Kotlin / Android Studio 3.0
Development Essentials

Android 8 Edition

Kotlin / Android Studio 3.0 Development Essentials — Android 8 Edition
© 2017 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

L. INEFOAUCHION ccuveneirininiiiiiniitinintiicstntcnaestseesats st sacsst st sae st sst b e st s e ssbesst st s bessesobs st st sansnesabesnesnesanens 1
1.1 Downloading the Code SAMPIEScccuveurereuriirineiriinieireireeneireereseesei et sesseseens 1
1.2 Firebase Essentials BOOKk NOW AVAIlablec.ocueeveurivreciniunerciniiricincirecireiseeneiseeeseiseeesessesesesseseene 2
L3 FEEADACK ... vttt ettt st bt 2
L4 BITALA oot 2
2. Setting up an Android Studio Development ENvironment............occvvvevreerisininsnsensesnesnssnssessessessessenesens 3
2.1 System ReqUITEMENTS........ccceuriimiiiiiiiiiriicc et sessnaes 3
2.2 Downloading the Android Studio Packageccvveeeuieecrnicencrnicereeeeeeneeneneee s 3
2.3 Installing Android StUAIO.........ccrvrecrierecrirecrece e eaene 3
2.3.1 Installation on WINdOWScccciiiiiiiiii s sssssssssssssens 4
2.3.2 Installation on MAcOS ... s 4
2.3.3 Installation on LINUX......ccccoviiiiiiiiii s ssssssssssssssssasens 5
2.4 The Android Studio Setup WizZard.......ccc.ecvecurirceeurinicirineieineieinecieseeeetseacsetseess s ssasesessenenes 5
2.5 Installing Additional Android SDK Packagesc..cceeeueueecriueererrieenerneneeeneeeenneeenseneeeensessesenne 6
2.6 Making the Android SDK Tools Command-line Accessible...........cceeriemnernecenerrecenernecnnernennn. 8
2.6.1 WINAOWS 7ottt ss bbb ss s 8
2.6.2 WINAOWS 8.1 ..ot ss s 9
2.6.3 WINAOWS 10 w.ocvuiiiieiiiiiiirciiciint s s sas s s
2.0.4 LINUX oottt bbbt
2.6.5 MACOS......oiriiti e
2.7 Updating Android Studio and the SDK
2.8 SUIMIMATY .ottt sttt s b s
3. Creating an Example Android App in Android Studio.........cccevevieviiinenreniiniisininenneniiniisenenensenninenns 11
3.1 Creating a New AnNdroid Project ... sessesessessesessessesessessesessesscseens 11
3.2 Defining the Project and SDK Settingscecveureurereureurecireinereerernenesserseseesessesessessesessessesessesscsenns 12
3.3 Creating an ACHVILY ..ccccuiiiiiiiicccc e 13
3.4 Modifying the EXample APPIiCAtion......c.ccoeureureveureurecineeneeineireeererneessesseseasessesessessesessessescssesscsenns 14
3.5 Reviewing the Layout and Resource Files........cocvurnnneininencineinineineinecneiseetneiseeesesseessesscsenne 20
3.0 SUIMIMIATY «.ocviviiiiiiie ettt b bbb 22
4. A Tour of the Android Studio User INterfacecccecevvvreverrinrisrisnininininisnenisesniisesesesnsnsseesnes 23
4.1 The WelCOmE SCIEEM.......oucuimiririiciiiii s ss s
4.2 The Main Windowcccovcceverreeennee
4.3 The Tool Windowsccceuvvviviunnnnns
4.4 Android Studio Keyboard Shortcuts

4.5 Switcher and Recent Files Navigation ...
4.6 Changing the Android Studio Theme

4.7 SUIIMATY c.ovueiinciiiscieiisesesiss sttt st bbb st b a s bbbt st as s nns

5. Creating an Android Virtual Device (AVD) in Android Studio
5.1 About Android VIirtual DEVICESceuvueeeeererereieieesseesesisiesesesssssssssssssssesesesesesssssssssssesesesessssnes 31
5.2 Creating a NeW AVD ... 32
5.3 Starting the EMULATOT.covveeuiirieciiriciirecireieeciree st sese bbb ecsens 33

Table of Contents

6. Using and Configuring the Android Studio AVD Emulator

7. Testing Android Studio Apps on a Physical Android Device

5.4 Running the Application in the AVDccccvvirrcninencnireeeeeeeesessesessessesessessesesseseens
5.5 Run/Debug Configurations..........ccccuueercureurercineinencenerneenerneeseseesessesseessessesessessesessessesessessesessesens
5.6 Stopping a Running Application..........cccoecuueeee.
5.7 AVD Command-line Creation
5.8 Android Virtual Device Configuration Files
5.9 Moving and Renaming an Android Virtual Device
5.10 SUIMIMATY c.oviiiiiiirii bbb bbb bbb bbbt

6.1 The Emulator ENVIFONMENT «......c.cuiiiiiiecicieiiieiicieeseisese s ssssesssss s ssenas
6.2 The EMulator TooIDar OPtions.......cu.eecureerecireunecirerneeinerseetsesseessesseessessesessessesessessesessessesessessens
6.3 Working in Zoom MOGEcucueuucunucirimeiiiiniiniieisessese e ss s s st ssenas
6.4 Resizing the EMulator WIndOoW.........cc.ccuciiininicciccecese s senas
6.5 Extended COntrol OPHIONSc.cueeueurecireureeireineciresseetsessesessessesessessesessesseaessessessssessesesessesescsscas
6.5.1 LOCALION ...ttt bbbttt
6.5.2 CIIUIAT ...t
6.5.3 BaAtLEIV ..ottt
6.5.4 PRONIC ..o e
6.5.5 Directional Pad...
6.5.6 Microphone.........
6.5.7 Fingerprint..........
6.5.8 Virtual Sensors....
6.5.9 Settings.................
6.5.10 HELP .. cveeeieetiriecitir ittt s e e
6.6 Drag and DIOP SUPPOLt.......ccviuuiicicicieicieiaiiieisessisesse e ssesssssssas st
6.7 Configuring Fingerprint EMUlationcccceiiniiininincnccceieiecie e senns
6.8 SUITIITIATY ..ottt s bbbt

7.1 An Overview of the Android Debug Bridge (ADB).......c.ccoeniurererniurenernerrenennerseennerneensensesenseneens
7.2 Enabling ADB on Android based DeVICeS.........cocuureveurirrencererrererreineenerseennessesensesseseasessesessenens
7.2.1 macOS ADB CONAIGUIALIONovueueeerrireeernereeererreeeeeeseeeneeeeseseeeeeesssesesesssssssesssasssesssssescsneaes
7.2.2 Windows ADB Configuration..........c..........
7.2.3 Linux adb Configuration...........cceceeecureuence
7.3 Testing the adb Connection..........cccvcuveecurerence.
7.4 SUIMIMATY ..o

8. The Basics of the Android Studio Code Editor........uuiieiirreeierirreeeeeerrreeeesssseeeeesssseseesssssseeessssssssesssasssessns

ii

8.1 The Android Studio EdItOr.........c.ccuiuiiiiicicieciiiiiicircese e
8.2 Splitting the Editor WINOW ..o sass s senas
8.3 COdE COMPLETION ...uvvrveuieiireireteieireieeaeiset sttt bbbttt sttt bttt bbbt eeae
8.4 Statement COMPLETIONc.cueeeueerieireireeireieeetrei sttt ettt bt b sttt bttt et seeae
8.5 Parameter INfOrmation.........c.oucuiucicicicicicieciicicee e sa st
8.6 Parameter Name Hints ..o
8.7 €A GENETAtIONouererirerciiese et se st e
8.8 C0de FOLAING........ouiuieiiiiiiii et
8.9 Quick Documentation LOOKUPcveurecurivreciriunecireireeireiseetser e tseisee e ses s ssessesessessesessessens
8.10 Code RefOrMAtting..........ccuiuiuiuiiciciciieciciseiiieeeiessi e ss st
8.11 Finding Sample Code.....
812 SUIMMATY ..ottt

Table of Contents

9. An Overview of the ANdroid ArChItECtULEuveeeiirereeiirrrneeeierrreeeeerreeeessssaneeesssssseessssssseesssssssessssssssseses 63

9.1 The Android Software Stack
9.2 The Linux Kernel..........ccccceveurrunnene.
9.3 Android Runtime - ART..................
9.4 Android Libraries.......c.ccccoererrurvernnen.

9.4.1 C/C++ Librariescccecevereverenee.
9.5 ApPlication FIrameWOTIK......c.cvcucuririucirineueiriiietricieineceeineeeieetaet st seeseaseseseessaessasesessensacs
9.6 APPLICALIONS .eucvveeneiiecieiicieteacieece ettt st seae bbbttt s et sese et easesesetasaes
9.7 SUIMIMATY ..ottt bbb sa bbb

10. The Anatomy of an Android APPLICALIONcccerivriviiriisinisisiisiisinisisisissisisisessesssststsssssessesssssssseseas 67

10.1 ANAIOId ACHVITIES ..v.vevevieeeiieeeiereteeeetet ettt ettt sttt e ss s sebe e as s s esesesesessssassesesesessanenes 67
10.2 ANAIOIA INEENLES ..evevvereveeieiieeetereteeee ettt ettt s s s bbb s s s sebessas s s esesesesessasassesesesessasanes 67
10.3 BroadCast INTENES.......c.ceiirieeeiereteeeeietetereeeeeete et teessesesese e sss s sesesesessasesesesesesessasassesesesessasnnes 68
10.4 BroadCast RECEIVETSc.cvvveeeerererieieierereseeeeeeteseteteesesesesesesesesssssesesesesessasesesesesesessssassesesesessasenes 68
10.5 ANAIOIA SEIVICES .uvvviveeieiiieteteteeee ettt ettt s e ebe e e as s s esebebsas s s esesesesessssasesesesesessanenes 68
10.6 CONENE PTOVIAETS ..vviveeeeiiieiereteeeiesetetese ettt s s s s sese e sas s sesesessasassesesesesessssassesesesessasnnes 68
10.7 The Application Manifestc.ccocureueurerreeeenerrereeneinereinesseseisesseeeeesseseeessesessessesessessesessessesessessesesses 69
10.8 APPLICAtiOn RESOUICEScuueuvreeieceeeincireeeinetreeeesetseseeetseseesessese et seseesetsesessessesessessesessessesessessesesas 69
10.9 APPLICAION CONLEXLvuerreuruerrereiaerrereneereretetseseesetseseeetsesessessesessessesessessesessessesessessesessessesessessesesses 69
10.10 SUIMIMATY w.ouiiiiiiiiiiiic ittt 69

11. An INtroduction t0 KONcceiiirreeieiinieeeeinrreeeeeensseeesssssneeesssssesssssassesssssassesssssssssssssssssssssssssssssssasssssss 71

11.1 WHRAt 18 KOINT? ...ttt ettt snsee 71
11.2 KOIN QNA JAVA....vieiiritiieeieeteeeeeetetee ettt et esese s esensesensesessesesensesensesensesenssesensenn 71
11.3 Converting from Java t0 KOtHNcocueueuirereiererieernieereineereeiseeesenesensessensensssesssssssssssenns 71
11.4 Kotlin and Android STUAIOccvuruririririeeecieieieieie ettt ssesesese s eessssasassnens 72
11.5 Experimenting with KOtHNccccoiiiiiiiiiiccneeceece e 72
11.6 Semi-colons in KOtHN c....ccviiirieiririririr ettt s s ssseens 73
11,7 SUIIATY ettt sssa s bbb s bbb aa s 73

12. Kotlin Data Types, Variables and Nullabilityccccevevvurvuiiinsuisinirnnninineinnininecncnenncnesecsscssennnes 75

12.1 KOtHN Data TYPES.....ceverreeeeeirereieirereieirereeetseseesetseseeessesessessesessessessssessesessessesessessessssessesesessesesses
12.1.1 Integer Data Types..........cc.......
12.1.2 Floating Point Data Types
12.1.3 BOOLean Data TYPe.......cucuvurecurureucriericiiieeseieseesesseseesesseseesessesessesesssessesessessesessessessssesscseens
12.1.4 Character Data TYPe.....ccovurecuiureerierecintienscieeeesesseseesesesessessesesse s ssessesessessesessessesesnesscscens
12.1.5 String Data TYPe.....cuvvccuririciririciiictricicitetceseietee et sens
12.1.6 ESCAPE SEQUEIICEScucuimimiiiiiiiiiiccici s bbb
12.2 Mutable Variables...........coiiiiii s sa s
12.3 Immutable Variables ..o
12.4 Declaring Mutable and Immutable Variables
12.5 Data TYPES are ODJECEScuveureveereereueeeerereietrereeetseseisetseseeessesessessessesessesessessesessessesessessesessessesesss
12.6 Type Annotations and TYpe INfErenceeeureenerrerererreeeenerreeeieireeeeesseeeeeeseseeesseseesessesennes
12.7 NUILADIE THPE..orvirurivircrriieieireeeietreaeeetreeeietseseesetseseeset s e sseseasessessesessesesssssesessessesessessesessessesesns
12.8 The Safe Call OPEratorc.ccveeeereureeeereereeeieereeeeetseseesesseseeessesesesseseesessesessessesesessesessessesessessesesses
12.9 NOt-NUIL ASSEITION. ..ottt sa s
12.10 Nullable Types and the let Function..
12.11 The Elvis Operatorc.ceceeererrenecne
12.12 Type Casting and Type CheCKINgcccveureveereurereenerrereererreeeietrereesetseseesessesessesseseesessesessessesesss

iii

12,13 SUIMIMATY oottt b bbbt aeas 83
13. Kotlin Operators and EXPIessionsccuivceiiriinuciinnicncssinsiesinisnecsesisssesesessesessssssssssssssssssssseses 85

13.1 Expression Syntax in KOtlN.......ccccceeeeireeencinieieinceeneeeeiseeeeetseseeeesesesessesesessesessessesessessenes
13.2 The Basic Assignment Operator
13.3 Kotlin Arithmetic Operatorsccoeeeveerevnnce
13.4 Augmented AsSignment OPEratorsceueuiuriureuiesemeeseseeseressessessessessessssssssesssasessesesssse
13.5 Increment and Decrement OPEratorscveveereeeereureuemeereseseesesesessesesessesessessesessessesessesseses
13.6 EQUALILY OPEIALOLSucveeuieeeeeireeeiretreeetetsesetsetsesetsetseae st b st s st sesesaessesesaessesesastsesesscssesesnssneses
13.7 Boolean Logical OPEratorsccccuuuriniuniuriuniisemieseseisessessessessessssessessssssssssssesssssessssesssse
13.8 RANEE OPEIALOL ..ottt st n
13.9 BitWise OPEIators.......ccccciuiuiuiiiiiiiiiiiiceeieie ittt
13.9.1 BitwiSe INVETSIONcviviiiiiiiiiiiictctctte s aas
13.9.2 Bitwise ANDc.oiiiiiiiiiiciiic e
13.9.3 BitWise ORu...couiiiiiiiiiciniic s
13.9.4 Bitwise XOR.....c.ciiiiiiiiiiniciiii s
13.9.5 Bitwise Left SHift.......c.cciuiiiiicicciiicse s
13.9.6 Bitwise Right Shift.......c.cc.ccuiiiiiiiiiriic s
13,10 SUINIMATY «.viiiiiiiccccieie sttt e ne s

14. KOtLN FLOW CONTIOLcceeeenrereeeeiereeeeesrreessesssseesssssssessssssssesssasasssssns

14.1 LoOPINgG FIOW CONLIOLcuvreeimiieciniiieceirreeieieieneiseeeestaseee s s sssas s sssssesesssasssesssasssesnsssssensesnes
14.1.1 The Kotlin for-in Statement.........ccocveueevcurerrencirernecnrerneennenseeesensesenesseseasessesessessesessessesesesens
14.1.2 THE WHIIE LOOP .ereueeerenierireecieineeistseaeisetae s tese sttt esseseas sttt tese e taesessanesenas
14.1.3 The do ... WHIIE LOOD ..eucureeuciriicirireecieiteis ettt s aese st saaesenae
14.1.4 Breaking from LOOPScveueeeureurercurirrecirerreetnesseenessesessessesessesseseaessesessessesssessesessessesesesens
14.1.5 The continue STAtEIMENLcccvvueveuevrererrirreetrerreersessesessessesessessesesessesessessesessessesessessesesesens
14.1.6 Break and Continue Labels..........coecrcininncinirccnereeeeeeseeesensese e sesesenens

14.2 Conditional FLOW COntIOL.........cocuureceirreeriireereireeeeiseeestieeeessesesesessesesssssesesssssssensessssesseses
14.2.1 Using the if EXPIESSIONScccueueecerirrercrrirreetrerneenensesesessesessessesesessesessessesessessesessessesesesens
14.2.2 Using if ... €lse ... EXPIESSIONScoeuivecurirreerrirecneireennensesessesseseasesseseasessesessessesessessesesesens
14.2.3 Using if ... else if ... EXPIESSIONSc.vvuecuiurecererrierereenerseseesesseseaessesensessesesessesesessesessesens
14.2.4 Using the when Statementcccocuueee.

14.3 SUMMATY ..o

15. An Overview of Kotlin Functions and Lambdas

15.1 What is @ FUNCHONT ..ot ss s saes 101
15.2 How to Declare a KOtlin FUNCHONc.ouiiiiriiinciiircccicic e saes 101
15.3 Calling @ Kothin FUNCHON ..o saes 102
15.4 Single EXPression FUNCHONSc..c.ccuiiriiiciiciscie e sa s saes 102
15.5 LOCAl FUNCHONS ...oveveiiiicicici it st saes 102
15.6 Handling Return VAlUes ...t saes 103
15.7 Declaring Default Function Parameters............cocecuveuiuncicencececrcieieieeneseisesssesesssesessseenees 103
15.8 Variable Number of Function Parametersoococvcuvcencuncencreicceieenieesessesessesesssesenees 103
15.9 Lambda EXPIESSIONScueeeumiueueieerieeitireseeeeseseseesesessessesesssesesessssesesssssesesssssssesssssssessessssesssnes 104
15.10 Higher-order FUNCHONSc.ccucuciiciiiiieiieiseisise e ssssessssssssssssasessese s saes 105
I5.11 SUINIMATY c.viiiiiiiccicieeiets sttt s s 106

16. The Basics of Object Oriented Programming in Kotlin..........cciivninininnnnininininenencninnn. 107

16.1 What 1S @0 ODJECE? ...t sse s seesesseseesesseseens 107
16.2 What is a Class?.......

Table of Contents

16.3 Declaring a KOl Class.......cvvcueureeeiuricreiriereineeeneineeneeseeensseesessessssesssssssessssesesssssssesssssssens 107
16.4 Adding Properties t0 @ Class........c.ocuiureerirreerierecmieneenieeeenesseeessessesesssssssessssesessssssesessssens 108
16.5 Defining Methodsc..c.vveueureeceiereertirieneieeeneiseeeseesesesssssese st sssssssesssasssesssssssessssssessssssacns 108
16.6 Declaring and Initializing a Class INStance...........cccoviviiiniirincccssnens 108
16.7 Primary and Secondary CONSLIUCIOTS. ... sssssssssssssssssssens 108
16.8 INitialiZer BIOCKS......vuevuiieeeicireeciiiricitieceteee e ese s sse s ese s s sssssnscssssssaces 111
16.9 Calling Methods and Accessing PrOPErties.........occuvecuiureerirreeemiuneerieseerssssesesessesenessesens 111
16.10 CUSLOIM ACCESSOTS ...cuvuiuinirimimcniiiiitsi sttt bbb bbbt 111
16.11 Nested and INNEr CIASSEScouuveeriureeerirreeerierieerieeesseasesenessesensessesesssesssessssesesssssssessessssens 112
16.12 SUIMIMATY «.cuiiiiiiiiiiissii bbb bbb bbb bbbt 113
17. An Introduction to Kotlin Inheritance and Subclassing.........cocceveeevrecninrerscninnenncnsensecncnsensecsscnnees 115
17.1 Inheritance, Classes and SUDCIASSESo.veueeuieeeeeeeeeeeeeteeeeeeeeeeeteeeeeteseeeeereeeesseesestesesseesessessesseneens

17.2 SUDCIASSING SYNTAXcuuvuriuriviiiiiiiiiire et ss s s
17.3 A Kotlin Inheritance EXamPle........ccviureeiiureeciniiniciniineciinieieiseeeseeseseseesesesssssesesssssesessessssens
17.4 Extending the Functionality of @ SUDCIASSccccuueirimriiriniiniiincccccc s
17.5 Overriding Inherited Methods...........coccuiciniciniiriiesc e esesesesseees
17.6 Adding a Custom Secondary CONStIUCTOL..........c.cuiimiuimniurieiiseieese e esessessesessaseens
17.7 Using the SavingsAccount Class
17.8 SUIMMATY ..ottt ettt

18. Understanding Android Application and Activity Lifecycles

18.1 Android Applications and Resource Management.............eccceeeeeemeereeemeurmsersessesersesenscsessesens
18.2 ANAroid PIOCESS STALESc.vuvreermireeernitrieenseieeeretseeeseasesesssaseaesssssese e s sssasssessassssssssscsnssssans
18.2.1 FOIeground PIOCESSccveueueeeureueeerreneeserreeeesesseseesessesessessesessessesessessesessessessssessesessessesesses
18.2.2 VISIDIE PrOCESS ...cvuvvreieerreeictreeecteeeeeteeeeet et sese s sesense s s ssessesessessesesssssesessessesennes
18.2.3 SEIVICE PTOCESS ...ttt s
18.2.4 BaCKEIOUN PrOCESS........cuvurieencieeineireeeenetreieesetsese s ssessesensessesessessesessessesensessesessessesenses
18.2.5 EMPLY PrOCESS ...uviiiiiiiiiiic s
18.3 Inter-Process DEPEndenCiesoceureueurureucurineeeinineieirieieeseceseseaeietesessasesesseseaessesesessesesessesesees
18.4 The ACIVItY LIfECYCL....uiiiirciireciirceieceteeieeet et ese s ssas s sssaseacns
18.5 The ACHVILY StACK.....cciveeereireeeeetreeerttreeenetreee st easese s s ese s ese s s sssssnsesnssesaces
18.6 Activity Statescccovvviiinicnnns
18.7 Configuration Changes
18.8 Handling State Change
18.9 SUMMATY ...

