
M A N N I N G

Dmitry Jemerov
Svetlana Isakova
FOREWORD BY Andrey Breslav

SAMPLE CHAPTER

Kotlin in Action
by Dmitry Jemerov and Svetlana Isakova

Sample Chapter 11

Copyright 2017 Manning Publications

brief contents
PART 1 INTRODUCING KOTLIN ... 1

1 ■ Kotlin: what and why 3
2 ■ Kotlin basics 17
3 ■ Defining and calling functions 44
4 ■ Classes, objects, and interfaces 67
5 ■ Programming with lambdas 103
6 ■ The Kotlin type system 133

PART 2 EMBRACING KOTLIN ... 171
7 ■ Operator overloading and other conventions 173
8 ■ Higher-order functions: lambdas as parameters

and return values 200
9 ■ Generics 223

10 ■ Annotations and reflection 254
11 ■ DSL construction 282

DSL construction
In this chapter, we’ll discuss how you can design expressive and idiomatic APIs for
your Kotlin classes through the use of domain-specific languages (DSLs). We’ll explore
the differences between traditional and DSL-style APIs, and you’ll see how DSL-style
APIs can be applied to a wide variety of practical problems in areas as diverse as
database access, HTML generation, testing, writing build scripts, defining Android
UI layouts, and many others.

 Kotlin DSL design relies on many language features, two of which we haven’t yet
fully explored. One of them you saw briefly in chapter 5: lambdas with receivers,
which let you create a DSL structure by changing the name-resolution rules in code
blocks. The other is new: the invoke convention, which enables more flexibility in
combining lambdas and property assignments in DSL code. We’ll study those fea-
tures in detail in this chapter.

This chapter covers
 Building domain-specific languages

 Using lambdas with receivers

 Applying the invoke convention

 Examples of existing Kotlin DSLs
282

283From APIs to DSLs
11.1 From APIs to DSLs
Before we dive into the discussion of DSLs, let’s get a better understanding of the
problem we’re trying to solve. Ultimately, the goal is to achieve the best possible code
readability and maintainability. To reach that goal, it’s not enough to focus on individ-
ual classes. Most of the code in a class interacts with other classes, so we need to look
at the interfaces through which these interactions happen—in other words, the APIs
of the classes.

 It’s important to remember that the challenge of building good APIs isn’t reserved
to library authors; rather, it’s something every developer has to do. Just as a library
provides a programming interface for using it, every class in an application provides
possibilities for other classes to interact with it. Ensuring that those interactions are
easy to understand and can be expressed clearly is essential for keeping a project
maintainable.

 Over the course of this book, you’ve seen many examples of Kotlin features that
allow you to build clean APIs for classes. What do we mean when we say an API is clean?
Two things:

 It needs to be clear to readers what’s going on in the code. This can be achieved
with a good choice of names and concepts, which is important in any language.

 The code needs to look clean, with minimal ceremony and no unnecessary syn-
tax. Achieving this is the main focus of this chapter. A clean API can even be
indistinguishable from a built-in feature of a language.

Examples of Kotlin features that enable you to build clean APIs include extension func-
tions, infix calls, lambda syntax shortcuts, and operator overloading. Table 11.1 shows
how these features help reduce the amount of syntactic noise in the code.

Table 11.1 Kotlin support for clean syntax

Regular syntax Clean syntax Feature in use

StringUtil.capitalize(s) s.capitalize() Extension function

1.to("one") 1 to "one" Infix call

set.add(2) set += 2 Operator overloading

map.get("key") map["key"] Convention for the get
method

file.use({ f -> f.read() }) file.use { it.read() } Lambda outside of
parentheses

sb.append("yes")
sb.append("no")

with (sb) {
 append("yes")
 append("no")
}

Lambda with a receiver

284 CHAPTER 11 DSL construction
In this chapter, we’ll take a step beyond clean APIs and look at Kotlin’s support for
constructing DSLs. Kotlin’s DSLs build on the clean-syntax features and extend them
with the ability to create structure out of multiple method calls. As a result, DSLs can be
even more expressive and pleasant to work with than APIs constructed out of individ-
ual method calls.

 Just like other features of the language, Kotlin DSLs are fully statically typed. This
means all the advantages of static typing, such as compile-time error detection and
better IDE support, remain in effect when you use DSL patterns for your APIs.

 As a quick taste, here are a couple of examples that show what Kotlin DSLs can do.
This expression goes back in time and returns the previous day (all right, just the pre-
vious date):

val yesterday = 1.days.ago

and this function generates an HTML table:

fun createSimpleTable() = createHTML().
table {

tr {
td { +"cell" }

}
}

Over the course of the chapter, you’ll learn how these examples are constructed. But
before we begin a detailed discussion, let’s look at what DSLs are.

11.1.1 The concept of domain-specific languages

The general idea of a DSL has existed for almost as long as the idea of a programming
language. We make a distinction between a general-purpose programming language, with a
set of capabilities complete enough to solve essentially any problem that can be solved
with a computer; and a domain-specific language, which focuses on a specific task, or
domain, and forgoes the functionality that’s irrelevant for that domain.

 The most common DSLs that you’re no doubt familiar with are SQL and regular
expressions. They’re great for solving the specific tasks of manipulating databases and
text strings, respectively, but you can’t use them to develop an entire application. (At
least, we hope you don’t. The idea of an entire application built in the regular-
expression language makes us shudder.)

 Note how these languages can effectively accomplish their goal by reducing the set
of functionality they offer. When you need to execute an SQL statement, you don’t
start by declaring a class or a function. Instead, the first keyword in every SQL state-
ment indicates the type of operation you need to perform, and each type of operation
has its own distinct syntax and set of keywords specific to the task at hand. With the
regular-expression language, there’s even less syntax: the program directly describes
the text to be matched, using compact punctuation syntax to specify how the text can
vary. Through such a compact syntax, a DSL can express a domain-specific operation
much more concisely than an equivalent piece of code in a general-purpose language.

285From APIs to DSLs
 Another important point is that DSLs tend to be declarative, as opposed to general-
purpose languages, most of which are imperative. Whereas an imperative language
describes the exact sequence of steps required to perform an operation, a declarative
language describes the desired result and leaves the execution details to the engine
that interprets it. This often makes the execution more efficient, because the neces-
sary optimizations are implemented only once in the execution engine; on the other
hand, an imperative approach requires every implementation of the operation to be
optimized independently.

 As a counterweight to all of those benefits, DSLs of this type have one disadvantage:
it can be difficult to combine them with a host application in a general-purpose lan-
guage. They have their own syntax that can’t be directly embedded into programs in a
different language. Therefore, to invoke a program written in a DSL, you need to
either store it in a separate file or embed it in a string literal. That makes it non-trivial
to validate the correct interaction of the DSL with the host language at compile time,
to debug the DSL program, and to provide IDE code assistance when writing it. Also,
the separate syntax requires separate learning and often makes code harder to read.

 To solve that issue while preserving most of the other benefits of DSLs, the concept
of internal DSLs has recently gained popularity. Let’s see what this is about.

11.1.2 Internal DSLs

As opposed to external DSLs, which have their own independent syntax, internal DSLs
are part of programs written in a general-purpose language, using exactly the same
syntax. In effect, an internal DSL isn’t a fully separate language, but rather a particular
way of using the main language while retaining the key advantages of DSLs with an
independent syntax.

