a mixed-state model. We refer the reader to [8] for a thorough theoretic discussion
about the shape of the potentials for a mixed-state Markov random field.

4.2.2 Mixed-State Automodels

Most of the random fields used in image analysis and for describing physical sys-
tems, are encoded considering only the contributions from cliques containing no
more than two sites, due to their simple form and low computational cost. In his sem-
inal paper [3], Besag defined the class of Markov random fields named auto-models.
He considered the particular scheme where the conditional probability densities that
define the local characteristics of a Markov random field belong to a one-parameter
exponential family of distributions, and the corresponding global Gibbs energy de-
pends only on cliques that contain no more than two sites. With this setting, the
expression for the parameter in the conditional density is given as an affine function
of a sufficient statistic of the neighbors. This ideas can be generalized to the so-
called multi-parameter auto-models, an extension given by Hardouin and Yao [24],
and condensed in the following result.

Theorem 1 For a Markov random field that satisfies the following conditions:

(a) The potential functions are at most of second order, that is,

Q(x) =
∑
i∈S

Vi(xi) +
∑

〈i,j〉∈S

Vij (xi, xj ).

(b) The local conditional characteristics belong to the d-parameter exponential
family

logp(xi | xNi
) = ΘT

i (xNi
)Si (xi) + Ci(xi) + Di(xNi

),
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with Si (xi) ∈ R
d , Θ i (xNi

) ∈ R
d , Ci(xi) and Di(xNi

) ∈ R, and the normaliza-
tion conditions Ci(r) = 0 and Si (r) = 0 for some reference value r .

(c) The family of sufficient statistics {Si (xi)}i∈S is regular in the sense that

∀i ∈ S, Span
{
S(xi)

} = R
d .

Then, the corresponding conditional parameter vector is given by,

Θ i (xNi
) = αi +

∑
j∈Ni

β ij Sj (xj ), (14)

with βij ∈ R
d×d and αi = [α1 . . . αd ]T ∈ R

d . Moreover, the canonical potential
functions take the form,

Vi(xi) = αT
i · Si (xi) + Ci(xi), (15)

Vij (xi, xj ) = Si (xi)
T βij Sj (xj ). (16)

Proof The proof is given in [24]. For d = 1, the original demonstration is due to
Besag [3]. �

The first hypothesis is the assumption of pairwise interaction and is related to the
structure of cliques which does not depend on the type of probability space. Thus,
it is valid for any type of random field (i.e., discrete, continuous or mixed-state).
Regarding the second assumption, we first have the following proposition.

Proposition 1 Let pc(xi | xNi
) be a continuous conditional p.d.f. such that it

belongs to the d-parameter exponential family of distributions, that is,

logpc(xi | xNi
) = Θ̃

T

i (xNi
)S̃i (xi) + C̃i(x) + D̃i(xNi

). For a discrete value l, the
mixed-state probability density defined as

pm(xi | xNi
) = ρi(xNi

)1l (xi) + ρ∗
i (xNi

)1∗
l (xi)p

c(xi | xNi
) (17)

and w.r.t. m(M) = 1M(l) + λ(M) with M ⊂ {l} ∪ R and x ∈ {l} ∪ R, belongs to the
(d + 1)-parameter exponential family of distributions, that is, logpm(xi | xNi

) =
ΘT

i (xNi
)Si (xi) + Ci(xi) + Di(xNi

), and

Si (xi) = [
1∗
l (xi),1∗

l (xi)S̃i (xi)
]T

,

Θ i (xNi
) =

[
log

ρ∗
i (xNi

)

ρi(xNi
)

+ D̃i(xNi
), Θ̃

T

i (xNi
)

]T

,

Ci(xi) = 1∗
l (xi)C̃i(xi),

Di(xNi
) = logρi(xNi

).

(18)

Proof To simplify, write ρi(xNi
) ≡ ρi and xNi

= ·. pm(xi | ·) is a sum of excluding
terms, allowing us to express the logarithm of the left-hand side of (17) as the sum
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of the logarithms of the two terms on the right-hand side. Some calculations and
rearrangements yield:

logpm(xi | ·) = logρi + 1∗
l (xi) log

[
pc(xi | ·)ρ

∗
i

ρi

]
, (19)

and replacing pc(xi | ·),

logpm(xi | ·) = logρi + 1∗
l (xi)

[
Θ̃

T

i (·)S̃i (xi) + C̃i(xi) + D̃i(·)
] + 1∗

l (xi) log
ρ∗

i

ρi

=
[

log
ρ∗

i

ρi

+ D̃i(·), Θ̃T

i (·)
]

·
[

1∗
l (xi)

1∗
l (xi)S̃i (xi)

]

+ 1∗
l (xi)C̃i(xi) + logρi, (20)

which is the desired result. Finally, it is straightforward to check that
∫
{l}∪M

pm(xi |
·)m(dxi) = 1 given that

∫
M

pc(xi | ·) dxi = 1. �

To pin things down, let us consider the following example.

Example 2 (Gaussian mixed-state Markov random field with l = {0})
Assume that the continuous component of the mixed-state model, that is, pc(xi |

xNi
), follows a Gaussian law with mean mi(xNi

) and variance σi(xNi
) (the reader

should not confuse the mean mi(xNi
) with the measure m). The discrete state is set

to l = {0} with conditional probability of occurrence ρi(xNi
). The local character-

istics are then expressed as:

pm(xi | xNi
) = ρi(xNi

)10(xi) + ρ∗
i (xNi

)1∗
0(xi)

1√
2πσi(xNi

)
e
− (xi−mi (xNi

))2

2σ2
i

(xNi
)

. (21)

For simplicity, we abbreviate mi ≡ mi(xNi
), σi ≡ σi(xNi

), ρi ≡ ρi(xNi
), and in

exponential form:

ΘT
i (xNi

) = [θ1,i , θ2,i , θ3,i] =
[
− m2

i

2σ 2
i

+ log
1

σi

√
2π

+ log
ρ∗

i

ρi

,
1

2σ 2
i

,
mi

2σ 2
i

]
,

ST
i (xi) = [

1∗
l (xi),−x2

i , xi

]
,

Ci(xi) = 0,

Di(xNi
) = logρi.

(22)

Corresponding to a 3-parameter distribution. Note that in this case, where l = 0 is
a numeric value, 1∗

l (xi)xi = xi . The parametrization of the conditional distribution
in terms of Θ i allows us to express the dependence of a point on its neighbors
through (14). Moreover, the parameters of the original parametrization, ρi , mi , σi
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are also functions of the neighborhood and can be obtained easily from the first line
of (22), yielding:

ρi = (σi

√
2π)−1

(σi

√
2π)−1 + e

θ1,i+ m2
i

2σ2
i

, σ 2
i = 1

2θ2,i

, mi = θ3,i

2θ2,i

. (23)

Finally, the set of parameters that define the mixed-state automodel with Gaus-
sian conditional densities are the matrices βij ∈ R

3×3 and the vector αi ∈ R
3. The

design of this a model is thus restricted to the choice of these parameters to assure
that the joint mixed-state Gibbs distribution is well-defined.

4.3 Causal Mixed-State Markov Models

So far, we have considered the modeling of spatial interaction through the devel-
opment of mixed-state Markov random fields. However, it is also interesting to
consider the case of causal Markovian dependency which leads to the definition
of mixed-state Markov chains (MS-MC). Indeed, if one is to study the temporal
evolution of a sequence of mixed-state fields as one may observe from a video se-
quence, it is crucial not only to study the spatial distribution at a given instant, but
also statistical interaction in the temporal dimension.

In the general case, we consider a chain of mixed-state random fields. At each in-
stant t , we have a spatial arrangement xt = {xi,t }i∈S on a lattice S and the Markovian
first order dependency is associated to a sequence {x0,x1, . . . ,xT } of such fields giv-
ing

pm(x0,x1, . . . ,xT ) = pm(x0)

T∏
t=1

pm(xt | xt−1). (24)

The evolution of the mixed-state Markov chain is then governed by the transition
kernel

P(xt ,xt−1) = pm(xt | xt−1)ν(dxt ), (25)

where ν = mN is a mixed-state measure as before. Thus, the transition kernel be-
haves as a positive probability for the discrete states and as a continuous transition
kernel for the rest. Apart from the construction of the mixed-state random variables
developed in Sect. 4.1, the definition of MS-MC is equivalent to that of classical
Markov chains.

At this point, we can introduce both a model for spatial and temporal interaction.
Spatial interaction can be considered defining a mixed-state Markov random field
on xt for the specification of pm(xt | xt−1) and considering xt−1 as an observed
process in modeling the temporal evolution.
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5 Sampling, Estimation and Inference in MS-MRF

We now consider three fundamental aspects in the modeling and application of
mixed-state Markov random fields: sampling for simulation, parameter estimation
for model learning, and inference of mixed-state variables.

5.1 Sampling

Given a MS-MRF with distribution pm(x) the Gibbs sampler algorithm [22] permits
to generate a sequence of configurations {x0,x1, . . . ,xτ } such that for any starting
configuration η and each configuration ω:

lim
τ→∞pm

xτ
(xτ = ω | x0 = η) = pm(ω) (26)

that is, the distribution of xτ converges to the given distribution pm(x) regardless
of x0. The process {x0,x1, . . . ,xτ } behaves as a Markov chain with pm(x) as equi-
librium distribution. This is achieved by applying the following strategy. At each
epoch t or step of the algorithm, only one site undergoes a possible change, so that
xt−1 and xt can differ in at most one coordinate. For that site, say i, a sample s is
drawn from the local characteristic pm(xi | xt−1,Ni

). The new configuration xt has
xi,t = s and xj,t = xj,t−1 for j �= i. The only assumption is that every site is visited
an infinite number of times, which is necessary to ensure convergence.

The classical Gibbs sampler can be extended for mixed-state random variables
with any number of discrete (possibly symbolic) states, for sampling a mixed-state
random field on the state space M = {l} ∪ R. The procedure is as follows:

– Step 1: Specify an arbitrary initial configuration x0. A possibility is to draw, for
each site, a discrete state from the set k + 1 elements {l1, l2, . . . , lk, ς} each with
uniform probability 1/(k + 1), with ς indicating the continuous state. Then if
ς occurs, draw a continuous value from some adequate continuous distribution
(uniform, Gaussian, etc.). The other possibility, which somehow helps conver-
gence, is to sample each site assuming independence in the Gibbs distribution,
that is, only considering the singleton potentials.

– Step 2: Visit each site and sample the local conditional mixed-state p.d.f. Sites
are to be visited in random order or applying a raster scan. For drawing a value
from the mixed-state conditional density, one first proceeds by computing the
conditional probability ρi(xNi

) using the current values of the neighbors. Then
the site variable is set to l with this probability. If it is not the case, a continuous
numeric value is drawn from pc(xi | xNi

).
– Step 3: Repeat 2 a fixed number of iterations. The Gibbs sampler converges to

the target distribution as the number of iterations become large. Normally a good
result is achieved by assuring that each site is visited 100–300 times.
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5.2 Parameter Estimation

For a mixed-state automodel (Sect. 4.2.2), the parameters are the set of matrices βij

and the vectors αi for each i ∈ S. In general, the model parameters is a vector of
real-valued coefficients φ.

In order to estimate φ, considering the log-likelihood function L(φ) =
logpm(x;φ) = Q(x;φ) − logZ(φ) becomes intractable in writing the log-partition
function logZ(φ) despite the expression of the Gibbs energy Q(x;φ) may show a
more or less simple dependence with the parameters. The problem of implementing
a maximum-likelihood estimator therefore rests upon the evaluation of the parti-
tion function, the treatment of which becomes unmanageable, both numerically and
analytically, specially when the number of possible configurations is big.

A tractable alternative was given by Besag [3] who proposed to write the so-
called pseudo-likelihood function which in logarithmic form yields

LPL(φ) =
∑
i∈S

logpm(xi | xNi
,φ), (27)

where the need to evaluate Z is avoided. The Maximum-pseudo-likelihood esti-
mates can then be obtained by solving

∇φLPL(φ) = 0. (28)

Though LPL(φ) is not a true likelihood function as the product of the condi-
tional densities does not necessarily result in a true p.d.f., this conceptually intuitive
approach results in a consistent estimator (it converges with probability one) of the
true parameters [23], which gives a mathematical justification of its widely accepted
use.

When the conditional mixed-state p.d.f.’s belong to an exponential family of dis-
tributions as in the multiparameter auto-model, we have

pm(xi | xNi
,φ) = e−φT ·Hi (xi ,xNi

)

Zi(φ,xNi
)

, (29)

where we can identify −φT · Hi (xi,xNi
) = ΘT

i (xNi
) · Si (xi) given the affine form

of ΘT
i (xNi

) (14), and Zi(φ,xNi
) ≡ Zi is the normalization factor of the conditional

mixed-state density. Applying the logarithm and differentiating twice with respect
to the parameter vector φ,

∂2

∂φ2
logpm(xi | xNi

,φ) = − ∂2

∂φ2
logZi = 1

Z2
i

(
∂Zi

∂φ

)T (
∂Zi

∂φ

)
− 1

Zi

∂2Zi

∂φ2

= −E
[
Hi (xi,xNi

)HT
i (xi,xNi

)
]

+ E
[
Hi (xi,xNi

)
]
E

[
HT

i (xi,xNi
)
]

= −Cov
(
Hi (xi,xNi

)
) ≤ 0, (30)
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where Cov(Hi (xi,xNi
)) is the covariance matrix which is positive definite, ∂Zi

∂φ is
a row-vector (i.e., the gradient) and the second equality results from differentiat-
ing Zi = ∫

exp {−φT · Hi (xi,xNi
)}m(dx). The pseudo-likelihood (as well as the

classical likelihood) is then a concave function of the parameters, which assures the
unicity of the associated estimator. It also assures the convergence of gradient-based
algorithms for iterative optimization.

5.3 Inference of Mixed-State Random Fields

When applying mixed-state random fields within a Maximum-a-posteriori formula-
tion, as for example in [16], the MAP energy to be maximized depends on discrete
and continuous states. Thus, a method is to be defined for performing inference of
mixed-state values. Given a set of observations y, the maximum-a-posteriori esti-
mate maximizes the posterior distribution pm(x | y).

We specifically consider the ICM method [4] because it is valid regardless of the
nature of the space of values. The formulation of the algorithm can be understood
from the following identity:

pm(x | y) = pm(xi | xS\{i},y)pm(xS\{i} | y). (31)

By choosing the value at site i that maximizes the conditional probability pm(xi |
xS\{i},y) = pm(xi | xNi

,y), it results that pm(x | y) increases [23]. The difficulty of
maximizing the joint probability of an MRF is avoided, by applying an iterative and
greedy procedure exploiting relation (31), and visiting each site infinitely often.

The ICM algorithm for a mixed-state random field is as follows:

– Step 1: Choose an initial estimate x0 conveniently. One of the complications of the
ICM method is that the final solution depends very much on the initial estimate x0.
A possible choice is to assume independence and set x0 = arg maxx

∏
i∈S pm(xi |

y) so as to base the first estimate only on the observations and discarding higher-
order interaction potentials.

– Step 2: Visit each site and maximize the local conditional p.d.f. Sites are to be
visited in random order or applying a raster scan. For each site i, obtain the max-
imizing value x̂i of pm(xi | xNi

,y) given the current state of the neighbors xNi
.

Then set xi = x̂i . For a mixed-state p.d.f. (11), the maximization step implies
applying the following procedure:

(i) compute ρi(xNi
,y) = pm(xi = l | xNi

,y)

(ii) maximize pc(xi | xNi
,y) w.r.t. the continuous values to obtain xc

i

(iii) if ρi(xNi
,y) > ρ∗

i (xNi
,y)pc(xi = xc

i | xNi
,y), set x̂i = l, else x̂i = xc

i

– Step 3: Repeat 2 until convergence. Convergence is difficult to determine, and
usually a fixed number of iterations is applied, which is set empirically, but often
in the order of 10–20 passes by each site.
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6 Characterizing Motion Textures with MS-MRF

In Sect. 3, we have analyzed the statistical properties of motion textures and we
have seen that motion observations are obtained depicting a spatial arrangement of
mixed-state values. A first approach consists in modeling the instantaneous motion
maps associated to dynamic textures, as a mixed-state spatial random field. In gen-
eral terms, a MS-MRF could be defined by a different set of parameters for each
location of the image [see (14)]. This would give rise to a motion texture model
with a number of parameters proportional to the image size. Unfortunately, such
high-dimensional representation is unfeasible in practice and does not constitute a
compact description of motion textures. Moreover, an increasing number of frames
would be necessary for the estimation process. This is against a formulation ori-
ented to efficient content recognition and retrieval. However, the framework could
deal with spatially non-stationary motion textures.

We will assume that the extracted motion fields can be considered as realiza-
tions of an homogeneous MS-MRF spatial model. Indeed, the visual information
attached to a dynamic texture is mostly displayed from spatially homogeneous mo-
tion regions, and moreover, mostly associated to statistically homogeneous textured
intensity patterns.

The motion histograms in Fig. 1 suggest that the continuous values can be appro-
priately modeled with a Gaussian distribution. Thus, in what follows we define an
instance of the Gaussian mixed-state auto-model described through (21), (22), and
(23) for motion texture modeling.

6.1 Defining the Set of Parameters

Regarding the neighborhood structure, we define Ni = {iE, iW , iN , iS, iNW , iSE,

iNE, iSW} as the set of the 8-nearest neighbors for location i, where for example,
iE is the east neighbor of i in the image grid, iNW the north-west neighbor, etc.
Moreover, a necessary condition in order to define an homogeneous and, in fact, sta-
tionary spatial process, is that the parameters related to symmetric neighbors (E-W,
N-S, NW-SE, NE-SW) must be the same.

It is desirable that the conditional mean of the continuous values for a site, de-
pends linearly on the neighbors, in order to effectively obtain a Gaussian texture for
the continuous values. With this assumption, the model is able to extract the main
properties of the field, also keeping a reduced number of parameters to be estimated.
The parameters are then chosen to be

βij =
⎛
⎝dij 0 0

0 0 0
0 0 hij

⎞
⎠ , α = [

a b c
]T

, (32)
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so that with this choice and from (14) and (23), we obtain

ρi = (σi

√
2π)−1

(σi

√
2π)−1 + e

a+∑
j∈Ni

dij 10(xj )+ m2
i

2σ2
i

, mi = c

2b
+

∑
j∈Ni

hi,j

2b
xj , σi = 1

2b
.

(33)
Note that the homogeneity of the field was applied to set αi = α for the first order

potentials and as already said, this also implies the symmetry of the parameters for
second order potentials. Thus, for the 8-point neighborhood, we have 4 interacting
directions: vertical (V ), horizontal (H ), diagonal (D), and anti-diagonal (AD). Then,
βij = βk with k ∈ {H,V,D,AD} and an homogeneous Gaussian mixed-state model
is defined by the 11 parameters φ = {a, b, c, dH ,hH ,dV ,hV , dD,hD,dAD, hAD}.

Another aspect, related to spatial interaction, is considered in the definition of the
model. The type of motion textures that we want to study show some local motion
smoothness, mostly associated to cooperative schemes. Then, this condition is ex-
plicitly imposed in the model, resulting in a constraint on the parameters. Formally,
in a mixed-state cooperative model, the conditional mean of the continuous compo-
nent for a site has to be an increasing function of its neighbors. See [24] for further
comments. Following equation (33), this implies that hij ≥ 0. Finally, we can write
the full expression of the global mixed-state Gibbs energy to obtain:

Q(x) =
∑

i

a1∗
0(xi) − bx2

i + cxi +
∑

〈i,j〉:j∈Ni

hij xixj + dij 1∗
0(xi)1∗

0(xj ). (34)

In order to check that the Gibbs density defined by the energy function in equa-
tion (34) is integrable, a sufficient and necessary condition for the proposed ho-
mogeneous cooperative MS-MRF to converge is b >

∑
j

hij

2 . The proof is given
in [14].

6.2 Recognition of Motion Textures

One of the key aspects of a model oriented to dynamic content recognition, as the
one discussed here, is the ability to define a way of computing some similarity mea-
sure between models, in order to embed it in a decision-theoretic-based applica-
tion. In this context, the Kullback–Leibler (KL) divergence is a well-known distance
(more precisely, a pseudo-distance) between statistical models [13]. This quantity
can be computed between general Gibbs distributions and thus MS-MRF’s, and will
allow us to find a strategy for classifying motion textures.

Recall the expression of the KL divergence from a density p1(x) to p2(x) [13]:

KL(p1‖p2) =
∫

Ω

p1(x) log
p1(x)

p2(x)
m(dx), (35)
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where m(dx) is a reference measure, possibly a mixed-state measure. Given that
KL(p1‖p2) is not symmetric one usually considers the symmetrized KL diver-
gence as dKL(p1,p2) = 1

2 [KL(p1(x)‖p2(x)) + KL(p2(x)‖p1(x))]. Now, if p1(x)

and p2(x) are Markov random fields, then log p1(x)
p2(x)

= −�Q(x) + log Z2
Z1

, where
�Q(x) = Q2(x) − Q1(x), and

dKL
(
p1(x),p2(x)

) = 1

2

(
Ep2

[
�Q(x)

] − Ep1

[
�Q(x)

])
. (36)

We observe from this general equation, that we do not need to have knowledge
of the partition functions of the Gibbs distributions which simplifies enormously the
handling of this expression. Now, let p1(x) and p2(x) be two Gaussian MS-MRF.
Then,

Epk

[
�Q(x)

] =
∑

i

�αEpk

[
S(xi)

] +
∑
〈i,j〉

Epk

[
S(xi)�β ij S(xj )

]
, (37)

where �α = α(2) − α(1) and �βij = β
(2)
ij − β

(1)
ij . Finally, for the motion texture

model

Epk

[
�Q(x)

] =
∑

i

�aEpk

[
1∗

0(xi)
] − �bEpk

[
x2
i

] + �cEpk
[xi]

+
∑
〈i,j〉
j∈Ni

�hijEpk
[xixj ] + �dijEpk

[
1∗

0(xi)1∗
0(xj )

]
. (38)

The involved expectations w.r.t. each pk in (38) can be computed easily from the
observed motion textures given that we have a spatial homogeneous model and they
are equal for each site of the motion field.

6.2.1 Application to Motion Texture Classification

The following experiment is intended to validate the recognition performance of
the mixed-state motion texture models. Let us consider 10 different motion texture
classes (Fig. 5): Steam, Straw, Traffic, Water, Candles, Shower, Flags, Water-Rocks,
Waves, Fountain. A total of 30 different sequences were considered from the Dyn-
Tex dynamic texture database [31], and for each one, 5 pairs of consecutive images
were selected at frames 1, 20, 40, 60, 80, for a total of 150 samples. All sequences
were initially composed by gray scale images with a resolution of 720 × 576 pixels,
given at a rate of 25 frames per second. In order to reduce computation time, the
original images were filtered and subsampled to a resolution of 180 × 144 pixels.
The motion maps were computed for this images of reduced resolution by apply-
ing (4). Then, each motion texture class parameter set is learned from a single pair
of images picked from only one of the sequences belonging to each type of motion
texture.
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Table 1 Parameters learned for the 10 motion texture classes (C: center, H : horizontal, V : verti-
cal, D: diagonal, AD: anti-diagonal)

a b c dH hH dV hV dD hD dAD hAD

Steam −2.72 0.274 0.012 0.441 0.047 0.604 0.082 0.249 0.064 0.323 0.077

Straw −1.93 4.07 −0.065 0.61 0.00 0.79 1.13 0.07 0 0.41 2.91

Traffic −4.96 4.5 −0.05 1.87 4.27 1.95 0.177 0.195 0 0.562 0

Water −2.29 8.18 0.031 1.23 8.1 0.927 0 0.168 0 0.017 0

Candles −4.98 17 −0.647 2.47 8.89 2.55 5.82 0.482 2.11 0.066 0

Shower −2.09 2.03 −0.005 0.515 0 0.832 1.18 0.0649 0 0.392 0.837

Flags −4.91 0.434 −0.006 1.07 0.018 2.08 0.322 0.219 0.047 0.292 0.021

Water-rocks −2.88 2.68 0.01 1 1.53 0.979 1.1 0.228 0.314 0 0.153

Waves −2.36 2.2 −0.016 1.08 1.61 0.693 0.439 0.151 0 0.153 0.135

Fountain −3.26 3.97 0.005 1.11 0.639 1.11 3.29 0.331 0 0.465 0

Table 2 Motion texture class confusion matrix. Each row indicates how the samples for a class
were classified

Steam Straw Traffic Water Candles Shower Flags Water-rocks Waves Fountain

Steam 100% – – – – – – – – –

Straw – 93.3% – – – 6.7% – – – –

Traffic – – 86.7% – – – – 13.3% – –

Water – – – 100% – – – – – –

Candles – – 13.3% – 73.4% – – 13.3% – –

Shower 20% – – – – 80% – – – –

Flags – – – – – – 100% – – –

Water-rocks – – – – – – – 93.3% – 6.7%

Waves – – – 6.7% – – – 13.3% 80% –

Fountain – – – – – – – – – 100%

The MS-MRF model parameters for each of the 10 training samples are learned
by applying the pseudo-likelihood maximization criterion discussed in Sect. 5.2 (Ta-
ble 1). We use a gradient descent technique for the optimization as the derivatives of
LPL(φ) w.r.t. φ are known in closed form. For the testing stage, we estimate φ for
each test sample and compute the Kullback–Leibler distance (36) with each learned
parameter vector.

In Table 2, we show the confusion matrix for the 10 motion texture classes. A cor-
rect recognition is considered when both, the model estimated for the test sample
and the closest reference model, belong to the same class. An overall classification
rate of 90.7% was achieved. With our non-optimized implementation in MATLAB
running on a laptop with an Intel Core 2 Duo 1.83 GHz processor and 1 GB RAM,
the process of recognizing a motion texture takes 3.2 seconds in average. The bot-
tleneck of the process is the estimation of the parameters for the test sample.
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Fig. 5 Sample images from the 10 motion texture classes used for the recognition experiments.
For some of the samples the dynamic texture of interest does not occupy the whole image, violating
the assumption of spatial homogeneity. However the model is sufficiently robust to allow a correct
classification

As for the confusion matrix, let us note that it is likely that waves are classified as
water or water-rocks as they correspond to close dynamic contents, straw is confused
with shower, they have a close vertical orientation, and candles can be classified
as traffic, as both classes show a motion pattern consisting of isolated blobs. The
non-symmetry of the confusion matrix is associated to the nature of the tested data
set, where for some classes, the tested sequences have a closer resemblance to the
training sample, while for others, there are notorious variations, that may lead to
misclassifications. In 4 out of 10 classes the recognition rate is as high as 100% and
except for the Candles class we always get rates above 80%. Note also in Fig. 5
that for some of the samples the dynamic texture of interest does not occupy the
whole image, violating the assumption of spatial homogeneity. However, the model
is sufficiently robust to allow a correct classification.

Reported experiments for dynamic texture recognition using a model-based ap-
proach as the one presented in [34], have shown a classification rate of 89.5%, on a
data set composed by dynamic texture classes that are similar to the ones used here,
as plants, smoke, waterfalls, ocean waves, etc. Their method is based on computing
a subspace distance between the linear models learned for each class, that describe
the evolution of the image intensity over time. Although the effectiveness of this
approach is similar to ours, the method proposed here has a big advantage, that
is, we only need two consecutive frames to estimate and recognize the mixed-state
models, while in [34] subsequences of 75 frames are used. This is a consequence of
modeling the spatial structure of motion rather than the time evolution of the image.

Motion-based methods for dynamic texture classification [20, 30] have shown
an improved performance with recognition rates of over 95% using invariant flow
statistics. Although they are the most accurate reported results for addressing this
problem, they do not provide a general characterization of dynamic textures, as
model-based approaches do. Consequently, more complex scenarios with combined
problems, as simultaneous detection, segmentation, and recognition of these type of
sequences are not directly addressable. Our framework provides an unified statistical
representation suitable of being applicable to other complex problems, as well.
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6.2.2 Temporal Consistency

The previous experiments on motion texture classification have shown that training
a motion texture class from a single pair of images is sufficient in order to achieve a
high recognition rate. However, a question may remain about the validity of the spa-
tial model to represent these dynamic contents, given that in fact they have a much
longer temporal extent. So in what follows, we show that for modeling temporal
stationary motion textures, the spatial model estimated from only two consecutive
frames is representative of the rest of the sequence, that is, the MS-MRF model
parameters are consistent over time.

We take two sequences, each one composed by two different motion textures
(Fig. 6): Ocean–Steam1 (a circular region associated to steam superimposed to a se-
quence of ocean waves) and Trees (two different kinds of trees moved by the wind,
and in different planes with respect to the camera). We estimate the set of parame-
ters over manually fixed regions (Figs. 6(a) and 6(d)) corresponding to each of the

Fig. 6 Temporal consistency of the motion texture model parameters. (a) Ocean–Steam sequence.
The white squares indicate manually fixed regions along which the parameters for each class were
estimated. (b) Kullback–Leibler distance between the parameters for the Ocean class at each time
instant and the reference model obtained from the first pair of frames for Ocean (solid line) and
Steam (dashed line). (c) KL distance between Steam and the reference model for Steam (solid line)
and Ocean (dashed line). (d) Trees sequence, where we have a Front tree and a Back tree. (e) KL
distance Front tree–Front tree reference (solid line) and Front tree–Back tree reference (dashed
line). (f) KL distance Back tree–Back tree reference (solid line) and Back tree–Front tree reference
(dashed line)

1Copyright (c) 2003, UCLA Vision Lab. Thanks to Daniel Cremers and Stefano Soatto for provid-
ing this sequence.
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motion texture classes. From the first pair of frames, we obtain a set of representa-
tive reference parameters for each class. Finally, we compute the Kullback–Leibler
divergence between the reference models obtained at t = 1, and the parameters es-
timated for the rest of the sequence within each region (for each t > 1).

In Fig. 6(b), we plot the KL distance between the MS-MRF model estimated for
the Ocean motion texture at each instant, and the reference MS-MRF models for
Ocean (solid line) and Steam (dashed line). We see that the model for Ocean is very
close (in term of KL) to the reference Ocean model extracted from the first pair of
frames. At the same time, the distance between Ocean and Steam is large along the
whole sequence. Figure 6(c) is the complementary experiment for the Steam motion
texture and the same behavior is confirmed for the Trees sequence, where we have
two motion textures: a Front tree and a Back tree (Fig. 6(e)).

In summary, the motion texture model parameters obtained for a given instant
are indeed consistent in time in the sense that they are representative of the whole
sequence in the case of temporal stationary motion textures.

7 Mixed-State Causal Modeling of Motion Textures

So far, we have studied dynamic textures through the modeling and characterization
of the instantaneous apparent (and scalar) motion maps, that is, motion textures.
As a spatial arrangement of mixed-state values, we have developed purely spatial
and noncausal mixed-state Markov models. However, as pointed out before, the dy-
namic video content associated to a dynamic texture usually extents over some time
interval. If the process is stationary within this interval, it is interesting to analyze a
model able to integrate this temporal information in a compact representation.

We analyze now a motion texture model based on the mixed-state Markov chain
(MS-MC) defined in Sect. 4.3. We consider a Markov chain of random fields
x = {xt }t :0,...,T , as in (24), where xt = {xi(t)}i∈S represents a motion texture field
computed at time t . As before, each (motion) random variable xi(t) is assumed to
be a mixed-state random variable in M = {0} ∪ R.

Here we study a purely causal temporal model, for which a first assumption is
to consider spatial conditional independence within a motion texture for time t .
Consequently, given the previous instant, and assuming a local dependency on a
neighborhood Ni,t−1 of ‘past’ random variables at time t − 1 (Fig. 7), we consider
the following transition densities

pm(xt | xt−1) =
∏
i∈S

pm(xi,t | xNi,t−1), (39)

where xi,t = xi(t). In our case, we will assume that the temporal neighborhood is
a 9-point set which includes the previous (at t − 1) center, diagonal, anti-diagonal,
horizontal and vertical motion variables for a point at time t as depicted in Fig. 7.
Note that conditional independence does not imply independence and actually for a
given t and i, j ∈ S, xi,t and xj,t are spatially correlated.
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Fig. 7 Temporal
neighborhood structure for
the mixed-state Markov
chain. At a given time instant
t the motion values within xt

are considered conditionally
independent given xt−1

From a physical point of view, the assumption of causal interaction (instead of
spatial interaction) is still valid as one can consider that the motion textures between
consecutive time instants are identically distributed.

Let us consider a Gaussian MS-MC for which

pm(xi,t | xNi,t−1) = ρi,t10(xi,t ) + ρ∗
i,t1

∗
0(xi,t )

1√
2πσi,t

e
− (xi,t −mi,t )

2

2σ2
i,t . (40)

Analogously to the spatial motion texture model, we take the mean mi,t as a
weighted average of its past neighbors,

mi,t = c +
∑

j∈Ni,t−1

hjxj,t−1, (41)

and σ 2
i,t = σ 2 is a constant for every point. The expression for ρi,t may be chosen

arbitrarily for a Markov chain, as there are not consistency conditions to be fulfilled
as it occurs in a MS-MRF. We can then take a similar expression as for the spatial
model

ρi,t = [
1 + √

2πσe
a+∑

Ni,t−1
dij 1∗

0(xj,t−1)+
m2

i,t

2σ2
]−1

, (42)

where we see that there is a simultaneous coupling between the continuous and dis-
crete states of the past neighbors. This shape of ρi,t takes into account a cooperative
interaction between neighbors: more non-null neighboring values diminishes ρi,t as
well as a larger motion value does, through mi .

Finally, the MS-MC motion texture model is defined by 13 parameters (consid-
ering the five interacting directions described before), which are

φ = {
a,σ 2, c, dC,hC, dH ,hH ,dV ,hV , dD,hD,dAD, hAD

}
.

Note that we are assuming spatial homogeneity as for every point xi,t the same set
of parameters applies.
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7.1 Learning MS-MC Motion Texture Models

A maximum likelihood formulation can be exploited to estimate the MS-MC model
from the likelihood function

pm(x0)

T∏
t=1

pm(xt | xt−1;φ). (43)

In general, one can take any number of consecutive frames (T > 1) to obtain a
sequence of motion textures and estimate the parameters. However, considering an
homogeneous model permits to eventually consider a pair of motion textures and ob-
tain the parameters by maximizing the likelihood pm(xt | xt−1;φ) = ∏

i∈S pm(xi,t |
xNi,t−1;φ). Refer to Sect. 8 for a discussion on the advantages and disadvantages of
considering a larger temporal window.

In any case, a gradient descent algorithm is used as the expressions for the gradi-
ent of the cost function logpm(xt | xt−1;φ) w.r.t. the parameters can be obtained in
closed form.

7.2 Model Matching

In the same way as for the spatial model, a measure of similarity between MS-MC
motion texture models is given by the Kullback–Leibler divergence. One can use
in this case the conditional Kullback–Leibler divergence [13] between the mixed-
state conditional distributions p(xt | xt−1) in (39). As a matter of fact, it is more
formally correct to compute KL for the joint distribution pm(xt ,xt−1), but this in-
volves knowing pm(xt−1) which, as said before, is indeed a correlated spatial field.
A joint spatio-temporal model would then be necessary, for example by combining
MS-MRF’s and MS-MC’s in a more complex setting.

Equation (40) can be more conveniently expressed in the form pm(xi,t |
xNi,t−1) = expQi,t (xi,t ,xNi,t−1)/Zi(φ) where Zi(φ) is a normalizing factor and:

Qi,t (xi,t ,xNi,t−1) = − x2
i,t

2σ 2
+ c

xi,t

σ 2
+

∑
j∈Ni,t−1

hj

σ 2
xi,t xj,t−1 + a1∗

0(xi,t )

+
∑

j∈Ni,t−1

dij 1∗
0(xi,t )1∗

0(xj,t−1) + logρi,t , (44)

where we distinguish the continuous and discrete terms. The conditional KL diver-
gence from the density p1 = pm(xt | xt−1,φ1) to the density p2 = pm(xt | xt−1,φ2)

is defined as

KL(p1‖p2) = Ep1

[
log

p1

p2

]
=

∫
Ω

log
pm(xt | xt−1,φ1)

pm(xt | xt−1,φ2)
pm(xt ,xt−1 | φ1) dm,

(45)
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which is independent of the measure m. Define as before the symmetrized KL di-
vergence as dKL(p1,p2) = 1

2 [KL(p1‖p2) + KL(p2‖p1)] and analogously to equa-
tion (36):

dKL(p1,p2) = 1

2

∑
i

Ep2

[
�Qi,t (xi,t ,xNi,t−1)

] − Ep1

[
�Qi,t (xi,t ,xNi,t−1)

]
. (46)

Observing the expression of Q
(k)
i,t (·) in (44), we note that dKL(p1,p2) can be

computed by estimating the following expectations w.r.t. each model φk :

Epk

[
1∗

0(xi,t )
] = Ppk

[xi,t �= 0], Epk

[
1∗

0(xi,t )1∗
0(xj,t−1)

]
,

Epk
[xi,t ], Epk

[
x2
i,t

]
, Epk

[xi,t xj,t−1], Epk

[
logρ

(1)
i,t /ρ

(2)
i,t

]
,

(47)

where ρ
(k)
i,t is as in (42), using the corresponding parameters φk . As we assume that

we have a spatially homogeneous model, the latter expectations involved in equa-
tion (47) are equal for each site of the motion field, and thus, they can be efficiently
estimated by simple averaging from the observed data and using the estimated pa-
rameters.

8 Mixed-State Markov Chain vs. Mixed-State Markov Random
Field Motion Texture Models

Two different mixed-state models for motion texture characterization have been con-
sidered so far: a spatial noncausal MS-MRF and a purely causal MS-MC. In order
to design an effective and efficient representation of motion textures, it is important
to analyze when one method should be preferred over the other:

– Besides having a particular spatial extension, a motion texture extents in the tem-
poral dimension as well. The dynamic content is then present during some time
interval. If the spatial extent is sufficiently large, the MS-MRF spatial model can
be applied given that the model is learned using enough image points (Fig. 8(b)).
If the spatial support of the motion texture is small, the parameters of the MS-
MRF cannot be estimated accurately. In contrast, the MS-MC causal model can
be applied by assuming an adequately temporal window of sufficient length T

in (43), so that it involves T × N points (Fig. 8(a)), where N is the spatial size.
– As for classical Markov random field models, the problem of partition function

calculation of the mixed- state Gibbs distribution can be problematic, as for ex-
ample when trying to apply a maximum likelihood estimator as discussed in
Sect. 5.2. For the causal model, this problem is not present as the joint distri-
bution factorizes in the product of the conditional densities.

– The spatial MS-MRF motion texture model permits to model an instantaneous
motion map without the need to observe a temporal window. If one deals with
a non-stationary dynamic content (Fig. 8(c)), as for example a motion texture
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Fig. 8 (a) A motion texture of fire whose spatial extension is small. In this case, a mixed-state
Markov chain model is more appropriate as it incorporates several frames within a time window.
(b) A motion texture of smoke with a sufficiently large spatial support for considering a spatial
model (MS-MRF) of the instantaneous motion map. (c) Explosion: a non-stationary motion texture.
Here, a spatial model for each time instant is able to capture the instantaneous statistical properties
of the dynamic content which varies along the sequence. A temporal model assumes that within a
time window the motion texture is stationary, which is false in this case

whose statistical properties vary over time or whose spatial support is rapidly
changing, the purely spatial model is suitable, while assuming a stationary and
homogeneous MS-MC over a time window would lead to a wrong assumption.

– The computation time for estimating the MS-MC grows with T , as it considers
N ×T points. For T = 1 the MS-MRF and MS-MC models are similar in terms of
speed given the parameters are estimated from N data points. However, the MS-
MC involves 13 parameters, two more than the MS-MRF, so its computational
cost is slightly bigger.

In order to analyze the performance of each model depending on the size of the
image region occupied by the motion texture, and to be able to determine when one
model has to be preferred over the other, we have performed the following experi-
ment. First, we took the ten motion texture classes displayed in Fig. 5 and used in
Sect. 6.2 for motion texture classification with MS-MRF. For each processed image
of the video sequence we considered a square region of variable size centered at the
middle location (Fig. 9(a)). For each class, a MS-MRF model was learned over that
region and from a single pair of images picked from only one of the sequences be-
longing to each type of motion texture. Also a MS-MC model was learned for each
class, by taking a temporal window of 5 frames and over the same region size. The
temporal window was taken starting from the same frame used for learning the MS-



106 T. Crivelli et al.

Fig. 9 Comparison between the spatial mixed-state Markov random field motion texture model
and the mixed-state Markov chain motion texture model. (a) Different region sizes were tested
for assessing the recognition performance of each model. For the MS-MC, a temporal window of
5 frames is considered and a temporal sequence of motion textures are extracted. For the MS-MRF,
two consecutive frames are used to obtain a single motion texture at each time instant. (b) Classi-
fication rate for the ten class dataset and for different region sizes

MRF. As in Sect. 6.2, we then took several test samples at different instants for each
test sequence (frame pairs for the MS-MRF model and 5-frame temporal windows
for the MS-MC model). Finally, we classified each test sample by assigning it the
closest class in the sense of the Kullback–Leibler divergence (36) for the MS-MRF
motion texture model and the conditional Kullback–Leibler divergence (46) for the
MS-MC motion texture model.

We computed the overall classification rate for different region sizes: from
10 × 10 to 100 × 100 with increments of 10 pixels. In Fig. 9(a), we plot the recogni-
tion performance of each method as a function of the region size. For large regions,
the behavior of both models is similar as they consider a sufficient number of mo-
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tion texture points for reliably estimating the model parameters. As the region size
decreases, for the MS-MRF model the classification rate clearly drops faster com-
pared with the MS-MC. Even for small regions the MS-MC achieves acceptable
rates of for example 70% at a size of 20 × 20, while the MS-MRF shows a poor
performance. The cost of a better recognition ability of the temporal model is of
course an increased computational burden as it has to process, for each test sample
in this case, a set of 4 motion textures obtained from 5 consecutive frames.

9 Motion Texture Tracking

In the dynamic texture literature, efforts have been devoted mainly to modeling,
classification and segmentation of dynamic textures. However, the particular prob-
lem of dynamic texture tracking is still an open issue of great relevance. Critical
vision-based surveillance applications such as detecting fire, monitoring pollutants
or tracking an agitated crowd of people need for a compact representation of this
type of dynamic phenomena. Here, we exploit the temporal model of motion tex-
tures and the matching strategy described in Sect. 7.2, as a powerful representation
for tracking motion textures over time.

The objective is to track and follow a motion texture as for example the fire flame
that moves towards left in Fig. 10. For this purpose, we exploit the proposed mixed-
state Markov chain model and the model matching strategy.

We first consider that the initial position of the motion texture is given or set
manually by defining a starting window Wo of a given size centered at initial loca-
tion o. Then the maps of motion measurements (4) xt and xt+1 are obtained for that
window (for t = 0) using three consecutive frames and a MS-MC motion texture
model is estimated. In this case, we take T = 1. Considering a larger temporal win-
dow would be incorrect given that the motion texture is moving. We thus obtain a
reference model φref that characterizes the dynamic content we want to track. Let
qt be the position of the window at time t . Then we estimate qt by applying the
following rule:

q̂t = arg min
qt∈Λqt−1

dKL(Wo,Wqt ), (48)

where we abuse of notation denoting dKL(Wo,Wqt ) the KL divergence (46) between
the reference motion texture model estimated in Wo and that estimated in Wqt . A di-
amond search algorithm [42] is applied over a search area Λqt−1 for obtaining the
q̂t that minimizes dKL. For each possible location qt tested by the diamond search
algorithm, we estimate the motion texture parameters for the window Wqt and com-
pute dKL(Wo,Wqt ). For that we need to extract the expectations defined in (47) from

Wo and the candidate Wqt . Note that except for Epk
[logρ

(1)
i,t /ρ

(2)
i,t ] in (47), all the

remaining expectations need to be computed only once for the reference model, at
the initialization step.

We then apply a simple Kalman filter [1] to the estimate q̂t in order to reduce
the measurement noise in the estimated paths. Here, we have considered a constant
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Fig. 10 Results of tracking the fire flame with methods I (green), II (blue) and our method
III (red) for frames 1, 23, 43, 53, 73, 88, 103 and 116. (I–II–III) Content of the tracked win-
dow for each frame and methods I (SSD), II (Histogram) and III (MS-MC)

velocity state model. Finally, once a filtered position q̃t is obtained, the window is
moved to the new position and the process starts all over.

More sophisticated tracking approaches can be applied as well, also exploiting
the motion features introduced here, which for example involve more complex fil-
tering techniques [29]. We now report comparative experimental results of motion
texture tracking.

9.1 Experimental Results

We have considered three different methods for window matching:

I. Pixel-wise intensity matching by minimizing the Sum of Squared Differences
(SSD)
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II. Intensity histogram matching by minimization of a Bhattacharyya-coefficient-
based distance

d(γ1, γ2) =
(

1 −
N∑
1

√
γ1(n)γ2(n)

) 1
2

, (49)

where γk(n) k = 1,2 are the N -bin intensity histograms to match, as in [29]
III. MS-MC method: mixed-state Markov chain motion texture model matching by

minimizing the Kullback–Leibler divergence (46)

Method I tends to be more suitable for rigid motion where the tracked objects
keep a constant geometry while Method II is much more robust to pose variations
and moderate deformations.

The diamond search matching strategy [42] at each time instant was performed
for all the three methods over a maximum displacement of 15 pixels in both vertical
and horizontal directions.

In Fig. 10, we display the results for the sequence ‘Fire Flame’ for different
frames where the motion is given by a panning camera. We see that the motion tex-
ture is far from being localized in space and its extent is wider than the size of the
tracked window, which was set to 50 × 50 pixels. The Method I (green square in
Fig. 10) is not able to track the flame and tends to match the ascending smoke until
it breaks down. Method II (blue square) is more coherent with the expected trajec-
tory but it does not keep the target correctly located at every frame. The mixed-state
causal model in Method III (red square), performs very well, specially considering
that there is another motion texture of smoke that could interfere the matching pro-
cess. In Figs. 10(I), 10(II) and 10(III), we display the content of the tracked window
for the different methods. We can see that our algorithm always keeps the target
on the motion texture of fire. In Fig. 11(a), we display the estimated paths for each
method.

We observe the results for the ‘Antorch’ sequence in Fig. 12. Again it corresponds
to fire, but note that it is very different than before. Moreover, the flame is partially
occluded in several frames. The rapid variations of the motion texture (in size and

Fig. 11 Estimated tracks for the sequences (a) fire–flame, (b) antorch and (c) crowd, and for
methods SSD (green), histogram (blue) and our method (red)
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Fig. 12 Results of tracking fire (antorch) with Methods I (green), II (blue) and our
Method III (red) for frames 1, 10, 16, 22, 28, 34, 40 and 48. (I–II–III) Content of the tracked
window for each frame and Methods I (SSD), II (Histogram) and III (MS-MC). Note the large
occlusion in the last frame

location) may produce some perturbation on the smoothness of the estimated tra-
jectory, compared to what one would expect. Method II (blue square in Fig. 12(a)
and blue track in Fig. 11(b)) fails completely, loosing the target just after the start
of the sequence. Method I (green square) performs better but still does not keep the
target correctly located. With the mixed-state causal model (red square), the flame
is tracked satisfactory even in the presence of great variations of shape and intensity
as seen in Fig. 12(III). Note also the large occlusions in the last depicted frame.

Finally, we have processed a challenging sequence (Fig. 13) of a motion texture
that corresponds to a crowd of people crossing a street. Human motion, viewed from
a long distance, can be considered as a repetitive motion pattern. Note that this mo-
tion texture is more sparse than the previous ones, showing many null motion values
between persons. This is explicitly modeled within the mixed-state framework and
exploited as a particular characteristic of the dynamic content. The different individ-
uals enter and exit the texture, making very difficult to track the group in a compact
way. However, Method III (red square in Figs. 13 and 11(c) performs satisfactory,



Mixed-State Markov Models in Image Motion Analysis 111

Fig. 13 Results of tracking a crowd with Methods I (green), II (blue) and our Method III (red)
for frames 1, 18, 36, 50, 66, 80, 94, 108. (I–II–III) Content of the tracked window for each frame
and Methods I (SSD), II (Histogram) and III (MS-MC)

even when the tracked group merges with the one that goes in the opposite direction.
The estimated trajectory shows some expected variations due to the complexity of
the scene, but it is globally correct. Method I (green square) also performs satisfac-
tory but it shows some deviations from the expected trajectory, specially in the last
depicted frame. Method II (blue square) behaves erratically, specially at the begin-
ning, probably due to the fact that it is invariant to the spatial distribution of intensity
and thus the two approaching persons from behind are incorrectly included in the
tracked window, despite their distance from the rest.

As for the computation time, the Methods I (SSD) and II (Histogram) run at a
rate of near 5 frames per second with our non-optimized MATLAB implementation
and for windows of size 50 × 50 pixels (fire-flame sequence). The MS-MC method
(III) consumes on average 6 seconds per frame in this case. As before, the bottleneck
is the estimation of the MS-MC model for each searched window. For the moment,
our method is not able to run in real time. We are currently investigating a way of
computing directly the KL divergence from the motion data without estimating the
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parameters. This will reduce considerably the computation time, while still exploit-
ing the proposed modeling framework.

In Table 3, we display the MS-MC parameters estimated for the tracked win-
dow at four different time instants. The values should not be compared in the sense
of the Euclidean distance, but by means of the KL divergence. Nevertheless, one
can observe that for each tested sequence the parameters show coherent values for
different instants. Note the coherency in the sign and the order of magnitude. For
the antorch sequence, the occlusion observed in Fig. 12(III) at t3 is the cause of a
noticeable difference in the parameter values w.r.t. the reference model.

10 Conclusions

The mixed-state framework opens a novel statistical scenario for the simultaneous
modeling of continuous and discrete (numeric or symbolic) states. The approach
permits to deal, in a joint and coupled way, with values of different statistical nature.
Standard Markov models have been extended to account for mixed-state values by
means of a measure theoretic formulation.

In particular, the approach permits to model motion observations arising from
dynamic or motion textures, with a numeric discrete state, that is, the zero value.
The main contribution of our method is that we have designed a model of the in-
stantaneous motion maps, which allows to learn, recognize, track, and detect motion
textures in a frame-by-frame basis. The mixed-state Markov model has shown to be
a powerful nonlinear representation for describing complex dynamic content with
only a few parameters. The results presented here for tracking and recognition of
this type of phenomena show that the proposed parametric representation can be
effectively used as class-characteristic features.

Furthermore, the presentation of the model provided here permits also to define
non-numeric discrete values, as abstract labels that may arise in the context of deci-
sion problems. This possibility is particularly interesting when solving simultaneous
decision–estimation problems where two tasks as estimation (related to continuous
values) and decision (related to symbolic states) are to be addressed jointly [16].
The implications of considering these types of mixed-state models are important
in computer vision, where high-level information, represented by abstract labels,
can be introduced in an optimal way. Sample applications include introduction of
symbolic states for: borders (e.g., estimating discontinuous optical flow fields), de-
tection of regions of interest (defined abstractly) and structural change detection
(e.g., in remote sensing).
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Learning to Detect Event Sequences
in Surveillance Streams at Very Low Frame Rate

Paolo Lombardi and Cristina Versino

Abstract Some camera surveillance systems are designed to be autonomous—
both from the energy and storage points of view. Autonomy allows operation in
environments where wiring cameras for power and data transmission is not feasible.
In these contexts, for cameras to work unattended over long periods of time requires
choosing a low frame rate to match the speed of the process to be supervised while
minimizing energy and storage usage. The result of surveillance is a large stream of
images acquired sparsely over time with limited visual continuity from one frame
to the other. Reviewing these images to detect events of interest requires techniques
that do not assume traceability of objects by visual similarity. When the process
surveyed shows recurrent patterns of events, as it is often the case for industrial set-
tings, other possibilities open up. Since images are time-stamped, techniques which
use temporal data can help detecting events. This contribution presents an image
review tool that combines a scene change detector (SCD) with a temporal filter. The
temporal filter learns to recognize relevant SCD events by their time distribution
on the image stream. Learning is supported by image annotations provided by end-
users during past reviews. The concept is tested on a benchmark of real surveillance
images stemming from a nuclear safeguards context. Experimental results show that
the combined SCD-temporal filter significantly reduces the workload necessary to
detect safeguards-relevant events in large image streams.

1 Introduction

In surveillance, one or more cameras look over a scene. The image stream is trans-
mitted to monitors for online inspection or to storage for offline review. Cameras are

P. Lombardi · C. Versino (�)
European Commission, Joint Research Centre, Nuclear Security Unit, Via Fermi 2749,
21027 Ispra, Italy
e-mail: cristina.versino@jrc.ec.europa.eu

P. Lombardi
e-mail: paolo.lombardi.vision@gmail.com

L. Wang et al. (eds.), Machine Learning for Vision-Based Motion Analysis,
Advances in Pattern Recognition,
DOI 10.1007/978-0-85729-057-1_5, © Springer-Verlag London Limited 2011

117

mailto:cristina.versino@jrc.ec.europa.eu
mailto:paolo.lombardi.vision@gmail.com
http://dx.doi.org/10.1007/978-0-85729-057-1_5


118 P. Lombardi and C. Versino

positioned to view large areas to minimize the number of independent data streams
to be analyzed, while guaranteeing that a human reviewer will see events of interest
online or at a later time.

Some surveillance systems (for example [5] for process auditing in nuclear safe-
guards) are designed under the constraint that the camera operates as an autonomous
system—both from the energy and storage points of view. The image frame rate re-
flects the speed of the process to be surveyed so that (i) energy consumption is
limited (ii) images acquired fit on the camera’s storage until downloaded for review.

Choosing a low frame rate allows cameras to work unattended for long periods
in facilities where cameras cannot be wired for power or data transmission.

Low data rates are necessary in several other contexts. For instance, battery-
powered devices for ubiquitous computing need to switch between data acquisition,
processing, communication and the ‘idle’ state to prolongue operational lifetime.
This issue is a central for emerging monitoring technology such as wireless sensor
networks [2].

The low frate rate approach to surveillance requires review techniques that can
deal with data acquired sparsely over time. In the case of surveillance images, spar-
ness translates to very limited continuity in visual content across consecutive frames.
Most state-of-the-art review techniques based on traceability of objects by visual
continuity become non applicable in these contexts.

When the process to be surveyed shows recurrent patterns of events over time,
other possibilities open up. This is the case for process monitoring in industrial set-
tings where key events repeat themselves, occur in typical sequences with quite reg-
ular durations. Since surveillance images are time-stamped, this allows for review
techniques, which, besides analyzing the image content also use temporal data to
detect events of interest. This is the theme of the present chapter.

We discuss machine learning (ML) for the review of surveillance images from an
applicative standpoint, the test bed being video surveillance for nuclear safeguards.
Sections 2, 3 and 4 are introductory. We first establish the difference between unin-
formed and ML-informed image filters, describe surveillance for nuclear safeguards,
and explain the significance of using ML in this context. Sections 5 and 6 cover spe-
cific filters. Section 5 presents an uninformed filtering technique (a scene change
detector), today’s default filter for safeguards reviews. Section 6 focuses on the core
contribution of this chapter, namely a ML filter for the detection of events based on
temporal data. This temporal filter extends the uninformed filter described in Sect. 5.
Section 7 presents tests on the use of these filters on real safeguards image streams,
and provides a comparison with alternative informed techniques that search events
by image content. Section 8 wraps up and concludes.

2 Approaches for Image Reviews

The task of inspecting streams of images can require the application of different
techniques dependent on the goal of surveillance. For example, in security when the
police is looking for a person wearing known clothes, a human supervisor would
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screen images for people wearing colors matching the description. The same ap-
proach can be used by an automatic system: a filter may be designed to select images
containing blobs of matching colors corresponding to a human shape.

This is called informed search: the supervisor (human or filter) checks for the
presence of data known to correspond to a meaningful event. The approach can be
used when the supervisor has expectations on the target of the search. The more
precise the information, the better the search.

When the supervisor has only general clues on the type of events, uninformed
search techniques must be employed. In the example above, if the police are not
searching any specific person, attention may be focused to violations of prohibited
areas or counter-crowd movements. These events are not always meaningful, but
they can be related to events relevant to security.

Informed and uninformed searches apply also to tools for image reviews, i.e.,
IT tools designed to assist a human supervisor in scanning large image streams to
detect relevant events. Informed search techniques consist in matching a model of
a significant event with the image data. They require the image review software to
incorporate such a model. They are typical of top–down approaches that start from
knowledge and expectations and verify these on the data. By contrast, uninformed
search techniques detect image features that show a correlation with significant
events. Uninformed search goes bottom–up, starting from evidence of stimuli to
build knowledge.

In the literature, uninformed techniques are also referred to as novelty detection
techniques [18, 19]. Novelty detection is the identification of signals different from a
reference. Fundamental components of these techniques are: (i) the reference signal
to which data are compared, and (ii) the conditional test that triggers the identifica-
tion of ‘novel’ data. In video surveillance, a common form of uniformed techniques
is background maintenance for motion detection [20]. Here machine learning is pro-
posed to bootstrap and maintain the background model. Methods include statistical
models [30], kernel-based classifiers [1], Wiener filters [35], Kalman filter [21], and
mean shift [14]. Section 5 illustrates a state-of-the-art filter used in nuclear safe-
guards and security applications, which relies on simple form of background model.

Informed techniques for video analysis are numerous. Those pertinent to our
discussion fall in two categories: (i) behavior analysis and (ii) video annotation.

Learning for video surveillance has been focused around behavior analysis,
where the goal is to learn patterns of ‘normal’ behavior to find ‘anomalous’ situ-
ations. The concept is that trajectories of tracked objects are clustered and labeled
by machine learning to add semantics. Methods include polynomial fitting, multi-
resolution quantization, hidden Markov models, kernel methods, neural networks,
and k-means [23]. The currently accepted reference model for these systems has
been introduced in [17]. Here, machine learning builds a graph representation of
an image in which nodes represent points of interest (e.g., entry/exit points, stop
points) and arcs represent activity paths (e.g., motion, change of activity). Group-
ings of points of interest and activity paths are then labeled (e.g., ‘car enters’, ‘car
moves’ and car stops’ may be labeled as ‘parking’). Behavior-analysis assumes the
availability of motion tracking data extracted with uninformed techniques [12, 39].
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This in turn requires visual correlation (i.e., similar appearance) or temporal cor-
relation (i.e., produced by a high frame rate) of objects in consecutive images. Let
us defer a deeper discussion on this to Sect. 6. Here, we underline that research
on behavior analysis is focused on real-time, video-rate streams. Reviewing image
streams stored at a far lower frame rate (e.g., one image per minute or less) cannot
be treated with the same methods.

Video annotation is rarely used for surveillance. However the filter discussed in
Sect. 6 is highly related to this topic. A learning-based annotation system takes a
video segmented into short units and extracts low-level features from each unit to
describe its content. Given classes of events of interest, some units are manually
annotated to be ‘positive’ or ‘negative’ examples of events and used to infer the an-
notation model [7]. Examples of learning-based video annotation include rule-based
systems [6], multi-cue statistical learning [13, 25], support vector machines [7], and
graph matching [38]. We are interested in cases where video segmentation tech-
niques are not applicable across all classes of events due to weak visual signatures
for some classes. In these cases, learning algorithms can be extended to use noncon-
tent related information, such as temporal data or other meta-data where stronger
features exist. When using temporal data, the interactivity of the review algorithm
must be enhanced by embedding it in the image search work flow in a clever way.

In later sections, we discuss the application of uninformed and informed filters
using machine learning similar to those developed for video annotation. The field of
use is the analysis of surveillance images stemming from the real application setting
of nuclear safeguards.

3 Surveillance for Nuclear Safeguards

Nuclear safeguards verify that a State’s nuclear material is not diverted to build
weapons or explosive devices.

Camera surveillance in nuclear facilities helps to attain safeguards at a reason-
able cost without interfering with a facility’s operations (Fig. 1). To this goal, the
International Atomic Energy Agency (IAEA) maintains about 800 cameras in 170
safeguarded sites worldwide [28]. Surveillance image streams are reviewed by safe-
guards inspectors one-by-one.

The surveillance of nuclear plants poses several challenges to state-of-the-art
image filters. First, the field of view covers all the locations where important pro-
cessing takes place (Fig. 1, second row). These locations are many meters apart.
The visual appearance of flasks of nuclear material, the objects of interest, sig-
nificantly changes during the process. Second, the image acquisition rate is very
low—one frame every several minutes. This frame rate is designed to match the
speed of the process to be supervised. It guarantees that all images acquired are
stored on the camera’s storage during months of unattended operation. Third, flasks
of nuclear material are visible only in a small fraction of images. Typically, each
camera acquires several thousands of images (10 to 100 thousands) before these are
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Fig. 1 Inspectors setting-up surveillance cameras in a nuclear plant (first row). A camera’s view
(second row) (© D. Calma/IAEA)

reviewed by inspectors. Of these, less than 1% is expected to relate to safeguards-
relevant events. The remaining either present no change between consecutive frames
or contain events not involving flask movements (e.g., moving cranes, trolleys, illu-
mination changes). Fourth, nuclear flasks are indistinguishable, i.e., there is no sign
(feature, color, label, etc.) visible from surveillance images to distinguish one flask
from the others.

Inspectors eliminate the no-change images by applying an uninformed scene
change detection filter [10] (Sect. 5). This operation reduces the image set to about
10% of the original size. The latter set is reviewed by inspectors frame-by-frame.
Safeguards-relevant images are annotated to produce a review report (Fig. 2), i.e.,
a list of time-stamped, chronologically ordered images labeled by the classes of
events recognized by the inspectors.