19. Handling Android Activity State Changes

19.1 The ACHVILY CLaSS..vvueruieieeieireeeieireeeieireieteesesessetsesesseesese e sese e ese s eae s ese s sas s sssesesassssses
19.2 Dynamic State vs. Persistent State..........cococeiiiiiiininiiiiciiiicccecerees e
19.3 The Android Activity Lifecycle Methodscocveeuniurecenieneciniiniciniericineeseieiseeseseiseesesesnesseaens 129
19.4 ACHUVILY LIEHIIMIES c..vuvvveeieeincereeeieireecteiree ettt sttt ssaeen 131
19.5 Disabling Configuration Change ReStartscccoceueiririuniniercrneeserseeeeseeeseesesiessessseassaens 132
19.6 SUIMIMATY ..ottt et 132

20. Android Activity State Changes by EXample.........coovivnininuinnnnnininininnnininieneensnnemes 133

20.1 Creating the State Change Example Projectccocvererreernerreeernerreeeerreeenenseseeesseseeensesennes 133
20.2 Designing the User Interfacecccoocoeeerreuvecrneneee

20.3 Overriding the Activity Lifecycle Methods
20.4 Filtering the Logcat Panel.......c..cococvvvccrnirvncrnennee
20.5 Running the Application

20.6 Experimenting with the ACIVILY.......ccceurerirrierniiricerecneeeeeeeneeeese s eseesessees
20.7 SUIMMATY «oniiiiiiiiiic bbb bbb bbb bbb

21. Saving and Restoring the State of an Android Activity

21.1 Saving Dynamic State ...
21.2 Default Saving of User Interface State
21.3 The BUNALE CLaSS ..o saes
21.4 SaVING the STALE.......couiviieiiicic et
21.5 ReSLOrING the SAtecocuuiiciieciciciciecccireciece e ees
21.6 Testing the APPLICALION.c.ccuiucuiciciecicieeiieecee e sees
21.7 SUIMMATY ..ttt bbbt n st

22. Understanding Android Views, View Groups and Layouts

22.1 Designing for Different Android DeVICES..........ccuureeeuiureeeeiureemierienieseenieseessessesesessssessesnes
22.2 VIEWS aNd VIEW GIOUPS «..ceuviuiuirincieiencietreaeietnesetsasesesseesetsescsessesesssseaesesssaessssesesstnsssssenesessenssesnes
22.3 Android Layout Managersccecveeeereerevennee
22.4 The View Hierarchycocceceeveeenerreeererreennes
22.5 Creating User Interfaces........c.coocoeeveereeeercrrerennes
22.6 SUMMATY ..ot

23. A Guide to the Android Studio Layout Editor TOOLc.cceeeerrernuenenrerscsenninnecninneescssesseessessessecne

23.1 Basic vs. Empty Activity TEMPIAtescouueueereeeuniureeeireireeciniereaeeeesisesseesesessessesessessesesesssseseses
23.2 The Android Studio Layout EQItOrceueueereeeiniineecineineeeiniinicieisieeeneisesessessesesessesesesseseseses
23.3 DESIZN MOAE......oioieiiiicicircic st
23.4 THE PalEtteoveveiiiicciee e
23.5 Pan ANd ZOOMcuiuieiiiireieicie i cieise et
23.6 Design and Layout VIEWS.......cc.ccucucuiuicieriiieiiisisessiseseee e ss s s sssssesssssssssesssssessssesaes
23.7 TXt MOME. ...t
23.8 Setting AttrIDULES.c.cviviiciciccccc e
23.9 Configuring Favorite AttribUutes ... naees
23.10 Creating a Custom Device Definition
23.11 Changing the Current Device.........cccccecuvuunee.
23.12 SUMMATY ..ot

24. A Guide to the Android ConstraintLayout

24.1 How ConstraintLayout WOIKS..........ccccvureerirreerniureerirneenieeeeneeeesessasesesssessessessssessessssenesees
24.1.1 CONSLIAINESoviieiteiiecterceee ettt
24.1.2 MATGINS ..ot bbb
24.1.3 Opposing CONSIIANES.........ccceviiiiiiii s
24.1.4 Constraint Bias ...
24.1.5 ChaiNS oo
24.1.6 Chain SEYIES......cueeireiecireeieireteecneeee et nseseas

24.2 Baseline ALIGNIMENT.......covurieuerriererreeeereereeseeesesseeesesseeesssas s nssssesesssasesesssssssssssssssesssasssessses

24.3 Working With GUIAEIINESc..cuveevivrieeriiricieirieireeeteeeeee et esessse s esenssaes

24.4 Configuring Widget DIMeNSIONScovuvererreeemiereeererreeerieseensteseseseasesesssssssesssssssesessssessesees

24.5 WOrking With BaITIETScceuiureererreeeiiricieirieneesesesessesesseasesenseasssessssesesssssssesssssssessessssessses

24,6 RATIOS .ottt

24.7 ConstraintLayout Advantages

24.8 ConstraintLayout Availability

24.9 SUMMATY «oniiiiiiiii bbb bbb bbb bbbt

25. A Guide to using ConstraintLayout in Android Studio.........coccevervuevenserseciinninsecssinncncnennecsensensecne 175

Table of Contents

25.1 Design and Layout VIEWS.......c.ccuveeeeerreeeeerreeeeerneeeeensereeessesensessesessessesessessesessessesessessesessessesesses 175
25.2 AUtOCONNECE MOAE ...t 176
25.3 Inference MOde.........cuiiimimiiii s 177
25.4 Manipulating Constraints Manually........ccccciiii 177
25.5 Adding Constraints in the INSPECtOr ..o 179

25.6 Deleting CONSIIAINTSc.cuereeeeerrieererrereeetseeenenseseesesseseesessesessessesessessesessessesessessesessessesessessesesses 179
25.7 Adjusting Constraint Biasccocveevcureeineirierreineeieineeeeneeeetresenetseseesesseseesessesessessesensessesenses 180
25.8 Understanding ConstraintLayout Margins..........ccecveeereeererrereenerreeemensesemsesseseesesseseesesseseenes 181
25.9 The Importance of Opposing Constraints and Biasccceeveeererreeenerreeenerreeenerneeeenenreennes 182
25.10 Configuring Widget DImensions.........cccceeeeureeeecrreueeerreremerseremessesemsessesessessesessessesensesseserse 184
25.11 AddIng GUIEHNEScevuerreeeercirieeierreeeeeireeeeetreeeeetseae st sese s sseseese s ssessesensessesensessesense 185
25.12 AddING BATTIETSceuvuveeicieecectreieietreeeeeteee et seae st sese st sese s ssesessessesessessesessessesenne 187
25.13 Widget Group ALIGNIMENTccovueverreeeeerreeeeerreeeeetreeeeensesensessesensessesessessesessessesensessesensessesense 189
25.14 Converting other Layouts to ConstraintLayout..........cccveeeureeemrerreeeererneeemnersereeserseseesensenennes 190
25.15 SUIMIMATY .ottt bbb bbb bbb bbb 190
26. Working with ConstraintLayout Chains and Ratios in Android Studiocccceevviveivnvencnncsniennennes 191
26.1 Creating @ CRAIN........c.ccocuiriiiiicee ettt
26.2 Changing the Chain Style
26.3 Spread Inside Chain Style...............
26.4 Packed Chain Style.........ccococureuenee.
26.5 Packed Chain Style with Bias
26.6 Weighted Chain.........ccccceueeuveucnnce.
26.7 WOrking With RAtiOSc..cccuuiuiuiiriiiincicincicieie it sse s s ssessssses
26.8 SUIMIMATY ...ttt bbb
27. An Android Studio Layout Editor ConstraintLayout Tutorialccceceerrerrenisuisensnsesesscsensensesenes 199
27.1 An Android Studio Layout Editor Tool EXampleccveeeeureeeeerreeenerreemrennenenenseneeensenennes 199
27.2 Creating @ New ACHVILY ...ccoovviiiiiiii s 199
27.3 Preparing the Layout Editor ENVironmentcecveeeveureeeeerneeemnerneeeeerneeensensesensessesensessesenses 201
27.4 Adding the Widgets to the User Interface..........ccveureueererreernerreeenerneeeerneenenseneeesseseeensenennes 202
27.5 Adding the CONSIIANEScveueverreeererreeeeerreeeietreeeeetseaeee s nsessesessessesessessesessessesessessesensessesenses

27.6 Testing the Layout.......cc.ccececureucnce.
27.7 Using the Layout Inspector
27.8 SUMMATY ..ottt bbb

28. Manual XML Layout Design in Android Studioccceeeeeerernininncncnnennininnennecsinennscseneennesenee 209

28.1 Manually Creating an XML LayouLcccecuvcucueucminieniiiiinessesessessese e ssesssssesssssesssssns 209
28.2 Manual XML vs. Visual Layout Desigh.......c.ccccucueurminimniuniiniineiiisesseisesesesessessessesssssesesess 212
28.3 SUIMMATY ..ottt bbb 212

29. Managing Constraints using Constraint Sets............couvieniiniieniiiniiniincienieneeeneeeseenaees 215

29.1 Kotlin Code vs. XML Layout Files.........ccocveiireenerrieeerneeeireneeeineeenessesenesseseesessesessessesenses
29.2 Creating VIEWS......coiiiiiiiiicic s
29.3 VIEW ATIDULES....ouceeeereeeeeieeeectreieeetreee et nseseese st sese s sese st sesessessessssessesessessesensesesenne
29.4 CONSIANE SELS.....ciiiiiiiiiii s
29.4.1 Establishing CONNECIONS.......ccccurevreeurirreerrerneerrereeeeserseessesseseeseseseaessesessessesessessesssessescens
29.4.2 Applying Constraints to a Layout
29.4.3 Parent Constraint Connections.....
29.4.4 Sizing Constraints..........ccoceueuene
29.4.5 Constraint Biasccceevuninnee

vii

29.4.6 Alignment CONSLIAINTScccreuvreurerrererrerrerenrereeetereeenseseesessessesessessesessessesessessesessessescsesens
29.4.7 Copying and Applying Constraint Sets

29.4.8 ConstraintLayout Chains..........ccecccveueuee.

29.4.9 Guidelinescocveuveivcinciciciciciniins

29.4.10 Removing Constraints..........cccoeveueuennas

29.4.11 Scaling.....oveumrvrmcrereecreeenereeeeneenereenenne

29.4.12 Rotation
29.5 SUMMATY «.ouiiiiiiiii bbb bbb bbb bbb bbb

30. An Android ConstraintSet TUtorial...........ccoevueeriienineiniinieinceeeieisee s sssesaes 221

30.1 Creating the Example Project in Android Studioc.ccvcuievcenciccicicinininisincsisessscneenes 221
30.2 Adding VIews t0 @n ACHVIYccocucuciciciciriiiriirisisese e sseaes 221
30.3 Setting VIEW ALFIDULES.c.ccuiuiiciciciciciciccicest e 222
30.4 Creating VIew IDS.......oiiiic s 223
30.5 Configuring the CONStraint Set ... sesesssaes 224
30.6 Adding the EAItTexXt VIEWccccucuiiiiiicicieiiieireissisesese e sssssssssssse s e sseaes 225
30.7 Converting Density Independent Pixels (dp) to Pixels (PX)......cccccoeeueerueerimreunirsiirerseerenneenas 226
30.8 SUIMIMATY ..ottt

31. A Guide to using Instant Run in Android Studio

31.1 Introducing Instant Run........ccccveuveecuneurecrneuennces
31.2 Understanding Instant Run Swapping Levels
31.3 Enabling and Disabling Instant RUI.........ccccveeeureeenerneeeenerneeeenneneiennesenenseseeensesessessesenensenee
31.4 Using Instant RUN.......cccccoviiiiiiii s
31.5 An Instant RUN TULOTIALc.covvueieiieiciriccirecctreeceeeeneeeee s ssese e sesessessesensesenes
31.6 Triggering an Instant Run HOt SWap ..o
31.7 Triggering an Instant Run Warm SWap.........ceveriinnicininicnicescniceeeeesseesessseneans
31.8 Triggering an Instant RUN Cold SWap ... eesesenessesesessesensessenes
31.9 The RUN BULLON «...cuvrieiiiicicireciciececteicecteee et sese s s sesessessesessessesessessesessesenes
3110 SUMMATY c.iiiiiii bbb

32. An Overview and Example of Android Event Handling

32.1 Understanding Android Events.......................
32.2 Using the android:onClick Resource...............
32.3 Event Listeners and Callback Methods
32.4 An Event Handling Exampleccccccoeuunennee.

32.5 Designing the User INterface ..o csecieeseeisesesesesssesesssesessenes
32.6 The Event Listener and Callback Method..........cccocviiniiniiniininciniciicccnencesncseseseseeenes
32.7 Consuming EVENLSccoccuiiiiiiiiiiiiici s
32.8 SUIMMATY ..ottt bbbt

33. Android Touch and Multi-touch Event Handlingc.cocceuevuirurinreninisisnsensenincsisnsenescsscssesesnes

33.1 Intercepting TOUCh EVENLSc.ceviriuererriecirecectreeetneeeeeneeeese s s ssessesessessesensesenes
33.2 The MOtiONEVENt ODBJECtvueviuiirieceerreieieireeeeetreeeeetseseeesseseesesseseesessesessessesessessesessessesessessenes
33.3 Understanding TOUCh ACHONS.c.ceuerreueeerreeemerreienetrereneneeeeensesessessesessessesessessesessessesensessenes
33.4 Handling Multiple TOUCREScocueuemerrieeecireceireecereeeeteieeeneseesensese s ssesessessesensessenes
33.5 An Example Multi-Touch APpliCationccoceeureeurenecenineecinenieirineeeiseeeeeseeseeseseeessesesessesessenes
33.6 Designing the Activity User Interface

33.7 Implementing the Touch Event Listener
33.8 Running the Example Application..................
33.9 SUMMATY ...

Table of Contents

34. Detecting Common Gestures using the Android Gesture Detector Class..........ceccererrerrecicrsensucsennee 249

34.1 Implementing Common Gesture Detection.........ccocvueueuriueeerrimeencirieeereneeereneeesseneeensenennes
34.2 Creating an Example Gesture Detection Project
34.3 Implementing the Listener Class.........ccccoocvvvruriunnne.
34.4 Creating the GestureDetectorCompat Instance...
34.5 Implementing the onTouchEvent() Method.........
34.6 Testing the APPLICAtION......cc.ceviiriieiciiccrtceeeee ettt
34.7 SUIIMATY c..ovnieiiiiiicreiici st

35. Implementing Custom Gesture and Pinch Recognition on Androidcoccevervuveuenrensuciersnccncnenane 255

35.1 The Android Gesture Builder APpliCation..........cvcureueurerreeeereerereeneireeeeeereeeeseeseseeesseseeessesenses 255
35.2 The GestureOVerlayVIEW CLassc.vecureeeeneureeeencereueerersereneeseseesessesessessesessessesessessesessessesesses 255
35.3 Detecting GESLUIEScucuiiiiiiiiiciciii bbb 255
35.4 Identifying SPeCific GESTUIESc.cuevverreveeeereueeeireeeeetreeeeesseneesetseseesetsesessessesessessesessessesessessesesse 255
35.5 Building and Running the Gesture Builder Application...........ccececureeeereereeeenerreeeereereeeenerrenennes 256
35.6 Creating a Gestures Filecceirecenineceniiniciieeecneeseeneeeeseseseesessesenaens

35.7 Creating the Example Project
35.8 Extracting the Gestures File from the SD Card ...

35.9 Adding the Gestures File to the Project

35.10 Designing the User Interface........ccocoeeeurevvucrnennee

35.11 Loading the Gestures File

35.12 Registering the Event Listener

35.13 Implementing the onGesturePerformed Method.........c..cceveureeeencireeencireeeneineeeneineeeseeneneenes 260

35.14 Testing the APPLICAtION.....c.vvueucireeeereireeeeeireieieireeeiet ettt sese et seae et sese st s ssessesessessesennes 261

35.15 Configuring the GestureOVerlay VIEW.........ccocveueurcureeeererrereeerrereectseeeeenseseesesseseesessesessessesesnes 261

35.16 Intercepting GeSLUIES..........cviiiiuiiiiiiiiii e 262

35.17 Detecting PINCh GEStUIES........cueueeeureueieereieieireeeictreeeeetseseaessesesetseseesetsesessessesessessesessessesesse 262

35.18 A Pinch Gesture EXample PrOJECT......ccveueueeneireeeencireeeieineeeeetreeeeetseaessesseseeessesesessesessessesesse 262

35.19 SUIMMATY ..ottt bbb bbb 264
36. An Introduction to Android Fragments.........cc.coceveeivinnennuinninsecnininnenncssesssesscssessssesessessscssesssessessesses 267

36.1 What is @ FTagment?cccoeeiiriiincirieerieecieeeteseesensesessessesessetsese st esesssssesessessesenssssesenae 267

36.2 Creating a Fragment
36.3 Adding a Fragment to an Activity using the Layout XML File
36.4 Adding and Managing Fragments in Code
36.5 Handling Fragment Eventscccocoveveuniurerennnn.
36.6 Implementing Fragment Communication............
36.7 SUIIMATY ..ovuivriniiiiiniiii it sese st s a b s

37. Using Fragments in Android Studio - An Example.........cccovvvuivininnininsinnininnenncninnenncnenncncnennne 275

37.1 About the Example Fragment APpliCationcceeureueererreveereerereenerremeesersereesesseseesesseseesessesenne
37.2 Creating the EXample PrOJECT......oecueeicereeeincireieietreeeeeineneeetseseeetsesessessesessessesessessesessessesesse
37.3 Creating the First Fragment LayOUL.......ccocveeuvcureueererreueenerneeeeetrereeetseseesessesessessesessessesessessesenses
37.4 Creating the First Fragment Classcccocreueereureueererreueenernereeesseseeetsesessessesessessesessessesessessesesses
37.5 Creating the Second Fragment LayOuL........cccocveueevcureeeenerreeerncerereeetreneeesseneeesseseeessesessessesenne
37.6 Adding the Fragments t0 the ACHVILY ...cccvceuveureeeercireeeerreeeicireeeeetreeeeee et seseesesseseesessesennes
37.7 Making the Toolbar Fragment Talk to the ACtIVILYccocveuevreurereercireeieireeeesereeciseeeeenseneenes
37.8 Making the Activity Talk to the Text Fragment
37.9 Testing the Application
37.10 SUIMMATY ..ottt bbb bbb bbb

ix

38. Creating and Managing Overflow Menus on Android..........cccceceeveeeinennecncnennecncnnenncscssenssceesseennes

38.1 The OVErflow MENU ... s es st ss s s sasnas
38.2 Creating an Overflow Menu..........ccccoeeuveureunecn.
38.3 Displaying an Overflow Menu..........cccccocereuneen.
38.4 Responding to Menu Item Selections..............
38.5 Creating Checkable Item Groups..........cccccvvuneee.
38.6 Menus and the Android Studio Menu Editor
38.7 Creating the EXamPple PrOJECT.......ccuerreerereienieeineieireieesenesesse s nsessssesssssssesssasessessessenses