 To compare the two approaches, let’s see how the same task can be accomplished
with an external and an internal DSL. Imagine that you have two database tables, Cus-
tomer and Country, and each Customer entry has a reference to the country the
customer lives in. The task is to query the database and find the country where the
majority of customers live. The external DSL you’re going to use is SQL; the internal
one is provided by the Exposed framework (https://github.com/JetBrains/Exposed),
which is a Kotlin framework for database access. Here’s how you do this with SQL:

SELECT Country.name, COUNT(Customer.id)
FROM Country
JOIN Customer

ON Country.id = Customer.country_id
GROUP BY Country.name
ORDER BY COUNT(Customer.id) DESC

LIMIT 1

Writing the code in SQL directly may not be convenient: you have to provide a means
for interaction between your main application language (Kotlin in this case) and the
query language. Usually, the best you can do is put the SQL into a string literal and
hope that your IDE will help you write and verify it.

https://github.com/JetBrains/Exposed

286 CHAPTER 11 DSL construction
 As a comparison, here’s the same query built with Kotlin and Exposed:

(Country join Customer)
.slice(Country.name, Count(Customer.id))
.selectAll()
.groupBy(Country.name)
.orderBy(Count(Customer.id), isAsc = false)
.limit(1)

You can see the similarity between the two versions. In fact, executing the second ver-
sion generates and runs exactly the same SQL query as the one written manually. But
the second version is regular Kotlin code, and selectAll, groupBy, orderBy, and
others are regular Kotlin methods. Moreover, you don’t need to spend any effort on
converting data from SQL query result sets to Kotlin objects—the query-execution
results are delivered directly as native Kotlin objects. Thus we call this an internal DSL:
the code intended to accomplish a specific task (building SQL queries) is imple-
mented as a library in a general-purpose language (Kotlin).

11.1.3 Structure of DSLs

Generally speaking, there’s no well-defined boundary between a DSL and a regular
API; often the criterion is as subjective as “I know it’s a DSL when I see it.” DSLs often
rely on language features that are broadly used in other contexts too, such as infix
calls and operator overloading. But one trait comes up often in DSLs and usually
doesn’t exist in other APIs: structure, or grammar.

 A typical library consists of many methods, and the client uses the library by calling
the methods one by one. There’s no inherent structure in the sequence of calls, and
no context is maintained between one call and the next. Such an API is sometimes
called a command-query API. As a contrast, the method calls in a DSL exist in a larger
structure, defined by the grammar of the DSL. In a Kotlin DSL, structure is most com-
monly created through the nesting of lambdas or through chained method calls. You
can clearly see this in the previous SQL example: executing a query requires a combi-
nation of method calls describing the different aspects of the required result set, and
the combined query is much easier to read than a single method call taking all the
arguments you’re passing to the query.

 This grammar is what allows us to call an internal DSL a language. In a natural lan-
guage such as English, sentences are constructed out of words, and the rules of gram-
mar govern how those words can be combined with one another. Similarly, in a DSL, a
single operation can be composed out of multiple function calls, and the type checker
ensures that the calls are combined in a meaningful way. In effect, the function names
usually act as verbs (groupBy, orderBy), and their arguments fulfill the role of nouns
(Country.name).

 One benefit of the DSL structure is that it allows you to reuse the same context
between multiple function calls, rather than repeat it in every call. This is illustrated

287From APIs to DSLs
by the following example, showing the Kotlin DSL for describing dependencies in Gra-
dle build scripts (https://github.com/gradle/gradle-script-kotlin):

dependencies {
compile("junit:junit:4.11")
compile("com.google.inject:guice:4.1.0")

}

In contrast, here’s the same operation performed through a regular command-query
API. Note that there’s much more repetition in the code:

project.dependencies.add("compile", "junit:junit:4.11")
project.dependencies.add("compile", "com.google.inject:guice:4.1.0")

Chained method calls are another way to create structure in DSLs. For example,
they’re commonly used in test frameworks to split an assertion into multiple method
calls. Such assertions can be much easier to read, especially if you can apply the infix
call syntax. The following example comes from kotlintest (https://github.com/
kotlintest/kotlintest), a third-party test framework for Kotlin that we’ll discuss in more
detail in section 11.4.1:

str should startWith("kot")

Note how the same example expressed through regular JUnit APIs is noisier and not as
readable:

assertTrue(str.startsWith("kot"))

Now let’s look at an example of an internal DSL in more detail.

11.1.4 Building HTML with an internal DSL

One of the teasers at the beginning of this chapter was a DSL for building HTML
pages. In this section, we’ll discuss it in more detail. The API used here comes from
the kotlinx.html library (https://github.com/Kotlin/kotlinx.html). Here’s a small
snippet that creates a table with a single cell:

fun createSimpleTable() = createHTML().
table {

tr {
td { +"cell" }

}
}

It’s clear what HTML corresponds to the previous structure:

<table>
<tr>

<td>cell</td>
</tr>

</table>

Structure through
lambda nesting

Structure through
chained method calls

https://github.com/gradle/gradle-script-kotlin
https://github.com/kotlintest/kotlintest
https://github.com/kotlintest/kotlintest
https://github.com/Kotlin/kotlinx.html

288 CHAPTER 11 DSL construction
The createSimpleTable function returns a string containing this HTML fragment.
 Why would you want to build this HTML with Kotlin code, rather than write it as

text? First, the Kotlin version is type-safe: you can use the td tag only in tr; otherwise,
this code won’t compile. What’s more important is that it’s regular code, and you can
use any language construct in it. That means you can generate table cells dynamically
(for instance, corresponding to elements in a map) in the same place when you
define a table:

fun createAnotherTable() = createHTML().table {
val numbers = mapOf(1 to "one", 2 to "two")
for ((num, string) in numbers) {

tr {
td { +"$num" }
td { +string }

}
}

}

The generated HTML contains the desired data:

<table>
<tr>

<td>1</td>
<td>one</td>

</tr>
<tr>

<td>2</td>
<td>two</td>

</tr>
</table>

HTML is a canonical example of a markup language, which makes it perfect for illus-
trating the concept; but you can use the same approach for any languages with a simi-
lar structure, such as XML. Shortly we’ll discuss how such code works in Kotlin.

 Now that you know what a DSL is and why you might want to build one, let’s see
how Kotlin helps you do that. First we’ll take a more in-depth look at lambdas with
receivers: the key feature that helps establish the grammar of DSLs.

11.2 Building structured APIs: lambdas with receivers in DSLs
Lambdas with receivers are a powerful Kotlin feature that allows you to build APIs with
a structure. As we already discussed, having structure is one of the key traits distin-
guishing DSLs from regular APIs. Let’s examine this feature in detail and look at some
DSLs that use it.

11.2.1 Lambdas with receivers and extension function types

You had a brief encounter with the idea of lambdas with receivers in section 5.5,
where we introduced the buildString, with, and apply standard library functions.
Now let’s look at how they’re implemented, using the buildString function as an

289Building structured APIs: lambdas with receivers in DSLs
example. This function allows you to construct a string from several pieces of content
added to an intermediate StringBuilder.

 To begin the discussion, let’s define the buildString function so that it takes a
regular lambda as an argument. You saw how to do this in chapter 8, so this should be
familiar material.

fun buildString(
builderAction: (StringBuilder) -> Unit

): String {
val sb = StringBuilder()
builderAction(sb)
return sb.toString()

}

>>> val s = buildString {
... it.append("Hello, ")
... it.append("World!")
... }
>>> println(s)
Hello, World!

