Beginning JSP, JSF and
Tomcat

Giulio Zambon

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Beginning JSP, JSF and Tomcat
Copyright © 2012 by Giulio Zambon

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or
material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use
by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

ISBN 978-1-4302-4623-7
ISBN 978-1-4302-4624-4 (eBook)

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Developmental Editor: Douglas Pundick, Ralph Moore

Technical Reviewer: Boris Minkin, Manuel Joran Elera

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan
Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff
Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt
Wade, Tom Welsh

Coordinating Editors: Katie Sullivan

Copy Editor: Michael Sandlin

Compositor: Bytheway Publishing Services

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www. springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to www.apress.com/source-
code.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUhOF.........coccimiemmmisennmiesmrsss s s an s ann e s mnn e s nnnensnnnansn xiv
About the Technical REVIEWErScccurrssssmnnmssssssnnnmsssssssnsssssssssssssssssnsssssssnssssssnnnnss Xv
Chapter 1: Introducing JSP and Tomcat...........ccccinnnemmmmmnsssnnmmnsssssnmmssssssmssssssnns 1
Chapter 2: JSP Elements........cccccuunmmmmmmnsssssnmmssssssssmsssssssssssssssssssssssssssssssnssssssssnnnnss 19
Chapter 3: JSP Application Architecturesuccceerrmimmmmmmmsssssssmnmmmmmssssssssmms 49
Chapter 4: JSP in AClioNccccvriisemmmmnssssnnmmsssssnsnmssssssssnsssssnssessssnnssnssssnnnsnssnnnnnenns 79
Chapter 5: XML and JSPcccccuusemmmmmsssnnnmmssssssnmmsssssssmmssssssnssssssssnsssssssnssssssnnnns 121
Chapter 6: Databases.....cccuserrsssmsrsssnsmsssnsssssnssssssnsssssnsssssnssssansessansesssnnesssnnesssnness 159
Chapter 7: JavaServer FAces 2.2.......ccuurirmmmmmssssnsssssmsssssssssnsssssssssssssssssnssssssssssss 189
Chapter 8: JSF and €ShOPccuuviissemmmmsssssnnmmsssssssmmssssssssssssssssssssssssnssssssnsnsssssnnnnss 231
(0 G e H T) [| 259
Chapter 10: @ShOP*cccerismrrssnmmsssnsmssssnsssssssssssssssssnssssansessansessansessannesssnnesssnnssss 281
Appendix A: The Web Pageccccurrissennmmmssssssnmssssssnsssssssssssssssssssssssssssssssssssnsssssnnns 317
Appendix B: SQL Practical Introduction.........c..ccccimnnssmmmmmnisssnnmmnssssssnmssssssnmsssnns 379
Appendix C: Abbreviations and ACroNYMS........ucccummmsssssnnmsssssnssssssssssssssssansssssssnns 405
INA@X cerriiisnnnnnnssssnnnnnssssnnnnmssssnnsnnssssnnsnnsssssnsnnsssssnsnssssssnsnssssssnnnnessssnnnnsssssnnnnssssnnnnnss 409

www.it-ebooks.info

iii

http://www.it-ebooks.info/

iv

Contents

About the AUROK........ccocemiiiiseennrnsss s s s n e aann e e nnnnnn e s nnnns xiv
About the Technical REVIEWErScccurrssssmnnmssssssnnnmsssssssnsssssssssssssssssnsssssssnssssssnnnnss Xv
Chapter 1: Introducing JSP and Tomcat...........ccccrnnnnemmmmmnsssnnmmmssssnmmmssssssmssssnns 1
INSTAIlING JAVA........ceierereer e nn s 3
JAVA TS ... e AR e nnns 5
InStalling TOMCALccocerircrerere s 6
SImMple TOMCAL TEST......coc e s s e e s e e s a et ae e nnne 8
WRAL IS JSP?..... ettt e s e e n e s 9
VIEWING @ JSP PAGE ...ttt 10
HEIO WOIIA! ... nn e 12
Listing the HTML-Request Parameters..........ccocoeveeeeecrssses s ses e 16
30T 111 1T TS 17
Chapter 2: JSP Elements........ccccvunsmmnmmssssssnmmssssssssmsssssssssssssssssssssssssssssssssnssssssnnnnss 19
INEFOTUCTION ... r e nn e nr e nn s 19
Scripting Elements and Java ... s 20
LT 1] 20
EXPIESSIONScueeeieisecressssesesessssseesessesee e se e s e sesss e et s sessase e sesssse e sessese e nessssssnssssessnssnsnsenes 20
L0 LT T L0 L 21
Data TYPES aNd VANIADIEScocvererrererererererereressersesessessssessssessssessesessessssssessessssessssessssssssnsssessssesssnssaes 21
00 T= TR R Lo A T 23
Operators, Assignments, and COMPANISONScoceeeererereresesesesessseas 24

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

R TC] T 0] L 25
REFATIONS ...cvceeie s ——— 26
IMPIICIE ODJECLSeeerieererrer e sr s r e sr e s ren s 27
The application OBJECL........cciiiii s —————— 27
The config ODJECT.....cccc s —————— 30
The exception ODJECL.......c i —————— 31
oL ol =T) 32
The pageContext ODJECL. ... ————————— 34
The requeST ODJECT......cce e ———— 34
The 1€SPONSe ODJECL.......eeeeccc s —————— 43
ThE SESSI0N ODJECE.....civrerererererererere s nn e s 43
Directive EIBMENTS........cccoiciricirrir s —————— 44
The page DIrECHVE ... s 44
The 1nClude DIFBCLIVE ...c.cuviereissri e 47
The taglib DIrCHVE ..o ——————— 47
RS0 3] 1 47
Chapter 3: JSP Application Architecturesoccceerrmmnmmmmmmsssssssmnmmmmssssssssmms 49
The Model 1 ArchiteCture ... ————— 49
The Model 2 ArchiteCtUre ... ——— 50
The E-Do0okShop HOME PAJEccveeeeeeeeerr sttt n e 52
The E-DOOKSNOP SEIVIEL ...t e 54
Lo T (N o To 0] 6] o] oSS 57
E-b0o0KShOP’S FOIUEN STIUCTUIE......coveveecrerrrccse et sne e nn s 60
ECHIPSE ..ottt n e nn 63
Creating @ NEeW WEb PrOJECT.......cccoericceirrecsi s s s e s se s snssnsnss 67
IMPOrtiNG @ WAR filB....c.e ettt 69
EClipSe 0CCASIONAI BUGS.....cceererererereererserersererserassessesessessssessssessssessesesssssssssassessssessesessssssssssssesssnesssnssaes 70
v

www.it-ebooks.info

http://www.it-ebooks.info/

vi

CONTENTS

A Better Onling BOOKSNOPccccvverierrersersirsesses s sessss s ssssns s snsssssnssssssssssssssssssssssnnns 70
ODbjects and OPEratioNnSc.cccccererereseserersneseserssssse s se s e s sss e e e sss e e s sas e e e sensn e s ssessssssssnsnnes 4l
The Customer INTEITACEcvrerererererere s 72

The E-Shop ArChItECTUIEcc.evceerercee e s s n e sn e sn e 73
THE MOGEL ... s 73
THE CONIOIIEE ..ottt bbb 74
THE VIBW ...ttt e e e e e e 76

SUMMAIY ...t a s a e bR e A e e R e e ea e e s Re e e 77

Chapter 4: JSP in AClioNccccvriisemmmmnsssssnnmsssssnsmmsssssssssssssssssessssnnssessssnnnsnsssnnnnnnss 79

JSP Standard ACHONS ... ——————————— 79
Actions: forward, include, and PArAMcoceeererrenene e naenen 79
ACHION: USEBEAN.......c.cvriiiriiisss s 82
Actions: setProperty and getProperty ... s 84
ACHON: TBXT .o ———————— 87
Actions: element, attribute, and DOAY..........cccvererrerrierrirr e e 87
Actions: plugin, params, and fallDACKcccvurrreimrerieicr s 88

Comments and ESCAPE Characlers........ccocvveririeerimnisssnsseessesssessssssessssssessssssssssssssssssssns 90

JSP’s Tag Extension MeChaniSm...........ccccoveveeniennsinsnnsess e sse e ses e snesesnens 90
Bodyless CUSIOM ACLIONSceueerereieereresnsese s se s e s ss s ssssnsnas 91
Bodied CUSEOM ACHONS........ccriirisis s s 95
2T 8 51 98

STL ANA EL ...ttt 103
JSP EXPresSion LANQUAGEeeevveerrerererererererssersesessessssessssessssessesessesssssssssssssessssssssnsssssssasssenesssnssaes 103
JSP Standard Tag LIDFArY ... s se s s snns 107
THE COTE LIDFAIY ...vcueciiiceririn et s a s e e e s e e e s e ee s et e et e p s 109
The i18n Library: Writing Multi-Lingual AppliCationsc.cocveeeeernssesesessnesesesssssesess s sesesessssesssenes 112

SUMMANY ... se e sessesaesse s e s s e s e s s e ns e sae s s e saenaesasese s e snesnennesnennesnnnnesennnnnnans 119

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 5: XML and JSPccciimmmmmmmmmmmmmmmmssssssssssmmmssssssssssssssssssssssssssssssssssnss 121
The XML DOCUMENL........cceceieeirereeise e 122
Defining Your Own XML DOCUMENTSccocerververrerierserrer s sessessessesssssesses s ssssasssssssssssenns 123
XIVIL DTDS w.ovvvvreuessensessesesseusesssssessssessessessssssssssessessssssssssessessesssssssssssssessssssnsssssessesssnssenssnssssssssssssnsssnsnes 124
D LIRS 1 T 1 124
L2110 o] TP 132
JSTL=XML QN0 XSL ... sas s se s sas s sn s s sn s s s 139
D 5 L OO PRSTT 139
AN XPath EXAMPIEcoveeeeeeccere e sas s sse s s saesaesaesa s e e saesa e e e e e e e sassae e e e e snenassan s s 143
D 0 1 - SRS 145
XSLT: Transformation from One XML Format to ANOther............cccovrnnnnnnnnnssssssseseeeens 146
XSLT: Transformation from XML 10 HTMLcovinninnsessssessssssss e 147
XSL Transformation: Browser Side vS. SErver Side...........covverrrerrnennenesereresesesesesesesesesesesesesesesenes 148
XAranSfOrm and XiPAraM ... e 152
JSP iN XML SYNEAX......ccioeicirierrirrer s se e e e sn s sn et sn s sn s sn s sn s sn s snsnsnes 153
31 3] 1 157
Chapter 6: Databases.......ccuseermmssssnnnmmssssnnnssssssssnssssssnssssssssnnsesssssnnssssssnnnnessssnnnnss 159
MYSQL....c.eeeeeere e r s s e R e e R e R e e R e e nnenrnnn 159
MYSQAL TESE....eceitiricerir st s e e e E AR e e e R e e R e R s 161
MYSOL/TOMCAL TESTveeereecererererere st s s e raeras e ras s ae e ssese s e sesaesasaesae e sae e sae e sassansesnsesassenaenanaens 165
Database BaSICS ... 168
R3]0 IRl] 0SSR 170
B LT A o S 17
Connecting 10 the DAtADASEcccveeeeerernesmrirneire s e nnnr s 172
ACCESSING DALA.......cocceireeereece iR R R e Rennnnan 173
TrANSACHONS ... s 176
DB ACCESS iN E-SNOP.....cccerirerercir st sn s sn s sn e sn s sn e sn s sn e sn e sn e nnnnen 176
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

What about the XML Syntax?........cccccvvirinimninrrrirre s ssessesssesssssssssssssssssessssssssnes 180
Possible Alternatives t0 MySQLccccuvernnienmnenrnssesssssese s ssssssessssssenens 184
SUMMANY . e e 187
Chapter 7: JavaServer FAces 2.2ccccuusemnmmssssnsnmssssssssssssssssnssssssssnsssssssnnsssssnnnns 189
The simplef APPlICALIONcccececr e 189
An Alternative 10 <managed-heans>..........ccccevrnrneriesse s e s 195
The simplefx and simpleh AppPliCAtIONSccccvververrerirre e 195
THE JSF Life CYCIEveeereeereereriec e ss s sn s s sn s sn s 197
EVENt HANAIING.......ceceeeeceeeecee et e 199
The JSF Tag LIDrariesccvcevererirerere s sse e ssessessessessessessessssassassans 199
THE NEML LIDFAIY ...ttt 200
THE COTE LIDIANY ...ttt n s p s e s s e s nnnnns 205
LR i Let=0 g o I 215
The composite LIDIary......iiss s 224
SUMMANY ... sre e se e sse s sessesse s e s e s s e s s e sae s e saenaesases e s e saesnesaennenne s e nensnnnnnnans 229
Chapter 8: JSF and €ShOpccuuunmmmmmmssmmmmmmmmmmsssssssssssssssssssssssssssssssssssssnsssssnnnes 231
BSNOP . ——————————————————————————_ 231
THE TOP MEBNU......c.eeceer et s e e e R e s A e e e e e p e e e nnnn e 232
The Left MenU (DAt 1) ... r s n e n s s nn s 233
THe SNOP MANAGETcceveeerereeerers e e e se e s ae e e nan e e an e e e nnans 235
The Left MeNU (DA 2)ccoeveiiecrerseere s se s 236
THE CRECKOUL PAQE.......c.eeereererererereeerserersesessesessesassesssessssessssesssssssessssessssessesessssesssssssssssasssssessenesssnsnaes 237
171311 238
Using and Creating CONVEIErS...........cceeierrnreren s se s sns s ses e s se s s 240
Writing the CONVEITEr iN JAVA........coveeeeerirncseressse e s ss s s s ssssssssssssssssssssnns 241
Registering the Converter with the AppliCation............ccccovriernnnirnn s 243
USING the CONVEIETcereeereeeereerereraseraesessesessesesaesassesassesassessssessessssessssessesessssssssnsssssssensesesssnssassanaens 243

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Using and Creating Validatorscccoeeeeecececc s ses s snnnns 243
BUI-IN VAIIALOTSc.cocceeeeccceee e e 244
Application-Level ValIdation ... 245
CUSTOM ValidAtors.........ococvuiireriisiinissss s 246
Validation Methods in Backing BEANSccrrerererererererererererereseseseser e ssesesenes 247

Creating Custom COMPONENTScccvverrerrerieriersesser s ses e ses e s sassassassassassassnssnssasssssnnns 248
0] 1010 1= | ST PSTR 249
RENUBIET ...t 251
- T TSSOSO 253
INHNE RBNAEIEN ...t s e 256

faCceS-CONfIg.XMI.....ueeererere s r e r e sr e r e r e re s nenne s 257

31 3] 1 N 257

Chapter 9: Tomceat.......coccemeenimmmmmmmmsssssssnrnsssssssss s 259

Tomcat’s Architecture and SErver.Xml........ccmrmnn e ———— 259
CONEEXE ... 260
00T 1 2 o] 261
3 0 261
ENQING...eeieee et e Re e AR R e R e e R e e R e Re e Re e e RenEeRenRnaees 262
3T N 262
R3] 1 262
LISTBNEE ...ttt —————————————————— 263
Global Naming RESOUICESccceeererreereresseeessssssesessssssssesessnsssssesssssssssssnes 263
RBAIM ... ——————— 263
11 [263
VAIVE ...t e e e e R e e e e e e e e e e e e e s 264
Loader and MANAQET..........ccveeerererierese e esesseses e sss e s e e se e s e s ssess s e s et ss e ese s snesnssensssnsnesesnsnsnnens 264

DT (0] 1T (] 264
BN 265

www.it-ebooks.info

ix

http://www.it-ebooks.info/

CONTENTS

] OO 265
[0 OSSOSO 266
WEDAPPS ..vveuererseseeresssseesessssssesesassssesssessssssesessssassssssssssssessssssssenssssssssssnsssssessnsesesasenssssnsensssssesssssnsasenes 266
0 266
Logging the REQUESTEScoeverercre s se s e s e sa e snssa s sassassa s snssnsnnsnns 267
Tomcat 0N Port 80 ..o ————— 269
Creating @ Virtual HoSt ... s 269
HTTPS ..o s e e a e a e ne e n e nn e nnn 271
Application Deployment..........ccocvcrcrcrcrsr s 276
10T 111 1T SRS 279
Chapter 10: eShOP™ ..cuuiieseesemmmmmsmmssnnssssss s neas 281
The eshop APPlICALIONcccceecercercr e nn s 281
What Happens When the Application Starts..........cccovvvernnninssnnnnsessss s sesessssssssessssnns 283
Handling Requests for Book Selection and Book S€archccccevvnnennnnnsenennsssesesssssesesessssenes 286
Displaying the BOOK DETailS.........ccoveereererererererererersnersssessesessesessesssssssssessssessssesssssssssssensssessssssassanaens 287
Managing the Shopping Cart ... 288
ACCEPEING AN OFUETcov e d s e e A e e e et nenp s 289
Providing the Payment DEtails...........cccernenenrnsscscnssssesesss s s ssessssssessssssess 299
The eShopX APPlICALION........ccccecrcirrrcer e e 300
SEYIE SHEEL ... e p s 301
7= 31 302
BT 1T e10 111 N 303
Custom Tags @NA TLD........cccvreeemrerrseseserrsesese s ss e s se s se e se e e s sss s e s ssnsssnsssessssssnsnnes 306
The eshopf APPlCALIONccccvcrcr s 308
Web.XMI NG CONEXEXMI ... snnnas 309
STYIE SREEL ... e e e s 310
B TS 1T e10 111 N 312

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

JAVA MOTUIES ... 313
R3] SR 315
Appendix A: The Web Pageccccusvmmmssssmsssmssssmsassssssmssssmssssssssssssssssssssnsnsassnsnsnnns 317
The WWW NETWOIKccooiirireririne s 317
URLS, HOStS, and Paths........ccoiiiiiimiiiniseniss s s sssssssssssssssssssssesssssssssssnns 320
XHTML VS HTIMIL.....o ettt sn s sn s s sn e sn e sn e sn s sn e sn e sn e nn e nn s sn s nn e nn e nn e nna s 322
XHTML/HTML EIEMENTSorererirerireres st se e se s se et sn s e s s s e s s 324
1 SRR 327
HTML DOCUMENTES......coviiiriicirisse s s s s s 329
Standard AIHDULES........cccceiierererr e e 331

COre AHFDULES. ... —————————————— 331

Language ALIHDULESccoeeereeercrer et e s e s e ae e e e s ae e e e e ae e saenanne s 332

Keyboard ARFDULES ... ———————— 333
Event ALrDULES ... ———— 333

Object Event ARIDULES ... s 333

Form Event AttriDULES. ... 334

Keyboard EVENt ALIDULESccceerrrecrcrerecscrs s se s e s sessnsnns 334

Mouse Event AHDULES ... 335
TADIBS ..t ——————————————— 335

TaDIE STFUCIUEceveee s 337

TADIE WIOEN....ceeeeereecececee st s s s s s s 337

LI 1o L= 10T 0= 337

Row and Cell AlIGNMENT ... e b e e e e e e se e n s 339

0] 11 1] 342

COIUMN GIOUPS ...eveececerienecesesseeeses e e e ss s e se s se s s s se e e e s ae e e s b e Re e e s e e Re e b e s ennn s e nrnnnas 343

Table Header, Body, and FOOLETcccvrirenenene s sse s s sse s s s sas s essssssssssasssnnns 344
INPUL FOIMS...... et n e s n e 345

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

BULEONS @NA IMAGES.... ..t e s e p s 348
LISES 1ttt ———————— 350
IMAGE MAPS ...t n s r e r e n e nn e nn e nnennennennanan 351

Splitting an Image With @ TADIE...........oveeerirecrr e s 351

Using an Image Map with a Table or @ LiStccorrieennnnccrseeerere s 353

Using an Image Map With Ar€aS.........ccccveeererererererersersssersesessesessessssessssessssessssesssssssessssessssessssesassansens 356

THE BOLEOM LINE ... e 357
Cascading Style SNEEtS ... s 357

4T LT3 1 GO ORI 358

PlACING STYIES ...cuevieeeir et s e e bR e e AR e R 359

HTML Elements div @nd SPANccccvererererierererereressersesessesessessssessssessssessssessssssssssssesassessesessssssassasaens 360
Using a Style Sheet to Implement Tabs........cccceoeeecece s 361
B 117 o) 364

Placing JavaScript InSide @ WED PAQEccccvieerrnncncrissesesesss e sss s sesss s sesessssssesssssssnes 364

ReSPONAING 10 EVENEScocceererercreriree s s rerseresseses e sassesae e sassessessssesassessssesassessssssassessensssesasnssasanaens 365

Checking and CorreCting DALEScccvurrererernescre e se s 365

ANIMALiON: TICKEE TAPE ..cvruereruerererreersesersererseserseressessssessesessesessesssssssssessssessssessssessssssssnssssssssessenssssnsnaes 370

Animation: BounCing BallS...........ccovieenrinrnenesessnesesesssssssessssssssesssnns 373
Appendix B: SQL Practical Introduction..........ccccccuusmmmsssmsmssssmsssssssssssssssssssssansnas 379
SQL TEIrMINOIOGY....c.eeeeuerrerrererrerrersessessessessessessesssssesssssssssssssasssesssssssssssssassssssssassasssssaens 379
TraNSACHONSc.ceeririrr e —————— 380
0] 11T 10 382
STALEMENTS ... s 382

The WHERE CONGItiONcucuiiriiisisriisssinisisssss s ss s st st s 384

DALA TYPES .e.veurererreirerrrreeese s e s s e e s s s e e s s e s R e e e e e A e Re e e A e Re e e e e R R e e e e R nRn s 385

SELECT ...ooceeueueeeeseesessessessssssssssessessess s s st s st s E bbb R bbb b bt nne s 388

CREATE DATABASEcereueueueeseeessessessessessssssssssessessesssssssssssssessessessssssssssessesssssssssssssssessessssssssssesnens 394

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CREATE TABLEouevuuueesusessssesssessssessssessssssssssessssssssssesssssessasessssssssasessssssssssessssssssasessssssssasessssnessans 395
CREATE INDEX «...vueevvvuueeeesssnesssssssssssnesssssssssssssssssessssssessssssessssssessssssessssssessssssessssssessssssesssssnssssssnassssans 397
CREATE VIEWoooevvesesseessasessssesssssssssssssssessssssssssessssssssssessssssssssssssnessasessssnsssasesssssssassssansssasessssnessans 398
INSERT ...ouorevuumeeessssessssssessssssesssssesssssesssssessssssssssssessssssessssssessssssessssssessssssesssssessssssnessssssesssssnesssssnesssssne 398
DROP......ooevevuueresssesssssssssssesssssesssssssesssssessssssesssssseesssssesss s ess s s R s s s s s s R ene s s enssnane 399
DELETE «..oovoevvunesuseessusesssssssasssssesssssesssssssssessssesssssessasesssasessssssssasessssesssasessssesssasessssssssasesssssssasessssnsssane 399
ALTER TABLEovvuueeevusesssssesssssessssssssssssssssssssssasssssssssssssssssssssesssssssssssesssssssssssssssssesssssnssssannns 399
UPDATEcvvueeesseressusesssaessasssssssessssesssssessssesssssesssses s sasess b sasss b sases b sasess b sasessssssssasessssnessane 400
SET TRANSACTION and START TRANSACTION...........evvuurerureesuseessasessssesssssssssssssssesssssssssesssssssssnesssanes 400
COMMIT N0 ROLLBACKccvvvurereerusneesssssessssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssnssssssnsssssnns 401
Reserved SAL KEYWOITS.........ccoveirererserresesessssessessssessssessssssssssssssssssssssssssssssssssssnsssssnes 401
Appendix C: Abbreviations and ACrONYMS.....cuussssssssmmmssmmssssssssssssssssssssssssssssnnss 405
INA@X .eueeennnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnnnsnnsnnn 409
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
/

Xiv

Giulio Zambon’s first love was physics, but he decided to dedicate himself to
software development more than 30 years ago: back when computers were still
made of transistors and core memories, programs were punched on cards, and
Fortran only had arithmetic IFs. Over the years, he learned a dozen computer
languages and worked with all sorts of operating systems. His specific interests
were in telecom and real-time systems, and he managed several projects to their
successful completion.

In 2001 Giulio founded his own company offering computer telephony
integration (CTI) services, and he used JSP and Tomcat exclusively to develop the
web side of the service platform. Back in Australia after many years in Europe, he
now dedicates himself to writing software to generate and solve numeric puzzles.
His web site, http://zambon.com.au/, is written in JSP on his dedicated server, which, unsurprisingly,
runs Tomcat!

;

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewers J

Boris Minkin is a senior technical architect at a major financial corporation. He
has more than 20 years of experience working in various areas of information
technology and financial services. Boris obtained his master’s degree in
information systems at Stevens Institute of Technology, New Jersey. His
professional interests are in Internet technology, service-oriented architecture,
enterprise application architecture, multi-platform distributed applications,
cloud, distributed caching, Java, grid, and high performance computing. You can
contact Boris at bm@panix.com.

Manuel Jordan Elera is an autodidactic developer and researcher who enjoys
learning new technologies for his own experiments and creating new
integrations. Manuel won the 2010 Springy Award-Community Champion. In his
limited free time, he reads the Bible and composes music on his guitar. Manuel is
a senior member in the Spring Community Forums known as dr_pompeii and a
technical reviewer for important books about Spring Source projects, all
published by Apress. Read more and contact him through his blog at
http://manueljordan.wordpress.com and follow him on his Twitter account,
@dr_pompei.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introducing JSP and Tomcat

Interactivity is what makes the Web really useful. By interacting with a remote server, you can find the
information you need, keep in touch with your friends, or purchase something online. And every time
you type something into a web form, an application “out there” interprets your request and prepares a
web page to respond.

To understand JSP, you first need to have a clear idea of what happens when you ask your browser
to view a web page, either by typing a URL into the address field of your browser or by clicking on a
hyperlink. Figure 1-1 shows you how it works.

Client - — Server

HTTP Request

Web Browser Internet Web Server

HTTP Response

Figure 1-1. Viewing a plain HTML page

The following steps show what happens when you request your browser to view a static web page:

1. When you type an address such as http://www.website.com/path
/whatever.html into the address field, your browser first resolves
www.website.com (i.e., the name of the web server) into the corresponding
Internet Protocol (IP) address, usually by asking the Domain Name Server
provided by your Internet Service Provider (ISP). Then your browser sends an
HTTP request to the newly found IP address to receive the content of the file
identified by /path/whatever.html.

G. Zambon, Beginning JSP, JSF and Tomcar

© Giulio Zambon 2012))
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = INTRODUCING JSP AND TOMCAT

2. Inreply, the web server sends an HTTP response containing a plain-text HTML
page. Images and other non-textual components, such as sound and video
clips, only appear in the page as references.

3. Your browser receives the response, interprets the HTML code contained in
the page, requests the non-textual components from the server, and displays
the lot.

JavaServer Pages (JSP) is a technology that helps you create such dynamically generated pages by
converting script files into executable Java modules; JavaServer Faces (JSF) is a package that facilitates
interactivity with the page viewers; and Tomcat is an application that can execute your code and act as a
web server for your dynamic pages.

Everything you need to develop JSP/JSF web applications is available for free download from the
Internet; but to install all the necessary packages and tools and obtain an integrated development
environment, you need to proceed with care. There is nothing more annoying than having to deal with
incorrectly installed software. When something doesn't work, the problem will always be difficult to find.

In this chapter, I'll introduce you to Java servlets and JSP, and I'll show you how they work together
within Tomcat to generate dynamic web pages. But, first of all, I will guide you through the installation
of Java and Tomcat: there wouldn’t be much point in looking at code you can’t execute on your PC,
would there?

You'll have to install more packages as you progress. Do these installations correctly, and you will
never need to second guess yourself. In total, you will need at least 300MB of disk space for Java and
Tomcat alone and twice as much space to install the Eclipse development environment.

To run all the examples contained in this book, I used a PC with a 2.6GHz AMD Athlon 64x2
(nothing fancy, nowadays) with 1GB of memory and running Windows Vista SP2. Before performing any
installation, I reformatted the hard disk and re-installed the OS from the original DVD. I don’t suggest
for a moment that you do the same! I did it for two opposite but equally important reasons: first, I didn't
want existing stuff to interfere with the latest packages needed for web development; second, I didn’t
want to rely on anything already installed. I wanted to be sure to give you the full list of what you need.

At the time of this writing, the latest versions of all the packages you will need to install are:

Java: 1.7.0 update 3 (installation explained in this chapter)

Tomcat web server: 7.0.26 (installation also explained in this chapter)

Eclipse development environment: Indigo 3.7.2 (installation explained in Chapter 2)
MySQL database: 5.5.21.0 (installation explained in Chapter 6)

MySQL Java database connector (JDBC): 5.1.18 (installation also explained in Chapter 6)
JavaServer Faces: 2.1.7 (installation explained in Chapter 7)

Iincluded Eclipse on the list because an integrated development environment is extremely useful
for developing software. And MySQL is listed because any non-trivial web application is likely to need
handling data.

Of course, after this book is published, there will most likely be newer releases of all the
aforementioned packages. Nevertheless, you should be able to adapt my instructions to install the latest
versions without any problem.

One last recommendation: to be sure that everything will work correctly, please follow the
installation instructions to the letter. It will save you endless headaches.

‘Nuff said. Here we go.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

Installing Java

Nothing runs without Java, and you need two different Java packages: one is the runtime environment
(JRE), which lets you execute Java, and the other is the Java Development Kit (JDK), which lets you
compile Java sources into executable classes.

They are downloadable together from Oracle’s web site. Here’s what you need to do:

1. Gotothe URL http://www.oracle.com/technetwork/java/javase/downloads
/index.html.

2. Click on the big button marked “Java Download” (the latest version at the time
of writing is 7u3). This will take you to the page “Java SE Development Kit 7
Downloads.”

3. Select “Accept License Agreement” and then click on the link jdk-7u3-
windows-1586.exe.

The actual link might refer to a version other than “7u3,” but you need to
download either “Windows x86 (32-bit)” or “Nindows x64 (64-bit),”
according to type of processor of your PC. Although I am using a 64-bit PC, I
have tested all the examples in this book with 32-bit packages because I didn’t
want to test everything twice.

4. Execute the file.
5. Accept the license agreement when requested and install everything.

At this point, you should have the folder C:\Program Files\Java\ with two subfolders: jdk1.7.0_03
and jre7, or the equivalent folders for the version you have downloaded.

In order to be able to compile Java from the command line, you need to add the JDK path to the
PATH environment variable. From the Windows Start menu, select Settings » Control Panel » System.
When the System Properties dialog opens, click on the “Advanced system settings” link that you find
on the left-hand side and then on the Advanced tab. Finally, to reach the dialog that lets you modify the
PATH variable, click on the “Environment Variables” button. You will see the double dialog window
shown in Figure 1-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING JSP AND TOMCAT

Environment Variables &J
User variables for Giulio
Variable Value
TEMP 9USERPROFILE % \AppData\Local\Temp
™P %USERPROFILE % \AppData\Local\Temp
New.. || Edt.. || Deete
System variables
Variable Value -
ComSpec C:\Windows\system32\cmd.exe B
FP_NO_HOST_C... NO [:}
NUMBER_OF_P... 2
oS Windows_NT b
[New.. |[Edt. |[Deete |
[OK] I Cancel l

Figure 1-2. The Environment Variables double dialog

You might see a PATH variable on the top dialog, but what you need to do is scroll the bottom dialog
by clicking on its sidebar until you see a variable named Path. Double-click it (or highlight it and click the
“Edit...” button) and insert at the beginning of its value the text “C:\Program Files\Java\jdk1.7.0_03\
bin;”, as shown in Figure 1-3.

Edit System Variable (o

Variable name: Path

Variable value:

Figure 1-3. Update the Path variable

The semicolon at the end of the text is essential because it separates the new path from the existing
ones. Do not insert additional spaces before or after.

Click on the “OK” button to save the changes. Then click this button another couple of times until
the system dialog closes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Java Test

To test the Java installation, you can use the little application shown in Listing 1-1.

Listing 1-1. Exec_http.java

/*
*
*

*
*

*/

Exec_http.java - Launches a web page

Usage: Exec_http URL [argl [arg2 [...]]]
where URL is without "http://"

import java.io.*;
import java.net.*;
class Exec_http {

public static void main(String[] vargs)

throws java.net.MalformedURLException ,java.io.IOException
{
String dest = "http://";

if (vargs.length <= 0) {
System.out.println("Usage: Exec_http page [args]");
System.exit(1);

else {
dest += vargs[0];
for (int k = 1; k < vargs.length; k++) {
dest += ((k == 1) ? "?" : "&") + vargs[k];
}

System.out.println(dest);

URL url = new URL(dest);
Object obj = url.getContent();
InputStream resp = (InputStream)obj;
byte[] b = new byte[256];

int n = resp.read(b);

while (n != -1) {
System.out.print(new String(b, 0, n));
n = resp.read(b);

INTRODUCING JSP AND TOMCAT

It lets you open a web page from the command line. Note that all the code described in this book is
available for download from the Apress web site (http://www.apress.com/9781430246237). You don't
need to retype it. You can find the examples in folders with the same names as the corresponding
chapters. I will refer to the root directory of the software package associated with this book with the
string %SW_HOME%.
Copy the file %SW_HOME%\01 Getting Started\java\Exec_http.java to a work directory. For
simplicity, I use the desktop: but in my case, this makes sense because I use the computer exclusively to
develop the examples used in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = INTRODUCING JSP AND TOMCAT

Open a command-line window by clicking the Start button and selecting Programs » Accessories »
Command Prompt. Then, after changing to your work directory, type “javac Exec_http.java” to compile
the application. It should return the prompt without saying anything. If this happens, it means that you
have correctly updated the Path system variable. If you want to know more about what the javac
compiler is doing, type -verbose between javac and the name of the file.

You will see a file named Exec_http.class in your work directory.

Now, to run the application, type “java Exec_http” followed by the URL of the page you want to
display. Any URL will do, but remember that the command-line accessory doesn’t understand HTML.
Therefore, if you display any commercial page, you will see a long stream of text filling the window.

To test the application, I placed on one of my web servers a one-line text file. Figure 1-4 shows what
happened.

r 3
B¥ Administrator: Command Prompt ‘ﬂlﬁ
Microsoft Windows [Uersion 6.0.68821 =

Copyright <(c> 2806 Microsoft Corporation. All rights reserved.
C:\Users\Giulio>cd Desktop

C:\Users\Giulio\Desktop>javac Exec_http.java
C:N\Users\Giulio\Desktop>java Exec_http good.at.it/6237/hello.txt
http://good.at.it/6237/hello.txt

Hello World!

C:\Users\Giulio\Desktop>

Figure 1-4. Testing Java

You are welcome to use hello.txt for your test. Hopefully, I will remember to keep it online!

Installing Tomcat

This is the Java web server, which is the servlet container that allows you to run JSP. If you have already
installed an older version of Tomcat, you should remove it before installing a new version.

Tomcat listens to three communication ports of your PC (8005, 8009, and 8080). Before you install
Tomcat, you should check whether some already-installed applications are listening to one or more of
those ports. To do so, open a DOS window and type the command netstat /a. It will display a list of
active connections in tabular form. The second column of the table will look like this:

Local Address
0.0.0.0:135
0.0.0.0:445
0.0.0.0:3306

The port numbers are the numbers after the colon. If you see one or more of the ports Tomcat uses,
after installing Tomcat, you will have to change the ports it listens to, as explained in Chapter 10. There,
you will also learn the purpose of those three ports.

Here’s how to install Tomcat 7 correctly:

1. Gotothe URL http://tomcat.apache.org/download-70.cgi. Immediately
below the second heading (“Quick Navigation”), you will see four links: KEYS,
7.0.26, Browse, and Archives.

2. By clicking on 7.0.26, you will be taken toward the bottom of the same page to
a heading with the same version number. Below the version heading, you will

www.it-ebooks.info

http://www.it-ebooks.info/

10.

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

see the subheading “Core”. Below that, immediately above the next
subheading, you will see three links arranged as follows: 32-bit/64-bit
Windows Service Installer (pgp, md5).

Click on 32-bit/64-bit Windows Service Installer to download the file
apache-tomcat-7.0.26.exe (8.2 MB).

Before launching the installer file, you have to check its integrity. To do so, you
need a small utility to calculate its checksum. There are several freely available
on the Internet. I downloaded WinMD5Free from http://www.winmds.com/, and it
worked for me, but this doesn’t mean I consider it better than any other similar
utility. It just happened to be the first one I saw. The program doesn’t require
any special installation: just unzip it and launch. When you open the Tomcat
installer file, you will see a 32-digit hexadecimal number very much like this:
8ad7d25179168e74€3754391cdb24679.

Go back to the page from which you downloaded the Tomcat installer and
click on the mds link (the third one, and second within the parentheses). This
will open a page containing a single line of text, like this:
8ad7d25179168e74e3754391cdb24679 *apache-tomcat-7.0.26.exe

If the hex string is identical to that calculated by the checksum utility, you
know that the version of Tomcat installer you have downloaded has not been
corrupted or modified in any way.

Now that you have verified the correctness of the Tomcat installer, launch it.

After you've agreed to the terms of the license, you will then see the dialog
shown in Figure 1-5. Click on the plus sign before the Tomcat item and select
“Service” and “Native” as shown in the figure before clicking on the “Next >”
button.

I chose to install Tomcat in the directory “C:\Program Files\Apache Software
Foundation\Tomcat” instead of the default “Tomcat 7.0”. This is because
sometimes you might like to point to this directory (normally referred to as
%CATALINA_HOME%) from within a program, and one day you might replace
Tomcat 7.0 with Tomcat 8.0. By calling Tomcat’s home directory “Tomcat” you
are “safe” for years to come. You can also decide to leave the default. In
general, by using the defaults, you are likely to encounter fewer problems,
because the default settings of any applications are always tested best!

Next, the Tomcat installer will ask you to specify the connector port and
UserID plus password for the administrator login. Leave the port set to 8080,
because all the examples in this book refer to port 8080. If you want, you can
always change it later to the HTTP standard port (which is 80). As
UserID/Password, you might as well use your Windows user name and
password. It is not critical.

Lastly, you will need to provide the path of a Java Runtime Environment. This
is the path you saw when installing Java (see previous section). With the
version of Java I installed, the correct path is C: \Program Files\Java\jre7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING JSP AND TOMCAT

Apache Tomcat Setup IE.__.i‘
Choose Components r <1
Choose which features of Apache Tomcat you want to install. ; 2|
Check the components you want to install and uncheck the components you don't want to
install. Click Next to continue.
Select the type of install: [Custom -]
Or, select the optional -] Tomeat Description
components you wish to % -[v] Core
install:
-.[¥] Service Startup
Native
-[¥] start Menu Items
--.[v] Documentation
i Manager
) [[] Host Manager
Space required: 14.0MB
R “[[] Examples
[< Back][Next >] [Cancel]

Figure 1-5. Tomcat's Service and Native settings

Tomcat runs as a Windows service. To start it and stop it, you can right-click the Apache Service
Manager icon in the notification area of Windows’ toolbar and select the corresponding operation. You
can also achieve the same result by opening Windows’ Services control panel (and right-clicking the
Tomcat entry, as shown in Figure 1-6).

| |

. Services

File Action View Help

o |EE = HEl > nmrp

5 Services (Local) Name Description Status Startup Type Log On As -

* 3 Apache Tomcat 7.0 Tomcat]? Apache Tomcat 7.0.26 Server - hitp://tomcat.apache.org/ Started Automnatic Local System -

Extended)\Staﬂdard /

Figure 1-6. Stopping and starting Tomcat from the Services control panel

In any case, to go to the Services control panel, click on Windows' Start menu and select Setting »
Control Panel » Administrative Tools » Services. You will see dozens of entries, but when you reach
the Tomcat services, its status should be “Started”.

With Java and Tomcat in place, we can finally begin playing with JSP!

Simple Tomcat Test

To see that Tomcat is working properly, open a browser and type localhost:8080. You should see the
page shown in Figure 1-7 (Firefox in the example).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

@} Apache Tomeat/7.0.26 - Mozilla Firefox ‘ o]
File Edit View History Bookmarks Tools Help
Apa(heTomcata’?.U.Eﬁ + | -
II‘ localhost _-]_ 2l &

|2l Most Visited Getting Started

Home Documentation Configuration Examples Wiki Mailing Lists Find Help

Apache Tomcat/7.0.26 Wpache Software Foundation

http://www.apache.orag/

Server Status

% Security Considerations HOW-TO
Manager App
/& Manager Application HOW-TO

Host Manager

Clustering/Session Replication HOW-TO

Figure 1-7. The localhost home page

Windows might state that it needs to block a startup program that requires permission. To solve this
problem, turn off Windows’ User Account Control by going into the User Accounts control panel and
clicking on “Turn User Account Control on or off”. This User Account Control can be a nuisance
anyway, because it asked for authorization every time I worked with files in directories considered
protected, including all directories in the “Program Files” folder.

At some point after rebooting, if you are running Vista, Windows’ Program Compatibility Assistant
might display a dialog stating that the Sun Java Scheduler, located at C: \Program Files\Common
Files\Java Update\jusched.exe, is incompatible with your version of Windows. To get rid of this
problem, you need to select “Run” after clicking on “Start,” type in the text field “msconfig” (without
double quotes), and hit Enter. Select the “Startup” tab in the dialog, find the entry for the Java updater,
and remove it.

What Is JSP?

JSP is a technology that lets you add dynamic content to web pages. In absence of JSP, to update the
appearance or the content of plain static HTML pages, you always have to do it by hand. Even if all you
want to do is change a date or a picture, you must edit the HTML file and type in your modifications.
Nobody is going to do it for you, whereas with JSP, you can make the content dependent on many
factors, including the time of the day, the information provided by the user, the user’s history of
interaction with your web site, and even the user’s browser type. This capability is essential to provide
online services in which you can tailor each response to the viewer who made the request, depending on
the viewer’s preferences and requirements. A crucial aspect of providing meaningful online services is
for the system to be able to remember data associated with the service and its users. That’s why
databases play an essential role in dynamic web pages. But let’s take it one step at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

INTRODUCING JSP AND TOMCAT

HISTORY

Sun Microsystems introduced JSP in 1999. Developers quickly realized that additional tags would be
useful, and the JSP Standard Tag Library (JSTL) was born. JSTL is a collection of custom tag libraries that
encapsulates the functionality of many JSP standard applications, thereby eliminating repetitions and
making the applications more compact. Together with JSTL also came the JSP Expression Language (EL).

In 2003, with the introduction of JSP 2.0, EL was incorporated into the JSP specification, making it
available for custom components and template text, not just for JSTL, as was the case in the previous
versions. Additionally, JSP 2.0 made it possible to create custom tag files, thereby perfecting the
extendibility of the language.

In parallel to the evolution of JSP, several frameworks to develop web applications became available. In
2004, one of them, JavaServer Faces (JSF), focused on building user interfaces (Uls) and used JSP by
default as the underlying scripting language. It provided an API, JSP custom tag libraries, and an
expression language.

The Java Community Process (JCP), formed in 1998, released in May 2006 the Java Specification Request
(JSR) 245 titled JavaServer Pages 2.1, which effectively aligned JSP and JSF technologies. In particular,
JSP 2.1 included a Unified EL (UEL) that merged the two versions of EL defined in JSP 2.0 and JSF 1.2
(itself specified as JSR 252). Sun Microsystems includes JSP 2.1 in its Java Platform, Enterprise Edition 5
(Java EE 5), finalized in May 2006 as JSR 244.

The latest version of Java is 7 (specified in JSR 342 and released in July 2011). It includes JSP 2.2,
Servlets 3.1 (JSR 340), EL 3.0 (JSR 341), and JSF 2.2 (JSR 344). Version 8 is expected in mid-2013. At the
time of this writing, Java 7 is only available as part of the JSE (Java Standard Edition) platform. The latest
version of Java released in the JEE (Java Enterprise Edition) platform is 6 (update 32).

The latest version of Tomcat (7.0), supports Servlets 3.0 and JSF 2.1.7.

Viewing a JSP Page

Wit

h JSP, the web page doesn’t actually exist on the server. As you can see in Figure 1-8, the server

creates it fresh when responding to each request.

10

www.it-ebooks.info

http://www.it-ebooks.info/

Web Browser Internet Web Server T

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

Client Server

HTTP Request

HTTP Request

JSp
Engine

" '
_/ HTTP | Response

HTTP Response

Servlet

L HTTP Request
Engine

Figure 1-8. Viewing a JSP page

The following steps explain how the web server creates the web page:

1.

As with a normal page, your browser sends an HTTP request to the web server.
This doesn’t change with JSP, although the URL probably ends in . jsp instead
of .html or .htm.

The web server is not a normal server, but rather a Java server, with the
extensions necessary to identify and handle Java servlets. The web server
recognizes that the HTTP request is for a JSP page and forwards it to a JSP
engine.

The JSP engine loads the JSP page from disk and converts it into a Java servlet.
From this point on, this servlet is indistinguishable from any other servlet
developed directly in Java rather than JSP, although the automatically
generated Java code of a JSP servlet is not always easy to read, and you should
never modify it by hand.

The JSP engine compiles the servlet into an executable class and forwards the
original request to another part of the web server called the servlet engine. Note
that the JSP engine only converts the JSP page to Java and recompiles the
servlet if it finds that the JSP page has changed since the last request. This
makes the process more efficient than with other scripting languages (such as
PHP) and therefore faster.

The servlet engine loads the servlet class and executes it. During execution, the
servlet produces an output in HTML format, which the servlet engine passes to
the web server inside an HTTP response.

The web server forwards the HTTP response to your browser.

Your web browser handles the dynamically generated HTML page inside the
HTTP response exactly as if it were a static page. In fact, static and dynamic
web pages are in the same format.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = INTRODUCING JSP AND TOMCAT

You might ask, “Why do you say that with JSP, the page is created fresh for each request, if the server
only converts and compiles the JSP source if you have updated it since the previous request?”

What reaches your browser is the output generated by the servlet (that is, by the converted and
compiled JSP page), not the JSP page itself. The same servlet produces different outputs depending on
the parameters of the HTTP request and other factors. For example, suppose you're browsing the
products offered by an online shop. When you click on the image of a product, your browser generates
an HTTP request with the product code as a parameter. As a result, the servlet generates an HTML page
with the description of that product. The server doesn’t need to recompile the servlet for each product
code.

The servlet queries a database containing the details of all the products, obtains the description of
the product you're interested in, and formats an HTML page with that data. This is what dynamic HTML
is all about!

Plain HTML is not capable of interrogating a database, but Java is, and JSP gives you the means of
including snippets of Java inside an HTML page.

Hello World!

A small example of JSP will give you a more practical idea of how JSP works. Let’s start once more from
HTML. Listing 1-2 shows you a plain HTML page to display “Hello World!” in your browser’s window.

Listing 1-2. hello.html

<html>

<head><title>Hello World static HTML</title></head>
<body>

Hello World!

</body>

</html>

Create the folder #CATALINA_HOME%\webapps\R0OOT\tests\ and store in it hello.html. Then type the
following URL in your browser to see the web page:

http://localhost:8080/tests/hello.html

Normally, to ask your browser to check that the syntax of the page conforms to the XHTML standard
of the World Wide Web Consortium (W3C), you would have to start the page with the following lines:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

You’d also have to replace
<html>
with
<html xmlns="http://www.w3.0rg/1999/xhtml">

However, for this simple example, I prefer to keep the code to what'’s essential. Figure 1-9 shows
you how this page will appear in your browser.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

Helle World static HTML
€ 2 C ® localhost:8080/tests/hello.ntm v R

Hello World!

Figure 1-9. “Hello World!” in plain HTML

If you direct your browser to show the page source, not surprisingly, you'll see exactly what’s shown
in Listing 1-2. To obtain the same result with a JSP page, you only need to insert a JSP directive before
the first line, as shown in Listing 1-3, and change the file extension from .html to . jsp.

Listing 1-3. “Hello World!” in a Boring JSP Page

<%@page language="java" contentType="text/html"%>

<html>

<head><title>Hello World not-so-dynamic HTML</title></head>
<body>

Hello World!

</body>

</html>

Obviously, there isn’t much point in using JSP for such a simple page. It only pays to use JSP if you
include dynamic content. Check out Listing 1-4 for something more juicy.

Listing 1-4. hello.jsp

<%@page language="java" contentType="text/html"%>
<html>
<head><title>Hello World dynamic HTML</title></head>
<body>
Hello World!
<%

out.println("
Your IP address is

+ request.getRemoteAddr());

String userAgent = request.getHeader("user-agent");
String browser = "unknown";

out.print("
and your browser is ");
if (userAgent != null) {
if (userAgent.indexOf("MSIE") > -1) {
browser = "MS Internet Explorer";

else if (userAgent.indexOf("Firefox") > -1) {
browser = "Mozilla Firefox";

}
else if (userAgent.indexOf("Opera") > -1) {
browser = "Opera";

}
else if (userAgent.indexOf("Chrome") > -1) {

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

14

INTRODUCING JSP AND TOMCAT

browser = "Google Chrome";

}
else if (userAgent.indexOf("Safari") > -1) {
browser = "Apple Safari";

}

out.println(browser);

%>

</body>
</html>

As with hello.html, you can view hello. jsp by placing it in Tomcat’s ROOT\tests folder.
The code within the <% ... %> pair is a scriptlet written in Java. When Tomcat’s JSP engine

interprets this module, it creates a Java servlet like that shown in Listing 1-5 (with some indentation and

empty lines removed).
Listing 1-5. Java Code from the “Hello World!” JSP Page

out.write("\r\n");
out.write("<html>\r\n");

out.write("<head><title>Hello World dynamic HTML</title></head>\r\n");

out.write("<body>\r\n");
out.write("Hello World!\r\n");
out.write('\r');
out.write('\n");
out.println("<bx/>Your IP address is
String userAgent = request.getHeader("user-agent");
String browser = "unknown";
out.print("<bx/>and your browser is ");
if (userAgent != null) {

if (userAgent.indexOf("MSIE") > -1) {

browser = "MS Internet Exploxer”;

else if (userAgent.indexOf("Firefox") » -1) {
browser = "Mozilla Firefox";

}
else if (userAgent.index0f("Opera") » -1) {
browser = "Opera";

else if (userAgent.index0f("Chrome") » -1) {
browser = "Google Chrome";

}
else if (userAgent.index0f("Safari") » -1) {
browser = "Apple Safari";

}

out.println(browser);
out.write("\r\n");
out.write("</body>\r\n");
out.write("</html>\r\n");

www.it-ebooks.info

+ request.getRemoteAddr());

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

As 1 said before, this servlet executes every time a browser sends a request to the server. However,
before the code shown in Listing 1-5 executes, the server binds the variable out to a character stream
associated with the content of the HTML response. As a result, everything written to out ends up in the
HTML page that you'll see in your browser. As you can see, Tomcat copies the scriptlet in your JSP file
into the servlet, and sends everything outside the scriptlet directly to the output. This should clarify how
HTML and Java work together in a JSP page.

As the variable out is defined in each servlet, you can use it within any JSP module to insert
something into the response (more on variables in Chapter 2).

Another such “global” JSP variable is request (of type HttpServletRequest). The request contains the
IP address from which the request was originated—that is, of the remote computer with the browser
(remember that this code runs on the server). To extract the address from the request, you only need to
execute its method getRemoteAddr (). The request also contains information about the browser. When
some browsers send a request, they provide somewhat misleading information, and the format is
complex. However, the code in Listing 1-4 shows you how to recognize the most widely used browsers.

If you add to your JSP the line

out.println("
" + userAgent);

You will see what information is contained in the request. It also tells you whether the browser is
running on a Windows system or a Mac.
Figure 1-10 shows the generated page as it appears in a browser.

e

Hello World dynamic HTM

L 2 C' | © localhost:8l

Hello World!
Your IP address is 127.0.0.1

‘ and your browser is Google Chrome

Figure 1-10. “Hello World!” in JSP with Google Chrome

Notice that the IP address 127.0.0.1 is consistent with the host localhost. And just in case you want
to see that the HTML is indeed dynamic, check out Figure 1-11. Incidentally, the method you use in
hello. jsp to identify Internet Explorer is the official one provided by Microsoft.

@ Hello World dynamic HTML - Mozilla Firefox = E) e
File Edit View History Bookmarks Tools Help
| [Hello World dynamic HTML | + | v
& localhost:8080/tests/hello.jsp c h.“' Google Pl A

|2 Most Visited { | Getting Started

Hello World!
Your IP address is 127.0.0.1
and your browser is Mozilla Firefox

Figure 1-11. “Hello World!” in JSP with Mozilla Firefox

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = INTRODUCING JSP AND TOMCAT

Listing the HTML-Request Parameters

With JSP you can generate dynamic web pages. That’s settled. But the utility of dynamic pages goes well
beyond recognizing what browser the viewer is using or displaying different information on different
days. What really matters is to be able to adapt the content of a web page on the basis of who the viewer
is and what the viewer wants.

Each HTML request includes a series of parameters, which are usually the results of what the viewer
enters into a form before hitting the “Submit” button. Additional parameters can also be part of the URL
itself. For example, pages in multilingual websites sometimes have URLs ending with “?1lang=en” to tell
the server that it should format the requested page in English.

Listing 1-6 shows a simple JSP page that lists all the HTML-request parameters. It is a useful little
tool you can use to easily check what your HTML pages actually send to the server.

Listing 1-6. req_params.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.util.*, java.io.*"%>
<%
Map map = request.getParameterMap();
Object[] keys = map.keySet().toArray();
%>
<html><head><title>Request Parameters</title></head><body>
Map size = <%=map.size()%>
<table border="1">
<tr><td>Map element</td><td>Par name</td><td>Par value[s]</td></tr>
<%
for (int k = 0; k < keys.length; k++) {
String[] pars = request.getParameterValues((String)keys[k]);
out.print("<tr><td>" + k + "</td><td>'" + keys[k] + "'</td><td>");
for (int j = 0; j < pars.length; j++) {
if (j > 0) out.print(", ");
out.print("'" + pars[j] + "'");

}
out.println("</td></tr>");

%>
</table>
</body></html>

The interesting bits are in the lines I have highlighted in bold. The first one tells you that the
parameters are stored in an object of type Map and shows you how to retrieve the list of the parameter
names.

The second highlighted line shows you how to insert the value of a Java variable directly into the
output (i.e., into the HTML page), by enclosing it between the pair <%= and %>. This is a different from
using a scriptlet—in which you can use JSP to build dynamicity into a web page.

The third highlighted line shows how to request the values of each parameter you know the name
of. I said “values” instead of “value” because each parameter can appear more than once within the
same request. For example, if you view the URL

http://localhost:8080/tests/req_params.jsp?a=b&c=d&a=zzz&empty=8empty=81=22
you get what you see in Figure 1-12.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCING JSP AND TOMCAT

You could have used getParameterNames instead of getParameterMap. To do so, you would have
replaced

Object[] keys = map.keySet().toArray();
with
Enumeration enumPar = request.getParameterNames();
You would have also changed the loop to get through all parameters, from
for (int k = 0; k < keys.length; k++) {
to
while (enumPar.hasMoreElements()) {

And finally, to get the parameter names one by one, you would have used enumPar.nextElement()
instead of (String)keys[k]. It wouldn’t have made any difference in the example, but with a map, you
get the parameter names in alphabetical order, while with the other method, you wouldn’t.

Furthermore, a Map object comes with some useful methods. For example, containsValue lets you
check whether the map contains a given value.

(=@ =
Request Parameters

€ 9> C © localhost:8080/tes vy N

Map size = 4

j[.\{ap elemmt‘ [Pa! name IPar value[sﬂ

o 1 22

1 ‘ 'c' 'd

‘2 \'a‘ b 'zzz'
T |

Figure 1-12. Output of req_params.jsp

Notice that the parameter aptly named empty appears twice in the query string, which results in two
empty strings in the parameter map. Also, looking at the parameter a, you'll notice that the values are
returned in the same order in which they appear in the query string.

Summary

In this chapter, you learned how to install Java and Tomcat and how to check that they work correctly.
After explaining what happens on the server when you click a link in your browser to view a new
page, I introduced servlet and JSP technologies and explained what role they play in a web server.
Then, I showed you a simple HTML page and how you can begin to add dynamic content to it with
JSP.
Finally, you learned how to use JSP to display the HTTP-request parameters.

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 = INTRODUCING JSP AND TOMCAT

Perhaps this was not the most exciting chapter, but you now have in place a basic development and
run environment, without which you wouldn't be able to proceed. And you have had your first taste of
JSP.

In the next chapter, you'll learn more about JavaServer pages and how you can best structure web
applications.

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

JSP Elements

A JSP page is made out of a page template, which consists of HTML code and JSP elements such as
scripting elements, directive elements, and action elements. In the previous chapter, after explaining
how to install Java and Tomcat, I introduced you to JSP and explained JSP’s role within web applications.
In this chapter, I'll describe in detail the first two types of JSP elements. For the action elements, refer to
Chapter 4.

Introduction

Scripting elements consist of code delimited by particular sequences of characters. The scriptlets, which
you encountered in the examples in Chapter 1 and delimited by the pair <% and %>, are one of the three
possible types of scripting elements. The other two are declarations and expressions.

All scripting elements are Java fragments capable of manipulating Java objects, invoking their
methods and catching Java exceptions. They can send data to the output, and they execute when the
page is requested.

In the hello. jsp example of Chapter 1 (Listing 1-4), you saw that request.getHeader("user-agent")
returns a string that describes the client’s web browser, despite the fact that the variable request wasn’t
defined anywhere. It worked because Tomcat defines several implicit objects: application, config,
exception, out, pageContext, request, response, and session.

Directive elements are messages to the JSP container (i.e., Tomcat). Their purpose is to provide
information on the page itself necessary for its translation. As they have no association with each
individual request, directive elements do not output any text to the HTML response.

The first line of the hello.jsp example was a directive:

<%@page language="java" contentType="text/html"%>

Besides page, the other directives available in JSP pages are include and taglib.