38.8 DeSigNing the MENU........cc.cuiereuieercrereniereneeaeeeeseasesesssese s ssessessessssssssssssesssssessssesenses

38.9 Modifying the onOptionsItemSelected() Method...........cvcueucveeererecineeeneeneenenneererseesenennes 296
38.10 Testing the APPLICAtION.......ccveuivercererereereneeaiieiseasetsersse e ssessssssssssssessasesssasensenses 297
38.11 SUIMIMATIY .ouiiiiiiiiiicne s s 298

39. Animating User Interfaces with the Android Transitions Framework...........ccoccecevvrveverrunnuccnerncnnes

39.1 Introducing Android Transitions and SCENESccouureveererreeeererrereererrereeserrereesersereesesseseesessenes
39.2 Using Interpolators with Transitions
39.3 Working with Scene Transitionsc.cceceeeevennee.
39.4 Custom Transitions and TransitionSets in Code
39.5 Custom Transitions and TransitionSets in XML
39.6 Working with Interpolatorscccecveevverrecrnennees
39.7 Creating a Custom Interpolatorc.coc.eee..
39.8 Using the beginDelayedTransition Method....
39.9 SUIMMATY ..ottt bbb bbb

40. An Android Transition Tutorial using beginDelayed Transition...........ccecceveeerrecircrseescsscnsenscsensenne
40.1 Creating the Android Studio TransitionDemo Project..........cccvccnireccenirecceniereccrneerecnnennns 307
40.2 Preparing the Project FIles ... esessss s esesseees 307
40.3 Implementing beginDelayed Transition ANIMationcececeerereereemeecenneneencssensensensersensensens 307
40.4 Customizing the TransItion ...t ssees 309
40.5 SUIIMATY c..oviiniiincriiiii ettt s 310

41. Implementing Android Scene Transitions — A Tutorial.........ccceevvueverrerrcsensnscnrennesenennecsenenneene
41.1 An Overview of the Scene Transition PIOJECtoccevecenierecunierecrniurecrnieeeeeseseesessesseesneses

41.2 Creating the Android Studio SceneTransitions Project
41.3 Identifying and Preparing the Root Containercccc.....

41.4 Designing the FIrst SCEME....cuiiiieiiirieitireetiseictetseeetee e sessesessssesesssssse s sasesesnsses
41.5 Designing the SECONA SCEMEc.cururueuiurieciiirieieiseeceiseeette et sese s sasesesnsses
41.6 Entering the FIISt SCENEccvvueeueireeiiirieitireetiseieieeseeesteseeessseesessasesessssssessssssesssssssesnsses
41.7 LOAAING SCONE 2...ecvurrreiririeeieireieietseeeetiseeeteesesesessese s sasesesssasese s ese s s ssasssesssssesessssssscsnssnes
41.8 Implementing the TIanSItIONSccceeeurureeeeerreeerriireereereeeteseeseeeesesseseesessssessesesessesesssseseses
41.9 Adding the Transition Fileccceircniinieninciectiseeeeseeseseesessesessesssseese s esssseseses
41.10 Loading and Using the Transition Set.........occeeeeeereureceniureeuieneerneeneesneseeesseseeseseseesessesens
41.11 Configuring Additional Transitionscoceeeureereernmureerniuneereeeeesseseesessesesessesessessessesessesees
41,12 SUININATY ¢ttt b b

42. Working with the Floating Action Button and Snackbarcc.coveevcerernciinnnneciscnnnncnscnnenncnennenne

42.1 The Material DeSIZI......c.ccvueuiuieuiirieeiiriciei et sas s esessaes
42.2 The Design Library
42 .3 The Floating Action Button (FAB)
42.4 The Snackbar..........covcveurererereecreneceneeeneneene

42.5 Creating the EXample PTOJECT.......c.cueweeereeenienerneiiinereisenessesessensensessesssssssssssesssssessssessessensens

Table of Contents

42.6 ReVIEWING the PIOJECtccviviecicieecicireciieceee st seaesse s s saesasansens
42.7 Changing the Floating Action BUttoncceveuveeriureceirrecrieeeeneeneeneseeseseseesesesessesessesens
42.8 Adding the ListView to the Content Layout
42.9 Adding Items to the ListViewccccocoveeeuvcrrecmenneee
42.10 Adding an Action to the Snackbar......................
42.11 SUMMATY ..o

43. Creating a Tabbed Interface using the TabLayout Componentcccceveeveceersuesucssensecscssessecsscssenn 333

43.1 An Introduction to the VIEWPAger........cccoiuiiiiiiiiiiiiisecsee e sssasessaens 333
43.2 An Overview of the TabLayout COMPONENTc.eueveveeeerreremerierieeieeneaeeessesesseesesesseseesessessssens 333
43.3 Creating the TabLayoutDemo Project........cccccuuueirimriunimniuneiiinesneiseieeesessenseessasssesssssessens 334
43.4 Creating the First FIagment..........cccocvcuciiiciniciniciiicsesesese e ssess s ssssssssessens 334
43.5 Duplicating the Fragments............cccvcuuvcincicicicieieiieiiseisessese e sssasssesssssesaens 335
43.6 Adding the TabLayout and VIEWPAgerccccccucuirimriuniniiniinincssseieiesesenseesceesssasesesaens 336
43.7 Creating the Pager Adapter..........oiciicicicicicieiccsesesse e ssesaens 337
43.8 Performing the Initialization Tasks.........cccceeucueiciririnininincisceee e ceessesssesesaens 338
43.9 Testing the APPHCALION........ccriuiuriiiirccicc e aees
43.10 Customizing the TabLayout
43.11 Displaying Icon Tab Items............

43,12 SUIMMATY w.cuiiiiiiiiiiiccse et s e

44. Working with the RecyclerView and CardView Widgets

44.1 An Overview of the ReCYClerVIEWcccuiurieiiiricriiricireeeteeeneeseeessesesseeese s s sssssesens
44.2 An Overview of the CardVIEWcccvecuiureeriinicniiriciseeneeseeeseesesesessesesssessesssessessssesens
44.3 Adding the Libraries to the Project........ccccircniiricniecneeeteeesseeeeesesensesesensens
444 SUINIMATY oottt a bbb bbb bbbt

45. An Android RecyclerView and CardView Tutorialccccevervuevuinerncninninscninsnncnensecscnessecsscsneens

45.1 Creating the CardDemo Project. ... sasssssasesesaens
45.2 Removing the Floating Action BUttON ..o esseeseceessesssesesaens
45.3 Adding the RecyclerView and CardView Libraries...........ocoocvencuneincincincrneucesiceeinenennenens
45.4 Designing the CardView Layout........cccccccecueeriuneunennes
45.5 Adding the RecyclerView........ccoecvivevincrncincnncnnee

45.6 Creating the RecyclerView Adapter............cccco.c..c.

45.7 Adding the Image Files........ccccoeevinininincrncncnncnnee

45.8 Initializing the RecyclerView Component
45.9 Testing the APPLICALION........cciuiiiiiircccc et aees
45.10 Responding to Card SEleCtionsccuucucuiciuciurimnieieiisesese e sassssssssesaens
45.11 SUIMIMATY «.ceiiiiiiiieiiee ettt s st s bbb

46. Working with the AppBar and Collapsing Toolbar Layoutsc.ceceuererrensinsisrisuisensensessessesessessessene 361

46.1 The Anatomy Of N APPBAT ..ottt sse e s ssessaensens 361
46.2 The EXaMPIe PIOJECTvueviiecieireeceiericteeeieee it ssas s sssasssesssassse s sssnsasssns 362
46.3 Coordinating the RecyclerView and TooIbar.........c..coccurecrnierecrnienecrniinecnneeeeceseneeneeeesens 362
46.4 Introducing the Collapsing Toolbar Layoutcc.ceceeerecunirrecrienecreeneenneeeeeneseneessesensens 364
46.5 Changing the Title and Scrim COlOTcouuvveriureeriirecrierecieeeeseeeeeeee e seaeesens
46.6 SUINIMATY ..ottt bbb bbb b bbb bbb bbb bbbt

47. Implementing an Android Navigation Drawer

47.1 An Overview of the Navigation Drawer
47.2 Opening and Closing the DIaWer ... saessesasesesaens

xi

47.3 Using the Navigation Drawer Activity Templateoccvvureceirreccrniurecrnienecrnieeeeneeeeenneenes
47.4 Creating the Navigation Drawer Template Project
47.5 The Template Layout Resource Files........ccccvvvuvernecenerrccnnennee.
47.6 The Header Coloring Resource File.................
47.7 The Template Menu Resource File...................
47.8 The Template Code
47.9 Running the App

47.10 SUIINATY «.ooviviiiiiiic bbb bbb bbb bbb bbb bbb

48. An Android Studio Master/Detail FIow Tutorialccceeeeeveeeeeeiireeeeeeisrereecssseeeeesssseeessssssesesssssseens 375

48.1 The Master/Detail FIOWc.ccccuiuiiiiiiiiiecriseicse e saes 375
48.2 Creating a Master/Detail FLOW ACHVItY........cocoviuiiirieiiiiiccecssisssssnns 376
48.3 The Anatomy of the Master/Detail Flow Template...........ccccocovcueuncmcininininininirenisesseerenes 378
48.4 Modifying the Master/Detail FLow Templatecocvcuiurcrncicincicinieiniencseiscseseseeennes 379
48.5 Changing the Content MOdel..........c.cccouiiininininiinceceie e sees 379
48.6 Changing the Detail Panec.ccccuuiririniniiiiiscieseeee e sseisesssssesssssssssessssessssesaes 380
48.7 Modifying the WebsiteDetailFragment Class............cccureuiureucucmcmeieimnininnesensiesesssesesseesenees 381
48.8 Modifying the WebsiteListACtIVItY Class.........cceuuiuriuiurcucercicieicieieieeieeeeeisesssesesssese s 383
48.9 Adding Manifest Permissions
48.10 Running the Application..........cccccccceeuueiuriunecn.

48.11 SUIMNIMATY ..ttt bbb b bbbt b s s st

49. An Overview Of ANAIOIA INTENLSc..eveeeeeeerrcereeriirseeesesssneessssssseesssssssessssssssssssssssssssssssssesssssassssssssssssess

49.1 AN OVEIVIEW Of INTEIIS «...euveeeecennerreeerstieeeneeseeeneesesessessesessess s eaesssas s ssasssesssssnsesssasesennsanes
49.2 EXPLCIE INTENTS....cutiineirirceeieicietricietseceet ettt tesetseeae bbbttt st stseae e eseaesesaes
49.3 Returning Data from an ACHIVILY «.....cccvvreererreernerneerneieerieeneesesenesseseseesesessssesessssssseseses
49.4 TINPIICIE INTENES ..vocuvieeeiricecieieietricie ettt tese sttt ettt ae s eseaesesaes
49.5 USING INNT FIIETS......cevuiriecieireecicrreecetireeteteee et sssssese s s ssesssssssesssssssenssanes
49.6 Checking Intent AVAilabilityc..coceiurieiniiricrniiricireeee e seeeeeensssese e nsenseeees
49.7 SUIMMATY «.oouiiiiiiiii bbb bbb bbb bbb bbb

50. Android Explicit Intents - A Worked Example

50.1 Creating the Explicit Intent Example Application..................
50.2 Designing the User Interface Layout for ActivityA
50.3 Creating the Second Activity Class........cccceuureuriuriurerniercrneunenns
50.4 Designing the User Interface Layout for ActivityB
50.5 Reviewing the Application Manifest File.......ccccoviiininincinincincincccicieencncseseseseneenes
50.6 Creating the INTENT........c.cc.iuiiriiiiciccieeieiicc st sae s
50.7 Extracting Intent Data ...
50.8 Launching ActivityB as @ Sub-ACtVItYcccccviiriiiininircccscce e
50.9 Returning Data from a SUb-ACHVItY......c.ccccuririuriiriiiircircecceie e
50.10 Testing the APPLICAtION.......ccvcu it
50.11 SUMMATY ..ottt bbb s

51. Android Implicit Intents - A Worked EXampleccocceirveinininneinsiniinnenncntnenscsenesecssesssseessennes 399

51.1 Creating the Android Studio Implicit Intent Example Projectoceeeureueencrreeencereeenrennenee 399
51.2 Designing the USer INTErfacecvveverreuemerrereeerreeeieirieeeenneeeeesseseesessesensessesensessesessessesessessenes
51.3 Creating the Implicit Intentccccoceeecrrerreneen.

51.4 Adding a Second Matching Activity
51.5 Adding the Web View to the Ul..........c...........
51.6 Obtaining the Intent URL........cccccevervevcrrerrenecn.

Table of Contents

51.7 Modifying the MyWebView Project Manifest Filecococneuvevcrnirrencrnencncninecnenccnnerneenne 403
51.8 Installing the MyWebView Package 0n a Device.........ccvuuveeerrerrercmnirrerernernecnnerneennernesenserseeenne 404
51.9 Testing the APPLICAtION......c..ceverierercireieeeirerreereieetreiee e sese s seesenns 405

51.10 SUMMATY ..ottt 406
52. Android Broadcast Intents and Broadcast RECEIVELSccccvvueeeeerrreeeeeerrseeeecrsseeeeessssseeesessssssessssssssesns 407

52.1 An Overview of Broadcast INENLS.........c..ceuieiuiuniniiniineiiscssise e ssessessessessssssescnnns 407
52.2 An Overview of Broadcast RECEIVELScccuiuiuiuniuiineriiseicise e ssessessessesssssesescnns 408
52.3 Obtaining Results from a Broadcast...........ccccceuiririniiniinincninciseicicicie e 409
52.4 Sticky Broadcast INTENLS ..c..c.evcueeeecereereeireireeireiseetrei st tsebsese bbbt ssesnns 409
52.5 The Broadcast Intent EXAMPIe.......c.cveeeereuremrercinienecineinieineiseeinesseessessesessessesessessesessessesessessesenns 410
52.6 Creating the Example APPLCAtionccccuciiiuiniiniiniineiircsise s ssesaesssssesasenes 410
52.7 Creating and Sending the Broadcast INtent..........cccevuiunimniirciniincincincrcicieieceiecieinesesenssesenns 410
52.8 Creating the Broadcast RECEIVETc.cceuiiiuiniiniiinccisccise s
52.9 Registering the Broadcast RECEIVET..........ccccuiiuiiiriiiiiniiniirccise e
52.10 Testing the Broadcast EXAMPIEc.ccuruiriiniiniiniiscciccsee e ssessessssssesasenens
52.11 Listening for System BroadCasts..........ccccueuuiinininineniineise e ssessessesssssesssess
52.12 SUIMMATY c..ouiiiiiiiiiiii ettt

53. A Basic Overview of Threads and AsyncTasks

53.1 An Overview of Threadsc.ccocceeveureueererreeerennenee
53.2 The Application Main Thread
53.3 Thread Handlers.......c..cccrecrrierencininencineiricneineeieiseessesesesse e ssessesesseseesessesseseasessesessessesenns
53.4 A Basic AsyncTask EXAMPLec.cocuveerciniirencineinecineireeeeeeeeee e ssesessessesensesscsenne
53.5 Subclassing ASYNCTASKc.cuvcuiureciriieeeireireereieererseee e sese s sesesseseesnns
53.6 TeStING the AP ...ceeverirreeirereicireieieireieeetreisee e sse e sees s seessasesesssescsnns
53.7 Canceling @ TaSK........c.vcueevcureueercrniurieineeeeireieee et ese s seese s sesesseseeanns
53.8 SUMIMATY ..ottt bbbt

54, An Overview of Android Started and Bound ServiCeS.........ccceveerrrreereerrrreeeecrsrereeessssseeessssssseessssssseesns 423

54.1 StArted SEIVICES.....coiumimiiieiircicicic ettt 423
54.2 INEENE SEIVICE .uuvviinieiiniiiicitc bbb 423
54.3 BOUINA SEIVICE.....cuimmiuiiiiiiiircicieie ettt 424
54.4 The ANAtOMY Of @ SEIVICE ..cuuvuvriviciriireeireiree ettt sttt eae 424
54.5 Controlling Destroyed Service Restart OPtions..........ccecuveureuienerneesercecneeseeeeseesesaesasssesesens 425
54.6 Declaring a Service in the Manifest File.........ccccoviniiininincnincccsciceecieieceseeeseeesenens 425
54.7 Starting a Service Running on System Startup.........cccceviiiiiinccccnes 426
54.8 SUIMIMATY ...cuuiiiiiieiiiirieii et bbbttt 426

55. Implementing an Android Started Service - A Worked Examplecccoceveverisuirunsnsenencsncsessensenes 427

55.1 Creating the EXample PTOJECt.......ccocuueerciniurencireinecineineeineneeneeesenseneesesessesenessesessessesensessesenns
55.2 Creating the SErvice Class......c.cveurreererreurereureieeireineeesesseessesseessessesessessesessessesessessesessessesenns
55.3 Adding the Service to the Manifest File.......cccovcnirveninncncnecncrerecneseeeseeenereeeenne
55.4 Starting the SEIVICEccvcurueercrriueencireieeneireieeereiseeaessese e ese e seese e seeseasesesessessesenns
55.5 Testing the IntentService EXample........ccvuveverreurercinirneceneineeinerneennenneenessesensessesesessesensessesenne
55.6 Using the SErvice Class........ceveureurererriueererrirrienrerneeaerseseasessesessessesessessesessesseseasessesesessesesessescnns
55.7 Creating the NEeW SEIVICE......ccocuuiiriieeneireinieirereetrereeeeeisee e seese s seesesessesessesscsnns
55.8 Modifying the User Interface
55.9 Running the Application..........coceevevreeererreeeercrnenee
55.10 Creating an AsyncTask for Service Tasks
55.11 SUMMATY ..o

xiii

56. Android Local Bound Services - A Worked Example

57. Android Remote Bound Services - A Worked Example

58. An Android 8 Notifications Tutorial

56.1 Understanding Bound SEIVICES.........ccocveviuriueiniirieiniirineieieceeseseieeseseseesese e ssesessessesensnenes
56.2 Bound Service Interaction Options
56.3 An Android Studio Local Bound Service Example
56.4 Adding a Bound Service to the Project
56.5 Implementing the Binder..........ccccocvvecuncnence.

56.6 Binding the Client to the Service ...
56.7 Completing the EXamPe..........covcuiiiiiriiicirieierieceirirceeieeesesesessese e ssesesssssesesssnsenes
56.8 Testing the APPLICAtION.......ccvueuieereererereerienaeaeieeseaseesesee e ssssessssssssssessasesssasensenses
56.9 SUIMIMATIY ...ouvuiiiniiiiiic s bbbt s

57.1 Client to Remote Service COMMUNICALION.........cvuiuiririiiirciiici it
57.2 Creating the Example APPLICAtion........c.vvueueureueencereueineirereietreeeeetseseeesseseesesseseesessesessessesessesseses
57.3 Designing the USer INTErfacecveuveureueeneireeeineireeeieirereenetseeeeessesetessesesessesessessesessessesesesseses
57.4 Implementing the Remote Bound Service.......cc.cceeeeurevrecunennee

57.5 Configuring a Remote Service in the Manifest File
57.6 Launching and Binding to the Remote Service..........cceecunee..
57.7 Sending a Message to the Remote Service
57.8 SUIMIMATY ..ot bbb bbb

58.1 An Overview of NOtHICAtIONS........cc.cuuiuieiiciriicicirce s sesessenas 451
58.2 Creating the NOtfyDemo PIOJECTcccucvrueuriurieneiriireiierereieressenseneessenaeessssessesssasessessesense 453
58.3 Designing the USer INTErfacecvcuevcucrerueeriiniireiniireniireesesessessensessensessssssssesssesesessesenses 453
58.4 Creating the Second ACHVILY ..ottt nseaenes 454
58.5 Creating a Notification Channelc..c.ccccueeeinneninenineneeeeneneceneeseesseesesseasesessessenses 454
58.6 Creating and Issuing a Basic NOtHICAONcoueureureurernierererererereneeeeenieeesenseesenseesenessenennes 456
58.7 Launching an Activity from a NOtfiCAtioN.......c..ecveveurerniirererrernererenecenieeiseneeesenseeseneesenennes 459
58.8 Adding Actions t0 @ NOTACAONcuvurerereeiiecereieirereise e nsessenaeseessssesssesenssssensenses 460
58.9 Bundled NOIfICAtIONS...........cucvuiiiiciiiccieccir e ss s sasaas 461
58.10 SUIMIMATIY ...cuviiriiiiiiiiciiier st s 463
59. An Android 8 Direct Reply Notification TUtorialcccevcvuerunsnsinsinisnsnsnsinsisesssssssesesscsssseeses
59.1 Creating the DireCtRepPLY PIOJECtccvcueueecireeeicireieieirereietreteeetseeeieeseseesesseseesessesessessesessessenes 465
59.2 Designing the USer INTErfacec.vvevveureueererreeeeneireeeieireeeinetsereeetseseeesseseesessesessessesessessesesesseses 465
59.3 Creating the Notification Chanmnel.........cccocureecireeeneineeeeneireieinerneeeeeerereeeeseseeessesessessesessessenes 466
59.4 Building the RemoteINput ODJect........cvvueucureueencireeeireirereieireeeeetreeeeeeseseeesseseeessesessessesessessenes 467
59.5 Creating the PendingINtent.........cocvceveereueenerreueeneireeeineireeeeeireeeesesseseeesseseeesseseesessesessessesessessenes 468
59.6 Creating the Reply ACHONc.ocucveueueereireeeieireeeeetreieietnere ettt seseesessesessessesessessesessessesessessenes 468
59.7 Receiving Direct Reply INPUL.......ccvueurcrreueeneireeeineireieieireeeeetseeeeesseseeesseseesesseseesessesessessesessessenes 470
59.8 Updating the NOtACAION c....c.euecrieeieireeeicireeeietreeeietneseeetreeeeetseseesessesessessesessessesessessesessesseses 471
59.9 SUMMATY ..ot bbb bbb 473
60. An Introduction to Android Multi-Window SUPPOTIt.........ccceerivvinrrnininnnncnsenneencnensnescsseesaene

60.1 Split-Screen, Freeform and Picture-in-Picture MOdes.........ceveurevrireereveeneirernineerereineereneeseinenns 475
60.2 Entering Multi-Window Modeccccooueeuimrccrnireceninrecnnennne

60.3 Enabling Freeform Supportcccccoeeveureuncen.

60.4 Checking for Freeform Support.........ccccveuueen.

60.5 Enabling Multi-Window Support in an App
60.6 Specifying Multi-Window AtIIDULESc.ovuvuererierirniereriirereiereeerenseesenseeesessesesseasenessesenses

...

