Servilet and JSP
Programming

with IBM WebSphere Studio and VisualAge for Java

Teach yourself serviet and JSP
programming techniques

Develop and test with WebSphere
Studio and VisualAge for Java

" Deploy to WebSphere
Application Server

Ueli Wabhli
Mitch Fielding
Gareth Mackown
Deborah Shaddon
Gert Hekkenberg

ibm.com/redbooks REd bﬂﬂks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

SG24-5755-00

International Technical Support Organization

Servlet and JSP Programming
with IBM WebSphere Studio
and VisualAge for Java

May 2000

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special notices” on page 429.

First Edition (May 2000)

This edition applies to Version 3.02 of WebSphere Application Server, WebSphere Studio, and
VisualAge for Java for use with the Windows NT Operating System. Many of the concepts also apply to
these products running on AlX, UNIX, and OS/2 Operating Systems.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. OWR Building 80-E2

650 Harry Road

San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

FIQUIeS . xiii
Tables XXi
Preface xxiii
Samplecodeonthelnternet xxiii
The team that wrote thisredbook XXV
Commentswelcome XXVi
Part 1. Web application development........................... 1
Chapter 1. Environmentoverview., 3
WebSphere execution environment. 4
VisualAge for Java development environment. 5
WebSphere Studio development environment 6
VisualAge for Java and WebSphere Studio interactions 7
Complete product environment 8
Chapter 2. Product overview. i, 11
How the products work together 11
IBM HTTP Server. e e 12
WebSphere Application Server 12
WebSphere Studio. 14
VisualAge for Java 15
Distributed Debugger. 16
DB2 Universal Database (UDB) 16
SecureWay DIreCtory 16
Chapter 3. Product installation 17
Starting environment 17
Creatingadedicated user ID i 18
Java Development Kit 18
IBM HTTP Server. e e e e e 19
Installing the product. 19
Testingtheinstall. 19
DB2 Universal Database i 21
Installing the product. 21
Testing the installation 22
VisualAge for Java 24

© Copyright IBM Corp. 2000 iii

iv

Installing the product. 24

Testing the installation 25
EXIStING BrrOrS . ..o e 25
Distributed Debugger. 26
WebSphere Application Server 26
Installing the product. 26
Testing the installation 30
WebSphere Studio. 33
Installing the product. 33
Testing the installation 34
SecureWay DIreCtory 35
Incompatibilities withDB2 UDB. 35
Installing the product. 35
Configuring SecureWay Directory.c. .. 38
Testing the installation 40
What we have achieved 40
Chapter 4. Servlets. 41
Overview of Java servlets. 42
Servlet process flow 42
The Java Servlet APL 43
Theservletlifecycle. 44
Basic servlet examples a7
Simple HTTP servilet a7
HTML form generatorservlet o, 51
HTML form processing servlet 53
Simple counter servlet 56
Servlet initialization parameters. 58
HTTP request handling utility servlet 61
Additional servletexamples. 62
Cookieserviet 62
URL rewriting servlet i 64
A real persistent servlet — between servlet life-cycle 65
USEE SESSIONS. . o . o ittt 67
User session counterservlet 68
IDBC serviet. 70
Servlettagwith SHTML i 72
Servlet interaction techniques. 73
Servlet collaboration: filtering and chaining. 74
Calling servlets fromservlets 79
Response redirection. 79
Request dispatching 81
RESOUICE USAQE o 84

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Sharing of objects in scope. oo 86

New features of Java Servlet AP1 2.2 92
SUMMIANY . o o 94
Chapter 5. JavaServer Pages., 95
OVEIVIBW . o o e 96
How JavaServer Pages Work 97
Components of JavaServer Pagest 98
HTML tags 99
JSP Airectives 99
Declarations 101
Scriptlets. 102
COMMENTS . . . 102
EXPresSIONS . . .o 102
WebSphere extensions to JSP scripting 103
Accessing implicitobjects. 104
Puttingitall together. 105
JSP interactions 107
Invokinga JSP by URL e 107
CallingaservletfromaJSP 107
Callinga JSP fromaservlet 109
Invokinga JSP fromaJSP 111
Creating dynamiccontent in JSPs. 111
Standard ISP tagsot 111
WebSphere-specifictags. i 116
JSP utility example 122
Differences between JavaServer Page specification .91and 1.0 122
Chapter 6. WebSphere Application Server 123
WAS OVEIVIBW . . o oo e e 124
WAS administration. 126
The administrative repository iy 126
The WebSphere Administrative Console. 126
WAS TOPOIOgY . . oot 128
NOE. . . 128
Application Server. e 129
Servletengine. 130
Web application 131
Virtual host. 132
Internal servlets 134
Creating your own Web application. 135
Using the Task Wizard. e 135
Setting up your default errorpage 138

Contents VvV

Creating the required Web application directories. 139

Deploying fileSto WAS. 140
Defining servlets. 140
Start the Web application 141
Class loadingand reloading i 142
Changing the application serverclasspath 142
Using INLIN WAS .. 143
Creating an application server environment variable 143
Setting up connection pools 145
CreatingaJDBC driver i 145
Creatinga DataSourCe.o e e 146
Migrating from the connection manager. 146
Using JavaServer Pages inWAS i 147
Adding JSP support to a Web application. 147
Keeping Java source files from JSP 1.0 compilation 148
SECUNILY . . o 149
How security works in WAS. 149
Configuring an enterprise application. 150
Setting up security INnWAS 152
XML configurationinterface 162
Exporting configurationdata. 162
Importing configurationdata. 163
EXamples. 163
User profiling 164
Troubleshooting 164
Tracingwithin WAS 165
MONItOriNg FESOUFCESttt et e e e e e e 166
Reference information 166

Chapter 7. Development and testing with VisualAge for Java. 167

VisualAge for Java overviewt 168
Application development with VisualAge forJava................... 170
Rapid application development (RAD), 170
Create industrial-strength Java applications. 171
Maintain multiple editions of programs 171
VisualAge for Javacomponents. i 171
Navigating in VisualAgeforJava 175
Additional VisualAge for Java concepts 181
Servletdevelopment. 185
Rapid servlet development. 185
The development processo e 186
Developing our firstservlet 187
WebSphere Test Environment. i 191

vi Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Test Environmentsetup. 192
Start the WebSphere Test Environment. 192
What have we accomplished?. 196
Testing JSPs under WebSphere Test Environment. 197
VisualAge for Java configuration for JSPs 197
Configuring the JSP version used by VisualAge forJava 197
Runningour first JSP. 198
Creatingand runningaJSP 200
Debugging servletsand JSPS. 201
Debugger basics 201
Debuggingaserviet 203
JSP Execution Monitor. e 206
Debugging JSP generated sourcecode 208
WebSphere Test Environment — advanced configuration. 208
Types Of FESOUICES. . . . oot e 209
Additional servletexamples. 209
Resource locations 209
The four key configurationfiles. 210
Configuration for servlet chaining, filtering, and SHTML. 212
Developing and testing additional servlet and JSP configurations. 214
Creating additional servletexamples 214
WebSphere Test Environment — multiple Web applications 215
Configuring multiple Web applications. 215
Configuring the ServletEngineclass. 217
Launching ServletEngine. 219
Using the ServletEngineConfigDumper servlet. 220
Restoring SERUNNEK.t 221
Configuring and testing servlet and JSP interactions 222
SupportforJavaBeans. 222
Team development 222
OVEIVIBW . . o o 223
Resource management 225
Chapter 8. Development with WebSphere Studio............. 227
WebSphere Studiooverview. 228
The WebSphere Studio IDE i 230
Creating a project oo 230
Setting the JSP version 232
Settingup folders 233
Adding filesto the project 234
Settingthefilestatus. 236
Editing project reSOUrCESot e 237

Contents Vii

Checking-out and checking-infiles 237

Invoking Page Designer 238
Using formsand inputfields 239
Callingaservlet 241
Preview the form and view HTML source. 242
Insertinga JavaBeanintoaJSP............ 244
Modifying JavaBeansand servlets 246
Compilingsource files 247
Publishing stages and publishingtargets.......................... 247
Settingupthe Teststage. 248
Setting up the Productionstage 250
Publishing to a Web application 251
Project relationships and integrity 253
Publishinga project 255
Testing published files 256
WebSphere Studiowizards. 257
Code produced by thewizards 257
SQL Wizard. 258
Runthe SQL Wizard 258
Changing the SQL statement 264
Database Wizard. 265
Run the Database Wizard 265
Database Wizard generatedcode. 270
Run the generated application. 272
Enhance the application. 273
JavaBean Wizard 276
Run the JavaBean Wizard. i, 276
Test the JavaBean Wizardcode. i, 280
JavaBean Wizard — whatfor? 280
Developing an application in WebSphere Studio 281
Create the SQL statement for the employees of a department 281
Create the SQL statement for the employee photo. 282
Generate the code for the employees in a department............. 283
Generate the code for the employee photo 283
Change the generated DataSource o 283
Fixing the problems 284
Testing in VisualAgeforJava iy 284
Displayinga picture 285
Linkingtheservlets 286
Run the application 288
Problems 289
Resolving parsing problems. i 289
Folders in publishing stages for a Web application 290

viii Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

SQL Wizard generates wrong data type for a BLOB column 290
Database Wizard JSP code is compiled within METADATA tag 290

JavaBean Wizard generatesbadcode. 290
Interfacing to VisualAgeforJava 291
Setting up the environment. i 291
WebSphere Studio 292
Receiving updates from Visual AgeforJava. 292
Sending updates to Visual AgeforJava 293
Using VisualAge for Javaasaneditor 293
ArChiVINg . . . 293
Openingan archive. e 293
Working inateam 294
More information and examples i 294
Chapter 9. Software Configuration Management............. 295
Introduction. e 296
What is Software Configuration Management? 296
SCM for architectural pattern based development. 298
Developer roles o 299
Implementing SCM aspects in a WebSphere Studio environment 302
SCM ASPECES . . . 302
Choice for Clearcase as physical single point of control. 306
Rational SCM toolset 306
ClearCaseo 306
ClearQUESt i e 307
Unified Change Management 307
Our approach 308
ClearCase in the WebSphere Studio environment 309
Installation 309
WebSphere Studio and ClearCase considerations 312
Setting up a ClearCase project 313
Createthe project. 315
Create a ViBW 320
Enable ClearCase to the WebSphere Studio environment. 322
Bring the projects artifacts under ClearCase control. 323
Working from WebSphere Studio 325
Reflections on SCM procedurest .. 327
WebSphere Studio and ClearCase in the broader SCM context 328
Rational ROSe 328
Epilog. ..o 330