Action elements specify activities that, like the scripting elements, need to be performed when the
page is requested, because their purpose is precisely to encapsulate activities that Tomcat performs
when handling an HTTP request from a client. Action elements can use, modify, and/or create objects,
and they may affect the way data is sent to the output. There are more than a dozen standard actions:
attribute, body, element, fallback, forward, getProperty, include, param, params, plugin, setProperty,
text, and useBean. For example, the following action element includes in a JSP page the output of
another page:

<jsp:include page="another.jsp"/>

In addition to the standard action elements, JSP also provides a mechanism that lets you define
custom actions, in which a prefix of your choice replaces the prefix jsp of the standard actions. The fag
extension mechanism lets you create libraries of custom actions, which you can then use in all your

G. Zambon, Beginning JSP, JSF and Tomcat
© Giulio Zambon 2012

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

applications. Several custom actions became so popular within the programming community that Sun
Microsystems (now Oracle) decided to standardize them. The result is JSTL, the JSP Standard Tag
Library.

The Expression Language (EL) is an additional JSP component that provides easy access to external
objects (i.e., Java beans). EL was introduced in JSP 2.0 as an alternative to the scripting elements, but you
can also use EL and scripting elements together. I will describe EL in Chapter 4, after explaining the
action elements.

In the next sections, I will first go through the scripting elements, because they are easier to
understand and you can use them to glue together the rest. Then, I will describe the implicit objects and
the directives. To help you find the correct examples in the software package for this chapter, I divided
them in folders named according to the section title and the functionality tested (e.g., request object -
authentication).

Scripting Elements and Java

Scripting elements let you embed Java code in an HTML page.' Every Java executable—whether it’s a
free-standing program running directly within a runtime environment, an applet executing inside a
browser, or a servlet executing in a container such as Tomcat—boils down to instantiating classes into
objects and executing their methods. This might not be so apparent with JSP, since Tomcat wraps every
JSP page into a class of type Servlet behind the scenes, but it still applies.

Java methods consist of a sequence of operations to instantiate objects, allocate memory for
variables, calculate expressions, perform assignments, or execute other methods.

In this section, I'll summarize the syntax of Java while keeping JSP in mind.

Scriptlets

A scriptlet is a block of Java code enclosed between <% and %>. For example, this code includes two
scriptlets that let you switch an HTML element on or off depending on a condition:

<% if (condition) { %>
<p>This is only shown if the condition is satisfied</p>
<%} R

Expressions

An expression scripting element inserts into the page the result of a Java expression enclosed in the pair
<%= and %>. For example, in the following snippet of code, the expression scripting element inserts the
current date into the generated HTML page:

<%@page import="java.util.Date"%>
Server date and time: <%=new Date()%>

You can use within an expression scripting element any Java expression, provided it results in a
value. In practice, it means that every Java expression will do, except the execution of a method of type
void. For example, <%=(condition) ? "yes" : "no"%> is valid, because it calculates to a string. You
would obtain the same output with the scriptlet <%if (condition) out.print("yes") else
out.print("no");%>.

! Jeff Friesen, Beginning Java 7 (Berkeley, CA: Apress, 2012) is the definitive guide to the Java language.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

Note that an expression is not a Java statement. Accordingly, it has no semicolon at the end.

Declarations

A declaration scripting element is a Java variable declaration enclosed between <%! and %>. It results
in an instance variable shared by all requests for the same page. See the “Example: Testing
Concurrency” section for an example on how you can use it.

Data Types and Variables

Java makes available primitive data types similar to the basic types of C/C++ (see Table 2-1). However,
there is one important, if not so apparent, difference. The precision of the numeric types is
implementation-dependent in C, but it is guaranteed to be constant across platforms in Java.

Table 2-1. Java Data Types

Name Class Description

byte Byte 1-byte signed integer (-128 to +127)

short Short 2-byte signed integer (-32,768 to +32,767)

int Integer 4-byte signed integer (-2,147,483,648 to +2,147,483,647)

long Long 8-byte signed integer (approximately -10" to +10")

float Float 32-bit signed floating-point (8-bit exponent, 23-bit precision)
double Double 64-bit signed floating-point (11-bit exponent, 52-bit precision)
char Character 16-bit unsigned Unicode

boolean Boolean Either true or false

The second column of Table 2-1 gives you the names of the so-called wrapper classes that Java
makes available for each primitive type. These classes provide some useful static methods to manipulate
numbers. For example, Integer.parseInt(String s, int radix) interprets a string as a number in the
base set by the second argument and returns it as an int value (e.g., Integer.parseInt("12", 16) and
Integer.parseInt("10010", 2) both return 18).

In Java, like in C, you can define octal literals by sticking a zero in front of the number, and
hexadecimal literals by adding 0x or 0X. For example, both 0123, which means 1x64 + 2x8 + 3x1, and
0x53, which means 5x16 + 3x1, are different ways of representing the decimal number 83. With Java 7,
you also have the suffixes Ob and 0B to identify binary literals. This means that you can also write
decimal 83 as 0b1010011.

I will be mentioning new features of Java introduced with Java 7 as they become relevant. They are
nice, and useful to improve code readability and maintenability, but before embracing them, check that
all servers to which you will deploy your applications have been upgraded to Java 7.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

Programs in Java can be platform-independent because all platform dependencies are “hidden”
inside libraries. The wrapper classes I just mentioned are in the java.lang library, together with dozens
of other general classes such as String and Math. You can find the full documentation of the Java 7.0
platform at http://docs.oracle.com/javase/7/docs/, and a description of its classes at
http://docs.oracle.com/javase/7/docs/api/.

Here are some examples of how you can declare variables and initialize them:

String aString = "abcdxyz";

int k = aString.length(); // k is then set to 7
char ¢ = aString.charAt(4); // c is set to 'x'
static final NAME = "John Doe";

The final keyword in the last example of declarations makes the variable unchangeable. This is how
you define constants in Java. The static keyword indicates that a variable is to be shared by all objects
within the same application that are instantiated from the class.

The use of static variables in JSP requires some further comment. In JSP, you can declare variables
in three ways:

<% int k = 0; %>
<%! int k = 0; %>
<%! static int k = 0; %>

The first declaration means that a new variable is created for each incoming HTTP client request;
the second one means that a new variable is created for each new instance of the servlet; and the third
one means that the variable is shared among all instances of the servlet.

Tomcat converts each JSP page into a subclass of the HTTP Servlet class
(javax.servlet.http.HttpServlet). Normally, Tomcat instantiates each one of these classes only once
and then creates a Java thread for each incoming request. It then executes the same servlet object within
each thread. If the application runs on a distributed environment or for high numbers of requests,
Tomcat can instantiate the same servlet more than once. Therefore, only the third declaration
guarantees that the variable will be shared among all requests.

Tomcat keeps the servlet code buried deep in the folder named work. For example, the servlet
generated from webapps\ROOT\tests\a.jsp is in work\Catalina\localhost_\org\apache\jsp\tests\ and
isnamed a_jsp.java.

You're free to name your variables as you like, though your case-sensitive string of characters must
begin with a letter, a dollar, or an underscore, and not contain a space. That said, be aware that the
following keywords are reserved and will cause a compilation error: abstract, assert, boolean, break,
byte, case, catch, char, class, const, continue, default, do, double, else, enum, extends, final, finally,
float, for, goto, if, implements, import, instanceof, int, interface, long, native, new, package, private,
protected, public, return, short, static, strictfp, super, switch, synchronized, this, throw, throws,
transient, try, void, volatile, and while. Whenever possible, use capital letters for constants. It is not
necessary, but it makes the code more readable and is a well-established coding practice.

To use special characters within a string, you need to escape them with a backslash, as shown in
Table 2-2. With \u followed by up to four hexadecimal digits, you can specify any Unicode character. For
example, you can enter the Greek capital letter delta as \u0394.

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

Table 2-2. Escaped Special Characters

Character Escaped
backslash \\
backspace \b

carriage return \r

double quote \"

form feed \f
line feed \n
single quote \’
tab \t
Objects and Arrays

To create an object of a certain type (i.e., to instantiate a class), use the keyword new, as in the following
example:

Integer integerVar = new Integer(55);

This creates an object of type Integer with value 55.
You can have arrays of any object type or primitive data type, as in the following examples of array
declarations:

int[] intArrayi;

int[] intArray2 = {10, 100, 1000};

String[] stringArray = {"a", "bb"};

intArray1is null; intArray2 is an array of length 3 containing 10, 100, and 1000; and stringArray is an
array of length 2 containing the strings "a" and "bb". Although arrays look special, they’re actually just
objects and treated like that. Therefore, you can initialize them with new. For example, the following line
of code declares an integer array with 10 elements, each initialized to zero:

int[] array = new int[10];

A two-dimensional table is an array in which each element object is itself an array. This is notlike in
C, where a single block of memory contains all elements of multidimensional tables. For example, this
line of code represents a table of two rows, but the first row has three elements, while the second one has
only two:

int[][] table1r = {{11, 12, 13}, {21, 22}};

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

24

If you define something like this:
int[][] table = new int[2][3];

you have a table with two rows and three columns, with all elements initialized to zero.
When declaring a table, you can leave the last (innermost) dimension empty. For example, the
following declaration results in a table of two rows, but the rows are undefined and remain set to null:

int[][] table = new int[2][];

Before being able to assign values to the individual elements of such partially defined table, you will
have to declare its rows or assign to them already declared monodimensional arrays:

table[0] = new int[5];
int[] anArray = {10, 100};
table[1] = anArray;

Operators, Assignments, and Comparisons

There are no surprises with the binary operators—that is, the operators that require two operands. They
include the expected addition, subtraction, multiplication, division, and modulus (i.e., the remainder of
an integer division) operators. When applied to string, the addition operator concatenates them.

Besides the normal assignment operator represented by the equal sign, there is also an assignment
operator for each binary operator. For example, the following line of code means that you take the
current value of the variable a, add to it b, and store it back into a:

a+=b; // same as a = a + b;

The most commonly used unary operators (i.e. operators that require a single operand) include the
minus sign, which changes the sign of what follows, and the increment and decrement operators:

a = -b;
a++; // same as a += 1;
a--; // same as a -= 1;

You can assign the value of an expression of one type to a variable of another type, but with some
restrictions. With numeric types, you can only assign values to variables that are of the same type or
“larger.” For example, you can assign an int value to a variable of type long, but to assign a long value to
an int variable, you’d have to typecast (i.e., downcast) the value, as in int iVar = (int)1234567L;.Be
careful with that, because you might lose precision when downcasting floating point numbers!

You can assign objects to variables of other types, but only if the type of the variable is a superclass
of the class from which you instantiated the object. Similarly to the downcasting of numeric types, you
can typecast a value of a superclass into a variable of a subclass type.

Comparison operators are straightforward when applied to primitive data types. You have == to
check for equality, ! = to check for inequality, > to check for “greater than,” >= to check for “greater than
or equal to,” < to check for “less than,” and <= to check for “less than or equal to.” Nothing surprising
there. However, you have to be careful when you make comparisons between objects, as the following
example illustrates:

String s1 = "abc";
String s2 = "abc";
String s3 = "abcd".substring(0,3);

boolean bl = (s1 == "abc"); // parentheses not needed but nice!
boolean b2 = (s1 == s2);
boolean b3 = (s1 == s3);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

As perhaps you expected, b1 and b2 turn out to be true, but b3 is false, although s3 was set to "abc"!
The problem is that comparison operators don’t look inside the objects. They only check whether the
objects are the same instance of a class, not whether they hold the same value. Therefore, as long as you
shift around the "abc" string, the compiler keeps referring to the same instance of a literal string, and
everything behaves as expected. However, when you create a different instance of "abc, " the check for
equality fails. The lesson to be learned is that if you want to compare the content of objects, you have to
use the equals method. In this example, s1.equals(s3) would have returned true.

For objects, you also have the comparison operator instanceof, which isn’t available for primitive
data types like int. For example, ("abc" instanceof String) calculates to true. Be aware that an object
isn’t only an instance of the class it was instantiated from, but it’s also an instance of all its superclasses
up to and including Object, which is the superclass of all classes. It makes sense: a String is also an
Object, even if the reverse often is not true.

With 8& for logical and, || for logical or, and ! for logical not, you can concatenate comparisons to
form more complex conditions. For example, ((a1 == a2) && !(b1 || b2)) calculates to true only if a1
equals a2 and both boolean variables b1 and b2 are false.

Selections

The following statement assigns to the string variable s a different string depending on a condition:

if (a ==1) {
s = "yes";

else {
s = "no";

}

You can omit the else part.
You could have achieved an identical result with a conditional expression and a single assignment:

String s = (a== 1) ? "yes" : "no";
You could also achieve the same result with the following code:

switch(a) {
case 1:
s = "yes";
break;
default:
s = "no";
break;

}

Obviously, the switch statement is only useful when there are more than just two alternatives. For
example, instead of having a chain of if/else statements, as in the following example:

if (expression == 3) {...}
else if (expression == 10) {...}
else {...}

you would gain both in clarity and in concisiveness with:

switch (expression) {
case (3): ... break;

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

case (10): ... break;
default: ... break;
}

At the very least, you'll calculate the expression only once. Note that if you omit a break, execution
continues to the following case.

With Java 7, the switch variable can be of type String. Therefore, you can write switches like the
following one:

String yn;

switch (yn) {
case ("y"): /* handle the yes case */ break;
case ("n"): /* handle the no case */ break;
default: /* is something fishy going on? */ break;

}

Iterations
This statement repeatedly executes the statements with increasing values of k, beginning from init-value:
for (int k = init-value; k < limit; k++) { statements; }
The general format is
for (initial-assignment; end-condition; iteration-expression) { statements; }

The initial-assignment is executed only once, before entering the loop. The statements are then
repeatedly executed as long as the end-condition is satisfied. As the end-condition is checked before
executing the statements, they are not executed at all if the end-condition is false from the beginning.
The iteration-expression is executed at the end of each iteration, before the end-condition is checked to
see whether the loop should be reentered for a new iteration.

You can omit either the initial-assignment or the iteration-expression. If you omit both, you should
replace the for loop with a while loop. The following two lines are equivalent:

while (end-condition) { statements; }
for (;end-condition;) { statements; }

The do-while statement is an alternative to the while loop:
do { statements; } while (end-condition);

The do-while statement checks the end-condition at the end of an iteration instead of at the
beginning, like the for and while loops do. As a result, the statements inside a do-while loop are always
executed at least once, even when the end-condition is false from the beginning.

The iteration statements described so far are identical to those of C, but Java also supports a variant
of the for loop tailored to make the handling of collections easier. Suppose you need a method that
produces a concatenation of a set of strings. It might look like this:

String concatenate(Set<String> ss) {
String conc = "";
Iterator<String> iter = ss.iterator();
while (iter.hasNext()) {

conc += iter.next();

}

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

return conc;

}

With the Java for-each variant of the for loop, you can drop the definition of the iterator and write
clearer code:

String concatenate(Set<String> ss) {
String conc = "";
for (String s : ss) {

conc += s;
return conc;

}

Implicit Objects

The most commonly used implicit objects defined by Tomcat are out and request, followed by
application and session. But I will go through them in alphabetical order, for ease of reference.

Whether you create objects within JSP pages or Tomcat implicitly creates them for you, you cannot
use them properly unless you know in which scope they are available. There are four possible scopes. In
order of increasing generality, they are: page, request, session, and application. You will learn more about
them in the following pages.

In general, if you are not sure what class a particular object instantiates, you can always display its
name with the following expression:

<%=the_misterious_object.getClass().getName()%>

The application Object

The application object is an instance of the class org.apache.catalina.core.ApplicationContextFacade,
which Tomcat defines to implement the interface javax.servlet.ServletContext. It provides access to
the resources shared within the web application. For example, by adding an attribute (which can be an
object of any type) to application, you can ensure that all JSP files that make up your web application
have access to it.

Example: Using an Attribute to Enable and Disable Conditional Code

One of the advantages of using JSP is that the web server doesn’t need to reinterpret the source file of a
page every time a client requests that page. The JSP container translates each JSP page into a Java file
and compiles it into a class, but this only happens when you update the JSP source. You might like to be
able to switch on or off some particular functionality for debugging or other purposes, without having to
edit one or more file and force Tomcat to recompile them when you flip the switch. To achieve this
result, you only need to wrap the functionality in question inside a conditional statement, as the
following one:

if (application.getAttribute("do it") != null) {
/* ...place your "switchable" functionality here... */
You also need to include two small JSP pages in your application. The first one to set the attribute

do_it (see Listing 2-1) and the second one to remove it (see Listing 2-2).

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

Listing 2-1. do_it.jsp

<%@page language="java" contentType="text/html"%>

<html><head><title>Conditional code ON</title></head>

<body>Conditional code

<%
application.setAttribute("do it",
if (application.getAttribute("do_it") == null) out.print("not");
%>

enabled</body></html>

Listing 2-2. do_it_not.jsp

<%@page language="java" contentType="text/html"%>
<html><head><title>Conditional code OFF</title></head>
<body>Conditional code
<%
application.removeAttribute("do_it");
if (application.getAttribute("do it") == null) out.print("not");
%>
enabled</body></html>

When you want to enable the conditional code, you just type the URL of do_it. jsp in your browser.
Until you disable it by typing the URL of do_it_not. jsp or by restarting Tomcat, the conditional code
will remain enabled in all pages of your application. Notice that in the example do_it. jsp only sets the
attribute do_it to an empty string, but you can also define different values to have a finer selection of
code to be activated.

Note that you can use the same mechanism to switch on and off HTML code.

Example: Using an Attribute to Control Logging

You might find it useful to be able to control the logging of some events to a particular file dynamically.
To do so, you need to include two JSP files in your application (see Listings 2-3 and 2-4).

Listing 2-3. log_on.jsp

<%@page language="java" contentType="text/html"%>
<%@ page import="MyClasses.*"%>
<html><head><title>Switch the log ON</title></head><body>
<%
MyLog log = (MyLog)application.getAttribute("logFile");
if (log == null) {
try {
log = new MyLog("logs/mylog.log");
application.setAttribute("logFile", log);
log.println("Logging enabled");
out.println("Logging enabled");

catch (Exception e) {
out.println(e.getMessage());

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

else {
log.println("Attempt to enable logging");
out.println("Logging was already enabled");

%>
</body></html>

Listing 2-4. log_off.jsp

<%@page language="java" contentType="text/html"%>
<%@ page import="MyClasses.*"%>
<html><head><title>Switch the log OFF</title></head><body>
<%
MyLog log = (MyLog)application.getAttribute("logFile");
if (log !'= null) {
log.println("Logging disabled");
log.close();
application.removeAttribute("logFile");

%>
Done.
</body></html>

After checking that there is no application attribute named logFile, log_on.jsp instantiates the
MyLog class and saves the object as an application attribute named logFile. After that, you can easily
make an entry in the log file from any JSP of the same application, as shown in Listing 2-5.

Listing 2-5. check_logging.jsp
<%@ page import="MyClasses.*"%>
<%
MyLog log = (MyLog)application.getAttribute("logFile");

if (log !'= null) log.println("This is my entry in the log");
%>

In log_off.jsp, after checking that the logFile attribute exists, you close the log file and remove the
attribute. The logging is then disabled in all JSPs of the application, because any attempt to get the
logFile attribute returns a null. The only piece of the puzzle that you still need is how to make the MyLog
class.

This is also simple:

e Open the folder %CATALINA_HOME%\webapps\ROOT\WEB-INF\.

e If WEB-INF has no subfolder named classes (it shouldn’t, if you have a fresh
installation of Tomcat), create one.

¢ Inside the newly created folder, create a folder named MyClasses, and place in it
the file MyLog. java shown in Listing 2-6.

e Open a command-line window and compile MyLog. java with javac, as explained
in Chapter 1 for Exec_http.java.

e Restart Tomcat.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

Listing 2-6. MyLog.java

/* Mylog.java - Implements a log class */
package MyClasses;
import java.util.Date;
import java.text.SimpleDateFormat;
import java.io.FileWriter;
import java.io.PrintWriter;
import java.io.IOException;
public class MyLog {

private static final SimpleDateFormat TIME_FMT =

new SimpleDateFormat("yyyy-MM-dd HH:mm:ss:SSS");
private static PrintWriter log = null;
public MyLog(String logpath) throws IOException {
log = new PrintWriter(new FileWriter(logpath, true));

public static synchronized void println(String s) {
log.print1n(TIME_FMT.format(new java.util.Date()) + " - " + s);
log.flush();
}

public static synchronized void close() {
log.close();
}

MyLog.java opens your log file in append mode and adds the date and time to your entry before
writing it into the file. Notice that the methods are synchronized, so that several pages can log entries at
the same time without them getting mixed up. An alternative would have been to make MyLog a subclass
of PrintWriter. Then you could have had all the methods of PrintWriter available, and you wouldn’t
have needed to define a close method within MyLog. However, I wanted to have the methods
synchronized, even if this seems like overkill.

If you place all three JSP files in 4CATALINA_HOME%\webapps\ROOT\tests\, to test the logging you only
need to type in a web browser http://localhost:8080/tests/log on.jsp followed by check logging.jsp
and log off.jsp.

In the folder %CATALINA_HOME%\1logs\, you will find the file mylog.log containing three lines like the
following ones:

2012-05-09 16:38:09:000 - Logging enabled
2012-05-09 16:38:12:183 - This is my entry in the log
2012-05-09 16:38:15:583 - Logging disabled

Adding classes to the default Tomcat application is not really the way it should be done. For one
thing, casually restarting Tomcat aborts all user sessions. In the next chapter, I'll explain how to create
separate, self-contained applications. Then, everything will become clearer.

The config Object

The config object is an instance of the org.apache.catalina.core.StandardWrapperFacade class, which
Tomcat defines to implement the interface javax.servlet.ServletConfig. Tomcat uses this object to
pass information to the servlets.

The following config method is the only one you might ever use; its use is trivial:

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

config.getServletName()

The method returns the servlet name, which is the string contained in the <servlet-name> element
defined in the WEB-INF\web.xml file. You will learn more about this file later on. The default for <servlet-
name> is jsp.

The exception Object

The exception object is an instance of a subclass of Throwable (e.g., java.lang.NullPointerException)
and is only available in error pages.

Listing 2-7 shows you two methods to send the stack trace to the output. The first one, using
getStackTrace, gives you access to each trace element as an object of type java.lang.StackTraceElement,
which you can then analyze with methods such as getClassName, getFileName, getLineNumber, and
getMethodName.

Listing 2-7. stack_trace.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.util.*, java.io.*"%>
<%@page isErrorPage="true"%>
<html><head><title>Print stack trace</title></head><body>
From exception.getStackTrace():

<pre><k
StackTraceElement[] trace = exception.getStackTrace();
for (int k = 0; k < trace.length; k++) {
out.println(trace[k]);

%></pre>
Printed with exception.printStackTrace(new PrintWriter(out)):
<pre><k

exception.printStackTrace(new PrintWriter(out));

%></pre>
</body></html>

Notice the directive <%@page isErrorPage="true"%>, without which the implicit object exception is
not defined. If you execute this page as if it were a normal page, you will get a NullPointerException.
Listing 2-8 shows a simple example of how you can use an error page.

Listing 2-8. cause_exception.jsp

<%@page language="java" contentType="text/html"%>
<%@page errorPage="stack_ trace.jsp"%>
<html><head><title>Cause null pointer exception</title></head><body>
<%
String a = request.getParameter("notThere");
int len = a.length(); // causes a null pointer exception
%>
</body></html>

Notice the <%@page errorPage="stack trace.jsp"%> directive, which links the error page of Listing
2-7 to the occurrence of exceptions. To cause a NullPointerException, the page requests a parameter

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

32

that doesn’t exist and then accesses it. If you use try/catch to trap the exception, obviously the error
page is not executed.

To see the two pages in action, place them in 4CATALINA_HOME%\webapps\ROOT\tests\ folder and type
in a browser http://localhost:8080/tests/cause_exception.jsp.

The out Object

You use the out object in JSP as you use the System.out object in Java: to write to the standard output.
The standard output for a JSP page is the body of the HTML response sent back to the client. Therefore,
the scriptlet <%out.print(expression);%> causes the result of the expression to be displayed in the
client’s browser. You can achieve the same result by simply typing <%=expression%>.

Keep in mind that whatever you write in a JSP page outside scriptlets and other JSP elements is sent
to the output anyway. Therefore, the following three lines have exactly the same effect on the response:

<% out.print("abc"); %>
<%="abc"%>
abc

Clearly, it makes no sense to use the first two formats when you need to write literal values. To
decide whether to use a scriptlet delimited by <%. .%> or an expression delimited by <%=. .%>, you should
look at the surrounding code and decide what makes it as easy to read as possible.

The most useful methods of the object out are print and println. The only difference between the
two is that println appends a newline character to the output. As an argument, both methods accept a
string or any other primitive type variable. In the following example, the int value stored in intVar is
automatically converted to a string:

out.print("a string" + intVar + obj.methodReturningString() + ".");
Incidentally, you could use either of the following two methods to do the conversion manually:

String s = Integer.toString(intVar);
String s = "" + intVar;

Be aware that if you try to print an object or an array by sticking its name into a print statement, you
won’t necessarily see its content in the output. If the object doesn’t support a toString() method, you'll
see a mysterious string representing the reference to the object.

As I already said, everything within a JSP page that’s outside JSP elements is sent to the output,
including the newline characters that follow each element. This causes a proliferation of empty lines in
the output. For example, this code causes three empty lines in the output:

<% first element %> here is a newline!
<% second element %> here is a newline!
<% third element %> here is a newline!

To remove the empty lines, you have three options. First, you can “chain” the element delimiters, so
that the newlines are inside the elements and don’t show up in the output:

<% first element %><%
second element %><%
third element %> here is a newline!

Second, you can put the newlines inside JSP comments (although it will make your code difficult to
read):

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

<% first element %><%--
--%><% second element %><%--
--%><% third element %> here is a newline!

Third, you can write the following directive at the beginning of your page:
<%@page trimDirectiveWhitespaces="true"%>

and this will remove all unnecessary spaces from the output, including the newlines.

Most manuals state that out is an instance of the javax.servlet.jsp.JspWriter class, which you can
use to write into the response. This is not entirely correct, because Jsphriter is an abstract class, and as
such, it cannot be instantiated. In reality, out is an instance of the nonabstract class
org.apache.jasper.runtime.JsphWriterImpl, which extends JspWriter. Tomcat defines JspWriterImpl
precisely to implement the JspWriter methods. For all practical purposes, this is inconsequential to you,
but some of you sharp-eyed readers might have thought that I was talking about instantiating an
abstract class. It usually pays to be precise.

The JspWriter class includes the definition of a handful of fields. You won’t need them, but
mentioning them gives me the opportunity to give you some useful information.

The autoFlush field tells you whether the JspWriter is flushed automatically when its buffer fills up
or whether an I0Exception is thrown upon overflow. The default for out is true, which means that
Tomcat will send a partial response to the client if the buffer fills up. You can set it to false with the
directive <%@page autoFlush="false"%>, and you should do so if you expect the client to be an
application. Sending the response in “chunks” is perfectly OK when the client is a browser, but an
application will probably expect the response in a single block. If you expect the client to be an
application and set autoFlush to false, you should also use <%@page buffer="size-in-kb"%>, to ensure
that the output buffer is large enough to store your largest response. The field autoFlush is protected, but
you can obtain its value with the isAutoFlush method.

The bufferSize field is the size in bytes of the output buffer. The default for out is 8,192 bytes. It’s a
protected field, but you can obtain its value with the getBufferSize method.

There are also three constant integer fields (DEFAULT_BUFFER, NO_BUFFER, and UNBOUNDED_BUFFER, of
type public static final int), but you can safely ignore them. Just for the record, they’re respectively
used to test whether the JspWriter is buffered (and uses the default buffer size), isn’t buffered, or is
buffered with an unbounded buffer. Besides the fact that you have no variable or attribute to check
against these values, you're in any case well served by the getBufferSize method (which returns 0 if the
output is not buffered).

You've already seen in several examples that you can use print and println to write to the output
buffer. As an argument, you can use any of the eight primitive data types of Java (boolean, char, byte,
short, int, long, float, and double), an array of characters (char[]), an object (java.lang.0Object), or a
string (java.lang.String). In practice, you'll usually use a String argument, as in the following example:

out.print("fun(" + arg + ") = " + fun(arg));

Here, fun(arg) is executed, and both arg and the value returned by fun(arg) are automatically
converted to strings to be concatenated with the rest.

The write method, inherited from java.io.Writer, sends a portion of an array of characters or of a
string to the output. For example, if cbuf is a variable of type char[], out.write(cbuf, offs, len) will
write a portion of cbuf, with offs being the offset of the first character and len being the number of
characters to be copied. You could achieve the same result by extracting a part of the array with the
following code and then printing it with print:

char[] portion = java.util.Arrays.copyOfRange(cbuf, offs, offs+len-1)

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

34

However, it would be less efficient, because first you would be copying a portion of the original
array—an operation you don’t need when using write.

You're not likely to use any of the other methods, and you should definitely avoid using close, which
closes the output stream. Tomcat closes the stream when it is safe to do so, and you don’t want to fiddle
with it.

The pageContext Object

Most manuals state that pageContext is an instance of the javax.servlet.jsp.PageContext class to access
all objects and attributes of a JSP page. Similar to what I said concerning JspWriter, this is only partly
true, because this class, like JspWriter, is also abstract. In reality, pageContext is an instance of the
nonabstract class org.apache.jasper.runtime.PageContextImpl, which extends PageContext.

The PageContext class defines several fields, including PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE,
and APPLICATION_SCOPE, which identify the four possible scopes. It also supports more than 40 methods,
about half of which are inherited from the javax.servlet.jsp.JspContext class.

You have to pay particular attention when using the removeAttribute method, which accepts either
one or two arguments. For example, pageContext.removeAttribute("attrName") removes the attribute
from all scopes, while the following code only removes it from the page scope:

pageContext.removeAttribute("attrName", PAGE_SCOPE)

The request Object

The request variable gives you access within your JSP page to the HTTP request sent to it by the client.
It’s an instance of the org.apache.catalina.connector.RequestFacade class, which Tomcat defines to
implement the javax.servlet.http.HttpServletRequest and javax.servlet.ServletRequest interfaces.

More on Request Parameters and Client Info

In Chapter 1, you have already seen how to list all the parameters of a request. When accessing
individual parameters by name, you should use some caution. Typically, you do it with the following line
of code:

String myPar = request.getParameter("par-name");

And then, you do something with the parameter only if it exists—i.e., if getParameter returns a non-
null value:

if (par !'= null) { ...
Note that in the request generated by a URL like this:
http://localhost:8080/my page.jsp?aaadbbb=8&ccc=3

the parameters aaa and bbb exist but are set to the empty string. Therefore, getParameter does notreturn
null for them.

As you already saw in Chapter 1, the request can include more than one value associated with the
same parameter. For example, the following URL generates a request with three values for the parameter
aaa:

http://localhost:8080/my page.jsp?aaadaaa=48aaa=7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

If you execute getParameter, you only get the first value, which is the empty string in the example. If
you want to get them all, you have to use a different method:

String[] ppar = request.getParameterValues("par-name");

and this returns an array of strings. To check that the parameter has actually been set only once and to
something other than the empty string, you might then perform the following test:

if (ppar != null 8& ppar.length == 1 &8 ppar[o].length() > 0) { ...

In Chapter 1, you also saw how to determine the type of browser that sent the request. Another
useful piece of information you can get about the client is its preferred locale. For example, the following
line of code could set the variable clientLocale to the string "en_US":

String clientlocale = request.getlocale().toString();

But if the viewer were in a country where a language other than English is spoken, you might get
other locales (e.g., "de_DE" for German). If you had a multilingual site, the locale would tell you the
working language of your user. You could check whether you support it and, if you do, set it as a default
for the response.

The getRemoteHost method, which returns the client’s host name (or that of its proxy server), could
be useful in a similar way, because you could look at the string after the last dot to identify foreign
domain names (e.g., it for Italy). Unfortunately, in many cases, the remote address cannot be resolved
to a name, and you end up getting only the client’s IP address, exactly as if you had called the
getRemoteAddress method. Services available on the Internet let you resolve an IP address to the country
where the system resides, but you might have to pay for a reliable service.

Caution You cannot mix methods that handle parameters with methods that handle the request content, or
methods that access the request content in different ways. For example, if you execute any two of the methods
request.getParameter, getReader, and getInputStream when handling a request, the second one you execute
will fail.

Example: Listing the Headers

Listing 2-9 shows code that displays the request headers.
Listing 2-9. req_headers.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.util.*"%>
<html><head><title>Request Headers</title></head><body>
<%
Enumeration headers = request.getHeaderNames();
int kh = 0;
while (headers.hasMoreElements()) {
String hName = (String)headers.nextElement();
out.println("------- " + hName);
Enumeration hValues = request.getHeaders(hName);

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

while (hValues.hasMoreElements()) {
out.println("
 8nbsp; " + hValues.nextElement());

}
out.println("<bx/>");

%>
</body></html>

Figures 2-1, 2-2, 2-3, and 2-4 show the request headers generated respectively by Chrome, Firefox,
IE, and Opera. Interesting, aren’t they?

_ = | B |t
@ Request Headers
| €« C' | © localhost:8080/tests/req_headers.jsp g &
——————— host
locathost-8080
——————— connection
keep-alive
——————— user-agent
Mozilla'5.0 (Windows NT 6.0) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025 168 Safari’535.19
——————— accept

text/html application/xhtml+-xml application/sml:q=0.9.* *:q=0.8
_______ accept- encoding
gzip,deflate sdch
_______ accept-language
en-US.en;q=0.8
_______ accept-charset
1SO-8859-1,utf-8:q=0.7.*:q=0.3

%

Figure 2-1. Request headers generated by Google Chrome

36

www.it-ebooks.info

http://www.it-ebooks.info/

File Edit View History Bookmarks ™ Tools Help

‘ @ Request Headers [T‘

@ Request Headers - Mozilla Firefox =B8] X

<

(- @ localhost:8080/tests/req_headers,jsp ¢

(8 Most Visited | | Getting Started

-:," Google P ‘ 1

localhost:3080
------- user-agent
Mozilla/5.0 (Windows NT 6.0; rv:11.0) Gecko/20100101 Firefox/11.0

text’html, application/xhtmHxml, application/xml;q=0.9,*/*.q=0.8
——————— accept-language

en-gb,en;qg=0.5
------- accept-encoding

gzip, deflate

JSESSIONID=18CB6DAA54283EB6E1620BDSFC365741

<

Figure 2-2. Request headers generated by Mozilla Firefox

- —

/ - PN .
\ ~/| (&, [#] freq_headersjsp O ~ B ¢ X ”@ Request Headers X

[(=[O]

N
uu

------- accept
text’html. application/xhtml+xml, */*
------- accept-language
en-au
------- user-agent
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.0; Trident/5.0)
——————— accept-encoding
gzip, deflate
------- host
localhost:8080

JSESSIONID=4B47318CF2F2BEDEO5C0465653D757F7

-

Figure 2-3. Request headers generated by Microsoft Internet Explorer

www.it-ebooks.info

CHAPTER 2

JSP ELEMENTS

37

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

E Opera (S e

IRequest Headers o

L s] & Web localhost:8080/tests/req_headers.jsp 7 -‘l— Search with Geoogle

——————— user-agent

Opera/9.80 (Windows NT 6.0; U; en) Presto/2.10.229 Version/'11.62
——————— host

localhost:8080
——————— accept

text/html, application/xml;q=0.9, applicationxhtml+xml, image/png, image/webp, image/jpeg, image/gif. image/x-xbitmap, */*;q=0.1
——————— accept-language

en-AlU en;g=0.9
——————— accept-encoding

gzip, deflate
——————— connection

Keep-Alive

(2] @ u: & . - T e

Figure 2-4. Request headers generated by Opera

Example: User Authentication

The browsers can display a user/password dialog to provide a basic authentication mechanism by
limiting access to specific folders to particular user roles. First, you have to define the users and their
roles in the tomcat-users.xml file that you find in Tomcat’s conf folder. Listing 2-10 shows you what you
should insert into tomcat-users.xml to define a couple of new users and the two roles canDoThis and
canDoThat.

Listing 2-10. tomcat-users.xml Fragment

<tomcat-users>
<role rolename="canDoThis"/>
<role rolename="canDoThat"/>
<user username="aBloke" password="whatever" roles="canDoThis"/>
<user username="bigCheese" password="yes!" roles="canDoThis,canDoThat"/>
</tomcat-users>

The tomcat-users.xml file is shared by all applications, but this doesn’t prevent you from using the
roles only for specific applications. To password-protect all the pages inside a particular folder of an
application, you have to edit the WEB-INF/web.xml file in the application’s root directory. Listing 2-11
shows you the code you need to insert inside the <web-app> element to limit the access of the pages in
the folder /tests/auth/this/ to users with the role canDoThis, and of the pages in the folder
/tests/auth/that/ to users with the role canDoThat. I've highlighted the three main tags.

Listing 2-11. web.xml Fragment
<security-role>
<role-name>canDoThis</role-name>
<role-name>canDoThat</role-name>

</security-role>
<security-constraint>

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

<web-resource-collection>
<web-resource-name>This</web-resource-name>
<url-pattern>/tests/auth/this/*</url-pattern>
</web-resource-collection>

<auth-constraint>
<role-name>canDoThis</role-name>
</auth-constraint>

</security-constraint>

<security-constraint>

<web-resource-collection>
<web-resource-name>That</web-resource-name>
<url-pattern>/tests/auth/that/*</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>

<auth-constraint>
<role-name>canDoThat</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
</login-config>

Asyou can see, you first declare the security roles defined in tomcat-users.xml. Then you define two
security constraints. Each security constraint can include several resources and authority constraints.
The <url-pattern> sub-elements state which folders or pages require protection. Finally, you state that
the BASIC authentication method should be applied.

To test it, you can copy to the usual %CATALINA_HOME%\webapps\ROOT\tests\ folder the whole auth
folder you will find in the code available for this chapter. It contains two subfolders named this and
that, each containing a trivial index.html that displays the name of the enclosing folder, and an
index.html that lets you choose between the two subfolders.

That’s it! After you have restarted Tomcat, type in a browser http://localhost:8080/tests/auth and
choose to enter either this or that. When you choose the first time, the browser will ask you to provide
user identification and a password, as shown in Figure 2-5.

Authentication Required ‘ 2R |

The server localhost:8080 requires a username and password.
The server says: Authentication required.

User Name: bigCheese

Fedkk

Password:

LogIn & [Cancel

Figure 2-5. Basic authentication

If you try to access a forbidden directory (e.g., the that folder as user aBloke), you get an error
message like that shown in Figure 2-6.

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

(=B s
/' [#] Apache Tomcat/7.0.26 - Er \
L C | @ localhost:8080/tests/auth/that/ kA N |

HTTP Status 403 - Access to the requested resource has been denied

AT Status report
[N Access to the requested resource has been denied
Access to the specified resource (Access to the requested resource has been denied) has been forbidden.

Apache Tomcat/7.0.26

Figure 2-6. Failed authentication

The only way of logging out is to close the browser and reopen it. After logging in, the getAuthType
method will return "BASIC" instead of null, getRemoteUsers will return "bigCheese" instead of null,
isUserInRole("canDoThat") will return true, and getUserPrincipal() will return an object of type
Principal containing the name "bigCheese".

Example: Reading the Request Body

You can read the request content with either getInputStream or getReader (but not both for the same
request). Listing 2-12 shows you an example with getInputStream.

Listing 2-12. req_getInputStream.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.util.*, java.io.*"%>

<%
int len = request.getContentLength();
byte[] buf = null;
int n=0;

if (len > 0)’{
buf = new byte[len];
n = request.getInputStream().read(buf);
}

%>
<html><head><title>Test request.getInputStream</title></head><body>
<form action="" method="post" enctype="multipart/form-data">
<input type="hidden" name="oneTwoThree" value="123"/>
<input type="file" name="fil"/>
<input type="submit"/>
</form>
<table border="1">
<tr><td>getContentType()</td><td><%=request.getContentType()%></td></tr>
<tr><td>getContentLength()</td><td><%=len%></td></tr>
<%
out.print("<tr><td>getInputStream():

+n + "</td><td><pre>");

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

for (int k = 0; k < n; k++) out.print((char)buf[k]);
out.println("</pre></td></tr>");

%>
</table>

</body></html>

Listing 2-13 shows you an example with getReader. There are several methods to read the content,
but the important thing to keep in mind is that getInputStream returns data in binary form and
unbuffered, while getReader returns buffered characters.

Listing 2-13. req_getReader.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.util.*, java.io.*"%>
<%
int len = request.getContentLength();
String s = "";
if (len > 0) {
char[] cbuf = new char[len];
int n = request.getReader().read(cbuf, 0, len);
s = new String(cbuf);

%>
<html><head><title>Test request.getReader</title></head><body>
<form action="" method="post">
<input type="hidden" name="oneTwoThree" value="123"/>
<input type="hidden" name="fourFiveSix" value="456"/>
<input type="submit"/>
</form>
<table border="1">
<tr><td>getContentType()</td><td><%=request.getContentType()%></td></tr>
<tr><td>getContentLength()</td><td><%=len%></td></tr>
<tr><td>getReader(): <%=s.length()%></td><td><pre><h=sk></pre></td></tr>
</table>
</body></html>

Figures 2-7 and 2-8 show the output of req_getInputStream.jsp generated by Opera and by IE
respectively.

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

42

E Opera = |] | i)

|‘ETest request.getinputst... aF UL
- L] | ® Web localhost:8080,/tests/req_getlnputStream.jsp * | ‘-‘l + Search with Google
|_getContmtT}-pe{) multipart form-data; boundary=---------- DinNBnF 5Jjiee5kZrsThmk

[eetContentlength(y [[301

———————————— DjnNBnF5]jieeSkZrsTbhmk
Content-Disposition: form-data; name="oneTwoThree"

———————————— DjnNBnF5JjieeskZrsThmk
Content-Disposition: form-data; name="fil"; filename="text.txt"
Content-Type: text/plain

getlnputStream(): 301

This is inside the text file text.txt
———————————— DjnNBnF5]jieeS5kZrsThmk- -

0 & v 6 A=:)E

b

Figure 2-7. Output of req_getInputStream.jsp when viewed with Opera

al' "E http://localhost:8080/tests/req_getinputStn LD~RBEX || ETe;t request.getinputs...

Browse... Submit Query

getContentType() multipart form-data; boundary= 7dc28976045¢c
getContentLength() 322

Tdc28976045¢
Content-Disposition: form-data; name="oneTwoThree"

123

Tdc28976045¢C
getlnputStream(): 322 |Content-Disposition: form-data; name="fil"; filename="text.txt"
Content-Type: text/plain

This is inside the text file text.txt
Tdc28976045c——

W

Figure 2-8. Output of req_getInputStream.jsp when viewed with IE

I've uploaded the file named text.txt, which only contains the text This is inside the test file
text.txt. In the real world, the file would perhaps contain a formatted document, an image, or a video
clip. With this example, you can also get an idea of the multipart format. As you can see, the content type
actually contains a definition of the boundary, which is then used inside the request body to separate its
parts. Each part consists of a header followed by an empty line and its content. Notice that the two
browsers generate boundaries with different formats. I chose the outputs of Opera and IE because they
generate the shortest and longest requests. This is entirely due to the different number of characters
used for the boundaries.

Figure 2-9 shows the output of req_getReader. jsp.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

)|

Test request.getReader

€« C @ localhost:8080/tests/req_getReade 55 N
|

I getContentType() ”app].ic ation/x-www-form-urlencoded
| getContentLength()|[31

IgetReaderO: 31 oneTwoThree=123&fourFiveSix=456

Figure 2-9. Output of req_getReader.jsp

The response Object

The response variable gives you access within your JSP page to the HTTP response to be sent back to the
client. It is an instance of the org.apache.catalina.connector.ResponseFacade class, which Tomcat
defines to implement the interfaces javax.servlet.http.HttpServletResponse and
javax.servlet.ServletResponse.

The HttpServletResponse interface includes the definition of 41 status codes (of type public static
final int) to be returned to the client as part of the response. The HTTP status codes are all between 100
and 599. The range 100-199 is reserved to provide information, 200-299 to report successful completion
of the requested operation, 300-399 to report warnings, 400-499 to report client errors, and 500-599 to
report server errors. You will find the full list of errors at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html.

The normal status code is SC_ 0K (200), and the most common error is SC_ NOT_FOUND (404), which
occurs when the client requests a page that doesn’t exist. Working with Tomcat, the most common
server error is SC_INTERNAL_SERVER_ERROR (500). You get it when there is an error in a JSP. You can use
these constants as arguments of the sendError and setStatus methods.

The session Object

The term session refers to all the interactions a client has with a server from the moment the user views
the first page of an application to the moment they quit the browser (or the session expires because too
much time has elapsed since the last request).

When Tomcat receives an HTTP request from a client, it checks whether the request contains a
cookie that by default is named JSESSIONID. If it doesn’t find it, it creates the cookie with a unique value
and attaches it to the response. This establishes the beginning of a session. If the client’s browser accepts
cookies, it attaches that cookie to all subsequent requests it sends to the same server.

The session variable lets your JSP pages store information associated with each individual user. For
example, following a user login, you can set a session attribute to the access level of that user, so that all
the pages of your application can check it before performing their function. In its simplest form, you
could set up such a mechanism like this:

session.setAttribute("MyAppOperator", "");

Then, you can use the following code to check it:

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

boolean isOperator = (session.getAttribute("MyAppOperator") != null);
if (isOperator) { ...

You can save in a session-scoped attribute much more than a simple access level. You only need to
define a class to hold the preferences (e.g., UserPrefs), fill in an object of that type (named, say,
preferences) when the user logs in, and save it as a session’s attribute, like in the following example:

session.setAttribute("upref", preferences);
In all the pages of your application, you can then retrieve that information with something like this:
UserPrefs preferences = (UserPrefs)session.getAttribute("upref");

By doing so, as long as the user keeps his or her browser running and the session doesn’t timeout,
you don’t need to reload the user’s preferences from a database.

The variable session is an instance of the org.apache.catalina.session.StandardSessionFacade
class, which Tomcat defines to implement the javax.servlet.http.HttpSession interface.

The session object supports a dozen methods, including setMaxInactiveInterval, which lets you
specify the timeout in seconds (the default is 1800 s = 30 minutes). This didn’t work with older versions
of Tomcat, but I tested it with Tomcat 7 and it correctly sets the timeout. You can also set the timeout for
your application to a given number of minutes by inserting a <session-config> element in your
application’s \WEB-INF\web.xml file. To do so, you need to place the following code inside the <web-app>
element:

<session-config>
<session-timeout>write here the timeout in minutes</session-timeout>
</session-config>

Alternatively, you can also change Tomcat’s default timeout by insetting the <session-config>
element in the \conf\web-xml file you find inside the Tomcat home directory.

Directive Elements

JSP pages use directive elements to pass to Tomcat data about themselves. This data influences the
translation process from a script file to a Java servlet class. As directives only play a role when a JSP page
is re-compiled after you modify it, they have no specific effect on the individual HTML responses.

There are three directives that you can use in JSP pages: page, include, and taglib. Their syntax is as
follows:

<%@directive-name attri="value1" [attr2="value2"...] %>

The page Directive

The page directive defines several page-dependent properties expressed through attributes. These
properties should appear only once in a JSP page (unless the multiple instances all have the same value,
but why should you do that?). You can write more than one page directive in a JSP page, and they will all
apply. Their order or position within the page is generally irrelevant.

This directive is used in all JSP pages. Typically, a JSP page starts with a page directive to tell Tomcat
that the scripting language is Java and that the output is to be HTML:

<%@page language="java" contentType="text/html"%>

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

This is almost always followed by one or more further page directives to tell Tomcat which external
class definitions your code needs. For example:

<%@page import="java.util.ArraylList"%>
<%@page import="java.util.Iterator"%>
<%@page import="myBeans.OneOfMyBeans"%>

It is not good coding practice to import whole class libraries, as in
<%@page import="java.util.*"%>

because any relaxation of control, sooner or later, creates problems. In any case, as you can see in the
following example, you don’t need to write a separate directive for each class you need to include:

<%@page import="java.util.Arraylist, java.util.Iterator"%>

In addition to language, contentType, and import, the page directive also supports autoFlush, buffer,
errorPage, extends, info, isELIgnored, isErrorPage, isScriptingEnabled, isThreadSafe, pageEncoding,
session, and trimDirectiveWhitespaces.

Listing 2-14 shows you a simple program that utilizes the isThreadSafe attribute to test concurrency.

Listing 2-14. concurrency.jsp

<%@page language="java" contentType="text/html"%>
<%@page isThreadSafe="false"%>
<%! int k = 0;%>
<html><head><title>Concurrency</title></head><body>
<%

out.print(k);

int j =k +1;

Thread.sleep(5000);

k=3;

out.println(" -> " + k);

%>
</body></html>

The program declares the instance variable k, copies it to the variable j, increments j, waits for five
seconds, and copies the incremented j back to k. It also displays k at the beginning and at the end.

If you reload the page several times, you'll see that k is increased every time the page refreshes. Now
view the page in another browser (not just another browser window, because caching plays funny
tricks); for example, view it in Chrome if you normally use Firefox. If you keep reloading the page in the
two browsers, you'll see the k keeps increasing regardless of which browser you're looking at. This is
because k is an instance variable.

Now reload the page in the first browser and then immediately in the second browser. Do you
notice how the second browser takes longer to refresh? This is because you've set isThreadSafe="false",
and Tomcat doesn’t execute the servlet code for the two requests at the same time. However, k keeps
increasing across the browsers with each page refresh.

Now remove the page directive that sets isThreadSafe to false and repeat the test. When you reload
the page on both browsers almost simultaneously, they refresh the page at the same time but with the
same value of k! This is because the second execution of the servlet starts while the first one is “holding”
for five seconds.

Iintroduced the five-second delay to be sure that you would see the problem. Without the delay, the
time interval between incrementing j and saving it back to k would be vanishingly small. Therefore, you
might keep trying for years and never see the problem. Nevertheless, to rely on “it will never happen”

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

when developing code, especially when concurrency plays a role, is a very bad practice. Other factors
might influence the timing, and suddenly you might start seeing a problem once a day or even more
rarely. It could have a damaging effect on how users consider your web site.

The price paid for playing it safe with isThreadSafe is that it can slow down execution significantly.
Fortunately, there’s a better way to make the threads safe than relying on Tomcat. Look at Listing 2-15.

Listing 2-15. concurrency2.jsp

<%@page language="java" contentType="text/html"%>
<%!

int k = 0;

Object syncK = new Object();

%>
<html><head><title>Concurrency</title></head><body>
<%

synchronized(syncK) {

out.print(k);

int j = k + 1;
Thread.sleep(5000);
k=3;

out.println(" -> " + k);

%>
</body></html>

You protect the critical part of the code by enclosing it in a synchronized block. The syncK variable,
being defined in a declaration element, is an instance variable shared like k among all the requests. I
haven’t used k because synchronized requires an object. In this simple case, instead of creating a new
object specifically to protect the code, I could have used this, representing the servlet itself. But in
general, if there were more than one block of code to protect, it wouldn’t be a good idea. The best
strategy to maximize efficiency, besides staying locked as little as possible, is to use specific locks.

I spent a bit of time on the attribute isThreadSafe because concurrency often is not well understood
or implemented and causes intermittent bugs that are devilish to eliminate.

Earlier in this chapter, you have already seen how to use errorPage and isErrorPage (in “The
Exception Object”), and trimDirectiveWhitespaces, autoFlush, and buffer (in “The Out Object”). Here is
a brief description of the remaining attributes of the page directive:

e extends tells Tomcat which class the servlet should extend.

e info defines a string that the servlet can access with its getServletInfo() method.
e isELIgnored tells Tomcat whether to ignore EL expressions.

e isScriptingEnabled tells Tomcat whether to ignore scripting elements.

e pageEncoding specifies the character set used in the JSP page itself.

e session tells Tomcat to include or exclude the page from HTTP sessions.

The bottom line is that, in most occasions, you can leave these additional attribute set to their
default values.

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = JSP ELEMENTS

The include Directive

The include directive lets you insert into a JSP page the unprocessed content of another text file. For
example, the following line of code includes a file named some_jsp_code with the extension jspf:

<%@include file="some_jsp_code.jspf"%>

JSPF stands for JSP Fragment, although more recently, chunks of JSP code have been called JSP
Segments, rather than Fragments. In fact, any text file with any extension will do.

As Tomcat does the merging before any translation, the raw content of the included file is pasted
into the page without any check. All the HTML tags and JSP variables defined before the line containing
the directive are available to the included code. This directive can be very useful, but use it sparingly,
because it can easily lead to unmaintainable code, with bits and pieces spread all over the place.

The taglib Directive

You can extend the number of available JSP tags by directing Tomcat to use external self-contained tag
libraries. The taglib directory identifies a tag library and specifies what prefix you use to identify its tags.
For example, this code

<k@etaglib uri="http://mysite.com/mytags" prefix="my”%>
makes it possible for you to write the following line as part of your JSP page:
<my:oneOfMyTags> ... </my:oneOfMyTags>

The following code includes the core JSP Standard Tag Library:
<k@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

You will find the description of JSTL and how to use it in Chapter 4. In section “JSP’s Tag Extension
Mechanism” of the same chapter, I'll explain the possible advantages of creating your own libraries of
tags and how to do it. For the time being, simply remember that the taglib directive tells Tomcat what
libraries to load and where they are.

Summary

In this chapter, you learned all scripting and directive JSP elements.

I started by explaining the Java syntax used in scriptlets and the implicit objects defined by Tomcat,
with several examples showing how to use them.

After that, I described the JSP directives.

In the next chapter, you will learn how to build complex JSP applications.

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

JSP Application Architectures /

In the first two chapters, you learned a large portion of JSP’s components through brief examples. In this
chapter, I will tell you how everything fits together in complex applications.

The insertion of Java code into HTML modules opens up the possibility of building dynamic web
pages, but to say that it is possible doesn’t mean you can do it efficiently and effectively. If you start
developing complex applications exclusively by means of scripting elements, you'll rapidly reach the
point where the code will become difficult to maintain. The key problem with mixing Java and HTML, as
in “Hello World!”, is that the application logic and the way the information is presented in the browser
are mixed. Often, the business application designers and the web-page designers are different people
with complementary and only partially overlapping skills. While application designers are experts in
complex algorithms and databases, web designers focus on page composition and graphics. The
architecture of your JSP-based applications should reflect this distinction. The last thing you want to do
is blur the roles within the development team and end up with everybody doing what somebody else is
better qualified to do. And even if you develop everything yourself, by keeping presentation and
application logic separate, you will build more stable and more maintainable applications.

The Model 1 Architecture

The simplest way to separate presentation and logic is to move the bulk of the application logic from JSP
to Java classes (i.e., Java beans), which can then be used within JSP (see Figure 3-1). This is called the JSP
Model 1 architecture.

e N\
HTTP Request
A
7
JSP
i
Y
HTTP Response A
Y
Java
Beans Data and
Resources
AN J

Figure 3-1. JSP Model 1 architecture

G. Zambon, Beginning JSP, JSF and Tomcat
© Giulio Zambon 2012

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

Although Model 1 is acceptable for applications containing up to a few thousand lines of code, the
JSP pages still have to handle the HTTP requests, and this can cause headaches for the page designers.

The Model 2 Architecture

A better solution, more suitable for larger applications, is to split the functionality further and use JSP
exclusively to format the HTML pages. This solution comes in the form of the JSP Model 2 architecture,
also known as the model-view-controller (MVC) design pattern (see Figure 3-2).

p B\
M Servlet %
(Controller) d%);
(}.
%
Y
Java
(\‘Ijiz\Fl’v) <«€» Beans
HTTP Response (Model)
Data and
Resources
L J

Figure 3-2. JSP Model 2 architecture

With this model, a servlet processes the request, handles the application logic, and instantiates Java
beans. JSP obtains data from the beans and can format the response without having to know anything
about what’s going on behind the scenes. To illustrate this model, I will describe a sample application
called E-bookshop, a small application to sell books online. E-bookshop is not really functional, because
the list of books is hard-coded in the application rather than stored in a database. Also, nothing happens
once you confirm the order. However, this example serves the purpose of showing you how Model 2 lets
you completely separate business logic and presentation. Later in this chapter, I will introduce a better
version of an online bookshop application that will accompany us through the rest of the book.

Figure 3-3 shows the E-bookshop’s home page, which you see when you type
http://localhost:8080/ebookshop in your browser’s address field.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

(=& |
E-bookshop X \
€ C' | @ localhost:8080/ebookshop/ DA

Leam HTML5 and JavaScript for iOS. Scott Preston $39.99 [~

Add to Cart

Figure 3-3. The E-bookshop home page

You can select a book by clicking on the drop-down list, as shown in Figure 3-3, type in the number
of copies you need, and then click the Add to Cart button. Every time you do so, the content of your
shopping cart appears at the bottom of the window, as shown in Figure 3-4.

E-bookshop \
€« C' | ®© localhost:8080/ebookshop/eshop ¥ A

Learn HTMLS and JavaScript for iOS. Scott Preston $39.99 |« |
TITLE

|Pro Spatial with SQL Server 2012. Alastair Aitchison

|Beginning Database Design. Clare Churcher

Learn HTMLS and JavaScript for i0S. Scott Preston

A

Figure 3-4. The E-bookshop home page displaying the shopping cart

You can remove an item from the shopping cart or go to the checkout. If you add additional copies
of a book to the cart, the quantity in the cart increases accordingly.
If you click on the Checkout button, you'll see the page shown in Figure 3-5.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

52

[E=RIEN)
/ E E-Bookshop Checkout X \
“= C' | @ localhost:8080/ebookshop/eshop WA

TITLE PRICE
|Pro Spatial with SQL Server 2012. Alastair Aitchison|| $59.99

|Beginm'ng Database Design. Clare Churcher $34.99
|Lea:m HTMLS and JavaScript for iOS. Scott Preston || $39.99

TOTALS §174.96

Figure 3-5. The E-bookshop checkout page

If you click on the Buy more! link, you'll go back to the home page with an empty shopping cart,
ready for more shopping.

The E-bookshop Home Page

Listing 3-1 shows the home page http://localhost:8080/ebookshop/index.jsp. For ease of reading, I've
highlighted the JSP directives and scriptlets in bold.

