
i

TRAINING & REFERENCE

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2008 Mike Murach & Associates. All rights reserved.

murach’s
Javaservlets and

JSP 2ND EDITION

(Chapter 1)

Thanks for downloading this chapter from Murach’s Java Servlets and JSP (2nd Edition). We
hope it will show you how easy it is to learn from any Murach book, with its paired-pages
presentation, its “how-to” headings, its practical coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our web site. From there, you can
read more about this book, you can find out about any additional downloads that are available,
and you can review our other books for professional developers.

Thanks for your interest in our books!

http://www.murach.com/books/jsp2/index.htm
mailto:murachbooks@murach.com
http://www.murach.com
http://www.murach.com/books/jsp2/toc.htm

i

Contents
Introduction xvii

Section 1 Introduction to servlet and JSP programming

Chapter 1 An introduction to web programming with Java 3
Chapter 2 How to install and use Tomcat 29
Chapter 3 How to use the NetBeans IDE 61

Section 2 Essential servlet and JSP skills

Chapter 4 A crash course in HTML 105
Chapter 5 How to develop JavaServer Pages 137
Chapter 6 How to develop servlets 173
Chapter 7 How to structure a web application with the MVC pattern 201
Chapter 8 How to work with sessions and cookies 243
Chapter 9 How to use standard JSP tags with JavaBeans 287

Chapter 10 How to use the JSP Expression Language (EL) 311
Chapter 11 How to use the JSP Standard Tag Library (JSTL) 337
Chapter 12 How to use custom JSP tags 375

Section 3 Essential database skills

Chapter 13 How to use MySQL as the database management system 415
Chapter 14 How to use JDBC to work with a database 441

Section 4 Advanced servlet and JSP skills

Chapter 15 How to use JavaMail to send email 487
Chapter 16 How to use SSL to work with a secure connection 513
Chapter 17 How to restrict access to a web resource 531
Chapter 18 How to work with HTTP requests and responses 555
Chapter 19 How to work with listeners 583
Chapter 20 How to work with filters 599

Section 5 The Music Store web site

Chapter 21 An introduction to the Music Store web site 623
Chapter 22 The Download application 649
Chapter 23 The Cart application 661
Chapter 24 The Admin application 683

Resources

Appendix A How to set up your computer for this book 703
Index 719

Judy
Highlight

Chapter 1 An introduction to web programming with Java 3

1

An introduction to web
programming with Java
This chapter introduces you to the concepts and terms that you need for
working with servlets and JavaServer Pages (JSPs) as you create web
applications. In particular, this chapter introduces you to the software that you
need to be able to write, deploy, and run servlets and JSPs.

An introduction to web applications 4
A typical web application ... 4
The components of a web application .. 6
How static web pages work .. 8
How dynamic web pages work ... 10

An introduction to Java web programming 12
The components of a Java web application .. 12
An introduction to JavaServer Pages .. 14
An introduction to servlets ... 18
How to combine servlets and JSPs in a web application 18

An introduction to Java web development 20
Three environments for servlet and JSP development 20
The architecture for a Java web application ... 22
IDEs for developing Java web applications .. 24
Tools for deploying Java web applications ... 26

Perspective .. 28

4 Section 1 Introduction to servlet and JSP programming

An introduction to web applications

A web application is a set of web pages that are generated in response to
user requests. The Internet has many different types of web applications, such as
search engines, online stores, auctions, news sites, discussion groups, and
games.

A typical web application

Figure 1-1 shows the first two pages of the shopping cart application that’s
available from www.murach.com. Here, the first page presents some informa-
tion about our beginning Java book. This page contains two buttons: a View Cart
button and an Add To Cart button. When you click the Add To Cart button, the
web application adds the book to your cart and displays the second page in this
figure, which shows all of the items in your cart.

The second page lets you change the quantity for an item or remove an item
from the cart. It also lets you continue shopping or begin the checkout process.
In this book, you’ll learn all the skills you need to create a shopping cart appli-
cation like this one.