Chapter 10. Web application design with servlets and JSPs. .. 331
Application Structure 331

Contents X

HTML page. 333

Servlet. ... 333
Commandbeans 333
Databeans 333
View beans 334
TSP S . 334
Model-View-Controller 334
Detailed information. 334
Part 2. Pattern Development Kit: a sample application........ 335
Chapter 11. Pattern Development Kit overview 337
Background 338
Application description. 338
Application walkthrough 338
WelCOmME PAgEot 339
Home page. 339
Topology 1 — historical data 341
Topology 2 -—visitplanets 343
Chapter 12. Using Patterns for e-business to build the PDK. . . 347
Benefits of Patterns for e-business L 348
Applying Patterns for e-business. i i 348
Choose a business pattern. i 348
Choose a related logical pattern 349
Choose a related physical pattern. 351
The NeXt StePS. . .o 353
Design techniques used 353
The Model-View-Controller framework. 353
The Command bean design pattern. 354
The design for the PDK 355
Topology L. . o 355
Topology 2 . . e 357
INSUMMAKY ... 361
Chapter 13. Running the PDK in WebSphere................. 363
Extracting the resources. 364
Tailoring the installation system. 364
UsSer 1D . . 364
Set up environment parameters e e 364
Tailorthe XML files 365
Installing and running the Pattern DevelopmentKit 367
Restart the HTTP Server. e 367

X

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Create a self-signed SSL certificate. 367

Createthe Web site 369
Configure IBM HTTP Server. ... 369
Restart the IBM Http Server. 370
Quick test of HTTP Server configuration 370
LDAP configuration 370
Create the ITSOTOPO database. 372
Copy application-specificfiles 372
Import the XML configurations into WebSphere 373
Run the application 373
Resetting changes. 374
Chapter 14. Running the PDK in VisualAge for Java 375
Automatic configuration. 376
Running the configuration script. 376
Prepare a project and import the Javacode 377
Servlet engine configuration 377
Manual configuration 378
Running the application. 380
Resetting changes. 381
Chapter 15. Developing the PDK using WebSphere Studio. ... 383
OVEIVIBW . . .ttt e e e e 384
Building the WebSphere Studio project 385
Creating the WebSphere Studio project 385
Define the publishingstages 386
Interfacing with VisualAgeforJava 389
VisualAge for Javasetup 389
Initial loading of files from VisualAgeforJava 389
Updating from VisualAge forJava 389
Editing Studio files with VisualAgeforJava 390
Managing the Studio project 393
Integrity checking for brokenlinks 393
Publishing files 395
Publishing to WebSphere Application Server. 395
Publishing report 396
Publishing to VisualAge forJava 397
Editing files. 397
APPENAIXES . . 399
Appendix A. JSP tagsyntax. 401
JSP tag syntax SUMMAKYottt e et e e 401

Contents Xi

Xii

WebSphere specifictags. 404

Appendix B. Utility servlet and utility JSP 407
Utility serviet 408
ServletEnvironmentSnoop servletsource. 408
ServletEnvironmentSnoop servletoutput. 413
ULty JSP. . . o 415
WebPaths.jSp SOUICe. oo e 415
WebPaths.jspoutput 415
Appendix C. Using the additional material 417
Locating the additional material on the Internet. 417
Usingthe Web material 418
System requirements for downloading the Web material 418
How to use the Web material. 418
Servletand JSP samplefiles 419
Directory StruCture. 419
Testpreparation 420
Web application 420
WebSphere Studio project 421
Servlet configurationfiles 422
Testing theservletsand JSPS i 423
Basic servletexamples. 424
Additional servletexamples. 424
Servlet interaction techniques. 426
JSP testingo 427
Appendix D. Special notices 429
Appendix E. Related publications........................... 433
IBM Redbooks publications 434
IBM Redbooks collections. 435
Other reSOUICESttt e e e 435
Referenced Web sites 436
How to get IBM Redbooks. 437
IBM Redbooks fax order form 438
GloSSary . ..o 439
INdeX . .. 441
IBM Redbooks review 447

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figures

1. WebSphere execution environment 4
2. VisualAge for Java development environment 5
3. WebSphere Studioenvironment. 6
4. WebSphere Studio and VisualAge for Java interaction 7
5. Environment for Web application development and execution. 8
6. Products in our development environment 12
7. IBM HTTP Server welcome page 20
8. Administration interface to IBM HTTP Server.................. 21
9. DB2FirstStepswindowt 22
10. Script for viewing the sample database 23
11. WelcometoVisualAge. 24
12. Adding a feature in VisualAgeforJava........................ 25
13. Custom installation for WebSphere Application Server 27
14. Selecting a JDK within the WebSphereinstall 28
15. Setting up Security and Database options for WebSphere 29
16. Starting WebSphere Application Server asa service 30
17. Error when starting the WS AdminServer 30
18. The WebSphere Administrative Console 31
19. Starting the Default Server. 32
20. Output fromthe Snoopservlet 33
21. Error while installing WebSphere Studio 34
22. Warning information dialog concerning missing IE installation 34
23. WebSphere Studio welcome window. 35
24. Selecting componentstoinstall. 36
25. Selecting the components toconfigure. 36
26. Configuring the SecureWay Directory administrator 37
27. Creating the SecureWay Directory database. 37
28. Logon to SecureWay Directory Server Administration............ 38
29. AddingasuffiX....... 39
30. Starting the directory server. i 40
31. High-level client-to-servilet processflow. 42
32. Basic client-to-servlet interaction. 45
33. Serviletlife-cycle. 45
34. Simple HTTP servlet. e 48
35. SimpleHttpServlet package declaration. 48
36. SimpleHttpServlet importstatements. 49
37. The SimpleHttpServlet class declaration. 49
38. SimpleHttpServlet servicemethod. 49

© Copyright IBM Corp. 2000 xiii

39.
40.
41.
42,
43.
44,
45.
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

HTML form generator servlet. 51

HTML form generator servlet: response output 53
HTML form handler servlet (part1)............ 53
HTML form handler servlet (part2)............ 54
HTML form handler servlet response output 56
Simple counter servlet. 57
Simple initialization servlet source: ServletConfig parameters. 59
Servlet configuration file for simple initialization servlet. 60
General XML configuration fileformat 60
Cookie servlet: state tracking using cookies 63
URL servlet: state tracking using URL rewriting................ 64
Servlet configuration file for persistent counter servlet 65
Persistent counter servlet: state trackinginafile. 66
SaveServletStats: serialized object. L L. 67
User session servlet: state tracking by user. 69
JDBC servlet: part 1 — connecting to a JDBC database 70
JDBC servilet: part2 —SQL accesso ovvi i 71
SHTML file: servlet include (SHTMLServlet.shtml). 72
SHTML servlet: included servlet 73
Servlet filtering process flow. i 75
Servlet filtering example — MIME caller 76
Servlet filtering example — MIME handler. 76
Servlet chaining process flow 77
Servlet chaining: first servlet in the chain process 78
Servlet chaining: second servlet in the chain process 78
Response redirection servlet: redirecting using two techniques. 80

Request dispatching servlet: calling servlet through forward method 82
Request dispatching servlet: called servilet through forward method 82
Request dispatching servlet: calling servlet through include method 83
Request dispatching servlet: called servlet through include method . 83
Resource handler servlet: accessing passive application resources .. 85

Resource handler html file: application resource. 85
Request attribute setting code snippet. 86
Request attribute getting code snippet., .. 86
User session counter servlet: set user sessiondata............... 88
User session counter servlet: get user sessiondata. 89

Context set attribute servlet: setting application scope attribute . .. 91
Context get attribute servlet: getting application scope attribute . . . 92

The JSP processing life-cycle on first-time invocation 98
Sample JSP demonstrating JSP components (DateDisplay.jsp). . . . 106
Sample JSP invoking a servlet from a form (JspToServlet.jsp) 108
Sample JSP including a servlet (JsplInclude.jsp). 108

Sample JSP forwarding processing to a servlet (JspForward.jsp) . . 109

Xiv Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.

DateDisplayServlet demonstrating simple redirection........... 109
Servlet configuration filewith JSP names. 110
JavaBean to be used by a JSP (DateDisplayBean.java) 114
JSP with jsp:useBean and jsp:getProperty (JspWithBean.jsp). 115
Using the tsx:dbmodify tag to insert a row in the sample database. 118
Database access JSP demonstrating WebSphere tsxtags 120
JSP using a bean with repeating attributes. 121
JavaBean with repeating attributes. 121
WebSphere Application Server execution environment 124
Navigating the WAS console. i, 127
Topology IN WAS 128
Viewinganode inWAS 129
Viewing an application server inWAS. 130
Viewing aservletengine inWAS 131
Default Web application in WAS 132
Virtual host in WAS. 133
Configuring a Web application: name, servlets, JSP support. 135
Configuring a Web application: servletengine 136
Configuring a Web application: virtual host and Web path 137
Configuring a Web application: document root and class path. 137
Viewing a newly created Web application 138
Web application directory structure. 139
Creating a servlet for the Web application. 141
Updating the Application Server classpath 143
Locating the environment variables for an application server. 144
Property Editor Environment Editor 144
Creatinga JDBC Ariver. e 145
Creatinga DataSourcettt 146
ConfiguringaJSP Enabler 147
Adding an initialization parameter toaservilet. 148
Basic security inWAS 149
Creating an enterprise application. 150
Adding resources to an enterprise application. 151
Enterprise application topology 151
WAS security tasks 152
Enabling security: Global 153
Global security defaults. 154
Choosing an enterprise application tosecure 155
Selecting a resource to configure for security 157
Viewing methods associated with method groups 158
File Serving Enabler servlet Web path list 159
Assigning permissions to access method groups by users. 160
Login for the administrationconsole 161

Figures XV

XVi

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.