Listing 3-1. The E-bookshop Home Page index.jsp

<%@page language="java" contentType="text/html"%>
<%@page trimDirectiveWhitespaces="true"%>
<%@page session="true" import="java.util.Vector, ebookshop.Book"%>
<html>
<head>
<title>E-bookshop</title>
<style type="text/css">
body {background-color:gray; font-size=10pt;}
H1 {font-size:20pt;}
table {background-color:white;}
</style>
</head>
<body>
<H1>Your online Bookshop</H1>
<hz/><p/>
<% // Scriptlet 1: check whether the booklist is ready
Vector<ebookshop.Book> booklist =
(Vector<ebookshop.Book>)session.getValue("ebookshop.list");
if (booklist == null) {
response.sendRedirect("/ebookshop/eshop");

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

else {
%>
<form name="addForm" action="eshop" method="POST">
<input type="hidden" name="do this" value="add">
Book:
<select name=book>
<% // Scriptlet 2: copy the booklist to the selection control
for (int i = 0; i < booklist.size(); i++) {
out.println("<option>" + (String)booklist.elementAt(i) + "</option>");

%>
</select>
Quantity: <input type="text" name="qty" size="3" value="1">
<input type="submit" value="Add to Cart">
</form>
<p/>
<% [// Scriptlet 3: check whether the shopping cart is empty
Vector shoplist =
(Vector<ebookshop.Book>)session.getAttribute("ebookshop.cart");
if (shoplist != null &8& shoplist.size() » 0) {
%>
<table border="1" cellpadding="2">
<tr>
<td>TITLE</td>
<td>PRICE</td>
<td>QUANTITY</td>
<td></td>
</tr>
<% // Scriptlet 4: display the books in the shopping cart
for (int i = 0; i < shoplist.size(); i++) {
Book aBook = shoplist.elementAt(i);
%>
<tr>
<form name="removeForm" action="eshop" method="POST">
<input type="hidden" name="position" value="<%=i%>">
<input type="hidden" name="do_this" value="remove">
<td><%=aBook.getTitle()%></td>
<td align="right">$<%=aBook.getPrice()%></td>
<td align="right"><%=aBook.getQuantity()%></td>
<td><input type="submit" value="Remove from Cart"></td>
</form>
</tr>
<%
} 7/ for (int i..
%>
</table>
<p/>
<form name="checkoutForm" action="eshop" method="POST">
<input type="hidden" name="do_this" value="checkout">
<input type="submit" value="Checkout">
</form>

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

54

<%
} // if (shoplist..
} 7/ if (booklist..else..
%>
</body>
</html>

First, index.jsp (as shown in Scriptlet 1) checks whether the list of books to be sold is available and,
if itisn’t, it passes the control to the servlet, which then must initialize the book list. In a real online
bookshop, the book list would be very long and kept in a database. Note that JSP doesn’t need to know
where the list is kept. This is the first hint at the fact that application logic and presentation are separate.
You'll see later how the servlet fills in the book list and returns control to index. jsp. For now, let’s
proceed with the analysis of the home page.

If Scriptlet 1 discovers that the book list exists, it copies it into the select control one by one (as
shown in Scriptlet 2). Notice how JSP simply creates each option by writing to the out stream. When the
buyer clicks on the Add to Cart button after selecting a title and possibly changing the number of
copies, the home page posts a request to the eshop servlet with the hidden parameter do_this set to add.
Once more, the servlet takes care of updating or creating the shopping cart by instantiating the class
Book for each new book added to the cart. This is application logic, not presentation of information.

Scriptlet 3 checks whether a shopping cart exists. index. jsp, being completely data-driven, doesn’t
remember what has happened before, so it runs every time from the beginning. Therefore, it checks for
the presence of a shopping cart even when the buyer sees the book list for the very first time.

Scriptlet 4 displays the items in the shopping cart, each one with its own form. If the buyer decides
to delete an entry, index.jsp sends a request to the servlet with the hidden parameter do_this set to
remove.

The sole purpose of the last two scriptlets is to close the curly brackets of ifs and fors. However,
notice that the form to ask the servlet to do the checkout is only displayed to the buyer when the
shopping cart isn’t empty. This is possible because Tomcat, when converting a JSP page into a Java
servlet, processes all scriptlets together, without expecting each one of them individually to contain a
complete block of code. HTML elements can then be enclosed within a Java block statement spanning
two scriptlets.

If the buyer clicks on the Checkout button, index. jsp will send a request to the servlet with the
hidden parameter do_this set to checkout.

Finally, notice the use of the expression elements <%=1%>, <%=aBook.getTitle()%>,
<%=aBook.getPrice()%>, and <%=aBook.getQuantity()%>.The first expression, <%=i%>, is the position of
the book within the shopping cart. The other three are the execution of methods of an object of type
Book, which the servlet instantiated for each new book added to the cart.

You've probably noticed that the address shown in the browser is
http://localhost:8080/ebookshop/eshop. This is actually the address of the Java servlet that controls the
application.

The E-bookshop Servlet

Listing 3-2 shows the source code of the servlet. Later in this chapter, you will find information on the
folder structure you need and on how to compile the Java modules. In this section and in the following
one, I will explain how the code works.

Listing 3-2. ShoppingServlet.java

package ebookshop;
import java.util.Vector;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.ServletConfig;

import javax.servlet.ServletContext;

import javax.servlet.RequestDispatcher;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import javax.servlet.http.HttpServletResponse;
import ebookshop.Book;

public class ShoppingServlet extends HttpServlet {

public void init(ServletConfig conf) throws ServletException {
super.init(conf);

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
doPost(req, res);

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
HttpSession session = req.getSession(true);
@Suppressharnings("unchecked")
Vector<Book> shoplist =
(Vector<Book>)session.getAttribute("ebookshop.cart");
String do_this = req.getParameter("do_this");

// If it is the first time, initialize the list of books, which in
// real life would be stored in a database on disk
if (do_this == null) {

Vector<String> blist = new Vector<String>();

JSP APPLICATION ARCHITECTURES

blist.addElement("Learn HTML5 and JavaScript for i0S. Scott Preston $39.99");

blist.addElement("Java 7 for Absolute Beginners. Jay Bryant $39.99");
blist.addElement("Beginning Android 4. Livingston $39.99");

blist.addElement("Pro Spatial with SQL Server 2012. Alastair Aitchison $59.99");

blist.addElement("Beginning Database Design. Clare Churcher $34.99");
session.setAttribute("ebookshop.list", blist);

ServletContext sc = getServletContext();

RequestDispatcher rd = sc.getRequestDispatcher("/");

rd.forward(req, res);

}
else {

// If it is not the first request, it can only be a checkout request
// or a request to manipulate the list of books being ordered
if (do_this.equals("checkout")) {

float dollars = 0;

int books = 0;

for (Book aBook : shoplist) {

www.it-ebooks.info

55

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

float price = aBook.getPrice();
int gty = aBook.getQuantity();
dollars += price * qty;

books += qty;

}

req.setAttribute("dollars", new Float(dollars).toString());
req.setAttribute("books", new Integer(books).toString());
ServletContext sc = getServletContext();

RequestDispatcher rd = sc.getRequestDispatcher("/Checkout.jsp");
rd.forward(req, res);

} /7 if (..checkout..

// Not a checkout request - Manipulate the list of books
else {
if (do_this.equals("remove")) {
String pos = req.getParameter("position");
shoplist.removeElementAt((new Integer(pos)).intValue());

}
else if (do_this.equals("add")) {
boolean found = false;
Book aBook = getBook(req);
if (shoplist == null) { // the shopping cart is empty
shoplist = new Vector<Book>();
shoplist.addElement(aBook);

}
else { // update the #copies if the book is already there
for (int i = 0; 1 < shoplist.size() & !found; i++) {
Book b = (Book)shoplist.elementAt(i);
if (b.getTitle().equals(aBook.getTitle())) {
b.setQuantity(b.getQuantity() + aBook.getQuantity());
shoplist.setElementAt(b, i);
found = true;

}
} /7 for (i..
if (!found) { // if it is a new book => Add it to the shoplist
shoplist.addElement(aBook);

}
} // if (shoplist == null) .. else ..
} 77 if (..add..

// Save the updated list of books and return to the home page
session.setAttribute("ebookshop.cart", shoplist);
ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getRequestDispatcher("/");
rd.forward(req, res);
} // if (..checkout..else
} // if (do_this..
} // doPost

private Book getBook(HttpServletRequest req) {
String myBook = req.getParameter("book");
int n = myBook.indexOf('$"');

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

String title = myBook.substring(0, n);

String price = myBook.substring(n+1);

String qty = req.getParameter("qty");

return new Book(title, Float.parseFloat(price), Integer.parselnt(qty));
} // getBook

Asyou can see, the init() method only executes the standard servlet initialization, and the doGet ()
method simply executes doPost (), where all the work is done. If you were to remove the doGet () method,
you would effectively forbid the direct call of the servlet. That is, if you typed
http://localhost:8080/ebookshop/eshop in your browser, you would receive an error message that says
the requested resource isn’t available. As it is, you can type the URL with or without trailing eshop.

The highlighted line shows that I suppressed a warning. Normally, a warning tells you that
something might be wrong. Therefore, it is not good to have spurious warnings, because they might
distract you from noticing warnings you should fix. The use of @suppressWarnings is in general bad
practice and encourages you to use a sloppy programming style. In this particular case, the compiler
complained about the typecasting of a generic Object to a Vector, but I knew that the attribute
ebookshop. cart was of type Vector<book>.

When you analyze index.jsp, you can see that it passes control to the servlet on four occasions, as
listed here from the point of view of the servlet:

1. Ifnobooklist exists: This happens at the beginning, when the buyer types
http://localhost:8080/ebookshop/. The servlet executes without any
parameter, initializes the book list, and passes control straight back to
index. jsp.

2. When the buyer clicks on Add to Cart: The servlet executes with do_this set
to add and a parameter containing the book description. Normally, this would
be done more elegantly with a reference to the book rather than the whole
description, but we want to keep things as simple as possible. The servlet
creates a cart if necessary and adds to it a new object of type Book or, if the
same book is already in the cart, updates its quantity. After that, it passes the
control back to index. jsp.

3. When the buyer clicks onRemove from Cart: The servlet executes with
do_this set to remove and a parameter containing the position of the book
within the cart. The servlet removes the book in the given position by deleting
the object of type Book from the vector representing the cart. After that, it
passes the control back to index. jsp.

4. When the buyer clicks on Checkout: The servlet executes with do_this set to
checkout. The servlet calculates the total amount of money and the number of
books ordered, adds them as attributes to the HTTP request, and passes the
control to Checkout. jsp, which has the task of displaying the bill.

More on E-bookshop

By now, it should be clear to you how the servlet is in control of the application and how JSP is only used
to present the data. To see the full picture, you only need to see Book. java, the Java bean used to
represent a book, and Checkout. jsp, which displays the bill. Listing 3-3 shows the code for Book. java.

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

58

Listing 3-3. Book.java

package ebookshop;
public class Book {
String title;
float price;
int quantity;
public Book(String t, float p, int q) {

title =t
price = p;
quantity = q;

public String getTitle() return title; }

public void setTitle(String t) { title = t; }
public float getPrice() return price; }
public void setPrice(float p) price = p; }

public int getQuantity()
public void setQuantity(int q)

}

In a more realistic case, the class Book would contain much more information, which the buyer
could use to select the book. Also, the class attribute title is a misnomer, as it also includes the author
names, but you get the idea. Listing 3-4 shows the code for Checkout. jsp.

return quantity; }
quantity = q; }

Lot Yo Ve Yo Vo Wt

Listing 3-4. Checkout.jsp

<%@page language="java" contentType="text/html"%>
<%@page session="true" import="java.util.Vector, ebookshop.Book" %>
<html>
<head>
<title>E-Bookshop Checkout</title>
<style type="text/css">
body {background-color:gray; font-size=10pt;}
H1 {font-size:20pt;}
table {background-color:white;}
</style>
</head>
<body>
<H1>Your online Bookshop - Checkout</H1>
<hz/><p/>
<table border="1" cellpadding="2">
<tr>
<td>TITLE</td>
<td align="right">PRICE</td>
<td align="right">QUANTITY</td>
</tr>
<%
Vector<Book> shoplist =
(Vector<Book>)session.getAttribute("ebookshop.cart");
for (Book anOrder : shoplist) {
%>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

<tr>
<td><%=anOrder.getTitle()%></td>
<td align="right">$<%=anOrder.getPrice()%></td>
<td align="right"><%=anOrder.getQuantity()%></td>
</tr>
<%

session.invalidate();
%>
<tr>
<td>TOTALS</td>
<td align="right">$<%=(String)request.getAttribute("dollars")%></td>
<td align="right"><%=(String)request.getAttribute("books")%></td>
</tr>
</table>
<p/>
Buy more!
</body>
</html>

Checkout. jsp displays the shopping cart and the totals precalculated by the servlet, and it
invalidates the session so that a new empty shopping cart will be created if the application is restarted
from the same browser window.

Note that you could have included the checkout logic in index. jsp and made its execution
dependent on the presence of the two totals. However, I wanted to show you a more structured
application. It’s also better design to keep different functions in different JSP modules. In fact, I could
have also kept the shopping cart in a separate JSP file. In real life, I would have certainly done so. In
addition, I would have saved the styles in a Cascading Style Sheets (CSS) file rather than repeating them
in all JSP sources. Finally, there is close to no error checking and reporting. You could easily crash this
application. In a real case, you would add an error page as explained in the previous chapter.

Before we move on, you'll certainly find it interesting to see the dynamic HTML page that actually
reaches the browser after adding one item to the shopping cart (see Listing 3-5).

Listing 3-5. HTML Generated by index.jsp

<html>
<head>
<title>E-bookshop</title>
<style type="text/css">
body {background-color:gray; font-size=10pt;}
H1 {font-size:20pt;}
table {background-color:white;}
</style>
</head>
<body>
<H1>Your online Bookshop</H1>
<hr/><p/>
<form name="addForm" action="eshop" method="POST">
<input type="hidden" name="do_this" value="add">
Book:
<select name=book>
<option>Learn HTML5 and JavaScript for i0S. Scott Preston $39.99</option>

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

<option>Java 7 for Absolute Beginners. Jay Bryant $39.99</option>
<option>Beginning Android 4. Livingston $39.99</option>
<option>Pro Spatial with SQL Server 2012. Alastair Aitchison $59.99</option>
<option>Beginning Database Design. Clare Churcher $34.99</option>
</select>

Quantity: <input type="text" name="qty" size="3" value="1">

<input type="submit" value="Add to Cart">

</form>
<p/>
<table border="1" cellpadding="2">
<tr>
<td>TITLE</td>
<td>PRICE</td>
<td>QUANTITY</td>
<td></td>
</tr>
<tr>
<form name="removeForm" action="eshop" method="POST">
<input type="hidden" name="position" value="0">
<input type="hidden" name="do this" value="remove">
<td>Pro Spatial with SQL Server 2012. Alastair Aitchison </td>
<td align="right">$59.99</td>
<td align="right">1</td>
<td><input type="submit" value="Remove from Cart"></td>
</form>
</tr>
</table>
<p/>

<form name="checkoutForm" action="eshop" method="POST">
<input type="hidden" name="do_this" value="checkout">
<input type="submit" value="Checkout">
</form>
</body>
</html>

Neat, isn’t it?
You now have in your hands the full code of a nontrivial Java/JSP application, but you still need to
know how to make these four modules work together.

E-bookshop’s Folder Structure

Figure 3-6 shows the structure of the E-bookshop application. First of all, create the root folder of the
application, named ebookshop, inside %CATALINA_HOME%\webapps\. Then, create the folder hierarchy and
place in it the four source files index. jsp, Checkout.jsp, ShoppingServlet.java, and Book.java as shown.

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

[ebookshop
i index.jsp
il Checkout.jsp
| META-INF
| WEB-INF
| classes
| ebookshop
| sre
. | ebookshop
ShoppingServlet.java

_ Book.java
Figure 3-6. The E-bookshop folder structure

To get the application to work, you first need to compile the two Java modules from the command
line with javac, as explained in the “Java Test” section of Chapter 1. Then copy the two .class files from
WEB-INF\src\ebookshop\ to WEB-INF\classes\ebookshop\. Alternatively, if you feel lazy (!), you can copy
to WEB-INF the little batch file shown in Listing 3-6 and double-click it. Note that if you want to launch it
from the command line, you have first to attach to WEB-INF, otherwise it won’t find the src folder.

Listing 3-6. compile_it.bat

@echo off

set aname=ebookshop

set /P fname=Please enter the java file name without extension:

set fil=%aname%\%fname%

echo *** compile_it.bat: compile src\%fil%.java

javac -verbose -deprecation -Xlint:unchecked -classpath w»
"C:\Program Files\Apache Software Foundation\Tomcat\lib\servlet-api.jar";classes w»
src\%fil%. java

javac -verbose -deprecation -Xlint:unchecked -classpath classes src\%fil%.java

if %errorlevel% GTR 1 goto _PAUSE

echo *** compile_it.bat: move the class to the package directory

move /y src\%fil%.class classes\%fil%.class

:_PAUSE

pause

The batch file opens a command-line window automatically and asks you to type the name of a Java
file (without the extension). It then compiles the file and moves the resulting class into the
classes\ebookshop\ subfolder. The line with javac invokes the Java compiler with the switches that
maximize both the checks the compiler does on your sources and the information you get.

Notice the classpath switch, which tells the compiler to look for classes in the local directory and in
Tomcat’s lib folder in addition to the usual places where the Java libraries are kept. This is necessary
because ShoppingServlet.java imports the javax.servlet package and the class Book and, without the
classpath switch, the compiler wouldn’t know where to find them. This also means that you have to
compile Book. java before ShoppingServlet.java.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

62

When executing your application, Tomcat looks for classes in the WEB-INF\classes\ folder
immediately inside the root folder of your application (i.e., bookshop\), which in turn is immediately
inside webapps. The directory structure inside WEB-INF\classes\ must reflect what you write in the
package statement at the beginning of the Java sources, which is:

package ebookshop;
If you had written this instead:
package myLibs.ebookshop;

you would have had to insert a myLibs folder below classes and above ebookshop. To avoid confusion,
note that the package name has nothing to do with the name of the application. That is, you could have
named the package (and, therefore, the folder below classes\) qwertyuiop instead of ebookshop. In fact,
you could have dispensed with the package statement altogether and placed your classes directly inside
the classes folder. Finally, you could have also created a JAR file (i.e., a Java ARchive), but we’ll talk
about that later.

Before you're ready to go, you still need to write an additional file where you describe the structure
of your application to Tomcat. This web deployment descriptor, shown in Listing 3-7, must be named
web.xml and placed in WEB-INF.

Listing 3-7. web.xml

<?xml version="1.0" encoding="IS0-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="~CCC
"http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">
<display-name>Electronic Bookshop</display-name>
<description>
E-bookshop example for
Beginning JSP, JSF and Tomcat: from Novice to Professional
</description>
<servlet>
<servlet-name>EBookshopServlet</servlet-name>
<servlet-class>ebookshop.ShoppingServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>EBookshopServlet</servlet-name>
<url-pattern>/eshop</url-pattern>
</servlet-mapping>
</web-app>

The two crucial lines are those highlighted in bold. The first one tells Tomcat that the servlet is in
classes\ebookshop\ShoppingServlet.class. The second one tells Tomcat that the requests will refer to
the servlet as /eshop. As the root folder of this application (i.e., the folder immediately inside webapps) is
ebookshop, Tomcat will then route to this servlet all the requests it will receive for the URL
http://servername:8080/ebookshop/eshop.

The element <servlet-name> in both <servlet> and <servlet-mapping> is only needed to make the
connection between the two. An alternative to declaring the servlet in web.xml is to use an annotation in
ShoppingServlet.java. To test it out, remove from web.xml both the servlet and the servlet-mapping
elements. Then, insert into ShoppingServlet.java two lines as shown in the following code fragment:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

import ebookshop.Book;

import javax.servlet.annotation.WebServlet;
@WebServlet(value="/eshop")

public class ShoppingServlet extends HttpServlet {

Regardless of how you declare the servlet, if you now open a browser and type
http://localhost:8080/ebookshop/, you should see the application’s home page.

You might be wondering about the purpose of the META-INF folder. Place inside that folder a file
named MANIFEST.MF and containing the following single line:

Manifest-Version: 1.0

Move the webapps\ebookshop folder to the Desktop, open it and select all four items in it. Then, right-
click on them and select “Send To » Compressed (Zipped) Folder”. When asked to provide a file name,
type ebookshop. Windows will create a file named ebookshop.zip. Change its extension to war (which
stands for Web ARchive) and move it to Tomcat’s webapps folder. After a short while, Tomcat will
automatically unpack the WAR file into a folder named ebookshop identical to the one you started with.

The manifest file contains information about the files packaged in a JAR file, and A WAR file is just a
JAR with a particular function. You can find a specification for the manifest file at
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#JAR%20Manifest.

WAR files are the best way to deploy your applications to more than one server: copy them into
webapps, and Tomcat will do the rest for you. What could be easier than that?

Eclipse

Although it’s possible to build web applications by compiling Java modules from the command line, it’s
more efficient to use an Integrated Development Environment (IDE). This way, you can concentrate on
the more creative part of developing software, rather than fix inconsistency and fiddle with folder
hierarchies.

An IDE integrates all the applications that you need to develop software—f{rom a source editor and a
compiler, to tools to automate the application building process and a debugger—into a single
application. When developing in Java or in another OO language, an IDE also includes tools to visualize
class and object structure as well as inheritance and containment. Another advantage of using an IDE is
that it propagates changes you make to individual modules. For example, if you rename a class, the IDE
can automatically update its occurrences throughout your project files.

As the applications you develop become more complex, it makes more and more sense to use an
IDE. That’s why, before continuing to our next project, I will tell you how to install and configure Eclipse.

Eclipse is an extremely powerful and extensible IDE, well suited for web application development.
The Eclipse Foundation makes a new release of the Eclipse IDE once a year. Each yearly release has a
different name. To develop the examples contained in this book, I used Indigo 3.7.2 of February 16, 2012.

Once you've installed Eclipse to develop web applications, you can use it for any other software
development task, including, for example, developing and debugging applications written in Java, C++,
and even Fortran, which is still widely used in the scientific community.

Furthermore, whatever task related to software development you need to perform, it’s likely that
somebody has already developed an Eclipse plug-in for it. The web site
http://marketplace.eclipse.org/ lists more than 1,300 plug-ins organized in dozens of categories. In
fact, Eclipse itself consists of a core platform that executes plug-ins, plus a series of plug-ins that
implement most of its functionality. Therefore, the standard packages available for download from the
Eclipse web site already include dozens of plug-ins.

In this section, I'll only explain how to install the standard Eclipse configuration for Java EE
development, which is what you need as you go through the rest of this book.

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

64

First of all, you need to download the package. To do so, go to http://www.eclipse.org/downloads/
and click on the Windows 32 bitlink of Eclipse IDE for Java EE Developers, as shown in Figure 3-7.

Eclipse Downloads

Packages Developer Builds Projects

Compare Packages Older Versions Eclipse Indigo (3.7.2) Packages for [t BES
‘== Eclipse IDE for Java EE Developers, 212 1B g Windows 32 Bit
keod Downloaded 2,234,949 Times Details Windé] 64 Bit

Figure 3-7. Downloading Eclipse

The web site will suggest a mirror site for the download and provide the MD5 checksum. The
installation of Eclipse is very easy: expand the downloaded eclipse-jee-indigo-SR2-win32.zip file and
move the eclipse folder to a convenient place. For no particular reason, I chose to move it to C:\. Old
habits are difficult to change. You might like to move the Eclipse folder to C:\Program Files\.

To execute Eclipse, double-click eclipse.exe, which you find immediately inside the eclipse folder.

When it starts, Eclipse asks you to select a workspace. The workspace is the folder where Eclipse
stores your development projects. Therefore, it makes sense to place it on a drive or in a directory that
you back up regularly. Before clicking on the OK button, check the box marked "Use this as the default
and do not ask again". It will make your life easier. I chose C:\Users\Giulio\, which is my user's home
directory.

The first time it executes, Eclipse displays a Welcome screen. To enter the screen where you do
development, click on the Workbench icon, as shown in Figure 3-8.

'®) Java EE - Eclipse
File Edit Mavigate Search Project Run Window Help

‘;‘h

Workbench

Eclipse Java EE IDE for Web Developers

Overview m Tutorials

Get an overview of the features Go through tutorials

64) Samples What's New
-

Try out the samples Find out what is new

DO

Figure 3-8. Eclipse-the Welcome screen

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

Once you see the Workbench screen, select the Servers tab and click on the new server wizard link,
as shown in Figure 3-9.

'@} Java EE - Eclipse
File Edit Mavigate Search Project Run Window Help

M-EES H-0 Q- GO @SS @R 5 (S TovaE

;;}v.“}v‘:

[Project Explorer 22 = O[5 Outline &2] Task Liq =0

[=

An outline is not available.

[El Markers | E2 Properties M ¥ Data Source E)(plmeq =] Snippeis} =0

Bt 0& EET

No servers available. Define a new server from the new servif wizard...

o* 0 items selected

Figure 3-9. Eclipse-the Workbench screen

The screen that comes up is where you tell Eclipse to use Tomcat 7, as shown in Figure 3-10.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

66

Define a New Server
Choose the type of server to create

Download additional server adapters

Select the server type:
type filter text

4 (= Apache
 Tomcatv3.2 Server
E Tomcat v4.0 Server
E Tomcat v4.1 Server
E Tomcat v5.0 Server
B Tomcat v5.5 Server
B Tomcat v6.0 Server
Tomcat v7.0 Server

b (= Basic .

Publishes and runs J2EE and Java EE Web projects and server configurations to a local Tomcat
server.

Server's host name: - localhost

Server name: Tomcat v7.0 Server at localhost

@ <Back [Net> I}H Finish | [Cancel

Figure 3-10. Eclipse-choosing Tomcat 7 as localhost

Next (and last), you need to tell Eclipse where to find Tomcat 7 and what version of JDK to use, as

shown in Figure 3-11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

— -
8] New Server PFer =
Tomcat Server
Specify the installation directory
Name:
Apache Tomcat v7.0 l

Tomcat installation directory:

C:\Program Files\Apache Software Foundation\Tomcat Browse...
apache-tomcat-7.0.12 | Download and Install...
JRE:

|W’o:kbench default JRE '] Installed JREs...
il

Workbench default JRE]

@ [<Back |[Nea> |[Finsh][cancel

Figure 3-11. Eclipse-completing the Tomcat configuration

Now, if you have done everything correctly, Tomcat 7 should appear under the Servers tab of the
Workbench. I have explained this configuration procedure because Eclipse is a very complex
application, and it is easy to get lost among the many options.

For the same reason, to be on the safe side, I will also explain how to create a new web project. Later,
you will learn how to import into Eclipse the example projects included in the software package of this
book.

Creating a New Web Project

In the menu bar of the Workbench, select File » New » Dynamic Web Project, type a project name (e.g.,
test), and click on the Next button. In the new screen, named Java, click again on the Next button. In the
new screen, named Web Module, tick the box Generate web.xml deployment descriptor (i.e., the web.xml
file) before clicking on the Finish button.

The new project will appear in the Project Explorer pane (i.e., on the left hand side) of the
Workbench. Expand it as shown in Figure 3-12, right-click on the Web Content folder and select "New »
JSP File".

www.it-ebooks.info

67

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

68

a FJ test
. A JAX-WS Web Services
- ‘Ba Deployment Descriptor: test
. 24 Java Resources
i E JavaScript Resources
b (& build
4 (= WebContent
: META-INF
b (= WEB-INF

Figure 3-12. Eclipse-the test project

In the new JSP screen that appears, replace the default name NewFile.jsp with index. jsp and click
on the Finish button.

Eclipse shows the newly created file in the Project Explorer pane and opens it in the central pane
of the Workbench for you to edit. Listing 3-8 shows its content. For me, the newly created file is located
in C:\Users\Giulio\workspace\test\WebContent\. If, for any reason, you edit the file with some other
editor, to see the latest version within Eclipse, you need to right-click it in Eclipse’s Project Explorer and
select Refresh. But I suggest that you stick to Eclipse with all editing, because it is very easy to make a
mistake otherwise.

Listing 3-8. index.jsp of the Test Project

<%@ page language="java" contentType="text/html; charset=IS0-8859-1"
pageEncoding="150-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">

<title>Insert title here</title>

</head>

<body>

</body>
</html>

Replace "Insert title here" with "My first project" (or whatever you like, of course), and write
"Hello from Eclipse!" between <body> and </body>. Then save the file.

Caution You must stop the Tomcat service in Windows before using Tomcat from within Eclipse, and vice-
versa.

Position the cursor on the test project folder shown in the Project Explorer, right-click, and select
Run As » Run on Server. When a screen comes up, click on Finish. You will be rewarded with what is
shown in Figure 3-13.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

8} Java EE - hitpi//localhost:8080/test/ - Eclipse (o 0
File Edit Mavigate Search Project Run Window Help
[~ B-O0-Q- B G- B H @RI H e B & ove [avak
[Project Explorer 2 = <.’=T>| F =] index.jsp (@ My first project &2 = 8| B Task List 2 =
4 5 Servers - & http/localhost8080/test/ = [+ i EEHEIRNEIE I
» [= Tomcat v7.0 Server at localhost-config : -
42 et Hello from Eclipse! Find Q| » Al b Activate..

w8 JAX-WS Web Services

> ‘33 Deployment Descriptor: test
> 23 Java Resources

» B JavaScript Resources

> (= build

4 [= WebContent

m

_‘ [l Markers | = Properties | 4 Servers 12 ¥ Data Source| [i2 Smppetq =] Console} & Search] =a

=4

> (= META-INF B % 0 & =
> (= WEB-INF ﬁ Tomeat v1.0 Server at localhost [Started, Synchronized]
index,jsp %
< | [3
o* 2 test BEERE

Figure 3-13. Eclipse-the output of the first project

It might seem very convenient that Eclipse can launch Tomcat and show the output within the
Workbench. In practice though, it has a couple of drawbacks. First of all, because of the side and bottom
panes, the space available in the central pane is limited. As a result, most web pages are “too squeezed”
to display correctly.

You can maximize the web pane by double-clicking on the title bar, but there is also a more
important reason: Eclipse doesn't always display everything. It should copy all files from the project
folder to a Tomcat work directory, but it doesn't! It tends to “lose” CSS files and images. This means that,
except for a quick check of simple features, you might do what I do and use Tomcat externally.

To see the output of the test project outside Eclipse, first of all, stop the “internal” Tomcat by right-
clicking it under the Servers tab of the Workbench and selecting Stop. Then, start the Tomcat service in
Windows.

Right-click the test-project folder as you did to launch it within Eclipse, but this time select Export
> WAR File.

When the WAR Export screen appears, the only thing you have to do is browse to select the
destination, which should be %CATALINA_HOME%\webapps\test.war, and click Finish.

In a browser, type http://localhost:8080/test to see the output of the project. This works because,
as I showed to you at the end of the previous section, Tomcat automatically expands all WAR files it
discovers in its webapps folder, without any need to restart it. And because by default Tomcat looks for
index.html, index.htm, and index. jsp. If you want, you can change the default by adding the following
element to the body of the web-app element of web.xm1:

<welcome-file-1ist>
<welcome-file>whatever.jsp</welcome-file>
</welcome-file-list>

Importing a WAR file

In the next section, I will introduce you to the eshop application. You will find the web archive for the
application in the software for this chapter, and the easiest way to work on the application is to import it
into Eclipse.

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

70

The first step is to select the menu item Import. .. in the File menu. When the Select dialog opens,
scroll down to the folder named Web, open it, select WAR file, and click Next >, as shown in Figure 3-14.

@] Import E@-E_hj
Select \‘
Import an external WAR file into a Web Project g 5]

Select an import source:

type filter text

= Run/Debug -
(= Tasks
(= Team
4 (= Web
(&, WAR file
= Web servi{b
= XML -

m

[

Figure 3-14. Eclipse-selecting to import a WAR file

When the next dialog comes up, browse to select eshop.war and click on Finish. Eclipse will create
the eshop project for you.

Eclipse Occasional Bugs

Eclipse is a very complex package developed by several people in parallel. As a result, bugs occasionally
creep in.

While developing the applications for this book, one such bug suddenly appeared: Eclipse reported
that a function of a JSP Standard Tag Library didn’t exist.

Eclipse validates JSP files but doesn’t do anything with them. Therefore, I ignored the reported error
and deployed the application to Tomcat, which executed it without any problem.

I don’t know why Eclipse started reporting that nonexistent error. If you search the Internet, you will
find that several people have had some problems with Eclipse’s validation of JSPs.

When problems like that occur, as long as they don’t affect your application, you don’t really need to
do anything. You could reinstall Eclipse, but that might not cure them, or they might reappear later.

A Better Online Bookshop

The online bookshop you saw at the beginning of this chapter was a good introduction to the MVC
architecture, but in order to explore the use of databases, other JSP features, and JSF, we need an
example with more substance. In this section, I will introduce the eshop application, which will remain

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

with us through the rest of the book. Taking an object-oriented approach, I'll begin by specifying the
objects that the application needs to handle, the operations which those objects support, and the roles
of the people who perform those operations.

Each role corresponds to a separate user interface, and the two main roles are the administrator and
the customer. The administrators manage products, orders, and customer records, but for our purposes,
it is sufficient to implement the public interface of a customer buying from a catalog.

Objects and Operations

In eshop we won’t keep track of orders and customers. Once the customer goes to the checkout, enters
credit-card information, and checks out, we’ll save the order, but we won’t do anything with it. In the
real world, we’d have to process the purchase by charging the credit card account and dispatching the
order.

In fact, if you decided to deploy this application “out there” to sell books or other items, you would
be better off interfacing with PayPal or another online payment service, rather than accepting credit
cards. But the purpose of this example is to help you learn JSP and JSF without getting bogged down in
details of other services. For that, the credit-card option is fine. Obviously, in the real world, you would
have to consider using secure communication and encrypted data, but that would go beyond the scope
of this example.

Product Categories

It makes sense to group the products into categories, especially if the catalog is diversified and
substantial. As eshop only sells books, its categories refer to broad book subjects, such as action novels,
science fiction, and web development.

Each category has a name and an identifier. The identifier is guaranteed to be unique, thereby
allowing us to refer to each category without ambiguity. Normally, a category would have additional
attributes, like description, status, date of creation, etc. To implement the customer interface, the only
operation you need with such a bare-bones category definition is obtaining a category name given its ID.

Books

Each book has a title, an author, a price, a unique identifier, a category ID, and an image of the front
cover. Customers must be able to select books from a category, search for books, display the book
details, and put books into a shopping cart.

Shopping Cart

The minimum amount of information stored in a shopping cart is a list of items, each consisting of a
book identifier and the number of ordered copies. I decided to duplicate in the shopping cart title,
description, and price of the books instead of using their book IDs. Besides simplifying the application,
this also protects the customer from book updates that might occur while he or she is still shopping. In a
more sophisticated application, when some book attributes change, you might want to inform the
customers who’ve placed the book in their cart but haven’t yet completed the checkout. You wouldn’t be
able to do so without saving the original information. Obviously, this only avoids a problem due to
concurrent access of data (more about that in Chapter 6). To protect the information from more serious

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

72

occurrences like server failures, you would have to implement more general solutions, like saving
session data on non-volatile storage and server clustering,

Customers must be able to change the number of copies of each book in the cart, remove a book
altogether, and go to the checkout. They should also be able to display the shopping cart at any time.

Order

Although this sample application doesn’t cover orders, it’s useful to specify the structure of an order.

You need two separate classes: one to represent the ordered items, and one with the customer’s data.
For each ordered item, you need to save the book data obtained from the shopping cart.

Additionally, for each order, you need to save the customer data and a unique order number.

The Customer Interface

Figure 3-15 shows eshop’s home page. The top section includes a link to the shopping cart, while the
sidebar on the left features a search box and a list of categories. The other pages only differ in the central
panel, which in the home page contains a welcoming message.

=@ =
[#] Welcome A
« C | @ localhost:8080/eshop/shop Wl A
e-Shopping Center Show Cart @_@@/‘

Quick Search Welcome to e-Shop
Book Title/Author:

Categories
Action Novels
SF
Web Development

Figure 3-15. E-shop’s home page

Figure 3-16 shows the panel containing the list of books in a category.

Select Catalog

Category: Web Development

Title Author Price Details
Web Standards Leslie Sikos 44,99 Details
Getting Started with CSS David Powers 24.99 Details

Figure 3-16. A book category on E-shop

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

Figure 3-17 shows the details of a book.

Book details

Web Standards
Leslie Sikos
Price: $44.99

Add To Cart

Figure 3-17. A book’s details on E-shop

Figure 3-18 shows the shopping cart with a couple of items.

Shopping Cart

Title Author Price Quantity Subtotal Delete
Web Standards Leslie Sikos 44,99 2 89.98

Getting Started with CSS David Powers 24.99 1 @ 24.99

Total: 114.97

Check Out
Figure 3-18. E-shop’s shopping cart

Pretty straightforward, isn’t it?

The E-shop Architecture

E-shop is an MVC application. The data and the business logic (the model) reside in a database and Java
classes; the user interface (the view) is implemented in JSP; and the handler of client requests (the
controller) is an HTTP Java servlet.

When the servlet receives a client HTTP request, it instantiates the model’s central class and
forwards the request to the appropriate JSP page. The JSP page obtains data from the model and
generates the HTML response. The model isn’t aware of what the JSP pages do with the data it provides,
and the JSP pages aren’t aware of where and how the model keeps the data.

The Model

The central model class is called DataManager. Its purpose is to hide all database operations from the JSP
pages. DataManager supports some methods that have to do with initialization and connecting to the

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

database, which we’ll look at in later chapters. For the time being, we’re more interested in the methods
that implement the business logic of the application. Table 3-1 lists these methods.

Table 3-1. DataManager Methods

Type Method

String getCategoryName(int categoryId)

Hashtable getCategories()

Arraylist getSearchResults(String keyword)

Arraylist getBooksInCategory(String categoryld)

Book getBookDetails(int bookId)

long insertOrder(String contactName, String deliveryAddress,

String ccName, String ccNumber, String ccExpiryDate,
Hashtable shoppingCart)

Their purpose should be pretty clear. I would just like to make a couple of points concerning
insertOrder. First, the value it returns is the order ID to be given back to the client. Second, in a more
realistic case, all parameters, with the exception of the shopping cart, would be replaced by a customer
ID, typically the customer’s e-mail address. In this simple application, however, as it doesn’t keep track
of the customers, there are no permanent customer records and customer IDs.

The Controller

The controller servlet extends javax.servlet.http.HttpServlet and is named ShopServlet.

Servlet Initialization

Tomcat executes the servlet method init immediately after instantiating the servlet (see Listing 3-9).
You will find the code of the whole project in the software package for this chapter. To install it, open the
folder named eshop project and copy either the folder eshop or the file eshop.war to Tomcat’s webapps
folder. To launch the application, view the URL http://localhost:8080/eshop/shop.

Listing 3-9. ShopServlet.java - init Method

public void init(ServletConfig config) throws ServletException {
System.out.println("*** initializing controller servlet.");
super.init(config);
DataManager dataManager = new DataManager();
dataManager.setDbUrl(config.getInitParameter("dbUrl"));

dataManager.setDbUserName(config.getInitParameter("dbUserName"));
dataManager.setDbPassword(config.getInitParameter("dbPassword"));

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

ServletContext context = config.getServletContext();
context.setAttribute("base", config.getInitParameter("base"));
context.setAttribute("imageUrl", config.getInitParameter("imageUrl"));
context.setAttribute("dataManager”, dataManager);

try { // load the database JDBC driver
Class.forName(config.getInitParameter("jdbcDriver"));

}
catch (ClassNotFoundException e) {
System.out.println(e.toString());

As you can see, the initialization consists of three main activities: instantiating and configuring the
data manager, saving some parameters for later use by the JSP pages (remember that JSP can access the
servlet context via the implicit variable application), and loading the driver necessary to access the
database—JDBC stands for Java DataBase Connector.

Notice that all these activities are done by setting servlet context attributes to values obtained
through this method:

config.getInitParameter("init-parameter-name")
These values are stored in the WEB-INF\web.xml file, as shown in Listing 3-10.
Listing 3-10. Partial web.xml
<web-app ...>
<servlet>
<init-param>
<param-name>dbUrl</param-name>
<param-value>jdbc:mysql://localhost:3306/shop</param-value>
</init-param>
</servlet>
<web-app ...>
By defining the critical initialization parameters in web.xml, you can change the parameters without
having to modify the application code. Table 3-2 shows the initialization parameters defined for this

application.

Table 3-2. Servlet Initialization Parameters

Name Value
base /eshop/shop
imageUrl /eshop/images/

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

76

Name Value

jdbcDriver com.mysql.jdbc.Driver

dbUrl jdbc:mysqgl://localhost:3306/shop
dbUserName root

dbPassword none

For ease of use, I didn’t make the database password-protected, but this is obviously something
you’d want to do in real life. I will explain how to install and use MySQL in Chapter 5. Then, the
initialization parameters associated with the database will make complete sense. For the time being, the
essential thing to keep in mind is how to define the initialization parameters.

From Chapter 2, you know that Tomcat makes available to JSP the servlet context by defining the
implicit object application. Therefore, for example, the value set in ShopServlet.init() with
context.setAttribute("imageUrl", ...) isavailable to JSP as the value returned by
application.getAttribute("imageUrl").

Request Handling

Depending on what the user does, the page currently being displayed in the browser sends to the servlet
arequest with a specific value of the action parameter. The servlet then forwards each request to a JSP
page determined by that value. For example, the page that shows the shopping cart also includes a
button to check out. If the user clicks on it, the page will send to the servlet a request with the action
parameter set to "checkOut".

The View

Table 3-3 shows the list of all JSP pages in the application. I will explain them in the next chapters, as we
look at the different aspects of the application.

Table 3-3. JSP Pages

Name Function Mode of Access

index.jsp The initial page welcoming a new user

LeftMenu.jsp Standard page sidebar Included in all non-menu pages
TopMenu. jsp Standard page header Included in all non-menu pages
SelectCatalog.jsp Lists books of a category LeftMenu. jsp

SearchOutcome. jsp Lists books selected through a search LeftMenu. jsp

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * JSP APPLICATION ARCHITECTURES

Name Function Mode of Access

BookDetails.jsp Shows the details of one book SelectCatalog.jsp and
SearchOutcome. jsp

ShoppingCart.jsp Displays the shopping cart TopMenu. jsp and ShoppingCart.jsp

Checkout. jsp Requests a customer’s payment data ShoppingCart.jsp

OrderConfirmation.jsp Confirms acceptance of an order Checkout. jsp

Additionally, you have a style-sheet file named eshop.css.
A typical user session proceeds as follows:

1. The user starts by accessing http://your-web-site/eshop/shop and sees the
welcome page with a left-side menu containing a search box and a list of book
categories. The user then can:

e Type aword in the search box and hit the Search button, or select a book
category.

¢ Select one of the books by clicking on the corresponding Details link. The
application then replaces the list of books with an image of the front cover of
the book and all the information available in the database about that book.

e Add the book to the shopping cart. The application then automatically takes
the user to the shopping cart, where it is possible to update the number of
copies or delete the book entry.

e Repeat the previous steps until the user is ready to submit the order. From the
shopping cart page, the user can then click on the Check Out link.

2. The check-out page asks the user to provide his or her personal and financial
data. When the user clicks on the Confirm Order button, the page tells the
application to memorize the order.

At any time, the user can add books through the left-side menu or go to the shopping cart through
the top-side menu to modify the order.

Summary

In this chapter, I described the application architectures suitable for web applications and provided the
example E-bookshop to explain how the Model-View-Controller architecture works.

You then learned how to install the Eclipse IDE, how to configure it to use the latest versions of Java
and Tomcat, and how to create JSP applications from scratch. It was necessary at this point because,
with E-bookshop, we had reached the limit of what was reasonable to do without an IDE.

Finally, I introduced the E-shop project, which, in different versions, I will use to complete the
description of JSP and to explain JSF.

In the next three chapters, I'll take you through the remaining functionality of JSP. In particular, the
next chapter will be dedicated to the action elements. To do that, I will use simple dedicated examples
and the relevant aspects of the eshop application.

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

JSP in Action

In Chapter 2, you learned that there are three types of JSP elements: scripting, directives, and actions. I
described the first two types directly in Chapter 2, and the time has come to look at JSP actions. Actions,
like scriptlets, are processed when a page is requested. In this chapter, you will learn how to use JSP
standard actions, how to create actions of your own design, and how to use some of the actions
contained in the JSP Standard Tag Library. Besides small specific examples, you will also learn the role of
actions in the eshop application that I introduced in the previous chapter. Actions can do everything that
scripting elements can do, as you will see at the end of the next chapter, when I will tell you how to write
JSP code without any scripting element at all.

JSP Standard Actions

While Tomcat executes directive elements when translating a page, it executes action elements when
processing a client’'s HTTP request.

JSP actions specify activities to be performed when a page is requested and can therefore operate on
objects and affect the response. They normally take the following form:

<jsp:action-name attri="value1l" [attr2="value2"...]> ... </jsp:action-name>
However, actions can also have a body, like in the following example:

<jsp:action-name attribute-list>
<jsp:subaction-name subaction-attribute-list/>
</jsp:action-name>

There are eight JSP standard actions (forward, include, useBean, setProperty, getProperty, text,
element, and plugin) and five additional actions that can only appear in the body of other actions (param,
params, attribute, body, and fallback).

Actually, to be precise, there are two additional action elements—invoke and doBody—that you
cannot invoke from within JSP pages. More about them later in this chapter. There is also a further
standard action—root—that I will explain at the end of the next chapter.

Actions: forward, include, and param

The forward action lets you abort execution of the current page and transfer the request to another page:

<jsp:forward page="myOtherPage.jsp">
<jsp:param name="newParName" value="newParValue"/>
</jsp:forward>

G. Zambon, Beginning JSP, JSF and Tomcat 79
© Giulio Zambon 2012

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

The include action is similar to forward, the main difference being that it returns control to the
including page after the included page has completed execution. The output of the included page is
appended to the output generated by the including page up to the point where the action is executed.

As shown in the example, jsp:paramlets you define a new parameter for the invoked page, which
also has access to the parameters already available to the invoking page.

Here is another example of a forward action:

<% String dest = "/myJspPages/" + someVar; %>
<jsp:forward page="<%=dest%>">
<jsp:param name="newParName" value="newParValue"/>
</jsp:forward>

This is 100 percent equivalent to the following scriptlet:

<%
String dest = "/myJspPages/" + someVar;
RequestDispatcher rd = application.getRequestDispatcher(dest + "?newParName=newParValue");
rd.forward(request, response);
%>

Tomcat clears the output buffer upon executing the forward action. Therefore, the HTML code
generated up to that point by the current page is lost. But if the current page has already filled the
response buffer by the time it is aborted with forward, that part of the response will have already left the
server. This will probably result in a bad page sent to the client. Therefore, you have to be very careful
when invoking forward from within a page that generates a large output.

You don’t have to worry about such a problem with include, because Tomcat doesn’t clear the
output buffer when it executes that action.

With both forward and include, the destination page must be a well-formed and complete JSP page.
The forward action must satisfy the additional requirement of generating a complete and valid HTML
page, because the output of the destination page is what goes back to the client’s browser in the HTML
response. The destination page of an include action might even generate only a single character,
although in most cases it provides HTML code. For example, the top bar of the eshop application is
generated in the page TopMenu. jsp (see Listing 4-1) and included in seven JSP pages with this code:

<jsp:include page="TopMenu.jsp" flush="true"/>

The flush attribute (default false) ensures that the HTML generated so far by the including page is
sent to the client before executing the included page. Note that the included page is not allowed to
change the response headers or the status code.

Listing 4-1. TopMenu.jsp

<%@page language="java" contentType="text/html"%>
<%

String base = (String)application.getAttribute("base");
String imageUrl = (String)application.getAttribute("imageUrl");
%>
<div class="header">

<div class="logo">

<p>e-Shopping Center</p>
</div>
<div class="cart">
<a class="link2" href="<%=base%>?action=showCart">Show Cart
<img src="<%=imageUrl%>/cart.gif" border="0"/>

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

</div>
</div>

TopMenu. jsp generates the HTML code in Listing 4-2 (shown after I removed the empty lines).
Listing 4-2. HTML Generated by TopMenu.jsp

<div class="header">

<div class="logo">
<p>e-Shopping Center</p>
</div>

<div class="cart">
Show Cart

</div>

</div>

Notice that TopMenu. jsp uses styles (such as class="header") that aren’t loaded or defined within the
same file. If you're wondering how that’s possible, you probably don’t clearly understand the distinction
between source JSP and output HTML. The JSP code in TopMenu. jsp is executed on the server, and it
produces HTML code, which is then appended to the output buffer. JSP doesn’t need style sheets. It is the
generated HTML that needs them when it’s interpreted by the client’s browser.

You might think that <jsp:include page="..."/>is the same as <%@include file="..."%>, but thisis
definitely not the case. The most important difference is that while the include directive includes the
content of a file without any processing, the include action includes the output of the included resource.
If the resource is a JSP page, this makes a big difference. In practical terms, this also explains why JSP
pages to be included with jsp:include must be well-formed and complete pages rather than simply JSP
fragments.

To illustrate a subtle consequence of the different mechanisms of inclusion, I have prepared a small
test page (see Listing 4-3). To try it out, copy to the usual test folder (webapps\RO0T\tests\) the folder
named jsp_includes that you will find in the software package for this chapter, and then type
localhost:8080/tests/jsp_includes/includes.jsp in a web browser.

Listing 4-3. includes.jsp

<%@page language="java" contentType="text/html"%>

<html><head><title>A</title></head><body>

<table border="1">
<tr><th>incl B</th><th>incl C</th><th>C contains</th></tr>
<tr><td>jsp:include</td><td>jsp:include</td><td><jsp:include page="d/b_act.jsp"/></td></tr>
<tr><td>jsp:include</td><td>@include</td><td><jsp:include page="d/b_dir.jsp"/></td></tr>
<tr><td>@include</td><td>jsp:include</td><td><%@include file="d/b_act.jsp"%></td></tr>
<tr><td>@include</td><td>@include</td><td><%@include file="d/b_dir.jsp"%></td></tr>
</table>

</body></html>

As you can see, I first included the d/b_act. jsp and d/b_dir. jsp files with an include action and
then with an include directive. The two files contain these lines, respectively:

<%@page language="java" contentType="text/html"%><jsp:include page="c.txt"/>
<%@page language="java" contentType="text/html"%><%@include file="c.txt"%>

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

82

Iplaced a c. txt file (only containing the letter A) in the directory of includes.jsp and a second
c.txt file (only containing the letter B) in the d directory. Figure 4-1 shows the result of running
includes. jsp.

=HAel X
Includes

€ C | ®@includesjsp 13| N

I incl B I incl C _|C contains_

[ispinclude/fjspinclude|[B

jspinclude | @include |B
@include ||jspinchide /A

|@include ||@inchude |B

Figure 4-1. The output of includes.jsp

As you can see, includes. jsp displays the letter B in all cases except when you implement the outer
inclusion with the directive and the inner inclusion with the action. This means that only with that
particular combination of file inclusions, includes. jsp accesses the c.txt file that is in the same
directory. In the other three cases, includes.jsp accesses the c.txt file that is in the d directory, together
with b_act.jspandb_dir.jsp. To understand these results, you have to know that when Tomcat
translates a JSP page into a Java class, it replaces <jsp:include page="fname"/> with an execution of the
method org.apache.jasper.runtime.JspRuntimelLibrary.include(request, response, "fname", out,
false), while <%@include file="fname"%> results in the copying of the content of the fname file.
Therefore, in the third case of the example, the <jsp:include page="c.txt"/>insideb_act.jspis
replaced with an include(request, response, "c.txt", out, false), and thenthewholeb_act.jspis
copied into includes.jsp. That’s why the servlet picks up the file in the directory of includes. jsp. The
fact thatb_act.jsp was in a different directory was lost when its include directive was replaced by the
file content.

I decided to spend a bit of time on this issue because the inclusion mechanism is often
misunderstood and causes many people to knock their heads against the wall when files seem to
disappear.

Action: useBean

The useBean action declares a new JSP scripting variable and associates a Java object to it. For example,
the following code declares the variable dataManager of type eshop.model.DataManager:

<jsp:useBean id="dataManager" scope="application" class="eshop.model.DataManager"/>

This is the same data manager instantiated and configured in ShopServlet.java as you saw in
Chapter 3 (Listing 3-9). JSP uses this variable to access the data without having to worry about its
location and implementation. Within eshop, this is the only way for JSP (the View) to interact with the
data manager (the Model). For example, when a user selects a book and clicks on the link to add it to the
shopping cart, the controller servlet executes ShoppingCart.jsp with an argument set to the book
identifier. Then, ShoppingCart.jsp executes a method of the data manager (see Table 3-1) to obtain the
book details, which are actually stored in a MySQL database:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Book book = dataManager.getBookDetails(bookId);

The result is stored in an object of type book, from which JSP can obtain individual book attributes
by executing simple get methods such as book.getTitle() and book.getAuthor().

jsp:useBean accepts the attributes beanName, class, id, scope, and type, of which only id is
mandatory.

If you type <jsp:useBean id="objName"/>, Tomcat will check whether an object named objName
exists in pageContext. If it exists, Tomcat will create a variable named objName of the same type as the
object, so that you can access the object in subsequent JSP scripting elements. If the object doesn’t exist,
Tomcat will throw a java.lang.InstantiationException.

If you type <jsp:useBean id="objName" scope="aScope"/> with aScope set to one of the words page,
request, session, or application, Tomcat will behave as described in the previous paragraph, but it will
look for the objName object in the given scope rather than in the page context. In other words, page is the
default scope.

Also jsp:useBean can create new objects. Whether useBean does it and what type of variable it
makes available for JSP scripting depends on the three remaining attributes: class, type, and beanName.

Caution The use of jsp:useBean is not for the faint hearted!

If you specify class and set it to a fully qualified class name (i.e., with its package, as in
java.lang.String) but specify neither type nor beanName, Tomcat will instantiate an object of the given
class in the scope you specify with the attribute scope (or in the page scope by default).

If together with class you also specify type, Tomcat will set the data type of the new object to the
value of the type attribute. You can set the type attribute to the same class as the class attribute (which
is equivalent to omitting type), to a superclass of class, or to an interface implemented by class.

If instead of class you specify the beanName attribute, Tomcat will behave as if you had specified
class, but only after attempting to find a serialized bean of that class. Serializing a bean means that the
object’s data is converted to a byte stream and saved in a file with the extension ser. Tomcat expects to
find serialized objects in the same folder containing the application classes. For example, a serialized
bean of the xxx.yyy.Zzz class is expected to be in the WEB-INF\classes\xxx\yyy\Zzz.ser file. This
mechanism lets you save an object in a file and then load it into your JSP page. You can actually have
several serialized beans of the same class (e.g., Zzz.ser, Zzz_test.ser, Zzz25.ser, and Abc. ser).
Fortunately, the designers of JSP have thought this issue through and allowed you to set the value of
beanName at request time (the other attributes must be hard-coded), so that you can parameterize your
page for what concerns loading serialized objects.

Finally, if you specify type and set it to a fully qualified class name but specify neither class nor
beanName, Tomcat won't instantiate any object and will instead look for it in the given scope. If it finds it,
Tomcat will make it available as an object of the given type rather than of the class from which it was
instantiated. If what I just explained sounds confusing, you might decide to follow a simple rule: forget
that jsp:useBean supports the attributes class and beanName. Let the servlet do the work. Just pay
attention that the servlet creates the objects in the correct scope. In the previous chapter, the
initialization method of the eshop servlet (see Listing 3.9) first instantiated the dataManager object and
then saved it in the application scope.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

84

Caution Don’t confuse the scope of a bean as specified with the useBean attribute scope with the scope of the
scripting variable that Tomcat associates to the bean

As an example of useBean scopes, the following code instantiates a MyClass object that remains
available as long as the session remains valid:

<jsp:useBean class="myPkg.MyClass" id="myObj" scope="session"/>

You'll be able to access it via a scripting variable named myObj in any page within the same session
with the following statement:

<jsp:useBean id="myObj" type="myPkg.MyClass" scope="session"/>

However, the scope of the scripting variable myObj is determined by where within your page you
execute useBean, as with the declaration of any other scripting variable. If you find this confusing,
consider this: in the page containing the second useBean, you don’t have access to the scripting variable
myObj until you execute the useBean action. Before that, the scripting variable is undefined, although the
bean called myObj already exists, as it was instantiated by the first useBean in a previously executed page.
This tells you that the scripting variable referring to the object and the actual object are two different
things with two different scopes, even if they share the same name.

Incidentally, the first useBean (with class, id, and scope) is completely equivalent to this:
<%

MyClass myName = new MyClass();
session.setAttribute("myObj", myObj);
%>

and the second useBean (with id, type, and scope) is the same as this:
<%

MyClass myObj = (MyClass)session.getAttribute("myObj");

%>

This representation should make completely clear that the object and the scripting variable are two
different entities. In the second scriptlet, you could even decide to call the scripting variable with a
different name.

Because of all the options implemented by combining its attributes, as I said at the beginning,
useBean is somewhat tricky to use. But you can always come back to this page in case of doubt!

Actions: setProperty and getProperty

A bean property is nothing else than an attribute of a bean’s class, but only when you define for that
attribute the standard get and put methods . To make it completely clear, both get and put must be
there. Otherwise, that class attribute is not a bean property.

Additionally, you must name the two methods respectively get and put, followed by the full name of
the attribute with the first letter capitalized. For example, if you define the attribute named myAttr, you
must name the two attributes getMyAttr and setMyAttr. Otherwise, again, Tomcat will not recognize the
attribute as a bean property.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

An example from the eshop application will convince you that you are better off if Tomcat
recognizes an attribute as a property. The JSP page OrderConfirmation.jsp has the following two
elements:

<jsp:useBean id="customer" class="eshop.beans.Customer"/>
<jsp:setProperty property="*" name="customer"/>

The useBean action instantiates an object of type Customer and assigns it to the variable named
customer. The action is equivalent to:

Customer customer = new Customer();

By defining property="*", the setProperty action tells Tomcat to set all bean properties of the newly
created object. What setProperty does notsay is to what values they should be set. This is because the
values come from request parameters named exactly like the properties. Check out the definition of the
Customer class, shown in Listing 4-4.

