
Java Server Pages Tutorial

JAVA SERVER PAGES TUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

ABOUT THE TUTORIAL

JSP Tutorial
Java Server Pages (JSP) is a server-side programming technology that enables the creation of dynamic,
platform-independent method for building Web-based applications. JSP have access to the entire family of Java
APIs, including the JDBC API to access enterprise databases.

This tutorial will teach you how to use Java Server Pages to develop your web applications in simple and easy
steps.

Audience
This tutorial has been prepared for the beginners to help them understand basic functionality of Java Server
Pages (JSP) to develop your web applications. After completing this tutorial you will find yourself at a moderate
level of expertise in using JSP from where you can take yourself to next levels.

Prerequisites
We assume you have little knowledge how web application work over HTTP, what is web server and what is web
browsers. It will be great if you have some knowledge of web application development using any programming
language.

Copyright & Disclaimer Notice

 All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

Table of Content

JSP Tutorial ... 2

Audience .. 2

Prerequisites .. 2

Copyright & Disclaimer Notice .. 2

JSP Overview .. 9

Why Use JSP? ... 9

Advantages of JSP: .. 10

JSP Environment Setup ... 11

Setting up Java Development Kit .. 11

Setting up Web Server: Tomcat .. 12

Setting up CLASSPATH ... 13

JSP Architecture .. 15

JSP Processing: ... 15

JSP – Life Cycle ... 17

JSP Compilation: ... 18

JSP Initialization: ... 18

JSP Execution: .. 18

JSP Cleanup: ... 19

JSP Syntax .. 20

The Scriptlet: .. 20

JSP Declarations:... 21

JSP Expression: ... 21

JSP Comments: ... 22

A Test of Comments .. 22

JSP Directives: .. 23

JSP Actions: .. 23

JSP Implicit Objects: .. 24

Control-Flow Statements: .. 24

Decision-Making Statements:... 24

Loop Statements:.. 25

JSP Operators: .. 26

JSP Literals: .. 27

JSP Directives.. 28

The page Directive: ... 28

Attributes: ... 29

The include Directive: .. 29

The taglib Directive: .. 30

TUTORIALS POINT

Simply Easy Learning

JSP Actions ... 31

Common Attributes: ... 31

The <jsp:include> Action ... 32

Example: .. 32

The include action Example .. 33

The <jsp:useBean> Action .. 33

The <jsp:setProperty> Action ... 33

The <jsp:getProperty> Action ... 34

Example: .. 34

Using JavaBeans in JSP .. 35

The <jsp:forward> Action .. 35

Example: .. 35

The <jsp:plugin> Action ... 36

The <jsp:element> Action .. 37

The <jsp:attribute> Action ... 37

The <jsp:body> Action ... 37

The <jsp:text> Action .. 37

JSP Implicit Objects ... 39

The request Object: .. 39

The response Object: .. 40

The out Object: ... 40

The session Object: ... 40

The application Object: ... 40

The config Object: ... 40

The pageContext Object: ... 41

The page Object: .. 41

The exception Object: ... 41

JSP – Client Request ... 42

The HttpServletRequest Object: ... 43

HTTP Header Request Example: ... 45

HTTP Header Request Example .. 45

JSP – Server Response ... 46

The HttpServletResponse Object: ... 47

HTTP Header Response Example: ... 48

Auto Refresh Header Example .. 49

HTTP Status Codes ... 50

Methods to Set HTTP Status Code: ... 52

HTTP Status Code Example: ... 52

JSP Form Processing .. 54

TUTORIALS POINT

Simply Easy Learning

GET method: .. 54

POST method: .. 54

Reading Form Data using JSP ... 54

GET Method Example Using URL: ... 55

Using GET Method to Read Form Data 55

GET Method Example Using Form: ... 55

POST Method Example Using Form: .. 56

Passing Checkbox Data to JSP Program ... 57

Reading Checkbox Data .. 58

Reading All Form Parameters: .. 58

Reading All Form Parameters ... 59

JSP Filters ... 60

Servlet Filter Methods: .. 61

JSP Filter Example: .. 61

JSP Filter Mapping in Web.xml: .. 62

Using Multiple Filters: ... 62

Filters Application Order: ... 63

JSP – Cookies Handling .. 64

The Anatomy of a Cookie: .. 64

Servlet Cookies Methods: .. 65

Setting Cookies with JSP: ... 66

Example: .. 66

Reading Cookies with JSP: .. 67

Example: .. 67

Found Cookies Name and Value ... 68

Delete Cookies with JSP: .. 68

Example: .. 68

Cookies Name and Value ... 69

Found Cookies Name and Value ... 69

JSP – Session Tracking ... 70

Cookies: ... 70

Hidden Form Fields: .. 70

URL Rewriting: .. 70

The session Object: ... 71

Session Tracking Example: ... 72

Welcome to my website ... 73

Session Infomation .. 73

Welcome Back to my website ... 73

Session Infomation .. 73

TUTORIALS POINT

Simply Easy Learning

Deleting Session Data: ... 73

JSP – File Uploading ... 75

Creating a File Upload Form: .. 75

Writing Backend JSP Script: .. 76

JSP – Handling Dates .. 79

Getting Current Date & Time ... 80

Display Current Date & Time ... 80

Mon Jun 21 21:46:49 GMT+04:00 2010 ... 80

Date Comparison: ... 80

Date Formatting using SimpleDateFormat: .. 81

Display Current Date & Time ... 81

Mon 2010.06.21 at 10:06:44 PM GMT+04:00 ... 81

Simple DateFormat format codes: .. 81

JSP – Page Redirection ... 83

Example: .. 83

JSP – Hit Counter .. 85

Example: .. 85

Hit Counter Resets: ... 86

JSP – Auto Refresh ... 87

Auto Page Refresh Example: .. 87

Auto Refresh Header Example .. 88

JSP – Sending Email ... 89

Send a Simple Email: ... 89

Send Email using JSP ... 90

Send an HTML Email: .. 91

Send Attachment in Email: ... 92

User Authentication Part: .. 93

Using Forms to send email: .. 94

JSP – JSTL .. 95

Install JSTL Library: .. 95

Core Tags: .. 95

Formatting tags: ... 96

SQL tags: .. 97

XML tags: ... 97

JSTL Functions: ... 98

JSP – Database Access ... 100

Create Table ... 100

Create Data Records ... 101

SELECT Operation: .. 101

TUTORIALS POINT

Simply Easy Learning

INSERT Operation: .. 102

DELETE Operation: .. 103

UPDATE Operation: ... 104

JSP – XML Data .. 106

Sending XML from a JSP:.. 106

Processing XML in JSP:... 106

Formatting XML with JSP: .. 107

JSP – JavaBeans ... 110

JavaBeans Properties: ... 110

JavaBeans Example: .. 110

Accessing JavaBeans: .. 111

Accessing JavaBeans Properties:... 112

JSP – Custom Tags ... 114

Create "Hello" Tag: ... 114

Accessing the Tag Body: .. 115

Custom Tag Attributes: .. 116

JSP – Expression Language .. 119

Simple Syntax: .. 119

Basic Operators in EL: .. 120

Functions in JSP EL : .. 121

JSP EL Implicit Objects: .. 121

The pageContext Object: ... 122

The Scope Objects: ... 122

The param and paramValues Objects: ... 122

header and headerValues Objects: ... 122

User Agent Example .. 123

JSP – Exception Handling .. 124

Using Exception Object: ... 124

Using JSTL tags for Error Page: ... 126

Opps... ... 127

Using Try...Catch Block: ... 127

JSP – Debugging ... 128

Using System.out.println(): .. 128

Using the JDB Logger: .. 129

Debugging Tools: .. 130

Using JDB Debugger: ... 130

Using Comments: ... 131

Client and Server Headers:... 131

Important Debugging Tips: .. 131

TUTORIALS POINT

Simply Easy Learning

JSP – Security ... 132

Role Based Authentication: .. 132

Form Based Authentication: .. 133

Programmatic Security in a Servlet/JSP: .. 135

JSP – Internationalization .. 136

Detecting Locale: .. 136

Example: .. 137

Languages Setting: .. 137

Locale Specific Dates: .. 138

Locale Specific Currency .. 138

Locale Specific Percentage ... 139

TUTORIALS POINT

Simply Easy Learning

JSP Overview

Java Server Pages (JSP) is a technology for developing web pages that support dynamic content which

helps developers insert java code in HTML pages by making use of special JSP tags, most of which start with <%
and end with %>.

A JavaServer Pages component is a type of Java servlet that is designed to fulfill the role of a user interface for a
Java web application. Web developers write JSPs as text files that combine HTML or XHTML code, XML
elements, and embedded JSP actions and commands.

Using JSP, you can collect input from users through web page forms, present records from a database or another
source, and create web pages dynamically.

JSP tags can be used for a variety of purposes, such as retrieving information from a database or registering user
preferences, accessing JavaBeans components, passing control between pages and sharing information
between requests, pages etc.

Why Use JSP?
JavaServer Pages often serve the same purpose as programs implemented using the Common Gateway
Interface (CGI). But JSP offer several advantages in comparison with the CGI.

 Performance is significantly better because JSP allows embedding Dynamic Elements in HTML Pages
itself instead of having a separate CGI files.

 JSP are always compiled before it's processed by the server unlike CGI/Perl which requires the server to
load an interpreter and the target script each time the page is requested.

 JavaServer Pages are built on top of the Java Servlets API, so like Servlets, JSP also has access to all
the powerful Enterprise Java APIs, including JDBC, JNDI, EJB, JAXP etc.

 JSP pages can be used in combination with servlets that handle the business logic, the model supported
by Java servlet template engines.

Finally, JSP is an integral part of J2EE, a complete platform for enterprise class applications. This means that
JSP can play a part in the simplest applications to the most complex and demanding.

CHAPTER

1

TUTORIALS POINT

Simply Easy Learning

Advantages of JSP:
Following is the list of other advantages of using JSP over other technologies:

 vs. Active Server Pages (ASP): The advantages of JSP are twofold. First, the dynamic part is written in

Java, not Visual Basic or other MS specific language, so it is more powerful and easier to use. Second, it
is portable to other operating systems and non-Microsoft Web servers.

 vs. Pure Servlets: It is more convenient to write (and to modify!) regular HTML than to have plenty of

println statements that generate the HTML.

 vs. Server-Side Includes (SSI): SSI is really only intended for simple inclusions, not for "real" programs

that use form data, make database connections, and the like.

 vs. JavaScript: JavaScript can generate HTML dynamically on the client but can hardly interact with the

web server to perform complex tasks like database access and image processing etc.

 vs. Static HTML: Regular HTML, of course, cannot contain dynamic information.

TUTORIALS POINT

Simply Easy Learning

JSP Environment Setup

A development environment is where you would develop your JSP programs, test them and finally run

them.

This chapter will guide you to setup your JSP development environment which involves following steps:

Setting up Java Development Kit
This step involves downloading an implementation of the Java Software Development Kit (SDK) and setting up
PATH environment variable appropriately.

You can download SDK from Oracle's Java site: Java SE Downloads.

Once you download your Java implementation, follow the given instructions to install and configure the setup.
Finally set PATH and JAVA_HOME environment variables to refer to the directory that contains java and javac,
typically java_install_dir/bin and java_install_dir respectively.

If you are running Windows and installed the SDK in C:\jdk1.5.0_20, you would put the following line in your
C:\autoexec.bat file.

set PATH=C:\jdk1.5.0_20\bin;%PATH%

set JAVA_HOME=C:\jdk1.5.0_20

Alternatively, on Windows NT/2000/XP, you could also right-click on My Computer, select Properties, then
Advanced, then Environment Variables. Then, you would update the PATH value and press the OK button.

On Unix (Solaris, Linux, etc.), if the SDK is installed in /usr/local/jdk1.5.0_20 and you use the C shell, you would
put the following into your .cshrc file.

setenv PATH /usr/local/jdk1.5.0_20/bin:$PATH

setenv JAVA_HOME /usr/local/jdk1.5.0_20

Alternatively, if you use an Integrated Development Environment (IDE) like Borland JBuilder, Eclipse, IntelliJ
IDEA, or Sun ONE Studio, compile and run a simple program to confirm that the IDE knows where you installed
Java.

CHAPTER

2

http://www.oracle.com/technetwork/java/javase/downloads/index.html

TUTORIALS POINT

Simply Easy Learning

Setting up Web Server: Tomcat
A number of Web Servers that support JavaServer Pages and Servlets development are available in the market.
Some web servers are freely downloadable and Tomcat is one of them.

Apache Tomcat is an open source software implementation of the JavaServer Pages and Servlet technologies
and can act as a standalone server for testing JSP and Servlets and can be integrated with the Apache Web
Server. Here are the steps to setup Tomcat on your machine:

 Download latest version of Tomcat from http://tomcat.apache.org/.

 Once you downloaded the installation, unpack the binary distribution into a convenient location. For example
in C:\apache-tomcat-5.5.29 on windows, or /usr/local/apache-tomcat-5.5.29 on Linux/Unix and create
CATALINA_HOME environment variable pointing to these locations.

Tomcat can be started by executing the following commands on windows machine:

 %CATALINA_HOME%\bin\startup.bat

 or

 C:\apache-tomcat-5.5.29\bin\startup.bat

Tomcat can be started by executing the following commands on Unix (Solaris, Linux, etc.) machine:

$CATALINA_HOME/bin/startup.sh

or

/usr/local/apache-tomcat-5.5.29/bin/startup.sh

After a successful startup, the default web applications included with Tomcat will be available by
visiting http://localhost:8080/. If everything is fine then it should display following result:

http://tomcat.apache.org/

TUTORIALS POINT

Simply Easy Learning

Further information about configuring and running Tomcat can be found in the documentation included here, as
well as on the Tomcat web site: http://tomcat.apache.org

Tomcat can be stopped by executing the following commands on windows machine:

%CATALINA_HOME%\bin\shutdown

or

C:\apache-tomcat-5.5.29\bin\shutdown

Tomcat can be stopped by executing the following commands on Unix (Solaris, Linux, etc.) machine:

$CATALINA_HOME/bin/shutdown.sh

or

/usr/local/apache-tomcat-5.5.29/bin/shutdown.sh

Setting up CLASSPATH

Since servlets are not part of the Java Platform, Standard Edition, you must identify the servlet classes to the
compiler.

If you are running Windows, you need to put the following lines in your C:\autoexec.bat file.

set CATALINA=C:\apache-tomcat-5.5.29

set CLASSPATH=%CATALINA%\common\lib\jsp-api.jar;%CLASSPATH%

TUTORIALS POINT

Simply Easy Learning

Alternatively, on Windows NT/2000/XP, you could also right-click on My Computer, select Properties, then
Advanced, then Environment Variables. Then, you would update the CLASSPATH value and press the OK
button.

On Unix (Solaris, Linux, etc.), if you are using the C shell, you would put the following lines into your .cshrc file.

setenv CATALINA=/usr/local/apache-tomcat-5.5.29

setenv CLASSPATH $CATALINA/common/lib/jsp-api.jar:$CLASSPATH

NOTE: Assuming that your development directory is C:\JSPDev (Windows) or /usr/JSPDev (Unix) then you would

need to add these directories as well in CLASSPATH in similar way as you have added above.

TUTORIALS POINT

Simply Easy Learning

JSP Architecture

The web server needs a JSP engine ie. container to process JSP pages. The JSP container is responsible

for intercepting requests for JSP pages. This tutorial makes use of Apache which has built-in JSP container to
support JSP pages development.

A JSP container works with the Web server to provide the runtime environment and other services a JSP needs.
It knows how to understand the special elements that are part of JSPs.

Following diagram shows the position of JSP container and JSP files in a Web Application.

JSP Processing:
The following steps explain how the web server creates the web page using JSP:

 As with a normal page, your browser sends an HTTP request to the web server.

 The web server recognizes that the HTTP request is for a JSP page and forwards it to a JSP engine. This is
done by using the URL or JSP page which ends with .jsp instead of .html.

 The JSP engine loads the JSP page from disk and converts it into a servlet content. This conversion is very
simple in which all template text is converted to println() statements and all JSP elements are converted to
Java code that implements the corresponding dynamic behavior of the page.

CHAPTER

3

TUTORIALS POINT

Simply Easy Learning

 The JSP engine compiles the servlet into an executable class and forwards the original request to a servlet
engine.

 A part of the web server called the servlet engine loads the Servlet class and executes it. During execution,
the servlet produces an output in HTML format, which the servlet engine passes to the web server inside an
HTTP response.

 The web server forwards the HTTP response to your browser in terms of static HTML content.

 Finally web browser handles the dynamically generated HTML page inside the HTTP response exactly as if
it were a static page.

All the above mentioned steps can be shown below in the following diagram:

Typically, the JSP engine checks to see whether a servlet for a JSP file already exists and whether the
modification date on the JSP is older than the servlet. If the JSP is older than its generated servlet, the JSP
container assumes that the JSP hasn't changed and that the generated servlet still matches the JSP's contents.
This makes the process more efficient than with other scripting languages (such as PHP) and therefore faster.

So in a way, a JSP page is really just another way to write a servlet without having to be a Java programming wiz.
Except for the translation phase, a JSP page is handled exactly like a regular servlet

TUTORIALS POINT

Simply Easy Learning

JSP – Life Cycle

This chapter will explain how to install Hibernate and other associated packages to prepare a develop

environment for the Hibernate applications. We will work with MySQL database to experiment with Hibernate
examples, so make sure you already have setup for MySQL database. For a more detail on MySQL you can
check our MySQL Tutorial.

The key to understanding the low-level functionality of JSP is to understand the simple life cycle they follow.

A JSP life cycle can be defined as the entire process from its creation till the destruction which is similar to a
servlet life cycle with an additional step which is required to compile a JSP into servlet.

The following are the paths followed by a JSP

 Compilation

 Initialization

 Execution

 Cleanup

The four major phases of JSP life cycle are very similar to Servlet Life Cycle and they are as follows:

CHAPTER

4

http://www.tutorialspoint.com/mysql/index.htm

TUTORIALS POINT

Simply Easy Learning

JSP Compilation:
When a browser asks for a JSP, the JSP engine first checks to see whether it needs to compile the page. If the
page has never been compiled, or if the JSP has been modified since it was last compiled, the JSP engine
compiles the page.

The compilation process involves three steps:

 Parsing the JSP.

 Turning the JSP into a servlet.

 Compiling the servlet.

JSP Initialization:
When a container loads a JSP it invokes the jspInit() method before servicing any requests. If you need to
perform JSP-specific initialization, override the jspInit() method:

public void jspInit(){

 // Initialization code...

}

Typically initialization is performed only once and as with the servlet init method, you generally initialize database
connections, open files, and create lookup tables in the jspInit method.

JSP Execution:
This phase of the JSP life cycle represents all interactions with requests until the JSP is destroyed.

TUTORIALS POINT

Simply Easy Learning

Whenever a browser requests a JSP and the page has been loaded and initialized, the JSP engine invokes
the _jspService() method in the JSP.

The _jspService() method takes an HttpServletRequest and an HttpServletResponse as its parameters as

follows:

void _jspService(HttpServletRequest request,

 HttpServletResponse response)

{

 // Service handling code...

}

The _jspService() method of a JSP is invoked once per a request and is responsible for generating the response
for that request and this method is also responsible for generating responses to all seven of the HTTP methods
ie. GET, POST, DELETE etc.

JSP Cleanup:
The destruction phase of the JSP life cycle represents when a JSP is being removed from use by a container.

The jspDestroy() method is the JSP equivalent of the destroy method for servlets. Override jspDestroy when you

need to perform any cleanup, such as releasing database connections or closing open files.

The jspDestroy() method has the following form:

public void jspDestroy()

{

 // Your cleanup code goes here.

}

TUTORIALS POINT

Simply Easy Learning

JSP Syntax

This chapter will give basic idea on simple syntax (ie. elements) involved with JSP development:

The Scriptlet:
A scriptlet can contain any number of JAVA language statements, variable or method declarations, or expressions
that are valid in the page scripting language.

Following is the syntax of Scriptlet:

<% code fragment %>

You can write XML equivalent of the above syntax as follows:

<jsp:scriptlet>

 code fragment

</jsp:scriptlet>

Any text, HTML tags, or JSP elements you write must be outside the scriptlet. Following is the simple and first
example for JSP:

<html>

<head><title>Hello World</title></head>

<body>

Hello World!

<%

out.println("Your IP address is " + request.getRemoteAddr());

%>

</body>

</html>

NOTE: Assuming that Apache Tomcat is installed in C:\apache-tomcat-7.0.2 and your environment is setup as

per environment setup tutorial.

Let us keep above code in JSP file hello.jsp and put this file in C:\apache-tomcat-7.0.2\webapps\ROOTdirectory

and try to browse it by giving URL http://localhost:8080/hello.jsp. This would generate following result:

CHAPTER

5

TUTORIALS POINT

Simply Easy Learning

JSP Declarations:
A declaration declares one or more variables or methods that you can use in Java code later in the JSP file. You
must declare the variable or method before you use it in the JSP file.

Following is the syntax of JSP Declarations:

<%! declaration; [declaration;]+ ... %>

You can write XML equivalent of the above syntax as follows:

<jsp:declaration>

 code fragment

</jsp:declaration>

Following is the simple example for JSP Declarations:

<%! int i = 0; %>

<%! int a, b, c; %>

<%! Circle a = new Circle(2.0); %>

JSP Expression:
A JSP expression element contains a scripting language expression that is evaluated, converted to a String, and
inserted where the expression appears in the JSP file.

Because the value of an expression is converted to a String, you can use an expression within a line of text,
whether or not it is tagged with HTML, in a JSP file.

The expression element can contain any expression that is valid according to the Java Language Specification
but you cannot use a semicolon to end an expression.