This code is easy to understand, but it looks less easy to use than we’d prefer. Note that
you have to use it in the body of the lambda to refer to the StringBuilder instance
(you could define your own parameter name instead of it, but it still has to be
explicit). The main purpose of the lambda is to fill the StringBuilder with text, so
you want to get rid of the repeated it. prefixes and invoke the StringBuilder
methods directly, replacing it.append with append.

 To do so, you need to convert the lambda into a lambda with a receiver. In effect, you
can give one of the parameters of the lambda the special status of a receiver, letting you
refer to its members directly without any qualifier. The following listing shows how
you do that.

fun buildString(
builderAction: StringBuilder.() -> Unit

) : String {
val sb = StringBuilder()
sb.builderAction()
return sb.toString()

}

>>> val s = buildString {
... this.append("Hello, ")
... append("World!")
... }
>>> println(s)
Hello, World!

Listing 11.1 Defining buildString() that takes a lambda as an argument

Listing 11.2 Redefining buildString() to take a lambda with a receiver

Declares a parameter
of a function type

Passes a StringBuilder as an
argument to the lambda

Uses “it” to refer to the
StringBuilder instance

Declares a parameter of a
function type with a receiver

Passes a StringBuilder as
a receiver to the lambda

The “this” keyword refers to
the StringBuilder instance.

Alternatively, you can omit
“this” and refer to
StringBuilder implicitly.

290 CHAPTER 11 DSL construction
Pay attention to the differences between listing 11.1 and listing 11.2. First, consider
how the way you use buildString has improved. Now you pass a lambda with a
receiver as an argument, so you can get rid of it in the body of the lambda. You
replace the calls to it.append() with append(). The full form is this.append(),
but as with regular members of a class, an explicit this is normally used only for dis-
ambiguation.

 Next, let’s discuss how the declaration of the buildString function has changed.
You use an extension function type instead of a regular function type to declare the param-
eter type. When you declare an extension function type, you effectively pull one of the
function type parameters out of the parentheses and put it in front, separated from the
rest of the types with a dot. In listing 11.2, you replace (StringBuilder) -> Unit
with StringBuilder.() -> Unit. This special type is called the receiver type, and the
value of that type passed to the lambda becomes the receiver object. Figure 11.1 shows a
more complex extension function type declaration.

Why an extension function type? The idea of accessing members of an external type
without an explicit qualifier may remind you of extension functions, which allow you
to define your own methods for classes defined elsewhere in the code. Both extension
functions and lambdas with receivers have a receiver object, which has to be provided
when the function is called and is available in its body. In effect, an extension function
type describes a block of code that can be called as an extension function.

 The way you invoke the variable also changes when you convert it from a regular
function type to an extension function type. Instead of passing the object as an argu-
ment, you invoke the lambda variable as if it were an extension function. When you
have a regular lambda, you pass a StringBuilder instance as an argument to it using
the following syntax: builderAction(sb). When you change it to a lambda with a
receiver, the code becomes sb.builderAction(). To reiterate, builderAction
here isn’t a method declared on the StringBuilder class; it’s a parameter of a func-
tion type that you call using the same syntax you use to call extension functions.

 Figure 11.2 shows the correspondence between an argument and a parameter of
the buildString function. It also illustrates the receiver on which the lambda body
will be called.

Receiver type Return typeParameter types

String.(Int, Int) -> Unit

Figure 11.1 An extension function type
with receiver type String and two
parameters of type Int, returning Unit

291Building structured APIs: lambdas with receivers in DSLs
Figure 11.2 The argument of the buildString function (lambda with a receiver)
corresponds to the parameter of the extension function type (builderAction). The
receiver (sb) becomes an implicit receiver (this) when the lambda body is invoked.

You can also declare a variable of an extension function type, as shown in the follow-
ing listing. Once you do that, you can either invoke it as an extension function or pass
it as an argument to a function that expects a lambda with a receiver.

val appendExcl : StringBuilder.() -> Unit =
{ this.append("!") }

>>> val stringBuilder = StringBuilder("Hi")
>>> stringBuilder.appendExcl()
>>> println(stringBuilder)
Hi!

>>> println(buildString(appendExcl))
!

Note that a lambda with a receiver looks exactly the same as a regular lambda in the
source code. To see whether a lambda has a receiver, you need to look at the function
to which the lambda is passed: its signature will tell you whether the lambda has a
receiver and, if it does, what its type is. For example, you can look at the declaration of
buildString or look up its documentation in your IDE, see that it takes a lambda of
type StringBuilder.() -> Unit, and conclude from this that in the body of the
lambda, you can invoke StringBuilder methods without a qualifier.

 The implementation of buildString in the standard library is shorter than in
listing 11.2. Instead of calling builderAction explicitly, it is passed as an argument
to the apply function (which you saw in section 5.5). This allows you to collapse the
function into a single line:

fun buildString(builderAction: StringBuilder.() -> Unit): String =
StringBuilder().apply(builderAction).toString()

Listing 11.3 Storing a lambda with a receiver in a variable

fun buildString(builderAction: StringBuilder.() -> Unit): String {
 val sb = StringBuilder()

 sb.builderAction()
 ...
}

buildString { this.append("!") }

appendExcl is a value of an
extension function type.

You can call appendExcl
as an extension function.

You can also pass appendExcl
as an argument.

292 CHAPTER 11 DSL construction

the
The apply function effectively takes the object on which it was called (in this case, a
new StringBuilder instance) and uses it as an implicit receiver to call the function
or lambda specified as argument (builderAction in the example). You’ve also seen
another useful library function previously: with. Let’s study their implementations:

inline fun <T> T.apply(block: T.() -> Unit): T {
block()
return this

}

inline fun <T, R> with(receiver: T, block: T.() -> R): R =
receiver.block()

Basically, all apply and with do is invoke the argument of an extension function type
on the provided receiver. The apply function is declared as an extension to that
receiver, whereas with takes it as a first argument. Also, apply returns the receiver
itself, but with returns the result of calling the lambda.

 If you don’t care about the result, these functions are interchangeable:

>>> val map = mutableMapOf(1 to "one")
>>> map.apply { this[2] = "two"}
>>> with (map) { this[3] = "three" }
>>> println(map)
{1=one, 2=two, 3=three}

The with and apply functions are used frequently in Kotlin, and we hope you’ve
already appreciated their conciseness in your own code.

 We’ve reviewed lambdas with receivers and talked about extension function types.
Now it’s time to see how these concepts are used in the DSL context.

11.2.2 Using lambdas with receivers in HTML builders

A Kotlin DSL for HTML is usually called an HTML builder, and it represents a more gen-
eral concept of type-safe builders. Initially, the concept of builders gained popularity in
the Groovy community (www.groovy-lang.org/dsls.html#_builders). Builders provide
a way to create an object hierarchy in a declarative way, which is convenient for gener-
ating XML or laying out UI components.

 Kotlin uses the same idea, but in Kotlin builders are type-safe. That makes them
more convenient to use, safe, and in a sense more attractive than Groovy’s dynamic
builders. Let’s look in detail at how HTML builders work in Kotlin.

fun createSimpleTable() = createHTML().
table {

tr {
td { +"cell" }

}
}

Listing 11.4 Producing a simple HTML table with a Kotlin HTML builder

Equivalent to this.block(); invokes
the lambda with the receiver of
“apply” as the receiver object

Returns
receiver

Returns the result of
calling the lambda

293Building structured APIs: lambdas with receivers in DSLs
This is regular Kotlin code, not a special template language or anything like that:
table, tr, and td are just functions. Each of them is a higher-order function, taking a
lambda with a receiver as an argument.