Listing 4-4. Customer.java
package eshop.beans;

public class Customer {
private String contactName = "";
private String deliveryAddress = "";
private String ccName = "";
private String ccNumber = "";

private String ccExpiryDate = "";

public String getContactName() {
return contactName;

public void setContactName(String contactName) {
this.contactName = contactName;

}

public String getDeliveryAddress() {
return deliveryAddress;

public void setDeliveryAddress(String deliveryAddress) {
this.deliveryAddress = deliveryAddress;

}

public String getCcName() {
return ccName;

public void setCcName(String ccName) {
this.ccName = ccName;

}

public String getCcNumber() {
return ccNumber;

public void setCcNumber(String ccNumber) {

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

86

this.ccNumber = ccNumber;

}

public String getCcExpiryDate() {
return ccExpiryDate;
}

public void setCcExpiryDate(String ccExpiryDate) {
this.ccExpiryDate = ccExpiryDate;

As you can see, the Customer class defines private attributes and then the methods to access them,
so that they can be recognized as properties.

Caution The use of property="*" can have confusing outcomes if parameters and attributes are not correctly
matched

So far so good. Not so interesting. But what is interesting is that the setProperty action
<jsp:setProperty property="*" name="customer"/>
is equivalent to the following:

customer.setContactName(request.getParameter("contactName");
customer.setDeliveryAddress(request.getParameter("deliveryAddress");
customer.setCcName(request.getParameter("ccName");
customer.setCcNumber (request.getParameter ("ccNumber"));
customer.setCcExpiryDate(request.getParameter("ccExpiryDate"));

The implementation with the action is more compact and, most importantly, it remains valid
regardless of whether you add or remove customer attributes. And that’s what makes setProperty
worthwhile.

Also jsp:getProperty is useful, because it sends the value of a property to the output. For example,
suppose you define MyClass as shown in Listing 4-5.

Listing 4-5. MyClass.java

package MyClasses;

import java.io.Serializable;

public class MyClass implements java.io.Serializable {
public static final long serialVersionUID = 1L;
private int i;
public MyClass() {i = 0;}
public void setI(int i) {this.i = i;}
public int getI() {return i;}
}

As you can see, the integer attribute i is a property. Listing 4-6 shows a JSP page that uses both
getProperty and setProperty.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Listing 4-6. myObj.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.util.*, MyClasses.MyClass"%>
<%@page trimDirectiveWhitespaces="true"%>
<html><head><title>myObj</title></head><body>
<jsp:useBean id="obj" class="MyClasses.MyClass" scope="session">
<jsp:setProperty name="obj" property="i" value="11"/>
</jsp:useBean>
<jsp:getProperty name="obj" property="i"/>
<jsp:setProperty name="obj" property="i" value="22"/>
<jsp:getProperty name="obj" property="i"/>
</body></html>

As you can see, myObj. jsp instantiates the bean object with useBean and initializes its attribute by
executing setProperty within the body of useBean. The advantage of doing it that way is that Tomcat
only attempts to execute the sub-action setProperty if the instantiation of the bean succeeds.

The two executions of getProperty send the value ofi to the output. As a result, myObj.jsp generates
the following HTML page:

<html><head><title>myObj</title></head><body>
1122</body></html>

The example also shows that in setProperty you can replace the value attribute with param. Then,
Tomcat sets the attribute to the value of the identically named request parameter. Notice how the page
directive with trimDirectivelWhitespaces set to true only leaves a single newline, after <body>, because it
is in the HTML template. It results in 11 and 12 being “fused” into 1122. Not necessarily what you would
like to have.

Action: text
You can use the jsp:text action to write template text. Its syntax is straightforward:
<jsp:text>Template data</jsp:text>

Its body cannot contain other elements; it can only contain text and EL expressions.

Actions: element, attribute, and body

With the actions element, attribute, and body, you can define XML elements dynamically within a JSP
page. One reason why you might like to define XML elements dynamically is that your JSP page, instead
of generating a web page to be displayed in a browser, might need to generate an XML file used to
exchange data with other modules and applications. The word dynamically is important, because it
means that you can generate the XML elements at request time rather than statically at compile time.

The JSP page shown in Listing 4-7 generates the HTML output shown in Listing 4-8. It is a
meaningless page, only designed to show you how to use these actions. Don’t look for a meaning that
doesn’t exist!

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

88

Listing 4-7. actel_element_attribute.jsp

<%@page language="java" contentType="text/html"%>
<html>
<head><title>Action elements: element, attribute</title></head>
<body>
<jsp:element name="myElem">
<jsp:attribute name="myElemAttr">myElemAttr's value</jsp:attribute>
<jsp:body>myElem's body</jsp:body>
</jsp:element>

<jsp:include page="text.txt"/>

<jsp:include>
<jsp:attribute name="page">text.txt</jsp:attribute>
</jsp:include>
</body>
</html>

Listing 4-8. The Output of actel_element_attribute.jsp

<html>

<head><title>Action elements: element, attribute</title></head>
<body>

<myElem myElemAttr="myElemAttr's value">myElem's body</myElem>

This is inside the test file text.txt

This is inside the test file text.txt

</body>

</html>

I have highlighted two parts of the listings. The first highlight shows how to use the actions element,
attribute, and body to generate an XML element. Be aware that if you drop the action body, the XML
element generated by element will have an empty body, as in the following example:

<myElem myElemAttr="myElemAttr's value"/>

The second highlight shows how you can use attribute to move the page attribute of include to be
inside the body of the include action. The content of the file text.txt is unimportant. You'll find a one-
line file in the jsp_element folder of the software package for this chapter.

Actions: plugin, params, and fallback

These three actions let you embed an object in a web page. For example, Listing 4-9 shows you how to
embed an applet with plugin, how to pass to it a line of text with params, and how to inform the user with
fallback if the applet fails to start. To test it, copy the file plugin. jsp from the jsp_plugin folder of the
software package for this chapter to the usual tests folder, and then browse
localhost:8080/tests/plugin.jsp

The plugin action generates for you the appropriate browser-dependent HTML construct to embed
the applet.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Listing 4-9. plugin.jsp

<%@page language="java" contentType="text/html"%>
<html><head><title>Action: plugin</title></head><body>
<jsp:plugin type="applet" code="MyApplet.class"
codebase="/tests" height="100" width="100">
<jsp:params>
<jsp:param name="line" value="Well said!"/>
</jsp:params>
<jsp:fallback>Unable to start plugin</jsp:fallback>
</jsp:plugin>
</body></html>

If you want to try it yourself, Listing 4-10 shows you the code for a simple applet.
Listing 4-10. MyApplet.java

import java.awt.*;
import java.applet.*;
public class MyApplet extends Applet {
String line;
public void init() {
line = getParameter("line");
}
public void paint(Graphics page) {
page.setColor(Color.red);
page.fillRect(0, 0, 50, 50);
page.setColor(Color.green);
page.fillRect(50, 0, 50, 50);
page.setColor(Color.blue);
page.fillRect(0, 50, 50, 50);
page.setColor(Color.yellow);
page.fillRect(50, 50, 50, 50);
page.setColor(Color.black);
page.drawString(line, 10, 40);

And Figure 4-2 shows what you should see in your browser. To test it, compile the applet, place both
plugin.jsp and MyApplet.class in the folder 4CATALINA_HOME%\webapps\ROOT\tests\, and type
localhost:8080/tests/plugin.jsp in your browser. Note that Tomcat doesn’t do anything with the
applet itself. It only sends it to the client when requested to do so. That’s why the applet class doesn’t
need to be placed in the WEB-INF folder like the other classes you have encountered so far.

www.it-ebooks.info

89

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

90

Action: plugin

id!

Figure 4-2. The output of plugin.jsp

jsp:plugin accepts the attributes type, jreversion, nspluginurl, and iepluginurl. The example
used type to specify that the plugin was an applet; jreversion lets you specify the version number of the
JRE specification you require (the default is 1.2); and nspluginurl and iepluginurl let you specify where
the JRE plug-in can be downloaded for Netscape Navigator and Internet Explorer, respectively. However,
I doubt that you will ever use the last three attributes.

Comments and Escape Characters

The comment delimiters <%-- .. --%> have in JSP the same function as /* .. */inJava. You can also
use them to “switch off” JSP elements, as shown here:

<%-- <jsp:include page="whatever.jsp"/> --%>

They can also span over several lines.

Note Regular HTML comments such as <!-- ... --> won’t work with JSP

JSP comments have the advantage over HTML comments in that they are not sent to the client.
Their content is therefore invisible to the user.

To include the sequence of characters <% and %> in template text, you have to “break” them with a
backslash, like in <\% and %\>, so that the JSP engine doesn't interpret them as the beginning and end of
scripting elements. Alternatively, you can replace the inequality signs with their corresponding HTML
entities, as in &1t;% and %8gt;.

JSP’s Tag Extension Mechanism

You can define your own actions to replace lengthy scriptlets. By “hiding” functions behind custom tags,
you can increase modularity and maintainability of your pages.
To write in a JSP page a statement like

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

<myPrefix:myActionTag attributeName="myAttributeName"/>

you need to follow the following steps:

1. Define Java classes that provide the functionality of the new actions, including
the definition of their attributes (e.g., myAttributeName). These classes are
called tag handlers.

2. Provide a formalized description of your action elements, so that Tomcat
knows how to handle them. For example, you need to specify which actions
can have a body and which attributes can be omitted. Such a description is
called a tag library descriptor (TLD).

3. IntheJSP pages, tell Tomcat that the pages need your tag library and specify
the prefix that you want to identify those custom tags with.

I will take you through these steps, beginning with bodyless actions, which are simpler to
implement.

Bodyless Custom Actions

A bodyless action is an element that, not having an end tag, cannot enclose a body between start and
end tags. As an example, let’s say you want to develop an action that prints the day of the week of any
given date:

<wow:weekday date="date"/>

With the date attribute accepting values in the form yyyy-mm-dd and defaulting to the current date.
All the examples of this section on bodyless actions and the following section of bodied actions are in the
software package for this chapter. To test them, copy the folder tags to Tomcat’s webapps folder.

Step 1: Define the Tag Handler

A tag handler for a bodyless custom tag is a class that implements the interfaces java.io.Serializable
and javax.servlet.jsp.tagext.Tag. Remember that to satisfy an interface, you have to implement all
the methods it defines.

To satisfy Serializable, you only need to define a unique identifier, like this:

static final long serialVersionUID = 1L;

The value identifies the version of your class and the objects you instantiate from it. It is then used
when deserializing objects to check that class and object match. As long as you don’t have several
versions of the class and swap objects between JVMs, you don’t really need to worry about it. However,
to satisfy the Tag interface, you have to define the methods listed in Table 4-1.

Table 4-1. The Methods of the Tag Interface

Method Description
int doEndTag() Processes the end tag
int doStartTag() Processes the start tag

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

92

Method Description
Tag getParent() Provides a reference to the closest enclosing tag handler
void release() Removes all the references to objects

void setPageContext(PageContext pc) Sets the current page context

void setParent(Tag t) Sets the closest enclosing tag handler

Fortunately, the javax.servlet.jsp.tagext.TagSupport class makes life easier by implementing the
Tag interface with default methods and other useful methods. Therefore, you only need to extend
TagSupport and overwrite the methods you need for your weekday action. You certainly don’t need
getParent, because the action isn’t going to be used in the body of other actions. You don’t need
doStartTag either, because the action is bodyless, and, as a consequence, you don’t have separate start
and end tags. In conclusion, you only need to overwrite doEndTag with a method containing all the
functionality of the weekday tag

Listing 4-11 shows you the code of the whole tag handler.

Listing 4-11. WeekdayTag.java
package tags;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;
import java.util.Date;

import java.text.SimpleDateFormat;

import java.util.Calendar;

import java.util.GregorianCalendar;

public class WeekdayTag extends TagSupport {
static final long serialVersionUID = 1L;
static final String[] WD = {"","Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
private String date;

public void setDate(String date) {
this.date = date;
}

public int doEndTag() throws JspException {

GregorianCalendar cal = new GregorianCalendar();
SimpleDateFormat fmt = new SimpleDateFormat("yyyy-MM-dd");
fmt.setLenient(true);
if (date != null 8& date.length() > 0) {

Date d = new Date();

try {

d = fmt.parse(date);

catch (Exception e) {
throw new JspException("Date parsing failed:

+ e.getMessage());

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

}
cal.setTime(d);

try {
pageContext.getOut().print(WD[cal.get(Calendar.DAY_OF WEEK)]);
}

catch (Exception e) {
throw new JspException("Weekday writing failed:

+ e.getMessage());

return EVAL_PAGE;

}
}

You need the setDate method because Tomcat uses it to pass the value of the action’s date attribute
to the tag handler. The corresponding getDate method isn’t present, because it is never used and can be
omitted. That said, you might argue that working with incomplete Java beans, sooner or later, will get
you into trouble. If the action is executed without the date attribute, the date variable defined in
doEndTag remains set to null, and the calendar cal, which is used to determine the day of the week,
remains set to the current date. On the other hand, if a date attribute is specified in the action, its value is
parsed and used to set the calendar.

Notice that the tag handler is named like the tag but with the first letter capitalized and with the Tag
suffix. This is a good practice to follow, although you can name your handlers whatever you like. You'll
see in a moment how to make the association between a tag and its handler.

The return value EVAL_PAGE means that execution should continue with the page code following the
custom action. Use SKIP_PAGE to abort the page.

In any case, you must place your handlers in WEB-INF\classes\. For example, as WeekDayTag.java
belongs to the package named tags, its compiled class must go into the folder WEB-INF\classes\tags\.

Step 2: Define the TLD

The TLD is an XML file that describes your tags so that Tomcat knows how to deal with them. Listing 4-
11 shows the full TLD for the custom tag library.

Listing 4-11. wow.tld

<?xml version="1.0" encoding="UTF-8"?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee ~CCC
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary 2_1.xsd"
version="2.1">
<description>Example of a simple tag library</description>
<tlib-version>1.0</tlib-version>
<short-name>wow</short-name>
<tag>
<description>Displays the day of the week</description>
<display-name>weekday</display-name>
<name>weekday</name>
<tag-class>tags.WeekdayTag</tag-class>
<body-content>empty</body-content>
<attribute>

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

94

<name>date</name>
<type>java.lang.String</type>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

As you can see, the outermost element is taglib, which contains a tag element for each custom
action (in this case, only weekday). Apart from tag, all taglib sub-elements in the example are for
information purposes or to be used by tools and can be omitted.

The tag element contains an attribute sub-element for each action attribute (in this case, only
date). Of the tag sub-elements in the example, you can omit description and display-name. The sub-
element name defines the custom action name; tag-class specifies the fully qualified class name of the
tag handler; and body-content specifies the action to be bodyless.

The sub-element tag-class is what gives you the freedom to name your tag handlers anything you
like. The sub-element body-content is mandatory and can only have one the following three values:
empty, scriptless, or tagdependent. The value scriptless is the default and means that the body cannot
contain scripting elements, while EL expressions and JSP actions are accepted and processed normally.
The value tagdependent means that the body content is passed to the tag handler as it is, without any
processing. This is useful if the body contains character sequences, such as <%, that would confuse
Tomcat.

Note that up to JSP 2.0, body-content was mandatory, and body-content="JSP" was valid. This is no
longer the case with JSP 2.1.

The attribute element in the example has three sub-elements: name, which sets the action attribute
name; type, which sets the class name of the attribute value; and rtexprvalue, which decides whether
the attribute accepts values at request time.

If you had used a type other than String, the value passed to the tag handler would have been of
that type. For example, with an attribute defined like this:

<attribute>
<name>num</name>
<type>java.lang.Integer</type>
</attribute>

you would have included the following code in the tag handler:

private int num;
public void setNum(Integer num) {
this.num = num.intValue();

}

When processing the start tag of the custom action, Tomcat would have parsed the string passed to
the action (as in num="23") to obtain the Integer value for the tag handler.

If you had omitted the rtexprvalue sub-element or set it to false, you would have been forced to
pass to the date attribute only constant values, such as "2007-12-05", instead of runtime values such as
"<%=aDate%>". (rtexpr stands for real-time expression).

Inside WEB-INF, create a folder named t1lds and place wow.t1d there.

Step 3: Use the Custom Action

Listing 4-12 shows you a simple JSP page to test the weekday custom action.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Listing 4-12. weekday.jsp

1: <¥@page language="java" contentType="text/html"%>

2: <¥@taglib uri="/WEB-INF/tlds/wow.tld" prefix="wow"%>

3: <% String d = request.getParameter("d"); %>

4: <html><head><title>weekday bodyless tag</title></head><body>
5: weekday today: <wow:weekday/>

6: weekday <%=d%>: <wow:weekday date="<%=d%>"/>

7: </body></html>

Line 2 contains the taglib directive, line 4 uses weekday without the date attribute, and line 6 passes
the request parameter d to the action. It’s as simple as that.

If you type in your browser http://localhost:8080/tags/weekday.jsp?d=2012-12-25, you get two
lines, such as Today: Wed and 2012-12-25: Tue. If you type the URL without the query, the second line of
the output becomes null: Wed. On the other hand, if you type a query with a bad date, such as d=2012-
1225, Tomcat shows you an error page with a back trace that begins as follows:

org.apache.jasper.JasperException: javax.servlet.ServletException: w»

javax.servlet.jsp.JspException: =
Date parsing failed: Unparseable date: "2012-1225"

To try out the example, you can simply copy the folder named tags from the code of Chapter 4 to
Tomcat’s webapps folder. You can then execute the example by typing in your browser
localhost:8080/tags/weekday. jsp.

Note that if you modify the tag handler, you need to recompile it from the command line. To do so,
type the following two commands:

cd c:\program files\apache software foundation\tomcat\webapps\tags\web-inf\classes\tags

javac -classpath "C:\Program Files\Apache Software Foundation\Tomcat\lib\jsp-api.jar" =
WeekDayTag.java

You then also have to restart Tomcat.

Bodied Custom Actions

To show you the differences from the bodyless action, I will implement a version of the weekday action
that expects the date in its body instead of in an attribute:

<wow:weekdayBody>date</wow:weekdayBody>

Step 1: Define the Tag Handler

Similar to bodyless actions, the tag handlers for bodied actions need to implement an interface, only this
time it’s javax.servlet. jsp.tagex.BodyTag instead of Tag. Again, similarly to bodyless actions, the API
provides a convenient class that you can use as a basis: javax.servlet.jsp.tagext.BodyTagSupport.
However, as opposed to what you did in the tag handler for a bodyless action, you cannot simply replace
the doEndTag method, because the action body will have come and gone by the time you reach the end
tag. You first have to overwrite doAfterBody.

An additional complication concerns the default date: if you write the action with an empty body, as
follows:

<wow:weekdayBody></wow:weekdayBody>

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

the method doAfterBody won'’t be executed at all. How can you then print out the default day?
The answer is simple: you have to overwrite the doEndTag method and write the default date from
there in case there is no body. Listing 4-13 shows the end result.

Listing 4-13. WeekdayBodyTag.java
package tags;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.tagext.BodyTagSupport;
import java.util.Date;

import java.text.SimpleDateFormat;

import java.util.Calendar;

import java.util.GregorianCalendar;

public class WeekdayBodyTag extends BodyTagSupport {
static final long serialVersionUID = 1L;
static final String[] WD = {"","Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
private boolean bodyless = true; /* 1 */

public int doAfterBody() throws JspException {

String date = getBodyContent().getString(); /* 2 */

if (date.length() > 0) {
GregorianCalendar cal = new GregorianCalendar();
Date d = new Date();
SimpleDateFormat fmt = new SimpleDateFormat("yyyy-MM-dd");
fmt.setLenient(true);
try {

d = fmt.parse(date);

catch (Exception e) {
throw new JspException("Date parsing failed:

" + e.getMessage());
}
cal.setTime(d);
try {
getPreviousOut().print(WD[cal.get(Calendar.DAY_OF_WEEK)]); /* 3 */
}

catch (Exception e) {
throw new JspException("Weekday writing failed:

+ e.getMessage());
bodyless = false; /* 4 */

}
return SKIP_BODY;
}

public int doEndTag() throws JspException {
if (bodyless) { /* 5 */
GregorianCalendar cal = new GregorianCalendar();
try {
pageContext.getOut().print(WD[cal.get(Calendar.DAY OF WEEK)]);

catch (Exception e) {

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

throw new JspException("Weekday writing failed:

}

return EVAL_PAGE;

}
}

Lines 1, 4, and 5 implement the mechanism to ensure that you write the default date but only when
the body is empty. In line 1, you define a boolean instance variable called bodyless and set it to true. If
there is no body to process, doAfterBody does not run, and doEndTag in line 5 prints the default day of the
week. If, on the other hand, there is a body to process, doAfterBody in line 4 sets bodyless to false, and
doEndTag does nothing.

Line 2 shows you how to get the body content, and line 3 how to get the method to print the date
while processing the body. The method has been named getPreviousOut to remind you that there can be
actions within actions, in which case you’ll want to append the output of an inner action to that of an
outer one.

+ e.getMessage());

Step 2: Define the TLD

To define the new action, you only need to add the <tag> shown in Listing 4-14 after the <tag> for the
bodyless weekday action.

Listing 4-14. The tag Element for weekdayBody

<tag>
<description>Displays the day of the week</description>
<display-name>weekdayBody</display-name>
<name>weekdayBody</name>
<tag-class>tags.WeekdayBodyTag</tag-class>
<body-content>scriptless</body-content>
</tag>

Notice that you define the body-content sub-element as scriptless even though it is the default.
The purpose is to make the code more readable. It’s just a matter of taste.

Step 3: Use the Custom Action

Listing 4-15 shows a modified version of weekday. jsp to handle the bodied tag.
Listing 4-15. weekday_b.jsp for the Bodied Action

<%@page language="java" contentType="text/html"%>

<%@taglib uri="/WEB-INF/tlds/wow.tld" prefix="wow"%>
<html><head><title>weekday bodied tag</title></head><body>

weekdayBody today: <wow:weekdayBody></wow:weekdayBody>

weekdayBody ${param.d}: <wow:weekdayBody>${param.d}</wow:weekdayBody>

</body></html>

Notice that I replaced the request.getParameter("d") logic with the simpler and more elegant EL
expression ${param.d}. You have to use an EL expression in any case, because scripting elements aren’t

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

98

allowed in the body of an action. Therefore, you couldn’t have used <%=d%>. You will learn how to use EL
in the next section of this chapter.

Tip Many tag libraries are available on the Internet. JSTL provides many actions that you can use and reuse,
which | will write about in the next section. It certainly pays, in terms of both quality and efficiency, to avoid
developing actions from scratch unless they give you clear and quantifiable benefits. You will find more info on
JSTL at www.oracle.com/technetwork/java/index-jsp-135995.html.

Tag Files

Tag files are special JSP files that replace tag handlers written in Java. After all, JSP basically is Java.

Do you remember when I told you in Chapter 2 that the only available directive elements are page,
include, and taglib? Well, I lied. There are three more directives: tag, attribute, and variable. The
reason I didn’t mention them is that you can only use them in tag files. Now that you know how to
develop custom tag libraries with Java, I can tell you how to develop them using the JSP syntax and the
newly revealed directives. The examples of this section are in the folder tag files of the software
package for this chapter. To install them, follow the instructions contained in README . txt.

Bodyless Tag

Listing 4-16 shows the tag-file version of the tag handler WeekdayTag. java that you saw in Listing 4-11.
Listing 4-16. weekday.tag

<%@tag import="java.util.Date, java.text.SimpleDateFormat"
import="java.util.Calendar, java.util.GregorianCalendar"%>
<%@attribute name="date" required="false"%>
<%
final String[] WD = {"","Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
GregorianCalendar cal = new GregorianCalendar();
if (date != null && date.length() > 0) {
SimpleDateFormat fmt = new SimpleDateFormat("yyyy-MM-dd");
fmt.setLenient(true);
Date d = fmt.parse(date);
cal.setTime(d);

}
out.print(WD[cal.get(Calendar.DAY OF WEEK)]);
%>

The tag directive of a tag file replaces the page directive of a JSP page, and the attribute directive
lets you define an input parameter. As Tomcat handles the tag exceptions for us, I removed the
try/catch constructs, which certainly makes the code more readable. Another simplification is in
sending the result to the output, because in the tag file the implicit variable out makes it unnecessary to
invoke pageContext.getOut().

Listing 4-17 shows how you modify weekday. jsp of Listing 4-12 to use the tag file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Listing 4-17. weekday_t.jsp

<%@page language="java" contentType="text/html"%>

<k@taglib tagdir="/WEB-INF/tags" prefix="wow"%>

<% String d = request.getParameter("d"); %>
<html><head><title>weekday bodyless tag</title></head><body>
weekday today: <wow:weekday/>

weekday <%=d%>: <wow:weekday date="<%=d%>"/>

</body></html>

Asyou can see, the only difference is that the attribute uri="/WEB-INF/t1lds/wow.t1ld" of the taglib
directive has become tagdir="/WEB-INF/tags".
To keep the uri attribute, you need to declare the tag file in a TLD, as shown in Listing 4-18.

Listing 4-18. wow.tld for a Tag File

<?xml version="1.0" encoding="UTF-8"?>
<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee ~CCC
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary 2 1.xsd"
version="2.1">
<description>My library of tag files</description>
<tlib-version>1.0</tlib-version>
<short-name>wow</short-name>
<uri>tagFiles</uri>
<tag-file>
<description>Displays the day of the week</description>
<display-name>weekday</display-name>
<name>weekday</name>
<path>/WEB-INF/tags/weekday.tag</path>
</tag-file>
</taglib>

Then, in the taglib directive of weekday_t.jsp, you can replace tagdir="/WEB-INF/tags" with
uri="tagFiles".
As an example of the variable directive, replace in weekday. tag the line

out.print(WD[cal.get(Calendar.DAY_OF WEEK)]);
with the following two:

%><%@variable name-given="dayw" scope="AT_END"%><%
jspContext.setAttribute("dayw", WD[cal.get(Calendar.DAY OF WEEK)]);

The action will then save the string with the day of the week into the attribute dayw instead of
sending it directly to the output. To display the action’s result from within weekday_t.jsp, insert the
following expression element after executing the action:

<%=pageContext.getAttribute("dayw")%>

As you will see later in this chapter, you can also replace the somewhat cumbersome expression
element with the more compact EL expression ${dayw}.

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

100

Bodied Tag

Listing 4-19 shows the tag file equivalent to the tag handler WeekdayBodyTag. java, which you saw in
Listing 4-13. I wrote it by modifying the tag file weekday. tag that implemented the bodyless tag as shown
in Listing 4-16. Listing 4-20 is the tag-file equivalent to weekday_b.jsp (see Listing 4-15), which invoked
the bodied tag handler. I wrote it by modifying weekday_t.jsp of Listing 4-17, which used the bodyless
tag file.

Listing 4-19. weekdayBody.tag

<%@tag import="java.util.Date, java.text.SimpleDateFormat"
import="java.util.Calendar, java.util.GregorianCalendar"%>
<jsp:doBody var="dateAttr"/>
<%
String date = (String)jspContext.getAttribute("dateAttr");
final String[] WD = {"","Sun","Mon","Tue","Wed","Thu","Fri","Sat"};
GregorianCalendar cal = new GregorianCalendar();
if (date.length() > 0) {
SimpleDateFormat fmt = new SimpleDateFormat("yyyy-MM-dd");
fmt.setLenient(true);
Date d = fmt.parse(date);
cal.setTime(d);

}
out.print(WD[cal.get(Calendar.DAY_OF WEEK)]);
%>

The standard action element jsp:doBody evaluates the body of the weekdayBody action and stores its
output as a string into the page-scoped attribute dateAttr. The first line of the scriptlet then copies the
attribute into the JSP variable named date. After that, the bodied tag file is identical to the bodyless one.
This was not really necessary, but the subsequent code accesses the date twice, first to check that itisn’t
empty and then to parse it. I didn’t like to invoke the getAttribute method twice. It seemed less tidy.

If you omit the attribute var, doBody sends the body’s result to the output; if you replace var with
varReader, the result is stored as a java.io.Reader object instead of a java.lang.String; and if you add
the attribute scope, you can specify var / varReader to be defined as a request, session, or application
attribute, instead of in the page scope.

You should know that jsp: invoke is very similar to jsp:doBody but operates on a JSP fragment
instead of the action body. For example, by writing the following two lines in a tag file

<%@attribute name="fragName" fragment="true"%>
<jsp:invoke fragment="fragName"/>

you pass to it a JSP fragment. Like doBody, invoke admits the attributes var, varReader, and scope. Both
standard actions can only be used within tag files.

Listing 4-20. weekday_bt.jsp

<%@page language="java" contentType="text/html"%>

<%@etaglib tagdir="/WEB-INF/tags" prefix="wow"%>

<html><head><title>weekday bodied tag</title></head><body>

weekdayBody today: <wow:weekdayBody></wow:weekdayBody>

weekdayBody ${param.d}: <wow:weekdayBody>${param.d}</wow:weekdayBody>

</body></html>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

The tag Directive

In the previous section, you encountered the import attribute of the tag directive. Table 4-2 lists the
other attributes that are available. They are all optional.

Table 4-2. Attributes of the tag Directive

Attribute

Description

description

display-name

body-content

dynamic-attributes

example
small-icon
large-icon
language
pageEncoding

isELIgnored

The name says it all.

A short name intended for tools. The default is the name of the tag file without
the .tag extension.

Same as the <body-content> tagin a TLD (see the comments after Listing 4-11).

If the attribute is present, its value identifies a scoped attribute where you store
a map with names and values of the dynamic attributes you use when executing
the tag.

A string with a brief description of an example.

Path, relative from the tag file, of a small icon intended for tools.
Yes, you guessed correctly!

Equivalent to its namesake of the page directive.

Ditto.

Ditto.

The attribute Directive

You have already encountered the attributes name and required. Table 4-3 briefly describes the
remaining ones (all optional).

Table 4-3. Attributes of the attribute Directive

Attribute Description

description This attribute is almost universal.

rtexprvalue Same as the equally-named tag in a TLD (see the comments after Listing 4-11).
type Ditto.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

102

Attribute Description

fragment If set to true, it means that the attribute is a JSP fragment to be evaluated by the tag
file. If false (the default), the attribute is a normal one and is therefore evaluated by
Tomcat before being passed to the tag file. Do not specify rtexprvalue or type when
you set fragment to true. Tomcat will set them for you respectively to true and
javax.servlet.jsp.tagext.JspFragment.

example A string with a brief description of an example.

small-icon Path, relative from the tag file, of a small icon intended for tools.

There are also two mutually exclusive pairs of attributes that are associated with JavaServer Faces:
deferredValue / deferredValueType and deferredMethod / deferredMethodSignature. Let’s not put the
cart before the oxen.

The variable Directive
Table 4-4 briefly describes all the attributes.

Table 4-4. Attributes of the variable Directive

Attribute Description

description No surprises here.

name-given / name-from-attribute You have seen name-given in the example. One of these two
attributes must be present. The value of name-given cannot be
the same of the value of the name attribute of an attribute
directive or the value of a dynamic-attributes attribute of a tag
directive. See after the end of this table for an explanation of how
to use name-from-attribute.

alias It works together with name-from-attribute. Again, see below.

scope Can be AT_BEGIN, AT_END, or NESTED (the default). Once more, too
much text to keep it in this table. See below.

variable-class The name of the class of the variable (default is
java.lang.String).

declare Set to false (the default is true) if the variable is not declared.

While name-given provides the name of a JSP attribute (which, as you will see in the next section,
coincides with the name of an EL variable), name-from-attribute provides the name of another JSP
attribute containing the name of the JSP attribute you are interested in. Then, alias provides the name

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

of an EL variable local to the tag file that Tomcat synchronizes with the JSP attribute. For example, if you
declare:

<k@variable alias="ali" name-from-attribute="attrName"%>

Tomcat, before continuing execution of the tag file, makes available to it the page-scoped attribute
named ali and sets it to the value of the attribute named attrName. This name redirection makes
possible for JSP pages that use differently named attributes to use the same tag file. For example, a.jsp
might include the line

session.setAttribute("greet", "Good morning!");

and b. jsp might have

application.setAttribute("novel”, "Stranger in a Strange Land");
Ifa.jsp contains

pageContext.setAttribute("attrName", "greet");

and b.jsp

pageContext.setAttribute("attrName", "novel");

they can both invoke the tag file that includes the variable directive shown above. The tag file will then
have an ali attribute containing "Good morning!" in the first case and "Stranger in a Strange Land" in
the second case.

The attribute scope tells when Tomcat creates or updates the attribute in the calling page with the
value of the attribute that is local to the tag file (perhaps a name like synchronization would have been
clearer than scope). With AT_BEGIN, Tomcat does it before the tag file invokes a segment or immediately
before exiting the tag file; with NESTED, only before invoking a segment; and with AT_END, only before
leaving the tag file. Additionally, with NESTED, Tomcat saves the value of the calling-page attribute upon
entering the tag file and restores it upon leaving it. But this only if an attribute with the given name exists
in the calling page before entering the tag file.

JSTL and EL

Many developers have implemented similar custom actions to remove or at least reduce the need for
scripting elements. Eventually, a new effective standard known as JSTL was born.

However, JSTL is of little use without the Expression Language (EL), which lets you access and
manipulate objects in a compact and efficient way and can be used within the body of actions. I will first
introduce you to EL, so that you'll be well prepared to understand the JSTL examples.

But first of all, you have to download two libraries from http://jstl. java.net/download.html. If you
follow the two links "JSTL API" and "JSTL Implementation", you will reach two pages from which you
can download respectively javax.servlet.jsp.jstl-api-1.2.1.jar and javax.servlet.jsp.jstl-
1.2.1.jar (or the equivalent files for the version that will be current when you will be reading this book).

Copy them to %#CATALINA HOME%\1ib\ and restart Tomcat.

JSP Expression Language

EL was introduced in JSP 2.0 as an alternative to the scripting elements. You can use EL expressions
in template text and also in action attributes specified to be capable of accepting runtime expressions.
You will find a good reference at http://java.sun.com/products/jsp/syntax/2.0/
syntaxref207.html#1010522.

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

104

EL Expressions

EL supports two representations: ${expr} and #{expr}. To explain when you can or should use them, I
must first clarify the distinction between lvalues and rvalues.

The Istands for left, and the r stands for right. These values refer to the fact that in most computer
languages, the assigned value is on the right-hand side of an assignment statement, while the value to be
assigned to it is on the left-hand side. For example, the Java statement

ka[k] = j*3;

means that the result of the evaluation of j*3 (an rvalue) is to be assigned to the value resulting from the
evaluation of ka[k] (an Ivalue). Clearly, an lvalue must be a reference to something you can assign values
to (a variable or some attribute of an object), while there is no such restriction on rvalues.

Suppose that you have a page with a form. Wouldn't it be nice if you could specify directly in the
input elements of the form the references to where the user’s inputs should be stored? For example, it'd
be nice to specify something like <input id="firstName" value="variableName">, with variableName
specifying where you want to store the input typed by the user. Then, when the form is submitted, there
should be a mechanism to automatically take the user’s input and store it where you specified. Perhaps
you could also define a new attribute of the input element to provide a validating method. Inside the
input element, you would then already have everything you need to accept the user’s input, validate it,
and store it away.

This sounds great, but if you set the value attribute of the input element to ${formBean.firstName},
this evaluates to an rvalue. The value of the firstName attribute of formBean is assigned to the value
attribute of the input element, and that’s it. You need a way of deferring evaluation of
formBean.firstName and use it as an lvalue when you really need it—that is, when you handle the form
that was submitted.

You achieve that by replacing the $ before the EL braces with a #. The # tells Tomcat to defer
evaluation and use its result as an lvalue or an rvalue, depending on the context. EL expressions with the
dollar sign are evaluated like everything else. In any other aspect, parsing and evaluation of the two
representations are identical. You will use the #-representation when we will talk about JSF. For now,
you can learn about EL using the $-representation.

Using EL Expressions

The expr in ${expr} can contain literals, operators, and references to objects and methods. Table 4-5
shows some examples and their results.

Table 4-5. EL Expressions

EL Expression Result
${1 <= (1/2)} false
${5.0 > 3} true
${100.0 == 100} true
${'a' < 'b'} true

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

EL Expression Result

${ 'fluke' gt 'flute'} false

${1.5E2 + 1.5} 151.5

${1 div 2} 0.5

${12 mod 5} 2

${empty param.a} true if the request parameter a is null or an empty string

${sessionScope.cart.nItems} The value of the nItems property of the session-scoped attribute

named cart
${aBean.aProp} The value of the aProp property of the aBean bean
${aMap[entryName]} The value of the entry named entryName in the map named aMap

The operators behave in general like in Java, but with one important difference: the equality
operator (==) applied to string variables compares their contents, not whether the variables refer to the
same instance of a string. That is, it behaves like Java’s String.equals() method.

In addition to EL operators identical to Java operators, you also have most of their literal
equivalents: not for !, div for /, mod for %, 1t for <, gt for >, 1e for <=, ge for >=, eq for ==, ne for !=, and for
88, and or for | |. You also have the unary operator empty, to be used as shown in one of the examples in
Table 4-2.

The EL operators '."' (i.e., the dot) and [] (i.e., indexing) are more powerful and forgiving than the
corresponding Java operators.

When applied to a bean, as in ${myBean.prop}, the dot operator is interpreted as an indication that
the value of the property should be returned, as if you'd written myBean.getProp() in a scripting element.
As a result, for example, the line of code

${pageContext.servletContext.servletContextName}
is equivalent to this:
<%=pageContext.getServletContext().getServletContextName()%>

Furthermore, ${first.second.third}, equivalent to <%=first.getSecond().getThird()%>, returns
null when first.second evaluates to null, although in the expression, we try to dereference it with
.third. The JSP scripting equivalent would throw a NullPointerException. For this to work, all classes
must implement the getter methods of properly formed Java beans.

Array indexing allows you to try to access an element that doesn’t exist, in which case it simply
evaluates to null. For example, if you have an array of ten elements, the EL expression ${myArray[999]}
returns null instead of throwing an ArrayIndexOutOfBoundsException, as Java would have done. It is not
as bad as in the plain old “C” language, in which an index out of bounds would have returned the value it
found in memory. With EL, you can check for null. And in general you should do so, because you cannot
rely on an exception being thrown, as it would be in Java.

You can use both the dot and indexing operator to access maps. For example, the following two EL
expressions both return the value associated with the key named myKey:

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

106

JSP IN ACTION

${myMap.myKey}
${myMap["myKey"] }

There is a tiny difference, though: you cannot use the dot operator if the name of the key contains a
character that confuses EL. For example, ${header["user-agent"]} is OK, but ${header.user-agent}
doesn’t work, because the dash between user and agent in the second expression is interpreted as a
minus sign. Unless you have a variable named agent, both header.user and agent evaluate to null and,
according to the EL specification document, ${null - null} evaluates to zero. Therefore, the second
expression would return a zero. You would encounter a different, but potentially more serious, problem
if you had a map key containing a dot. For example, you could use ${param["my.par"]} without
problems, but ${param.my.par} would probably result in a null or, almost certainly, in something other
than what you are looking for. This would be bad in any case, because null is a possible valid outcome. I
suggest you use the bracketed form in all occasions and simply forget this issue.

Similar to JSP, EL contains implicit objects, which you find listed in Table 4-6.

Table 4-6. EL’s Implicit Objects

Object Description

pageContext The context of the JSP page. In particular, pageContext.servletContext gives you
areference to the same object referenced in JSP by the implicit variable
application. Similarly, pageContext.session is equivalent to JSP’s session,
pageContext.request to JSP’s request, and pageContext.response to JSP’s
response.

param Maps a request parameter name to its first value.

paramValues Maps a request parameter name to an array of its values.

header Maps a request header name to its first value.

headerValues Maps a request header name to an array of its values.

cookie Maps a cookie name to a single cookie.

initParam Maps the name of a context initialization parameter to its value.

pageScope Maps page-scoped variable names to their values.

requestScope Maps request-scoped variable names to their values.

sessionScope Maps session-scoped variable names to their values.

${aBean.aProp} The value of the aProp property of the aBean bean

applicationScope Maps application-scoped variable names to their values.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Caution You cannot use JSP scripting variables within EL expressions.

You've probably noticed that EL doesn’t include any way of declaring variables. Within EL
expressions, you can use variables set with the c:set JSTL core action (which I will describe in the next
section) or scoped attributes. For example, all of the following definitions let you use the EL expression

${xyz}:

<c:set var="xyz" value="33"/>
<% session.setAttribute("xyz", "44"); %>
<% pageContext.setAttribute("xyz", "22"); %>

However, you have to pay attention to scope precedence. The variable set with c:set and the
attribute in pageContext are the same variable. That is, c: set defines an attribute in the page context. The
attribute in sessionContext is a different variable, and you cannot access it with ${xyz} because it is
“hidden” behind the attribute with the same name in the page context. To access a session attribute, you
have to prefix its name with sessionScope, as in ${sessionScope.xyz}. If you don’t specify a scope, EL
looks first in the page, then in the request, then in the session, and finally in the application scope.

Caution You cannot nest EL expressions. Expressions such as ${expr1[${expr2}]} are illegal.

You can make composite expressions consisting of several EL expressions and additional text, as in
the following example:

<c:set var="varName" value="Welcome ${firstName} ${lastName}!"/>

However, you cannot mix the ${} and #{} forms.

JSP Standard Tag Library

JSTL consists of five tag libraries, as listed in Table 4-7. If you are wondering, i18n stands for
internationalization, abbreviated by replacing the eighteen letters in the middle with the number 18.

Table 4-7. JSTL Tag Libraries

Area Functionality

Core Variable support, flow control, URL management, and miscellaneous
i18n Locale, message formatting, and number and date formatting
Functions String manipulation and length of collection objects

SQL Handling of databases

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Area Functionality

XML XML core, flow control, and transformation

Table 4-8 lists all the tags defined in the five libraries.

Table 4-8. The JSTL Tags

Core i18n Functions Database XML
c:catch fmt:bundle fn:contains sql:dateParam x:choose
c:choose fmt:formatDate fn:containsIgnoreCase sql:param x:forEach
c:forEach fmt : formatNumber fn:endsWith sql:query x:if
c:forTokens fmt:message fn:escapeXml sql:setDataSource x:otherwise
c:if fmt:param fn:indexOf sql:transaction x:out
c:import fmt:parseDate fn:join sql:update X:param
c:otherwise fmt:parseNumber fn:length X:parse
c:out fmt:requestEncoding fn:replace x:set
c:param fmt:setBundle fn:split x:transform
c:redirect fmt:setlocale fn:startsWith x:when
c:remove fmt:setTimeZone fn:substring

c:set fmt:timeZone fn:substringAfter

c:url fn:substringBefore

c:when fn:tolLowerCase

fn:toUpperCase

fn:trim

As you have already seen in a couple of examples, to use the JSTL libraries in JSP pages, you must
declare them in taglib directives as follows:

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

<k@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<k@taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>
<%@taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions"%>
<%@taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql"%>
<hetaglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml"%>

I will describe JSTL-XML in Chapter 5, where I will talk about XML, and JSTL-SQL in Chapter 6,
dedicated to database access from JSP. In the following sections of this chapter, I will describe JSTL-core
and JSTL-i18n. I will not talk about the functions because they are pretty self-explanatory.

The Core Library

To explain some of the most used actions, I will go back to the example req_params. jsp, of Chapter 1
(Listing 1-6) and replace its scriptlets with JSTL actions. Listing 4-16 shows you how you do it.

c:out, c:set, and c:forEach (and fn:length)
Listing 4-16. req_params_jstl.jsp

01: <%@page language="java" contentType="text/html"%>

02: <¥@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

03: <%@taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions"%>
04: <html><head><title>Request Parameters with JSTL</title></head><body>
05: Map size = <c:out value="${fn:length(paramvalues)}"/>

06: <table border="1">

07: <tr><td>Map element</td><td>Par name</td><td>Par value[s]</td></tr>
08: <c:set var="k" value="0"/>

09: <c:forEach var="par" items="${paramValues}"><tr>
10: <td><c:out value="${k}"/></td>

11: <td><c:out value="'${par.key}'"/></td>

12: <td><c:forEach var="val" items="${par.value}">
13: <c:out value=""'${val}'"/>

14: </c:forEach></td>

15: <c:set var="k" value="${k+1}"/>

16: </tr></c:forEach>

17: </table>

18: </body></html>

Notice that, as there are no scripting elements, I have removed the importing of Java libraries.

Lines 2 and 3 show the taglib directives for JSTL core and functions. In Line 5, you can see how to
use the fn:length function to determine the size of the EL implicit object paramValues and the c:out
action to send the value of an EL expression to the output. You could have just written the naked EL
expression, but c:out automatically converts characters that have special HTML meaning to the
corresponding HTTP entities. For example, it writes 8amp; instead of & Therefore, it’s better to use c:out.

c:set initializes an index in line 8 and increments it in line 15. In lines 9 and 12, c: forEach lets you
go through the elements of maps and arrays.

If you type in your browser

http://localhost:8080/tests/req _params_jstl.jsp?a=b&c=d8a=zzz8empty=&empty=81=22

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

110

you’ll get the same output shown in Figure 1-12 for req_params.jsp (see Figure 4-3). Although, to be
completely correct, the format of the HTML will be different.

[Firefox (=[@] =]
| Request Paramete; with JSTL iEJ

€) B req_porams jstjspra=b 77 v @ [~ Google P |t [3:
Map size = 4

Map element ‘Pa:r name |Par value[s]

o [[22

i e

h ['a‘ |'b' ‘72z

b e

Figure 4-3. Output of req_params_jstl.jsp

In essence, c:out is for EL expressions what an expression scripting element is for JSP (i.e., Java)
expressions. Beside the attribute value, it supports default, to provide a fallback output, and escapeXml,
that you set to false to prevent the escaping of XML characters, which are escaped by default.

With c:set, besides defining var and value, you can also specify the scope of the variable with the
attribute scope. Finally, in alternative to var, you can use the pair of attributes property and target to
specify which property of which object you want to modify.

In the example, you have seen that c: forEach lets you loop over a list of objects with the two
attributes var and items. Alternatively, you can go through a list by means of the attributes begin, where
0 indicates the first element, end, and step. Further, if you define the name of a variable by setting the
attribute varStatus, c:forEach will store in it an object of type
javax.servlet.jsp.jstl.core.LoopTagStatus.

As these attributes are pretty straightforward, the best way for you to become familiar with them is
to write a small page and see what happens when you set them to different values.

Before moving on, have a look at Table 4-9. It lists what types of objects you can assign to the
attribute items and, correspondingly, what type of objects you get in the variable defined through var.

Table 4-9. c:forEach Types

items var
Array of instances of class C Instance of C
Array of primitive values (e.g., of int) Wrapped element (e.g., in Integer)

String of comma-delimited substrings Substring
java.util.Collection Element obtained by invoking iterator()

java.util.Map Instance of java.util.Map.Entry

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

items var

java.util.Iterator An Iterator element
java.util.Enumeration An Enumeration element
javax.servlet.jsp.jstl.sql.Result SQL rows

c:if, c:choose, c:when, and c:otherwise

The JSTL versions of Java’s if and switch are particularly useful tags. For example, the body of the
following action is executed only if the EL expression calculates to true:

<c:if test="ElL-expression"> ... </c:if>

Unfortunately, there is no c:else, but the JSTL version of switch (c:choose) is much more powerful
than its Java counterpart. In fact, it’s more like a chain of if .. else:

<c:choose>
<c:when test="El-expression-1"> ... </c:when>
<c:when test="El-expression-2"> ... </c:when>

<c:otherwise> ... </c:otherwise>
</c:choose>

Besides test, which lets you define the condition you want to test, c:if supports the two attributes
var and scope, which c:if uses to store the condition’s result.
There is no attribute supported by c:choose and c:otherwise, and c:when only supports test.

c:catch, c:remove, and c:url

With c:catch you can catch the exceptions that occur within its body. It accepts a var attribute, where it
stores the result of the exception, of type java.lang.Throwable. For example, the following two lines will
insert into the output the string "java.lang.ArithmaticException: / by zero".

<c:catch var="e"><% int k = 1/0; %></c:catch>
<c:if test="${e != null}"><c:out value="${e}"/></c:if>

c:remove lets you remove the variable defined in its pair of attributes var and scope.
c:url formats a string into a URL, which it then inserts into the output, like in the following
example:

<a href="<c:url value="/tests/hello.jsp"/>">Hello World

Notice the nested double quotes. This is not a problem, because Tomcat processes the action on the
server and replaces it with a string representing the URL. The client doesn’t see the inner double quotes.

You can also specify a var/scope pair of attributes to store the generated URL into a scoped variable
and the attribute context to refer to another application. If you use the bodied form of c:url, you can
define with c:param additional parameters that will be appended to the URL.

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

112

c:import, c:redirect, and c:param

c:import and c:redirect are generalized versions of the standard actions jsp:include and jsp:forward.
The main difference is that the JSTL actions are not limited to the scope of the current application. They
let you include or forward to any URL via the attribute url, which is in both cases the only attribute
required.

The general syntax of c:import is as follows:

<c:import url="expri" context="expr2" charEncoding="expr3" var="name" scope="scope">
<c:param name="expr4" value="expr5"/>
</c:import>
By now, everything should be pretty clear to you. The only thing worth mentioning is that the
default value for charEncoding is "IS0-8859-1". I prefer to use UTF-8 because it is equally supported by all
operating systems. Also, UTF-8 can handle non-European languages and has become the de-facto
standard on the Web. In case you are curious, UTF stands for UCS Transformation Format, where UCS
means Universal Character Set.
c:redirect is equivalent to invoking javax.servlet.http.HttpServletResponse.sendRedirect and
only admits the two attributes url and context. When designing a web site, you might find it useful to

remember that c:redirect changes the page that the user sees, thereby affecting the setting of
bookmarks, while with jsp:forward, the user remains unaware of the page change.

c:forTokens

In addition to c:forEach, the JSTL provides a form of string tokenizer, which lets you easily extract from a
string the sub-strings separated by one or more delimiters.

If you have a comma as a single delimiter, you can use c:forEach, but if you have more than one
delimiter, or if the only delimiter is not a comma, c:forTokens is for you.

The general syntax of c: forTokens is as follows:

<c:forTokens var="name" items="expri" delims="expr2" varStatus="name"
begin="expr3" end="expr4" step="expr5">

</c:forTokens>

The i18n Library: Writing Multi-Lingual Applications

You can take one of two approaches to internationalizing a web application: you can either provide a
different version of the JSP pages for each locale and select them via a servlet when processing each
request, or you can save locale-specific data in separate resource bundles and access them via 118n
actions. The JSTL internationalization actions support both, but I will concentrate on the second
approach, where the work of switching between languages is actually done in JSP.

fmt:setLocale, fmt:setBundle, fmt:setMessage, and fmt:param

Suppose that you want to support English and Italian. The first thing you have to do is identify all the
strings that are going to be different in the two languages and define two bundles, one for each language
(see Listings 4-17 and 4-18).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Listing 4-17. MyBundle_en.java

package myPkg.i18n;

import java

util.*;

public class MyBundle en extends ListResourceBundle {
public Object[][] getContents() {return contents;}
static final Object[][] contents = {

{"login
{"login

Listing 4-18.

.loginmess","Please login with ID and password"},
.submit","Submit"},
.choose", "Choose the language"},

.english","English"},

in.italian","Italian"}

MyBundle_it.java

package myPkg.i18n;

import java

.util.*;

public class MyBundle it extends ListResourceBundle {
public Object[][] getContents() {return contents;}
static final Object[][] contents = {

{"login
{"login
"login
"login
"login

)

}

.loginmess","Loggati con ID e parola d'ordine"},
.submit","Invia"},

.choose","Scegli la lingua"},
.english","Inglese"},

.italian","Italiano"}

As you can see, a bundle is nothing other than a Java class that extends the class

java.util.ListResourceBundle. In this example, you will only find a simple login page, but in reality,

JSP IN ACTION

you’ll have to include all the language-specific messages of your application. I used the prefix login to
show you that it’s possible to group messages within a bundle. You can compile the Java files from the
command line with javac to obtain the two files MyBundle_en.class and MyBundle_it.class. Place both
files inside the WEB-INF\classes\myPkg\i18n\ folder of your application’s root directory, as you would do
with any other custom class.

Listing 4-19 shows the login page that supports two languages. To try it out, copy the folder named
international from the software package for this chapter to webapps. Then type in your browser
localhost:8080/international

Listing 4-19.

01:
02:
03:
04:
05:
06:
07:
08:

<J@page

index.jsp of a Multilingual Application

language="java" contentType="text/html"%>

<k@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>
<c:set var="langExt" value="en"/>
<c:if test="${param.lang!=null}">

<c:set var="langExt" value="${param.lang}"/>

</c:if>
<fmt:setlocale value="${langExt}"/>

www.it-ebooks.info

113

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

114

09: <fmt:setBundle basename="myPkg.i18n.MyBundle"

10: var="lang" scope="session"/>

11: <html><head><title>i18n</title></head><body>

12: <h1><fmt:message key="login.loginmess" bundle="${lang}"/></h1>
13: <form method="post" action="home.jsp">

14: <input name=id>

15: <input name=passwd>

16: <input type="submit"

17: value="<fmt:message key="login.submit" bundle="${lang}"/>"
18: >

19: <h2><fmt:message key="login.choose" bundle="${lang}"/></h2>
20:

21: <fmt:message key="login.english" bundle="${lang}"/>

22: <J/a>

23:

24:

25: <fmt:message key="login.italian" bundle="${lang}"/>

26:

27: </body></html>

Lines 4-7 ensure that the page variable langExt is not null by setting it to en when the page is
requested the first time. Line 8 sets the locale to the requested language code. The list of valid language
codes is defined in the International Organization for Standardization (ISO) 639 standard. They’re in
lowercase (e.g., it for Italian), so you can’t confuse them with the country codes defined in the ISO 3166
standard, which are in uppercase (e.g., IT for Italy).

Inline 9, you set the bundle. Notice that it looks like the fully qualified class name of the two bundle
classes but without the trailing underscore and language code. This is exactly how it should be done.
Otherwise, the JSTL won't find your messages. After executing fmt:setBundle, the session variable lang
points to the bundle in the correct language, thanks to the locale and the basename attribute.

After that, an element like the following one will insert in the appropriate language the message
identified by the value of the key attribute:

<fmt:message key="keyName" bundle="${lang}"/>

Notice how the double quotes are nested in line 17 without causing any problem. This is because
the actions are processed first. By the time Tomcat arrives to process the HTML, only the outer double
quotes remain.

Figure 4-4 shows what the page looks like the first time you view it.

(== =]
\lEn
« C | @ localhost:3080/international,/ o R

Please login with ID and password
Submit

Choose the language

English Italian

Figure 4-4. The first time you view index.jsp

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Figure 4-5 shows how the page looks when you choose Italian by clicking on the corresponding
bottom link.

=R X
i18n
L C | @ localhost:8080/international/indexjsp?lang =it i S

Loggati con ID e parola d'ordine
(invia)

Scegli la lingua

Inglese Inaiano

Figure 4-5. The Italian version of index.jsp

If Tomcat cannot find a bundle, it will display the key name preceded and followed by three
question marks, as shown in Figure 4-6. This indicates that you must have made a mistake in the
directory names.

o[
i18n \
€« C | @ localhost:8080/international/ i §
2??login.loginmess???

?2??ogin.choose???

|
|
27 ogin english??? 277login italian??? i

Figure 4-6. index.jsp cannot find the messages.

Besides value, fmt:setlocale admits two additional attributes. The first one, scope, defines the
scope of the locale. In the example, the default (i.e., page) is used, but scope lets you, for example, save
the locale as a session attribute. The remaining attribute, variant, lets you specify non-standardized
locales.

fmt : setMessage also supports a var/scope pair of attributes to let you store the generated string into
a scoped variable. You can also place the sub-action fmt:param inside the body of fmt:message and set its
attribute value to a string that you want to append to the message.

fmt:bundle, fmt:setTimeZone, and fmt:timeZone

Similar to fmt:SetBundle is fmt:bundle, but while you choose the basename the same way you do with
fmt:setBundle, you cannot store your choice in a scoped variable. Instead, the basename you choose

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

116

applies to all elements inside the body of fmt :bundle. Additionally, fmt:bundle also supports the
attribute prefix, which extends the basename. For example, if you replace lines 9-10 in Listing 4-19 with

<fmt:bundle basename="myPkg.i18n.MyBundle" prefix="login.">
and insert </fmt:bundle> immediately above the last line, you then replace the existing line 21:
<fmt:message key="login.english" bundle="${lang}"/>
with:
<fmt:message key="english"/>

fmt:setTimeZone sets the current time zone to what specified in the attribute value, like in
<fmt:setTimeZone value="America/Los_Angeles"/>

but it can also store a time zone into a scoped variable specified by the var/scope attribute pair.
When you define a time zone with fmt:timeZone, on the other hand, it only applies to the elements
that appear in the body of the action.

fmt:parseNumber and fmt: formatNumber

fmt:parseNumber and fmt:formatNumber deal with numbers, percentages, and currencies. Both actions
can store their result into a scoped variable through the usual var/scope pair of attributes, or send it to
the output if those attributes are missing.

Note that fmt:formatNumber is bodyless and expects to find the number to be formatted in the value
attribute. fmt :parseNumber also supports value in its bodyless form, but if the attribute is missing, it takes
as input the content of its body.

Both actions support a type attribute that can have the values "number", "currency", or "percent".

Both actions also support a pattern attribute that lets you specify in detail a custom format. Table 4-
10 lists the available symbols.

Table 4-10. Pattern Symbols for the Number-Actions

Symbol Meaning

0 A digit

E Exponential form

A digit; 0 when absent
Decimal period

, Group of digits separator
; Format separator

- Default negative prefix

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Symbol Meaning

% Displays a percent sign after multiplying the number by 100

? Displays a per mille sign after multiplying the number by 1000
o Place marker for the actual currency sign

X Place marker for any other character used in the prefix or suffix

To quote special characters in the prefix or suffix

Try out fmt: formatNumber with different patterns and see what you get. Some symbols are obvious,
others, less so.

Additionally, fmt:parseNumber supports the attributes parselLocale, integerOnly (that you must set
to false when parsing a floating-point number), and timeZone.

Yet, on the other hand, fmt:formatNumber supports the attributes currencyCode (only when type is
set to "currency"), currencySymbol (ditto), groupingUsed (set to false if you don’t want a separator
between triplets of integer digits), maxIntegerDigits, minIntegerDigits, maxFractionDigits, and
minFractionDigits. The last four attributes specify the maximum and minimum number of digits you
want before and after the decimal point.

fmt:ParseDate, fmt:formatDate, and fmt:requestEncoding

Like fmt:parseNumber and fmt: formatNumber, fmt:ParseDate and fmt:formatDate can store their result
into a scoped variable or send it to the output. Also, fmt:formatDate is bodyless while fmt:parseDate can
be either bodyless or bodied. Not surprisingly, both actions support the timeZone attribute, and the
format attributes dateStyle (with possible values "full", "long", "medium", "short", or "default"), and
timeStyle (ditto). The Date-actions also support a pattern attribute. See Table 4-11 for a list of available

symbols.