4 Filtering Surveillance Streams by Combining Uninformed
and Informed Search Strategies

We have developed a set of tools based on machine learning, collectively named
‘Safeguards Review Station’ (SRS), to assist nuclear inspectors in the review of
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Fig. 2 Report resulting from an image review

Fig. 3 The state-of-the-art review flow (solid arrows) and the augmented flow in the Safeguards
Review Station (dashed arrows)

images. The approach is that SRS tools learn to improve their detection performance
by using information available from past reviews and from the on-line compilation
of a review report.

Figure 3 shows the review flow in the SRS. Image data is generated over time
continuously, but it is divided in batches to ensure timeliness of reviews. Given a
batch of images, a filter is applied to extract events. This step is largely automatic
and relies on scene change detection (SCD). The main role of the inspector is in
the annotation of relevant SCD events for the review report. When a new batch of
images is to be reviewed, the same process is repeated unchanged, i.e., the SCD
filter does not learn from past review results. By contrast, the SRS ‘reconnects’ the
sequence of reviews given that the stream of images over time is generated by the
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Table 1 Plant properties that can be derived from review reports

Property ID Property description

P1 Classes of typical events taking place in the plant as per the events’ annotations
(e.g., ‘flask over hatch’, ‘flask in decontamination area’, ‘flask over pond’).

P2 Examples of the visual appearance of safeguards-relevant events as seen from a
specific camera (by retrieving the corresponding image files).

P3 Sequence of the events (e.g., a ‘hatch’ event is followed by a ‘decontamination’
event, then by a ‘pond’ event).

P4 Duration of events (by computing the time interval between events).

same nuclear process. By this point of view, we design filters that learn from past
reviews.

The departure point for the SRS is the archive of review reports for a given plant
and surveillance camera. Table 1 lists plant- and camera-specific information de-
rived from these reports. Besides highlighting classes of safeguards-relevant events
annotated by inspectors (P1), reports associate classes of events with their visual ap-
pearance by the corresponding image files (P2). The annotated sequence of events
provides information on the stages of the processing of flasks of nuclear material
within the plant (P3). The events’ time-stamps give an indication on the duration of
each stage of the processing (P4). On these properties, we build informed filters to
detect safeguards-relevant with less false positives with respect to SCD.

The SRS includes three filters, each used in cascade to SCD. The SRS filters are
based on: (i) image retrieval (IR), (ii) decision trees (DT) and (iii) Markov models
(MM). Filters IR and DT rely on the visual appearance of events (Properties P1 and
P2 in Table 1). By contrast MM, performs a ‘meta-classification’ of the sequence
of events extracted by SCD, and it is trained on statistics about P1, P2 and P4. MM
is described in detail in Sect. 6, while the SCD filter is covered in the next section.
IR and DT [37] are not covered in this chapter, but experimental results on the use of
these filters are provided in Sect. 7 as term of comparison to the performance of MM.

5 Searching Events by Scene Change Detection

Uninformed event detection arises from monitoring signals computed on the image
stream over time. An event is declared when a signal alters its value with respect to a
condition. The conditional test for the event can be the breaking of a threshold value,
or a complex frequency component analysis or case-based reasoning [1, 18, 30], to
name a few possibilities. The parameters for the conditional check do not relate
specifically to the event type being searched. They are set a priori so as to detect a
broader family of events that includes the target events.

As an example of uninformed technique, we illustrate the scene change detection
(SCD) filter in use in official nuclear inspection software [10] (Fig. 4).

The technique is a two-frame differencing based on the average intensity value
of pixels inside one or more area of interest (AOI). Before starting the algorithm,
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Fig. 4 Mock-up interface of the image review tool used in nuclear safeguards. It shows three areas
of interest (AOIs) defined by the user and the list of events (1676 events, in this case) generated by
running SCD over these AOIs on a stream of surveillance images (17296 images, in this example)

the user draws AOIs on a reference image (Fig. 4) around locations of interest. For
an image at a given time, SCD computes the average intensity of pixels belonging
to an AOI. This is compared to the value computed on the previous image to derive
a measure of relative change. If this breaks a threshold, a SCD event is marked for
that image and that AOI. The same computation is run for every AOI, possibly with
different thresholds. As a result, for each image the SCD filter detects a number of
events up to the number of AOIs. By altering the thresholds, the user increases or
decreases the number of events detected by SCD. Figure 4 shows the list of SCD
events as it appears on the interface of the review tool. Inspectors browse the list of
SCD events one-by-one and annotate the relevant images by the event class.

There are three locations of interest in a nuclear plant assigned to AOIs:

1. the hatch (‘H ’, AOI nr. 1)
2. the decontamination area (‘D’, AOI nr. 2)
3. the pond (‘P ’, AOI nr. 3)
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Fig. 5 Schematic flow of the
movements of a flask of
nuclear material within a
plant

In a normal process a flask of nuclear fuel enters the hatch and reaches the de-
contamination area, whence it is moved to the pond (Fig. 5). From the pond, the
flask moves back to decontamination and exits through the hatch. In SCD, each
AOI is assigned to a label, a convenient label set being {h,d,p}. Images for which
a SCD event has been detected are associated with one or more of these labels. For
instance, if image t is labeled [h,p], this means that the AOIs of hatch and pond
changed from t − 1 to t .

Due to the loose correlation between target events and the SCD signal, unin-
formed filters like SCD are employed in the first stage of the image stream analysis
to eliminate clear no-change images. The parameters for the conditional test must
be set to attain a true positive rate of 100%. The down-side is that the number of
false positives is high.

In our studies of image surveillance for nuclear safeguards, most parts of the
image sequences contain little or no activity. Sequences of about 20,000 images
must be reviewed offline by nuclear inspectors operating under time pressure. The
use of SCD reduces the amount of images to be inspected on average by 90%, from
20,000 to 2,000. However, reviewing 2,000 images one-by-one is still a hard job.

Inspectors are interested movements of nuclear material. Typically, out of 2,000
SCD Images, only 0–30 are safeguards-relevant. Thus, the rate of false positives is
close to 99%. It is then reasonable to follow SCD with informed techniques that use
a model of safeguards-relevant events to highlight SCD images of interest.

Why do inspectors employ this uninformed SCD? The answer has to do mainly
with the degree of programmability offered by uninformed techniques. Nuclear in-
spectors, like most users of image review software for surveillance, are not expert of
image processing or automatic pattern recognition, but understand event detection
by setting a threshold. This understanding and the total degree of control given by
changing one or two simple parameters give the inspector confidence of mastering
the tool.

6 Searching Events by Sequence and Time Attributes

Informed event detection can be employed when the review tool has an internal
model of expected event sequences. To build such a model, image streams must
exhibit at least one of the following properties:
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Property 1. Traceable objects.
Property 2. Recurrent sequencing of events.
Property 3. Recurrent timing of events.

Property 1 has to do with continuity of information, whereas Properties 2 and 3
have to do with recurrence of information.

Property 1, i.e., traceable objects, corresponds to situations where object move-
ments can be tracked. Objects can be tracked when they have a video signature
with high self-correlation and low cross-correlation with other objects or the back-
ground. In turn, this requires either highly characterized visual features (e.g., color,
motion, shape, texture, etc.)—for visual self-correlation—or a high acquisition
frame rate—for temporal self-correlation. In most research benchmarks, both these
elements are present. When objects are traceable, event detection is based on the
verification (or absence) of expected motion patterns by tracked objects. Property 1
is the assumption underlying gesture recognition and most surveillance and behav-
ior analysis systems (e.g., tracking people and animals) [1, 21, 23, 30, 35, 36, 39],
or video analysis for compression [31].

In a scenario with low acquisition frame rate and low visual characterization of
objects, an informed event-detection system must resort upon Property 2 or Prop-
erty 3.

Property 2, i.e., recurrent sequencing of events, is verified when events hap-
pen following a regular sequence repeated over time. For instance, in video-based
human-machine interaction a user’s hands or face movements are checked for model
gestures that correspond to commands [22]. Regular patterns can be observed in
surveillance applications in constrained scenarios [3]. Also process monitoring in a
manufacturing plant can benefit from model-based temporal analysis. Manufactur-
ing processes follow standard paths, and deviations can indicate errors and anticipate
defects in the final product.

Property 3, i.e., recurrent timing of events, consists in event sequences charac-
terized by regular durations and/or intervals between events. An example is the
monitoring of abandoned objects in metro stations: if an image region is occupied
by a foreground object for more than the expected ‘regular’ time, an ‘event’ is de-
tected [9].

In the specific scenario of nuclear safeguards surveillance illustrated in Sect. 3
(in short: varying appearance of nuclear flasks across different image regions, a low
frame-rate, rare events, and indistinguishable flasks), it is clear that Property 1 does
not hold for what regards detecting events of nuclear flask movements. Hence, in this
particular scenario, most well-known techniques cannot be applied. However, the
process a flask undergoes in a nuclear plant is structured and recurrent. Therefore,
tracking can be performed by modeling the regularities of the process, instead of
those of the flask.

In this section, we describe an informed filter to perform event detection based
purely on Properties 2 and 3. More specifically, the filter is implemented by a hidden
semi-Markov model (HSMM) used in semi-automatic mode.

To better understand the contribution of event sequencing and timing, we isolate
the filtering based on temporal properties from the filtering based on image content.
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We do this by using SCD (Sect. 5) to transform the sequence of images into a se-
quence of symbols corresponding to the active AOIs and the associated image time
stamps, in all similar to Fig. 2 with the only difference of having AOI identifiers
instead of annotations (Fig. 2, rightmost column).

6.1 Modeling Nuclear Flask Processing with a HSMM

Hidden semi-Markov models (HSMMs) are hidden Markov models where each state
has an explicit duration model to represent sojourn times in nonabsorbing states
[15, 24, 27].

A semi-Markov model is made of an embedded first-order Markov chain X, and
of discrete distributions of sojourn times S. The embedded chain is described by
(T ,χo), where χo is the initial state distribution and T is the transition matrix, such
that Tij = P(Xt+1 = j |Xt = i). For a semi-Markov model, Tii = 0, ∀i. The sojourn
time distributions are a set of discrete distributions depending only on the current
state, S = {Si, ∀i}. The model is hidden when the relation between the state and
the observation is probabilistic. The emission distributions for every state are sum-
marized in the emission matrix E, Eis = P(Ot = y|Xt = i), y being an emitted
symbol (Fig. 6). A HSMM is thus defined by the set (T ,E,χo,S).

The reasons for using an indirect observation model (hidden) in our scenario are
the following:

1. Flasks have no distinctive identifier and even a trained supervisor cannot discern
one flask from another. Hence, when more than one flask are being processed in-
side the plant and one of them is moved, there is a probabilistic relation between
the motion event and the flask that generated it, and not deterministic.

2. The low frame rate confuses the perception of motion direction: deciding
whether a flask is entering or exiting a location requires more reasoning than
simply inspecting the visual content of the previous and present frames.

The reason for using explicit duration models is that processing stages have typ-
ical durations dictated by the process itself. The duration of a processing step de-
pends of the step’s nature, and it is similar for all flasks. In such a scenario, duration
models can give a significant contribution in helping understand which flask is be-
ing moved, when more than one is undergoing the same process step (typically, the
first flask that moves in a step will be the first to be moved out).

Fig. 6 A hidden
semi-Markov model
represents events with generic
durations
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6.1.1 State Space

Let us elaborate on the number of states needed for the Markov chain. A processing
system can be described by three parameters (F,K,N ):

• F is the maximum number of flasks that can be processed in parallel.
• K is the number of available cranes to move the flasks around (K ≤ F ).
• N is the number of processing stages that make up the nuclear process. In the

example of Fig. 5, N = 6.

In realistic plants, 1 ≤ F ≤ 3, K = 1, and 3 ≤ N ≤ 10.
For building the state space, let us first define the real states of the plant

as F -arrays of labels indicating the progression stage of each flask in its in-
dividual process. This space includes all possible permutations (with repeti-
tion) of flask positions. The real states of a plant with F = 3 and N = 6 are
[1 1 1], [1 1 2], [1 2 2], . . . , [6 6 6]. State [2 3 5] means that one flask is in stage 2,
a second is in stage 3, and a third is in stage 5. We alter the number of real states for
two reasons:

1. As flasks are indistinguishable, we can reduce the state space to the number of
combinations with repetitions. For instance, [1 2 2], [2 1 2], and [2 2 1] are
equivalent.

2. Emissions depend on the transition: by design, we associate the emission of a
symbol to the event of a flask entering a state. So the starting state in a transition
determines which symbol is emitted when the landing state is reached. For in-
stance, consider a plant with F = 2. Its real state [2 3] can be entered from [u 3],
u �= 2, thus triggering an emission linked to a flask entering stage 2. Or it can be
entered from [2 v], v �= 3, thus triggering an emission typical of a flask entering
stage 3. To allow for multiple emission distributions, each real state is designed
to be represented by F virtual states.

Given these premises, the size of the state space for a plant (F,K,N ) is M :

M = F
(N + F − 1)!
F !(N − 1)! = (N + F1)!

(F − 1)!(N − 1)! . (1)

6.1.2 Transition Matrix

The transition matrix is M × M . Even if M is independent of the number of
cranes K , K constrains the transition probabilities so that Tij is 0 if two states i

and j differ for more than K single-process states. If K = 1, only one process at
a time can change state, hence for instance the transition [1 1] → [2 2] has proba-
bility 0. All virtual states referring to the same real state have the same transition
probabilities towards other real states (equal rows in T ).
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Fig. 7 Different shapes of a
Gamma distribution obtained
by changing it’s a and b

parameters

6.1.3 Sojourn Times

We refer the distributions of sojourn times S to single-flask processes, so a real state
has F associated distributions. We have found this approach to produce more accu-
rate predictions than assigning a single distribution to each real state. We use para-
metric distributions of Gamma shape (2) for single-flask stage durations. Gamma
distributions can flexibly assume a shape ranging from an exponential to a bell
Gaussian-like shape (Fig. 7). For example, when a = 1, Gamma is an exponential
distribution; when b = 2, it is the chi-square distribution; the Gamma distribution
closely approximates a Gaussian for large a, with mean ≈ a∗b

Y = (
baΓ (a)

)−1
xa−1e−x/b. (2)

The only exception to the use of the Gamma distribution is for the state corre-
sponding to the empty plant (i.e., no flask under processing). In this case, we fetch
the next SCD event over the hatch area, because the start of a new processing cycle
is independent from previous cycles.

6.1.4 Emissions

Because the analysis is performed on the labels outputted by scene change detection
(SCD), we define the emission alphabet of size A as the set of SCD labels associated
to the areas of interest drawn by inspectors. In the example used throughout this
chapter the emission alphabet is {H,D,P }, and A = 3. The matrix E is of size
M × A. For the use as filter, the emission probabilities must be set to 1 for the
symbol expected for that transition, and 0 otherwise. This will constrain the model
to admit only the correct symbols for each state and to filter out the false alarms.
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A trivial example of T for a plant with F = 2, K = 1, and N = 2 is given in (3).
Note that, with N = 2, the only possible events are either a flask going from stage 1
to stage 2 or vice versa (Tii being null by definition)

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 1 0 0

0.5 0 0 0 0 0.5
0.5 0 0 0 0 0.5
0 0 1 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Real states
[1 1]
[1 1]
[1 2]
[1 2]
[2 2]
[2 2]

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
0 1
0 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

6.2 Training the HSMM

Some parameters of the HSMM are plant-specific and known:

1. The plant’s related parameters F (nr. of flasks), K (nr. of cranes), and N (nr. of
flask processing steps) of Sect. 6.1.

2. The expected sequence of processing steps of an individual flask, i.e. the
schematics shown in Fig. 5. These steps determine the single-flask emission ma-
trix. For the example in Fig. 5, the emission matrix is given in (4).

3. The initial state χo is the last state reported by the analysis of the previous image
stream in the most recent inspector’s report available

Symbols h d p

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 1
0 1 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

Moving from the single-flask emission matrix to the full-process matrix for mul-
tiple flasks requires replicating the correct emission based on the description of the
corresponding real state, as in (3).

Other parameters, i.e., the transition matrix and duration models, must be trained
on real examples of flask processing sequences. The training set is provided by past
review annotations for the current plant. These reports are reliable in that they are
double-checked for precision. They contain all the necessary information to train
both the symbolic and duration models, i.e., annotated events and relative time
stamps (Fig. 2).

An algorithm for HSMM training is described in [11]. For practical reasons,
we pursue approximate likelihood maximization by separating the training of the
transition matrix and the duration models. The transition matrix is trained with the
Baum–Welch algorithm [27] using the emission matrix for the full process. The
training set is the sequence of states annotated on inspectors’ reports. An example
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Fig. 8 A trained transition
matrix for a 2-flask
processing plant with flask
processing as shown in Fig. 5.
A white square indicates a
null probability of transition;
dark red means a probability
≥ 0.5; shades of light blue,
green and yellow indicate
intermediate values

result for a 2-flask plant with one crane is shown in Fig. 8. The duration models
are parametric distribution functions of Gamma (Sect. 6.1). We model the dura-
tion of single-flask steps, as it was shown to be more consistent than the duration
of real (global) states. To determine a and b for each state we use maximum-
likelihood fitting of duration data extracted from review reports of single-flask
processes.

In the course of a review, the model is used as is, i.e., without online adaptation.
After completing a review on a batch of images, inspectors double-check the result-
ing list of events to approve it. The new consolidated report is added to the tail of
the previous reports to form a continuous history of reviews, and the HSMM model
is retrained on this extended history. The new model is then tested in simulation1

to assess its performance and compare it to the performance of the previous model.
It is retained only if the detection performance improves. Although nuclear flasks’
processes tend to be stationary over time, this update procedure allows the model to
eventually adapt to process changes.

6.3 The MM Image Review Tool

We use the HSMM built as in Sects. 6.1 and 6.2 to filter images during a review, by
integrating it in a semi-automated software tool called the MM review tool (MM in
short). The graphical user interface is the one shown in Fig. 4.

The general idea of the MM review tool is that, given the history of annotations
produced by the inspector during the review, the (T ,E,χo,S) model can highlight

1The review report acts as a ‘simulated inspector’.
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Fig. 9 Using the HSMM as a filter for assisting a review

the next most likely relevant image among those selected for motion events by scene
change detection (SCD). The inspector decides whether to annotate the proposed
image with a label corresponding to an event, e.g., H , D or P , or to reject it. The
interaction is repeated with the next image until the end of the review (Fig. 9).

To illustrate the use of the MM tool as filter during a review, let us consider a
mid-point during the review, when the inspector’s past annotations form a sequence
ν of k events (Step 1 of Fig. 9):

ν = {
(o1, t1), (o2, t2), . . . , (ok, tk)

}
. (5)

The pairs (oj , tj ) indicate that the inspector has confirmed that an event oj has
occurred at time tj . The information oj specifies the type of event, expressed as one
of the symbols of the emission alphabet. For the example of Fig. 5:

oj ∈ {H,D,P }. (6)

We assume the inspector to be a fully reliable in the labeling of events, so that ν

is true with probability 1:

P(ν) = 1. (7)

Given ν, the MM tool estimates the current state χ of the plant processing (Step 2
in Fig. 9). Under the assumption (7), the decoding of ν via the HSMM detailed
in [11] becomes superfluous and we are allowed to use the traditional HMM decod-
ing [27] on the sequence {o1, o2, . . . , ok} with an immediate advantage in terms of
computational complexity.

The MM review tool uses the current state χ to select the next image to show
to the inspectors on the graphical user interface (Step 3 in Fig. 9). To select this
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image It∗, we first compute the likelihood of every future image selected by SCD
given χ and S, for every symbol y in the emission alphabet:

Ly(It ) =
M∑

j=1

χj

(
S∗

j (t)∑
t S

∗
j (t)

)
. (8)

In (8), we apply the total probability rule on the M states of the HSMM on the
sum S∗

j (t) of the duration probability distributions that pertain to symbol y. S∗
j (t) is

computed based on the assumption of stochastic independence of the processes of
different flasks, as follows:

S∗
j (t) =

∑
i∈Γ (j,y)

Si

(
t − toi

)
. (9)

In (9), Si is the duration model for case i, toi is the time of the previous event of
case i, and Γ (j, y) is the set of single-flask stories compatible with the real state j

that can generate a symbol y if a transition occurs. Our choice of projecting the
likelihood of duration models for one step only in the future is justified by the fact
that predictions for multiple steps would involve a convolution of duration models,
which quickly flattens the joint probability distribution and hence deteriorates the
filtering effect. The image It∗ is then selected as follows:

t∗ = min
(

arg max
t

(
Ly(It )

))
. (10)

In words, for each symbol y of the emission alphabet (of size A) we identify the
image exhibiting maximum likelihood. Then, within this set of A images we select
the image that comes first in order of time. This is to preserve, as much as possible,
a sense of precedence in event sequences for inspectors when more than one motion
event occurs as a consequence of multi-flask processing.

Finally, It∗ is presented to the inspector on the graphical interface of the MM
review tool (Step 4 in Fig. 9). If the inspector rejects this candidate, Ly(It∗) is set to
zero and (10) is recomputed, and so on, until the inspector accepts the proposed im-
age as a positive occurrence of an event. When an image is accepted and annotated,
its symbol ok+1 is added to ν and the procedure restarts.

6.4 Discussion about the MM Review Tool

It can happen that events are missed because of the Bayesian nature of the MM
review tool, giving rise to undesired false negatives. The informed, model-based
nature of the filtering intrinsically carries this risk if the model does not match
the data distribution in the image stream being reviewed. To possibly recover from
these cases, our review tool implements some heuristics and case-based reasoning
to avoid false negatives.2

2Recovery techniques are not covered here, because they are out of the scope of this chapter.
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One case of false negative occurs when a flask’s processing step is longer than
usual. In this case, the duration model attributes a null probability of event to the im-
age falling after the end of the distribution support function. To avoid this problem,
we use duration functions with infinite support (Gamma functions). This practice
may lower the filtering efficiency of the MM review tool, in that more images are
shown to the inspectors, also those exhibiting a very low likelihood of event, but it
can be useful in applications where a false negative is costly.

A second case of false negative is generated in multi-flask processing plants,
when flasks follow the same process ‘in pair’ (i.e., flask 1 is moved from H

to D, flask 2 follows the same movement, then flask 1 is moved from D to P ,
flask 2 follows, and so on). In this situation, an event referring to one flask may
fool the HSMM for what regards the processing of other flasks. If the sequence
ν is inconsistent with regards to the HSMM, i.e., the estimated current state χ

is null, we adopt the heuristics of suppressing in turn the confirmed symbols
(ok, tk), (ok−1, tk−1), (ok−2, tk−2), etc., until a consistent sequence is found (i.e. a
sequence giving a non-null estimation for χ ). The prediction procedure (Step 3 of
Fig. 9) is then applied from that point. Instead, a missed detection giving birth to
a sequence ν that is ‘consistent’ will not be discovered unless, as the review pro-
gresses, the sequence becomes ‘inconsistent’. This fact nullifies any guarantee of
null false detection rate of the HSMM.

A fundamental remark on MM is that it is intrinsically not designed to discover
images of irregular behavior. MM is useful as a way to establish where the regular
events are, and this can limit the application of this approach in some contexts.

Outside a review context, a further possible use of MM is for consistency checks
of review reports or operators’ activity declarations. Because MM uses probabilistic
models, it can assign a likelihood score to a report or declaration and generate an
alert in case of a low likelihood. This procedure may be applied just after a review
has been completed so as to trigger a double-checking when needed. Or it may be
applied during audits of review reports to direct the auditing inspector towards those
‘more far away from normality’.

The MM review tool can be run only after the list SCD events has been computed
for a given image stream. When MM is started, the first image selected for review
is shown on the image viewer and the corresponding event is highlighted in the
SCD event list (Fig. 10). Based on the image qualification provided by the inspector
(positive or negative), MM proposes a second image highlighting the corresponding
SCD event, and so on until the end of the review. To evaluate MM’s performance,
we keep track on the total number of highlighted events at the end of a review (see
Sect. 7 on a benchmark).

From a user’s viewpoint, a MM-based review has a peculiar aspect: images are
presented in a likelihood-driven order on the basis of duration models and not in
chronological order. If the maximum-likelihood image is refused, the second most
likely image may happen to refer to a previous instant, and so the inspector sees
a backward leap in the image stream (Fig. 11). Given that duration likelihoods are
projected in the future for one step only, these jumps are generally localized in time
around the segment of the image stream currently under review.
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Fig. 10 SCD events proposed for review are highlighted on the event list

Fig. 11 The order of
presentation of SCD events is
not strictly chronological
because it is likelihood-driven

Fig. 12 MM’s log file

To avoid confusion, a visualization of the back and forth jumps would be desir-
able. This could be part of a future interface that shows the evolution of the flask
process and makes MM reasoning explicit to the user. The basis for this could be the
existing MM’s log file (Fig. 12). This file includes MM’s dialogue with the inspector
and its reasoning on the flask process. In each line, the log keeps track of the image
number proposed for review (#〈integer〉), the annotation provided by the inspector
(‘-’ for irrelevant image; h,d,p for events), and a number of possible messages
shown in Table 2.
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Table 2 Log messages explain MM reasoning about flask processes

Message type Meaning

State Estimated current flask configuration resulting after the decoding procedure.

Mid positive A positively annotated image does not correspond to the predicted class for the
event.

Revision (start) The decoding procedure cannot reconstruct the flask configuration
advancement with certainty. A positively qualified image does not fit the
sequence of events. Probably a relevant image has been skipped: backtracking
starts.

Branching (start) The decoding procedure cannot reconstruct the flask configuration
advancement with certainty. More that one hypothesis explain the sequence of
events: multi-hypothesis tracking starts.

As we will see from the benchmark of Sect. 7, employing the MM filter gives
a strong advantage in terms of workload reduction. MM is completely embedded
in the state-of-the-art review workflow: its use does not require extra input from
the user other than what is already needed to browse and annotate the SCD events.
Hence, the gain of using MM can be measured by the number of SCD false positives
spared at review time, when all true positives have been detected.

The filter runs in the background and can be deactivated at anytime. Further,
its computational load is completely manageable by a standard laptop processor,
thanks in particular to the possibility of substituting HMM-like decoding in place of
the more complex HSMM decoding.

7 Benchmarking Image Review Filters

In the following, we focus on experimental results obtained by running scene change
detection (SCD) and the Markov models (MM) review tool on grayscale images
acquired by a safeguards surveillance system [5] in two different plants, A and B .

A is a single-flask plant (F = 1), while B has the capacity to process two flasks
(F = 2) with the constraint of a single crane (K = 1) (Sect. 6.2).

The tests aimed at measuring the performance of SCD and MM in the detection
of flask events: events on the hatch area (H ), on decontamination (D) and over the
pond (P ).

7.1 Image Sets

Table 3 provides information about the image sets used for tests. Sets A1, A2 and A3
stem from plant A, while B1 and B2 stem from plant B . Each image set spans over
several months of plant activity. For each set, the number of target events to identify
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Table 3 Image sets used in
the benchmark. For each set,
the table lists the number of
images in the set, and the
number of events to be
detected over the hatch (H ),
decontamination (D) and
pond (P ) areas

Image set Images H D P

A1 20160 17 17 17

A2 15661 1 1 1

A3 16022 – – –

B1 16020 30 30 30

B2 15446 12 12 12

is shown in the table. This ground truth information has been derived from inspec-
tors’ review reports. As anticipated in Sect. 3, the number of safeguards-relevant
events is exiguous compared to the number of images in each set. Also, it is not un-
usual to have image sets where no safeguards-relevant activity needs to be reported
by the inspectors as in A3.

7.2 Performance Metrics

To evaluate the performance of the image review tools, we adopt two measures.
The first is the classical performance evaluation for classifiers used in informa-

tion retrieval, namely recall and precision [29]. For a given classification method M

and benchmark containing R∗ true events, the retrieval indexes are defined as:

recallM = CR∗
M

R∗ , (11)

precisionM = CR∗
M

CRM

, (12)

where:

• CRM is the number of images classified by M as relevant.
• CR∗

M is the number of relevant images correctly classified by M .

The classification is optimal in terms of recall and precision when both indexes
have value 1. Recall equals 1 when there are no false negatives, i.e., no relevant
image is classified as irrelevant. Precision equals 1 when there are no false positives,
these being defined as:

FPM = CRM − CR∗
M. (13)

In our benchmark, we apply precision in a strict way, i.e., counting as correctly
classified only the images annotated in review reports. In a sense, this is too strict
for surveillance reviews where the goal is to highlight images in the proximity of
the one that will be annotated: users always explore surrounding images to enhance
their understanding on what happened in the scene. For this reason, precision has
to be read as an indicative measure of performance, good enough to rank retrieval
algorithms.
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The second performance index is application-oriented [16] and by far more
meaningful from the user point of view. Given that SCD is the default filter used
in safeguards reviews, we measure the user advantage to filter SCD events by a
second classifier M (provided that recallSCD and recallM equal 1) by:

workload_reductionM = FPSCD − FPM

FPSCD
. (14)

If FPM equals FPSCD,M does not bring any advantage and the workload re-
duction is 0. If FPM is 0, M brings a large advantage and the workload reduction
is 1.

7.3 Experimental Results

SCD has been parameterized in this benchmark to guarantee that all events are de-
tected by optimal thresholds for each area of interest (AOI), i.e., the thresholds that
provide recallSCD equal to 1 and minimize FPSCD.

MM is trained by the procedures described in Sect. 6.2 on roughly the first half of
the events contained in A1 and B1. The remaining events test MM’s generalization
performance.

Since in these experiments MM detected all ground truth events (i.e., recall = 1),
the evaluation is focused on precision and workload reduction.

Concerning precision (12), Fig. 13 (striped bars) shows that SCD produces many
false positives, even when it is parameterized to work at its best. In particular, to
detect all decontamination events, a low detection threshold had to be set. Figure 13
(black bars) shows that the use of an informed technique after SCD pays off : MM
scores a significant increase in precision on all image sets while not missing events.

Fig. 13 Precision provided by two filters measured on five image sets: SCD (scene change detec-
tion) run on 3 AOIs, followed by MM (Markov models)
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Fig. 14 Workload reduction provided by three filters measured on five image sets: MM (Markov
models) run after SCD on 3 AOIs, IR (image retrieval by nearest neighbors) run after SCD on
2 AOIs, and DT (decision trees) run after SCD on 2 AOIs

The real advantage of using MM after SCD is measured by the workload re-
duction index (14) shown in Fig. 14 (black bars). The high peaks reached by MM
indicate that it manages to reduce the number of false positives generated by SCD
by a very significant amount, while retaining the true events. From the user point
of view, the work reduction due to MM implies at least 75% of images less to re-
view. At the same time, the use of MM does not require machine learning expert
knowledge by the user, a design constraint to be respected for this technology to
be accepted by users. Overall MM copes well with the task of tracking the whole
flask-processing chain (i.e., over 3 AOIs) despite the noisy stream of SCD events.

As terms of comparison for MM, Fig. 14 provides the performance of two al-
ternative informed techniques, namely image retrieval (IR, white bars) and decision
tree based classification (DT, gray bars) [37]. Differently from MM, IR and DT ex-
ploit regularities in the visual appearance of events instead of regularities on the
sequence and timing of events exploited by MM. The choice of focusing the com-
parison on DT and IR is that, like MM, these techniques require no expert machine
learning knowledge. They can be used by any person, provided a pre-analysis work
has been performed by machine learning experts on ‘ML settings’ that can work
reasonably in a number of situations, in our case different plants and camera points
of view.

IR is a nearest-neighbor classifier [4] that uses one example image per class of
events to be detected, coupled with suitable similarity thresholds. Thresholds are
learnt automatically based on annotations of events in past review reports. Images
sufficiently close to the example (in a given feature space that describes the image
content) are considered ‘relevant’ and displayed for review.

DT is implemented as a set of decision trees [26] (one per AOI) trained on posi-
tive and negative examples of events to be detected. Like IR, DT operates decision
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rules on image features describing the image content. An image is classified ‘rele-
vant’ and proposed for review if at least one decision tree classifies it as relevant.
DTs are trained interactively by inspectors based on relevance feedback cycles. Past
review reports act as ground truth to help measure the classification performance.
Further examples become available from the user online in an iterative way. This
machine learning context is related to that of active learning [33, 34]. In active
learning an algorithm selects data points which should receive a label by the user.
This selection is driven, for instance, by the uncertainty associated to data classifi-
cation as measured by the algorithm. Typically data points that fall close to decision
boundaries of a classifier are the most uncertain, therefore presented with priority
to the user to receive a label. Active learning is a lively area of research, very rel-
evant to image retrieval. Still, it appears that the use of these techniques requires
a level of expertise in machine learning to set-up a working system that surpasses
the ordinary user’s capabilities [32]. Hence, for DT, we followed a user-centered
approach where the user decides which examples to label to improve the classifica-
tion. These decisions are driven by application-oriented considerations (e.g., what
is more relevant for safeguards purposes) and by an interface which makes the clas-
sifier’s performance as transparent as possible to the end-user. Finally, we note that
despite large image sets like ours, testing DT is fast because trees learn to focus
classification rules on a reduced set of image features. Since the induced classifiers
are very compact, they are suitable for interactive testing with online users [8].

IR and DT are examples of video annotation techniques introduced in Sect. 2.
They learn to search images by content based on annotations (the training exam-
ples) made by the inspectors at previous reviews (Properties P1 and P2 in Table 1).
Differently from MM, IR and DT classify each image ‘on its own’, i.e., outside the
temporal context. They do not rely on a smooth transition in the visual appearance
of objects of interest, and are applicable to low frame rate image streams like ours.
Generally, these techniques are effective when classes of events exhibit distinctive,
recurrent visual signatures.

In our context, not all classes of events satisfy this condition. As noted, events of
type D are hard to distinguish by automatic means due to this area of interest be far
away from the camera. Hence, in the experiments we limited the use of IR and DT
to the detection of events H and P , because on D events recall for these techniques
is definitely below 1. Workload reduction is then computed with respect to SCD run
on 2 AOIs (H and P ) for IR and DT, and on 3 AOIs for MM.

Figure 14 shows that MM outperforms simple informed search by content tech-
niques such as IR, and is comparably effective as more sophisticated search by con-
tent techniques such as DT. On the other hand, MM is capable of detecting by tem-
poral means all classes of relevant events, while DT is not.

Interestingly, analyzing the detection performance per type of event, we found
that MM and DT have complementary detection skills. For instance, DT can detect
well events of type H due to the camera favorable position with respect to the hatch
area. By contrast, H entry events are hard to detect for MM because the start of
a new flask processing cycle is independent of past cycles. For this reason, when
no flask is in the plant for processing, MM fetches SCD events over the hatch until
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the inspector annotates that a new flask has entered the facility (see Sect. 6.1 on
sojourn times). On the positive side, D events (the weak point for DT and IR)
are well predicted by MM because they exhibit a strong regularity in the temporal
dimension. Another source of workload reduction for MM is linked to the fact that,
given a state of flasks processing, MM focuses its attention to SCD events generated
over the AOIs where events are expected. For example, in a single flask plant, a flask
entering the pond generates the expectation of the next event to be a ‘pond exit’ one.
Hence, all SCD events happening on AOIs H and D are ignored until a P event
is confirmed by the inspector. By contrast, IR and DT need to classify as relevant
of irrelevant each single SCD event generated over the entire image stream because
they do not ‘follow’ the flask process.

Since DT and MM have complimentary strong points and weaknesses, an inte-
grated system of the two would be a natural proposal to improve the overall detec-
tion precision.

8 Discussion

Machine learning for the analysis of image streams in fields related to video surveil-
lance is becoming a central topic of research within the computer vision community.
To be effective, the range of techniques proposed need to address well the specifici-
ties of the applicative context envisaged. Part of this is reflected in the choice of
the camera technology to be employed and how this is configured Today, camera
systems are evolving in diverse directions, ranging from high-speed, to low-power
devices and smart cameras, just to name a few.

The contribution presented in this chapter was focused on machine learning as a
way to capture field knowledge from image annotations made by surveillance end-
users. We have addressed an application field, that of nuclear safeguards, having
the following characteristics: (i) very low frame rate due to the cameras working
as standalone systems storing images on local memory only; (ii) objects of interest
with distinct visual features for some classes of events of interest, contrasted by low
resolution of the same objects in temporally following images. These characteristics
contrast with the assumption of traceability of objects underlying many computer
vision studies.

As specific technical contribution, we presented a combination of filters based
on scene change detection (SCD) and Markov models (MM) to search streams of
surveillance images. A design constraint for this study was to consider search tech-
niques which do not require machine learning or computer vision expertise from the
end-user.

SCD is an uninformed search technique. It does not use priors on the visual
appearance of events to detect them. SCD is triggered by any change within areas
of interest defined by the user. There are pros and cons to SCD. A clear advantage
of SCD is its ‘generality’. By setting conservative SCD thresholds, one has good
guarantees that all events of interest will be included among SCD events. A second
advantage of SCD lies in its ‘programmability’. The only parameters to be specified
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by the user—who is not supposed to be an expert of computer vision—are the areas
of interest and the associated detection thresholds. On the down side, SCD presents
as events a large number of false positives.

MM is an informed search technique. It uses past event annotations made by
end-users to facilitate the recognition of related events in new image streams to be
reviewed. Specifically, MM’s priors relate to temporal meta-data (i.e., the images’
time-stamps). MM is totally ‘blind’. All it does is reorganize the visit order of SCD
events by their temporal likelihood. In doing so, a significant number of SCD false
positives are spared from review. The choice of focusing MM on temporal aspects
brings several advantages. First, when objects of interest are not traceable by im-
age content (e.g., because of too weak visual signatures of events), a temporal filter
allows to track sequences in a more robust way. Second, a temporal filter is easily
embedded in the review cycle at no additional interaction cost for the user: with
MM, the inspector performs all and only the usual operations necessary to anno-
tate the SCD events when proposed by MM for review. Then, MM takes advantage
of the ‘user-in-the-loop’: a freshly available annotation is immediately taken into
account to recompute the next most likely relevant SCD event. Short term predic-
tions are more accurate when based on solid information provided by the user. This
information comes for free because the image review report is built progressively
over time. Third, the MM model is process-bound instead of camera-bound. This
means that if the camera is repositioned to provide a better view on the sequence of
events, MM models are still valid, i.e., they require no retraining. For the same rea-
son, MM models can be used to filter images from redundant cameras overlooking
the scene. All this does not apply to search by content techniques which depend on
visual regularities as perceived from a camera specific point-of-view.

Table 4 Best and worst cases of operative conditions for MM

Best case Worst case

SCD performance SCD detects all events and
scores few false positives
(SCD thresholds well
calibrated).

SCD does not detect all
events, because of bad
thresholds calibration or of
bad camera position.

Availability of review reports Past review reports
documenting at least 10–15
complete processings are
available for the plant under
analysis.

Less than 3–4 complete
processings or only
incomplete processings are
documented on the review
reports available for training.

Regularity of event sequences All events in the plant follow
regular sequences according to
what documented on past
review reports.

One or more events happen in
a logical sequence never
documented on past review
reports.

Regularity of event durations All processing durations have
a mono-modal Gamma
distribution, i.e., occur with
limited variability.

One or more events occur with
a duration that is largely
different from the mean
duration documented on past
review reports.
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Temporal filters like MM can be applied when events of interest are recurrent
over time and follow specific patterns as in surveillance for safeguards. Table 4
summarizes the ‘best’ and the ‘worst’ operative conditions for MM. The approach
can be extended to other surveillance scenarios. The most compelling is industrial
process monitoring, when video systems do not meet costly high frame rate surveil-
lance standards.
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Discriminative Multiple Target Tracking

Xiaoyu Wang, Gang Hua, and Tony X. Han

Abstract In this chapter, we introduce a metric learning framework to learn a sin-
gle discriminative appearance model for robust visual tracking of multiple targets.
The single appearance model effectively captures the discriminative visual informa-
tion among the different visual targets as well as the background. The appearance
modeling and the tracking of the multiple targets are all cast in a discriminative
metric learning framework. We manifest that an implicit exclusive principle is nat-
urally reinforced in the proposed framework, which renders the tracker to be robust
to cross occlusions among the multiple targets. We demonstrate the efficacy of the
proposed multiple target tracker on benchmark visual tracking sequences, and real-
world video sequences as well.

1 Introduction

Visual tracking of multiple targets has been very active research in the past years
[5, 18, 21, 22, 28, 29], largely due to its essentiality in video surveillance, and more
emerging applications such as internet video annotation. To robustly track the multi-
ple objects, firstly we need to model the visual targets, either based on contour shape
or visual appearances. Then a matching algorithm match the image observation data
with the models of the multiple targets. Appearance based modeling has induced a
lot of attention due to its richness in representation.
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For visual appearance modeling of the multiple visual targets, one may model
the different visual target separately, for example, either a generative model is built
for each visual target to capture the visual variation [8, 14, 20–22, 27], or a dis-
criminative model is built for each target to discriminate it from the background
[1–3, 6]. Typical generative model for modeling visual target include appearance
based subspace model [8, 14, 20] obtained using embedding methods such as prin-
cipal component analysis [8, 20], or Gram–Schmidt decomposition [14], as well
as Gaussian mixture model [17] learned from the Expectation-Maximization (EM)
algorithm [9].

On the other hand, discriminative appearance models leveraged supervised learn-
ing algorithms to training a classification function to differentiate the appearances
of the visual targets from the background. For example, support vector machine
(SVM) and Boosting cascade classifier is adopted in [1] and [5], respectively, for
training discriminative visual models, an ensemble classifier based on Boosting is
leveraged in [2], a linear discriminative classifier is employed by [6], and a multiple
instance Boosting classifier is utilized in [3]. A set of positive examples represent-
ing the target object and a set of negative examples representing the background are
needed to train the discriminative model.

Compared to generative models, discriminative models aim directly on differ-
entiating the visual target from the background clutter, hence they may be more
desirable for robust visual tracking. However, separating the discriminative appear-
ance modeling efforts for the multiple targets is problematic because each model is
only focusing on differentiating the associated target with the background where the
target presented. The discriminative information among the different visual targets
themselves are totally ignored. Effectively capturing the discriminative information
among the different visual targets may be vital in dealing with cross occlusions in-
curred among the multiple targets.

In this chapter, we present a formulation to learn a joint discriminative appear-
ance model for discriminating the multiple visual targets from the background, as
well as discriminating the multiple targets themselves. This formulation is cast
under a discriminative metric learning framework proposed by Globerson and
Roweis [11]. A nice property of this formulation is that the learning of the joint
model only needs to optimize a convex function using gradient descent, where the
optimal solution is guaranteed. Moreover, in our formulation, the visual matching
process to track the multiple targets is optimizing the same objective function as
what we used to learn the visual model.

The visual matching process in our tracking algorithm can be efficiently per-
formed by gradient based optimization using any modern nonlinear optimization
packages, such as the one proposed in [31]. This put our multiple target tracking
algorithm into the literature of gradient based visual tracking algorithms [7, 12, 13,
26, 30]. Gradient based tracking algorithms directly match the visual model with the
image observations based on the gradient of the objective function w.r.t. the motion
parameters. It does not make any additional assumptions of the motion and obser-
vation models, which may often required in visual tracking algorithms based on
hypothesis generation and observation verification, such as Kalman filter (KF) [19],
probabilistic data association filter (PDAF) [4], and particle filter [16].
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Due to the mutual discrimination of the appearance models of the different vi-
sual targets reinforced in the learning process, and the joint optimization of multiple
motions, our tracking algorithm reinforces an implicit exclusive principle [21]. Ex-
clusive principle, which is firstly defined by MacCormick and Blake [21] states that
no two visual targets shall account for the same image observation, which is vital to
handle and being robust to occlusions when dealing with multiple objects tracking.
Notice that our proposed formulation for discriminative visual modeling of multiple
visual appearances may not be utilized for tracking multiple identical objects in a
visual scene. Nevertheless, exact identical multiple objects are scarce in real-world
videos. Therefore, this limitation may not hinder the general applicability of the
proposed multiple target tracking algorithm.

When compared with previous methods for multiple target tracking algorithms,
the proposed modeling and matching framework presents three advantages. Firstly,
it presents a discriminative formulation to simultaneously model the appearances
of multiple objects, which not only discriminates the visual target from the back-
ground, but also seeks for mutual discrimination among the different visual tar-
gets. Secondly, in our formulation, an exclusive principle is naturally reinforced,
which renders it robust to handle cross occlusions among the different visual target.
Thirdly, our proposed framework is easily adapted for online model updating, which
is supported by a principled criterion derived from the objective function to select
the optimal set of visual examples for online modeling and matching.

2 Appearance and Motion Model of Multiple Targets

2.1 Metric Learning Framework

We cast our discriminative appearance and motion model of multiple targets by
leveraging a metric learning framework similar to Globerson and Roweis [11]. Sup-
pose we have a set of labeled training examples X = {xi,j ∈ R

N,oij }ni

j=1, where
oij = 0 indicates background, and oij = 1, . . . ,K indicates the visual samples of
each of the K visual targets we are intending to track. N is the dimension of ex-
amples. Let S0 = {(x0j , o0j = 0)}n0

j=0, and also let Si = {(xij , oij = i)}ni

j=0 for any

i = 1, . . . ,K , such that n = ∑K
i=0(ni + 1) and X = ⋃K

i=0 Si . xij means the j th ex-
ample for tracking target i (i = 0 implies background). In our experiments, each xij

is usually a w × h image patch and N = w × h.
We further denote ∀i > 0, xi0 = I(mi ), which indicates each of the K visual

targets we want to track in the current frame where mi ∈ R
L is the motion param-

eters we want to recover. I(mi ) is a mapping which maps the motion parameters,
affine transformation parameters for example, to image patch. Obviously, the label
oi0 of I(mi ) is i, since it represents the ith visual target. For convenience, we will
either use xi0 or I(mi ) in our presentation depending on if we are learning for the
appearance model or performing the visual matching for tracking of the multiple
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target. Following Globerson and Roweis [11], we propose to learn a Mahalanobis
form metric, i.e.,

dA(xij ,xkl) = (xij − xkl)
T A(xij − xkl), (1)

to achieve our unified formulation, where A is a positive semi-definite matrix we
need to learn from data. Define, for each xij ∈ X , a conditional probability

pA(xkl |xij ) = 1

Zij

e−dA(xij ,xkl ) = e−dA(xij ,xkl )∑
p �=i∨q �=j e−dA(xij ,xpq)

. (2)

The ideal distribution of the optimal A shall collapse samples from the same class
to be a single point. Specifically, the ideal distribution shall take the following form,

p0(xkl |xij ) =
{

1
nc

oij = okl = c,

0 oij �= okl,
(3)

where c ∈ {0,1, . . . ,K}. Recall that xi0 = I(mi ). Denote M = {m1,m2, . . . ,mK},
we define

f (A, M) =
n∑

i=0

KL
(
p0(xkl |xij )‖pA(xkl |xij )

)

= C +
K∑

i=0

ni∑
j �=k=1

1

ni

(
dA(xij ,xik) + logZij

)
, (4)

where C = ∑
yij =ykl=c

1
nc

log 1
nc

is a constant. To have pA(xkl |xij ) to be as close
to p0(xkl |xij ) as possible, we only need to proceed to minimize f (A, M). More
formally, we formulate the following optimization problem,

min f (A, M) (5)

s.t. ∀a ∈ R
N, aT Aa ≥ 0, (6)

where the constraint in (6) confines A to be a positive semi-definite matrix (PSD).
Solving the above optimization problem would allow us to jointly obtain the optimal
discriminative appearance models for all of the multiple visual targets defined by A,
and track the motions of all of them as well, which is defined by m. We solve both
by efficient gradient based search, as we shall detail in the following subsections.

2.2 Joint Appearance Model Estimation

In formulation, discriminative appearance modeling refers to identifying the opti-
mal A to define the metric between visual samples. Assume that the motion pa-
rameter m is fixed, following [11], it is easy to figure out that f (A,m) is a convex
function of A. Taking the derivative of f (A, M) with respect to A, we have

∂f (A, M)

∂A
=

K∑
i=0

ni∑
j=0

K∑
k=0

nk∑
l=0

ωij (kl)(xkl − xij )(xkl − xij )
T , (7)
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where

ωij (kl) = p0(xkl |xij ) − pA(xkl |xij ). (8)

Similar to [11], we take a gradient projection algorithm [23] to obtain the optimal A.
Specifically the following two steps are performed:

1. Gradient Descent: A = A − ε
∂f (A,m)

∂A , where ε determines the step length for
gradient descent.

2. PSD Projection: Compute the eigen-value decomposition of A, i.e.,
{λk,uk}Nk=1 such that A = ∑N

k=1 λkukuT
k , set A = ∑N

k=1 max(λk,0)ukuT
k .

The first step above performs gradient descent, and the second step reinforces the
constraint to make A to be a positive semi-definite matrix. These two steps are
iterated until convergence. Since f (A, M) is a convex function of A fixing M, the
iteration of these two steps is guaranteed to find the optimal solution of A.

2.3 Motion Parameter Optimization

In this subsection, we fix the discriminative appearance model A, and develop the
gradient descent search for the motion parameters M. Not losing any generality, we
assume that each mi , ∀i ∈ {1,2, . . . ,K} is a linear motion model, that is,[

xi

yi

]
=

[
ai bi

ci di

][
x′
i

y′
i

]
+

[
ei

fi

]
, (9)

where [x′
i , y

′
i]T is the canonical coordinates for the labeled examples, and [xi, yi]T

is the coordinates in the target video frame. This linear motion model covers a wide
variety of visual motions such as translation, scaling, similarity, as well as full affine
motion. We proceed to derive the gradient based search for the full affine motion
model.

Recall that xi0 = I(mi ) is the only term that involves the motion parameter mi ,
∀i ∈ {1,2, . . . ,K}, according to chain rule, we have

∂f (A, M)

∂mi

= ∂f (A, M)

∂xi0

∂xi0

∂mi

. (10)

With some mathematical manipulations, it can be shown that

∂f (A, M)

∂xi0
= 4

ni

ni∑
j=1

A(xi0 − xij ) − 2
K∑

k=1

nk∑
l=0

βi0(kl)A(xi0 − xkl), (11)

where

βi0(kl) = pA(xkl |xi0) + pA(xi0|xkl). (12)

For any parameter ξi ∈ mi , again, applying chain rule, we have

∂xi0

ξi

= ∂I(mi )

∂ξi

= ∂I(mi )

xi

∂xi

∂ξi

+ ∂I(mi )

yi

∂yi

∂ξi

, (13)
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where ∂I(mi )
xi

and ∂I(mi )
yi

represents the image gradient in the target frame in hori-
zontal and vertical directions, respectively. For ease of notation, we denote them as
Ixi

and Iyi
, respectively. Following (13), we have, ∀i ∈ {1,2, . . . ,K}

∂xi0

∂ai

= Ixi
x′
i

∂xi0

∂bi

= Ixi
y′
i , (14)

∂xi0

∂ci

= Iyi
x′
i

∂xi0

∂di

= Iyi
y′
i , (15)

∂xi0

∂ei

= Ixi

∂xi0

∂fi

= Iyi
. (16)

Therefore, we may easily calculate the gradient of f (A, M) with respect to mi

by applying (16) to (10). Then we can take a gradient descent step to recover the
optimal motion parameter mi , ∀i ∈ {1,2, . . . ,K}, that is,

mi = mi − η
∂f (A,mi )

∂mi

, (17)

where the step length η could be estimated, for example, by a quasi-Newton method
such as L-BFGS [31].

3 Online Matching and Updating Multiple Models

Another challenge in appearance model based multiple target tracking is to robustly
adapt the model to the visual environment. This adaptation may be indispensable
for robust tracking since the target objects may go through drastic visual changes
caused by environmental conditions such as extreme lighting, occlusions, casting
shadows, and pose and view changes. The metric learning formulation we proposed
in (5) enables us to naturally fulfill this task. We proceed to present it in a more
formal way.

Extended from the notation of Sect. 2, let X (t) = ⋃
S (t)

i be the set of n labeled
examples we maintain at time instance t . We also let At be the current discrimina-
tive appearance model, and Mt = {m(t)

i }Ki=1 be the motion parameters we need to

recover. Hence, we have x(t+1)
i0 = I(t+1)(m(t)

i ), which means the new positive exam-
ple depends on current image and motion parameters corresponding to the previous
frame. At each time instant t , given X (t) and At , we run the gradient descent op-
timization algorithm outlined in Sect. 2.3 to obtain the optimal motion parameters
m̂(t)

i , ∀i ∈ {1,2, . . . ,K}. This fulfills our visual matching and tracking task. Then

we perturb each m̂(t)
i in turn to generate a set of α background samples S (t+1)

0α to

replace the oldest α samples subset S (t)
0α in X (t). In practice, we sample examples

around the current tracked target with a relative bigger distance to replace old back-
ground examples. This results in the new labeled examples X (t+1), that is,

X (t+1) = (
X (t) \ S (t)

0α

) ∪ S (t+1)
0α . (18)
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With X (t+1), we can then run the gradient projection optimization algorithms out-
lined in Sect. 2.2 to obtain the optimal At+1. To proceed with the next matching step,
we need to retire one example for each visual target in the current X (t+1) to update
the example set, we propose a least consistent criterion based on the contribution
of each of the target examples to the unified cost function f (At+1, Mt ). Indeed,
fixing At+1 and Mt , f (At+1, Mt ) is a function of X (t+1), that is, f (At+1, Mt ) =
g(X (t+1)). We can similarly define a g(·) function for any subset of X (t+1) based
on (4). Therefore, for each xij ∈ X (t+1), a consistent criterion can be defined as

c(xij ) = g
(

X (t+1)
) − g

(
X (t+1) \ {xij }

)
. (19)

It is easy to understand that the larger c(xij ) is, the more contribution xij has made
to f (At+1, Mt ). If the label o(xij ) = i, a larger c(xij ) indicates that xij is not very
compatible to the rest of the visual samples of target i, and hence should be retired
from the sample set. More formally, we select

x	
i = arg max

x∈X (t+1),o(x)=i

c(x) (20)

to retire from X (t+1), for each i ∈ {1,2, . . . ,K}. In real operation, we only need
to change the numbering of x(t+2)

i0 = It+2(mt+1) to the numbering of x	
i , then we

reset x(t+2)
i0 = It+2(m(t)

i ), ∀i ∈ {1,2, . . . ,K}, which are initialized to kick off the
matching process to recover the optimal motion parameter Mt+1.

The above steps will be iterated from time instant t to time instant t + 1. There-
fore we track the multiple visual targets and estimate the joint discriminative visual
appearance model in an online fashion, which are all based on efficient gradient
based optimization. Most previous approaches resort to heuristics or the oldness
of visual samples to select the optimal set of online training examples. While our
proposed selection criterion for positive examples in (20) is derived directly from
the objective function of the proposed formulation in a principled fashion, it mani-
fests another benefit of our proposed metric learning framework for discriminative
appearance modeling and matching of multiple visual objects.

To initialize the tracking algorithm, we can either run an object detector if it
applies, such as a face detector [24] or a human detector [25], if we are tracking
a number of faces or persons, or request the users to manually specify the track-
ing rectangles for the multiple visual target. Then the initialized tracking rectangles
are perturbed to form the initial set of labeled examples X (1). More specifically,
perturbed rectangles with sufficient overlap with the initial rectangles are regarded
as the visual samples of the corresponding targets, while those perturbed rectan-
gles which are deviated too much from the initial rectangles are deemed as visual
samples of the background. This bootstraps learning for the optimal discriminative
appearance model A2, which is then adopted to obtain the optimal motion parameter
M2. This processes will be repeated as described above.

Last but not least, when maintaining the labeled example set X (t), we fix a small
set of β background and β visual examples extracted from the initialization frame
for each of the visual target in the working set, that is, we never replace them with
new examples. This treatment is very important to keep our discriminative appear-
ance model stable and avoid it to be drifted too drastically in the visual tracking
process.
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4 Discriminant Exclusive Principle

We argue that the proposed joint formulation for multiple object tracking naturally
incorporates an exclusive principle [22] in the matching process. Therefore, it is ro-
bust to handle occlusions among the different visual objects. The exclusive principle
states that no two visual tracker shall occupy the same image observation. Our pro-
posed algorithm naturally achieved it because of the joint discriminative appearance
model A, which reinforces the mutual discrimination of the appearances between
two visual targets I(mi ) and I(mj ). To see this more clearly, given an optimal A,
if I(mi ) and I(mj ) occupy similar image regions (a.k.a., mj

.= mi ), and thus have
very similar visual appearances, the mutual discriminative information encoded in A
would incur a large value for f (A, M). Therefore, mj = mi is not an optimal solu-
tion to M. In other words, the optimal motion parameter M is more likely to occur
when ∀1 ≤ i < j ≤ K , mj �= mi . Therefore, the exclusive principle among the dif-
ferent visual targets are naturally reinforced, which makes our proposed framework
for multiple target tracking to be more robust to cross occlusions among the different
visual targets.

5 Experiments

5.1 Visualization of Learned Appearance Model

The appearance model A defines an discriminative embedding to differentiate the
multiple visual objects from the background. Each eigenvector of A is correspond-
ing to one basis vector of the embedding. To have a better understanding on how the
appearance model A functions, in Fig. 1, we visualize the top 12 eigenvectors of an

Fig. 1 The top 12 eigenvectors (with the descent order from top left to bottom right) for the dis-
criminative matrix A
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optimal A estimated at frame 512 when tracking three persons in the CAVIAR se-
quence. As clearly observed, they encode the contour and shape information of the
target objects. It is quite sensible because A is used in our discriminative framework
for discriminating the multiple objects from the background,and also reinforce the
mutual discriminations among the different objects. The shape information is prob-
ably the most reliable one for achieving that.

5.2 Multiple Target Tracking for Different Video Sequences

We dub the name TUDAMM to the Tracker with Unified Discriminative Appearance
Modeling and Matching (TUDAMM) for our tracker. We evaluate the tracker on two
datasets: the CAVIAR [15] videos and the ETH Mobile Scence (ETHMS) [10]. For
each single object, we randomly extract 20 positive examples to form a positive set
tightly around the initial bounding box of the object. The number of negative ex-
amples around a single object is also set to be 20. We will have 20 ∗ N negative
examples for each object, supposing that we have N objects to be tracked. A con-
fliction solving procedure is employed to avoid extracting a positive example from
one object as a negative of another. After obtaining the matched patch in the current
frame, negative examples would be generated by randomly selecting patches with a
minimum and maximum distance toward the positive. The motion parameters (affine
parameters) are kept the same in this step. Half of the positive and negative exam-
ples would be kept without updating to help the tracker recover from big changes
and occlusions. The normalized pixel intensity is used as the feature. We downsam-
ple the image patches to 20×20, regardless of their original dimensions (the feature
dimension for each object must be the same to fit into the metric framework). This
procedure is implemented by solving a warping equation instead of directly sam-
pling the image patch, which will provide a smoother objective function for the
gradient descent optimization in the second step of the iteration.

Figure 2 shows the tracking results for a video from CAVIAR in which three
persons walk on the corridor with big scale changes and occlusions. The objects
encounter big occlusion by a crossing person from key frame 816. We present the
sample results obtained by our tracker, the ILT [20] tracker and the Meanshift [7].
Our tracker shows quite robust responses. The ILT tracker loses the target when it’s
occluded by a person crossing the corridor. The Meanshift tracker shifts because it
cannot deal with big scale change.

In order to give quantitative performance comparison with these two works, we
employ a criterion called Average Tracking Precision (ATP) to do the evaluation,
enlightened by the PASCAL grand challenge. More formally, for each tracking task,
a ground truth mask for the object of interest is labeled in each frame j . The mask
is represented as a point set Gj which is a collection of all points in the ground
truth bounding box. The tracking result is represented as a point set Tj at frame j .
(xi, yi) ∈ Gj or Tj indicates that the pixel at (xi, yi) is associated with the target.
For an ideal tracker, ∀j , Gj = Tj .
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Fig. 2 Sampled multiple object tracking results on the Caviar dataset. Key frame
NO.:513,809,817,828. The first row: our tracking results; the second row: tracking results of ILT;
the third row: tracking results of Meanshift

For each frame j , the tracking precision rj is defined as: rj = |Gj ∩ Tj |/|Gj ∪ Tj |.
Noticing that rj ∈ [0,1], the ATP for a tracker of an object in a video clip is defined
as:

ATP = 1

N

N∑
j=1

rj = 1

N

N∑
j=1

|Gj ∩ Tj |
|Gj ∪ Tj | , (21)

where N is the running length of the video clips in frame number. For an ideal
tracker, ATP ≡ 1. We use it as the exclusive quantitative measure to compare the
performance of the TUDAMM with other state-of-the-art trackers.

Because neither of the other two algorithms support multiple object tracking, we
track the objects independently to obtain results from the two trackers. Figure 3
shows the ATP curve. The TUDAMM tracker gives the best performance, with an
ATP above 0.7. Recall that in PASCAL grand challenge, a detection with an overlap
bigger than 0.5 with ground truth would be treated as a true detection. The ATP
value 0.7 implies perfect tracking performance.

Figure 4 presents sampled key frames from the result of tracking three persons
on a street [10]. The person with red coat is occluded by a tree during the tracking.
Our tracker shows robust tracking. Figure 5 presents sampled tracking results for
a video from CAVIAR dataset [15].