 The remarkable thing here is that those lambdas change the name-resolution rules. In
the lambda passed to the table function, you can use the tr function to create the
<tr> HTML tag. Outside of that lambda, the tr function would be unresolved. In the
same way, the td function is only accessible in tr. (Note how the design of the API
forces you to follow the grammar of the HTML language.)

 The name-resolution context in each block is defined by the receiver type of each
lambda. The lambda passed to table has a receiver of a special type TABLE, which
defines the tr method. Similarly, the tr function expects an extension lambda to TR.
The following listing is a greatly simplified view of the declarations of these classes
and methods.

open class Tag

class TABLE : Tag {
fun tr(init : TR.() -> Unit)

}
class TR : Tag {

fun td(init : TD.() -> Unit)
}
class TD : Tag

TABLE, TR, and TD are utility classes that shouldn’t appear explicitly in the code, and
that’s why they’re named in capital letters. They all extend the Tag superclass. Each
class defines methods for creating tags allowed in it: the TABLE class defines the tr
method, among others, whereas the TR class defines the td method.

 Note the types of the init parameters of the tr and td functions: they’re exten-
sion function types TR.() -> Unit and TD.() -> Unit. They determine the types
of receivers in the argument lambdas: TR and TD, respectively.

 To make it clearer what happens here, you can rewrite listing 11.4, making all
receivers explicit. As a reminder, you can access the receiver of the lambda that’s the
argument of the foo function as this@foo.

fun createSimpleTable() = createHTML().
table {

(this@table).tr {
(this@tr).td {

+"cell"
}

}
}

Listing 11.5 Declaring tag classes for the HTML builder

Listing 11.6 Making receivers of HTML builder calls explicit

The tr function expects a lambda
with a receiver of type TR.

The td function expects a lambda
with a receiver of type TD.

this@table has
type TABLE.

this@tr has
type TR. The implicit receiver this@td

of type TD is available here.

294 CHAPTER 11 DSL construction
If you tried to use regular lambdas instead of lambdas with receivers for builders, the
syntax would become as unreadable as in this example: you’d have to use the it refer-
ence to invoke the tag-creation methods or assign a new parameter name for every
lambda. Being able to make the receiver implicit and hide the this reference makes
the syntax of builders nice and similar to the original HTML.

 Note that if one lambda with a receiver is placed in the other one, as in listing 11.6,
the receiver defined in the outer lambda remains available in the nested lambda. For
instance, in the lambda that’s the argument of the td function, all three receivers
(this@table, this@tr, this@td) are available. But starting from Kotlin 1.1, you’ll
be able to use the @DslMarker annotation to constrain the availability of outer receiv-
ers in lambdas.

 We’ve explained how the syntax of HTML builders is based on the concept of lamb-
das with receivers. Next, let’s discuss how the desired HTML is generated.

 Listing 11.6 uses functions defined in the kotlinx.html library. Now you’ll imple-
ment a much simpler version of an HTML builder library: you’ll extend the declara-
tions of the TABLE, TR, and TD tags and add support for generating the resulting
HTML. As the entry point for this simplified version, a top-level table function cre-
ates a fragment of HTML with <table> as a top tag.

fun createTable() =
table {

tr {
td {
}

}
}

>>> println(createTable())
<table><tr><td></td></tr></table>

The table function creates a new instance of the TABLE tag, initializes it (calls the
function passed as the init parameter on it), and returns it:

fun table(init: TABLE.() -> Unit) = TABLE().apply(init)

In createTable, the lambda passed as an argument to the table function contains
the invocation of the tr function. The call can be rewritten to make everything as
explicit as possible: table(init = { this.tr { … } }). The tr function will be
called on the created TABLE instance, as if you’d written TABLE().tr { … }.

 In this toy example, <table> is a top-level tag, and other tags are nested into it.
Each tag stores a list of references to its children. Therefore, the tr function should
not only initialize the new instance of the TR tag but also add it to the list of children
of the outer tag.

Listing 11.7 Generating HTML to a string

295Building structured APIs: lambdas with receivers in DSLs

ds

fun tr(init: TR.() -> Unit) {
val tr = TR()
tr.init()
children.add(tr)

}

This logic of initializing a given tag and adding it to the children of the outer tag is
common for all tags, so you can extract it as a doInit member of the Tag superclass.
The doInit function is responsible for two things: storing the reference to the child
tag and calling the lambda passed as an argument. The different tags then just call it:
for instance, the tr function creates a new instance of the TR class and then passes it
to the doInit function along with the init lambda argument: doInit(TR(),
init). The following listing is the full example that shows how the desired HTML is
generated.

open class Tag(val name: String) {
private val children = mutableListOf<Tag>()

protected fun <T : Tag> doInit(child: T, init: T.() -> Unit) {
child.init()
children.add(child)

}

override fun toString() =
"<$name>${children.joinToString("")}</$name>"

}

fun table(init: TABLE.() -> Unit) = TABLE().apply(init)

class TABLE : Tag("table") {
fun tr(init: TR.() -> Unit) = doInit(TR(), init)

}
class TR : Tag("tr") {

fun td(init: TD.() -> Unit) = doInit(TD(), init)
}
class TD : Tag("td")

fun createTable() =
table {

tr {
td {
}

}
}

>>> println(createTable())
<table><tr><td></td></tr></table>

Listing 11.8 Defining a tag builder function

Listing 11.9 A full implementation of a simple HTML builder

Stores all nested tags

Initializes
the child tag Stores a reference

to the child tag

Returns the resulting
HTML as String

Creates, initializes, and ad
to the children of TABLE a
new instance of the TR tag

Adds a new instance
of the TD tag to the
children of TR

296 CHAPTER 11 DSL construction
Every tag stores a list of nested tags and renders itself accordingly: it renders its name
and all the nested tags recursively. Text inside tags and tag attributes aren’t supported
here; for the full implementation, you can browse the aforementioned kotlinx.html
library.

 Note that tag-creation functions add the corresponding tag to the parent’s list of
children on their own. That lets you generate tags dynamically.

fun createAnotherTable() = table {
for (i in 1..2) {

tr {
td {
}

}
}

}
>>> println(createAnotherTable())
<table><tr><td></td></tr><tr><td></td></tr></table>

As you’ve seen, lambdas with receivers are a great tool for building DSLs. Because you
can change the name-resolution context in a code block, they let you create structure
in your API, which is one of the key traits that distinguishes DSLs from flat sequences
of method calls. Now let’s discuss the benefits of integrating this DSL into a statically
typed programming language.

11.2.3 Kotlin builders: enabling abstraction and reuse

When you write regular code in a program, you have a lot of tools to avoid duplication
and to make the code look nicer. Among other things, you can extract repetitive code
into new functions and give them self-explanatory names. That may not be as easy or
even possible with SQL or HTML. But using internal DSLs in Kotlin to accomplish the
same tasks gives you a way to abstract repeated chunks of code into new functions and
reuse them.

 Let’s look at an example from the Bootstrap library (http://getbootstrap.com), a
popular HTML, CSS, and JS framework for developing responsive, mobile-first projects
on the web. We’ll consider a specific example: adding drop-down lists to an applica-
tion. To add such a list directly to an HTML page, you can copy the necessary snippet
and paste it in the required place, under the button or other element that shows the
list. You only need to add the necessary references and their titles for the drop-down
menu. The initial HTML code (a bit simplified to avoid too many style attributes)
looks like this.