If you take a closer look at these web pages, you can learn a little bit about
how this application works. For the first page, the Address box of the browser
shows an address that has an htm extension. This means that the HTML code
for this page is probably stored in file with an htm extension.

In contrast, the Address box for the second page shows the address of a
servlet that was mapped to the cart/displayCart URL. This means that the
HTML code for this page was generated by the servlet. After the servlet ad-
dress, you can see a question mark and one parameter named productCode that
has a value of “jse6”. This is the parameter that was passed from the first page.

Chapter 1 An introduction to web programming with Java 5

The first page of a shopping cart application

The second page of a shopping cart application

Figure 1-1 A typical web application

6 Section 1 Introduction to servlet and JSP programming

The components of a web application

Figure 1-2 shows the basic components that make up a web application.
Because a web application is a type of client/server application, the components
of a web application are stored on either the client computer or the server
computer.

To access a web application, you use a web browser that runs on a client
computer. The most widely used web browser is Microsoft’s Internet Explorer,
and the most popular alternative is Mozilla Firefox.

The web application itself is stored on the server computer. This computer
runs web server software that enables it to send web pages to web browsers.
Although there are many web servers, the most popular one for Java web
applications is the Apache Software Foundation’s Apache HTTP Server, which
is usually just called Apache.

Because most web applications work with data that’s stored in a database,
most servers also run a database management system (DBMS). Two of the most
popular for Java development are Oracle and MySQL. Note, however, that the
DBMS doesn’t have to run on the same server as the web server software. In
fact, a separate database server is often used to improve an application’s overall
performance.

Although this figure shows the client and server computers connected via
the Internet, this isn’t the only way a client can connect to a server in a web
application. If the client and the server are on the same Local Area Network
(LAN), they function as an intranet. Since an intranet uses the same protocols as
the Internet, a web application works the same on an intranet as it does on the
Internet.

Chapter 1 An introduction to web programming with Java 7

Components of a web application

Figure 1-2 The components of a web application

Description
• Web applications are a type of client/server application. In a client/server application, a

user at a client computer accesses an application at a server computer. For a web appli-
cation, the client and server computers are connected via the Internet or an intranet.

• In a web application, the user works with a web browser at the client computer. The web
browser provides the user interface for the application. The most widely used web
browser is Microsoft’s Internet Explorer, but other web browsers such as Mozilla Firefox
are also widely used.

• A web application runs on the server computer under the control of web server software.
For Java web applications, the Apache server is the most widely used web server.

• For most web applications, the server computer also runs a database management system
(DBMS). For servlet and JSP applications, Oracle and MySQL are two of the most
popular database management systems.

Internet
connection

Web browser Web server
Database server

Client computer
Server computer

8 Section 1 Introduction to servlet and JSP programming

How static web pages work

HTML (Hypertext Markup Language) is the language that the browser
renders to the web pages that make up a web application’s user interface. Many
of these web pages are static web pages, which are the same each time they are
viewed. In other words, they don’t change in response to user input.

Figure 1-3 shows how a web server handles static web pages. The process
begins when a user at a web browser requests a web page. This can occur when
the user enters a web address into the browser’s Address box or when the user
clicks a link that leads to another page. In either case, the web browser uses a
standard Internet protocol known as Hypertext Transfer Protocol (HTTP) to
send a request known as an HTTP request to the web site’s server.

When the web server receives an HTTP request from a browser, the server
gets the requested HTML file from disk and sends the file back to the browser
in the form of an HTTP response. The HTTP response includes the HTML
document that the user requested along with any other resources specified by
the HTML code such as graphics files.

When the browser receives the HTTP response, it renders the HTML
document into a web page that the user can view. Then, when the user requests
another page, either by clicking a link or typing another web address in the
browser’s Address box, the process begins again.

Chapter 1 An introduction to web programming with Java 9

How a web server processes static web pages

Figure 1-3 How static web pages work

Description
• Hypertext Markup Language (HTML) is the language that the web browser converts into

the web pages of a web application.