Figure 6 shows the tracking result for a horse racing video in which cross occlu-
sion happens frequently. Our tracker shows excellent performance. The ILT tracker
cannot locate the object very well and the fifth (left to right) horse is completely
lost during the tracking process. The Meanshift tracker is not good at solving cross
occlusions and the bounding box shifts drastically. As we can clearly observe, our
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Fig. 3 Tracking performance
comparison using ATP. Red
curve: TUDAMM; blue
curve: ILT; black curve:
Meanshift

Fig. 4 Multiple Tracking result on the ETH dataset
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Fig. 5 Multiple Tracking result on the Caviar dataset

Fig. 6 Multiple Tracking results for a horse racing video. Key frame No: 3026,3143,3202,3341.
The first row: TUDAMM tracker; the second row: the Meanshift tracker; the third row: the ILT
tracker

discriminative multiple targets tracker presents very robust tracking results under
drastic visual variations induced by illumination changes, scale changes, pose artic-
ulations, as well as mutual occlusions.

6 Discussions, Conclusion and Future Work

We proposes a discriminative metric learning framework for robust tracking of mul-
tiple targets. It not only seeks for appearance models to discriminate the multiple
foreground targets from the background, but also try to recover subtle discrimina-
tions between two different visual targets. Our experiments on a set of challenging
real-world video sequences demonstrated the robustness of the proposed tracking
algorithms in dealing with large visual variations and cross-occlusions.

Future work may include further exploration of different type of filters for further
improving the robustness of the tracker under the same formulation. Meanwhile,
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as discussed above, this framework may encounter problem if objects are nearly
identical. We will further investigate this issue and explore means of mitigating this
issue. It may be addressed by posing strong dynamic models learned online, we will
defer all this to our future work.

References

1. Avidan, S.: Support vector tracking. In: CVPR (2001)
2. Avidan, S.: Ensemble tracking. In: CVPR (2005)
3. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learn-

ing. In: CVPR (2009)
4. Bar-Shalom, Y.: Tracking and Data Association. Academic Press, San Diego (1987)
5. Cai, Y., de Freitas, N., Little, J.J.: Robust visual tracking for multiple targets. In: The 9th

European Conference on Computer Vision, Graz, Austria, vol. 4, pp. 107–118 (2006)
6. Collins, R.T., Liu, Y.: On-line selection of discriminative tracking features. In: ICCV, vol. 1,

pp. 346–352 (2003)
7. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift.

In: CVPR, vol. 2, pp. 142–149 (2000)
8. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. In: ECCV, pp. 484–498 (1998)
9. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em

algorithm. J. R. Stat. Soc., Ser. B 39(1), 1–38 (1977)
10. Ess, B.A., Gool, L.: Depth and appearance for mobile scene analysis. In: ICCV (2007)
11. Globerson, A., Roweis, S.T.: Metric learning by collapsing classes. In: NIPS (2005)
12. Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry

and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1025–1039 (1998)
13. Hager, G.D., Dewan, M., Stewart, C.V.: Multiple kernel tracking with ssd. In: CVPR, vol. 1,

pp. 790–797 (2004)
14. Ho, J., Lee, K.-C., Yang, M.-H., Kriegman, D.: Visual tracking using learned subspaces. In:

CVPR, vol. 1, pp. 782–789 (2004)
15. http://homepages.inf.ed.ac.uk/rbf/caviardata1
16. Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In:

ECCV, vol. 1, pp. 343–356 (1996)
17. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual track-

ing. In: CVPR, pp. 415–422
18. Khan, Z., Balch, T., Dellaert, F.: Mcmc data association and sparse factorization updating for

real time multitarget tracking with merged and multiple measurements. IEEE Trans. Pattern
Anal. Mach. Intell. 28(12), 1960–1972 (2006)

19. Lee, J.W., Kim, M.S., Kweon, I.S.: A kalman filter based visual tracking algorithm for an
object moving in 3d. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 1, pp. 342–347 (1995)

20. Lim, J., Ross, D., Lin, R.-S., Yang, M.-H.: Incremental learning for visual tracking. In: NIPS,
pp. 801–808 (2005)

21. MacCormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple objects.
In: ICCV, pp. 572–587 (1999)

22. MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality
hand tracking. In: ECCV, pp. 3–19 (2000)

23. Rosen, J.B.: The gradient projection method for nonlinear programming. Part I. Linear con-
straints. J. Soc. Ind. Appl. Math. 8(1), 181–217 (1960)

24. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154
(2004)

25. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling.
In: ICCV (2009)

http://homepages.inf.ed.ac.uk/rbf/caviardata1


158 X. Wang et al.

26. Wu, Y., Fan, J.: Contextual flow. In: CVPR (2009)
27. Yang, M., Wu, Y.: Tracking non-stationary appearances and dynamic feature selection. In:

CVPR (2005)
28. Yu, T., Wu, Y.: Collaborative tracking of multiple targets. In: Proc. of IEEE Conference on

Computer Vision and Pattern Recognition, Washington, DC, vol. I, pp. 834–841 (2004)
29. Yu, Q., Medioni, G., Cohen, I.: Multiple target tracking using spatiotemporal Markov chain

Monte Carlo data association. In: Proc. of IEEE Conference on Computer Vision and Pattern
Recognition, Minneapolis, Minnesota (2007)

30. Zhao, Q., Brennan, S., Tao, H.: Differential EMD tracking. In: ICCV (2007)
31. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for

large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)



A Framework of Wire Tracking in Image
Guided Interventions

Peng Wang, Andreas Meyer, Terrence Chen,
Shaohua K. Zhou, and Dorin Comaniciu

Abstract This chapter presents a framework of using computer vision and machine
learning methods to tracking guidewire, a medical device inserted into vessels dur-
ing image guided interventions. During interventions, the guidewire exhibits non-
rigid deformation due to patients’ breathing and cardiac motions. Such 3D motions
are complicated when being projected onto the 2D fluoroscopy. Furthermore, flu-
oroscopic images have severe image artifacts and other wire-like structures. Those
factors make robust guidewire tracking a challenging problem. To address these
challenges, this chapter presents a probabilistic framework for the purpose of ro-
bust tracking. We introduce a semantic guidewire model that contains three parts,
including a catheter tip, a guidewire tip and a guidewire body. Measurements of dif-
ferent parts are integrated into a Bayesian framework as measurements of a whole
guidewire for robust guidewire tracking. For each part, two types of measurements,
one from learning-based detectors and the other from appearance models, are com-
bined. A hierarchical and multi-resolution tracking scheme based on kernel-based
measurement smoothing is then developed to track guidewires effectively and effi-
ciently in a coarse-to-fine manner. The framework has been validated on a testing
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set containing 47 sequences acquired under clinical environments, and achieves a
mean tracking error of less than 2 pixels.

1 Background

Computer vision and machine learning methods have been applied to medical im-
age analysis and have gained success because of their effectiveness in identifying
autonomy structures [6, 21, 22]. Among their applications in medical imaging ar-
eas, the image guided intervention [3, 12] is where the real-time object detection and
tracking methods have found their particular importance. In the image guided inter-
vention, three-dimensional images or two-dimensional videos are acquired not only
for diagnosis and for treatment strategy planning, but also for conducting surgeries
and minimal invasive interventions. Figure 1 shows an interventional room equipped
with an X-ray modality dedicated for image guided interventions. In a typical image
guided intervention, the preoperative data of patient, usually acquired from three-
dimensional tomography, is collected before the intervention for treatment planning.
During interventions, clinicians insert medical devices, for example, catheter, bal-
loon, and stent. Such devices are used for various purposes, such as imaging the
internal body structure, delivering drugs, and treating vascular diseases. The posi-
tions of such medical devices need to be continuously localized to provide guidance
for clinicians during interventions. For example, based on the devices localization,
real-time acquired fluoroscopy images can be overlayed onto preoperative CT data,
and provide real-time guidance for clinicians.

In this chapter, we present a framework of tracking a guidewire in 2D X-ray flu-
oroscopy for image guided interventions. The guidewire is a medical device that is
inserted into vessels through a guiding catheter for various tasks, such as stent deliv-
ery, and balloon inflation. Robust guidewire tracking is essential for many applica-
tions in image guided interventions, for example, real-time assessment of guidewire

Fig. 1 An interventional procedure performed with Siemens AXIOM Artis Zeego system
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position and shape, the visibility enhancement of guidewires, and guidance of coreg-
istration between 2D real-time X-ray fluoroscopic images and 3D preoperative im-
ages.

A guidewire usually starts from a tip of a guiding catheter (thicker tubes in the
images), and ends at a guidewire tip. Some exemplar guidewires in fluoroscopy are
shown in Fig. 2. The figure demonstrates the challenges of guidewire tracking. First,
guidewires are thin and have low visibility in fluoroscopic images because the flu-
oroscopy images usually have low dose of radiations thus low signal-to-noise ratio.
Sometimes, parts of guidewires are barely visible in noisy images. Such weak and
thin wire structures in noisy images make the robust tracking challenging. Second,
guidewires exhibit large variations in their appearances, shapes, and motions. The
shape deformation of a guidewire is mainly due to a patient’s breathing and cardiac
motions in 3D. The 3D motions become more complicated when being projected
onto a 2D image space. Third, there exist many other wire-like structures, such as
guiding catheters and ribs, as shown in Fig. 2. Some of the structures are close to
the guidewire, could distract guidewire tracking and finally lead to tracking failures.
All the aforementioned factors, along with robustness and speed requirements for
interventions, render guidewire tracking a challenging task.

Due to the unique characteristics of the guidewire in fluoroscopy, conventional
tracking methods would encounter difficulties and cannot deliver desired speed,
accuracy, and robustness for interventions. Since a guidewire is thin, the tracking
methods that use regional features such as holistic intensity, textures, and color his-
togram [20], cannot track it well. Active contour [9, 13, 23] and level set based
methods, heavily rely on intensity gradients, and are easily attracted to image noise
and other wire-like structures in fluoroscopy. There is some work on guidewire de-
tection [4] and tracking [2, 11]. Barbu et al. [4] present a learning-based method
to automatically detect guidewires in fluoroscopic sequences. The method aims at
detecting a guidewire in individual frames, not continuously tracking the guidewire
in a sequence. Beyar et al. [11] use a filter based method to identify a guidewire
in an X-ray image, and then use the Hough transform to fit a polynomial curve to
track a guidewire. There are no quantitative reports on tracking performance in their
papers. The method of Baert et al. [2] tracks a guidewire enhanced by image sub-
traction and coherence diffusion. However, their experiments show that only a part
of guidewire, not the whole guidewire, has been tracked.

We present in this chapter a probabilistic framework for robust guidewire track-
ing. An earlier version of this work has been presented in [17, 18]. The tracking
method is based on 2D fluoroscopic images, because a 3D guidewire model and as-
sociated 3D projection matrices are not always available in a clinical practice. This
framework makes three contributions to address the aforementioned challenges in
the guidewire tracking:

1. This method introduces a semantic guidewire model, based on which a proba-
bilistic method is presented to integrate measurements of three guidewire parts,
that is, a catheter tip, a guidewire body and a guidewire tip, in a Bayesian frame-
work to track a whole guidewire. This tracking framework is robust to measure-
ment noises at individual guidewire parts.
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Fig. 2 Guidewires. (a) A guidewire is a catheter system (Acumen Spirit Navigable Lead Delivery
Catheter System). (b) Some examples of guidewires in fluoroscopic sequences. The guidewires
exhibit low visibility, with a variety of shapes and appearances. For better visualization, two ends
of guidewires are marked with red and green arrows respectively
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2. Learning based measurement models are used in our method to track the
guidewire. The learning-based measurement models are trained from a database
of guidewires, in order to detect and track guidewire parts in low-quality images.
Our method further incorporates online measurement models, which are based
on guidewire appearances, as a complementary to learning based measurements
to improve the tracking robustness.

3. We develop a hierarchical and multi-resolution scheme to track a deforming
guidewire. By decomposing the guidewire motion into two major components,
the hierarchical tracking starts from a rigid alignment, followed by a refined non-
rigid tracking. At each stage, we apply a multi-resolution searching strategy by
using variable bandwidths in a kernel-based measurement smoothing method, to
effectively and efficiently track the deforming guidewire.

Compared with the previous work [18], the framework combines both measure-
ments from offline learned detectors and online appearance models, and provides
a principled probabilistic tracking framework. We validate the guidewire tracking
framework on a test set containing 47 sequences that are captured in real-life inter-
ventional scenario. Quantitative evaluation results show that the mean tracking error
is less than 2 pixels, that is, 0.4 mm. This demonstrates the great potential of our
method for clinical applications.

The rest of the chapter is structured as follows. We first introduce a guidewire
model, and present the probabilistic formalization of guidewire tracking in Sect. 2.1.
Details on measurement models used for guidewire tracking are provided in
Sect. 2.2, and the hierarchical tracking scheme in Sect. 2.3. The quantitative evalu-
ations of our method are presented in Sect. 3. Section 4 concludes the chapter.

2 Guidewire Tracking Method

Before presenting algorithm details, we explain the notations used. The regular font
represents a scalar variable or a function, and the bold font represents a vector, for
example, the x as a 2D location and the u as guidewire motion parameter. The Z is
used to denote image observation, and Γ represents a guidewire curve.

2.1 Method Overview

2.1.1 A Guidewire Model

As shown in Fig. 2(a), a guidewire contains several parts: the catheter tip, the
guidewire body, and the guidewire tip. Accordingly, we can establish a semantic
model for the guidewire, as in Fig. 3. All the three parts are connected together, but
each part has slightly different appearances in fluoroscopic images. For example, as
shown in Fig. 2(b), a guiding catheter is a tube containing the guidewire, and has
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Fig. 3 A semantic model of
guidewire. It contains a
catheter tip, guidewire body,
and a guidewire tip

better visibility than the guidewire body in images. But sometimes the catheter tips
can be occluded by contrast material injected during interventions. Some guidewire
tips could be thicker than the guidewire body, and also show more flexible deforma-
tions. The guidewire body has the least visibility in images, but its deformations are
more constrained than tips. It is therefore highly desirable to have a method to han-
dle the appearance differences among different parts, and also to allow for flexible
movements of each part of the guidewire.

To represent all the parts along the guidewire, a spline model is used. Assum-
ing that there are M control points xc

i , i = 1, . . . ,M that can decide the shape of a
guidewire, other points on the guidewire can be interpolated from the control points,
as (1):

Γ (x) = {
x = (

γ x(λ), γ y(λ)
)|1 ≤ λ ≤ M

}
, (1)

where γ x(λ) and γ y(λ) are cubic spline functions, and λ ∈ [i − 1, i] means that x
is interpolated between control points xc

i−1 and xc
i . In the spline model, two con-

trols point, xc
1 and xc

M , represent the catheter tip and the guidewire tip, respec-
tively. A general form of a cubic spline interpolation can be found in [5]. Using
the spline control points to represent the whole wire can significantly reduce the
number of the shape parameters, therefore reducing the complexity of guidewire
tracking. A guidewire spline is resampled at each frame, and usually has 10–20
control points depending on the spline length. The control points on cubic spline
splines pass through the spline, which is desirable in the guidewire shape model.
Furthermore, the occlusion and overlapping of an individual control point will not
affect the tracking of a whole guidewire.

2.1.2 A Probabilistic Guidewire Tracking Framework

The tracking problem can be modeled in a Bayesian framework in which un-
known states are inferred from sequential data [8, 20]. We also formalize the
guidewire tracking in this probabilistic inference framework, to maximize the poste-
rior probability of a tracked guidewire given fluoroscopic images. In the framework,
a guidewire hypothesis at the t th frame is a guidewire deformed from a previous
frame, denoted as Γt (x;u):

Γt (x;u) = T
(
Γt−1(x),ux

)
, (2)

where T is a guidewire shape transformation function, and ux is the motion param-
eter. Γt−1(x) is a tracked guidewire at a previous frame and is used as a template for
the tracking at the t th frame. For the simplicity of notations, a guidewire candidate
is denoted as Γt (x). Therefore, the posterior probability P(Γt (x)|Zt ) is given in (3)

P
(
Γt (x)|Zt

) ∝ P
(
Γt (x)

)
P

(
Zt |Γt (x)

)
. (3)



A Framework of Wire Tracking in Image Guided Interventions 165

Fig. 4 The graphical model for the guidewire tracking

The graphical model corresponding to the tracking problem is shown in Fig. 4. The
tracked guidewire Γ̂t (x) is estimated as the guidewire candidate that maximizes the
posterior probability, that is,

Γ̂t (x) = arg
Γt (x)

maxP
(
Γt (x)|Zt

)
. (4)

In (3), P(Γt (x)) is a prior probability, which can be propagated from previous
tracking results. We model the guidewire prior probability as:

P
(
Γt (x)

) = 1√
2πσΓ

exp

(−|D(Γt (x),Γt−1(x))|2
2σ 2

Γ

)
, (5)

where D(Γt (x),Γt−1(x)) is the average of the shortest distances from points on a
guidewire candidate Γt (x) to the guidewire shape template Γt−1(x). A large kernel
size σΓ (a typical value is 60 in this method) is chosen to allow a large guidewire
deformation. Another component, the likelihood measurement model P(Zt |Γt (x)),
plays a crucial role in achieving robust tracking results. Given a guidewire rep-
resented by N points Γt (x) = {x1,x2, . . . ,xN } that are interpolated from control
points, the guidewire Γt (x) is in an N -dimensional space, which make the measure-
ment model P(Zt |Γt (x)) difficult to represent. To simplify the model, we assume
the measurement independency among different parts along a guidewire, that is,
P(Zt |xi , Γt (x)) = P(Zt |xi ). By this assumption, we can decompose the measure-
ment model P(Zt |Γt (x)) into measurements at individual guidewire points, as (6):

P
(
Zt |Γt (x)

) =
∑

xi

P (Zt |xi )P
(
xi |Γt (x)

)
, (6)

where P(Zt |xi ) is the measurements at individual points on a guidewire, and
P(xi |Γt (x)) is the weights of individual points on a guidewire. Since the two end-
ing points at the guidewire model represent the catheter tip and the guidewire tip,
respectively, the measurement model P(Zt |Γt (x)) is rewritten as a combination of
three parts of measurements in (7):

P
(
Zt |Γt (x)

) = ω1P(Zt |x1) + ωNP (Zt |xN) + 1 − ω1 − ωN

N − 2

N−1∑
i=2

P(Zt |xi ), (7)

where ω1 and ωN are the weights of the catheter tip and the guidewire tip, respec-
tively. Usually the tips have more distinguishing characteristics than the guidewire
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body, so they are assigned higher weights (the tip weights are empirically set be-
tween 0.05 and 0.2 in our algorithm). All other points on a guidewire are assigned
equal weights 1−ω1−ωN

N−2 .
The decomposition of the measurement model P(Zt |Γt (x)) as the form of (7)

allows for independent measurements of different guidewire parts, while their inte-
gration on the guidewire Γt (x) provides a unified measurement model for the whole
guidewire. The probabilistic framework provides the flexibility to track deformable
guidewires, and also ensures robustness to the measurement noise at individual
parts. Another advantage of this framework is its capability of introducing different
types of measurement P(Zt |xi ), at individual parts, making this framework general
enough to fuse multiple measurement modalities.

2.2 Guidewire Measurement Models

Robust measurement models P(Zt |xi ) are crucial to addressing the difficulties en-
countered in guidewire tracking. In our method, learning-based methods are applied
for robust measurements of guidewire parts. Guidewire part detectors are learned,
from off-line collected training data, to model a large variety of guidewires, es-
pecially for guidewire body and guidewire tips. Another measurement modality,
online measurement model based on guidewire appearance, is combined with the
learning-based measurements. The integration of two types of measurements can
correct failures caused by one measurement modality, such as false or missing de-
tections of learning-based measurements, and drifting of appearance-based models,
therefore is able to robustly track guidewires under various environments.

2.2.1 Learning-Based Guidewire Measurements

Learning-based detectors recently have been widely used in object detection and
tracking [1, 6]. The reason behind their increasing popularity is their robustness
to noises and their capability of handling objects with large variations. Different
from traditional measurements based on low-level features such as edges and ridges,
learning-based measurement models can be trained from a set of off-line collected
data, thus being able to model objects with large variations. Since the training data
also includes non-objects, the trained measurement models can distinguish objects
from background noise. For guidewire tracking, we use the probabilistic boost-
ing tree (PBT) [14] to construct the guidewire part detectors. PBT is a tree based
general form of AdaBoost classifiers, and has a nice property of modeling a com-
plex distribution of a class of objects. For more details on and PBT, please refer
to [7, 14].

During tracking, the trained detectors can identify if an image patch at given
location xi belongs to a class of objects, that is, one of three guidewire parts. The
output of an AdaBoost classifier, denoted as f (z,xi ), is a combination of outputs
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from a collection of learned weak classifiers Hk(z,xi ) with associated weights αk .
The numeric outputs can be further interpreted into probabilistic measurements,
seeing (8):

f (z,xi ) =
∑

k

αkHk(z,xi ),

P d(Zt |xi ) ∝ ef (Zt ,xi )

e−f (Zt ,xi ) + ef (Zt ,xi )
.

(8)

In this method, we train one detector for each part of the guidewire. The
guidewire body detector mainly identifies line segments of the guidewire. To train
the guidewire body detector, we collect line segments from annotated guidewires
as positive samples, and randomly sample the image outside guidewire as neg-
ative samples. Similarly, the guidewire tip detector and the catheter tip detector
are trained. All the learning-based models are built on Haar features [15], as their
computational efficiency is favorable in interventional applications. Therefore, three
learning-based measurement models, P d

cath(Zt |x1), P d
gw(Zt |xi ), and P d

tip(Zt |xN), are
obtained for the catheter tip, guidewire body, and guidewire tip, respectively. Fig-
ures 5(a) and 5(b) show the detected tip candidates and the line segment candidates
of the guidewire body in a frame.

2.2.2 Appearance-Based Measurements

As shown in Fig. 5, learning-based measurements may suffer from missing or false
detections due to the noises in the guidewire appearances. This motivates us to in-
tegrate another type of measurements, appearance-based measurement, to improve
the robustness of tracking. Different from the learning-based measurement model,
an appearance-based measurement model aims at modeling the online appearance
of a specific guidewire being tracked. In our method, the appearance-based model
takes the form in (9):

P a(Zt |xi ) ∝ exp

{
−

∑
x′∈S(xi )

|ρ(Zt (x′) − I 0(x′);σa)|2
2σ 2

a

}
, (9)

where Zt (x′) is the image intensity at the t th frame, and I 0(x′) is the correspond-
ing image intensity in a guidewire template, which is updated from the tracked
guidewire at a previous frame. S(xi ) represents the geometric shape of the tem-
plate, centered at the point xi . For example, S(xi ) is an ellipse for the catheter tip,
and a segment of guidewire for the guidewire body and tip. As defined in (10), ρ is
a robust function that is used to measure the intensity differences between current
observations and the guidewire template, with removal of outliers.

ρ(y;σa) =
{

y, if |y| ≤ 3σa,

3σa, if |y| > 3σa.
(10)

Similar to learning-based measurement models, we build an appearance-based
model for each part of the guidewire. So, three appearance-based measurements
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Fig. 5 Guidewire measurements for robust tracking. (a) Detected catheter tip candidates (red
blocks) and guidewire tip candidates (green lines) in a frame. (b) The detected line segment can-
didates (in a region around the guidewire body) are shown in green. (c) A distribution of mea-
surements of the catheter tip after combining learning-based and appearance-based measurements.
(d) The tracked guidewire. The figures are best viewed in color

models, P a
cath(Zt |x1), P a

gw(Zt |xi ), and P a
tip(Zt |xN), are obtained for the catheter tip,

guidewire body, and guidewire tip, respectively.

2.2.3 Fusion of Multiple Measurements

The fusion of multiple measurements has been demonstrated to provide more robust
tracking results than using a single measurement [16, 19]. In our method, two types
of measurement models are integrated into one measurement model:

P(Zt |xi ) = P d(Zt |xi )Pd + P a(Zt |xi )Pa, (11)

where Pd and Pa are corresponding priors for two types of measurement models.
An example of integrated measurements at the catheter tip is shown in Fig. 5(c),
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where the measurements have a peak at the catheter tip with false detections being
suppressed.

2.3 Hierarchical and Multi-resolution Guidewire Tracking

The guidewire exhibits large variations in shape and motion, especially due to pro-
jections from 3D to 2D. Since a 3D guidewire model and a 3D projection matrix
are not always available in a clinical practice, our method does not impose any
assumptions that depends on 3D information. Instead, this method tries to handle
guidewire motions that could be captured from arbitrary directions. For this pur-
pose, our method decomposes the guidewire motion into two major steps: rigid and
nonrigid motions, as the guidewire motion caused by the breathing motion can be
approximated as a rigid motion in 2D, and the cardiac motion is nonrigid. The de-
composed motions can be effectively and efficiently recovered in a hierarchical and
coarse-to-fine manner, based on a kernel-based measurement smoothing method.

2.3.1 Kernel-Based Measurement Smoothing

We here present a kernel-based measurement smoothing method for multi-resolution
guidewire tracking. To obtain measurements at each point x is computationally ex-
pensive, and is prone to measurement noises at individual points. For example, the
measurements at points that are classified by detectors as non-guidewire parts are
not reliable and therefore ignorable in P d(Zt |xi ). Guidewire measurements can be
more robust and more efficient to compute by using kernel-based estimation (or
smoothing).

In the kernel-based estimation, measurements are made at a set of sampled lo-
cations xs

j , instead of a whole image. For learning-based measurements, xs
j are

those points classified as guidewire parts, and for appearance-based measurements,
xs
j are uniformly sampled points. We can conveniently assume the Markov con-

ditional independence that the observations at sampling points xs
j are independent

with the unsampled points xi , i.e., P(Zt |xi ,xs
j ) = P(Zt |xs

j ). Therefore, the kernel-
based measurement estimation is represented as (12):

P(Zt |xi ) =
∑
j

P
(
Zt |xs

j

)
Gσ

(
xs
j ,xi

)
, (12)

where P(xs
j |xi ) = Gσ (xs

j ,xi ) is a Gaussian kernel with a bandwidth σ . The kernel-
based measurement estimation can obtain smooth measurements in a neighborhood,
reduce computations of measurements, and also allow for multi-resolution searching
during rigid and nonrigid tracking by varying bandwidths in kernels.

2.3.2 Rigid Tracking

Rigid tracking aims at recovering the rigid motion of a guidewire between two
successive frames. In rigid tracking, the motion parameter ux in (2) contains only
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Fig. 6 Multi-resolution rigid tracking with incrementally decreased search intervals and kernel
bandwidths. The rigid tracking started from a template, and ends at position close to the true
guidewire, up to an error caused by deformable motions. The dotted curves represent intermediate
tracking results

global translation and rotation, that is, ux = u = (c, r, θ), where c, r , and θ are the
translation and rotation parameters. Therefore, the rigid tracking is formulated as
maximizing the posterior probability under a rigid motion of the guidewire, that is,
maximizing E(u) as below:

E(u) = P
(
Γt (x)

)∑
xi

P
(
xi |Γt (x;u)

)
P(Zt |xi ). (13)

Tracking the rigid motion can be efficiently implemented using variable band-
widths in kernel-based measurement smoothing. As illustrated in Fig. 6, the rigid
tracking is performed at multiple resolutions, with decreased search intervals {d1 >

d2 > · · · > dT }. During the multi-resolution tracking, the corresponding bandwidth
in (12) varies accordingly, denoted as σi . At coarse resolutions, we use larger kernel
bandwidths to avoid missing tracking caused by larger sampling intervals; and at
fine resolutions, we use smaller kernel bandwidths to obtain finer tracking results.

Furthermore, the rigid tracking is performed at both global and local scales.
At a global scale, the whole guidewire is tracked, while at a local scale, a whole
guidewire is divided into several local segments for rigid tracking, which follows
the same formalization as (13). By the two-stage tracking, a guidewire is roughly
aligned at the current frame. A rigid tracking result is shown as the red curve in
Fig. 7(b).

2.3.3 Nonrigid Tracking

After the rigid tracking, a guidewire is further refined by the nonrigid tracking,
where the guidewire motion parameter ux is point dependent. Different from rigid
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Fig. 7 Hierarchical tracking. (a) Tracking starts from a tracked guidewire from the previous frame
(yellow line). (b) The tracked guidewire after rigid tracking (red line) and after nonrigid tracking
(yellow line)

tracking, the nonrigid tracking imposes a prior from guidewire smoothness con-
straints, as (14):

E(ux) = P
(
Γt (x;ux)|Zt

) + α

∫ ∣∣∣∣dΓt (x;ux)

ds

∣∣∣∣
2

ds + β

∫ ∣∣∣∣d2Γt(x;u)

ds2

∣∣∣∣
2

ds. (14)

The two additional terms,
∫ | dΓt

ds
|2 ds and

∫ | d2Γt

ds2 |2 ds, are integrals of the
first-order and second-order derivatives of guidewire curves, and act as guidewire
smoothness priors to prevent over-deformations of guidewires. The weights,
α and β , are then used to balance the smoothness constraints and probabilities
scores. Such α and β are empirically set (a typical value is between 0.05 and 0.2),
but the tracking performance is not sensitive to the parameter settings as observed
from our experiments. Although (14) looks similar to the formalization in active
contour based methods such as Snakes [9], they have fundamental differences.
In our method, the tracking is based on robust probabilistic measurements, while
Snakes is mainly based on intensity gradients, and is prone to image noise in fluo-
roscopy. Our method maximizes a posterior probability, based on the novel fusion
of learning-based measurements and online appearance measurements. Also, our
method tracks an open curve of a guidewire, while Snakes and level set based meth-
ods [9, 13, 23] mainly handle closed object boundary. At last, our method integrates
multiple measurements from different guidewire parts, making it more suitable to
track a wire structure.

The search space of the nonrigid guidewire motion in (14) is high dimensional.
To reduce the dimensionality of the searching space, we deform control points on
the guidewire body along normal directions, and two tips along both the tangent and
normal directions, as illustrated in Fig. 8. But still, to exhaustively explore such a de-
formation space is formidable considering computational complexity. For example,
if there are 20 control points, and each control point has 10 deformation candidates,
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Fig. 8 Nonrigid guidewire tracking. The control points (the red dots) on the guidewire body de-
form along normal directions, and the catheter tip and guidewire tip deform along both the normal
and tangent directions

the searching space contains 1020 candidates. Instead of parallel searching or sam-
pling the search space, our method searches guidewire deformation sequentially. At
each step, only one control point deforms to achieve a maximum E(ux). The se-
quential deformation will iterate until the maximum number of iterations is reached
or it converges. The same as rigid tracking, the multi-resolution searching strategy
is applied during the nonrigid tracking. The sequential searching strategy in most
cases leads to an optimal solution, because the rigid tracking has roughly aligned
the guidewire near the true shape. An example of nonrigid tracking is shown as the
yellow curve in Fig. 7(b).

3 Experiments

3.1 Data and Evaluation Protocol

The tracking algorithm is evaluated on a set of 47 fluoroscopic sequences. The
frame size of each sequence is 512 × 512 or 600 × 600, with the pixel size be-
tween 0.184 mm and 0.278 mm. There are totally more than 1000 frames in the test
set. The test sequences cover a variety of interventional conditions, including low
image contrast, thin guidewire, and contrast injection. Some exemplar frames in the
test set are displayed in Fig. 9. The guidewire part detectors are trained on a set of
500 guidewire images that are previously collected [4].

To establish ground truth for evaluation, we manually annotate the guidewires
in the test set as the ground truth. An annotated guidewire starts from a guiding
catheter tip, and ends at a guidewire tip. For the purpose of evaluating tracking
performance, the annotation at the first frame of each sequence is used to initialize
the guidewire tracker, and the rest of annotation is used for validations. In clinical
applications, the guidewire can be automatically initialized at the first frame [4], or
semi-automatically detected using the interactive detection method [10].

To comprehensively and quantitatively evaluate the performance of guidewire
tracking, we define a set of performance metrics, including overall guidewire track-
ing precision, guidewire body tracking precision, tip tracking precision, and missing
and false tracking rate, as follows.

1. The overall guidewire tracking precision is defined as the average of shortest
distances from points on a tracked guidewire to the corresponding annotated



A Framework of Wire Tracking in Image Guided Interventions 173

Fig. 9 Some guidewire tracking results (shown in yellow curves)
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guidewire. Such a precision describes how close a tracked guidewire is to the
ground truth.

2. The guidewire body tracking precision is the tracking precision specifically at
the guidewire body. The tracking errors at tips are excluded in evaluating the
guidewire body tracking precision.

3. The tip tracking precision is the tracking precision specifically at the catheter and
guidewire tips.

4. The missing and false tracking rates describe the percentages of guidewire points
that have not been successfully tracked. A miss-tracked guidewire point is the
point on an annotated guidewire whose shortest distance to the tracked guidewire
is greater than a pre-set threshold (e.g., a threshold of 3 pixels is used in this
evaluation.) A false-tracked guidewire point is the point on a tracked guidewire
whose tracking error is greater than the threshold. Missing and false tracking
rates are the percentages of such failed guidewire points.

3.2 Quantitative Evaluations

Some guidewire tracking results in fluoroscopic sequences are shown in Fig. 9. Our
method can successfully track the guidewire, even for those sequences with low vis-
ibility, background distraction, and contrast injection. For quantitative evaluations,
the performance metrics defined in Sect. 3.1, are computed on the test set. Table 1
summarizes quantitative evaluations of our tracking methods, and also compares the
performance of using combined measurements with tracking only using learning-
based measurements. For each performance metric, including overall guidewire
tracking precision, body tracking precision, tip tracking precision, and missing and
false tracking rate, we compute its mean, standard deviation, and median. As shown
in the table, the overall guidewire tracking precision is around 1.8 pixels, that is, less

Table 1 Quantitative evaluation of guidewire (GW) tracking

Measurements models With combined models With only offline learned models

mean std median mean std median

Overall GW tracking prec.
(in pixels)

1.80 3.41 0.95 7.53 27.37 1.05

GW body tracking prec.
(in pixels)

1.70 2.96 0.95 1.79 4.02 0.97

GW tip tracking prec.
(in pixels)

5.45 8.21 3.69 9.06 15.43 3.79

Cath. tip tracking prec.
(in pixels)

11.62 12.76 7.18 68.33 76.85 35.85

GW missing tracking rate 9.88% 8.43% 8.27% 11.06% 13.97% 8.55%

GW false tracking rate 9.62% 6.92% 7.80% 11.87% 9.74% 9.33%
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Fig. 10 The tracking
accuracy and an algorithm
parameter (the weight of the
first-order derivative of
guidewire curves)

than 0.4 mm. The tracking errors on the guidewire and catheter tips are greater than
on the guidewire body, because the motions are larger on the tips, and the back-
ground distractions affect more on tips than on the guidewire body. Our method
successfully tracks more than 90% points on the guidewire, with a false tracking
rate lower than 10%.

Table 1 also shows the tracking accuracy when only using learning-based mea-
surements. It demonstrates that using both measurements improves the tracking ro-
bustness, as the mean and standard deviation of tracking errors have been reduced,
especially at the catheter tip where the appearance-based measurement plays a dom-
inant role. The large tracking errors of learning-based measurements at catheter tips
are mainly caused by image noises and occlusions by contrast injection during in-
terventions. Another important observation is that the learning-based measurements
provide fairly robust measurements on the guidewire body and guidewire tips, as
the improvement of tracking precision on guidewire body and tip is smaller than on
the catheter tip. This confirms the advantage of our framework that unifies multiple
measurements from different guidewire parts in a principled way.

The presented method is not sensitive to parameter changes. Due to limited space,
we present only one experiment in Fig. 10, which shows the tracking accuracy does
not change much with a wide range of a parameter α, that is, the weight of the
smoothness constraint based on the first-order derivative of guidewire curves. Val-
idations on other parameters show similar results. We conclude from the quantita-
tive evaluations that our probabilistic tracking method provides robust and accurate
guidewire tracking results. This method currently runs at 2 frames per second at
a Core 2 Duo 2.0 GHz computer, and can achieve a near real-time speed with an
implementation optimization, such as multi-threading and GPU accelerations.

4 Conclusion

This chapter presents a probabilistic framework of robust guidewire tracking in
fluoroscopy for image guided interventions. Our framework can track nonrigid
guidewire motions under arbitrary projections. The validation on a test set of 47
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real interventional sequences demonstrates that this method provides robust and ac-
curate tracking results. The future work will be integrating guidewire tracking into
clinical applications, such as breathing motion compensation.
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An Integrated Approach to Visual Attention
Modeling for Saliency Detection in Videos

Sunaad Nataraju, Vineeth Balasubramanian,
and Sethuraman Panchanathan

Abstract In this chapter, we present a framework to learn and predict regions of
interest in videos, based on human eye movements. In our approach, the eye gaze in-
formation of several users are recorded as they watch videos that are similar, and be-
long to a particular application domain. This information is used to train a classifier
to learn low-level video features from regions that attracted the visual attention of
users. Such a classifier is combined with vision-based approaches to provide an in-
tegrated framework to detect salient regions in videos. Till date, saliency prediction
has been viewed from two different perspectives, namely visual attention model-
ing and spatiotemporal interest point detection. These approaches have largely been
vision-based. They detect regions having a predefined set of characteristics such as
complex motion or high contrast, for all kinds of videos. However, what is ‘inter-
esting’ varies from one application to another. By learning features of regions that
capture the attention of viewers while watching a video, we aim to distinguish those
that are actually salient in the given context, from the rest. The integrated approach
ensures that both regions with anticipated content (top–down attention) and unan-
ticipated content (bottom–up attention) are predicted by the proposed framework as
salient. In our experiments with news videos of popular channels, the results show
a significant improvement in the identification of relevant salient regions in such
videos, when compared with existing approaches.
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1 Introduction

As growing numbers of videos are generated each day, there has been an equally in-
creasing need to reliably identify appropriate regions of interest in videos. Saliency
detection has been widely used in many computer vision problems, and has appli-
cations from several perspectives. In video analysis based tasks such as recognition
and detection, identifying salient regions is often used as a preprocessing step to
narrow down on potential areas of interest in the video frames. This reduces the
computational cost of these algorithms by eliminating the need to analyze regions
that are not of any relevance. It also improves the accuracy when images have exces-
sive background clutter, by ensuring that only the regions of interest are processed
by the algorithm. In addition, saliency detection has been used in video and image
compression, where a higher bit-rate is used to encode regions that are of interest,
thereby not compromising on the quality of regions that are relevant.

Existing approaches to identify salient regions in images and videos can be
broadly categorized into two different schools of thought: interest point detection
and visual attention modeling, each of which is described below.

1.1 Interest Point Detection

Interest point detection refers to identifying a set of locations in an image/video that
have a sufficiently high response to a predefined saliency function (or a set of pre-
defined saliency functions). Historically, interest point detection methods originated
from the popular corner detection [25] and edge detection methods [45]. While most
methods bear a direct relevance to images, approaches for interest point detection
in videos include spatiotemporal methods such as Laptev’s 3-D Harris corner de-
tector [21], and the periodic detector presented by Dollar et al. in [1] (more details
of such methods are presented in Sect. 2). These methods have also largely been
vision-based, i.e., they rely on predefined filters that characterize regions of inter-
est with a tendency to capture extrema in certain image characteristics. An inherent
problem with such approaches is that they use the same set of filters to determine
saliency in all types of videos.

While both these aforementioned kinds of approaches generally perform well to
detect artifacts such as corners, edges and motion-based interest regions, ‘interest-
ingness’ is strongly dependent on an application under consideration, and it may not
be appropriate to generalize this concept. For example, in surveillance applications,
monitoring personnel would consider specific events such as a person carrying a
gun as salient, although the background of this scene may be cluttered with other
‘interesting’ image artifacts based on edges or color. Similarly, in biomedical appli-
cations such as colonoscopy videos, a physician would specifically consider patterns
corresponding to tumors as salient, rather than all complex patterns corresponding
to normal characteristics in the body. This chapter presents a novel approach to de-
tect saliency that is not only driven by image/video artifacts, but is also influenced
by what is of interest for a given class of videos.
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1.2 Visual Attention Modeling

Visual attention in humans, while viewing a scene, is understood to be driven by
bottom–up (characterized by image features alone) and top–down (characterized by
user’s intent and context) approaches. In simpler terms, a user, while viewing a scene
belonging to a specific application, looks out for regions that are of salience based on
the context. For example, a security personnel looks for specific entities in a video,
while monitoring video feeds from surveillance cameras. Such regions are said to
correspond to top–down salience. However, in the same example, it is possible that
there are other regions in the video having distinct features (such as a bird flying
by) that unintentionally catch the user’s attention and are task-independent. These
regions are said to be of bottom–up salience.

Approaches to bottom–up saliency modeling [5, 13] detect regions having cer-
tain distinct features that stand out and capture the visual attention of the viewer. Itti
et al. [11–13] have been the pioneers of modeling saliency from this perspective.
These approaches are generally independent of the context of the scene and only
aim to detect regions having features that may arouse the interest of a viewer. As a
result, computational models for bottom–up saliency have been universal by nature,
and the same model is applied to all kinds of images and videos. These methods are
based on image processing and computer vision, and involve the use of filters that
respond to certain predefined characteristics based on contrast, motion, texture and
orientations. At a fundamental level, research in this domain has been focused on de-
signing image filters that respond to features that biologically drive visual attention
in humans. Saliency models based on these approaches typically are represented
using saliency maps, which are two-dimensional gray scale plots indicating the vi-
sual saliency of each of the pixel locations in an image. A sample saliency map is
illustrated in Fig. 1.

Bottom–up saliency modeling accounts for only one aspect of visual attention.
While this type of saliency drives human eye-movements towards regions that have
distinct features, they do not drive visual attention to regions that are relevant in a
given scenario. This is where top–down attention comes into play. As stated earlier,
attention is not only driven by features that are distinct in terms of its contrast or

Fig. 1 Example of a saliency map for an image frame
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motion, but by features corresponding to specific regions that the users are trying
to locate. In other words, top–down attention is application specific. Frameworks
that model this kind of attention use the domain knowledge of the scene. A com-
prehensive framework to model saliency in a scene is one that combines both these
approaches.

Most existing research in modeling attention has been directed towards detecting
bottom–up saliency. However, there has been some limited work in modeling top–
down attention. These approaches [4, 28] define top–down saliency as being task-
driven (more details presented in Sect. 2). However, the ‘task’ or the ‘goal’, such
as object recognition or detection is specified a priori. In this work, an alternate
paradigm towards integrated top–down attention modeling is proposed. Instead of
predetermining the task explicitly, human eye movements are used to indicate the
relevance of regions in videos, and thus the ‘task’ is learnt rather than prespecified.
This is done by recording the eye gaze of several users while they naturally watch
videos belonging to a specific application or context. In the next stage, a classifier
is trained to learn the features corresponding to the regions that were viewed. By
doing so, the learnt features correspond to what was commonly viewed by most
users since all the videos belong to a single domain, or context. Thus, in this work
top–down saliency is defined as the saliency based on the context of the scenario in
the videos.

Further, in order to provide a complete framework for visual attention, a novel
probabilistic approach is presented to model the final combined saliency. Saliency
maps are modeled as 2-D probability distribution functions. The final saliency is
calculated as a joint distribution function derived from a graphical model. Such an
approach is shown to be capable of handling top–down as well as bottom–up salien-
cies. This approach is useful in high risk scenarios where along with the regions
that are relevant to that specific context, it might also be important to locate regions
that ‘pop out’. This approach ensures that all regions that are possibly of interest are
highlighted, and the user is alerted to watch these regions.

1.3 Proposed Approach

Human eye movements comprise of saccades and fixations [3]. A fixation occurs
when the eye-gaze is directed to a particular location. Their durations can vary from
a few tens of a millisecond to several hundreds of milliseconds. Fixations point to
regions in a scene that the user paid attention to, and thus help indicate the regions
of interest in videos/images. Saccades, on the other hand, are rapid eye movements
that occur between fixations. Human eye movements have been known to be good
indicators of visual saliency. The approach of using human eye movements has two
distinct advantages:

• Unlike video datasets that are typically captured under controlled conditions with
a stationary background, real-world videos are often comprised of several regions,
each of which has its own spatiotemporal characteristics. Each of these regions
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Fig. 2 Eye trackers could be used to record the regions viewed by radiologists and surveillance
personnel as they analyze videos

may or may not be relevant, depending on the application and the nature of videos
being studied. Human eye movements are capable of indicating the relevant re-
gions of interest in an application-specific manner.

• Supervised learning approaches that can possibly learn the relevance of regions
need labeling of training samples. This is a very tedious and time-consuming
process, where users would be required to manually select the regions that are of
interest. This can be avoided by using human eye movements to label the regions.
Users can be asked to watch videos naturally, and their eye movements can be
recorded to subconsciously label regions of interest. This process proves to be an
efficient and quick way of obtaining ground truth for a learning framework that
can predict regions of interest in new videos.

Eye-trackers are used to record the eye gaze of users as they are viewing a com-
puter screen (see Fig. 2). Eye-tracking technology has evolved over the years, and
state-of-the-art eye-trackers can easily be integrated into a regular desktop monitor.
They allow unobtrusive viewing, and are also robust to minor head movements. As
mentioned above, the advantages of using eye-trackers in the proposed framework
is that they provide a means of implicitly labeling training data without interfering
with the user activity. They remove the necessity for manually labeling each and
every frame of a video and thus automate the process. For example, as radiologists
study medical videos as part of their daily work, they subconsciously label the data
simultaneously without having to explicitly mark the regions of interest. Thus, the
proposed framework can be used with ease in such applications without any explicit
procedure for data capture, or labeling methodology that may be needed every time
the model needs to be learnt or updated.

The main objectives and contributions of this chapter are as follows:

• Develop a methodology to detect saliency by integrating context-specific (domi-
nated by top–down) and bottom–up approaches in videos: Pure vision based ap-
proaches to detect saliency are designed to identify regions that ‘pop out’ in the
image. However, in many real world applications such as medical videos, it is re-
quired to find regions that are relevant to the context, such as tumors and polyps.
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In order to do so, pure vision-based approaches alone are insufficient. It is im-
perative to use a supervised learning based approach to detect salient regions and
be able to distinguish these regions from regions that only have distinct features
and may not be relevant to the application. This chapter presents an approach to
achieve this objective.

• Use eye movements to indicate user interest rather than have a manual labeling
process to capture what is salient for a given class of videos: In applications that
require skilled professionals to analyze videos, labeling training data becomes an
expensive and a lengthy procedure. Eye trackers provide an automated way to
overcome the manual labeling process, by recording the eye movements as the
users analyze the videos.

The key features of the proposed approach are mentioned below:

1. This framework provides a supervised learning framework based on human eye
movements for saliency detection in videos, and integrates this framework with
a vision-based approach. Existing approaches have largely been focused on a
vision-based approach.

2. This framework can handle pan and zoom camera movements, unlike existing
methods that rely on motion in videos as an indicator of saliency.

3. The conceptual framework can be generalized to different classes of videos.
4. The approach has been validated with a real-world dataset with complex back-

grounds. Most existing work in this regard use videos captured under highly
controlled conditions.

5. A probabilistic formulation of saliency provides for a meaningful interpretation
in real-world application contexts.

The remainder of the chapter is organized as follows. Prior background work and
motivation for the proposed approach is discussed in Sect. 2. The conceptual frame-
work to learn and predict saliency based on eye movements is presented in Sect. 3.
The experiments and results for the learnt model along with suitable illustrations
are described in Sect. 4. Section 5 summarizes the methodology, discusses possible
applications and directions of future work.

2 Prior Work

Saliency is defined in this work as a measure of possible user interest on a single unit
of video (for example, pixel on a video frame). As mentioned earlier, saliency detec-
tion has been studied from two different perspectives, visual attention modeling and
interest point detection. Figure 3 provides a high-level illustrative summary of the
different kinds of approaches that have been used in this context. Visual attention
in humans is driven by bottom–up, as well as top–down approaches. Bottom–up at-
tention is driven by regions having distinct features, and is independent of the task,
or the context of the scenario. On the other hand, top–down saliency is specific to a
context where the user is trying to locate something in particular. Approaches to de-
tect interest points make use of predetermined filters that measure saliency based on
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Fig. 3 Prior work in Saliency
detection

Fig. 4 Regions having
distinct features are of
bottom–up salience.
Illustration taken from [5]

specific artifacts such as motion, and corners. This section reviews the related work
from each of these perspectives, and also discusses prior work in the use of human
eye movements. The drawbacks of these existing approaches, and the motivation for
the proposed integrated approach are also illustrated.

2.1 Visual Attention Modeling Methods

2.1.1 Bottom–Up Saliency

Research in visual attention modeling has primarily focused on bottom–up saliency.
Bottom–up attention is driven by regions having salient stimuli (see Fig. 4). Such
approaches involve algorithms that detect regions in an image/video that have dis-
tinctive features, and is independent of the context of the video. Most computational
frameworks that model bottom–up attention are based on the feature integration the-
ory, as explained in [42]. This theory explains the visual search strategy in humans.
It proposes that several features are used to obtain individual feature maps that are
then integrated to provide the final measure of saliency. The most popular frame-
work to model bottom–up attention was proposed by Itti et al. in [13], as illustrated
in Fig. 5. This model was built on the architecture that was proposed by Koch and
Ullman in [20] which is based on the concept of a saliency map that indicates the
visual saliency of every pixel in an image.
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Fig. 5 Framework used by Itti and Koch in [13] to model bottom–up attention. Illustration taken
from [12]

In Itti’s seminal work [13], a Gaussian pyramid is constructed at multiple dyadic
scales for a given image. Individual features are then extracted for each location
based on color, orientation, intensity and motion. The operators used to extract these
features are driven by the visual attention system in primates, which is sensitive to
a small region surrounded by a region having characteristics that inhibit the neural
response. Differences are then taken across scales to implement this center-surround
to obtain the individual feature maps. The feature maps are then normalized so as
to enhance the conspicuity of strong peaks and diminish the conspicuity of feature
maps having numerous comparable peaks. The normalized feature maps are then
combined along the various scales to obtain a single feature map for each individual
feature. Finally, these are then linearly combined to obtain the final saliency map,
that indicates the saliency at each pixel location.

Another approach was proposed by Gao and Vasconcelos in [5]. In their formu-
lation, they equate saliency to discriminability. Although their approach also uses
the concept of obtaining different feature maps and combining them into a single
saliency map, the filters they use are more suited to locate regions that have discrimi-
native features. Stentiford [39, 40] proposed a measure of saliency that depended on
the dissimilarity between neighborhoods in an image. This was also linked to the no-
tion of self-similarity or a fractals approach. A comprehensive survey of approaches
to model bottom–up attention in humans that aim to extract such conspicuous re-
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Fig. 6 Top–down saliency maps derived using recognition based approaches. Illustration taken
from [6]

gions is presented in [11]. Bottom–up approaches have been well-studied over the
last few decades, and hence, in the presented framework, the existing framework by
Itti et al. is used to integrate bottom–up saliency with the context-based (which we
use to represent the top–down component) saliency algorithm.

2.1.2 Top–Down Saliency

Unlike bottom–up saliency, top–down saliency is driven by user intent. There has
been limited work done in this regard [4, 23, 28]. Existing approaches that model
top–down saliency use a specific goal or task, such as object recognition. Figure 6
illustrates such an approach, where two different saliency maps are derived for a
single image based on car and person recognition respectively.

Similar to their approach to bottom–up saliency, Gao and Vasconcelos in [4]
presented a discriminative saliency based approach for top–down processing. Here,
they defined saliency based on features that are best discriminative for a given class
of objects. Navalpakkam and Itti, in [28] investigated the use of top–down strategies
to select optimal cues in a predetermined search task for objects in a scene, and came
up with a model to maximize the saliency of the target with respect to its distractors.
In the proposed approach, top–down saliency is defined from a different perspective.
As mentioned earlier, the task, or the goal, is subtly indicated by the regions fixated
by the users while viewing the videos, rather than artificially defining a potential
task in a scene.

2.1.3 Integrating Top–Down and Bottom–Up Saliency

There have been very few efforts in the past on developing models that integrate the
top–down and bottom–up components for saliency. An approach to integrate top–
down and bottom–up saliencies for target detection was proposed by Navalpakkam
and Itti in [27]. In their framework, Itti’s bottom–up saliency model [13] is used
to obtain the individual feature maps. Subsequently, they used the prior statistical
knowledge of the features based on the target as weights of these individual maps
to linearly combine them into an overall saliency map. However, this approach is
purely vision-based. Another approach proposed by Oliva et al. [31] and Torralba
in [41] to model attention in images used a machine learning approach to integrate
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contextual information along with bottom–up image saliency. They defined bottom–
up saliency based on the likelihood of finding certain features in an image. The
contextual priming is learnt using a database of training images having known lo-
cations of the target objects. However, in both these approaches, a prespecified task
such as object recognition is used to derive the top–down approach for saliency. In
other words, the user intent is prespecified in these approaches, which restricts the
generalizability of such approaches.

2.2 Interest Point Detection Methods

Interest point detection refers to identifying a set of pixel locations in images based
on a certain saliency, or ‘interestingness’ measure. The filters or functions used to
detect salient locations are chosen so as to respond to certain artifacts such as cor-
ners, textures, or motion. Different approaches use different sets of filters to mea-
sure the saliency of a pixel. In [24], Lowe proposed the SIFT algorithm to find ‘key
points’ and their corresponding descriptors that are invariant to scale and orientation.
Another popular approach to detect interest points is the Harris corner detector [9]
that uses a measure based on a second moment matrix to compute the ‘cornerness’
of a pixel. The interest points detected using this approach are known to be very
sparse, since the pixels need to be spatial as well as temporal corners. Kadir and
Brady [15] proposed an approach that measures interestingness based on the infor-
mation content. In their approach, Shanon entropy is used to measure the complexity
of a pixel, using the probability distribution of a descriptor extracted from the region
around it. This is evaluated across various scales. The final saliency measure of a
pixel is calculated based on the scales that exhibit a peak in entropy, as well as a
high gradient in the probability distribution.

Another set of pure vision-based approaches are directed towards detecting
saliency in images from their Fourier spectrum. These approaches make use of the
1/f law [34, 38] which describes the statistics of natural images. It states that the
amplitude spectrum of the Fourier Transform of an image is inversely proportional
to the frequency, that is, on a log–log scale, the amplitude spectrum of images is
approximately a straight line. An example for this is illustrated in Fig. 7. Hou and
Zhang [10] use this property to define saliency based on the spectral residual of
an image. This is calculated as a difference between the log spectrum of an image
with its averaged spectrum. The saliency map is constructed using inverse Fourier
Transform of this spectral residual. Wang and Li also make use of this property to
detect saliency in color images in [44]. However, in their approach they propose a
two step approach, where a coarse saliency map is obtained in the first step based on
the spectral residual of the image. In the second step, this map is refined and thresh-
olded to obtain a binary saliency map. Another approach in this regard [8] proposes
the use of phase spectrum, over the amplitude spectrum of the Fourier Transform,
and argue that it provides better results with lesser computations.
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Fig. 7 Example of spectrum and log spectrum of an image. Illustration taken from [10]

In the spatiotemporal domain, there have been two categories of approaches to
find interest points. One of them seeks to extend the algorithms that exist in 2-
D spatial domain to the temporal domain. Examples of these approaches include
the 3-D Harris corner detector [21], 3D SIFT descriptor [37], and the work of
Oikonomopoulos et al. [30], which is an extension of the work done by Kadir
and Brady in [15] into the third dimension. On the other hand, there have been
approaches that have been specifically designed to identify interestingness in the
spatiotemporal domain. A popular algorithm in this regard is the periodic detector,
that was proposed by Dollar et al. in [1]. In their approach, a train of pixels in a
temporal neighborhood is considered, and their response to a quadrature pair of 1-D
Gabor filters in the temporal domain is used to measure saliency. Such an approach
responds to any kind of complex motion in the video, to detect the salient points.
Another approach suggested by Ke et al. in [16] makes use of volumetric features
and video optical flow to detect motion. This is based on the rectangular features
used by Viola and Jones [43].

Incidentally, most of these existing approaches to detect spatiotemporal inter-
est points test the performance of their algorithms on human action classification
[1, 22, 29, 36] using the KTH dataset [36]. The KTH dataset is artificially created,
and has a simple stationary background, as shown in Fig. 8. All the motion in the
videos correspond to those of human actions, thus enabling these approaches to per-
form well. However, in real life scenarios this is seldom the case, and there is a need
to have a detector that is capable of classifying regions that are actually of interest
in complex scenes based on the given context or application of the video, and not
only detect points that respond to motion. Unlike these approaches, the proposed
framework is validated on real world data which also include moving backgrounds
and artifacts.

Though the interest point detectors use measures to determine the saliency of
each location in an image, they differ from the attention modeling approaches in
that the filters used may not necessarily be biologically driven by the human visual
system. These detectors are approached purely from a computer vision perspective.
The attention modeling frameworks, on the other hand, are influenced by neuro-
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Fig. 8 Sample frames taken from the KTH dataset

logical and cognitive perspectives. Both these approaches, however, do not take the
context of the scene into account. The ‘interestingness’ of a pixel, as in the case
of bottom–up saliency, is solely based on the strength of its response on predefined
filters. As a result, the saliency is only a measure of the distinctiveness of the neigh-
borhood of a pixel in terms of texture, motion and other such features. Instead, the
proposed integrated approach computes saliency as a measure of visual relevance to
users for a given class of videos.

2.3 Human Eye Movement as Indicators of User Interest

Eye-tracking is the procedure of tracking the position of the eye gaze of a user. One
of the earliest uses of eye-tracking was in the field of psychology in understanding
how text is read. Researchers analyzed the variations in fixation and saccade dura-
tions with line spacing and difficulty of textual content. Eye-tracking was also used
to understand scene and art perception. In more recent times, eye-tracking is be-
ing increasingly used in other commercial and research applications ranging from
Human Computer Interaction (HCI) and medical research to marketing. In recent
work on advertising and web applications, eye-trackers are used to monitor the eye-
movements of consumers as they view specific websites. This data is statistically
analyzed and used to determine the effectiveness of an advertisement, strategize the
location of a product, learn the features that catch the attention of an eye, and so
on. Duchowski [2] presented an exhaustive survey of various applications that have
used eye tracking, with a specific focus on its use in interactive applications rather
than its diagnostic use.

In HCI, the eye tracker has been used as a selection tool, where eye gaze can be
used as a substitute for a computer mouse. It has also been used in gaze-contingent
displays, where displays respond based on the user’s fixations. Another application
has been in evaluating and training novices or students as they are performing certain
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tasks. Since they can provide relevant feedback as to what a user is viewing, it has
been used to distinguish novices from experts in the driving and aviation industry.
This has been extended to study the visual behavior of drivers (or students), and
warn them if they are not paying attention or if they are drowsy.

Eye-tracking has also been used in the field of computer vision and machine
learning. Granka et al. in [7] used eye tracking to understand how users react to
results provided by an internet search engine, and gain insight into user behavior.
Salojarvi et al. [35] investigated the use of eye movements to study relevance in
information retrieval. Oyekoya and Stentiford [32, 33] also conducted experiments
in image retrieval that indicated the fact that eye-gaze is attracted by regions of
interest in images. They found that eye tracking data can be used to retrieve images
faster than random selection.

2.3.1 Use of Eye-Tracking in Related Work

There has been limited work in detecting interest points or regions based on human
eye movements, almost all of which have been focused on images than videos. Kien-
zle et al. [17, 18] used human eye movements to learn a model to detect bottom–up
saliency in images. They recorded eye-gaze data of users as they were viewing 200
natural images, and built a classifier to learn the image patterns that resulted in high
visual saliency. Pixel intensities in rectangular image patches were used as the fea-
ture vectors in the for the classifier. The results indicated that the performance of
their model was comparable to other bottom–up approaches. More recently, Judd
et al. [14] used eye movements to learn saliency in images. They used a larger
dataset of 1003 randomly selected landscape and portrait images to collect eye track-
ing data of users. As stated in their work, their methodology is very closely related
to the work of Kienzle et al. In their approach, in addition to having low-level fea-
tures descriptors such as color and contrast, the classifier is also trained on mid-level
and high-level features. These include horizon line detectors since most objects are
on the ground and humans look for objects, face and person detectors, as well as the
distance from the center of the image.

For videos, Kienzle et al. [19] extended their work to detect spatiotemporal inter-
est points in videos. The dataset used for the training comprised of arbitrary videos
sampled from a movie. The eye movements of users were recorded as they watched
these videos, and a classifier was trained to learn the features corresponding to re-
gions viewed by the users. The feature descriptor for the learning model was based
on the periodic detector [1], where a sequence of pixels in the temporal neighbor-
hood of a pixel (pixels having the same spatial coordinates in neighboring frames) is
used. However, in their approach, the filter coefficients of the temporal filters were
learnt based on the eye movements of users, instead of using a 1-D Gabor filter.
The classifier learnt using their approach was tested on the KTH dataset, which as
described earlier, has a plain background and all the motion in the videos belong to
the foreground.

Though the performance of such an approach is shown to be comparable to the
other state-of-the-art approaches on such a dataset, this approach has limitations in



194 S. Nataraju et al.

other complex scenarios. Firstly, the above approach uses only temporal descrip-
tors, and a temporal descriptor alone is insufficient to characterize a region. Eye
tracking, however, provides spatial interest regions, and this is the most useful ben-
efit of using human eye movements. However, this aspect is ignored in prior work,
and the spatial characteristics are not taken into consideration while constructing
the feature vector. As a result, all regions having motion are classified as salient
(more illustrations are provided in the next subsection). Thus, such a classifier alone
is insufficient to distinguish regions that are actually of salience from those simply
having motion. Moreover, in the presence of any camera induced motion such as
pan or tilt, all regions having edges or any sort of texture are classified as salient
since the approach relies purely on motion. Although the approach performs well,
it was only tested on videos having motion in the foreground alone without any
background clutter.