Table 4-11. Pattern Symbols for the Date-Actions

Symbol Meaning

G Era designator (e.g., AD)
y Year

M Month

d Day of the month

h Hour (12-hour time)

H Hour (24-hour time)

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Symbol Meaning

m Minute

s Second

S Millisecond

E Day of the week

D Day of the year

F Day of the week within the month (e.g., 2 means 2™ Tue of the month)
w Week of the year

w Week of the month
a AM/PM

k Hour (12-hour time)
K Hour (24-hour time)
z Time zone

Escape for text

Quote

Additionally, fmt:parseDate supports the attributes parselocale, and fmt:formatDate supports type
(with possible values "date", "time", and "both").

With the remaining i18n action, fmt:requestEncoding, you specify what character encoding you
expect for the text that the user types in forms. For example:

<fmt:requestEncoding value="UTF-8"/>

This action makes sense because the locale of the user might be different from the locale of the
page. Note that if you develop a custom action that uses the method ServletResponse.setlocale() to set
the locale of the response, it will take precedence over the character encoding set in
fmt:requestEncoding.

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = JSP IN ACTION

Summary

In this chapter, you have learned everything about JSP standard actions and how to develop custom
actions with JSP’s tag extension mechanism.

You saw detailed examples that explained how to develop and use custom actions with and without
body, both implemented with tag handlers and with tag files.

After explaining the Expression Language, I described in general terms the JSP Standard Tag Library
and explained in detail the core and the internationalization tags.

In the next chapter, I will introduce you to XML, an understanding of which is essential for
developing professional web applications.

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER S

XML and JSP

HTML is probably the first markup language most of us came into contact with. It’s a great language, but
it’s not without its problems.

For example, HTML mixes content data with the way the information is presented, thereby making
it difficult to present the same data in different ways and to standardize presentations across multiple
sets of data. Cascading Style Sheets (CSS) significantly reduces this problem but doesn’t completely
eliminate it, and it also forces you to learn yet another language.

Another problem, partly due to the way in which HTML is defined, is that the browsers are very
forgiving about inconsistently written pages. In many cases, they're able to render pages with unquoted
attribute values and tags that aren’t closed properly. This encourages sloppiness in coding and wastes
computer resources.

XML (whose standard is available at http://www.w3.0rg/TR/xml) lets you organize information into a
treelike structure in which each item of information represents a leaf. Its power and flexibility lies in the
idea of defining its syntax and a mechanism for defining tags. This makes it possible for you to define
your own markup language tailored for the type of information you're dealing with. This also lets you
define XHTML, a version of HTML clean of inconsistencies, as a well-formatted XML file.

Also, XML is the perfect vehicle for exchanging structured information. In fact, XML'’s purpose is
precisely to describe information.

I'have introduced XML starting from HTML, because you're familiar with HTML and they’re both
markup languages. However, the usefulness of XML goes well beyond providing a better syntax for
HTML. The great advantage of using XML in preference to proprietary formats whenever information
needs to be structured is that standardized parsers make the manipulation of XML documents easy. In
this chapter, you will also learn how to parse an XML document in JSP with XML custom tags and XPath.

Many organizations, both private and public, have turned to XML to standardize the representation
of information in their respective areas.

Some initiatives are very ambitious, like for example the development of a Universal Business
Language (UBL) to generate XML-based standards of business documents like purchase orders and
invoices (see http://ubl.xml.org).

Other initiatives, like the Real Estate Transaction Markup Language (RETML) to standardize the
encoding of real estate transactions, have already gone through years of refinements and associated tool
development and are being adopted.

Still other initiatives, like the Mind Reading Markup Language (MRML) might just serve the purpose
of having fun (see http://ifaq.wap.org/computers/mrml.html).

OASIS, a not-for-profit consortium that promotes the establishment of open standards for the
exchange of information, lists in http://xml.coverpages.org/xmlApplications.html almost 600 XML
applications and initiatives.

G. Zambon, Beginning JSP, JSF and Tomcat 121
© Giulio Zambon 2012

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

CASCADING STYLE SHEETS

The concept of style sheets has its origins in desktop publishing. Style sheets are used to separate
presentation from content. The term cascading refers to the fact that you can write a series of style sheets,
whereby each one builds upon and refines the styles defined in the more general ones.

The W3C has generated two standards that are relevant when talking about style sheets associated with
HTML pages: Cascading Style Sheets, level 1 (CSS1), and Cascading Style Sheets, level 2 (CSS2). (See
http://www.w3.0rg/TR/REC-CSS1 and http://www.w3.org/TR/REC-CSS2, respectively.)

You need the following three components to define styles: selector {property: value}

The selector is the HTML element you want to define, the property is the name of one of the element's
attributes, and the value is the attribute value. You can define several attributes for the same element by
separating them with a semicolon, and you can style several elements with a single definition by
separating them with a comma. To define more than one style for the same element, you can associate a
class name to each separate style. For example:

<style type="text/css">
p {font-size: 130%}
p.bold {font-weight: bold}
p.italic {font-style: italic}
</style>

Then, you can use the styles as follows:

<p>This is a default paragraph, large size</p>

<p class="bold">This is a large and bold paragraph</p>

<p class="bold italic">This is a large, bold, and italic paragraph</p>

<p class="italic" style="font-size: 100%;">This is an italic normal sized paragraph</p>

You can place style elements inside the head or body HTML elements of your pages, or define styles for
individual elements by placing style definitions separated by semicolons in their style attribute.

The XML Document

To explain XML, I'll start by giving you a simple example that will accompany us throughout this
chapter. For this purpose, I'll use the file shown in Listing 5-1. We will go back to the eshop example in
the next chapter. But, to explain XML, it is better to look at a simple example without being distracted by
the complexity of the application that has nothing to do with the task at hand.

Listing 5-1. enterprises.xml

<?xml version="1.0" encoding="UTF-8"?>
<starfleet>
<title>The two most famous starships in the fleet</title>
<starship name="USS Enterprise" sn="NCC-1701">
<class name="Constitution"/>
<captain>James Tiberius Kirk</captain>

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

</starship>
<starship name="USS Enterprise" sn="NCC-1701-D">
<class name="Galaxy"/>
<captain>Jean-Luc Picard</captain>
</starship>
</starfleet>

The first line defines the standard and the character set used in the document. The tags are always
closed, either with an end tag when they have a body (e.g., <title>...</title>) or with a slash if they're
empty (e.g., <class .../>). There can be repeated tags (e.g., starship), and the attribute names are not
unique (e.g., name).

As you can see, the tags reflect the logical structure of the data, although there are certainly many
ways of structuring the same information. Each tag identifies an element node labeled with a name (e.g.,
starfleet, title, and class, also called an element type), often characterized by attributes that consist of
a name and a value (e.g., sn="NCC-1701"), and possibly containing child nodes (e.g., captain inside
starship), also called sub-elements.

XML documents can also contain processing instructions for the applications that handle them
(enclosed between <? and ?>), comments (enclosed between <! -- and -->), and document-type
declarations (more about that later). Notice that enterprises.xml doesn’t provide any information
concerning how the data it contains might be presented.

XML relies on the less-than sign to identify the tags. Therefore, if you want to use it for other
purposes, you have to escape it by writing the four characters &1t; instead. To escape larger blocks of
text, you can use the CDATA section, as in the following example:

<![CDATA[<aTag>The tag's body</aTag>]]>

Looking at enterprises.xml, you might ask yourself why sn is an attribute of starship, while captain
is a child element. Couldn’t you make captain an attribute, as in the following example?

<starship name="USS Enterprise"” sn="NCC-1701" captain="Jean-Luc Picard">

Yes, you could. It all depends on what you think you might like to do with the element in the future.
With captain defined as an element, you can define attributes for it, such as its birth date. This wouldn’t
be possible if you had defined captain as an attribute. And the same applies to the class element. You
could also replace the starship attributes name and sn with two children elements, but how much sense
would it make?

We have to make one last consideration about empty vs. bodied elements. By defining the captain’s
name as the body of the element, as in:

<captain>Jean-Luc Picard</captain>

you make it impossible for it to have children elements. Alternatively, you could have defined this:
<captain name="Jean-Luc Picard"></captain>

perhaps shortened, as in:

<captain name="Jean-Luc Picard"/>

Defining Your Own XML Documents

The usefulness of being able to use XML tags tailored to your needs is greatly expanded by the possibility
of formally specifying them in a separate document. This enables you to verify the validity of the XML
documents and also to communicate their structure to others. Without a specification in a standardized

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

124

format, you would have to describe your document structure in plain language or via examples. It
wouldn’t be the most efficient way, and it certainly wouldn’t be good enough for automatic validation.
The two most widely used methods to specify document structures are XML DTDs and XML schemas.
You will see later on in this chapter that you can select which method your XML document uses for
validation by adding an appropriate element to it.

XML DTDs

DTDs are better known than XML schemas, which have been developed more recently. They are also
easier to understand. DTDs were originally developed for the XML predecessor, Standard Generalized
Markup Language (SGML), and they have a very compact syntax. Listing 5-2 shows how a DTD for
enterprises.xml would look.

Listing 5-2. starfleet.dtd

01: <!ELEMENT starfleet (title,starship*)>
02: <!ELEMENT title (#PCDATA)>

03: <!ELEMENT starship (class,captain)>
04: <!ATTLIST

05: starship name CDATA #REQUIRED

06: sn CDATA #REQUIRED>

07: <!ELEMENT class EMPTY>

08: <!ATTLIST class name CDATA #REQUIRED>
09: <!ELEMENT captain (#PCDATA)>

Line 1 defines the starfleet element as consisting of one title element and an undefined number
of starship elements. Replacing the asterisk with a plus sign would require starship to occur at least
once, and a question mark would mean zero or one starships. If you replaced starship with
(starship|shuttle), it would mean that you could have a mix of starship and shuttle elements
following the title (just as an example, because you haven’t defined shuttle).

Line 2 specifies title to be a string of characters (the PC of PCDATA stands for parsed character). Line
7 shows how to specify that an element not be allowed to have a body. To complete the description of
how to define elements, I only need to add that if you replaced EMPTY with ANY, it would mean that the
element could contain any type of data.

Lines 4-6 specify the attributes for starship. The general format of an attribute list declaration is as
follows:

<IATTLIST elementName attributeName attributeType defaultValue>

where attributeType can have a dozen of possible values, including CDATA (to indicate character data),
an enumeration of all strings allowed (enclosed in parentheses and with bars as separators, as in
(left|right|center)), ID (to indicate a unique identifier), and IDREF (the ID of another element). The
defaultValue can be a quoted value (e.g., "0" or "a string"), the keyword #REQUIRED (to indicate thatit’s
mandatory), the keyword #IMPLIED (to indicate that it can be omitted), or the keyword #FIXED followed
by a value (to force the attribute to have that value).

XML Schemas

The most significant difference from DTDs is that the schemas are in XML syntax themselves. This
makes the schemas more extensible and flexible than DTDs. Furthermore, schemas can perform a more
sophisticated validation thanks to their support data types. As the schemas are in XML format, you can

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

store, handle, and style schemas like any other XML document. W3C describes standardized XML
schemas in three documents: http://www.w3.0rg/TR/xmlschema-0/ (a primer to get you started),
http://www.w3.0rg/TR/xmlschema-1/ (about structures), and http://www.w3.0rg/TR/xmlschema-2/ (about
data types). Unfortunately, schemas are complicated, and the standards aren’t exactly easy to read and
understand. In this section, I am only going to describe a sub-set of schemas that will get you by in most
situations.

Let’s see the XML schema for enterprises.xml (see Listing 5-3).

Listing 5-3. starfleet.xsd

01: <?xml version="1.0" encoding="UTF-8"?>
02: <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

03: xmlns="http://localhost:8080/xml-validate/xsd"

04: targetNamespace="http://localhost:8080/xml-validate/xsd"

05: elementFormDefault="qualified"

06: attributeFormDefault="unqualified"

07: >

08: <xsd:annotation>

09: <xsd:documentation xml:lang="en">

10: Schema for Starfleet

11: </xsd:documentation>

12: </xsd:annotation>

13: <xsd:element name="starfleet">

14: <xsd:complexType>

15: <xsd:sequence>

16: <xsd:element name="title" type="xsd:string" maxOccurs="1"/>
17: <xsd:element name="starship" type="ShipType" maxOccurs="unbounded"/>
18: </xsd:sequence>

19: </xsd:complexType>

20: </xsd:element>

21: <xsd:complexType name="ShipType">

22: <xsd:all>

23: <xsd:element name="class" type="ClassType" minOccurs="1"/>
24: <xsd:element name="captain" type="xsd:string" minOccurs="1"/>
25: </xsd:all>

26: <xsd:attribute name="name" type="xsd:string" use="required"/>
27: <xsd:attribute name="sn" type="xsd:string" use="required"/>

28: </xsd:complexType>

29: <xsd:complexType name="ClassType">

30: <xsd:attribute name="name" type="xsd:string" use="required"/>
31: </xsd:complexType>

32: </xsd:schema>

Lines 2—-7 establish that this schema conforms to the standard XML schema and define the schema’s
namespace and how XML files are supposed to refer to elements and attributes. To understand it all, you
need to learn quite a bit about namespaces and schemas. The whole matter is quite tricky, and the error
messages you get when you try to validate an XML document with a schema are sometimes implicit
(more about this later). For example, if you remove the setting of elementFormDefault to "qualified"
and try to validate a correct XML document, you will get the following error message:

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

126

*** Validation Error: org.xml.sax.SAXParseException; systemId: ‘w»
file:///C:/Program%20Files/Apache%20Software%20Foundation/Tomcat/webapps/xml-
validate/xml/enterprises_schema.xml; lineNumber: 7; columnNumber: 10; ‘=

cvc-complex-type.2.4.a: Invalid content was found starting with element 'title'. w»
One of '{title}' is expected.

How can it be that the validator expects the element title but complains when it encounters title?
It has to do with the fact that normally the element tags include a prefix and a colon before the element
name, like in xsd:element, and that schema and the XML document must be consistent.

Lines 8-12 are essentially a comment.

Lines 13-20 specify the starfleet element, which is of a complex type, as defined in Line 14. This
means that starfleet can have attributes and/or can contain other elements. Line 15 tells you in which
way starfleet is complex: it contains a sequence of elements. Elements in xsd: sequence must appear in
the order in which they are specified (in this case, title followed by starship).

Line 16 specifies that title is of type xsd:string, which is a primitive type hard-coded in the
standard XML Schema. Line 16 also tells you that there can be maximum one title per starfleet. Itis
also possible to define minOccurs, and the default for both minOccurs and maxOccurs is 1. This means that
by omitting minOccurs, you make title mandatory.

Line 17 declares that the starship element is of type ShipType, which is defined somewhere else in
starfleet.xsd. This is an alternative to defining the type of an element inside its body, as we did with the
starfleet element. Naming a type lets you use it for several element definitions and as a base for more
complex types. However, I have only extracted the type specification from the body of starship to make
the code more readable. maxOccurs="unbounded" states that there can be as many starship elements in
starfleet as you need.

Lines 21-28 define the type of the starship element. It’s a complex type, but it’s different from that
of starfleet. The xsd:all group means that there can only be up to one element each of all those listed,
in any order. This would normally mean that each starship could be empty or contain a class, a
captain, or both as children. However, we want to make ship class and captain mandatory. To achieve
this result, we specified the attribute minOccurs="1" for both elements.

Lines 26-27 define the two attributes of starship. The use attribute lets you specify that they are
mandatory.

If you now look again at enterprises.xml, you'll notice that the class element has an attribute
(name). Because of this attribute, you must define its type as complex, although class has no body. This is
done in lines 29-31. As you can see, you specify an empty body by creating a complex type without sub-
elements.

Occurrence Constraints

In starfleet.xsd, we used three attributes to limit the number of occurrences: minOccurs and maxOccuzrs
when declaring elements, and use when declaring attributes. While the constraints for elements accept
non-negative integers as values (with 1 as the default), use can only have one of the following values:
required, optional (the default), and prohibited. You can use two additional attributes when declaring
either elements or attributes: default and fixed.

When applied to an attribute, default supplies the value of an optional attribute in case it is omitted
when you define its element in the XML document (it is an error to provide a default for attributes that
are required). Note that when you define elements in an XML document, they're always created with all
their attributes, whether you explicitly define them in the XML document or not, because their existence
is determined by their presence in the schema. When applied to an element, default refers to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

element content, but it never results in the creation of elements. It only provides content for empty
elements. For example: <xsd:attribute name="country" type="xsd:string" default="USA"/>.

The fixed constraint forces an attribute value or an element content to have a particular value. You
can still define a value in the XML document, but it must match the fixed value assigned in the schema.

Primitive and Derived Types

With xsd:string, you've already seen an example of primitive types. Table 5-1 summarizes the full list of
primitive types.

Table 5-1. XML Primitive Types

Type Example/Description

anyURI Either an absolute or a relative URI

base64Binary MIME encoding consisting of A-Z, a-z, 0-9, +, and /, withA=0 and / = 63

boolean For example, true and false

date Like the date portion of dateTime, but with the addition of the time zone

dateTime For example, 2007-12-05T15:00:00.345-05:00 means 345 milliseconds after 3 PM
Eastern Standard Time (EST) of December 5th, 2007; fractional seconds can be
omitted

decimal For example, 123.456

double Formatted like float, but uses 64 bits

duration For example, PaYbMcDTdHeMfS means a years, b months, c days, d hours, e minutes,

and f'seconds; a minus at the beginning, when present, indicates “in the past”

float 32-bit floating point; for example, 1.2e-4

gDay For example, 25

gMonth For example, 12

gMonthDay For example, 12-25

gYear For example, 2007

gYearMonth For example, 2007-12; g stands for Gregorian calendar, which is the calendar we use

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

128

Type Example/Description

hexBinary Hexadecimal encoding; for example, 1F represents the number 31 and corresponds
to a byte containing the bit sequence 01111111

NOTATION Externally defined formats

QName Qualified XML name; for example, xsd:string
string For example, "This is a string"

time Like the time portion of dateTime

The XML Schema standard also defines additional types called derived, among which are those

listed in Table 5-2.

Table 5-2. XML Derived Types

Type Example/Description

byte An integer number between -2’ (-128) and 2°-1 (127)

int An integer number between -2°' (-2,147,483,648) and 2°'-1 (2,147,483,647)

integer An integer number

language A natural language code as specified in the ISO 639 standard (e.g., FR for French
and EN-US for American English)

long An integer number between -2* (-9,223,372,036,854,775,808) and 2*-1
(9,223,372,036,854,775,807)

negativelnteger An integer number <0

nonNegativeInteger An integer number >=0

nonPositiveInteger An integer number <=0

normalizedString A string that doesn’t contain any carriage return, line feed, or tab characters

positivelInteger An integer number > 0

short An integer number between -2" (-32,768) and 2"-1 (32,767)

token A string that doesn’t contain any carriage return, line feed, tab characters,

leading or trailing spaces, or sequences of two or more consecutive spaces

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

Type Example/Description

unsignedByte An integer number between 0 and 2°-1 (255)

unsignedInt An integer number between 0 and 2*-1 (4,294,967,295)
unsignedlLong An integer number between 0 and 2*-1 (18,446,744,073,709,551,615)
unsignedShort An integer number between 0 and 2'°-1 (65,535)

Simple Types

If you need to modify an already defined type without adding attributes or other elements, you can
define a so-called simple type instead of recurring to a complex one. For example, the following code
defines a string that can only contain up to 32 characters:

<xsd:simpleType name="myString">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="32"/>
</xsd:restriction>
</xsdLsimpleType>

Besides maxLength, you can also apply the length and minLength attributes to listlike types.
Additionally, you can use the whiteSpace and pattern attributes.

The possible values for whiteSpace are preserve (the default), replace, and collapse. With replace,
all carriage return, line feed, and tab characters are replaced with simple spaces. With collapse, leading
and trailing spaces are removed, and sequences of multiple spaces are collapsed into single spaces.

With pattern, you define a regular expression that must be matched. For example, the following
code specifies that only strings consisting of at least one letter of the alphabet are valid:

<xsd:pattern value="[A-Za-z]+"

For non-list types, you can also use the attributes minExclusive, minInclusive, maxExclusive,
maxInclusive, totalDigits, fractionDigits, and enumeration. For example, this code defines a number
with three decimal figures >= 10 and < 20:

<xsd:simpleType name="xxyyyType">
<xsd:restriction base="xsd:decimal">
<xsd:totalDigits value="6"/>
<xsd:fractionDigits value="3"/>
<xsd:minInclusive value="10.000"/>
<xsd:maxExclusive value="20.000"/>
</xsd:restriction>
</xsd:simpleType>

And here’s an example of enumeration:

<xsd:simpleType name="directionType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="left"/>
<xsd:enumeration value="right"/>

129

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

<xsd:enumeration value="straight"/>
</xsd:restriction>
</xsd:simpleType>

REGULAR EXPRESSIONS

130

A regular expression is a string that matches a set of strings according to certain rules. Unfortunately,
there is no standard syntax for regular expressions. They are used with several applications, including text
editors (e.g., vi) and programming languages (e.g., Perl), and in Unix commands and scripting. W3C
defines the syntax for regular expressions to be used in XML schemas
(http://www.w3.0rg/TR/xmlschema-2/#regexs). Here | give you a summary of that definition in plain
English.

The basic component of a regular expression is called an atom. It consists of a single character (specified
either individually or as a class of characters enclosed between square brackets) indicating that any of the
characters in the class are a match. For example, both "a" and "[a]" are regular expressions matching
the lowercase character ‘a’, while "[a-zA-Z]" matches all letters of the English alphabet.

Things can get complicated, because you can also subtract a class from a group or create a negative
group by sticking a ~ character at the beginning of it. For example, "[(~abc) - [ABC]]" matches any
character with the exclusion of the characters ‘a’, ‘b’, and ‘c’ in uppercase or lowercase. This is because
the group ~abc matches everything with the exclusion of the three letters in lowercase, and the subtraction
of [ABC] removes the same three letters in uppercase. Obviously, you could have obtained the same effect
with the regular expression "[~aAbBcC]".

The characters \ | .-~?*+{}()[] are special and must be escaped with a backslash. You can also use \n
for newlines, \r for returns, and \t for tabs.

With atoms, you can build pieces by appending to it a quantifier. Possible quantifiers are ? (the question
mark), + (the plus sign), * (the asterisk), and {n,m}, with n <= m indicating non-negative integers. The
question mark indicates that the atom can be missing; the plus sign means any concatenation of one or
more atoms; the asterisk means any concatenation of atoms (including none at all); and {n,m} means any
concatenation of length >=n and <=m (e.g., "[a-z]{2,7}" means all strings containing between two and
seven lowercase alphabetic characters). If you omit m but leave the comma in place, you leave the upper
limit unbounded. If, on the other hand, you also omit the comma, you define a string of fixed length (e.g.,
"[0-9]{3}" means a string of exactly three numeric characters). You can concatenate pieces simply by
writing them one after the other. For example, to define an identifier consisting of alphanumeric characters
and underscores but beginning with a letter, you could write the expression "[a-zA-Z]{1}[a-zA-Z0-
9_]*". The general term branchis used to indicate a single piece or a concatenation of pieces when the
distinction is not relevant.

To specify partial patterns, you can insert at the beginning and/or at the end of each atom a sequence
formed with a period and an asterisk. For example, ".*ABC.*" identifies all strings containing in any
position the substring ABC. Without dot-asterisk wildcarding, "ABC" only matches a string of exactly three
characters of length.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

Several branches can be further composed by means of vertical bars to form a more general regular
expression. For example, "[a-zA-Z]* | [0-9]*" matches all strings composed entirely of letters or of
digits but not a mix of the two.

Instead of defining a new simple type by imposing a restriction, you can also specify that it consists
of a list of items of an existing simple type. For example, the following code defines a type consisting of a
series of directions:

<xsd:simpleType name="pathType">
<xsd:1list itemType="directionType"/>
</xsd:simpleType>

Finally, besides xsd:restriction and xsd:1list, you can define a new simple type by means of
xsd:union, which lets you combine two different preexisting types. For example, the following code
defines a type that can be either a number between 1 and 10 or one of the strings "< 1" and "> 10":

<xsd:simpleType name="myNumber">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxInclusive value="10"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="< 1"/>
<xsd:enumeration value="> 10"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

Complex Types

You've already seen some examples of complex types in starfleet.xsd. There are three models that you
can use to group the elements contained in a complex type: sequence (in which the elements must
appear in the specified sequence), all (in which there can only be up to one element each of all those
listed, but they can appear in any order), and choice (in which the contained elements are mutually
exclusive). Note that while all can only contain individual elements, sequence and choice can contain
other groups. For example, the fragment:

<xsd:sequence>
<xsd:choice>

<xsd:element name="no" ... />
<xsd:all>
<xsd:element name="yes1" ... />
<xsd:element name="yes2" ... />
</xsd:all>

</xsd:choice>
<xsd:element name="whatever" ... />

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

</xsd:sequence>

defines an element that contains one of the following combinations of elements:
e whatever
e no,whatever
e yesl, whatever
e yes2,whatever
e yesl, yes2, whatever
e yes2,yesl, whatever

Complex type definitions provide many additional options, but are not always easy to handle. One
might even argue that they’ve been overengineered. Therefore, to describe them in detail would exceed
the scope of this manual. Nevertheless, the information I have provided on primitive and simple types,
together with the description of the three model groups, is already enough to cover most cases.

Validation

An XML document is said to be valid if it passes the checks done by a validating parser against the
document’s DTD or XML schema. For the parser to be able to operate, the XML document must be well
formed, which means that all tags are closed, the attributes are quoted, the nesting is done correctly, and
so on. A validating parser, besides checking for well formedness, also checks for validity.

You actually have to validate two documents: the XML file and the DTD or XML Schema. In the
example, those are enterprises.xml and starfleet.dtd/starfleet.xsd, respectively. The simplest way to
do the validation is to use a development environment like Eclipse, which validates the documents as
you type.

An alternative is to use online services. For example, the tool available at http://xmlvalidation.com
can check XML files, DTD files, and XML schemas. To validate your schema, you can also use the online
tool by W3C, which provides an authoritative check. Go to http://www.w3.0rg/2001/03/webdata/xsv and
look at the second section, which should look as shown in Figure 5-1.

Caution The fact that your XML schema is valid doesn’t mean at all that you will not get any error when
validating an XML file, because inconsistencies can easily creep in.

132

www.it-ebooks.info

http://www.it-ebooks.info/

[~ Firrox] == =<]

|m XML Schema (REC (20010502) version, as... |T|

€@

Use this form only if you are behind a firewall or have a schema to check which is not accessible via the Web_

File to upload: C:\Program Files\Apach

Show wamings ¥ Keep Going 71 Check as complete schema

Default output is now textixml with an XSLT stylesheet Select fallbacks for browsers which don't support
http /fwww.w3.org/1999/XSL/Transform stylesheets: =

m

@ text/xml + official XSLT (suits IES or greater, Mozilla)

© textixml + early MS XSL support (suits vanilla IES)

O text/ntml (styled server-side: suits Netscape, older [E)

@ xml, but labelled text/plain (works for any browser, but hard to read)

Upload and Get Results N

%

Figure 5-1. Validating the schema with W3C

CHAPTER 5

XML AND JSP

Click on the Browse. .. button, select starfleet.xsd (or the schema you want to get checked), and
then click on Upload and Get Results. You should see a page like that shown in Figure 5-2.

Firefox | [E=REEl >

\ Wl Schema validation report for fiIe;fusrroc...' + I

67 w.w3.0rg ZCIVC\Li 373 W EL"ILE;‘, C'

Schema validating with XSV 3.1-1 0£2007/12/11 16:20:05

. Target: file:/usr/local/X5V/xsvlog/tmpDeWBvRuploaded
(Real name: starfleet. xsd)

e docElt: {ntop://www.w3.0rg/2001/XMLSchema} schema

* Validation was strict, starting with type [Anonymous]

® The schema(s) used for schema-validation had no errors

® No schema-validity problems were found in the target

Figure 5-2. Validation results

In general, you need to go through three steps to validate an XML document:

1. Associate the document to the DTD/schema against which it is to be validated.

2. Define an exception handler to specify what happens when a validation error

is detected.

3. Parse the document with a validating parser, which validates your XML
document against the DTD/schema.

www.it-ebooks.info

133

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

PARSERS

134

A parser is a piece of software that breaks down a document into fokens, analyzes the syntax of the tokens
to form valid expressions, and finally interprets the expressions and performs corresponding actions.

The parsing process therefore implies a validation of the document. The DOM (standardized by W3C) and
Simple API for XML (SAX) define, among other things, interfaces to perform XML parsing.

DOM parsers build a tree of nodes after loading the whole document in memory. Therefore, they require
quite a bit of memory. SAX, on the other hand, parses the documents from streams, and therefore has a
smaller memory footprint. The flexibility of the DOM also costs in terms of performance, and DOM
implementations tend to be slower than SAX implementations, although they might overall be more
efficient with small XML files that don’t stretch memory usage. The two most widely used packages
implementing DOM and SAX are Xerces and Java API for XML Processing (JAXP). You can download the
documentation for JAXP from http://java.sun.com/xml/downloads/jaxp.html. In case you are
interested, Xerces is also available for other languages, such as C++.

Xerces are the developer of SAX, and the version of SAX included in JAXP is not identical to the original
one. Several people reported bugs in the JAXP version, although | have used it in all the examples of this
chapter without any problem. You can install the Xerces version downloaded from
http://xerces.apache.org/. All you need to do is click on "Xerces2 Java 2.11.0 - zip" under the
heading Xerces2 (there might be a newer version when you go there), expand Xerces-J-
bin.2.11.0.zip, and copy xercesimpl.jar and xml-apis.jar to Tomcat's 1ib folder. xml-apis.jar
contains DOM level 3, SAX 2.0.2, and the JAXP 1.4 APIs; xercesImpl.jar contains the implementation of
these APIs as well as of the XNI API (the Xerces Native Interface). | have included

starfleet validate sax_schema xerces.jsp in the software package of this chapter as an example.

Using JSP to Validate XML against a DTD

To validate an XML file against a DTD, you must first associate the XML document with the DTD by
adding a DOCTYPE declaration to the XML file. The declaration, which you should insert immediately after
the <?xml...?> line, is as follows:

<!DOCTYPE starfleet SYSTEM "http://localhost:8080/xml-validate/dtd/starfleet.dtd">

Notice that the file starfleet.dtd doesn’t need to be in the WEB-INF\dtds\ folder. We had to place
the DTDs there because Tomcat expected them there, but if you do the validation yourself, Tomcat is
out of the loop. You can therefore place your DTDs wherever you like.

The next step is the definition of an exception handler. This is a Java object of a class that extends
org.xml.sax.helpers.DefaultHandler and replaces three of its methods: warning, error, and fatalError.
Once the handler is registered with the parser, the parser executes the appropriate method upon
encountering a validation problem. The default behavior of DefaultHandler is to do nothing. Therefore,
you need to overwrite the methods in order to report the errors. Listing 5-4 shows you the code of a
possible handler. It’s really up to you to decide what level of reporting you’d like to have, but I have
decided to report all validation problems and interrupt the parsing.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

Listing 5-4. ParsingExceptionHandler.java

package myPkg;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXParseException;
public class ParsingExceptionHandler extends DefaultHandler {
public SAXParseException parsingException = null;
public String errorlLevel = null;
public void warning(SAXParseException e) {
errorLevel = "Warning";
parsingException = e;

public void error(SAXParseException e) {
errorLevel = "Error";
parsingException = e;

public void fatalError(SAXParseException e) {
errorLevel = "Fatal error”;
parsingException = e;

As you can see, it’s pretty simple. You define two public attributes: one to save the exception
generated by the parser, and one to save the error level. You then update the two attributes in each one
of the three methods. After each parsing, you can check one of the attributes for null in order to
determine whether the parsing succeeded or not. Compile this module from the DOS command line
with javac ParsingExceptionHandler.java and copy the resulting .class file into the WEB-
INF\classes\myPkg folder of your application directory.

You are now ready to perform the validation. Listing 5-5 shows you a JSP page that implements a
SAX parser.

Listing 5-5. starfleet_validate_sax.jsp (first cut)

<%@page language="java" contentType="text/html"%>
<%@page import="javax.xml.parsers.SAXParserFactory"%>
<%@page import="javax.xml.parsers.SAXParser"%>
<%@page import="org.xml.sax.InputSource"%>
<%@page import="myPkg.ParsingExceptionHandler"%>
<html><head><title>Starfleet validation (SAX - DTD)</title></head><body>
<%
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
SAXParser parser = factory.newSAXParser();
InputSource inputSource = new InputSource("webapps/xml-validate/xml/enterprises.xml");
ParsingExceptionHandler handler = new ParsingExceptionHandler();
parser.parse(inputSource, handler);
%>
</body></html>

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

After instantiating the parser factory and setting its validating property to true, you direct the
factory to create a SAX parser. Then you instantiate the InputSource class to access the XML document
and the exception handler. After that, all you need to do is execute the parser.

This implementation is not very nice, though, because it causes the dumping of a stack trace
whenever the validation fails. It is better to wrap the parsing inside a try/catch as shown in Listing 5-6,
so that you can display validation errors without stack trace.

Note that before you can execute the improved version of starfleet validate sax.jsp, you need to
download the StringEscapeUtils from Apache Commons. Their purpose is to convert special characters
to their corresponding HTML entities, so that they display correctly in your web page. Go to
http://commons.apache.org/lang/download_lang.cgi and click on the link commons-1lang3-3.1-bin.zip

To install it in Tomcat, unzip the file, copy commons-1lang3-3.1.jar to %CATALINA _HOME%\1ib\, and
restart Tomcat.

Tip In alternative to copying libraries to Tomcat’s 1ib folder, you can make them available to a particular
application by placing them in the WEB-INF\1ib folder of the application (create it if it's not yet there). In that way,
the library will not be generally available, but you will not run the risk of later needing a different version of the
same library for another application and introducing a conflict when both versions are in Tomcat’s 1ib folder.

Listing 5-6. starfleet_validate_sax.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="javax.xml.parsers.SAXParserFactory"%>
<%@page import="javax.xml.parsers.SAXParser"%>
<%@page import="org.xml.sax.InputSource"%>
<%@page import="org.apache.commons.lang3.StringEscapeUtils"%>
<%@page import="myPkg.ParsingExceptionHandler"%>
<html><head><title>Starfleet validation (SAX - DTD)</title></head><body>
<%
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
SAXParser parser = factory.newSAXParser();
InputSource inputSource = new InputSource("webapps/xml-validate/xml/enterprises.xml");
ParsingExceptionHandler handler = new ParsingExceptionHandler();
try { parser.parse(inputSource, handler); }
catch (Exception e) { }
if (handler.errorLevel == null) {
out.println("The document is valid.");

else {
out.println(
"*** Validation " + handler.errorlevel +
+ StringEscapeUtils.escapeHtml4(handler.parsingException.toString())

)

%>
</body></html>

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

Now, if you type http://localhost:8080/xml-validate/with-dtd/starfleet_validate_sax.jspina
browser, you should get a one-liner confirming that enterprises.xml is correct.

When you introduce an error in the XML document, for example by mistyping the closing tag as in
<captain>James Tiberius Kirk</catain>, you get the following message:

*** Validation Fatal error: org.xml.sax.SAXParseException; systemId: ‘=
file:///C:/Program%20Files/Apache%20Software%20Foundation/Tomcat/webapps/xml- w

validate/xml/enterprises.xml; lineNumber: 7; columnNumber: 35; The element type =
"captain" must be terminated by the matching end-tag "</captain>".

Good, isn’t it? Notice that it is a fatal error. Incidentally, the angle brackets around /captain is why
you need to escape the message with StringEscapeUtils. If you remove the line altogether, you get this
message:

*** Validation Error: org.xml.sax.SAXParseException; systemId: w»
file:///C:/Program%20Files/Apache%20Software%20Foundation/Tomcat/webapps/xml- =

validate/xml/enterprises.xml; lineNumber: 7; columnNumber: 16; The content of ‘=
element type "starship" is incomplete, it must match "(class,captain)”.

Notice that it is an error, rather than a fatal error. I confess that I tried to get a warning message but
didn’t succeed. If you do, please let me know.

To use a DOM parser instead of SAX, make a copy of starfleet validate sax.jsp, name it
starfleet validate dom.jsp, and replace six lines with seven new lines, as shown in Listing 5-7.

Listing 5-7. starfleet_validate_dom.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="javax.xml.parsers.DocumentBuilderFactory"%>
<%@page import="javax.xml.parsers.DocumentBuilder"%>
<%@page import="org.xml.sax.InputSource"%>
<%@page import="org.apache.commons.lang3.StringEscapeUtils"%>
<%@page import="myPkg.ParsingExceptionHandler"%>
<html><head><title>Starfleet validation (DOM - DTD)</title></head><body>
<%
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(true);
DocumentBuilder parser = factory.newDocumentBuilder();
InputSource inputSource = new InputSource("webapps/xml-validate/xml/enterprises.xml");
ParsingExceptionHandler handler = new ParsingExceptionHandler();
parser.setErrorHandler(handler);
try { parser.parse(inputSource); }
catch (Exception e) { }
if (handler.errorLevel == null) {
out.println("The document is valid.");

else {
out.println(
"#*k* Validation " + handler.errorLevel +
+ StringEscapeUtils.escapeHtml4(handler.parsingException.toString())

)

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

138

</body></html>

Using JSP to Validate XML against a Schema

The procedure used to validate an XML file against a schema is almost identical to the procedure
explained in the previous section for validating against a DTD.

To avoid confusion, I made copies of enterprises.xml and starfleet validate sax.jsp and
renamed them respectively enterprises_schema.xml and starfleet_validate_sax_schema.jsp

In enterprises_schema.xml, to change from DTD to schema, you only need to remove the DOCTYPE
declaration and add to the starfleet tagsome attributes:

<starfleet
xmlns="http://localhost:8080/xml-validate/xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://localhost:8080/xml-validate/xsd =
http://localhost:8080/xml-validate/xsd/starfleet.xsd"
>

Listing 5-8 shows starfleet_validate_sax_schema.jsp with the differences from
starfleet_validate_sax.jsp highlighted in bold.

Listing 5-8. starfleet_validate_sax_schema.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="javax.xml.parsers.SAXParserFactory"%>
<%@page import="javax.xml.parsers.SAXParser"%>
<%@page import="org.xml.sax.InputSource"%>
<%@page import="org.apache.commons.lang3.StringEscapeUtils"%>
<%@page import="myPkg.ParsingExceptionHandler"%>
<html><head><title>Starfleet validation (SAX - schema)</title></head><body>
<%
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
factory.setNamespaceAware(true);
factory.setFeature("http://apache.org/xml/features/validation/schema", true);
SAXParser parser = factory.newSAXParser();
InputSource inputSource =
new InputSource("webapps/xml-validate/xml/enterprises_schema.xml");
ParsingExceptionHandler handler = new ParsingExceptionHandler();
try { parser.parse(inputSource, handler); }
catch (Exception e) { }
if (handler.errorLevel == null) {
out.println("The document is valid.");

else {
out.println(
"#*¥* Validation " + handler.errorLevel +
+ StringEscapeUtils.escapeHtml4(handler.parsingException.toString())

)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

</body></html>

As you can see, apart from updating the page title and the name of the XML file, you only need to
switch on two features of the parser that tell it to use a schema instead of a DTD.

What I said about changing SAX to DOM in starfleet validate_ sax.jsp also applies to
starfleet_validate_sax_schema.jsp. You will find starfleet_validate_dom_schema.jsp in the software
package for this chapter.

JSTL-XML and XSL

The XML actions specified in JSTL are meant to address the basic XML needs that a JSP programmer is
likely to encounter.

To make XML file contents easier to access, the W3C specified the XML Path Language (XPath). The
name XPath was chosen to indicate that it identifies paths within XML documents (see
http://www.w3.0rg/TR/xpath). The JSTL-XML actions rely on that language to identify XML components.

To avoid confusion between EL expressions and XPath expressions, the actions that require an
XPath expression always use the select attribute. In this way, you can be sure that all expressions
outside select are EL expressions. Several XML actions are the XPath-counterparts of equivalent core
actions, with the attribute select replacing the attribute value (when present). They are: x: choose,
x:forEach, x:if, x:out, x:otherwise, x:set, and x:when.

The remaining three actions are x:parse and the pair x: transform and x:param. But before you can
learn about them, we have to talk about the Extensible Stylesheet Language (XSL).

XSL is a language for expressing style sheets that describe how to display and transform XML
documents. The specification documents are available from http://www.w3.0rg/Style/XSL/.

While CSS only needs to define how to represent the predefined HTML tags, XSL has to cope with
the fact that there are no predefined tags in XML! How do you know whether a <table> element in an
XML file represents a table of data as you know it from HTML or an object around which you can sit for
dinner?

That’s why XSL is more than a style-sheet language. It actually includes three parts:

e XPath: The language to navigate in XML documents I already mentioned.

e XSLT: A language to transform XML documents that can completely change their
structure.

e XSL Formatting Objects (XSL-FO): A language for formatting XML documents.

I'will only explain XPath and XSLT, because XSL-FO is concerned with page formatting (page size,
margins, headers, footers, citations, footnotes, and so on), which is very different from the screen
formatting and hyperlinking you need for web pages.

Just to give you an idea, XSL-FO divides the output into pages, the pages into regions (body, header,
footer, and left and right sidebars), the regions into block areas, the block areas into line areas, and the
line areas into inline areas. You can define several attributes of these fields and then “flow” your content
into them. XSL-FO also provides constructs for lists and tables similar to those you know from HTML.

XPath

XPath expressions identify a set of XML nodes through patterns. Extensible Stylesheet Language
Transformations (XSLT) templates (see later in this chapter for XSLT examples) then use those patterns
when they apply transformations. Possible XPath nodes can be any of the following: document/root,
comment, element, attribute, text, processing instruction, and namespace.

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

Note Processing instructions in an XML document provide information for the application that uses the
document.

For example, take a look at the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<whatever xmlns:zzz="http://myWeb.com/whatever">
<!-- bla bla --> <?myAppl "xyz"?>
<item name="anything">
<subitem>The quick brown fox</subitem>
</item>
</whatever>

The document (or root) node is <whatever>, <!-- bla bla -->is a comment node,
<subitem>...</subitem> is an element node, name="anything" is an attribute node, the string The quick
brown fox is a text node, <?myAppl "xyz"?> is a processing-instruction node, and
xmlns:zzz="http://myWeb.com/whatever" is a namespace node.

As with URLs, XPath uses a slash as a separator. Absolute paths start with a slash, while all other
paths are relative. Similar to file directories, a period indicates the current node, while a double period
indicates the parent node.

Several nodes with the same name are distinguished by indexing them, as Java does with array
elements. For example, let’s say you have the following XML code:

<a> whatever never
<c> <non_b>no</non_b> verywell </c>
<a> <b attr="zz">nice <b attr="xxx">ok

The pattern /a/b selects the four elements, which contain whatever, never, nice, and ok. The
element with verywell isn’t selected, because it’s inside <c> instead of <a>. The pattern /a[1]/b[0]
selects the element with nice. Attribute names are prefixed by an @. For example, /a[1]/b[1]/@attr
refers to the attribute that has the value xxx in the example.

A clever thing in XPath: you can use conditions as indices. For example, /a/b[@attr="2z"] selects
the same element selected by /a[1]/b[0], while /a[b] selects all <a> elements that have as a child
(in the example, both), and /a[b="never"] selects the first <a> element. A final example: /a/b[@attr][0]
selects the first element that is contained in an <a> and has the attribute attr (i.e., it selects once
again the element /a[1]/b[0]).

XPath defines several operators and functions related to node sets, positions, or namespaces, and it
defines string, numeric, boolean, and conversion operations.

A node setis a group of nodes considered collectively. A node set resulting from the execution of an
XPath expression doesn’t necessarily contain several nodes. It can consist of a single node or even none.
Keep in mind that the nodes belonging to a node set can be organized in a tree, but not necessarily. For
example, the expression $myDoc//C identifies all C elements in a document that was parsed into the
variable myDoc. It is unlikely that they form a tree.

Within XPath, you have access to the implicit JSP objects you're familiar with. Table 5-3 lists the
mappings.

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

Table 5-3. XPath Mappings of Implicit JSP Objects

JSP XPath
pageContext.findAttribute("attrName") $attrName
request.getParameter("parName") $param: paramName
request.getHeader("headerName") $header:headerName
cookie’s value for name foo $cookie:foo
application.getInitParameter("initParName") $initParam:initParName
pageContext.getAttribute("attrName", PageContext.PAGE_SCOPE) $pageScope:attrName

pageContext.getAttribute("attrName", PageContext.REQUEST SCOPE) $requestScope:attrName
pageContext.getAttribute("attrName", PageContext.SESSION_SCOPE) $sessionScope:attrName

pageContext.getAttribute("attrName", PageContext.APPLICATION SCOPE) $applicationScope:attrName

Before we look at an XPath example, I would like to give you a more rigorous reference of its syntax
and explain some terms that you are likely to encounter “out there.”

To identify a node or a set of nodes, you need to navigate through the tree structure of an XML
document from your current position within the tree (the context node) to the target. The path
description consists of a series of steps separated by slashes, whereby each step includes the navigation
direction (the axis specifier), an expression identifying the node[s] (the node test), and a condition to be
satisfied (the predicate) enclosed between square brackets.

A slash at the beginning indicates that the path begins at the root node, while paths relative to the
context node begin without a slash. Two consecutive colons separate the axis specifier and the node test.
For example, this code identifies the second attribute of all B elements immediately below the root
element A:

/child::A/child::B/attribute: :*[position()=2]
You can express the same path with an abbreviated syntax, as follows:
/A/B/@*[2]

where child, ::, and position()= are simply omitted, and attribute is represented by @.
Table 5-4 shows the possible axis specifiers and their abbreviated syntax.

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

142

XML AND JSP

Table 5-4. Axis Specifiers

Specifier Abbreviated Syntax
ancestor Not available (n/a)
ancestor-or-self n/a

attribute @

child Default; do not specify it
descendant //
descendant-or-self n/a

following n/a
following-sibling n/a

namespace n/a

parent (i.e., two dots)
preceding n/a
preceding-sibling n/a

self (i.e., a single dot)

As node tests, you can use node names with or without a namespace prefix, or you can use an
asterisk to indicate all names. With abbreviated syntax, an asterisk on its own indicates all element
nodes, and @* indicates all attributes.

You can also use node() as a node test to indicate all possible nodes of any type. Similarly, comment ()
indicates all comment nodes, text() indicates all text nodes, and processing-instruction() indicates all
processing instruction nodes.

For example, the following code selects all elements B descendant of A that have the attribute xx set

to'z'":

A//B[@xx="z"]

while to select all elements C anywhere in the tree that have the attribute yy you can do this:
//C[@yy]

To form expressions, besides the operators you have already seen (i.e., slash, double slash, and
square brackets), you have available all standard arithmetic and comparison operators (i.e., +, -, *, div,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

mod, =, !=, <, <=, >, and »=). Additionally, you have and and or for boolean operations, and the union
operator | (i.e., the vertical bar) to merge two node sets.

References to variables are indicated by sticking a dollar sign before them, as shown in the following
example:

<x:parse doc="${sf}" varDom="dom"/>
<x:forEach var="tag" select="$dom//starship">

where I parse an XML document into the variable dom and then use $dom when I refer to it in an XPath
expression.

An XPath Example

So far, everything has been pretty dry and abstract. To spice things up a bit, we are going to write a JSP
page that parses an XML file, selects its elements and attributes, and displays them in a HTML table.
Listing 5-9 shows the XML file we’ll play with, starfleet.xml. It is an expanded version of the file
enterprises.xml (Listing 5-1) you have already encountered in the validation section of this chapter.

Listing 5-9. starfleet.xml

<?xml version="1.0" encoding="UTF-8"?>
<starfleet>

<starship name="Enterprise" sn="NX-01">
<class commissioned="2151">NX</class>
<captain>Jonathan Archer</captain>
</starship>

<starship name="USS Enterprise" sn="NCC-1701">
<class commissioned="2245">Constitution</class>
<captain>James Tiberius Kirk</captain>
</starship>

<starship name="USS Enterprise" sn="NCC-1701-A">
<class commissioned="2286">Constitution</class>
<captain>James T. Kirk</captain>
</starship>

<starship name="USS Enterprise" sn="NCC-1701-B">
<class commissioned="2293">Excelsior</class>
<captain>John Harriman</captain>
</starship>

<starship name="USS Enterprise" sn="NCC-1701-C">
<class commissioned="2332">Ambassador</class>
<captain>Rachel Garrett</captain>
</starship>

<starship name="USS Enterprise" sn="NCC-1701-D">
<class commissioned="2363">Galaxy</class>
<captain>Jean-Luc Picard</captain>
</starship>

<starship name="USS Enterprise" sn="NCC-1701-E">
<class commissioned="2372">Sovereign</class>
<captain>Jean-Luc Picard</captain>
</starship>

</starfleet>

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

Notice that it doesn’t include the DOCTYPE element necessary for DTD validation or the namespace
declarations necessary for schema validation. This is because in this example we are not going to do any
validation. Listing 5-10 shows the JSP page that does the conversion to HTML, and Figure 5-3 shows its
output as it appears in a web browser.

Listing 5-10. starfleet.jsp

01: <%@page language="java" contentType="text/html"%>

02: <¥@taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
03: <X%@taglib uri="http://java.sun.com/jsp/jstl/xml" prefix="x"%>
04: <c:import url="starfleet.xml" var="sf"/>

05: <x:parse doc="${sf}" varDom="dom"/>

06: <html><head>

07: <title>Parsing starfleet.xml</title>

08: <style>th {text-align:left}</style>

09: </head>

10: <body>

11: <table border="1">

12: <tr><th>Name</th><th>S/N</th><th>Class</th><th>Year</th><th>Captain</th></tr>
13: «<x:forEach var="tag" select="$dom//starship">

14: <tr>

15: <td><x:out select="$tag/@name"/></td>
16: <td><x:out select="$tag/@sn"/></td>

17: <td><x:out select="$tag/class"/></td>
18: <td><x:out select="$tag/class/@commissioned"/></td>
19: <td><x:out select="$tag/captain”/></td>
20: </tr>

21: </x:forkach>

22: </table>

23: </body>

24: </html>

In line 4, you load the XML file in memory, and in line 5, you parse it into an object of type
org.apache.xerces.dom.DeferredDocumentImpl, which implements the standard interface
org.w3c.dom.Document of a Document Object Model (DOM). In lines 13-21, you loop through all the
starship tags of the DOM, regardless of how “deep” they are in the structure. You can achieve this with
the double slash. Inside the x:forEach loop, the variable tag refers in turn to each starship, and you can
display the information contained in attributes and sub-elements. Notice that the select paths inside
the loop always start with the slash. This is because the root element in each loop iteration is a starship
tag, not starfleet, which is the root element of the document.

144

www.it-ebooks.info

http://www.it-ebooks.info/

= | B [

/[Parsing starflectxml A @ S
& C' | @ localhost:8080/tests/xpath/starfleetjsp o
|Name HS/N HClass H\’ear“Captain ‘
[Enterprise |[NX-01 INX [2151|[Jonathan Archer |
[USS Enterprise[NCC-1701 |[Constitution ([2245|James Tiberius Kirk
[USS Enterprise[NCC-1701-A| Constitution [2286|James T. Kk |
|USS Enterprise[NCC-1701-B|[Excelsior [[2293|John Harriman

USS Enterprise[NCC-1701-C

Ambassador|[2332|[Rachel Garrett

USS Enterprise[NCC-1701-D

USS Enterprise[NCC-1701-E [Sovereign [2372|[Jean-Luc Picard

|
|
Galaxy [2363|Jean-Luc Picard |
|

Figure 5-3. Starfleet information

X:parse

CHAPTER 5

XML AND JSP

With starfleet. jsp, you have just seen an example of how to use x:parse and XPath to convert XML into

HTML. Table 5-5 summarizes all attributes that x:parse supports. You will find a good reference for

x:parse athttp://www.ibm.com/developerworks/java/library/j-jst10520/.

Table 5-5. x:parse Attributes

Attribute Description

doc Source XML document to be parsed

varDom Name of the EL variable to store the parsed XML data as an object of
type org.w3c.dom.Document

scopeDom Scope for varDom

filter Filter of type org.xml.sax.XMLFilter to be applied to the source XML

systemId System identifier for parsing the XML source. It is a URI that identify
the origin of the XML data, potentially useful to some parsers

var Name of the variable to store the parse XML data (of
implementation-dependent type)

scope Scope for var

www.it-ebooks.info

145

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

146

Instead of storing the XML source code in the attribute doc, you can also make x:parse a bodied
action and store the source XML in its body.

XSLT: Transformation from One XML Format to Another

At the beginning of this chapter, I showed you the file enterprises.xml (Listing 5.1) and, later on, to
explain XPath, I expanded it to starfleet.xml (Listing 5-9).

But the information contained in enterprises.xml is not just a sub-set of the larger starfleet.xml,
because also the encoding is different. In particular, the differences from starfleet.xml are:

e The presence of a title element
e Theremovalin the class element of the commissioned attribute
e The replacement of the class body with an attribute named name

Listing 5-11 shows you an XSL style sheet that lets you extract enterprises.xml from starfleet.xml.
Listing 5-11. enterprises.xsl

01: <?xml version="1.0" encoding="UTF-8"?>

02: <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
03: <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

04: <xsl:template match="/">

05: <starfleet>

06: <title>The two most famous starships in the fleet</title>
07: <xsl:for-each select="starfleet/starship">

08: <xsl:if test="@sn='NCC-1701"' or @sn='NCC-1701-D'">
09: <xsl:element name="starship">

10: <xsl:attribute name="name">

11: <xsl:value-of select="@name"/>

12: </xsl:attribute>

13: <xsl:attribute name="sn">

14: <xsl:value-of select="@sn"/>

15: </xsl:attribute>

16: <xsl:element name="class">

17: <xsl:attribute name="name">

18: <xsl:value-of select="class"/>

19: </xsl:attribute>

20: </xsl:element>

21: <xsl:copy-of select="captain"/>

22: </xsl:element>

23: </xsl:if>

24: </xsl:for-each>

25: </starfleet>

26: </xsl:template>
27: </xsl:stylesheet>

Lines 1 and 2 state that the file is in XML format and specify its namespace. In line 2, you could
replace xsl:stylesheet with xs1:transform, because the two keywords are considered synonyms.

Line 3 specifies that the output is also an XML document. XML is the default output format, but by
writing it explicitly, you can also request that the output be indented. Otherwise, by default, the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

generated code would be written on a single very long line. The element also lets you specify an
encoding other than IS0-8859-1.

The xs1:template element associates a template to an element, and in line 4, you write match="/" to
specify the whole source document. In lines 5-6 and 25, you write the enterprise and title elements to
the output.

The loop between lines 7 and 24 is where you scan all the starship elements. Immediately inside the
loop, you select the two starships you're interested in with an xs1:if. In XSL, you could have also used
the choose/when/otherwise construct that you encountered in Chapter 4 when I described JSTL-core, but
in this case, it would not be appropriate, because you do not need an else.

The actual work is done in lines 9-22. The xs1:element and xs1:attribute elements create a new
element and a new attribute, respectively, while xs1:value-of copies data from the source XML file to
the output. Notice that the XPath expressions in the select attributes are relative to the current element
selected by xs1:for-each. Also, notice that the only difference between the source and the output is
handled in lines 17-19, where you assign to the name attribute of the class element what was originally in
the element’s body. The class attribute commissioned is simply ignored, so that it doesn’t appear in the
output.

The xs1:copy-of element copies the whole element to the output, including attributes and children
elements. If you only want to copy the element tag, you can use xsl:copy.

XSL includes more than 30 elements, but the dozen or so that I have just described cover the vast
majority of what you are likely to need. You will find the official documentation about XSLT at
http://www.w3.0rg/TR/xslt.

XSLT: Transformation from XML to HTML

As you have seen, you can use XPath in a JSP page to navigate through an XML document and display it
in HTML format. In this section, I'm going to show you how you can use XSLT to transform the same
starfleet.xml directly into HTML. The two strategies are subtly different: with JSP, you pick up the nodes
one by one and display them in HTML; with XSLT, you specify how the nodes of the XML files are to be
mapped into HTML elements.

Let’s cut to the chase and go directly to the XSLT file, shown in Listing 5-12.

Listing 5-12. starfleet.xsl

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html" version="4.0" encoding="UTF-8" indent="yes"/>
<xsl:template match="/">
<html><head>
<title>Styling starfleet.xml</title>
<style>th {text-align:left}</style>
</head>
<body>
<h2>The Most Famous Starships in the Fleet</h2>
<table border="1">
<tr><th>Name</th><th>S/N</th><th>Class</th><th>Commissioned</th><th>Captain</th></tr>
<xsl:for-each select="starfleet/starship">
<xsl:sort select="class/@commissioned"/>
<tr>
<td><xsl:value-of select="@name"/></td>
<td><xsl:value-of select="@sn"/></td>
<td><xsl:value-of select="class"/></td>

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

148

<td><xsl:value-of select="class/@commissioned"/></td>
<td><xsl:value-of select="captain"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

After the first example (Listing 5-11), it should be clear how this works. There is just one point I
would like to clarify: if you wanted to, you could omit the third line because, although the default output
format is XML, XSL automatically recognizes that you're generating HTML if the first tag it encounters is
<html>. Nevertheless, I recommend that you define the output format explicitly so that you can set
HTML version, encoding, and indentation.

XSL Transformation: Browser Side vs. Server Side

I still haven’t told you how to apply an XSL style sheet to an XML file to perform the transformation. This
is because I first have to clarify the distinction between browser-side vs. server-side transformation.

Browser-Side XSL Transformation

All browsers can process XML and XSL. For example, let’s say you copy enterprises_schema.xml from the
xml-validate\xml\ subfolder of the software package for this chapter to the webapps\ROOT\tests\ folder
of the Tomcat directory. By typing http://localhost:8080/tests/enterprises_schema.xml in most
browsers, you see the file with little markers on the left of each element, as shown in Figure 5-4, where I
used Chrome. By clicking on the markers, you can collapse or expand the elements as if they were
folders. Firefox and IE use -/+ as markers. Opera is the only widely used browser that doesn’t support
this feature.