VisualAge for Java application development environment. 168

Projects page in Workbench 173
Packages page in Workbench 174
Classes page in Workbench. 174
Interfaces page in Workbench., 175
Problems page in Workbench 175
Scrapbook window in VisualAge forJava 176
Console window in VisualAge for Java. 177
Log window in VisualAgeforJdava 177
Debugger window in VisualAgeforJava 178
Repository Explorer window in VisualAge for Java 178
Projectbrowser 179
Package browser 180
Class browser. 180
Method browser 181
Hover helpactions. e 182
Program elementsymbols. 182
Program access modifiers 183
Other modifiers 183
Other symbols 183
SimpleHttpServlet: service method 189
SimpleHttpServlet: class declaration. 189
SimpleHttpServlet: complete sourcecode 190
WebSphere Test Environmentwindow 194
SERunner Consolestatus 195
SimpleHttpServletoutput. 195
default_app.webapp: JSP 0.91 configuration................... 197
default_app.webapp: JSP 1.0 configuration.................... 198
Very simple JSP response. 199
Verysimple JSP source. 199
DateDisplay.jspoutput 200
Breakpoint setin the sourcepane 202
Changes to the simpleservlet. 203
Debugging the SimpleHttpServlet 204
Changing values while debugging 205
SERunner Threads i 205
JSP Execution Monitor launch window 206
JSP Execution Monitorwindow, 207
Servlet chaining specification in default_app.webapp............ 213
Servlet engine class path directories 218
ServletEngine consolestatus 219
ServletEngineConfigDumper output 221
VisualAge for Java Enterprise team development environment . . . 223

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
2009.
210.

Project reSOUICES oot e 225
WebSphere Studio application development environment 228
Creating a Nnew project.t 231
StudioWorkbench 231
Set the JSP version in WebSphere Studio. 232
Creatinganew folder 233
Inserting an existing folder. 233
Completed foldersetup 234
Insert a new file basedonatemplate. 235
Project structure with foldersand files 236
Creatingacustomstatus. i 237
WebSphere Page Designer 239
Completed survey form 241
Setting the action attributetocallaservlet 242
HTML SOUFCE VIEW. . . .t ittt et e et e e e e e 243
DeclaringaJdavaBean 244
Browsing beans and properties. 245
Completed JSP including bean properties. 245
JSP SOUNCE . .o 246
Tool registration forediting 247
Editing the Test publishingstage. 248
Defining publishing properties. 249
Defining publishing targets for resources 249
Defining a folder for Web application publishing 252
Defining publishing properties for folders 252
Relationship diagram i 253
Projectintegrity report 254
Publishingoptions. 255
SQL Wizard: database logonpage 259
SQL Wizard: joiningtables, 260
SQL Wizard: selectingcolumns, 261
SQL Wizard: specifying conditions. 262
SQL Wizard: condition parameter 262
SQL Wizard: generated SQL. 263
Database Wizard: SQL statement selection.................... 265
Database Wizard: input fields. 267
Generated results page inlistformat. 268
Database Wizard: resultspage i 268
Database Wizard: tailor generated files. 270
Database Wizard: generated files. 271
Database Wizard: generated relations 271
Database Wizard: result JSP in Page Designer................. 273
Page Designer: tableloop 274

Figures Xvii

xviii

211.
212,
213.
214,
215.
216.
217,
218.
219.
220.
221.
222.
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.

Database Wizard: generated result JSP source (extract) 275
JavaBean Wizard: selectabean............... 276
Code snippet demonstrating calling additional methods 278
JavaBean Wizard: testrun 280
SQL statement for employees in adepartment. 281
SQL statement for employee photos. 282
Employees in departmenttestrun............... 284
Employee phototestrun........ 285
Employee photo scriptlet. 285
DynamicHTMLIlink 287
Completed employee in departmentJSP 288
Complete applicationflow. 288
Toggling the Use Parser checkboxonafile.................... 289
Configuring Visual Age for Java for WebSphere Studio interface . . 291
Updating WebSphere Studio files from Visual Age for Java 292
SCM and development process overview 299
Application topology 1: additional SCMrole 300
Application topology 2: more complexity 301
Tools usage in the source code implementation phase 304
ClearCase on the Web from administration console 308
ClearCase autostart installation mode panel 309
ClearCase switch setupmode panel 310
ClearCase Doctor Discovered Problems panel 310
ClearCase Doctor Logon Testing., 311
ClearCase Home Baseo i e 312
ClearCase VOB Creation Wizard: project 313
ClearCase Component definition 314
ClearCase VOB Creation Wizard: component 315
ClearCase Glossary: project definition. 316
ClearCase Home Base: Projects, 316
ClearCase projectexplorer 317
ClearCase create sample project. 317
ClearCase create sample project (step3) 318
ClearCase create sample project: add baseline 318
ClearCase project explorer after project creation 319
ClearCase project explorer projectcomplete 320
Windows Explorer view on views i 321
WebSphere Studio Tools Preferences: Check-Out............... 322
WebSphere Studio project versioncontrol 323
WebSphere Studio project version control activity prompt. 323
WebSphere Studio external version control GUI identification 324
WebSphere Studio project external version control check-out 325
WebSphere Studio Project external version control check-in 326

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

254,
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
2809.

ClearCase direct functions from Windows Explorer 327

Topology 1 tools used during source code implementation 329
Web application designoverview 332
Application welcome page 339
The application’shome page 340
Topology 1:inputpage.ot 341
Topology 1: output for XML enabled browsers. 342
Topology 1: output for all other browsers. 343
Topology 2: 10g0No 344
Topology 2: weather readings options 344
Topology 2: IMSresult. 345
Topology 2: CICS and MQSeriesresult 345
Topology 2: EJB result. 346
U2B application topology 2 350
U2B runtime topology 2 351
U2B runtime topology 2 product mapping. 352
The structure of Web interactions 353
Topology 1 component flow: stage A. 356
Topology 2 component flow: stageB.......................... 357
Topology 2 component flow: stageC............ 358
Topology 2 component flow: stageD. 359
Topology 2 component flow:stage E. 360
Topology 2 component flow:stage F........... 360
Creatinganew keyfile 368
Setting options in the Password Prompt dialog................. 368
Adding a new suffix toLDAP 371
Web application configurationfile 379
Pattern Development Kit WebSphere Studio project 385
Updating from VisualAgeforJava........................... 390
Tool registration for javafiles 391
Adding VisualAge for Javaasaneditor....................... 391
Projectintegrity report 393
Fixingbroken links 394
Publishingoptions. 395
Publishing report. 396
HTML to invoke servletsand JSPs 423

Figures Xix

XX Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tables

1. Attributes of the page directive. 99
2. Attributes for the include directive. 101
3. WebSphere scripting language extensions 103
4. Summary of implicitly declared objects 104
5. jsp:useBean attributes 112
6. jsp:getProperty attributes. 114
7. jsp:setProperty attibutes. 115
8. tsxidbconnect attributes 116
9. tsxidbquery attributes. 117
10. tsx:dbmodify attributes. 118
11. tsxirepeat attributes 119
12. Internal Servlets for WAS. 134
13. WebSphere application directories 140
14. Summary of forminputfields........... 240
15. Publishing paths for the WebSphere Test Environment. 250
16. Publishing paths for WebSphere application and Web servers 251
17. Web pages generated by the Database Wizard 266
18. Database Wizard generatedpagesc.ooiiiiinnn... 277
19. Summaryof JSPtagsyntax 401
20. IBM extensions to JSP for variabledata 404
21. WebSphere scripting language extensions (XML format only) 405
22. Servlet and JSP sample file directory structure 419

© Copyright IBM Corp. 2000 xXi

xxil Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Preface

This IBM Redbook provides you with sufficient information to effectively use
the IBM WebSphere and VisualAge for Java environments to create, manage
and deploy Web-based applications using methodologies centered around
servlet, JavaServer Pages, and JavaBean architectures.

In Part 1 we describe the products used in our environment and provide
instruction on product installation and configuration. Following this, we
cover servlet and JSP programming, which provide you with both a
theoretical and practical understanding of these components, together with
working examples of the concepts described. For execution of the sample
code, we provide information on configuring the WebSphere Application
Server and deploying and running the sample Web applications in
WebSphere. Using the knowledge developed in these chapters, we then
provide detailed information on the development environments offered by
VisualAge for Java and WebSphere Studio. These chapters assist you in
using the features offered by these tools, such as integrated debugging, the
WebSphere Test Environment, Studio Wizards, and publishing of Web site
resources. We also describe how Rational’s ClearCase product can be
integrated with our environment for Software Configuration Management.

In Part 2 we describe the Pattern Development Kit sample application,
including installation, configuration, and operation. We also discuss the
application’s use of Patterns for e-business, which presents information on
some of the design decisions employed when creating the application.

This IBM Redbook is intended to be read by anyone who requires both
introductory and detailed information on software development in the
WebSphere environment using servlets and JavaServer Pages. We assume
that you have a good understanding of Java and some knowledge of HTML.

Sample code on the Internet

The sample code for this redbook is available as the 5755samp.zip and 5755pdk.zip
files on the ITSO redbooks home page on the Internet:

ftp://www.redbooks.ibm.com/redbooks/SG245755/

Download the sample code and read Appendix C, “Using the additional material”
on page 417.

© Copyright IBM Corp. 2000 xxiii

ftp://www.redbooks.ibm.com/redbooks/SG245755/

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose
Center.

Ueli Wahli is a Consultant I/T Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 16
years ago, Ueli worked in technical support at IBM Switzerland. He writes
extensively and teaches IBM classes worldwide on application development,
object technology, VisualAge products, data dictionaries, and library
management. Ueli holds a degree in Mathematics from the Swiss Federal
Institute of Technology. His e-mail address is wahli@us. ibm.com.

Mitch Fielding is an e-business Specialist working with FishTech &
Partners—an IBM Business Partner based in Sydney, Australia. He has 10
years experience in software development and consulting in both private and
government sectors. He is currently working on new Internet-based products
centered around WebSphere technology and developed with VisualAge for
Java and DB2. His e-mail address is mfieldin@fishtech.com.au.

Gareth Mackown is an Advisory I/T Specialist working within e-business
Services in Hursley, England. He has worked at IBM for nearly 5 years,
predominantly developing and consulting, though occasionally teaching. His
areas of expertise center around Java and include VisualAge for Java,
WebSphere and object technology. Gareth holds a Joint Honors degree in
Mathematics and Computer Science from Durham University. His e-mail
address is gareth_mackown@uk. ibm. com.

Deborah Shaddon is a Senior I/T Specialist from IBM Global Application
Delivery in Chicago, Illinois. She has over 12 years of application
development and architecture experience primarily in the Banking and
Finance sector. Her current area of expertise includes developing custom
e-business solutions for IBM customers, using a variety of technologies,
including WebSphere, VisualAge for Java, and Lotus Domino. Deborah holds
a degree in Business Information Systems from Bradley University, Peoria,
Illinois, and is currently pursuing a Masters in Software Engineering from
DePaul University, Chicago, Illinois. Her e-mail address is dmshadd@us. ibm. com.