2.4 Limitations of Existing Work

Most of the existing approaches that model saliency based on visual attention are
directed towards bottom–up attention. Such approaches are modeled to be indepen-
dent of the context of the videos, and detect regions having a standard set of features
for all kinds of videos. Interest point detectors have drawbacks that are similar to the
bottom–up visual attention models. Other existing approaches that use human eye
movements are motion based, and are not capable of handling any kind of camera in-
duced motion. The performance of some of these approaches on a frame taken from
a real world news video is illustrated in Fig. 9. The frame has many regions with
motion, and it can be seen that these approaches detect all regions having motion
and texture, and are unable to distinguish between regions that are actually relevant
for a news video from the background clutter.

Bottom–up approaches are designed to detect regions that are significantly dis-
tinct from the rest of the image. In images where such regions do not exist, they
are not capable of highlighting the salient regions. In general, pure vision-based ap-
proaches do not take the application of the video into consideration. However, what
is ‘interesting’ is dependent on the class of the videos. Regions that are salient in
one class of videos may not be relevant for another class.

The use of eye-trackers allows regions of interest to be implicitly indicated as
users view videos in a natural manner. Existing approaches to model top–down at-
tention are done so for prespecified tasks, such as object or person recognition, that
is known to represent user intent. Eye trackers eliminate the need for this since the
‘task’ is indicated by what users watch when they view videos. Moreover, most
existing models require a manual process for labeling to train classifiers which is
tedious and expensive. Eye trackers provide a mechanism to automate and speed
up the process. In the rest of this work, the performance of the presented approach
is compared against a 3D Harris corner detector, periodic detector, Itti’s bottom–
up attention model and Kienzle’s approach in [19]. These are popular approaches
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Fig. 9 Interest points
detected on real world
scenario (a), using (b) 3D
Harris corner detector,
(c) periodic detector, and
(d) Itti’s approach

that have been used so far in each of the categories of methods for saliency detec-
tion, and are representative of the underlying concepts behind each of the different
perspectives discussed earlier in this section.

3 Learning Attention-Based Saliency: Conceptual Framework

The conceptual framework of the proposed approach is discussed in this section. The
approach to learn top–down saliency is first presented, and subsequently, the proba-
bilistic graphical model used to integrate the saliencies is described. It is to be noted
that in the presented approach to integrate top–down and bottom–up saliencies, the
bottom–up saliency map is obtained directly using one of the existing computational
models, such as [13]. The reason for this, as mentioned earlier, is that bottom–up
saliency has been well studied. Hence, this section is directed towards predicting
the context-based saliency map, and devising a methodology to integrate this with a
bottom–up saliency map that are derived from existing models.

The computational model for the proposed prediction framework to detect
context-based saliency is also motivated by the biologically inspired, widely ac-
cepted Itti’s saliency model [13] embedded into a machine learning framework
based on human eye movements. The focal concept of obtaining saliency maps [20]
from low-level feature maps is used. However, instead of thresholding generic filter
responses of such low-level features, a learning framework is introduced that can
capture the image characteristics of salient regions based on the labeled data that is
obtained by recording the eye gaze of users as they are naturally watching videos for
a specific application. The implementation details of the framework are presented
as part of the experiments and results in Sect. 4.
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3.1 Learning Context-Specific Saliency

A framework to learn the features corresponding to visual attention based on eye-
gaze information for any given application is shown in Fig. 10. Firstly, eye move-
ments of a number of users are recorded as they are naturally watching videos be-
longing to a single given application (the experimental protocols are described in
the next section). As mentioned earlier, fixations correspond to regions that are of
visual salience. These regions represent the positive samples for training the clas-
sifiers. Negative samples are then generated by randomly selecting regions in the
videos from a uniform distribution. The samples are rejected if they happen to be in
the neighborhood of a positive sample. The rationale behind this method of generat-
ing negative samples is that such regions do not drive the visual attention of any of
the users. A sample frame with pixels corresponding to positive and negative labels
is illustrated in Fig. 11. The positive samples are shown using green markers, and
the negative samples are indicated by red markers.

In the next stage, descriptors for various features corresponding to these samples
are extracted. Experiments demonstrated that motion, color, and orientations are
good descriptors of regions. Individual classifiers are then trained using these feature
descriptors. Subsequently, another classifier is learnt to determine the weights of the

Fig. 10 Framework to learn classifiers for individual features based on human-eye movements
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Fig. 11 A frame with positive and negative training samples. The positive samples are shown
using green markers, and the negative samples are indicated by red markers (best viewed in color)

individual features in order to combine them into a single saliency map, which is
interpreted as a 2-D probability distribution.

3.2 Predicting Context-Specific Saliency

The framework to predict context-specific saliency is shown in Fig. 12. For an in-
coming image frame, the various feature descriptors are extracted for each pixel
location. The individual classifiers are used to predict the feature maps that indicate
saliency based on their corresponding features. The outputs from these individual
feature maps are used as inputs for the final classifier that results in the final saliency
map. The saliency map can be interpreted as a weighted sum of individual feature
maps, with the weights as determined by this classifier.

4 Experiments and Results

The proposed framework has been validated on real world news videos. So far,
most existing approaches that detect saliency have been tested on artificially created
datasets having stationary backgrounds. On the other hand, the news videos that are
used in this experiment were downloaded from popular news broadcasting channels,
and have significant motion in them apart from those of the news readers. Some
of the distractions include flashing logos of the news channels, camera movements,
traffic, and other moving patterns of the news channel in the background. The reason
that such videos are used to demonstrate the performance of the algorithm is that
they have regions corresponding to the news readers, which are salient for the given
context, as well as other regions having distinct contrasting features.
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Fig. 12 Framework to obtain saliency map from the learnt classifiers

4.1 Experimental Setup

The Tobii 1750 eye tracker was used to record eye movements. This device, as
shown in Fig. 13, is integrated into a 21 inch monitor. It tracks the eye gaze of the
viewers while using the monitor with a sampling frequency of 50 Hz. The device
has an accuracy of 0.5 degrees. The eye tracking procedure involves an initial cali-
bration for each person. Once calibrated, the eye tracker is capable of compensating
for the user’s head movements, thereby allowing a natural uninterrupted viewing
procedure.

Eleven volunteers participated in this experiment. Each of these volunteers were
unaware of the experiment and were instructed to watch the news videos naturally.
The users were asked to sit at a normal viewing distance from the monitor while
watching the videos. The eye gaze information of these volunteers were recorded
for thirty six different news video snippets. In between each of the videos, a blank
screen was displayed for four seconds so that the initial eye movements during a
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Fig. 13 Tobii 1750 eye
tracker

video is not biased by the previous video. The positive and negative samples were
obtained as discussed in the previous chapter, and used to train the learning frame-
work.

4.2 Implementation

The videos were separated into a training and test dataset. The eye-tracking data
from the first 28 videos was used to train the model. The bottom–up framework is
not used in the training phase as all the parameters are independent of the context
of the video. Feature vectors were extracted at the locations corresponding to the
positive and negative training samples. For a sample p located at (xp, yp) in image
Ip , the following features are constructed.

• Color intensity histograms: Three separate histograms of the intensities corre-
sponding to red, green and blue are concatenated to obtain the color intensity his-
togram. Ten equally spaces bins were used for each of the histograms. Thus, the
length of the concatenated color descriptor was 30. Thus, the feature vector, Fc ,
for color can be represented as:

Fc(p) = [
Hr

{
Ip(xp, yp)

}
Hg

{
Ip(xp, yp)

}
Hb

{
Ip(xp, yp)

}]
,

where H {.} is the intensity histogram for an individual color component at a given
location in an image.

• Gabor orientations: To capture the orientation information of the sample, the 2-D
Gabor responses at three scales and six orientations are taken. Thus, the length of
the feature vector for orientation is 18. The Gabor feature vector, Fg is given by:

Fg(p) = G
{
Ip(xp, yp), s, o

}
,

where G{.} represents the 2-D Gabor filter response. s and o represent varying
scales and orientations, respectively.

• Motion descriptor: This is similar to that suggested in [19], and consists of the
pixel intensities in the neighboring frames corresponding to the same spatial co-
ordinates. Such a vector characterizes the temporal features well, as illustrated in
their results. Pixels from the previous nine frames as well as the future nine frames
were used (this choice was made based on preliminary experiments). Thus, the
length of the temporal descriptor was 19. The temporal feature vector at frame n,
Ft is given by:

Ft(p) = Ip(xp, yp,n − 9 : n + 9).
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Once the feature vectors, F , for all the samples are obtained, the saliency model
used is captured using a feedforward neural network:

Os = bs0 +
ks∑

i=1

αsi tanh(F · Wsi + bsi). (1)

Here, Ws and α are vectors representing weights of the first and second layer,
respectively. bsi are their corresponding bias parameters. The final saliency, Ss is
given by the logistic sigmoidal activation function applied to the output of the sec-
ond layer of hidden nodes, Os

Ss = 1/
(
1 + exp(−Os)

)
. (2)

The logistic function is known to produce good results for binary classification,
and is hence used. The motivating factor in using such a function also arises from
the fact that its inverse, Os gives a probabilistic interpretation of the saliency. It is
known as the logit function and represents the log of the ratios of the probabilities,
ln(P (C = 1|F)/P (C = 0|F)). Here C = 1 and C = 0 represent the positive and
negative classes, respectively. On the other hand, most vision-based saliency func-
tions have arbitrary ranges, and this problem makes their interpretation a difficult
challenge.

Once the saliency with respect to each of these low-level features is obtained,
we adopt a neural network ensemble approach to learn the final saliency, similar to
the feature aggregation theory [13]. The final saliency function is obtained using a
second neural network layer which computes the weighted sum of the outputs of
the individual feature-specific neural networks. A single layer perceptron is trained
to determine the weights of these individual features. This approach learns the rele-
vance of each of the features for the given application of videos.

All of the neural networks were implemented in MATLAB using the Netlab tool-
box [26]. Two layered feed-forward neural networks were used with the ‘logistic’
option to describe the output activation function in the neural network models. The
weights were learnt using Scaled Conjugate Gradient (SCG) optimization. Fifteen
hidden nodes were used for the neural network to train the color. Ten hidden nodes
were used for the other two descriptors. The number of hidden nodes were empiri-
cally selected to maximize the performance of the classifiers. In each of the above
implementations, the eye gaze of the users was used to label pixels as salient or oth-
erwise. This corresponded to a label of ‘+1’ or ‘−1’, respectively. The feature vec-
tors corresponding to the pixels were thus labeled in the training phase, to thereby
provide for a supervised machine learning methodology to predict saliency in new
videos. Hence, the input to the neural network is a pixel from a video frame, and the
target function is the saliency value associated with the input pixel.

4.3 Results

The results for the experiments are presented from three perspectives. In the first
set of results, the performance of the individual feature-specific neural networks
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is presented in terms of the eye-gaze prediction accuracy. In the second part, the
performance of the learning framework is visually illustrated for frames taken from
various videos and compared with other saliency detectors.

4.3.1 Eye Movement Prediction

As mentioned earlier, the eye gaze data for eleven participants was recorded for a
set of 36 news videos. The samples from the first 28 videos were used to train the
models. The positive and negative samples from the remaining eight videos were
used to test the performance of the classifiers. Classification results for the individual
neural networks that were discussed in the previous section are shown in Table 1.
As mentioned earlier, a pixel that is classified as salient is said to have a label ‘+1’
(or positive) and a pixel that is not salient bears the label ‘−1’ (or negative). The
performance of the motion descriptor also indicates the performance of the approach
of Kienzle et al. [19]. The other methods mentioned in Sect. 2 were vision-based
and did not use a supervised learning methodology. Hence, they could not be used
for comparison in this study.

An important point to note is that the negative samples are classified much better
in the final model. The classifier using Kienzle’s approach is only able to detect
true positives (TPR) with an accuracy comparative to the presented approach. The
True Negative Rate (TNR), however, is low since it classifies all regions having
motion as salient. The presented approach, on the other hand is shown to be able
to distinguish between regions that are salient from those simply having motion or
texture. This is clearly indicated by a high TPR as well as TNR. Another point worth
mentioning is that the dominance of individual features is dependent on the class of
videos. It can be inferred from the table that color is the dominant feature in news
videos. This, however, does not indicate that the same feature may be most relevant
in other classes of videos. The choice of these low-level features ensures that such
a framework can generalize to other application contexts too.

Performances were also experimented with a concatenated vector, in which the
individual feature descriptors were concatenated into a single vector, and a neural
network was trained to predict the saliency outcome. However, the performance of
such an approach was not comparable to that of the combined classifier and hence,
is not reported in this work.

Table 1 Prediction accuracy
of different neural networks
on the samples from test
videos

Neural network True positive rate True negative rate

Orientation descriptor 79.8% 63.8%

Motion descriptor 80.2% 60.6%

Color histogram 82.4% 77.3%

Final model 80.9% 83.1%
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4.3.2 Context Specific Saliency Detection

Figures 14 and 15 illustrate the performance of the algorithm using two different
examples. The images to the top left are the original frames. These frames have
different regions with motion. The fixations of the users, as recorded by the eye
tracker are shown in the images to the top right, that is, Figs. 14(b) and 15(b). Fig-
ures 14(c) and 15(c) show the points detected using the periodic detector. In order
to better illustrate salient regions from the saliency maps, ‘interest points’ based on
the saliency maps were plotted using a simple thresholding. Since saliency maps are
probability distributions, thresholding merely allows us to select pixels that have
a high probability of being salient. Figures 14(d) and 15(d) show the pixels pre-
dicted by Kienzle et al.’s algorithm [17]. It is evident that both these detectors,
being motion-based, respond to all regions in the video frame that have movements.

Fig. 14 (a) Is the original frame from a video with moving patterns in the background, and
(b) shows the fixations of users on the frame. Interest points detected using (c) periodic detec-
tor, (d) Kienzle et al.’s detector, (e) 3D Harris corner detector, (f) Itti’s bottom up model, and
(g) presented learned detector
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Fig. 15 (a) Is the original frame, and (b) shows the fixations of users on the frame. Interest points
detected using (c) periodic detector, (d) Kienzle et al.’s detector, (e) 3D Harris corner detector,
(f) Itti’s bottom up model, and (g) presented learned detector

Figures 14(e) and 15(e) illustrate the results obtained using 3-D Harris corner detec-
tor. These points, as expected are sparsely distributed in regions having spatial and
temporal corners. The results obtained using the presented approach in which the
saliency map is obtained from individual feature maps are presented in Figs. 14(g)
and 15(g). Clearly, this framework is able to distinguish the salient regions from the
irrelevant ones having motion. As can be seen, the interest points detected by the
presented approach bear a high correlation to the fixations of the users in both the
examples. The presented detector is able to detect regions that are of visual interest
to users, unlike the other existing approaches.

The frame shown in Fig. 16 is taken from a video that was captured using a
moving camera. As expected, the pure motion-based approaches detect motion in
all parts of the scene, and in turn predict interest points from all regions. Here, it can
be seen that the learned detector is robust to the camera movements. It is evident
from the examples that the proposed learning framework ensures interest points



204 S. Nataraju et al.

Fig. 16 (a) Is the original frame from a video taken using a moving hand-held video camera.
Interest points detected using (b) periodic detector, (c) Kienzle et al.’s detector, (d) 3-D Harris
corner detector and (e) Itti’s bottom–up model, and (f) presented learned detector

have relevant spatial content along with temporal content. In addition, as mentioned
briefly earlier, experiments were conducted with the proposed framework to design
a single neural network that was built using a concatenated feature vector (using all
the considered features). However, it was found that this approach did not perform
as well as using individual neural networks for each feature. It is believed that this
may have been due to the high dimensionality of the resulting concatenated feature
vector. Another point to be noted is that the saliency model detects regions based
on the regions that are commonly viewed by all the users of the experiment. For
example, in this work, it was found that all the volunteers in this experiment viewed
the faces of the newscasters during the video. However, there might be a case where
some users view other regions (possibly the text on the screen). In such a scenario,
the learning framework will learn features based on the most commonly viewed
regions.

4.4 Discussion

In the case of news videos, the learnt model detects regions corresponding to talking
faces as being salient since that is what most viewers look out for while watching
news. While it can be argued that a face detector combined with a motion-based
detector could achieve similar results, it should be noted that the overall framework
presented in the work can be applied to any scenario. The training process remains
the same in all scenarios. The eye movements are recorded as users analyze videos,
and classifiers are trained so that the weights for each of the features are optimized
for that class of videos.
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Fig. 17 Variation of color-specific saliency maps with increase in spatial window sizes from left
to right. The window sizes include 3 × 3, 5 × 5, 11 × 11, 17 × 17 and 33 × 33

Some parameters that need to be addressed in this approach include the spa-
tial window size and the length of the temporal descriptor. Figure 17 indicate the
variations in color-based feature maps with increase in the size of spatial win-
dows to extract the histograms. The window sizes used in the illustrations include
3 × 3, 5 × 5, 11 × 11, 17 × 17 and 33 × 33. It can be observed that the de-
tails are not captured while using larger windows. This is intuitive since using a
larger number of pixel locations to calculate the histogram has a smoothening ef-
fect. Hence, aberrations in the histograms caused by individual pixel values are sup-
pressed. Larger window sizes result in highlighting whole blobs of regions in image
frames. On the other hand, histograms using smaller windows are extremely sen-
sitive to individual pixel intensities. While this results in a more accurate feature
map, it is also more sensitive to noise. In the presented work, a mid-sized win-
dow of size 11 × 11 pixels was used so as to compromise between the two ex-
tremes.

The nature of the temporal descriptor varies based on the application. In the
current implementation of the system, the temporal descriptor used is noncausal.
The pixels in the temporal neighborhood of the pixel under consideration in pre-
vious as well as future frames are used. However, in a real-time implementation,
this is not feasible. Pixels from only the previous and current frames can be used
to construct the descriptor. Figure 18 shows the variations in temporal-based fea-
ture maps. In the presented work, pixels from the previous nine frames as well as
from the future nine frames are used in the temporal descriptor. This is illustrated in
Fig. 18(e).
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Fig. 18 (a) Variation of temporal-specific saliency maps with varying lengths of temporal descrip-
tor. (b) Uses pixels from previous five frames, (c) uses pixels from previous nine frames, (d) uses
pixels from previous five frames and the future five frames, and (e) uses pixels from previous nine
frames and the nine future frames

4.5 Integrating Bottom–Up Approaches: A Possible Extension

In high risk scenarios, it may not be sufficient to only highlight regions based on
a classifier trained on what is viewed by the users. In addition to regions that are
highlighted by the classifier, it may also be appropriate to indicate regions that are of
high bottom–up salience. The need for such an approach arises since the classifier
is trained only on regions viewed by a specific set of users. Unexpected events,
indicated by the bottom–up approaches may not be detected since such regions are
not common, and hence may not be learnt by the context-based saliency model
alone. In order to do so, the presented framework can be extended to integrate a
bottom–up approach along with the learnt model. One way to do so is by modeling
the final saliency as a joint probability distribution.

4.5.1 Integration Using Probabilistic Framework

In this approach, as a preliminary approach to integrate top–down and bottom–up
methods, saliency is interpreted as a 2-D random variable and the saliency map as a
2-D probability distribution function (PDF) that describes the saliency of each pixel
location in an image frame. In other words, the saliency map is a mapping function
that assigns a numerical value that corresponds to the probability of a particular
pixel location being salient.
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Fig. 19 Graphical model
representing top–down and
bottom–up saliencies as
random variables

The top–down saliency of a pixel indicates its visual saliency obtained based on
the context or the application of the video. The bottom–up saliency of a pixel indi-
cates its visual saliency obtained using existing computational models such as [13].
The saliency maps obtained using the two approaches are converted to probabil-
ity density functions to ensure that the sum is one, and that the measurements at
each of the locations is nonnegative. This can be construed as a 2-D PDF, while
still maintaining the shape of the distribution as output by the classifiers. (While we
have defined this PDF in a straightforward manner in this work as proof-of-concept,
we intend to study the generative relationship between the saliency of the pixel,
surrounding pixels and image features in future work.)

The saliencies are represented as the nodes of a graphical model as shown in
Fig. 19. In this figure, N(x) represents the neighborhood of a pixel x. Sbu and Std
represent the bottom–up and top–down saliencies, respectively. Each pixel is repre-
sented by a feature vector that is obtained based on pixels in its spatial and temporal
neighborhoods.

In order to have an attention model that captures both these saliencies, the pro-
posed framework models the final saliency of a pixel, S(x), as a joint distribution of
the top–down and bottom–up saliencies.

S(x) = P
(
Sbu, Std|N(x)

) = P
(
Sbu/Std,N(x)

) ∗ P
(
Std/N(x)

)
. (3)

In the above graphical model, when N(x) is observed, Sbu and Std are conditionally
independent, that is, Sbu⊥Std|N(x)

S(x) = P
(
Sbu|N(x)

) ∗ P
(
Std|N(x)

)
. (4)

Since P(Sbu/N(x)) and P(Std/N(x)) are independent distributions, the final
PDF for the saliency is a product of the individual PDFs corresponding to the
bottom–up and top–down approaches. Intuitively as well, this makes sense since
regions that are of high salience are those that are salient based on the context or the
application of the videos, as well as have distinctive features that catch the attention
of the user.

4.5.2 Results of the Integrated Framework

The results at each of the intermediate steps in the prediction process are illustrated
in Fig. 20. The input image frame belongs to a news video from a popular news
channel. It consists of a news reader speaking in front of a transparent window.
There is moving traffic in the background, and a yellow car is seen speeding. The
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Fig. 20 An illustration of the prediction process integrating top–down and bottom–up frameworks

saliency map constructed using the learnt model highlights the region corresponding
to the newsreader’s face, since the faces of news readers were commonly looked at
by the users in the training phase. On the other hand, the bottom–up approach using
Itti’s framework in [13] picks up regions having sharp movements, which consists
of the yellow car speeding in the background. The final saliency map highlights the
news reader’s face as well as the speeding car in the background. In this case, it can
be seen that the salient regions indicated by the two approaches are completely non-
intersecting. This example was chosen to suitably illustrate the contrasting nature
of the two approaches. This need not necessarily be the case. There could be some
overlap between the regions indicated to be of top–down and bottom–up saliencies.
This is illustrated in Fig. 21, where the face of the news reader is shown to be of
salience by both the approaches.

Figure 22 illustrates a comparison of the performance of the proposed integrated
approach with other popular spatiotemporal interest point detection approaches. The
periodic detector and the approach of Kienzle et al. described in [19] are purely
motion-based, and hence respond to all regions in the video frame that have move-
ments. The 3-D Harris corner detector is known to have a drawback in that the
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Fig. 21 Regions highlighted by the two saliency maps could have some overlap. (a) Is the original
image. (b) Is saliency map from Itti’s bottom–up approach. (c) Is the saliency map learnt from
human eye movements (top–down or context-specific)

Fig. 22 Interest points detected using (b) presented approach, (c) Kienzle et al.’s detector, (d) pe-
riodic detector, (e) Itti’s approach, and (f) 3-D Harris corner detector

selected points are sparse, as is indicated in Fig. 22(f). Results from Itti’s approach
are illustrated in Fig. 22(e). Itti’s model detects the moving car as the most salient
region in the frame. The integrated approach detects the face of the news reader as
well as the moving car. Bottom–up approaches are preferred over interest point de-
tectors for the integration process. The reason for this is that bottom–up approaches
tend to detect regions that are significantly distinct from rest of an image, rather than
detecting all regions having corners and motion. As a result, they highlight regions
that ‘pop out’.

The average fixations across the users on the frame is displayed in Fig. 23. It can
be seen that a few of the users have viewed the cars in the background, while others
continue to watch the newsreader. Events such as a moving car are not common in
news videos. Hence, eye-gaze samples corresponding to regions from these unex-
pected events could be insignificant compared to those that are commonly viewed
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Fig. 23 The averaged
fixations of users on one of
the frames while watching the
news video

by users. As a result of this, a classifier trained on eye-gaze alone may be insufficient
to detect all possible regions of interest. Though this may not be relevant in news
videos, in high risk scenarios it is important to be able to detect all possible regions
of interest. Hence, having a bottom–up approach integrated into the learnt detector
is critical.

5 Conclusions and Future Work

Human visual attention modeling has always been of importance in computer vision
research. While bottom–up frameworks have been relatively well studied over the
years, models for top–down approaches have not been well defined. In this work,
a novel approach to integrate both these saliencies is presented. Such an approach
would be extremely useful in applications such as video surveillance or medical
diagnosis to reduce the information overload. Saliency detection is also of relevance
for problems involving recognition, tracking or compression. A seeming limitation
of this approach is that the top–down component of the framework will need to be
trained individually for every application. However, since eye tracking devices that
can be integrated as part of a daily routine are commercially available, this limitation
can be overcome by learning as the user goes about his daily activities (a radiologist
or surveillance personnel, for example). Thus, the proposed framework can be used
with ease in applications without any explicit procedure for data capture, or labeling
methodology that may be needed every time the model needs to be learnt or updated.

In summary, this chapter shows that human eye movements can be used to de-
termine saliency in videos. Such an approach is proven to be able to distinguish
regions that are of saliency for a given context from those simply having distinctive
features. This approach allows the model to be nonparametric since all the parame-
ters are learnt by the classifier in the training phase. The framework also provides an
intuitive interpretation of saliency in terms of probability, rather than having mere
numbers corresponding to responses to predetermined filters. As a result of this, the
thresholds used to predict saliency are also easier and intuitive to determine.

5.1 Possible Applications

The proposed learning process can be generalized to other applications as well. The
presented model has been tested on news videos primarily as a proof of concept,



An Integrated Approach to Visual Attention Modeling for Saliency Detection 211

since it was found that these news videos represent a typical real world scenario
where there is a specific object of interest, along with background clutter and noise.
Generic vision-based algorithms are not reliable in such scenarios since the regions
that are relevant in a given scenario may not always have features that ‘pop out’.

The presented framework is particularly useful in scenarios where professionals
need to analyze huge number of videos belonging to a single application, such as
surveillance video monitoring or medical video analysis. These scenarios demand
that all relevant regions in the videos be analyzed. However, typically the duration
of these videos are large, may have significant amount of clutter in the background,
or there may be overload of simultaneous information (as in the case of a secu-
rity personnel who may have to monitor multiple video feeds at the same time). In
these cases, some regions that might have been salient could easily be overlooked.
Introducing a model such as the presented learning framework in such scenarios
will be of significant aid to the users in analyzing relevant regions. The classifier is
trained on the regions commonly viewed by users for a specific application, and are
is thereby capable of predicting regions that are of visual salience in similar videos.

All supervised learning algorithms require the training data to be labeled. Appli-
cations such as medical video analysis require extremely skilled professionals. As a
result of this, obtaining labeled samples for training is a non-trivial and an expensive
task in these scenarios. In these conditions, having an eye-tracker embedded into
regular computer thereby enables an automated and inexpensive labeling process.
State-of-the-art eye trackers can easily be integrated into regular desktop monitors
to record the eye-gaze of the users as they are watching videos. This technology al-
lows for unobtrusive and uninterrupted viewing, and hence allows the users to carry
on their regular tasks while their eye movements get recorded simultaneously. In
doing so, they implicitly label the regions that are potentially salient without having
to go out of their way. This eliminates the need for an explicit labeling process.

5.2 Future Work

The work done in this chapter demonstrates the use of human eye movements in de-
termining saliency for news videos. The results illustrate the performance of the pre-
sented framework in comparison with existing models. In future work, the learning
process will also be validated with other applications. Available video datasets for
computer vision have all been artificially created so as to have minimal background
clutter. Hence, obtaining realistic datasets has been a challenge, and as mentioned
earlier, the videos used to validate the framework were downloaded from popular
news websites. Moreover, there has been no suitable eye tracking data that is read-
ily available. These factors have proved to be limitations in validating the presented
model with multiple applications.

Currently, the image patches that are used to extract the features are of constant
size. A possible extension of work could involve employing a multi-scale approach
in selecting the most optimal scale to improve the performance of the detector. One
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way to go about doing this would be to adopt a methodology similar to the Kadir
and Brady detector [15], where entropy measures are used to optimize the spatial
scale for detecting salient regions.

In this work, integrating bottom–up and top–down approaches has been pre-
sented as a joint distribution. It can also be modeled as a function of risk to vary its
applicability in different kinds of applications. For example, in such an approach,
the final saliency would take the following form:

P(Std, Sbu|risk) = (1 − risk) × max
(
P(Std),P (Sbu)

) + risk ∗ (
P(Std) × P(Sbu)

)
.

(5)

In a high-risk application, the final saliency is treated as an ‘OR’ function, and
the greater of the two saliencies is chosen as the final saliency. On the other hand,
when the risk is low, it is treated as an ‘AND’ function. In this case, the saliency is
computed as a joint distribution, as presented in the current approach.
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Video-Based Human Motion Estimation
by Part-Whole Gait Manifold Learning

Guoliang Fan and Xin Zhang

Abstract This chapter presents a general gait representation framework for video-
based human motion estimation that involves gait modeling at both the whole and
part levels. Our goal is to estimate the kinematics of an unknown gait from image
sequences taken by a single camera. This approach involves two generative models,
called the kinematic gait generative model (KGGM) and the visual gait generative
model (VGGM), which represent the kinematics and appearances of a gait by a
few latent variables, respectively. Particularly, the concept of gait manifold is pro-
posed to capture the gait variability among different individuals by which KGGM
and VGGM can be integrated together for gait estimation, so that a new gait with
unknown kinematics can be inferred from gait appearances via KGGM and VGGM.
A key issue in generating a gait manifold is the definition of the distance function
that reflects the dissimilarity between two individual gaits. Specifically, we inves-
tigate and compare three distance functions each of which leads to a specific gait
manifold. Moreover, we extend our gait modeling framework from the whole level
to the part level by decomposing a gait into two parts, an upper-body gait and a
lower-body gait, each of which is associated with a specific gait manifold for part
level gait modeling. Also, a two-stage inference algorithm is employed for whole-
part gait estimation. The proposed algorithms were trained on the CMU Mocap data
and tested on the HumanEva data, and the experiment results show promising results
compared with the state-of-the-art algorithms with similar experimental settings.
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1 Introduction

Video-based human motion estimation has recently received great interest in the
computer vision community due to its wide applications. On the one hand, it is a
challenging research topic due to the variability and nonlinearity of human motion
as well as the uncertainty and ambiguity of visual observations. On the other hand,
this topic has been advanced by recent progress in fields of computer vision, arti-
ficial intelligence, machine learning and image processing. In this chapter, we are
interested in the estimation of human body configurations from image sequences
taken by a single camera. Specifically, we focus on the walking motion (i.e., gait)
that is very useful for biometrics and many biomechanical modeling applications.
Particularly, we define two terms about a gait: gait kinematics and gait appearances.
The former one is represented by a sequence of Euler angles or 3D positions of body
joints, and the latter one is a sequence of human silhouettes extracted from an im-
age sequence captured by a single calibrated camera. Our goal is to estimate gait
kinematics from gait appearances via explicit gait modeling in both kinematic and
visual spaces. This research addresses several fundamental issues pertaining to the
emerging markerless motion capture technology [40].

We have three important ideas in this research. The first one is that we could
span a nonlinear low-dimensional space to represent a variety of human gait mo-
tions (in terms of kinematics or appearances) by learning from a set of representative
(training) gaits. The second one is that a new gait with unknown kinematics or ap-
pearances can be synthesized (or interpolated) from the training gaits in this space.
Particularly, we call this space the gait manifold. It is worth noting that the term
of gait manifold used here has been upgraded from its original meaning in some
previous research, for example, [15, 34], where the gait manifold is used to cap-
ture the low-dimensional intrinsic structure among different poses (either by their
kinematics or appearances) from a single gait. Here, the gait manifold is used to
represent the kinematic or visual variability among different individuals. The third
proposed idea is that a gait can be modeled by two parts according to the hip joint,
the upper-body (above the hip) and lower-body (below the hip) gaits, each of which
is associated with a specific gait manifold for part-level gait modeling.

Correspondingly, our research involves three technical components. First, we de-
velop a general gait representation framework that involves dual gait generative
models, i.e., the kinematic gait generative model (KGGM) and visual gait gen-
erative model (VGGM). KGGM represents the kinematics of a gait by two vari-
ables, i.e., gait and pose, and VGGM characterizes the appearances of a gait by
four variables, i.e., view, shape, gait, and pose. KGGM and VGGM are temporally
synchronized by sharing the same pose variable. Second, we propose a new mani-
fold learning technique to learn a low-dimensional gait manifold to capture the gait
variability at either the whole-level or part-level among different individuals, by
which KGGM and VGGM can be semantically integrated. This allows us to infer
the kinematics of a new gait from its appearances. Third, considering the segmental
variability of the gait variable in a long sequence, we develop an effective particle
filtering-based inference algorithm that is embedded with a segmental jump dif-
fusion Markov chain Monte Carlo (SJD-MCMC) scheme to support dynamic gait
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estimation. Also, we further develop a two-stage inference process for part-whole
gait estimation. Two human motion databases were involved in our experiment, i.e.,
the CMU Mocap [11] and the Brown’s HumanEva [56], which are used for algo-
rithm training and testing, respectively. Both databases have been widely used by
computer vision researchers who are interested in human motion analysis and pose
estimation.

The remainder of this chapter is organized as follows. After reviewing some re-
lated works in Sect. 2, we present an overview of our research in Sect. 3. In Sect. 4,
we discuss the learning of KGGM and VGGM that are the cornerstones of this re-
search. The concept of gait manifold is introduced in Sect. 5. Section 6 presents two
particle filtering-based inference algorithm for dynamic gait estimation at the whole
and part levels. The experimental results are shown in Sect. 7. The conclusion and
future research are given in Sect. 8.

2 Related Works

There have been a plethora of works on video-based human motion analysis. Pre-
vious surveys [36, 50] provide comprehensive reviews on this topic. Due to the
nature of our research, we will present a brief review from the machine learning
perspective where we mainly discuss discriminative and generative approaches, as
shown by Fig. 1. Generally speaking, discriminative approaches are more efficient
and can directly learn the image-to-pose (2D-to-3D) mapping relationship that is
usually a one-to-multiple mapping, while generative ones involve explicit human
motion/shape modeling and are more flexible to incorporate prior knowledge into
the inference process.

Fig. 1 The taxonomy of machine learning-based human motion analysis where shaded blocks
indicate choices in our research. (Adapted from X. Zhang and G. Fan, Dual Generative Gait Models
for Human Motion Estimation from a Single Camera, IEEE Trans. Systems, Man and Cybernetics,
Part B: Cybernetics, Vol. 40, No. 4, 1034–1049, Aug. 2010. @ 2010 IEEE)
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2.1 Discriminative Approaches

Discriminative approaches tend to directly recover the body configuration from vi-
sual inputs by learning an input–output mapping from training data. The major chal-
lenge is to handle the occlusion, ambiguity and uncertainty of visual data due to the
variability of pose, view and shape. There are two major issues, the feature repre-
sentation and the inference algorithms.

2.1.1 Feature Representation

The feature representation is required to be distinctive and informative enough. Pre-
vious methods have successfully demonstrated few powerful image descriptors, like
shape contexts [2, 59], the histogram of gradient (HOG) [52], the scale invariant fea-
ture transform (SIFT) [35] and its variants like block of SIFT features and histogram
of SIFT features [61], the bag-of-words [45] etc. These features can be obtained
from block-wise statistical analysis from various visual observations, like colors,
edges and silhouettes. Further, a set of hierarchical coarse-to-fine image descriptors
are employed to characterize the variability of scale, depth and deformation. For
example, the multilevel spatial blocks (MSB) method [26] is composed of various
block sizes of SIFT descriptors. Above descriptors can be effective at estimating
3D human poses in discriminative methods but they may not be applicable to the
generative approaches due to the difficulty of feature reconstruction.

2.1.2 Inference Algorithms

The inference algorithm can be loosely classified as exemplar-based or learning-
based approaches [50]. The exemplar-based methods [22, 39, 47, 49] have a prela-
beled database including both image descriptors and 3D poses. The goal of inference
is to search for the most visually similar example or n closest examples for pose in-
terpolation. These methods usually require a large set of training data to densely
sample the pose space. The learning-based approaches aim at learning a model to
bridge the gap between image descriptors and poses. Modeling image descriptors
is difficult because it often produces multi-modal conditional distributions or one-
to-multiple mappings. The regression model is an effective discriminate approach,
especially the nonlinear regression models like neural network [53], the relevance
vector machine (RVM) [1, 2], etc. Considering the one-to-multiple mapping prob-
lem, the random tree method [52] and mixture of experts (MoE) method [26, 59, 62]
are employed and reached promising results. Specifically, the random tree approach
is a statistical method based a learnt hierarchical tree structure. The MoE provides
a multi-value regression model and its estimation is an intelligent combination of
several individual experts. In [62], a discriminative graphical model with a tempo-
ral chain structure was proposed where density propagation rules were derived for
Bayesian inference.
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2.2 Generative Approaches

Generative approaches involve explicit models to explain the underlying visual and
kinematic data via a few latent variables by which the motion/pose can be inferred.
Our discussion below will focus on four major components in most generative ap-
proaches, as shown by Fig. 1.

2.2.1 Visual Observations

Visual observations are image descriptors extracted from image sequences for hu-
man body representation, including silhouettes, edges, colors and their combina-
tions [50]. Silhouettes [9, 16, 19, 25, 41, 63] and edges [7, 44, 58] can be extracted
efficiently from static background. Silhouettes are robust to color or texture varia-
tions of the human body but may be sensitive to the background noise or the shadow
effect. Further analysis on extracted silhouette usually can provide richer represen-
tation, like level-sets method in [14] and radian distance function in [59]. Edge
extraction may have some difficulties in cluttered background. Color [51, 57] can
also be used to represent individual body parts, but self-occlusion may impose some
problems. The combination of multiple visual cues [23, 48, 73] proves to be useful.
In our research, we chose silhouette-based gait representation due to its robustness
and simplicity.

2.2.2 Human Shape Models

Human shape models provide important shape priors to evaluate visual observations
for pose/motion estimation, including 2D/3D shape models, 3D body scan models,
and 3D computer models. Specifically, 2D shape models [27, 73] use rectangles or
ellipses to approximate each body part that can be adjusted by a couple of param-
eters but may be limited to deal with complex shapes and self-occlusion. The pa-
rameters of each body part usually are predetermined or estimated off-line for better
estimation results. 3D shape models [10, 23, 41, 48, 58] define the human body as
an assembly of several rigid segments (i.e., cylinders or cuboid), each of which has
maximum three degree-of-freedoms (DOFs). A 3D body scan model from a laser
scanner can be subject specific [18, 54] or general enough to handle various body
shapes [4, 42, 59]. For example, the SCAPE is a data-driven human shape model
that can span variation in both shape and pose [3]. Usually, using this model re-
quires multiple cameras for accurate and robust estimation. 3D computer models
[2, 16, 19, 63] are very cost-effective and can be used for training data generation.
Although each one is subject specific, multiple models can be used together to im-
prove shape modeling even under a single camera [16]. Our research involves five
computer models.
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2.2.3 Inference Algorithms

The inference process aims to find the optimal solution (including both motion and
shape) that best explains visual observations. The top–down approaches [10, 27, 28]
match the 2D projection of a 3D body part with visual observations, or called
“analysis-by-synthesis”. The bottom–up ones [51, 57, 58] search for all body parts
and assemble them into a human body for motion/pose estimation, and they may
not need manual initialization. The hypothesis tracking can draw samples (or pre-
dictions) based on previous estimation and incorporate the temporal prior between
poses or the spatial prior between parts for pose estimation. For example, the particle
filter-based tracking algorithms [10, 48] are often used for inference which involve
a dynamic model to predict a new pose [34] or the next part location [7]. Moreover,
MCMC sampling can be embedded in the particle filter to further improve particle
generation [31].

2.2.4 Human Motion Models

Motion models provide an important kinematic prior for generative models. Graphic
model-based approaches represent the spatial and temporal priors of body parts by
learning from a set of labeled images [27] or motion capture data [57, 58]. Physi-
cal model-based approaches [54, 71] incorporate various kinematic/dynamic con-
straints of body movements into the inference process. They may not need any train-
ing data, but a detailed physical model is hard to obtain which may also impose some
challenges for inference due to the high-dimensional nature of the model. For exam-
ple, the methods in [6–8] mainly focus on lower-body motion. Dimension reduction
(DR)—based methods try to explore the low-dimensional intrinsic structure of hu-
man motion by learning from either kinematic or visual data that can be represented
by a few latent variable and used for motion modeling.

Our research is focused on DR-based motion modeling. There are two major
DR approaches, i.e., deterministic and probabilistic ones. The former one includes
LLE [55] and Isomap [64] that can generate a latent space without providing a map-
ping function between the latent space and the data space. The latter one includes
the Gaussian process latent variable model (GPLVM) [29] and its variants, such
as Gaussian process dynamical models (GPDM) [38, 66, 72] and Back Constrained
GPLVM [20, 30], which can learn not only the latent space but also the mapping
function. In most DR methods, a pose manifold is often involved that captures the
pose variability of a particular motion, and it is usually a 1D closed loop due to the
cyclic nature of a gait.1

1There are several names in the literature for this concept, including the kinematic manifold [34],
the gait manifold [15], or the pose latent space [19].
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2.2.5 Single Pose Manifold

The pose manifold can be learnt either from visual observations (e.g., silhouettes)
by LLE, [14, 32] or from kinematics data (i.e., motion capture data) by GPLVM
or its variants, [13, 20, 65, 66, 68]. The kinematic pose manifold provides an accu-
rate dynamic model for part-based body tracking where part-level shape modeling
is needed and may have some difficulty due to the complexity of body parts. On the
other hand, the visual pose manifold offers a direct way to generate visual hypothe-
ses for likelihood computation, but it faces some challenges due to the one-to-many
mapping problem as well as the view variability. For example, a view-dependent
pose manifold was proposed in [14] where the view is treated as a discrete variable.

2.2.6 Dual Pose Manifolds

To take advantages of both the kinematic and visual pose manifolds, dual pose man-
ifolds were proposed for video-based pose/motion estimation [19, 25, 63]. Different
DR methods were used to learn the kinematic and visual pose manifolds from the
kinematic and visual data, respectively. Especially, a mapping function is needed
between two pose manifolds by which the visual data can be associated with the
kinematic data for motion estimation.

2.2.7 Shared Pose Manifold

In [16, 33], a torus-shape manifold is designed for joint view-pose modeling that are
shared in both the kinematic and visual spaces. Two mapping functions are needed
to map both kinematic and visual data onto the same torus manifold via radial ba-
sis functions (RBFs). Although this approach does not involve manifold learning, it
provides promising pose tracking along with continuous view estimation. In [34],
a kinematic pose manifold is first learned via LLE that is also shared by the vi-
sual data using RBF-based mapping. Additionally, a continuous view manifold was
proposed to supports smooth view estimation along with pose estimation.

2.3 Our Research

We focus on generative approaches, because we want to develop a general gait mod-
eling framework. In most DR-based methods, the same subject is used for train-
ing and testing, and our research aims at estimating the kinematics of an unknown
gait. Specifically, our research is inspired by the nonlinear tensor analysis approach
proposed in [34] that combines manifold learning with multi-linear analysis and
provides a compact generative model to represent a series of gait appearances by
multiple factors, including pose, view, and shape.
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3 Research Overview

3.1 Dual Gait Generative Models

We propose the kinematic gait generative model (KGGM) and the visual gait gen-
erative model (VGGM), for gait representation in the kinematic and visual spaces,
respectively. Specifically, KGGM represents gait kinematics by two latent variables,
pose and gait, where the pose variable defines a specific body configuration during
a gait (or a gait phase) and the gait variable represents a specific walking motion.
VGGM represents gait appearances by four latent variables, pose, gait, view, and
shape, where the pose and gait variables are similar to the ones in KGGM and the
view and shape variables reflect the view angle and the appearance of the subject,
respectively. Both of KGGM and VGGM can be learnt from a set of training data by
extending the nonlinear tensor decomposition method proposed in [34]. The learn-
ing of KGGM requires a set of gait motion data (or gait kinematics) acquired by a
motion capture system. The same set of motion data is also used to generate a set of
gait animations by commercial software that are used for learning VGGM. KGGM
and VGGM are fully temporally synchronized by sharing the same pose variable
during model learning, and they are the cornerstone of this research.

3.2 Gait Manifolds

In this research, we advocate the concept of gait manifold that captures the gait vari-
ability among different individuals and could span a low-dimensional latent space
to represent all human gaits. Additionally, we also propose whole-part gait mani-
folds for gait modeling at both the whole and part levels. Correspondingly, KGGM
and VGGM will involve three gait variables, one for the whole-level and two for
the part-level (Fig. 3). A gait manifold can be learned from a set of representative
training gaits, and it is defined at the gait variable of either KGGM or VGGM by
which we can synthesize a new gait in terms of its kinematics or appearances.

We will use the whole-based gait manifold as an example for illustration. As
shown in Fig. 2, given the motion data of five training gaits (Gaits 1–5), we can
represent them in a low-dimensional (e.g., 2D) latent space where each gait is rep-
resented by a 2D vector (or gait vector). By treating the five gait vectors as the
anchor points, we can span a 1D closed-loop gait manifold via curve fitting, where a
new gait (Gaits A or B) can by synthesized by nonlinear interpolation. We assume a
1D nonlinear structure due to the simplicity of manifold generation, and the reason
of using a closed-loop is to ease the inference process. In this work, we propose a
new manifold learning technique that yields one whole-based and two part-based
gait manifolds for part-whole gait modeling, by which KGGM and VGGM can be
integrated via a non-linear manifold mapping function.
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Fig. 2 The illustration of gait manifold used for gait synthesis or interpolation. (From X. Zhang
and G. Fan, Dual Generative Gait Models for Human Motion Estimation from a Single Camera,
IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 40, No. 4, 1034–1049, Aug.
2010. @ 2010 IEEE)

Fig. 3 The algorithm flow: (1) gait estimation via VGGM, (2) gait manifold mapping (VGGM→
KGGM), and (3) gait synthesis via KGGM

3.3 Inference for Gait Estimation

We need to estimate the underlying gait variable from observed gait appearances via
VGGM that can be further mapped to KGGM for the synthesis of gait kinematics.
The generative model fits well in the Bayesian approach, which attempts to construct
the posterior probability density function (PDF) of the states based on all state and
observation available. Here the states to be estimated are the four latent variables of
VGGM, and the observation is a series of gait appearances. We develop a particle
filter-based two-stage inference algorithm for part-whole gait estimation.
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The algorithm flow is shown in Fig. 3, where three steps are involved. The first
is gait estimation where the unknown gait is inferred from gait observations via
VGGM by using a particle filtering-based inference algorithm where three gait vari-
ables (one whole-level and two part-level) are estimated. The second is gait manifold
mapping that maps three gait variables from VGGM to KGGM via the non-linear
manifold mapping. The third is gait synthesis by KGGM that yields the estimated
gait kinematics either in whole or as two parts.

4 Dual Gait Generative Models

The learning of KGGM and VGGM is essentially a DR process, where we extend
the nonlinear tensor decomposition method proposed in [34], as shown in Fig. 4.

4.1 Kinematic Gait Generative Model (KGGM)

The gait kinematics can be represented in different ways, like the 3-D positions of
all joints or the angles between two adjacent joints. In order to reduce the effect of
skeleton variability, gait kinematics are represented by a sequence of relative Euler
angles between two adjacent joints. To learn KGGM, we need an universal pose
manifold shared by different gaits based on which we can develop a unified gait

Fig. 4 The co-learning of KGGM and VGGM
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representation. However, the pose manifold varies from gait to gait. Inspired by the
conceptual torus manifold proposed in [33], we define a circular-shaped conceptual
manifold in a 2-D space to represent a general pose variation in one gait cycle. The
learning of KGGM is shown in Fig. 4(the left side).

Let Z = {z(i,q)|i = 1, . . . ,Ng, q = 1, . . . ,Np} denote the set of Ng training gaits
of Np poses, where z(i,q) ∈ R

k encodes the k-dimensional kinematics for pose q of
gait i. All poses are denoted by a set of 2-D coordinates, {pq ∈ R

2, q = 1, . . . ,Np}
uniformly sampled along the pose manifold. A nonlinear mapping function from pq

to z(i,q) (R2 → R
k) can be learnt via a generalized radial basis function (RBF) as,

z(i,q) = Biψ(pq), (1)

where ψ(·) is a nonlinear kernel function defined as

ψL(pq) = [
φ
(
pq, c1

p

)
, . . . , φ

(
pq, cL

p

)]
, (2)

where φ(·, ·) is a radial basis function (here we use Gaussian) and {cl
p|l = 1, . . . ,L}

are kernel centers along the pose manifold. Bi represents a k × L linear mapping
matrix that encodes the individuality of training gait i.

All gait-dependent mapping matrices {Bi |i = 1, . . . ,Ng} can be stacked as a ten-
sor and the high order singular value decomposition (HOSVD) [69] can be applied
to decompose the tensor into two independent variables, i.e., the pose and gait. Then
the generative model is defined as

z(i,q) = A ×1 κ i ×2 ψ(pq), (3)

where A is called core tensor (k × Ng × L) governing the interaction between two
variables; κ i (Ng × 1) represents gait i and ×j denotes mode-j tensor product.
Given a gait coefficient, this KGGM can synthesize the kinematics of an arbitrary
pose.

4.2 Visual Gait Generative Model (VGGM)

We use commercial 3D animation software MotionBuilder to generate a set of gait
animations, which involves multiple 3D human models and the same set of gait
kinematic data used for learning KGGM. Each human model can be driven by Ng

gait motions to produce different animations each of which can be recorded under
different cameras views. Specifically, we use a global feature-free representation to
represent gait appearances that can be obtained by the signed distance transform of
the body silhouette extracted from an image [15]. The learning of VGGM is similar
to that of KGGM but with more factors involved, as shown in Fig. 4 (the right side).

Let Y = {y(k,j,i,q)|k = 1, . . . ,Nv, j = 1, . . . ,Ns, i = 1, . . . ,Ng, q = 1, . . . ,Np},
represent the set of training gait appearances, where y(k,j,i,q) ∈ R

d is the d-
dimensional appearance of gait i, pose q , shape j , and view k; and Nv , Ns , Ng ,
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and Np are the numbers of views, shapes, gaits, and poses, respectively. By sharing
the same pose manifold with KGGM, we can represent a gait appearance by four
factors, i.e., pose, gait, view and shape by assuming they are independent as follows:

y(k,j,i,q) = C ×1 vk ×2 sj ×3 νi ×4 ϕ(pq), (4)

where C is the core tensor (d × Nv × Ns × Ng × Np) governing the interaction
between four variables; ϕ(·) is a nonlinear kernel function similar to the one in (2);
vk , sj , νi and pq represent the view, shape, gait and pose, respectively. The first
two are unique for VGGM, and the latter two have a close relationship with their
counterparts in KGGM. Similar to [34], we can learn a view manifold from {vk|k =
1, . . . ,Nv}. Given a gait vector, a view coefficient along the view manifold, and a
shape coefficient, this VGGM can synthesize the gait appearance of an arbitrary
pose.

4.3 Two-Layer KGGM and VGGM

To support more detailed gait modeling, we can decompose one gait into two part-
level gaits, a lower-body one and an upper-body one, according to the “hip” point.
The hip point is well defined in both gait kinematics (the hip joint) and gait appear-
ances (the image center) during the learning of KGGM and VGGM, making this
part-based gait representation plausible and convenient. Therefore, both KGGM and
VGGM can be added with two more part-level gait variables. It is worth mentioning
all gait variables lead to a full gait synthesis by either KGGM or VGGM, while only
part of it (either the lower-body or upper-body) is used for gait representation when
a part-level gait variable is considered.

Since KGGM and VGGM share the same pose manifold during the learning
process, the pose variable in (3) and that in (4) are equivalent and identical. However,
three gait variables (one whole-based and two part-based) in KGGM and those in
VGGM in (4), are quite different, since they represent the individuality of a specific
training gait in the kinematic and visual spaces, respectively. The two generative
models are not ready to be integrated together yet due to the different nature of their
gait variables. Also, the gait variables defined in (3) and (4) corresponds to a set
of gait vectors associated with the training gaits. In order to represent an unknown
gait via valid gait interpolation, we propose the concept of gait manifold that is
discussed in next section by which KGGM and VGGM can be integrated together.
Thus the two-layer integrated VGGM-KGGM allows us to estimate the kinematics
of an unknown gait at both the whole and part levels, as shown in Fig. 5, where gait
kinematics and appearances are reconstructed by using KGGM (lower-half of the
figure) and VGGM (upper-half of the figure) respectively.
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Fig. 5 Illustration of the connections between two-layer dual generative models. The pose mani-
fold is shared between KGGM and VGGM to temporally synchronize two generative models. The
connections between part-whole gait manifolds respectively are used for the physical gait synchro-
nization. Hence, the part and whole visual silhouettes and kinematic skeletons can be reconstructed
by (4) and (3) using corresponding latent variables from VGGM and KGGM respectively. (From
X. Zhang, G. Fan, and L. Chou, Two-Layer Gait Generative Models for Estimating Unknown
Human Gait Kinematics, in Proc. the 2nd International Workshop on Machine Learning for Vi-
sion-Based Motion Analysis (MLVMA’09), in conjunction with ICCV2009, Japan, Oct. 2009. @
2009 IEEE)

5 Gait Manifolds

We first discuss the concept of gait manifold as well as a new manifold learning
technique. Then we introduce the term of gait manifold topology where we com-
pare three distance functions to compute the dissimilarity between two gaits. Each
distance function leads to a specific manifold topology as well as a specific gait man-
ifold. Third, we discuss part-whole gait modeling via one whole-based gait mani-
fold and two part-based gait manifolds. Finally, two different manifold mappings
are presented by which VGGM and KGGM can be integrated.

5.1 Gait Manifold Learning

The concept of gait manifold plays an important role in our research by which a
new gait can be interpolated from training gaits via VGGM or KGGM. Given a
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Fig. 6 Illustration of various
gait manifolds with different
topologies in the tensor
coefficient space

set of training gaits represented in a latent space, e.g., the tensor coefficient spaces
defined by (3) and (4), each training gait corresponds to a gait vector. We want to
span a continuous gait manifold via curve fitting where all training gait vectors are
treated as anchor points. We postulate two factors for the gait manifold. One is that
it should have the best local smoothness to ensure effective and valid nonlinear gait
interpolation, and the other is that it should be a 1D closed-loop to support efficient
and continuous inference for gait estimation. In this work, we propose a two-step
manifold learning technique to create a smooth closed-loop gait manifold. First, we
will determine a gait manifold topology that defines a specific ordering relationship
among all training gaits, and then accordingly, we use the spline-fitting method to
connect all training gait vectors into a continuous closed-loop gait manifold in the
tensor coefficient space. To ensure the best smoothness along the gait manifold,
we define the optimal gait manifold topology to be the “shortest-closed-path” that
travels through all training gaits under a certain distance metric. The key question is
how to define an appropriate “distance” function between two training gaits. Under
different distance functions, we will have different manifold topologies to connect
all training gaits, leading to different gait manifolds, as shown in Fig. 6.

Moreover, we are interested in a part-whole gait representation that involves both
whole-based and part-based gait manifolds. Rather than characterizing every limb,
the “part” here is loosely defined as the upper-body and lower-body. These two parts
can be easily divided along the hip that is well defined in gait kinematics and is al-
ways in the image center of gait appearances. Therefore, we need to define different
gait manifold topologies that can reflect the dissimilarity between two gaits at both
the whole and part levels. Consequentially, we can obtain multiple gait manifolds
that reveals the intrinsic structures among training gaits with respect to the whole,
upper and lower bodies. This hybrid part-whole gait representation can take advan-
tage of the robustness of whole-level gait estimation and the accuracy of part-level
gait refinement.
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5.2 Gait Manifold Topology

Given a gait distance function G(w)(, ),2 the gait manifold topology is defined as the
shortest-closed-path to travel through all training gaits by this distance function as

T w = arg min
Q

Ng∑
i=1

G(w)(qi, qi+1), (5)

where Q = {qi ∈ [1,Ng]|i = 1, . . . ,Ng + 1, qi �= qj for i �= j ;q1 = qNg+1} (a spe-
cific order to connect Ng training gaits in a closed loop), and T w specifies the
optimal order from the shortest closed path according to the gait distance Gw(, ).
Similarly, we can obtain T u and T l which are the manifold topologies for the upper
and lower bodies with respect to G(u)(, ) and G(l)(, ) respectively,

T u = arg min
Q

Ng∑
i=1

G(u)(qi, qi+1), (6)

T l = arg min
Q

Ng∑
i=1

G(l)(qi, qi+1). (7)

Based on three manifold topologies Tw , Tu, and Tl , we can create three gait mani-
folds by connecting all training gait vectors in the tensor coefficient space associated
with KGGM or VGGM, as shown in Fig. 6. It is obvious that the key issue of mani-
fold topology is to define a distance function between two gaits. In the following, we
will discuss three distance metrics, two of which can be extended to the part level
comparison. All of them will be examined in the section of experiments in terms of
their performance for gait synthesis by using KGGM.

5.2.1 Euclidean Distance Between Gait Vectors

In either KGGM or VGGM, we have Ng gait vectors ({κ i |i = 1, . . . ,Ng} or {νi |i =
1, . . . ,Ng}) representing Ng training gaits in the tensor coefficient space. Since gait
vectors in KGGM directly affect the performance of gait synthesis in terms of the
capability of interpolating new gait kinematics. Hence, we can use the Euclidean
distance between two gait vectors in KGGM to represent the dissimilarity between
two training gaits,3 written as:

G(1)(i, j) = D
(
κ i ,κj

)
, (8)

2The superscripts w, l, and u denote the gait distances for the whole, lower and upper bodies.
3Since the decomposed vector is normalized and orthogonal, we discard the last two dimension
data for the distance computation.
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where G(1)(i, j) is the distance between gait i and gait j according to their gait
vectors κj and κ i in the tensor coefficient space, and D is the Euclidean function.
This distance function is robust to noise because it is defined on the gait variable in
the latent space. However, it is unable to measure the gait similarity at the part-level.

5.2.2 Distance Between 3D Joint Positions

We can also define a distance function directly on the kinematic data of two gaits,
which can reflect the gait dissimilarity at both whole and part levels. Given Ng

training gaits, each gait has Np poses and each pose has k body joints that can be
divided into two subsets corresponding to the lower-body and upper-body (Fig. 7).
As discussed in Sect. 4.1, the kinematics data are represented as the relative Eu-
ler rotation angle of each joint. We convert them into 3D joint positions by us-
ing a standard skeleton to minimize the effect of skeleton variability. The 3D
kinematics of pose p in gait i of is represented by z(i,q) = {z(i,q)

u , z(i,q)
l } where

z(i,q)
u and z(i,q)

l are the 3D joint positions of the upper-body and lower-body, re-

spectively. We use Zi = {z(i,q)|q = 1, . . . ,Np}, Zi
u = {z(i,q)

u |q = 1, . . . ,Np}, and

Zi
l = {z(i,q)

l |q = 1, . . . ,Np} to present the kinematics of the whole, upper, and lower
bodies, respectively. Correspondingly, three distance functions can be obtained to
quantify the kinematic dissimilarity between gaits i and j at the part-whole levels
as,

G(2)
w (i, j) = D

(
Zi ,Zj

)
, (9)

G(2)
u (i, j) = D

(
Zi

u,Zj
u

)
, (10)

G(2)
l (i, j) = D

(
Zi

l ,Zj
l

)
, (11)

where D is the Euclidean distance function. Although this distance directly reveals
the kinematic dissimilarity between two gaits in terms of the 3D positions of all
joints, it does not capture the dynamics of each joint explicitly. Also, it may be
prone to noise due to the high-dimensional nature of 3D joint positions.

5.2.3 Fourier Analysis of Joint Angles

As defined in Fig. 7, a joint in the skeleton has 1, 2, or 3 DOFs, and each DOF
can be characterized by a sequence of rotation angles for a complete walking cycle.
In [12] and [74], Fourier analysis is used to extract some dominant components
from the rotation angle sequences of two lower-body joints, knees and ankles, for
gait recognition, which are derived from the side-view of an image sequence of
walking. This method was shown effective to capture the unique dynamics of a gait.
In this work, we extend this idea to represent the gait kinematics of all joints in the
3D space. An illustration of a sequence of gait kinematics (top) and the plots of the
rotation angle of four joints (one DOF only) (bottom) are shown in Fig. 8.
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Fig. 7 The skeleton system
with all 18 joints defined.
The number in the
parenthesis indicates
the degree-of-freedom (DOF)
of a joint. The upper and
lower bodies are divided by
the hip joint

Fig. 8 Illustration of a gait sequence with the plots of the rotation angles of four joints

Given training gait i of N
′
p poses, the nth DOF (n = 1, 2, or 3) of joint k is de-

noted by a sequence of rotation angles Θi
k,n = {θ(i,q)

k,n |q = 1, . . . ,N
′
p}. Gait i can be

represented by a matrix Φi

Nr×N
′
p

, where Nr is the summation of DOFs of all joints

and each row is a sequence of rotation angles of a joint along one DOF. Similar
to [12] and [74], we use the discrete fourier transform (DFT) to extract top R DFT
components for each row, and we adopt the phase-weighted magnitude to represent
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each rotation sequence in the frequency-domain. In the following, we omit the in-
dexes of gait (i), joint (k) and DOF (n), for the sake of easiness, and we use Θ to
represent a sequence of rotation angles of a joint along one DOF.