<div class="dropdown">
<button class="btn dropdown-toggle">

Dropdown

Listing 11.10 Generating tags dynamically with an HTML builder

Listing 11.11 Building a drop-down menu in HTML using Bootstrap

Each call to “tr” creates a
new TR tag and adds it to
the children of TABLE.

http://getbootstrap.com

297Building structured APIs: lambdas with receivers in DSLs

</button>
<ul class="dropdown-menu">

Action
Another action
<li role="separator" class="divider">
<li class="dropdown-header">Header
Separated link

</div>

In Kotlin with kotlinx.html, you can use the functions div, button, ul, li, and so on
to replicate the same structure.

fun buildDropdown() = createHTML().div(classes = "dropdown") {
button(classes = "btn dropdown-toggle") {

+"Dropdown"
span(classes = "caret")

}
ul(classes = "dropdown-menu") {

li { a("#") { +"Action" } }
li { a("#") { +"Another action" } }
li { role = "separator"; classes = setOf("divider") }
li { classes = setOf("dropdown-header"); +"Header" }
li { a("#") { +"Separated link" } }

}
}

But you can do better. Because div, button, and so on are regular functions, you can
extract the repetitive logic into separate functions, improving the readability of the
code. The result may look as follows.

fun dropdownExample() = createHTML().dropdown {
dropdownButton { +"Dropdown" }
dropdownMenu {

item("#", "Action")
item("#", "Another action")
divider()
dropdownHeader("Header")
item("#", "Separated link")

}
}

Now the unnecessary details are hidden, and the code looks much nicer. Let’s discuss
how this trick is implemented, starting with the item function. This function has two
parameters: the reference and the name of the corresponding menu item. The func-
tion code should add a new list item: li { a(href) { +name } }. The only question

Listing 11.12 Building a drop-down menu using a Kotlin HTML builder

Listing 11.13 Building a drop-down menu with helper functions

298 CHAPTER 11 DSL construction
that remains is, how can you call li in the body of the function? Should it be an
extension? You can indeed make it an extension to the UL class, because the li func-
tion is itself an extension to UL. In listing 11.13, item is called on an implicit this of
type UL:

fun UL.item(href: String, name: String) = li { a(href) { +name } }

After you define the item function, you can call it in any UL tag, and it will add an
instance of a LI tag. Having extracted item, you can change the original version to
the following without changing the generated HTML code.

ul {
classes = setOf("dropdown-menu")
item("#", "Action")
item("#", "Another action")
li { role = "separator"; classes = setOf("divider") }
li { classes = setOf("dropdown-header"); +"Header" }
item("#", "Separated link")

}

The other extension functions defined on UL are added in a similar way, allowing you
to replace the remaining li tags.

fun UL.divider() = li { role = "separator"; classes = setOf("divider") }

fun UL.dropdownHeader(text: String) =
li { classes = setOf("dropdown-header"); +text }

Now let’s see how the dropdownMenu function is implemented. It creates a ul tag
with the specified dropdown-menu class and takes a lambda with a receiver as an
argument that’s used to fill the tag with content.

dropdownMenu {
item("#", "Action")
...

}

You replace the ul { … } block with the invocation of dropdownMenu { … }, so the
receiver in the lambda can stay the same. The dropdownMenu function can take an
extension lambda to UL as an argument, which allows you to call functions such as
UL.item as you did before. Here’s how the function is declared:

fun DIV.dropdownMenu(block: UL.() -> Unit) = ul("dropdown-menu", block)

The dropdownButton function is implemented in a similar way. We omit it here, but
you can find the full implementation in the samples for the kotlinx.html library.

 Last, let’s look at the dropdown function. This one is less trivial, because it can be
called on any tag: the drop-down menu can be put anywhere in the code.

Listing 11.14 Using the item function for drop-down menu construction

You can use the “item”
function instead of “li” here.

299More flexible block nesting with the “invoke” convention

fun StringBuilder.dropdown(
block: DIV.() -> Unit

): String = div("dropdown", block)

This is a simplified version that you can use if you want to print your HTML to a string.
The full implementation in kotlinx.html uses an abstract TagConsumer class as the
receiver and thus supports different destinations for the resulting HTML.

 This example illustrates how the means of abstraction and reuse can help improve
your code and make it easier to understand. Now let’s look at one more tool that can
help you support more flexible structures in your DSLs: the invoke convention.

11.3 More flexible block nesting with the “invoke” convention
The invoke convention allows you to call objects of custom types as functions. You’ve
already seen that objects of function types can be called as functions; with the invoke
convention, you can define your own objects that support the same syntax.

 Note that this isn’t a feature for everyday use, because it can be used to write hard-
to-understand code, such as 1(). But it’s sometimes very useful in DSLs. We’ll show
you why, but first let’s discuss the convention itself.

11.3.1 The “invoke” convention: objects callable as functions

In chapter 7, we discussed in detail Kotlin’s concept of conventions: specially named
functions that are called not through the regular method-call syntax but using differ-
ent, more concise notations. As a reminder, one of the conventions we discussed was
get, which allows you to access an object using the index operator. For a variable foo
of type Foo, a call to foo[bar] is translated into foo.get(bar), provided the corre-
sponding get function is defined as a member in the Foo class or as an extension
function to Foo.

 In effect, the invoke convention does the same thing, except that the brackets are
replaced with parentheses. A class for which the invoke method with an operator
modifier is defined can be called as a function. Here’s an example of how this works.

class Greeter(val greeting: String) {
operator fun invoke(name: String) {

println("$greeting, $name!")
}

}

>>> val bavarianGreeter = Greeter("Servus")
>>> bavarianGreeter("Dmitry")
Servus, Dmitry!

Listing 11.15 The top-level function for building a drop-down menu

Listing 11.16 Defining an invoke method in a class

Defines the “invoke”
method on Greeter

Calls the Greeter instance
as a function

300 CHAPTER 11 DSL construction

Imp
the “
This code defines the invoke method in Greeter, which allows you to call instances
of Greeter as if they were functions. Under the hood, the expression bavarian-
Greeter("Dmitry") is compiled to the method call bavarianGreeter.invoke
("Dmitry"). There’s no mystery here. It works like a regular convention: it provides
a way to replace a verbose expression with a more concise, clearer one.

 The invoke method isn’t restricted to any specific signature. You can define it
with any number of parameters and with any return type, or even define multiple
overloads of invoke with different parameter types. When you call the instance of the
class as a function, you can use all of those signatures for the call. Let’s look at the
practical situations where this convention is used, first in a regular programming con-
text and then in a DSL.

11.3.2 The “invoke” convention and functional types

You may remember seeing invoke earlier in the book. In section 8.1.2 we discussed
that you can call a variable of a nullable function type as lambda?.invoke(), using
the safe-call syntax with the invoke method name.

 Now that you know about the invoke convention, it should be clear that the way
you normally invoke a lambda (by putting parentheses after it: lambda()) is nothing
but an application of this convention. Lambdas, unless inlined, are compiled into
classes that implement functional interfaces (Function1 and so on), and those inter-
faces define the invoke method with the corresponding number of parameters:

interface Function2<in P1, in P2, out R> {
operator fun invoke(p1: P1, p2: P2): R

}

When you invoke a lambda as a function, the operation is translated into a call of the
invoke method, thanks to the convention. Why might that be useful to know? It gives
you a way to split the code of a complex lambda into multiple methods while still
allowing you to use it together with functions that take parameters of a function type.
To do so, you can define a class that implements a function type interface. You can
specify the base interface either as an explicit FunctionN type or, as shown in the fol-
lowing listing, using the shorthand syntax: (P1, P2) -> R. This example uses such a
class to filter a list of issues by a complex condition.

data class Issue(
val id: String, val project: String, val type: String,
val priority: String, val description: String

)

class ImportantIssuesPredicate(val project: String)
: (Issue) -> Boolean {

override fun invoke(issue: Issue): Boolean {
return issue.project == project && issue.isImportant()

}

Listing 11.17 Extending a function type and overriding invoke()

This interface denotes a function
that takes exactly two arguments.