• A static web page is an HTML document that’s stored in a file and does not change in
response to user input. Static web pages have a filename with an extension of .htm or
.html.

• Hypertext Transfer Protocol (HTTP) is the protocol that web browsers and web servers
use to communicate.

• A web browser requests a page from a web server by sending the server a message
known as an HTTP request. For a static web page, the HTTP request includes the name
of the HTML file that’s requested.

• A web server replies to an HTTP request by sending a message known as an HTTP
response back to the browser. For a static web page, the HTTP response includes the
HTML document that’s stored in the HTML file.

Client Server

Browser Web server HTML file

HTTP request

HTTP response

10 Section 1 Introduction to servlet and JSP programming

How dynamic web pages work

In contrast to a static web page, a dynamic web page changes based on the
parameters that are sent to the web application from another page. For instance,
when the Add To Cart button in the first page in figure 1-1 is clicked, the static
web page calls the web application and sends one parameter to it. Then, the web
application generates the dynamic web page and sends the HTML for it back to
the browser.

Figure 1-4 shows how this works. When a user enters data into a web page
and clicks the appropriate button, the browser sends an HTTP request to the
server. This request contains the address of the next web page along with any
data entered by the user. Then, when the web server receives this request and
determines that it is a request for a dynamic web page, it passes the request back
to the web application.

When the web application receives the request, it processes the data that the
user entered and generates an HTML document. Next, it sends that document to
the web server, which sends the document back to the browser in the form of an
HTTP response. Then, the browser displays the HTML document that’s in-
cluded in the response so the process can start over again.

Chapter 1 An introduction to web programming with Java 11

How a web server processes dynamic web pages

Figure 1-4 How dynamic web pages work

Description
• A dynamic web page is an HTML document that’s generated by a web application.

Often, the web page changes according to parameters that are sent to the web application
by the web browser.

• When a web server receives a request for a dynamic web page, the server passes the
request to the web application. Then, the application generates a response, which is
usually an HTML document, and returns it to the web server. The web server, in turn,
wraps the generated HTML document in an HTTP response and sends it back to the
browser.

• The browser doesn’t know or care whether the HTML was retrieved from a static HTML
file or was dynamically generated by the web application. Either way, the browser
displays the HTML document that is returned.

Client Server

Browser Web server
Web

application

HTTP request

HTTP response

12 Section 1 Introduction to servlet and JSP programming

An introduction to Java web
programming

In the early days of Java, Java received much attention for its ability to
create applets. These are Java applications that can be downloaded from a web
site and run within a web browser. However, once Microsoft’s Internet Explorer
stopped supporting new versions of Java, applets lost much of their appeal. As a
result, many developers switched their attention to servlets and JavaServer
Pages (JSPs). These technologies allow developers to write Java web applica-
tions that run on the server.

The components of a Java web application

Figure 1-5 shows the primary software components for a Java web applica-
tion. By now, you should understand why the server must run web server
software. To run a Java application, though, the server must also run a software
product known as a servlet/JSP engine, or servlet/JSP container. This software
allows a web server to run servlets and JSPs.

Sun’s Java Enterprise Edition (Java EE) specification describes how a
servlet/JSP engine should interact with a web server. Since all servlet/JSP
engines must implement this specification, all servlet/JSP engines should work
similarly. In theory, this makes servlet/JSP code portable between servlet/JSP
engines and web servers. In practice, though, there are minor differences
between each servlet/JSP engine and web server. As a result, you may need to
make some modifications to your code when switching servlet/JSP engines or
web servers.

Tomcat is a free, open-source servlet/JSP engine that was developed by the
Jakarta project at the Apache Software Foundation. This engine is the official
reference implementation of the servlet/JSP specification set forth by Sun, and
it’s one of the most popular servlet/JSP engines. In the next chapter, you’ll learn
how to install and use Tomcat on your own computer.