Let Θ ←→DFT Ψ (ejω) be the DFT pair of a sequence of rotation angles, then
the R-order phase-weighted magnitude x is defined as

x =

⎡
⎢⎢⎢⎣

x1
x2
...

xR

⎤
⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎣

|Ψ (ejω1)| · argΨ (ejω1)

|Ψ (ejω2)| · argΨ (ejω2)
...

|Ψ (ejωR )| · argΨ (ejωR )

⎤
⎥⎥⎥⎦

T

, (12)

where |Ψ (ejωr )| and argΨ (ejωr ) are the magnitude and phase of the r th DFT com-
ponent. R is set to be 3 in this work. Then we can construct a compact frequency-
domain representation of gait i as Xi

Nr×R = [x1;x2; . . . ;xNr ] where each row is
a 3-order phase-weighted magnitude defined in (12). Similarly, we can define the
frequency-domain representations for the upper-body and lower-body as Xi

u and
Xi

l , which consider the joints in the upper-body and those in the lower-body, respec-
tively. Hence, the gait distances between two training gaits for the whole, upper and
lower bodies are defined as

G(3)
w (i, j) = D

(
Xi ,Xj

)
, (13)

G(3)
u (i, j) = D

(
Xi

u,Xj
u

)
, (14)

G(3)
l (i, j) = D

(
Xi

l ,Xj
l

)
. (15)

5.3 Part-Whole Gait Manifolds

As shown in (3) and (4), each training gait can be represented by a gait vector in
KGGM or VGGM. Given the gait topology defined as in Sect. 5.2, for Ng training
gait vectors {κ i∗|i = 1, . . . ,Ng} in the tensor coefficient space of KGGM defined in
(3), we can generate one whole-based and two part-based gait manifolds by con-
necting all training gaits according to their individual topology, T w , T u, and T l ,
via the spline fitting technique, as defined below:

Mw
κ = S

(
κ Tw(i)∗ |i = 1, . . . ,Ng + 1

)
,

Mu
κ = S

(
κ Tu(i)∗ |i = 1, . . . ,Ng + 1

)
,

Ml
κ = S

(
κ Tl (i)∗ |i = 1, . . . ,Ng + 1

)
,

(16)

where S is the spline fitting function that passes through Ng gait vectors by fol-
lowing a given topology. For simplicity, we use a 1D parameter h ∈ [1,Ng + 1]
to denote an arbitrary gait vector along a gait manifold. For example, Mw

κ (h) is
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Fig. 9 Part-whole gait
manifold topologies and
corresponding gait manifolds
associated with KGGM and
VGGM. Each number
(above) indicates a specific
training gait with Np poses.
(From X. Zhang, G. Fan, and
L. Chou, Two-Layer Gait
Generative Models for
Estimating Unknown Human
Gait Kinematics, in Proc. the
2nd International Workshop
on Machine Learning for
Vision-Based Motion
Analysis (MLVMA’09), in
conjunction with ICCV2009,
Japan, Oct. 2009. @ 2009
IEEE)

a specific gait vector along Mw
κ . When h =∈ {1,2, . . . ,Ng+1}, it corresponds to a

training gait. Otherwise, it represents a new gait vector that can be used to synthesize
the kinematics of an unknown gait via KGGM.

Similarly, we can obtain three different gait manifolds from VGGM by con-
necting Ng training gait vectors, {νi∗|i = 1, . . . ,Ng} defined in (4), according
to T w , T u, and T l , which are represented by Mw

ν , Mu
ν , and Ml

ν . The same as
before, Mw

ν (h) is a specific gait vector along Mw
ν . When h is an integer, it corre-

sponds to a given training gait. Otherwise, it denotes a new gait vector that can be
used to synthesize the appearances of an unknown gait via VGGM. The part-whole
gait manifolds are illustrated in Fig. 9, where the top box shows three different
manifold topologies pertaining to the upper, whole and lower bodies, and the bot-
tom presents three gait manifolds in each of KGGM and VGGM. In the following,
we refer to those gait manifolds generated from KGGM as kinematic gait manifolds,
and those from VGGM as visual gait manifolds.

5.4 Manifold Mapping Between KGGM and VGGM

Figure 10 demonstrates how KGGM and VGGM are used for gait estimation via
manifold mapping. The gait variable is first estimated along Mν in VGGM (Step 1)
where both the observed and synthesized gait appearances are involved in the par-
ticle filter-based inference process (Step 2). Then the estimated gait variable is
mapped to the one along Mκ in KGGM via manifold mapping (Step 3), and the
underlying gait kinematics can be synthesized by KGGM according to (3) (Step 4).

Basically, Mκ and Mν are defined on the gait variable in KGGM and that in
VGGM, respectively. The manifold mapping between Mκ and Mν will naturally
lead to the integration of KGGM and VGGM via their gait variables. Specifically, we
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Fig. 10 Illustration of the integration of KGGM and VGGM by a mapping function between the
two gait manifolds for gait estimation and synthesis

propose two manifold mapping functions, i.e., the nonlinear kernel-based mapping
and the similarity-preserving mapping.

5.4.1 Nonlinear Mapping Functions (MAP-1)

We can develop a nonlinear RBF-based mapping function (MAP-1) from visual gait
manifolds in VGGM to kinematic gait manifolds in KGGM as,

κ i = F
(
νi

) =
J∑

j=1

ωjζ
(
νi − cj

ν

)
, (17)

where F (·) maps νi ∈ Mν to κ i ∈ Mκ for each training gait; {cj
ν |j = 1, . . . , J }

are the kernel centers along Mν ; and ζ(·) is a Gaussian function. Given a new gait
vector that is between two training gaits along ν′ ∈ Mν , we can map it to Mκ as:

κ ′ = arg min
κ

{
D

(
F (ν′),κ

)|κ ∈ Mκ

}
, (18)

where κ ′ is the corresponding gait variable in KGGM. After mapping ν′ into gait
space of VGGM, arg minκ finds the closest gait vector κ ′ along gait manifold Mκ .
We can use the same method to develop two part-level manifold mappings, one for
lower-body gait manifolds and one for upper-body gait manifolds.

5.4.2 Similarity-Preserving Mapping Functions (MAP-2)

To improve the two-step mapping process of MAP-1, we also propose a similarity-
preserving mapping method (MAP-2) that avoids any explicit mapping function. We
assume the visual kinematic manifold in VGGM and the kinematic gait manifold
in KGGM have the same nonlinear interpolation property. Then we would like to
preserve the distance ratio between the new gait vector and its two nearest training
gait vectors during manifold mapping, as shown in Fig. 11.

Given a new gait vector Mw
ν (τ ) in VGGM, we can find its two nearest training

gaits along Mw
ν , i.e., Mw

ν (m) and Mw
ν (n), which can be directly mapped to Mw

κ ,
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Fig. 11 The similarity-
preserving mapping between
KGGM and VGGM

i.e., Mw
κ (m) and Mw

κ (n). Then we can find the corresponding new gait vector in
KGGM, i.e., Mw

κ (τ ), by ensuring that the ratio of its distances to the two nearest
training gait vectors along Mw

κ are preserved, i.e.,

U (Mw
ν (τ ), Mw

ν (m)|Mw
ν )

U (Mw
ν (τ ), Mw

ν (n)|Mw
ν )

= U (Mw
κ (τ ), Mw

κ (m)|Mw
κ )

U (Mw
κ (τ ), Mw

κ (n)|Mw
κ )

, (19)

where U (·|·) is a nonlinear distance function defined along a given manifold. Simi-
larly, we can obtain the mapping relationships for Mu

ν ↔ Mu
κ and Ml

ν ↔ Ml
κ for

upper-body and lower-body gait manifolds.

5.4.3 MAP-1 vs. MAP-2

Essentially, MAP-1 considers the global manifold mapping that associates all train-
ing gaits in VGGM with those in KGGM via one RBF-based mapping function,
while MAP-2 deals with the local manifold mapping that only associates the two
neighboring training gaits in VGGM with their counterparts in KGGM. No explicit
mapping function is involved in MAP-2. Also, MAP-2 was found to be slightly
better than MAP-1 in practice. Therefore, we chose MAP-2 in our implementation.

6 Inference Algorithms

This section discusses three inference issues. (1) How to formulate gait estimation as
a sequential inference problem via graphical models? (2) How to cope with the dy-
namic nature of the gait variable in a long sequence for whole-based gait estimation?
(3) How to conduct part-basedpart-based gait estimation via two-stage inference?

6.1 Graphical Models

We employ a graphical model to integrate all related variables along with their con-
ditional dependencies, as shown in Fig. 12. The key parameters to be estimated are
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Fig. 12 The graphic model
for gait tracking and
estimation. (From X. Zhang,
G. Fan, and L. Chou,
Two-Layer Gait Generative
Models for Estimating
Unknown Human Gait
Kinematics, in Proc. the 2nd
International Workshop on
Machine Learning for
Vision-Based Motion
Analysis (MLVMA’09), in
conjunction with ICCV2009,
Japan, Oct. 2009. @ 2009
IEEE)

two gait variables i.e., κ i in KGGM (3) and νi in VGGM (4). VGGM specifies four
latent variables, the pose pt , view vt , shape st , and gait νt , all of which have to be
estimated. According to Bayes’ rule, we can recursively estimate the posterior for
time step t and latent variables are estimated via maximum a posterior probability
(MAP) as

x̂t = arg max
xt

p(xt |yt−1)p(yt |xt ), (20)

where xt = [pt ,vt , st ,νt ] encapsulates the four latent variables; p(xt |yt−1) specifies
the prediction based on previous observation yt−1, and p(yt |xt ) defines the obser-
vation model that involves the comparison between the observed gait appearance
yt and the one synthesized by VGGM given four hypothesized latent variables, as
defined below,

p(yt |xt ) = p(yt |pt ,vt , st ,νt ) ∝ exp−‖yt − ỹt‖2

2σ 2
, (21)

where yt is the observed gait appearance represented by a signed distance transform
defined in [15]; ỹt is synthesized by VGGM according to (4); ‖ · ‖2 denotes the
mean square error, and σ 2 controls the sensitivity of observation evaluation.

Since the four variables are independent, we can approximate p(xt |yt−1) in (20)
by the product of the prior distribution of each latent variable given previous state
estimation, that is,

p(xt |yt−1) ≈ p(pt |xt−1)p(vt |xt−1)p(st |xt−1)p(νt |xt−1), (22)

where four dynamic models are involved for four latent variables. Specifically, three
of them are constrained by their 1D nonlinear manifold, i.e., the pose manifold
for pt , the view manifold for vt , and the visual gait manifold (i.e., M∗

ν ) for νt . The

shape variable st = [w1
t , . . . ,w

Ns
t |∑Ns

j=1 w
j
t = 1] represents the linear combinations

coefficients of Ns prototype shapes specified by {sj |j = 1, . . . ,Ns} given in (4).



Video-Based Human Motion Estimation by Part-Whole Gait Manifold Learning 237

Therefore, we use a constant speed dynamic model for pt defined along the circular-
shaped pose manifold, and a random walk to propagate the view samples along the
view manifold. We also use a random walk to sample the shape variable in the tensor
coefficient space. Regarding ν, we need a special dynamics to sample it along the
gait manifold due to its segmental variability that will be discussed shortly.

For simplicity, we can sequentially estimate four latent variables one by one in
the order of their robustness, i.e., pose → view → shape → gait → pose → view →
shape. In other words, (20) is decomposed into four steps where the four latent vari-
ables are estimated individually and sequentially. The pseudo code of the inference
algorithm is listed in Algorithm 1 below. For each variable, we resort to the MCMC
sampling approach to rejuvenate the sample distribution for state estimation in each
time step. Basically, the inference algorithm is not sensitive to the parameter initial-
ization. The pose and view variables need a rough initial estimation to reduce the
ambiguity introduced by a single camera settings. The shape and gait initial param-
eters can be randomly chosen.

Algorithm 1 Inference algorithm
1: Given observations yt and previous state estimation xt−1 (for the first frame,

p1 and v1 are determined by a rough estimation, and ν1 and s1 are randomly
chosen)

2: Predict pose p′
t , view v′

t , shape s′
t and gait ν′

t according to their own dynamic
models

3: Update pose p′′
t using MCMC sampling given v′

t , s′
t , ν′

t

4: Update view v′′
t using MCMC sampling given p′′

t , s′
t , ν′

t

5: Update shape s′′
t using MCMC sampling given p′′

t , v′′
t , ν′

t

6: Estimate gait ν̂t as discussed in Sect. 6.2 and Algorithm 2
7: Refine pose p̂t using MCMC sampling given v′′

t , s′′
t , ν̂t

8: Refine view v̂t using MCMC sampling given p̂t , s′′
t and ν̂t

9: Refine shape ŝt using MCMC sampling given p̂t , v̂t and ν̂t

(Note: p′
t , p′′

t , p̂t represent the predicted, updated, and refined pose variables, respectively.
The same notation applies to other variables.)

6.2 Whole-Based Gait Estimation

In practice, we observed that in a long sequence, the gait variable may exhibit sig-
nificant variations, especially when the subject is not walking straight. Usually, the
gait variable is dominated by one value within each half-cycle, and it may jump
to another value (along the gait manifold) in the next half-cycle. We believe it is
because that the 1D gait manifold used here is a simplified representation of the un-
known gait space that is very likely to be a higher dimension one, and the continuity
in that space is not well preserved in this 1D space. Moreover, we also observed that



238 G. Fan and X. Zhang

the jump usually occurs around the contact pose when both feet are on the ground
and a new half-cycle starts. To accommodate these two factors, we propose a new
segmental jump-diffusion MCMC inference scheme (SJD-MCMC) that is embed-
ded in the particle filter for dynamic gait estimation. Specifically, jump enables the
sample generation to traverse along the gait manifold and to explore globally while
diffusion draws samples intensively in a local area of the gait manifold.

6.2.1 Segmental Modeling

We represent a gait manifold by a 2D circle in order to facilitate the inference pro-
cess. Then the gait is denoted by an angular variable ν ∈ [0,2π) that can be mapped
to the original one defined in the tensor coefficient space, i.e., ν = f(ν). For sim-
plicity, we will use them exchangeably in the following discussion. The idea of
segmental modeling allows us to control the switch between two kinds of dynam-
ics, jump and diffusion, in a probabilistic way. Especially, we define a probabilistic
model of duration prior (as shown in Fig. 13) that is a function of pose, as follows:

Pseg = β exp
−τ 2

p

2σ 2
p

, (23)

where τp is the arc distance between the current pose and the contact pose along the
pose manifold; σ 2

p controls the relative frequency of jump; β is a normalization con-
stant to let Pseg ∈ (0,1]. This model indicates how likely a jump should be triggered
given current pose estimation.

6.2.2 Mode-Based Gait Estimation

Due to the hybrid nature of the gait variable, we will use the jump-diffusion MCMC
to generate gait samples. The challenge is that the sampling space is continuous,
which is different from the traditional jump-diffusion applications where a mixed

Fig. 13 The segmental prior
model, where the pose is
defined according [24]. (From
X. Zhang and G. Fan, Dual
Generative Gait Models for
Human Motion Estimation
from a Single Camera, IEEE
Trans. Systems, Man and
Cybernetics, Part B:
Cybernetics, Vol. 40, No. 4,
1034–1049, Aug. 2010.
@ 2010 IEEE)



Video-Based Human Motion Estimation by Part-Whole Gait Manifold Learning 239

discrete-continuous state space is involved [75]. Therefore, we propose the con-
cept of mode. A mode is a local continuous model defined along the angular gait
manifold, while a set of modes cover all possible gait values. Then, jump indicates
switches among modes and diffusion exploits within a mode. Gait estimation will
involve several modes defined as

M(1,...,R) = {(
μ1, δ

2
1

)
, . . . ,

(
μR, δ2

R

)}
, (24)

where M(1,...,R) represents R modes and each mode Mr is a Gaussian function with
mean μr and variance δ2

r defined along the angular gait manifold. For an unknown
test subject, we will estimate on-line these modes from which we can draw samples
along the angular gait manifold that can be further mapped to the hypothesized
gait coefficients in the tensor space via ν = f(ν) for VGGM-based gait synthesis
defined in (4). Initially, we can define a fixed number of modes which are uniformly
distributed along the angular gait manifold with equally large variances to cover all
possible gait values. During inference, the mean and variance of some modes will
be updated, as discussed in the following.

6.2.3 Segmental Jump-Diffusion MCMC Inference

We use the Metropolis–Hasting algorithm as the inference framework that incorpo-
rates two kinds of dynamics, jump and diffusion.

• Jump At the ithe MCMC iteration, the state vector is denoted x(i) that includes
the gait sample (ν(i)), and the gait mode is (m(i)). We randomly choose a mode
m∗ ∈ [1,R] with a probability 1/R and generate a new sample ν∗ according to
Mm∗ . The proposal distribution defined is independent with ν(i) and m(i):

q
(
ν∗,m∗|ν(i),m(i)

) = N
(
ν∗;μm∗, δ2

m∗
)
. (25)

Hence, the acceptance ratio is

α = min

{
1,

p(x∗|y)N(ν(i);μm(i) , δ2
m(i) )

p(x(i)|y)N(ν∗;μm∗, δ2
m∗)

}
, (26)

where x∗ is a new version of x(i) by incorporating ν∗ as the gait sample. p(x∗|y)

is the posterior probability computed by the product of (21) and (22).
• Diffusion We randomly sample the gait variable ν∗ with a proposal distribution

as

q
(
ν∗|ν(i)

) = N
(
ν∗;ν(i), δ2

d

)
, (27)

where δ2
d is the diffusion variance, that is decreased in a simulated annealing way.

The acceptance ratio is

α = min

{
1,

p(x∗|y)N(ν(i);ν∗, δ2
d)

p(x(i)|y)N(ν∗;ν(i), δ2
d)

}
= min

{
1,

p(x∗|y)

p(x(i)|y)

}
. (28)
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The pseudo code of SJD-MCMC is presented in Algorithm 2 that is the core of
our inference algorithm and embedded in each time step of the particle filter.

Algorithm 2 Segmental jump-diffusion MCMC for whole-based gait estimation

1: Initialization: Let the initial MCMC sample ν
(0)
t be the MAP estimated gait

variable from previous time step and keep the previous gait mode, i.e.,
ν

(0)
t = ν̂t−1 and m

(0)
t = mt−1

2: Compute the segmental probability Pseg using (23)
3: for i = 1, . . . , (B + MN) (N is the number of samples, B is the length of the

burn-in period and M is the length of the thinning interval) do
4: Randomly sample γ ∼ U [0,1]
5: if Pseg ≥ γ then
6: Jump Sample the mode variable m∗ ∈ [1,R], and the gait variable ν∗

according to (25). Compute the acceptance ration α using (26)
7: else
8: Diffusion Sample ν∗ according to (27). Compute the acceptance ratio α

using (28)
9: end if

10: Randomly sample η ∼ U [0,1]
11: if α ≥ η then
12: Accept ν∗ as ν

(i+1)
t = ν∗

13: if ν∗ is generated by diffusion then
14: Decrease diffusion variance δ2

d

15: end if
16: else
17: Reject ν∗ and let ν

(i+1)
t = ν

(i)
t

18: end if
19: end for
20: Return the new sample set {ν(B+kM)

t |k = 1, . . . ,N}, and the estimated gait
variable is ν̂t = 1

N

∑N
k=1 ν

(B+kM)
t

21: Estimate the current gait mode mt with respect to ν̂t by using the maximum
likelihood estimation as mt = arg maxi=1,...,R{N(ν̂t ;μi, δ

2
i )}

22: Update the mean and variance for the current mode mt by μmt ← 1
2 (μmt + ν̂t )

and δmt ← δ
1
ct
mt

, where c controls the annealing speed
23: The diffusion variance is also updated by δd = δmt

6.3 Part-Based Gait Estimation

We propose a two-stage inference algorithm for part-whole gait estimation, as
shown in Fig. 14, where the first stage is for whole-based gait estimation discussed
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Fig. 14 The two-stage inference algorithm. Dash lines indicate the data association between
whole-based (top) and part-based (bottom) gait estimation. Specifically, (1) represents priors for
part-based gait estimation, and (2) and (3) are GEI-based observations generated from one segment
at the whole-level and part-level respectively. (From X. Zhang, G. Fan, and L. Chou, Two-Layer
Gait Generative Models for Estimating Unknown Human Gait Kinematics, in Proc. the 2nd In-
ternational Workshop on Machine Learning for Vision-Based Motion Analysis (MLVMA’09), in
conjunction with ICCV2009, Japan, Oct. 2009. @ 2009 IEEE)

in Sect. 6.2, and the second stage is for part-based gait estimation to be discussed in
the following. Unlike whole-based gait estimation that is for each frame, part-based
gait estimation is performed for each segment where we use the gait energy image
(GEI) [21] as the part-level observation. Also whole-based gait estimation provides
some useful priors for part-based gait estimation.

6.3.1 Part-Level Gait Priors

The results of whole-based gait estimation can be used to speed-up part-based gait
estimation by defining a search region along part-based gait manifolds. For seg-
ment j , the estimated whole-based gait variables for Nj frames are represented by
νw

j = {νw
j,i ∈ Mw

ν |i = 1, . . . ,Nj , } from which we can find the two closest train-
ing gait vectors Mw

ν (w1) and Mw
ν (w2) that can embrace νw

j along Mw
ν (as shown

in Fig. 15). Now we need to pass this prior knowledge into part-based gait mani-
folds, Ml

ν . In other words, we need to find the corresponding gait vectors in Ml
ν

with respect to Mw
ν (w1) and Mw

ν (w2). By using the given manifold topologies, we
can find l1 and l2 that make Mw(w1) = Ml(l1) and Mw(w2) = Ml(l2), where l1

and l2 are the 1D parameters corresponding to two training gaits in Ml
ν . Basically,

l1 and l2 decide the search region for lower-body gait estimation along Ml
ν .
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Fig. 15 Part-level gait priors from whole-based gait estimation, where νA and νB are the two
training gait vectors defined in VGGM by (4). Each solid circle represents a training gait vector

6.3.2 Part-Level Likelihood Functions

Given a set of gait appearances in segment j , Yj = {yj,i |i = 1, . . . ,Nj }, we use the
gait energy image (GEI) [21] to compute the part-level observations for a segment
where two mask images are involved to weight the whole-based observation. For
example, the GEI of lower body is obtained by:

Y l
j = I l · 1

Nj

Nj∑
i=1

yj,i , (29)

where I l is the mask image for the lower-body. We also need I u for the upper-body.
They are defined as:

I u(x, y) = f
(
x|b, d,w, cu

)
,

I l (x, y) = 1 − f
(
x|b, d,w, cl

)
,

(30)

where cu and cl control the boundary between the lower and upper bodies. In this
work, we use the “hip” to define the lower-body and upper-body that is always in
the center of gait appearances. Hence, cu and cl are equal to the half of the image
height. f (·) is a 1D edge model [70] that defines a smooth transition between two
parts. Figure 16 shows how the part-level observations are computed.

Given Xj = {xj,i |i = 1, . . . ,Nj } obtained from whole-based gait estimation for
segment j as well as the hypothesized part-level gait variable νl

j , the corresponding
hypothesized lower-body GEI in segment j is defined as:

Ỹ l
j = I l · 1

Nj

∑Nj

i=1 V
(
vj,i , sj,i ,ν

l
j ,pj,i

)
, (31)

where V (·) is VGGM defined in (4). Given a hypothesized gait vector νl
j for lower-

body in segment j , the likelihood function for part-level gait estimation is defined
as

p(Yj |νl
j ,Xj ) ∝ exp

(
−‖Y l

j − Ỹ l
j‖

2σ 2

)
, (32)
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where σ is a predefined observation variance that controls the algorithm sensitivity,
and ‖·‖ is the mean square error.

The complete inference algorithm is listed below.

Algorithm 3 Two-stage inference algorithm for part-based gait estimation
Given an observation yt , estimate its pose pt , view vt , shape st and gait νt as
Algorithm 1
for Whole-based gait estimation in Algorithm 2 do

if estimated pose pt is the contact pose then
Define segment j with Nj observations Yj (from previous
contact pose to the current one) along with the estimated state
variables Xj

Obtain the two bounds along Mw
ν defined by two training gaits

for Gait estimation for the lower-body do
Compute the prior for lower body gait estimation as in
Sect. 6.3.1
Compute lower-part GEI Y l

j according to (29)
According to the prior, draw hypotheses of the
lower-body gait variable along Ml

ν

Compute the synthesized lower-body GEI via VGGM
using (31)
Evaluate synthesized GEIs with Y l

j according to (32)
end for
Obtain the lower-body gait νl

j for segment j by MAP

estimation and map it into the kinematic gait manifold κ l
j

associated with KGGM
Similarly, do part-level gait estimation for the upper-body and
get νu

j and κu
j

Generate the gait kinematics for frames 1, . . . ,Nj in segment j ,
where the upper-body and lower-body gait kinematics are
reconstructed by using κu

j and κ l
j along with estimated poses

{pj,i}i=Nj

i=1 in Xj via KGGM (3)
end if

end for

7 Experimental Results and Discussions

We first discuss the experimental setup for training and testing as well as two er-
ror analysis methods for algorithm evaluation. Secondly, we examine and compare
proposed five gait distance functions on KGGM in terms of their capability of gait
synthesis. Thirdly, several inference algorithms are tested to show the advantage of
SJD-MCMC for part-whole gait estimation. Fourth, our algorithm is compared with
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Fig. 16 Two 1D edge models (a) and (d) used for generating two mask images; (b) Upper-body
mask; (c) Upper-body GEI; (e) Lower-body mask; (f) Lower-body GEI. (From X. Zhang, G. Fan,
and L. Chou, Two-Layer Gait Generative Models for Estimating Unknown Human Gait Kine-
matics, in Proc. the 2nd International Workshop on Machine Learning for Vision-Based Motion
Analysis (MLVMA’09), in conjunction with ICCV2009, Japan, Oct. 2009. @ 2009 IEEE)

a set of state-of-the-art algorithms in details. We also discuss some limitations of
our algorithms.

7.1 Experimental Setups

7.1.1 Training Data Collection

The CMU Mocap library [11] provides a wealth of various human motion data,
where we selected 20 walking motions (i.e., gait kinematics), represented by a se-
ries of Euler angles of joints, to learn KGGM. The gait appearances used for learning
VGGM are generated by AutoDesk MotionBuilder. We rendered 100 3D gait ani-
mations by using the 20 gaits (that are used for KGGM training) and five human
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Fig. 17 Five 3D human models. The first and last one are from the MotionBuilder Clip of Art and
the others are from aXYZ design 3D

Fig. 18 Some gait animations generated by MotionBuilder that are about one gait (the first one)
on five shapes under one view

models (Fig. 17). Each 3D gait animation was recorded under 12 camera views (30°
apart).4 Totally, we created 1200 30-frame gait animations (100 × 80). Figure 18
shows a set of gait motion data followed by five gait animations that are created by
MotionBuilder using the same motion data under human five shape models. More-
over, we extracted the binary silhouettes that were further “softened” by the signed
distance transform used in [34] to create the gait appearances for VGGM training.
Given a binary image containing one object, the signed distance transform assigns to

4We need a skeleton model to convert the motion data represented by Euler angles into joint po-
sitions (mm) for animation generation. We chose one from the 20 CMU training gaits that best
matches the five human models to generate all gait animations. All animations were created by
setting the hip position as the image center.
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Fig. 19 Silhouette sequences extracted for three HumanEva-I subjects. (From X. Zhang and
G. Fan, Dual Generative Gait Models for Human Motion Estimation from a Single Camera, IEEE
Trans. Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 40, No. 4, 1034–1049, Aug. 2010.
@ 2010 IEEE)

each pixel, both inside (positive) and outside (negative) of the object, the minimum
distance from that pixel to the nearest pixel on the border of the object. Such repre-
sentation imposes smoothness of the distance between different gait appearances.

7.1.2 Testing Data Collection

We tested our algorithm on Subjects 1, 2 and 3 in the HumanEva-I dataset [56]. We
used the background subtraction technique in [17] to extract the foreground object.5

We also developed two specific schemes to improve foreground extraction results.
(1) We divided each frame into two regions vertically according to the overall inten-
sity value (roughly along the boundary of the carpet), and background subtraction
is applied in each region independently. (2) We also employed some simple mor-
phological operators to clean up the isolated foreground pixels and to fill the holes
(in the upper body). To extract the silhouettes, we need the 3D/2D hip positions in
all frames (to be discussed shortly), the subject height and the camera calibration
information. Then, for each frame, the silhouette size is determined by the distance
between the 3D hip position and the camera as well as the subject height, and the
silhouette center is the 2D hip position computed from the 3D hip position and the
camera model. All extracted silhouettes that have different sizes have to be normal-
ized to the size of training data (100×80). Some examples of normalized silhouettes
of three subjects are shown in Fig. 19. Like training data collection, we need to ap-
ply the signed distance transform to convert binary silhouettes into gray-scale gait
appearances.

7.1.3 Local Error Analysis

Essentially, our algorithm computes the local motion that records the relative joint
position with respect to the hip. The local error (ERR-I, mm) measures the 3D dis-
tance between the estimated and ground-truth joint positions that excludes the global

5We used the C++ code from http://cvlab.epfl.ch/~tola/open_source.html.

http://cvlab.epfl.ch/~tola/open_source.html
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Fig. 20 The illustration of scaling/skeleton mappings. (a) Alignment of two skeletons after scale
mapping. (b) Two skeletons after alignment. (c) The red and blue dots indicate different thigh
configurations around the hip. (From X. Zhang and G. Fan, Dual Generative Gait Models for
Human Motion Estimation from a Single Camera, IEEE Trans. Systems, Man and Cybernetics,
Part B: Cybernetics, Vol. 40, No. 4, 1034–1049, Aug. 2010. @ 2010 IEEE)

position of the subject. Because the skeleton (or the marker system) in HumanEva-I
(15 joints) and the one in CMU (18 joints excluding fingers, thumbs, toes) have
partially different joint configurations, we need to establish a mapping relationship
between them under the T-pose (Fig. 17) in order to compute a valid ERR-I value.
Specifically, two mapping operations are needed, as shown in Fig. 20.

• Scale mapping accounts for the height difference between the training and testing
subjects, and it resizes the training skeleton to match the testing one according
to their height ratio. This operation implies that the lengths of all body parts are
proportional to the height [42]. After scale mapping, the eight major joints (two
elbows, hands, knees and feet) are usually matched very well because they are
commonly shared by most skeleton systems. However, the rest of six joints (head,
chest, two shoulders, and two thighs) are defined quite differently between the
training and testing skeletons that need to be aligned further.

• Skeleton mapping is inspired by the motion retargeting technique in computer
graphics [37] that can adapt one motion data captured from one figure to another
one. This operation can be implemented efficiently via MotionBuilder. We first
define a reference model by which we can align two skeletons to share the same
hip point. Then, for each of six joints, we compute the translational displacement
between two skeletons by which we can associate the same joint in two skeletons.
This operation assumes that the relative position between each joints to the hip is
fixed that may not very accurate if some local deformation occurs. This step can
be avoided if we can use the same skeleton for training and testing.

Estimated gait kinematics are initially represented by a sequence of Euler angles
of joints that can be converted into relative joint positions by using the training
skeleton. Then via scale/skeleton mappings, the joint positions under the training
skeleton can be mapped to the ones under the testing skeleton. Then ERR-I for each
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joint can be computed by aligning the estimated hip and the ground-truth one. ERR-I
is used to validate the usefulness of KGGM and VGGM.

7.1.4 Global Error Analysis

The global error (ERR-II) computes the distance between the estimated joint posi-
tions and the ground-truth ones in the global 3D space. ERR-II is used for overall
performance evaluation in terms of the accuracy of video-based human motion es-
timation. Since our algorithm directly outputs the local motion for each frame, we
need to convert it into the global motion by following three steps.

• Global hip localization is implemented by a particle filter based on a series of sil-
houettes. The particle dynamics is a 3D motion model that has a constant angular
velocity and random walks in other two dimensions. The tracker is initialized by
giving the ground-truth 3D hip position in the first frame with zero velocity. For a
new frame, the hypotheses of 3D hip position are generated by the motion model
that are mapped to the 2D image plane via the camera model. Then we apply the
previous silhouette to find the best 2D/3D hip hypothesis. We only use the upper
part of silhouettes for matching where the quality of foreground extraction is rel-
atively stable. In our experiment, the errors (mm) of global hip localization are
21.75, 16.67, and 18.40, for Subjects 1, 2, and 3, respectively.

• Local motion estimation is accomplished by using the proposed algorithm for a
series of gait appearances extracted according to the estimated 2D/3D hip po-
sitions, as discussed in Sect. 7.1.2. Local motion records the relative position
between each joint and the hip.

• Gait motion direction is computed by comparing the present and previous 3D
hip positions. It is needed to impose the local motion estimation result (after
scale/skeleton mappings) onto the 3D hip position to reconstruct the complete
3D motion estimation that records the global joint positions.

7.2 Experiments on KGGM

The experiments on KGGM have two purposes. One is to test its capability of gait
synthesis where a gait manifold is involved to approximate an unknown gait, and the
other is to examine three distance functions each of which can lead to a specific gait
manifold. Specifically, two out of three distance functions support part-whole gait
modeling with one whole-based gait manifold and two part-based ones. According
to (3), given a gait vector along the kinematic gait manifold κ ′ ∈ Mκ defined in (16),
KGGM can synthesize the corresponding gait kinematics of an arbitrary pose by (3).
Given an unknown gait, we use KGGM to approximate it by an exhaustive search
along κ ′ ∈ Mκ and find the optimal gait vector that yields the best synthesized
gait with the smallest ERR-I. We call the smallest ERR-I provided by KGGM the
lower error bound (LEB) that indicates the best performance we can achieve for
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Table 1 The LEB results (mm) of using KGGM for gait synthesis under three distance functions

Whole/Part Sub1 Sub2 Sub3

Single best matched gait Whole 63.26 79.91 79.32

Gait tensor coefficient Whole 32.20 46.25 44.87

3D joint position Whole 32.38 49.09 48.31

3D joint position Part 26.53 39.51 36.85

Fourier analysis Whole 31.37 44.59 43.72

Fourier analysis Part 23.24 33.05 33.91

this specific gait. The key to KGGM-based gait synthesis is the gait manifold that
is used for gait interpolation. Since different distance functions lead to different gait
manifolds, the optimal distance function should be the one that provides the smallest
LEB and will be used in our following experiments.

Given the gaits of three HumanEva subjects, we tried to approximate each of
them by using KGGM (learned from Mocap) under different gait manifolds at both
whole and part levels. We also included the result of using the best matched training
gait without gait synthesis. The numerical results of ERR-I are shown in Table 1. It
is obvious that KGGM provides much more accurate results comparing with the one
without gait synthesis. For the three distance functions, the best result is achieved
by the Fourier analysis method that compares two gaits in terms of their dynamics
at each joint and can reduce the noise effect by only using the top DFT components
for gait representation. Also, the distance based on gait tensor coefficients is quite
robust and effective due to the dimension reduction nature of tensor decomposition,
but it does not support part-level gait modeling. The distance based on 3D joint
positions has a slightly larger error than other two metrics due to two reasons. One
is that its high-dimensional nature makes the Euclidean distance less accurate, and
the other is that it does not directly reflect the dynamic dissimilarity between two
gaits. Moreover, part-level gait modeling always improve the gait synthesis results
by over 20%, showing the usefulness and potential of part-whole gait modeling.

7.3 Evaluation of Two-Stage Inference

7.3.1 Segmental Gait Modeling

We used Subject I as the example for this experiment. We first derived the optimal
gait value (with the least ERR-I) for each frame using an exhaustive search along the
gait/pose manifolds in KGGM that serves as the ground-truth value for algorithm
evaluation. Then we tested SJD-MCMC regarding its performance of dynamic gait
estimation based on observed gait appearances. Results are illustrated in Fig. 21
where the interpolated gait along the gait manifold is shown in the vertical axes as
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Fig. 21 Gait estimation results for Subject 1 where the horizontal/vertical axes show the frame
index and gait index (indicating interpolated gaits along the gait manifold), respectively: (a) the
comparison between the estimated and ground-truth gait values, (b) the distribution of generated
gait samples, (c) the distribution of accepted samples, and (d) the online learning results of the four
gait modes defined in (24)

gait index. In Fig. 21(a), the segmental variability of the gait variable is evident, and
gait estimation results are mostly accurate except few gait mode jumps are missed.
Specifically, Figs. 21(b) and 21(c) present the distribution of the gait samples gen-
erated before and after evaluation during SJD-MCMC. The mixed jump-diffusion
dynamics in conjunction with segmental modeling can capture the dynamic nature
of the gait variable very well. Figure 21(d) displays the learning of four modes in
SJD-MCMC among which only three modes are updated over time.

7.3.2 Local Motion Estimation

We implemented four algorithms (Alg-1, Alg-2, Alg-3, Alg-4) for whole-based gait
estimation and two algorithms (Alg-5, Alg-6) for part-whole gait estimation. The
numerical results are shown in Table 2. Specifically, Alg-1 is the basic particle filter
without segmental gait modeling. Alg-2 is the off-line version of Alg-1 with the gait
variable fixed to be the one estimated by Alg-1. In other words, Alg-1 and Alg-2 do
not consider dynamic gait estimation. Alg-3 is the particle filter embedded with the
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Table 2 Comparison of six inference algorithms (ERR-I, mm). The first four use whole-based gait
modeling, while the last two involve part-whole gait modeling

ERR-I (mm) LEB Alg-1 Alg-2 Alg-3 Alg-4 Alg-5 Alg-6

Subject 1 32.20 95.54 89.84 83.46 78.79 79.11 74.93

Subject 2 46.25 100.26 92.86 85.01 82.11 77.25 74.53

Subject 3 44.87 103.32 94.31 91.72 87.37 84.33 81.64

SJD-MCMC with online mode learning, while Alg-4 is the off-line version of Alg-3
and uses the four modes pre-learnt by Alg-3 for dynamic gait estimation. Alg-5 in-
volves two-stage inference for part-whole gait estimation, while Alg-6 is the off-line
version of Alg-5 with all part-whole gait variables pre-learned. The ERR-I results
improve from Alg-1 to Alg-4 progressively, showing that segmental gait model-
ing clearly improves the accuracy of motion estimation. Moreover, part-whole gait
modeling further reduces ERR-I by 5%–10% (from Alg-3 to Alg-5 or from Alg-4
to Alg-6). The improvement for Subject 1 is relatively small (near 5%). This is due
to the low quality of the silhouettes.

7.3.3 Whole-Based Gait Estimation

Figure 22 depicts the estimated whole-based gait, pose, view and ERR-II for three
subjects, where we have four important observations. (1) The gait variable of three
subjects exhibit obvious segmental variability, and the estimated values (by VGGM)
are close to the ground-truth ones (estimated by KGGM with LEB). In some frames
in the video sequence of Subjects 1 and 2, there exist differences of the gait vari-
able estimated from VGGM comparing to the one from KGGM. Usually, the gait
estimation discrepancy occurs in the front or back view where VGGM-based gait
estimation is often hindered by the lack of motion information from gait appear-
ances. The gait estimation discrepancy contributes the ERR-I and ERR-II but it is
not the dominant factor. The reason is that the gait estimation is constraint by the
gait manifold mode model, which has provided distribution models along the gait
manifold according to the similarity to the testing subject. (2) The estimated pose
and view well reflect the circular and periodic walking patterns. (3) Three ERR-II
plots roughly exhibit a periodic pattern that is consistent with the nature of a gait
motion. (4) The result Subject 3 is the worst one in terms of both ERR-I (Table 2)
and ERR-II (Fig. 22). It is mainly because that Subject 3 is leaning inwards during
walking (more than other two subjects) while all training gaits follow a straight-line
motion with an upright posture. We show more visual results in Fig. 23, where the
ground-truth (in red) and estimated (in green) joint positions are plotted. In most
frames, the motion estimation results are fairly accurate.
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Fig. 22 The whole-based results of gait, pose, view and ERR-II from Subjects 1, 2, and 3 (from
left to right)

7.3.4 Part-Whole Gait Estimation

We show detailed results of part-whole gait estimation of Subject 3 in Fig. 24. Fig-
ure 24(a) compares whole-based gait estimation and the ground-truth ones that yield
the LEB in KGGM. In most frames, the estimated gait is close to the ground-truth.
Figures 24(b) and 24(c) show the part-based gait estimation results, where dashed
boxes are the prior from whole-based gait estimation and the solid line are the es-
timated part-based gait variable for each segment. Figures 24(d), 24(e), and 24(f)
show the estimated view, pose and averaged ERR-II for each frame. As shown in
Fig. 24(f), part-based gait estimation outperforms the whole-based one significantly
in terms of ERR-II.
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Fig. 23 Illustration of experimental results on three HumanEva-I subjects (Alg-6). The estimated
(as green ‘*’) and ground-truth joint positions (as red ‘o’) are drawn on each image

7.4 Overall Performance Evaluation

We compare our algorithms (Alg-4: the whole-based approach, and Alg-6: the part-
based approach) with a series of recent algorithms in Table 3, where most methods
were tested on HumanEva-I, some [10, 18] on HumanEva-II, and one [23] on both
datasets (only the HumanEva-I result is reported here). HumanEva-II is more chal-
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Fig. 24 (a) Whole-based gait estimation; (b) part-based gait estimation (upper-body) and
(c) part-based gait estimation (lower-body), where the boxed areas with dashed lines show the
local search regions (the priors from whole-based gait estimation) in each segment; (d) view es-
timation; (e) pose estimation; (f) ERR-II of whole-based gait estimation (∗) and part-based gait
estimation (!)

lenging due to the mixed motion types (walking and jogging) in one sequence, but
the results from [10, 18] that are listed here are only for the walking portion from
Subject 2 who is also included in HumanEva-I. Therefore, it is still reasonable to
include them for a comprehensive comparison. Furthermore, all algorithms are dis-
cussed in three groups according to how motion data are used for training. The
Group-I algorithms requires motion data for training, and the same subject is used
for training and testing. The Group-II algorithms do not require any motion data
for training. The Group-III algorithms requires motion data for training, and the
subjects used for training do not include the ones used for testing. Both of our algo-
rithms belong to Group-III. Additionally, we evaluate all algorithms in each group
by considering their experimental settings, including the number of cameras; global
or local motion estimation (G/L), motion data for training, new testing subjects,
discriminative or generative approaches, visual observations. In the following, we
discuss each group in details.

7.4.1 Group-I

Essentially, the algorithms in this group aim at pose estimation instead of motion
estimation due to the fact that the same subject is involved for training and test-
ing. Most algorithms involve certain temporal prior in inference to ensure smooth
and continuous pose estimation. Specifically, the discriminative approaches, e.g.,
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Table 3 Comparison of recent algorithms tested on the HumanEva-I or Human-II dataset (*),
including estimation errors of three testing subjects (Subjects 1, 2, 3) and experimental settings.
(Adapted from X. Zhang and G. Fan, Dual Generative Gait Models for Human Motion Estimation
from a Single Camera, IEEE Trans. Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 40,
No. 4, 1034–1049, Aug. 2010. @ 2010 IEEE)

Sub.
one

Sub.
two

Sub.
three

Camera
number

Global/
local

Motion
training

New
sub.

Discrimi-
native/
generative

Visual
observation

Elgammal
[16]

24.71 31.16 38.21 1 L Y N G silhouette

Poppe [49] 37.54 40.09 55.25 3 L Y N D HOG

Howe [22] 99 1 G Y N D silhouette +
optical flow

Urtasun [67] 31.4 19.3 47.4 1 G Y N D HOG +
edge

Sigal [60] 64.63 3 G Y N D shape
context

Okada [46] 41.19 35.03 37.69 1 L Y N D HOG

Ni [43] 8.57 8.57 8.57 7 G Y N G silhouette

Bo [5] 23 13.7 40.3 1 L Y N D shape
context

Gall [18] 32.23* 4 G N N G silhouette

Brubaker [7] 104 1 G N Y G edge

Mundermann
[41]

53.1 7 G N Y G silhouette

Husz [23] 105.7 3 G N Y G silhouette

Canton-Ferrer
[9]

115.21 115.21 4 G N Y G silhouette

Vondrak [71] 93.4 93.4 93.4 3 G N Y G silhouette

Xu [73] 140.35 149.37 156.3 4/7 G Y N G silhouette +
edge

Cheng [10] 125* 4 G Y Y G silhouette

Peurum [48] 85.5 116.9 84.7 3 G Y Y G silhouette +
edge

Whole-based 112.26 104.37 114.53 1 G Y Y G silhouette

Part-whole 108.79 98.34 106.29 1 G Y Y G silhouette

Whole-based 88.09 98.56 105.29 1 G Y Y G silhouette
(cleaned)

Part-whole 80.12 91.63 97.84 1 G Y Y G silhouette
(cleaned)
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[5, 22, 46, 49, 60, 67], involve a direct mapping between visual observations to
body configurations without explicitly pose modeling. The key issue of this map-
ping is how to handle the multiple-to-one problem due to the ambiguity of visual
observations. On the other hand, the generative approaches require explicit pose
modeling for visual or kinematic data where the key issue is how to deal with the
view variability of visual observations. For example, the method in [16] involves
a torus-shaped manifold for multi-view pose modeling. Two mappings are learned
to map both visual and kinematic data onto the torus. Then, the pose/view can be
jointly estimated via maximum a priori estimation along the torus manifold. The
best pose estimation result was reported in [43] where a hybrid sample-and-refine
framework was proposed by combining both stochastic sampling and deterministic
optimization for pose estimation and which also requires seven cameras.

7.4.2 Group-II

Most algorithms in this group are generative approaches, since they usually need an
explicit human model based on which motion estimation is accomplished. They can
deal with unknown testing subjects, except the one in [18] that reports the best result
in Group-II and requires the 3D body scan data of the testing subject. The human
shape model plays a key role for Group-II algorithms that is expected to be flexible
and general enough to handle different subjects. For example, a physics-based bio-
mechanical model was used in [7, 71]. In [41], a large set of body scan data was
collected and used to learn a parametric 3D human model that is general enough to
handle various body shapes. Additionally, physical constraints can be incorporated
into the human model that provide useful priors for estimation and inference [9, 23].
The anthropometric measurements are also crucial in some algorithms in this group
that can be learned online by using different shape models, such as cylinders [71] or
visual hulls [9, 23, 41].

7.4.3 Group-III

Similar to Group II, most algorithms in this group are generative approaches, which
need explicit shape and motion modeling. For example, the body shape can be mod-
eled by bounding boxes [48], visual hulls [10], cylinders [73], or 3D character mod-
els (like ours). Motion modeling can be implemented by using a graphical model
[10, 48] or a DR method (like ours) that can be trained from a set of kinematic data.
In [73], the symmetric property of gait kinematics was used for motion modeling.
Most algorithms model the motion and shape separately, and the two models are
only used together during inference. However, one highlight of our research is that
the two models are integrated together via VGGM and KGGM during both learn-
ing and inference. We also studied both whole-level (Alg-4) and part-level (Alg-6)
gait modeling. Our algorithms were tested on both actual observations and ones
with manual clean-up, showing both the real performance and potential of our ap-
proaches. Since the actual observations of Subject 1 have strong shadows around
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feet, part-whole gait estimation shows less improvement compared with that of Sub-
jects 2 and 3. On the other hand, the improvement is consistent 7–8 mm for three
subjects when cleaned observations are used. Overall, our algorithm provides very
promising results compared with the peers in the same group, considering only a
single camera is used.

7.5 Limitations and Discussion

There are some limitations in the proposed algorithm that will guide our future
research.

• The proposed algorithms are mainly designed for a specific type of motion, such
as walking. The framework may be applied on other motion types but may not
handle different motion types together (such as walking, running, and jogging)
due to the fact that the strong dissimilarity between them may not be generalized
well by one generative model.

• The algorithm’s accuracy heavily relies on the quality and richness of training
gaits. Although increasing training gaits and shape models would improve the
algorithm performance, it will also drastically increase the computational com-
plexity. The algorithm is moderately sensitive to the quality of the silhouette de-
tection and extraction. The noisy silhouette decreases the algorithm performance
as shown in Table 3.

• There are a couple of systematic errors in this algorithm. One is that we ignore the
local variability of a gait by assuming that any gait can be approximated locally
by a straight motion with an upright posture. This assumption may not be accurate
when the subject exhibits some nonstraight or inclined motion patterns. The other
is about the two assumptions made for the scale/skeleton mappings that is needed
to compute ERR-II for performance evaluation. This error could be reduced if the
same marker system is used for training and testing.

• The global hip-position estimation assumes that the ground-truth position is avail-
able in the first frame. In practice, we can initialize the hip position by estimating
the height and 3D position of the subject using camera calibration information
and ground plane constraint (one foot is always on the ground plane).

• The computational load of the proposed algorithms is quite high due to the com-
plexity of the generative models. Particularly, VGGM involves four or six pa-
rameters that have to be estimated during inference where each Monte Carlo run
involves a tensor product for the synthesis of gait appearance. Our algorithm was
developed in Matlab 2009, and current implementation (without program opti-
mization) is about 35 seconds per frame (including both global hip localization
and local motion estimation for part-whole gait estimation) on a PC computer
(2G memory, dual-core, 2.2 GHz).



258 G. Fan and X. Zhang

8 Conclusion and Future Research

In this chapter, we have presented a new approach to video-based human motion es-
timation that involves two gait generative models, KGGM and VGGM, to represent
the kinematics and appearances by a few latent variables, respectively. The main
idea is to learn part-whole gait manifolds by which two generative models can be
integrated for gait estimation at both whole and part levels. A key issue for gait man-
ifold learning is to define an appropriate distance function that can reflect the simi-
larity between two gaits and determines the topology of gait manifold. Specifically,
a whole-based and two part-based gait manifolds are introduced for gait modeling
at both the whole and part levels, respectively. A two-stage particle filtering-based
inference algorithm was proposed to support sequential whole-based and part-based
gait estimation. The experimental results demonstrate the usefulness of part-whole
gait modeling via two generative models.

Our future research will focus on three issues: (1) how to create an adaptive
yet simple human model to accommodate more shape variability; (2) how to span
a more informative gait manifold that can support more accurate gait estimation;
(3) how to extend the proposed framework to multiple other human activities. Our
current implementation only involves five fixed character models that have limited
capability for complex human shape modeling. We plan to use a more advanced hu-
man shape modeling method in future work. Moreover, we only consider a simple
1D structure for gait manifold learning that offers limited interpolation capability,
and a higher dimension (e.g., 2D) may be more helpful. However, due to the sparse-
ness of training gaits, it will be challenging to span a 2D gait manifold where the
inference algorithm has to be carefully designed to ensure efficient gait estimation.
The proposed dual generative model framework can be extended to other human
motions by using corresponding training visual and kinematic data. To cope with a
sequence with multiple motions together like HumanEva-II testing sequences, a hu-
man behavior recognition method is needed to control and switch among different
generative models for various motions.
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Spatio-Temporal Motion Pattern Models
of Extremely Crowded Scenes

Louis Kratz and Ko Nishino

Abstract Extremely crowded scenes present unique challenges to motion-based
video analysis due to the large quantity of pedestrians within the scene and the fre-
quent occlusions they produce. The movement of pedestrians, however, collectively
form a spatially and temporally structured pattern in the motion of the crowd. In
this work, we present a novel statistical framework for modeling this structured pat-
tern, or steady-state, of the motion in extremely crowded scenes. Our key insight
is to model the motion of the crowd by the spatial and temporal variations of local
spatio-temporal motion patterns exhibited by pedestrians within the scene. We di-
vide the video into local spatio-temporal sub-volumes and represent the movement
through each sub-volume with a local spatio-temporal motion pattern. We then de-
rive a novel, distribution-based hidden Markov model to encode the temporal varia-
tions of local spatio-temporal motion patterns. We demonstrate that by capturing the
steady-state of the motion within the scene, we can naturally detect unusual activi-
ties as statistical deviations in videos with complex activities that are hard for even
human observers to analyze.

1 Introduction

The large number of surveillance cameras currently deployed has created a dire need
for computational methods that can assist or ultimately replace human operators.
Surveillance cameras record large amounts of video that is typically only viewed
after an incident occurs. Live monitoring of video feeds requires human personnel
who are frequently tasked with observing multiple cameras simultaneously. Vision-
based video analysis systems attempt to augment human security personnel by an-
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alyzing surveillance videos computationally, enabling the automatic monitoring of
large numbers of video cameras.

Despite the general interest and active research in video analysis, an important
area of video surveillance has been overlooked. Extremely crowded scenes, such as
those shown in Fig. 2, are perhaps in the most need of computational methods for
analysis. Crowded, public areas require monitoring of a large number of individu-
als and their activities, a significant challenge for even a human observer. Videos
with this level of activity have yet to be analyzed via a computational method. Com-
mon scenes for video analysis, such as the PETS 2007 database [15], contain less
than one hundred individuals in even the most crowded videos. Extremely crowded
scenes, however, contain hundreds of people in any given frame and possibly thou-
sands throughout the duration of the video.

The people and objects that compose extremely crowded scenes present an en-
tirely different level of challenges due to their large quantity and complex activities.
The sheer number of pedestrians results in frequent occlusions that make modeling
the movement of each individual extremely difficult, if not impossible. The move-
ment of each pedestrian, however, contributes to the overall motion of the crowd. In
extremely crowded scenes, the crowd’s motion may vary spatially across the frame,
as different areas contain different degrees of traffic, and temporally throughout the
video due to natural crowd variations. As a result, analysis of extremely crowded
scenes must account for the spatial and temporal variations in the local movements
of pedestrians that comprise the crowd.

In this work, we present a novel statistical framework to model the steady-state
motion of extremely crowded scenes. Our key insight is that the crowd’s motion is
a spatially and temporally structured pattern of the local motion patterns exhibited
by pedestrians. We model the spatial and temporal variations of the motion in local
space-time sub-volumes to capture the latent motion structure (i.e., the steady-state)
of the scene. We use this model to describe the typical motion of the crowd, that
is, usual events within the scene, and demonstrate its effectiveness by identifying
unusual events in videos of the same scene.

First, we divide the video volume into local spatio-temporal sub-volumes, or
cuboids, defined by a regular grid. Next, we use a local spatio-temporal motion
pattern to describe the possible complex movements of pedestrians within each
cuboid. We then identify prototypical local spatio-temporal motion patterns that
describe the typical movements within the scene, and estimate a distribution of
local motion patterns to compactly represent the entire video. Finally, we cap-
ture the spatial and temporal variations in the motion of the crowd by training
a novel, distribution-based hidden Markov model (HMM) on the local spatio-
temporal motion patterns at each spatial location of the video volume. In other
words, we model the steady-state motion of the crowd by a spatially and tem-
porally varying structured pattern of the movements of pedestrians in local ar-
eas.
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2 Related Work

Motion-based video analysis characterizes the scene by the movement of the scene’s
constituents within a video sequence. Trajectory-based approaches [5, 8, 9], for ex-
ample, track the objects within the scene and describe their motion by their chang-
ing spatial location in the frame. These techniques are suitable for scenes with few
moving objects that can easily be tracked, such as infrequent pedestrian or automo-
bile traffic. Trajectory-based approaches focus on each subject individually, but the
behavior of extremely crowded scenes depends on the concurrent movement of mul-
tiple pedestrians. In addition, the frequent occlusions in extremely crowded scenes
makes tracking significantly difficult.

Other approaches estimate the optical flow [2, 3] or the motion within spatio-
temporal volumes [4, 6, 7, 10]. Flow-based approaches have used HMMs [2] or
Bayes’ classifiers [3] to represent the overall motion within the scene. The large
number of people in extremely crowded scenes, however, make modeling specific
activity by the collective optical flow difficult. Extremely crowded scenes may con-
tain any number of concurrent, independent activities taking place in different areas
of the same frame. This makes global approaches [2, 20] that model the motion over
the entire frame unsuitable since the local events of interest would not be discernible
from the rest of the scene.

Spatio-temporal approaches [4, 6, 7, 10] directly represent the motion in lo-
cal sub-volumes of the video. Though these representations are well suited to ex-
tremely crowded scenes, their use has been limited to volume distance [4, 10] or
interest points [7], requiring the explicit modeling of each event to be detected. In
other words, they have not been used to represent the overall motion of a scene,
just specific events. In addition, most spatio-temporal representations assume that
the sub-volume contains motion in a single direction. In extremely crowded scenes,
however, the motion within each cuboid may be complex and consist of movement
in multiple directions.

Other work have modeled the motion of the crowd by flow fields [1], topical
models [17], or dynamic textures [12]. Ali and Shah [1] model the expected motion
of pedestrians in order to track pedestrians at a distance. More recently, Rodriguez
et al. [17] model a fixed number of possible motions at each spatial location using
a topical model. These approaches, however, fix the number of possible motions at
each location within the frame. In extremely crowded scenes the pedestrian motions
vary depending on the spatial and temporal location within the video. Pedestrian
movements may be severely limited in one area of the frame and highly variable in
others. As such, models that fix the number of possible movements may not repre-
sent the rich variations in motion that can occur in extremely crowded scenes.

3 Local Spatio-Temporal Motion Patterns

The motion of the crowd in extremely crowded scenes is formed by the collective
movement of the pedestrians. The movement of each pedestrian depends on the
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Fig. 1 A schematic overview of the framework. (a) The video sequence is divided into local spa-
tio-temporal volumes (cuboids). (b) The local spatio-temporal motion pattern within each cuboid
is represented by a 3D Gaussian of spatio-temporal gradients. (c) Prototypical local motion pat-
terns are identified by grouping similar local motion patterns that may lie at disjoint space-time
locations. (d) Prototypes model the motion pattern variation in the video with a 1D normal distri-
bution of 3D Gaussians, that is, a distribution of distributions. (e) A distribution-based HMM is
trained for each tube using the prototypical motion patterns for hidden states and 3D Gaussians as
observations

physical structure of the scene, surrounding pedestrians, and the individual’s goals.
As a result, the motion of the crowd changes naturally spatially across the frame
and temporally over the video. It is exactly these spatial and temporal variations in
the local movements of pedestrians that we model to characterize the motion of the
crowd.

In order to model the movement of pedestrians in local areas, we subdivide the
video into a set of local spatio-temporal sub-volumes, or cuboids, of a fixed size as
shown in Fig. 1(a). A finer approach, such as the pixel-level optical flow, would only
provide the motion at a single pixel, not the collective movements of possibly mul-
tiple pedestrians. Conversely, the motion of the entire frame would not provide the
level of detail necessary for differentiating between independent, concurrent activi-
ties within the same frame. By dividing the video into spatio-temporal sub-volumes,
we can extract rich local motion patterns while discerning different movements in
local space-time areas.

We represent the local movement of pedestrians by the collection of spatio-
temporal gradients within the cuboid. For each pixel i in the cuboid, we compute
the spatio-temporal gradient ∇Ii , a 3-dimensional vector representing the gradient
in the horizontal, vertical, and temporal dimensions. Previous work on analyzing
persistent motion patterns [19] and correlating video sequences [18] have used the
collection of spatio-temporal gradients in the form of the structure tensor matrix

G = 1

N

N∑
i=1

∇Ii∇IT
i , (1)
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where N is the number of pixels in the cuboid. These methods assume that
the spatio-temporal gradients lie on a plane in 3D gradient space, and thus the
cuboid contains a single motion vector [18]. In extremely crowded scenes, however,
a cuboid may contain complex motion caused by movement in multiple directions
such as a pedestrian changing direction or two pedestrians moving past one another.

As illustrated in Fig. 1(b), we represent the possibly complex motion within each
cuboid by estimating the distribution of spatio-temporal gradients as a 3D Gaussian
N (μ,Σ) where

μ = 1

N

N∑
i

∇Ii, Σ = 1

N

N∑
i

(∇Ii − μ)(∇Ii − μ)T . (2)

Thus for each spatial location n and temporal location t , the local spatio-temporal
motion pattern is represented by μn

t and Σn
t . Intuitively, by modeling the distribu-

tion of spatio-temporal gradients, we are representing the possibly multiple motion
vectors that may occur within the cuboid by estimating the shape of the 3D gradients
that may not lie on a single plane.

The amount of pedestrian motion represented depends on the size of the cuboid.
Since the camera recording the scene is fixed, we set the cuboid size manually. We
consider this an acceptable cost of our approach since the size of pedestrians remains
similar over the duration of the scene.

4 Prototypical Motion Patterns

By directly modeling the video as a collection of local spatio-temporal motion pat-
terns, we reduce the size of the video representation from a set of raw pixels to a col-
lection of Gaussian parameters. This representation, however, is still quite large. For
example, a one minute video with resolution 720 × 480 will have 19,440 cuboids
of size 40 × 40 × 20, resulting in 233,280 parameters. As shown in Fig. 1(c), we
further reduce the size of this representation by identifying common local spatio-
temporal motion patterns. We extract prototypical local spatio-temporal motion pat-
terns (prototypes) that represent the characteristic movements of pedestrians within
the scene. Note that similar local spatio-temporal motion patterns can occur at dis-
joint space-time locations in the video, and it is this recurrence that forms the un-
derlying steady-state of the motion of the crowd.