..

Table of Contents

60.7 Detecting Multi-Window Mode in an ACHVItYc.occeveureeemrerreeernerreenerreenersereesesseseeensenennes
60.8 Receiving Multi-Window NOHACAIONScocureeeecrrieeeernieeneireeecireeeeeneaenesseseesesseseesessesenses
60.9 Launching an Activity in Multi-Window Mode.......
60.10 Configuring Freeform Activity Size and Position
60.11 SUIMMATY ..ottt bbb bbb bbb bbb

61. An Android Studio Multi-Window Split-Screen and Freeform Tutorial..........c.ccecceverrurruciersecsucnnennne 483

61.1 Creating the Multi-Window ProjJect.........cccucuveuueincinininiriniineseisecsesesesessessessesssssssasenns 483
61.2 Designing the FirstActivity User INterfaceccocueivininininenincrnciseiseieiesecesnesssssesasens 483
61.3 Adding the SEcoNd ACHVILY ..ot 484
61.4 Launching the Second ACHVILY ..o 485
61.5 Enabling Multi-Window MOde...........ccocuuunineinieiciininiicisesese et ssessessesssssesssssnns 485
61.6 Testing Multi-Window SUPPOIT ..ot ssesae s ssesassaes 486
61.7 Launching the Second Activity in a Different Windowc.cccveuvcineincincincicinienninencnnns 487
61.8 SUMMATY ...ttt 488

62. An Overview of Android SQLite Databasescccceeereererreeerrereiseeeesseeesseesesseeessssessssssessssssssssessassessans 489

62.1 Understanding Database Tables
62.2 Introducing Database Schema
62.3 Columns and Data Types
62.4 Database ROWSccceuevevereevrnnnnen.
62.5 Introducing Primary Keys
62.6 What 1S SQLITE?cueueeeeererereteiiieieteteteeetst ettt eses s st s s s s s b esesessssssesesebasessasesesesesessssasssasesans 490
62.7 Structured Query Language (SQL)cccveueueeerreueererreeeeerrenenerrerensessesensessesessessesessessesessesseserse 490
62.8 Trying SQLite on an Android Virtual Device (AVD)ccoveureenerrecenerreeenerreeeerenreneesensenennes 491
62.9 ANdroid SQLItE CLaSSES.......cueveveeieeerieeerieeteeeeteeieeereereseeesesesessesssessesessesessesessssssesesersesensesesssserens 493

62.9.1 CUISOT ...veviresieieieietesieestestestetesesstesessessassassasseseesessessessassessessessssessessessessessesseseesessessessasseses 493

62.9.2 SQLIEDALADASE ...ttt ettt se s s e tene et ae e s ese et e et eneans 493

62.9.3 SQLItEOPENHEIPETvuruiinieciriiieiricietrecieirece ettt ettt eas 493

62.9.4 CONLENTVAIUES......ccoeverereretieiiietetete ettt s bbb e ss s b esebess s s sebebesesessasasesene 494
62.10 SUIMMATY ..ot bbb bbb bbb 494

63. An Android TableLayout and TableROW TUtorialccccecevverreinrinrinnecscnsennuininsennncsensesssesesseessesesnes 495

63.1 The TableLayout and TableROW Layout VIEWS.........c.oceeuveureveeeerereenceremeeeereneseeseseesessesessessesennes 495
63.2 Creating the Database Projectccccoocveurcrncuncc.

63.3 Adding the TableLayout to the User Interface
63.4 Configuring the TabIEROWSc.ccriiiiiiiiicicicicicici e
63.5 Adding the Button Bar to the Layoutcccccuueicicinieniriineresescsecsese s
63.6 Adjusting the Layout Marginscocecevcevcencueueecieineeneisseseissesessessesessessessesssssesssssesssssns
63.7 SUIMIMATY ...ttt

64. An Android SQLite Database TULOrIalcccceevueeerereireieireeeireeecreeeeseeesseesesseeessssessssssesssssssssssssassessans 501

64.1 About the Database EXamPIe.......cccveeueureeurineeininecirineeeineeieiseeeeseesetseesesseessssesesesesessssesesees

64.2 Creating the Data Model.........cccveeiriciinieieineecineeeeeeetsese et ssessesessessesessessesensessesenses

64.3 Implementing the Data Handlerccoceeeinieincinieeniceneeeineeeeeeeeesseseeesseseesensesennes
64.3.1 The Add Handler Method..........cccurcircrnirecnieeceeeeeeeeneeeeenesensesesensenesessesescens
64.3.2 The Query Handler Method ... sseseaeene
64.3.3 The Delete Handler Method..........ccccocuvveunnee.

64.4 Implementing the Activity Event Methods

64.5 Testing the Application

64.6 Summary ...,

XV

65. Understanding Android Content Providers.........coceveevievenneriierennunncsninncsensinnscssesssesessssssssessesssene

65.1 What is @ Content PrOVIAEr?.......ooviieeeiririeeeetceeeeste ettt sssse et sesssssssesesesesesssnens 511
65.2 The Content Providerccccceeevvereereenerrennnen.

65.2.1 ONCIeate()coeveevereeereeereeeeereerereeereeereneens

65.2.2 QUETY() crrevrrreeeersmmeeeressessssseesssssssssssssssssessnnns

65.2.3 INSEIT() coveveerereeererereeereeereeeeeee e

65.2.4 UPAALE() vevrerererencieieeeeireeeieetiet ettt ettt bbbttt aeae

65.2.5 ELELE() wvoveurereeiereeeereeeeeeteeeeteeetee et ettt ettt et s et et esea e s eae st sese s ereneereneeneteserenseneneerens

65.2.6 ZELTYPE() vttt
65.3 The Content URLccocuvueieieieeirieisiereeeeeiese e esessssssesesesssssssssesesesessssssssesesesessssssssesesesessssnsnns
65.4 The CONteNnt RESOLVETc.cevevevieeieieiereeeiiriesete e teessassesese e sesssssese e s ssassesesesesessssssssesesasassssasane
65.5 The <provider> Manifest Element
65.6 SUIIINIATY ..ocuvriiniiiiniiiicnesca s bbb s bbb bbbt s

66. Implementing an Android Content Provider in Android Studio..........ccecceerevvucvervecncnsensecscnensacnne

66.1 Copying the Database PrOJECtccvcureueererreueencireeeieirereietseeeeesseseeessesesessesessessesessessesessesseses
66.2 Adding the Content Provider Packagecccccvuurucurerrucunennee
66.3 Creating the Content Provider Class........c..ccoeeurvvrecrrereevcunennee
66.4 Constructing the Authority and Content URI..........cccceunee.
66.5 Implementing URI Matching in the Content Provider..........
66.6 Implementing the Content Provider onCreate() Method
66.7 Implementing the Content Provider insert() Method
66.8 Implementing the Content Provider query() Methodccocveveeveureeeneneeeneereuceneeneennennenee
66.9 Implementing the Content Provider update() Methodccocuveueeverreeeencireeencrreecencererennennenee
66.10 Implementing the Content Provider delete() Method.........ccocuveueeveureeeencrreeencereeeencerenennennenee
66.11 Declaring the Content Provider in the Manifest File........ccccocreueverreenereeencrneeencereennennenee
66.12 Modifying the Database Handler..........cccocreueneireeeineineeeenerneieeneineeeieineeeeeeseseesessesessessesensessenes
66.13 SUMMATY ..o bbb bbb s

67. Accessing Cloud Storage using the Android Storage Access Framework...........cccccovvevceinnersucncnnenane

67.1 The Storage Access FramewWOTK.........ccccoveiiriiiinininiinicereceeciceneeseeee e nenenes
67.2 Working with the Storage Access Framework...
67.3 Filtering Picker File Listings........ccocceceeureuenee.
67.4 Handling Intent Results.......ccccocceceeunervecncnnenne.
67.5 Reading the Content of a File.........ccecvuueunee.
67.6 Writing Content to a File
67.7 Deleting a File..........ccccnuuuece.
67.8 Gaining Persistent Access to a File...................

67.9 SUINIMATIY ...oovviiiiiiiiiicn st s

68. An Android Storage Access Framework Example........ccccoovvuevuinrirnuininneinecninnnnecninncncnenecnncneneene

68.1 About the Storage Access Framework EXample.........c.oceveureeeenerneecencireeeeneeneeeenerneseeseenenenseenenee 535
68.2 Creating the Storage Access Framework EXample..........ccocveueeneureueencireeeeneineeeneeneeeeseenesenseenenee 535
68.3 Designing the USer INTErfacecvveuveureeeeeireeeencirieeieireeeinetreeeeetsesetessesessessesessessesessesseseeessenes
68.4 Declaring ReGUESt COAEScueuuueueeerrereicireeeieireieietseseeetseseesessesessessesessessesessessesessessesessesseses
68.5 Creating a New Storage File.......ccocirrncineeincirieicineeeeineeceetsesetesseseesessesessessesessessesessessenes
68.6 The onActivityResult() Methodccocveeeireeeincinicicineccreeietreeeieireeeeetseseeetseseeesseseeensenes
68.7 Saving to a Storage File........cccoveverenerencrrernennn.

68.8 Opening and Reading a Storage File

68.9 Testing the Storage Access Application

Table of Contents

68.10 SUIMMATY ..ot bbbt 544
69. Implementing Video Playback on Android using the VideoView and MediaController Classes 547

69.1 Introducing the Android VideoView Classcccccuuriririniiniinienerncineiseeeneiesenmesssssesesens
69.2 Introducing the Android MediaController Class.....
69.3 Creating the Video Playback Example............cccc.......
69.4 Designing the VideoPlayer Layoutcccocuvcuucicicinieniiiinessise et ssessessessessesssssns
69.5 Configuring the VIdEOVIEWc.ccviuiiniiiincincicieieieiecinieeiccise et ssesssssssssses
69.6 Adding Internet PErMiSSIONccocuiuiuiercinceeicieieiieiieieeeicsssese et ssesasssessssns
69.7 Adding the MediaController to the Video VIEW.........ccccocviriniiniiniincrncineiseicicicnsieessceeeinenns
69.8 Setting up the oNPreparedLiStENETccvcuiucucueciciieiirieeiisisesese et sae s
69.9 SUIMMATY ...ttt bbb bbb

70. Android Picture-in-Picture MOdE........cceeeerereeeerrrreeeessrsneessssssneesssssssessssssssessssssssssssssasassssssssssssssassssssss 555

70.1 Picture-in-Picture FEatures. ..ottt
70.2 Enabling Picture-in-Picture Mode.........ccocceueuneeee
70.3 Configuring Picture-in-Picture Parameters
70.4 Entering Picture-in-Picture Mode..........ccocceueuneeee
70.5 Detecting Picture-in-Picture Mode Changes
70.6 Adding Picture-in-Picture Actions
70.7 SUMMATY ..o

71. An Android Picture-in-Picture Tutorial...........ccoceeeeuneriniireniiieniienineinteentseisesnssesessessssesessesessssenns 561
71.1 Changing the Minimum SDK Settingccccveueuiueininininiinenisesesesseeesessessessessesssseness 561
71.2 Adding Picture-in-Picture Support to the Manifest..........cccocvevineuncincrneencineicicieenisenenns 561
71.3 Adding a Picture-in-Picture BUtONcccocucuueicieinieriiiiiseeese e ssessessesssssesessanns 562
71.4 Entering Picture-in-Picture Mode ..ot ssessessesssssesassnns 562
71.5 Detecting Picture-in-Picture Mode Changes ..o 564
71.6 Adding a Broadcast RECEIVET ..ot ssssae s ssesassaens 564
71.7 Adding the PiP ACHON.......ccouiuiiiiriiiirccscic et 565
71.8 Testing the Picture-in-Picture ACONcccuccuueiciuciniiriiiserese e 568
71.9 SUIMMATY ..ottt 568
72. Video Recording and Image Capture on Android using Camera Intentscocceerervercsrcrncsensesenes 571
72.1 Checking for Camera SUPPOIT.......cccvwueereurerrererremeeererneseeserseseasessesessessesesesseseasessesesessesessessesenns 571
72.2 Calling the Video Capture INTENt.........ccocrurererriurereirerneerneineeirereeensensesenessesesessesessessesessessesenne 571
72.3 Calling the Image Capture INTeNt.......c.ccocureurererreurercirerreerrereerereeesereeeneseesenessesesessesensessesenne 573
72.4 Creating an Android Studio Video Recording Project............cocecvuveveunerrcvcenernercenernecenernenenne 573
72.5 Designing the User Interface LayOuLc.cecuveurercererreceniinencirernecnnerneenessesensessesessessesensessesenne 573
72.6 Checking for the Camera ... ssesessesesessessesnns 574
72.7 Launching the Video Capture INeNtc.ccocureuecrrerrerernernercirernecnnerneeneseeensessesenessesessessesenne 575
72.8 Handling the Intent REtUIT c....c.cuevcuiueercineieecireirecieieeeireseetreseese s s ssesessesesensessesnns 575
72.9 Testing the APPLICAtION......c.ccvcriurecireieecirereereeereeee e ase s nns 576
72.10 SUMMATY ..ottt bbb 576
73. Making Runtime Permission Requests in ANdroid.........cccoveereevininrecncnnensncncnsennncscnsensscsenseessesennes 577
73.1 Understanding Normal and Dangerous Permissions............ccecueeereurcereuseeceemscecmmecesssseenenns 577

73.2 Creating the Permissions Example Project...........
73.3 Checking for a Permission
73.4 Requesting Permission at Runtime...
73.5 Providing a Rationale for the Permission Request

xvii

75. Working with the Google Maps Android API in Android Studio

76. Printing with the Android Printing Framework

73.6 Testing the PermiSsions APP.......cccveecrreueeerreuemnerreeeeeesesemsessesemsessesessessesessessesessessesessessesersessenes 584

73.7 SUIMMATY ..ottt 584
74. Android Audio Recording and Playback using MediaPlayer and MediaRecorderccceueurunen.
74.1 PIaying AUGIO «....ccuimiuiiiiiiiciicic sttt 585
74.2 Recording Audio and Video using the MediaRecorder Class..........ccccoeueeurimrinirnincrseencrncenes 586
74.3 About the EXamPle PrOJECTcciueueiriireeeicirieeicireeeiciseseietseteeetsesetessesessessesessetsesesessesessssseses 587
74.4 Creating the AUdIOADPDP PrOJECt.......cccuiiiiiiiieirccse et 587
74.5 Designing the User INterface ..o 587
74.6 Checking for Microphone Availability..........ccccooiriiiniiinciniincisccccceeecescseseseieenes 588
74.7 Performing the Activity INftialiZationcccoeueiniiiineniincinciccce e 589
74.8 Implementing the record Audio() Method...........ccocviuiuniinciniincincincicciceecscesesceenes 590
74.9 Implementing the stopAudio() Method..........cccouviuiiiniiniinciniincincieicccieeeeesseseseseseeenes 591
74.10 Implementing the playAudio() method........cccocviiiniiininiincisicecceccerreeseeenes 591
74.11 Configuring and Requesting PermisSionsceeureuiurcuneucencieiemcieieesesssisesssesesssesesseenes 591
74.12 Testing the APPLICAtION. ...t 594
74.13 SUIMIMATY ..ottt 594

75.1 The Elements of the Google Maps Android API
75.2 Creating the Google Maps Project.........ccocveeunenee.
75.3 Obtaining Your Developer Signature
75.4 Testing the APPLICAtION.....c.cocueuercireeeecrreieetreeeetreee et sese s ssese e sesessessesensesenes
75.5 Understanding Geocoding and Reverse GeoCOdINgcvuevereveererrereenerreeeenerreveesenrenensennenee
75.6 Adding a Map t0 an APPLICAtIONc.cceueueecrreeeeerreeeeeireeeeeneeeeereeeeensese s ssesessessesensessenes
75.7 Requesting Current Location Permission...........ccccovvviiniiiinnnccccnnen
75.8 Displaying the User’s Current LOCAtIONccocueueererreeernerreeemerneneienneeenensesenenseseesessesensessenes
75.9 Changing the Map TYPeccocuverreeeerreeeecireeeetreeeeetsesesesseseesessesessessesessessessssessesessessesesesseses
75.10 Displaying Map Controls t0 the USETcccureeeererreeemnerreeeeerrereeerserenensesensensesessessesenessenes
75.11 Handling Map Gesture INteraction........ccocveueecrreeeererreeemnerrereesersereeenserenensesenessesessesseseressenes

75.11.1 Map Z00miNgG GESTUIES.........cccevriiueiriimiicieiiesesieseiese e sesssssaessssssesssaes

75.11.2 Map Scrolling/Panning GeSTUIESceweueuemereuemmerememersesemersesemsessesensessesesessescsenens

75.11.3 Map Tilt Gestures......c..cocoeurevcuerrercurerencnnes

75.11.4 Map Rotation Gestures.........cceceuverveuneee.
75.12 Creating Map Markers.........ccoceeeeunervecrnerrennnne
75.13 Controlling the Map Camerac.cccveuneeee.
75.14 SUMMATY ..ot bbb bbb bbb

76.1 The Android Printing ArChIteCtULEcccuuiuiuriuniiniireiniscescic e 611
76.2 The Print Service PIUGINScc.ccuciiiiiiciciiiicnicsse et sseae 611
76.3 GOOgle CloUd PriNt......c.iuiiiiiiiiciciciciiciiiicicsi s 612
76.4 Printing to GOOgle DIIVe.........ccccuciiiiiiciciiiicsisesse e sasssas s 612
76.58aVE @S PDF ..ottt 613
76.6 Printing from Android DEVICES ... ssesseisesasssssesesssesesssesessenes 613
76.7 Options for Building Print Support into Android APps.......cceceecucucirineninenesieneseesenneenes 614
76.7.1 Image PIINtiNgGcccovoiiiiiieiiiiiic e
76.7.2 Creating and Printing HTML Content
76.7.3 Printing a Web Page.......cccccccovivuninincnnee.
76.7.4 Printing a Custom Document...................
76.8 SUIMMATY ...ttt

...