Following is the syntax of JSP Expression:

<%= expression %>

You can write XML equivalent of the above syntax as follows:

TUTORIALS POINT

Simply Easy Learning

<jsp:expression>

 expression

</jsp:expression>

Following is the simple example for JSP Expression:

<html>

<head><title>A Comment Test</title></head>

<body>

<p>

 Today's date: <%= (new java.util.Date()).toLocaleString()%>

</p>

</body>

</html>

This would generate following result:

Today's date: 11-Sep-2010 21:24:25

JSP Comments:
JSP comment marks text or statements that the JSP container should ignore. A JSP comment is useful when you
want to hide or "comment out" part of your JSP page.

Following is the syntax of JSP comments:

<%-- This is JSP comment --%>

Following is the simple example for JSP Comments:

<html>

<head><title>A Comment Test</title></head>

<body>

<h2>A Test of Comments</h2>

<%-- This comment will not be visible in the page source --%>

</body>

</html>

This would generate following result:

A Test of Comments

There are a small number of special constructs you can use in various cases to insert comments or characters
that would otherwise be treated specially. Here's a summary:

Syntax Purpose

<%-- comment --%> A JSP comment. Ignored by the JSP engine.

<!-- comment --> An HTML comment. Ignored by the browser.

TUTORIALS POINT

Simply Easy Learning

<\% Represents static <% literal.

%\> Represents static %> literal.

\' A single quote in an attribute that uses single quotes.

\" A double quote in an attribute that uses double quotes.

JSP Directives:
A JSP directive affects the overall structure of the servlet class. It usually has the following form:

<%@ directive attribute="value" %>

There are three types of directive tag:

Directive Description

<%@ page ... %>
Defines page-dependent attributes, such as scripting language, error page, and
buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the page

We would explain JSP directive in separate chapter JSP - Directives

JSP Actions:
JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You can dynamically
insert a file, reuse JavaBeans components, forward the user to another page, or generate HTML for the Java
plugin.

There is only one syntax for the Action element, as it conforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functions and there are following JSP actions available:

Syntax Purpose

jsp:include Includes a file at the time the page is requested

jsp:include Includes a file at the time the page is requested

jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

jsp:plugin
Generates browser-specific code that makes an OBJECT or EMBED tag for the
Java plugin

jsp:element Defines XML elements dynamically.

http://www.tutorialspoint.com/jsp/jsp_directives.htm

TUTORIALS POINT

Simply Easy Learning

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

We would explain JSP actions in separate chapter JSP - Actions

JSP Implicit Objects:
JSP supports nine automatically defined variables, which are also called implicit objects. These variables are:

Objects Description

request This is the HttpServletRequest object associated with the request.

response This is the HttpServletResponse object associated with the response to the client.

out This is the PrintWriter object used to send output to the client.

session This is the HttpSession object associated with the request.

application This is the ServletContext object associated with application context.

config This is the ServletConfig object associated with the page.

pageContext
This encapsulates use of server-specific features like higher
performance JspWriters.

page
This is simply a synonym for this, and is used to call the methods defined by the

translated servlet class.

Exception The Exception object allows the exception data to be accessed by designated JSP.

We would explain JSP Implicit Objects in separate chapter JSP - Implicit Objects.

Control-Flow Statements:
JSP provides full power of Java to be embedded in your web application. You can use all the APIs and building
blocks of Java in your JSP programming including decision making statements, loops etc.

Decision-Making Statements:
The if...else block starts out like an ordinary Scriptlet, but the Scriptlet is closed at each line with HTML text

included between Scriptlet tags.

<%! int day = 3; %>

<html>

<head><title>IF...ELSE Example</title></head>

<body>

<% if (day == 1 | day == 7) { %>

 <p> Today is weekend</p>

<% } else { %>

 <p> Today is not weekend</p>

<% } %>

</body>

</html>

http://www.tutorialspoint.com/jsp/jsp_actions.htm
http://www.tutorialspoint.com/jsp/jsp_implicit_objects.htm

TUTORIALS POINT

Simply Easy Learning

This would produce following result:

Today is not weekend

Now look at the following switch...case block which has been written a bit differentlty using out.println()and

inside Scriptletas:

<%! int day = 3; %>

<html>

<head><title>SWITCH...CASE Example</title></head>

<body>

<%

switch(day) {

case 0:

 out.println("It\'s Sunday.");

 break;

case 1:

 out.println("It\'s Monday.");

 break;

case 2:

 out.println("It\'s Tuesday.");

 break;

case 3:

 out.println("It\'s Wednesday.");

 break;

case 4:

 out.println("It\'s Thursday.");

 break;

case 5:

 out.println("It\'s Friday.");

 break;

default:

 out.println("It's Saturday.");

}

%>

</body>

</html>

This would produce following result:

It's Wednesday.

Loop Statements:
You can also use three basic types of looping blocks in Java: for, while,and do…while blocks in your JSP

programming.

Let us look at the following for loop example:

<%! int fontSize; %>

<html>

<head><title>FOR LOOP Example</title></head>

<body>

<%for (fontSize = 1; fontSize <= 3; fontSize++){ %>

TUTORIALS POINT

Simply Easy Learning

 <font color="green" size="<%= fontSize %>">

 JSP Tutorial

<%}%>

</body>

</html>

This would produce following result:

JSP Tutorial

JSP Tutorial
JSP Tutorial

Above example can be written using while loop as follows:

<%! int fontSize; %>

<html>

<head><title>WHILE LOOP Example</title></head>

<body>

<%while (fontSize <= 3){ %>

 <font color="green" size="<%= fontSize %>">

 JSP Tutorial

<%fontSize++;%>

<%}%>

</body>

</html>

This would also produce following result:

JSP Tutorial

JSP Tutorial
JSP Tutorial

JSP Operators:
JSP supports all the logical and arithmetic operators supported by Java. Following table give a list of all the
operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom.

Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] . (dot operator) Left to right

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

TUTORIALS POINT

Simply Easy Learning

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

JSP Literals:
The JSP expression language defines the following literals:

 Boolean: true and false

 Integer: as in Java

 Floating point: as in Java

 String: with single and double quotes; " is escaped as \", ' is escaped as \', and \ is escaped as \\.

 Null: null

I will consider XML formatted file hibernate.cfg.xml to specify required Hibernate properties in my examples.

Most of the properties take their default values and it is not required to specify them in the property file unless it is
really required. This file is kept in the root directory of your application's classpath.

TUTORIALS POINT

Simply Easy Learning

JSP Directives

JSP directives provide directions and instructions to the container, telling it how to handle certain aspects of

JSP processing.

A JSP directive affects the overall structure of the servlet class. It usually has the following form:

<%@ directive attribute="value" %>

Directives can have a number of attributes which you can list down as key-value pairs and separated by commas.

The blanks between the @ symbol and the directive name, and between the last attribute and the closing %>, are
optional.

There are three types of directive tag:

Directive Description

<%@ page ... %>
Defines page-dependent attributes, such as scripting language, error page, and
buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the page

The page Directive:
The page directive is used to provide instructions to the container that pertain to the current JSP page. You may

code page directives anywhere in your JSP page. By convention, page directives are coded at the top of the JSP
page.

Following is the basic syntax of page directive:

<%@ page attribute="value" %>

You can write XML equivalent of the above syntax as follows:

<jsp:directive.page attribute="value" />

CHAPTER

6

TUTORIALS POINT

Simply Easy Learning

Attributes:
Following is the list of attributes associated with page directive:

Attribute Purpose

buffer Specifies a buffering model for the output stream.

autoFlush Controls the behavior of the servlet output buffer.

contentType Defines the character encoding scheme.

errorPage Defines the URL of another JSP that reports on Java unchecked runtime exceptions.

isErrorPage
Indicates if this JSP page is a URL specified by another JSP page's errorPage
attribute.

extends Specifies a superclass that the generated servlet must extend

import
Specifies a list of packages or classes for use in the JSP as the Java import
statement does for Java classes.

info Defines a string that can be accessed with the servlet's getServletInfo() method.

isThreadSafe Defines the threading model for the generated servlet.

language Defines the programming language used in the JSP page.

session Specifies whether or not the JSP page participates in HTTP sessions

isELIgnored Specifies whether or not EL expression within the JSP page will be ignored.

isScriptingEnabled Determines if scripting elements are allowed for use.

Check more detail related to all the above attributes at Page Directive.

The include Directive:
The include directive is used to includes a file during the translation phase. This directive tells the container to

merge the content of other external files with the current JSP during the translation phase. You may
code include directives anywhere in your JSP page.

The general usage form of this directive is as follows:

<%@ include file="relative url" >

The filename in the include directive is actually a relative URL. If you just specify a filename with no associated
path, the JSP compiler assumes that the file is in the same directory as your JSP.

You can write XML equivalent of the above syntax as follows:

<jsp:directive.include file="relative url" />

Check more detail related to include directive at Include Directive.

http://www.tutorialspoint.com/jsp/page_directive.htm
http://www.tutorialspoint.com/jsp/include_directive.htm

TUTORIALS POINT

Simply Easy Learning

The taglib Directive:
The JavaServer Pages API allows you to define custom JSP tags that look like HTML or XML tags and a tag
library is a set of user-defined tags that implement custom behavior.

The taglib directive declares that your JSP page uses a set of custom tags, identifies the location of the library,

and provides a means for identifying the custom tags in your JSP page.

The taglib directive follows the following syntax:

<%@ taglib uri="uri" prefix="prefixOfTag" >

Where the uri attribute value resolves to a location the container understands and the prefix attribute informs a

container what bits of markup are custom actions.

You can write XML equivalent of the above syntax as follows:

<jsp:directive.taglib uri="uri" prefix="prefixOfTag" />

Check more detail related to taglib directive at Taglib Directive.

http://www.tutorialspoint.com/jsp/taglib_directive.htm

TUTORIALS POINT

Simply Easy Learning

JSP Actions

JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You can dynamically

insert a file, reuse JavaBeans components, forward the user to another page, or generate HTML for the Java
plugin.

There is only one syntax for the Action element, as it conforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functions and there are following JSP actions available:

Syntax Purpose

jsp:include Includes a file at the time the page is requested

jsp:include Includes a file at the time the page is requested

jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

jsp:plugin
Generates browser-specific code that makes an OBJECT or EMBED tag for the
Java plugin

jsp:element Defines XML elements dynamically.

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

Common Attributes:
There are two attributes that are common to all Action elements: the id attribute and the scope attribute.

 Id attribute: The id attribute uniquely identifies the Action element, and allows the action to be referenced

inside the JSP page. If the Action creates an instance of an object the id value can be used to reference it
through the implicit object PageContext

CHAPTER

7

TUTORIALS POINT

Simply Easy Learning

 Scope attribute: This attribute identifies the lifecycle of the Action element. The id attribute and the scope

attribute are directly related, as the scope attribute determines the lifespan of the object associated with the
id. The scope attribute has four possible values: (a) page, (b)request, (c)session, and (d) application.

The <jsp:include> Action
This action lets you insert files into the page being generated. The syntax looks like this:

<jsp:include page="relative URL" flush="true" />

Unlike the include directive, which inserts the file at the time the JSP page is translated into a servlet, this action

inserts the file at the time the page is requested.

Following is the list of attributes associated with include action:

Attribute Description

page The relative URL of the page to be included.

flush
The boolean attribute determines whether the included resource has its buffer
flushed before it is included.

Example:
Let us define following two files (a)date.jps and (b) main.jsp as follows:

Following is the content of date.jsp file:

<p>

 Today's date: <%= (new java.util.Date()).toLocaleString()%>

</p>

Here is the content of main.jsp file:

<html>

<head>

<title>The include Action Example</title>

</head>

<body>

<center>

<h2>The include action Example</h2>

<jsp:include page="date.jsp" flush="true" />

</center>

</body>

</html>

Now let us keep all these files in root directory and try to access main.jsp. This would display result something like
this:

TUTORIALS POINT

Simply Easy Learning

The include action Example
Today's date: 12-Sep-2010 14:54:22

The <jsp:useBean> Action
The useBean action is quite versatile. It first searches for an existing object utilizing the id and scope variables. If

an object is not found, it then tries to create the specified object.

The simplest way to load a bean is as follows:

<jsp:useBean id="name" class="package.class" />

Once a bean class is loaded, you can use jsp:setProperty and jsp:getProperty actions to modify and retrieve

bean properties.

Following is the list of attributes associated with useBean action:

Attribute Description

class Designates the full package name of the bean.

type Specifies the type of the variable that will refer to the object.

beanName
Gives the name of the bean as specified by the instantiate () method of the
java.beans.Beans class.

Let us discuss about jsp:setProperty and jsp:getProperty actions before giving a valid example related to these

actions.

The <jsp:setProperty> Action
The setProperty action sets the properties of a Bean. The Bean must have been previously defined before this

action. There are two basic ways to use the setProperty action:

You can use jsp:setProperty after, but outside of, a jsp:useBean element, as below:

<jsp:useBean id="myName" ... />

...

<jsp:setProperty name="myName" property="someProperty" .../>

In this case, the jsp:setProperty is executed regardless of whether a new bean was instantiated or an existing
bean was found.

A second context in which jsp:setProperty can appear is inside the body of a jsp:useBean element, as below:

<jsp:useBean id="myName" ... >

...

 <jsp:setProperty name="myName" property="someProperty" .../>

</jsp:useBean>

Here, the jsp:setProperty is executed only if a new object was instantiated, not if an existing one was found.

TUTORIALS POINT

Simply Easy Learning

Following is the list of attributes associated with setProperty action:

Attribute Description

name
Designates the bean whose property will be set. The Bean must have been
previously defined.

property
Indicates the property you want to set. A value of "*" means that all request
parameters whose names match bean property names will be passed to the
appropriate setter methods.

value
The value that is to be assigned to the given property. The the parameter's value is
null, or the parameter does not exist, the setProperty action is ignored.

param
The param attribute is the name of the request parameter whose value the property
is to receive. You can't use both value and param, but it is permissible to use
neither.

The <jsp:getProperty> Action
The getProperty action is used to retrieve the value of a given property and converts it to a string, and finally

inserts it into the output.

The getProperty action has only two attributes, both of which are required ans simple syntax is as follows:

<jsp:useBean id="myName" ... />

...

<jsp:getProperty name="myName" property="someProperty" .../>

Following is the list of required attributes associated with setProperty action:

Attribute Description

name
The name of the Bean that has a property to be retrieved. The Bean must have been
previously defined.

property The property attribute is the name of the Bean property to be retrieved.

Example:
Let us define a test bean which we will use in our example:

/* File: TestBean.java */

package action;

public class TestBean {

 private String message = "No message specified";

 public String getMessage() {

 return(message);

 }

 public void setMessage(String message) {

 this.message = message;

 }

}

TUTORIALS POINT

Simply Easy Learning

Compile above code to generated TestBean.class file and make sure that you copied TestBean.class in
C:\apache-tomcat-7.0.2\webapps\WEB-INF\classes\action folder and CLASSPATH variable should also be set to
this folder:

Now use the following code in main.jsp file which loads the bean and sets/gets a simple String parameter:

<html>

<head>

<title>Using JavaBeans in JSP</title>

</head>

<body>

<center>

<h2>Using JavaBeans in JSP</h2>

<jsp:useBean id="test" class="action.TestBean" />

<jsp:setProperty name="test"

 property="message"

 value="Hello JSP..." />

<p>Got message....</p>

<jsp:getProperty name="test" property="message" />

</center>

</body>

</html>

Now try to access main.jsp, it would display following result:

Using JavaBeans in JSP
Got message....

Hello JSP...

The <jsp:forward> Action
The forward action terminates the action of the current page and forwards the request to another resource such

as a static page, another JSP page, or a Java Servlet.

The simple syntax of this action is as follows:

<jsp:forward page="Relative URL" />

Following is the list of required attributes associated with forward action:

Attribute Description

page
Should consist of a relative URL of another resource such as a static page, another
JSP page, or a Java Servlet.

Example:
Let us reuse following two files (a) date.jps and (b) main.jsp as follows:

Following is the content of date.jsp file:

TUTORIALS POINT

Simply Easy Learning

<p>

 Today's date: <%= (new java.util.Date()).toLocaleString()%>

</p>

Here is the content of main.jsp file:

<html>

<head>

<title>The include Action Example</title>

</head>

<body>

<center>

<h2>The include action Example</h2>

<jsp:forward page="date.jsp" />

</center>

</body>

</html>

Now let us keep all these files in root directory and try to access main.jsp. This would display result something like
as below. Here it discarded content from main page and displayed content from forwarded page only.

Today's date: 12-Sep-2010 14:54:22

The <jsp:plugin> Action
The plugin action is used to insert Java components into a JSP page. It determines the type of browser and

inserts the <object> or <embed> tags as needed.

If the needed plugin is not present, it downloads the plugin and then executes the Java component. The Java
component can be either an Applet or a JavaBean.

The plugin action has several attributes that correspond to common HTML tags used to format Java components.
The <param> element can also be used to send parameters to the Applet or Bean.

Following is the typical syntax of using plugin action:

<jsp:plugin type="applet" codebase="dirname" code="MyApplet.class"

 width="60" height="80">

 <jsp:param name="fontcolor" value="red" />

 <jsp:param name="background" value="black" />

 <jsp:fallback>

 Unable to initialize Java Plugin

 </jsp:fallback>

</jsp:plugin>

You can try this action using some applet if you are interested. A new element, the <fallback> element, can be
used to specify an error string to be sent to the user in case the component fails.

TUTORIALS POINT

Simply Easy Learning

The <jsp:element> Action

The <jsp:attribute> Action

The <jsp:body> Action
The <jsp:element>, lt;jsp:attribute> and <jsp:body> actions are used to define XML elements dynamically. The
word dynamically is important, because it means that the XML elements can be generated at request time rather
than statically at compile time.

Following is a simple example to define XML elements dynamically:

<%@page language="java" contentType="text/html"%>

<html xmlns="http://www.w3c.org/1999/xhtml"

 xmlns:jsp="http://java.sun.com/JSP/Page">

<head><title>Generate XML Element</title></head>

<body>

<jsp:element name="xmlElement">

<jsp:attribute name="xmlElementAttr">

 Value for the attribute

</jsp:attribute>

<jsp:body>

 Body for XML element

</jsp:body>

</jsp:element>

</body>

</html>

This would produce following HTML code at run time:

<html xmlns="http://www.w3c.org/1999/xhtml"

 xmlns:jsp="http://java.sun.com/JSP/Page">

<head><title>Generate XML Element</title></head>

<body>

<xmlElement xmlElementAttr="Value for the attribute">

 Body for XML element

</xmlElement>

</body>

</html>

The <jsp:text> Action
The <jsp:text> action can be used to write template text in JSP pages and documents. Following is the simple
syntax for this action:

<jsp:text>Template data</jsp:text>

The body fo the template cannot contain other elements; it can only contain text and EL expressions (Note: EL
expressions are explained in subsequent chapter). Note that in XML files, you cannot use expressions such as
${whatever > 0}, because the greater than signs are illegal. Instead, use the gt form, such as ${whatever gt 0} or
an alternative is to embed the value in a CDATA section.

TUTORIALS POINT

Simply Easy Learning

<jsp:text><![CDATA[
]]></jsp:text>

If you need to include a DOCTYPE declaration, for instance for XHTML, you must also use the <jsp:text> element
as follows:

<jsp:text><![CDATA[<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"DTD/xhtml1-strict.dtd">]]>

</jsp:text>

<head><title>jsp:text action</title></head>

<body>

<books><book><jsp:text>

 Welcome to JSP Programming

</jsp:text></book></books>

</body>

</html>

TUTORIALS POINT

Simply Easy Learning

JSP Implicit Objects

JSP Implicit Objects are the Java objects that the JSP Container makes available to developers in each page

and developer can call them directly without being explicitly declared. JSP Implicit Objects are also called pre-
defined variables.

JSP supports nine Implicit Objects which are listed below:

Object Description

request This is the HttpServletRequest object associated with the request.

response This is the HttpServletResponse object associated with the response to the client.

out This is the PrintWriter object used to send output to the client.

session This is the HttpSession object associated with the request.

application This is the ServletContext object associated with application context.

config This is the ServletConfig object associated with the page.

pageContext
This encapsulates use of server-specific features like higher
performance JspWriters.

page
This is simply a synonym for this, and is used to call the methods defined by the

translated servlet class.

Exception
The Exception object allows the exception data to be accessed by designated

JSP.

The request Object:
The request object is an instance of a javax.servlet.http.HttpServletRequest object. Each time a client requests a
page the JSP engine creates a new object to represent that request.

The request object provides methods to get HTTP header information including form data, cookies, HTTP
methods etc.

We would see complete set of methods associated with request object in coming chapter: JSP - Client Request.

CHAPTER

8

http://www.tutorialspoint.com/jsp/jsp_client_request.htm

TUTORIALS POINT

Simply Easy Learning

The response Object:
The response object is an instance of a javax.servlet.http.HttpServletResponse object. Just as the server creates
the request object, it also creates an object to represent the response to the client.

The response object also defines the interfaces that deal with creating new HTTP headers. Through this object
the JSP programmer can add new cookies or date stamps, HTTP status codes etc. We would see complete set
of methods associated with response object in coming chapter: JSP - Server Response.

The out Object:
The out implicit object is an instance of a javax.servlet.jsp.JspWriter object and is used to send content in a
response.

The initial JspWriter object is instantiated differently depending on whether the page is buffered or not. Buffering
can be easily turned off by using the buffered='false' attribute of the page directive.

The JspWriter object contains most of the same methods as the java.io.PrintWriter class. However, JspWriter has
some additional methods designed to deal with buffering. Unlike the PrintWriter object, JspWriter throws
IOExceptions.

Following are the important methods which we would use to write boolean char, int, double, object, String etc.

Method Description

out.print(dataType dt) Print a data type value

out.println(dataType dt) Print a data type value then terminate the line with new line character.

out.flush() Flush the stream.

The session Object:
The session object is an instance of javax.servlet.http.HttpSession and behaves exactly the same way that
session objects behave under Java Servlets.

The session object is used to track client session between client requests. We would see complete usage of
session object in coming chapter: JSP - Session Tracking.