For a servlet/JSP engine to work properly, the engine must be able to access
the Java Development Kit (JDK) that comes as part of the Java Standard
Edition (Java SE). The JDK contains the Java compiler and the core classes for
working with Java. It also contains the Java Runtime Environment (JRE) that’s
necessary for running compiled Java classes. Since this book assumes that you
already have some Java experience, you should already be familiar with the
JDK and the JRE.

Many large websites also use a Java technology known as Enterprise
JavaBeans (EJBs). To use EJBs, the server must run an additional piece of
software known as an EJB server, or EJB container. Although there are some
benefits to using EJBs, they’re more difficult to use when you’re first learning
how to code Java web applications, and they can make web applications unnec-
essarily complex. That’s why this book shows how to develop web applications
without using EJBs.

Chapter 1 An introduction to web programming with Java 13

The components of a Java web application

Figure 1-5 The components of a Java web application

Description
• Java web applications consist of JavaServer Pages and servlets. You’ll learn more about

them in the next two figures.

• A servlet/JSP engine, or servlet/JSP container, is the software that allows the web server
to work with servlets and JSPs.

• The Java Enterprise Edition (Java EE) specification describes how web servers can
interact with servlet/JSP engines. Tomcat is one of the most popular servlet/JSP engines.
It was developed by the Jakarta project at the Apache Software Foundation.

• For a servlet/JSP engine to work, it must have access to Java’s Java Development Kit
(JDK), which comes as part of the Java Standard Edition (Java SE). Among other things,
the JDK contains the core Java class libraries, the Java compiler, and the Java Runtime
Environment (JRE).

• Java web applications that use Enterprise JavaBeans (EJBs) require an additional server
component known as an EJB server, or EJB container. As a result, they won’t run on the
Tomcat server.

Client

Browser

Server

Web server

Database server

HTTP request HTTP response

Servlet/JSP engine

Java Development Kit (JDK)

14 Section 1 Introduction to servlet and JSP programming

An introduction to JavaServer Pages

To give you a better idea how JavaServer Pages (JSPs) work, part 1 of
figure 1-6 shows a simple JSP displayed in a browser. Then, part 2 of this figure
shows the code for the JSP.

In the Address box of the browser, the address of the JSP ends with a jsp
extension. After that, the address includes a question mark followed by the
parameters that are passed to the JSP. Finally, the body of the web page displays
the values of these parameters in a table. For example, the value of the
firstName parameter is John, and this value is displayed in the first row of the
table.

Chapter 1 An introduction to web programming with Java 15

A JSP that displays three parameters entered by the user

Description
• A JavaServer Page, or JSP, consists of Java code that is embedded within HTML code.

This makes it easy to write the HTML portion of a JSP, but harder to write the Java code.

• When a JSP is first requested, the JSP engine translates it into a servlet and compiles it.
Then, the servlet is run by the servlet engine.

Figure 1-6 An introduction to JavaServer Pages (part 1 of 2)

16 Section 1 Introduction to servlet and JSP programming

In part 2 of this figure, you can see the code for this JSP. If you’re already
familiar with HTML, you can see that most of this code consists of HTML
code. In fact, the only Java code in this JSP is shaded. That makes JSPs easy to
write if you know HTML and if you are able to keep the Java code to a mini-
mum.

If a JSP requires extensive Java programming, though, it’s easier to write
the Java code with a servlet. In practice, web designers often write the HTML
portions of the JSPs, while web programmers write the Java portions.

In case you’re interested, the first three lines of Java code in this JSP get
three parameters from the request object that has been passed to it. To do that,
the code uses the getParameter method of the built-in request object, and it
stores the values of these parameters in three String variables. Then, the three
Java expressions that are used later in the JSP refer to the String variables that
store the values of the parameters.

When a JSP is requested for the first time, the JSP engine (which is part of
the servlet/JSP engine) converts the JSP code into a servlet and compiles the
servlet. Then, the JSP engine loads that servlet into the servlet engine, which
runs it. For subsequent requests, the JSP engine runs the servlet that corre-
sponds to the JSP.