Table of Contents

77. An Android HTML and Web Content Printing EXamplecccccevevvurvcirennnncnnenncncnsensecsscsseesscssennes 619
77.1 Creating the HTML Printing Example APpliCationcocueeveuerereeeremmecemmeeenencnsesseenenne 619

77.2 Printing Dynamic HTML CONeNt........coveieiimrierireieieerece et 619

77.3 Creating the Web Page Printing EXample.........cccocoeiiininciiciniininciecrciecceceseceeneens 622

77.4 Removing the Floating Action BUttonccccoviiiniiiincccescssssecnnns 622

77.5 Designing the User INterface LAYOULc.cuevueureureereuniererniereneiseeneressensensessensesssssessssscsscsns 622

77.6 Loading the Web Page into the WebVIew ..o 624

77.7 Adding the Print Menu OPtionN.......c..coccururivcirimrenceriiieeeeseneeeseseeseseseeseseseeseaseseesessesessenns 625

77.8 SUIMIMATY w..covinimiiiniiics i bbb s s bbb bbb 627

78. A Guide to Android Custom Document Printing..........ccoccevevveivcnrensecnensensecncnnenncnensensscsennessenenne 629

78.1 An Overview of Android Custom Document Printingcececveueeveunerrereenernercenernecenerneenne 629
78.1.1 Custom Print AdApPters.......cceecueerecureerecrieeeeseieeesseseesessesessessesessessesessessesessessesesesseseens 629

78.2 Preparing the Custom Document Printing Project..........ccocvueevcuneurcrcenerncreenernereenesseeenerseenne 630

78.3 Creating the Custom Print AdapLer......c.coecrrercineinencineinereineineneiserseessessesessessesessessesessessesenns

78.4 Implementing the onLayout() Callback Method......

78.5 Implementing the onWrite() Callback Method ...

78.6 Checking a Page is in Rangeccocveeeveureveencunenee

78.7 Drawing the Content on the Page Canvas............

78.8 Starting the Print Jobccccoveevcrreencrreeencrreeencnnenne

78.9 Testing the Application

78.10 SUMMATY ..ottt bbb bbb

79. An Introduction to Android APP LinKS.......cccceceveineiivinninnininnennininnenncsesseescsesssseessessscssesssessessesses 643

79.1 An Overview of Android APP LINKSccveeeeveureenereireinieineineeneisee ettt sesesaenns 643

79.2 App Link INtent FIILETSccueureiueiricieirectetreciriectsteeciseriet e sesese et aseseseessaessasesesseasaes 643

79.3 Handling App Link INTENESucuuevucrucrmruererieienieeeeienieseieesenessesesse s ssensessessensessssssssssscsscsnes 644

79.4 Associating the App With @ WEDSIe.......c..ccevvriuriuneirercrenereese e naessesseeasesseesenns 644

79.5 SUIMIMATY ..ot 645

80. An Android Studio App Links Tutorialccccceeveiviisiriinninnniiininninninninninnecssesnncsnessacsssssssssses 647
80.1 About the EXAmPLe APP c..cocueveercirieeieirereieireieieireieeetseseeesseseasessesessetsesessessessssessesessessesessessesesns 647
80.2 The Database SCRema ...ttt seae et sese et sesessessesesne 647
80.3 Loading and RUNNING the PIOJECtc.oceeueueincireeeincireieieineeeeineeeeetseeeeetseseeesseseesessesessessesennes 648
80.4 Adding the URL Mapping.....c.ccocureueererrereereerereeessereesesseseeessesesessessssessessssessesesessesessessesessessesesss 649
80.5 Adding the INtent Filter......oecireeircirieieirieeieireeeictreeeeeiseseetsevesetsese et sese st sesessessesessessesesses 652
80.6 Adding Intent Handling Code........ccocueueuneureueineireeeineireeieineeeicireeenetseeeeessesesessesessessesessessesesne 652
80.7 Testing the APP LiNK......ccocecireeireeieireeeieineieietseeeeessesesessesessessesessessesessessesessessesessessesesses 655
80.8 Associating an App Link with @ Web SItecveuveureenerneeincineeicineecreeeeseeeeesseseeenseaennes 656
80.9 SUMMIATY ..ottt bbb 657
81. An Introduction to Android INStant APPScccceeeeveirvirnersinsinrenninsinsenscssesssnsscesessssesessessscssesssessessesses 659
81.1 An Overview of ANdroid INStANT APPSc.eeeveereeeereereeeieirieeieireseietseseteisesesetsesesessesessssesesne
81.2 Instant App Feature MOdULEScccureveiirieeiniirieieireieseeeeseie ettt sesessetsesesssssesesaes
81.3 Instant App Project StruCture........ccviviiiiiiiviiiiciccc s
81.4 The Application and Feature Build PIUGINSc.cccuevueireereurenieneinireneirenerereneneneeceeeaseenenns

81.5 Installing the Instant Apps Development SDK ...
81.6 SUMMALY ..o

82. An Android Instant App Tutorial
82.1 Creating the INStant APP PrOJECT......cceueureureeeeneereeciretreeeietreeeeetsereeetseseesessesessessesessessesessessesesses

Xix

82.2 ReVIEWING the PIOJECT....c.vueviieecicireeceeireicctreeeectreee et sses s ssessesessessesessessesessessenes
82.3 Testing the INStallable APP.......cccvcueeecrreeecirieeeireeeieireee e eessesessessesessessesessessesessessenes
82.4 Testing the Instant Appcccvevvevernerrercrrerrennne

82.5 Reviewing the Instant App APK Files
82.6 SUMMATY ..ot

83. Adapting an Android Studio Project for INStants APPS........cceccererrucsensersucsensinssessesseessessessessessessacne
83.1 Getting StArted.......ouuiuiuiiiiiircicicc e 669
83.2 Adding the Application APK Module.........ccccoouuiuiiiiiriiniinciiciscicicicisieeecneeesessesesssesesseenes 670
83.3 Adding an Instant App Module..........cccceiiiiiniiiiniincccic e 672
83.4 Testing the INSLANT ADPDcuiiiiiiiicicicicieiccciesi et 673
83.5 SUIMMATY ..ottt bbbt 673

84. A Guide to the Android Studio Profiler...........eiiiiiieiniinriiiciicctcscseeseseeseenns
84.1 Accessing the Android Profiler ...t eensesenessesensensenes
84.2 Enabling Advanced Profiling.........ccccccoeuuiuuce.

84.3 The Android Profiler Tool Window
84.4 The CPU Profiler

84.5 Memory Profiler......

84.6 Network Profiler......

84.7 Summary........cceeueee

85. An Android Fingerprint Authentication Tutorial..........ccccevevivrernuininrincninnnncninencnineeseneeeene
85.1 An Overview of Fingerprint Authentication............couceeuvcuniencincincineieieieeneeesessesesssesenseenes 685
85.2 Creating the Fingerprint Authentication Project..........ovcvicuvcivcineicininenisnnesisessesenneenes 685
85.3 Configuring Device Fingerprint Authenticationocueeevcuncivcecicininenieinessisessisenseenes 686
85.4 Adding the Fingerprint Permission to the Manifest File..........ccccccooeuiiorininininininciencncenas 686
85.5 Adding the FIngerprint ICOM........ccocuuiiciiiiirieiircsse s 687
85.6 Designing the User INterface ..o sessesessenes 687
85.7 Accessing the Keyguard and Fingerprint Manager Services...........ccocoeueereneuneusiurerseeserneenes 688
85.8 Checking the Security SEtNES........ccocueuiriririiriiriieireise e 689
85.9 Accessing the Android Keystore and KeyGeneratorcocucueceeucirinenimnenemsseserseesenseenes 690
85.10 Generating the Key ..ot ssesss s 692
85.11 Initializing the CIPRET ..o 693
85.12 Creating the CryptoObject INStANCE.........ccccviuiuriiiiiriircecic e 695
85.13 Implementing the Fingerprint Authentication Handler Class.........ccccccoeevinininincrnincrncenes 695
85.14 TeSting the PIOJECt......coiuiuiiiiiicicicicieciiaeicieisesi e e sas s
85.15 SUMMATY ...oeieiiiiii bbbt bbb

86. Handling Different Android Devices and Displays.........cocvveriruiseisnsinisisnsnsenesisncsssenesessesssesnes
86.1 Handling Different Device DISPIays..........ccocureueuerreueererreeemnerrerenensereeenseseeessesensessesessessesessessenes
86.2 Creating a Layout for each DiSplay SiZecccoeureeeererreeemnerreeeenernereeenneeeeensesensensesessessesensessenes
86.3 Creating Layout Variants in Android Studio.........ccceeueeeenerreeeenernercenenneeeereeenreeeesennesenennenes
86.4 Providing Different IMages.........cocveeverreeeecrreeemnerreeenenneeeeesseeeeessesessessesensessesessessesessessesesessenee
86.5 Checking for Hardware SUPPOItcccvvueecrreeeecrreeeeeirieeeeneeeeenseseeensesensesseseesessesessessesessessenes
86.6 Providing Device Specific Application Binaries..........ccceereeeererreecenerrereenerneeeesenneneesensesensennenee
86.7 SUIMIMATY ..ottt bbb bbb bbb

87. Signing and Preparing an Android Application for Release

87.1 The Release Preparation Process.........oeeveereceneereeeeneerecenenns
87.2 Register for a Google Play Developer Console ACCOUNL.........cccuccuueciriniinimnienirsiererssesenseenes

Table of Contents

87.3 Configuring the App in the COonsoleccieerrieeneineenereeeeireeereeeeesseseeesseseesessesenses 706
87.4 Enabling Google Play APpP SIGNING........ccoereueverreeeererrieemerrerenerrerenetsesenessesenessesensesseseesesseseese 706
87.5 Changing the Build Variantccccveerieneneencirieeneecneeeectneseeessesenessesensessesessessesenses 707
87.6 ENabliNg PrOGUATAcueveieeeiiirceeeeireecectreieeeteeeeeteaeese s ssesessessesessessesensessesensessesensessesenses 708
87.7 Creating a Keystore File ..ot enseseesessesesse s ssessesensessesensessesenses 709
87.8 Creating the Application APK Filecocueueiiinieincrnieeerreecireneectneeeeenseneesessesensessesessensesennes 711
87.9 Uploading New APK Versions to the Google Play Developer Console............ccocreueurerreunnee 712
87.10 Managing TESTEISceeuueuriviueiriiiiirieiiieiieie ettt s s ssesens 713
87.11 Uploading Instant App APK FILes........couueueeeirieeererrieeeerneeeerreeeeeireneesesseseesessesensessesensessesenses 714
87.12 Uploading New APK REVISIONSc.vueverrevemerreeeeerrieeeensenensesseseesesseseesessesessessesessessesessesseseese 715
87.13 Analyzing the APK File......ccciiiiirceneceereeieneeeetreseesetsese s ssessesensessesensessesenses 717
87.14 Enabling Google Play Signing for an EXisting Appcecceveureeererreemnerreemnerrereenerseseesensenennes 717
87.15 SUIMMATY ..ottt bbb bbb bbb 718
88. An Overview of Gradle in Android Studio..........coeererrerenrireniieniienineincetcesese et eese s

88.1 An OVerview of Gradle ..ot sae s
88.2 Gradle and Android StUAIO ...

88.2.1 Sensible Defaults ..o

88.2.2 Dependencies.........ccocveucereenenee

88.2.3 Build Variants..........cccccceuveueunee

88.2.4 Manifest Entriesccccecuunee

88.2.5 APK Signing........cccoevuvuvincunnee.

88.2.6 ProGuard Support.........c.c.......
88.3 The Top-level Gradle Build File
88.4 Module Level Gradle Build Files...........ccocveuiiiieiiiiniiisiscesecieeeese e 722
88.5 Configuring Signing Settings in the Build File.........cccooouiiiiinniniiiniiciccccecrcecnens 724
88.6 Running Gradle Tasks from the Command-line ..o 725
88.7 SUMMIATY ..ottt 725

IAEX vttt bbb bbb bbb bbb aes

XXi

Chapter 1

1. Introduction

Fully updated for Android Studio 3.0 and Android 8, the goal of this book is to teach the skills necessary to
develop Android based applications using the Android Studio Integrated Development Environment (IDE), the
Android 8 Software Development Kit (SDK) and the Kotlin programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment followed by an introduction to programming in Kotlin including data types, flow
control, functions, lambdas and object-oriented programming.

An overview of Android Studio is included covering areas such as tool windows, the code editor and the Layout
Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the design of
Android applications and user interfaces using the Android Studio environment. More advanced topics such
as database management, content providers and intents are also covered, as are touch screen handling, gesture
recognition, camera access and the playback and recording of both video and audio. This edition of the book
also covers printing, transitions and cloud-based file storage.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific
topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play
Developer Console.

Other key features of Android Studio 3 and Android 8 are also covered in detail including the Layout Editor,
the ConstraintLayout and ConstraintSet classes, constraint chains and barriers, direct reply notifications and
multi-window support.

Chapters also cover advanced features of Android Studio such as App Links, Instant Apps, the Android Studio
Profiler and Gradle build configuration.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are
ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

http://www.ebookfrenzy.com/retail/as30kotlin/index.php
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

http://www.ebookfrenzy.com/retail/as30kotlin/index.php

Introduction

1.2 Firebase Essentials Book Now Available

Firebase Essentials - Android Edition, a companion book to Android Studio Development Essentials provides
everything you need to successfully integrate Firebase cloud features into your Android apps.

The Firebase Essentials book covers the key features of Android app development using Firebase including
integration with Android Studio, User Authentication (including email, Twitter, Facebook and phone number
sign-in), Realtime Database, Cloud Storage, Firebase Cloud Messaging (both upstream and downstream),
Dynamic Links, Invites, App Indexing, Test Lab, Remote Configuration, Cloud Functions, Analytics and
Performance Monitoring.

Find out more at https://goo.gl/5F381e.
1.3 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.4 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

http://www.ebookfrenzy.com/errata/as30kotlin.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com. They are there to help you and will work to resolve any problems you may
encounter.

https://goo.gl/5F381e
mailto:feedback%40ebookfrenzy.com?subject=
http://www.ebookfrenzy.com/errata/as30kotlin.html
mailto:feedback%40ebookfrenzy.com?subject=

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves a number of steps consisting of installing the Android
Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit
(SDK), the Kotlin plug-in and Open]JDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS and Linux based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:
o Windows 7/8/10 (32-bit or 64-bit)

o macOS 10.10 or later (Intel based systems only)

o Linux systems with version 2.19 or later of GNU C Library (glibc)

o Minimum of 3GB of RAM (8GB is preferred)

 Approximately 4GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio Package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio version 3.0 which,
at the time writing is the current version.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for Android Studio 3.0
should provide the option to download the older version in the event that these differences become a problem.

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

https://developer.android.com/studio/index.html

Setting up an Android Studio Development Environment

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-bundle-<version>.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio, Android SDK and Android Virtual Device options are
all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the task bar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the executable and selecting the Pin to Taskbar
menu option. Note that the executable is provided in 32-bit (studio) and 64-bit (studio64) executable versions. If
you are running a 32-bit system be sure to use the studio executable.

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-
<version>.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as shown
in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The
Android Studio package will then be installed into the Applications folder of the system, a process which will
typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:

unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a sub-directory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On RedHat and Fedora based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1libs.i1686 bzip2-1libs.1686

2.4 The Android Studio Setup Wizard

The first time that Android Studio is launched after being installed, a dialog will appear providing the option to
import settings from a previous Android Studio version. If you have settings from a previous version and would
like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate
that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2 though this dialog does not appear on all platforms:

Figure 2-2
If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once
again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components
and packages. Once this process has completed, click on the Finish button in the Downloading Components
dialog at which point the Welcome to Android Studio screen should then appear:

Setting up an Android Studio Development Environment

Figure 2-3
2.5 Installing Additional Android SDK Packages

The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to
install any missing or updated packages.

This task can be performed using the Android SDK Settings screen, which may be launched from within the
Android Studio tool by selecting the Configure - > SDK Manager option from within the Android Studio welcome
dialog. Once invoked, the Android SDK screen of the default settings dialog will appear as shown in Figure 2-4:

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are available for update, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-5:

6

Setting up an Android Studio Development Environment

Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications.
To view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-6:

Figure 2-6

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools

« Android Emulator

« Android SDK Platform-tools

 Android SDK Tools

» Google Play Services

o Instant Apps Development SDK

« Intel x86 Emulator Accelerator (HAXM installer)

o ConstraintLayout for Android

Setting up an Android Studio Development Environment
« Solver for ConstraintLayout

+ Android Support Repository

» Google Repository

« Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed or requiring an update, simply select the
checkboxes next to those packages and click on the Apply button to initiate the installation process.

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

2.6 Making the Android SDK Tools Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. In order for the operating system on which you are
developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment
variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):

<path to android sdk installation>/sdk/tools
<path to android sdk installation>/sdk/tools/bin
<path to android sdk installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-7:

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 7

1. Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2. In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the
Environment Variables... button.

3. Inthe Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on Edit.... Locate the end of the current variable value string and append the path to the Android platform

Setting up an Android Studio Development Environment

tools to the end, using a semicolon to separate the path from the preceding values. For example, assuming

the Android SDK was installed into C:\Users\demo\AppData\Local\Android\sdk, the following would be

appended to the end of the current Path value:
;C:\Users\demo\AppData\Local\Android\sdk\platform-tools; C:\Users\demo\AppData\
Local\Android\sdk\tools; C:\Users\demo\AppData\Local\Android\sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt window
(Start -> All Programs -> Accessories -> Command Prompt) and at the prompt enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the fools path setting by attempting to launch the AVD Manager command line tool:
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the
Search option and enter cmd into the search box). Select Command Prompt from the search results.

Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.
Similarly, check the tools path setting by attempting to run the AVD Manager command line tool:
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

Setting up an Android Studio Development Environment

operable program or batch file.

2.6.3 Windows 10

Right-click on the Start menu, select Systerm from the resulting menu and click on the Advanced system settings
option in the System window. Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin: $PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably
the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to
$PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be
configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, click on the Configure -> Check for Update menu option within
the Android Studio welcome screen, or use the Help -> Check for Update menu option accessible from within
the Android Studio main window.

2.8 Summary

Prior to beginning the development of Android based applications, the first step is to set up a suitable development
environment. This consists of the Java Development Kit (JDK), Android SDKs, and Android Studio IDE. In this
chapter, we have covered the steps necessary to install these packages on Windows, macOS and Linux.

10

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the
project has been created, a later chapter will explore the use of the Android emulator environment to perform a
test run of the application.

3.1 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the Start a new Android Studio project option to display the first screen of the New Project wizard
as shown in Figure 3-2:

11

Creating an Example Android App in Android Studio

Figure 3-2
3.2 Defining the Project and SDK Settings

In the New Project window, set the Application name field to AndroidSample. The application name is the name
by which the application will be referenced and identified within Android Studio and is also the name that will
be used when the completed application goes on sale in the Google Play store.

The Package Name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:

com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:

com.example.androidsample

The Project location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the button to the right of the text field containing the current
path setting.

Finally, enable the Include Kotlin support option.

Click Next to proceed. On the form factors screen, enable the Phone and Tablet option and set the minimum
SDK setting to API 14: Android 4.0 (IceCreamSandwich). The reason for selecting an older SDK release is that
this ensures that the finished application will be able to run on the widest possible range of Android devices.
The higher the minimum SDK selection, the more the application will be restricted to newer Android devices.
A useful chart (Figure 3-3) can be viewed by clicking on the Help me choose link. This outlines the various SDK
versions and API levels available for use and the percentage of Android devices in the marketplace on which the

12

Creating an Example Android App in Android Studio

application will run if that SDK is used as the minimum level. In general it should only be necessary to select a
more recent SDK when that release contains a specific feature that is required for your application.

To help in the decision process, selecting an API level from the chart will display the features that are supported
at that level.

Figure 3-3

Since the project is not intended for Google TV, Android Auto or wearable devices, leave the remaining options
disabled before clicking Next. Instant Apps will not be covered until later in this book so make sure that the
Include Android Instant App support option is disabled.

3.3 Creating an Activity

The next step is to define the type of initial activity that is to be created for the application. A range of different
activity types is available when developing Android applications. The Empty, Master/Detail Flow, Google Maps
and Navigation Drawer options will be covered extensively in later chapters. For the purposes of this example,
however, simply select the option to create a Basic Activity. The Basic Activity option creates a template user
interface consisting of an app bar, menu, content area and a single floating action button.

Figure 3-4
13

Creating an Example Android App in Android Studio

With the Basic Activity option selected, click Next. On the final screen (Figure 3-5) name the activity and title
AndroidSampleActivity. The activity will consist of a single user interface screen layout which, for the purposes
of this example, should be named activity_android_sample. Finally, enter My Android App into the title field as
shown in Figure 3-5:

Figure 3-5

Since the AndroidSampleActivity is essentially the top level activity for the project and has no parent activity,
there is no need to specify an activity for the Hierarchical parent (in other words AndroidSampleActivity does
not need an “Up” button to return to another activity).

Click on Finish to initiate the project creation process.

3.4 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-6

14

Creating an Example Android App in Android Studio

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel will be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the
menu to switch mode:

Figure 3-7

The example project created for us when we selected the option to create an activity consists of a user interface
containing a label that will read “Hello World!” when the application is executed.

The next step in this tutorial is to modify the user interface of our application so that it displays a larger text view
object with a different message to the one provided for us by Android Studio.