The application Object:
The application object is direct wrapper around the ServletContext object for the generated Servlet and in reality
an instance of a javax.servlet.ServletContext object.

This object is a representation of the JSP page through its entire lifecycle. This object is created when the JSP
page is initialized and will be removed when the JSP page is removed by the jspDestroy() method.

By adding an attribute to application, you can ensure that all JSP files that make up your web application have
access to it. You can check a simple use of Application Object in chapter: JSP - Hits Counter

The config Object:
The config object is an instantiation of javax.servlet.ServletConfig and is a direct wrapper around the
ServletConfig object for the generated servlet.

http://www.tutorialspoint.com/jsp/jsp_server_response.htm
http://www.tutorialspoint.com/jsp/jsp_session_tracking.htm
http://www.tutorialspoint.com/jsp/jsp_hits_counter.htm

TUTORIALS POINT

Simply Easy Learning

This object allows the JSP programmer access to the Servlet or JSP engine initialization parameters such as the
paths or file locations etc.

The following config method is the only one you might ever use, and its usage is trivial:

config.getServletName();

This returns the servlet name, which is the string contained in the <servlet-name> element defined in the WEB-
INF\web.xml file

The pageContext Object:
The pageContext object is an instance of a javax.servlet.jsp.PageContext object. The pageContext object is used
to represent the entire JSP page.

This object is intended as a means to access information about the page while avoiding most of the
implementation details.

This object stores references to the request and response objects for each request. The application, config,
session, and out objects are derived by accessing attributes of this object.

The pageContext object also contains information about the directives issued to the JSP page, including the
buffering information, the errorPageURL, and page scope.

The PageContext class defines several fields, including PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE,
and APPLICATION_SCOPE, which identify the four scopes. It also supports more than 40 methods, about half of
which are inherited from the javax.servlet.jsp. JspContext class.

One of the important methods is removeAttribute, which accepts either one or two arguments. For example,

pageContext.removeAttribute ("attrName") removes the attribute from all scopes, while the following code only
removes it from the page scope:

pageContext.removeAttribute("attrName", PAGE_SCOPE);

You can check a very good usage of pageContext in coming chapter: JSP - File Uploading.

The page Object:
This object is an actual reference to the instance of the page. It can be thought of as an object that represents the
entire JSP page. The page object is really a direct synonym for the this object.

The exception Object:
The exception object is a wrapper containing the exception thrown from the previous page. It is typically used to
generate an appropriate response to the error condition.

We would see complete usage of this object in coming chapter: JSP - Exception Handling.

http://www.tutorialspoint.com/jsp/jsp_file_uploading.htm
http://www.tutorialspoint.com/jsp/jsp_exception_handling.htm

TUTORIALS POINT

Simply Easy Learning

JSP – Client Request

When a browser requests for a web page, it sends lot of information to the web server which can not

be read directly because this information travel as a part of header of HTTP request. You can check HTTP
Protocol for more information on this.

Following is the important header information which comes from browser side and you would use very frequently
in web programming:

Header Description

Accept
This header specifies the MIME types that the browser or other clients can handle.
Values of image/png or image/jpeg are the two most common possibilities.

Accept-Charset
This header specifies the character sets the browser can use to display the
information. For example ISO-8859-1.

Accept-Encoding
This header specifies the types of encodings that the browser knows how to
handle. Values of gzip or compress are the two most common possibilities.

Accept-Language
This header specifies the client's preferred languages in case the servlet can
produce results in more than one language. For example en, en-us, ru, etc.

Authorization
This header is used by clients to identify themselves when accessing password-
protected Web pages.

Connection

This header indicates whether the client can handle persistent HTTP connections.
Persistent connections permit the client or other browser to retrieve multiple files
with a single request. A value ofKeep-Alive means that persistent connections

should be used

Content-Length
This header is applicable only to POST requests and gives the size of the POST
data in bytes.

Cookie This header returns cookies to servers that previously sent them to the browser.

Host This header specifies the host and port as given in the original URL.

If-Modified-Since
This header indicates that the client wants the page only if it has been changed
after the specified date. The server sends a code, 304 which means Not
Modified header if no newer result is available.

If-Unmodified-Since This header is the reverse of If-Modified-Since; it specifies that the operation should

.CHAPTER

9

http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/http/index.htm

TUTORIALS POINT

Simply Easy Learning

succeed only if the document is older than the specified date.

Referer
This header indicates the URL of the referring Web page. For example, if you are at
Web page 1 and click on a link to Web page 2, the URL of Web page 1 is included
in the Referer header when the browser requests Web page 2.

User-Agent
This header identifies the browser or other client making the request and can be
used to return different content to different types of browsers.

The HttpServletRequest Object:
The request object is an instance of a javax.servlet.http.HttpServletRequest object. Each time a client requests a
page the JSP engine creates a new object to represent that request.

The request object provides methods to get HTTP header information including form data, cookies, HTTP
methods etc.

There are following important methods which can be used to read HTTP header in your JSP program. These
method are available with HttpServletRequest object which represents client request to webserver.

S.N. Method & Description

1
Cookie[] getCookies()

Returns an array containing all of the Cookie objects the client sent with this request.

2
Enumeration getAttributeNames()

Returns an Enumeration containing the names of the attributes available to this request.

3
Enumeration getHeaderNames()

Returns an enumeration of all the header names this request contains.

4

Enumeration getParameterNames()

Returns an Enumeration of String objects containing the names of the parameters contained in this
request.

5

HttpSession getSession()

Returns the current session associated with this request, or if the request does not have a session, creates
one.

6

HttpSession getSession(boolean create)

Returns the current HttpSession associated with this request or, if if there is no current session and create
is true, returns a new session.

7
Locale getLocale()

Returns the preferred Locale that the client will accept content in, based on the Accept-Language header

8
Object getAttribute(String name)

Returns the value of the named attribute as an Object, or null if no attribute of the given name exists.

9
ServletInputStream getInputStream()

Retrieves the body of the request as binary data using a ServletInputStream.

10

String getAuthType()

Returns the name of the authentication scheme used to protect the servlet, for example, "BASIC" or "SSL,"
or null if the JSP was not protected

11
String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request.

12
String getContentType()

Returns the MIME type of the body of the request, or null if the type is not known.

TUTORIALS POINT

Simply Easy Learning

13
String getContextPath()

Returns the portion of the request URI that indicates the context of the request.

14
String getHeader(String name)

Returns the value of the specified request header as a String.

15

String getMethod()

Returns the name of the HTTP method with which this request was made, for example, GET, POST, or
PUT.

16
String getParameter(String name)

Returns the value of a request parameter as a String, or null if the parameter does not exist.

17
String getPathInfo()

Returns any extra path information associated with the URL the client sent when it made this request.

18
String getProtocol()

Returns the name and version of the protocol the request.

19
String getQueryString()

Returns the query string that is contained in the request URL after the path.

20
String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the request.

21
String getRemoteHost()

Returns the fully qualified name of the client that sent the request.

22

String getRemoteUser()

Returns the login of the user making this request, if the user has been authenticated, or null if the user has
not been authenticated.

23

String getRequestURI()

Returns the part of this request's URL from the protocol name up to the query string in the first line of the
HTTP request.

24
String getRequestedSessionId()

Returns the session ID specified by the client.

25
String getServletPath()

Returns the part of this request's URL that calls the JSP.

26

String[] getParameterValues(String name)

Returns an array of String objects containing all of the values the given request parameter has, or null if
the parameter does not exist.

27
boolean isSecure()

Returns a boolean indicating whether this request was made using a secure channel, such as HTTPS.

28

int getContentLength()

Returns the length, in bytes, of the request body and made available by the input stream, or -1 if the length
is not known.

29
int getIntHeader(String name)

Returns the value of the specified request header as an int.

30
int getServerPort()

Returns the port number on which this request was received.

TUTORIALS POINT

Simply Easy Learning

HTTP Header Request Example:
Following is the example which uses getHeaderNames() method of HttpServletRequest to read the HTTP header

infromation. This method returns an Enumeration that contains the header information associated with the current
HTTP request.
Once we have an Enumeration, we can loop down the Enumeration in the standard manner,
usinghasMoreElements() method to determine when to stop and using nextElement() method to get each

parameter name.

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>HTTP Header Request Example</title>

</head>

<body>

<center>

<h2>HTTP Header Request Example</h2>

<table width="100%" border="1" align="center">

<tr bgcolor="#949494">

<th>Header Name</th><th>Header Value(s)</th>

</tr>

<%

 Enumeration headerNames = request.getHeaderNames();

 while(headerNames.hasMoreElements()) {

 String paramName = (String)headerNames.nextElement();

 out.print("<tr><td>" + paramName + "</td>\n");

 String paramValue = request.getHeader(paramName);

 out.println("<td> " + paramValue + "</td></tr>\n");

 }

%>

</table>

</center>

</body>

</html>

Now put the above code in main.jsp and try to access it. This would produce result something as follows:

HTTP Header Request Example
Header Name Header Value(s)

accept */*

accept-language en-us

user-agent
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; InfoPath.2;
MS-RTC LM 8)

accept-encoding gzip, deflate

host localhost:8080

connection Keep-Alive

cache-control no-cache

To become more comfortable with other methods you can try few more above listed methods in the same fashion.

TUTORIALS POINT

Simply Easy Learning

JSP – Server Response

When a Web server responds to a HTTP request to the browser, the response typically consists of a

status line, some response headers, a blank line, and the document. A typical response looks like this:

HTTP/1.1 200 OK

Content-Type: text/html

Header2: ...

...

HeaderN: ...

 (Blank Line)

<!doctype ...>

<html>

<head>...</head>

<body>

...

</body>

</html>

The status line consists of the HTTP version (HTTP/1.1 in the example), a status code (200 in the example), and
a very short message corresponding to the status code (OK in the example).

Following is a summary of the most useful HTTP 1.1 response headers which go back to the browser from web
server side and you would use them very frequently in web programming:

Header Description

Allow
This header specifies the request methods (GET, POST, etc.) that the server
supports.

Cache-Control

This header specifies the circumstances in which the response document can safely
be cached. It can have values public, private orno-cache etc. Public means

document is cacheable, Private means document is for a single user and can only
be stored in private (nonshared) caches and no-cache means document should
never be cached.

Connection
This header instructs the browser whether to use persistent in HTTP connections or
not. A value of close instructs the browser not to use persistent HTTP connections
and keep-alive means using persistent connections.

Content-Disposition This header lets you request that the browser ask the user to save the response to

CHAPTER

10

TUTORIALS POINT

Simply Easy Learning

disk in a file of the given name.

Content-Encoding This header specifies the way in which the page was encoded during transmission.

Content-Language
This header signifies the language in which the document is written. For example en,
en-us, ru, etc.

Content-Length
This header indicates the number of bytes in the response. This information is
needed only if the browser is using a persistent (keep-alive) HTTP connection.

Content-Type
This header gives the MIME (Multipurpose Internet Mail Extension) type of the
response document.

Expires
This header specifies the time at which the content should be considered out-of-date
and thus no longer be cached.

Last-Modified
This header indicates when the document was last changed. The client can then
cache the document and supply a date by an If-Modified-Since request header in

later requests.

Location
This header should be included with all responses that have a status code in the
300s. This notifies the browser of the document address. The browser automatically
reconnects to this location and retrieves the new document.

Refresh
This header specifies how soon the browser should ask for an updated page. You
can specify time in number of seconds after which a page would be refreshed.

Retry-After
This header can be used in conjunction with a 503 (Service Unavailable) response
to tell the client how soon it can repeat its request.

Set-Cookie This header specifies a cookie associated with the page.

The HttpServletResponse Object:
The response object is an instance of a javax.servlet.http.HttpServletRequest object. Just as the server creates
the request object, it also creates an object to represent the response to the client.

The response object also defines the interfaces that deal with creating new HTTP headers. Through this object
the JSP programmer can add new cookies or date stamps, HTTP status codes etc.

There are following methods which can be used to set HTTP response header in your servlet program. These
method are available with HttpServletResponse object which represents server response.

S.N. Method & Description

1

String encodeRedirectURL(String url)

Encodes the specified URL for use in the sendRedirect method or, if encoding is not needed, returns the
URL unchanged.

2

String encodeURL(String url)

Encodes the specified URL by including the session ID in it, or, if encoding is not needed, returns the URL
unchanged.

3
boolean containsHeader(String name)

Returns a boolean indicating whether the named response header has already been set.

4
boolean isCommitted()

Returns a boolean indicating if the response has been committed.

5
void addCookie(Cookie cookie)

Adds the specified cookie to the response.

TUTORIALS POINT

Simply Easy Learning

6
void addDateHeader(String name, long date)

Adds a response header with the given name and date-value.

7
void addHeader(String name, String value)

Adds a response header with the given name and value.

8
void addIntHeader(String name, int value)

Adds a response header with the given name and integer value.

9
void flushBuffer()

Forces any content in the buffer to be written to the client.

10
void reset()

Clears any data that exists in the buffer as well as the status code and headers.

11
void resetBuffer()

Clears the content of the underlying buffer in the response without clearing headers or status code.

12
void sendError(int sc)

Sends an error response to the client using the specified status code and clearing the buffer.

13
void sendError(int sc, String msg)

Sends an error response to the client using the specified status.

14
void sendRedirect(String location)

Sends a temporary redirect response to the client using the specified redirect location URL.

15
void setBufferSize(int size)

Sets the preferred buffer size for the body of the response.

16
void setCharacterEncoding(String charset)

Sets the character encoding (MIME charset) of the response being sent to the client, for example, to UTF-8.

17

void setContentLength(int len)

Sets the length of the content body in the response In HTTP servlets, this method sets the HTTP Content-
Length header.

18
void setContentType(String type)

Sets the content type of the response being sent to the client, if the response has not been committed yet.

19
void setDateHeader(String name, long date)

Sets a response header with the given name and date-value.

20
void setHeader(String name, String value)

Sets a response header with the given name and value.

21
void setIntHeader(String name, int value)

Sets a response header with the given name and integer value.

22
void setLocale(Locale loc)

Sets the locale of the response, if the response has not been committed yet.

23
void setStatus(int sc)

Sets the status code for this response.

HTTP Header Response Example:
Following example would use setIntHeader() method to set Refresh header to simulate a digital clock:

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>Auto Refresh Header Example</title>

TUTORIALS POINT

Simply Easy Learning

</head>

<body>

<center>

<h2>Auto Refresh Header Example</h2>

<%

 // Set refresh, autoload time as 5 seconds

 response.setIntHeader("Refresh", 5);

 // Get current time

 Calendar calendar = new GregorianCalendar();

 String am_pm;

 int hour = calendar.get(Calendar.HOUR);

 int minute = calendar.get(Calendar.MINUTE);

 int second = calendar.get(Calendar.SECOND);

 if(calendar.get(Calendar.AM_PM) == 0)

 am_pm = "AM";

 else

 am_pm = "PM";

 String CT = hour+":"+ minute +":"+ second +" "+ am_pm;

 out.println("Current Time is: " + CT + "\n");

%>

</center>

</body>

</html>

Now put the above code in main.jsp and try to access it. This would display current system time after every 5
seconds as follows. Just run the JSP and wait to see the result:

Auto Refresh Header Example
Current Time is: 9:44:50 PM

To become more comfortable with other methods you can try few more above listed methods in the same fashion.

TUTORIALS POINT

Simply Easy Learning

HTTP Status Codes

The format of the HTTP request and HTTP response messages are similar and will have following

structure:

 An initial status line + CRLF (Carriage Return + Line Feed ie. New Line)

 Zero or more header lines + CRLF

 A blank line ie. a CRLF

 An optional message body like file, query data or query output.

For example, a server response header looks as follows:

HTTP/1.1 200 OK

Content-Type: text/html

Header2: ...

...

HeaderN: ...

 (Blank Line)

<!doctype ...>

<html>

<head>...</head>

<body>

...

</body>

</html>

The status line consists of the HTTP version (HTTP/1.1 in the example), a status code (200 in the example), and
a very short message corresponding to the status code (OK in the example).

Following is a list of HTTP status codes and associated messages that might be returned from the Web Server:

Code: Message: Description:

100
Continue

Only a part of the request has been received by the server, but as long as
it has not been rejected, the client should continue with the request

101 Switching Protocols The server switches protocol.

CHAPTER

11

TUTORIALS POINT

Simply Easy Learning

200 OK The request is OK

201 Created The request is complete, and a new resource is created

202 Accepted The request is accepted for processing, but the processing is not complete.

203 Non-authoritative
Information

204 No Content

205 Reset Content

206 Partial Content

300
Multiple Choices

A link list. The user can select a link and go to that location. Maximum five
addresses

301 Moved Permanently The requested page has moved to a new url

302 Found The requested page has moved temporarily to a new url

303 See Other The requested page can be found under a different url

304 Not Modified

305 Use Proxy

306
Unused

This code was used in a previous version. It is no longer used, but the
code is reserved.

307 Temporary Redirect The requested page has moved temporarily to a new url.

400 Bad Request The server did not understand the request

401 Unauthorized The requested page needs a username and a password

402 Payment Required You can not use this code yet

403 Forbidden Access is forbidden to the requested page

404 Not Found The server can not find the requested page.

405 Method Not Allowed The method specified in the request is not allowed.

406 Not Acceptable The server can only generate a response that is not accepted by the client.

407 Proxy Authentication
Required

You must authenticate with a proxy server before this request can be
served.

408 Request Timeout The request took longer than the server was prepared to wait.

409 Conflict The request could not be completed because of a conflict.

410 Gone The requested page is no longer available.

411
Length Required

The "Content-Length" is not defined. The server will not accept the request
without it.

412 Precondition Failed The precondition given in the request evaluated to false by the server.

413
Request Entity Too Large

The server will not accept the request, because the request entity is too
large.

414 Request-url Too Long The server will not accept the request, because the url is too long. Occurs

TUTORIALS POINT

Simply Easy Learning

when you convert a "post" request to a "get" request with a long query
information.

415
Unsupported Media Type

The server will not accept the request, because the media type is not
supported.

417 Expectation Failed

500 Internal Server Error The request was not completed. The server met an unexpected condition

501
Not Implemented

The request was not completed. The server did not support the
functionality required.

502
Bad Gateway

The request was not completed. The server received an invalid response
from the upstream server

503
Service Unavailable

The request was not completed. The server is temporarily overloading or
down.

504 Gateway Timeout The gateway has timed out.

505 HTTP Version Not
Supported

The server does not support the "http protocol" version.

Methods to Set HTTP Status Code:
There are following methods which can be used to set HTTP Status Code in your servlet program. These method
are available with HttpServletResponse object.

S.N. Method & Description

1

public void setStatus (int statusCode)

This method sets an arbitrary status code. The setStatus method takes an int (the status code) as an
argument. If your response includes a special status code and a document, be sure to call setStatus before
actually returning any of the content with the PrintWriter.

2
public void sendRedirect(String url)
This method generates a 302 response along with a Location header giving the URL of the new document.

3

public void sendError(int code, String message)

This method sends a status code (usually 404) along with a short message that is automatically formatted
inside an HTML document and sent to the client.

HTTP Status Code Example:
Following is the example which would send 407 error code to the client browser and browser would show you
"Need authentication!!!" message.

<html>

<head>

<title>Setting HTTP Status Code</title>

</head>

<body>

<%

 // Set error code and reason.

 response.sendError(407, "Need authentication!!!");

%>

</body>

</html>

TUTORIALS POINT

Simply Easy Learning

Now calling the above JSP would display following result:

HTTP Status 407 - Need authentication!!!
type Status report

message Need authentication!!!

description The client must first authenticate itself with the proxy (Need authentication!!!).

APACHE TOMCAT/5.5.29

To become more comfortable with HTTP status codes, try to set different status codes and their description.

TUTORIALS POINT

Simply Easy Learning

JSP Form Processing

You must have come across many situations when you need to pass some information from your browser

to web server and ultimately to your backend program. The browser uses two methods to pass this information to
web server. These methods are GET Method and POST Method.

GET method:
The GET method sends the encoded user information appended to the page request. The page and the encoded
information are separated by the ? character as follows:

http://www.test.com/hello?key1=value1&key2=value2

The GET method is the default method to pass information from browser to web server and it produces a long
string that appears in your browser's Location:box. Never use the GET method if you have password or other
sensitive information to pass to the server.

The GET method has size limitation: only 1024 characters can be in a request string.

This information is passed using QUERY_STRING header and will be accessible through QUERY_STRING
environment variable which can be handled using getQueryString() and getParameter() methods of request
object.

POST method:
A generally more reliable method of passing information to a backend program is the POST method.

This method packages the information in exactly the same way as GET methods, but instead of sending it as a
text string after a ? in the URL it sends it as a separate message. This message comes to the backend program in
the form of the standard input which you can parse and use for your processing.

JSP handles this type of requests using getParameter() method to read simple parameters and getInputStream()
method to read binary data stream coming from the client.

Reading Form Data using JSP
JSP handles form data parsing automatically using the following methods depending on the situation:

CHAPTER

12

TUTORIALS POINT

Simply Easy Learning

 getParameter(): You call request.getParameter() method to get the value of a form parameter.

 getParameterValues(): Call this method if the parameter appears more than once and returns multiple

values, for example checkbox.

 getParameterNames(): Call this method if you want a complete list of all parameters in the current request.

 getInputStream(): Call this method to read binary data stream coming from the client.

GET Method Example Using URL:
Here is a simple URL which will pass two values to HelloForm program using GET method.

http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI
Below is main.jsp JSP program to handle input given by web browser. We are going to
usegetParameter() method which makes it very easy to access passed information:

<html>

<head>

<title>Using GET Method to Read Form Data</title>

</head>

<body>

<center>

<h1>Using GET Method to Read Form Data</h1>

<p>First Name:

 <%= request.getParameter("first_name")%>

</p>

<p>Last Name:

 <%= request.getParameter("last_name")%>

</p>

</body>

</html>

Now type http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI in your browser's Location:box. This

would generate following result:

Using GET Method to Read Form Data
 First Name: ZARA

 Last Name: ALI

GET Method Example Using Form:
Here is a simple example which passes two values using HTML FORM and submit button. We are going to use
same JSP main.jsp to handle this input.