XXiv Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

mailto: wahli@us.ibm.com
mailto: wahli@us.ibm.com
mailto: wahli@us.ibm.com
mailto: wahli@us.ibm.com

Gert Hekkenberg is a Senior I/T Specialist from IBM Software Group
EMEA region North, based in Amsterdam, The Netherlands. He has over 15
years of application enabling experience with a special focus on the broader
Software Configuration Management area. He is currently working as
Technical Sales Consultant designing E2E application development solutions
for large customers. He has written extensively on application development
and SCM in various redbooks over the years and was involved developing
various ITSO workshops as well. Gert holds a Masters degree in Business
Information Systems from Erasmus University, Rotterdam, The Netherlands
and a Bachelors degree in economics from Vrije Universiteit, Amsterdam,
Netherlands. His e-mail address is hekkenberg@nl.ibm.com.

Thanks to the following people for their invaluable contributions to this
project:

Pat McCarthy, Joaquin Picon, and Markus Muetschard, IBM ITSO San Jose,
for their ongoing support in all aspects of application development and
redbook publishing.

Sheldon Wosnick, IBM Toronto, Canada, for helping with servlet
development techniques and the configuration of the VisualAge for Java
WebSphere Test Environment.

Jonathan Adams, IBM UK, for leading the effort of producing the Patterns

for e-business.

The team that produced the Pattern Development Kit described in Part 2:
QAnthony Griffin— IBM Hursley, Pattern Development Kit

QRob Veck—Advanced Solutions Group, IBM Hursley, Concept of the
e-Business Solution Kit

QJoe Parman and Dave Mulley—Advanced Solutions Group, IBM Hursley,
Expert Install & Packaging

@Mark Campbell and Robert James—Advanced Solutions Group, IBM
Hursley, Graphic Design IBM Hursley

Chris Gerken, IBM Raleigh, US, for the utility JSP.

The IBM WebSphere Application Server, WebSphere Studio, and VisualAge
for Java development teams.

Preface XXV

mailto: wahli@us.ibm.com

Comments welcome

Your comments are important to us!
We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

QFax the evaluation form found in “IBM Redbooks review” on page 447 to
the fax number shown on the form.

QUse the online evaluation form found at http://www.redbooks.ibm.com/

QSend your comments in an Internet note to redbook@us. ibm.com

xxvi Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

SPONSORSHIP PROMOTION

(/[TGN software

IBM Software Accelerated Value.....
takes your IBM technology end to end

Contact us at: software_accelerated_value@us.ibm.com

IBMA A Ehe 1BM 1000 ana ch o e s B Machinsss Com..
= = Sl B

www.ibm.com/software/support/acceleratedvalue

http://www.ibm.com/software/support/acceleratedvalue

THIS PAGE INTENTIONALLY LEFT BLANK

Part1 Web application
development

In this Part we describe general techniques for servlet and JSP
programming. We then explain in detail how to run servlets and JSPs in
WebSphere Application Server, how to develop and test them in VisualAge
for Java, and how to use WebSphere Studio for development and publishing.

We do not describe Enterprise JavaBeans. For more information on how to
develop and test Enterprise JavaBeans, please refer to the Servlet/JSP/EJB
Design and Implementation Guide, SG24-5754.

© Copyright IBM Corp. 2000 1

2 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

1 Environment
overview

This chapter provides a schematic overview and description of the primary
functional areas addressed in this book.
The four areas presented are:
QWebSphere execution environment
aVisualAge for Java development environment
QWebSphere Studio development environment
aVisualAge for Java and WebSphere Studio interactions
The diagrams presented in this chapter are high-level diagrams aimed at

illustrating the major components and interactions within each functional
area.

© Copyright IBM Corp. 2000

WebSphere execution environment

The execution environment used when writing this book and its associated
code is based on the diagram shown in Figure 1. The primary components of
the environment are:

QWebSphere Application Server
QIBM HTTP Server
abB2

Some secondary components shown in the execution environment are:
QClasses and HTML/JSP files

There are many examples throughout this book of servlets, JavaBeans
and HTML/JSP pages used by the application server and Web server.

QlIBM SecureWay Directory

IBM SecureWay Directory provides LDAP user authentication for the
Patterns Development Kit examples presented in Part 2 of this book.

QEnterprise Data

Connectors to enterprise data are not covered within this book, however
we have depicted this in the execution environment to show that it
supports connections to a variety of enterprise data sources. The Patterns
Development Kit provides examples for enterprise connectors to CICS and
MQSeries, however, they are not discussed in this book.

HTTP Server

HTML/JSP/
_Classes J

Browser WebSphere
Application Server

-

SecureWay
(_ (LDAP)

Servlets
JSPs

Figure 1. WebSphere execution environment

Enterprise
Data

4 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

VisualAge for Java development environment

VisualAge for Java provides extensive functionality across the entire
development life-cycle and includes tools for Java code editing and
debugging, JavaServer Page debugging, and the WebSphere Test
Environment. The development environment is shown in Figure 2.

VisualAge for Java also includes a repository that stores project source and
compiled code, and an import/export facility that enables interaction with the
file system.

One of the most important features of VisualAge for Java is the WebSphere
Test Environment. This feature provides application and Web server
environments on a development machine, enabling you to test and debug the
resources of a Web site locally. This environment provides much of the
functionality of a full application server, including access to services such as
LDAP and enterprise resources.

5 VisualAge for Java (D
Code Editor N
Debugger < > VA Java
Repository
Repository Mgmt
/\
WebSphere Test Env. P _/
HTML <@—P | File System
JSP Export/ (source and
WebSphere I ~ Import _class files) J
App Server i
N C N
A Servlets . > N~
_ Beans J DB2
WebSphere Tept Environment —
\ T
SecureWay
_ (LDAP)
A 4

Browser

Figure 2. VisualAge for Java development environment

Chapter 1. Environment overview 5

WebSphere Studio development environment

WebSphere Studio is used to develop, manage and deploy the resources for a
Web site. Figure 3 shows the primary features and interactions of WebSphere
Studio.

WebSphere Studio maintains project files in the file system and provides
support for team development and version control tools. The deployment
features of WebSphere Studio enable you to configure the projects to deploy
to a number of locations, such as the WebSphere Application Server or the
WebSphere Test Environment of VisualAge for Java.

WebSphere Studio also contains a number of wizards that guide you through
tasks such as SQL statement generation and creation of Web pages to
interact with databases and JavaBeans. You can also use the WebSphere
Studio Page Designer to edit these generated pages, or create your own
HTML and JSP pages.

Any Java source code within WebSphere Studio can be compiled using the
supplied Java compiler.

WorkBench - File Mgmt WebSphere
Studio

File Publishing

WebSphere

Page Designer Application Server
Studio Wizards

Publish
Java Compiler

Version Control (SCM) \ VisualAge Java

Java/Class

Exchange

Source Code File System
Version Control Project Files

Figure 3. WebSphere Studio environment

6 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

VisualAge for Java and WebSphere Studio interactions

An invaluable feature of WebSphere Studio is its ability to interact with
VisualAge for Java. Using this feature, enabled through the Toolserver API,
you can update code from, and send code to, the VisualAge for Java
development environment (Figure 4).

When classes are imported into WebSphere Studio from VisualAge for Java,
they are extracted from the VisualAge for Java repository and converted into
files. These files are stored in the file system structure used by WebSphere
Studio and can subsequently be published to the application server.

WebSphere Studio

WebSphere

| Project Files | ¢ Application
Server

Publish

Java and
class file Publish
exchange

VisualAge for Java

| Class Editor | |Test.Env. |

Repository

| VA Java Toolserver API |

Figure 4. WebSphere Studio and VisualAge for Java interaction

Chapter 1. Environment overview 7

Complete product environment

The complete development and execution environment is shown in Figure 5.

HTTP Server
Servlets Web
Beans Application
export publish
j | expor Project
Project/Pkg/Class { import J
5 . Servlets/Beans
ervlets/Beans : store
retrieve || (98P | page
E Designer
WebSp.Test.Env. -
Servlets { publish Wizards
Beans SQL DB Bean

access

Figure 5. Environment for Web application development and execution

access

8 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components:
QThe HTTP Server serves static HTML pages to browsers.

QThe WebSphere Application Server plugs into the HTTP Server for
dynamic content generated by servlets and JavaServer Pages (JSP).

The Application Server supports the concept of a Web application that
represents a grouping of servlets, JSPs, and their related resources.
Managing these elements as a unit allows you to stop and start servlets in
a single step. You can also define a separate document root and class path
at the Web application level, thus allowing you to keep different Web
applications separated in the file system. Please refer to “Web application”
on page 131 for more information on Web applications.

QVisualAge for Java is the product for development and testing of Java
applications, applets, servlets, JavaBeans, and Enterprise JavaBeans. It
also includes the WebSphere Test Environment, which can be used to test
Web interactions involving HTML files, servlets, JSPs, and JavaBeans.

VisualAge for Java can export Java and class files to WebSphere
Application Server and WebSphere Studio.

VisualAge for Java runs in a team environment with a repository for
central storage of the code of many developers.

QWebSphere Studio provides a development environment for HTML files
and JSPs. It also provides wizards that generate skeleton Web pages,
servlets, and JSPs for database and JavaBean access.

The Page Designer tool is provided to edit static HTML pages and JSPs
with dynamic content.

The publishing facility can place HTML files, JSPs, and servlet code into
appropriate directories for running in the Application Server or for testing
with VisualAge for Java.

WebSphere Studio also provides direct interaction with VisualAge for
Java to store and retrieve Java and class files into and from the VisualAge
for Java repository.

QWeb applications can access enterprise resources, such as DB2, CICS,
MQSeries, IMS, SAP, and others, through connectors.

Chapter 1. Environment overview 9

10 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

2 Product overview

In this chapter we give a brief overview of the products that are used
throughout this book.

We will start with a short section on how the different products can be used
in different areas, and then follow it up with an overview of each individual
product. For installation instructions for the products, refer to Chapter 3,
“Product installation” on page 17.

How the products work together

The diagram in Figure 6 provides a picture of how the different products that
we will be using in this book can work together in a complete development
environment. More detailed information on usage of the major products can
be found in later chapters.