The user interface design for our activity is stored in a file named activity_android_sample.xml which, in turn, is
located under app -> res -> layout in the project file hierarchy. This layout file includes the app bar (also known
as an action bar) that appears across the top of the device screen (marked A in Figure 3-8) and the floating
action button (the email button marked B). In addition to these items, the activity_android_sample.xml layout
file contains a reference to a second file containing the content layout (marked C):

Figure 3-8
15

Creating an Example Android App in Android Studio

By default, the content layout is contained within a file named content_android_sample.xml and it is within this
file that changes to the layout of the activity are made. Using the Project tool window, locate this file as illustrated
in Figure 3-9:

Figure 3-9

Once located, double-click on the file to load it into the user interface Layout Editor tool which will appear in
the center panel of the Android Studio main window:

Figure 3-10

In the toolbar across the top of the Layout Editor window is a menu (currently set to Nexus 4 in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface

components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

16

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-11:

Figure 3-11

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
with a single child in the form of a TextView object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to make sure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
magnet icon. When disabled the magnet appears with a diagonal line through it (Figure 3-12). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-12

The next step in modifying the application is to delete the TextView component from the design. Begin by
clicking on the TextView object within the user interface view so that it appears with a blue border around it.
Once selected, press the Delete key on the keyboard to remove the object from the layout.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-13, for example, the Button view is currently selected within the Widgets category:

Figure 3-13

17

Creating an Example Android App in Android Studio

Click and drag the Button object from the Widgets list and drop it in the center of the user interface design when
the marker lines appear indicating the center of the display:

Figure 3-14

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently

selected component in the layout. Within this panel, locate the text property and change the current value from
“Button” to “Demo” as shown in Figure 3-15:

Figure 3-15

A useful shortcut to changing the text property of a component is to double-click on it in the layout. This will
automatically locate the attribute in the attributes panel and select it ready for editing.

The second text property with a wrench next to it allows a text property to be set which only appears within the
18

Creating an Example Android App in Android Studio

Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-16. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-16

When clicked, a panel (Figure 3-17) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-17

Currently, the only warning listed reads as follows:

Hardcoded string "Demo", should use '@string' resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “T’, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named demostring and assign to it the string
“Demo”.

19

Creating an Example Android App in Android Studio

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-18).
Within this panel, change the resource name field to demostring and leave the resource value set to Demo before
clicking on the OK button.

Figure 3-18

It is also worth noting that the string could also have been assigned to a resource when it was entered into the
Attributes panel. This involves clicking on the button displaying three dots to the right of the property field in
the Attributes panel and selecting the Add new resource -> New String Value... menu option from the resulting
Resources dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel
fields for any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any
necessary resources when the layout is complete.

3.5 Reviewing the Layout and Resource Files

Before moving on to the next chapter, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
content_android_sample.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was
providing a user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why
you cannot modify the XML directly in order to make user interface changes and, in some instances, this may
actually be quicker than using the Layout Editor tool. At the bottom of the Layout Editor panel are two tabs
labeled Design and Text respectively. To switch to the XML view simply select the Text tab as shown in Figure
3-19:

20

Creating an Example Android App in Android Studio

Figure 3-19

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the Button object. We can also see that the text property of the Button is set to
our demostring resource. Although varying in complexity and content, all user interface layouts are structured
in this hierarchical, XML based way.

One of the more powerful features of Android Studio can be found to the right-hand side of the XML editing
panel. If the panel is not visible, display it by selecting the Preview button located along the right-hand edge of the
Android Studio window. This is the Preview panel and shows the current visual state of the layout. As changes
are made to the XML layout, these will be reflected in the preview panel. The layout may also be modified
visually from within the Preview panel with the changes appearing in the XML listing. To see this in action,
modify the XML layout to change the background color of the ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout width="match parent"

android:layout height="match parent"

app:layout behavior="@string/appbar scrolling view behavior"
tools:context="com.ebookfrenzy.myapplication.AndroidSampleActivity"

tools:showIn="@layout/activity android sample"

android:background="#££2438" >

</android.support.constraint.ConstraintLayout>

Note that the color of the preview changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Change

21

Creating an Example Android App in Android Studio
the color value to #a0ff28 and note that both the small square in the margin and the preview change to green.

Finally, use the Project view to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:

<resources>
<string name="app name">AndroidSample</string>
<string name="action settings">Settings</string>
<string name="demostring">Demo</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the demostring resource
to “Hello” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor panel.
Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Text mode, click on the “@string/demostring” property setting so that it highlights and then press Ctrl-B on
the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and take you to
the line in that file where this resource is declared. Use this opportunity to revert the string resource back to the
original “Demo” text.

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open Editor menu option. This will display the
Translation Editor in the main panel of the Android Studio window:

Figure 3-20

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed. The Order a translation... link may also be used to order a translation of the strings contained
within the application to other languages. The cost of the translations will vary depending on the number of
strings involved.

3.6 Summary

While not excessively complex, a number of steps are involved in setting up an Android development
environment. Having performed those steps, it is worth working through a simple example to make sure the
environment is correctly installed and configured. In this chapter, we have created a simple application and then
used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the
importance of using resources wherever possible, particularly in the case of string values, and briefly touched
on the topic of layouts. Finally, we looked at the underlying XML that is used to store the user interface designs
of Android applications.

While it is useful to be able to preview a layout from within the Android Studio Layout Editor tool, there is no
substitute for testing an application by compiling and running it. In a later chapter, the steps necessary to set
up an emulator for testing purposes will be covered in detail. Before running the application, however, the next
chapter will take a small detour to provide a guided tour of the Android Studio user interface.

22

Chapter 4

4. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

4.1 The Welcome Screen

The welcome screen (Figure 4-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 4-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks
such as opening, creating and importing projects along with access to projects currently under version control.
In addition, the Configure menu at the bottom of the window provides access to the SDK Manager along with a
vast array of settings and configuration options. A review of these options will quickly reveal that there is almost
no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.

23

A Tour of the Android Studio User Interface
4.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 4-2.

Figure 4-2
The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars... menu option.

C - Navigation Bar — The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders
and files at that location ready for selection. This provides an alternative to the Project tool window.

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the
top edge of the editor as shown in Figure 4-3.

24

A Tour of the Android Studio User Interface

Figure 4-3

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

4.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 4-4) without clicking the mouse button.

Figure 4-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in

25

A Tour of the Android Studio User Interface

Figure 4-5) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 4-5

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 4-6 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

26

A Tour of the Android Studio User Interface

Figure 4-6

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project - The project view provides an overview of the file structure that makes up the project allowing for quick
navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded
into the appropriate editing tool.

Structure - The structure tool provides a high level view of the structure of the source file currently displayed in
the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an
item from the structure list will take you to that location in the source file in the editor window.

Captures - The captures tool window provides access to performance data files that have been generated by the
monitoring tools contained within Android Studio.

Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can
be accessed through this Favorites tool window.

Build Variants — The build variants tool window provides a quick way to configure different build targets for the
current application project (for example different builds for debugging and release versions of the application, or
multiple builds to target different device categories).

TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the
File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO page
listed under Editor.

Messages — The messages tool window records output from the Gradle build system (Gradle is the underlying
system used by Android Studio for building the various parts of projects into runnable applications) and can be
useful for identifying the causes of build problems when compiling application projects.

Logcat — The Logcat tool window provides access to the monitoring log output from a running application in

27

A Tour of the Android Studio User Interface
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing to
install and run on a device or emulator, this window will typically provide diagnostic information relating to
the problem.

Event Log - The event log window displays messages relating to events and activities performed within Android
Studio. The successful build of a project, for example, or the fact that an application is now running will be
reported within this tool window.

Gradle Console - The Gradle console is used to display all output from the Gradle system as projects are built
from within Android Studio. This will include information about the success or otherwise of the build process
together with details of any errors or warnings.

Gradle - The Gradle tool window provides a view onto the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project into
an executable application. Right-click on a top level Gradle task and select the Open Gradle Config menu option
to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later
in this book.

Android Profiler - The Android Profiler tool window provides realtime monitoring and analysis tools for
identifying performance issues within running apps, including CPU, memory and network usage.

Device File Explorer — The Device File Explorer tool window provides direct access to the filesystem of the
currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the
local filesystem.

4.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option.

4.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 4-7).

28

A Tour of the Android Studio User Interface

Figure 4-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 4-8).
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file
name and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 4-8
4.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings... menu option (Android Studio -> Preferences... on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance option in the left-hand panel and then change the
setting of the Theme menu before clicking on the Apply button. The themes available will depend on the platform
but usually include options such as Intelli], Windows, Default and Darcula. Figure 4-9 shows an example of the
main window with the Darcula theme selected:

29

A Tour of the Android Studio User Interface

Figure 4-9
4.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

30

Chapter 5

5. Creating an Android Virtual
Device (AVD) in Android Studio

In the course of developing Android apps in Android Studio it will be necessary to compile and run an application
multiple times. An Android application may be tested by installing and running it either on a physical device or
in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created
and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is
to work through the steps involved in creating such a virtual device using the Nexus 5X phone as a reference
example.

5.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity and the presence or otherwise of features such
as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation,
a number of emulator templates are installed allowing AVDs to be configured for a range of different devices.
Additional templates may be loaded or custom configurations created to match any physical Android device
by specifying properties such as processor type, memory capacity and the size and pixel density of the screen.
Check the online developer documentation for your device to find out if emulator definitions are available for
download and installation into the AVD environment.

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure
5-1, for example, shows an AVD session configured to emulate the Google Nexus 5X model.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface.

Figure 5-1

31

Creating an Android Virtual Device (AVD) in Android Studio
5.2 Creating a New AVD

In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an
AVD for a specific Android device configuration.

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android
Studio environment by selecting the Tools -> Android -> AVD Manager menu option from within the main
window.

Once launched, the tool will appear as outlined in Figure 5-2 if existing AVD instances have been created:

Figure 5-2

To add an additional AVD, begin by clicking on the Create Virtual Device button in order to invoke the Virtual
Device Configuration dialog:

Figure 5-3
Within the dialog, perform the following steps to create a Nexus 5X compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android tablet AVD

32

Creating an Android Virtual Device (AVD) in Android Studio
templates.
2. Select the Nexus 5X device option and click Next.

3. On the System Image screen, select the latest version of Android (at time of writing this is Oreo, API level
26, Android 8.0 with Google Play) for the x86 ABI. Note that if the system image has not yet been installed a
Download link will be provided next to the Release Name. Click this link to download and install the system
image before selecting it. If the image you need is not listed, click on the x86 images and Other images tabs
to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example Nexus 5X API 26) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in
the Actions column of the device row in the AVD Manager.

5.3 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager
and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the
configuration of both the AVD and the system on which it is running. In the event that the startup time on your
system is considerable, do not hesitate to leave the emulator running. The system will detect that it is already
running and attach to it when applications are launched, thereby saving considerable amounts of startup time.

The emulator probably defaulted to appearing in portrait orientation. It is useful to be aware that this and other
default options can be changed. Within the AVD Manager, select the new Nexus 5X entry and click on the pencil
icon in the Actions column of the device row. In the configuration screen locate the Startup and orientation
section and change the orientation setting. Exit and restart the emulator session to see this change take effect.
More details on the emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD
Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

5.4 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, simply click on the run
button represented by a green triangle located in the Android Studio toolbar as shown in Figure 5-4 below, select
the Run -> Run ‘app’ menu option or use the Ctrl-R keyboard shortcut:

Figure 5-4

By default, Android Studio will respond to the run request by displaying the Select Deployment Target dialog.
This provides the option to execute the application on an AVD instance that is already running, or to launch
a new AVD session specifically for this application. Figure 5-5 lists the previously created Nexus 5X AVD as
a running device as a result of the steps performed in the preceding section. With this device selected in the

33

Creating an Android Virtual Device (AVD) in Android Studio

dialog, click on OK to install and run the application on the emulator.

Figure 5-5

Once the application is installed and running, the user interface for the AndroidSampleActivity class will appear
within the emulator:

Figure 5-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among
the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins, the
Run and Logcat tool windows will become available. The Run tool window will display diagnostic information
as the application package is installed and launched. Figure 5-7 shows the Run tool window output from a
successful application launch:

Figure 5-7
34

Creating an Android Virtual Device (AVD) in Android Studio

If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

5.5 Run/Debug Configurations

A particular project can be configured such that a specific device or emulator is used automatically each time it
is run from within Android Studio. This avoids the necessity to make a selection from the device chooser each
time the application is executed. To review and modify the Run/Debug configuration, click on the button to
the left of the run button in the Android Studio toolbar and select the Edit Configurations... option from the
resulting menu:

Figure 5-8

In the Run/Debug Configurations dialog, the application may be configured to always use a preferred emulator
by selecting Emulator from the Target menu located in the Deployment Target Options section and selecting the
emulator from the drop down menu. Figure 5-9, for example, shows the AndroidSample application configured
to run by default on the previously created Nexus 5X emulator:

Figure 5-9
35

Creating an Android Virtual Device (AVD) in Android Studio

Be sure to switch the Target menu setting back to “Open Select Deployment Target Dialog” mode before moving
on to the next chapter of the book.

5.6 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
5-10:

Figure 5-10

An app may also be terminated using the Logcat tool window. Begin by displaying the Logcat tool window either
using the window bar button, or via the quick access menu (invoked by moving the mouse pointer over the
button in the left-hand corner of the status bar as shown in Figure 5-11).

Figure 5-11

Once the Logcat tool window appears, select the androidsample app menu highlighted in Figure 5-12 below:

Figure 5-12

With the process selected, stop it by clicking on the red Terminate Application button in the toolbar to the left
of the process list indicated by the arrow in the above figure.

36

Creating an Android Virtual Device (AVD) in Android Studio

An alternative to using the Android tool window is to open the Android Device Monitor. This can be launched
via the Tools -> Android -> Android Device Monitor menu option. Once launched, the process may be selected
from the list (Figure 5-13) and terminated by clicking on the red Stop button located in the toolbar above the list.

Figure 5-13
5.7 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

Assuming that the system has been configured such that the Android SDK fools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:

avdmanager list targets
The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:

Available Android targets:

id: 1 or "android-25"
Name: Android API 25
Type: Platform
API level: 25
Revision: 3

id: 2 or "android-26"

37

Creating an Android Virtual Device (AVD) in Android Studio

Name: Android API 26
Type: Platform
API level: 26

Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to
create a new AVD named Nexus9 using the target ID for the Android API level 26 device using the x86 ABI, the
following command may be used:

avdmanager create avd -n Nexus9 -k "system-images;android-26;google apis;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once a new AVD has been created from the command line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line.
For example, a list of currently available AVDs may be obtained using the list avd command line arguments:

avdmanager list avd

Available Android Virtual Devices:
Name: Nexus 5X API 26
Device: Nexus 5X (Google)
Path: /Users/neilsmyth/.android/avd/Nexus 5X API 26.avd
Target: Google Play (Google Inc.)
Based on: Android 8.0 (Oreo) Tag/ABI: google apis playstore/x86
Skin: nexus 5x
Sdcard: 100M

Similarly, to delete an existing AVD, simply use the delete option as follows:

avdmanager delete avd —-n <avd name>

5.8 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):
<avd name>.avd/config.ini

<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

5.9 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command
may be executed:

avdmanager move avd -n Nexus9 -r Nexus9B

38

Creating an Android Virtual Device (AVD) in Android Studio

To physically relocate the files associated with the AVD, the following command syntax should be used:

avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:

avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

5.10 Summary

A typical application development process follows a cycle of coding, compiling and running in a test environment.
Android applications may be tested on either a physical Android device or using an Android Virtual Device
(AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used
either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific
Android device model it is important that the virtual device be configured with a hardware specification that
matches that of the physical device.

39

Chapter 6

6. Using and Configuring the
Android Studio AVD Emulator

The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an
uncharacteristically weak point in an otherwise reputable application development environment. Regarded by
many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately,
Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms
of configuration flexibility and overall performance and further enhancements have been made for Android
Studio 3.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
avaijlable to customize the environment.

6.1 The Emulator Environment

When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the
main emulator window appears containing a representation of the chosen device type (in the case of Figure 6-1
this is a Nexus 5X device):

Figure 6-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

6.2 The Emulator Toolbar Options

The emulator toolbar (Figure 6-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

41

Using and Configuring the Android Studio AVD Emulator

Figure 6-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

« Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected while the
‘- option minimizes the entire window.

o Power — The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power oft” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.

Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Screenshot — Takes a screenshot of the content currently displayed on the device screen. The captured image
is stored at the location specified in the Settings screen of the extended controls panel as outlined later in this
chapter.

o Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

« Back - Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons
outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

o Home - Simulates selection of the standard Android “Home” button.

42

Using and Configuring the Android Studio AVD Emulator

« Overview - Simulates selection of the standard Android “Overview” button which displays the currently
running apps on the device.

« Extended Controls - Displays the extended controls panel, allowing for the configuration of options such as
simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

6.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button oft reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

6.4 Resizing the Emulator Window

The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

6.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 6-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 6-3
6.5.1 Location

The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or

43

Using and Configuring the Android Studio AVD Emulator
Keyhole Markup Language (KML) format.

A single location is transmitted to the emulator when the Send button is clicked. The transmission of GPS data
points begins once the “play” button located beneath the data table is selected. The speed at which the GPS data
points are fed to the emulator can be controlled using the speed menu adjacent to the play button.

6.5.2 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

6.5.3 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health and whether the AC charger is currently connected.

6.5.4 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

6.5.5 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

6.5.6 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

6.5.7 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

6.5.8 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

6.5.9 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on
the desktop.

6.5.10 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

44

Using and Configuring the Android Studio AVD Emulator

6.6 Drag and Drop Support

An Android application is packaged into an APK file when it is built. When Android Studio built and ran the
AndroidSample app created earlier in this book, for example, the application was compiled and packaged into
an APK file. That APK file was then transferred to the emulator and launched.

The Android Studio emulator also supports installation of apps by dragging and dropping the corresponding
APK file onto the emulator window. To experience this in action, start the emulator, open Settings and select the
Apps & notifications option followed by the App Info option on the subsequent screen. Within the list of installed
apps, locate and select the AndroidSample app and, in the app detail screen, uninstall the app from the emulator.

Open the file system navigation tool for your operating system (e.g. Windows Explorer for Windows or Finder
for macOS) and navigate to the folder containing the AndroidSample project. Within this folder locate the app/
build/outputs/apk/debug subfolder. This folder should contain an APK file named app-debug.apk. Drag this file
and drop it onto the emulator window. The dialog shown in (Figure 6-4) will subsequently appear as the APK
file is installed.

Figure 6-4
Once the APK file installation has completed, locate the app on the device and click on it to launch it.

In addition to APK files, any other type of file such as image, video or data files can be installed onto the
emulator using this drag and drop feature. Such files are added to the SD card storage area of the emulator where
they may subsequently be accessed from within app code.

6.7 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN
button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN
number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

45

Using and Configuring the Android Studio AVD Emulator

Figure 6-5

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 6-6

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again. The topic of building fingerprint
authentication into an Android app is covered in detail in the chapter entitled “An Android Fingerprint
Authentication Tutorial”.

6.8 Summary

Android Studio 3 contains a new and improved Android Virtual Device emulator environment designed to
make it easier to test applications without the need to run on a physical Android device. This chapter has
provided a brief tour of the emulator and highlighted key features that are available to configure and customize
the environment to simulate different testing conditions

46

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no
substitute for performing real world application testing on a physical Android device and there are a number of
Android features that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter we will work through the steps to configure the adb environment to enable
application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1 An Overview of the Android Debug Bridge (ADB)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android
Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging
applications.

The ADB consists of a client, a server process running in the background on the development system and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:

$ adb devices
List of devices attached

emulator-5554 device

7.2 Enabling ADB on Android based Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option.

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled.

47

Testing Android Studio Apps on a Physical Android Device

Figure 7-1

3. Return to the main Settings screen and note the appearance of a new option titled Developer options. Select
this option and locate the setting on the developer screen entitled USB debugging. Enable the switch next
to this item as illustrated in Figure 7-2:

Figure 7-2

4. Swipe downward from the top of the screen to display the notifications panel (Figure 7-3) and note that the
device is currently connected for debugging.

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development
system. All that remains is to configure the development system to detect the device when it is attached. While
this is a relatively straightforward process, the steps involved differ depending on whether the development
system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK
platform-tools directory is included in the operating system PATH environment variable as described in the
chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration

In order to configure the ADB environment on a macOS system, connect the device to the computer system
using a USB cable, open a terminal window and execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:
$ adb devices

List of devices attached

48

Testing Android Studio Apps on a Physical Android Device
74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure
7-4 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being available:

List of devices attached

015d41d4454b£f80c device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the
problem persists, rebooting the system.

7.2.2 Windows ADB Configuration

The first step in configuring a Windows based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google
USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web

page:
http://developer.android.com/sdk/win-usb.html
For Android devices not supported by the Google USB driver, it will be necessary to download the drivers

provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

http://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:

List of devices attached
HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-4 seeking permission to Allow USB debugging.

Figure 7-4

Enable the checkbox next to the option that reads Always allow from this computer, before clicking on OK.
Repeating the adb devices command should now list the device as being ready:

List of devices attached

49

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

Testing Android Studio Apps on a Physical Android Device
HT4CTJT01906 device

In the event that the device is not listed, execute the following commands to restart the ADB server:
adb kill-server

adb start-server

If the device is still not listed, try executing the following command:

android update adb
Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration

For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of
configuring adb on Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If plugdev group is not
listed, run the following command to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-4 seeking permission to Allow USB debugging.