Uses the function
type as a base class

lements
invoke”
method

301More flexible block nesting with the “invoke” convention
private fun Issue.isImportant(): Boolean {
return type == "Bug" &&

(priority == "Major" || priority == "Critical")
}

}

>>> val i1 = Issue("IDEA-154446", "IDEA", "Bug", "Major",
... "Save settings failed")
>>> val i2 = Issue("KT-12183", "Kotlin", "Feature", "Normal",
... "Intention: convert several calls on the same receiver to with/apply")
>>> val predicate = ImportantIssuesPredicate("IDEA")
>>> for (issue in listOf(i1, i2).filter(predicate)) {
... println(issue.id)
... }
IDEA-154446

Here the logic of the predicate is too complicated to put into a single lambda, so you
split it into several methods to make the meaning of each check clear. Converting a
lambda into a class that implements a function type interface and overriding the
invoke method is one way to perform such a refactoring. The advantage of this
approach is that the scope of methods you extract from the lambda body is as narrow
as possible; they’re only visible from the predicate class. This is valuable when there’s a
lot of logic both in the predicate class and in the surrounding code and it’s worth-
while to separate the different concerns cleanly.

 Now let’s see how the invoke convention can help you create a more flexible
structure for your DSLs.

11.3.3 The “invoke” convention in DSLs: declaring dependencies in Gradle

Let’s go back to the example of the Gradle DSL for configuring the dependencies of a
module. Here’s the code we showed you earlier:

dependencies {
compile("junit:junit:4.11")

}

You often want to be able to support both a nested block structure, as shown here, and
a flat call structure in the same API. In other words, you want to allow both of the fol-
lowing:

dependencies.compile("junit:junit:4.11")

dependencies {
compile("junit:junit:4.11")

}

With such a design, users of the DSL can use the nested block structure when there are
multiple items to configure and the flat call structure to keep the code more concise
when there’s only one thing to configure.

 The first case calls the compile method on the dependencies variable. You can
express the second notation by defining the invoke method on dependencies so

Passes the predicate
to filter()

302 CHAPTER 11 DSL construction
that it takes a lambda as an argument. The full syntax of this call is dependencies
.invoke({…}).

 The dependencies object is an instance of the DependencyHandler class, which
defines both compile and invoke methods. The invoke method takes a lambda
with a receiver as an argument, and the type of the receiver of this method is again
DependencyHandler. What happens in the body of the lambda is already familiar:
you have a DependencyHandler as a receiver and can call methods such as compile
directly on it. The following minimal example shows how that part of Dependency-
Handler is implemented.

class DependencyHandler {
fun compile(coordinate: String) {

println("Added dependency on $coordinate")
}

operator fun invoke(
body: DependencyHandler.() -> Unit) {

body()
}

}

>>> val dependencies = DependencyHandler()

>>> dependencies.compile("org.jetbrains.kotlin:kotlin-stdlib:1.0.0")
Added dependency on org.jetbrains.kotlin:kotlin-stdlib:1.0.0

>>> dependencies {
... compile("org.jetbrains.kotlin:kotlin-reflect:1.0.0")
>>> }
Added dependency on org.jetbrains.kotlin:kotlin-reflect:1.0.0

When you add the first dependency, you call the compile method directly. The sec-
ond call is effectively translated to the following:

dependencies.invoke({
this.compile("org.jetbrains.kotlin:kotlin-reflect:1.0.0")

})

In other words, you’re invoking dependencies as a function and passing a lambda as
an argument. The type of the lambda’s parameter is a function type with a receiver,
and the receiver type is the same DependencyHandler type. The invoke method
calls the lambda. Because it’s a method of the DependencyHandler class, an instance
of that class is available as an implicit receiver, so you don’t need to specify it explicitly
when you call body().

 One fairly small piece of code, the redefined invoke method, has significantly
increased the flexibility of the DSL API. This pattern is generic, and you can reuse it in
your own DSLs with minimal modifications.

Listing 11.18 Using invoke to support flexible DSL syntax

Defines a regular
command API

Defines “invoke” to
support the DSL API

“this” becomes a receiver of
the body function: this.body()

303Kotlin DSLs in practice
 You’re now familiar with two new features of Kotlin that can help you build DSLs:
lambdas with receivers and the invoke convention. Let’s look at how previously dis-
cussed Kotlin features come in play in the DSL context.

11.4 Kotlin DSLs in practice
By now, you’re familiar with all the Kotlin features used when building DSLs. Some of
them, such as extensions and infix calls, should be your old friends by now. Others,
such as lambdas with receivers, were first discussed in detail in this chapter. Let’s put
all of this knowledge to use and investigate a series of practical DSL construction
examples. We’ll cover fairly diverse topics: testing, rich date literals, database queries,
and Android UI construction.

11.4.1 Chaining infix calls: “should” in test frameworks

As we mentioned previously, clean syntax is one of the key traits of an internal DSL,
and it can be achieved by reducing the amount of punctuation in the code. Most
internal DSLs boil down to sequences of method calls, so any features that let you
reduce syntactic noise in method calls find a lot of use there. In Kotlin, these features
include the shorthand syntax for invoking lambdas, which we’ve discussed in detail, as
well as infix function calls. We discussed infix calls in section 3.4.3; here we’ll focus on
their use in DSLs.

 Let’s look at an example that uses the DSL of kotlintest (https://github.com/
kotlintest/kotlintest, the testing library inspired by Scalatest), which you saw earlier in
this chapter.

s should startWith("kot")

This call will fail with an assertion if the value of the s variable doesn’t start with “kot”.
The code reads almost like English: “The s string should start with this constant.” To
accomplish this, you declare the should function with the infix modifier.

infix fun <T> T.should(matcher: Matcher<T>) = matcher.test(this)

The should function expects an instance of Matcher, a generic interface for per-
forming assertions on values. startWith implements Matcher and checks whether a
string starts with the given substring.

interface Matcher<T> {
fun test(value: T)

}

Listing 11.19 Expressing an assertion with the kotlintest DSL

Listing 11.20 Implementing the should function

Listing 11.21 Defining a matcher for the kotlintest DSL

https://github.com/kotlintest/kotlintest
https://github.com/kotlintest/kotlintest

304 CHAPTER 11 DSL construction
class startWith(val prefix: String) : Matcher<String> {
override fun test(value: String) {

if (!value.startsWith(prefix))
throw AssertionError("String $value does not start with $prefix")

}
}

Note that in regular code, you’d capitalize the name of the startWith class, but DSLs
often require you to deviate from standard naming conventions. Listing 11.21 shows
that applying infix calls in the DSL context is simple and can reduce the amount of
noise in your code. With a bit more cunning, you can reduce the noise even further.
The kotlintest DSL supports that.

"kotlin" should start with "kot"

At first glance, this doesn’t look like Kotlin. To understand how it works, let’s convert
the infix calls to regular ones.

"kotlin".should(start).with("kot")

This shows that listing 11.22 was a sequence of two infix calls, and start was the argu-
ment of the first one. In fact, start refers to an object declaration, whereas should
and with are functions called using the infix call notation.