<html>

<body>

<form action="main.jsp" method="GET">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

TUTORIALS POINT

Simply Easy Learning

Keep this HTML in a file Hello.htm and put it in <Tomcat-installation-directory>/webapps/ROOT directory. When
you would access http://localhost:8080/Hello.htm, here is the actual output of the above form.

First Name:

Last Name:

Try to enter First Name and Last Name and then click submit button to see the result on your local machine
where tomcat is running. Based on the input provided, it will generate similar result as mentioned in the above
example.

POST Method Example Using Form:
Let us do little modification in the above JSP to handle GET as well as POST methods. Below ismain.jsp JSP

program to handle input given by web browser using GET or POST methods.

Infact there is no change in above JSP because only way of passing parameters is changed and no binary data is
being passed to the JSP program. File handling related concepts would be explained in separate chapter where
we need to read binary data stream.

<html>

<head>

<title>Using GET and POST Method to Read Form Data</title>

</head>

<body>

<center>

<h1>Using GET Method to Read Form Data</h1>

<p>First Name:

 <%= request.getParameter("first_name")%>

</p>

<p>Last Name:

 <%= request.getParameter("last_name")%>

</p>

</body>

</html>

Following is the content of Hello.htm file:

<html>

<body>

<form action="main.jsp" method="POST">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

Now let us keep main.jsp and hello.htm in <Tomcat-installation-directory>/webapps/ROOT directory. When you
would access http://localhost:8080/Hello.htm, below is the actual output of the above form.

TUTORIALS POINT

Simply Easy Learning

First Name:

Last Name:

Try to enter First and Last Name and then click submit button to see the result on your local machine where
tomcat is running.

Based on the input provided, it would generate similar result as mentioned in the above examples.

Passing Checkbox Data to JSP Program
Checkboxes are used when more than one option is required to be selected.

Here is example HTML code, CheckBox.htm, for a form with two checkboxes

<html>

<body>

<form action="main.jsp" method="POST" target="_blank">

<input type="checkbox" name="maths" checked="checked" /> Maths

<input type="checkbox" name="physics" /> Physics

<input type="checkbox" name="chemistry" checked="checked" />

 Chemistry

<input type="submit" value="Select Subject" />

</form>

</body>

</html>

The result of this code is the following form

 Maths Physics Chemistry

Below is main.jsp JSP program to handle input given by web browser for checkbox button.

<html>

<head>

<title>Reading Checkbox Data</title>

</head>

<body>

<center>

<h1>Reading Checkbox Data</h1>

<p>Maths Flag:

 <%= request.getParameter("maths")%>

</p>

<p>Physics Flag:

 <%= request.getParameter("physics")%>

</p>

<p>Chemistry Flag:

 <%= request.getParameter("chemistry")%>

</p>

</body>

</html>

TUTORIALS POINT

Simply Easy Learning

For the above example, it would display following result:

Reading Checkbox Data
 Maths Flag : : on

 Physics Flag: : null

 Chemistry Flag: : on

Reading All Form Parameters:
Following is the generic example which uses getParameterNames() method of HttpServletRequest to read all the

available form parameters. This method returns an Enumeration that contains the parameter names in an
unspecified order.
Once we have an Enumeration, we can loop down the Enumeration in the standard manner,
usinghasMoreElements() method to determine when to stop and using nextElement() method to get each
parameter name.

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>HTTP Header Request Example</title>

</head>

<body>

<center>

<h2>HTTP Header Request Example</h2>

<table width="100%" border="1" align="center">

<tr bgcolor="#949494">

<th>Param Name</th><th>Param Value(s)</th>

</tr>

<%

 Enumeration paramNames = request.getParameterNames();

 while(paramNames.hasMoreElements()) {

 String paramName = (String)paramNames.nextElement();

 out.print("<tr><td>" + paramName + "</td>\n");

 String paramValue = request.getHeader(paramName);

 out.println("<td> " + paramValue + "</td></tr>\n");

 }

%>

</table>

</center>

</body>

</html>

Following is the content of Hello.htm:

<html>

<body>

<form action="main.jsp" method="POST" target="_blank">

<input type="checkbox" name="maths" checked="checked" /> Maths

<input type="checkbox" name="physics" /> Physics

<input type="checkbox" name="chemistry" checked="checked" /> Chem

<input type="submit" value="Select Subject" />

</form>

</body>

</html>

TUTORIALS POINT

Simply Easy Learning

Now try calling JSP using above Hello.htm, this would generate a result something like as below based on the
provided input:

Reading All Form Parameters
Param Name Param Value(s)

maths on

chemistry on

You can try above JSP to read any other form's data which is having other objects like text box, radio button or
drop down box etc.

TUTORIALS POINT

Simply Easy Learning

JSP Filters

Servlet and JSP Filters are Java classes that can be used in Servlet and JSP Programming for the

following purposes:

 To intercept requests from a client before they access a resource at back end.

 To manipulate responses from server before they are sent back to the client.

There are various types of filters suggested by the specifications:

 Authentication Filters.

 Data compression Filters

 Encryption Filters .

 Filters that trigger resource access events.

 Image Conversion Filters .

 Logging and Auditing Filters.

 MIME-TYPE Chain Filters.

 Tokenizing Filters .

 XSL/T Filters That Transform XML Content.

Filters are deployed in the deployment descriptor file web.xml and then map to either servlet or JSP names or

URL patterns in your application's deployment descriptor. The deployment descriptor file web.xml can be found
in <Tomcat-installation-directory>\conf directory.

When the JSP container starts up your web application, it creates an instance of each filter that you have
declared in the deployment descriptor. The filters execute in the order that they are declared in the deployment
descriptor.

CHAPTER

13

TUTORIALS POINT

Simply Easy Learning

Servlet Filter Methods:
A filter is simply a Java class that implements the javax.servlet.Filter interface. The javax.servlet.Filter interface
defines three methods:

S.N. Method & Description

1

public void doFilter (ServletRequest, ServletResponse, FilterChain)

This method is called by the container each time a request/response pair is passed through the chain due to
a client request for a resource at the end of the chain.

2
public void init(FilterConfig filterConfig)

This method is called by the web container to indicate to a filter that it is being placed into service.

3
public void destroy()

This method is called by the web container to indicate to a filter that it is being taken out of service.

JSP Filter Example:
Following is the JSP Filter Example that would print the clients IP address and current date time each time it
would access any JSP file. This example would give you basic understanding of JSP Filter, but you can write
more sophisticated filter applications using the same concept:

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

// Implements Filter class

public class LogFilter implements Filter {

 public void init(FilterConfig config)

 throws ServletException{

 // Get init parameter

 String testParam = config.getInitParameter("test-param");

 //Print the init parameter

 System.out.println("Test Param: " + testParam);

 }

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws java.io.IOException, ServletException {

 // Get the IP address of client machine.

 String ipAddress = request.getRemoteAddr();

 // Log the IP address and current timestamp.

 System.out.println("IP "+ ipAddress + ", Time "

 + new Date().toString());

 // Pass request back down the filter chain

 chain.doFilter(request,response);

 }

 public void destroy(){

 /* Called before the Filter instance is removed

 from service by the web container*/

 }

TUTORIALS POINT

Simply Easy Learning

}

Compile LogFilter.java in usual way and put your LogFilter.class class file in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/classes.

JSP Filter Mapping in Web.xml:
Filters are defined and then mapped to a URL or JSP file name, in much the same way as Servlet is defined and
then mapped to a URL pattern in web.xml file. Create the following entry for filter tag in the deployment descriptor
file web.xml

<filter>

 <filter-name>LogFilter</filter-name>

 <filter-class>LogFilter</filter-class>

 <init-param>

 <param-name>test-param</param-name>

 <param-value>Initialization Paramter</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>LogFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

The above filter would apply to all the servlets and JSP because we specified /* in our configuration. You can

specify a particular servlet or JSP path if you want to apply filter on few servlets or JSP only.

Now try to call any servlet or JSP in usual way and you would see generated log in you web server log. You can
use Log4J logger to log above log in a separate file.

Using Multiple Filters:
Your web application may define several different filters with a specific purpose. Consider, you define two
filters AuthenFilter and LogFilter. Rest of the process would remain as explained above except you need to create
a different mapping as mentioned below:

<filter>

 <filter-name>LogFilter</filter-name>

 <filter-class>LogFilter</filter-class>

 <init-param>

 <param-name>test-param</param-name>

 <param-value>Initialization Paramter</param-value>

 </init-param>

</filter>

<filter>

 <filter-name>AuthenFilter</filter-name>

 <filter-class>AuthenFilter</filter-class>

 <init-param>

 <param-name>test-param</param-name>

 <param-value>Initialization Paramter</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>LogFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

TUTORIALS POINT

Simply Easy Learning

<filter-mapping>

 <filter-name>AuthenFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Filters Application Order:
The order of filter-mapping elements in web.xml determines the order in which the web container applies the filter
to the servlet or JSP. To reverse the order of the filter, you just need to reverse the filter-mapping elements in the
web.xml file.

For example, above example would apply LogFilter first and then it would apply AuthenFilter to any servlet or JSP
but the following example would reverse the order:

<filter-mapping>

 <filter-name>AuthenFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

<filter-mapping>

 <filter-name>LogFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

TUTORIALS POINT

Simply Easy Learning

JSP – Cookies Handling

Cookies are text files stored on the client computer and they are kept for various information tracking

purpose. JSP transparently supports HTTP cookies using underlying servlet technology.

There are three steps involved in identifying returning users:

 Server script sends a set of cookies to the browser. For example name, age, or identification number etc.

 Browser stores this information on local machine for future use.

 When next time browser sends any request to web server then it sends those cookies information to the
server and server uses that information to identify the user or may be for some other purpose as well.

This chapter will teach you how to set or reset cookies, how to access them and how to delete them using JSP
programs.

The Anatomy of a Cookie:
Cookies are usually set in an HTTP header (although JavaScript can also set a cookie directly on a browser). A
JSP that sets a cookie might send headers that look something like this:

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name=xyz; expires=Friday, 04-Feb-07 22:03:38 GMT;

 path=/; domain=tutorialspoint.com

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a path and a domain. The name
and value will be URL encoded. The expires field is an instruction to the browser to "forget" the cookie after the
given time and date.

If the browser is configured to store cookies, it will then keep this information until the expiry date. If the user
points the browser at any page that matches the path and domain of the cookie, it will resend the cookie to the
server. The browser's headers might look something like this:

CHAPTER

14

TUTORIALS POINT

Simply Easy Learning

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: zink.demon.co.uk:1126

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: name=xyz

A JSP script will then have access to the cookies through the request method request.getCookies()which returns
an array of Cookie objects.

Servlet Cookies Methods:
Following is the list of useful methods associated with Cookie object which you can use while manipulating
cookies in JSP:

S.N. Method & Description

1
public void setDomain(String pattern)

This method sets the domain to which cookie applies, for example tutorialspoint.com.

2
public String getDomain()

This method gets the domain to which cookie applies, for example tutorialspoint.com.

3

public void setMaxAge(int expiry)

This method sets how much time (in seconds) should elapse before the cookie expires. If you don't set this,
the cookie will last only for the current session.

4

public int getMaxAge()

This method returns the maximum age of the cookie, specified in seconds, By default, -1 indicating the
cookie will persist until browser shutdown.

5
public String getName()

This method returns the name of the cookie. The name cannot be changed after creation.

6
public void setValue(String newValue)

This method sets the value associated with the cookie.

7
public String getValue()

This method gets the value associated with the cookie.

8

public void setPath(String uri)

This method sets the path to which this cookie applies. If you don't specify a path, the cookie is returned for
all URLs in the same directory as the current page as well as all subdirectories.

9
public String getPath()

This method gets the path to which this cookie applies.

10

public void setSecure(boolean flag)

This method sets the boolean value indicating whether the cookie should only be sent over encrypted (i.e.
SSL) connections.

11

public void setComment(String purpose)

This method specifies a comment that describes a cookie's purpose. The comment is useful if the browser
presents the cookie to the user.

12
public String getComment()

This method returns the comment describing the purpose of this cookie, or null if the cookie has no

TUTORIALS POINT

Simply Easy Learning

comment.

Setting Cookies with JSP:
Setting cookies with JSP involves three steps:

(1) Creating a Cookie object: You call the Cookie constructor with a cookie name and a cookie value, both of

which are strings.

Cookie cookie = new Cookie("key","value");

Keep in mind, neither the name nor the value should contain white space or any of the following characters:

[] () = , " / ? @ : ;

(2) Setting the maximum age: You use setMaxAge to specify how long (in seconds) the cookie should be valid.

Following would set up a cookie for 24 hours.

cookie.setMaxAge(60*60*24);

(3) Sending the Cookie into the HTTP response headers: You use response.addCookie to add cookies in the

HTTP response header as follows:

response.addCookie(cookie);

Example:
Let us modify our Form Example to set the cookies for first and last name.

<%

 // Create cookies for first and last names.

 Cookie firstName = new Cookie("first_name",

 request.getParameter("first_name"));

 Cookie lastName = new Cookie("last_name",

 request.getParameter("last_name"));

 // Set expiry date after 24 Hrs for both the cookies.

 firstName.setMaxAge(60*60*24);

 lastName.setMaxAge(60*60*24);

 // Add both the cookies in the response header.

 response.addCookie(firstName);

 response.addCookie(lastName);

%>

<html>

<head>

<title>Setting Cookies</title>

</head>

<body>

<center>

<h1>Setting Cookies</h1>

</center>

<p>First Name:

http://www.tutorialspoint.com/jsp/jsp-form-processing.htm

TUTORIALS POINT

Simply Easy Learning

 <%= request.getParameter("first_name")%>

</p>

<p>Last Name:

 <%= request.getParameter("last_name")%>

</p>

</body>

</html>

Let us put above code in main.jsp file and use it in the following HTML page:

<html>

<body>

<form action="main.jsp" method="GET">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

Keep above HTML content in a file hello.jsp and put hello.jsp and main.jsp in <Tomcat-installation-
directory>/webapps/ROOT directory. When you would access http://localhost:8080/hello.jsp, here is the actual

output of the above form.

First Name:

Last Name:

Try to enter First Name and Last Name and then click submit button. This would display first name and last name
on your screen and same time it would set two cookies firstName and lastName which would be passed back to
the server when next time you would press Submit button.

Next section would explain you how you would access these cookies back in your web application.

Reading Cookies with JSP:
To read cookies, you need to create an array of javax.servlet.http.Cookie objects by calling thegetCookies(
) method of HttpServletRequest. Then cycle through the array, and use getName() and getValue() methods to

access each cookie and associated value.

Example:
Let us read cookies which we have set in previous example:

<html>

<head>

<title>Reading Cookies</title>

</head>

<body>

<center>

<h1>Reading Cookies</h1>

TUTORIALS POINT

Simply Easy Learning

</center>

<%

 Cookie cookie = null;

 Cookie[] cookies = null;

 // Get an array of Cookies associated with this domain

 cookies = request.getCookies();

 if(cookies != null){

 out.println("<h2> Found Cookies Name and Value</h2>");

 for (int i = 0; i < cookies.length; i++){

 cookie = cookies[i];

 out.print("Name : " + cookie.getName() + ", ");

 out.print("Value: " + cookie.getValue()+"
");

 }

 }else{

 out.println("<h2>No cookies founds</h2>");

 }

%>

</body>

</html>

Now let us put above code in main.jsp file and try to access it. If you would have set first_name cookie as "John"
and last_name cookie as "Player" then running http://localhost:8080/main.jsp would display the following result:

Found Cookies Name and Value
Name : first_name, Value: John
Name : last_name, Value: Player

Delete Cookies with JSP:
To delete cookies is very simple. If you want to delete a cookie then you simply need to follow up following three
steps:

 Read an already existing cookie and store it in Cookie object.

 Set cookie age as zero using setMaxAge() method to delete an existing cookie.

 Add this cookie back into response header.

Example:
Following example would delete and existing cookie named "first_name" and when you would run main.jsp JSP
next time it would return null value for first_name.

<html>

<head>

<title>Reading Cookies</title>

</head>

<body>

<center>

<h1>Reading Cookies</h1>

</center>

<%

 Cookie cookie = null;

TUTORIALS POINT

Simply Easy Learning

 Cookie[] cookies = null;

 // Get an array of Cookies associated with this domain

 cookies = request.getCookies();

 if(cookies != null){

 out.println("<h2> Found Cookies Name and Value</h2>");

 for (int i = 0; i < cookies.length; i++){

 cookie = cookies[i];

 if((cookie.getName()).compareTo("first_name") == 0){

 cookie.setMaxAge(0);

 response.addCookie(cookie);

 out.print("Deleted cookie: " +

 cookie.getName() + "
");

 }

 out.print("Name : " + cookie.getName() + ", ");

 out.print("Value: " + cookie.getValue()+"
");

 }

 }else{

 out.println(

 "<h2>No cookies founds</h2>");

 }

%>

</body>

</html>

Now let us put above code in main.jsp file and try to access it. It would display the following result:

Cookies Name and Value
Deleted cookie : first_name
Name : first_name, Value: John
Name : last_name, Value: Player

Now try to run http://localhost:8080/main.jsp once again and it should display only one cookie as follows:

Found Cookies Name and Value
Name : last_name, Value: Player

You can delete your cookies in Internet Explorer manually. Start at the Tools menu and select Internet Options.

TUTORIALS POINT

Simply Easy Learning

JSP – Session Tracking

HTTP is a "stateless" protocol which means each time a client retrieves a Web page, the client opens a

separate connection to the Web server and the server automatically does not keep any record of previous client
request.

Still there are following three ways to maintain session between web client and web server:

Cookies:
A webserver can assign a unique session ID as a cookie to each web client and for subsequent requests from the
client they can be recognized using the received cookie.

This may not be an effective way because many time browser does not support a cookie, so I would not
recommend to use this procedure to maintain the sessions.

Hidden Form Fields:
A web server can send a hidden HTML form field along with a unique session ID as follows:

<input type="hidden" name="sessionid" value="12345">

This entry means that, when the form is submitted, the specified name and value are automatically included in the
GET or POST data. Each time when web browser sends request back, then session_id value can be used to
keep the track of different web browsers.

This could be an effective way of keeping track of the session but clicking on a regular (<A HREF...>) hypertext
link does not result in a form submission, so hidden form fields also cannot support general session tracking.

URL Rewriting:
You can append some extra data on the end of each URL that identifies the session, and the server can
associate that session identifier with data it has stored about that session.

For example, with http://tutorialspoint.com/file.htm;sessionid=12345, the session identifier is attached as
sessionid=12345 which can be accessed at the web server to identify the client.

CHAPTER

15

TUTORIALS POINT

Simply Easy Learning

URL rewriting is a better way to maintain sessions and works for the browsers when they don't support cookies
but here drawback is that you would have generate every URL dynamically to assign a session ID though page is
simple static HTML page.

The session Object:
Apart from the above mentioned three ways, JSP makes use of servlet provided HttpSession Interface which
provides a way to identify a user across more than one page request or visit to a Web site and to store
information about that user.

By default, JSPs have session tracking enabled and a new HttpSession object is instantiated for each new client
automatically. Disabling session tracking requires explicitly turning it off by setting the page directive session
attribute to false as follows:

<%@ page session="false" %>

The JSP engine exposes the HttpSession object to the JSP author through the implicit session object.
Since session object is already provided to the JSP programmer, the programmer can immediately begin storing

and retrieving data from the object without any initialization or getSession().

Here is a summary of important methods available through session object:

S.N. Method & Description

1

public Object getAttribute(String name)

This method returns the object bound with the specified name in this session, or null if no object is bound
under the name.

2

public Enumeration getAttributeNames()

This method returns an Enumeration of String objects containing the names of all the objects bound to this
session.

3

public long getCreationTime()

This method returns the time when this session was created, measured in milliseconds since midnight
January 1, 1970 GMT.

4
public String getId()

This method returns a string containing the unique identifier assigned to this session.

5

public long getLastAccessedTime()

This method returns the last time the client sent a request associated with this session, as the number of
milliseconds since midnight January 1, 1970 GMT.

6

public int getMaxInactiveInterval()

This method returns the maximum time interval, in seconds, that the servlet container will keep this session
open between client accesses.

7
public void invalidate()

This method invalidates this session and unbinds any objects bound to it.

8

public boolean isNew(

This method returns true if the client does not yet know about the session or if the client chooses not to join
the session.

9
public void removeAttribute(String name)

This method removes the object bound with the specified name from this session.

10
public void setAttribute(String name, Object value)

This method binds an object to this session, using the name specified.

TUTORIALS POINT

Simply Easy Learning

11

public void setMaxInactiveInterval(int interval)

This method specifies the time, in seconds, between client requests before the servlet container will
invalidate this session.

Session Tracking Example:
This example describes how to use the HttpSession object to find out the creation time and the last-accessed
time for a session. We would associate a new session with the request if one does not already exist.

<%@ page import="java.io.*,java.util.*" %>

<%

 // Get session creation time.

 Date createTime = new Date(session.getCreationTime());

 // Get last access time of this web page.