© Copyright IBM Corp. 2000 11

Client

\

Recelve

IBM WebSphere
HTTP Application
Server

M

Server

SecureWay
Directory

Export JDBC
Import VisualAge
WebSphere / s
Studio Java/Class for
Up date—/ Java

Figure 6. Products in our development environment

IBM HTTP Server

IBM HTTP Server powered by Apache is based on the Apache HTTP Server
and runs on AlX, Solaris, Windows NT, and Linux.

IBM has enhanced the Apache-powered HTTP Server; for example, IBM
added SSL for secure transactions.

For more information on IBM HTTP Server, see the product documentation
and visit the Web site:

http://www.ibm.com/software/webservers/httpservers/

WebSphere Application Server

WebSphere Application Server (WAS) allows you to extend the functionality
of a standard Web server. WAS enables Web transactions and interactions
with a robust deployment environment for e-business applications. It
provides a portable, Java-based Web application deployment platform

12 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.ibm.com/software/webservers/httpservers/

focused on supporting and executing servlets, JavaBeans, and JavaServer

Pages (JSP) files.

In particular, the Standard Edition, for Web site builders, provides:
QSupport for JavaServer Pages, including:

= Support for specifications 0.91 and 1.0
= Extended tagging support for queries and connection management
= An Extended Markup Language (XML)-compliant DTD for JSPs

QSupport for the Java Servlet API 2.1 specification, including automatic
user session and user state management

QHigh speed pooled database access using JDBC for DB2 Universal
Database, Oracle and Microsoft SQL Server

aXML server tools, including a parser and data transformation tools

QA Web site analysis tool for developing traffic measurements to help
improve the performance and effectiveness of your Web sites

QMachine translation for dynamic language translation of Web page
content

QTivoli-ready modules

QAdditional integration with IBM VisualAge for Java to help reduce
development time by allowing developers to remotely test and debug
Web-based applications

The Advanced Edition, for Web application programmers, provides all the
features of the Standard Edition, plus:
QFull support for the Enterprise JavaBeans (EJB) 1.0 specification

QDeployment support for EJBs, Java servlets, and JSPs with performance
and scale improvements, including:

= Applet-level partitioning
= Load balancing

QEnhanced support for distributed transactions and transaction processing
Qlmproved management and security controls, including:

= User and group level setup
= Method level policy and control

QCORBA support, providing both bean-managed and container-managed
persistence

Chapter 2. Product overview 13

The Enterprise Edition, for Web enterprise architects, includes all the
features of the Advanced Edition, plus:

QFull distributed object and business process integration capabilities

QlBM's world-class transactional application environment integration
(from TXSeries)

QFull support for the Enterprise JavaBeans (EJB) 1.0 specification
QComplete object distribution and persistence (from Component Broker)
QSupport for MQSeries
QComplete component backup and restore support
aXML-based team development functions
Qlntegrated Encina application development kit
For more information on WebSphere Application Server, see the product
documentation and visit the Web site:

http://www.ibm.com/software/webservers/appserv/

WebSphere Studio

WebSphere Studio is an integrated suite of tools and wizards for building,
organizing, and deploying Web applications in a team environment. Studio
combines graphical development wizards with tools for Web site design and
limited Java development, with integrated features including:

QA workbench environment that lets Web development teams organize and
manage Web development projects. This environment can be extended
with source control management (SCM) tools.

QA visual page designer for JSPs, HTML, and DHTML.

QA remote debugger for easy remote debug of server-side scripts and logic,
including JSP components, servlets, JavaBean components, and more.
The remote debugger requires the Standard or Advanced edition of IBM
WebSphere Application Server.

QWizards to help developers generate JSPs, JavaBeans, SQL statements,
and servlets.

Qlntegration between IBM VisualAge for Java Professional Edition, V3.0
and Studio.

QAN applet designer based on the NetObjects BeanBuilder technology.

QNetObjects ScriptBuilder for script editing of Extensible Markup
Language (XML) and Wireless Markup Language (WML).

14 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.ibm.com/software/webservers/appserv/

QA Web art designer for creating masthead images, buttons and other
graphics.

QAN animated GIF designer that makes it easier to create animated GIFs.

For more information on WebSphere Studio, see the product documentation
and visit the Web site:

http://www.ibm.com/software/webservers/studio/

VisualAge for Java

VisualAge for Java is IBM's Java development environment. It is an
integrated, visual development environment with powerful support for

JavaBeans, client/server development, visual programming and enterprise
connectivity.

These are three VisualAge for Java editions: Entry, Professional, and
Enterprise.

aVisualAge for Java Entry Edition is a free version with a 750 class limit.
This makes it ideal for small projects or evaluation purposes.

aVisualAge for Java Professional Edition removes the 750 class limit from
the Entry edition.

QVisualAge for Java Enterprise Edition adds enterprise access builders
and a team programming environment to the Professional Edition.

Common to all editions are:
Qlncremental compilation
aVisual Composition Editor—for visual programming
Qlntegrated Development Environment, including:

= Debugger
= Browsers—Project, Package, and Class
= Source code editor

QRepository-based environment for code-management

QAdvanced coding tools, including automatic formatting, automatic code
completion, and fix-on-save

QData Access Beans for simplified access to relational databases

For more information on VisualAge for Java, see the product documentation
and visit the Web site:

http://www.ibm.com/software/ad/vajava/

Chapter 2. Product overview 15

http://www.ibm.com/software/webservers/studio/
http://www.ibm.com/software/ad/vajava/

Distributed Debugger

The IBM Distributed Debugger is a client/server application that enables you
to detect and diagnose errors in your programs. This client/server design
makes it possible to debug programs running on systems accessible through a
network connection as well as debug programs running on your workstation.
The Distributed Debugger comes with VisualAge for Java.

For more information on the Distributed Debugger, see the product
documentation.

DB2 Universal Database (UDB)

DB2 UDB is a relational database management system. It is fully scalable,
being able to grow from single processors through symmetric multiprocessors
up to massively parallel clusters. It has full multimedia capabilities, being
able to support image, audio, video, text, and other advanced object support.
It is also very Web-enabled, including built-in Java support.

For more information on DB2 UDB, see the product documentation and visit
the Web site:

http://www.ibm.com/software/data/db2/udb/

SecureWay Directory

SecureWay Directory is a Lightweight Directory Access Protocol (LDAP)
based directory server that provides a common and simple method for
centrally storing, locating and managing directory information on an
enterprise network across multiple platforms. It also provides security
services allowing you to define user access rights for the information stored
in a directory.

For more information on SecureWay Directory, see the product
documentation and visit the Web site:

http://www.ibm.com/software/network/directory/

16 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.ibm.com/software/data/db2/udb/
http://www.ibm.com/software/network/directory/

3 Product installation

In this chapter we describe the installation process for the various products
that are used throughout this book.

We will discuss the environment that we are using in developing this book
and the applications that are part of it. We will also step through any other
setup instructions that are required prior to installing the products.

Next, we will guide you through an example installation of each product, and
then show you how you can test that each product has been successfully
installed.

Starting environment

The examples in this book were developed in the following environment:
QPCs with Pentium 11 450 MHZ processors and 512 MB RAM.
aMsS Windows NT 4.0 with Service Pack 4.

QA combination of Netscape Communicator 4.61 and Microsoft Internet
Explorer 5.0 were used in testing the various components.

© Copyright IBM Corp. 2000 17

Due to various interdependencies between products, the order in which you
install the following software is important. Although other variations may
also work, we used the following to ensure a successful setup.

All of our work for this book was carried out on a d drive. However, to use a
standard naming convention, throughout this book we refer to the x drive
when listing paths. You should substitute your own drive letter in as
appropriate.

Creating a dedicated user ID

Many of the following products require a user 1D under which to run certain
administrative tasks (and some will not allow you to use the Administrator
ID in Windows NT for that task).

Therefore, it is a good idea to create a dedicated user ID for all of these
products to use. This user will need to have full Administrator authority to
work, and so you should make it a member of the Administrator group for
your machine.

So that WebSphere Application Server can use this user ID for all its needs,

you should also make sure that it has the rights to Log on as a service and to
Act as part of the operating system. Also, WebSphere Application Server will

not let you use an account whose name matches the name of your machine or
Windows Domain. If you need help in doing this, then refer to your Windows
Help documentation.

For the purposes of this book, we created a user ID called itso with the
password itso. It is not necessary that you create such a user 1D, but make
sure that the user ID used for WebSphere has full administrative authorities.

Java Development Kit

We installed IBM's JDK 1.1.7 for Windows on to our machines. The refresh
level that we have used for this book is ibm-jdk-n117p-win32-x86 and is the
latest available at the time of writing. IBM Java developer kits for a variety
of platforms can be found at http://www.ibm.com/java/jdk/download.

To test your installation, open up a command prompt and enter:

x:\>java -fullversion

18 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

It should return something similar to the following (though build numbers
may vary):

java full version “JDK 1.1.7 IBM build xxxxx-yyyymmdd (JIT enabled: ibmjitc)”

IBM HTTP Server

IBM HTTP Server Version 1.3.6.2 was installed to run the sample
applications in this book.

Installing the product

IBM HTTP Server has a fairly straightforward installation program. When
running it, select a typical installation, and when prompted, enter the user
ID and password you created in “Creating a dedicated user ID” on page 18.

Testing the install

After installation, you can carry out a quick check to ensure that the server is
up and running. Open up a Web browser, and enter the URL,
http://localhost. You should see the HTTP Server welcome page, as displayed
in Figure 7.

Chapter 3. Product installation 19

20

IBM HTTP Server - Netscape

File Edit “iew Go Communicator Help

wtv Bookmarks A Loc:ation:Ihttp:.-".-"Ioc:alhost.-'l j @'W’hat's Related ml

v 1

ome |News | Products | Services | Solutions | About IBM Shop IBM Support Download

Search I g

Welcome to the

IBM HTTP Server

Everything you need to start
and use this server begins here...

* Configure server
* View documentation

* Visit our Web site

Privacy |Lega| | Contact |

’E == | | Document: Done

Figure 7. IBM HTTP Server welcome page

At this point, you can set up the administration user 1D and password for
IBM HTTP Server to be something other than the default. The simplest way
to do this is at a command prompt. Change to the IBM HTTP Server
directory and enter:

htpasswd -c conf/admin.passwd userid

In this command, userid should be replaced with the administration user ID
you want to use. You will then be prompted to enter the password twice, and
the system will set these values. You can test this by entering the URL,
http://localhost:8008. The system will prompt you for the administration user
ID and password, and if you enter these correctly, you should see a page
similar to that in Figure 8.