= | B |
localhost:B080,/ tests/ starfle

&= C @ localhost:

w A

This XML file does not appear to have any style information associated with it. The document tree is shown below.

wv<starfleet>
v<=tarship name="Enterprise"” =sn="NX-01">
<class commisszioned="2151">NX</class>
<captain>Jonathan Archer</captaini>
</=starship>
<ztarship name="US5 Enterprise" sn="NCC-1701">
{b <class commissioned="2245">Constitution</class>
<captain>James Tiberius Kirk</captain>
</starship>
w«<starship name="US5 Enterprise™ sn="NCC-1701-A">

m

[

<class commisszioned="2286">Constitution</class>

it i Tommo T W sl o o

%

Figure 5-4. Browsing an XML file without XSL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

The browsers can provide this feature because they “know” how to display XML. The message at the
top of the page indicates that the browser displays the file as a node tree in a generic way because
enterprises_schema.xml doesn’t refer to any XSL style sheet. (Just so you know, Firefox displays the same
message, IE doesn’t display any message, and Opera simply states "This document had no style
information".) But all browsers color code the different components.

Making the association is simple: copy starfleet.xsl from the sub-folder xml1-style\xs1\ of the
software package for this chapter to the usual tests folder and insert the following processing
instruction immediately below the first line of enterprises_schema.xml (i.e., the line with <?xml...?>):

<?xml-stylesheet type="text/xsl" href="starfleet.xsl"?>

Now, if you ask the browser to display http://localhost:8080/test/enterprises_schema.xml, it will
know what style sheet to use. The href attribute expects a URL. Therefore, in general, you can also set it
to URLs such as "http://localhost:8080/tests/starfleet.xsl" or "/tests/starfleet.xsl".Ichose to
write the relative URL, because I am keeping both files in the same test folder, and it makes our lives
easier. In any case, Figure 5-5 shows the result.

[FirerC (=[E@] %]
VStyIing starfleet.xml | r |

(-, localhost:8080/tests/starfleet.xm C | [M- Google P i E
The Most Famous Starships in the Fleet

|.\'ame S/IN |C|ass ‘Commissioned [Captain

[Enterprise [NX-01 [NX 2151 onathan Archer

USS Enterprise [NCC-1701 |[Constitution |[2245 Tames Tiberius Kirk

USS Enterprise [NCC-1701-A] Constitution 2286 Tames T. Kirk

[USS Enterprise[NCC-1701-B [Excelsior 2293 [Tohn Harriman

[USS Enterprise [NCC-1701-C|[Ambassador 2332 [Rachel Garrett

USS Enterprise [NCC-1701-D|[Galaxy 2363 [Tean-Luc Picard
[USS Enterprise NCC-1701-E [Sovereign (2372 Jean-Luc Picard

S ’)

Figure 5-5. Browsing an XML file with XSL

Actually, there is one small advantage in keeping XML and XSL files in the same folder: you can view
the XML file in a browser by just drag-and-dropping it onto the browser window. This doesn’t work if
you use an absolute URL in the href.

But I need to expand on this concerning Google Chrome. For the drag-and-drop trick to work, the
browser must allow a file to access another file. Chrome, for security reasons, doesn’t. You can force it to
do this operation by starting it with the switch --allow-file-access-from-files. To do so, right-click
Chrome’s icon in the quick-start bar or on the desktop, display its properties, and append the switch to
the application’s path you see in the target field. It’s easy, but I advise you not to weaken the security of
the browser.

With any browser, if you view the page source, you'll see the XML file, because it is the browser that
does the transformation from XML to HTML. Therefore, the source file is in fact the XML document.

One thing to keep in mind is that the user can also easily obtain your XSL file, because its URL is
shown in the XML source. For example, if you copy starfleet.xml from the xml-style\xs1\ sub-folder of

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

150

the software package for this chapter to the tests folder and view it in a browser with the URL
http://localhost:8080/tests/starfleet.xml, you can display its source and discover the relative URL of
the style sheet. Then, you only need to type http://localhost:8080/tests/starfleet.xsl to see the XSL
file.

Server-Side XSL Transformation

You can do the transformation on the server and make its output available, rather than making the XML
and XSL files visible to the user. In that way, you can keep XML and XSL in private folders. Listing 5-13
shows you how to do the XSL server-side transformation with a JSP page.

Listing 5-13. enterprises_transform.jsp

01: <%@page language="java" contentType="text/html"%>

02: <%@page import="java.io.File"%>

03: <%@page import="java.io.FileOutputStream"%>

04: <¥%@page import="javax.xml.transform.TransformerFactory"%>

05: <%@page import="javax.xml.transform.Transformer"%>

06: <%@page import="javax.xml.transform.Source"%>

07: <%@page import="javax.xml.transform.Sourcelocator"%>

08: <¥%@page import="javax.xml.transform.TransformerException"%>

09: <¥%@page import="javax.xml.transform.Result"%>

10: <%@page import="javax.xml.transform.stream.StreamSource"%>

11: <%@page import="javax.xml.transform.stream.StreamResult"%>

12: <%@page import="myPkg.TransformerExceptionHandler"%>

13: <%

14: File inFile = new File("webapps/xml-style/xsl/starfleet.xml");
15: File xslFile = new File("webapps/xml-style/xsl/enterprises.xsl");
16: String outFilename = "webapps/xml-style/out/enterprises out.xml";
17: TransformerExceptionHandler handler = new TransformerExceptionHandler();

18: try {

19: TransformerFactory factory = TransformerFactory.newInstance();

20: Transformer transformer = factory.newTransformer(new StreamSource(xslFile));
21: transformer.setErrorListener(handler);

22: Source source = new StreamSource(inFile);

23: Result result = new StreamResult(new FileOutputStream(outFilename));
24: transformer.transform(source, result);

25:

26: catch (TransformerException e) {

27:

28: if (handler.errorLevel == null) {

29: out.println("Transformation completed.");

30:

31: else {

32: out.println(

33: "#*¥* Transformation " + handler.errorLevel + ": "

34: + handler.transformationException

35:);

36:

37: B

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

It looks more complicated than it actually is. Moreover, I have hard-coded the file names for
simplicity, but you can add to the JSP page a simple input form to set inFile and xs1File, and you’ll
have a small utility you can use to transform all XML files. Following the MVC architecture, you should
place the application logic in a servlet (i.e., the Controller), not in a JSP page. But I just wanted to show
you in the simplest possible way how this is done in JSP/Java.

enterprises_transform.jsp performs the XML transformation on the server side as follows:

1. Itinstantiates a generic TransformerFactory and uses it to create a Transformer
that implements the XSL (lines 19 and 20).

2. Inline 21, it registers with the transformer the exception handler that was
instantiated in line 17. This is similar to what you did to handle validation
exceptions.

3. Itopensaninput stream to read the XML file and an output stream to write the
document that will result from the transformation (lines 22 and 23).

4. TItfinally does the transformation (line 24).

The exception reporting is almost a carbon copy of the method I described when talking about
validation (Listings 5-5 to 5-7), and the exception handler for transformations (Listing 5-14) is compiled
and used exactly like the handler for validations shown in Listing 5-4.

Listing 5-14. TransformerExceptionHandler.java

package myPkg;
import javax.xml.transform.TransformerException;
public class TransformerExceptionHandler
implements javax.xml.transform.ErrorListener {
public TransformerException transformationException = null;
public String errorlLevel = null;
public void warning(TransformerException e) {
errorLevel = "Warning";
transformationException = e;

public void error(TransformerException e) {
errorLevel = "Error";
transformationException = e;

public void fatalError(TransformerException e) {
errorlLevel = "Fatal error";
transformationException = e;

}
}

The JSP page enterprises_transform.jsp applies the style sheet enterprises.xsl to starfleet.xml
to produce enterprises_out.xml. If you change the file names in lines 15-16 to starfleet.xsl, and
starfleet_out.html, the same page will generate a file that, when viewed in a browser, will appear
identical to what you see in Figure 5-5.

My apologies if you find all these variations of XML files somewhat confusing. My purpose is to
show you most of the possibilities you have for validating and converting XML files. In real life, you will
pick the solution that suits your needs best and stick to it. In any case, I'm not done yet, because there is
still one way of implementing server-side transformations that I want to show you.

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

x:transform and x:param

x:transform applies an XSL style sheet to an XML document. Table 5-6 summarizes its attributes.

Table 5-6. x:transform Attributes

Attribute Description

doc The well-formed source XML document to be transformed. It can be
an object of type java.lang.String, java.io.Reader,
javax.xml.transform.Source, org.w3c.dom.Document, or an object
resulting from x:parse or x:set.

xslt The transformation style sheet of type java.lang.String,
java.io.Reader, or javax.xml.transform.Source.

var Name of the EL variable to store the transformed XML document as
an object of type org.w3c.dom.Document

scope Scope for var

docSystemId System identifier for parsing the XML source. It is a URI that
identifies the origin of the XML data, potentially useful to some
parsers

xs1tSystemId Like docSystemId but for the XSL style sheet.

Listing 5-15 shows the JSP page starfleet tag transform.jsp, which performs on the server the
same transformation done by the browser when displaying what is shown in Figure 5-5.

Listing 5-15. starfleet_tag transform.jsp

<%@page language="java" contentType="text/html"%>

<k@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<koetaglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml"%>
<c:import url="/xsl/starfleet.xml" var="xml"/>

<c:import url="/xsl/starfleet.xsl" var="xsl"/>

<x:transform doc="${xml}" xslt="${xsl}"/>

Type http://localhost:8080/xml-style/starfleet tag transform.jsp in your browser. You will see
the familiar table shown in Figure 5-5.

At this point you might ask: why on earth did we go through the complex implementation of
enterprise_transform.jsp and TransformerExceptionHandler. java (Listings 5-13 and 5-14) when we can
achieve an equivalent result with six lines of code?

There are two reasons: the first one is that you might in the future encounter a situation in which
you need to do it the “hard way”; the second reason is that I like to “peek under the hood” every now and
then, and I thought you might like to do the same.

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

JSP in XML Syntax

JSP pages with scripting elements aren’t XML files. This implies that you cannot use XML tools when
developing JSP pages. However, it is possible to write JSP in a way to make it correct XML. The trick is to
use standard JSP actions, JSTL with EL, and possibly non-JSTL custom actions. Actually, there are some
“special standard” (pun intended!) JSP actions defined to support the XML syntax (jsp:root, jsp:output,
and jsp:directive). In any case, such XML modules are called JSP documents, as opposed to the JSP
pages written in the traditional non-XML-compliant way.

As afirst example, let’s convert the hello. jsp page shown in Listing 1-4 to a hello. jspx document.
Listing 5-16 shows a partial hello.jspx that only writes "Hello World!". We’ll convert the scriptlet that
displays the dynamic information later.

Listing 5-16. Partial hello.jspx

01: <?xml version="1.0" encoding="UTF-8"?>

02: <jsp:root

03: xmlns:jsp="http://java.sun.com/JSP/Page"

04: xmlns:c="http://java.sun.com/jsp/jstl/core"

05: xmlns:fn="http://java.sun.com/jsp/jstl/functions”
06: version="2.1"

07: >

08: <jsp:directive.page

09: language="java"

10: contentType="application/xhtml+xml;charset=UTF-8"
1 />

12: <html>

13: <head><title>Hello World in XHTML</title></head>
14: <body>

15: <jsp:text>Hello World!</jsp:text>

15: </body>

16: </html>

17: </jsp:root>

Line 1 states that the file is XML-compliant. The root element in lines 2-7 has several purposes. For
example, it lets you use the jsp extension instead of the recommended jspx. It’s also a convenient place
where you can group namespace declarations (xmlns). The namespace declaration for the JSTL core tag
library is the XML equivalent of the taglib directive in JSP pages. You don’t need to specify the JSP
namespace in JSP pages, but you cannot omit it in a JSP document; otherwise, the jsp: tags won’t be
recognized.

Lines 8-11 are the XML equivalent of the page directive of JSP pages. Also the include directive has
its XML-equivalent with the element <jsp:directive.include file="relativeURL"/>.

Notice that the string “Hello World!” in Line 15 is enclosed within the jsp:text element. This is
necessary, because in XML you cannot have “untagged” text.

To be consistent and make possible the full validation of the generated HTML, you should also
include the proper DOCTYPE. The best way to do this is to use the attributes of the jsp:output action,
which was specifically designed for this purpose. You only need to replace the <html> tag in line 12 with
the following three elements:

<jsp:output omit-xml-declaration="false"/>
<jsp:output
doctype-root-element="html"

www.it-ebooks.info

153

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>

<html xmlns="http://www.w3.0rg/1999/xhtml">

Yes, it’s quite a bit of work just to write “Hello World!”, but this overhead is going to stay the same
for JSP documents of any size. The first line causes the <?xml ... ?>elements to be written at the
beginning of the generated HTML page, while the second element generates the DOCTYPE.

If you look at the HTML page generated by this preliminary version of hello. jspx, you'll see that all
the HTML code is in a single line. If you want to have newlines between HTML tags in the output, you
have to write them. You can actually do this with the jsp:text action. For example, all the jsp:text
elements in the following code fragment contain a newline (which you can see) followed by two spaces
(which you cannot see in the listing but are there):

<html xmlns="http://www.w3.0rg/1999/xhtml"><jsp:text>
</jsp:text><head><title>Hello World in XHTML</title></head><jsp:text>
</jsp:text><body>Hello World!</body><jsp:text>
</jsp:text></html>

As the jsp:text content is sent to the output as it is, the HTML generated will be written over several
lines and indented:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head><title>Hello World in XHTML</title></head>
<body>Hello World!</body>
</html>

The other possibility is to use a CDATA section to enclose the whole HTML:

<![CDATA[<html xmlns="http://www.w3.0rg/1999/xhtml">
<head><title>Hello World in XHTML</title></head>
<body>Hello World!</body>
</html>]]>

This way, the whole block will be sent to the client as it is, uninterpreted. However, it seems an
admission of defeat to send off code that could have been validated for XML compliance at the source.
Don’t you think?

IE AND XHTML

154

Microsoft only managed to include in their Internet Explorer full support of XHTML with IE9. Unfortunately,
IE9 requires at least Windows Vista. If you are running XP, you are not in luck.

But also if you are running Vista, in order to install IE9, you first need to install Service Pack 2, which is not
an automatic update. Further, while all other browsers have no problems in recognizing XHTML in a page
with content type "text/html", IE requires that you specify the mime type of the page to be
"application/xhtml+xml".

For your information, in April 2012, http://en.wikipedia.org/wiki/Web_browsers reported that IE [still]
counted for approximately 26 percent of worldwide browser usage. At about the same time,
http://www.statowl.com claimed that about 36 percent of the IEs installed were version 9. This means

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

that almost 17% of people were then not able to view XHTML pages. By the time you are reading this, that
percentage will have significantly decreased, not only because more people will have upgraded to the last
version of IE but also because many will have switched to using chrome, android, or other browsers.

Now you're finally ready to tackle the conversion of the scriptlet in hello. jsp to XML syntax. Listing
5-17 shows the complete hello. jspx.

Listing 5-17. hello.jspx

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root
xmlns:jsp="http://java.sun.com/IJSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:fn="http://java.sun.com/jsp/jstl/functions"
version="2.1"
>
<jsp:directive.page
language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<jsp:output omit-xml-declaration="false"/>
<Jjsp:output
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head><title>Hello World in XHTML</title></head>
<body>
<jsp:text>Hello World!</jsp:text>

<jsp:text>Your IP address is ${pageContext.request.remoteAddr}</jsp:text>

<jsp:text>and your browser is </jsp:text>
<c:set var="usAg" value="${header['user-agent']}"/>
<c:choose>
<c:when test="${fn:contains(usAg, 'MSIE')}">
<jsp:text>MS InternetExplorer</jsp:text>
</c:when>
<c:when test="${fn:contains(usAg, 'Firefox')}">
<jsp:text>Mozilla Firefox</jsp:text>
</c:when>
<c:when test="${fn:contains(usAg, 'Opera')}">
<jsp:text>Opera</jsp:text>
</c:when>
<c:when test="${fn:contains(usAg, 'Chrome')}">
<jsp:text>Google Chrome</jsp:text>
</c:when>
<c:when test="${fn:contains(usAg, 'Safari')}">
<jsp:text>Apple Safari</jsp:text>

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © XML AND JSP

</c:when>
<c:otherwise><jsp:text>unknown</jsp:text></c:otherwise>
</c:choose>
</body>
</html>
</jsp:root>

Note In JSP documents, you cannot use expressions such as ${whatever > 0}, because the greater-than signs
are illegal within XML. Instead, use the gt form, such as ${whatever gt 0}.

As a second example, of converting a JSP page to a JSP document, you can compare starfleet.jspx
(Listing 5-18) with the original starfleet.jsp (Listing 5-10).

Listing 5-18. starfleet.jspx

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root
xmlns:jsp="http://java.sun.com/IJSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:x="http://java.sun.com/jsp/jstl/xml"
version="2.1"
>
<jsp:directive.page
language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<jsp:output omit-xml-declaration="false"/>
<jsp:output
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
<c:import url="starfleet.xml" var="sf"/>
<x:parse doc="${sf}" varDom="dom"/>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Parsing starfleet.xml</title>
<style>th {text-align:left}</style>
</head>
<body>
<table border="1">
<tr><th>Name</th><th>S/N</th><th>Class</th><th>Year</th><th>Captain</th></tr>
<x:forEach var="tag" select="$dom//starship">
<tr>
<td><x:out select="$tag/@name"/></td>
<td><x:out select="$tag/@sn"/></td>
<td><x:out select="$tag/class"/></td>

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = XML AND JSP

<td><x:out select="$tag/class/@commissioned"/></td>
<td><x:out select="$tag/captain”/></td>
</tr>
</x:forEach>
</table>

</body>

</html>

</jsp:root>

The first 17 lines are identical to the corresponding lines of hello. jspx, while the rest of the
document is identical to the corresponding lines of starfleet.jsp, with the only addition of the closing tag
for jsp:root. This is because starfleet.jsp didn’t include any scripting element or untagged text.

Summary

In this chapter, you learned about the structure and the syntax of XML documents, DTDs, and XML
schemas.

You then saw several ways of how to validate XML documents against DTDs and schemas.

Next, I introduced you to XSL and explained examples of XPath use and of transformation from XML
to XML and from XML to HTML.

To conclude, I showed how you can convert JSP pages with directives and scripting elements into
JSP documents that are fully XML-compliant.

In the next chapter, we’ll talk about databases.

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Databases

In many cases, a web application is nothing more than a front end for a database (DB). In fact, what
makes web pages dynamic is precisely the fact that there is a significant amount of data behind them.

A database consists of organized data—that is, the data itself and a schema that provides data
structures. Nowadays, most databases are organized in fables. You can define the table characteristics
independently of the actual data you're going to store into it. This is another instance of the separation
of formatting and content, which you've already encountered in Chapter 3, when we discussed web
applications.

A database management system (DBMS), such as MySQL or PostgreSQL, is a software package that
lets you create, retrieve, update, and delete (CRUD) both items of data and elements of the schema.

Therefore, when talking about a database, you need to distinguish between three aspects:

e The data it contains.
e The structure you impose on the data in order to CRUD it efficiently.

e The software that allows you to manipulate both the data itself and the database
structure (the DBMS).

Working with a database means that you're interacting with its DBMS. You can do that through a
command line interface (CLI), through graphical user interfaces (GUIs) provided by the DBMS vendor
and third parties, or programmatically through an API. In general, you use all three methods, each for a
different purpose. The CLI is best suited for setting up the initial data structure and for testing, the API is
for your web application to interact with the database to perform its tasks, and the GUI is what you use
to check individual data items or fix one-off problems.

In this chapter’s examples, I'll use MySQL as the DBMS of choice, because, first, it’s available for
free, and second, it’s the most widely used of the freely available DBMSs. As such, it has been proven to
work reliably in all sorts of environments. At the end of this chapter, I'll briefly talk about possible
alternatives to MySQL.

MySQL

In this section, I will explain how to install MySQL. You actually need three packages: the MySQL

database server, a connector to access MySQL databases from Java (a JDBC), and the MySQL

Workbench, an application that lets you easily inspect and modify databases via a comfortable GUI.
To install MySQL, do the following:

1. Gotohttp://dev.mysql.com/downloads/ and click on the big green button
labeled "Download".

G. Zambon, Beginning JSP, JSF and Tomcat 159
© Giulio Zambon 2012

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

2. Ensure that the selected platform is "Microsoft Windows" and click on the
"Download" button.

3. Before you can download the package, you will have to login as a user, or
register to be one. Then, after selecting a mirror site, you will be able to
download the MSI installer mysql-installer-5.5.21.0.msi (or a more recent
version of it). This package contains all three components of MySQL. Be aware
that Workbench requires ".NET 4.0" and the "Visual C++ 2010 Redistributable
Package". The MySQL installer will guide you to download and install them if
needed. Alternatively, you can go to
http://dev.mysql.com/resources/wb52 prerequisites.html to make sure you
have everything in place beforehand.

4. When you execute the MySQL installer, choose the "Full" installation.

5. By default, MySQL keeps all databases in "C:\Program Data\MySQL\MySOQL
Server 5.5".1chose to change the datapath to "C:\Program
Data\MySQL\data\", because it was more convenient for access and for backup.

6. Choose "Standard Configuration", and tick both option boxes before clicking
on "Next >". The first option is to run MySQL as a service from startup. The
second one lets you use MySQL from the command line.

7. Keep the default configuration: developer machine, enabled TCP/IP, and
create Windows service MySQL55.

8. The version of the installer I had forced me to choose a password to access the
databases.

If you go to the Services control panel as explained for Tomcat, you should see the service MySQL55
running.

For the examples of this book, as all databases are accessed locally and don't contain valuable data, I
decided I didn’t need a password.

To remove the password I had been forced to choose during installation, I opened a command
window, attached to the directory "C: \Program Files\MySQL\MySQL Server 5.5\bin\" and typed the
command "mysqladmin -u root -p password". The program asked me to enter the password, which I
did, and then asked me twice to enter the new password, to which I replied both times by pressing Enter.

These MySQL packages that contain all components do not necessarily include the latest versions of
the connectors and of the Workbench. I didn’t particularly care about having the latest Workbench,
because I intended to use it only to check simple database generated from JSP. But I was keen to have
the latest Java connector. Therefore, I went to http://dev.mysql.com/downloads/connector/j/ and
downloaded mysql-connector-java-5.1.18.zip.

To install a JDBC, you only need to copy its JAR file into %CATALINA_HOME%\1ib\. The MySQL installer
putsitinto C:\Program Files\MySQL\MySQL Connector J\.

For easy access, you should create a shortcut pointing to the Workbench application and place it in
the quickstart bar or on the desktop. The application path will look like this:

C:\Program Files\MySQL\MySOL Workbench CE 5.2.37\MySQLWorkbench.exe.

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

MySQL Test

Listing 6-1 shows an SQL script to create a simple database, which we will use in the E-shop application
you first encountered in Chapter 3. For your reference, I have written a summary of the SQL language in
Appendix B.

Listing 6-1. shop_create.sql

01 drop database shop;
02 create database shop;

03 create table shop.categories (

04 category id integer not null auto_increment unique,
05 category name varchar(70),

07 primary key (category id)

08 5

09 create table shop.books (

10 book_id integer not null auto_increment unique,
11 title varchar(70),

12 author varchar(70),

13 price double precision,

14 category id integer,

15 primary key (book_id)

16 ;
17 create index category id key on shop.categories (category id);
18 create index book id key on shop.books (book id);

19 alter table shop.books add index category id (category id),

20 add constraint category id foreign key (category id)
21 references shop.categories (category id)
22 H

Line 01 removes the database. It reports an error when you use it the first time, because there is no
database to delete, but it also lets you re-run the script to re-create the database from scratch. Itisn’t
something you would normally do in a non-test environment.

Line 02 creates a blank database named shop.

Lines 03 to 08 create a table to store book categories.

Lines 09 to 16 create a table to store book records.

Line 17 creates an index to speed up the search of categories.

Line 18 creates an index to speed up the search of books when selected by their IDs.

Lines 19 to 22 create an index to speed up the search of books when selected by their categories.

To execute the SQL script, you can use either the Command Line Client or the Workbench. You will
find the script in the software package for this chapter.

To use the Command Line Client, click on "Start" and select "Programs » MySQL » MySQL Server
5.5>» MySQL 5.5 Command Line Client".This opens a command-line window where you will first have
to type the password to access the server. If you have removed the password as I suggested, you only
need to hit Enter. The Client will respond by displaying the "mysql> " prompt. Open shop_create.sql
with a text editor, copy everything into the clipboard, and paste it onto the Command Line Client.
Listing 6-2 shows what you will get.

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

Listing 6-2. Log of shop_create.sql

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1

Server version: 5.5.21 MySOL Community Server (GPL)

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> drop database shop;

ERROR 1008 (HY000): Can't drop database 'shop'; database doesn't exist
mysql> create database shop;

Query OK, 1 row affected (0.00 sec)

mysql> create table shop.categories (
-> category id integer not null auto_increment unique,
-> category name varchar(70),

-> primary key (category id)

-> 5

Query OK, 0 rows affected (0.13 sec)

mysql> create table shop.books (
-> book_id integer not null auto_increment unique,
-> title varchar(70),
-> author varchar(70),
-> price double precision,
-> category id integer,
-> primary key (book id)
_> ;
Query OK, 0 rows affected (0.19 sec)

mysql> create index category id key on shop.categories (category id);
Query OK, 0 rows affected (0.37 sec)
Records: 0 Duplicates: 0 Warnings: O

mysql> create index book_id_key on shop.books (book_id);
Query OK, 0 rows affected (0.36 sec)
Records: 0 Duplicates: 0 Warnings: O

mysql> alter table shop.books add index category id (category id),
-> add constraint category id foreign key (category id)

-> references shop.categories (category id)

-> ;

Query OK, 0 rows affected (0.33 sec)

Records: 0 Duplicates: 0 Warnings: O

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

If you repeat the operation, you'll see that something like "Query OK, 2 rows affected (0.56 sec)"
will replace the "ERROR 1008" message.

You can achieve the same result with the Workbench. After launching it, double-click on the link
"Local MySQL55" that appears under the heading "Open Connection to Start Querying".This will open a
window as shown in Figure 6-1.

[2] MySQL Workbench o S

|| soL Editor Local MySQLEE - x |
File Edit View Query Database Plugins Scripting Community Help DORACLE

FElJEEE € =)
SQL Additions

& | My Snippets -l

SQLFile1 %
o7 a8

Object Browser
SCHEMAS 1:%

3| A= a1

> - sakila
Set as Default Schema

> T Filter to This Schema
Copy to Clipboard »
Send to SQL Editor 3
Alter Schema...
Create Schema...
Drop Schema...

Refresh Al

Snippets -

Action Output -

Time Action Message Duration / Fetch

Information

Object Info

Active schema changed to sakila

Figure 6-1. MySQL Workbench

If you have already created the shop database from the command line, you will see the
corresponding entry in the Object Browser. If you right-click it, you will be able to choose the default
database, although it is not necessary for you to do so.

In any case, to load the SQL script, click on the folder icon in the menu bar of the central pane. You
can then open shop_create.sql or paste its content into the central pane. To execute it, click on the
lightning icon. Figure 6-2 shows what happens when you do so.

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

164

[] MySQL Workbench

3 _| SQL Editor (Local MySQLEE-.. = .|_
File Edit View Query Database Plug

ESlapSEsr=pog 3

Object Browser

_ 1 ® drop database shop; -
» = sakila 2 ® create database shop;
» |- shop 3 ® [Jcreate table shop.categories ()
o otest 4 category_id integer not null auto_increment unique,
e 5 category_name varchar(70),
6 primary key (category_id)
7 T H
8 ® Clcreate table shop.books (
3 book_id integer not null auto_increment unique,

ins Scripting Community Help

SQL Additions

. Mo IZ#80CA Bi=][W | My Srioets

3
4
Information 5
[}
7

000000

Object Info Session

Query Completed

Action Message

|nn

14:59:17 create database shop 1 row(s) affected
14:59:17 create table shop.categories { category_id integer not null ... 0 row(s) affected
14:59:17 create table shop.books { book_id integer not null auto_in... 0 row(s) affected
14:59:17 create index category_id_key on shop.categories {category... 0 row(s) affected Records: 0 Duplicates: 0 Wamings: 0
14:5917 create index book_id_key on shop .books (book_id) 0 row(s) affected Records: 0 Duplicates: 0 Wamings: 0
14:59:18 shertable shop.books add index category_id (category_id), ... 0 row(s) affected Records: 0 Duplicates: 0 Wamings: 0

10 title varchar(76) A
11 author varchar(7e 3
12 price double preclslon.

13 category_id integer,

14 primary key (book_id)

15 L);

16 ® create index category_id_key on shop.categories (category_1
17 ® create index book_id_key on shop.books (book_id);)
18 ® alter table shop.bocks add index category id (category id),
18 add constraint category_id foreign key (category_id)
20 references shop.categories (category_id)

Output

Action Output -

Duraticn / Fetch
0.000 sec k
D078 sec
0125 sec
01771 sec

0219 sec
0.203 sec

Figure 6-2. Creating the shop database with the Workbench

Now that the database is in place, insert book categories and book records by executing the SQL

script shown in Listing 6-3.

Listing 6-3. shop_populate.

USE shop;
INSERT INTO categories (
category id
, category name

VALUES
(1, 'Web Development
» (2,'SF")
, (3,'Action Novels')
)
INSERT INTO books (
book_id

sql

")

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

title
author
price
category id

ALUES
(1,'Pro CSS and HTML Design Patterns', 'Michael Bowers',44.99,1)
(2,'Pro PayPal E-Commerce', 'Damon Williams',59.99,1)
(3,'The Complete Robot','Isaac Asimov',8.95,2)
(4, 'Foundation', 'Isaac ASimov',8.95,2)
(5,'Area 7', 'Matthew Reilly',5.99,3)
(6,'Term Limits','Vince Flynn',6.99,3)

o

Note that you only need the "USE shop;" command if you execute the script from the command line.

After populating the database, you can look at the book records by typing a SELECT command in the
central pane of Workbench (or at the "mysql> " prompt of the Command Line Client). For example,
"select * from books;" will list all the books you have inserted, as shown in Figure 6-3.

& 7 ¥ a a=iq

1 e select * from books;

Filter: \(‘- Edit ﬁ oh o | Export b | Autosize: Ia
book_id title author price category_id
» |1 Pro CSS and HTML Design Pattems Michael Bowers 44.99 1
2 Pro PayPal ECommerce Damon Wiliams 59.99 1
3 The Complete Robot |saac Asimov 8.95 2
4 Foundation Isaac ASimov ~ 8.95 2
5 Area 7 Matthew Reilly 5.99 3
6 Tem Limits Vince Flynn 6.99 3
* [HuLL | [HULL HuLL |

Figure 6-3. List of all books

MySQL/Tomcat Test

To be sure that everything works, you still need to check that you can access the database from Tomcat
using JSP. That is, that Tomcat is able to use the JDBC connector. To do so, you can use the JSP page
shown in Listing 6-4, which lists all books in the database.

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

DATABASES

Listing 6-4. jdbc.jsp

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<%@page language="java" contentType="text/html"%>
<%@page import="java.sql.*"%>
<html><head><title>IDBC test</title></head><body>
<%
Class.forName("com.mysql.jdbc.Driver");
Connection conn = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/shop", "root", "");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from books");
%><table border= "1"><%
ResultSetMetaData resMetaData = rs.getMetaData();
int nCols = resMetaData.getColumnCount();
B><tr><
for (int kCol = 1; kCol <= nCols; kCol++) {
out.print("<td>" + resMetaData.getColumnName(kCol) + "</td>");

A></tr><k
while (rs.next()) {
k><tr><k
for (int kCol = 1; kCol <= nCols; kCol++) {
out.print("<td>" + rs.getString(kCol) + "</td>");

%></tr><h

}
%></table><%
conn.close();
%>

</body></html>

Here is how jdbc. jsp obtains the list of books from the database and then displays them:

05: Load JDBC to connect to the database server.

06-07: Connect to the database.

08: Create an empty statement to query the database.

09: Execute the query to list all books and store the result set into a local variable.
11: Obtain information on the structure of the result set.

12: Obtain the number of columns of the result set.

13-17: Display the column names.

18-23: List the books one per row.

26: Close the connection to the database server.

Don’t worry if things are not completely clear. Later in this chapter, I will explain in detail how you

access a database from Java. For the time being, I just want to give you an example of how you can test
database connectivity with a simple JSP page.

To execute the page, place it into the usual test folder. Figure 6-4 shows how the generated page

appears in a web browser.

166

www.it-ebooks.info

http://www.it-ebooks.info/

(=] E [
JDBC test
€ C' O localhost:s w N
|book_id“title author ‘Iprice “categoq‘_idr
1 Pro CSS and HTML Design Patterns |Michael Bowers 44.99‘ 1
2 Pro PayPal E-Commerce ‘ Damon Wilh'amsl 59.99J 1
3 ‘ The Complete Robot [saac Asimov ||8.95 ‘ 2
4 [Foundation Isaac ASimov |[8.95 ||2
|5 “Area 7 IMatthew Reilly .I5'99 3
6 [Term Limits [Vince Flynn (6,99 [3

Figure 6-4. jdbc.jsp output

CHAPTER 6

DATABASES

In a more realistic situation, you would replace the category identifiers with the category names, but
I want to keep this first example as simple as possible.

There is one thing, though, that deserves a comment: it is bad practice to hard code in a page the
name of the database, of the user ID, and of the access password. Sooner or later, you might need to

change one of those parameters, and the last thing you want to do is to go through all your pages to do it.

The initialization parameters exist precisely to avoid such error-prone procedure.

First, you need to include the parameter definitions in the web.xml file that’s inside the WEB-INF

folder of your application’s root directory. You need to insert the lines shown in Listing 6-5 within the

body of the web-app element.

Listing 6-5. web.xml Fragment to Define Initialization Parameters

<context-param>
<param-name>dbName</param-name>
<param-value>my-database-name</param-value>
</context-param>

<context-param>
<param-name>dbUser</param-name>
<param-value>my-userID</param-value>
</context-param>

<context-param>
<param-name>dbPass</param-name>
<param-value>my-password</param-value>
</context-param>

In the example, my-database-name would be jdbc:mysql://localhost:3306/shop, my-userID would

be root, and my-password would be the empty string (i.e., nothing).

To access the parameters from within any JSP page, you then just need to type something like the

following:

String db
String db
String db

Name = application.getInitParameter("dbName");

User
Pass

www.it-ebooks.info

application.getInitParameter("dbUser");
application.getInitParameter("dbPass");

167

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

168

After that, you can replace lines 6 and 7 of the example with:

Connection conn = DriverManager.getConnection(dbName, dbUser, dbPass);

Database Basics

In some cases, a DB might contain a small amount of data, have a simple structure, and reside together
with the application software on a home PC. In other cases, at the higher end of the scale, it might hold
millions of records, have a data structure of great complexity, and run on a cluster of powerful servers
(e.g., with MySQL Cluster).

In any case, regardless of size, environment, and complexity, the DBMS is organized around the
client/server architecture. The system on which your DB resides is the server, and the system from which
you need to access your DB is the client, even when they’re one and the same PC. Therefore, in order to
be able to work with data and a data structure, you first have to establish a connection from the client to
the database on the server. To be able to do so, you need the following three pieces of information:

e The URL of your server
e Auser ID that allows you to access the DB
e The password that goes together with the User ID

Once you establish the connection, you can then begin to manipulate the DB structure and its
content via SQL statements. Be aware that although you need to provide a User ID and password when
you connect to the server, this doesn’t automatically mean that a user has access to all databases on the
same server. You can (and, in most cases, should) allow access to specific databases to some users and
not others. In fact, you can define one or more new users for each new database you create and group
them according to the capabilities they are required to have (i.e., database administrators, developers,
etc.). This ensures total confidentiality of data when several users share a database server. It’s good
practice to define different users for different applications so that you don’t risk “cross-polluting” data.

In 1986, the American National Standards Institute (ANSI) adopted SQL as a standard, and ISO
followed suit one year later. The current standard is ISO/IEC 9075, but, unfortunately, it’s not freely
available. If you want to have it, you have to buy it from ANSI or ISO. The SQL standard has been widely
adopted, and, as a result, most of what I'm going to say concerning SQL actually applies to all DBMSs. As
you can imagine, there are still proprietary additions and variations that, in some cases, make SQL less
portable than what it could and should be, but it won't affect us.

The SQL standard specifies at least 27 basic statements with numerous variants. They are alter,
based on, begin, close, commit, connect, create, declare, delete, describe, disconnect, drop, end, event,
execute, fetch, grant, insert, open, prepare, revoke, rollback, select, set, show, update, and whenever
(see Appendix B for the details). In total, at the last count, 231 words were reserved by SQL as keywords.
Therefore, it should be clear that in this chapter, I couldn’t possibly give you more than a small
introduction to SQL. Appendix B provides a more detailed SQL reference to help you along. Also, if you
search Apress for “SQL”, you will get a list of more than a hundred books. “Beginning SQL Queries”
(www.apress.com/9781590599433) might be a good starting point.

The basic structural elements of a DB are rows, columns, tables, and indices. In non-SQL terms,
rows are data records, columns identify the record fields, tables are named collections of records, and
indices are ordered lists of records.

To design a database for a web application, you basically associate a table to each Java class that
represents the data you need to store permanently. Each attribute of your class then becomes a column
of your table. In a sense, to express it in OO terminology, each row corresponds to an instantiation of
your class containing different data. For example, in the E-shop application, book categories are
modeled to reflect the Java class shown in Listing 6-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

Listing 6-6. Category.java

package eshop.beans;

public class Category {
private int id;

private String name;

public Category(int id, String name) {

this.id = id;
this.name = name;
}

public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

}

Accordingly, to store categories in the shop database, you can use the following SQL statement to
create a table named categories, extracted from shop_create.sql (see Listing 6.1):

create table shop.categories (
category id integer not null auto_increment unique,
category name varchar(70),
primary key (category id)

)

Each SQL statement consists of a verb that defines the operation to be done (create table in this
example), the identifier of the object operated on (shop.categories in this example), and one or more
operation parameters, often enclosed in parentheses. When more than one object or parameter is
needed, they’re usually comma-separated. In the example, the first two parameters define the DB
columns category id and category name. Notice how the attributes specified in the SQL statement
match those defined in the Java class. When creating this table, I also told MySQL to create an index of
category_id by declaring the column to contain unique values and designating it as the primary key of
the table. The purpose is to speed up DB operations, although in this case, given the small size of the
table, it obviously won’t make any practical difference.

Use this code, which creates three new rows, to store new records in a DB, extracted from
shop_populate.sql (see Listing 6.2):

insert into categories (category id, category name)
values (1, 'Web Development'), (2,'SF'), (3,'Action Novels');

Incidentally, be aware that SQL, contrary to Java, is not case-sensitive.
Use the powerful select SQL statement to read data. It lets you create complex queries that include
sorting the data. Here’s a simple example:

select category id, category name from categories where category id = '2°';

To retrieve all columns of a table, you replace the comma-separated list of columns with an asterisk.
The where clause can consist of several conditions composed by means of logical operators.
You use the update statement to modify row contents:

169

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

update categories set category name = 'SF' where category id = '2°';
Using delete you can remove rows:
delete from categories where category id > '3';

You can also operate on the data structure. To do so, you use the alter statement, as in the
following example:

alter table categories add new_column_name column-definition;

This lets you add a column to an existing table. If you replace add with modify or drop, the alter
statement will let you redefine a column or remove it.

In general, the SQL statements are grouped depending on their purposes. Table 6-1 gives you a
summary of their classification.

Table 6-1. Classification of SQL Statements

Group Description

Data Definition Language (DDL) Statements used to define the DB structure (e.g., create, alter,
drop, and rename)

Data Manipulation Language Statements used to manage data (e.g., select, insert, update,

(DML) and delete)

Data Control Language (DCL) Statements used to control access to the data (e.g., grant, used
to give access rights to a user, and revoke, used to withdraw
them)

Transaction ControL (TCL) Statements used to group together DML statements into logical

transactions (e.g., commit and rollback)

In this chapter, I'll explain how to execute any SQL statement, but we’ll concentrate mainly on DML.

SQL Scripts

As I have already said, a CLI is useful to initialize a database. As a CLI, MySQL makes available the
program “MySQL Command Line Client,” which starts in a DOS window and attempts at once to
establish a connection as the default User ID to the default server. If you've set up MySQL as I suggested
at the beginning of this chapter, the default user will be root and the default host will be localhost. After
providing the correct password, you get a mysql> prompt and can start executing SQL statements.

You can play around with the commands, but the best way to use the CLI is with SQL scripts. These
are plain-text files containing the statements you want to execute. At the mysql prompt, you only need to
type backslash-period-space (\.) followed by the script file name, and off you go. In fact, you must use
scripts if you want to ensure that your steps are repeatable and correctable. Listing 6-7 shows the third
(and last) SQL script needed to configure the database of the E-shop application.

170

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

Listing 6-7. shop_orders.sql

USE shop;
create table shop.order details (

id double precision not null auto_increment unique,
book_id integer,

title varchar(70),

author varchar(70),

quantity integer,

price double precision,
order_id double precision,
primary key (id)

)
create table shop.orders (
order_id double precision not null auto_increment unique,
delivery name varchar(70),
delivery address varchar(70),
cc_name varchar(70),
cc_number varchar(32),
cc_expiry varchar(20),
primary key (order_id)

)
create index order details id key on shop.order details (id);
alter table shop.order details add index order id (order id),
add constraint order id foreign key (order id)
references shop.orders (order id)

create index order_id key on shop.orders (order id);

Notice that the primary (i.e., unique) keys of both order_details and orders are automatically
generated by MySQL as ever increasing numbers, while the primary keys of books and categories are
hard-coded in shop_create.sql (see Listing 6.1). As the category and book IDs are not visible to the user,
I could have let MySQL generate them as well. I didn’t do it because the book and category records are
created by hand anyway, and to add an ID didn’t seem a big deal. Perhaps it is due to my tendency to
minimize the use of automatic mechanisms when they are not necessary, in order to retain more
control. The downside of this is of course that manual entries are in general more error prone and
require more maintenance effort.

To write comments in an SQL script, you enclose them between /* and */, like Java’s block
comments.

Java API

You operate on databases by executing SQL statements. To do so from within Java/JSP, you need an API
consisting of several interfaces, classes, and method definitions. The API is included in the class libraries
java.sql and javax.sql of JDK version 7. Additionally, you also need a driver that implements that API
for the specific DBMS (i.e., MySQL) in the native code of your system (i.e., an Intel/Windows PC). To
work with MySQL, you use as driver the MySQL Connector/]J version 5, which is a type 4 JDBC driver (see
sidebar).

171

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

JDBC DRIVERS

The JDBC API lets you access databases from Java. There are four types of JDBC implementations (i.e.,
drivers).

JDBC drivers of type 1 are actually JDBC-ODBC bridges, because they access databases via an Open
Database Connectivity (ODBC) driver. At the end of this chapter, we’ll show you how to use the bridge
included in the Java Virtual Machine (JVM).

JDBC drivers of type 2 use vendor-specific, native, client-side libraries. In other words, they interface to
non-Java functions provided by the DBMS vendor, which in turn interfaces to the databases. These drivers
are more efficient compared to those of type 1, but you can only use them locally.

JDBC drivers of type 3 are Java drivers that, instead of communicating directly with the databases, rely on
a middleware package that sits on an application server.

JDBC drivers of type 4 are written entirely in Java and communicate directly with the DBMS server. This is
the type you want!

Connecting to the Database

The first step to access a database from Java is to load the driver, without which nothing will work. To do
so, you execute the method Class.forName("com.mysql.jdbc.Driver"). In the E-shop application, you do
this in the init method of the servlet (see Listing 3-9).

To be able to switch from MySQL to other DBMSs without much effort, store the driver name in an
init parameter defined in WEB-INF\web.xml as follows:

<init-param>
<param-name>jdbcDriver</param-name>
<param-value>com.mysql.jdbc.Driver</param-value>
</init-param>

This way, you can load it as follows when initializing the servlet:
java.lang.Class.forName(config.getInitParameter("jdbcDriver"));

Once you load the driver, you also need to connect to the database before you can access its
content. In the E-shop application, you do this by executing a data manager (of type DataManager,
defined in WEB-INF\classes\eshop\model\DataManager.java) method, as shown in the following line of
code:

java.sql.Connection connection = dataManager.getConnection();

The data manager’s getConnection method, in turn, obtains the connection from the JDBC driver, as
shown in the fragment in Listing 6-8.

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

Listing 6-8. The DataManager.getConnection Method

public Connection getConnection() {
Connection conn = null;

try {
conn = DriverManager.getConnection(getDbURL(), getDbUserName(), getDbPassword());

}
catch (SQLException e) {
System.out.println("Could not connect to DB:

+ e.getMessage());

return conn;

}

To be able to change the database, the user ID, or the password without having to rebuild the
application, you define them in servlet initialization parameters as you did for the name of the JDBC
driver and as I showed earlier in this chapter:

dbURL: jdbc:mysql://localhost:3306/shop
dbUserName: root
dbPassword: none

Port 3306 is the default for MySQL and can be configured differently. Obviously, in real life, you
would use a different user and, most importantly, define a password.

Once you finish working with a database, you should always close the connection by executing
connection.close(). E-shop does it via another data manager’s method, as shown in Listing 6-9.

Listing 6-9. The DataManager.putConnection Method

public void putConnection(Connection conn) {
if (conn != null) {
try { conn.close(); }
catch (SQLException e) { }
}
}

Before you can start hacking at your database, you still need to create an object of type
java.sql.Statement, as it is through the methods of that object that you execute SQL statements. Use
this code to create a statement:

Statement stmt = connection.createStatement();

Once you're done with one statement, you should release it immediately with stmt.close(),
because it takes a non-negligible amount of space, and you want to be sure that it doesn’t hang around
while your page does other things.

Accessing Data

The Statement class has 40 methods, plus some more inherited ones. Nevertheless, two methods are
likely to satisfy most of your needs: executeQuery and executeUpdate.

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

174

The executeQuery Method

You use this method to execute a select SQL statement, like this:

String sql = "select book_id, title, author from books where category id=1"

+ " order by author, title";
ResultSet rs = stmt.executeQuery(sql);

In the example, the method returns in the variable rs of type java.sql.ResultSet all the books in
category 1, sorted by author name and title. The rows in the result set only contain the columns specified
in the select statement, which in this example are book_id, title, and author.

At any given time, you can only access the row of the result set pointed to by the so-called cursor,
and by default you can only move the cursor forward. The usual way of accessing the rows of the result
set is to start from the first one and “go down” in sequence. For example, with the shop database, the
following code:

while (rs.next()) {
out.println(rs.getString(3) + ", " + rs.getString(2) + "
");
}

would produce the following output:

Damon Williams, Pro PayPal E-Commerce
Michael Bowers, Pro CSS and HTML Design Patterns

The next method moves the cursor down one row. After the cursor goes past the last row, next ()
returns false, and the while loop terminates. Initially, the cursor is positioned before the first row.
Therefore, you have to execute next () once in order to access the very first row.

Besides next(), there are other methods that let you reposition your cursor. Five of them return a
boolean such as next (), which returns true if the cursor points to a row. They are absolute(row-
position), first(), last(), previous(), and relative(number-of-rows). The beforeFirst() and
afterLast()methods also move the cursor but are of type void, because they always succeed. The
isBeforeFirst(), isFirst(), isLast(), and isAfterLast() methods check whether the cursor is in the
corresponding positions, while getRow() returns the position of the row currently pointed to by the
cursor.

Keep in mind that in order to be able to move the cursor around, you have to specify a couple of
attributes when you create the statement—that is, before you actually execute the query. This is how you
doit:

Statement stmt = connection.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY
);

ResultSet.TYPE_SCROLL INSENSITIVE is what allows you to move the cursor forth and back within
the result set. This parameter can only have one of the following two other values:
ResultSet.TYPE_FORWARD_ONLY (the default) and ResultSet.TYPE_SCROLL_SENSITIVE. The difference
between SENSITIVE and INSENSITIVE is that with INSENSITIVE, you're not affected by changes made to the
result set while you’re working with it (more about this in a moment). This is probably what you want.

ResultSet.CONCUR_READ ONLY states that you don’t want to modify the result set. This is the default,
and it makes sense in most cases. The alternative is to specify ResultSet.CONCUR_UPDATABLE, which allows
you to insert, delete, and modify result rows. Now you can see why you might like to use
ResultSet.TYPE_SCROLL_SENSITIVE as the first parameter: it lets you see the modifications made to the
result set after you started working with it, rather than showing how it was before those changes. On the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

other hand, in a complex application with several threads operating on the same result set, you’'ll
probably prefer to ignore the changes made in other threads. In such a situation, it would have to be 100
percent clear which thread would be allowed to modify which rows; otherwise, you'd end up with a
mess.

ResultSet provides several methods for retrieving a column value in different formats, given a
column position or its label. For example, the following two methods will return the same value:

long bookID
long bookID

rs.getlong(1);
rs.getlong("book_id");

The column position refers to the columns specified in the select statement. Notice that the
column numbering begins with 1, not with 0 as is customary in Java. The types available are Array,
BigDecimal, Blob, boolean, byte, byte[], Clob, Date, double, float, InputStream, int, long, NClob, Object,
Reader, Ref, RowId, short, SOLXML, String, Time, Timestamp, and URL (see Appendix B for more details). For
most of these types exists a corresponding update method, which lets you modify a column. For
example, the following code writes “Joe Bloke” in the author column of the current row of the result set:

rs.updateString("author"”, "Joe Bloke");

Note that there are no update methods for the types InputStream, Reader, and URL. You can also set a
column to null with the methods updateNull(column-index) and updateNull(column-Iabel).

ResultSet provides more than two dozen additional methods that let you do things such as transfer
changes from an updated result set to the actual database or refresh a row that somebody else might
have modified in the actual database after you performed the query. One method that you might find
useful returns the column position in your result set given its name:

int findColumn(column-label)

The result set is automatically disposed of when the corresponding statement is closed. Therefore,
you don't really need to execute rs.close(), as long as you immediately close the statement when you
no longer need it.

The executeUpdate Method

You can use this method to execute the SQL statements insert, update, and delete. For example, if you
want to add a new book category to the E-shop example, you do something like this:

String sql = "insert into categories (category id, category name)"

+ " values (4, 'Comic Books')";
stmt.executeUpdate(sql);

You don’t need to define all the columns, because the undefined fields are set automatically to their
corresponding default values. That said, as I haven’t specified any default in the definition of the
categories table, the following statement would result in the field category name being set to null:

stmt.executeUpdate("insert into categories (category id) values (4)");
To avoid this occurrence, I could have defined the category name column with a default:

category name varchar(70) default 'Miscellanea’

175

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

Transactions

In E-shop, I have defined two separate tables for data associated with a book order: one for the customer
data, and one for the individual books ordered (see Listing 6-7). It would be bad if you completely lost an
order, but perhaps it would be even worse if you lost some items and only processed a partial order. It
would also be a problem if you saved the order details in the database but failed to save the customer
data. That would leave some “orphaned” book items with no information concerning the buyer. You
don’t need to worry about this if you save the customer data first: then, by the time you start saving the
order details, the customer record is already on disk. But how do you ensure that the database only
contains complete orders?

Normally, when you execute an SQL insert, the data is immediately stored into the database. To
ensure the completion of orders, you could keep track of the updates you've already successfully
executed and reverse them if you cannot complete the whole order. However, this would be very
complicated, and there would be no guarantee of success. Moreover, in a more complex application,
there might be several operations proceeding simultaneously and causing the same database records to
be accessed concurrently. The solution is a built-in, foolproof mechanism capable of ensuring that some
complex transactions are done “in one shot” or not at all.

This mechanism is actually quite simple. It works like this:

1. Immediately after connecting to the DB with conn =
DriverManager.getConnection(...), execute conn.setAutoCommit(false). This
tells MySQL not to make permanent changes to the database until you confirm
them.

2. Perform all the updates that form your complex transaction. Be sure that you
place them inside a try block as part of a try/catch construct.

3. Inthe catch block, include the statement conn.rollback(). If one of the
updates fails, an SQLException will be thrown, and when the catch block is
executed, the rollback will cause MySQL to “forget” the uncommitted
updates.

4. When all the updates have completed without being interrupted by any
exception, execute conn.commit () to tell MySQL that it can finalize the updates.

DB Access in E-shop

As I mentioned in Chapter 3, all database operations are concentrated in the data model of an MVC
architecture. JSP modules interact with the database by executing methods of the DataManager class,
which accept and/or return data in the form of Java beans. By mediating DB access via the data manager
and Java beans, you ensure that the view and the model can be developed independently.

Figure 6-5 shows the structure of the model.

176

www.it-ebooks.info

http://www.it-ebooks.info/

A

4)
Model v

Data
Manager
Category Book Order [;); t(; ?Irs
Peer Peer Peer
Peer
& J

Figure 6-5. The data model structure

The DataManager class sets up and closes connections to the database; however, concerning table

CHAPTER 6

access, it only acts as a clearinghouse. Specific classes perform the actual operations on individual
tables. In this way, you ensure that changes to individual tables have the minimum impact on the

application. This is actually an example of the Java EnterPrise Edition pattern called Data Access Object
(DAO).

For example, the JSP page that displays the book details obtains the information concerning the
requested book by executing the following method of the data manager:

public Book getBookDetails(int bookID) {
return BookPeer.getBookById(this, bookID);

}

DATABASES

It is the getBookByID method in BookPeer. java that performs the actual database access, as shown in
Listing 6-10.

Listing 6-10. The BookPeer.getBookID Method

01: public static Book getBookById(DataManager dataManager, int bookID) {

02:
03:
04:
05:
06:
07:
08:

Book bo

Connection connection = dataManager.getConnection();

ok = null;

if (connection != null) {

try {

Statement s = connection.createStatement();

String sql = "select book id, title, author, price from books"

+ " where book _id=" + bookID;

www.it-ebooks.info

177

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

178

09: try {

10: ResultSet rs = s.executeQuery(sql);
11: if (rs.next()) {

12: book = new Book();

13: book.setId(rs.getString(1));

14: book.setTitle(rs.getString(2));
15: book.setAuthor(rs.getString(3));
16: book.setPrice(rs.getDouble(4));
17: }

18: }

19: finally { s.close(); }

20:

21: catch (SQLException e) {

22: System.out.println("Could not get book: " + e.getMessage());
23:

24: finally {

25: dataManager.putConnection(connection);
26: }

27: } return book;

28:

In line 3, you open the database connection by invoking a method of the data manager that also
reports an error in case of failure. Then you start a try block where you do the actual work. In the
corresponding catch block, you display an error message (line 22), and in the finally block (line 25), you
close the DB connection. Remember that the finally block is executed whether the try succeeds or not.
In this way, you ensure that the connection is closed in case of failure.

Inside the outermost try (lines 5-20), you create a statement and set up the query string before
starting a second try block (lines 9-17). Similar to what you did concerning the connection, you use the
finally block to close the statement (line 19).

This is a technique of general applicability: every time you do something that needs to be undone,
take care of it immediately inside a try block by placing the “undoing” statement in the corresponding
finally. In this way, you'll be sure not to leave any “ghosts” behind you. It’s true that Java’s garbage-
collection mechanism should take care of removing unreferenced objects, but it’s good practice to clean
up behind yourself as you go, especially when you're dealing with databases and potentially large
objects, such as statements and result sets. At the very least, your application will work more efficiently.
And it feels good to write “clean” code.

Line 10 is where you actually execute the query. You know that you're not going to get more than
one row in the result set, because the book_id is a unique key of the book table.

You might be thinking, “Why should I go through the data manager at all? Couldn’t I simply execute
the BookPeer method from JSP?” Well, you could, but it wouldn’t be clean, and dirtiness sooner or later
causes problems.

Furthermore, consider the more complex case in which you want to save an order. From the JSP
point of view, you only want to call a method of the data manager that takes care of both the customer’s
data and the shopping cart. Behind the scenes, though, two different tables need to be updated: one for
the orders and one for the order details. Therefore, it makes a lot of sense to execute the overall
transaction in the data manager (see Listing 6-11) while leaving the updates of individual tables to the
peer classes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

Listing 6-11. The DataManager.insertOrder Method

public long insertOrder(Customer customer, Hashtable shoppingCart) {
long returnValue = OL;
long orderId = System.currentTimeMillis();
Connection connection = getConnection();

if (connection != null) {
Statement stmt = null;
try {

connection.setAutoCommit(false);

stmt = connection.createStatement();

try {
OrderPeer.insertOrder(stmt, orderId, customer);
OrderDetailsPeer.insertOrderDetails(stmt, orderId, shoppingCart);
try { stmt.close(); }
finally { stmt = null; }
connection.commit();
returnValue = orderId,;

}
catch (SQLException e) {
System.out.println("Could not insert order: " + e.getMessage());
try { connection.rollback(); }
catch (SQLException ee) { }
}

catch (SQLException e) {
System.out.println("Could not insert order: " + e.getMessage());

finally {
if (stmt != null) {
try { stmt.close(); }
catch (SQLException e) { }

putConnection(connection);

}

return returnValue;

}

The two lines in bold show you how the data manager asks the peer classes of the tables orders and
order details to do the update. Notice that you pass to them the same statement and order ID. Listing
6-12 shows insertOrder, one of the two methods that do the updates.

Listing 6-12. The OrderPeer.insertOrder Method

public static void insertOrder(Statement stmt, long orderId,
Customer customer) throws SQLException {
String sql = "insert into orders (order id, delivery name,"
+ " delivery address, cc_name, cc_number, cc_expiry) values ('"
+ orderId + "','" + customer.getContactName() + "',""

)
nr oam

+ customer.getDeliveryAddress() + "',

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

180

+ customer.getCcName() + "','" + customer.getCcNumber()

+ """ + customer.getCcExpiryDate() + "")"

5
stmt.executeUpdate(sql);
}

Listing 6-13 shows the other method, insertOrderDetails.
Listing 6-13. The OrderDetailsPeer.insertOrderDetails Method

public static void insertOrderDetails(Statement stmt, long orderld,
Hashtable shoppingCart) throws SQLException {
String sql;
Enumeration enumList = shoppingCart.elements();
while (enumList.hasMoreElements()) {
CartItem item = (CartItem)enumList.nextElement();
sql = "insert into order details (order_ id, book id, quantity,"
" price, title, author) values ('" + orderId + "',"'"
item.getBookID() + "','" + item.getQuantity() + "',"'"
item.getPrice() + "',"'" + item.getTitle() + "',""
item.getAuthor() + "")"

+ 4+ 4+ +

5
stmt.executeUpdate(sql);

}
}

The methods throw the SQL exception rather than catch it locally, so that the data manager’s
method catches it.