In chapter 4, you’ll get a crash course in HTML that will teach you all the
HTML you need to know for writing JSPs. Then, in chapter 5, you’ll learn how
to combine HTML code with Java code as you write JSPs. When you’re done
with those chapters, you’ll know how to write significant JSPs of your own.

Chapter 1 An introduction to web programming with Java 17

The code for the JSP
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
 <title>Murach's Java Servlets and JSP</title>
</head>
<body>
 <%
 // get parameters from the request
 String firstName = request.getParameter("firstName");
 String lastName = request.getParameter("lastName");
 String emailAddress = request.getParameter("emailAddress");
 %>

 <h1>Thanks for joining our email list</h1>

 <p>Here is the information that you entered:</p>

 <table cellspacing="5" cellpadding="5" border="1">
 <tr>
 <td align="right">First name:</td>
 <td><%= firstName %></td>
 </tr>
 <tr>
 <td align="right">Last name:</td>
 <td><%= lastName %></td>
 </tr>
 <tr>
 <td align="right">Email address:</td>
 <td><%= emailAddress %></td>
 </tr>
 </table>

 <p>To enter another email address, click on the Back

 button in your browser or the Return button shown

 below.</p>

 <form action="join_email_list.html" method="get">
 <input type="submit" value="Return">
 </form>

</body>
</html>

Figure 1-6 An introduction to JavaServer Pages (part 2 of 2)

18 Section 1 Introduction to servlet and JSP programming

An introduction to servlets

To give you a better idea of how servlets work, figure 1-7 shows a servlet
that generates the same web page as the JSP in figure 1-6. In short, a servlet is a
Java class that runs on a server and does the processing for the dynamic web
pages of a web application. That’s why servlets for a web application are written
by web programmers, not web designers. After the processing is done, a servlet
can return HTML code to the browser by using the println method of an out
object. Note, however, that this makes it more difficult to code the HTML.

If you study the code in this figure, you can see that each servlet is a Java
class that extends (or inherits) the HttpServlet class. Then, each servlet can
override the doGet method of the inherited class, which receives both a request
and a response object from the web server, and the servlet can get the param-
eters that have been passed to it by using the getParameter method of the
request object. After that, the servlet can do whatever processing is required by
using normal Java code.

In chapter 6, you’ll learn the details for coding servlets. When you complete
that chapter, you’ll be able to write significant servlets of our own.

How to combine servlets and JSPs in a web
application

When you’re developing Java web applications, you will usually want to use
a combination of servlets and JSPs so you get the benefits of both. As you have
seen, servlets are actually Java classes. As a result, it makes sense to use them
for the processing requirements of a web application. Similarly, JSPs are
primarily HTML code so it makes sense to use them for the design of the web
pages in an application. But how can you do that in an efficient way?

The solution is for the servlets to do the processing for the application and
then forward the request and response objects to a JSP. That way, the servlet
does the processing, and the JSP provides the HTML for the user interface. With
this approach, the JSP requires a minimum of embedded Java code. And that
means that the web designer can write the JSPs with minimal interaction with
the Java programmer, and the Java programmer can write the servlets without
worrying about the HTML.

In chapter 7, you’ll learn how to use this approach for developing web
applications. You’ll also learn how to use the Model-Controller-View (MVC)
pattern to structure your applications so they’re easy to manage and maintain.
When you finish that chapter, you’ll know how to develop Java web applica-
tions in a thoroughly professional manner.