Note that IBM HTTP Administration is a service separate from IBM HTTP
Server. Both services can be started and stopped from the Services icon in the
Control Panel.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

f iew Go i Help

j W'thookmarks V.1 Location:Ihttp:.-".-"Ioc:alhost:SDDS.-"admin.-"frameset.html j @'W’hat's Related ml

IBM Administration Server

» B3 Getting Started
» B3 Basic Settings
» B3 Configuration Structure 'Q Ready
» B3 Indexing

» B3 Authentication Files
» B3 Access Permissions

IEM Administration Server

» B3 Security .

» £ Loos By leadmg vou through _co_mple_x

» £ Mappings configpurations, the Administration Server

» B3 Scripts greatly simplifies the once-manual task of
» 3 Ferformance configuring your Web server. Once you

» B3 MIME select a server to configure, the

» B3 view Configuration Administration Server prompts you for

confipuration walues, which are written to a
configuration file when you click Subrut.

To see how simple it can be to admimster
the IBM HTTF Server, try sething a few
confipuration options with the A dmiristration
Server, WITHOUT even touching the
confipuration file.

M T e i

’E == | | Document: Done

Figure 8. Administration interface to IBM HTTP Server

DB2 Universal Database

We installed DB2 Universal Database for Windows NT Version 6.1
Workgroup edition and added the latest Fixpack.

Installing the product

To keep things simple, we used the typical installation option to install this
product.

The DB2 administration server needs a user ID that has Administrator
rights to your machine to be able to run, and you should use the one created
in “Creating a dedicated user ID” on page 18.

The install will prompt to you reboot your machine. As you want to install the
latest Fixpack as well, it will save time if you choose to reboot later. At the
time of writing, the latest Fixpack for DB2 Version 6.1 is Fixpack 2.1

1 The Fixpack level had to be changed on machines where we ran SecureWay Directory (see “Incompatibilities with
DB2 UDB” on page 35).

Chapter 3. Product installation 21

Run the install for the Fixpack, and this time, when prompted, you should
choose to reboot the machine.

When your machine restarts, you should be greeted with the DB2 First Steps
window, as shown in Figure 9.

YWelcome to the DB2 Universal Database Version B

Congratulations! Y'ou have successfully installed DB2 and it has been
configured to start communicating with clients. You can create
databases and load your data. First Steps will get you started with
DEB2. YYou can log on, create the SAMPLE databaze and work with it,
or view the product information.

| % Create the SAMPLE database

sy “iew the SAMPLE database

‘work with the SAMPLE database

Wiew the product information library

@ [&

Figure 9. DB2 First Steps window

You should select Create the SAMPLE database. This will set up a sample
database for you in your DB2 installation, which can allow you to test your
access to DB2.

Testing the installation

22

To test your installation you can select View the SAMPLE database from the
First Steps window (if you have closed this window, you can re-open it from
the DB2 for Windows NT menu on the Start Bar).

You will be prompted for your DB2 login, and then the Command Center will
open up. This has a script pre-loaded that will access the sample database.
You can execute the script by clicking on the gears icon, as shown in Figure
10.

If this displays the list of employees stored in the sample database, then your
install has been successful.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

B Command Center M=l E3
Seript Edit Toals Help Wkﬁ: -

& |nteractive © Script

-— This DEZ command script lists each employee in the 3AMPLE databs
-— ¥You can use it to confirm that 3AMPLE was created successfully.

-— To run the script, select "3cript™ from the main menu of the

-— Command Center, then select "Execute”. You can also use the

-— "Gears" push button at the top left of the command center.

-— The list of ewployees will appear in the "Results™ page.

-— To make changes to the script, simply return to the "3cript”™ pacg

connect reset;
connect to sample;
select firstrme, lasthame, enpno from employee order by firstrme;

Figure 10. Script for viewing the sample database

The tables in the sample database are prefixed by the user ID that creates
the database. This makes it hard to write examples that run on every system.
Our examples use table names such as ITSO.DEPARTMENT. If you create
the database with a different user ID, you can assign aliases to make the
examples work. Run these commands in a DB2 Command Window:

db2 connect to sample

db2 create alias itso.department for department
db2 create alias itso.employee for employee
db2 create alias itso.emp_photo for emp_photo
db2 connect reset

Chapter 3. Product installation 23

VisualAge for Java

VisualAge for Java Version 3.02 Enterprise Edition was installed on our
machines, but we could have used the Professional Edition, as this also
provided the functionality required for this book.

Installing the product

24

When running the setup, select a full installation and select Local for the
location of your repository, as we are not going to be setting up a team
environment.

When all the files are installed, you will then be prompted to reboot. Do so
and then start up VisualAge for Java to complete the basic installation.
During start-up, you will be asked to select the workspace owner and enter
their network name. Select Administrator and enter your normal NT logon as
the network name, then click OK.

VisualAge will then finish adding files to your workspace. When it has
finished doing this, you will be prompted with the Welcome to VisualAge
window. Select Go to the Workbench and click OK (see Figure 11).

%]Welcome to VisualAge []

What would you like to do?

" Create a new applet

" Create a new class

" Create a new interface

= Continue working with a class/interface

 Administer users

I~ Show this window at startup.

oo |

Figure 11. Welcome to VisualAge

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Adding features

To enable you to create and run some of the applications within this book, you
have to add some extra features to your VisualAge for Java installation.
These will add some extra tools and code packages to your workspace.

To add the features, select File -> Quick Start and wait for the Quick Start
window. Select Features and select Add Feature, as in Figure 12.

EZ Quick Start A
Baszic Features
Tearm Development ;

Repositon Management | Delete Feature

ak. I Cahicel

Figure 12. Adding a feature in VisualAge for Java

Select the following features and then click on OK:
QlBM JSP Execution Monitor 1.1
QlBM WebSphere Test Environment 3.02

When these features are loaded, your VisualAge for Java installation is ready
for our examples.

Testing the installation

For a quick visual test that the installation has been successful, go to the
menu option Workspace -> Tools. In the list of tools you should find the two
options JSP Execution Monitor and Launch WebSphere Test Environment.

Existing errors

After installing VisualAge for Java, you may notice that there are some
errors in the pre-loaded classes, specifically in the package

Chapter 3. Product installation 25

com.sun.java.swing.plaf.mac. These errors will not effect any of the work
required for this book, and you can ignore them.

Distributed Debugger

We also chose to install IBM Distributed Debugger Version 8.4 which comes
with VisualAge for Java 3.02.

We chose a full install, which gave us the Object Level Trace facility as well,
and can be used within WebSphere Application Server as well as via
VisualAge for Java.

WebSphere Application Server

We installed WebSphere Application Server Version 3.02 Standard and
Advanced Edition for the purposes of this book. Standard Edition would be
enough as the additional features in the Advanced and Enterprise Editions
were not required.

Installing the product

When you are running the install, choose the Custom installation and follow
these steps:

QYou will be presented with the screen found in Figure 13. Keep all the
components selected on the left, and make sure you select IBM HTTP
Server V1.3.6 as the Plugin server. Then click on Next.

26 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Choose Application Server Components

— Application Server Components

v Development Kit Flugirs

Lotus Doming 5.0 or higher

¥ Production Application Server Metzzape Enterprise v3.51
Metzcape Enterprize Y3.6
- i iBM HTTP S
¥ &dministrator's Console ipache 1.3 b

¥ Developer's Client Files

I I I

¥ Documentation

v Samples

¥ Configure admiristrative domain with default application server and a default
application,

< Back I Mext > I Cancel

Figure 13. Custom installation for WebSphere Application Server

QYou should then be presented with a screen prompting you to select a JDK
for WebSphere to use (see Figure 14). The IBM Developer Kit, Java Tech
Edition, that you installed earlier should appear in the list; you should
select it and click on Next. If this item does not appear, then it is a good
idea to come out of this installation and re-install the IBM JDK to make
sure that WebSphere picks it up properly.

Chapter 3. Product installation 27

Select Java Development Kit [X]

The fallowing JDF's have been found on your computer. Select the JDE for the
product to use. Selecting a JOK. ather than the recommended wverzion may
prexvent the product from installing properly.

|BM Developer Kit, JavalTh] Tech. Edition:1.1.7
Other

Specify alternative JOK, path
D:5jdk1.1.7 Bionael |

JDK 1.1.7 1BM build n117p-19330823 [T enabled: ibrmjitc)

Cancel |

Figure 14. Selecting a JDK within the WebSphere install

< Back

QYou will then be presented with the Security/Database options screen as
shown in Figure 15. For the Security section, you can enter the user ID
and password that you created in “Creating a dedicated user ID” on
page 18. Next, change the Database Type to DB2; this should enable you
to enter a user ID and password for the database. Again, you can use the
same user ID that you created in “Creating a dedicated user ID” on
page 18.2 This will be the user ID under which WebSphere creates the
WAS database.2 You have to enter a user ID that has full administrative
authorities. Click on Next.

QClick Next on the following confirmation, and installation of the files will
start.

QTowards the end of the install, it will ask you for the location of the IBM
HTTP Server configuration file. This should have a path similar to:

d:/IBM HTTP Server/conf/httpd.conf

If you have installed the HTTP Server, the installation process should
automatically find this file for you, and you can click OK to finish the
install process.

2 By using the same 1Ds for both sections, you can help avoid problems later on when starting WebSphere
AdminServer as a service.
3 The WAS database is used by WebSphere to store the configuration information for your server components.

28 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Security/Database Options

— Securnty

Uzer

Iitsu:u

¥ Use dema key ring file

Chent K.y Ring

|cu:um.ibm.wehsphere.DummyKey

Server Key Ring

Iu:u:um.ibm.wehsphere.Dumm_l,lKe

Pazsword I’“‘"’“‘"’“‘
I:anifm I xxxxxxxx

Pazsword I’"““"‘
Pazsword I’“‘"’“‘

~ Database

Type DB2 w| User |its-:-

Mame waas Pazzword IW
Path |D:ASOLLIE Browse.. |
URL Iidhc:db2:was

Help | < Back. IWI Cancel

Figure 15. Setting up Security and Database options for WebSphere

QAfter rebooting the machine as prompted, the install script creates the
WAS database in your DB2 system. This database is used by WebSphere
Application Server to manage its configuration information.