What about the XML Syntax?

In the previous chapter, you have learned about writing JSP documents instead of JPS pages. What
impact does that have on what I just said about database access? None! This is a consequence of the
MVC model: JSP is the view, while only the model has to do with databases.

However, the switch from traditional to XML syntax has an impact on how you execute the data
manager methods. For example, you can write the JSP page OrderConfirmation. jsp to save an order in
the database with a couple of scriptlets, as shown in Listing 6-14.

Listing 6-14. OrderConfirmation.jsp

01: <%@page language="java" contentType="text/html"%>

02: <%@page import="java.util.Hashtable"%>

03: <jsp:useBean id="dataManager" scope="application"

04: class="eshop.model.DataManager"/>

05: <html>

06: <head>

07: <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
08: <title>Order</title>

09: <link rel="stylesheet" href="/eshop/css/eshop.css" type="text/css"/>
10: </head>

11: <body>

12: <jsp:include page="TopMenu.jsp" flush="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

13: <jsp:include page="LeftMenu.jsp" flush="true"/>

14: <div class="content">

15: <h2>Order</h2>

16: <jsp:useBean id="customer" class="eshop.beans.Customer"/>
17: <jsp:setProperty property="*" name="customer"/>

18: <%

19: long orderId = dataManager.insertOrder(

20: customer,

21: (Hashtable)session.getAttribute("shoppingCart™)
22: 3

23: if (orderId » oL) {

24: session.invalidate();

25: %>

26: <p class="info"»

27: Thank you for your purchase.<bx/>

28: Your Order Number is: <%=orderId%»

29: </p>

30: <%

31:

32: else {

33: %><p class="error"sUnexpected error processing the order!</p><%
34:

35: %

36: </div>

37: </body>

38: </html>

Or you can write the JSP document OrderConfirmation. jspx, as shown in Listing 6-15. I have
included the whole E-shop project converted to XML format in the software package for this chapter.
You will find it both in WAR format and already expanded in the folder named eshopx. To launch it,
similarly to eshop, type http://localhost:8080/eshopx/shop.

Listing 6-15. OrderConfirmation.jspx

01: <?xml version="1.0" encoding="UTF-8"?>

02: <jsp:root

03: xmlns:jsp="http://java.sun.com/JSP/Page"

04: xmlns:c="http://java.sun.com/jsp/jstl/core"

05: xmlns:eshop="urn:jsptld:/WEB-INF/tlds/eshop.t1ld"
06: version="2.1"

07: >

08: <jsp:directive.page

09: language="java"

10: contentType="application/xhtml+xml;charset=UTF-8"
1/

12: <jsp:output omit-xml-declaration="false"/>

13: <jsp:output

14: doctype-root-element="html"

15: doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
16: doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
17: />

18: <c:url var="cssUrl" value="/css/eshop.jspx"/>

181

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

19: <html xmlns="http://www.w3.0rg/1999/xhtml">

20: <head>

21: <title>Order</title>

22: <link rel="stylesheet" href="${cssUrl}" type="text/css"/>
23: </head>

24: <body>

25: <jsp:include page="TopMenu.jspx" flush="true"/>

26: <jsp:include page="LeftMenu.jspx" flush="true"/>

27: «div class="content">

28: <h2>0Order</h2>

29: <Jsp:useBean id="customer" class="eshop.beans.Customer"/>
30: <jsp:setProperty property="*" name="customer"/>

31: <eshop:insertOrder var="orderID" customer="${customer}"/>
32: <c:choose>

33: <c:when test="${ordexID > 0}"»

34: <p class="info"»

35: Thank you for your purchase.

36: Your Order Number is: <c:out value="${orderID}"/»
37: </p>

38: </c:when>

39: <c:otherwise»

40: <p class="error"sUnexpected error processing the order!</p>
41: </c:otherwise»

42: </c:choose>

43: </div>

44: </body>

45: </html>

46: </jsp:root>

Let’s concentrate on the highlighted code, where the actual work is done. The saving of the order
information in the database, which you do in the JSP page (Listing 6-14) by executing a data manager’s
method (lines 19-22), you do in the JSP document (Listing 6-15) by executing a custom action (line 31).
The same custom action also invalidates the session (which was done in line 24 of the JSP page).

The if/else Java construct in lines 23, 31-32, and 34 of the JSP page becomes in the JSP document
the JSTL core construct choose/when/otherwise in lines 32-33, 38-39, and 41-42.

Informing the user of the order acceptance is in HTML and remains basically the same (JSP lines 26—
29 become JSPX lines 34-37). In fact, you could have replaced the scripting expression of the JSP page
with the EL expression of the JSP document, making the code identical.

The introduction of the custom action insertOrder is necessary because scriptlets, being Java code,
can make assignments and execute methods, while EL expressions cannot. Therefore, when you remove
scriptlets because they’re not valid XML code, you have to move the computation to Java beans or
custom actions.

In line 5 of OrderConfirmation. jspx, you declare eshop.tld, which contains the definition of the
insertOrder action (see Listing 6-16).

Listing 6-16. InsertOrderTag Definition in eshop.tld

<tag>
<description>Insert an order into storage</description>
<display-name>insertOrder</display-name>

<name>insertOrder</name>
<tag-class>eshop.tags.InsertOrderTag</tag-class>

182

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

<body-content>empty</body-content>

<attribute>
<name>var</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>

<attribute>
<name>customer</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>
</attribute>

</tag>

As you can see, you pass two parameters to the custom action: the name of the variable where the
order ID is to be returned, and an object containing the customer data (name, address, and credit-card
information). You don’t absolutely need the second parameter, because the action code could have
retrieved the customer data from the page context as follows:

(Customer)pageContext.getAttribute("customer")

On the other hand, you could have passed to the action a third parameter referencing the shopping
cart, but I decided to let the action retrieve it from the session as follows:

(Hashtable)pageContext.getSession().getAttribute("shoppingCart™)

It’s not always obvious what constitutes a better design. I felt that the shopping cart, being a session
attribute, was obviously shared across JSP documents. Therefore, it was OK for the action to retrieve it
directly from the session. The customer data, however, was a page attribute, normally not shared with
other modules. Passing it “behind the scenes” to a Java class didn’t seem appropriate. Listing 6-17 shows
you the action code in its entirety.

Listing 6-17. InsertOrderTag.java
package eshop.tags;

import java.util.Hashtable;

import javax.servlet.http.HttpSession;
import javax.servlet.jsp.tagext.TagSupport;
import javax.servlet.ServletContext;

import eshop.beans.CartItem;
import eshop.beans.Customer;
import eshop.model.DataManager;

public class InsertOrderTag extends TagSupport {
static final long serialVersionUID = 1L;
private String var;
private Customer customer;

public void setVar(String var) {
this.var = var;

}

public void setCustomer(Customer customer) {

183

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

184

this.customer = customer;

}

public int doEndTag() {
ServletContext context = pageContext.getServletContext();
DataManager dataManager =(DataManager)context.getAttribute("dataManager");
HttpSession session = pageContext.getSession();
@Suppressiarnings("unchecked")
Hashtable<String, CartItem> cart =
(Hashtable<String, CartItem>)session.getAttribute("shoppingCart");
long orderID = dataManager.insertOrder(customer, cart);
if (orderID > OL) session.invalidate();
pageContext.setAttribute(var, new Long(orderID).toString());
return EVAL_PAGE;
}
}

Notice how you obtain the servlet context (corresponding to the JSP implicit object application)
from pageContext, and from it the data manager, so that you can then execute the same insertOrder
method you invoked directly from within the JSP page.

The highlighted line shows that I suppressed a warning. I did it because Eclipse kept complaining
about typecasting of a generic Object to the Hashtable type. Normally, a warning tells you that
something might be wrong. The use of @suppressWarnings is usually bad practice and encourages a
sloppy programming style. In this particular case, I was left with no choice, because Eclipse’s warning
was unjustified.

Possible Alternatives to MySQL

There’s no general reason why you shouldn’t use MySQL in your applications. Nevertheless, you do have
alternatives worth mentioning. I have only tested E-shop with MySQL, but I expect it to work exactly the
same with other DBMSs.

If you switch DBMSs, there’s a good chance that you'll just need to change the values of the init
parameters jdbcDriver and dbUrl in web.xml from these values for MySQL:

com.mysql.jdbc.Driver
jdbc:mysql://localhost:3306/shop

to the values for the other DBMS.
For example, for PostgreSQL (http://www.postgresql.org/), the values would look like this:

org.postgresql.Driver
jdbc:postgresql://localhost/shop

For Firebird (http://www.firebirdsql.org/), the values could look like this:

org.firebirdsql.jdbc.FBDriver
jdbc:firebirdsql:localhost/3050:D:\\Firebird Datafiles\\shop.fdb

Sun Microsystems reports that 221 different JDBC drivers exist (see
http://developers.sun.com/product/jdbc/drivers). Therefore, you should be able to find the driver you
need to connect to any database, although it might not be freely available.

If you don’t find the right JDBC driver or if it’s too expensive, you might be able to use the
JDBC-ODBC bridge included in the JVM to connect to any ODBC-compliant database. ODBC refers to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

DATABASES

an API supported by many database vendors on basically all operating systems. With the JDBC-ODBC

bridge, you can also access Microsoft Excel files as if they were a database. For example, let’s suppose

that you have the spreadsheet shown in Figure 6-6.

Microsoft Excel - tablexls ‘EIMP
3] File Edit View Inset Format Tools Data Window Help - & X
§HB§Arial 10 B I U\ EE=E=

C32 - [

A | B | c | b | E \ F | oy
| 1 |col1 col2 col3 =
' 2 |aa ab ac H
| 3 |ba bb bc
' 4 ca cb cc
' 5 |da db dc
| 6 |
7 i I [S
W4 r mi\zzz/ | [T — |
Ready NUM

Figure 6-6. table.xls

To be able to access it via the JDBC-ODBC bridge, you first need to associate the file with an ODBC
data source. To do so, go to Start » Settings » Control Panel » Administrative Tools » Data Sources
(0DBC). There, click on the System DSN tab and then on the Add button, as shown in Figure 6-7.

] ODBC Data Source Administrator

L9 o]

User DSN | System DSN | File DSN | Drivers | Tracing [Connection Pooling | About |

System Data Sources:

Name Driver

Remove

Configure..

on this machine, including NT services.

An ODBC System data source stores information about how to connect to
D; ‘ the indicated data provider. A System data source is visible to all users

(o) o)

Figure 6-7. ODBC Data Source control panel

www.it-ebooks.info

185

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

This opens the Create New Data Source dialog. Scroll the list of possible data sources until you find
Microsoft Excel Driver (*.xls).Selectitand click on the Finish button. Despite the name of the
button, you're not done yet! A new dialog called 0DBC Microsoft Excel Setup opens, which lets you
select the Excel file and associate it with a data source name. See Figure 6-8.

ODBC Microsoft Excel Setup

Data Source Name: tab

g

Description: F—

Database
Help

Version: Excel 97-2000 =
Workbook: C:\.. \ROOT\tests'xs\table s

Select Workbook...

Driver

Rowsto Scan: g ["] Read Only

Figure 6-8. ODBC Microsoft Excel setup

Click on the Select Workbook. .. button to select the file. Notice that I have placed table.x1s in
ROOT\tests\x1s\, together with the JSP page to access it, but it doesn’t need to be there. Also, I have
chosen tab as a data source name, but you're free to choose any name.

Listing 6-18 shows you a little JSP page to access table.x1s as if it were a database.

Listing 6-18. xls.jsp

<%@page language="java" contentType="text/html"%>
<%@page import="java.sql.*"%>
<html><head><title>XLS - ODBC test</title></head><body>
<%
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newInstance();
Connection conn = DriverManager.getConnection ("jdbc:odbc:tab");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from [zzz$]");
%><table border= "1"><%
ResultSetMetaData resMetaData = rs.getMetaData();
int nCols = resMetaData.getColumnCount();
E><tr><h
for (int kCol = 1; kCol <= nCols; kCol++) {
out.print("<td>" + resMetaData.getColumnName(kCol) + "</td>");

%></tr><%
while (rs.next()) {

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = DATABASES

B><tr><%
for (int kCol = 1; kCol <= nCols; kCol++) {
out.print("<td>" + rs.getString(kCol) + "</td>");

%< /tr><h

%></table><%

conn.close();

%>
</body></html>

Notice that in the select statement, I have used [zzz$] as a table name to access the worksheet
named zzz. Figure 6-9 shows the output of xsl. jsp.

XLS - ODBC test {
&= C' | © localhost:8080/tests/xls/xlsjsp v | N

coll||col2[col3
aa |[ab |lac
| |[pa |[bb |bec

ca_jjcb_Jiec |
oo Job Joc |

v

Figure 6-9. The output of xIs.jsp

One word of warning: you will fail to establish the Java connection if you have the file already open
in Excel, because Excel opens it exclusively. It will not fail if, when you set up the data source as shown in
Figure 6-8, you tick the Read Only box.

Summary

In this chapter, I introduced you to working with databases and SQL. I explained how to access
databases from JSP via the Java SQL API. In particular, I showed you how to establish a connection,
insert data, and perform queries. To complete the summary of essential DB operations, I also described
how to group elementary updates into transactions.

To bring it all together, I described the design of database operations in the E-shop application and
showed you their implementation both with scriptlets and with the XML syntax. Finally, I mentioned
possible alternatives to MySQL and described how you can access a spreadsheet from JSP as if it were a
database.

Brace yourself, because in the next chapter I will finally talk about JSF!

187

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

JavaServer Faces 2.2

In this chapter, I'll introduce you to JSF and show you how to use it to create user interfaces for web-
based applications. Within the MVC application architecture I described in Chapter 3 (refer to Figure
3-2), JSF takes the place of the controller, thereby mediating every interaction between JSP (the View)
and the Model, which encapsulates the application data. JSF makes the development of web
applications easier by:

e Letting you create user interfaces from a set of standard UI components wired to
server-side objects

e Making available four custom tag libraries to handle those Ul components
¢ Providing a mechanism for extending the standard Ul components

JSF transparently saves state information of the UI components and repopulates forms when they
redisplay. This is possible because the states of the components live beyond the lifespan of HTTP
requests. JSF operates by providing a controller servlet and a component model that includes event
handling, server-side validation, data conversion, and component rendering. Not surprisingly, JSF
doesn’t change the basic page life cycle that you already know from JSP: the client makes an HTTP
request, and the server replies with a dynamically generated HTML page.

The user interface of a JSF application, called a view, consists of a tree of UI component objects of
types based on the javax.faces.component.UIComponent class. Some components are simple, such as a
button or a text field. Others are complex, such as a table or a tree control element.

Be warned that JSF isn’t very easy to use, and it requires a non-negligible initial effort to get it going.
However, the reward comes once you've familiarized yourself with JSF and can then develop user
interfaces more quickly and efficiently. You will find the latest version of JSF in the master Project Object
Model (POM) file for Oracle's JSF Implementation, at
http://mvnrepository.com/artifact/org.glassfish/javax.faces/. The file includes binaries,
documentation, and dependencies of JSF’s recent releases. To be able to use JSF, you will need to copy
javax.faces-2.1.7.jar (or a newer version) to Tomcat’s 1ib folder and restart Tomcat.

You can download the latest JSF specification (JSR-344 —JSF 2.2) by going to
http://jcp.org/en/jsr/detail?id=344 and clicking on the download page link.

Let’s begin with a simple JSF application, so that you can see how JSF works in practice.

The simplef Application

You should start by copying into Tomcat’s webapps the folder named simplef you will find in the software
package for this chapter. You can try it out by typing http://localhost:8080/simplef/ in your web
browser. Figure 7-1 is an example of what you'll see.

G. Zambon, Beginning JSP, JSF and Tomcat 189
© Giulio Zambon 2012

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

190

[~ Firefox | (=[E] =]
|First Page | + I
6 E localhost:3080/simplef/ | "l' Google r i l}

Type something here: |

Figure 7-1. The first page of simplef

As you can see, there isn’t much to it. If you type, say, “qwerty,” and click Submit, you will see the
page shown in Figure 7-2.

[Firerox | [E=EE]
|@Second Page | P |
€ [& | 1ocalhost8080/simplef first jsf.jsessionid= E4BBEIEEBA CB1EETACE5C1 ABCFEBBAED || M- Google Pl B

You typed: "qwerty"

Figure 7-2. The second page of simplef

Apart from the URL, which is not what you might expect, everything is pretty boring. If you click on
Another, you go back to the first page, as shown in Figure 7-3.

[FSFrersR| (= | © [
| E First Page [TI

e @ localhost:3080/simplef/second.jsf C| "" ~ Google p i .n'.
‘ Type something here: qwerty

Figure 7-3. Back to the first page of simplef

Again, nothing to get excited about. But notice that the string you typed in the first page appeared in
the second one and again in the first one as the default for the input field. What is exciting in this
example is how easily this was accomplished with JSF. Listings 7-1 and 7-2 show the two JSP pages of the
example.

Listing 7-1. first.jsp

<%@etaglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html><head><title>First Page</title></head><body>
<f:view>
<h:form>
<h:outputText value="Type something here: "/>
<h:inputText value="#{aStringBean.str}" />
<h:commandButton action="goOn" value="Submit" />
</h:form>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

</f:view>
</body></html>

Listing 7-2. second.jsp

<%@etaglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<html><head><title>Second page</title></head><body>

<f:view>

<h:form>

<h:outputText value="8"#{aStringBean.str}8quot; "/>
<h:commandButton action="goBack" value="Another" />
</h:form>

</f:view>

</body></html>

The first two lines of both JSP pages load two of the JSF libraries I mentioned at the beginning of the
chapter. The two libraries, core and html, contain all custom-tag definitions that implement JSF.

The first JSF element you encounter in both pages is f:view, which is a container for all JSF actions.
The next one is h: form, the JSF element that generates the pair <form>..</form> of HTML tags. The three
JSF elements h:outputText, h:inputText, and h:commandButton generate respectively the three HTML
elements .., <input type="text"../>, and <input type="submit"../>.If you had used
h:commandLink instead of h: commandButton, JSF would have generated a hyperlink with the HTML-tag a
and the attribute href instead of a submit button.

Notice that the value attributes of h:inputText in first.jsp and h:outputText in second. jsp contain
the EL expression #{aStringBean.str}. This is the first time you encounter a practical example of an EL
expression representing an Ivalue (see the Expression Language section in Chapter 4).

The expression ${aStringBean.str} (for the record: illegal in this case) would have been evaluated
by Tomcat immediately. Tomcat would have replaced it with the value obtained by executing the
method aStringBean.getStr().

But, with the # replacing the $, the only thing that happens is that JSF assigns an identifier to the
attribute str of the object aStringBean.

Listing 7-3 shows the HTML page that first. jsp generates (reformatted by me for easy reading).

Listing 7-3. HTML generated by first.jsp

<html><head><title>First Page</title></head><body>

<form id="id_1" name="id_1" method="post"
action="/simplef/first.jsf;jsessionid=E48B69EEB4C81EB74C85C1ABCFBBSAED"
enctype="application/x-www-form-urlencoded"
>

<input type="hidden" name="id 1" value="id 1"/>

Type something here: <input type="text" name="id_1:id_3"/>

<input type="submit" name="id_1:id_4" value="Submit"/»

<input type="hidden" name="javax.faces.ViewState" id="javax.faces.ViewState"
value="5073854143807380359:-1196606070653851981" autocomplete="off"
/>

</form>

</body></html>

Whenever you see id, the generated code actually contained j_id_jsp 58993504, but I did a global
replace with id because I found the long automatically generated strings somewhat distracting.

191

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

192

The two lines in bold are the result of the three JSF elements h:outputText, h: inputText, and
h:commandButton.

JSF assigned to #{aStringBean.str} the identifier j id jsp 58993504 1:j id jsp 58993504 3. When
processing on the server the request your browser sends when you click on Submit, JSF will assign the
value you have typed (e.g., the string "qwerty") to the str attribute of the object aStringBean. This is the
delayed evaluation I mentioned in Chapter 4. By saving the string in this way, JSF will have it available
for the value of h:outputText in second. jsp and as the default value for h:inputText in first.jsp when it
will need to render that page again.

To continue the explanation of how JSF works, I would like to direct your attention to the fact that
the URLs that appear in the browser do not match the names of the JSP pages. For example, you start the
application by typing in your browser http://localhost:8080/simplef/. What trick then takes you to
first.jsp? If you open the default JSP page index. jsp that you find inside the simplef folder, you will see
the one-liner shown in Listing 7-4.

Listing 7-4. index.jsp

<html><body><jsp:forward page="/first.jsf"/></body></html>

But in the same folder there is no file named first. jsf! To begin understanding what happens, you
have to look at the web. xml file (see Listing 7.5).

Listing 7-5. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd">

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>

</web-app>

It defines a servlet of type javax.faces.webapp.FacesServlet. It is the JSF servlet, which I have
informally called “JSF”. It is that servlet that assigns IDs to attributes and transfers data between pages.
web.xml also maps the extension jsf to the servlet, thereby forcing all requests for pages with extension
jsf to be sent to it.

This reveals part of the mystery: when you type http://localhost:8080/simplef/ in your browser,
Tomcat executes index. jsp, which forwards the request to first.jsf (which actually doesn’t exist). But,
because of the servlet mapping in web.xml, Tomcat diverts your request to the JSF servlet.

The rest of the mystery is easily explained: JSF replaces the extension jsf with jsp, which means that
the request can finally reach first. jsp. The extension jsp is the default, but you can replace it by
inserting in the web-app element of web.xml an element like that shown in Listing 7-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

Listing 7-6. Defining the JSF default suffix in web.xml

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.jspx</param-value>
</context-param>

The next mystery that we have to solve is how the request generated by the form in first.jsp
reaches second. jsp. In other words, how does the action "goOn" cause a request to reach second. jsp?

To solve this second mystery, you have to look at another file you find in WEB-INF: faces-config.xml
(see Listing 7-7).

Listing 7-7. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee ~CCC
http://java.sun.com/xml/ns/javaee/web-facesconfig 2_0.xsd"
version="2.0"
>
<managed-bean>
<managed-bean-name>aStringBean</managed-bean-name>
<managed-bean-class>AString</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
<managed-property>
<property-name>str</property-name>
<property-class>java.lang.String</property-class>
<null-value></null-value>
</managed-property>
</managed-bean>
<navigation-xule»
<from-view-id»/first.jsp</from-view-id>
<navigation-case»
<from-outcome»goOn</from-outcomes
<to-view-id>/second.jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/second.jsp</from-view-id>
<navigation-case>
<from-outcome>goBack</from-outcome>
<to-view-id>/first.jsp</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Concentrate for the time being on the part I have highlighted. It tells JSF that, when the page
first.jsp ends with outcome goOn (i.e., executes h: commandButton with action goOn), control should go to
second. jsp. In a more complex application, first.jsp would include different actions, which would

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

194

correspond to different navigation-case elements. Then, the JSF servlet would have a function
analogous to that of a Java switch statement.

We are almost there. The next thing that needs some explanation is the managed-bean element that
you see in faces-config.xml immediately above the first navigation rule. It tells JSF to manage a session-
scoped object named aStringBean of type AString, and to manage its attribute named str, which should
be initialized to null. This also means that the JSF servlet will instantiate the object automatically.

This is where the name aStringBean you saw in the EL expressions of both first.jsp and second.jsp
comes from. I could have chosen any name, but it is good practice to end the names of such managed
beans with Bean.

Also, the default scope is request. But by specifying session, I ensured that the aStringBean is not
destroyed after the first request. In the example, it would have meant that the input element in the
second execution of first.jsp would have been without default. The request scope would have been
sufficient to “remember” the default if first.jsp had executed itself instead of second. jsp. Note that you
should be careful not to go overboard with storing information in the session, because you could affect
the performance of your application. Remember that every new user causes a new session to be created.

The last piece that you need in order to complete the resolution of the JSF puzzle is the definition of
the class AString. For this see Listing 7-8.

Listing 7-8. AString.java

import java.io.Serializable;

public class AString implements Serializable {
String str;
public String getStr() { return str; }
public void setStr(String s) { str =s; }
}

For simplef to work, AString.class should be in the classes sub-directory of WEB- INF.

AString is the simplest possible bean that you need for JSF. Actually, you could drop the import
statement and remove the implementation of Serializable. They are there because it makes possible for
Tomcat to save the object to disk and to retrieve it from disk. The server possibly uses a hard disk to park
session data when it is under a heavy load or when it is restarted. This is one more reason for keeping the
session’s size as contained as possible. Note that Tomcat can only save objects that it is able to convert
to output streams of data, and that requires the objects to be serializable.

The bottom line is that, to be completely safe, your managed beans should be serializable when
defined to be in the session scope. But you don’t absolutely need to do it. It means that under heavy
load conditions, some sessions might be abruptly terminated.

Tip You will find that sometimes, if you make a mistake when developing a JSF application that causes it to
fail, the application will not work again when you revert back to the version you had before making a mistake. It
has to do with caching. In a development environment, the simplest way to fix it is to restart your browser and
Tomcat.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

An Alternative to <managed-bean>

Java annotations are a way of providing information about classes or objects. You saw an example of an
annotation in Chapter 6 (see Listing 6.17), where I used @SuppressiWarnings ("unchecked") to tell the Java
compiler how to behave when processing the statement that followed.

JSF supports annotations that you can use in a Java bean to replace the <managed-bean> element of
faces-config.xml. In other words, if you use an annotated version of AString. java as shown in Listing
7-9, you can completely remove the <managed-bean> element from the faces-config.xml shown in
Listing 7-7.

Listing 7-9. AString.java (annotated)

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.bean.ManagedProperty;
@ManagedBean (name="aStringBean")
@SessionScoped
public class AString {
@ManagedProperty(value="#{AString.str}")
String str;
public String getStr() { return str; }
public void setStr(String s) { str =s; }
}

I think it is pretty self-explanatory. If you remove the parenthesized assignment following
@ManagedBean, in JSP you have to use as bean-object name the class name with its first letter changed
from uppercase to lowercase.

For simplicity, I have included in the software package for this chapter a separate folder with the
annotated version of simplef. You will find in there the WAR file, which you can easily import into
Eclipse or drop into Tomcat’s webapps folder, and an already expanded folder (which you can also drop
into webapps).

The simplefx and simpleh Applications

In the previous section, I showed you how to build a simple JSF application with JSP pages. To use JSF
with JSP documents (i.e., in XML format), you only have to make minimal changes. To convert first.jsp
(Listing 7.1) to first.jspx, you only need to make the standard changes described in the last section of
Chapter 5 and replace the two JSF taglib actions with the corresponding namespace declarations, as
shown in Listing 7-10.

Listing 7-10. first.jspx

<?xml version="1.0" encoding="UTF-8"?>

<jsp:root
xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
version="2.1"
>

<jsp:directive.page
language="java"

195

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

196

contentType="application/xhtml+xml;charset=UTF-8"
/>
<jsp:output omit-xml-declaration="false"/>
<jsp:output
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head><title>First Page</title></head>
<body>
<f:view>
<h:form>
<h:outputText value="Type something here: "/>
<h:inputText value="#{aStringBean.str}"/>
<h:commandButton action="goOn" value="Submit"/>
</h:form>
</f:view>
</body>
</html>
</jsp:root>

After converting second. jsp to second. jspx in the same way, you also need to insert into web.xml the
context-param element shown in Listing 7-6, otherwise JSF will keep looking for files with extension jsp.
Finally, to complete the conversion to XML you will need to make a global replace from jsp to jspx in
faces-config.xml, so that the navigation rules will keep working. You will find all the updated sources in
the folder simplefx as part of the software package for this chapter.

Notice that we didn’t need to do any conversion inside the body elements of the JSP pages. This is
because there were no scripting elements to convert. With JSTL, JSF, and other custom actions that you
acquire or develop yourself, you can write JSP in XML format without much effort.

There is another reason for switching from JSP pages to JSP documents: it will unlock for you pieces
of JSF 2.0 functionality that otherwise you wouldn’t be able to use. One example is implicit navigation.

You saw that in faces-config.xml you need to specify to which document you want the control to
move when you request a particular action from within a particular document. The navigation elements
for the simplexf applications are those shown in Listing 7-11.

Listing 7-11. Navigation Rules for simplexf

<navigation-rule>

<from-view-id>/first.jspx</from-view-id>

<navigation-case>
<from-outcome>goOn</from-outcome>
<to-view-id>/second.jspx</to-view-id>
</navigation-case>

</navigation-rule>

<navigation-rule>

<from-view-id>/second.jspx</from-view-id>

<navigation-case>
<from-outcome>goBack</from-outcome>
<to-view-id>/first.jspx</to-view-id>
</navigation-case>

</navigation-rule>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

In particular, the first navigation rule tells JSF that when it executes the element <h:commandButton
action="goOn" value="Submit"/> in first.jspx, it should transfer control to second. jspx (which JSF
renames second. jsf so that a subsequent request from the user goes back to the JSF servlet).

From release 2.0 of 2009, JSF lets you navigate without defining navigation rules in faces-
config.xml, provided that:

e theaction’s value (i.e., what you write in the from-outcome element of faces-
config.xml) is identical to the name of the destination document (without its
extension and the dot), and

e the extension of the destination document is xhtml.

Pity that the JSF Expert Group didn’t provide the choice of other extensions. Isn’t it? But you don’t
need to worry, because JSP documents don’t need the extension jspx!

In the software package for this chapter, you will find yet another version of what originally was the
simplef application. I named it simpleh. The only differences from the previous version (simplefx) are:

e first.jspx has become first.xhtml

e second.jspx has become second.xhtml

e Infirst.xhtml, the action "goOn" has become "second"

¢ Insecond.xhtml, the action "goBack" has become "first"

e Inweb.xml, the element context-paramis no longer there, because the extensions
jspx have gone

e Thefile faces-config.xml has disappeared, because it no longer serves any
purpose.

XHTML pages used to develop JSF applications are called facelets. Giving the xhtml extension to JSP
documents is only a way of generating the XHTML pages with JSP rather than coding them by hand.

Note If somebody tells you that JSP is out and facelets are in, tell them that things are not as black-and-white
as they think! But please be careful when mixing JSF and JSP/JSTL, because it can be confusing. Also, before
implementing complex pieces of code with JSP, you might like to investigate whether you can do it more simply
with JSF.

The JSF Life Cycle

Now that you have seen an example of JSF, let’s have a closer look at how JSF does its job. For that, refer
to Figure 7-4. Note that the figure only shows what JSF does when the user types valid values into the
input fields of the page that sends the request. Read on for more details.

197

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

198

JAVASERVER FACES 2.2
Request (1 Restore 2 Apply 3 Process
- Request o
View Validation
Values
No Query Data
Y

Response

6 Render 5 Invoke 4 Update
Response Application Model
p op Values

Figure 7-4. The JSF life cycle

Restore View: The JSF servlet builds the view of the requested page as a
component tree that contains the information associated with all components
of the page. If the page is requested for the first time, JSF creates an empty
view, wires event handlers and validators (if any) to its components, and saves
itin a FacesContext object, before jumping directly to Render Response. By
saving the view, JSF makes it possible to repopulate the page if necessary—for
example, when the user doesn’t fill out a form as required. If the same page
was displayed before and component states were saved, JSF uses that
information to restore the page to its current state.

Apply Request Values: JSF goes through the component tree and executes
each component’s decode method, which extracts values from the request
parameters, or possibly from cookies or headers. It also automatically converts
the parameters that are associated with object properties of nonstring types.
Conversion errors cause error messages to be queued to the FacesContext
object. In some cases, typically when the user clicks on controls, the servlet
also generates request events and queues them to FacesContext. For
components that have the immediate event-handling property set to true, JSF
also validates them and saves them in their component instances within
FacesContext.

Process Validation: The servlet invokes the validate methods for all
components of the validators that had been registered during Restore View.
The validation rules are those you define or, by default, those predefined by
JSF. For each validate method that returns false, the servlet marks the
component as invalid and queues an error message to the FacesContext. At the
end of this phase, if there are validation errors, JSF jumps directly to Render
Response, so that error messages can be displayed to the user.

Update Model Values: During this phase, the values of the components are
copied to the corresponding properties of the managed beans that are wired to
them. JSF does it by executing the component method updateModel, which also
performs type conversions when necessary. Conversion errors cause error
messages to be queued to FacesContext.

Invoke Application: During this phase, the servlet processes the application-
level events by executing the corresponding handlers. When the user submits a
form or clicks on a link of a JSF application, the JSF servlet generates a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

corresponding application-level event. One of the tasks you have to do when
developing a JSF application is to assign a handler to each one of the possible
application events. This is where you also specify what should happen next, by
returning outcomes that you have linked to possible next pages, either with a
navigation case or implicitly, as I showed you in the previous section.

6. Render Response: The servlet creates a response component tree and
delegates the rendering of the page to Tomcat. Each component renders itself
as Tomcat goes through the corresponding JSF tags. At the end of this phase,
the state of the response is saved so that the servlet can access it during the
Restore View phase of subsequent requests to the same page.

Event Handling

Before looking at an application, I need to spend a few words on the JSF mechanism to handle events,
because you cannot really understand how JSF works unless you know a thing or two about event
handling.

As an example, let’s see what role the event handling plays when a user clicks on a Submit button.
The JSF UI components used to represent button HTML elements are objects of type
javax.faces.component.html. HtmlCommandButton, which is a class extending the more general
javax.faces.component.UICommand. As with any other HTML page, by clicking on the Submit button in
a JSF application, the user triggers the sending to the server of an HTTP request that contains the ID of
the button as a parameter name.

AsT've already mentioned, during the Apply Request Values phase, JSF executes the decode method
of each component of the page. First, the decode method scans the parameter names to see whether one
matches the ID of the component the method belongs to. In our example, the decode method of the
UICommand object associated with the button clicked by the user finds the component ID among the
request parameters, precisely because the user clicked the button. As a result of finding its own ID, the
component instantiates an event object of type javax.faces.event.ActionEvent and queues it up.

At this point, you have to distinguish between situations in which all the input fields of a form need
to be validated and those in which only a partial validation is appropriate. For example, in an online
shop such as the eshop application, the shopper must be able to add further books to the shopping cart
even after reaching the checkout page, where the shopper is asked to provide payment information. To
make that possible, you must ensure that the validation of the payment data is skipped if the user selects
a book category or searches for new titles. If you allowed the validation of empty or partially filled
payment fields to proceed, the application would report one or more errors and prevent the shopper
from going back to look for new books.

You solve this issue by specifying that the handling of both the book search and the category
selection be done during Apply Request Values, while leaving the handling of the payment data to follow
the normal life cycle. If it turns out that the user wants to shop for new books rather than complete the
checkout, control then jumps directly to the Render Response phase, thereby skipping the intermediate
phases where payment data would have been validated and processed.

In the next chapter, you will see in detail how this is done in the JSF version of eshop.

The JSF Tag Libraries

The first two sections of this chapter showed you examples of simple JSF applications that used a
handful of elements: f:view, h:form, h:outputText, h:inputText, and h:commandButton. You will recall
that the prefix h was associated with the HTML component library, and the prefix f with the JSF core

199

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

200

JAVASERVER FACES 2.2

library. Besides those two libraries, JSF 2 consists of two additional custom-tag libraries: facelets,
normally associated with the prefix ui, and composite, with prefix composite.

In the rest of this chapter, I will briefly describe the four libraries and show you more examples. In
the next chapter, I will describe how to use more of the tags by referring to a JSF-version of the eshop
application.

You can find a complete list of tags with associated documentation at http://java.sun.com/javaee/
javaserverfaces/reference/api/

The html Library

As its name suggests, JSF’'s HTML library collects the tags associated with rendering HTML components.
Asyou have already seen in the examples (e.g., with h: inputText), you associate objects of your data
model to the corresponding components by assigning value expressions that refer to the objects to
specific attributes of the component tags (e.g., <h:inputText value="#{aStringBean.str}"/>).

Although in most cases the names of the tags should already tell you their purpose, I have
summarized the correspondence between tags and HTML elements in Table 7-1.

Table 7-1. html Tags and HTML Elements

Tag Name HTML Element
h:body body

h:button input type="button"
h:column --

h:commandButton
h:commandLink
h:dataTable
h:doctype
h:form
h:graphicImage
h:head
h:inputHidden
h:inputSecret
h:inputText

h:inputTextarea

input type="submit"

a

table

<!DOCTYPE> declaration
form

img

head

input type="hidden"
input type="password"
input type="text"

input type="textarea"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © JAVASERVER FACES 2.2
Tag Name HTML Element
h:1ink a
h:message span or text
h:messages span or text
h:outputFormat span or text
h:outputLabel label
h:outputLink a
h:outputScript script
h:outputStylesheet link
h:outputText span or text
h:panelGrid table
h:panelGroup div or span
h:selectBooleanCheckbox input type="checkbox"
h:selectManyCheckbox multiple input type="checkbox"
h:selectManyListbox select and multiple option
h:selectManyMenu select and multiple option
h:selectOneListbox select and multiple option
h:selectOneMenu select and multiple option
h:selectOneRadio multiple input type="radio"
Caution The elements h:head and h:body are only valid in documents with extension xhtml
201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * JAVASERVER FACES 2.2

202

The h:select* Elements

There are seven JSF HTML tags to render selections. To show how they differ from each other, I created
in Eclipse the small project testf. You will find it in the testf project subfolder of the software package
for this chapter. If you copy testf.war to Tomcat’s webapps folder, after a few seconds, you will be able to
try it out by typing http://localhost:8080/testf/ in your web browser. Figure 7-5 shows you what you
will see in your browser after selecting values in the controls (and hitting the Submit button, although it is
not necessary to do so).

[Firefox (=[®] =]
J@Test | it |
6 £:8080/testf/jsp/index,sf c If’." Google P| ‘ﬁ‘ B~
hrselectBooleanCheckbox just a checkbox
h:selectManyCheckbox [one [[] two ¥ three [¥] everything
one
hselectManyListbox e
hselectManyMenu
three -
one -
hiselectOneListbox L
nine -
hselectOneMenu one
hrselectOneRadio © nothing © one @ two O three
Submit

&

Figure 7-5. The output of testf

Listing 7-12 shows the JSP document.
Listing 7-12. index.jspx for the testf Project

<?xml version="1.0" encoding="UTF-8"?>

<jsp:root
xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
version="2.1"
>

<jsp:directive.page

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<jsp:output omit-xml-declaration="false"/>
<jsp:output
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head><title>Test</title></head>
<body><f:view><h:form id="form">
<h:panelGrid columns="2" border="1" cellpadding="5"»

<h:outputText value="h:selectBooleanCheckbox"/>

<h:panelGroup>
<h:selectBooleanCheckbox id="checkbox" value="#{myBean.oneValue}"/>
<h:outputText value=" just a checkbox"/>
</h:panelGroup>

<h:outputText value="h:selectManyCheckbox"/>
<h:selectManyCheckbox id="checkboxes" value="#{myBean.choices1}"»
<f:selectItems value="#{myBean.selects}"/>
<f:selectItem itemLabel="everything" itemValue="42"/»
</h:selectManyCheckbox>

<h:outputText value="h:selectManyListbox"/>
<h:selectManyListbox id="listboxes" value="#{myBean.choices2}"»
<f:selectItems value="#{myBean.selects}"/>
<f:selectItem itemLabel="too much" itemValue="999"/>
</h:selectManyListboxy

<h:outputText value="h:selectManyMenu"/>
<h:selectManyMenu id="menus" value="#{myBean.choices3}"
style="min-height:48px">
<f:selectItems value="#{myBean.selects}"/>
<f:selectItem itemLabel="ninenty-nine" itemValue="99"/»
</h:selectManyMenu>

<h:outputText value="h:selectOneListbox"/>
<h:selectOneListbox id="listbox" value="#{myBean.choice1}"»
<f:selectItems value="#{myBean.selects}"/>
<f:selectItem itemLabel="nine" itemValue="9"/>
</h:selectOnelListboxy

<h:outputText value="h:selectOneMenu"/>

<h:selectOneMenu id="menu" value="#{myBean.choice2}"»
<f:selectItem itemLabel="zero" itemValue="0"/»
<f:selectItems value="#{myBean.selects}"/>
</h:selectOneMenuy

www.it-ebooks.info

JAVASERVER FACES 2.2

203

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

<h:outputText value="h:selectOneRadio"/>

<h:selectOneRadio id="radio" value="#{myBean.choice3}"»
<f:selectItem itemLabel="nothing" itemValue="-1"/>
<f:selectItems value="#{myBean.selects}"/>

</h:selectOneRadio»

</h:panelGrid>
<h:commandButton value="Submit"/>
</h:form></f:view></body>
</html>
</jsp:root>

I have highlighted in bold the selection components. h:selectBooleanCheckbox renders a single
checkbox; h:selectManyCheckbox, h:selectManylListbox, and h:selectManyMenu render multiple
selections; and h:selectOnelListbox, h:selectOneMenu, and h:selectOneRadio render single selections.

In all cases in which you can select one or more of several items, I have included a hard-coded item
in addition to a list of items provided by the managed bean through an attribute I chose to name
selects:

<f:selectItems value="#{myBean.selects}"/>

The tags wire to each HTML control a different property of the managed bean. Notice the use of the
core JSF tags f:selectItem and f:selectItems to provide the information needed for the options of the
HTML select elements.

From this example, you can also see how to use h:panelGrid and h:panelGroup to render an HTML
table. Differently from HTML, where you need to identify rows with tr elements and cells within rows
with td elements, with h:panelGrid you specify at the beginning the number of columns, and all the
components between its begin and end tags “flow” from left to right into the table. If you need more
than one component within the same cell, you group them together with h:panelGroup.

Listing 7-13 shows the managed bean used to hold the items you select in the browser.

Listing 7-13. myPkg.MyBean.java for the testf Project

package myPkg;
import java.util.Arraylist;
import javax.faces.model.SelectItem;

public class MyBean {
@SuppressWarnings("unchecked")
private ArraylList<String>[] choices = new ArraylList[3];
private String choicel, choice2, choice3;
private Object oneValue;
private SelectItem[] selects;

public MyBean() {
selects = new SelectItem[3];

selects[0] = new SelectItem("1", "one");
selects[1] = new SelectItem("2", "two");
selects[2] = new SelectItem("3", "three");

for (int kC = 0; kC < choices.length; kC++) {
choices[kC] = new ArraylList<String>();

}

204

www.it-ebooks.info

http://www.it-ebooks.info/

public
public
public
public
public
public
public
}

—————— Cetters

Object[] getChoicesi() { return choices[0].toArray(); }
Object[] getChoices2() { return choices[1].toArray(); }
Object[] getChoices3() { return choices[2].toArray(); }
String getChoice1() { return choice1; }

String getChoice2() { return choice2; }

String getChoice3() { return choice3; }

Object getOneValue() { return oneValue; }

SelectItem[] getSelects() { return selects; }

—————— Setters
void setChoices(Object[] cc, int kC) {
int len=0;
if (cc !'= null) len = cc.length;
if (len 1= 0) {
choices[kC].clear();
choices[kC] = new ArraylList<String>(len);
for (int k = 0; k < len; k++) {
choices[kC].add((String)cc[k]);
}

}
}
void setChoices1(Object[] cc) { setChoices(cc, 0); }
void setChoices2(Object[] cc) { setChoices(cc, 1); }
void setChoices3(Object[] cc) { setChoices(cc, 2); }
void setChoice1(String c) { choicel = ¢; }

c
{

void setChoice2(String c) { choice2 = ¢; }

void setChoice3(String c) { choice3 = ¢; }

void setOneValue(Object v) { oneValue = v; }

CHAPTER 7 ~ JAVASERVER FACES 2.2

There isn’t really much to explain. JSF takes care of executing the initialization method of the bean,
which initializes three values to be provided for selection through the select attribute and sets up the
arrays needed to save the user’s choices

Notice that I haven’t written a setter method for select. This is because I didn’t need to modify the
values stored there. What you should never do is to omit the getter methods, because JSF expects to be
able to read the properties.

The core Library

JSF’s core library gives you access to APIs that are independent of a particular render kit:

Converters. Converters let you convert between the data types of the components

and those of your application objects.

Listeners. Based on the JavaBean version 1.0.1 mechanism, you register a listener

with a component to handle events that the component generates.

Events. After the listener is registered with a component, the FacesServlet fires
the events by invoking an event notification method of the corresponding listener.

www.it-ebooks.info

205

http://www.it-ebooks.info/

CHAPTER 7

206

Table 7-2. core Tags

JAVASERVER FACES 2.2

e Validators. Validators examine the value of a component and ensure that it
conforms to a set of predefined rules.

In the previous examples, you have already encountered f:view, f:selectItem, and f:selectItems.
Most of the core tags perform operations on components. Table 7-2 provides the list of all core tags and
the corresponding operations. In the table, I have highlighted in italics the few operations that do not
apply to individual components. As for the HTML library, you will find more information about the core
in Chapter 9.

Tag Name Operation

f:actionListener Adds an action listener

f:ajax Registers an Ajax behavior for one or more components

f:attribute Sets an attribute

f:convertDateTime Add a date-time converter

f:converter Adds a converter

f:convertNumber Adds a number converter

f:event Adds a system-event listener

f:facet Adds a facet

f:loadBundle Loads a resource bundle into aMap

f:metadata Declares the metadata facet for a view

f:param Adds a parameter

f:phaselistener Adds a phase listener to a view

f:selectItem Specifies an item for :selectMany* and h:selectOne*

f:selectItems Specifies items for :selectMany* and h:selectOne*

f:setPropertyActionListener Adds an action listener that sets a property

f:subview Container for all JSF actions on pages included via
Jjsp:include orc:import

f:validateBean Adds a bean validator

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

Tag Name Operation

f:validateDoubleRange Adds a double-range validator
f:validatelength Adds a length validator
f:validatelLongRange Adds a long-range validator
f:validateRegex Adds a validator against a regular expression
f:validateRequired Adds a check that a value is present
f:validator Adds a validator

f:valueChangelListener Adds a value change listener

frview Container for all JSF actions of a page
f:viewAction Specifies an application-specific action
f:viewParam Adds a parameter to the metadata facet of a view

I expect that you will find many of the tags listed in Table 7-2 obscure. You will be able to
understand most of them after the next sections and chapters, but the use of some of them definitely
falls outside the scope of this book.

If you are curious about what a facet is, I can tell you that it is a named sub-component specific to a
particular component. For example, h:gridPanel (which renders an HTML table) supports the two facets
header and footer. If you include <f:facet "header"><h:outputText value="Whatever"/></f:facet>
anywhere within the body of h:gridPanel, the rendered table will have the header “Whatever”.

I will talk about converters and validators in the next chapter, where I will describe a JSF version of
the eshopx project I introduced in Chapter 6. In this chapter, as an interesting example of core tags, I will
describe how to use f:ajax, which was first added to the core library with release 2.0. In order to do that,
I will first tell you about Ajax in general, and show you how it was used before the introduction of f:ajax.

What’s Ajax?

Asynchronous JavaScript and XML (Ajax) is a mechanism for letting JavaScript communicate with the
server asynchronously—that is, without reloading the page. This is possible by means of the JavaScript
built-in object XMLHttpRequest. For those who are not familiar with JavaScript, I have added some notes
about it in Appendix A.

In practical terms, it works like this: you create an XMLHttpRequest object within JavaScript, use it to
send a request to the server, get the response, and, presto, you have fresh data for your web page without
having to reload it. Well, it sounds easy, but it’s not obvious how to do it, and it’s even more tricky to
maintain. To explain how to use Ajax, I'll show you a simple example of a page that displays the server
time. First, you need to write a JSP page to return the time (see Listing 7-14).

207

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

208

Listing 7-14. time.jsp

<%@page language="java" contentType="text/html"
%><%@page import="java.util.*"
%><% out.print(new GregorianCalendar().getTime()); %>

I've removed all the spaces and newlines before and after the print statement, including a newline at
the end. This ensures that only the time is returned. If you type the URL of this script in a browser, you'll
get something like this:

Sat Jun 23 21:56:27 EST 2012

You'll perhaps see some other time zone, but the format will be identical. A good place to check out
the abbreviation for your time zone is http://www.timeanddate.com/library/abbreviations/timezones/.

Now that you have a way of getting the server time, you can write the page to display it with Ajax, as
shown in Listing 7-15.

Listing 7-15. ajax.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"

>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Example of Ajax</title>
<script type="text/javascript" src="ajax.js"»</scripts
</head>
<body>
<form name="tForm" action="">
The time on the server is:
<input type="text" name="tElement" readonly="readonly" size="30"/>
<input type="button" value="Update"
onclick="ajaxFun('tFoxrm', 'tElement');"
/>
</form>
</body>
</html>

As you can see, I've highlighted two lines. The first is where you load the file ajax. js, which contains
the JavaScript code to support the Ajax operation. The second line is where you execute the ajaxFun
JavaScript function whenever you click the Update button. Notice that you pass to ajaxFun the names of
the form and of the input element to be updated. You could have hard-coded the string
"tForm.tElement" within JavaScript, but it would have been bad programming practice to use within
ajax.js identifiers defined elsewhere. Global variables invariably lead to code that’s a nightmare to
maintain and should be avoided whenever possible.

To complete this brief introduction to Ajax, I still need to show you the JavaScript code. However,
before I do that, check out Figure 7-6 to see how the browser renders the page. To test the application,
copy the ajax folder from the software package for this chapter to Tomcat’s webapps folder and type in
your browser http://localhost:8080/ajax/.

www.it-ebooks.info

http://www.it-ebooks.info/

) Example of Ajax - Opera (=[@] = |]
File Edit View Bookmarks Tools Help

IEExample of Ajax X | e
L o 3 o @ Web | localhost:28080/ajax ¥ | -'l + Search wi
The time on the server is: |Sat Jun 23 21:56:27 EST 2012
B & o - ®

Figure 7-6. Server time with Ajax

Listing 7-16 shows the JavaScript code.
Listing 7-16. ajax.js

function ajaxFun(tf, te){
var tElem = eval("document." + tf + "." + te)
var ajaxReq;
try { // Firefox, Opera, IE 9, Chrome
ajaxReq = new XMLHttpRequest();

catch (e) { // older IEs

try{
ajaxReq = new ActiveXObject("Msxml2.XMLHTTP");

catch (e) {
try{ // still older IEs
ajaxReq = new ActiveXObject("Microsoft.XMLHTTP");

catch (e) {
alert("Your browser does not support Ajax!");
return false;

}
}
}
ajaxReq.open("GET", "time.jsp");
ajaxReq.send(null);
ajaxReq.onreadystatechange = function() {
if(ajaxReq.readyState == 4) {
tElem.value = ajaxReq.responseText;
}
}
}

CHAPTER 7

JAVASERVER FACES 2.2

First, you instantiate an object of type XMLHttpRequest. This works with Firefox, Chrome, Opera, and
IE 9; I'm not sure whether it works with IE 7 and 8; and I know that it doesn’t work with IE 6. That’s why,
to be on the safe side, I have added the code that instantiates the correct ActiveXObject in case the

instantiation of XMLHttpRequest fails.

www.it-ebooks.info

209

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

210

In any case, when ajaxReq “holds” an object of the correct type, you set up the HTML request
method (e.g., GET) and the target URL (in this case, the JSP module time. jsp). At this point, you can send
off the request.

Tip The caching of IE prevents Ajax from updating the date subsequent to the first clicking of the Update
button. To avoid this problem, you can click on IE 9’s toothed-wheel button, select Internet Options, click on
the Settings button of the Browsing History section, and, under Check for newer versions of stored
pages, Select every time I visit the web page. This will disable browser caching and solve the problem. You
could also disable caching of a particular page by adding one of the following elements to its head:

<meta http-equiv="Pragma" content="no-cache">
<meta http-equiv="Cache-Control" content="no-cache">

The control comes immediately back to JavaScript (the first letter of Ajax stands for asynchronous,
remember?). In general, you don’t want the browser to wait for the response, and you want your page to
be able to do other things. This asynchronicity makes Ajax more useful than if its operations had to be
done in sequence. When the state of the request changes, the browser executes the function
ajaxReq.onreadystatechange. In that function you need to check that the request has been completed: in
which case, you can then display the content of the response in the time field. Cool! In case you are
curious to know the possible status codes, check out Table 7-3.

Table 7-3. List of ajaxReq.raeyState Codes

Code Meaning

0 Uninitiated
1 Loading

2 Loaded

3 Interactive
4 Complete

I've taken a minimalist approach for this example. The idea is for your server to send back an XML
document, which you can then parse on the client side. You can find the latest version of the Ajax
standard at the following URL: http://www.w3.0rg/TR/XMLHttpRequest/.

One last thing: Listing 7-17 shows the deployment descriptor for this application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

Listing 7-17. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee ~CCC
http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd"
version="2.5">
<display-name>Ajax example</display-name>
<welcome-file-list>
<welcome-file>index.xhtml</welcome-file>
<welcome-file>index.html</welcome-file>
</welcome-file-list>
</web-app>

As you can seeg, it is almost empty. I have only added a couple of welcome-file elements so that
Tomcat tries index.html (which is the default) only if index.xhtml is not there.

Now that you know how Ajax works without JSF, let’s see how to use f:ajax to achieve the same
result.

f:ajax

Using f:ajax instead of the mechanism I described in the previous section has several advantages, the
most important of which, in my opinion, is that you no longer need to write code in JavaScript, which
adds another flavor of Java to the mix (and some people also disable this on their browser). Further,
f:ajaxis fully integrated with the other JSF libraries.

Figure 7-4 showed the six phases of the JSF life cycle. With f:ajax you can selectively execute
components on the server by processing them through the first five phases, or render them, by passing
them through the last phase. You ajaxify a component by enclosing it within the body of f:ajax or by
passing to f:ajax the component id.

To convert the Ajax example of the previous section to JSF’s Ajax, let’s start from ajaxf.xhtml,
shown in listing 7-18. The interesting bits are those highlighted in bold.

To test the application, copy the folder ajaxf from the software package for this chapter to Tomcat’s
webapps folder, and type http://localhost:8080/ajaxf in your web browser.

Listing 7-18. ajaxf.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"

>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
>
<h:head><title>Example of Ajax with JSF</title></h:head>
<h:body>
<h:form>
<h:outputText value="The time on the server is: "/>
<h:outputText id="timeField" value="#{sexverTimeBean.when}"/>

211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

<h:outputText value=" "/>
<h:commandButton value="Update"»
<f:ajax render="timeField"/>
</h:commandButton>
</h:form>
</h:body>
</html>

The first highlighted line simply displays the value of the property when of the managed bean
serverTimeBean. It is almost identical to the line

<h:outputText value="8"#{aStringBean.str}8quot; "/>

of second. jsp (Listing 7-2) that you encountered at the very beginning of this chapter.

But this time, have added to h:outputText the setting of the id attribute. This is because we need to
pass it to f:ajax, in the second group of highlighted lines.

The h:commandButton element, contrary to what you saw in previous examples, doesn’t transfer
control to another page. Its purpose is only to create an event that triggers f:ajax. Accordingly, the
action attribute is not there and, if you look at the WEB-INF folder of the application, you will see that no
faces-config.xml to handle navigation is present.

Every time the user clicks on the Update button, f:ajax sends a request to the server to obtain the
value of serverTimeBean.when, which then the h:outputText element with id timeField displays. You
don’t need to write JavaScript because JSF automatically generates the little script that sends the Ajax
request.

But you do need a Java bean like that shown in Listing 7-19.

Listing 7-19. ServerTime.java

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

import javax.faces.bean.ManagedProperty;

import java.util.GregorianCalendar;

@ManagedBean (name="serverTimeBean")

@SessionScoped

public class ServerTime {
@ManagedProperty(value="#{ServerTime.when}")
private String when;
public ServerTime() { when = new GregorianCalendar().getTime().toString(); }
public String getWhen() { return new GregorianCalendar().getTime().toString(); }
public void setWhen(String w) { when = w; }
}

The code is almost identical to that of AString.java (Listing 7-9), the major differences being that it
has an initialization method and, obviously, generates a string with the current server time. In the
software package you will also find the files that complete the application, index. jsp and web.xml, but
they are very similar to the equivalent files you already encountered with other applications.

You will obtain the same result if you replace in ajaxf.html the content of the h:body with the code
shown in Listing 7-20.

212

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

Listing 7-20. Alternate h:body for ajaxf.xhtml

<h:form>
<f:ajax render="@form" event="click"/>
<h:outputText value="The time on the server is: "/>
<h:outputText value="#{serverTimeBean.when} "/>
<h:commandButton value="Update"/>
</h:form>

With this settings, you ajaxify all components of the form. As a result, when you click on the Update
button, JSF sends an Ajax request, as it did before, and because the render attribute is set to @form,
serverTimeBean.when is updated, as before. Events applicable to whole forms are click, dblclick,
keydown, keypress, keyup, mousedown, mousemove, mouseout, mouseover, and mouseup.

With input elements in the form, when the user changes the content in any of them, that also
triggers an Ajax request. To test it, replace h: commandButton with an h:inputText element as shown in
Listing 7-21.

Listing 7-21. Yet another h:body for ajaxf.xhtml

<h:form>
<h:outputText value="The time on the server is: "/>
<h:outputText id="timeField" value="#{serverTimeBean.when} "/>
<h:inputText value="#{serverTimeBean.when}" size="30">
<f:ajax render="@this timeField" event="blur"/>
</h:inputText>
</h:form>

The resulting page is shown in Figure 7-7.

o™ - SIEES

| [#] Example of Ajax with JSF + |
localhost:8020//jaxf C | (2§~ Google Pl A& B~

The time on the server is: Sun Jun 24 17:48:06 EST 2012 Sun Jun24p12

Figure 7-7. A modified ajaxf.xhtml

As long as you remain within the input field, nothing happens. When you hit enter or click outside
it, Ajax sends a request to the server to update the property specified in h:inputText. In the example, it
sends a request to set serverTimeBean.when to “Sun Jun 24 012”. JSF does it in the Update Model Value
phase. Then, during Render Response, Tomcat prepares the Javax response with two values obtained
from serverTimeBean.when, one for h:outputText and one for h:inputText. As ServerTime. java always
produces a fresh time string, that’s what is returned to the browser, and what you typed in the input field
remains unused in the bean’s variable when.