 The should function has a special overload that uses the start object as a param-
eter type and returns the intermediate wrapper on which you can then call the with
method.

object start

infix fun String.should(x: start): StartWrapper = StartWrapper(this)

class StartWrapper(val value: String) {
infix fun with(prefix: String) =

if (!value.startsWith(prefix))
throw AssertionError(

"String does not start with $prefix: $value")
}

Note that, outside of the DSL context, using an object as a parameter type rarely
makes sense, because it has only a single instance, and you can access that instance
rather than pass it as an argument. Here, it does make sense: the object is used not
to pass any data to the function, but as part of the grammar of the DSL. By passing
start as an argument, you can choose the right overload of should and obtain a
StartWrapper instance as the result. The StartWrapper class has the with mem-
ber, taking as an argument the actual value that you need to perform the assertion.

Listing 11.22 Chaining calls in the kotlintest DSL

Listing 11.23 Defining the API to support chained infix calls

305Kotlin DSLs in practice
 The library supports other matchers as well, and they all read as English:

"kotlin" should end with "in"
"kotlin" should have substring "otl"

To support this, the should function has more overloads that take object instances
like end and have and return EndWrapper and HaveWrapper instances, respectively.

 This was a relatively tricky example of DSL construction, but the result is so nice
that it’s worth figuring out how this pattern works. The combination of infix calls and
object instances lets you construct fairly complex grammars for your DSLs and use
those DSLs with a clean syntax. And of course, the DSL remains fully statically typed.
An incorrect combination of functions and objects won’t compile.

11.4.2 Defining extensions on primitive types: handling dates

Now let’s take a look at the remaining teaser from the beginning of this chapter:

val yesterday = 1.days.ago
val tomorrow = 1.days.fromNow

To implement this DSL using the Java 8 java.time API and Kotlin, you need just a
few lines of code. Here’s the relevant part of the implementation.

val Int.days: Period
get() = Period.ofDays(this)

val Period.ago: LocalDate
get() = LocalDate.now() - this

val Period.fromNow: LocalDate
get() = LocalDate.now() + this

>>> println(1.days.ago)
2016-08-16
>>> println(1.days.fromNow)
2016-08-18

Here, days is an extension property on the Int type. Kotlin has no restrictions on
the types that can be used as receivers for extension functions: you can easily define
extensions on primitive types and invoke them on constants. The days property
returns a value of type Period, which is the JDK 8 type representing an interval
between two dates.

 To complete the sentence and support the ago word, you need to define another
extension property, this time on the Period class. The type of that property is a
LocalDate, representing a date. Note that the use of the - (minus) operator in the
ago property implementation doesn’t rely on any Kotlin-defined extensions. The
LocalDate JDK class defines a method named minus with a single parameter that
matches the Kotlin convention for the - operator, so Kotlin maps the operator to that

Listing 11.24 Defining a date manipulation DSL

“this” refers to the value
of the numeric constant.

Invokes LocalDate.minus
using operator syntax

Invokes LocalDate.plus
using operator syntax

306 CHAPTER 11 DSL construction
method automatically. You can find the full implementation of the library, supporting
all time units and not just days, in the kxdate library on GitHub (https://github.com/
yole/kxdate).

 Now that you understand how this simple DSL works, let’s move on to something
more challenging: the implementation of the database query DSL.

11.4.3 Member extension functions: internal DSL for SQL

You’ve seen the significant role played by extension functions in DSL design. In this
section, we’ll study a further trick that we’ve mentioned previously: declaring exten-
sion functions and extension properties in a class. Such a function or property is both
a member of its containing class and an extension to some other type at the same
time. We call such functions and properties member extensions.

 Let’s look at a couple of examples that use member extensions. They come from the
internal DSL for SQL, the Exposed framework, mentioned earlier. Before we get to that,
though, we need to discuss how Exposed allows you to define the database structure.

 In order to work with SQL tables, the Exposed framework requires you to declare
them as objects extending the Table class. Here’s a declaration of a simple Country
table with two columns.

object Country : Table() {
val id = integer("id").autoIncrement().primaryKey()
val name = varchar("name", 50)

}

This declaration corresponds to a table in the database. To create this table, you call
the SchemaUtils.create(Country) method, and it generates the necessary SQL
statement based on the declared table structure:

CREATE TABLE IF NOT EXISTS Country (
id INT AUTO_INCREMENT NOT NULL,
name VARCHAR(50) NOT NULL,
CONSTRAINT pk_Country PRIMARY KEY (id)

)

As with generating HTML, you can see how declarations in the original Kotlin code
become parts of the generated SQL statement.

 If you examine the types of the properties in the Country object, you’ll see that
they have the Column type with the necessary type argument: id has the type
Column<Int>, and name has the type Column<String>.

 The Table class in the Exposed framework defines all types of columns that you
can declare for your table, including the ones just used:

class Table {
fun integer(name: String): Column<Int>
fun varchar(name: String, length: Int): Column<String>

Listing 11.25 Declaring a table in Exposed

https://github.com/yole/kxdate
https://github.com/yole/kxdate

307Kotlin DSLs in practice
// ...
}

The integer and varchar methods create new columns for storing integers and
strings, respectively.

 Now let’s see how to specify properties for the columns. This is when member
extensions come into play:

val id = integer("id").autoIncrement().primaryKey()

Methods like autoIncrement and primaryKey are used to specify the properties of
each column. Each method can be called on Column and returns the instance it was
called on, allowing you to chain the methods. Here are the simplified declarations of
these functions:

class Table {
fun <T> Column<T>.primaryKey(): Column<T>
fun Column<Int>.autoIncrement(): Column<Int>
// ...

}

These functions are members of the Table class, which means you can’t use them out-
side of the scope of this class. Now you know why it makes sense to declare methods as
member extensions: you constrain their applicability scope. You can’t specify the prop-
erties of a column outside the context of a table: the necessary methods won’t resolve.

 Another great feature of extension functions that you use here is the ability to
restrict the receiver type. Although any column in a table can be its primary key, only
numeric columns can be auto-incremented. You can express this in the API by declar-
ing the autoIncrement method as an extension on Column<Int>. An attempt to
mark a column of a different type as auto-incremented will fail to compile.

 What’s more, when you mark a column as primaryKey, this information is stored
in the table containing the column. Having this function declared as a member of
Table allows you to store the information in the table instance directly.

Member extensions are still members
Member extensions have a downside, as well: the lack of extensibility. They belong
to the class, so you can’t define new member extensions on the side.

For example, imagine that you wanted to add support for a new database to Exposed
and that the database supported some new column attributes. To achieve this goal,
you’d have to modify the definition of the Table class and add the member exten-
sion functions for new attributes there. You wouldn’t be able to add the necessary
declarations without touching the original class, as you can do with regular (nonmem-
ber) extensions, because the extensions wouldn’t have access to the Table
instance where they could store the definitions.

Sets this column as a
primary key in the table

Only integer values can
be auto-incremented.

308 CHAPTER 11 DSL construction
Let’s look at another member extension function that can be found in a simple
SELECT query. Imagine that you’ve declared two tables, Customer and Country, and
each Customer entry stores a reference to the country the customer is from. The fol-
lowing code prints the names of all customers living in the USA.

val result = (Country join Customer)
.select { Country.name eq "USA" }

result.forEach { println(it[Customer.name]) }

The select method can be called on Table or on a join of two tables. Its argument is
a lambda that specifies the condition for selecting the necessary data.

 Where does the eq method come from? We can say now that it’s an infix function
taking "USA" as an argument, and you may correctly guess that it’s another member
extension.