 Date lastAccessTime = new Date(session.getLastAccessedTime());

 String title = "Welcome Back to my website";

 Integer visitCount = new Integer(0);

 String visitCountKey = new String("visitCount");

 String userIDKey = new String("userID");

 String userID = new String("ABCD");

 // Check if this is new comer on your web page.

 if (session.isNew()){

 title = "Welcome to my website";

 session.setAttribute(userIDKey, userID);

 session.setAttribute(visitCountKey, visitCount);

 }

 visitCount = (Integer)session.getAttribute(visitCountKey;

 visitCount = visitCount + 1;

 userID = (String)session.getAttribute(userIDKey);

 session.setAttribute(visitCountKey, visitCount);

%>

<html>

<head>

<title>Session Tracking</title>

</head>

<body>

<center>

<h1>Session Tracking</h1>

</center>

<table border="1" align="center">

<tr bgcolor="#949494">

 <th>Session info</th>

 <th>Value</th>

</tr>

<tr>

 <td>id</td>

 <td><% out.print(session.getId()); %></td>

</tr>

<tr>

 <td>Creation Time</td>

 <td><% out.print(createTime); %></td>

</tr>

<tr>

 <td>Time of Last Access</td>

 <td><% out.print(lastAccessTime); %></td>

</tr>

TUTORIALS POINT

Simply Easy Learning

<tr>

 <td>User ID</td>

 <td><% out.print(userID); %></td>

</tr>

<tr>

 <td>Number of visits</td>

 <td><% out.print(visitCount); %></td>

</tr>

</table>

</body>

</html>

Now put above code in main.jsp and try to access http://localhost:8080/main.jsp. It would display the following
result when you would run for the first time:

Welcome to my website
Session Infomation

Session info value

id 0AE3EC93FF44E3C525B4351B77ABB2D5

Creation Time Tue Jun 08 17:26:40 GMT+04:00 2010

Time of Last Access Tue Jun 08 17:26:40 GMT+04:00 2010

User ID ABCD

Number of visits 0

Now try to run the same JSP for second time, it would display following result.

Welcome Back to my website
Session Infomation

info type value

id 0AE3EC93FF44E3C525B4351B77ABB2D5

Creation Time Tue Jun 08 17:26:40 GMT+04:00 2010

Time of Last Access Tue Jun 08 17:26:40 GMT+04:00 2010

User ID ABCD

Number of visits 1

Deleting Session Data:
When you are done with a user's session data, you have several options:

 Remove a particular attribute: You can call public void removeAttribute(String name) method to delete the

value associated with a particular key.

 Delete the whole session: You can call public void invalidate() method to discard an entire session.

 Setting Session timeout: You can call public void setMaxInactiveInterval(int interval) method to set the

timeout for a session individually.

 Log the user out: The servers that support servlets 2.4, you can call logout to log the client out of the Web

server and invalidate all sessions belonging to all the users.

TUTORIALS POINT

Simply Easy Learning

 web.xml Configuration: If you are using Tomcat, apart from the above mentioned methods, you can

configure session time out in web.xml file as follows.

 <session-config>

 <session-timeout>15</session-timeout>

 </session-config>

The timeout is expressed as minutes, and overrides the default timeout which is 30 minutes in Tomcat.

The getMaxInactiveInterval() method in a servlet returns the timeout period for that session in seconds. So if your

TUTORIALS POINT

Simply Easy Learning

JSP – File Uploading

A JSP can be used with an HTML form tag to allow users to upload files to the server. An uploaded file

could be a text file or binary or image file or any document.

Creating a File Upload Form:
The following HTM code below creates an uploader form. Following are the important points to be noted down:

 The form method attribute should be set to POST method and GET method can not be used.

 The form enctype attribute should be set to multipart/form-data.

 The form action attribute should be set to a JSP file which would handle file uploading at backend server.
Following example is using uploadFile.jsp program file to upload file.

 To upload a single file you should use a single <input .../> tag with attribute type="file". To allow multiple files
uploading, include more than one input tags with different values for the name attribute. The browser
associates a Browse button with each of them.

<html>

<head>

<title>File Uploading Form</title>

</head>

<body>

<h3>File Upload:</h3>

Select a file to upload:

<form action="UploadServlet" method="post"

 enctype="multipart/form-data">

<input type="file" name="file" size="50" />

<input type="submit" value="Upload File" />

</form>

</body>

</html>

This will display following result which would allow to select a file from local PC and when user would click at
"Upload File", form would be submitted along with the selected file:

File Upload:

CHAPTER

16

TUTORIALS POINT

Simply Easy Learning

Select a file to upload:

NOTE: Above form is just dummy form and would not work, you should try above code at your machine to make it
work.

Writing Backend JSP Script:
First let us define a location where uploaded files would be stored. You can hard code this in your program or this
directory name could also be added using an external configuration such as a context-param element in web.xml

as follows:

<web-app>

....

<context-param>

 <description>Location to store uploaded file</description>

 <param-name>file-upload</param-name>

 <param-value>

 c:\apache-tomcat-5.5.29\webapps\data\

 </param-value>

</context-param>

....

</web-app>

Following is the source code for UploadFile.jsp which can handle multiple file uploading at a time. Before
proceeding you have make sure the followings:

 Following example depends on FileUpload, so make sure you have the latest version ofcommons-
fileupload.x.x.jar file in your classpath. You can download it fromhttp://commons.apache.org/fileupload/.

 FileUpload depends on Commons IO, so make sure you have the latest version of commons-io-x.x.jar file in

your classpath. You can download it from http://commons.apache.org/io/.

 While testing following example, you should upload a file which has less size than maxFileSizeotherwise file
would not be uploaded.

 Make sure you have created directories c:\temp and c:\apache-tomcat-5.5.29\webapps\data well in advance.

<%@ page import="java.io.*,java.util.*, javax.servlet.*" %>

<%@ page import="javax.servlet.http.*" %>

<%@ page import="org.apache.commons.fileupload.*" %>

<%@ page import="org.apache.commons.fileupload.disk.*" %>

<%@ page import="org.apache.commons.fileupload.servlet.*" %>

<%@ page import="org.apache.commons.io.output.*" %>

<%

 File file ;

 int maxFileSize = 5000 * 1024;

 int maxMemSize = 5000 * 1024;

 ServletContext context = pageContext.getServletContext();

 String filePath = context.getInitParameter("file-upload");

http://commons.apache.org/fileupload/
http://commons.apache.org/io/

TUTORIALS POINT

Simply Easy Learning

 // Verify the content type

 String contentType = request.getContentType();

 if ((contentType.indexOf("multipart/form-data") >= 0)) {

 DiskFileItemFactory factory = new DiskFileItemFactory();

 // maximum size that will be stored in memory

 factory.setSizeThreshold(maxMemSize);

 // Location to save data that is larger than maxMemSize.

 factory.setRepository(new File("c:\\temp"));

 // Create a new file upload handler

 ServletFileUpload upload = new ServletFileUpload(factory);

 // maximum file size to be uploaded.

 upload.setSizeMax(maxFileSize);

 try{

 // Parse the request to get file items.

 List fileItems = upload.parseRequest(request);

 // Process the uploaded file items

 Iterator i = fileItems.iterator();

 out.println("<html>");

 out.println("<head>");

 out.println("<title>JSP File upload</title>");

 out.println("</head>");

 out.println("<body>");

 while (i.hasNext ())

 {

 FileItem fi = (FileItem)i.next();

 if (!fi.isFormField ())

 {

 // Get the uploaded file parameters

 String fieldName = fi.getFieldName();

 String fileName = fi.getName();

 boolean isInMemory = fi.isInMemory();

 long sizeInBytes = fi.getSize();

 // Write the file

 if(fileName.lastIndexOf("\\") >= 0){

 file = new File(filePath +

 fileName.substring(fileName.lastIndexOf("\\"))) ;

 }else{

 file = new File(filePath +

 fileName.substring(fileName.lastIndexOf("\\")+1)) ;

 }

 fi.write(file) ;

 out.println("Uploaded Filename: " + filePath +

 fileName + "
");

 }

 }

 out.println("</body>");

 out.println("</html>");

 }catch(Exception ex) {

 System.out.println(ex);

 }

 }else{

 out.println("<html>");

TUTORIALS POINT

Simply Easy Learning

 out.println("<head>");

 out.println("<title>Servlet upload</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<p>No file uploaded</p>");

 out.println("</body>");

 out.println("</html>");

 }

%>

Now try to upload files using the HTML form which you created above. When you would try
http://localhost:8080/UploadFile.htm, it would display following result which would help you uploading any file from
your local machine.

File Upload:

Select a file to upload: < >

TUTORIALS POINT

Simply Easy Learning

JSP – Handling Dates

One of the most important advantages of using JSP is that you can use all the methods available in core

Java. This tutorial would take you through Java provided Date class which is available in java.util package, this

class encapsulates the current date and time.

The Date class supports two constructors. The first constructor initializes the object with the current date and
time.

Date()

The following constructor accepts one argument that equals the number of milliseconds that have elapsed since
midnight, January 1, 1970

Date(long millisec)

Once you have a Date object available, you can call any of the following support methods to play with dates:

SN Methods with Description

1

boolean after(Date date)

Returns true if the invoking Date object contains a date that is later than the one specified by date, otherwise,
it returns false.

2

boolean before(Date date)

Returns true if the invoking Date object contains a date that is earlier than the one specified by date,
otherwise, it returns false.

3
Object clone()

Duplicates the invoking Date object.

4

int compareTo(Date date)

Compares the value of the invoking object with that of date. Returns 0 if the values are equal. Returns a
negative value if the invoking object is earlier than date. Returns a positive value if the invoking object is later
than date.

5
int compareTo(Object obj)

Operates identically to compareTo(Date) if obj is of class Date. Otherwise, it throws a ClassCastException.

6

boolean equals(Object date)

Returns true if the invoking Date object contains the same time and date as the one specified by date,
otherwise, it returns false.

CHAPTER

17

TUTORIALS POINT

Simply Easy Learning

7
long getTime()

Returns the number of milliseconds that have elapsed since January 1, 1970.

8
int hashCode()

Returns a hash code for the invoking object.

9

void setTime(long time)

Sets the time and date as specified by time, which represents an elapsed time in milliseconds from midnight,
January 1, 1970

10
String toString()

Converts the invoking Date object into a string and returns the result.

Getting Current Date & Time
This is very easy to get current date and time in JSP program. You can use a simple Date object
withtoString() method to print current date and time as follows:

<%@ page import="java.io.*,java.util.*, javax.servlet.*" %>

<html>

<head>

<title>Display Current Date & Time</title>

</head>

<body>

<center>

<h1>Display Current Date & Time</h1>

</center>

<%

 Date date = new Date();

 out.print("<h2 align=\"center\">" +date.toString()+"</h2>");

%>

</body>

</html>

Now let us keep about code in CurrentDate.jsp and then call this JSP using URL
http://localhost:8080/CurrentDate.jsp. This would produce following result:

Display Current Date & Time
Mon Jun 21 21:46:49 GMT+04:00 2010

Try to refresh URL http://localhost:8080/CurrentDate.jsp and you would find difference in seconds everytime you
would refresh.

Date Comparison:
As I mentioned above you can use all the available Java methods in your JSP scripts. In case you need to
compare two dates, following are the methods:

 You can use getTime() to obtain the number of milliseconds that have elapsed since midnight, January 1,
1970, for both objects and then compare these two values.

 You can use the methods before(), after(), and equals(). Because the 12th of the month comes before the
18th, for example, new Date(99, 2, 12).before(new Date (99, 2, 18)) returns true.

TUTORIALS POINT

Simply Easy Learning

 You can use the compareTo() method, which is defined by the Comparable interface and implemented by
Date.

Date Formatting using SimpleDateFormat:
SimpleDateFormat is a concrete class for formatting and parsing dates in a locale-sensitive manner.
SimpleDateFormat allows you to start by choosing any user-defined patterns for date-time formatting.

Let us modify above example as follows:

<%@ page import="java.io.*,java.util.*" %>

<%@ page import="javax.servlet.*,java.text.*" %>

<html>

<head>

<title>Display Current Date & Time</title>

</head>

<body>

<center>

<h1>Display Current Date & Time</h1>

</center>

<%

 Date dNow = new Date();

 SimpleDateFormat ft =

 new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

 out.print("<h2 align=\"center\">" + ft.format(dNow) + "</h2>");

%>

</body>

</html>

Compile above servlet once again and then call this servlet using URL http://localhost:8080/CurrentDate. This
would produce following result:

Display Current Date & Time
Mon 2010.06.21 at 10:06:44 PM GMT+04:00

Simple DateFormat format codes:
To specify the time format use a time pattern string. In this pattern, all ASCII letters are reserved as pattern
letters, which are defined as the following:

Character Description Example

G Era designator AD

y Year in four digits 2001

M Month in year July or 07

d Day in month 10

h Hour in A.M./P.M. (1~12) 12

H Hour in day (0~23) 22

m Minute in hour 30

TUTORIALS POINT

Simply Easy Learning

s Second in minute 55

S Millisecond 234

E Day in week Tuesday

D Day in year 360

F Day of week in month 2 (second Wed. in July)

w Week in year 40

W Week in month 1

a A.M./P.M. marker PM

k Hour in day (1~24) 24

K Hour in A.M./P.M. (0~11) 10

z Time zone Eastern Standard Time

' Escape for text Delimiter

" Single quote `

For a complete list of constant available methods to manipulate date, you can refer to standard Java
documentation.

TUTORIALS POINT

Simply Easy Learning

JSP – Page Redirection

Page redirection is generally used when a document moves to a new location and we need to send the

client to this new location or may be because of load balancing, or for simple randomization.

The simplest way of redirecting a request to another page is using method sendRedirect() of response object.

Following is the signature of this method:

public void response.sendRedirect(String location)

throws IOException

This method sends back the response to the browser along with the status code and new page location. You can
also use setStatus() and setHeader() methods together to achieve the same redirection:

....

String site = "http://www.newpage.com" ;

response.setStatus(response.SC_MOVED_TEMPORARILY);

response.setHeader("Location", site);

....

Example:
This example shows how a JSP performs page redirection to an another location:

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>Page Redirection</title>

</head>

<body>

<center>

<h1>Page Redirection</h1>

</center>

<%

 // New location to be redirected

 String site = new String("http://www.photofuntoos.com");

 response.setStatus(response.SC_MOVED_TEMPORARILY);

 response.setHeader("Location", site);

%>

</body>

</html>

CHAPTER

18

TUTORIALS POINT

Simply Easy Learning

Now let us put above code in PageRedirect.jsp and call this JSP using URL

TUTORIALS POINT

Simply Easy Learning

JSP – Hit Counter

A hit counter tells you about the number of visits on a particular page of your web site. Usually you attach

a hit counter with your index.jsp page assuming people first land on your home page.

To implement a hit counter you can make use of Application Implicit object and associated methods getAttribute()
and setAttribute().

This object is a representation of the JSP page through its entire lifecycle. This object is created when the JSP
page is initialized and will be removed when the JSP page is removed by the jspDestroy() method.

Following is the syntax to set a variable at application level:

application.setAttribute(String Key, Object Value);

You can use above method to set a hit counter variable and to reset the same variable. Following is the method
to read the variable set by previous method:

application.getAttribute(String Key);

Every time a use access your page, you can read current value of hit counter and increase it by one and again
set it for future use.

Example:
This example shows how you can use JSP to count total number of hits on a particular page. If you want to count
total number of hits of your website then you would have to include same code in all the JSP pages.

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>Applcation object in JSP</title>

</head>

<body>

<%

 Integer hitsCount =

 (Integer)application.getAttribute("hitCounter");

 if(hitsCount ==null || hitsCount == 0){

 /* First visit */

CHAPTER

19

TUTORIALS POINT

Simply Easy Learning

 out.println("Welcome to my website!");

 hitsCount = 1;

 }else{

 /* return visit */

 out.println("Welcome back to my website!");

 hitsCount += 1;

 }

 application.setAttribute("hitCounter", hitsCount);

%>

<center>

<p>Total number of visits: <%= hitsCount%></p>

</center>

</body>

</html>

Now let us put above code in main.jsp and call this JSP using URL http://localhost:8080/main.jsp. This would
display hit counter value which would increase every time when you refresh the page. You can try to access the
page using different browsers and you will find that hit counter will keep increasing with every hit and would
display result something as follows:

Welcome back to my website!

Total number of visits: 12

Hit Counter Resets:
What about if you re-start your application ie. web server, this will reset your application variable and your counter
will reset to zero. To avoid this loss, you can implement your counter in professional way which is as follows:

 Define a database table with a single count, let us say hitcount. Assign a zero value to it.

 With every hit, read the table to get the value of hitcount.

 Increase the value of hitcount by one and update the table with new value.

 Display new value of hitcount as total page hit counts.

 If you want to count hits for all the pages, implement above logic for all the pages.

TUTORIALS POINT

Simply Easy Learning

JSP – Auto Refresh

Consider a webpage which is displaying live game score or stock market status or currency exchange

ration. For all such type of pages, you would need to refresh your web page regularly using refresh or reload
button with your browser.

JSP makes this job easy by providing you a mechanism where you can make a webpage in such a way that it
would refresh automatically after a given interval.

The simplest way of refreshing a web page is using method setIntHeader() of response object. Following is the

signature of this method:

public void setIntHeader(String header, int headerValue)

This method sends back header "Refresh" to the browser along with an integer value which indicates time interval
in seconds.

Auto Page Refresh Example:
Following example would use setIntHeader() method to set Refresh header to simulate a digital clock:

<%@ page import="java.io.*,java.util.*" %>

<html>

<head>

<title>Auto Refresh Header Example</title>

</head>

<body>

<center>

<h2>Auto Refresh Header Example</h2>

<%

 // Set refresh, autoload time as 5 seconds

 response.setIntHeader("Refresh", 5);

 // Get current time

 Calendar calendar = new GregorianCalendar();

 String am_pm;

 int hour = calendar.get(Calendar.HOUR);

 int minute = calendar.get(Calendar.MINUTE);

 int second = calendar.get(Calendar.SECOND);

 if(calendar.get(Calendar.AM_PM) == 0)

 am_pm = "AM";

 else

 am_pm = "PM";

CHAPTER

20

TUTORIALS POINT

Simply Easy Learning

 String CT = hour+":"+ minute +":"+ second +" "+ am_pm;

 out.println("Crrent Time: " + CT + "\n");

%>

</center>

</body>

</html>

Now put the above code in main.jsp and try to access it. This would display current system time after every 5
seconds as follows. Just run the JSP and wait to see the result:

Auto Refresh Header Example
Current Time is: 9:44:50 PM

To become more comfortable with other methods you can try few more above listed methods in the same fashion.

TUTORIALS POINT

Simply Easy Learning

JSP – Sending Email

To send an email using a JSP is simple enough but to start with you should have JavaMail API andJava

Activation Framework (JAF) installed on your machine.

 You can download latest version of JavaMail (Version 1.2) from Java's standard website.

 You can download latest version of JavaBeans Activation Framework JAF (Version 1.0.2) from Java's
standard website.

Download and unzip these files, in the newly created top level directories you will find a number of jar files for both
the applications. You need to add mail.jar and activation.jar files in your CLASSPATH.

Send a Simple Email:
Here is an example to send a simple email from your machine. Here it is assumed that your localhostis

connected to the internet and capable enough to send an email. Same time make sure all the jar files from Java
Email API package and JAF package ara available in CLASSPATH.

<%@ page import="java.io.*,java.util.*,javax.mail.*"%>

<%@ page import="javax.mail.internet.*,javax.activation.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%

 String result;

 // Recipient's email ID needs to be mentioned.

 String to = "abcd@gmail.com";

 // Sender's email ID needs to be mentioned

 String from = "mcmohd@gmail.com";

 // Assuming you are sending email from localhost

 String host = "localhost";

 // Get system properties object

 Properties properties = System.getProperties();

 // Setup mail server

 properties.setProperty("mail.smtp.host", host);

 // Get the default Session object.

 Session mailSession = Session.getDefaultInstance(properties);

 try{

 // Create a default MimeMessage object.

 MimeMessage message = new MimeMessage(mailSession);

CHAPTER

21

http://java.sun.com/products/javamail/
http://www.oracle.com/technetwork/java/javase/jaf-136260.html

TUTORIALS POINT

Simply Easy Learning

 // Set From: header field of the header.

 message.setFrom(new InternetAddress(from));

 // Set To: header field of the header.

 message.addRecipient(Message.RecipientType.TO,

 new InternetAddress(to));

 // Set Subject: header field

 message.setSubject("This is the Subject Line!");

 // Now set the actual message

 message.setText("This is actual message");

 // Send message

 Transport.send(message);

 result = "Sent message successfully....";

 }catch (MessagingException mex) {

 mex.printStackTrace();

 result = "Error: unable to send message....";

 }

%>

<html>

<head>

<title>Send Email using JSP</title>

</head>

<body>

<center>

<h1>Send Email using JSP</h1>

</center>

<p align="center">

<%

 out.println("Result: " + result + "\n");

%>

</p>

</body>

</html>

Now let us put above code in SendEmail.jsp file and call this JSP using URL http://localhost:8080/SendEmail.jsp
which would send an email to given email ID abcd@gmail.comand would display following response:

Send Email using JSP
Result: Sent message successfully....

If you want to send an email to multiple recipients then following methods would be used to specify multiple email
IDs:

void addRecipients(Message.RecipientType type,

 Address[] addresses)

throws MessagingException

Here is the description of the parameters:

 type: This would be set to TO, CC or BCC. Here CC represents Carbon Copy and BCC represents Black
Carbon Copy. Example Message.RecipientType.TO

 addresses: This is the array of email ID. You would need to use InternetAddress() method while specifying

email IDs

TUTORIALS POINT

Simply Easy Learning

Send an HTML Email:
Here is an example to send an HTML email from your machine. Here it is assumed that your localhostis

connected to the internet and capable enough to send an email. Same time make sure all the jar files from Java
Email API package and JAF package ara available in CLASSPATH.

This example is very similar to previous one, except here we are using setContent() method to set content whose
second argument is "text/html" to specify that the HTML content is included in the message.

Using this example, you can send as big as HTML content you like.

<%@ page import="java.io.*,java.util.*,javax.mail.*"%>

<%@ page import="javax.mail.internet.*,javax.activation.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%

 String result;

 // Recipient's email ID needs to be mentioned.

 String to = "abcd@gmail.com";

 // Sender's email ID needs to be mentioned

 String from = "mcmohd@gmail.com";

 // Assuming you are sending email from localhost

 String host = "localhost";

 // Get system properties object

 Properties properties = System.getProperties();

 // Setup mail server

 properties.setProperty("mail.smtp.host", host);

 // Get the default Session object.