Possible events for input fields are: blur, change, click, dblclick, focus, keydown, keypress, keyup,
mousedown, mousemove, mouseout, mouseover, mouseup, select, and valueChange. The default is valueChange.

The value of the render attribute can be a single identifier, a space-delimited list of identifiers, or
one of the special strings @all, @this, @form, and @none. One interesting thing, which I don’t necessarily

213

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

recommend, is that you can specify in a single f:ajax element the identifiers of components in more
than one form. For example,

<f:ajax render=":formi:id3 id1 @this"/>

means that JSF fires a single Ajax request for the component id3 of the form with id set to formi, the
component id1 of the form enclosing the f:ajax element, and the component enclosing the f:javax

element.
Before we move on, I would like to show you another example of f:ajax. Check out Figure 7-8.
= =] =]
Example of login with f:ajax
€ C | @ localhost:3080/l0ginf/ Y¢ N\

User ID: bloodyMe

P as s“rord: --------

Welcome bloodyMe!

Figure 7-8. The page produced with loginf

You find the application in the loginf folder of the software package for this chapter. It is very
similar to ajaxf. Listing 7-22 shows the managed bean and Listing 7-23 shows loginf.xhtml.

Listing 7-22. Login.java

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean(name="1loginBean")

@SessionScoped

public class Login {
private String user =
public String getUser() { return user; }
public void setUser(String u) { user = u; }

private String pass =
public String getPass() { return pass; }
public void setPass(String p) { pass = p; }

public String getMess() {
String mess = "";
if (user. length() * pass. length() > 0) {

mess = "Welcome " + user + ;

}
else if (pass.length() > 0) {
if (user.length() == 0) mess = "Who the %@$# are you?";

else {

214

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

if (user.length() > 0) mess = "No password " + user + "?";

return mess;

}
}

Nothing special here: a property to store the user ID, one for the password, and a read-only property
to provide feedback to the user.

Listing 7-23. loginf.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"
>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"

>
<h:head><title>Example of login with f:ajax</title></h:head>
<h:body>
<h:form>
<h:panelGrid columns="2">
<h:outputText value="User ID:"/>
<h:inputText id="user" value="#{loginBean.user}"/>
<h:outputText value="Password:"/>
<h:inputSecret id="pass" value="#{loginBean.pass}"/>
</h:panelGrid>
<h:commandButton value="Submit">
<f:ajax execute="user pass" render="mess"/>
</h:commandButton>

<h:outputText id="mess" value="#{loginBean.mess}"/>
</h:form>
</h:body>
</html>

The two input components accept user ID and password from the user, and the last h:outputText
displays the feedback. The interesting bit is the f:ajax element. You have already encountered the
render attribute, but the execute attribute is new. This is how f:ajax sends data to be processed on the
server. Most of what I explained about render applies to execute, including the availability of special @-
values.

No more reloading of login pages.

The facelet Library

Facelets were originally developed as a view-handling technology in alternative to JSP. With release 2.0
of JSF, facelets have become its default view technology. But that doesn’t mean that, with the necessary
care, you cannot use them together with JSP and JSTL. What makes JSF’s facelet library interesting is
that it supports templating. That is, a mechanism that allows you to minimize duplication of code when
developing pages with the same layout or common content.

215

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

While JSP with jsp:include provides an easy mechanism to re-use content, it doesn’t provide any
easy way to define the same layout for different pages. It is up to you to ensure that the pages look
identical when viewed in a browser.

The JSF facelet library lets you form a page by defining a layout in an XHTML file and then filling it
up with content defined in one or more other XHTMLs. I will show you an example shortly, but first,
have a look at Table 7-4, which lists all tags of the facelet library. To help you make sense of the tags, I
have flagged those that are part of the templating mechanism.

Table 7-4. facelet Tags

Tag Name Description Templating
ui:component Creates a component N
ui:composition Creates a composition Y
ui:debug Creates a component to help you debug the page N
ui:decorate Defines a fragment containing a composition Y
ui:define Defines content to be inserted into a template Y
ui:fragment Defines a fragment containing a component N
ui:include Includes content from an XHTML file N
ui:insert Inserts content into a template Y
ui:param Defines a parameter for an included file or a template Y
ui:repeat An alternative to h:dataTable and c:forEach N
ui:remove Removes what is in its body N

The templ Application

In this section, I will describe templ, an application that uses facelet templating.

To create it, I started from the example simplefx I explained in a previous section of this chapter.
You will recall that it essentially consisted of two JSP documents that invoked each other: first. jspx
asked you to type something into a text field, and second. jspx displayed what you had typed.

To make an example of templating, I added a third page almost identical to the second one, so that I
could show you how to define a template for them. To get started, let’s look at how the first two pages
appear in a web browser (Figures 7-9 and 7-10).

216

www.it-ebooks.info

http://www.it-ebooks.info/

e = Sl
JEFirst Page | o I
‘ € [A I1ocalhost2030/templ c |29 Google P| A E~

Example of Templating

Type something here: Some text
Figure 7-9. templ first page

[FeFrefoX (= |)
JSecond page | o I

‘ 6 El localhost:2080/templ/f C ‘." Google P‘ A B-

Example of Templating
Page 2 has received "Some text"

Figure 7-10. templ second page

CHAPTER 7

JAVASERVER FACES 2.2

Notice that the header of the second page is gray instead of black. The third page is identical to the
second one, but its title is “Third page” and the text before the button starts with “Page 3”. To try it out,
copy the folder templ from the software package for this chapter to Tomcat’s webapps folder, and then

type in a browser http://localhost:8080/templ/.

The application consists of the following folders and files (the folders are in bold for easy reading):

templ
first.xhtml
index.jsp
page2.xhtml
page3.xhtml
resources
css
styles.css
templates
defaults
header.xhtml
layout.xhtml
WEB-INF
classes
AString.class
AString.java
faces-config.xml
web . xml

www.it-ebooks.info

217

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

218

Listing 7-24 shows the code of the first page.
Listing 7-24. first.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root
xmlns:jsp="http://java.sun.com/ISP/Page"
version="2.1"
>
<jsp:directive.page
language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<jsp:output omit-xml-declaration="false"/>
<Jjsp:output
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"

>
<h:head><title>First Page</title></h:head>
<h:body>
<f:view>
<ui:include src="/templates/defaults/header.xhtml"/>
<h:form>
<h:outputText value="Type something here: "/>
<h:inputText value="#{aStringBean.str}"/>
<h:commandButton action="go2" value="Page 2"/>
<h:commandButton action="go3" value="Page 3"/>
</h:form>
</f:view>
</h:body>
</html>
</jsp:root>

First of all, notice that I renamed the file first.xhtml. This is because facelet elements (i.e., those
with prefix ui) only work inside h:body. This means that you can no longer use the HTML body tag. As
h:body requires the extension of the document to be xhtml, I had to ditch the extension jspx. Old Will
Shakespeare said through Juliet’s lips, “What's in a name? That which we call a rose by any other name
would smell as sweet.” The same applies to first.xhtml, which remains a valid JSP document despite
the change of name.

Another difference from first.jspx is that I moved the namespace declarations for the core and
HTML JSF libraries from jsp:root to the html tag, and then added to them the declaration for the JSF
facelet library. As none of the JSF tags are used outside the html element, it makes sense to keep them
there, which is where they normally are in XHTML documents.

Finally, notice that first.xhtml includes a standard header with ui:include.

So far so good. Nothing too exciting. You could have done the same with jsp:include, without need
for facelets. But now let’s look at page2.xhtml (Listing 7-25), and in particular to its h:body element.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

Incidentally, I didn’t have any technical reason for renaming second. jspx to page2.xhtml. I just found
page2 and page3 more appealing than second and third.

Listing 7-25. page2.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root
xmlns:jsp="http://java.sun.com/ISP/Page"
version="2.1"
>
<jsp:directive.page
language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<jsp:output omit-xml-declaration="false"/>
<Jjsp:output
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd"
/>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"
>
<h:body>
<ui:composition template="/templates/layout.xhtml">
<ui:define name="title">Second page</ui:define>
<ui:define name="pageNum"»2</ui:define»
</ui:composition>
</h:body>
</html>
</jsp:root>

Notice that there is no h:head element in page2.xhtml. This is because JSF, when it encounters a
ui:composition element, it ignores everything other than the content of h:body. You got it right: JSF only
looks at the lines I have highlighted in Listing 7-25.

But then, you might ask, why do we bother with all the stuff that precedes the h:body tag? The
reason is that the file must be a valid XML document. But it is true that we can simplify it. That’s why I
dropped the h:head element (which JSF ignores anyway), without which the code remains valid XML.
With a page that doesn’t use JSP tags inside h:body, you can also get rid of the JSP elements. This is what
I did with page3.xhtml, which you can see in Listing 7-26.

Listing 7-26. page3.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"
>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"

219

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

220

xmlns:ui="http://java.sun.com/jsf/facelets"

>
<h:body>
<ui:composition template="/templates/layout.xhtml">

<ui:define name="title">Third page</ui:defines
<ui:define name="pageNum"»3</ui:define>
</ui:compositiony

</h:body>

</html>

Obviously, you cannot remove the JSP header elements and jsp:root when you use JSP code inside
h:body. But you can use JSTL and your own custom-tag libraries without declaring the jsp namespace, as
long as you declare the appropriate namespaces in the html tag. What you certainly cannot use in any
case, with or without JSP declaration, are JSP scripting and directive elements, because anything
enclosed between <% and %> is not valid XML.

Let’s go back to describing how JSF handles the pages that make use of templates.

The presence of the ui:composition element with a defined template attribute means that it is the
template document that generates the page to be sent back to the user as a response, not the page that
contains the ui:composition element.

Listing 7-27 shows the template for page*.xhtml.

Listing 7-27. layout.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"
>

<h:head>
<title>
<uisinsert name="title"sDefault Title</ui:inserts
</title>
<h:outputStylesheet name="styles.css" library="css"/>
</h:head>

<h:body>
<f:view>
<ui:insert name="header">
<ui:include src="/templates/defaults/header.xhtml"/>
</ui:insert>
<h:form>
<h:outputText value="Page "/>
<uisinsert name="pageNum"/»
<h:outputText value=" has received "#{aStringBean.str}" "/>
<h:commandButton action="goBack" value="Back to first page"/>
</h:form>
</fiview>
</h:body>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

</html>

The two highlighted lines identify two places where the template expects the “client” pages to insert
content. If you go back to page2.xhtml and page3.xhtml (Listings 7-25 and 7-26), you will see that the two
ui:definesinside ui:composition have the same name attributes as the two ui:inserts of the template.

When layout.xhtml is used to generate the response to a request sent to page2.xhtml, the element
<ui:insert name="title">Default Title</ui:insert> isreplaced with the string “Second page” and the
element <ui:insert name="pageNum"/> is replaced with “2”. For page3.xhtml, the string is “Third page”
and the page number is “3”. Notice that the body of ui:insert is the default value for that insert, to be
used when the “client” page doesn’t define any value.

Notice that both layout.xhtml and first.xhtml include a default header (shown in
Listing 7-28).

Listing 7-28. header.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"

>
<h:body>
<ui:composition>
<h1sExample of Templating</h1»
</ui:composition>
</h:body>
</html>

In header.xhtml, the element ui:composition doesn’t define a template attribute. Its presence
ensures that the rest of the page is ignored when header.xhtml is included with ui:include. Actually, the
only line needed in header.xhtml is the one I have highlighted. But the advantage of having a well-
formed XHTML page is that you can view it in a browser. With more complex pages, it is sometimes
useful to be able to do so.

There is still something I need to clarify. Have you noticed that the header shown in the first page
(see Figure 7-9) is black, while the header of the second page (see Figure 7-10) is gray?

This is because the template, with the element

<h:outputStylesheet name="styles.css" library="css"/>

loads a style sheet that defines the color of headers to be gray.

As first.xhtml doesn’t use the template, the color of the headers remains the default black.
Obviously, nothing prevents you from using the style sheet in first.xhtml by placing in its h:head the
same element used in the template. Alternatively, you can also use the HTML element

<link rel="stylesheet" type="text/css" href="/templ/resources/css/styles.css"/>

Still on the subject of linking to the style sheet with h:outputStylesheet: notice that the name of the
resources folder doesn’t appear anywhere. This means that it is hardcoded within the component and
that you are stuck with it. But the folder names templates and defaults are entirely my choice.
Therefore, you can choose the names you like.

221

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

To complete the description of the templ application, I still need to show you web.xml (Listing 7-29),
which is pretty obvious, and faces-config.xml (Listing 7-30), which is also self-explanatory.

Listing 7-29. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd">

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>
</context-param>

</web-app>

Listing 7-30. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xi="http://www.w3.0rg/2001/XInclude"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig 2 0.xsd"
version="2.0"
>
<navigation-rule>
<from-view-id>/first.xhtml</from-view-id>
<navigation-case>
<from-outcome>go2</from-outcome>
<to-view-id>/page2.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>go3</from-outcome>
<to-view-id>/page3.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/page2.xhtml</from-view-id>
<navigation-case>
<from-outcome>goBack</from-outcome>
<to-view-id>/first.xhtml</to-view-id>
</navigation-case>

222

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

</navigation-rule>
<navigation-rule>
<from-view-id>/page3.xhtml</from-view-id>
<navigation-case>
<from-outcome>goBack</from-outcome>
<to-view-id>/first.xhtml</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Action Controllers and Action Listeners

So far, you have only seen examples in which the action attribute of h: commandButton is set to a fixed
string. But you can also set it to the method of a bean. If you do so, when JSF reaches the Invoke
Application phase while processing the request on the server, it executes that method and uses the value
returned by that method to decide what page comes next. In this way, the destination page of an action
is defined at execution time.

If this sounds too complicated, let’s see whether an example clarifies the matter. We start by making
a copy of the templ application and renaming it templa. I am talking about action controllers and
listeners now because I have already shown to you the templ application we can work with.

I want to replace the two buttons Page 2 and Page 3 shown in Figure 7-9 with a single button that
alternates between the two pages. To do this, I need to add the Java class shown in Listing 7-31.

Listing 7-31. Action.java

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
@ManagedBean(name="actionBean")
@SessionScoped
public class Action {
int n = 3;
public int getN() { return 5 - n; }
public String goThere() {

n=5-n;
return "go" + n;

}

Notice that every time goThere is executed, n changes between the two values 2 and 3, so that the
method returns alternatively “go2” and “go3”. Also notice that getN returns 2 when nis 3 and 3 whenn
is 2.

The only other update I made to templ to change it into templa was to replace the following two lines
of first.xhtml (Listing 7-24)

<h:commandButton action="go2" value="Page 2"/>
<h:commandButton action="go3" value="Page 3"/>

with

<h:commandButton action="#{actionBean.goThere}" value="Page #{actionBean.n}"/>

223

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

224

If you are thinking that this is a silly application, I fully agree with you. But the last thing I want is to
give you examples in which the mechanism you should learn is buried in realistic but unnecessary
complexities. Note that by moving the decision of what page comes next to the action-controller bean,
you are effectively moving the business logic out of the View, thereby gaining in flexibility and
maintainability.

That said, I am not yet happy about how this goThere method works. The problem I have is that the
method does more than simply select the next page. It also has the side effect of modifying n. Side effects
are dreaded by experienced programmers, because in a complex application they can cause bugs that
are very difficult to trace. You want to write transparent programs in which nothing happens “behind
your back.”

The right way to do it is to move what is now a side effect to its own method. Check out Listing 7-32
for an improved version of Action. java.

Listing 7-32. Action.java (final)

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.event.ActionEvent;
@ManagedBean(name="actionBean")
@SessionScoped
public class Action {
int n = 3;
public int getN() { return 5 - n; }
public String goThere() { return "go" + n;
public void swapPages(ActionEvent event) {

}

Obviously, you also have to update first.xhtml. All you need to do is update the h:commandButton
element as follows:

)
n=s -}

<h:commandButton action="#{actionBean.goThere}" value="Page #{actionBean.n}"
actionListener="#{actionBean.swapPages}"
/>

During the Invoke Application phase, JSF executes first the action listener and then the action
controller. The value of n is obtained from the bean during the Render Response phase. This works.
Sometimes, though, you might like JSF to execute the action listener as soon as possible after receiving
the request, before other things happen. In that case, you can add to the component with
actionListener the attribute immediate="true", which forces the execution of the action listener already
in the Apply Request Values phase.

In the next chapter, you will see how action control works in the JSF version of eshop, which is a
more complex application.

The composite Library

JSF is based on user-interface components, but for a long time, it was difficult to create new components
or combine existing components into a new one. JSF introduced the composite library with release 2.0 to
make those tasks easier.

Table 7-5 lists the all the tags of the composite library. The two tags interface and implementation
are special, in that they are containers for other tags.

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-5. composite Tags

CHAPTER 7 ~ JAVASERVER FACES 2.2

Tag Name Description Valid In
composite:implementation Container of the XHTML code that
implements the component
composite:interface Container of interface components
composite:actionSource Exposes components that generate action ~ interface
events
composite:attribute Declares attributes of components interface
composite:editableValueHolder = Exposes components with editable values interface

composite:extension
composite:facet
composite:insertChildren
composite:insertFacet
composite:renderFacet

composite:valueHolder

Inserts XML code in interface components
Declares a component’s facet

Inserts XHTML code into component
Inserts a facet

Renders a facet

Exposes components with non-editable
values

interface components
interface
implementation
implementation
implementation

interface

Conceptually, to define a new component, you need to go through the following steps:

e Define its namespace (i.e., where it is).

e Specify its functionality (i.e., what it does).

e Define how you use it (i.e., its interface).

e Design how you code it (i.e., its implementation).

Some Examples

To write the first example, let’s go through the four points I listed at the end of the previous section.

e Define a namespace. I have chosen gz.

e Specify its functionality. The component should compose a greeting message with
a parameterized addressee.

www.it-ebooks.info

225

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

e Define how you use it. Just call it with an attribute to pass to it the addressee.
e Design how you code it. Simple. An h:outputText will do.

The code for the new component is shown in Listing 7-33. To test it, copy the folder composite from
the software package for this chapter to Tomcat’s webapps folder, and then type in the browser
http://localhost:8080/composite.

Listing 7-33. hello.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"
>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite"”

>
<h:head><title>Example of a composite component</title></h:head>
<h:body>
<composite:interface>
<composite:attribute name="x"/>
</composite:interface>
<composite:implementation>
<h:outputText value="Hello, #{cc.attrs.x}!"/>
</composite:implementation>
</h:body>
</html>

Not surprisingly, for such a trivial component, the code is also trivial. But it tells you a lot about
developing components with the composite library.

First of all, inside h:body, you find two elements, a composite:interface and a
composite:implementation. Inside the former, you define the attribute named x, and inside the latter,
you define the logic of the component.

To access the attribute from within the implementation, you use the expression #{cc.attrs.x).

Listing 7-34 shows you how to use the new component, and Figure 7-11 is how the page appears in a
browser

Listing 7-34. comp.xhtml

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"

>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:gz="http://java.sun.com/jsf/composite/gz"

>
<h:head><title>Example of a composite component</title></h:head>
<h:body>
<gz:hello x="wherever you are"/»
</h:body>

226

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

</html>
_ =aaen X
Example of a composite co
&« C | @ localhost:8080/composite/ g N

Hello, wherever vou are!

Figure 7-11. composite

Have you noticed anything unusual in comp.xhtml? Instead of separately declaring the namespaces
of the JSF composite library and of your custom components, you declare a single namespace
composite/gz. For this to work, you need to create in the root of your application a folder named
resources; create a folder (in the example, named gz) inside resources; and place your custom
components there. The name of the component (e.g., hello) is obtained from the name of the
component file (e.g., hello.xhtml) by removing its extension.

It is an established practice to use the same string for the prefix and for naming the folder inside
resources, and I recommend that you follow it, but the two strings can be different.

Note that if you place elements in an interface body, you need to define a corresponding
implementation. But you can have code in implementation with an empty interface, like in:

<composite:interface/>

<composite:implementation>
<h:outputText value="Hello, World!"/>
</composite:implementation>

It simply means that your new component will not have any attribute to set.
To include in a composite component an input component, do exactly what you did for an output
component in hello.xhtml. In fact, if you replace in hello.xhtml the line

<h:outputText value="Hello, #{cc.attrs.x}!"/>
with
<h:inputText value="Hello, #{cc.attrs.x}!"/>

you will see the page shown in Figure 7-12, but be aware that this is not a working page. It’s just to
show you how to use composite:attribute.

-
Example of a composite co

& C @ localhost:8080/co

Hello, wherever you are! I

Figure 7-12. composite with input element

227

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

You can also use composite:attribute to set the action attribute of h: commandButton and
h:commandLink. For example, if you want to build a composite component called, say, flip around the
h:commandButton you used in templa a couple of pages back, the body of f1lip.xhtml would look
something like this:

<composite:interface>
<composite:attribute name="act" targets="myB" method-signature="java.lang.String action()"/>
</composite:interface>
<composite:implementation>
<h:commandButton id="myB" action="#{cc.attrs.act}" value="Page #{actionBean.n}"
actionlListener="#{actionBean.swapPages}"
/>
</composite:implementation>

Then, you would use the new composite component like this:
<gz:flip act="#{actionBean.goThere}"/>

As it was in the previous examples, you use the expression #{cc.attrs.act} to access from the
implementation the value of the act attribute declared in interface. In addition, unlike what happened
in the previous examples, you also need a reference in the opposite direction, from interface to
implementation. This is because JSF must be able to wire the method setin gz: flip to the
h:commandButton component for which the method is meant. In fact, if there were more components in
implementation, you could wire the same method to several of them by writing their identifiers in the
targets attribute separated by spaces (this is why the name of the attribute is targets, plural, instead of
target).

The value of method-signature specifies that the value of act must evaluate to a method, and defines
its signature. This means that <gz:flip act="go2"/> wouldn’t work. You would have to replace:

method-signature="java.lang.String action()"
with
type="java.lang.String"
The two attributes are mutually exclusive, and if you leave out both of them, JSF assumes
type="java.lang.Object"

Now that you know how to make visible the action attribute of h: commandButton, you will perhaps be
asking yourself how you expose its actionListener attribute as well. Here it is:

<composite:interface>
<composite:attribute name="act" targets="myB" method-signature="java.lang.String action()"/>
<composite:actionSource name="myB"/>
</composite:interface>

<composite:implementation>
<h:commandButton id="myB" action="#{cc.attrs.act}" value="Page #{actionBean.n}"/>
</composite:implementation>

Then, you would use the new composite component like this:

<gz:flip act="#{actionBean.goThere}">
<f:actionListener for="myB" binding="#{actionBean.swapPages}"/>
</gz:flip>

228

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ~ JAVASERVER FACES 2.2

The element composite:actionSource exposes the h:commandButton component, and
f:actionlListener wires to it the appropriate action listener. Notice that the attribute actionListener has
disappeared from h:commandButton.

A few words about composite:facet and composite:renderFacet. Close to the beginning of the
section about the core library, I mentioned that facets are a means to let components do something
special with a block of code. Now, suppose that you want to include a special word in several places
within the composite component you are developing and that the page that uses the component should
be able to define that word. You could do it like this:

<composite:interface>
<composite:facet name="aWord"/>
</composite:interface>

<composite:implementation>

<!-- ...some code... -->

<composite:renderFacet name="aWord"/> <!-- say it here -->
<!-- ...some code... -->

<composite:renderFacet name="aWord"/> <!-- and here -->
<!-- ...some code... -->

<composite:renderFacet name="aWord"/> <!-- and again here -->
</composite:implementation>

And this is how you would use the component:

<gz:myFacetedComponent>
<f:facet name="aWord"><h:outputText value="#@%!"/></f:facet>
</gz:myFacetedComponent>

JSF will take the body of the facet element defined in the using page and insert it where you invoke
composite:renderFacet. If you like to insert those components as a facet, you need to use
composite:insertFacet instead.

Normally, JSF ignores what is inside the body of your custom component, like in

<gz:myComponent>
<h:outputText value="#@%! "/>
<h:inputText value="#{aBean.whatever}"/>
</gz:myComponent>

If you want to include it in your composite component, you can do it with

<composite:insertChildren/>

Summary

In this chapter, we have covered a lot of ground. I gave you a first taste of JSF with the simplef, simplefx,
and simpleh applications. Then, after describing the JSF life cycle, I went on to talk about all four JSF tag
libraries html, core, facelet, and composite.

For each library, I listed their tags and showed you with simple examples how to use the most
common or significant tags.

In the next chapter, we’ll go back to eshop to see how we can convert it to a JSF application.

229

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

JSF and eshop

In Chapter 3, I introduced the eshop project, followed in Chapter 6 by eshopx, functionally identical to
eshop except that I replaced the JSP pages containing scripting elements with JSP documents in XML
format.

In this chapter, I am going to describe eshopf, a version of eshopx based on JSF. You will find both
the WAR file and the expanded project in the software package for this chapter.

eshopf

Figure 8-1 shows the welcome page of eshopf . Although it is identical to that of eshop and eshopx , I
include it here so that you can refer to it without having to flip forth and back across several chapters.
Instead of commenting the listings of the whole application, I will concentrate on some interesting
fragments as they relate to JSF.

[“Firerox (=) [
‘@We\come |T\

e @ localhost:8080/ eshopf/ [| |'-'l" Google ,D| % EB-
e-Shopping Center Show Cart mf
Quick Search Welcome to e-Shop

Book Title/Author:

—

Categories
Web Development
SF
Action Novels

Figure 8-1. eshopf’s home page

As a basis for developing eshopf, I used eshopx. If you look at the welcome pages of eshopx and
eshopf, both named index.jspx, you will see at once that, in order to use JSF, I added the two namespace
declarations for the core and html JSF tag libraries and the element f:view to enclose all JSF actions.

G. Zambon, Beginning JSP, JSF and Tomcat 231
© Giulio Zambon 2012
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

But there is another update that is less obvious. Check out Listing 8-1, which shows the body of the
f:view element.

Listing 8-1. eshopf: Body of f:view in index.jspx

<h:form>
<jsp:include page="TopMenu.jspx" flush="true"/>
<jsp:include page="LeftMenu.jspx" flush="true"/>
</h:form>

<div class="content">
<h1>Welcome to e-Shop</h1>
</div>

In index. jspx of eshopx, the two jsp:includes were not wrapped inside a form. The reason for this
change is due to the fact that, inside the jsp:included documents, as you will see below, two HTML a
elements are to be converted to h:commandLink components, which need to be inside h:form. It seemed
reasonable to use a single form.

The Top Menu

Listing 8-2 shows TopMenu. jspx and its use of the h:panelGroup component.
Listing 8-2. eshopf: TopMenu.jspx

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root
xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
version="2.1"
>
<jsp:directive.page
language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<f:subview id="viewcart">
<h:panelGroup styleClass="header">
<h:outputText styleClass="logo" value="e-Shopping Center"/>
<h:commandLink action="showCart" immediate="true" styleClass="cart link2"»
<h:outputText value="Show Cart "/>
<h:graphicImage url="/images/cart.gif"/>
</h:commandLink>
</h:panelGroup>
</f:subview>
</jsp:root>

The purpose of TopMenu. jspx is to provide a standardized access to the shopping cart.

Notice that I used f:subview to enclose all actions. Also notice that f:subview exists precisely to
contain actions when they are included via jsp:include or any custom actions like c:include. Its
purpose is equivalent to that of a pair of braces in Java: it limits the scope of its content. For example, the

232

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

component IDs defined in one subview can be identical to those defined in other subviews of the same
page.

With TopMenu. jspx, you don't necessarily need to wrap everything inside a subview, because the
content of that document doesn’t conflict with what is inside LeftMenu. jspx or with index. jspx.
Nevertheless, it’s good practice to avoid possible side effects of included modules. Subviews are required
to have an ID, which is why I defined id="viewcart", even though we don’t actually have any use for it.

The attribute styleClass is the JSF-equivalent of the HTML attribute class. Refer to the file
/css/eshopf.jspx to see the style definition for each class.

The function of h:panelGroup is grouping together UI components. In this case, it makes possible to
apply the style class header to all elements it contains.

The JSF-equivalent of the HTML element img is h:graphicImage.

Notice that the immediate attribute of h: commandLink is set to true. You will recall from the previous
chapter that by doing so, you force the execution of the action listener already in the Apply Request
Values phase. This guarantees that, regardless of what page the user is viewing, perhaps with a partially
and inconsistently filled in form, control goes directly to the page of the shopping cart.

The action attribute of h: commandLink sets the outcome to be showCart. You have already
encountered this mechanism in several examples of the previous chapter (e.g., the value goOn in
Listing 7-1).

The Left Menu (part 1)

Listing 8-3 shows the top-level structure of LeftMenu. jspx, with the h:panelGrid component.
Listing 8-3. eshopf: LeftMenu.jspx - structure

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root
xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
version="2.1"
>
<jsp:directive.page
language="java"
contentType="application/xhtml+xml;charset=UTF-8"
/>
<f:subview id="leftMenu">
<h:panelGrid styleClass="menu">
Here goes the Search Box - See Listing 8-4
Here goes the Category Selection Box - See Listing 8-6
</h:panelGrid>
</f:subview>
</jsp:root>

AsIshowed in the previous chapter (see Listing 7-12), the h:panelGrid component is rendered with
an HTML table; each component it contains is rendered as an HTML td element; and the optional
attribute columns determines the length of the rows.

In LeftMenu. jspx, you could have written columns="1", but I omitted it because 1 is the default. Here
you need h:panelGrid instead of h:panelGroup, because otherwise the search and category selection
boxes would have not been rendered one below the other. The rows are filled in from left to right with

233

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

234

the components in the order in which they appeared inside h:panelGrid, from top to bottom. The search
box shown in Listing 8-4 consists of some descriptive text, an input text field, and a button to submit the
search.

Listing 8-4. eshopf: LeftMenu.jspx - Search Box

<h:panelGroup styleClass="box">
<h:outputText styleClass="box_title" value="Quick Search"/>
<h:outputText styleClass="box_p" value="Book Title/Author:"/>
<h:inputText size="15"
styleClass="box_searchTxt"
binding="#{shopManager.searchTxt}"
/>
<h:commandButton
type="submit" value="Search"
styleClass="box_searchBtn"
action="#{shopManager.searchBooks}"
immediate="true"
/>
</h:panelGroup>

Notice that the action attribute of h: commandButton is set to a method of a managed bean instead of
to a string literal. You encountered this mechanism in the section of the last chapter about Action
Controllers and Action Listeners.

The attribute binding="#{shopManager.searchTxt}" shows how you can wire the input field to a data
object on the server. You can establish a similar link with the value attribute, as I explained in the
previous chapter (e.g., see Listing 7-1).

The difference is that with binding, you establish a two-way link, which lets your backing bean
modify the value of the field, while with value, the backing bean cannot modify the data entered by the
user. The shopManager bean doesn’t need to modify the search string entered in LeftMenu. jspx, but you
still use binding for reasons that will become clear in a moment.

As with the shopping cart in TopMenu. jspx, the attribute immediate="true" tells JSF that the action
should be executed during Apply Request Values, rather than during Invoke Application, which is the
default for all actions. In this way, you can be sure that the user is always able to resume shopping from
any page, even if it contains invalid input fields (e.g., from the checkout page with empty fields).

This immediate execution of the search action is why you need to use the binding attribute in the
h:inputText component. With the value attribute, you could access the search string with the method
getValue, but only during Invoke Application, after Process Validation and Update Model Value have
done their job. This would have been too late, because, as I've just explained, the search action takes
place during Apply Request Values. By using the binding attribute, you make available to the shop
manager the whole h:inputText component. As a result, you can invoke the method getSubmittedValue
(see line 120 of Listing 8-5) already during Apply Request Value, when the search action is executed.

The attribute required="true" tells JSF that it is invalid for the user to leave the field empty
(although it accepts spaces), and requiredMessage defines the corresponding error message. If you omit
the requiredMessage attribute, the default error message is something like this:

j_id_jsp_548875039_1:address: Validation Error: Value is required.

Before completing the study of LeftMenu.jspx, we should look at the ShopManager Java bean, which I
have already mentioned a couple of times.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

The Shop Manager

The shop manager is a managed bean defined in the session scope.
In the previous section, I said that the following two attributes realize the linking of user inputs and
server entities:

binding="#{shopManager.searchTxt}"
action="#{shopManager.searchBooks}"

To understand exactly how this works, let’s go through the relevant parts of ShopManager. java, as
shown in Listing 8-5.

Listing 8-5. eshopf fragment: Searching for Books in ShopManager.java
014: private List<Book> books ;
023: private HtmlInputText searchTxt = new HtmlInputText();

103: public HtmlInputText getSearchTxt() {
104: return searchTxt;
105: }

118: public String searchBooks() {

119: categoryName=null;

120: String searchKeyword = (String)searchTxt.getSubmittedValue();
121: books = dataManager.getSearchResults(searchKeyword);

122: return "listBooks";

123: }

147: public void setSearchTxt(HtmlInputText val) {
148: searchTxt = val;
149: }

The whole ShopManager . java is in the folder eshopf project\eshopf\WEB-INF\classes\eshop\beans
of the software package for this chapter.

The binding attribute listed means that during Update Model Values, the JSF servlet saves the search
string typed by the user in the attribute searchTxt, which is of type
javax.faces.component.html.HtmlInputText. It does so by using the method setSearchTxt. Later in the
life cycle, during Render Response, it uses the getSearchText method to get the value needed to prefill
the input text field in HTML. The Htm1InputTxt class has a series of properties and methods that enable
you, among other things, to make it a required input and to validate the value typed in by the user.

The action attribute of the Search button causes the JSF servlet to execute the method searchBooks
during Invoke Application. As you can see in Listing 8-5, the method simply obtains the value of the
search string, executes the dataManager method to obtain the list of books from the database, saves the
list in the object books, and returns the string "1istBooks".

If you now look at the following fragment of faces-config.xml, you'll see that by returning
"1listBooks", the searchBooks method forces JSF to switch from the current page to ListBooks.jspx:

<navigation-rule>
<navigation-case>
<from-outcome>1listBooks</from-outcome>
<to-view-id>/jsp/ListBooks.jspx</to-view-id>

235

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

236

<redirect/>
</navigation-case>
</navigation-rule>

The presence (or absence) of the redirect element determines how this switch is done. If redirect
is present, as in the example, JSF will send a redirect response to the client that will cause the browser to
request the new page. Without the redirect element, during Render Response, JSF will directly use the
content of the books object to render in HTML the list of books found in the database. But in that case,
the list will effectively be a new rendering of the page that the user launched the search from. As a result,
the URL shown in the browser will remain unchanged (e.g., http://localhost:8080/eshopf/).

You also could have included this line in the navigation-case element to impose a more restrictive
condition on when the page switch should take place:

<from-action>#{shopManager.searchBooks}</from-action>

However, this is clearly unnecessary in this case, because no other method returns "listBooks".

The Left Menu (part 2)

Now that you know how eshopf binds user inputs and actions to data objects and methods, we can
complete the study of LeftMenu. jspx. Listing 8-6 shows the part where you select books by category.

Listing 8-6. eshopf: LeftMenu.jspx - Category Selection Box
01: <h:panelGroup styleClass="box" id="categBox">

02: <h:outputText styleClass="box_title" value="Categories"/>
03: <h:dataTable value="#{shopManager.categories}" var="category">

04: <h:column>

05: <h:commandLink

06: action="#{shopManager.selectCategory}"
07: value="#{category.name}"

08: immediate="true"

09: />

10: </h:column>

11: </h:dataTable>

12: </h:panelGroup>

JSF renders the h:dataTable component (line 3) with an HTML table element, in which every
column is identified by an h: column component (line 4). In addition to the table functionality as you
know it from HTML, JSF also provides an iteration mechanism similar to that of c: forEach and linked to
the data model. The mechanism is based on two attributes: value, which contains an EL expression that
returns a list of items, and var, which contains the name of a variable to which the items of the list are
assigned one by one in sequence.

In this case, the EL expression #{shopManager.categories} executes the following method of
shopManager:

068 public ListDataModel<Category> getCategories() {

069 categoriesDataModel.setWrappedData(dataManager.getCategories());
070 return categoriesDataModel;

071}

with categoriesDataModel defined as follows:

017 private ListDataModel<Category> categoriesDataModel = new ListDataModel<Category>();

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

The result is that the List of categories obtained from the database via the
dataManager.getCategories method is assigned to the value attribute of h:dataTable.

JSF implements an index that goes through all the items of the list, and the attribute var="category"
defines the name of the variable that gives access to the current item. In practical terms, this means that
when the JSF servlet renders the h:dataTable component during the Render Response phase, it renders
the h:commandLink of lines 5-9 for each category found in the database.

The Checkout Page

The Checkout. jspx module of the eshopf application asks the user to provide the payment data (name,
address, and credit-card information). Listing 8-7 shows the code associated with one of the input items.

Listing 8-7. eshopf: Checkout.jspx—Address Entry

<h:panelGrid columns="3" rendered="#{!shopManager.shoppingCartEmpty}"
style="width:auto">

<h:outputText value="Delivery Address"/>

<h:inputText id="address" required="true"
value="#{shopManager.customer.deliveryAddress}"
requiredMessage="Value is required!"
/>

<h:message for="address" styleClass="error"/>

;}ﬁ:panelcrid>

The value of the h:inputText component is associated with the deliveryAddress attribute of the
object customer, which is an instantiation of the class eshop.beans.Customer. Because the attribute
required of h:inputText is set to true, if the user omits to fill in the field, the value of the attribute
requiredMessage is displayed. If you define the the JSF element h:message, its location within the page
and its style determine where the error message is displayed and how, as shown in Figure 8-2.

237

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

=
/[Check Out B
€« C' | @ localhost8080/eshopf/jsp/Checkout,jsf b N
e-Shopping Center Show Cart [/
0
CheckOut
Quick Search
Book Title/author:
|:| Delivery and Credit Card Details
Contact Name Joe Bloke
Categories))
Web Development Delivery Address Value is required!
SF
Action Nova Name on Credit Card Mr. Joseph Bloke
Credit Card Number 1234 5678 9012 3456
Credit Card Expiry Date (MM/YY) 12/13
Confirm Order

Figure 8-2. Incomplete input on Checkout.jspx

A potentially useful tag is <f:verbatim>. Its purpose is to let you insert HTML tags where a JSF
component is expected. It isn’t a practice that I encourage, but sometimes it can make your life much
easier. For example, instead of using h:panelGrid to arrange components in a single column, you could
insert <f:verbatim>
</f:verbatim> between consecutive components.

web.xml
Listing 8-8 shows the file WEB-INF\web.xml for the application eshopf.

Listing 8-8. eshopf: web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee ~CCC
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">
<display-name>eshop</display-name>
<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.jspx</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

238

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.jsf</url-pattern>
</servlet-mapping>

<login-config>
<auth-method>BASIC</auth-method>
</login-config>

<resource-ref>
<res-ref-name>jdbc/mysql</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

</web-app>

Most of the tags should be familiar to you from previous examples.

The context-parameter element sets the file extension to be jspx, which is the extension of JSP
documents, as those of eshopf. If you had left out this element, the extension would have been jsp,
which is the extension of JSP pages.

The servlet element points to the class of the standard JSF servlet. By setting the element servlet-
mapping to *.jsf, you specify that the JSP documents are to be accessed with that extension instead of
their real extension, which is jspx. For example, when you select a book category in eshopf, the URL
displayed in the browser is

http://localhost:8080/eshopf/jsp/ListBooks.jsf

while the JSP document is actually called ListBooks. jspx. This is called extension mapping.

The last element, resource-ref, states that the resource named jdbc/mysql is of type DataSource,
and that Tomcat does its own authentication. Tomcat provides a Java Naming and Directory Interface
(NDI) InitialContext for each application. This means that once you've registered a resource in
web.xml, you can provide in a separate context file all the information necessary to link it to your server
environment. For eshopf, the information is shown in Listing 8-9.

Listing 8-9. context.xml

<?xml version="1.0" encoding="UTF-8"?> <!-- MySQL database context -->
<IDOCTYPE Context [<!ELEMENT Context ANY> <!ATTLIST Context debug CDATA #IMPLIED
reloadable CDATA #IMPLIED crossContext CDATA #IMPLIED>]>
<Context debug="5" reloadable="true" crossContext="true">
<Resource
name="jdbc/mysql"
auth="Container"
type="javax.sql.DataSource"
username="root"
password=""
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost:3306/shop"
maxActive="8"
maxIdle="4"
/>
<Valve
className="org.apache.catalina.valves.AccessLogValve"
directory="1logs"
prefix="eshopf-access."

239

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

suffix=".log"
pattern="common"
resolveHosts="false"
/>

</Context>

As you can see, the resource attributes url, username, and password specify the MySQL database
used in all versions of E-shop application and how to access it. The context file must be named
context.xml and placed in the META-INF folder of your application directory.

In eshop and eshopx, you defined the database parameters in web.xml with init-param elements and
retrieved them in the eshop.ShopServlet.init method to make them available to the data manager (see
Listings 3-9, 3-10, and 6-8).

In eshopf, as you have just seen, you define the same parameters (it actually is the same database) in
context.xml and make them accessible to the application by defining a resource-ref element in web. xml.

Accordingly, you have to update the data manager’s method getConnection. In practical terms, after
removing all checks from the actual code for clarity, the line

conn = DriverManager.getConnection(getDbURL(), getDbUserName(), getDbPassword());
of eshop and eshopx is replaced in eshopf by the following four lines

Context ctx = new InitialContext();

Context envContext = (Context)ctx.lookup("java:/comp/env");
DataSource ds = (DataSource)envContext.lookup("jdbc/mysql");
conn = ds.getConnection();

You find DataManager. java in the folder eshopf project\eshopf\WEB-INF\classes\eshop\model of
the software package for this chapter.

The mechanism used in eshop and eshopx could not be used in eshopf because ShopServlet has
been replaced by the JSF servlet. The mechanism relying on context.xml is in fact more flexible and
elegant than the original one, but I think it was good for you to see both mechanisms.

Using and Creating Converters

As I said when describing the JSF life cycle, the JSF servlet executes the decode method of each
component during Apply Request Values. The method saves the parameter values locally, but it first
needs to convert the input strings to the corresponding types defined in the components, except when
the components expect values of type String. JSF provides standard converters for the java.lang types
Boolean, Byte, Character, Double, Enum, Float, Integer, Long, and Short, and for the java.math types
BigDecimal and BigInteger.

The standard converters perform a series of checks that you can use to validate, at least in part, the
user's input. To do so, you have to enable the reporting of converter messages.

For example, in the eshopf application, the user can update the number of copies of a book that is
already in the shopping cart. Clearly, it doesn’t make any sense to type a fractional number or a string
that is not numeric. Therefore, you can write the input component in the ShoppingCart.jspx document
as follows:

<h:inputText id="quantity" value="#{item.quantity}" size="2"
required="true"
requiredMessage="What? Nothing?"
converterMessage="An integer, please!"
/>

240

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

Then, you only need to add this line to display the error messages of the standard Integer converter:
<h:message for="quantity" styleClass="error"/>

This is not yet a perfect solution, because the application still accepts negative integers. That is, you
can type in -1, and the application will happily display negative prices! To see how to solve this problem,
you’ll have to wait for the section about validators.

Sometimes the standard converters are not sufficient. For example, you might like to save in a
database a credit-card number without any dashes or spaces. To make a custom converter, you need to
create an implementation of the javax.faces.Converter interface that overrides its methods
getAsObject and getAsString. You must implement both directions of the converter. During Apply
Request Values, JSF uses the getAsObject method to convert the input string to the data model object.
During Render Response, JSF uses the getAsString method to do the conversion in the opposite
direction, so that a string can be included in the HTML response. Once you complete the converter, you
have to register it with the application.

To invoke the converter, you need to nest it as a property of f:converter or assign it to the converter
attribute of the input component. Let’s go through the three steps (i.e., develop, register, and invoke)
one at a time. The converter will just clean up a credit-card number of any non-numeric character.
Notice that it is the task of a validator to check that the credit-card number is valid. This normally takes
place during Process Validation, while the conversions, as I just said, take place during phases Apply
Request Values and Render Response.

Writing the Converter in Java

Listing 8-10 shows the full code of the converter used in eshopf to convert the credit-card number when
checking out.

Listing 8-10. CCNumberConverter.java

package eshop.converters;
import javax.faces.convert.Converter;
import javax.faces.context.FacesContext;
import javax.faces.component.UIComponent;
import javax.faces.convert.ConverterException;
public class CCNumberConverter implements Converter {
/7
// getAsObject extracts from the input string all numeric characters
public Object getAsObject(FacesContext ctx, UIComponent cmp,
String val) {
String convVal = null;
if (val != null) {
char[] chars = val.trim().toCharArray();
conwal = "";
for (int k = 0; k < chars.length; k++) {
if (chars[k] >= '0' 8&& chars[k] <= '9') {
conwal += chars[k];

}
}
/*
System.out.println("CCNumberConverter.getAsObject: ""
+val + "' -> """ + conwal + "'");
*/

241

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

}

return convVal;

//
// getAsString inserts into the object string spaces to make it readable
// default: nnnn nnnn nnnn nnnn, Amex: nnnn nnnnnn nnnnn
public String getAsString(FacesContext ctx, UIComponent cmp, Object val)
throws ConverterException {
String convVal = null;
if (val != null) {
int[] spaces = {3, 7, 11, 99};
int[] amex = {3, 9, 99};
String sVal = null;

try {
sVal = (String)val; // The val object should be a String!

catch (ClassCastException e) {
throw new ConverterException("CCNumberConverter: Conversion Error");
}
int kSpace = 0;
char[] chars = sVal.toCharArray();
if (chars.length == 15) spaces = amex;
conwal = "";
for (int k = 0; k < chars.length; k++) {
conwal += chars[k];
if (spaces[kSpace] == k) {

convwal += "' ';
kSpace++;
}
}
/*
System.out.println("CCNumberConverter.getAsString: '"
+sVal + "' -> '"" + conwal + "'");
*/
}
return convval;
}
}

The getAsObject method simply removes from the input string all the characters that are not
decimal digits. The getAsString method inserts spaces to make the credit-card numbers more readable.

For example, if you during checkout type something such as 12-34. 56Abc78;90123--456, it will be
reformatted to 1234 5678 9012 3456 as soon as you press the Check Out button. To verify that the object
is correct, you can use the two println statements that you see commented out in the code. Here are a
few examples taken from stdout_yyyymmdd.log in Tomcat’s logs folder:

CCNumberConverter.getAsObject: 'abc1234 5678 1111x2222' -> '1234567811112222'
CCNumberConverter.getAsString: '1234567811112222"' -> '1234 5678 1111 2222'
CCNumberConverter.getAsObject: ' 1 23456789 012345' -> '123456789012345'
CCNumberConverter.getAsString: '123456789012345' -> '1234 567890 12345’

242

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

As you can see, the output of getAsObject, which is also the input of getAsString, is always stripped
of non-digit characters, while the output of getAsString is always formatted with spaces. Once more, the
checking of correctness is a task for the validator, not for the converter.

Registering the Converter with the Application

You can register the converter with the application by adding the following lines to the faces-config.xml
file:

<converter>
<converter-id>CCNumberConverter</converter-id>
<converter-class>eshop.converters.CCNumberConverter</converter-class>
</converter>

You can choose any name you like inside the converter-id element, while the class in the
converter-class element must match that of the converter that I described in the previous section.

Using the Converter

Here’s how to write the input element for the credit-card number in the Checkout. jspx module:

<h:inputText id="ccnumber" required="true"
value="#{shopManager.customer.ccNumber}"
requiredMessage="Value is required!"
converter="CCNumberConverter"
/>

As you can see, you only need to include the converter attribute and assign to it the converter-id
you've registered in faces-config.xml. Alternatively, you could have nested an f:converter element
inside the h:input component:

<f:converter converterId="CCNumberConverter"/>

The result would have been the same. This is a permissive converter, because it accepts almost
everything without complaining. You could ask yourself whether a 30-character-long string that
happens to include 16 digits is a valid credit-card number. I'll leave that up to you.

Using and Creating Validators

How do you ensure that the user of the eshopf application doesn’t succeed in buying a negative number
of books? Actually, the application should also reject any attempt of buying zero books. And what about
checking the validity of a credit-card number? These are tasks for validators.

JSF features four types of validation mechanisms:

e Built-in validation components

e Application-level validation

Custom validation components
e Validation methods in backing beans

Let’s go through them one by one.

243

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

Built-In Validators
JSF provides the following validation components:

e f:validateBean: It delegates validation of the bean’s local value to the Bean
Validation API. You can download the documentation of the validation package
from http://jcp.org/aboutJava/communityprocess/final/jsr303/.

e f:validateDoubleRange: It validates that a numeric input is within a given range. It
is applicable to values that you can convert to a double.

e f:validatelLength: It validates that the length of the input string is within a given
range.

e f:validatelongRange: It validates that a numeric input is within a given range. It is
applicable to values that you can convert to a long.

e f:validateRegex: It checks whether the String value of the component matches a
given regular expression.

e f:validateRequired: It checks whether a value is present. It is equivalent to setting
the required attribute to true.

To use these validation components, you simply nest them inside the h:input component you need
to validate. For example, to check that only positive quantities can be entered in the eshopf shopping
cart, you modify the h: inputText component in ShoppingCart.jspx as follows:

<h:inputText id="quantity" value="#{item.quantity}" size="2

required="true"
requiredMessage="What? Nothing?"
converterMessage="An integer, please!"
validatorMessage="At least one copy!"
>

<f:validateLongRange minimum="1"/>

</h:inputText>

All three validators also accept the maximum attribute to set the upper limit of the range. For example,
you can force the user to enter the correct number of credit-card digits by modifying the corresponding
h:inputText in Checkout.jspx:

<h:inputText id="ccnumber" required="true"

value="#{shopManager. customer.ccNumber}"
converter="CCNumberConverter"
requiredMessage="Value is required!"
validatorMessage="0Only 15 or 16 digits accepted!"
>

<f:validatelLength minimum="15" maximum="16"/>

</h:inputText>

As the validation takes place after the conversion, the limits of 15 (for American Express) and 16 (for
all other credit cards) are applied to the user’s input after removing all nondigit characters.

244

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

Application-Level Validation

Application-level validation consists of performing checks inside the backing beans. This makes sense if
you need to validate the business logic of your application, as opposed to validating formal correctness
of individual fields. For example, before accepting an order, you might like to check that your bank has
not blacklisted the credit-card number. Let’s see how it works.

In eshopf, when the user clicks on the Check Out button after entering his or her name and credit-
card data, the checkOut method of shopManager is executed, as shown in the following line taken from
Checkout. jspx:

<h:commandButton value="Check Out" action="#{shopManager.checkOut}"/>
The method is as follows:

public String checkOut() {
orderId = dataManager.insertOrder(customer, shoppingCart);
if (orderId != 0) {
customer = null;
shoppingCart.clear();

return "orderConfirmation";

}

The dataManager . insertOrder method saves the order information in the database. If it fails, the
dataManager will log a message to a Tomcat log file (i.e., Logs\stdout_yyyymmdd.log) and return zero. If
the database update succeeds, the value returned will be a unique orderId. In a real-world application,
rather than 0, you would return error information to be passed on to the user.

The checkOut method returns an outcome that tells JSF what page should be displayed next.

If you want to do some application-level validation, you could insert its logic at the beginning of the
checkOut method and make the database update and the method outcome dependent on the validation
result. In case of validation failure, you could also send a message to the user, as shown in the following
few lines:

FacesContext ctxt = FacesContext.getCurrentInstance();
FacesMessage mess = new FacesMessage();
mess.setSeverity(FacesMessage.SEVERITY ERROR);
mess.setSummary("This is the summary text");
mess.setDetail ("This is the detail text");
ctxt.addMessage(null, mess);

The message created in this way is a global message, not bound to any particular component, and
you can display it with the following JSF component:

<h:messages globalOnly="true" styleClass="error"/>

If you want to create a message for a particular component, you need to replace the null argument
of ctxt.addMessage with the clientId of the component. The clientId is a string containing all the IDs
necessary to identify a particular component. For example, if you have <h:inputText id="it"...> inside
<h:form id="fm"...>, the clientId of the input component is fm:it. I recommend that you don’t use
this option, because it forces you to hard-code the clientId in your Java method.

245

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

246

JSF AND ESHOP

Custom Validators

In the section Using and Creating Converters of this chapter, I explained how to implement a custom
converter. To implement a custom validator, you follow an almost identical process:

e Create an implementation of the interface javax.faces.validator.Validator
that overrides the validate method.

e Register the validator in faces-config.xml.

e Within your JSF application, refer to the validator in an attribute or a component.

Suppose you want to ensure that the credit-card expiry date provided by the user during checkout is
in the form MM/YY and that the card has not expired. Listing 8-11 shows the validator code.

Listing 8-11. CCExpiryValidator.java

package eshop.validators;

import
import
import
import
import
import
import

public
publ
}

publ
St
St

javax.faces.validator.Validator;
javax.faces.context.FacesContext;
javax.faces.component.UIComponent;
javax.faces.application.FacesMessage;
javax.faces.validator.ValidatorException;
java.util.GregorianCalendar;
java.util.Calendar;

class CCExpiryValidator implements Validator {
ic CCExpiryValidator() {

ic void validate(FacesContext cntx, UIComponent cmp, Object val) {
ring messS = null;
ring[] fields = ((String)val).split("/", 3);

if (fields.length != 2) {

el

messS = "Expected MM/YY!";

se {

int month = 0;

int year = 0;

try {
month = Integer.parseInt(fields[0]);
year = Integer.parselnt(fields[1]);

catch (NumberFormatException e) {

if (month <=0 || month > 12) {
messS = "Month " + fields[0] + " not valid!";

else if (year < 0 || year > 99) {
messS = "Year " + fields[1] + " not valid!";

else {

GregorianCalendar cal = new GregorianCalendar();
int thisMonth = cal.get(Calendar.MONTH) + 1;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

int thisYear = cal.get(Calendar.YEAR) - 2000;

if (year < thisYear || year == thisYear &% month < thisMonth) {
messS = "Credit card expired!";
}

}

}
if (messS != null) {
FacesMessage mess = new FacesMessage(FacesMessage.SEVERITY ERROR, messS, messS);
throw new ValidatorException(mess);
}
}

To register the validator with the application, you only need to add the following lines to faces-
config.xml—for example, immediately below the registration of the converter:

<validator>
<validator-id>CCExpiryValidator</validator-id>
<validator-class>eshop.validators.CCExpiryValidator</validator-class>
</validator>

Then, to validate the credit-card expiry date, you modify the h: inputText component used in
Checkout. jspx as follows:

<h:inputText id="ccexpiry" required="true"
value="#{shopManager.customer.ccExpiryDate}"
requiredMessage="Value is required!"
>
<f:validator validatorId="CCExpiryValidator"/>
</h:inputText>

You'll be rewarded with error messages like those shown in Figure 8-3 (which I obtained by taking
several screenshots and then putting them together with a graphics program).

05/12 Credit card expired!
12/1
15/-1

aaa/99 Month aaa not valid!

12/2013/2 Expected MM/YY!

Figure 8-3. Expiry-date validation in Checkout.jspx

Validation Methods in Backing Beans

Instead of creating a new class as described in the previous section, you can add a method to a backing
bean. In this case, you could do the following:

e Copy the validate method from CCExpiryValidator.java to ShopManager. java,
inside the class ShopManager, and rename it validateCCExpiry.

247

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = JSF AND ESHOP

248

e Copy the imports of FacesContext, UIComponent, FacesMessage, GregorianCalendar,
and Calendar from CCExpiryValidator.java to the beginning of shopManager. java.

e Replace in validateCCExpiry the line that throws the ValidatorException with
ctxt.addMessage(cmp.getClientId(ctxt), mess);.

That’s it! To use this validator instead of the previous one, modify the h:inputText in Checkout. jspx
as follows:

<h:inputText id="ccexpiry" required="true"
value="#{shopManager.customer.ccExpiryDate}"
validator="#{shopManager.validateCCExpiry}"
requiredMessage="Value is required!"
/>

The validator element in faces-config.xml, the element f:validator in Checkout.jspx, and the
module CCExpiryValidator.java are then no longer needed.

Tip To modify the eshop* projects, use Eclipse instead of getting bogged down with classpaths when
recompiling Java modules. Duplicate the project by selecting its icon in Eclipse’s Project Explorer bar, and then
copy and paste it. Eclipse will ask you to provide a new name for the duplicate project. In this way, it will be easier
to go back to the original should you want to.

Creating Custom Components

The functionality of a component is centered on converting a user’s inputs (i.e., the HTTP request
parameters) to component values (via the decode method during Apply Request Values) and converting
component values back to HTML (via the encode method during Render Response).

In the previous chapter, you saw how to create custom components with the facelets and composite
JSF tag libraries. In this chapter, I want to give you an example of how to create a new JSF component
without those tags. This will give you a better understanding of how JSF works. I am always a great
defender of doing things “by hand” at least once!

When you design a JSF component, you can choose to move encoding and decoding to a separate
renderer class. The advantage of this approach is that you can develop more than one renderer for the
same component, each with a different representation in HTML. You will then have the same behavior
associated with different ways of reading data from the request and writing it to the response.

In general, considering that JSF is open source, you might consider modifying an existing
component instead of developing a new one; or, thanks to the separation of components and renderers,
perhaps you can modify an existing renderer.

The root class of all JSF components is the abstract javax.faces.component.UIComponent, and the
root class of all renderers is javax.faces.render.Renderer. To develop a component, though, you're
always better off extending an existing component or, at the very least, the UIComponentBase class, which
provides default implementations of all abstract methods of UIComponent. In this way, you only develop
code for the methods you need to override. The same goes with the renderer.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * JSF AND ESHOP

To complete the picture of how to develop your custom component, you also need to create a
custom tag that’s useable with JSP. The root class of all tag classes is
javax.faces.webapp.UIComponentELTag.

In summary, to develop a custom component, you need to follow these steps:

1. Create a component class that subclasses UIComponent by extending an existing
component.

2. Register the component in faces-config.xml.

3. Create a renderer class that subclasses Renderer and ov