You can create the WAS database manually if the automatic process fails,
for example, because DB2 was not started. Use the command file:

d:\WebSphere\AppServer\bin\createdb2.bat

You have now completed the installation of WebSphere Application

Server.

Chapter 3. Product installation 29

Testing the installation

To test the installation, you have to start up the WS AdminServer that
enables you to administer WAS.

Starting the WS AdminServer service

You start the administration server through the Control Panel - Services
window as shown in Figure 16. Once this server is started, you will be able to
administer your servers, including starting the default server.

Services
Seryice Statuz Startup
DB 2 Security Server Started Autornatic ;I

DHCP Client Started Automatic Start
Directony Replicator b arwal

EventLog Started Automatic J Stap |
1B CICS Universal Client t anual

IEM HT TP Administration Stated Automatic &l
IBM HTTP Server Started Automatic Eiariene |
1BM WS AdminServer t anual —

M egzenger Started Automatic Sl |
MAW Alert Started tanual =] =
Startup Parameters:

| Help |

Figure 16. Starting WebSphere Application Server as a service

Itis a good idea to set this service up to start automatically in the future. You
can do this by clicking on Startup while the WS AdminServer is selected and,
in the following dialog, changing the Startup Type to Automatic.

Errors when starting the WS AdminServer

A problem that is sometimes encountered when starting the WS
AdminServer is that you will be given the error window shown in Figure 17.

Q Could nat start the |BM WS AdminServer service on \WAZ3BLVLM,

Ermor 2140 &n intemal *Windows NT eror occurred.

Figure 17. Error when starting the WS AdminServer

30 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

This can be caused by a number of problems, but a common one that we
found results from having used a different user 1D and password combination
for the database when installing WebSphere. If this is the case, then you can
fix the error by editing:

d:\WebSphere\AppServer\bin\admin.config

Change the dbUser and dbPassword entries to be the same ID that you have
used elsewhere.

Starting the Administrative Console

Once the WS AdminServer is successfully started, you can use the
administration console to configure different components of WebSphere. This
program can be started from the Start menu by selecting the Administrator’s
Console in the IBM WebSphere -> Application Server 3.0 folder.

Figure 18 shows the Administrative Console window, and when the spinning
icon at the bottom comes to a stop, the program is fully loaded and ready.

¥ WebSphere Advanced Administrative Console

Console Administrative Server Command Wiew Help

a

Typesl Topologyl

AR Configuration ~
- & remenc . A _ uWebSphere

. Security

EHEE

Systems Management

Congole i 12

Z/26/00 5:27 AM : Console Ready.

2/28/00 8:27 AM : AUDIT [chusa/_ adminierwer]: Initializing Webiphere Administration server
2/28/00 §:27 AM : AUDIT [chusa/_adminierwer]: Dridmin awailable on port 1,045

2/28/00 §:27 AM : AUDIT [chusa/_adminierwer]: Webiphere Administration server open for e-business

A »

L]

Figure 18. The WebSphere Administrative Console

From here we can manage our servers completely. For now, though, we just
want to start the Default Server to test that everything has installed
correctly. For more information on how to use the administration interface,
refer to Chapter 6, “WebSphere Application Server” on page 123.

Chapter 3. Product installation 31

Starting the Default Server

If you select the Topology tab, and then click on the + sign next to WebSphere
Admin Domain, you should see the name of your machine. Expanding your
machine name, you will find the Default Server as shown in Figure 19. When
you select the Default Server, you can then click on the button with a green
light symbol to start it. After a while, a dialog should come up telling you the
start command was successful.

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command View Troubleshooting Help

CRENE

Tasks| Tynes To*gyl ‘ Application Server: Default Server

WehSphere Administratiye Domain|| NGeneral |Advanced| Debugl
ﬂ AdminApplication

& chusa ‘ \Qpplication Server Mame: [Default Server =
[OLT Controller . :
= 2 | Start | Stop t Running

Q Default Container B5Ired Stale: Running

G- senletEngine Start Time: 28-Feh-00 10:08:42 AM
m Remate Serviet Redirector 5 : _
default host Executable in use: EIDk1 11 Tihint binijava

Command line arguments: |-mx1 28m
Environment: Environment...

Frocess ID:

warking directory; |

Standard input: | -

K| I Apply Reset

Congaole i 12

init"”

Z/28/00 10:09 AM : AUDIT [chusa/Default 3erver]: Servlet.available.for.serwvice:."J3F 1.0 Processor™
Z/28/00 10:10 &AM : Command "Default Server.refresh” running ...

Z/28/00 10:10 &AM : Command "Default Server.start” completed successfully.

e NNRNNRENNRENND

Figure 19. Starting the Default Server

Running a test serviet

Now that you have the Default Server running, you can quickly test it by
running the Snoop servlet that is part of the standard install for WAS. Open
up a browser and enter http://localhost/serviet/snoop. If the install has been
completely successful, you should see a page similar to Figure 20.

32 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

noop Servlet - Netscape

File Edit “iew Go Communicator Help

j @'W’hat's Related ml

Requested URL.:

http://localhost/servlet/snoop

Init Parameters

paraml: test-wvaluel

Regquest method: GET

Regquest TRI: /servlet/snoop
Fequest protocol: HTTR/1.0
Zervlet path: /servlet/snoop
Path info: <none>

Path translated: <nonex>
Character encoding: iso-5859-1
Query string: <nonex

Content length: 0O

Content type: <none:>

SJerver name: lﬂ?alhost
Serwver port: S0

FEmoOLE USEr: <nones

Remote address: 127.0.0.1

Femote host: <nonex
<| i

Request information:

’E == | | Document: Done

-

o

Figure 20. Output from the Snoop servlet

WebSphere Studio

We installed WebSphere Studio Version 3.0 and then applied Fixpack 2 to

bring it up to Version 3.0.2.

Installing the product

While installing Studio, we were prompted to see if we wanted to install the
Applet Designer. Although it would not have done any harm, we elected not
to do so, as it is not required for the topics covered in this book.

If you do not have a valid installation of Internet Explorer on your machine
prior to installing Studio, you may encounter the errors shown in Figure 21

and Figure 22.

Chapter 3. Product installation

33

ERROR Message

& Couldn't corevert [E Build[] to a number, under Regkep. S oftwarsiMicrosoftilnternet ExplarertBuild

Figure 21. Error while installing WebSphere Studio

You can click OK on these screens and continue as, in contradiction to the

message in Figure 22, it is not essential to be able to use Studio. But it will
prevent you from directly previewing your pages in the Page Designer tool
(see “Editing project resources” on page 237).

Warning

WwiSHMING: Setup cannot find Internet Explarer 4.0 ar later.
“fou can complete thiz ingtallation, but MUST install Internet Explorer
prior to running WebSphere Studio.

Figure 22. Warning information dialog concerning missing IE installation

Once completed, you have to reboot the machine and then run the setup
program provided with Fixpack 2. After the install you have to reboot again
and after that you have completed the installation of Studio.

Testing the installation

The easiest way to test the install of WebSphere Studio is to start it from the
Start bar. Select IBM WebSphere -> Studio 3.0 -> IBM WebSphere Studio
v3.0. The install was successful if the window shown in Figure 23 appears.

34 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Welcome to IBM Websphere Studio

Get a quick. start in the WebSphere Studio.
¢ Select an option and click Ok,

" Jpen an existing project.

0K I Exit Studio

Figure 23. WebSphere Studio welcome window

SecureWay Directory

We installed SecureWay Directory Version 3.1.1, including the GS Kit, on our
machines to help us with some of the applications in this book.

Incompatibilities with DB2 UDB

SecureWay Directory Version 3.1.1 does not function correctly with DB2 UDB
Version 6.1 with Fixpack 2 applied. Therefore, on any machines that required
the SecureWay Directory running, we had to downgrade our DB2 installation
to Fixpack 1A. SecureWay Directory 3.1.1.5 has fixed this problem and works
with Fixpack 2 of DB2 Version 6.1.

Installing the product

When installing SecureWay Directory, choose your appropriate installation
language and then complete the following steps:

QChoose to install both SecureWay Directory and the Client SDK as in
Figure 24.

Chapter 3. Product installation 35

36

Select Components [X]

What would wou like o ingtall?

" |nztall the Securs\y ay Directory and Client SOKE

" |nztall the Securstyay Client SDE

< Back I Ment » I Cancel

Figure 24. Selecting components to install

QChoose the appropriate install directory (you can leave the default).
QChoose the appropriate Program Folder (you can leave the default).

QSelect all three components to configure (Figure 25). You can actually do
this configuration after the install is complete, but it is easier to do it here.

Configure E3

Select the components to configure

¥ Set the directon administrator name and passward,
¥ Create the directory DB2 databaze.

V¥ ‘Configure a web server for directony administration.

< Back I Ment » I Cancel

Figure 25. Selecting the components to configure

QEnter in a unique name and password for the SecureWay Directory
administrator. To keep things simple, use the user ID and password that
was created in “Creating a dedicated user ID” on page 18, but prefix the
user ID with cn= (Figure 26).

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Administrator distinguished name and password

Enter a nevs Securs'w'ap Directony administrator Distinguished
Mame ahd Pazzwaord. All Fields are required for host ‘A23B 0L
Al Fields are required.

Adminigtrator Digtinguighed Mame ;

Icn=itsn

Adminiztrator Pazsword |

Ixxxx

Tupe the password again to confirm

Ixxxx

< Back I Ment » I Cancel

Figure 26. Configuring the SecureWay Directory administrator

QChoose to create the default SecureWay Directory database, as in Figure
27. When prompted, select to create the database using the local code
page, and choose an appropriate drive for it to reside in.

Create the SecureWay Directory DB2 database [X]

The directong data iz stored in a DEZ databasze. ou can uze
either the default Securetfay Directory DBZ database for the
directony zerver or configure the directony server bo uze an
exizting databaze af your awn.

Mo database iz curently configured.

" Use existing database

< Back I Ment » I Cancel

Figure 27. Creating the SecureWay Directory database

Chapter 3. Product installation 37

QaSecureWay then locates your Web server configuration file. If you have
IBM HTTP Server installed, it should find the file without any problems,
and you can click on Next.

QClick on Next in the final confirmation dialog, and installation will start.
QWhen the install has finished, reboot the machine as prompted.

QAfter reboot, a database script runs, and when that is complete, you have
installed SecureWay Directory.