 Here you again come across an extension function on Column that’s also a mem-
ber and thus can be used only in the appropriate context: for instance, when specify-
ing the condition of the select method. The simplified declarations of the select
and eq methods are as follows:

fun Table.select(where: SqlExpressionBuilder.() -> Op<Boolean>) : Query

object SqlExpressionBuilder {
infix fun<T> Column<T>.eq(t: T) : Op<Boolean>
// ...

}

The SqlExpressionBuilder object defines many ways to express conditions: com-
pare values, check for being not null, perform arithmetic operations, and so on.
You’ll never refer to it explicitly in the code, but you’ll regularly call its methods when
it’s an implicit receiver. The select function takes a lambda with a receiver as an
argument, and the SqlExpressionBuilder object is an implicit receiver in this
lambda. That allows you to use in the body of the lambda all the possible extension
functions defined in this object, such as eq.

 You’ve seen two types of extensions on columns: those that should be used to
declare a Table, and those used to compare the values in a condition. Without mem-
ber extensions, you’d have to declare all of these functions as extensions or members
of Column, which would let you use them in any context. The approach with member
extensions gives you a way to control that.

NOTE In section 7.5.6, we looked at some code that worked with Exposed
while talking about using delegated properties in frameworks. Delegated
properties often come up in DSLs, and the Exposed framework illustrates that
well. We won’t repeat the discussion of delegated properties here, because

Listing 11.26 Joining two tables in Exposed

Corresponds to this SQL code:
WHERE Country.name = “USA”

309Kotlin DSLs in practice
we’ve covered them in detail. But if you’re eager to create a DSL for your own
needs or improve your API and make it cleaner, keep this feature in mind.

11.4.4 Anko: creating Android UIs dynamically

While talking about lambdas with receivers, we mentioned that they’re great for laying
out UI components. Let’s look at how the Anko library (https://github.com/Kotlin/
anko) can help you build a UI for Android applications.

 First let’s see how Anko wraps familiar Android APIs into a DSL-like structure. The
following listing defines an alert dialog that shows a somewhat bothersome message
and two options (to proceed further or to stop the operation).

fun Activity.showAreYouSureAlert(process: () -> Unit) {
alert(title = "Are you sure?",

message = "Are you really sure?") {
positiveButton("Yes") { process() }
negativeButton("No") { cancel() }

}
}

Can you spot the three lambdas in this code? The first is the third argument of the
alert function. The other two are passed as arguments to positiveButton and
negativeButton. The receiver of the first (outer) lambda has the type Alert-
DialogBuilder. The same pattern comes up again: the name of the AlertDialog-
Builder class won’t appear in the code directly, but you can access its members to
add elements to the alert dialog. The declarations of the members used in listing
11.27 are as follows.

fun Context.alert(
message: String,
title: String,
init: AlertDialogBuilder.() -> Unit

)

class AlertDialogBuilder {
fun positiveButton(text: String, callback: DialogInterface.() -> Unit)
fun negativeButton(text: String, callback: DialogInterface.() -> Unit)
// ...

}

You add two buttons to the alert dialog. If the user clicks the Yes button, the process
action will be called. If the user isn’t sure, the operation will be canceled. The cancel
method is a member of the DialogInterface interface, so it’s called on an implicit
receiver of this lambda.

Listing 11.27 Using Anko to show an Android alert dialog

Listing 11.28 Declarations of the alert API

https://github.com/Kotlin/anko
https://github.com/Kotlin/anko

310 CHAPTER 11 DSL construction

od(…)
 Now let’s look at a more complex example where the Anko DSL acts as a complete
replacement for a layout definition in XML. The next listing declares a simple form
with two editable fields: one for entering an email address and another for putting in
a password. At the end, you add a button with a click handler.

verticalLayout {
val email = editText {

hint = "Email"
}
val password = editText {

hint = "Password"
transformationMethod =

PasswordTransformationMethod.getInstance()
}
button("Log In") {

onClick {
logIn(email.text, password.text)

}
}

}

Lambdas with receivers are a great tool, providing a concise way to declare structured
UI elements. Declaring them in code (compared to XML files) lets you extract repeti-
tive logic and reuse it, as you saw in section 11.2.3. You can separate UI and business
logic into different components, but everything will still be Kotlin code.

11.5 Summary
 Internal DSLs are an API design pattern you can use to build more expressive

APIs with structures composed of multiple method calls.
 Lambdas with receivers employ a nesting structure to redefine how methods

are resolved in the lambda body.
 The type of a parameter taking a lambda with a receiver is an extension func-

tion type, and the calling function provides a receiver instance when invoking
the lambda.

 The benefit of using Kotlin internal DSLs rather than external template or
markup languages is the ability to reuse code and create abstractions.

 Using specially named objects as parameters of infix calls allows you to create
DSLs that read exactly like English, with no extra punctuation.

 Defining extensions on primitive types lets you create a readable syntax for vari-
ous kinds of literals, such as dates.

 Using the invoke convention, you can call arbitrary objects as if they were
functions.

Listing 11.29 Using Anko to define a simple activity

Declares an EditText view element,
and stores a reference to it An implicit receiver in this lambda

is a regular class from Android
API: android.widget.EditText.

A short way to call
EditText.setHint(“Password”)

Calls
EditText.setTransformationMeth

Declares
a new

button…
…and defines what
should be done when
the button is clicked.

References declared UI
elements to access their data

311Summary
 The kotlinx.html library provides an internal DSL for building HTML pages,
which can be easily extended to support various front-end development frame-
works.

 The kotlintest library provides an internal DSL that supports readable assertions
in unit tests.

 The Exposed library provides an internal DSL for working with databases.
 The Anko library provides various tools for Android development, including an

internal DSL for defining UI layouts.

Jemerov ● Isakova

D
evelopers want to get work done—and the less hassle, the
better. Coding with Kotlin means less hassle. The Kotlin
programming language offers an expressive syntax, a

strong intuitive type system, and great tooling support along
with seamless interoperability with existing Java code, librar-
ies, and frameworks. Kotlin can be compiled to Java bytecode,
so you can use it everywhere Java is used, including Android.
And with an effi cient compiler and a small standard library,
Kotlin imposes virtually no runtime overhead.

Kotlin in Action teaches you to use the Kotlin language for
production-quality applications. Written for experienced Java
developers, this example-rich book goes further than most
language books, covering interesting topics like building
DSLs with natural language syntax. The authors are core
Kotlin developers, so you can trust that even the gnarly
details are dead accurate.

What’s Inside
● Functional programming on the JVM
● Writing clean and idiomatic code
● Combining Kotlin and Java
● Domain-specifi c languages

This book is for experienced Java developers.

Dmitry Jemerov and Svetlana Isakova are core Kotlin developers
at JetBrains.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit www.manning.com/books/kotlin-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Kotlin IN ACTION

JAVA/PROGRAMMING LANGUAGES

M A N N I N G

“Explains high-level
concepts and provides all the
necessary details as well.”

—From the Foreword by
Andrey Breslav

Lead Designer of Kotlin

“Like all the other great
in Action titles from

Manning, this book gives
you everything you need to

become productive quickly.”
—Kevin Orr, Sumus Solutions

“Kotlin is fun and easy to
learn when you have this
 book to guide you!”—Filip Pravica, Info.nl

“Thorough, well written,
 and easily accessible.”

—Jason Lee, NetSuite

SEE INSERT

	Jemerov-Kotlin-SC
	SampleChapterPages11
	SCh-11
	Jemerov-Kotlin-ebook-back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