 Session mailSession = Session.getDefaultInstance(properties);

 try{

 // Create a default MimeMessage object.

 MimeMessage message = new MimeMessage(mailSession);

 // Set From: header field of the header.

 message.setFrom(new InternetAddress(from));

 // Set To: header field of the header.

 message.addRecipient(Message.RecipientType.TO,

 new InternetAddress(to));

 // Set Subject: header field

 message.setSubject("This is the Subject Line!");

 // Send the actual HTML message, as big as you like

 message.setContent("<h1>This is actual message</h1>",

 "text/html");

 // Send message

 Transport.send(message);

 result = "Sent message successfully....";

 }catch (MessagingException mex) {

 mex.printStackTrace();

 result = "Error: unable to send message....";

 }

%>

<html>

<head>

<title>Send HTML Email using JSP</title>

TUTORIALS POINT

Simply Easy Learning

</head>

<body>

<center>

<h1>Send Email using JSP</h1>

</center>

<p align="center">

<%

 out.println("Result: " + result + "\n");

%>

</p>

</body>

</html>

Now try to use above JSP to send HTML message on a given email ID.

Send Attachment in Email:
Here is an example to send an email with attachment from your machine:

<%@ page import="java.io.*,java.util.*,javax.mail.*"%>

<%@ page import="javax.mail.internet.*,javax.activation.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%

 String result;

 // Recipient's email ID needs to be mentioned.

 String to = "abcd@gmail.com";

 // Sender's email ID needs to be mentioned

 String from = "mcmohd@gmail.com";

 // Assuming you are sending email from localhost

 String host = "localhost";

 // Get system properties object

 Properties properties = System.getProperties();

 // Setup mail server

 properties.setProperty("mail.smtp.host", host);

 // Get the default Session object.

 Session mailSession = Session.getDefaultInstance(properties);

 try{

 // Create a default MimeMessage object.

 MimeMessage message = new MimeMessage(mailSession);

 // Set From: header field of the header.

 message.setFrom(new InternetAddress(from));

 // Set To: header field of the header.

 message.addRecipient(Message.RecipientType.TO,

 new InternetAddress(to));

 // Set Subject: header field

 message.setSubject("This is the Subject Line!");

 // Create the message part

TUTORIALS POINT

Simply Easy Learning

 BodyPart messageBodyPart = new MimeBodyPart();

 // Fill the message

 messageBodyPart.setText("This is message body");

 // Create a multipar message

 Multipart multipart = new MimeMultipart();

 // Set text message part

 multipart.addBodyPart(messageBodyPart);

 // Part two is attachment

 messageBodyPart = new MimeBodyPart();

 String filename = "file.txt";

 DataSource source = new FileDataSource(filename);

 messageBodyPart.setDataHandler(new DataHandler(source));

 messageBodyPart.setFileName(filename);

 multipart.addBodyPart(messageBodyPart);

 // Send the complete message parts

 message.setContent(multipart);

 // Send message

 Transport.send(message);

 String title = "Send Email";

 result = "Sent message successfully....";

 }catch (MessagingException mex) {

 mex.printStackTrace();

 result = "Error: unable to send message....";

 }

%>

<html>

<head>

<title>Send Attachement Email using JSP</title>

</head>

<body>

<center>

<h1>Send Attachement Email using JSP</h1>

</center>

<p align="center">

<%

 out.println("Result: " + result + "\n");

%>

</p>

</body>

</html>

Now try to run above JSP to send a file as an attachment along with a message on a given email ID.

User Authentication Part:
If it is required to provide user ID and Password to the email server for authentication purpose then you can set
these properties as follows:

 props.setProperty("mail.user", "myuser");

 props.setProperty("mail.password", "mypwd");

TUTORIALS POINT

Simply Easy Learning

Rest of the email sending mechanism would remain as explained above.

Using Forms to send email:
You can use HTML form to accept email parameters and then you can use request object to get all the

information as follows:

String to = request.getParameter("to");

String from = request.getParameter("from");

String subject = request.getParameter("subject");

String messageText = request.getParameter("body");

Once you have all the information, you can use above mentioned programs to send email.

TUTORIALS POINT

Simply Easy Learning

JSP – JSTL

The JavaServer Pages Standard Tag Library (JSTL) is a collection of useful JSP tags which encapsulates

core functionality common to many JSP applications.

JSTL has support for common, structural tasks such as iteration and conditionals, tags for manipulating XML
documents, internationalization tags, and SQL tags. It also provides a framework for integrating existing custom
tags with JSTL tags.

The JSTL tags can be classified, according to their functions, into following JSTL tag library groups that can be
used when creating a JSP page:

 Core Tags

 Formatting tags

 SQL tags

 XML tags

 JSTL Functions

Install JSTL Library:
If you are using Apache Tomcat container then follow the following two simple steps:

 Download the binary distribution from Apache Standard Taglib and unpack the compressed file.

 To use the Standard Taglib from its Jakarta Taglibs distribution, simply copy the JAR files in the distribution's
'lib' directory to your application's webapps\ROOT\WEB-INF\lib directory.

To use any of the libraries, you must include a <taglib> directive at the top of each JSP that uses the library.

Core Tags:
The core group of tags are the most frequently used JSTL tags. Following is the syntax to include JSTL Core
library in your JSP:

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

There are following Core JSTL Tags:

CHAPTER

22

http://tomcat.apache.org/taglibs/index.html

TUTORIALS POINT

Simply Easy Learning

Tag Description

<c:out > Like <%= ... >, but for expressions.

<c:set > Sets the result of an expression evaluation in a 'scope'

<c:remove > Removes a scoped variable (from a particular scope, if specified).

<c:catch> Catches any Throwable that occurs in its body and optionally exposes it.

<c:if> Simple conditional tag which evalutes its body if the supplied condition is true.

<c:choose>

Simple conditional tag that establishes a context for mutually exclusive conditional
operations, marked by <when> and <otherwise>

<c:when> Subtag of <choose> that includes its body if its condition evalutes to 'true'.

<c:otherwise >

Subtag of <choose> that follows <when> tags and runs only if all of the prior
conditions evaluated to 'false'.

<c:import>

Retrieves an absolute or relative URL and exposes its contents to either the page, a
String in 'var', or a Reader in 'varReader'.

<c:forEach >

The basic iteration tag, accepting many different collection types and supporting
subsetting and other functionality .

<c:forTokens> Iterates over tokens, separated by the supplied delimeters.

<c:param> Adds a parameter to a containing 'import' tag's URL.

<c:redirect > Redirects to a new URL.

<c:url> Creates a URL with optional query parameters

Formatting tags:
The JSTL formatting tags are used to format and display text, the date, the time, and numbers for
internationalized Web sites. Following is the syntax to include Formatting library in your JSP:

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

Following is the list of Formatting JSTL Tags:

Tag Description

<fmt:formatNumber> To render numerical value with specific precision or format.

<fmt:parseNumber> Parses the string representation of a number, currency, or percentage.

<fmt:formatDate> Formats a date and/or time using the supplied styles and pattern

<fmt:parseDate> Parses the string representation of a date and/or time

<fmt:bundle> Loads a resource bundle to be used by its tag body.

<fmt:setLocale> Stores the given locale in the locale configuration variable.

<fmt:setBundle>

Loads a resource bundle and stores it in the named scoped variable or the bundle
configuration variable.

http://www.tutorialspoint.com/jsp/jstl_core_out_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_set_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_remove_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_catch_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_if_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_param_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_redirect_tag.htm
http://www.tutorialspoint.com/jsp/jstl_core_url_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_formatnumber_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_parsenumber_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_formatdate_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_parsedate_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_bundle_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_setlocale_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_setbundle_tag.htm

TUTORIALS POINT

Simply Easy Learning

<fmt:timeZone> Specifies the time zone for any time formatting or parsing actions nested in its body.

<fmt:setTimeZone> Stores the given time zone in the time zone configuration variable

<fmt:message> To display an internationalized message.

<fmt:requestEncoding> Sets the request character encoding

SQL tags:
The JSTL SQL tag library provides tags for interacting with relational databases (RDBMSs) such as Oracle,
mySQL, or Microsoft SQL Server.

Following is the syntax to include JSTL SQL library in your JSP:

<%@ taglib prefix="sql"

 uri="http://java.sun.com/jsp/jstl/sql" %>

Following is the list of SQL JSTL Tags:

Tag Description

<sql:setDataSource> Creates a simple DataSource suitable only for prototyping

<sql:query> Executes the SQL query defined in its body or through the sql attribute.

<sql:update> Executes the SQL update defined in its body or through the sql attribute.

<sql:param> Sets a parameter in an SQL statement to the specified value.

<sql:dateParam> Sets a parameter in an SQL statement to the specified java.util.Date value.

<sql:transaction >

Provides nested database action elements with a shared Connection, set up to
execute all statements as one transaction.

XML tags:
The JSTL XML tags provide a JSP-centric way of creating and manipulating XML documents. Following is the
syntax to include JSTL XML library in your JSP.

The JSTL XML tag library has custom tags for interacting with XML data. This includes parsing XML, transforming
XML data, and flow control based on XPath expressions.

<%@ taglib prefix="x"

 uri="http://java.sun.com/jsp/jstl/xml" %>

Before you proceed with the examples, you would need to copy following two XML and XPath related libraries
into your <Tomcat Installation Directory>\lib:

 XercesImpl.jar: Download it from http://www.apache.org/dist/xerces/j/

 xalan.jar: Download it from http://xml.apache.org/xalan-j/index.html

Following is the list of XML JSTL Tags:

Tag Description

http://www.tutorialspoint.com/jsp/jstl_format_timezone_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_settimezone_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_message_tag.htm
http://www.tutorialspoint.com/jsp/jstl_format_requestencoding_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_setdatasource_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_query_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_update_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_param_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_dateparam_tag.htm
http://www.tutorialspoint.com/jsp/jstl_sql_transaction_tag.htm
http://www.apache.org/dist/xerces/j/
http://xml.apache.org/xalan-j/index.html

TUTORIALS POINT

Simply Easy Learning

<x:out> Like <%= ... >, but for XPath expressions.

<x:parse> Use to parse XML data specified either via an attribute or in the tag body.

<x:set > Sets a variable to the value of an XPath expression.

<x:if >

Evaluates a test XPath expression and if it is true, it processes its body. If the test
condition is false, the body is ignored.

<x:forEach> To loop over nodes in an XML document.

<x:choose>

Simple conditional tag that establishes a context for mutually exclusive conditional
operations, marked by <when> and <otherwise>

<x:when > Subtag of <choose> that includes its body if its expression evalutes to 'true'

<x:otherwise >

Subtag of <choose> that follows <when> tags and runs only if all of the prior
conditions evaluated to 'false'

<x:transform > Applies an XSL transformation on a XML document

<x:param > Use along with the transform tag to set a parameter in the XSLT stylesheet

JSTL Functions:
JSTL includes a number of standard functions, most of which are common string manipulation functions.
Following is the syntax to include JSTL Functions library in your JSP:

<%@ taglib prefix="fn"

 uri="http://java.sun.com/jsp/jstl/functions" %>

Following is the list of JSTL Functions:

Function Description

fn:contains() Tests if an input string contains the specified substring.

fn:containsIgnoreCase() Tests if an input string contains the specified substring in a case insensitive way.

fn:endsWith() Tests if an input string ends with the specified suffix.

fn:escapeXml() Escapes characters that could be interpreted as XML markup.

fn:indexOf() Returns the index withing a string of the first occurrence of a specified substring.

fn:join() Joins all elements of an array into a string.

fn:length()

Returns the number of items in a collection, or the number of characters in a
string.

fn:replace()

Returns a string resulting from replacing in an input string all occurrences with a
given string.

fn:split() Splits a string into an array of substrings.

fn:startsWith() Tests if an input string starts with the specified prefix.

fn:substring() Returns a subset of a string.

fn:substringAfter() Returns a subset of a string following a specific substring.

http://www.tutorialspoint.com/jsp/jstl_xml_out_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_parse_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_set_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_if_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_foreach_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_choose_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_transform_tag.htm
http://www.tutorialspoint.com/jsp/jstl_xml_param_tag.htm
http://www.tutorialspoint.com/jsp/jstl_function_contains.htm
http://www.tutorialspoint.com/jsp/jstl_function_containsignorecase.htm
http://www.tutorialspoint.com/jsp/jstl_function_endswith.htm
http://www.tutorialspoint.com/jsp/jstl_function_escapexml.htm
http://www.tutorialspoint.com/jsp/jstl_function_indexof.htm
http://www.tutorialspoint.com/jsp/jstl_function_join.htm
http://www.tutorialspoint.com/jsp/jstl_function_length.htm
http://www.tutorialspoint.com/jsp/jstl_function_replace.htm
http://www.tutorialspoint.com/jsp/jstl_function_split.htm
http://www.tutorialspoint.com/jsp/jstl_function_startswith.htm
http://www.tutorialspoint.com/jsp/jstl_function_substring.htm
http://www.tutorialspoint.com/jsp/jstl_function_substringafter.htm

TUTORIALS POINT

Simply Easy Learning

fn:substringBefore() Returns a subset of a string before a specific substring.

fn:toLowerCase() Converts all of the characters of a string to lower case.

fn:toUpperCase() Converts all of the characters of a string to upper case.

fn:trim() Removes white spaces from both ends of a string.

http://www.tutorialspoint.com/jsp/jstl_function_substringbefore.htm
http://www.tutorialspoint.com/jsp/jstl_function_tolowercase.htm
http://www.tutorialspoint.com/jsp/jstl_function_touppercase.htm
http://www.tutorialspoint.com/jsp/jstl_function_trim.htm

TUTORIALS POINT

Simply Easy Learning

JSP – Database Access

This chapter assumes you have good understanding on how JDBC application works. Before starting with

database access through a JSP, make sure you have proper JDBC environment setup along with a database.

For more detail on how to access database using JDBC and its environment setup you can go through our JDBC
Tutorial.

To start with basic concept, let us create a simple table and create few records in that table as follows:

Create Table
To create the Employees table in EMP database, use the following steps:

Step 1:

Open a Command Prompt and change to the installation directory as follows:

C:\>

C:\>cd Program Files\MySQL\bin

C:\Program Files\MySQL\bin>

Step 2:

Login to database as follows

C:\Program Files\MySQL\bin>mysql -u root -p

Enter password: ********

mysql>

Step 3:

Create the table Employee in TEST database as follows:

mysql> use TEST;

mysql> create table Employees

 (

 id int not null,

 age int not null,

 first varchar (255),

 last varchar (255)

);

Query OK, 0 rows affected (0.08 sec)

mysql>

CHAPTER

22

http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/jdbc/index.htm

TUTORIALS POINT

Simply Easy Learning

Create Data Records
Finally you create few records in Employee table as follows:

mysql> INSERT INTO Employees VALUES (100, 18, 'Zara', 'Ali');

Query OK, 1 row affected (0.05 sec)

mysql> INSERT INTO Employees VALUES (101, 25, 'Mahnaz', 'Fatma');

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Employees VALUES (102, 30, 'Zaid', 'Khan');

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO Employees VALUES (103, 28, 'Sumit', 'Mittal');

Query OK, 1 row affected (0.00 sec)

mysql>

SELECT Operation:
Following example shows how we can execute SQL SELECT statement using JTSL in JSP programming:

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>SELECT Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost/TEST"

 user="root" password="pass123"/>

<sql:query dataSource="${snapshot}" var="result">

SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

 <th>Emp ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Age</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

 <td><c:out value="${row.id}"/></td>

 <td><c:out value="${row.first}"/></td>

 <td><c:out value="${row.last}"/></td>

 <td><c:out value="${row.age}"/></td>

</tr>

TUTORIALS POINT

Simply Easy Learning

</c:forEach>

</table>

</body>

</html>

Now try to access above JSP, which should display the following result:

Emp ID First Name Last Name Age

100 Zara Ali 18

101 Mahnaz Fatma 25

102 Zaid Khan 30

103 Sumit Mittal 28

INSERT Operation:
Following example shows how we can execute SQL INSERT statement using JTSL in JSP programming:

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>JINSERT Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost/TEST"

 user="root" password="pass123"/>

<sql:update dataSource="${snapshot}" var="result">

INSERT INTO Employees VALUES (104, 2, 'Nuha', 'Ali');

</sql:update>

<sql:query dataSource="${snapshot}" var="result">

SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

 <th>Emp ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Age</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

 <td><c:out value="${row.id}"/></td>

TUTORIALS POINT

Simply Easy Learning

 <td><c:out value="${row.first}"/></td>

 <td><c:out value="${row.last}"/></td>

 <td><c:out value="${row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

Now try to access above JSP, which should display the following result:

Emp ID First Name Last Name Age

100 Zara Ali 18

101 Mahnaz Fatma 25

102 Zaid Khan 30

103 Sumit Mittal 28

104 Nuha Ali 2

DELETE Operation:
Following example shows how we can execute SQL DELETE statement using JTSL in JSP programming:

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>DELETE Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost/TEST"

 user="root" password="pass123"/>

<c:set var="empId" value="103"/>

<sql:update dataSource="${snapshot}" var="count">

 DELETE FROM Employees WHERE Id = ?

 <sql:param value="${empId}" />

</sql:update>

<sql:query dataSource="${snapshot}" var="result">

 SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

TUTORIALS POINT

Simply Easy Learning

 <th>Emp ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Age</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

 <td><c:out value="${row.id}"/></td>

 <td><c:out value="${row.first}"/></td>

 <td><c:out value="${row.last}"/></td>

 <td><c:out value="${row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

Now try to access above JSP, which should display the following result:

Emp ID First Name Last Name Age

100 Zara Ali 18

101 Mahnaz Fatma 25

102 Zaid Khan 30

UPDATE Operation:
Following example shows how we can execute SQL UPDATE statement using JTSL in JSP programming:

<%@ page import="java.io.*,java.util.*,java.sql.*"%>

<%@ page import="javax.servlet.http.*,javax.servlet.*" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<html>

<head>

<title>DELETE Operation</title>

</head>

<body>

<sql:setDataSource var="snapshot" driver="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost/TEST"

 user="root" password="pass123"/>

<c:set var="empId" value="102"/>

<sql:update dataSource="${snapshot}" var="count">

 UPDATE Employees SET last = 'Ali'

 <sql:param value="${empId}" />

</sql:update>

<sql:query dataSource="${snapshot}" var="result">

TUTORIALS POINT

Simply Easy Learning

 SELECT * from Employees;

</sql:query>

<table border="1" width="100%">

<tr>

 <th>Emp ID</th>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Age</th>

</tr>

<c:forEach var="row" items="${result.rows}">

<tr>

 <td><c:out value="${row.id}"/></td>

 <td><c:out value="${row.first}"/></td>

 <td><c:out value="${row.last}"/></td>

 <td><c:out value="${row.age}"/></td>

</tr>

</c:forEach>

</table>

</body>

</html>

Now try to access above JSP, which should display the following result:

Emp ID First Name Last Name Age

100 Zara Ali 18

101 Mahnaz Fatma 25

102 Zaid Ali 30

TUTORIALS POINT

Simply Easy Learning

JSP – XML Data

When you send XML data via HTTP, it makes sense to use JSP to handle incoming and outgoing

XML documents for example RSS documents. As an XML document is merely a bunch of text, creating one
through a JSP is no more difficult than creating an HTML document.

Sending XML from a JSP:
You can send XML content using JSPs the same way you send HTML. The only difference is that you must set
the content type of your page to text/xml. To set the content type, use the <%@page%> tag, like this:

<%@ page contentType="text/xml" %>

Following is a simple example to send XML content to the browser:

<%@ page contentType="text/xml" %>

<books>

 <book>

 <name>Padam History</name>

 <author>ZARA</author>

 <price>100</price>

 </book>

</books>

Try to access above XML using different browsers to see the document tree presentation of the above XML.

Processing XML in JSP:
Before you proceed with XML processing using JSP, you would need to copy following two XML and XPath
related libraries into your <Tomcat Installation Directory>\lib:

 XercesImpl.jar: Download it from http://www.apache.org/dist/xerces/j/

 xalan.jar: Download it from http://xml.apache.org/xalan-j/index.html

Let us put following content in books.xml file:

<books>

CHAPTER

23

http://www.apache.org/dist/xerces/j/
http://xml.apache.org/xalan-j/index.html

TUTORIALS POINT

Simply Easy Learning

<book>

 <name>Padam History</name>

 <author>ZARA</author>

 <price>100</price>

</book>

<book>

 <name>Great Mistry</name>

 <author>NUHA</author>

 <price>2000</price>

</book>

</books>

Now try the following main.jsp, keeping in the same directory:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

<html>

<head>

 <title>JSTL x:parse Tags</title>

</head>

<body>

<h3>Books Info:</h3>

<c:import var="bookInfo" url="http://localhost:8080/books.xml"/>

<x:parse xml="${bookInfo}" var="output"/>

The title of the first book is:

<x:out select="$output/books/book[1]/name" />

The price of the second book:

<x:out select="$output/books/book[2]/price" />

</body>

</html>

Now try to access above JSP using http://localhost:8080/main.jsp, this would produce following result:

BOOKS INFO:

The title of the first book is:Padam History
The price of the second book: 2000

Formatting XML with JSP:
Consider the following XSLT stylesheet style.xsl:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl=

"http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:output method="html" indent="yes"/>

<xsl:template match="/">

 <html>

 <body>

 <xsl:apply-templates/>

 </body>

TUTORIALS POINT

Simply Easy Learning

 </html>

</xsl:template>

<xsl:template match="books">

 <table border="1" width="100%">

 <xsl:for-each select="book">

 <tr>

 <td>

 <i><xsl:value-of select="name"/></i>

 </td>

 <td>

 <xsl:value-of select="author"/>

 </td>

 <td>

 <xsl:value-of select="price"/>

 </td>

 </tr>

 </xsl:for-each>

 </table>

</xsl:template>

</xsl:stylesheet>

Now consider the following JSP file:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

<html>

<head>

 <title>JSTL x:transform Tags</title>

</head>

<body>

<h3>Books Info:</h3>

<c:set var="xmltext">

 <books>

 <book>

 <name>Padam History</name>

 <author>ZARA</author>

 <price>100</price>

 </book>

 <book>

 <name>Great Mistry</name>

 <author>NUHA</author>

 <price>2000</price>

 </book>

 </books>

</c:set>

<c:import url="http://localhost:8080/style.xsl" var="xslt"/>

<x:transform xml="${xmltext}" xslt="${xslt}"/>

</body>

</html>

This would produce following result:

TUTORIALS POINT

Simply Easy Learning

BOOKS INFO:

Padam History ZARA 100

Great Mistry NUHA 2000

TUTORIALS POINT

Simply Easy Learning

JSP – JavaBeans

A JavaBean is a specially constructed Java class written in the Java and coded according to the

JavaBeans API specifications.