In order to identify similar local spatio-temporal motion patterns, we directly
compare the 3D Gaussian distributions of spatio-temporal gradients. Previous ap-
proaches have used algebraic metrics which are sensitive to noise [14], or have as-
sumed that the cuboid volume only consists of a single motion vector [10, 18]. We
use the symmetric Kullback–Leibler (KL) divergence [11] to measure the differ-
ence between local spatio-temporal motion patterns. Since the local spatio-temporal
motion patterns are Gaussian distributions, the divergence has a closed analytical
form [13]. To reduce numeric instabilities, we take the log of the divergence, com-
pare the norm differences between the distributions, and limit the condition numbers
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of the covariance matrices. We also add a 1 to the divergence prior to taking the log
to ensure that the measure is positive. Thus we measure the difference between two
local spatio-temporal motion patterns A and B by

d̃(A,B) =

⎧⎪⎨
⎪⎩

0 K(Σa) > dK, K(Σb) > dK,

‖Σa − Σb‖F < dΣ, ‖μa − μb‖ < dμ,

log(d(A,B) + 1) otherwise,

(3)

where d(A,B) is the KL divergence, K(·) is the condition number of the matrix,
and dΣ and dμ are limits on the norms to ensure the distributions are reasonably
similar. We refer to this measure as the KL distance for the remainder of this paper.
By using the KL divergence, we distinguish the possibly complex movements of
pedestrians from different cuboids directly from the 3D Gaussian distributions.

Using the KL distance, we identify the prototypical local spatio-temporal motion
patterns, or prototypes, that characterize the local movements of pedestrians within
the scene. Off-line clustering techniques such as K-means, however, require that all
of the local spatio-temporal motion patterns be available. We use an online method
that computes the KL distance between each local spatio-temporal motion pattern
On

t and the prototypes as we parse the video. If the KL distance is greater than a
specified threshold, dKL, for all prototypes {Ps |s = 1, . . . , S}, then the cuboid is
considered a new prototype. Otherwise, the prototype Ps is updated with the new
observation On

t by

Ps = 1

Ns + 1
On

t +
(

Ns

Ns + 1

)
P̃s , (4)

where Ns is the total number of observations associated with the prototype Ps at
time t and P̃s is the previous value of Ps . The set of prototypes is initially empty.

Since the motion patterns On
t and Ps are multi-variate Gaussian distributions,

(4) should reflect the spatio-temporal gradients that the local spatio-temporal mo-
tion patterns represent. To solve (4) with respect to the KL divergence, we use the
expected centroid presented by Myrvoll and Soong [13]

μs = 1

Ns + 1
μn

t + Ns

Ns + 1
μs , (5)

Σ s = 1

Ns + 1

(
Σn

t + μn
t

(
μn

t

)T ) + Ns

Ns + 1

(
Σ̃ s + μ̃sμ̃

T
s

) − μsμ
T
s , (6)

where μn
t , Σn

t , μs , and Σ s are the mean and covariance matrices of On
t and Ps ,

respectively. Thus, we compute prototypes that represent the collection of spatio-
temporal gradients for each typical movement within the scene. By extracting pro-
totypical local spatio-temporal motion patterns, we construct a canonical represen-
tation of the video as a collection of the characteristic movements of pedestrians in
local areas.
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5 Distribution-Based Hidden Markov Models

While the set of prototypes provides a picture of similar movements of pedestrians
within the scene, it does not capture the relationship between their occurrences. By
modeling the temporal relationship between sequential local spatio-temporal mo-
tion patterns, we characterize a given video by its temporal variations. We assume
that cuboids in the same spatial location exhibit the Markov property in the tem-
poral domain since the scene is comprised of physically moving objects. We create
a single HMM for each tube of observations in the video as shown in Fig. 1(e)
to model the temporal evolution of local spatio-temporal motion patterns in each
local region. Since each local spatio-temporal motion pattern is a 3D Gaussian of
spatio-temporal gradients, we derive an HMM that can handle observations that are
distributions themselves.

Ordinary HMMs are defined by the parameters M = {H,o,b,A,π}, where H

is the number of hidden states, o the possible values of observations, b a set of
H emission probability density functions, A a transition probability matrix, and π

an initial probability vector. We model a single HMM Mn = {Hn,On,bn,An,πn}
for each spatial location n = 1, . . . ,N and associate the hidden states Hn with the
number of prototypes Sn in the tube. The set of possible observations On is the range
of 3D Gaussian distributions of spatio-temporal gradients. Complex observations for
HMMs are often quantized for use in a discrete HMM. Such quantization, however,
would significantly reduce the rich motion information that the local spatio-temporal
motion patterns represent. Using a distribution-based HMM allows the observations
to remain 3D Gaussian distributions. Therefore, the emission probability density
function for each prototype must be a distribution of distributions.

We model each emission distribution as a Gaussian centered around the prototype
and using the KL distance to the observed local spatio-temporal motion pattern. The
probability of a local spatio-temporal motion pattern On

t given the hidden state s is
computed by

p
(
On

t |s) = 1√
πσ 2

s

exp

[−d̃(On
t ,Ps)

2

2σ 2
s

]
, (7)

where Ps is the prototype given in (4), and d̃(·) is the KL distance. This retains the
rich motion information represented by each local spatio-temporal motion pattern
and provides a probability calculation consistent with our distance measure. We
compute the standard deviation by the maximum likelihood estimator

σ 2
s = 1

Ns

Ns∑
j

d̃(Oj ,Ps)
2, (8)

where Ns is the number of local spatio-temporal motion patterns associated with
the prototype Ps . In practice, however, there may be too few cuboids in a specific
group to estimate σs . On such occasions, we use a 99.7 percent confidence window
around dKL, letting σs = 3dKL.
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The distribution-based HMM represents the temporal variations of local spatio-
temporal motion patterns in a sound statistical framework. The emission probability
distributions are created using (4) and (8) for each prototype in the scene. Note that,
while a single HMM is trained on the local spatio-temporal motion patterns in each
tube, the prototypes are created using samples from the entire video volume. The
parameters An and πn are estimated by expectation maximization.

Modeling the temporal variations of the local spatio-temporal motion patterns in
a statistical framework provides a natural way to define unusual activities as statis-
tical deviations from the learned model of the motion of the crowd. Given a query
video, the likelihood of a sequence of local spatial-temporal motion patterns can be
calculated using the forwards–backwards algorithm [16]. Let T n

t be the likelihood
of the t th temporal sequence of observations within a given video tube n. Thus

T n
t = p

(
On

t , . . . ,On
t+w

)
, (9)

where w is the sequence length, and On
t , . . . ,On

t+w is a subsequence of observed lo-
cal spatio-temporal motion patterns at location n. Ideally, we would like to measure
the likelihood of each individual cuboid. Since T n

t is calculated for every sequence
within the tube of length w, each observation can be associated with w likelihood
measures by sliding a window of size w over the entire video. We define an ensem-
ble function that selects a measure from the set of likelihoods associated with the
observation. We use a window size of 2 and let the ensemble function maximize over
the likelihoods. This correctly classifies the cuboids with the exception of one case
when a usual cuboid is temporally surrounded between two unusual cuboids, which
is rare and errs on the side of caution (a false positive). Since extremely crowded
scenes may contain larger variations in one location than another, we normalize the
likelihood of each observation by the minimum likelihood value of the training data
in each spatial location n.

6 Experimental Results

We demonstrate the effectiveness of our model of the crowd’s motion by detect-
ing unusual events in videos of three scenes: one simulated crowded scene and
two real-world extremely crowded scenes. For each scene, we train a collection
of distribution-based HMMs on a finite length training video that represents the typ-
ical motion of the crowd. We then use these HMMs to detect unusual activity on
query videos of the same scene. To quantitatively evaluate our results, we manually
annotate cuboids containing pedestrians moving in unusual directions. We fix the
cuboid size to 40 × 40 × 20 for all experiments, as such a size captures the distin-
guishing characteristics of the movement of the pedestrians. The threshold values
are selected empirically since they directly depend on the variations in the motion
within the specific scene.

We generate a synthetic crowded scene by translating a texture of a crowd across
the frame, resulting in large motion variations and nonuniform motion along bor-
der areas. The image sequence consists of 216 tubes and 9,072 total cuboids. We
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Fig. 2 We evaluate our approach by detecting unusual events in videos from a subway station
during rush hour courtesy of Nippon Telegraph and Telephone Corporation. The first, from the
station’s concourse (top), contains a large number of pedestrians moving in different directions.
The second, from the station’s ticket gate (bottom), has pedestrians moving in similar directions as
they pass through the gate but still contains significant variations

then insert several smaller images moving in arbitrary directions to simulate un-
usual pedestrian movements. The thresholds used in this experiment are dKL = 0.02,
dΣ = 5, dμ = 1, and dK = 400. The Receiver Operating Characteristic (ROC) curve
for this example is shown in Fig. 3, and is produced by varying values of the clas-
sification threshold. Our approach achieve a false positive rate of 0.009 and a true
positive rate of 1.0. The false positives occur in cuboids lacking motion and texture.

Figure 2 shows frames1 from two real-world extremely crowded scenes that we
use to evaluate our method. For both scenes, we set dΣ = 1, dμ = 1, and dK = 1000.
The first scene, shown on the top in Fig. 2, is from an extremely crowded concourse
of a subway station. The scene contains a large number of moving and loitering
pedestrians and employees directing traffic flow. The query video contains station
employees walking against the flow of traffic. The training video contains 3,020
frames and the query video contains 380 frames. The threshold dKL is 0.06. The
second real-world extremely crowded scene, shown on the bottom in Fig. 2, is a
wide-angle view of pedestrian traffic at the station’s ticket gate. The motion of the
crowd occurs in a more constant direction than in the concourse, but still contains
excessive occlusions. The query video contains instances of people reversing direc-
tion or stopping in the ticket gate. The training video contains 2,960 frames and the
query video contains 300 frames. The threshold dKL is 0.05.

1The original videos courtesy of Nippon Telegraph and Telephone Corporation.
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Fig. 3 ROC curves for the
videos of the synthetic and
real-world extremely crowded
scenes. Our approach
achieves significant accuracy
on videos of both scenes, and
almost perfect detection on
our synthetic video

Fig. 4 Detection of unusual events in the concourse video (top) and the ticket gate (bottom).
Correctly classified unusual cuboids are highlighted in blue, usual cuboids in green, and false
positives in magenta. The intensity of magenta blocks indicates the severity of false positives.
Individuals reversing direction, loitering, and moving in irregular directions are correctly classified
as unusual. False positives indicate a sensitivity to cuboids with little motion

As shown in Fig. 3, our approach achieves a false positive rate of 0.15 and a true
positive rate of 0.92 for the video from the concourse scene, and a false positive
rate of 0.13 and a true positive rate of 0.97 for the video of the ticket gate scene.
Figure 4 shows a visualization of the detection results. Employees moving against
the flow of traffic are successfully detected in the video of the concourse scene, and
pedestrians loitering and reversing direction are successfully detected in the video
of the ticket gate scene.

False positives occur in both experiments for slightly irregular motion patterns
such as after pedestrians exit the gate, and areas of little motion such as where the
floor of the station is visible. The few false negatives in both real-world examples oc-
cur adjacent to true positives, which suggests they are harmless in practical scenar-



Spatio-Temporal Motion Pattern Models of Extremely Crowded Scenes 273

Fig. 5 Effects of increased
training data on the video of
the ticket gate scene. Our
approach achieves significant
results with as few as
10 observations, and good
performance with only
50 observations (about
30 seconds of video)

ios. Intuitively, most unusual behavior that warrants personnel intervention would
be less subtle than those detected here, and as such would result in a smaller number
of errors. The ability to detect subtle unusual events, however, is made possible by
training the HMMs on the local spatio-temporal motion patterns themselves.

Figure 5 shows the effect of increasing the amount of training data for the ticket
gate video. As expected, the performance increases with the size of the training
data, and approaches a steady-state with about 100 observations per tube. The per-
formance with only 10 observations per tube achieves a false positive rate of 0.22
and true positive rate of 0.84. This is largely due to the window around dKL for
σs in (8) when there is insufficient observations for specific prototypes and the in-
clusion of disjoint local motion patterns in the prototypes. The performance with
such small training data reflects the rich descriptive power of the distribution-based
HMMs.

7 Conclusion

In this work, we introduced a novel statistical framework using local spatio-temporal
motion patterns to represent the motion of the crowd in videos of extremely crowded
scenes. We represented the movement of pedestrians in local areas by a local spatio-
temporal motion pattern in the form of a multivariate Gaussian. We then identi-
fied prototypical local spatio-temporal motion patterns to canonically represent the
characteristic movements within the video. Using a novel distribution-based hidden
Markov model, we learned the statistical temporal variations of local motion pat-
terns from a training video of an extremely crowded scene. Finally, we used this
model of the motion of the crowd to identify unusual events as statistical anoma-
lies. Our results indicate that local spatio-temporal motion patterns are a suitable
representation for analyzing extremely crowded scenes. We evaluated our approach
on videos of real-world extremely crowded scenes and successfully detected un-
usual local spatio-temporal motion patterns including movement against the normal
flow of traffic, loitering, and traffic congestion. We believe our proposed framework
plays an important role in the analysis of dynamic video sequences with spatially
and temporally varying local motion patterns.
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Learning Behavioral Patterns of Time Series
for Video-Surveillance

Nicoletta Noceti, Matteo Santoro,
and Francesca Odone

Abstract This chapter deals with the problem of learning behaviors of people ac-
tivities from (possibly big) sets of visual dynamic data, with a specific reference to
video-surveillance applications. The study focuses mainly on devising meaningful
data abstractions able to capture the intrinsic nature of the available data, and ap-
plying similarity measures appropriate to the specific representations. The methods
are selected among the most promising techniques available in the literature and in-
clude classical curve fitting, string-based approaches, and hidden Markov models.
The analysis considers both supervised and unsupervised settings and is based on
a set of loosely labeled data acquired by a real video-surveillance system. The ex-
periments highlight different peculiarities of the methods taken into consideration,
and the final discussion guides the reader towards the most appropriate choice for a
given scenario.

1 Introduction

The study and the understanding of human activities from video has been widely ad-
dressed in the last decades, particularly with the availability of an enormous amount
of installed video-cameras, and the consequently increased interest for video-based
applications. In this chapter, we refer in particular to video-surveillance systems, as-
suming they observe possibly complex scenarios from a distance where the “action
of interest” is the trajectory of a moving object as a whole, and no information is
available or needed on the motion of object’s parts. We thus explicitly refer to data
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that may be modeled as time-series of instantaneous observations. In such settings,
depending on the specific application, we rely on some sort of supervision, i.e., we
may be able to manually label a data set and use it to learn common behaviors. In
this case, since the learning process follows a subjective view of what is “normal”
in the scene, we may build models that are either too simplistic or too structured for
the actual amount of information that may be extracted from the data. An example
of this, in our setting, occurs if the labeling process is inspired by the dynamics of
the 3D world with no consideration for the information loss due to image formation.
In other more common cases, labels may not be available in any way, and therefore
one has to rely on an unsupervised approach where the main problem is to discover
common behaviors from unlabeled examples.

Even if the research on video analysis and scene understanding is greatly con-
tributing to these problems, in this general setting a number of questions are still
open—how to represent data limiting the amount of ambiguities, when there is no
or little knowledge on the underlying data acquisition process? And, more specif-
ically, how to exploit the data internal structure induced by time-coherence of ob-
servations? Also, how to learn from large amounts of noisy data, particularly when
they belong to high dimensional spaces? Moreover, the specific domain we refer to
opens various practical issues, related to the scene complexity, the specifications of
the video-surveillance system (e.g., the number and the position of the cameras),
and the amount of prior information available on the observed phenomena.

This chapter deals with some of such general issues, trying to adopt data driven
strategies for representing data in flexible ways, studying approaches specifically de-
signed for time-series analysis, and adopting mathematically sound machine learn-
ing methods proved able to learn from large sets of high dimensional data. Some
practical issues related to the application domain are addressed in the experimental
phase since we deal with data acquired from a real single-camera video-surveillance
system installed in a rather complex environment.

The general pipeline we refer to in this work is rather standard and may be or-
ganized in three phases: a low-level video processing phase to extract information
on dynamic events occurring in the scene; a data abstraction phase that performs a
mapping into an appropriate feature space where data may be better observed and
understood; finally, a learning from examples phase, that exploits available knowl-
edge to build models able to understand common behaviors and, if possible, asso-
ciate yet to be seen data with known behaviors. One of the aims of the data ab-
straction phase is to build general models that could be applied to different input
representations. Once an effective representation is found, well established machine
learning methods (adequately equipped with ad hoc similarity functions) are applied
to deal with the supervised or unsupervised problem under consideration.

For what concerns the first phase in this chapter, we simply report the specific
model adopted in our work, referring the interested researcher to more appropriate
readings. Instead, we focus more specifically to the second and third stage. The goals
of our study are (i) to analyse the pertinent state-of-the-art with a reference to time
series data; (ii) to devise promising data representations and similarity measures
in both supervised and unsupervised settings; (iii) to validate them on a relatively
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big and complex set of data acquired by a video-surveillance system and loosely
labeled by means of a fast calibration procedure. All along the work, we exploit the
peculiarity of video-surveillance domain, where it is usual that a system observes
the same scene for very long periods and it is thus reasonable to imagine systems
automatically learning what is common in the observed scene.

More in detail, we analyze three different data abstraction approaches and
their associated similarity measures: a parametric fitting approach to trajectories
that maps temporal series in the parameters space of the adopted fitting curves
(B-Splines in our case); a string-based approach that learns an appropriate alphabet
from the training data available and then maps all data in a string based representa-
tion over the alphabet; finally, a method based on hidden Markov models (HMMs)
that builds a probabilistic model of the present observation given all past obser-
vations. With each representation, we associate an appropriate similarity measure
to adopt it in the learning phase. As for the learning algorithms in the supervised
case, we adopt a regularized least squares (RLS) scheme for B-Splines and string-
based models, while with HMMs we estimate the highest likelihood with respect to
the available models; instead, in the unsupervised case we adopt Spectral Cluster-
ing. A thorough experimental analysis will highlight the peculiarities of the various
models, suggesting what is more appropriate for each circumstance.

The structure of the chapter is as follows. Section 2 discusses the relevant state of
the art, with a specific reference to learning from examples approaches and to time-
series analysis. Section 3 is a brief account of the low-level video processing module
we adopt to extract dynamic events from video streams. Section 4 deals with the
second phase of the above mentioned pipeline, discussing a selection of methods for
representing temporal series data available from the literature; Sect. 5 focuses on the
third phase and reports possible approaches to the problem of learning behavioral
patterns, both from labeled and unlabeled data. In this case, specific reference to the
choice of appropriate similarity measures is made. Section 6 reports in details an
experimental analysis that compares the different studied approaches in the context
of a real and rather complex scenario. Finally, Sect. 7 is left to discussions and open
issues.

2 Related Works

Event analysis and recognition have been addressed by many authors in the last
decades, mainly in the context of visual surveillance, domotics, and video annota-
tion. The number of related subproblems is large, as well as the number of possible
different applications. Consequently, the amount of literature on these topics is huge
and becomes more and more unmanageable. Therefore, this section does not aim at
providing an exhaustive overview of current state of research, which can be found—
for instance—in the recent special issue [28] and in the references therein. Instead,
we focus mainly on the crucial subproblem of analyzing and modeling motion tra-
jectories, and more specifically on the key issues of representation and matching of
the trajectories.
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From the viewpoint of possible applications, two different scenarios have been
considered in the literature. First, if labeled data are available then a supervised
approach to trajectory analysis is the best option and the ultimate goal is to build
suitable classifiers representing different types of behavioral patterns. Second, if
there is no prior knowledge about the behavior classes, then one is forced to adopt
unsupervised learning methods (specifically, clustering) in order to extract informa-
tion from sets of unlabeled data. In this latter case, however, the goal is necessarily
different since the best one can do is to model automatically the notion of “common
behavior” and try to detect anomalies.

For what concerns the representation of the trajectories, several authors adopted
an approach in which the temporal component of the observed behaviors is kept
explicit [14], therefore relying on methods for time-series analysis. In what follows,
instead of considering representations that explicitly refer to 2D or 3D trajectories,
we focus on methods that do not make any assumption on the size of each instanta-
neous measurement.

Both with the supervised and the unsupervised approaches, an important issue
in knowledge discovery from sequential data is what similarity measure to use to
extract meaningful information: [25] offers a complete survey to such a topic. From
the point of view of data abstraction, the contributions proposed in the literature may
be roughly divided between the ones relying on an explicit modeling of the events of
interest (in the learning from examples framework it is assumed that an exhaustive
set of labeled data is available) and the ones aiming at an automatic modeling of
“normal behaviors” from a (possibly) big set of unlabeled data.

A priori knowledge on the analyzed environment and its dynamics may be ex-
ploited in different ways. A first example, widely explored in the literature, refers to
stochastic grammars (see, for instance, [10]). In certain application domains (e.g.,
traffic control) the amount of structures contained in the expected events may be
profitably used to model the dynamics of the scene. For instance, in [17], the re-
sults obtained by a robust low-level processing module are associated with context
information to identify possible abnormal behaviors in aerial images.

In general, however, the most appropriate way to exploit prior knowledge is to
rely on learning from examples. If the available data are labeled, i.e., with each
one of them we may associate a label of a known behavior, the use of state-of-the-
art machine learning algorithms lead to effective behavior categorization methods.
On this respect, we mention the work by Pittore et al. [23], where the available
data are mapped in the parameter space induced by the fit of each trajectory with B
splines, then support vector machines (SVMs) are applied. Otherwise, the sequential
structure of trajectories may be captured by training a well designed hidden Markov
models (HMMs) [24] or other similar dynamical systems (see, for instance, [2] and
references therein).

For what concerns the literature of unsupervised approaches, the general goal is
to model normal behaviors from (possibly big) sets of unlabeled observations. Many
successful methods have been proposed to discover classes of similar pattern in a
data set. Unfortunately, most of them are not tailored for clustering sequential data,
such as temporal series. In fact, while analyzing temporal data, the temporal dimen-
sion usually induces specific, inherent structure to the sequence of feature vectors
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that is likely to be disregarded by traditional clustering methods. Furthermore, se-
quences of different lengths cannot be compared in a unique way.

Among the first contributions to this topic is the influential work by Stauffer and
his coworkers (see, for instance, [29]), based on learning from data a codebook de-
rived from data quantization. Co-occurrence of motion patterns in the analyzed tra-
jectories is evaluated, through the use of a hierarchical classification module. More
recently, [9] proposes a pipeline based on k-means to track objects, represent tra-
jectories with respect to an estimated codebook, and cluster them. Finally, a Bayes
method is applied to detect anomalies. Experimental analysis is based on both syn-
thetic and real traffic sequences. In [22], normal behaviors are associated with one
class only. Then a one-class SVM is used to model the class of normal trajectories,
against which identify abnormal behaviors. The representation is a sequence of 2D
coordinates and the fixed length property is restored by means of trajectory subsam-
pling. Again, the reference application is outdoor traffic control analysis. Anjum
and Cavallaro [1] adopts a multi-feature representation of each trajectory based on
a cumulative approach: each measurement at time t refers to all previous observa-
tions. Clustering is performed with mean-shift. A trajectory is labeled as normal or
anomalous, according to the trajectories density among the clusters.

More specific to our problem is previous work on temporal series clustering.
In this context, the literature addressed the problem from two distinct viewpoints
(see, for instance, [11, 13, 14] and references therein). The first approach relies on
modifying suitable existing algorithms for clustering static data in such a way that
time series data can be handled. The rationale of the second approach is to convert
temporal series data into the form of static data so that the existing algorithms for
clustering static data can be directly used. An interesting alternative to these two
mainstream approaches, is to tackle directly the problem of building suitable simi-
larity/kernel functions that encompass dynamical properties of the events. In [31],
the authors provide a unifying theoretical framework to study and design differ-
ent kernels based on dynamical systems, which can be used for behavioral analysis
(through the so called ARMA models [5]), diffusion processes, graphs-based sys-
tems. A number of efficient methods for computing such kernels are also discussed,
making the paper a valuable starting point for a more detailed study of this approach.

A rather complete account of the open issues related to events classification in an
unsupervised setting is reported in [18].

Before concluding the section, we believe it is worth spending a few words about
the problem of assessing the results and comparing the different methods. Since we
consider both the supervised and unsupervised scenario, it is not possible to use a
unique evaluation measure. On the one hand, when the true labels are available the
quality of the classifiers can be easily measured by computing the number of mis-
classification errors on a separate test set. On the other hand, in the unsupervised
learning scenario, evaluating the quality of the results on real world data is consid-
ered a challenging aspect. Indeed, if one relies on clustering methods, then there is
no standard way to assess the obtained clusters both with respect of the initial set
of data and with respect to possible future observations. As reported in [3, 7, 8],
most of the work is devoted to estimate an appropriate model (usually related to the
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choice of the number of clusters to consider) by comparing the estimated member-
ship against a ground-truth, when available. Otherwise, when several instances have
been computed (e.g., for different values of the parameters) an analysis based on
quality measures, or quality indices, is used to select the most promising computa-
tion.

3 Low Level Processing and Initial Representation

The starting point of our behavior analysis module is a low-level processing phase
extracting dynamic information from video streams. Once the occurred dynamic
events have been identified, it is important to find an appropriate initial representa-
tion for them, with a potential to discriminate among different behavioral models.
This choice should embed most of the prior information available on a specific sce-
nario.

3.1 Video Processing

The low-level processing phase is based on an efficient object tracking algorithm
[21] which combines motion and appearance information.

A motion tracker based on Kalman and considering position, size and velocity,
is associated with an appearance tracker based on weighted color histograms. The
two modules are combined according to a modular pipeline (see Fig. 1) so to cope
with different levels of complexity of the monitored environment while keeping the
computational cost low. To this purpose, appearance information is introduced only
when appropriate.

Fig. 1 Architecture of the motion and appearance tracker [21]
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Motion and appearance information are measured, stored, and updated indepen-
dently, but jointly contribute to represent a new observation into the data association
procedure. This procedure detects the similarity between new observations and pre-
viously seen targets, to correct and update the state of the observed objects. To cope
with temporary occlusions among targets, typical causes of failure while tracking
objects, the data association includes a procedure to detect and solve intersection
events.

At time t , the instantaneous observation of a moving object or target Oi , is a
vector Mt

i = [THt
i ,Pt

i , S
t
i ,Vt

i ,CHt
i ,W

t
i ,H

t
i ] where

• THt
i ∈ R is the frame time-stamp at time t .

• Pt
i = [xt

i , y
t
i ] ∈ R

2 is the position of the target centroid on the image plane.
• St

i ∈ R is the spatial occupancy of the target, St
i = ∑

(i,j)∈CCt
i
Bt (i, j), where CCt

i

is the connected component of the binary map at time t corresponding to Oi .
• Vt

i = [V xt
i ,Vyt

i ] ∈ R
2 is the apparent velocity vector estimated by Kalman.

• CHt
i is a weighted color histogram [4].

• Wt
i ∈ R and Ht

i ∈ R are, respectively, width and height of the bounding box
of CCt

i .

When target Oi exits from the scene, its trajectory is stored as a temporal series
{Mt

i}t=1,...,k of instantaneous observations.

3.2 The Choice of the Input Space

The temporal series of instantaneous observations measured according to the afore
mentioned module includes features appropriate for the tracking phase. Instead, in
the pipeline of behavior modeling, these observations should be appropriately trans-
lated into descriptions able to capture the degree of similarity among different be-
haviors. In general, the meaning of such observations may change according to the
application domain under consideration.

In the literature, a common choice is to consider the target position into the im-
age plane [20, 22]. However, modeling the observations as plain positions may be
ambiguous in many situations (see, as an example, the scenario we adopted for our
experimental evaluation—Fig. 4). A way to cope with these problems is to devise
more complex input spaces where to measure, not only position, but also dynamic
features (e.g., velocity or acceleration) or geometric features (as area, perimeter,
or shape features—the latter useful if a variety of different objects may be mov-
ing in the scene). Notice that such features are often available, or easy to compute,
from the object tracking phase. For this reason, it is advisable to map the trajec-
tory description (as gathered by the tracking process) into an appropriate form, with
the capability of capturing information semantically meaningful for the problem at
hand. Our current description, that seems appropriate for the degree of complexity
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of the available test bed, takes inspiration from the seminal work by Stauffer and his
coworkers [29] and may be summarized as a 5-dim vector

xt
i = [

Pt
i , S

t
i ,M

t
i ,D

t
i

]
,

where, again, Pt
i represents the 2-dim object position on the image plane, Si the

object size at time t . Mt
i and Dt

i represent the object velocity at time t as mod-
ule and direction and may be computed from the velocity vector Vt

i . In the work
reported here, appearance information is discarded, being not meaningful for the
modeling experimental setting we consider (see Sect. 6 for details). The time-stamp
is disregarded since temporal alignment among events is not relevant to our purpose.
Finally, width and height of the bounding box, related to of the target dimension, are
synthesized with the only size feature. The velocity is represented in the module-
direction space as it is semantically more meaningful (e.g., the module of the ve-
locity helps to discriminate among walking or running people, while the direction
is an apparent and powerful feature that groups of coherent events probably have
in common). As we will see in Sect. 6, these features appear to summarize a set of
interesting properties among which building the behavioral models.

4 Temporal Series Representations

In this section, we provide a brief review of some popular representation schemes
for temporal series. Indeed, the review is not exhaustive but refers to techniques
which showed promising performances during our experimental analysis. The com-
mon underlying idea of the following approaches is that raw temporal data may
be conveniently translated into a suitable low-rank parametric model. The subse-
quent behavioral analysis can be conveniently performed using effective methods
for dealing with static data.

In the following, a data set of N temporal series is denoted by means of the set
X = {xi}Ni=1, where each datum xi is a sequence of ki vectors in some Euclidean

space R
d , i.e. xi = (x1

i , x2
i , . . . , x

ki

i )T and xt
i ∈ R

d , t = 1, . . . , ki . A natural way to
interpret the index t is as the temporal index.

With a reference to the specific input space adopted in the experiments and an-
ticipated in Sect. 3, in our case d = 5, unless otherwise stated.

4.1 Curve Fitting

In a parametric setting, one aims at representing an event by means of a fixed-length
feature vector in order to overcome two crucial issues related to temporal series:
(1) the fact that the events to be represented do not last the same amount of time,
and (2) they do not have the same spatio-temporal evolution (sometimes even within
events of the same class).



Learning Behavioral Patterns of Time Series for Video-Surveillance 283

A popular and easy-to-implement parametric approach is based on curve fitting,
in which a regression function is built for each sequence (see [23] and references
therein). Here an important step is to choose a specific family of fitting functions.
Such choice depends on the distribution of the points in the scene, which is strongly
connected to the complexity of observed behaviors. Our early attempts to exploit
curve fitting were based on second-degree polynomials fitted by means of a sim-
ple least squares-based method [20]. Common less naive alternatives are polynomi-
als [15], which however have been shown successful for moderately complex series
only. In a more general and articulated scenario, it is more appropriate to rely on a
family of B-spline models, as proposed in [23].

In the following experimental analysis, we took inspiration from this last work
to implement the representation schema based on curve fitting. More specifically,
for each trajectory xi of length ki—represented as discussed in Sect. 3—we first
normalize the components of the input vectors in the interval [0,1], and then we
perform a maximum likelihood regression separately for each component to esti-
mate the coefficients of a piecewise linear fixed-knot spline. The B-spline models
have all the same fixed size according to the number m of knots. The normaliza-
tion is required in order to make the coefficients of the B-spline models consistent
among each other.

According to a common thread of previous works on the topic, the piecewise
linear fixed knot splines are obtained using an intermediate feature space in which
a point x is represented by a vector φ(x) defined as φ(x) = (1, x, |x − t1|+, . . . ,

|x − tm|+), where |x − tk|+ is equal to zero if x < tk and (x − tk) otherwise. In such
space, it is possible to define a Mercer kernel

K(xi, xj ) = 1 + xixj +
m∑

k=1

|xi − tk||xj − tk|.

At the end of the above process, each temporal series xi can be described by
means of a single d × (m + 2) dimensional vector obtained by concatenating the
regression coefficients for all the dimensions of the feature vector xt

i .

4.2 Probabilistic Models

A possible alternative parametric approach to temporal series modeling may consist
of building a probabilistic model of the present observation given all past obser-
vations: p(xi,t |xi,1, xi,2, . . . , xi,t−1). Because the history of observations can grow
arbitrarily large, it is necessary to limit the complexity of such a model. A com-
mon approach to overcome this problem is to limit the window of past observations.
The simplest model, p(xi,t |xi,t−1), is known as a first-order Markov model. One
popular choice of probabilistic models that make this assumption, are the hidden



284 N. Noceti et al.

Markov models (HMMs), of which it is always possible to write down explicitly the
likelihood function [24]:

p(x|θ) =
∑

q0,...,qk

p(x0|q0)p(q0)

k∏
t=1

p(xt |qt )p(qt |qt−1), (1)

where the q = {q1, . . . , qk} are the hidden states corresponding to each element of
x and can take one of the discrete values {1, . . . ,M}. In order to specify a HMM,
one has to specify the parameter vector θ = (π,α,μ,Σ), where π ∈ R

M represents
the initial state probability distributions πi = p(q0 = i) for all i = 1, . . . ,M . α ∈
R

M×M is the state transition probability distribution, i.e., αij = p(qt = j |qt−1 = i).
μ = {μ1, . . . ,μM} and Σ = {Σ1, . . . ,ΣM} represents the mean and covariance of
the Gaussian distributions for each state i, i.e., the emission density p(xt |qt = i) is
a normal distribution N (xt |μi,Σi).

In order to exploit such representation schema, given a data set of N trajecto-
ries the first step is to estimate the parameters of N distinct HMMs representing the
probabilistic dynamical models that generated the observations. For example, such
estimation may be achieved quite efficiently by choosing one off-the-shelf meth-
ods for maximizing the likelihood of the HMMs parameters given the observations.
Once such estimation has been performed, each input temporal series xi is trans-
lated into a single parameter vector θi = (πi, αi,μi,Σi) that identifies univocally
its HMM. Consequently, the similarity among the trajectories can be computed us-
ing ad-hoc kernel functions defined for the probabilistic models, as discussed briefly
in Sect. 5.2.

It is important to note that such approach is somehow robust with respect to
the specific dimensionality of the instantaneous observations. That is, the algorithm
used for generating the representative vectors θi does not depend on the number of
components of the single vectors xt

i . Although this is certainly true from an algorith-
mic viewpoint, in practice we noted that the higher is the number of dimensions the
coarsest is estimation of the HMM parameters, and in many cases it may be trou-
blesome to consider them as probabilistic generators of the observed trajectories.

4.3 String-Based Approach

This approach is based on the observation that a temporal sequence of discrete ele-
ments can be seen as a concatenation of symbols from a finite alphabet A.

Intuitively, the alphabet could be associated with an appropriate partitioning of
the input space. Since the choice of an appropriate alphabet is crucial and, as the
input size d grows manual partitioning is not conceivable, we address the problem
of partitioning the space guided by the available data. In the literature, methods for
automatic space partitioning (usually based on vector quantization or clustering)
have been proposed [9, 29].

In this chapter, we adopt an approach originally proposed in [19] and previously
discussed in [20] which relies on clustering data in the d-dimensional input space
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{{xt
i }t=1,...,ki

}i=1,...,N . As for the specific clustering algorithm, we adopt spectral
clustering, in accordance to the behavior modeling phase (more details are reported
in Sect. 5). An appropriate kernel function allows us to build a similarity matrix that
captures the internal structure of the data set. To combine different measurements,
which could take values in different ranges, various choices are possible. A first
way is to simply concatenate input vector, after an appropriate data normalization
in the [0,1] range, similar to the one adopted in the curve fitting approach. An
alternative way (sometimes referred to as multi-cue integration in the supervised
learning literature [30]), is based on a convex combination of similarity or kernel
functions on sub-sets of coherent features. Given two observations in R

d , x and y:

K(x,y) = ∑Nf

i=1 wiKi(xi, yi, θi) where Nf is the number of sub-sets Nf ≤ d , and
wi sum up to 1, θi are the parameters of kernel Ki .

In this work, where d = 5 while Nf = 4 (being the position a 2-dimensional
measure), we adopt a linear combination of Gaussian kernels:

K(O1,O2) = WP KP (p1,p2) + WSKS(s1, s2) + WMKM(m1,m2)

+ WDKD(d1, d2),

where O1 and O2 are two possible observations O1 = (p1, s1,m1, d1) and O2 =
(p2, s2,m2, d2).

Once the alphabet is built, a temporal series xi may be translated into a string s

with an association of each element xt
i ∈ R

d to the partition it belongs to. To obtain
compressed descriptions that capture the peculiarities of each behavior, we consider
only transitions between states, skipping the replicates of the same symbol, i.e., if
a string contains replicates of the symbol u ∈ A it can be compressed as: αuλβ →
αuβ , for every arbitrary substrings α and β .

5 Learning Behaviors

Once data have been appropriately represented we rely on a learning from examples
phase to learn how to discriminate among different behaviors. In this section, we
consider both supervised and unsupervised settings.

5.1 The Learning Phase

In the supervised case, we assume we are given a set of labeled data to learn how
to classify yet to be seen behaviors. In this case, the representation based on HMMs
naturally leads to an approach well established in the literature, where a new tra-
jectory is classified by computing the likelihood with all the learnt models (one for
each known behavior) and considering it as realization of the one corresponding to
the higher likelihood.
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In all the other cases, the goal of classifying a trajectory depending on the behav-
ior it belongs to is achieved by using a multi-class approach where the performance
is evaluated on the classification error. We address it by means of classical binary
learning tools and the use of a one-vs-all classification procedure. In particular, in
our experiments we consider the regularized least-squares (RLS) algorithm, that can
be formulated as follows: given a training set z = (x,y) = {(x1, y1), . . . , (xn, yn)} of
n-examples (xi, yi) ∈ X × R, regularized least squares amounts to

f λ
z (x) =

n∑
i=1

αiK(x, xi) with α = (K + nλI)−1y,

where λ > 0 is the regularization parameter, K is the n × n-matrix (K)ij =
K(xi, xj ), with K is a Mercer’s kernel. In the binary classification case y ∈ {−1,1}.
A more general class of algorithms which could be adopted in this framework, as
well as references to the pertinent literature, can be found in [16].

In the unsupervised case, we assume the available data are not associated with
a label, thus there is no explicit knowledge on common behavior. Unsupervised
learning may be used to mine information from the data available. In this case, we
apply clustering to group the available trajectories in coherent groups and associate
with each group an estimated behavior. The obtained analysis allows us to both
(i) estimate common behaviors, (ii) associate new data with the estimated behaviors.

The analysis we carry out is based on the use of the well established technique
known as spectral clustering. Specifically, for the experiments, we implemented an
efficient recursive algorithm for spectral clustering following [27].

The algorithms works as follow. Given a suitable similarity measure among data
points,1 the implemented algorithm clusters the data set by recursively computing
the optimal bipartition of the weighted similarity graph G associated with a specific
subset of data. It can be shown that an optimal bipartition of the graph into subgraphs
A and B can be computed by minimizing the following measure called normalized
cut:

Ncut(A,B) = cut(A,B)

volA
+ cut(B,A)

vol(B)
,

where cut(A,B) represents the sum of all edges linking points in A to points in B ,
while vol(A) and vol(B) represents the sum of the weights among points in A

and B , respectively. The minimization of the Ncut can be achieved only approxi-
mately by analyzing the eigenstructure of the Laplacian matrix L associated with the
graph. Such matrix is computed by a suitable normalization of the matrix W whose
elements wij represent the similarity between the ith and j th node of the graph.

At each step of the recursive procedure, the algorithm computes the second
smallest eigenvector v = (v1, . . . , vN)—i.e., the one corresponding to the first
nonzero eigenvalue—of L. In [27], the authors showed that the closest approxi-
mation of the optimal graph partition is the one associated with the sign of the
components vi .

1Note that in the unsupervised setting, the similarity function plays the role of the kernel function
of the RLS case—as they both model the similarity among available data.
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Since our algorithm mimics a divisive hierarchical clustering, very few param-
eters are needed. The most important is the stopping criterion, which controls the
level of granularity of the clustering. In our algorithm, this can be specified through
either a simple threshold on the value of the normalized cut corresponding to the
candidate partition or a minimum size allowed for a cluster. This means we do not
have to decide the number of the clusters beforehand, but we have only to define the
minimum size allowed for the small clusters.

In our approach, the choice of an appropriate similarity or kernel function is
crucial, since it allows for the extraction of meaningful information from the data at
hand [26]. We now review kernels available from the literature that may be profitably
applied to time-series, with a reference to the representations. In the case of time-
series, and depending on the chosen representation, it may be the case that kernels
for variable-length descriptions are needed.

5.2 Kernels for Time-Series

It is well assessed that, in the learning from examples approaches, the obtained
results strongly depend on the ability to capture the underlying notion of metric—
or the similarity structure—over the input space. In turn, the similarity structure
is related to the choice of a proper kernel function on the data. A function to be
used as a kernel for RLS has to be a Mercer’s kernel, that is symmetric and positive
definite, while for spectral clustering should be symmetric and positive. Since in
our experiments, we compare different representation schemes we have to choose
appropriate kernels.

In the case of B-Splines, we refer to well established kernels such as the Gaussian
kernels. The other two approaches require a more careful choice of the kernel able
to deal with variable length data [26]. We considered the following:

5.2.1 Probability Product Kernel (PPK)

An efficient measure of similarity among temporal series represented by means of
HMMs was introduced in [12], and used in [13] in tasks similar to ours.

Given two probability distributions representing two pairs of data sequences over
the space of all potential observable sequences X, the generalized inner product can
be computed by integrating the product of the distributions:

K
(
p(x|θ),p(x|θ)

) =
∫

X

pβ(x|θ)pβ(x|θ) dx, (2)

where β is a free parameter which allows for the specification of some properties
of the kernel. For instance, if β = 1/2, the PPK becomes the classic Bhattacharyya
affinity metric between two probability distributions, which is a Mercer kernel and
can be conveniently used in our context. In addition, it is computable in closed
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form for a variety of distribution families. For the HMMs, we used the guidelines
proposed in [13].

It is worth recalling here that different definitions of similarity among HMMs
are present in the literature; therefore our comments below about the performance
of the HMM-based approach in the unsupervised setting are relative to the specific
case of the similarity measure (2).

5.2.2 Kernels for String-Based Representations

In this case the choice of an appropriate kernel is quite critical, considering the
peculiarities of the available data. Indeed, even after the translation of each temporal
series in a string, the event description is still variable length—depending on the
number of transitions of a behavior instance from one state to another. We adopt
a similarity measure from the family of string kernels the well known P-spectrum
kernel, Kp [26]. Formally, the kernel may be defined as a feature map of strings
followed by an appropriate dot product. The map makes explicit all sub-strings of
length P of string s:

φP
u (s) = ∣∣{(v1, v2) : s = v1uv2

}∣∣, u ∈ AP .

The associated kernel between two strings s and t is defined as:

KP (s, t) = 〈
φP (s),φP (t)

〉 = ∑
u∈AP

φP
u (s)φP

u (t).

In other words, the P -spectrum relies on counting how many substrings of fixed
length P the two strings have in common. If the focus is on simple transitions
between atomic symbols of the alphabet, the natural choice is to consider basic
substrings of length 2. P -spectrum kernel is a Mercer’s kernel, therefore it is also
symmetric and positive, and can be conveniently used in the spectral clustering do-
main.

5.3 Run Time Analysis

At run time, once a new dynamic event is observed, the objective of a behavior
understanding module is to associate this new observation with one of the common
behaviors learned by the system. In case none of the previously observed behaviors
is appropriate for the new observation, we say that an anomaly is detected.

According to the adopted pipeline, the dynamic event is first represented with
respect to the appropriate input space (for instance„ the one described in Sect. 3),
then it is translated according to one of the parametric models discussed in Sect. 4
into the feature vector we use as a test datum.

At this point, in the supervised case, we estimate the most likely class—either
with a multi-class RLS or by computing the highest likelihood of belonging to a
given probabilistic model.
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When dealing with unsupervised learning, an out-of-sample method on the clus-
tering tree [6] may be applied. As an alternative, the membership of the new datum
to a known behavior can be tested by comparing it and an appropriately chosen be-
havior candidate. The candidate may be computed via a voting strategy computed
as follows: for each string s in cluster C we compute the similarity with all other
elements of C. The most similar string to s is voted by s to be the candidate. By
putting together the votes of all the strings in C, the string obtaining the higher
number of votes is elected as a cluster candidate. In our experimental analysis, this
technique has been preferred to out-of-sample, as it allows for a rapid visual inspec-
tion of the obtained results, since archetypical sequences can be easily visualized
and compared with data waiting to be associated with clusters.

6 Experimental Analysis

The focus of this section is on the assessment of the discussed pipeline for behav-
ioral modeling, comparing the various data abstraction modules proposed. After
introducing data set and software tools, we discuss the experiments: first, we evalu-
ate the different representation schemas in the context of supervised learning from
examples, then we move to the unsupervised framework, where clustering is inter-
preted as a tool to associate real and estimated behavioral patterns.

As described in Sect. 3, the video analysis stage (low-level processing) is based
on our previous work [21], as well as the computation of string-based representation
and P-spectrum kernel [19].

All the experiments based on the HMMs models have been performed by learn-
ing from our data the parameters of the graphical model by means of well estab-
lished Bayes Net Toolbox for Matlab2 developed by Kevin Murphy and widespread
used by machine learning practitioners.
In order to infer the parameters of the spline models we implemented our own mod-
ule based on the Spline Matlab Toolbox.3 The guidelines for designing such module
are those described in [23], although there the authors rely on SVM for the spline-
based regression, while we preferred to adopt a more standard least squares-based
approach. For the latter, we exploited our own implementation.

6.1 Data Collection and Semi-automatic Labeling

Previous work [20] based experimental evaluations on synthetic data and bench-
mark data sets. In this work, we rely on a set of real data acquired by a video-

2Available for downloading at http://people.cs.ubc.ca/~murphyk/Software/BNT/bnt.html.
3Further details on: http://www.mathworks.com/products/splines/.

http://people.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
http://www.mathworks.com/products/splines/
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Fig. 2 Sample frames acquired by the surveillance camera, showing the potentially complex con-
ditions of the observed environment: the crowd level differs depending on the temporal interval
considered, while the illumination is strongly affected by physical properties of the environment,
in particular the presence of windows along the right wall

Fig. 3 An example of the resulting binary map after the low-level video analysis: the connected
components (left) are first extracted and described with a features vector, then correlated over time
(right) by means of tracking to model their dynamic evolution in the scene

surveillance system4 and loosely annotated according to the procedure described in
the following. The system monitors an indoor open space (one of the main halls of
our Department), shown in Fig. 2, where a good amount of dynamic events occur
during daytime. Only people are supposed to be moving in the scene: the monitored
environment provides different complexity with respect to the crowd level, which
in turns depend on several factors, such as day, temporal interval, period of the aca-
demic year (presence of lessons, examinations). The weather conditions strongly
affect the scene appearance (see Fig. 2), being the hall illuminated by windows (on
the right wall) as well as artificial lights. At each time instant, first the current frame
has been segmented with respect to motion information (Fig. 3, left), the tracking
procedure is applied (Fig. 3, right) then to gather the trajectories and finally map
them into the dynamic events descriptors, as discussed in Sect. 3.2. Though the

4The Imanalysis suite, we obtained within a technology transfer program with the company Imavis
srl, http://www.imavis.com/.

http://www.imavis.com/
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Table 1 Temporal ranges
where video data have been
considered for the
experimental analysis

Starting time Ending time

08:45 10:00

12:30 14:30

16:00 17:00

Fig. 4 On the left, the set of source-sink regions considered during the annotation process. The
trajectories used to feed the high-level analysis module have been acquired during a week consid-
ering a set of interesting temporal ranges. After a cleaning procedure, the input data set results in
the trajectories shown on the right. Red and green circles denote, respectively, first and last points

camera continuously acquires the video signal, we extracted trajectories from ob-
servations of a week, limited to the selection of temporal ranges listed in Table 1.
The dynamic content of the included time intervals is highly representative of the
totality of events typically occurring in the scene (people arriving and leaving, enter-
ing and exiting the doors, performing activities on the tables area, just to give some
examples). After that short trajectories have been discarded, we annotated the re-
sulting ones on the basis of the set of source-sink regions visualized on Fig. 4(left).
The set of regions have been decided on the basis of physical properties of the envi-
ronment, as presence of doors, tables, coffee, and drinks dispensers. We thus ended
up with 8 general behaviors detailed in Table 2 and shown in Fig. 4(right), giving an
impression of the richness of the observed events.

6.2 Model Selection

We now briefly review the selection of the parameters for all the methods included
in the analysis.

6.2.1 Curve Fitting

The model selection with the representation schema based on spline curve fitting
is straightforward. Indeed, the parametric model described in Sect. 4.1 requires, as
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Table 2 The annotation
process has been defined of
the basis of a set of
source-sink regions (see
Fig. 4). We end up with a set
of 8 behaviors, representing
the most common and general
dynamic events occurring in
the monitored environment

Behavior Source regions Sink regions # Trajectories

1 1 9, 10 281

2 1, 2 8 165

3 5, 6 7, 8 96

4 6 5 51

5 8 1, 2 210

6 8 7 104

7 9, 10 1, 2 215

8 9, 10 8 83

parameters, just the definition of the fixed knots m. Since the described approach
relies on several mono-dimensional curve fitting problems—with the independent
variable being the time—one has to set only the temporal spacing between two con-
secutive knots. In our experiments, we set such spacing as one third of the average
length of the trajectories in our data set. In such way, on average, all the trajectories
are represented by a fair number of nontrivial regression coefficients. We report the
result obtained using both all the features (d = 5) and the position only (d = 2).

6.2.2 Probabilistic Model

In using the representation schema based on HMMs, we considered two different
configurations. According to the first one, the parameters of the HMMs are learnt
from the data using, at each time, input vectors comprising all the features (i.e.,
X and Y position on the image plane, area of the tracked object, and amplitude
and modulus of the vector representing the approximate velocity). According to the
second configuration, training data of each trajectory are based on only the two fea-
tures corresponding to the position on the image plane. As already pointed out in
[20], HMMs depend strongly on the initialization of their joint probability density
function. Since in the unsupervised setting the HMM is used only as an intermediate
step towards the computation of the similarity function between two trajectories, one
is forced to train the HMMs using one trajectory only. Note that comments about
this possibly troublesome choice are present in the original work [12] to which we
refer the interested reader for further discussions. From a practical point of view,
however, we noted that the bigger is the number of dimension of the feature vector
the more difficult is for the training algorithm to reach the convergence. As a conse-
quence, with the first configuration we have not been able to compute the similarity
between several short trajectories. For this reason in the following, we report the
results obtained with the second configuration only, with d = 2. The number of pos-
sible states of the HMM is three and the probability density function corresponding
to each state is Gaussian.
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6.2.3 String-Based Approach

When dealing with the string-based representation, we computed a family of pos-
sible alphabets F = {Apar}par∈PAR, where PAR is the set of allowed combination
of parameters. To combine different features we considered different approaches:
(1) a simple concatenation of the features in a vector, after that a normalization
made the features comparable, and (2) the multi-cue integration, where each fea-
ture is processed singularly. Since in both cases spectral clustering is adopted to
partition the input space (thus to build the alphabet), the parameters include a cut
threshold, we called THpoints, chosen in the range [0.6,1.0]. Concerning the kernel
used, which is Gaussian in this case, we moreover had to set the σ (i.e., the stan-
dard deviations of the Gaussian kernel components, a single value for (1), a value
for each feature in (2)). We derived the values from the definition of diameter of
a points set S, which is defined as diam = maxx,y∈S dist(x,y), where dist is an
appropriate measure of dissimilarity (the 2-norm in our case). The σ value(s) is
then computed as a fraction of the diameter. Besides, the specific choice can be
guided by the distribution of the input features. Focusing on the multi-cue inte-
gration approach, moreover, we selected the combination of features weights W
such that W = ⋃

k{[WP ,WS,WM,WD]|Wi ∈ {0, k},∀i ∈ {P,S,M,D}} with k ∈
{0, 1

4 , 1
3 , 1

2 ,1} and
∑

Wi = 1 with i ∈ {P,S,M,D}. This selection constitutes a
significant sampling of the totality of possible alphabets.

6.2.4 Kernel Choice

Let’s now describe and motivate some of the choices relative to the parameters of the
kernel functions. For what concerns the P-spectrum, a natural choice is to fix P = 2
being the strings obtained by keeping the only transitions between states. The kernel
used to compare two HMMs are the probability product kernels, described briefly
in Sect. 5.2.1. According to the authors that first introduced such kernels [12], they
are very robust with respect to the choice of the kernel parameters. In the specific
case of HMMs, the kernel becomes the popular Bhattacharyya affinity matrix, and
the only significative parameter T is called mixing proportion, and corresponds to
the time interval considered for the evolution of the underlying dynamical systems.
In our experiments, we used the same value (T = 10) proposed in [13], where the
authors showed convincing evidence about the stability of such value. Our experi-
ments confirmed such claim.

6.2.5 RLS Classification

Performing the multi-class classification based on regularized least squares and
k-fold cross validation (k-CV), we needed to decide the number k of subsamplings
(in our experiment k = 5) and the numerical range of the regularization parameter λ,
which is chosen in the range [10−3,1] and properly selected in correspondence of
the minimum classification error.
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6.2.6 HMMs Likelihood Estimation

The use of HMMs in the supervised setting refers to a widely accepted practice
of learning different probabilistic models, each corresponding to the one that most
likely generated one of different classes in which the data set can be decomposed.
All the new trajectories are tested against all the generative models, and classified
to belong to one specific class on the basis of the corresponding likelihood. In the
experiments, we tried to be as close to the multi-class classification approach as
possible. Therefore, we run k = 5 different times the learning algorithm for each
class keeping separate a fraction of the all data set for the subsequent test.

6.2.7 Spectral Clustering

In the unsupervised analysis, spectral clustering is used to group coherent set of
trajectories, it is thus necessary again to tune the cut threshold parameter, THtrj: we
chose such value in the range [0.5,1.0].

6.3 Supervised Analysis

We now evaluate the results obtained for the supervised setting. In the string-based
approach, we first need to estimate the most appropriate alphabet with respect to
the different possible weight vectors W for the multiple cue integration of features.
Table 3 reports the average hit rates obtained by 5-CV for a selection of weights. It
is apparent how the presence of position leads, in this case, to the best results, with
the highest performance obtained by for W = (1,0,0,0). The association between
input data and output labels seems to help coping with ambiguities in a data-set
that, in principle, suffers from it, as shown in Fig. 3(right), where trajectories appear
superimposed.

Table 4 compares the best result obtained with a string-based approach against
the performances given by B-Splines. By using the representation schema based on
B-spline, the performances are slightly higher.

It also reports a comparison between feature concatenation and multi-cue inte-
gration for the string-based case, highlighting a clear superiority of the latter.

In order to deal with HMM-based representation, we start from a 2-dim repre-
sentation based on the positions only and use a standard approach of estimating one
probabilistic model for each class, and then using the models as a composite clas-
sifier. Given a new trajectory, the output label can be assigned by computing the
likelihood to belong to all the models and then choosing the one that maximizes
such likelihood. Similarly with the previous 5-fold learning method, for the train-
ing of the HMMs models we divided the data set into 5 distinct subsets and run
the inference algorithm for each of them, using the others as test set. The average
performance is 64.98%, which is below the performances of the methods reported
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Table 3 Hit rates in the
string-based approach with a
multi-label classification
based on RLS

Alphabet WP WS WM WD THpoints %

1 0 0 0 1 0.90 48.38

2 0 0 0.5 0.5 0.95 52.70

3 0 0 1 0 0.95 38.68

4 0 0.5 0 0.5 0.95 50.29

5 0 0.5 0.5 0 0.95 41.18

6 0 1 0 0 0.90 24.57

7 0.5 0 0 0.5 0.95 63.9

8 0.5 0 0.5 0 1.00 63.91

9 0.5 0.5 0 0 0.95 63.64

10 1 0 0 0 0.95 67.48

11 0.25 0.25 0.25 0.25 1.00 62.58

12 0 0.33 0.33 0.33 0.95 52.54

13 0.33 0 0.33 0.33 1.00 64.33

14 0.33 0.33 0 0.33 1.00 62.5

15 0.33 0.33 0.33 0 1.00 62.16

Table 4 Supervised analysis
based on RLS multi-label
classification: comparison
between methods

Representation schema Success rate (%)

Strings (concatenation) 27.97

Strings (multi-cue integration) 67.48

B-Spline (5 dim) 71.93

B-Spline (2 dim) 72.26

in Table 4. However, by considering the confusion matrix (Fig. 5) of this classifier,
one can easily see that the some of the classifiers—those corresponding to behaviors
1, 4, 5, and 8—achieve extremely good performances while most of the errors are
done by the others; more specifically those corresponding to behaviors 2, 3, and 7
(a visual inspection to Fig. 6 suggests that these behaviors are not well discriminated
to others).

From the obtained results, we may conclude that in the supervised case a B-spline
abstraction module fitting the sole positions is the most appropriate data abstraction
for the considered supervised scenario. However, as we will see below for the un-
supervised scenario, such representation approach tends to be influenced by local
properties of the data set, thus producing a large number of clusters consistent with
the labels. More extensive experiments are needed in order to verify the robustness
of the approach in the supervised case with respect to the increase of observed be-
haviors.
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Fig. 5 Confusion matrix
relative to the classifiers
obtained by training on
HMMs model for each
behavioral pattern. The
classes are ordered according
to Table 2

Fig. 6 The 8 behaviors resulting after the annotation process (see Table 2 for details on the anno-
tation)

6.4 Unsupervised Analysis

In the unsupervised case, we evaluate the goodness of the results using the labels as
a ground-truth to establish the correspondence between the true (annotated) behav-
iors and the estimated ones (i.e., the clusters). We say that an estimated cluster C
corresponds to a true behavior B if the most of elements laying in C are labeled (in
the ground-truth) as instances of B. By following this procedure, we then evaluate
the results with respect to different granularity:
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• With the strict association to cluster we assume that there exist a unique corre-
spondence between true and estimated behaviors.

• Using loose association to cluster we admit that a true behavior could be split to
more that one estimated clusters.

In the string-based approach, this procedure is also adopted to select the best al-
phabet from the family computed when adopting the multi-cue features integration:
in particular, the choice of an appropriate selection of weights allows us to obtain a
sub-set of alphabets which can be appropriate for a given environment and adaptable
to its stable changes. This choice is guided by the set of available data, assuming to
carry all meaningful information on common behaviors.

Our first experiment for the unsupervised case relies on performing such associ-
ation assuming that each real behavior can correspond to just one estimated cluster
(above, we called such approach strict clusters association). Since this could dis-
courage solutions with higher numbers of clusters, we fix a constraint on the number
of clusters by using the prior on the true number NT (NT = 8 in our experiments):
we admit in the final evaluation only solutions whose estimated number of clusters
NC is in [NT − δ,NT + δ] where δ ≥ 0 is an integer number.

In Table 5, we report the performances of the family of alphabets computed when
adopting the multi-cue integration: the alphabet which results to perform the best is
the number 13 (based on partitioning the input space by considering position and
dynamic information of targets). The corresponding performance is then selected
and compared against the other approaches in Table 6. Although the highest recogni-
tion rate corresponds to the B-Splines representation computed in the 2-dimensional

Table 5 Strict association rate for the alphabet computing with multi-cue integration, σ = diam
10 is

computed independently for each feature

Alphabet WP WS WM WD THpoints THtrj # Clusters %

1 0 0 0 1 1 0.85 6 50.53

2 0 0 0.5 0.5 1 0.75 7 52.61

3 0 0 1 0 1 0.9 7 34.85

4 0 0.5 0 0.5 0.95 0.9 8 48.96

5 0 0.5 0.5 0 1 0.7 6 21.90

6 0 1 0 0 – – – –

7 0.5 0 0 0.5 0.95 0.5 7 55.51

8 0.5 0 0.5 0 – – – –

9 0.5 0.5 0 0 – – – –

10 1 0 0 0 1 0.5 7 59.00

11 0.25 0.25 0.25 0.25 0.95 0.85 8 49.37

12 0 0.33 0.33 0.33 0.9 0.75 7 49.29

13 0.33 0 0.33 0.33 0.95 0.6 7 65.80

14 0.33 0.33 0 0.33 0.9 0.7 7 55.60

15 0.33 0.33 0.33 0 – – – –
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Table 6 Summary and
comparison among
representation schema for the
strict association of dynamic
events

# Cluster %

String (concatenation) 2 34

String (multi-cue integration, σ = diam
10 ) 7 65.80

B-Spline (5 dim) 6 62.20

B-Spline (2 dim) 6 67.94

HMM (2 dim) 8 62.29

input space, one can notice that string-based and HMM-based representations bet-
ter estimate the true number of clusters. The result obtained when the string-based
representation is made upon an alphabet built on observations which are the plain
concatenation of features is very poor: the spectral clustering fails in splitting the
data in more than 2 subgroups, testifying the poor capability of the representation
in characterizing the data-set. Again, this result speaks in favor of the advantages of
multi-cue integration.

Looking at more practical scenarios, however, it is acceptable that, with respect
to a manual annotation process which depends on the specific subject performing it,
the structure learnt by the clustering process is slightly different from the annotated
one. We thus consider the possibility to admit that a real behavior could correspond
to different estimated clusters (the process we called loose clusters association).
Moreover, trying to understand the reliability of the representation schemas, we ig-
nore the constraint on the number of clusters, so that our best solution corresponds
to the highest correct association rate. Since the method would tend to reward clus-
tering instances with higher number of clusters, if coherent and compact in their
contents, the results will allow to evaluate the capability of the representations of
providing good associations rate while approaching the correct number of partitions.
The obtained results are reported on Table 7.

Consistently with what previously observed, alphabet 13 performs better that
the other. Notice that the very good performance provided by alphabet 7 (position
and direction) is furthermore improved by adding the size (alphabet 14) or, more
convincingly, the velocity module (alphabet 13). These considerations suggest that,
on the specific input data-set that we considered, position, and direction are the most
semantically meaningful feature, followed by velocity module and size.