Chapter 1 An introduction to web programming with Java 19

The code for a servlet that works the same as the JSP in figure 1-6
package email;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DisplayEmailListServlet extends HttpServlet
{
 protected void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 // get parameters from the request
 String firstName = request.getParameter("firstName");
 String lastName = request.getParameter("lastName");
 String emailAddress = request.getParameter("emailAddress");

 // return response to browser
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 out.println(
 "<!doctype html public \"-//W3C//DTD HTML 4.0 Transitional//EN\">\n"
 + "<html>\n"
 + "<head>\n"
 + " <title>Murach’s Java Servlets and JSP</title>\n"
 + "</head>\n"
 + "<body>\n"
 + "<h1>Thanks for joining our email list</h1>\n"
 + "<p>Here is the information that you entered:</p>\n"
 + " <table cellspacing=\"5\" cellpadding=\"5\" border=\"1\">\n"
 + " <tr><td align=\"right\">First name:</td>\n"
 + " <td>" + firstName + "</td>\n"
 + " </tr>\n"
 + " <tr><td align=\"right\">Last name:</td>\n"
 + " <td>" + lastName + "</td>\n"
 + " </tr>\n"
 + " <tr><td align=\"right\">Email address:</td>\n"
 + " <td>" + emailAddress + "</td>\n"
 + " </tr>\n"
 + " </table>\n"
 + "<p>To enter another email address, click on the Back
\n"
 + "button in your browser or the Return button shown
\n"
 + "below.</p>\n"
 + "<form action=\"join_email_list.html\" >\n"
 + " <input type=\"submit\" value=\"Return\">\n"
 + "</form>\n"
 + "</body>\n"
 + "</html>\n");
 out.close();
 }
}

Figure 1-7 An introduction to servlets

20 Section 1 Introduction to servlet and JSP programming

An introduction to Java web
development

This topic introduces you to servlet/JSP development. In particular, it
presents some of the hardware and software options that you have as you
develop Java web applications.

Three environments for servlet and JSP
development

Figure 1-8 shows the three possible environments that you can use to
develop servlets and JSPs. First, you can use a single computer. Second, you
can use a Local Area Network (or LAN). Third, you can use the Internet.

When you use a single computer, you need to install all of the required
software on that computer. That includes the JDK, the web server software, the
servlet/JSP engine, and the database management system. To make this easy,
you can use Tomcat as both the web server and the servlet/JSP engine. Then,
you can use MySQL as the database server. In the next chapter, you’ll learn how
to install Tomcat, and you can learn how to install the other components in
appendix A.

When you work over a LAN, it functions as an intranet. In this development
environment, you can use the same software components as you do on your own
computer, but you divide them between client and server. To compile and run
servlets on the server, the server requires the JDK, a web server and servlet/JSP
engine like Tomcat, and a DBMS like MySQL. Then, the client just needs the
JDK and the JAR files for any classes that aren’t available from the JDK. For
example, to compile servlets on a client, the client requires the servlet.jar file,
which contains all of the classes required for servlet development. These JAR
files come with Tomcat, and you’ll learn more about them in the next chapter.

When you work over the Internet, you use the same general components as
you do when you work over an intranet. To improve performance, though, you
can use a dedicated web server like Apache together with a dedicated servlet/
JSP engine like Tomcat. If necessary, you can also improve the performance of
an intranet application by using Apache as the web server.

Since the JDK, Apache, Tomcat, and MySQL can be run by most operating
systems, Java web developers aren’t tied to a specific operating system. In fact,
the Windows operating system is commonly used for the client computers
during development. But when the applications are ready for use, they are often
deployed to a Unix or Solaris server.

Chapter 1 An introduction to web programming with Java 21

Three environments for servlet and JSP development

Figure 1-8 Three environments for servlet and JSP development

Description
• When you develop web applications, you can set up your development environment in

several different ways.

• If you want to develop web applications on your own computer, you need to install the
JDK, a web server, a servlet/JSP engine, and a DBMS. In this case, it’s common to use
Tomcat as both the web server and the servlet/JSP engine, and MySQL as the DBMS.

• If you’re working in a group over an intranet, the server can run Tomcat as the web
server and the servlet/JSP engine, and it can run MySQL as the DBMS. Then, the client
just needs the JDK and the JAR files for any classes that aren’t available from the JDK.
At the least, the client will need the servlet-api.jar, jsp-api.jar, and el-api.jar files that
contain standard Java EE classes for working with servlets and JSPs.