7.3 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device.

Launch Android Studio, open the AndroidSample project and, once the project has loaded, click on the run
button located in the Android Studio toolbar (Figure 7-5).

Figure 7-5

50

Testing Android Studio Apps on a Physical Android Device

Assuming that the project has not previously been configured to run automatically in an emulator environment,
the deployment target selection dialog will appear with the connected Android device listed as a currently
running device. Figure 7-6, for example, lists a Nexus 9 device as a suitable target for installing and executing
the application.

Figure 7-6

To make this the default device for testing, enable the Use same device for future launches option. With the
device selected, click on the OK button to install and run the application on the device. As with the emulator
environment, diagnostic output relating to the installation and launch of the application on the device will be
logged in the Run tool window.

7.4 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly
onto an Android device from within the Android Studio development environment. The exact steps to achieve
this goal differ depending on the development platform being used. In this chapter, we have covered those steps
for Linux, macOS and Windows based platforms.

51

Chapter 8

8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Kotlin source code
file loaded:

Figure 8-1
53

The Basics of the Android Studio Code Editor
The elements that comprise the editor window can be summarized as follows:

A — Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time.
As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-Right
keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible
via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B — The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on
by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu option.

C — The Status Bar - Though the status bar is actually part of the main window, as opposed to the editor, it
does contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

D — The Editor Area - This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E — The Validation and Marker Sidebar - Android Studio incorporates a feature referred to as “on-the-
fly code analysis” What this essentially means is that as you are typing code, the editor is analyzing the code to
check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green
check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors
have been detected). Clicking on this indicator will display a popup containing a summary of the issues found
with the code in the editor as illustrated in Figure 8-2:

Figure 8-2

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup

54

The Basics of the Android Studio Code Editor

containing a description of the issue (Figure 8-3):

Figure 8-3

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-4)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-4

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-5, for example, shows the splitter in action with the editor
split into three panels:

Figure 8-5
55

The Basics of the Android Studio Code Editor

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of Kotlin programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-6, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-6

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred
to as Smart Completion. Smart completion is invoked using the Shifi-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-
Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-7:

56

The Basics of the Android Studio Code Editor

Figure 8-7

8.4 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

myMethod () {

)
8.5 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard

sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-8

57

The Basics of the Android Studio Code Editor

8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-9, for example,
highlights the parameter name hints within the calls to the make() and setAction() methods of the Snackbar class:

Figure 8-9

The settings for this mode may be configured by selecting the File -> Settings (Android Studio -> Preferences
on macOS) menu option followed by Editor -> Appearance in the left-hand panel. On the Appearance screen,
enable or disable the Show parameter name hints option. To adjust the hint settings, click on the Configure...
button, select the programming language and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-10 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-10

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods... option from the code generation list and
select the onStop() method from the resulting list of available methods:

58

The Basics of the Android Studio Code Editor

Figure 8-11

Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Kotlin source file as follows:
override fun onStop () {

super.onStop ()

}
8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-12, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-12

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown

59

The Basics of the Android Studio Code Editor

in Figure 8-13:

Figure 8-13

To unfold a collapsed section of code, simply click on the ‘+ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 8-14. The editor will
then display the lens overlay containing the folded code block:

Figure 8-14

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings... (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-15):

Figure 8-15

8.9 Quick Documentation Lookup

Context sensitive Kotlin and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will
display a popup containing the relevant reference documentation for the item. Figure 8-16, for example, shows

60

The Basics of the Android Studio Code Editor

the documentation for the Android Snackbar class.

Figure 8-16

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin
icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus
moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Alt-L on macOS) keyboard shortcut sequence. To display the
Reformat Code dialog (Figure 8-17) use the Ctrl-Alt-Shift-L (Cmd-Alt-Shift-L on macOS). This dialog provides
the option to reformat only the currently selected code, the entire source file currently active in the editor or only
code that has changed as the result of a source code control update.

Figure 8-17

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Kotlin and, from the Kotlin settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample

61

The Basics of the Android Studio Code Editor

Code menu option. The Find Sample Code panel (Figure 8-18) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-18

8.12 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and
to make that code easier to read and navigate. In this chapter we have covered a number of the key editor
features including code completion, code generation, editor window splitting, code folding, reformatting and

documentation lookup.

62

Chapter 9

9. An Overview of the Android
Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of a simple Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1
63

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELEF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content — Facilitates content access, publishing and messaging between applications and application
components.

« android.database - Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

64

An Overview of the Android Architecture
o android.opengl - A Java interface to the OpenGL ES 3D graphics rendering API.

« android.os - Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

« android.net — A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

o android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider - A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

o android.text — Used to render and manipulate text on a device display.

o android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

o android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit — A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using
the Android Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or
Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

65

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

o Activity Manager - Controls all aspects of the application lifecycle and activity stack.

o Content Providers — Allows applications to publish and share data with other applications.

Resource Manager - Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

o Notifications Manager - Allows applications to display alerts and notifications to the user.
o View System - An extensible set of views used to create application user interfaces.

» Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

Telephony Manager — Provides information to the application about the telephony services available on the
device such as status and subscriber information.

Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

66

Chapter 10

10. The Anatomy of an Android
Application

Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Intents

Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on

67

The Anatomy of an Android Application

which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.3 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.4 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.5 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system in order to free up resources. In the event that the runtime does need
to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become
available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground. This
is achieved by making a call to startForeground(). This is only recommended for situations where termination
would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the
Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming
of audio that should continue when the application is no longer active, or a stock market tracking application
that needs to notify the user when a share hits a specified price.

10.6 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access

68

The Anatomy of an Android Application
data such as contacts and media files.

The Content Providers currently available on an Android system may be located using a Content Resolver.

10.7 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.8 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.9 Application Context

When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.10 Summary

A number of different elements can be brought together in order to create an Android application. In this
chapter, we have provided a high-level overview of Activities, Services, Intents and Broadcast Receivers together
with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen), background processing is typically handled by Services and Broadcast
Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

69

Chapter 11

11. An Introduction to Kotlin

Android development is performed primarily using Android Studio which is, in turn, based on the Intelli] IDEA
development environment created by a company named JetBrains. Prior to the release of Android Studio 3.0,
all Android apps were written using Android Studio and the Java programming language (with some occasional
C++ code when needed).

With the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps
using another programming language called Kotlin. Although detailed coverage of all features of this language
is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective
of this and the following six chapters is to provide enough information to begin programming in Kotlin and
quickly get up to speed developing Android apps using this programming language.

11.1 What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and
follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier
to understand and write and also safer than many other programming languages. The language, compiler and
related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered
concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes a number of
features that improve the chances that potential problems will be identified when the code is being written
instead of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language
in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market
was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and
optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is design to both integrate with and work alongside Java. When
Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks
and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlin’s creators also acknowledged that while there were ways to improve on existing languages, there are many
features of Java that did not need to be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming
experience will also find much that is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin

Given the high level of interoperability between Kotlin and Java it is not essential to convert existing Java code
to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code
71

An Introduction to Kotlin

can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an
entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert
Java File to Kotlin File menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the
code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing
Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that
time should be taken to review and tidy up the code after conversion.

11.4 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into
Android Studio 3.0.

11.5 Experimenting with Kotlin

When learning a new programming language, it is often useful to be able to enter and execute snippets of code.
One of the best ways to do this with Kotlin is to use the online playground (Figure 11-1) located at http://try.
kotl.in. In addition to providing an environment in which Kotlin code may be quickly entered and executed, the
online playground also includes a set of examples demonstrating key Kotlin features in action.

The panel on the left-hand side (marked A in Figure 11-1) contains a list of coding examples together with any
examples you create. Code is typed into the main panel (B) and executed by clicking the Run button (C). Any
output from the code execution appears in the console panel (D). Arguments may be passed through to the
main function by entering them into the field marked E.

Figure 11-1

Try out some Kotlin code by opening a browser window, navigating to the online playground and entering the
following into the main code panel:

72

An Introduction to Kotlin

fun main(args: Array<String>) {
println("Welcome to Kotlin")

for (i in 1..8) {

println("i = $i")

}

After entering the code, click on the Run button and note the output in the console panel:

Figure 11-2

The online playground may also be used to find the Kotlin equivalent for fragments of Java code. Simply enter
(or cut and paste) the Java code into the main panel and click on the Convert from Java button (marked E).

11.6 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each
statement or expression line. The following, therefore, is valid Kotlin code:

val mynumber = 10
println (mynumber)
Semi-colons are only required when multiple statements appear on the same line:

val mynumber = 10; println (mynumber)

11.7 Summary

For the first time since the Android operating system was introduced, developers now have an alternative to
writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is intended to make code safer and
easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to
co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based
Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-
in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

73

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Firebase Essentials Book Now Available
	1.3 Feedback
	1.4 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Downloading the Android Studio Package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio Setup Wizard
	2.5 Installing Additional Android SDK Packages
	2.6 Making the Android SDK Tools Command-line Accessible
	2.6.1 Windows 7
	2.6.2 Windows 8.1
	2.6.3 Windows 10
	2.6.4 Linux
	2.6.5 macOS

	2.7 Updating Android Studio and the SDK
	2.8 Summary

	3. Creating an Example Android App in Android Studio
	3.1 Creating a New Android Project
	3.2 Defining the Project and SDK Settings
	3.3 Creating an Activity
	3.4 Modifying the Example Application
	3.5 Reviewing the Layout and Resource Files
	3.6 Summary

	4. A Tour of the Android Studio User Interface
	4.1 The Welcome Screen
	4.2 The Main Window
	4.3 The Tool Windows
	4.4 Android Studio Keyboard Shortcuts
	4.5 Switcher and Recent Files Navigation
	4.6 Changing the Android Studio Theme
	4.7 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Creating a New AVD
	5.3 Starting the Emulator
	5.4 Running the Application in the AVD
	5.5 Run/Debug Configurations
	5.6 Stopping a Running Application
	5.7 AVD Command-line Creation
	5.8 Android Virtual Device Configuration Files
	5.9 Moving and Renaming an Android Virtual Device
	5.10 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The Emulator Environment
	6.2 The Emulator Toolbar Options
	6.3 Working in Zoom Mode
	6.4 Resizing the Emulator Window
	6.5 Extended Control Options
	6.5.1 Location
	6.5.2 Cellular
	6.5.3 Battery
	6.5.4 Phone
	6.5.5 Directional Pad
	6.5.6 Microphone
	6.5.7 Fingerprint
	6.5.8 Virtual Sensors
	6.5.9 Settings
	6.5.10 Help

	6.6 Drag and Drop Support
	6.7 Configuring Fingerprint Emulation
	6.8 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling ADB on Android based Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Testing the adb Connection
	7.4 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Intents
	10.3 Broadcast Intents
	10.4 Broadcast Receivers
	10.5 Android Services
	10.6 Content Providers
	10.7 The Application Manifest
	10.8 Application Resources
	10.9 Application Context
	10.10 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types,Variables and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 The Elvis Operator
	12.12 Type Casting and Type Checking
	12.13 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Flow Control
	14.1 Looping Flow Control
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Flow Control
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. Understanding Android Application and Activity Lifecycles
	18.1 Android Applications and Resource Management
	18.2 Android Process States
	18.2.1 Foreground Process
	18.2.2 Visible Process
	18.2.3 Service Process
	18.2.4 Background Process
	18.2.5 Empty Process

	18.3 Inter-Process Dependencies
	18.4 The Activity Lifecycle
	18.5 The Activity Stack
	18.6 Activity States
	18.7 Configuration Changes
	18.8 Handling State Change
	18.9 Summary

	19. Handling Android Activity State Changes
	19.1 The Activity Class
	19.2 Dynamic State vs. Persistent State
	19.3 The Android Activity Lifecycle Methods
	19.4 Activity Lifetimes
	19.5 Disabling Configuration Change Restarts
	19.6 Summary

	20. Android Activity State Changes by Example
	20.1 Creating the State Change Example Project
	20.2 Designing the User Interface
	20.3 Overriding the Activity Lifecycle Methods
	20.4 Filtering the Logcat Panel
	20.5 Running the Application
	20.6 Experimenting with the Activity
	20.7 Summary

	21. Saving and Restoring the State of an Android Activity
	21.1 Saving Dynamic State
	21.2 Default Saving of User Interface State
	21.3 The Bundle Class
	21.4 Saving the State
	21.5 Restoring the State
	21.6 Testing the Application
	21.7 Summary

	22. Understanding Android Views, View Groups and Layouts
	22.1 Designing for Different Android Devices
	22.2 Views and View Groups
	22.3 Android Layout Managers
	22.4 The View Hierarchy
	22.5 Creating User Interfaces
	22.6 Summary

	23. A Guide to the Android Studio Layout Editor Tool
	23.1 Basic vs. Empty Activity Templates
	23.2 The Android Studio Layout Editor
	23.3 Design Mode
	23.4 The Palette
	23.5 Pan and Zoom
	23.6 Design and Layout Views
	23.7 Text Mode
	23.8 Setting Attributes
	23.9 Configuring Favorite Attributes
	23.10 Creating a Custom Device Definition
	23.11 Changing the Current Device
	23.12 Summary

	24. A Guide to the Android ConstraintLayout
	24.1 How ConstraintLayout Works
	24.1.1 Constraints
	24.1.2 Margins
	24.1.3 Opposing Constraints
	24.1.4 Constraint Bias
	24.1.5 Chains
	24.1.6 Chain Styles

	24.2 Baseline Alignment
	24.3 Working with Guidelines
	24.4 Configuring Widget Dimensions
	24.5 Working with Barriers
	24.6 Ratios
	24.7 ConstraintLayout Advantages
	24.8 ConstraintLayout Availability
	24.9 Summary

	25. A Guide to using ConstraintLayout in Android Studio
	25.1 Design and Layout Views
	25.2 Autoconnect Mode
	25.3 Inference Mode
	25.4 Manipulating Constraints Manually
	25.5 Adding Constraints in the Inspector
	25.6 Deleting Constraints
	25.7 Adjusting Constraint Bias
	25.8 Understanding ConstraintLayout Margins
	25.9 The Importance of Opposing Constraints and Bias
	25.10 Configuring Widget Dimensions
	25.11 Adding Guidelines
	25.12 Adding Barriers
	25.13 Widget Group Alignment
	25.14 Converting other Layouts to ConstraintLayout
	25.15 Summary

	26. Working with ConstraintLayout Chains and Ratios in Android Studio
	26.1 Creating a Chain
	26.2 Changing the Chain Style
	26.3 Spread Inside Chain Style
	26.4 Packed Chain Style
	26.5 Packed Chain Style with Bias
	26.6 Weighted Chain
	26.7 Working with Ratios
	26.8 Summary

	27. An Android Studio Layout Editor ConstraintLayout Tutorial
	27.1 An Android Studio Layout Editor Tool Example
	27.2 Creating a New Activity
	27.3 Preparing the Layout Editor Environment
	27.4 Adding the Widgets to the User Interface
	27.5 Adding the Constraints
	27.6 Testing the Layout
	27.7 Using the Layout Inspector
	27.8 Summary

	28. Manual XML Layout Design in Android Studio
	28.1 Manually Creating an XML Layout
	28.2 Manual XML vs. Visual Layout Design
	28.3 Summary

	29. Managing Constraints using Constraint Sets
	29.1 Kotlin Code vs. XML Layout Files
	29.2 Creating Views
	29.3 View Attributes
	29.4 Constraint Sets
	29.4.1 Establishing Connections
	29.4.2 Applying Constraints to a Layout
	29.4.3 Parent Constraint Connections
	29.4.4 Sizing Constraints
	29.4.5 Constraint Bias
	29.4.6 Alignment Constraints
	29.4.7 Copying and Applying Constraint Sets
	29.4.8 ConstraintLayout Chains
	29.4.9 Guidelines
	29.4.10 Removing Constraints
	29.4.11 Scaling
	29.4.12 Rotation

	29.5 Summary

	30. An Android ConstraintSet Tutorial
	30.1 Creating the Example Project in Android Studio
	30.2 Adding Views to an Activity
	30.3 Setting View Attributes
	30.4 Creating View IDs
	30.5 Configuring the Constraint Set
	30.6 Adding the EditText View
	30.7 Converting Density Independent Pixels (dp) to Pixels (px)
	30.8 Summary

	31. A Guide to using Instant Run in Android Studio
	31.1 Introducing Instant Run
	31.2 Understanding Instant Run Swapping Levels
	31.3 Enabling and Disabling Instant Run
	31.4 Using Instant Run
	31.5 An Instant Run Tutorial
	31.6 Triggering an Instant Run Hot Swap
	31.7 Triggering an Instant Run Warm Swap
	31.8 Triggering an Instant Run Cold Swap
	31.9 The Run Button
	31.10 Summary

	32. An Overview and Example of Android Event Handling
	32.1 Understanding Android Events
	32.2 Using the android:onClick Resource
	32.3 Event Listeners and Callback Methods
	32.4 An Event Handling Example
	32.5 Designing the User Interface
	32.6 The Event Listener and Callback Method
	32.7 Consuming Events
	32.8 Summary

	33. Android Touch and Multi-touch Event Handling
	33.1 Intercepting Touch Events
	33.2 The MotionEvent Object
	33.3 Understanding Touch Actions
	33.4 Handling Multiple Touches
	33.5 An Example Multi-Touch Application
	33.6 Designing the Activity User Interface
	33.7 Implementing the Touch Event Listener
	33.8 Running the Example Application
	33.9 Summary

	34. Detecting Common Gestures using the Android Gesture Detector Class
	34.1 Implementing Common Gesture Detection
	34.2 Creating an Example Gesture Detection Project
	34.3 Implementing the Listener Class
	34.4 Creating the GestureDetectorCompat Instance
	34.5 Implementing the onTouchEvent() Method
	34.6 Testing the Application
	34.7 Summary

	35. Implementing Custom Gesture and Pinch Recognition on Android
	35.1 The Android Gesture Builder Application
	35.2 The GestureOverlayView Class
	35.3 Detecting Gestures
	35.4 Identifying Specific Gestures
	35.5 Building and Running the Gesture Builder Application
	35.6 Creating a Gestures File
	35.7 Creating the Example Project
	35.8 Extracting the Gestures File from the SD Card
	35.9 Adding the Gestures File to the Project
	35.10 Designing the User Interface
	35.11 Loading the Gestures File
	35.12 Registering the Event Listener
	35.13 Implementing the onGesturePerformed Method
	35.14 Testing the Application
	35.15 Configuring the GestureOverlayView
	35.16 Intercepting Gestures
	35.17 Detecting Pinch Gestures
	35.18 A Pinch Gesture Example Project
	35.19 Summary

	36. An Introduction to Android Fragments
	36.1 What is a Fragment?
	36.2 Creating a Fragment
	36.3 Adding a Fragment to an Activity using the Layout XML File
	36.4 Adding and Managing Fragments in Code
	36.5 Handling Fragment Events
	36.6 Implementing Fragment Communication
	36.7 Summary

	37. Using Fragments in Android Studio - An Example
	37.1 About the Example Fragment Application
	37.2 Creating the Example Project
	37.3 Creating the First Fragment Layout
	37.4 Creating the First Fragment Class
	37.5 Creating the Second Fragment Layout
	37.6 Adding the Fragments to the Activity
	37.7 Making the Toolbar Fragment Talk to the Activity
	37.8 Making the Activity Talk to the Text Fragment
	37.9 Testing the Application
	37.10 Summary

	38. Creating and Managing Overflow Menus on Android
	38.1 The Overflow Menu
	38.2 Creating an Overflow Menu
	38.3 Displaying an Overflow Menu
	38.4 Responding to Menu Item Selections
	38.5 Creating Checkable Item Groups
	38.6 Menus and the Android Studio Menu Editor
	38.7 Creating the Example Project
	38.8 Designing the Menu
	38.9 Modifying the onOptionsItemSelected() Method
	38.10 Testing the Application
	38.11 Summary

	39. Animating User Interfaces with the Android Transitions Framework
	39.1 Introducing Android Transitions and Scenes
	39.2 Using Interpolators with Transitions
	39.3 Working with Scene Transitions
	39.4 Custom Transitions and TransitionSets in Code
	39.5 Custom Transitions and TransitionSets in XML
	39.6 Working with Interpolators
	39.7 Creating a Custom Interpolator
	39.8 Using the beginDelayedTransition Method
	39.9 Summary

	40. An Android Transition Tutorial using beginDelayedTransition
	40.1 Creating the Android Studio TransitionDemo Project
	40.2 Preparing the Project Files
	40.3 Implementing beginDelayedTransition Animation
	40.4 Customizing the Transition
	40.5 Summary