We conclude our analysis with the comparisons among different methods against
the loose association, reported in Table 8. When relying only on the percentage of
correct associations, B-spline fitting results in an unreliable schema, highly overesti-
mating the correct number of clusters. The performance of HMMs and string-based
representations (the latter with multi-cue integration) are comparable.

Figure 7 (similarity matrices computed on the ordered data-set with respect to
the 3 data representations) confirms this analysis: B-Splines tend to over-estimate
similarities and then over-segment data; string-based approaches slightly underesti-
mate similarities, but capture the expected diagonal block structure; HMMs appear
to under-segment data and miss the expected block structure.
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Table 7 Loose association rate for the alphabet computing with multi-cue integration and σ =
diam

10 for each feature

Alphabet WP WS WM WD THpoints THtrj # Clusters %

1 0 0 0 1 1 0.95 8 56.26

2 0 0 0.5 0.5 0.9 0.75 8 69.46

3 0 0 1 0 1 0.9 7 45.89

4 0 0.5 0 0.5 0.95 0.9 8 62.57

5 0 0.5 0.5 0 1 0.7 6 44.56

6 0 1 0 0 0.6 0.5 2 23.31

7 0.5 0 0 0.5 0.95 0.5 7 72.36

8 0.5 0 0.5 0 0.6 0.5 2 23.31

9 0.5 0.5 0 0 0.6 0.5 2 23.31

10 1 0 0 0 1 0.5 7 66.39

11 0.25 0.25 0.25 0.25 0.95 0.85 8 69.95

12 0 0.33 0.33 0.33 0.95 0.85 8 65.47

13 0.33 0 0.33 0.33 0.95 0.6 7 76.18

14 0.33 0.33 0 0.33 0.95 0.6 8 73.36

15 0.33 0.33 0.33 0 0.6 0.5 2 23.31

Table 8 Summary and
comparison among
representation schema for the
loose association of dynamic
events

# Cluster %

String (concatenation) 2 34

String (multi-cue integration, σ = diam
10 ) 7 76.18

B-Spline (5 dim) 30 83.38

B-Spline (2 dim) 31 91.94

HMM (2 dim) 8 74.30

Fig. 7 Similarity matrices. Form left to right: best alphabet for string-based representation with
multi-cue features integration (WP = 0.33, WS = 0, WM = 0.33, WD = 0.33, THp = 0.95,
THt = 0.6; B-Splines based on 5 features; HMM-based representations on a 2-dimensional input
space
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Fig. 8 Best clustering results obtained with the string-based representation schema with the loose
evaluation. The resulting weights combination is WP = 0.33, WS = 0.00, WM = 0.33, WD = 0.33

Finally, Figs. 8 and 9 report the estimated behaviors for string-based and HMMs.
It is clear in both cases they do not completely match the given annotations, but seem
to reflect the fact the discriminative power of close range observations is higher than
the one of far observations. This is not surprising, and simply suggests how, given
the complexity of the scenario, a multi-camera video-surveillance system would be
appropriate.

7 Discussion and Open Problems

This chapter dealt with the problem of learning common behavioral patterns from
sets of dynamic events, within a video-surveillance framework. Assuming to dispose
of a low-level video processing module that extracts dynamic events from a video
stream, and to have selected an input vector of measurements appropriate for the
specific domain and with a potential to discriminate among different behaviors, our
analysis focused on finding a data abstraction and a learning procedure, as general
as possible—ideally able to adapt to changes of the input measurements if required.
The whole analysis considered both supervised and unsupervised settings, and was
performed on a rather complex set of data acquired by a video-surveillance sys-
tem. The analyzed methods presented different peculiarities that could make them
appropriate in different circumstances.
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Fig. 9 Best clustering results obtained with the HMM-based representation schema with the loose
evaluation

As for the choice of appropriate data abstractions, in the supervised case, the
B-spline fitting approach lead to the best performance, regardless the choice of a
specific input space. Similar conclusions were reached in the unsupervised case,
if an estimate of the number of clusters is available. In this case, string-based ap-
proaches lead to comparable results. Finally, in the more realistic case the number
of clusters is not available, B-Splines strongly over-segment the data, while string-
based and HMMs (used in conjunction with the similarity measure defined in (2))
report more convincing results, with a better balance between the number of esti-
mated clusters and the percentage of correct associations.

For what concerns the criticality of choosing a particular input representation,
we observed how in a supervised setting, where labels are available, using the posi-
tion as initial descriptions to represent the observations allows to achieve acceptable
percentages of correct association to known behaviors. As opposite, with fully un-
supervision, the position fails to disambiguate the data, while other information can
be profitably inserted into the descriptions and significantly help to disambiguate
the data.

Considering the ability of the data abstraction chosen to adapt to a change in the
input representations (which could be useful if new input features were added to
the initial representation), we observed how, in the case of curve fitting, the addi-
tion of a new measurement would require the estimation of a new fitting function;
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string-based approaches would require the construction of a new set of alphabets,
but the process is entirely data-driven and could be performed automatically. The
HMMs method, in theory would scale nicely with the input representation change,
but in practice, since we model one trajectory at a time, increasing the number of
parameters, immediately degrades to performance (this was observed in the exper-
imental analysis, where a full 5-dimensional input representation failed to produce
convincing results).

All the reported experiments highlighted the fact that a specific labeling of dy-
namic events may be highly subjective and thus supervised approaches may not be
in general appropriate for this application domain. Observing the manual annota-
tion reported in Fig. 6, we see how behaviors 3, 4, and 6 appear to be very similar as
they occur at a high distance from the viewing point. Not surprisingly, the estimated
behaviors always fail to discriminate among these groups. This effect is magnified
if we consider a more granular manual annotation.

To have a visual evidence of the capability of the representations to scale with
the complexity, we specialize the data annotation as reported in Table 9.

Figure 10 reports the similarity matrices obtained by reordering the data with
respect to the new 14 behaviors (we do not consider in this analysis the B-spline
fitting for its poor performance when adopted into the clustering framework, see
Sect. 6.4). It is apparent that the string-based representation (Fig. 10, left) provides
a way to enhance this more detailed structures into the data, even if the compactness
of classes might be improved. On the other hand, HMM-based approach (Fig. 10,
right), although having the capability of enforcing the similarities among compo-
nent of a same class, tends to see as similar events which are instances of different
behaviors. We could thus conclude that the two schemas of representation provide

Table 9 Increasing the
granularity of the interesting
behaviors, the annotation
enhances 14 different sets of
coherent trajectories

Behavior Source regions Sink regions

1 9 8

2 2 8

3 6 5

4 1 8

5 8 7

6 8 1

7 9 1

8 6 8

9 1 9

10 1 10

11 8 2

12 10 8

13 5 6

14 10 2
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Fig. 10 Similarity matrices for the alphabet WP = 0.33, WS = 0, WM = 0.33, WD = 0.33 and the
HMM—based representation considering 14 annotated behaviors

different views on the same data-set, with advantages and drawbacks in both cases.
Future work will be devoted to investigate towards this direction.

Since the unsupervised case seem to be the most appropriate for the application
under consideration, a critical open issue is how to perform model selection, and
how to evaluate the quality of the obtained results in case labels are not available.
As suggested in Sect. 2, the use of indices could be investigated, although it is
not clear whether this approach could be satisfactory in such complex scenario. An
interesting alternative worth investigating is the use of semi-supervised learning,
where a limited number of labeled data could be extracted by means of a semi-
automatic procedure as the one adopted in our experiments.

Another important point that will be included in future investigation is a more
explicit use of the hierarchical nature of the adopted clustering methods, as it seems
very appropriate to the data under analysis.
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Part IV
Gesture and Action Recognition



Recognition of Spatiotemporal Gestures in Sign
Language Using Gesture Threshold HMMs

Daniel Kelly, John McDonald,
and Charles Markham

Abstract In this paper, we propose a framework for the automatic recognition of
spatiotemporal gestures in Sign Language. We implement an extension to the stan-
dard HMM model to develop a gesture threshold HMM (GT-HMM) framework
which is specifically designed to identify inter gesture transitions. We evaluate the
performance of this system, and different CRF systems, when recognizing gestures
and identifying inter gesture transitions. The evaluation of the system included test-
ing the performance of conditional random fields (CRF), hidden CRF (HCRF) and
latent-dynamic CRF (LDCRF) based systems and comparing these to our GT-HMM
based system when recognizing motion gestures and identifying inter gesture tran-
sitions.

1 Introduction

Recognizing gestures which appear in sign language is a challenging problem. Ges-
tures lack a clear categorical structure and similar gestures can happen at various
timescales. Another difficulty with recognizing gestures are inter gesture transitions
which occur between valid gestures. For example, when performing hand gestures,
the hands must move from the end point of the previous gesture to the start point of
the next gesture. These inter gesture transition periods are called movement epenthe-
sis [20] and are not part of either of the gesture. As such, an accurate recogni-
tion system must be able to distinguish between valid sign segments and movement
epenthesis.

As will be discussed in Sect. 1.1, the limitation of current methods of contin-
uous gesture recognition is that explicit training of movement epenthesis models
are required, explicit rules for gesture segmentation must be specified or unnatu-
ral constraints are put on the signer, such as unnatural pauses between words. The
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main contribution of the work detailed in this chapter is that we propose a ges-
ture threshold hidden Markov model (GT-HMM), which is a spatiotemporal gesture
recognition system which does not require explicit epenthesis training or specific
rules to determine gesture boundaries.

1.1 Related Work

The research on spatiotemporal gesture and sign recognition has two main cat-
egories: isolated and continuous recognition. Isolated recognition focuses on the
classification of a single hand gesture that is performed by the user. In continuous
recognition, the user performs gestures one after the other and the aim is to spot and
classify meaningful gesture segments from within the continuous stream of sign
language.

1.1.1 Isolated Gesture Recognition

Agris et al. [32] propose an isolated sign recognition system based on a combination
of Maximum Likelihood Linear Regression and Maximum A Posteriori estimation.
Their method was developed to consider the specifics of sign languages, such as
one-handed signs. They implement selected adaptation methods from speech recog-
nition to improve the performance of their system when performing user indepen-
dent recognition. A recognition rate of 78.6% was reported when recognizing 153
isolated signs.

Shanableh et al. [25] proposed an isolated temporal gesture technique for the
recognition of Arabic Sign Language. They propose temporal features which are ex-
tracted through forward, backward, and bidirectional predictions. These prediction
errors are thresholded and accumulated into one image that represents the motion
of the sequence. Experiments, based on a database of isolated signs, show that their
method achieved a classification performance ranging from 97% to 100% when
classifying 23 different sign classes.

Cooper et al. [8] implement an isolated sign recognition system using 1st or-
der Markov chains. In their model, signs are broken down in visemes (equivalent
to phonemes in speech) and a bank of Markov chains are used to recognize the
visemes as they are produced. Experiments, based on 5 unseen examples of each of
the 164 signs in the vocabulary, shows a classification accuracy of 72.6%.

Kim et al. [18] evaluate a accelerometer and EMG based sign recognition system
on 7 word level signs and results show an average accuracy of 99.8% when tested
on a total of 560 isolated samples.

Ding et al. [10] develop a sign language recognition model which incorporates
hand shape, motion and 3D position in single framework. Signs are recognized using
a tree based classifier where for example, if two signs have a similar hand shape
then the root of the tree would represent the hand shape and the branches would
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represent different motion based gestures. A recognition rate of 93.9% is reported
for a vocabulary of 38 signs.

While these works propose promising gesture recognition techniques, the exper-
iments are based on isolated gesture samples. Natural gestures which occur in sign
language are continuous, therefore sign language recognition requires spotting of
the gesture from continuous videos (i.e., determining the start and end points of a
meaningful gesture pattern).

1.1.2 Continuous Gesture Recognition

Extending isolated recognition to continuous signing is a nontrivial task. It requires
automatic detection of movement epenthesis segments so that the recognition algo-
rithm can be applied to segmented signs.

One proposed solution to movement epenthesis detection is an explicit segmen-
tation model were subsets, of features from gesture data, are used as cues for valid
gesture start and end point detection. Oz et al. [23] propose a continuous recogni-
tion framework which detects “signing” and “not signing” segments using a velocity
network. The velocity network classifies a “signing” segment from when the hand
first shows a change in velocity until the time the velocity shows a series of low
velocities. A Neural Network based classifier was trained to recognize 60 different
1 handed ASL signs. Experiments conducted on a total of 360 ASL words, using
histograms of feature vectors, showed a recognition accuracy of 95%. The limita-
tion of this explicit segmentation model arises from the difficulty in creating general
rules for sign boundary detection that could be applied to all types of manual and
nonmanual gestures [22]. For example, fluent signers perform sign language sen-
tences in a very fluid and natural manner and sign boundaries often do not occur
when there is a sharp change in hand velocity.

An approach to dealing with continuous recognition, without explicit segmenta-
tion, is to use hidden Markov models (HMM) for implicit sentence segmentation.
Bauer et al. [2] and Starner et al. [26] model each word or subunit with a HMM
and then train the HMMs with data collected from full sentences. In the latter, ex-
periments were conducted on a vocabulary of 40 signs using a set of 478 sentences
for training and testing. Results showed a word detection rate of 96.8%. Brashear et
al. [5] propose an extension to the work of Starner et al. where a HMM based sign
recognition system was implemented to recognize continuous sentences using cam-
era and accelerometer inputs. Experiments conducted on a vocabulary of 5 signs
were recognized with 90.5% accuracy. It was shown that combining accelerome-
ter and vision data improved the performance when compared to vision only data
(52.4%) and accelerometer only data (65.9%). A downside of these methods is that
training on full sentence data may result in a loss in valid sign recognition accuracy
due to the large variations in the appearance of all the possible movement epenthesis
that could occur between two signs.

Other works deal with movement epenthesis by explicitly modeling the move-
ments between signs. Gao et al. [11] propose a transition-movement model where
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transition HMMs are created to model the transitions between each unique pair
of signs (TMMs). After dynamically clustering transition parts, to reduce the total
number of TMMs, an iterative segmentation algorithm is applied for automatically
segmenting the continuous sentences. Experiments, conducted on a set containing
3000 sentence samples with a vocabulary of 5113 signs from Chinese sign language
(CSL), showed their method achieved an accuracy of 90.8%.

Vogler et al. [31] propose a system to incorporate hand motion and hand pos-
ture data into a single recognition framework. A set of parallel HMMs were imple-
mented to recognize signs from a vocabulary of 22 signs. Separate HMMs were im-
plemented to model movement epenthesis between each unique ending and starting
location of signs. Experiments showed their framework achieved a sign detection
rate of 87.88% when tested on 99 sentences containing a total of 312 signs.

While these works have had promising results in gesture recognition and move-
ment epenthesis detection, the training of such systems involves a large amount
of extra data collection, manual data labeling, and model training due to the extra
number of HMMs required to detect movement epenthesis. Few researchers have
addressed the problem of movement epenthesis without explicitly modeling these
movements.

An interesting approach to gesture spotting was proposed by Junker et al. [15]
where a combination of explicit motion segmentation and HMM gesture classifica-
tion is carried out. A pre-selection stage is implemented in order to identify relevant
motion events. These candidate motion segments are then classified in isolation us-
ing HMMs. Experiments conducted to evaluate the gesture spotting system showed
that the method performed well when spotting gestures in 2 different activity sce-
narios. Results showed a total precision of 0.74 and a total recall of 0.93 for the first
scenario and total precision of 0.73 and a total recall of 0.79 for the second scenario.

Another solution to segmenting signs from continuous streams of data, without
modeling movement epenthesis, is to use grammar based information. Yang et al.
[36, 38] proposed an ASL recognition method based on an enhanced Level Build-
ing algorithm and a Trigram grammar model. Their method was based on a dynamic
programming approach to spot signs without explicit movement epenthesis models.
The recognition rate was 83% with 39 signs, articulated in 150 different sentences.
Their work is based on a two step approach for the recognition of continuous signs,
where the first step recognizes the possible signs in the sentence and the second
applies a grammar model to the possible signs. They report only the results ob-
tained after the second step which applies a trigram grammar model to the signs.
The reliance of the system to the grammar model was shown in the experiments
where the recognition rate of the system decreased from 83% to 68% when a the
trigram model was replaced by a bigram model. Holden et al. [14] develop an Aus-
tralian sign language recognition system where each sign is modeled using a HMM
model. The recognition model employs grammar rules, based on 21 distinct signs,
to recognize continuous sentences. Experiments show their system achieved 97%
recognition rate on 163 test sign phrases, from 14 different sentences. It was noted
in the work that the sign vocabulary used in experiments consisted of signs which
where mainly distinguishable from motion alone.
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Yang et al. [37] propose a very promising technique without the need for explicit
epenthesis training or grammar rules. They develop threshold models in a condi-
tional random field model which performs an adaptive threshold for distinguishing
between signs in a vocabulary and nonsign patterns. Experiments show their system
can spot signs from continuous data with an 87.0% detection rate from a vocabu-
lary of 48 signs where the system was trained on 10 isolated samples of each of the
48 signs. The system was then tested on continuous sentences which contained 480
samples of the signs in the sign vocabulary.

While these works have had promising results in gesture recognition and move-
ment epenthesis detection, the training of explicit epenthesis models involve a large
amount of extra data collection, manual data labeling, model training and recogni-
tion computation due to the extra number of HMMs required to detect movement
epenthesis. Another approach employed is to utilize grammar rules which can be
used to reduce the number of possible sign combinations which appear in signed
sentences. Grammar rules will become an important aspect of sign language recog-
nition when sign vocabularies grow to represent a large portion of the signs used in
everyday sign language communication. State of the art sign recognition is at the
stage where the main focus is on developing algorithms to model signs. It is dif-
ficult to evaluate sign recognition models, which employ grammar rules, on small
sign vocabularies. For example, in a corpus of 30 signs, if a grammar rule is used
to predict that the next sign is likely to be from the noun category, the number of
possible signs the recognition model must choose from could be reduced to around
8 signs. With the overall goal of large corpus sign recognition in mind, experiments
should be conducted in order to evaluate recognition models in their ability to dis-
tinguish one sign from as many other signs as possible. It is unclear how the works,
which employ grammar rules, would perform if the grammar models were created
from larger real world corpora.

Few researchers have addressed the problem of movement epenthesis without
employing grammar or segmentation rules or explicitly modeling the epenthesis.
We propose a solution to this by developing a spatiotemporal gesture model which
addresses the problem of movement epenthesis detection without the need for ex-
plicit epenthesis training. We develop a HMM based gesture threshold training and
recognition framework to classify spatiotemporal gesture and to identify movement
epenthesis without explicitly training on movement epenthesis examples. In this
work, we will discuss the implementation of our framework and will show that our
proposed model can effectively recognize gestures from within sign sentences inde-
pendent of any grammar rules.

1.2 Chapter Outline

Before discussing our GT-HMM framework, we give an overview of HMMs and
Threshold HMMs in Sects. 2 and 3, respectively. In Sect. 4, we then detail the im-
plementation of our proposed GT-HMM framework which is specifically designed
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to classify manual and nonmanual signals and to identify movement epenthesis. In
Sect. 5, we carry out a comprehensive evaluation of the GT-HMM framework and
compare with current state of the art temporal event modeling frameworks such as
CRFs, HCRFs, LDCRFs and standard HMM systems. Since sign language involves
not only hand gestures but also nonmanual signals, gesture recognition evaluations
will be carried out on hand gestures and nonmanual signals conveyed through head
and eye brow movements.

2 Hidden Markov Models

HMMs are a type of statistical model and can model spatiotemporal information in
a natural way. HMMs have efficient algorithms for learning and recognition, such as
the Baum–Welch algorithm and Viterbi search algorithm [24]. They have been uti-
lized for the task of gesture recognition in a large number of works in the literature.
HMMs where first used for task of gesture recognition by Yamato et al. [35] and for
the task of sign language recognition by Starner et al. [26]. In these seminal works,
the authors state that the key characteristics of HMMs, which make them suitable
for gesture recognition, is their learning ability and time-scale invariability.

A HMM is a collection of states connected by transitions. Each transition (or time
step) has a pair of probabilities: a transition probability (the probability of taking a
particular transition to a particular state) and an output probability (the probability
of emitting a particular output symbol from a given state).

To represent a gesture sequence, it is defined as a set of observations. An
observation ft , is defined as an observation vector made at time t , where ft =
{o1, o2, . . . , oM} and M is the dimension of the observation vector. A particular ges-
ture sequence is then defined as G = {f1, f2, . . . , fT }. We will discuss the features
used to represent different gesture types in Sect. 5.

An HMM is characterized in by the following:

1. N , the number of states in the model. We denote the individual states as S =
{s1, s2, . . . ,N }, and the state at time t as qt .

2. M , the dimension of the observation vector.
3. A = {aij }, the state transition probability distribution. Where A is an N × N

matrix and aij is the probability of making transition from state si to sj .
4. B = {bj (f)}, the observation symbol probability distribution. Where bj is the

probability distribution in state j and 1 ≤ j ≤ N .
5. π = {πi}, the initial state distribution.

The compact notation λ = {A,B,π} is used to indicate the complete parameter
set of the model where A is a matrix storing transitions probabilities aij between
states si and sj , B is a matrix storing output probabilities for each state and π is a
vector storing initial state probabilities.

HMMs can use either a set of discrete observation symbols or they can be ex-
tended for continuous observations signals. In this work, we use continuous mul-
tidimensional observation probabilities calculated from a multivariate probability
density function.
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The observation probability is expressed in the form shown in (1) and (2), where
f is the M-dimensional vector being modeled, bj is the vector probability in state
j and ℵ is a probability density function (PDF) of an M-dimensional multivariate
Gaussian, with mean vector μj and covariance Σj

bj (f) = ℵ(f;μj ,Σj ) (1)

= (2π)−
N
2 |Σ |− 1

2 exp

(
−1

2
(f − μj )

T Σ−1
j (f − μj )

)
. (2)

2.1 HMM Algorithms

Given the form of HMM, there are three algorithms that can be performed on the
HMM that make HMMs useful in real-world applications:

• The forward backward algorithm [24] is used to calculate P(G|λ), the probability
of the observation sequence G = {f1, f2, . . . , fT } given the model λ = {A,B,π}.

• The Viterbi algorithm [24] is used to find the single best state sequence Q =
{q1, q2, . . . , qT }, for the given observation sequence G = {f1, f2, . . . , fT }.

• The Baum–Welch algorithm [24] is used to determine the model parameters
(A,B,π) to maximize the probability of the observation sequence given the
model.

2.2 Types of HMMs

There are two main types of HMMs:

1. Ergodic model: An HMM in which every state of the model could be reached
from every other state of the model (see Fig. 1(a)).

2. Left–right model (Bakis model): An HMM in which the state sequence asso-
ciated with the model has the property that as time increases the states index
increases or stays the same (i.e., the states progress from left to right) (see
Fig. 1(b)).

Fig. 1 HMM model types
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The left–right model has the desirable property that it can readily model sig-
nals whose properties change over time and as such left–right models have been
successfully applied to speech recognition tasks [24] and, more recently, to gesture
recognition and sign recognition tasks [22].

3 Threshold HMM Model

Lee and Kim [19] proposed a threshold HMM to handle nongesture patterns. The
threshold model was implemented to calculate the likelihood threshold of an input
pattern and provide a confirmation mechanism for provisionally matched gesture
patterns. We build on the work carried out by Lee and Kim to create a framework
for calculating a probability distribution of a two hand input sign using continuous
multidimensional observations. The computed probability distribution will include
probability estimates for each pretrained sign as well as a probability estimate that
the input sign is a movement epenthesis.

In general, a HMM recognition system will choose a model with the best likeli-
hood as the recognized gesture if the likelihood is higher than a predefined thresh-
old. However, this simple likelihood threshold often does not work, thus, Lee and
Kim proposed a dynamic threshold model to define the threshold of a given gesture
sequence.

If a set of left–right HMMs can be trained such that each state represents a partic-
ular gesture segment, then a self transition of a state represents a particular segment
of a target gesture and the outgoing state transition represents a sequential progres-
sion of the segments within a gesture sequence. With this in mind, an ergodic model,
with the states copied from all gesture models in the system, can be constructed as
shown in Figs. 2(a) and 2(b). Figure 2(b) shows the threshold model as a simpli-
fied version of the ergodic model where dotted lines denote null transitions (i.e., no
observations occur between transitions).

Threshold model states are created by copying all states from the left–right
HMMs such that output observation probabilities and self transition probabilities
are kept the same, but all outgoing transition probabilities are equally assigned as:

aij = 1 − aii

N − 1
∀j, i �= j, (3)

where aij is the transition probability from state si to sj and N is the number of
states excluding the start and end states. (The start and end states produce no ob-
servations.) If each left–right HMM can be trained such that each state represents a
gesture subpattern, then, by maintaining the self-transition and output probabilities
in the threshold states, a threshold model represents the set of all gesture subpat-
terns. Constructing the threshold model as an ergodic structure thus makes it match
well with all patterns generated by combining any of the gesture subpatterns in any
order. The likelihood of the threshold model, given a valid gesture pattern, would
be smaller than that of the dedicated gesture model because of the reduced outgoing
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Fig. 2 (a) Dedicated gesture models; (b) threshold model

transition probabilities. However, the likelihood of the threshold model, given an ar-
bitrary combination of gesture subpatterns, would be higher than that of any of the
gesture models, thus the threshold model, denoted as λ, can be used as a movement
epenthesis likelihood measure.

4 GT-HMM Framework

In this work, we propose a GT-HMM as an improvement to the standard HMM, and
Threshold HMM, to automatically train and model natural gestures and movement
epenthesis. The GT-HMM comprises of two main improvements to the standard
HMM framework. Firstly, we develop a gesture subunit initialization technique to
create HMM states which model particular gesture subpatterns. Secondly, we im-
plement a threshold HMM, which utilizes states which were initialized using the
gesture subunits, to compute a dynamic epenthesis likelihood of input gestures. In
this section, we will detail the implementation of the GT-HMM.
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4.1 GT-HMM Training

In order to create a robust threshold HMM which models movement epenthesis,
dedicated HMM models must be trained such that each state represents a particular
gesture segment. We develop a technique to do this by expanding on the Threshold
HMM framework to develop a GT-HMM framework which utilizes our proposed
gesture subunit initialization and training techniques. Our GT-HMM framework
models continuous multidimensional gesture observations within a HMM network
to recognize motion based gestures and identify movement epenthesis. We now de-
scribe this framework.

Each dedicated gesture model is trained on isolated gestures performed by a flu-
ent signer. Before training a HMM using the Baum–Welch algorithm, the model
must first be initialized. Initialization includes the computation of an initial state
transition matrix and calculation of each states’ emission variables μj and Σj . In
order to initialize these components of the HMM, an understanding of the gesture
segmentation, or state transitions, must be built. One approach to achieving this
would be to explicitly hand label different subunits or gesture phonemes [33]. Part
of the goal of this work is to create a general data collection, training and recognition
system. Data collection consists of a recording step and a labeling step. Labeling is
an integral step in creating valid sign data, thus we envisage that all data will be
labeled by fluent signers. Since movement and position of the hands are two of
the four building blocks of sign language which Stokoe [27] identified, manually
breaking these building blocks into smaller subunits would be an unintuitive and
time consuming step for fluent signers to segment in a consistent manner. With this
in mind, a training system was developed to initialize and train data with minimum
human intervention where signs are labeled at a sign level and not at a phoneme
level.

Kim et al. [17] implement an iterative HMM training procedure in order to esti-
mate more accurate initial HMM parameters for automatic speech segmentation. In
their method, hand labeled phone labels are use to initialize the HMMs. Following
this, the Baum–Welch algorithm is run on the HMMs to tune the HMM parameters.
The Viterbi algorithm is then run and the initialization data and phone labels are
realigned to correspond with the Viterbi best paths. The HMM is then reinitialized
using the realigned phone labels and this iterative procedure is repeated until no
improvement is observed. We extend this iterative HMM training model proposed
by Kim et al. [17] to develop an iterative gesture subunit initialization and training
model. Our training model also includes an extra parameter selection layer which
finds the best combination of (S,R), where S is the total number of states in the
HMM and R is the reach of a state (i.e., in a left–right model, the reach is the num-
ber of states that it is possible to transition to from the current state). For a target
sign, we extract data from a number of manually labeled isolated video sequences
of a fluent signer performing that sign. Figure 3 shows a visualization of isolated
examples of the “Alot” sign extracted from video sequences.



Recognition of Spatiotemporal Gestures in Sign Language using GT-HMMs 317

Fig. 3 Visualization of
isolated examples of “Alot”
sign extracted from video
sequences

Fig. 4 Initial segmentation:
visualization of isolated
examples of “Alot” being
segmented into S = 3
subgestures

4.1.1 Gesture Subunit Initialization

Extracting isolated examples of a sign produces a set of observation sequences
Δy = {G1

y,G
2
y, . . . ,G

K
y } where K is the total number of isolated examples. In

HMM training, more accurate initial estimates of the HMM parameters produce
more accurate classification results, as shown for example in [17]. The goal of our
proposed initialization technique is to automatically find gesture subunits and the
most accurate initial emission variables which describe the gesture subunits. Our
technique determines a labeling of which state each observation vector most proba-
bly matches. These state labels are then used to determine the subset of observation
vectors which are associated with a specific HMM state. The observation vectors
within the subset can then be used to improve the estimate of the mean and covari-
ance parameters associated with a state.

To initialize λy , the HMM which will model the sign indexed by y, we first cal-
culate S − 1 indices of each Gi

y which best segment the gesture into S subgestures.
We propose an iterative temporal clustering algorithm to calculate the S subges-
tures. Figure 4 shows a visualization of isolated examples of the “Alot” sign being
segmented into S = 3 subgestures.

The objective of our temporal clustering algorithm is to cluster observations in
a temporal structure such that, for each observation sequence, each cluster index,
assigned to each observation, is either greater than or equal to the cluster index of
the observation which occurred previously in the sequence (i.e., for S = 3, a cluster
index sequence of ‘00110122’ is considered an invalid temporal clustering whereas
a cluster index sequence of ‘00011122’ is considered a valid temporal clustering).
Our iterative clustering algorithm attempts to cluster all observations, in the set of
observation sequences Δy , such that all cluster index sequences have a valid tem-
poral clustering.
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Fig. 5 Visualization of data
extracted from 9 isolated
examples of “Alot” sign

Fig. 6 Visualization of principal components of sign data for left hand

Our temporal clustering algorithm is based on a iterative time scaling procedure
which incorporates a time variable into the observation vectors in order to tem-
porally segment each observation sequence. We define a time augmented observa-
tion vector ft (η) = {o1, o2, . . . , oM,η} and a time augmented observation sequence
G¬ = {f1(

1
T

Γ T ), f2(
2
T

Γ T ), . . . , fT (Γ T )}, where Γ T is a time scaling factor. Each
iteration of the algorithm increases the time scaling factor and calculates cluster in-
dices for each observation vector, using k-means clustering, until all time augmented
observation sequences have a corresponding valid temporal clustering.

We use a sample set of nine sequences of the “Alot” sign in order to illustrate how
our temporal clustering algorithm is used to initialize the HMMs. Figure 5 shows a
visualization of the data extracted from the seven signs.

As will be discussed later, in Sect. 5.2.1, the observation vectors used to describe
a sign in this work are 5-dimensional vectors. In order to illustrate the temporal
clustering of these observation vectors we perform PCA on the data in order to
reduce the dimensionality of the data to 1-dimension (see Fig. 6). Although we
illustrate the clustering results using the principal component, it is important to note
that all clustering, including the results shown in this section, were calculated using
the 5-dimensional observation vector.
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Fig. 7 Iterative clustering steps. Each plot represents a clustering step with a different time scaling
factor Γ T

We now illustrate an example of our temporal clustering algorithm applied to the
left-hand observation sequences for the sign “Alot” when clustering the signs into
S = 3 subgestures. For each iteration of the algorithm, all time augmented observa-
tion vectors are clustered and then each cluster index sequence is analyzed in order
to determine if all clusters have a valid temporal clustering. This process is repeated
until all observations sequences have a valid temporal clustering. Figure 7 shows
each step of the clustering algorithm when applied to the 7 samples of the left-hand
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Fig. 8 Temporal clustering
results after final iteration

Fig. 9 Initialization: mean
vector μ and the covariance
matrix Σ calculated for each
HMM state

data for the sign “Alot”, while Fig. 8 shows the results of the clustering for both the
left- and right-hands.

The final temporal clusters are then used to divide the observation sequences into
the S subgestures and the mean vector μj and the covariance matrix Σj is calculated
for each state (see Fig. 9).

The Baum–Welch algorithm [24] is then applied to λy using all training data
Δy . After training, the Viterbi algorithm [24] is run on each of the training se-
quences in Δy to produce most probable state sequences. The initial S subgestures
are then realigned to match the Viterbi paths. This re-estimation and realignment
process is continued until the likelihood, produced by the Baum–Welch algorithm,
converges. The overall process is repeated for different combinations of (S,R) to
find the combination which produces the highest likelihood from the Baum–Welch
re-estimation. Figure 10 gives an overview of the iterative training and parameter
selection procedure.

After training, and finding the optimal parameters for each HMM λy ,
a threshold model λ is created using the method discussed in Sect. 3. Using
each λy , and its corresponding set of states Sy = {sy1, . . . , syNy }, the thresh-
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Fig. 10 HMM initialization
and training procedure

old model states S are initialized by copying all the HMM states such that
S = {s11, . . . , s1N1 , . . . , sy1, . . . , syNy , . . . , sY1, . . . , sYNY }, where Ny defines the
number of states in λy . The set of HMMs, to recognize the Y pretrained gestures, is
then denoted as Λ = {λ1, λ2, . . . , λY , λ}.

4.2 GT-HMM for Gesture Recognition

4.2.1 Gesture Classification

Given a sequence of gesture observations G, representing an unknown gesture,
the goal is to accurately classify the gesture as an epenthesis or as one of the Y

trained gestures. To classify the observations, the Viterbi algorithm is run on each
model given the unknown observation sequences G, calculating the most likely state
paths through each model y. The likelihoods of each state path, which we denote as
P(G|λy), are also calculated. The sequence of observations can then be classified
as y if the maximum likelihood PML(G|λy) ≥ τy , where the maximum likelihood
is defined in (4) and the movement epenthesis likelihood, τy , is defined in( 9)

PML(G|λy) = max
y

P (G|λy), (4)

τy = P(G|λ)Γy, (5)

where Γy is a constant scalar value used to tune the sensitivity of the system to
movement epenthesis gestures.
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4.2.2 Parallel Training

Vogler et al. [29, 30] show that parallel HMMs can improve recognition rates of
two handed gestures when compared to standard HMMs. In order to recognize two
hand gestures in sign language, we implement a parallel GT-HMM system. The
parallel GT-HMM initializes and trains a dedicated parallel HMM denoted as λ′

y =
{λLy,λRy} where λLy and λRy are HMMs which model the left- and right-hand
gestures, respectively. Each parallel GT-HMM is trained using the same gesture
subunit initialization and training technique discussed in Sect. 4.1.

A weighting of ωLy and ωRy is applied to the left-hand HMM and right-hand
HMM, respectively, to account for variations in information held in each of the
hands for a particular sign. The weights are implemented to give more emphasis to
the hand which conveys most information. For example, if a signer’s dominant hand
performs a waving gesture while the nondominant hand doesn’t move, then more
emphasis should be put on the dominant hand during the classification process. The
weighting applied in our system is based on a hand variation ratio which calculates
the relative variance between the left- and right-hand observation sequences. The
weighs are calculated using training data from all observation sequences Gk

Ly and

Gk
Ry , where 1 ≤ k ≤ K , K is the total number of training examples and GLy and

GRy are the left- and right-hand observations, respectively. The variance of the left-
and right-hand observations are calculated by calculating the variance of each ob-
servation dimension σ 2

Ly[i] and σ 2
Ry[i], where 0 ≤ i ≤ M and M is the dimension of

the observation vectors. The left HMM weight, ωLy , and right HMM weight, ωRy ,
are then calculated as using (6) and (7), where ωRy + ωLy = 1.

ωLy =
M∑
i=0

σ 2
Ly[i]

(σ 2
Ly[i] + σ 2

Ry[i]) × M
, (6)

ωRy =
M∑
i=0

σ 2
Ry[i]

(σ 2
Ly[i] + σ 2

Ry[i]) × M
. (7)

A parallel GT-HMM framework, λ′ = {λL,λR} is then created using the network
of trained parallel HMMs λy (y ∈ Y ).

4.2.3 Parallel Gesture Classification

To classify the parallel observations G′ = {GL,GR}, the Viterbi algorithm is run on
each model given the unknown observation sequences GL and GR , calculating the
most likely state paths through each model y. The likelihoods of each state path,
which we denote as P(GL|λLy) and P(GR|λRy), are also calculated. We calculate
the overall likelihoods of a two handed gesture by computing the weighted sum of
the left and right HMM likelihoods as defined in (8)

P(G′|λ′
y) = P(GL|λLy)ωLy + P(GR|λRy)ωRy. (8)
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The movement epenthesis likelihood is similarly calculated from a weighted sum of
left and right threshold model likelihoods as defined in (9)

τ ′
y = P(GL|λL)ΓLy + P(GR|λR)ΓRy

2
, (9)

where ΓLy and ΓRy are constant scalar values used to tune the sensitivity of the
system to movement epenthesis. Experiments, which will be discussed in Sect. 5,
different scalar values were evaluated and results show that scaler values between
1.05 and 1.1 perform best when identifying epenthesis.

The observation sequence can then be classified as y if PML(G′|λ′
y) ≥ τ ′

y , where
PML(G′|λ′

y) is the maximum likelihood defined as maxy P (G′|λ′
y).

4.2.4 Continuous Recognition

Thus far, we have described methods for classifying a given observation sequence
as one of a number of pretrained gestures or as a movement epenthesis. We will
now describe our system for spotting and classifying spatiotemporal gestures within
continuous sequences of natural sign language.

The first step in our GT-HMM gesture spotting algorithm is gesture end point de-
tection. To detect a gesture end point in a continuous stream of gesture observations
G = {f1, f2, . . . , fT }, we calculate the model likelihoods of observation sequence
G∗ = {fT −L, fT −L−1, . . . , fT } where G∗ is a subset of G and L defines the length of
the observation subset used. In the work, we report we set L to the average length
of the observation sequences used to train the system.

A candidate gesture, κ , with end point, κe = T , is flagged when ∃y :
P(G∗|λy) ≥ τy . Figure 11 illustrates the likelihood time evolution of the hand ges-
ture model “Lost” when given an observation sequence where the signer performs
the “Lost” sign. It can be seen from Fig. 11 that a number of candidate end points
occur between T = 16 and T = 21.

For each candidate end point, we calculate a corresponding start point κs . Differ-
ent candidate start points are evaluated using the measurement shown in (10) where

Fig. 11 Likelihood evolution of “Lost” gesture model and associated threshold model
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βy(G) is a normalized metric (0 ≤ βy(G) ≤ 1) which measures the likelihood of
gesture y relative to the epenthesis likelihood given observations G

βy(G) = P(G|λy)

P (G|λy) + τy

. (10)

To find a candidate start point, the metric βy(Gsκe ) is calculated over different
values of s, where Gsκe = {fs , fs+1, . . . , fκe } and (κe − (L × 2)) ≤ s < κe . The can-
didate gesture start point κs , is then found using (11)

κs = arg max
s

βy(Gsκe ). (11)

4.2.5 Candidate Selection

The start and end point detection algorithms may flag candidate gestures which
overlap, and for this reason we expand on the continuous sign recognition algo-
rithms with a candidate selection algorithm. The purpose of the candidate selection
algorithm is to remove overlapping candidate gestures such that the single most
likely gesture is the only remaining gesture for a particular time frame.

We will use a sample sign language sentence “I Lost Alot of Books” to illustrate
our candidate selection algorithm in the context of our gesture and threshold like-
lihood evaluation, where the system was trained on the following 8 signs; “Paper”,
“Alot”, “Bike”, “Clean”, “Paint”, “Plate”, “Lost” and “Gone”. Figure 12 illustrates
the difference between the HMM gesture model likelihood P(G|λy) and its corre-
sponding threshold τy , where positive values indicates P(G|λy) ≥ τy . We illustrate
only 4 gesture model likelihoods as all other gesture model likelihoods never exceed
their corresponding threshold.

The first step in the candidate selection algorithm is to cluster overlapping ges-
tures, with the same gesture classification, together. Each of these candidate ges-
tures, within the cluster, have an associated metric which we denote as κp =
βy(Gκsκe ). We remove all but one candidate gesture from this cluster leaving only
the candidate gesture, κB , with the highest κp value. We repeat this step for each

Fig. 12 HMM gesture models and corresponding HMM threshold model likelihood difference
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Fig. 13 Candidate gestures, Υ , after first candidate selection step

Fig. 14 Candidate gestures, Υ . Candidates marked in red (dashed) denote gestures which are
removed by the second candidate selection step. Candidates in green (solid) denote the final rec-
ognized gestures

cluster to produce a set of candidate gestures Υ = {κB1, κB2, . . . , κBK }, where K

is the total number of clusters created from grouping overlapping gestures, with the
same gesture classification, together. Figure 13 shows the time segments and κp

metrics of each candidate gesture after the first candidate selection step.
The second candidate selection step finds sets of overlapping candidates and re-

moves the least probable candidates such that a maximum of only one candidate is
detected for any given time frame. Figure 14 shows the time segments and gesture
probabilities of the recognized gestures after the first and second candidate selection
step where the signs “Lost” and “Alot” are correctly recognized from a sample sign
language sentence “I Lost Alot of Books”.

5 Experiments

In this work, we will evaluate our GT-HMM framework on a number of different
gesture data sets and compare with different temporal event modeling frameworks
including CRFs.

5.1 Feature Extraction

In this section, we conduct evaluations on different gesture recognition systems us-
ing data extracted from video sequences of sign language sentences being performed
by a fluent Irish sign language (ISL) signer.

For completeness, prior to discussing the experiments, we briefly describe the
feature extraction techniques implemented.
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Fig. 15 Extracted features
from image

Tracking of the hands is performed by tracking colored gloves using the Mean
Shift algorithm [7]. Face and eye positions are used as features for head movement
recognition and also used as hand gesture cues. Face and eye detection is carried
out using a cascade of boosted classifiers working with haar-like features proposed
by Viola and Jones [28]. A set of public domain classifiers [6], for the face, left
eye and right eye, are used in conjunction with the OpenCV implementation of the
haar cascade object detection algorithm. Figure 15 shows a visual example of the
features of an ISL signer being tracked.

We define the raw features extracted from each image as follows; right-hand po-
sition (RHx,RHy), left-hand position (LHx,LHy), face position (FCx,FCy), face
width (FW) (face region is square), left-eye position (LEx,LEy) and right-eye po-
sition (REx,REy).

In order to recognize nonmanual signals conveyed through facial expressions,
we locate the facial features of interest using Cootes’ implementation of Active
Shape Model (ASM) [9]. In the context of facial feature localization, ASMs can
be viewed as statistical models of the shapes of the face which deform iteratively
to fit to new images. Since the ASM is constrained by a statistical shape model,
the range of possible deformations is constrained by the variance which exists
in the training set. As a consequence, the accuracy of the ASM depends on the
range of facial movements included in the training set. For the experiments in-
cluded in this paper, our data set consisted of 3,500 images in total. From which
300 key frames representing the variance in the data set were manually labeled with
46 points. Figure 16(b) shows the ASM which was trained on these image-points
pairs.

During sign language communication, the face is frequently occluded by the
hands. Our approach to overcoming this particular problem was to fit the ASM to
the parts of the face that were visible, and use the previous points for occluded
parts of the face. This can be seen in Fig. 16 where the position of the mouth from
Fig. 16(c) is used in Fig. 16(d) when the mouth is occluded. This is a valid approach
as the hands move rapidly and rarely cover the same portion of the face for multiple
frames.
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Fig. 16 (a) Sample ASM which was fitted to each image; (b) sample of an unoccluded image;
(c) example of an occluded image

5.2 Evaluation of Techniques on Isolated Gestures

Wang et al. [34] perform experiments to show that the HCRF model performs better
at classifying head and arm gestures than CRFs and HMMs. In their experiments,
the models were evaluated on their ability to classify a given segmented gesture
sequence as one of a number of pre trained gestures but the models were not tested
on non-gesture sequences. In order to evaluate and assess the ability of a HCRF
model to recognize gestures in sign language, the performance of the model must
be evaluated when identifying non-gestures/epenthesis as well as being evaluated
on the performance of classifying gestures.

Morency et al. [21] perform experiments to evaluate the performance of the LD-
CRF model on three different data sets. The first data set was a head nod data set
where the system was trained and tested on frames labeled as a head nod or labeled
as not a head nod. The second data set, similar to the first data set, was trained and
tested on positive and negative examples of heads nods. The final data set was an
eye gaze data set, and the system was trained and tested on frames labeled as either
an eye gaze-aversion gesture or a non gaze-aversion gesture. The LDCRF model
was shown to out perform CRF, HCRF and HMM based classifiers (as well as a
support vector machine based classifier). From these experiments, it is difficult to
access whether or not the LDCRF model could be implemented to recognize a larger
vocabulary of gestures or whether or not the LDCRF model could be used in a sign
language based system. In the experiment Morency et al. carry out, each of the ges-
ture data set experiments were trained to recognize a single gesture with positive
and negative examples of the gesture. In order to evaluate the LDCRF model for a
sign language recognition system, the model should be tested on a larger vocabu-
lary of gestures. In their experiments, the gesture model was trained on positive and
negative examples of the gesture. Training a model to recognize to recognize move-
ment epenthesis in sign language is unfeasible due to the large number of possible
epenthesis that can occur between signs.

The goal of the experiments conducted in this section is to evaluate the per-
formance of the HMM, T-HMM, GT-HMM and the different CRF models when
recognizing motion based gestures and identifying epenthesis which occur in sign
language. The T-HMM model we evaluate in this work is a parallel threshold HMM
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Fig. 17 Example of the eight different signs the system was tested on (a) newspaper, (b) a lot,
(c) bike, (d) clean, (e) paint, (f) plate, (g) lost, (h) gone

framework where training and classification are carried out in the same manner as
the GT-HMM model. The key difference between the GT-HMM and the T-HMM is
that the T-HMM is not trained using the gesture subunit initialization technique de-
scribed in Sect. 4.1.1. Instead, the T-HMM model is initialized using a standard seg-
mentation method, utilized by Holden et al. [13], where the observation sequences
are linearly segmented into S equal subsequences.

Since sign language communication is multimodal it involves not only hand ges-
tures (i.e., manual signing) but also non-manual signals conveyed through facial
expressions, head movements, body postures and torso movements [22]. In order
to evaluate the use of HMMs and CRFs in recognizing motion based gestures in
sign language, we evaluate the models on three data sets; a manual signing data set
(i.e., two handed motion based gestures) and two nonmanual signal data set based
on head motion gestures and eye brow gestures.

5.2.1 Manual Sign Experiments

The first data set we use to evaluate the models on is a set of two handed spatiotem-
poral hand gestures used in sign language. This data set consists of eight different
manual signs extracted from videos of a fluent signer performing natural sign lan-
guage sentences. Figure 17 illustrates an example of a signer performing each of the
eight manual signs.

In order recognize manual signs, we must extract two observation channels from
the video streams. The two observation channels correspond to the left-hand obser-
vations GL and the right-hand observations GR . The observations GL and GR are
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combined into a parallel observation sequence G′ which is processed by the parallel
models. We extract a set of observation sequences Δ′

y from the video sequences,
where y ∈ Y , Y is the set of sign labels, Δ′

y = {G′
1y, . . . ,G

′
Ty} and T is the number

of sample observation sequences recorded for each gesture label y.
This set is then divided into a training set, Δ′t

y , and a test set, Δ
′ζ
y . A set of 10

training signs and a set of 10 test signs were recorded for each sign (a total of 160
gesture samples). The HMM, T-HMM, GT-HMM, CRF, HCRF and LDCRF models
were then trained on Δ′t

y .
An additional set of observations Δ′

E , which represents a collection of movement
epenthesis, were also extracted from the video sequences to test the performance of
the threshold model. For each valid sign, 10 movement epenthesis, that occurred
before and after the valid sign in different sign language sentences, were recorded.
An additional set of 20 random movement epenthesis were also recorded, resulting
is a test set of 100 samples to evaluate the models on.

To evaluate the performance of the models, we perform a ROC analysis on the
different models and calculate the AUC for each model. The classification of a ges-
ture is based on a comparison of a model probability and a threshold value. In our
ROC analysis of each model, we vary the threshold and create a confusion matrix
for each of the thresholds. In the case of the T-HMM and GT-HMM models, we
vary the weighting of the threshold and in the case of the CRF models we vary the
static threshold value Ω .

When implementing the HCRF model and LDCRF model we vary the number of
hidden states and also vary the window parameter ω. The window parameter defines
the amount of past and future history to be used when predicting the state at time
t such that long range dependencies can be incorporated. In our experiments we
test each model on a two different groups of data. The first data group, which we
denote as data set 1, is a set which includes all test sequences Δ

′ζ
y and epenthesis

sequences Δ′
E . The second data group, which we denote as data set 2, is a set which

includes just the test sequences Δ
′ζ
y .

While an extensive evaluation of the models using different feature vectors was
conducted, we report only the results of models using the best performing feature
vectors. The best performing feature vector for the HMM models was the feature,
f = {RPx,RPy,Vx,Vy,DH }, which describes the position of the hands relative to
the eyes, the direction of the movement of the hand and the distance between the
two hands. The best performing feature vector for the three different CRF models
was the feature vector f = {Vx,Vy}, which describes the direction of the movement
of the hand. These are the feature vectors used for the evaluation of the HMM and
CRF models.

Table 1 shows the AUC measurements of the HMM, T-HMM, GT-HMM and
different variations of the CRF models when classifying gestures using their corre-
sponding best performing feature vector.

The results show that the overall best performing model, with an AUC of 0.985,
was the LDCRF model with 8 hidden states per label when tested on the data
set 2. Since a sign language recognition system must be able to identify move-
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Table 1 Manual signs: AUC measurements for different models

Model Data set 1† Data set 2‡

HMM 0.902 0.943

GT-HMM 0.976 0.977

T-HMM 0.941 0.944

CRF ω = 0 0.833 0.876

CRF ω = 1 0.794 0.828

HCRF ω = 0, S = 6 0.909 0.944

HCRF ω = 1, S = 6 0.957 0.983

HCRF ω = 2, S = 6 0.944 0.971

HCRF ω = 0, S = 8 0.947 0.965

HCRF ω = 1, S = 8 0.934 0.968

LDCRF ω = 0, S* = 1 0.847 0.881

LDCRF ω = 0, S* = 2 0.806 0.842

LDCRF ω = 0, S* = 3 0.808 0.836

LDCRF ω = 0, S* = 4 0.863 0.901

LDCRF ω = 0, S* = 8 0.942 0.985

LDCRF ω = 1, S* = 8 0.899 0.928

†Data set which includes 100 epenthesis samples
‡Data set which does not include epenthesis samples
*S∗ refers to number of hidden states per label for LDCRF

ment epenthesis as well as recognize gestures, the results of the tests performed on
the data set 1 are more relevant to the evaluation of a sign language recognition
model. The model which scores best when recognizing data set 1 is the GT-HMM
which has an AUC of 0.976. Although the HCRF and LDCRF perform better than
the GT-HMM when classifying gestures, the performance of both drop significantly
when the epenthesis data is introduced. The performance of the GT-HMM drops a
small amount compared to the relatively large drops of all the CRF models. This in-
dicates that the GT-HMM is more robust when classifying gestures and identifying
epenthesis.

The results of the experiments also reveal the influence our gesture subunit ini-
tialization has on the recognition performance. The GT-HMM framework initializes
the HMM using our initialization method described in Sect. 4.1, while the T-HMM
utilizes a linear segmentation method. Results showed that the GT-HMM had a 3.5%
better AUC measurement when compared to the T-HMM model.
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5.2.2 Head Gesture Experiments

The second data set we evaluate the HMM and CRF models on is a set of head
movement gestures used to convey nonmanual information in sign language. The
head gesture set consists of three different head movement gestures extracted from
videos of a fluent signer performing natural sign language sentences.

A visual example of a signer performing each of the three different head move-
ment gesture is in shown in Fig. 18.

Similar to the manual sign experiments described in Sect. 5.2.1, observation se-
quences Δy = {G1y, . . . ,GTy} were extracted from the videos and divided into a

training set, Δt
y , and a test set, Δ

ζ
y . For the nonmanual signal experiments, a set of

6 training signs and a set of 6 test signs were recorded for each sign (a total of 36
gesture samples). The HMM models and all CRF models were then trained on Δt

y .
An additional set of 25 other head gesture sequences ΔE , outside of the train-

ing set, were also extracted from the video sequences to test the performance of the
system when identifying movement epenthesis. Similar to the hand gesture experi-
ments, we test the head gesture models on two data groups; data group 1 includes
the gesture test sequences and the nongesture sequences, while data set 2 includes
only the gesture test sequences.

While a ROC analysis of the nonmanual models was conducted using the same
procedure described in Sect. 5.2.1, we report only the results of models using the
best performing feature vectors. The best performing feature vector for the HMM
models, when classifying head gestures, was a 2-dimensional vector f = {Vx,Vy}
describing the velocity of the head movement in the x and y directions. To calculate

Fig. 18 Example of the three different head movement gestures the system was tested on (a) right
movement, (b) left movement, (c) left forward movement
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Table 2 Nonmanual signals: AUC measurements for different models

Model Data set 1† Data set 2‡

HMM 0.848 0.891

GT-HMM 0.936 0.947

T-HMM 0.873 0.882

CRF ω = 0 0.736 0.768

CRF ω = 1 0.527 0.545

HCRF ω = 0, S = 2 0.698 0.801

HCRF ω = 1, S = 2 0.786 0.911

HCRF ω = 2, S = 2 0.702 0.816

HCRF ω = 0, S = 4 0.784 0.927

HCRF ω = 1, S = 4 0.719 0.811

HCRF ω = 0, S = 6 0.743 0.850

HCRF ω = 1, S = 6 0.736 0.893

HCRF ω = 0, S = 8 0.715 0.838

HCRF ω = 1, S = 8 0.708 0.788

LDCRF ω = 0, S* = 3 0.794 0.899

LDCRF ω = 1, S* = 3 0.763 0.880

LDCRF ω = 0, S* = 6 0.760 0.827

LDCRF ω = 1, S* = 6 0.717 0.791

LDCRF ω = 0, S* = 9 0.868 0.922

LDCRF ω = 1, S* = 9 0.837 0.901

LDCRF ω = 2, S* = 9 0.894 0.952

LDCRF ω = 3, S* = 9 0.795 0.861

†Data set which includes 25 nongesture samples
‡Data set which does not include nongesture samples
*S∗ refers to number of hidden states per label for LDCRF

the velocity vector of the head, we use the mid point between the eyes and calculate
the movement of the midpoint from frame to frame. As with the HMM models, the
best performing feature vector for the CRF models was the 2-dimensional velocity
vector f = {Vx,Vy}. Table 2 shows the AUC measurements of the HMM, T-HMM,
GT-HMM and different variations of the CRF models when classifying head move-
ments using their corresponding best performing feature vector.

Table 2 shows the AUC measurements of models.
The results of this experiment repeat the same trend found in the results of the

manual sign recognition experiment. The LDCRF model performs best when clas-
sifying gestures in data set 2. The recognition rate of the CRF models then decrease
significantly when nongestures are introduced. The best performing model for data
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set 1 is again the GT-HMM model with an AUC of 0.936. There was a 4.2% de-
crease in performance between the data set 1 AUCs of the GT-HMM model and
the 9 state LDCRF. This result further suggests that the GT-HMM model is a more
robust model when recognizing gestures when epenthesis gestures are taken in to
account.

There was a 5.8% decrease in performance between the LDCRF from data set 2
to data set 1, while there was only a 1.1% change in performance of the HMM
threshold model. This result suggests that the performance of the LDCRF would
decrease more than that of the HMM threshold model when the number of epenthe-
sis gestures introduced into the system increased.

Similar to the results achieved on the manual gestures in Sect. 5.2.1, these re-
sults indicate that the gesture subunit initialization of the GT-HMM improved clas-
sification performance. Results showed that the GT-HMM had a 6.3% better AUC
measurement than the T-HMM which was initialized using a standard HMM seg-
mentation method.

5.2.3 Eye Brow Gesture Experiments

Research on American Sign Language conducted by Grossman et al. [12] has linked
eyebrow gestures to certain affective states and questions. Anger, wh-questions
(who, where, what, when, why, how) and quizzical questions exhibited lowered
brows and squinted eyes, while surprise and yes/no questions showed raised brows
and widened eyes. In this paper, we focus on identifying these lowered brow ges-
tures and raised brow gestures.

The third data set we evaluate the HMM and CRF models on is a set of eye brow
movement gestures used to convey non manual information in sign language. The
eye brow gesture set consists of two different eye brow movement gestures extracted
from videos of a fluent signer performing natural sign language sentences.

Similar to the hand gesture and head gesture experiments described in Sect. 5.2.1,
observation sequences Δy = {G1y, . . . ,GTy} were extracted from the videos and

divided into a training set, Δt
y , and a test set, Δ

ζ
y . For the eye brow experiments,

a set of 5 training signs and a set of 5 test signs were recorded for each sign (a total
of 20 gesture samples). The HMM models and all CRF models were then trained
on Δt

y .
An additional set of 20 other eye brow gesture sequences ΔE , outside of the

training set, were also extracted from the video sequences to test the performance
of the system when identifying movement epenthesis.

We carry out a ROC analysis of the nonmanual models using the same procedure
described in Sects. 5.2.1 and 5.2.2. Table 3 shows the AUC measurements of models.
The best performing feature vector for the HMM models and CRF models, when
classifying eye brow movements, was a 2-dimensional vector f = {φLR,DΔ}. The
value φLR is the average angle between φL and φR shown in Fig. 19, and DΔ is the
change in distance between the two eyes.

The results of this experiment repeat the same trend found in previous results
of the hand gestures and head gestures. The LDCRF model performs best when
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Table 3 Nonmanual eye brow signals: AUC measurements for different models

Model Data set 1† Data set 2‡

HMM 0.882 0.911

GT-HMM 0.948 0.951

T-HMM 0.905 0.912

CRF ω = 0 0.859 0.899

CRF ω = 1 0.878 0.921

CRF ω = 3 0.889 0.933

CRF ω = 6 0.866 0.901

HCRF ω = 0, S = 1 0.525 0.533

HCRF ω = 0, S = 3 0.858 0.922

HCRF ω = 2, S = 3 0.809 0.899

HCRF ω = 5, S = 3 0.781 0.912

HCRF ω = 0, S = 6 0.825 0.922

HCRF ω = 2, S = 6 0.802 0.922

LDCRF ω = 0, S* = 1 0.788 0.891

LDCRF ω = 1, S* = 1 0.892 0.911

LDCRF ω = 5, S* = 1 0.913 0.944

LDCRF ω = 10, S* = 1 0.893 0.922

LDCRF ω = 0, S* = 3 0.888 0.932

LDCRF ω = 3, S* = 3 0.912 0.931

LDCRF ω = 5, S* = 3 0.918 0.955

LDCRF ω = 10, S* = 3 0.905 0.933

LDCRF ω = 0, S* = 6 0.864 0.896

LDCRF ω = 5, S* = 6 0.912 0.944

LDCRF ω = 10, S* = 6 0.890 0.912

†Data set which includes 20 nongesture samples
‡Data set which does not include nongesture samples
*S∗ refers to number of hidden states per label for LDCRF

Fig. 19 Example of subject performing a raised brow gestures (left) and a lowered brow gesture
(right). a and b represent the angles φL and φR , respectively



Recognition of Spatiotemporal Gestures in Sign Language using GT-HMMs 335

classifying gestures in data set 2. The recognition rate of the CRF models then de-
crease significantly when nongestures are introduced. The best performing model
for data set 1 is again the HMM threshold model with an AUC of 0.948. There was
a 3% decrease in performance between the data set 1 AUCs of the HMM threshold
model and the 3 state LDCRF. This result further suggests that the GT-HMM model
is a more robust model when recognizing the eye brow movement gestures when
epenthesis gestures are taken in to account.

There was a 3.7% change in performance between the LDCRF from data set
to data set 1, while there was only a 0.3% change in performance of the HMM
threshold model. This result suggests that the performance of the LDCRF would
decrease more than that of the GT-HMM model when the number of epenthesis
gestures introduced into the system increased.

Experiments also show that the GT-HMM model, initialized using our automated
initialization technique, had a 4.3% better AUC measurement than the T-HMM ini-
tialized using the standard HMM segmentation method.

5.2.4 Benchmark Data-Set: Marcel InteractPlay Database

In this section, we discuss user independent experiments which were conducted to
evaluate the performance of the models when recognizing gesture performed by
signers not represented in the training set. The user independent data set we utilize
is a benchmark spatiotemporal hand gesture data set. While this data set does not
include sign language gestures or movement epenthesis data, we utilize this data set
in order to evaluate the performance of the GT-HMM framework when perform-
ing user independent gesture recognition and compare to with additional gesture
recognition techniques.

The database contains 3D hand trajectories, in addition to 3D coordinates of the
head and the torso, of isolated hand gestures. The database consists of 16 gestures
carried out by 20 different persons. For each person, there exists 50 samples of
each gesture resulting in a total of 1,000 gesture samples for each of the 16 ges-
ture classes. 3D trajectories of the hands were obtained using stereo vision system
which tracks colored gloves, a colored t-shirt and the face in real-time using the EM
algorithm (see Fig. 20). A detailed description of the 3D blob tracking can be found
in [4].