• If you’re working in a group over the Internet, you may want to use a web server such as
Apache and a dedicated servlet/JSP engine like Tomcat. Otherwise, this works the same
as when you’re working over a LAN.

LAN connection

JDK
Tomcat
MySQL

Stand-alone development

JDK
Java EE JAR files JDK

Tomcat
MySQL

JDK
Java EE JAR files

JDK
Tomcat
Apache
MySQL

Local Area Network development

Internet development

Internet
connection

Server

Server

Client

Client

22 Section 1 Introduction to servlet and JSP programming

The architecture for a Java web application

Figure 1-9 shows the architecture for a typical web application that uses
servlets and JSPs. This architecture uses three layers: (1) the presentation layer,
or user interface layer, (2) the business rules layer, and (3) the data access
layer. In theory, the programmer tries to keep these layers as separate and
independent as possible. In practice, though, these layers are often interrelated,
and that’s especially true for the business and data access layers.

The presentation layer consists of HTML pages and JSPs. Typically, a web
designer will work on the HTML stored in these pages to create the look and
feel of the user interface. Later, a Java programmer may need to edit these pages
so they work properly with the servlets of the application.

The business rules layer uses servlets to control the flow of the application.
These servlets may call other Java classes to store or retrieve data from a
database, and they may forward the results to a JSP or to another servlet. Within
the business layer, Java programmers often use a special type of Java class
known as a JavaBean to temporarily store and process data. A JavaBean is
typically used to define a business object such as a User or Invoice object.

The data layer works with data that’s stored on the server’s disk. For a
serious web application, this data is usually stored in a relational database.
However, this data can also be stored in text files and binary files. In addition,
the data for an application can be stored in an Extensible Markup Language
(XML) file.

Chapter 1 An introduction to web programming with Java 23

The architecture for a typical Java web application

Figure 1-9 The architecture for a Java web application

Description
• The presentation layer for a typical Java web application consists of HTML pages and

JSPs.

• The business rules layer for a typical Java web application consists of servlets. These
servlets may call other Java classes including a special type of Java class known as a
JavaBean. In chapters 9 and 10, you’ll learn how to use several special types of tags
within a JSP to work with JavaBeans.

• The data access layer for a typical Java web application consists of classes that read and
write data that’s stored on the server’s disk drive.

• For a serious web application, the data is usually stored in a relational database. How-
ever, it may also be stored in binary files, in text files, or in Extensible Markup Language
(or XML) files.

Presentation layer

HTML files JSP files

Business rules layer

Servlets JavaBeans
Other Java

classes

Data access layer

Database

Data access
classes

Text files Binary files XML files

24 Section 1 Introduction to servlet and JSP programming

IDEs for developing Java web applications

In the early days of Java web programming, programmers commonly used
text editors to enter, edit, compile, and test the HTML, JSP, Java, servlet, and
XML files that make up a web application. Today, however, many Integrated
Development Environments (IDEs) are available that make Java web program-
ming far more efficient.

Two of the most popular IDEs for developing Java web applications are
NetBeans and Eclipse. Both are open-source, and both are available for free. Of
the two, we think that NetBeans is easier to use, especially when you’re getting
started with web programming. That’s why we recommend that you use
NetBeans with this book.

In figure 1-10, for example, you can see the NetBeans IDE with the project
for chapter 7 in the Projects window, the code for a servlet class in the editor
window, and runtime messages in the Output window. This is similar to what
you’ll find in most IDEs. As a result, once you’re done with this book, you can
easily apply the skills that you learn with NetBeans to another IDE.

Although we recommend using NetBeans with this book, you should be
able to use another IDE with this book if you prefer. To do that, though, you will
need to figure out how to import the source code for this book into your IDE so
you can compile and run the sample applications and complete the exercises. In
addition, you will need to use the documentation that’s available for your IDE to
learn how to perform the tasks presented in chapter 3.