Following are the unique characteristics that distinguish a JavaBean from other Java classes:

 It provides a default, no-argument constructor.

 It should be serializable and implement the Serializable interface.

 It may have a number of properties which can be read or written.

 It may have a number of "getter" and "setter" methods for the properties.

JavaBeans Properties:
A JavaBean property is a named attribute that can be accessed by the user of the object. The attribute can be of
any Java data type, including classes that you define.

A JavaBean property may be read, write, read only, or write only. JavaBean properties are accessed through two
methods in the JavaBean's implementation class:

Method Description

getPropertyName()
For example, if property name is firstName, your method name would be
getFirstName() to read that property. This method is called accessor.

setPropertyName()
For example, if property name is firstName, your method name would be
setFirstName() to write that property. This method is called mutator.

A read-only attribute will have only a getPropertyName() method, and a write-only attribute will have only a
setPropertyName() method.

JavaBeans Example:
Consider a student class with few properties:

package com.tutorialspoint;

CHAPTER

24

TUTORIALS POINT

Simply Easy Learning

public class StudentsBean implements java.io.Serializable

{

 private String firstName = null;

 private String lastName = null;

 private int age = 0;

 public StudentsBean() {

 }

 public String getFirstName(){

 return firstName;

 }

 public String getLastName(){

 return lastName;

 }

 public int getAge(){

 return age;

 }

 public void setFirstName(String firstName){

 this.firstName = firstName;

 }

 public void setLastName(String lastName){

 this.lastName = lastName;

 }

 public void setAge(Integer age){

 this.age = age;

 }

}

Accessing JavaBeans:
The useBean action declares a JavaBean for use in a JSP. Once declared, the bean becomes a scripting

variable that can be accessed by both scripting elements and other custom tags used in the JSP. The full syntax
for the useBean tag is as follows:

<jsp:useBean id="bean's name" scope="bean's scope" typeSpec/>

Here values for the scope attribute could be page, request, session or application based on your requirement.
The value of the id attribute may be any value as a long as it is a unique name among other useBean

declarations in the same JSP.

Following example shows its simple usage:

<html>

<head>

<title>useBean Example</title>

</head>

<body>

<jsp:useBean id="date" class="java.util.Date" />

<p>The date/time is <%= date %>

</body>

</html>

This would produce following result:

The date/time is Thu Sep 30 11:18:11 GST 2010

TUTORIALS POINT

Simply Easy Learning

Accessing JavaBeans Properties:
Along with <jsp:useBean...>, you can use <jsp:getProperty/> action to access get methods and
<jsp:setProperty/> action to access set methods. Here is the full syntax:

<jsp:useBean id="id" class="bean's class" scope="bean's scope">

 <jsp:setProperty name="bean's id" property="property name"

 value="value"/>

 <jsp:getProperty name="bean's id" property="property name"/>

</jsp:useBean>

The name attribute references the id of a JavaBean previously introduced to the JSP by the useBean action. The
property attribute is the name of the get or set methods that should be invoked.

Following is a simple example to access the data using above syntax:

<html>

<head>

<title>get and set properties Example</title>

</head>

<body>

<jsp:useBean id="students"

 class="com.tutorialspoint.StudentsBean">

 <jsp:setProperty name="students" property="firstName"

 value="Zara"/>

 <jsp:setProperty name="students" property="lastName"

 value="Ali"/>

 <jsp:setProperty name="students" property="age"

 value="10"/>

</jsp:useBean>

<p>Student First Name:

 <jsp:getProperty name="students" property="firstName"/>

</p>

<p>Student Last Name:

 <jsp:getProperty name="students" property="lastName"/>

</p>

<p>Student Age:

 <jsp:getProperty name="students" property="age"/>

</p>

</body>

</html>

Let us make StudentsBean.class available in CLASSPATH and try to access above JSP. This would produce
following result:

Student First Name: Zara

Student Last Name: Ali

Student Age: 10

TUTORIALS POINT

Simply Easy Learning

TUTORIALS POINT

Simply Easy Learning

JSP – Custom Tags

A custom tag is a user-defined JSP language element. When a JSP page containing a custom tag is

translated into a servlet, the tag is converted to operations on an object called a tag handler. The Web container
then invokes those operations when the JSP page's servlet is executed.

JSP tag extensions let you create new tags that you can insert directly into a JavaServer Page just as you would
the built-in tags you learned about in earlier chapter. The JSP 2.0 specification introduced Simple Tag Handlers
for writing these custom tags.

To write a customer tab you can simply extend SimpleTagSupport class and override the doTag()method, where

you can place your code to generate content for the tag.

Create "Hello" Tag:
Consider you want to define a custom tag named <ex:Hello> and you want to use it in the following fashion
without a body:

<ex:Hello />

To create a custom JSP tag, you must first create a Java class that acts as a tag handler. So let us create
HelloTag class as follows:

package com.tutorialspoint;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.io.*;

public class HelloTag extends SimpleTagSupport {

 public void doTag() throws JspException, IOException {

 JspWriter out = getJspContext().getOut();

 out.println("Hello Custom Tag!");

 }

}

Above code has simple coding where doTag() method takes the current JspContext object using getJspContext()
method and uses it to send "Hello Custom Tag!" to the current JspWriter object.

CHAPTER

25

TUTORIALS POINT

Simply Easy Learning

Let us compile above class and copy it in a directory available in environment variable CLASSPATH. Finally
create following tag library file: <Tomcat-Installation-Directory>webapps\ROOT\WEB-INF\custom.tld.

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>2.0</jsp-version>

 <short-name>Example TLD</short-name>

 <tag>

 <name>Hello</name>

 <tag-class>com.tutorialspoint.HelloTag</tag-class>

 <body-content>empty</body-content>

 </tag>

</taglib>

Now it's time to use above defined custom tag Hello in our JSP program as follows:

<%@ taglib prefix="ex" uri="WEB-INF/custom.tld"%>

<html>

 <head>

 <title>A sample custom tag</title>

 </head>

 <body>

 <ex:Hello/>

 </body>

</html>

Try to call above JSP and this should produce following result:

Hello Custom Tag!

Accessing the Tag Body:
You can include a message in the body of the tag as you have seen with standard tags. Consider you want to
define a custom tag named <ex:Hello> and you want to use it in the following fashion with a body:

<ex:Hello>

 This is message body

</ex:Hello>

Let us make following changes in above our tag code to process the body of the tag:

package com.tutorialspoint;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.io.*;

public class HelloTag extends SimpleTagSupport {

 StringWriter sw = new StringWriter();

 public void doTag()

 throws JspException, IOException

 {

 getJspBody().invoke(sw);

 getJspContext().getOut().println(sw.toString());

 }

TUTORIALS POINT

Simply Easy Learning

}

In this case, the output resulting from the invocation is first captured into a StringWriter before being written to the
JspWriter associated with the tag. Now accordingly we need to change TLD file as follows:

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>2.0</jsp-version>

 <short-name>Example TLD with Body</short-name>

 <tag>

 <name>Hello</name>

 <tag-class>com.tutorialspoint.HelloTag</tag-class>

 <body-content>scriptless</body-content>

 </tag>

</taglib>

Now let us call above tag with proper body as follows:

<%@ taglib prefix="ex" uri="WEB-INF/custom.tld"%>

<html>

 <head>

 <title>A sample custom tag</title>

 </head>

 <body>

 <ex:Hello>

 This is message body

 </ex:Hello>

 </body>

</html>

This will produce following result:

This is message body

Custom Tag Attributes:
You can use various attributes along with your custom tags. To accept an attribute value, a custom tag class
needs to implement setter methods, identical to JavaBean setter methods as shown below:

package com.tutorialspoint;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.io.*;

public class HelloTag extends SimpleTagSupport {

 private String message;

 public void setMessage(String msg) {

 this.message = msg;

 }

 StringWriter sw = new StringWriter();

TUTORIALS POINT

Simply Easy Learning

 public void doTag()

 throws JspException, IOException

 {

 if (message != null) {

 /* Use message from attribute */

 JspWriter out = getJspContext().getOut();

 out.println(message);

 }

 else {

 /* use message from the body */

 getJspBody().invoke(sw);

 getJspContext().getOut().println(sw.toString());

 }

 }

}

The attribute's name is "message", so the setter method is setMessage(). Now let us add this attribute in TLD file
using <attribute> element as follows:

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>2.0</jsp-version>

 <short-name>Example TLD with Body</short-name>

 <tag>

 <name>Hello</name>

 <tag-class>com.tutorialspoint.HelloTag</tag-class>

 <body-content>scriptless</body-content>

 <attribute>

 <name>message</name>

 </attribute>

 </tag>

</taglib>

Now let us try following JSP with message attribute as follows:

<%@ taglib prefix="ex" uri="WEB-INF/custom.tld"%>

<html>

 <head>

 <title>A sample custom tag</title>

 </head>

 <body>

 <ex:Hello message="This is custom tag" />

 </body>

</html>

This will produce following result:

This is custom tag

Hope above example makes sense for you. It would be worth to note that you can include following properties for
an attribute:

Property Purpose

name The name element defines the name of an attribute. Each attribute name

TUTORIALS POINT

Simply Easy Learning

must be unique for a particular tag.

required
This specifies if this attribute is required or optional. It would be false for
optional.

rtexprvalue Declares if a runtime expression value for a tag attribute is valid

type
Defines the Java class-type of this attribute. By default it is assumed
as String

description Informational description can be provided.

fragment Declares if this attribute value should be treated as a JspFragment.

Following is the example to specify properties related to an attribute:

.....

 <attribute>

 <name>attribute_name</name>

 <required>false</required>

 <type>java.util.Date</type>

 <fragment>false</fragment>

 </attribute>

.....

If you are using two attributes then you can modify your TLD as follows:

.....

 <attribute>

 <name>attribute_name1</name>

 <required>false</required>

 <type>java.util.Boolean</type>

 <fragment>false</fragment>

 </attribute>

 <attribute>

 <name>attribute_name2</name>

 <required>true</required>

 <type>java.util.Date</type>

 </attribute>

.....

TUTORIALS POINT

Simply Easy Learning

JSP – Expression Language

JSP Expression Language (EL) makes it possible to easily access application data stored in JavaBeans

components. JSP EL allows you to create expressions both (a) arithmetic and (b) logical. Within a JSP EL

expression, you can use integers, floating point numbers, strings, the built-in constants true and false for boolean
values, and null.

Simple Syntax:
Typically, when you specify an attribute value in a JSP tag, you simply use a string. For example:

<jsp:setProperty name="box" property="perimeter" value="100"/>

JSP EL allows you to specify an expression for any of these attribute values. A simple syntax for JSP EL is as
follows:

${expr}

Here expr specifies the expression itself. The most common operators in JSP EL are . and []. These two

operators allow you to access various attributes of Java Beans and built-in JSP objects.

For example above syntax <jsp:setProperty> tag can be written with an expression like:

<jsp:setProperty name="box" property="perimeter"

 value="${2*box.width+2*box.height}"/>

When the JSP compiler sees the ${} form in an attribute, it generates code to evaluate the expression and
substitues the value of expresson.

You can also use JSP EL expressions within template text for a tag. For example, the <jsp:text> tag simply inserts
its content within the body of a JSP. The following <jsp:text> declaration inserts <h1>Hello JSP!</h1> into the
JSP output:

<jsp:text>

<h1>Hello JSP!</h1>

</jsp:text>

CHAPTER

26

TUTORIALS POINT

Simply Easy Learning

You can include a JSP EL expression in the body of a <jsp:text> tag (or any other tag) with the same ${} syntax
you use for attributes. For example:

<jsp:text>

Box Perimeter is: ${2*box.width + 2*box.height}

</jsp:text>

EL expressions can use parentheses to group subexpressions. For example, ${(1 + 2) * 3} equals 9, but ${1 + (2 *
3)} equals 7.

To deactivate the evaluation of EL expressions, we specify the isELIgnored attribute of the page directive as
below:

<%@ page isELIgnored ="true|false" %>

The valid values of this attribute are true and false. If it is true, EL expressions are ignored when they appear in
static text or tag attributes. If it is false, EL expressions are evaluated by the container.

Basic Operators in EL:
JSP Expression Language (EL) supports most of the arithmetic and logical operators supported by Java. Below is
the list of most frequently used operators:

Operator Description

. Access a bean property or Map entry

[] Access an array or List element

() Group a subexpression to change the evaluation order

+ Addition

- Subtraction or negation of a value

* Multiplication

/ or div Division

% or mod Modulo (remainder)

== or eq Test for equality

!= or ne Test for inequality

< or lt Test for less than

> or gt Test for greater than

<= or le Test for less than or equal

>= or gt Test for greater than or equal

&& or and Test for logical AND

|| or or Test for logical OR

! or not Unary Boolean complement

TUTORIALS POINT

Simply Easy Learning

empty Test for empty variable values

Functions in JSP EL :
JSP EL allows you to use functions in expressions as well. These functions must be defined in custom tag
libraries. A function usage has the following syntax:

${ns:func(param1, param2, ...)}

Where ns is the namespace of the function, func is the name of the function and param1 is the first parameter
value. For example, the function fn:length, which is part of the JSTL library can be used as follows to get the the
length of a string.

${fn:length("Get my length")}

To use a function from any tag library (standard or custom), you must install that library on your server and must
include the library in your JSP using <taglib> directive as explained in JSTL chapter.

JSP EL Implicit Objects:
The JSP expression language supports the following implicit objects:

Implicit object Description

pageScope Scoped variables from page scope

requestScope Scoped variables from request scope

sessionScope Scoped variables from session scope

applicationScope Scoped variables from application scope

param Request parameters as strings

paramValues Request parameters as collections of strings

header HTTP request headers as strings

headerValues HTTP request headers as collections of strings

initParam Context-initialization parameters

cookie Cookie values

pageContext The JSP PageContext object for the current page

You can use these objects in an expression as if they were variables. Here are few examples which would clear
the concept:

TUTORIALS POINT

Simply Easy Learning

The pageContext Object:
The pageContext object gives you access to the pageContext JSP object. Through the pageContext object, you
can access the request object. For example, to access the incoming query string for a request, you can use the
expression:

${pageContext.request.queryString}

The Scope Objects:
The pageScope, requestScope, sessionScope, and applicationScope variables provide access to variables
stored at each scope level.

For example, If you need to explicitly access the box variable in the application scope, you can access it through
the applicationScope variable as applicationScope.box.

The param and paramValues Objects:
The param and paramValues objects give you access to the parameter values normally available through the
request.getParameter and request.getParameterValues methods.

For example, to access a parameter named order, use the expression ${param.order} or ${param["order"]}.

Following is the example to access a request parameter named username:

<%@ page import="java.io.*,java.util.*" %>

<%

 String title = "Accessing Request Param";

%>

<html>

<head>

<title><% out.print(title); %></title>

</head>

<body>

<center>

<h1><% out.print(title); %></h1>

</center>

<div align="center">

<p>${param["username"]}</p>

</div>

</body>

</html>

The param object returns single string values, whereas the paramValues object returns string arrays.

header and headerValues Objects:
The header and headerValues objects give you access to the header values normally available through the
request.getHeader and request.getHeaders methods.

TUTORIALS POINT

Simply Easy Learning

For example, to access a header named user-agent, use the expression ${header.user-agent} or ${header["user-
agent"]}.

Following is the example to access a header parameter named user-agent:

<%@ page import="java.io.*,java.util.*" %>

<%

 String title = "User Agent Example";

%>

<html>

<head>

<title><% out.print(title); %></title>

</head>

<body>

<center>

<h1><% out.print(title); %></h1>

</center>

<div align="center">

<p>${header["user-agent"]}</p>

</div>

</body>

</html>

This would display something as follows:

User Agent Example
Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET
CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; HPNTDF; .NET4.0C; InfoPath.2)

The header object returns single string values, whereas the headerValues object returns string arrays.

TUTORIALS POINT

Simply Easy Learning

JSP – Exception Handling

When you are writing JSP code, a programmer may leave a coding errors which can occur at any part

of the code. You can have following type of errors in your JSP code:

 Checked exceptions: Achecked exception is an exception that is typically a user error or a problem that

cannot be foreseen by the programmer. For example, if a file is to be opened, but the file cannot be found, an
exception occurs. These exceptions cannot simply be ignored at the time of compilation.

 Runtime exceptions: A runtime exception is an exception that occurs that probably could have been

avoided by the programmer. As opposed to checked exceptions, runtime exceptions are ignored at the time
of compliation.

 Errors: These are not exceptions at all, but problems that arise beyond the control of the user or the

programmer. Errors are typically ignored in your code because you can rarely do anything about an error. For
example, if a stack overflow occurs, an error will arise. They are also ignored at the time of compilation.

This tutorial will give you few simple and elegant ways to handle run time exception/error occuring in your JSP
code.

Using Exception Object:
The exception object is an instance of a subclass of Throwable (e.g., java.lang. NullPointerException) and is only
available in error pages. Following is the list of important medthods available in the Throwable class.

SN Methods with Description

1

public String getMessage()

Returns a detailed message about the exception that has occurred. This message is initialized in the
Throwable constructor.

2
public Throwable getCause()

Returns the cause of the exception as represented by a Throwable object.

3
public String toString()

Returns the name of the class concatenated with the result of getMessage()

4
public void printStackTrace()

Prints the result of toString() along with the stack trace to System.err, the error output stream.

5

public StackTraceElement [] getStackTrace()

Returns an array containing each element on the stack trace. The element at index 0 represents the top of
the call stack, and the last element in the array represents the method at the bottom of the call stack.

CHAPTER

27

TUTORIALS POINT

Simply Easy Learning

6

public Throwable fillInStackTrace()

Fills the stack trace of this Throwable object with the current stack trace, adding to any previous information
in the stack trace.

JSP gives you an option to specify Error Page for each JSP. Whenever the page throws an exception, the JSP
container automatically invokes the error page.

Following is an example to specifiy an error page for a main.jsp. To set up an error page, use the <%@ page
errorPage="xxx" %> directive.

<%@ page errorPage="ShowError.jsp" %>

<html>

<head>

 <title>Error Handling Example</title>

</head>

<body>

<%

 // Throw an exception to invoke the error page

 int x = 1;

 if (x == 1)

 {

 throw new RuntimeException("Error condition!!!");

 }

%>

</body>

</html>

Now you would have to write one Error Handling JSP ShowError.jsp, which is given below. Notice that the error-
handling page includes the directive <%@ page isErrorPage="true" %>. This directive causes the JSP compiler to
generate the exception instance variable.

<%@ page isErrorPage="true" %>

<html>

<head>

<title>Show Error Page</title>

</head>

<body>

<h1>Opps...</h1>

<p>Sorry, an error occurred.</p>

<p>Here is the exception stack trace: </p>

<pre>

<% exception.printStackTrace(response.getWriter()); %>

</pre>

</body>

</html>

Now try to access main.jsp, it should generate something as follows:

java.lang.RuntimeException: Error condition!!!

......

Opps...

Sorry, an error occurred.

Here is the exception stack trace:

TUTORIALS POINT

Simply Easy Learning

Using JSTL tags for Error Page:
You can make use of JSTL tags to write an error page ShowError.jsp. This page has almost same logic which we
have used in above example, but it has better structure and it provides more information:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@page isErrorPage="true" %>

<html>

<head>

<title>Show Error Page</title>

</head>

<body>

<h1>Opps...</h1>

<table width="100%" border="1">

<tr valign="top">

<td width="40%">Error:</td>

<td>${pageContext.exception}</td>

</tr>

<tr valign="top">

<td>URI:</td>

<td>${pageContext.errorData.requestURI}</td>

</tr>

<tr valign="top">

<td>Status code:</td>

<td>${pageContext.errorData.statusCode}</td>

</tr>

<tr valign="top">

<td>Stack trace:</td>

<td>

<c:forEach var="trace"

 items="${pageContext.exception.stackTrace}">

<p>${trace}</p>

</c:forEach>

</td>

</tr>

</table>

</body>

</html>

Now try to access main.jsp, it should generate something as follows:

TUTORIALS POINT

Simply Easy Learning

Opps...
Error: java.lang.RuntimeException: Error condition!!!

URI: /main.jsp

Status code: 500

Stack trace:
org.apache.jsp.main_jsp._jspService(main_jsp.java:65)

org.apache.jasper.runtime.HttpJspBase.service(HttpJspBase.java:68)

javax.servlet.http.HttpServlet.service(HttpServlet.java:722)

org.apache.jasper.servlet.JspServlet.service(JspServlet.java:265)

javax.servlet.http.HttpServlet.service(HttpServlet.java:722)

...................

Using Try...Catch Block:
If you want to handle errors with in the same page and want to take some action instead of firing an error page,
you can make use of try....catch block.