	41. Implementing Android Scene Transitions – A Tutorial
	41.1 An Overview of the Scene Transition Project
	41.2 Creating the Android Studio SceneTransitions Project
	41.3 Identifying and Preparing the Root Container
	41.4 Designing the First Scene
	41.5 Designing the Second Scene
	41.6 Entering the First Scene
	41.7 Loading Scene 2
	41.8 Implementing the Transitions
	41.9 Adding the Transition File
	41.10 Loading and Using the Transition Set
	41.11 Configuring Additional Transitions
	41.12 Summary

	42. Working with the Floating Action Button and Snackbar
	42.1 The Material Design
	42.2 The Design Library
	42.3 The Floating Action Button (FAB)
	42.4 The Snackbar
	42.5 Creating the Example Project
	42.6 Reviewing the Project
	42.7 Changing the Floating Action Button
	42.8 Adding the ListView to the Content Layout
	42.9 Adding Items to the ListView
	42.10 Adding an Action to the Snackbar
	42.11 Summary

	43. Creating a Tabbed Interface using the TabLayout Component
	43.1 An Introduction to the ViewPager
	43.2 An Overview of the TabLayout Component
	43.3 Creating the TabLayoutDemo Project
	43.4 Creating the First Fragment
	43.5 Duplicating the Fragments
	43.6 Adding the TabLayout and ViewPager
	43.7 Creating the Pager Adapter
	43.8 Performing the Initialization Tasks
	43.9 Testing the Application
	43.10 Customizing the TabLayout
	43.11 Displaying Icon Tab Items
	43.12 Summary

	44. Working with the RecyclerView and CardView Widgets
	44.1 An Overview of the RecyclerView
	44.2 An Overview of the CardView
	44.3 Adding the Libraries to the Project
	44.4 Summary

	45. An Android RecyclerView and CardView Tutorial
	45.1 Creating the CardDemo Project
	45.2 Removing the Floating Action Button
	45.3 Adding the RecyclerView and CardView Libraries
	45.4 Designing the CardView Layout
	45.5 Adding the RecyclerView
	45.6 Creating the RecyclerView Adapter
	45.7 Adding the Image Files
	45.8 Initializing the RecyclerView Component
	45.9 Testing the Application
	45.10 Responding to Card Selections
	45.11 Summary

	46. Working with the AppBar and Collapsing Toolbar Layouts
	46.1 The Anatomy of an AppBar
	46.2 The Example Project
	46.3 Coordinating the RecyclerView and Toolbar
	46.4 Introducing the Collapsing Toolbar Layout
	46.5 Changing the Title and Scrim Color
	46.6 Summary

	47. Implementing an Android Navigation Drawer
	47.1 An Overview of the Navigation Drawer
	47.2 Opening and Closing the Drawer
	47.3 Using the Navigation Drawer Activity Template
	47.4 Creating the Navigation Drawer Template Project
	47.5 The Template Layout Resource Files
	47.6 The Header Coloring Resource File
	47.7 The Template Menu Resource File
	47.8 The Template Code
	47.9 Running the App
	47.10 Summary

	48. An Android Studio Master/Detail Flow Tutorial
	48.1 The Master/Detail Flow
	48.2 Creating a Master/Detail Flow Activity
	48.3 The Anatomy of the Master/Detail Flow Template
	48.4 Modifying the Master/Detail Flow Template
	48.5 Changing the Content Model
	48.6 Changing the Detail Pane
	48.7 Modifying the WebsiteDetailFragment Class
	48.8 Modifying the WebsiteListActivity Class
	48.9 Adding Manifest Permissions
	48.10 Running the Application
	48.11 Summary

	49. An Overview of Android Intents
	49.1 An Overview of Intents
	49.2 Explicit Intents
	49.3 Returning Data from an Activity
	49.4 Implicit Intents
	49.5 Using Intent Filters
	49.6 Checking Intent Availability
	49.7 Summary

	50. Android Explicit Intents – A Worked Example
	50.1 Creating the Explicit Intent Example Application
	50.2 Designing the User Interface Layout for ActivityA
	50.3 Creating the Second Activity Class
	50.4 Designing the User Interface Layout for ActivityB
	50.5 Reviewing the Application Manifest File
	50.6 Creating the Intent
	50.7 Extracting Intent Data
	50.8 Launching ActivityB as a Sub-Activity
	50.9 Returning Data from a Sub-Activity
	50.10 Testing the Application
	50.11 Summary

	51. Android Implicit Intents – A Worked Example
	51.1 Creating the Android Studio Implicit Intent Example Project
	51.2 Designing the User Interface
	51.3 Creating the Implicit Intent
	51.4 Adding a Second Matching Activity
	51.5 Adding the Web View to the UI
	51.6 Obtaining the Intent URL
	51.7 Modifying the MyWebView Project Manifest File
	51.8 Installing the MyWebView Package on a Device
	51.9 Testing the Application
	51.10 Summary

	52. Android Broadcast Intents and Broadcast Receivers
	52.1 An Overview of Broadcast Intents
	52.2 An Overview of Broadcast Receivers
	52.3 Obtaining Results from a Broadcast
	52.4 Sticky Broadcast Intents
	52.5 The Broadcast Intent Example
	52.6 Creating the Example Application
	52.7 Creating and Sending the Broadcast Intent
	52.8 Creating the Broadcast Receiver
	52.9 Registering the Broadcast Receiver
	52.10 Testing the Broadcast Example
	52.11 Listening for System Broadcasts
	52.12 Summary

	53. A Basic Overview of Threads and AsyncTasks
	53.1 An Overview of Threads
	53.2 The Application Main Thread
	53.3 Thread Handlers
	53.4 A Basic AsyncTask Example
	53.5 Subclassing AsyncTask
	53.6 Testing the App
	53.7 Canceling a Task
	53.8 Summary

	54. An Overview of Android Started and Bound Services
	54.1 Started Services
	54.2 Intent Service
	54.3 Bound Service
	54.4 The Anatomy of a Service
	54.5 Controlling Destroyed Service Restart Options
	54.6 Declaring a Service in the Manifest File
	54.7 Starting a Service Running on System Startup
	54.8 Summary

	55. Implementing an Android Started Service – A Worked Example
	55.1 Creating the Example Project
	55.2 Creating the Service Class
	55.3 Adding the Service to the Manifest File
	55.4 Starting the Service
	55.5 Testing the IntentService Example
	55.6 Using the Service Class
	55.7 Creating the New Service
	55.8 Modifying the User Interface
	55.9 Running the Application
	55.10 Creating an AsyncTask for Service Tasks
	55.11 Summary

	56. Android Local Bound Services – A Worked Example
	56.1 Understanding Bound Services
	56.2 Bound Service Interaction Options
	56.3 An Android Studio Local Bound Service Example
	56.4 Adding a Bound Service to the Project
	56.5 Implementing the Binder
	56.6 Binding the Client to the Service
	56.7 Completing the Example
	56.8 Testing the Application
	56.9 Summary

	57. Android Remote Bound Services – A Worked Example
	57.1 Client to Remote Service Communication
	57.2 Creating the Example Application
	57.3 Designing the User Interface
	57.4 Implementing the Remote Bound Service
	57.5 Configuring a Remote Service in the Manifest File
	57.6 Launching and Binding to the Remote Service
	57.7 Sending a Message to the Remote Service
	57.8 Summary

	58. An Android 8 Notifications Tutorial
	58.1 An Overview of Notifications
	58.2 Creating the NotifyDemo Project
	58.3 Designing the User Interface
	58.4 Creating the Second Activity
	58.5 Creating a Notification Channel
	58.6 Creating and Issuing a Basic Notification
	58.7 Launching an Activity from a Notification
	58.8 Adding Actions to a Notification
	58.9 Bundled Notifications
	58.10 Summary

	59. An Android 8 Direct Reply Notification Tutorial
	59.1 Creating the DirectReply Project
	59.2 Designing the User Interface
	59.3 Creating the Notification Channel
	59.4 Building the RemoteInput Object
	59.5 Creating the PendingIntent
	59.6 Creating the Reply Action
	59.7 Receiving Direct Reply Input
	59.8 Updating the Notification
	59.9 Summary

	60. An Introduction to Android Multi-Window Support
	60.1 Split-Screen, Freeform and Picture-in-Picture Modes
	60.2 Entering Multi-Window Mode
	60.3 Enabling Freeform Support
	60.4 Checking for Freeform Support
	60.5 Enabling Multi-Window Support in an App
	60.6 Specifying Multi-Window Attributes
	60.7 Detecting Multi-Window Mode in an Activity
	60.8 Receiving Multi-Window Notifications
	60.9 Launching an Activity in Multi-Window Mode
	60.10 Configuring Freeform Activity Size and Position
	60.11 Summary

	61. An Android Studio Multi-Window Split-Screen and Freeform Tutorial
	61.1 Creating the Multi-Window Project
	61.2 Designing the FirstActivity User Interface
	61.3 Adding the Second Activity
	61.4 Launching the Second Activity
	61.5 Enabling Multi-Window Mode
	61.6 Testing Multi-Window Support
	61.7 Launching the Second Activity in a Different Window
	61.8 Summary

	62. An Overview of Android SQLite Databases
	62.1 Understanding Database Tables
	62.2 Introducing Database Schema
	62.3 Columns and Data Types
	62.4 Database Rows
	62.5 Introducing Primary Keys
	62.6 What is SQLite?
	62.7 Structured Query Language (SQL)
	62.8 Trying SQLite on an Android Virtual Device (AVD)
	62.9 Android SQLite Classes
	62.9.1 Cursor
	62.9.2 SQLiteDatabase
	62.9.3 SQLiteOpenHelper
	62.9.4 ContentValues

	62.10 Summary

	63. An Android TableLayout and TableRow Tutorial
	63.1 The TableLayout and TableRow Layout Views
	63.2 Creating the Database Project
	63.3 Adding the TableLayout to the User Interface
	63.4 Configuring the TableRows
	63.5 Adding the Button Bar to the Layout
	63.6 Adjusting the Layout Margins
	63.7 Summary

	64. An Android SQLite Database Tutorial
	64.1 About the Database Example
	64.2 Creating the Data Model
	64.3 Implementing the Data Handler
	64.3.1 The Add Handler Method
	64.3.2 The Query Handler Method
	64.3.3 The Delete Handler Method

	64.4 Implementing the Activity Event Methods
	64.5 Testing the Application
	64.6 Summary

	65. Understanding Android Content Providers
	65.1 What is a Content Provider?
	65.2 The Content Provider
	65.2.1 onCreate()
	65.2.2 query()
	65.2.3 insert()
	65.2.4 update()
	65.2.5 delete()
	65.2.6 getType()

	65.3 The Content URI
	65.4 The Content Resolver
	65.5 The <provider> Manifest Element
	65.6 Summary

	66. Implementing an Android Content Provider in Android Studio
	66.1 Copying the Database Project
	66.2 Adding the Content Provider Package
	66.3 Creating the Content Provider Class
	66.4 Constructing the Authority and Content URI
	66.5 Implementing URI Matching in the Content Provider
	66.6 Implementing the Content Provider onCreate() Method
	66.7 Implementing the Content Provider insert() Method
	66.8 Implementing the Content Provider query() Method
	66.9 Implementing the Content Provider update() Method
	66.10 Implementing the Content Provider delete() Method
	66.11 Declaring the Content Provider in the Manifest File
	66.12 Modifying the Database Handler
	66.13 Summary

	67. Accessing Cloud Storage using the Android Storage Access Framework
	67.1 The Storage Access Framework
	67.2 Working with the Storage Access Framework
	67.3 Filtering Picker File Listings
	67.4 Handling Intent Results
	67.5 Reading the Content of a File
	67.6 Writing Content to a File
	67.7 Deleting a File
	67.8 Gaining Persistent Access to a File
	67.9 Summary

	68. An Android Storage Access Framework Example
	68.1 About the Storage Access Framework Example
	68.2 Creating the Storage Access Framework Example
	68.3 Designing the User Interface
	68.4 Declaring Request Codes
	68.5 Creating a New Storage File
	68.6 The onActivityResult() Method
	68.7 Saving to a Storage File
	68.8 Opening and Reading a Storage File
	68.9 Testing the Storage Access Application
	68.10 Summary

	69. Implementing Video Playback on Android using the VideoView and MediaController Classes
	69.1 Introducing the Android VideoView Class
	69.2 Introducing the Android MediaController Class
	69.3 Creating the Video Playback Example
	69.4 Designing the VideoPlayer Layout
	69.5 Configuring the VideoView
	69.6 Adding Internet Permission
	69.7 Adding the MediaController to the Video View
	69.8 Setting up the onPreparedListener
	69.9 Summary

	70. Android Picture-in-Picture Mode
	70.1 Picture-in-Picture Features
	70.2 Enabling Picture-in-Picture Mode
	70.3 Configuring Picture-in-Picture Parameters
	70.4 Entering Picture-in-Picture Mode
	70.5 Detecting Picture-in-Picture Mode Changes
	70.6 Adding Picture-in-Picture Actions
	70.7 Summary

	71. An Android Picture-in-Picture Tutorial
	71.1 Changing the Minimum SDK Setting
	71.2 Adding Picture-in-Picture Support to the Manifest
	71.3 Adding a Picture-in-Picture Button
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding a Broadcast Receiver
	71.7 Adding the PiP Action
	71.8 Testing the Picture-in-Picture Action
	71.9 Summary

	72. Video Recording and Image Capture on Android using Camera Intents
	72.1 Checking for Camera Support
	72.2 Calling the Video Capture Intent
	72.3 Calling the Image Capture Intent
	72.4 Creating an Android Studio Video Recording Project
	72.5 Designing the User Interface Layout
	72.6 Checking for the Camera
	72.7 Launching the Video Capture Intent
	72.8 Handling the Intent Return
	72.9 Testing the Application
	72.10 Summary

	73. Making Runtime Permission Requests in Android
	73.1 Understanding Normal and Dangerous Permissions
	73.2 Creating the Permissions Example Project
	73.3 Checking for a Permission
	73.4 Requesting Permission at Runtime
	73.5 Providing a Rationale for the Permission Request
	73.6 Testing the Permissions App
	73.7 Summary

	74. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	74.1 Playing Audio
	74.2 Recording Audio and Video using the MediaRecorder Class
	74.3 About the Example Project
	74.4 Creating the AudioApp Project
	74.5 Designing the User Interface
	74.6 Checking for Microphone Availability
	74.7 Performing the Activity Initialization
	74.8 Implementing the recordAudio() Method
	74.9 Implementing the stopAudio() Method
	74.10 Implementing the playAudio() method
	74.11 Configuring and Requesting Permissions
	74.12 Testing the Application
	74.13 Summary

	75. Working with the Google Maps Android API in Android Studio
	75.1 The Elements of the Google Maps Android API
	75.2 Creating the Google Maps Project
	75.3 Obtaining Your Developer Signature
	75.4 Testing the Application
	75.5 Understanding Geocoding and Reverse Geocoding
	75.6 Adding a Map to an Application
	75.7 Requesting Current Location Permission
	75.8 Displaying the User’s Current Location
	75.9 Changing the Map Type
	75.10 Displaying Map Controls to the User
	75.11 Handling Map Gesture Interaction
	75.11.1 Map Zooming Gestures
	75.11.2 Map Scrolling/Panning Gestures
	75.11.3 Map Tilt Gestures
	75.11.4 Map Rotation Gestures

	75.12 Creating Map Markers
	75.13 Controlling the Map Camera
	75.14 Summary

	76. Printing with the Android Printing Framework
	76.1 The Android Printing Architecture
	76.2 The Print Service Plugins
	76.3 Google Cloud Print
	76.4 Printing to Google Drive
	76.5 Save as PDF
	76.6 Printing from Android Devices
	76.7 Options for Building Print Support into Android Apps
	76.7.1 Image Printing
	76.7.2 Creating and Printing HTML Content
	76.7.3 Printing a Web Page
	76.7.4 Printing a Custom Document

	76.8 Summary

	77. An Android HTML and Web Content Printing Example
	77.1 Creating the HTML Printing Example Application
	77.2 Printing Dynamic HTML Content
	77.3 Creating the Web Page Printing Example
	77.4 Removing the Floating Action Button
	77.5 Designing the User Interface Layout
	77.6 Loading the Web Page into the WebView
	77.7 Adding the Print Menu Option
	77.8 Summary

	78. A Guide to Android Custom Document Printing
	78.1 An Overview of Android Custom Document Printing
	78.1.1 Custom Print Adapters

	78.2 Preparing the Custom Document Printing Project
	78.3 Creating the Custom Print Adapter
	78.4 Implementing the onLayout() Callback Method
	78.5 Implementing the onWrite() Callback Method
	78.6 Checking a Page is in Range
	78.7 Drawing the Content on the Page Canvas
	78.8 Starting the Print Job
	78.9 Testing the Application
	78.10 Summary

	79. An Introduction to Android App Links
	79.1 An Overview of Android App Links
	79.2 App Link Intent Filters
	79.3 Handling App Link Intents
	79.4 Associating the App with a Website
	79.5 Summary

	80. An Android Studio App Links Tutorial
	80.1 About the Example App
	80.2 The Database Schema
	80.3 Loading and Running the Project
	80.4 Adding the URL Mapping
	80.5 Adding the Intent Filter
	80.6 Adding Intent Handling Code
	80.7 Testing the App Link
	80.8 Associating an App Link with a Web Site
	80.9 Summary

	81. An Introduction to Android Instant Apps
	81.1 An Overview of Android Instant Apps
	81.2 Instant App Feature Modules
	81.3 Instant App Project Structure
	81.4 The Application and Feature Build Plugins
	81.5 Installing the Instant Apps Development SDK
	81.6 Summary

	82. An Android Instant App Tutorial
	82.1 Creating the Instant App Project
	82.2 Reviewing the Project
	82.3 Testing the Installable App
	82.4 Testing the Instant App
	82.5 Reviewing the Instant App APK Files
	82.6 Summary

	83. Adapting an Android Studio Project for Instants Apps
	83.1 Getting Started
	83.2 Adding the Application APK Module
	83.3 Adding an Instant App Module
	83.4 Testing the Instant App
	83.5 Summary

	84. A Guide to the Android Studio Profiler
	84.1 Accessing the Android Profiler
	84.2 Enabling Advanced Profiling
	84.3 The Android Profiler Tool Window
	84.4 The CPU Profiler
	84.5 Memory Profiler
	84.6 Network Profiler
	84.7 Summary

	85. An Android Fingerprint Authentication Tutorial
	85.1 An Overview of Fingerprint Authentication
	85.2 Creating the Fingerprint Authentication Project
	85.3 Configuring Device Fingerprint Authentication
	85.4 Adding the Fingerprint Permission to the Manifest File
	85.5 Adding the Fingerprint Icon
	85.6 Designing the User Interface
	85.7 Accessing the Keyguard and Fingerprint Manager Services
	85.8 Checking the Security Settings
	85.9 Accessing the Android Keystore and KeyGenerator
	85.10 Generating the Key
	85.11 Initializing the Cipher
	85.12 Creating the CryptoObject Instance
	85.13 Implementing the Fingerprint Authentication Handler Class
	85.14 Testing the Project
	85.15 Summary

	86. Handling Different Android Devices and Displays
	86.1 Handling Different Device Displays
	86.2 Creating a Layout for each Display Size
	86.3 Creating Layout Variants in Android Studio
	86.4 Providing Different Images
	86.5 Checking for Hardware Support
	86.6 Providing Device Specific Application Binaries
	86.7 Summary

	87. Signing and Preparing an Android Application for Release
	87.1 The Release Preparation Process
	87.2 Register for a Google Play Developer Console Account
	87.3 Configuring the App in the Console
	87.4 Enabling Google Play App Signing
	87.5 Changing the Build Variant
	87.6 Enabling ProGuard
	87.7 Creating a Keystore File
	87.8 Creating the Application APK File
	87.9 Uploading New APK Versions to the Google Play Developer Console
	87.10 Managing Testers
	87.11 Uploading Instant App APK Files
	87.12 Uploading New APK Revisions
	87.13 Analyzing the APK File
	87.14 Enabling Google Play Signing for an Existing App
	87.15 Summary

	88. An Overview of Gradle in Android Studio
	88.1 An Overview of Gradle
	88.2 Gradle and Android Studio
	88.2.1 Sensible Defaults
	88.2.2 Dependencies
	88.2.3 Build Variants
	88.2.4 Manifest Entries
	88.2.5 APK Signing
	88.2.6 ProGuard Support

	88.3 The Top-level Gradle Build File
	88.4 Module Level Gradle Build Files
	88.5 Configuring Signing Settings in the Build File
	88.6 Running Gradle Tasks from the Command-line
	88.7 Summary

	Index
	_GoBack
	_Ref381951250
	_Ref381951280
	_Ref381877478
	_Ref381877919
	_Ref382489559
	_Ref381949033
	_Ref382490730
	_Ref381950718
	_GoBack