Chapter 1 An introduction to web programming with Java 25

The NetBeans IDE

Popular IDEs for Java web development
NetBeans

Eclipse

JBuilder

IntelliJ IDEA

Description
• An Integrated Development Environment (IDE) is a tool that provides all of the function-

ality that you need for developing web applications.

• NetBeans and Eclipse are popular IDEs for Java web development that are open-source
and free.

• In chapter 3, you will learn how to use NetBeans for developing Java web applications.
This is the IDE that we recommend for use with this book.

Figure 1-10 IDEs for developing Java web applications

26 Section 1 Introduction to servlet and JSP programming

Tools for deploying Java web applications

Once you’ve tested your servlets and JSPs on your own computer or an
intranet, you may want to deploy your web application on the Internet. To do
that, you need to get a web host. One way to do that is to find an Internet
service provider (ISP) that provides web hosting that supports servlets and JSPs.
If you read the text for the ISP on the web page shown in figure 1-11, for
example, you can see that this ISP supports servlets and JSPs.

If you search the web, you’ll be able to find many other ISPs and web hosts.
Just make sure that the one you choose not only supports servlet and JSP
development, but also the database management system that your application
requires.

When you select a web host, you get an IP address like 64.71.179.86 that
uniquely identifies your web site (IP stands for Internet Protocol). Then, you
can get a domain name like www.murach.com. To do that, you can use any
number of companies that you can find on the Internet. Until you get your
domain name, you can use the IP address to access your site.

After you get a web host, you need to transfer your files to the web server.
To do that, you can use File Transfer Protocol (FTP). The easiest way to use
FTP is to use an FTP client such as the FileZilla client shown in this figure. An
FTP client like this one lets you upload files from your computer to your web
server and download files from your web server to your computer.

Chapter 1 An introduction to web programming with Java 27

An ISP that provides web hosting that supports servlets and JSPs

The FileZilla program

Figure 1-11 Tools for deploying Java web applications

28 Section 1 Introduction to servlet and JSP programming

Perspective

The goal of this chapter has been to provide the background that you need for
developing servlets and JSPs. Now, if this chapter has succeeded, you should be
ready to install Tomcat on your own computer as shown in the next chapter. Then,
you’ll be ready to install the NetBeans IDE on your computer as shown in chapter 3.

Summary

• A web application is a set of web pages that are generated in response to user
requests.

• To run a web application, the client requires a web browser and the server requires
web server software. The server may also require a database management system
(DBMS).

• Hypertext Markup Language (HTML) is the language that the browser converts into
the user interface, while Hypertext Transfer Protocol (HTTP) is the protocol that
web browsers and web servers use to communicate.

• A web browser requests a page from a web server by sending an HTTP request. A
web server replies by sending an HTTP response back to the browser.

• A static web page is generated from an HTML document that doesn’t change,
while a dynamic web page is generated by a web application based on the param-
eters that are included in the HTTP request.

• To run Java web applications, the server requires the Java Development Kit (JDK)
and a servlet/JSP engine like Tomcat.

• A JavaServer Page (JSP) consists of HTML with embedded Java code. When it is
requested, the JSP engine generates a servlet from the JSP and compiles that
servlet. Then, the servlet engine runs that servlet.

• A servlet is a Java class that runs on a server. For web applications, a servlet
extends the HttpServlet class. To pass HTML back to the browser, a servlet can use
the println method of the out object.

• When you develop a Java web application, you can use servlets to do the process-
ing that’s required and JSPs to present the user interface.

• You can develop servlets and JSPs on your own computer, on a Local Area Network
(LAN) that functions as an intranet, and on the Internet. When you use the Internet,
it’s common to use a web server that’s separate from the servlet/JSP engine.

• As you develop a Java web application, you try to divide its classes into three
layers: presentation, business rules, and data access. This makes it easier to
manage and maintain the application.