Following is a simple example which shows how to use try...catch block. Let us put following code in main.jsp:

<html>

<head>

 <title>Try...Catch Example</title>

</head>

<body>

<%

 try{

 int i = 1;

 i = i / 0;

 out.println("The answer is " + i);

 }

 catch (Exception e){

 out.println("An exception occurred: " + e.getMessage());

 }

%>

</body>

</html>

Now try to access main.jsp, it should generate something as follows:

An exception occurred: / by zero

TUTORIALS POINT

Simply Easy Learning

JSP – Debugging

It is always difficult to testing/debugging a JSP and servlets. JSP and Servlets tend to involve a large amount

of client/server interaction, making errors likely but hard to reproduce.

Here are a few hints and suggestions that may aid you in your debugging.

Using System.out.println():
System.out.println() is easy to use as a marker to test whether a certain piece of code is being executed or not.
We can print out variable values as well. Additionally:

 Since the System object is part of the core Java objects, it can be used everywhere without the need to install
any extra classes. This includes Servlets, JSP, RMI, EJB's, ordinary Beans and classes, and standalone
applications.

 Compared to stopping at breakpoints, writing to System.out doesn't interfere much with the normal execution
flow of the application, which makes it very valuable when timing is crucial.

Following is the syntax to use System.out.println():

System.out.println("Debugging message");

Following is a simple example of using System.out.print():

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>

<head><title>System.out.println</title></head>

<body>

<c:forEach var="counter" begin="1" end="10" step="1" >

 <c:out value="${counter-5}"/></br>

 <% System.out.println("counter= " +

 pageContext.findAttribute("counter")); %>

</c:forEach>

</body>

</html>

Now if you will try to access above JSP, it will produce following result at browser:

CHAPTER

28

TUTORIALS POINT

Simply Easy Learning

-4

-3

-2

-1

0

1

2

3

4

5

If you are using Tomcat, you will also find these lines appended to the end of stdout.log in the logs directory.

counter=1

counter=2

counter=3

counter=4

counter=5

counter=6

counter=7

counter=8

counter=9

counter=10

This way you can pring variables and other information into system log which can be analyzed to find out the root
cause of the problem or for various other reasons.

Using the JDB Logger:
The J2SE logging framework is designed to provide logging services for any class running in the JVM. So we can
make use of this framework to log any information.

Let us re-write above example using JDK logger API:

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@page import="java.util.logging.Logger" %>

<html>

<head><title>Logger.info</title></head>

<body>

<% Logger logger=Logger.getLogger(this.getClass().getName());%>

<c:forEach var="counter" begin="1" end="10" step="1" >

 <c:set var="myCount" value="${counter-5}" />

 <c:out value="${myCount}"/></br>

 <% String message = "counter="

 + pageContext.findAttribute("counter")

 + " myCount="

 + pageContext.findAttribute("myCount");

 logger.info(message);

 %>

</c:forEach>

</body>

</html>

TUTORIALS POINT

Simply Easy Learning

This would generate similar result at the browser and in stdout.log, but you will have additional information in

stdout.log. Here we are using info method of the logger because we are logging message just for informational

purpose. Here is a snapshot of stdout.log file:

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=1 myCount=-4

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=2 myCount=-3

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=3 myCount=-2

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=4 myCount=-1

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=5 myCount=0

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=6 myCount=1

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=7 myCount=2

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=8 myCount=3

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=9 myCount=4

24-Sep-2010 23:31:31 org.apache.jsp.main_jsp _jspService

INFO: counter=10 myCount=5

Messages can be sent at various levels by using the convenience functions severe(), warning(), info(), config(),

fine(), finer(), and finest(). Here finest() method can be used to log finest information and severe() method can

be used to log severe information.

You can use Log4J Framework to log messages in different files based on their severity levels and

importance.

Debugging Tools:
NetBeans is a free and open-source Java Integrated Development Environment that supports the development of
standalone Java applications and Web applications supporting the JSP and servlet specifications and includes a
JSP debugger as well.

NetBeans supports the following basic debugging functionalities:

 Breakpoints

 Stepping through code

 Watchpoints

You can refere to NteBeans documentation to understand above debugging functionalities.

Using JDB Debugger:
You can debug JSP and servlets with the same jdb commands you use to debug an applet or an application.

To debug a JSP or servlet, you can debug sun.servlet.http.HttpServer, then watch as HttpServer executing
JSP/servlets in response to HTTP requests we make from a browser. This is very similar to how applets are
debugged. The difference is that with applets, the actual program being debugged is sun.applet.AppletViewer.

http://www.tutorialspoint.com/log4j/index.htm

TUTORIALS POINT

Simply Easy Learning

Most debuggers hide this detail by automatically knowing how to debug applets. Until they do the same for JSP,
you have to help your debugger by doing the following:

 Set your debugger's classpath so that it can find sun.servlet.http.Http-Server and associated classes.

 Set your debugger's classpath so that it can also find your JSP and support classes, typically ROOT\WEB-
INF\classes.

Once you have set the proper classpath, start debugging sun.servlet.http.HttpServer. You can set breakpoints in
whatever JSP you're interested in debugging, then use a web browser to make a request to the HttpServer for the
given JSP (http://localhost:8080/JSPToDebug). You should see execution stop at your breakpoints.

Using Comments:
Comments in your code can help the debugging process in various ways. Comments can be used in lots of other
ways in the debugging process.

The JSP uses Java comments and single line (// ...) and multiple line (/* ... */) comments can be used to
temporarily remove parts of your Java code. If the bug disappears, take a closer look at the code you just
commented and find out the problem.

Client and Server Headers:
Sometimes when a JSP doesn't behave as expected, it's useful to look at the raw HTTP request and response. If
you're familiar with the structure of HTTP, you can read the request and response and see exactly what exactly is
going with those headers.

Important Debugging Tips:
Here is a list of some more debugging tips on JSP debugging:

 Ask a browser to show the raw content of the page it is displaying. This can help identify formatting problems.
It's usually an option under the View menu.

 Make sure the browser isn't caching a previous request's output by forcing a full reload of the page. With
Netscape Navigator, use Shift-Reload; with Internet Explorer use Shift-Refresh.

TUTORIALS POINT

Simply Easy Learning

JSP – Security

JavaServer Pages and servlets make several mechanisms available to Web developers to secure

applications. Resources are protected declaratively by identifying them in the application deployment descriptor
and assigning a role to them.

Several levels of authentication are available, ranging from basic authentication using identifiers and passwords
to sophisticated authentication using certificates.

Role Based Authentication:
The authentication mechanism in the servlet specification uses a technique called role-based security. The idea is
that rather than restricting resources at the user level, you create roles and restrict the resources by role.

You can define different roles in file tomcat-users.xml, which is located off of Tomcat's home directory in conf. An
example of this file is shown below:

<?xml version='1.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="role1"/>

<role rolename="manager"/>

<role rolename="admin"/>

<user username="tomcat" password="tomcat" roles="tomcat"/>

<user username="role1" password="tomcat" roles="role1"/>

<user username="both" password="tomcat" roles="tomcat,role1"/>

<user username="admin" password="secret" roles="admin,manager"/>

</tomcat-users>

This file defines a simple mapping between user name, password, and role. Notice that a given user may have
multiple roles, for example, user name="both" is in the "tomcat" role and the "role1" role.

Once you identified and defined different roles, a role-based security restrictions can be placed on different Web
Application resources by using the <security-constraint> element in web.xml file available in WEB-INF directory.

Following is a sample entry in web.xml:

<web-app>

...

 <security-constraint>

 <web-resource-collection>

CHAPTER

29

TUTORIALS POINT

Simply Easy Learning

 <web-resource-name>

 SecuredBookSite

 </web-resource-name>

 <url-pattern>/secured/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <description>

 Let only managers use this app

 </description>

 <role-name>manager</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <role-name>manager</role-name>

 </security-role>

 <login-config>

 <auth-method>BASIC</auth-method>

 </login-config>

...

</web-app>

Above entries would mean:

 Any HTTP GET or POST request to a URL matched by /secured/* would be subject to the security restriction.

 A person with manager role is given access to the secured resources.

 Last, the login-config element is used to describe the BASIC form of authentication.

Now if you try browsing to any URL including the /security directory, it would display a dialogue box asking for
user name and password. If you provide a user "admin" and password "secrer" then only you would have access
on URL matched by /secured/* because above we have defined user admin with manager role who is allowed to
access this resource.

Form Based Authentication:
When you use the FORM authentication method, you must supply a login form to prompt the user for a username
and password. Following is a simple code of login.jsp to create a form for the same purpose:

<html>

<body bgcolor="#ffffff">

 <form method="POST" action="j_security_check">

 <table border="0">

 <tr>

 <td>Login</td>

 <td><input type="text" name="j_username"></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><input type="password" name="j_password"></td>

 </tr>

 </table>

 <input type="submit" value="Login!">

 </center>

 </form>

TUTORIALS POINT

Simply Easy Learning

</body>

</html>

Here you have to make sure that the login form must contain form elements named j_username and j_password.
The action in the <form> tag must be j_security_check. POST must be used as the form method. Same time you
would have to modify <login-config> tag to specify auth-method as FORM:

<web-app>

...

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>

 SecuredBookSite

 </web-resource-name>

 <url-pattern>/secured/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <description>

 Let only managers use this app

 </description>

 <role-name>manager</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <role-name>manager</role-name>

 </security-role>

 <login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/error.jsp</form-error-page>

 </form-login-config>

 </login-config>

...

</web-app>

Now when you try to access any resource with URL /secured/*, it would display above form asking for user id and
password. When the container sees the "j_security_check" action, it uses some internal mechanism to
authenticate the caller.

If the login succeeds and the caller is authorized to access the secured resource, then the container uses a
session-id to identify a login session for the caller from that point on. The container maintains the login session
with a cookie containing the session-id. The server sends the cookie back to the client, and as long as the caller
presents this cookie with subsequent requests, then the container will know who the caller is.

If the login fails, then the server sends back the page identified by the form-error-page setting

Here j_security_check is the action that applications using form based login have to specify for the login form. In
the same form you should also have a text input control called j_username and a password input control called
j_password. When you see this it means that the information contained in the form will be submitted to the server,
which will check name and password. How this is done is server specific.

Check Standard Realm Implementations to understand how j_security_check works for Tomcat container.

http://tomcat.apache.org/tomcat-5.5-doc/realm-howto.html

TUTORIALS POINT

Simply Easy Learning

Programmatic Security in a Servlet/JSP:
The HttpServletRequest object provides the following methods, which can be used to mine security information at
runtime:

SN Method and Description

1

String getAuthType()

The getAuthType() method returns a String object that represents the name of the authentication scheme
used to protect the Servlet.

2
boolean isUserInRole(java.lang.String role)

The isUserInRole() method returns a boolean value: true if the user is in the given role or false if they are not.

3

String getProtocol()

The getProtocol() method returns a String object representing the protocol that was used to send the request.
This value can be checked to determine if a secure protocol was used.

4

boolean isSecure()

The isSecure() method returns a boolean value representing if the request was made using HTTPS. A value
of true means it was and the connection is secure. A value of false means the request was not.

5

Principle getUserPrinciple()

The getUserPrinciple() method returns a java.security.Principle object that contains the name of the current
authenticated user.

For example, a JavaServer Page that links to pages for managers, you might have the following code:

<% if (request.isUserInRole("manager")) { %>

Manager Report

Personnel Records

<% } %>

By checking the user's role in a JSP or servlet, you can customize the Web page to show the user only the items
she can access. If you need the user's name as it was entered in the authentication form, you can call
getRemoteUser method in the request object.

TUTORIALS POINT

Simply Easy Learning

JSP – Internationalization

Before we proceed, let me explain three important terms:

 Internationalization (i18n): This means enabling a web site to provide different versions of content

translated into the visitor's language or nationality.

 Localization (l10n): This means adding resources to a web site to adapt it to a particular geographical or

cultural region for example Hindi translation to a web site.

 locale: This is a particular cultural or geographical region. It is usually referred to as a language symbol

followed by a country symbol which are separated by an underscore. For example "en_US" represents
english locale for US.

There are number of items which should be taken care while building up a global website. This tutorial would not
give you complete detail on this but it would give you a good example on how you can offer your web page in
different languages to internet community by differentiating their location ie. locale.

A JSP can pickup appropriate version of the site based on the requester's locale and provide appropriate site
version according to the local language, culture and requirements. Following is the method of request object
which returns Locale object.

java.util.Locale request.getLocale()

Detecting Locale:
Following are the important locale methods which you can use to detect requester's location, language and of
course locale. All the below methods display country name and language name set in requester's browser.

S.N. Method & Description

1

String getCountry()

This method returns the country/region code in upper case for this locale in ISO 3166 2-letter
format.

2
String getDisplayCountry()

This method returns a name for the locale's country that is appropriate for display to the user.

3
String getLanguage()

This method returns the language code in lower case for this locale in ISO 639 format.

4
String getDisplayLanguage()

This method returns a name for the locale's language that is appropriate for display to the user.

CHAPTER

30

TUTORIALS POINT

Simply Easy Learning

5
String getISO3Country()

This method returns a three-letter abbreviation for this locale's country.

6
String getISO3Language()

This method returns a three-letter abbreviation for this locale's language.

Example:
This example shows how you display a language and associated country for a request in a JSP:

<%@ page import="java.io.*,java.util.Locale" %>

<%@ page import="javax.servlet.*,javax.servlet.http.* "%>

<%

 //Get the client's Locale

 Locale locale = request.getLocale();

 String language = locale.getLanguage();

 String country = locale.getCountry();

%>

<html>

<head>

<title>Detecting Locale</title>

</head>

<body>

<center>

<h1>Detecting Locale</h1>

</center>

<p align="center">

<%

 out.println("Language : " + language + "
");

 out.println("Country : " + country + "
");

%>

</p>

</body>

</html>

Languages Setting:
A JSP can output a page written in a Western European language such as English, Spanish, German, French,
Italian, Dutch etc. Here it is important to set Content-Language header to display all the characters properly.

Second point is to display all the special characters using HTML entities, For example, "ñ" represents "ñ",
and "¡" represents "¡" as follows:

<%@ page import="java.io.*,java.util.Locale" %>

<%@ page import="javax.servlet.*,javax.servlet.http.* "%>

<%

 // Set response content type

 response.setContentType("text/html");

 // Set spanish language code.

 response.setHeader("Content-Language", "es");

 String title = "En Español";

%>

<html>

<head>

<title><% out.print(title); %></title>

</head>

TUTORIALS POINT

Simply Easy Learning

<body>

<center>

<h1><% out.print(title); %></h1>

</center>

<div align="center">

<p>En Español</p>

<p>¡Hola Mundo!</p>

</div>

</body>

</html>

Locale Specific Dates:
You can use the java.text.DateFormat class and its static getDateTimeInstance() method to format date and time
specific to locale. Following is the example which shows how to format dates specific to a given locale:

<%@ page import="java.io.*,java.util.Locale" %>

<%@ page import="javax.servlet.*,javax.servlet.http.* "%>

<%@ page import="java.text.DateFormat,java.util.Date" %>

<%

 String title = "Locale Specific Dates";

 //Get the client's Locale

 Locale locale = request.getLocale();

 String date = DateFormat.getDateTimeInstance(

 DateFormat.FULL,

 DateFormat.SHORT,

 locale).format(new Date());

%>

<html>

<head>

<title><% out.print(title); %></title>

</head>

<body>

<center>

<h1><% out.print(title); %></h1>

</center>

<div align="center">

<p>Local Date: <% out.print(date); %></p>

</div>

</body>

</html>

Locale Specific Currency
You can use the java.txt.NumberFormat class and its static getCurrencyInstance() method to format a number,
such as a long or double type, in a locale specific curreny. Following is the example which shows how to format
currency specific to a given locale:

<%@ page import="java.io.*,java.util.Locale" %>

<%@ page import="javax.servlet.*,javax.servlet.http.* "%>

<%@ page import="java.text.NumberFormat,java.util.Date" %>

<%

 String title = "Locale Specific Currency";

 //Get the client's Locale

 Locale locale = request.getLocale();

TUTORIALS POINT

Simply Easy Learning

 NumberFormat nft = NumberFormat.getCurrencyInstance(locale);

 String formattedCurr = nft.format(1000000);

%>

<html>

<head>

<title><% out.print(title); %></title>

</head>

<body>

<center>

<h1><% out.print(title); %></h1>

</center>

<div align="center">

<p>Formatted Currency: <% out.print(formattedCurr); %></p>

</div>

</body>

</html>

Locale Specific Percentage
You can use the java.txt.NumberFormat class and its static getPercentInstance() method to get locale specific
percentage. Following is the example which shows how to format percentage specific to a given locale:

<%@ page import="java.io.*,java.util.Locale" %>

<%@ page import="javax.servlet.*,javax.servlet.http.* "%>

<%@ page import="java.text.NumberFormat,java.util.Date" %>

<%

 String title = "Locale Specific Percentage";

 //Get the client's Locale

 Locale locale = request.getLocale();

 NumberFormat nft = NumberFormat.getPercentInstance(locale);

 String formattedPerc = nft.format(0.51);

%>

<html>

<head>

<title><% out.print(title); %></title>

</head>

<body>

<center>

<h1><% out.print(title); %></h1>

</center>

<div align="center">

<p>Formatted Percentage: <% out.print(formattedPerc); %></p>

</div>

</body>

</html>

	JSP Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer Notice
	JSP Overview
	Why Use JSP?
	Advantages of JSP:

	JSP Environment Setup
	Setting up Java Development Kit
	Setting up Web Server: Tomcat
	Setting up CLASSPATH

	JSP Architecture
	JSP Processing:

	JSP – Life Cycle
	JSP Compilation:
	JSP Initialization:
	JSP Execution:
	JSP Cleanup:

	JSP Syntax
	The Scriptlet:
	JSP Declarations:
	JSP Expression:
	JSP Comments:
	JSP Directives:
	JSP Actions:
	JSP Implicit Objects:
	Control-Flow Statements:
	Decision-Making Statements:
	Loop Statements:
	JSP Operators:
	JSP Literals:

	JSP Directives
	The page Directive:
	Attributes:
	The include Directive:
	The taglib Directive:

	JSP Actions
	Common Attributes:
	The <jsp:include> Action
	Example:
	The <jsp:useBean> Action
	The <jsp:setProperty> Action
	The <jsp:getProperty> Action
	Example:
	The <jsp:forward> Action
	Example:
	The <jsp:plugin> Action
	The <jsp:element> Action
	The <jsp:attribute> Action
	The <jsp:body> Action
	The <jsp:text> Action

	JSP Implicit Objects
	The request Object:
	The response Object:
	The out Object:
	The session Object:
	The application Object:
	The config Object:
	The pageContext Object:
	The page Object:
	The exception Object:

	JSP – Client Request
	The HttpServletRequest Object:
	HTTP Header Request Example:

	HTTP Header Request Example
	JSP – Server Response
	The HttpServletResponse Object:
	HTTP Header Response Example:

	HTTP Status Codes
	Methods to Set HTTP Status Code:
	HTTP Status Code Example:

	JSP Form Processing
	GET method:
	POST method:
	Reading Form Data using JSP
	GET Method Example Using URL:
	GET Method Example Using Form:
	POST Method Example Using Form:
	Passing Checkbox Data to JSP Program
	Reading All Form Parameters:

	Reading All Form Parameters
	JSP Filters
	Servlet Filter Methods:
	JSP Filter Example:
	JSP Filter Mapping in Web.xml:
	Using Multiple Filters:
	Filters Application Order:

	JSP – Cookies Handling
	The Anatomy of a Cookie:
	Servlet Cookies Methods:
	Setting Cookies with JSP:
	Example:
	Reading Cookies with JSP:
	Example:
	Delete Cookies with JSP:
	Example:

	JSP – Session Tracking
	Cookies:
	Hidden Form Fields:
	URL Rewriting:
	The session Object:
	Session Tracking Example:

	Welcome to my website
	Session Infomation

	Welcome Back to my website
	Session Infomation
	Deleting Session Data:

	JSP – File Uploading
	Creating a File Upload Form:
	Writing Backend JSP Script:

	JSP – Handling Dates
	Getting Current Date & Time
	Date Comparison:
	Date Formatting using SimpleDateFormat:
	Simple DateFormat format codes:

	JSP – Page Redirection
	Example:

	JSP – Hit Counter
	Example:
	Hit Counter Resets:

	JSP – Auto Refresh
	Auto Page Refresh Example:

	JSP – Sending Email
	Send a Simple Email:
	Send an HTML Email:
	Send Attachment in Email:
	User Authentication Part:
	Using Forms to send email:

	JSP – JSTL
	Install JSTL Library:
	Core Tags:
	Formatting tags:
	SQL tags:
	XML tags:
	JSTL Functions:

	JSP – Database Access
	Create Table
	Step 1:
	Step 2:
	Step 3:

	Create Data Records
	SELECT Operation:
	INSERT Operation:
	DELETE Operation:
	UPDATE Operation:

	JSP – XML Data
	Sending XML from a JSP:
	Processing XML in JSP:
	Formatting XML with JSP:

	JSP – JavaBeans
	JavaBeans Properties:
	JavaBeans Example:
	Accessing JavaBeans:
	Accessing JavaBeans Properties:

	JSP – Custom Tags
	Create "Hello" Tag:
	Accessing the Tag Body:
	Custom Tag Attributes:

	JSP – Expression Language
	Simple Syntax:
	Basic Operators in EL:
	Functions in JSP EL :
	JSP EL Implicit Objects:
	The pageContext Object:
	The Scope Objects:
	The param and paramValues Objects:
	header and headerValues Objects:

	JSP – Exception Handling
	Using Exception Object:
	Using JSTL tags for Error Page:
	Using Try...Catch Block:

	JSP – Debugging
	Using System.out.println():
	Using the JDB Logger:
	Debugging Tools:
	Using JDB Debugger:
	Using Comments:
	Client and Server Headers:
	Important Debugging Tips:

	JSP – Security
	Role Based Authentication:
	Form Based Authentication:
	Programmatic Security in a Servlet/JSP:

	JSP – Internationalization
	Detecting Locale:
	Example:
	Languages Setting:
	Locale Specific Dates:
	Locale Specific Currency
	Locale Specific Percentage