Just et al. [16] conduct a comparative study, using the InteractPlay data set, to
compare two state-of-the-art techniques for temporal event modeling. In their work,
HMMs and IOHMMs, an extension to HMMs first proposed by Bengio and Fras-
coni [3], are evaluated on the InteractPlay data-set. A 12-dimensional feature vec-
tor, comprising of left- and right-hand positions and velocities, is used to describe
gesture sequences. In order to improve user-independent recognition, each user per-
forms a calibration pose and all other feature vectors are then normalized using the
calibration pose. Training was carried out using all 8,000 gesture sequences from
10 of the 20 people in the data set. Testing was then carried out on 8,000 gesture
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Fig. 20 Top: Example of images from a gesture sequence from the point of view of the left camera
(on the left) and from the point of view of the right camera (on the right). Bottom: 3D coordinates
of the center of each blob (head, torso, left-hand and right-hand) for a “fly” gesture. The z-axis is
the vertical axis of the person

sequences from the remaining 10 people not used in training. Results of their exper-
iments show that the HMM and IOHMM achieved an average recognition rate of
75% and 63%, respectively.

We carry out a number of evaluation protocols when testing the GT-HMM frame-
work on the Interactplay data set:

• P1—To investigate the influence the number of training subjects used has on the
overall recognition performance, we first train the gesture modeling frameworks
using data from only 1 subject. This training set consisted of 50 samples of each
gesture class. We then test the models on gesture sequences obtained from 10
subjects. Feature vectors are comprised of 3D hand positions and velocities.

• P2—In order to evaluate the different gesture modeling frameworks, and directly
compare results with the work of Just et al., we use the same training and testing
protocol as described in their work. This consists of training the framework using
data from 10 subjects and testing the framework on the remaining 10 subjects.

One of the overall goals of this work is to create a gesture recognition frame-
work with minimal supervision during training. Just et al. utilize calibration poses
to normalize different user inputs and improve recognition of user independent ges-
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Table 4 InteractPlay database performance results

Protocol #Training subject #Test subject Accuracy ROC AUC

Just et al. IOHMM P2 10 10 63% –

Just et al. HMM P2 10 10 75% –

GT-HMM P1 1 10 69.5% 0.745

T-HMM P1 1 10 69.1% 0.721

LDCRF P1 1 10 72.2% 0.785

HCRF P1 1 10 71.8% 0.772

CRF P1 1 10 68.9% 0.711

GT-HMM P2 10 10 79.1% 0.831

T-HMM P2 10 10 74.3% 0.772

LDCRF P2 10 10 80.8% 0.857

HCRF P2 10 10 80.1% 0.849

CRF P2 10 10 75.3% 0.781

tures. The process of creating a set of calibration poses for each new user requires
further supervision and thus all evaluations of our GT-HMM framework are carried
out without using any calibration data.

Table 4 details the results achieved by the models implemented by Just et al. and
the results achieved by the LDCRF, T-HMM and GT-HMM frameworks when tested
on the different evaluation protocols. Isolated gesture recognition results reported in
this Chapter thus far have been presented using the ROC AUC measurement. While
we present both ROC AUC and accuracy measurements in Table 4, in this section we
will discuss accuracy measurement results in order to directly compare performance
with the results reported by Just et al.

Results of evaluation protocol P1 report classification accuracies of 69.5%,
69.1% and 72.2% for the GT-HMM, T-HMM and LDCRF models, respectively.
While the performance of the models are lower than the performances reported by
Just et al., the training set was comprised of gesture samples from only one signer.

Results of the evaluation protocol P2, which uses a training set of 10 sub-
jects, show that our GT-HMM framework achieves a classification accuracy of
79.1%, a respective increase of 4.1% and 16.1% when compared to the HMMs
and IOHMMs implemented by Just et al. The LDCRF and HCRF performed with
classification accuracies of 80.7% and 80.1%, an improvement of 1.6% and 1%,
respectively when compared to the GT-HMM model. In the isolated gesture recog-
nition experiments discussed in the previous Sects. 5.2.1–5.2.3, the GT-HMM per-
forms better than the LDCRF and HCRF when classifying isolated gestures and
identifying movement epenthesis. However, the LDCRF and HCRF models per-
formed better that the GT-HMM when classifying gestures from data sets which did
not include movement epenthesis. Since the InteractPlay data set does not contain
movement epenthesis data, the LDCRF and HCRF results reported on the Interact-
Play data set are consistent with those in the previous sections.
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Results of evaluations on the T-HMM framework, which does not use our ges-
ture subunit initialization, show a decrease in classification accuracy of 4.8% when
compared to the GT-HMM. This result is a further indication of the importance
of the gesture subunit initialization technique in creating a robust HMM threshold
framework which models natural human gestures.

A comparison of the results achieved on Protocols P1 and P2 show that all mod-
els, including our GT-HMM model, perform with an increased user independent
classification accuracy when trained on gesture samples from a larger set of sub-
jects.

5.3 Continuous Gesture Recognition Experiments

Thus far, we have discussed experiments conducted on isolated gestures. We now
discuss experiments conducted on our GT-HMM framework and the best perform-
ing CRF model, the LDCRF model, to evaluate the performance of the respective
models when spotting and classifying gestures within continuous sequences of nat-
ural gestures.

In order to find candidate start and end points using the LDCRF model, we
flag segments of the observations sequences which have a corresponding probabil-
ity greater than a predefined threshold Ωy . The predefined thresholds used are the
best performing thresholds calculated from the ROC analysis performed on the iso-
lated gestures discussed in Sect. 5.2. Given a continuous sequence of observations,
G = {f1, f2, . . . , fT }, the conditional probability P(y|ft , θ) for all observations ft ,
where 0 < t < T , is calculated for each gesture class y, where θ denotes the trained
CRF parameters. A candidate gesture, κ , is flagged for each contiguous sequence
where P(y|ft , θ) > Ωy (0 ≤ t < T ). In order to remove overlapping candidate ges-
tures flagged by the LDCRF model, we use the same candidate selection algorithm
described in Sect. 4.2.5. The candidate selection algorithm utilizes a gesture like-
lihood metric to select the final set of recognized gesture. The metric used for the
LDCRF system is defined as κp = 1

κe−κs

∑κe

i=κs
P (y|fi , θ).

To evaluate the performance of the recognition models, we test the continuous
recognition models on the same set of eight hand gestures, three head movements
and two eyebrow gestures used in the isolated experiments in Sect. 5.2. We use
the best performing models trained during the isolated recognition experiments,
discussed in Sect. 5.2, to evaluate the continuous recognition performance of the
GT-HMM framework and LDCRF model. Thus, we use an LDCRF model with 8
hidden states per label for hand gesture recognition. We use an LDCRF model with
9 hidden states per label for head gesture recognition and an LDCRF with 3 hidden
states per label for eye brow gestures.

A total of 160 additional video clips of full unsegmented sign language sentences
being performed by a fluent signer were recorded to test the performance of the
continuous recognition systems. Each video clip contained at least one of the eight
chosen manual signs. The three head movement gestures occurred a total of 30 times
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within the 160 videos while the two eye brow gestures occurred a total of 35 times.
Videos were recorded at 25 frames per second with an average length of 5 seconds.
In order to robustly evaluate the performance of our system, each of the 160 different
sign language sentences, used to test the system, was performed in a mixture of
different styles. The variations in the style of signs performed are similar to the
types of variations that can occur in sign language in real world situations and thus
testing the systems on these signs gives a good indication of how the systems will
perform in real world scenarios.

Observation sequences GL, GR , GH and GE , for the left-hand, right-hand, head
and eye brow respectively, were extracted from each video clip. Both the continuous
LDCRF and GT-HMM recognition frameworks, described in Sect. 5.3, were used
to process the observation sequences to spot and classify manual signs and head
movement gestures from within the videos. The candidate selection algorithm, de-
scribed in Sect. 4.2.5, was used to process candidate gestures for both the GT-HMM
framework and LDCRF model.

In the gesture spotting and classification task, there are three types of errors:
an insertion error occurs when the spotter reports a nonexistent gesture, a deletion
error occurs when the spotter fails to detect a gesture, and a substitution error occurs
when the spotter falsely classifies a gesture. From these error measures, we define
two performance metrics shown in (12) and (13)

DetectionRatio = #CorrectlyRecognizedGestures

#InputGestures
, (12)

Reliability = #CorrectlyRecognizedGestures

#InputGestures + #InsertionErrors
. (13)

5.3.1 Continuous Experiment Results

Tables 5 and 6 show the performance of our GT-HMM framework and the LDCRF
model, respectively, when spotting and classifying gestures within continuous se-
quences of video. The experiment shows an overall detection rate of 95.1% and an
overall reliability of 87% for our GT-HMM framework and an overall detection rate
of 82.7% and an overall reliability of 74.2% for the LDCRF model when spotting
and classifying gestures in continuous sign language sentences.

We also evaluate the performance of the start and end point detection relative
to ground truth data labeled by a human sign language translator. Tables 5 and 6
show the start and end point performance results for our GT-HMM framework and
the LDCRF model, respectively. Each table details the average absolute difference
between the spotters start and end points and the human interpreters start and end
points for signs that were correctly spotted and classified. The average start and
end point error for the GT-HMM framework was 11.6 frames and 9.5 frames, re-
spectively while the average start and end point error for the LDCRF model was
10.1 frames and 8.0 frames, respectively.

The results of the continuous experiments show that the GT-HMM threshold
model performs better than the LDCRF model. The experiments showed that our
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Table 5 Continuous GT-HMM performance results

Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start error End error

Gone 20 2 0 0 1.0 0.9 ±2.5 ±8.4

Alot 20 1 0 0 1.0 0.95 ±1.5 ±1.6

Lost 20 2 0 0 1.0 0.9 ±1.5 ±3.5

Plate 19 3 1 0 0.95 0.83 ±8.1 ±12.2

Bike 20 1 0 0 1.0 0.95 ±12.1 ±12.0

Paint 20 0 0 0 1.0 1.0 ±26.1 ±20.7

Paper 16 1 1 3 0.8 0.76 ±5.9 ±1.6

Clean 18 1 1 1 0.9 0.85 ±4.8 ±5.2

Head left 11 1 1 0 0.91 0.84 ±10.1 ±7.7

Head right 10 2 0 0 1.0 0.83 ±4.0 ±4.3

Head left forward 8 2 0 1 0.88 0.72 ±12.9 ±6.5

EyeBrowDown 18 3 0 2 0.9 0.78 ±19.2 ±15.3

EyeBrowUp 15 2 0 0 1.0 0.88 ±17.1 ±24.9

Total 215 21 4 7 0.951 0.87 ±11.6 ±9.5

†Number of deletion errors
‡Number of insertion errors
††Number of substitution errors

GT-HMM framework achieved an 12.4% higher detection ratio and a 12.8% higher
reliability measure than the LDCRF model.

The start and end point performance experiments reveal that both the GT-HMM
framework and the LDCRF model perform with similar accuracy. Since these ac-
curacies are calculated from correctly classified gestures, the results conform with
the results on the classification of isolated gestures discussed in Sect. 5.2 where the
LDCRF model was shown to perform well when positively classifying gestures in
the absence of epenthesis.

5.3.2 Continuous User Independent Experiment Results

In this section, we conduct a second continuous sign language recognition experi-
ment. We evaluate the same set of continuous recognition models, used in the ex-
periments in Sect. 5.3.1, on a set of sign language sentences performed by a second
signer not used in the training set (Fig. 21 shows an example of the eight signs being
performed by the second signer).

A total of 160 additional video clips of full unsegmented sign language sentences
being performed by the second signer were recorded. Each video clip contained at
least one of the eight chosen manual signs.
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Table 6 Continuous LDCRF performance results

Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start error End error

Gone 16 2 0 4 0.8 0.72 ±8.0 ±6.1

Alot 20 2 0 0 1.0 0.9 ±3.0 ±1.7

Lost 9 1 2 9 0.45 0.42 ±3.8 ±1.5

Plate 20 1 0 0 1.0 0.95 ±15.7 ±8.4

Bike 16 2 3 1 0.8 0.72 ±12.2 ±9.8

Paint 17 3 1 2 0.85 0.74 ±3.0 ±6.7

Paper 18 2 1 1 0.9 0.81 ±0.6 ±1.6

Clean 17 2 1 2 0.85 0.77 ±7.1 ±5.4

Head left 11 3 0 1 0.91 0.73 ±9.4 ±9.2

Head right 8 1 0 2 0.8 0.72 ±18.2 ±10.2

Head left forward 9 1 0 0 1.0 0.9 ±24.3 ±5.1

EyeBrowDown 14 4 0 6 0.7 0.58 ±13.3 ±10.2

EyeBrowUp 12 2 0 3 0.8 0.70 ±14.2 ±28.2

Total 187 26 8 31 0.827 0.742 ±10.1 ±8.0

†Number of deletion errors
‡Number of insertion errors
††Number of substitution errors

Fig. 21 Example of the eight different performed by the new signer (a) newspaper, (b) a lot,
(c) bike, (d) gone, (e) clean, (f) paint, (g) plate, (h) lost
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Table 7 User independent continuous GT-HMM performance results

Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start error End error

Gone 10 3 0 7 0.58 0.5 6.3 2.8

Alot 18 4 0 8 0.69 0.6 2.2 1.2

Lost 16 3 0 2 0.88 0.61 1.5 3.5

Plate 12 4 2 2 0.75 0.6 9.6 13.1

Bike 28 2 1 2 0.90 0.84 3.0 8.3

Paint 20 2 0 0 1.0 0.9 6.1 4.0

Paper 15 3 1 5 0.71 0.62 5.1 3.6

Clean 13 3 0 2 0.86 0.72 7.9 8.3

User independent total 132 24 4 28 0.804 0.702 5.2 5.6

User dependent total 153 11 3 4 0.956 0.894 6.6 8.1

†Number of deletion errors
‡Number of insertion errors
††Number of substitution errors

Table 8 User independent continuous LDCRF performance results

Gesture #Correct #Ins‡ #Del† #Sub†† Detection Reliability Start error End error

Gone 9 4 0 8 0.52 0.36 4.2 2.5

Alot 22 2 0 4 0.84 0.78 5.0 2.3

Lost 9 2 0 9 0.5 0.45 3.4 5.5

Plate 11 5 1 4 0.68 0.52 8.9 14.1

Bike 27 5 0 4 0.87 0.75 10.8 2.6

Paint 13 3 0 7 0.65 0.56 6.6 4.5

Paper 8 3 2 11 0.38 0.33 5.9 1.6

Clean 12 4 1 2 0.8 0.63 4.8 5.2

User independent total 111 28 4 49 0.676 0.578 6.2 10.9

User dependent total 133 15 8 19 0.831 0.76 6.6 8.1

†Number of deletion errors
‡Number of insertion errors
††Number of substitution errors

Observation sequences, GL and GR , for the left-hand and right-hand, respec-
tively, were extracted from each video clip. Both the continuous GT-HMM and LD-
CRF recognition frameworks were then used to process the observation sequences
to spot and classify hand signs from within the videos of the second signer.
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Tables 7 and 8 show the performance of our GT-HMM framework and the LD-
CRF model respectively when recognizing signs performed by the second signer.
The experiment shows an overall detection rate of 80.4% and an overall reliability
of 70.2% for our GT-HMM framework and an overall detection rate of 67.6% and
an overall reliability of 57.8% for the LDCRF model.

When compared to the detection rates achieved in the experiments in Sect. 5.3.1,
the overall detection rate of the GT-HMM framework dropped by 15.2% and, simi-
larly, the overall detection rate of the LDCRF dropped by 15.5%. These results show
that our GT-HMM framework consistently performs with a higher gesture detection
rate than that of the LDCRF when recognizing signer independent signs.

In previous works which have used a small number of signers in the training
set, results of user independent recognition evaluations have seen large decreases
when compared to user dependent recognition results [22]. For example, in Assan
et al. [1], accuracy for training on one signer and testing on another was 51.9% com-
pared to 92% when the same signer supplied both training and test data. As shown in
the experiments on the InteractPlay data-set in Sect. 5.2.4, user independent recog-
nition performance using our GT-HMM threshold framework can be improved by
utilizing a larger number of subjects. While the experiments conducted in this ex-
periment show a decrease in the signer independent detection rate, the fact that only
one signer was represented in the training set means that a decrease of only 15.2%
can be interpreted as a promising result.were utilized to achieve recognition rates of
85% and 90.6% respectively.

5.4 Multimodal Recognition Examples

Incorporating nonmanual signals such as eyebrow gestures and head movement ges-
tures into a sign language recognition framework provides the necessary founda-
tions for differentiating between different types of questions, and also recognizing
the start of sign language sentences. In this section, we will show recognition results
from a number of manual and nonmanual signals and discuss how the combination
of these signals can be utilized to create a more comprehensive understanding of
sign language sentences.

Figure 22 shows the gestures spotted by our system in three different sentences.
Figures 22(a) and 22(b) show gestures spotted from two sentences where the signer
performs the words “CAR PETROL ALL GONE” in both sentences.

In the first sentence, the signer is asking a question “CAR PETROL ALL GONE
HOW?”, but in the second sentence the signer is asking a yes/no question “CAR
PETROL ALL GONE?”. The manual signs for both these sentences are the same
but the difference can only be recognized from the head movement and eyebrow
gestures. It can be seen that our system spots an eyebrow down gesture coinciding
with a left-head movement followed by right-head movement. This indicates that
the signer is asking a “wh” question. In the second sentence, our system spots a
eyebrow down gesture at the beginning of the sentence followed by a head forward
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Fig. 22 Multimodal gesture labeling comparison of a human interpreter vs. our recognition system
(dotted arrows represent hand labeled gestures, while solid arrows represent labels generated by
our system)

movement, indicating the signer is asking a yes/no question. Figure 22(c) shows
gestures from a sentence “WHO BIKE BROKE?”, where our system spots an eye-
brow down gesture coinciding with a left-head movement. Similar to the gestures
in Fig. 22(a), the eyebrow down gesture coinciding with a head movement gesture
indicates a “wh” question. Also from Fig. 22(a), it was observed that an eyebrow up
gesture occurred at the start of the sequence. This is an interesting observation as
the eyebrow up gesture is linked to the start of a new sentence or sequence.

6 Conclusion

In Sect. 1.1, we have discussed current methods of continuous gesture recognition.
The downside of the majority of these methods is that explicit training of movement
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epenthesis models are required or unnatural constraints are put on the signer, such
as unnatural pauses between words. The main contribution of the work proposed
in this chapter is that we have developed a robust framework for the recognition of
spatiotemporal based gestures which does not require explicit epenthesis training
or require the need for specific rules to determine sign boundaries. Our framework
requires only that the dedicated gesture models be trained, and as a result of this
training a single epenthesis model can be implemented. We have expanded on the
work of Lee and Kim [19] to develop a GT-HMM framework, utilizing our novel
gesture subunit initialization technique, which models continuous multidimensional
gesture observations within a parallel HMM network.

We evaluated our GT-HMM framework and compared it to current models for
recognizing human motion. HMMs, CRFs, HCRFs and LDCRFs have recently been
implemented in systems for automatically recognizing different human actions. We
evaluate these techniques in the domain of sign language gesture recognition. In or-
der to evaluate the performance of the models when recognizing sign language ges-
tures, it was important to evaluate each model when identifying movement epenthe-
sis as well as evaluating the performance of the models when classifying gestures.
Experiments were conducted on an isolated data set of motion based manual signs
and on an isolated data set of nonmanual head motion and eye brow motion gestures.

In experiments carried out on all three gesture types, the best performing model
was the LDCRF when tested on a data set which did not include movement epenthe-
sis. The results of this experiment were consistent with previous experiments on
HCRFs and LDCRFs which Wang et al. [34] and Morency et al. [21] show that
HCRFs and LDCRF perform better than the standard HMM model when classifying
gestures. When a data set, which included movement epenthesis, was introduced to
the experiments, the performance of the standard HMM model, and all CRF mod-
els, dropped significantly in relation to the performance of GT-HMM model. The
GT-HMM model performed best in all three experiments, with movement epenthe-
sis data, with an AUC of 0.976, 0.936 and 0.948 for the hand gesture, head gesture
and eye brow gesture evaluations, respectively.

An important aspect of our GT-HMM framework is the gesture subunit initializa-
tion technique which is used to automatically initialize the parameters of GT-HMM
framework. Experiments conducted on the manual and nonmanual data sets, showed
that initializing the HMMs using our technique consistently improved hand ges-
ture, head gesture and eye brow gesture classification performance by 3.5%, 6.3%
and 4.3%, respectively when compared to a standard initialization technique. More-
over, experiments on the Interactplay data-set also indicate that our gesture sub-
unit initialization improves classification performance with results showing a 4%
increase in performance.

Experiments, to evaluate the performance of our GT-HMM framework and the
LDCRF model when spotting and classifying gestures from continuous sequences,
were also carried out. The continuous experiments showed that our GT-HMM
framework achieved an 12.4% higher detection ratio and a 12.8% higher reliability
measure than the LDCRF model when tested on 220 different hand, head and eye
brow gestures. Additionally, a set of signer independent experiments where con-
ducted to evaluate the performance of the models when recognizing signs performed
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by a signer not represented in the training set. Signer independent evaluations
conducted on the InteractPlay, which contained no epenthesis data, showed that
the GT-HMM and LDCRF models performed best when compared to HMMs and
IOHMMs implemented by Just et al. [16]. Furthermore, signer independent evalua-
tions on continuous sign language sentences showed that our GT-HMM framework
consistently performs with a higher gesture detection rate than that of the LDCRF.
The overall detection rate of the GT-HMM and LDCRF models decreased by only
15.2% and 15.5% respectively, when compared to signer dependent results.
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Learning Transferable Distance Functions
for Human Action Recognition

Weilong Yang, Yang Wang, and Greg Mori

Abstract Learning-based approaches for human action recognition often rely on
large training sets. Most of these approaches do not perform well when only a few
training samples are available. In this chapter, we consider the problem of human ac-
tion recognition from a single clip per action. Each clip contains at most 25 frames.
Using a patch based motion descriptor and matching scheme, we can achieve
promising results on three different action datasets with a single clip as the template.
Our results are comparable to previously published results using much larger train-
ing sets. We also present a method for learning a transferable distance function for
these patches. The transferable distance function learning extracts generic knowl-
edge of patch weighting from previous training sets, and can be applied to videos of
new actions without further learning. Our experimental results show that the trans-
ferable distance function learning not only improves the recognition accuracy of the
single clip action recognition, but also significantly enhances the efficiency of the
matching scheme.

1 Introduction

The ability to generalize from a small training set is an important feature of any
recognition system. While this statement can be made of recognition problems in
general, in this chapter we focus on human action recognition from video data.
There has been much recent progress in this field, with high performance on stan-
dard benchmark datasets. However, this level of performance has been achieved
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with techniques that utilize a large amount of training data. We argue that while this
may be appropriate for certain tasks (e.g., action fingerprinting, or distinguishing
subtle differences in action), it is problematic to assume that such large training sets
exist for the task of discriminating between broadly different categories of actions.
In this work, we focus on learning to recognize actions from a single clip, leveraging
knowledge acquired from previous action categories. We focus on experiments on
standard action recognition datasets, though the same principles could be applied to
video retrieval and surveillance tasks.

As has been noted in the object recognition literature [17], humans are adept at
learning new categories given small numbers of examples. Attempting to endow
computer vision algorithms with similar abilities is appealing. This line of research
is also of practical importance—gathering volumes of training data for unusual ac-
tions, for example, for surveillance or video retrieval tasks, is an expensive, labour-
intensive process.

In this chapter, we attempt to push the boundaries of action recognition perfor-
mance with a single, short video clip as training data (called the target dataset) for
a particular action. Of course, it is impossible to learn a recognition system with
a single video clip per action, so we assume that we also have access to a much
larger dataset called the source dataset. However, the action categories of the source
dataset are different from those of the target dataset. For example, the source dataset
might contain a large number of video clips of “regular” actions (e.g., running, walk-
ing, hand-waving, etc.) readily available from many benchmark datasets (e.g., KTH
dataset [38], Weizmann dataset [6], etc.). The target dataset might contain video
clips of more “interesting” actions (e.g., spinning). We assume there is only one sin-
gle clip for each action class on the target dataset. Our goal is to classify a new test
video clip into one of the action labels of the target dataset. Since the source and
target datasets have different action categories, we cannot naively combine them
together and use a standard machine learning technique to learn our classification
model. Instead, we will learn certain “generic knowledge” from the source dataset
that can be “tranferred” to the target dataset. Though the target dataset only contains
very small amount of training data, we might still be able to learn a good model by
exploiting the “transferable knowledge” learned from the source dataset.

We work with a figure-centric representation in which a human detection and
tracking algorithm has been run as a preprocessing step. The main contributions of
this paper involve the development of a parametrized distance function for com-
paring video clips. The distance function is defined as a weighted sum of distances
between a densely sampled set of motion patches on frames of the video clips. This
distance function is effective for action recognition in the impoverished training
data setting. We further develop an algorithm for learning these weights, that is, the
distance function parameters. We develop a novel margin-based transfer learning
algorithm, inspired by the work of Frome et al. [20] and Ferencz et al. [19]. The
learned weights are a function of patch features and can be generically transferred
to a new action category without further learning. This learning greatly improves
the efficiency of our algorithm, and can improve recognition accuracy.

An earlier version of this work appeared in [43]. An extension of this work for
action detection appeared in [42]. The rest of the chapter is organized as follows.
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Section 2 reviews those work related transfer learning and human action recognition.
Section 3 describes the motion feature and the basic matching scheme. Section 4.1
gives the details of our approach for learning transferable distance functions. We
present experimental results in Sect. 5.2 and conclude in Sect. 6.

2 Previous Work

In this section, we review related work in both machine learning and computer vi-
sion literature. Section 2.1 gives an overview of different learning scenarios related
to transfer learning. It also gives a brief review of commonly used approaches in
transfer learning. Section 2.2 reviews related work from the computer vision litera-
ture, in particular those work related to human action recognition.

2.1 Related Work in Learning

Here we give a brief summary of transfer learning and other related learning prob-
lems that have been studied under various names (e.g., semi-supervised learning,
self-taught learning, multi-task learning, domain adaptation, etc.). Interested read-
ers are referred to [34] for a more detailed survey.

The standard scenario of machine learning problems is supervised learning. We
are given a set of labeled training data D = {(xn, yn) ∈ X × Y : 1 ≤ n ≤ N}, where
X is the input space and Y a finite label set. It is assumed that each (xn, yn) is drawn
independently from a fixed, but unknown distribution p, that is, (xn, yn) ∼ p(x, y).
Our goal is to learn a function f : X → Y that can be used to predict the class label y

for a new instance x. For example, if we want to learn to recognize images of “dogs”
versus “cats”, an instance xn will be an image, and the label yn is “dog” or “cat”.
Unfortunately, it is very expensive and time-consuming to collect a large number of
labeled training instances. One possible approach to deal with this issue is to use
semi-supervised learning [46], which aims to learn a classification model from both
labeled data {(xi, yi)}Ni=1 and unlabeled data {xj }N+M

j=N+1, where N � M . In semi-
supervised learning, the class labels and generative distributions of the unlabeled
data are assumed to be the identical to those on the labeled data. In the “dog vs. cat”
example, an unlabeled data instance xj corresponds to an image of either dog or cat,
but we simply do not know which label it is. A more challenging learning problem is
self-taught learning [36], where the unlabeled data can have different class labels or
generative distributions from the labeled data. Using previous example, an unlabeled
data instance in self-taught learning can be an image of anything, that is, not limited
to dogs or cats.

In our work, we are interested in transfer learning [34]. Unlike previously men-
tioned learning scenarios, all the data in transfer learning are labeled. The goal of
transfer learning to learn a predictive model by applying knowledge learned pre-
viously from other different but related task, that is, it transfer knowledge from
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one supervised learning task to another. For example, if we want to learn to rec-
ognize “dogs” versus “cats” from two different kinds of labeled training datasets,
called the source dataset D(s) = {(x(s)

n , y
(s)
n ) ∈ X × Y (s)} and the target data

D(t) = {(x(t)
m , y

(t)
m ) ∈ X × Y (t)}. The target dataset Dt contains instances labeled

with either dogs or cats, that is, Y (t) = {dog, cat}. The source dataset D(s) contains
instances with labeled with other categories (e.g., Y (s) = {horse, tiger, . . .}). The
goal of transfer learning is to exploit D(s) ∪ D(t) to build a model that recognize a
new instance with an unknown label in Y (t). Transfer learning is related to another
learning problem called domain adaptation [8, 10, 29]. In domain adaptation, the
source dataset and the target dataset have the same label set, i.e. D(s) = D(t). But
the source dataset and target dataset are drawn from two different distributions, that
is, (x

(s)
n , y

(s)
n ) ∼ p(s)(x, y), (x

(t)
m , y

(t)
m ) ∼ p(t)(x, y), and p(s) �= p(t).

Another closely related learning problem is multi-task learning [7]. The goal of
multi-task learning is to learn different tasks together and assume there is some “re-
latedness” between different tasks. Ben-David and Schuller [5] provided a theoreti-
cal justification for multi-task learning. The problem setting of multi-task learning is
almost identical to that of transfer learning. The only difference is that in multi-task
learning, the goal is to learn a model that simultaneously do well on all the tasks.
Using the previous example, the multi-task learning might aim to learn to classify
all the possible animals, not just “dogs” and “cats”.

Now we review the approaches commonly used in transfer learning. Since trans-
fer learning and multi-task learning are very closely related, most techniques devel-
oped for one of those two problems can be easily adapted to the other one. For ease
of presentation, we will loosely call both problems “transfer learning” in the rest of
this section.

An important assumption of transfer learning is that various tasks involved in
the learning are somehow related. Otherwise, it will be impossible to transfer the
knowledge learned from one task to another one. Depending on the assumption of
“relatedness”, various techniques proposed in the literature roughly fall into two
categories.

2.1.1 “Relatedness” via Features

A lot of work in transfer learning assumes that different tasks are related by some
intermediate feature representations. Argyrious et al. [2–4] learn a low-dimensional
representation which is shared across multiple related tasks. If the intermediate
representation shared across tasks are semantically informative, we can even per-
form zero-data [27] or zero-shot [33] learning, where the target task does not have
any training data. This idea of transferring intermediate representations via related
tasks can also be applied to solve regular classification problem (i.e., single task).
For example, Ahmed et al. [1] demonstrate that classification can be improved by
learning a intermediate feature representation from so-called “pseudo-tasks”. Those
“pseudo-tasks” are auxiliary tasks constructed to help with learning a good feature
representation for the target task.
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2.1.2 “Relatedness” via Model Parameters

Another popular approach in transfer learning is to assume that the model parame-
ters associated in different tasks are related in some way. Let us denote the model
parameters of the t th task as wt (1 ≤ t ≤ T ), where T is the number of tasks in-
volved. Evgeniou et al. [13] assume wt = w0 + vt , where w0 are shared among all
tasks and vt are the parameters specific to the t th task. In [44, 45], wt (1 ≤ t ≤ T )
are related by assuming they are draw from the same prior distribution p(w), for
example, p(w) can be a Gaussian process [44], or a t-process [45].

A limitation of previous work in transfer learning is that the underlying clas-
sification model for each task is always assumed to be in a parametric form, for
example, a linear classification with parameters w. It is not clear how to generalize
those transfer learning techniques to other non-parametric classifiers, e.g. K-nearest
neighbor (KNN). In this work, we develop a technique for transferring “distance
functions”, which can be used in KNN classifiers. To the best of our knowledge,
there has not been any previous work on transferring learning in this setting.

2.2 Related Work in Vision

A variety of action recognition algorithms have obtained high recognition accuracy
on the standard KTH [38] and Weizmann [6] benchmark datasets. The literature in
this area is immense; we provide a brief set of closely related work here. The vast
majority of these methods use large amounts of training data, with either a leave-
one-out (LOO) strategy or other splits of the data involving large amounts of training
data for each action.

Efros et al. [12] recognize the actions of small scale figures using features derived
from blurred optical flow estimates. Fathi and Mori [16] learn an efficient classifier
on top of these features using AdaBoost. Our method uses the same figure-centric
representation, and defines patch distances using blurred optical flow. We learn a
generic transferable distance function rather than individual classifiers, on smaller
training sets.

A number of methods run interest point detectors over video sequences, and de-
scribe this sparse set of points using spatial and/or temporal gradient features [11,
30, 38]. In contrast with these methods, we use a densely sampled set of patches
in our distance function. Our transfer learning algorithm places weights on these
patches, which could be interpreted as a type of interest point operator, specifically
tuned for recognition.

Shechtman and Irani [39] define a motion consistency designed to alleviate prob-
lems due to aperture effects. Distances between pairs of video clips are computed
by exhaustively comparing patches centered around every space-time point. In our
work we learn which patches are important for recognition, leading to a more effi-
cient algorithm—though one could use motion consistency in place of blurred opti-
cal flow in a distance function.
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Ke et al. [24, 25] define a shape and flow correlation based on matching of
segmentations. Classification is done using a parts-based model [24] and an SVM
trained on template distances in a LOO setting [25].

Jhuang et al. [22] describe a biologically plausible model containing alternating
stages of spatio-temporal filter template matching and pooling operations. Schindler
and Van Gool [37] examine the issue of the length of video sequences needed to
recognize actions. They build a model similar to Jhuang et al. [22] and show that
short snippets can be effective for action recognition. Both of these methods use
large splits for training data. Our work focuses instead on the amount of data needed,
rather than the temporal length of the clips. Weinland and Ronfard [41] classify
actions based on distances to a small set of discriminative prototypes selected in a
LOO experiment.

Tran and Sorokin [40] propose a metric learning method for action recognition
from small datasets. Our experiments use fewer frames (25 per training clip), and
compare favorably in terms of accuracy.

Our approach of learning distance functions is inspired by the work of Frome
et al. [20, 21] and Ferencz et al. [19]. The work by Ferencz et al. [19] introduces
the notion of “hyper-features” for object identification. In a nutshell, hyper-features
are properties of image patches that can be used to estimate the salience of those
patches. These salines measurements can be used later in matching based object
identification. In our work, we use a similar idea to estimate the relative weights (i.e.,
salient) of motion patches extracted from video frames. We define the hyper-feature
of a motion patch using a codebook representation. The main difference of our
hyper-feature model with Ferencz et al. [19] is that our model is directly tied to
the distance function used for the matching.

We use Frome et al.’s focal learning framework which considers similar-
dissimilar triplets of training data points. Rather than learning distance functions
specific to each image, we learn them generically based on patch hyper-features.
This allows us to transfer them to new videos without retraining, and to use them
even in cases where we have only one training example for a class (focal learning
requires at least 2).

In computer vision, the subarea of face identification has a long tradition of using
ideas similar to transfer learning. In face identification, a system is trained from
faces of thousands of people (source dataset). During the testing, a well-trained
system can easily identify the face which does not exist in the source dataset. Other
applications of transfer learning in computer vision include the one-shot learning of
Fei-Fei et al. [17], in which object recognition models are built using priors learned
from previously seen object classes. Farhadi et al. [14, 15] use comparative features
for transferring distances between templates for sign language and multi-view action
recognition. Quattoni et al. [35] perform transfer learning using kernel distances
to unlabeled prototypes. Lampert et al. [26] learn to detect unseen object classes
by considering object attributes as intermediate feature representation that can be
transferred.
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3 Motion Descriptors and Matching Scheme

We will classify the test video (we will call it query video) using the nearest neighbor
(NN) classifier after computing the distances between the query video and each clip
in the template set. The query video will be assigned to the action label according
to the best matched template clip. The reason to use the NN classifier is that most
other learning based approaches rely on complicated models with a large number of
parameters, and thus cannot deal with the situation of very small training sets. In the
following, we first introduce the motion descriptors used for representing a video
clip (Sect. 3.1). Then we describe our patch-based matching scheme for comparing
two video clips Sect. 3.2).

3.1 Motion Descriptors

In this work, we use a figure-centric representation of motion in which a standard
human detector and tracking algorithm has been applied. The motion descriptors in
Efros et al. [12] are used to represent the video frames. We first compute the optical
flow at each frame. The optical flow vector field F is then split into two scalar fields,
Fx and Fy corresponding to the x and y components of the flow vector. Fx and Fy

are further half-wave rectified into four nonnegative channels F+
x , F−

x , F+
y , F−

y ,
so that Fx = F+

x − F−
x and Fy = F+

y − F−
y . Then, those four channels are blurred

using a Gaussian kernel to obtain the final four channels Fb+
x , Fb−

x , Fb+
y , Fb−

y (see
Fig. 1).

3.2 Patch Based Action Comparison

We compute the distance between two video clips by comparing the patches from
both clips. Patch based methods are very popular in object recognition, due to the
fact that local patches are more robust to pose variation than the whole object. We
represent each patch using the four channel motion descriptor. Suppose the four
channels for patch i are a1, a2, a3, a4, and each channel has been concatenated
to a vector. Similarly, the four channels for patch j are b1, b2, b3, b4. We denote
âk = [a1

k − āk, a
2
k − āk, . . . , a

n
k − āk], and b̂k = [b1

k − b̄k, b
2
k − b̄k, . . . , b

n
k − b̄k], where

āk and b̄k are the mean values of channel ak and bk respectively, ai
k denotes the ith

element in channel vector ak . The similarity between patch i and j is computed
using normalized correlation, and the distance is given by

d(i, j) = C −
4∑

k=1

âT
k b̂k + ε√

(âT
k âk + ε)(b̂T

k b̂k + ε)

, (1)

where C is a positive constant to make the distance nonnegative, and ε is a small
constant.
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Fig. 1 Construction of the motion descriptor. (a) Original image; (b) optical flow; (c) x and y com-
ponents of optical flow vectors Fx , Fy ; (d) half-wave rectification of x and y components to obtain
4 separate channels F+

x ,F−
x ,F+

y ,F−
y ; (e) final blurry motion descriptors Fb+

x ,Fb−
x ,Fb+

y ,Fb−
y

Different people may perform the same action differently. Take the walking ac-
tion as an example, different people may have different strides, so the legs may
appear in different positions of cropped frames. In order to alleviate the effect of
such variations, we choose a local area search scheme. It is illustrated in Fig. 2. The
distance between query and template clips is:

Dqt =
M∑
i=1

min
j∈[1,N ]

{
S∑

s=1

min
r∈Rs

d(qis, tjr )

}
(2)

where qis denotes the sth patch on the query frame i, and tjr denotes the r th patch
on the template frame j . Rs is the corresponding search region of s-patch (the blue
rectangle in Fig. 2). M and N are the frame numbers of query clip and template
clip, respectively. S is the total number of patches on the query frame.

In order to compute the clip-to-clip distance Dqt from query to template, we need
to know the frame correspondence first. By considering temporal constraints, one
can apply dynamic time warping or other dynamic programming methods. However,
in this work, for simplicity, we correspond each query frame to its closest neighbor
among the template frames. This can result in several query frames corresponding
to the same template frame. But it is reasonable since the query clip may contain
repetitive actions and have variations in speed.



Learning Transferable Distance Functions for Human Action Recognition 357

Fig. 2 The comparison process between the query and template clips. dqt,s denotes the distance
between the sth patch on the query clip to its corresponding patch on the template clip. Dqt denotes
the distance between query and template clips. The distance between clips is the sum of the distance
from query frames to their best matched template frames. The frame-to-frame distance is the sum
of the distance between best matching patches

After obtaining the frame correspondence and local patch correspondence, Dqt

is the sum of the elementary patch-to-patch distance as Dqt = ∑M×S
s=1 dqt,s , where

M × S is the total number of patches on the query clip over space and time, dqt,s
denotes the distance from the sth patch on the query clip to its corresponding patch
on the template clip.

In Sect. 5.2, we will show that even with such a simple motion descriptor and
matching scheme, we can achieve very good results on three different datasets by
only using one clip as template per action. The results are comparable to previously
published results using large training sets.

4 Learning a Transferable Distance Function

As mentioned earlier, our primary goal is to deal with the scenario where only one
clip is available for each action in the template. This scenario is of practical interests
because for some specific human action like sports or dancing actions, it is costly
to collect a very training set. In particular, for the task of action video retrieval,
normally we only have one clip video provided by the user. On the other hand, for
some simple actions such as walking and hand-waving, a large number of clips can
be easily obtained from standard benchmark datasets, that is, KTH and Weizmann
datasets. Although the direct comparison of the query and template clips is able to
achieve relatively good results, we would still like to exploit the available labeled
datasets to assist in action recognition from a single template clip, even when the
action of the template clip is totally different from the actions in the labeled datasets.
In machine learning, this is known as transfer learning. The goal is to leverage the
knowledge from related tasks to aid in learning on a future task.

Following the terminology of transfer learning, we denote the fully labeled action
data we already have at hand as the source training set. Note that the class labels of
actions in the source training set and the template set are different.
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4.1 Transferable Distance Function

The human visual system is amazingly good at learning transferable knowledge.
For example, humans are adept at recognizing a person’s face after seeing it only
once. One explanation for this amazing ability is that people have learned to focus on
discriminative features (e.g., eyes, nose, mouse) of a face, while not being distracted
by other irrelevant features [19]. This idea of knowledge transfer has been exploited
in the context of object recognition and identification [17, 19, 31]. In particular,
Ferencz et al. [19] propose to predict the patch saliency for object identification by
its visual feature called hyper-feature. The relationship between the hyper-feature
and the patch saliency is modeled using a generalized linear model.

Similarly, in human action recognition, we believe there exists a certain relation-
ship between the saliency and the appearance of a patch. For example, for a boxing
action, the region around the punching-out arm is much more salient than the still
leg. In a hand-waving action, the arm parts are salient too. Given a source train-
ing set, our goal is to learn the knowledge, such as “stretched-arm-like” or “bent-
leg-like” patches are more likely to be salient for action recognition. This knowl-
edge will be “transferable” to unknown actions in the template and query datasets,
since the algorithm will look for these patches and assign them high weights for the
matching based recognition.

Inspired by work on learning distance function [20], we formulate our problem
of learning the relationship into the framework of max-margin learning of distance
functions. But the goal of our learning problem is different from that of Frome
et al. [20]. The output of Frome et al. [20] is the weight associated with each im-
age patch in the training data. In our problem, although we do get the weight as a
by-product, we are more interested in learning the relationship between the patch
appearance and its saliency.

We define the hyper-feature of the ith patch as fi , the weight assigned to this
patch as wi . The construction of the hyper-feature will be discussed in Sect. 4.4. We
assume that fi and wi have the following relationship via the parameter P:

wi = 〈P · fi〉. (3)

Then we will have w = PT F, where each column of F refers to the hyper-feature
vector of a patch, w denotes the vector which is the concatenation of the weights wi .
Our goal is to learn P from the source training set. Then given any new action video,
even if its action does not exist in the source training set, we will be able to compute
the weight (i.e., saliency) of each patch in the new video by (3). In our work, we
would like to estimate the saliencies of patches on the query video.

Combined with the learned distance function, the final clip-to-clip distance Dqt
is defined as a weighted sum of all the elementary distances

Dqt =
S∑

s=1

wq,sdqt,s = 〈wq · dqt〉, (4)

where dqt is the distance vector, and each element denotes the elementary patch-to-
patch distance dqt,s . Note wq,s is the weight of the sth patch on the query clip.
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4.2 Max-Margin Formulation

The learning of P follows the focal learning framework in [20]. The distance func-
tion obtained by w = PT F will satisfy the constraint that the distance between sim-
ilar actions is smaller than dissimilar actions by the margin 1, that is〈

wi · (dij − dik)
〉
> 1,〈

PT Fi · (dij − dik)
〉
> 1,

(5)

where dik is the distance vector between the similar action i and k, and dij is the
distance vector between the dissimilar action i and j . To avoid the problem of large
patch-to-patch distances implying a high similarity, we enforce the nonnegativity of
the weights, 〈P · fm〉 ≥ 0. For simplicity, we replace dij − dik as xijk .

The max-margin optimization problem can be formulated as

min
P,ξ

1

2
‖P‖2 + C

∑
ijk

ξijk

s.t.
〈
PT Fi · xijk

〉 ≥ 1 − ξijk, ∀i, j, k,

〈P · fm〉 ≥ 0, ∀m,

ξijk ≥ 0, ∀i, j, k,

(6)

where ξijk is the slack variable and C is the trade-off parameter, similar to those
in SVM. The hyper-feature Fi is known so we can write Yijk = Fi · xijk . The first
constraint can be re-written as 〈P · Yijk〉 ≥ 1 − ξijk .

If we remove the second constraint, the optimization problem in (6) will be sim-
ilar to the primal problem of the standard SVM. The optimization problem is very
similar to the one in Frome’s work [20], but differs in the second constraint. Instead
of the simple nonnegative constraint P ≥ 0, like the one in [20], our constraints
involve linear functions of the hyper-feature vectors.

The Lagrangian formulation is:

L = 1

2
‖P‖2 + C

∑
ijk

ξijk −
∑
ijk

αijk

[〈P · Yijk〉 − 1 + ξijk

]

−
∑
ijk

λijkξijk −
∑
m

μm〈P · fm〉.

We can gather all the dual variables

L = 1

2
‖P‖2 +

∑
ijk

αijk

[〈P · Yijk〉 − 1
] +

∑
ijk

ξijk[C − αijk − λijk]

−
∑
m

μm〈P · fm〉.

Since Lagrangian is linear with ξijk , either ξijk or C −αijk − λijk must be zeros.
So, we can remove ξijk from Lagrangian and obtain one constraint

0 ≤ αijk ≤ C. (7)
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By taking the derivative of the remaining part of Lagrangian with respect to P
and setting to zeros, we can get

∂L
∂P

= P −
∑
ijk

αijkYijk −
∑
m

μmfm = 0

�⇒ P =
∑
ijk

αijkYijk +
∑
m

μmfm.

(8)

Substituting (8) back to the Lagrangian we can get:

Θ(α,μ) = 1

2

∥∥∥∥∑
ijk

αijkYijk +
∑
m

μmfm

∥∥∥∥
2

−
∑
ijk

αijk

[〈(∑
ijk

αijkYijk +
∑
m

μmfm

)
· Yijk

〉
− 1

]

−
∑
m

μm

[〈(∑
ijk

αijkYijk +
∑
m

μmfm

)
· fm

〉]

= 1

2

∥∥∥∥∑
ijk

αijkYijk +
∑
m

μmfm

∥∥∥∥
2

−
∥∥∥∥∑

ijk

αijkYijk

∥∥∥∥
2

−
∥∥∥∥∑

m

μmfm

∥∥∥∥
2

− 2

〈∑
ijk

αijkYijk ·
∑
m

μmfm

〉
+

∑
ijk

αijk

= −1

2

∥∥∥∥∑
ijk

αijkYijk +
∑
m

μmfm

∥∥∥∥
2

+
∑
ijk

αijk.

Then, the dual problem of (6) can be written as follows

max
α,μ

−1

2

∥∥∥∥∑
ijk

αijkYijk +
∑
m

μmfm

∥∥∥∥
2

+
∑
ijk

αijk (9)

s.t. 0 ≤ αijk ≤ C, ∀i, j, k, (10)

μm ≥ 0, ∀m, (11)

where the αijk and μm are the dual variables corresponding to the first and second
constraints in (6), respectively. The primal variable P can be obtained from the dual
variables by (8).

P =
∑
ijk

αijkYijk +
∑
m

μmfm. (12)
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4.3 Solving the Dual

Similar to [20], we solve the dual problem by iteratively performing updating on
two dual variables. By taking the derivative of the dual with respect to one of the
dual variables αabc and then setting it to zero,

∂Θ

∂αabc

=
〈(

mijkαijkYijk −
∑
m

μmfm

)
· Yabc + 1

〉
(13)

= −
∑
ijk

αijk〈Yijk · Yabc〉 −
〈∑

m

μmfm · Yabc

〉
+ 1 (14)

= −
∑

ijk �=abc

αijk〈Yijk · Yabc〉 − αabc‖Yabc‖2 −
〈∑

m

μmfm · Yabc

〉
+ 1.

(15)

After setting (15) to zero, we can obtain the updating rule for the dual variable
αabc . Similarly, we can get the updating rule for the dual variable μa . The two
updating rules are as follows:

αabc ← 1 − ∑
ijk �=abc αijk〈Yijk · Yabc〉 − ∑

m μm〈fm · Yabc〉
‖Yabc‖2

, (16)

μa ← −∑
ijk αijk〈Yijk · fa〉 − ∑

m �=a μm〈fm · fa〉
‖fa‖2

. (17)

After each round of update, we can simply clip the dual variables to their feasible
regions. αabc will be clipped to 0 if negative and to C if larger than C. μm will
be clipped to zero if negative. See [21] for more details. After solving this dual
problem, we can obtain P through (12).

4.4 Hyper-Features

Inspired by codebook approaches in object and scene categorization, we represent
the hyper-feature of each patch as a |V |-dimensional vector f, where |V | is the
codebook size. The ith element of f is set according to the distance between the
feature vector of this patch and the ith visual word. The feature vector of each patch
consists of histogram of oriented gradient (HOG) [9] and patch positions in the
form of h = {g,x, y}, where g denotes the HOG descriptor of the patch. x and y

are the coordinates of the patch in the frame. To construct the codebook vocabulary,
we randomly select a large number of patches from the source training set, then
run k-means clustering. The center of each cluster is defined as a codeword. The
hyper-feature fm for the mth patch is constructed as follows

fm(vi) = Kσ (D(vi, hm))∑|V |
j=1 Kσ (D(vj ,hm))

, (18)
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where fm(vi) denotes the ith element in the hyper-feature vector fm. D(vi, hm) de-
notes the Euclidean distance between the ith codeword and the patch m. Kσ is the

Gaussian-shape kernel as Kσ (x) = 1√
2πσ

exp(− x2

2σ 2 ). Note that (18) leads to a gen-
eralized linear patch weighting model using Gaussian radial basis functions.

5 Experiments

We test our algorithms on three different datasets: KTH human action dataset [38],
Weizmann human action dataset [6], and the cluttered action dataset [24]. We first
give a brief overview of these three datasets, then present the experimental results.

5.1 Datasets

5.1.1 KTH Dataset

The KTH human action dataset contains six types of human actions (boxing, hand-
waving, hand-clapping, jogging, running and walking) performed several times by
25 subjects in four different scenarios: outdoors, outdoors with scale variation, out-
doors with different clothes and indoors. In total, there are 599 videos. Following
the original setup, each video is divided into four sequences. After computing the
motion descriptor, we run the human detection and tracking using the code pro-
vided by Felzenszwalb et al. [18]. All the frames and motion descriptors have been
cropped to 90 × 60 and the human figure is put in the center of the frame.

On this dataset, the performance is saturating, with results from 90–94% [22, 37].
However, most of those methods choose either a half-half or leave-one-out cross
validation scheme to split the training and testing sets. For example, in each round
of the leave-one-out testing, 575 videos are used for training, and the remaining
24 videos are used for testing. Besides, for each video, there are 300–500 frames in
which the actor repeatedly performs one single action. If we assume one complete
action lasts 30 frames, the actual training set for the above leave-one-out scheme
contains at least 5750 samples, and for each action category, there are 960 sam-
ples. In many real-world applications, it is impossible to collect equivalently large
training sets for any given action.

5.1.2 Weizmann Dataset

The Weizmann human action dataset contains 93 sequences of nine actors perform-
ing ten different actions. Each sequence contains about 40–120 frames. In the figure-
centric representation, all frames have been normalized to 90 × 60. The best perfor-
mance published is 100% by using the large training set [16].
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Fig. 3 Sample frames of
cluttered human action
dataset [24]

5.1.3 Cluttered Human Action Dataset

The cluttered human action dataset is a variant of the dataset collected by Ke et al.
[24], which was initially designed for action detection in the crowed environment.
It contains not only cluttered static backgrounds, but also cluttered dynamic back-
grounds, such as moving cars or walking people. In order to test the robustness of
our action recognition methods, we use it for recognition. From each raw video se-
quence in the original dataset, we manually crop out the actions of interest. This
dataset contains 95 sequences with five actions, jumping jack, pushing elevator but-
ton, picking-up, one-hand waving, and two-hand waving. Each sequence contains
about 30–50 frames. Representative frames are shown in Fig. 3.

5.2 Experimental Results

We perform the following experiments to evaluate our patch based comparison
method and the transferable distance function learning:

1. evaluate the patch based comparison method on all three datasets
2. train the transferable distance function on Weizmann, and test on KTH
3. train the transferable distance function on KTH, and test on the cluttered action

dataset

5.2.1 Direct Comparison on KTH

In this experiment, we evaluate the patch based direct comparison method on the
KTH dataset. We first randomly select one actor, then randomly choose one clip per



364 W. Yang et al.

Table 1 The accuracy of five rounds of experiments on KTH. The top row denotes the round
index. The row of Dc refers to the results of direct comparison, and the row of Tr refers to the
results of training on Weizmann and testing on KTH. Std. denotes the standard deviation

1 2 3 4 5 Avg. Std.

Dc 0.776 0.709 0.829 0.564 0.746 0.725 0.100

Tr 0.784 0.767 0.829 0.617 0.789 0.757 0.073

Table 2 Comparison of
different reported results on
KTH. We remark the setup of
the training set. LOO refers to
the “Leave-one-out” cross
validation. Split refers to
other split strategies of
training and testing sets. Note
that these numbers are not
directly comparable due to
variations in training/testing
setup

Methods Accuracy Remark

Liu and Shah [28] 0.9416 LOO

Schindler and Van Gool [37] 0.9270 LOO

Jhuang et al. [22] 0.9170 Split

Nowozin et al. [32] 0.8704 Split

Neibles et al. [30] 0.8150 LOO

Dollar et al. [11] 0.8117 LOO

Ours (Tr) 0.7571 One clip

Ours (Dc) 0.7248 One clip

Schuldt et al. [38] 0.7172 Split

Ke et al. [23] 0.6296 Split

action from this actor as the template set. The clip contains at most 25 frames,that
is, 1–1.5 complete action cycles. The sequences of the remaining actors are used as
the query set. We decompose each frame into 40 patches. The patch size is 20 × 20
and the length of strides is 10.

We run the experiment five times and for each round we select a different actor as
the template. The results are shown in the row of Dc of Table 1. The average result
over the five rounds is 72.48%, which is comparable to the previously published
results using large training set, as shown in Table 2. Note that due to the action
variation in person, the performance depends on how distinguishable the templates
are.

5.2.2 Training on Weizmann and Testing on KTH

In this experiment, we train a transferable distance function from Weizmann and
test it on KTH. In order to meet the requirement of the transfer learning scenario,
that is, the source training set does not contain the actions of the template set, we re-
move walking, running, and two-hand waving from the Weizmann dataset. We build
the codebook vocabulary on the remaining sequences of Weizmann as described in
Sect. 4.4. The number of codewords is set to 100. We used other codebook sizes and
found they do not affect the performance substantially. In training, the parameters
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Fig. 4 (a) Illustration of the
learned weights on the six
actions of KTH. (b) The
learned P allows us to rank
the visual words in the
vocabulary. The top ten words
are visualized. Note that our
visual words consist of
appearance and spatial
location features. Only
appearance is illustrated.
Please refer to text for more
details

are set as, σ = 0.5 and C = 0.0001. Through training on Weizmann, we can obtain
the relation P, which parameterizes the transferable distance function.

After the training, we first compute the hyper-features of the query videos in
KTH using the codebook constructed from Weizmann. Then, we can obtain the dis-
tance function through (3). For the purpose of illustration, we visualize the learned
weights in Fig. 4(a). The red patches refer to high weights. Note that patches on the
frames are overlapping, we only show the highest weight for an overlapping region.
For the six actions in KTH, we can see most of the patches with high weights lie
on the most salient human parts, such as out stretched arms or legs. Unlike other
motion based interest point detection methods [30], the learned weight for the mov-
ing body is lower than moving legs. This is more intuitive since the moving body
does not help to distinguish running, jogging and walking. Moreover, the learned
P allows us to rank the visual words in the codebook vocabulary. We visualize the
appearance feature of top ten words in Fig. 4(b). We can observe that these words
are all “out-stretched-limb-like”.

The recognition accuracies of five rounds of experiments are given in the row
of Tr of Table 1. Note that for each round, we use the same templates as the
direct comparison experiments. The largest improvement made by the transfer-
able distance function is almost 6%. We can observe that in experiment round 1
and 3, the improvements made by the transferable distance function are minor.
This is reasonable since the direct comparison has already achieved very good re-
sults. We also show the confusion matrices of experiment round 2 in Fig. 5. We
can see that the transferable distance function significantly mitigates the confusion
of the most difficult actions, such as hand-clapping versus hand-waving, and jog-
ging versus running. In particular, we see an improvement of almost 30% for the
hand-waving. The comparison with previously published results are given in Ta-
ble 2.

Another benefit of learning transferable distance function is that it can be used
to speedup the comparison. In the patch based direct comparison method, for each
patch on the query frame, we need to search its corresponding area on the template
frame and find the best matched one. This process is time-consuming since there
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Fig. 5 Confusion matrices on KTH of experiment round 2. Horizontal rows are ground truths, and
vertical columns are predictions; (a) direct comparison; (b) training on Weizmann and testing on
KTH

Fig. 6 (a) The average accuracy of five rounds of experiments on KTH using only top N patches
of each frame. (b) The average accuracy of five rounds of experiments on cluttered action dataset
using only top N patches on the frame. The dash–dot line denotes the average accuracy of the
direct comparison using all patches

exist 1,000 patches over the sequence of 25 frames. With learned distance func-
tion of the query sequence, we can sort the patches on each frame by their weights.
Instead of using all patches for matching, we only choose the top N patches with
high weights from each frame. We change N from 1 to 40 and compute the av-
erage accuracy over the five rounds of experiments. The results are illustrated in
Fig. 6(a). Using only ten patches on each frame, we can achieve a better result than
the patch-based direct comparison using all patches on the frame. This would save
3/4 matching time, significantly increases the efficiency of whole recognition pro-
cess.
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Table 3 The accuracy of five rounds of experiments on Weizmann using patch based direct com-
parison. The top row denotes the round index. Std. denotes the standard deviation

1 2 3 4 5 Avg. Std.

Dc 0.928 0.892 0.916 0.819 0.795 0.870 0.060

Table 4 Comparison of the
average accuracy on
Weizmann using one
exemplar per action with [40]

Dc 1NN [40] 1NN-M [40]

FE-1 0.8699 0.5300 0.7231

Table 5 The accuracy of five rounds of experiments on the cluttered human action dataset. The
top row denotes the round index. Std. denotes the standard deviation

1 2 3 4 5 Avg. Std.

Dc 0.944 0.900 0.844 0.900 0.911 0.900 0.036

Tr 0.944 0.900 0.856 0.900 0.900 0.900 0.031

5.2.3 Direct Comparison on Weizmann

The setup we use in this experiment is exactly the same as the direct comparison
experiment on KTH. In each round of the experiment, we randomly select one actor
and use one clip per action with 25 frames from this actor as the template. The se-
quences of the remaining actors are used as the query set. The results are shown in
Table 3. We compare our results with the work of Tran and Sorokin [40], as shown
in Table 4. Our result outperforms both “1-Nearest Neighbor + motion context de-
scriptor (1NN)” and “1-Nearest Neighbor with metric learning + motion context
descriptor (1NN-M)”. Note that we only use a 25 frame clip as the template rather
than the whole video as in [40].

Unfortunately, a fair transfer learning experiment training on KTH and testing on
Weizmann is not possible. After removing overlapping actions, there are only three
actions left in the KTH (boxing, hand-clapping and jogging). The number of actions
is too small to contain enough generic knowledge. So we do not run the experiments
of training on KTH and testing on Weizmann.

5.2.4 Direct Comparison on Cluttered Action Dataset

The goal of this experiment is to evaluate the robustness of our patch based di-
rect comparison on more challenging datasets with cluttered backgrounds. For each
action, we randomly choose one clip with 25 frames as the template and the re-
maining sequences as the query set. The same patch decomposition scheme is used.
Similarly, we perform five rounds of experiments by choosing different templates.
The results are shown in the Dc row of Table 5. We can see the patch based direct
comparison achieves very high accuracy on this dataset.
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5.2.5 Training on KTH and Testing on Cluttered Action Dataset

This experiment follows the same protocol as training on Weizmann and testing on
KTH. We first remove the two-hand waving action from KTH since it also exists in
the cluttered action dataset. KTH contains a large number of sequences, we choose
only five actors’ sequences to form the source training set. The results are shown in
the Tr row of the Table 5. As expected, the transferable distance function learning
achieves almost identical results as the direct comparison, since direct comparison
has achieved very promising results. However, the transferable distance function can
be used to sort the patches and choose the patches with top N highest weights, and
thus improve the efficiency of the recognition system. As illustrated in Fig. 6(b), we
are able to use only top 5 patches on each frame and achieve 86.67% accuracy. The
efficiency is boosted significantly (saving 7/8 matching time) with the cost of only
3% accuracy decrease.

6 Conclusion

In this chapter, we have presented an action recognition algorithm based on a patch-
based matching scheme. A set of motion patches on input query clips and tem-
plate clips with known actions is matched. This matching scheme proves to be
effective for action recognition in the difficult case of only a single training clip
per action. Further, we have demonstrated that learning a transferable weighting on
these patches could improve accuracy and computational efficiency. These weights,
based on patch hyper-features, are generic, can be directly applied to novel video se-
quences without further learning, and hold promise for recognition in small training
set scenarios such as video retrieval and surveillance.
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