Configuring SecureWay Directory

After installation, you have to configure the server. First, open up a Web
browser and enter the URL:

http://Tocalhost/Tdap

This should direct you to the administration login screen (see Figure 28).

Logging in

ecureWay Directory Server Web Admin: a23blvim - Netscape

ile Edit “iew Go Communicator Help
| d P A N . @ 3 & @ |
Back Fopward Reload Home Search Metzcape Frint Security Stop
wtv Bookmarks J‘ Location:Ihttp:.-".-"a23blvlm.almaden.ibm.c:om.-"ldap.-"c:gi-bin.-"ldacgi.exe?Ac:tion=Start j @vw’hat's Fielated
DILEClOVieIven Logon to IBM SecureWay Directory Server
O Introduction 223hMim
Logon
[Log K] Ready
IBM SecureWay Directory Server Administration H
Only administrator access is allowed at this time.
Fleasze enter the LDAP admimistrator [D and password and click
Logon.
User ID: Icn=itso
Password: |****|
Logon !
() Copyright IBM Corporation 1998, A5 rights reserved.
[== |Document: Done

Figure 28. Logon to SecureWay Directory Server Administration

38 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Enter in the user ID and password that you supplied during the install.
(Remember to prefix the user ID with cn=). Then click on Logon. You should
now be logged on to the server.

Adding suffixes

You now need to add a suffix to the configuration. This is required to set up
the top-level entry for the directory hierarchy.

In the left hand panel, select Add a suffix, and you should see the Add a
suffix for this server page in the right hand panel (see Figure 29). In the
Suffix DN field, add o=ibm, c=uk and click on Add a new suffix.

SecureWay Directory Server Web Admin: a23blvim - Netscape

File Edit “iew Go Communicator Help

3 Y AN . @ oS & # |
i Back Fopward Reload Home Search Metzcape Frint Security Stop

Y wt " Bookmarks J‘ Location: Ihttp:.-".-"a23blvlm.almaden.ibm.c:om.-"ldap.-"c:gi-bin.-"ldacgi.exe?Ac:tion=Start j @' Wwhat's Related

Add a suffix for this server

O intraduction T
» B3 Server
(] Suffixes K] Ready
» B Replicas
» B3 Database
» B3 Directoryitccess contral
» B3 Access aroups Suffe: DN |o=ibm, c=uk
» B3 Access roles
Error log

Lagoff Add a new suffix |

Related tasks:

|+

To add a new suffix, please type in the suffix distinguished name.

+ List suffiwes - List confipured suffizes for this server
+ Delete suffiwes - Delete suffizes from thosze configured for this server

[== |Document: Done

Figure 29. Adding a suffix

Starting the server

To allow your new suffixes to take effect, you have to restart the server.
Navigate down Server in the left-hand pane, and select Startup/Shutdown. A
message in the right-hand pane should tell you that The directory server is
currently stopped. Click on the button labeled Startup, and you are informed
that the server is being started. When the server is finally running, you
should see a window as shown in Figure 30.

Chapter 3. Product installation 39

SecureWay Directory Server Web Admin: a23blvim - Netscape
File Edit “iew Go Communicator Help

35 3 . o@ s & @ =

Back Fopward Reload Home Search Metzcape Erirat: Security Stop

w‘ 7 Bookmarks J‘ Location: Ittp:.-".-"a23blvlm.almaden.ibm.c:om.-"ldap.-"c:gi-bin.-"ldacgi.exe?Ac:tion=Start j @v ‘wihat's Related
DILEClOVieIven Server shutdown
O Introduction * -
(3 Server
ElPropenies I‘ The directary server is running.
S5L
Masterreplica canfigura The directory server 1z currently runming. To stop the server, click the 1=
Status Shutdown hutton.
Connections
Startup/St Shutdown
» B3 suffixes
» B Replicas
» B Datahase Related tasks:
» B3 Directoryitccess contral
» B3 Access aroups + Properties - Edit server properties
LIOpEries prop
» B Access roles + 35L - Confipure server 351 (Secure Sockets Layer) properties
Errar log providing encryption of data, and transport of public-key
Lagoff certificates
+ Masterfreplica confisuration - Configure thiz server to be a master
or a replica =l
[== |Document: Done

Figure 30. Starting the directory server

Testing the installation

By being able to configure and start the directory server, you have proved
that the product has been installed correctly.

What we have achieved

If you have followed all these product installation instructions, you should
now have installed working versions of the following products:

QlBM Java Development Kit Version 1.1.7 for Windows

QIBM HTTP Server Version 1.3.6.2

QlBM DB2 Universal Database for Windows NT Version 6.1 Workgroup
edition with Fixpack 2 (or Fixpack 1A)

QlBM VisualAge for Java Version 3.02, Enterprise Edition

QlBM Distributed Debugger Version 8.4

QlBM WebSphere Application Server Version 3.02, Standard Edition

QlBM WebSphere Studio Version 3.02

QlBM SecureWay Directory Version 3.1.1

40 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

4 Serviets

In this chapter we introduce you to Java servlet concepts.

We provide an overview of the Java Servlet API, and discuss the servlet
runtime environment and life-cycle. Servlet examples are provided which
demonstrate basic to advanced servlet functionality. Finally, we discuss some
common servlet interaction techniques, such as servlet filtering and
chaining.

If you want to run the examples presented here, refer to Chapter 6,
“WebSphere Application Server” on page 123, and to Chapter 7,
“Development and testing with VisualAge for Java” on page 167. All the
examples are provided on the Internet (see Appendix C, “Using the additional
material” on page 417).

We recognize that there is an abundance of both online and printed
documentation on this topic, and recommend that you refer to the Sun Java
Servlet API Specification, http://java.sun.com/products/serviet/.

If you are already familiar with Java servlets, we suggest you still skim
through this chapter. We present some concepts here that are built on in
subsequent chapters. This will familiarize you with the naming conventions
used, and provide some continuity in the reading.

© Copyright IBM Corp. 2000 41

http://java.sun.com/products/servlet/

Overview of Java serviets

Servlets are protocol and platform independent server-side software
components, written in Java. They run inside a Java enabled server or
application server, such as the WebSphere Application Server. Servlets are
loaded and executed within the Java Virtual Machine (JVM) of the Web
server or application server, in much the same way that applets are loaded
and executed within the JVM of the Web client. Since servlets run inside the
servers, however, they do not need a graphical user interface (GUI). In this
sense, servlets are also faceless objects.

Servlets more closely resemble Common Gateway Interface (CGI) scripts or
programs than applets in terms of functionality. As in CGI programs, servlets
can respond to user events from an HTML request, and then dynamically
construct an HTML response that is sent back to the client.

Servlet process flow

Servlets implement a common request/response paradigm for the handling of
the messaging between the client and the server. The Java Servlet API
defines a standard interface for the handling of these request and response
messages between the client and server.

Figure 31 shows a high-level client-to-servlet process flow:

1. The client sends a request to the server.

2. The server sends the request information to the servlet.

3. The servlet builds a response and passes it to the server. That response is
dynamically built, and the content of the response usually depends on the
client’s request. External resources may also be used.

4. The server sends the response back to the client.

] Request Servlet Ex: JDBC
Client <+—®| Resources

Response

Web Server

Figure 31. High-level client-to-servlet process flow

42 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlets are powerful tools for implementing complex business application
logic. Written in Java, servlets have access to the full set of Java API’s, such
as JDBC for accessing enterprise databases.

As mentioned above, servlets are similar to CGI in that they can produce
dynamic Web content. Servlets, however, have the following advantages over
traditional CGI programs:

QPortability and platform independence: Servlets are written in Java,
making them portable across platforms and across different Web servers,
because the Java Servlet API defines a standard interface between a
servlet and a Web server.

QPersistence and performance: A servlet is loaded once by a Web server, and
invoked for each client request. This means that the servlet can maintain
system resources, like a database connection, between requests. Servlets
don’t incur the overhead of instantiating a new servlet with each request.
CGI processes typically must be loaded with each invocation.

QJava based: Because servlets are written in Java, they inherit all the
benefits of the Java language, including a strong typed system,
object-orientation, and modularity, to name a few.

The Java Servlet API

The Java Servlet APl is a set of Java classes which define a standard
interface between a Web client and a Web servlet. Client requests are made
to the Web server, which then invokes the servlet to service the request
through this interface.

The Java Servlet APl is a Standard Java Extension API, meaning that it is
not part of the core Java framework, but rather, is available as an add-on set
of packages. We will be using the Java Servlet Development Kit API (JSDK)
V2.1 conventions throughout this chapter.

The API is composed of two packages:

Qjavax.servlet

Qjavax.servlet.http
The javax.servlet package contains classes to support generic
protocol-independent servlets. This means that servlets can be used for many
protocols, for example, HTTP and FTP. The javax.servlet.http package
extends the functionality of the base package to include specific support for

the HTTP protocol. In this chapter, we will concentrate on the classes in the
javax.servlet.http package.

Chapter 4. Servlets 43

The Servlet interface class is the central abstraction of the Java Servlet API.
This class defines the methods which serviets must implement, including a
service() method for the handling of requests. The GenericServlet class
implements this interface, and defines a generic, protocol-independent
servlet. To write an HTTP servlet for use on the Web, we will use an even
more specialized class of GenericServlet called HttpServlet.

HttpServlet provides additional methods for the processing of HTTP requests
such as GET (doGet method) and POST (doPost method). Although our
servlets may implement a service method, in most cases we will implement
the HTTP specific request handling methods of doGet and doPost.

The servlet life cycle

A client of a servlet-based application does not usually communicate directly
with a servlet, but requests the servlet’s services through a Web server or
application server that invokes the servlet through the Java Servlet API. The
server’s role is to manage the loading and initialization of the servlet, the
servicing of the request, and the unloading or destroying of the servlet. This
is generally provided by a servlet manager function of the application server.

Typically, there is one instance of a particular servlet object at a time in the
Web servers’ environment. This is the underlying principle to the persistence
of the servlet. The Web server is responsible for handling the initialization of
this servlet when the servlet is first loaded into the environment, where it
remains active (or persistent) for the life of the servlet.

Each client request to the servlet is handled via a new thread against the
original instance object. The Web server is responsible for creating the new
threads to handle the requests. The Web server is also responsible for the
unloading or reloading of the servlets. This might happen when the Web
application is brought down, or the underlying class file for the servlet
changes, depending on the underlying implementation of the server.

Figure 32 shows a basic client-to-servlet interaction:

QServletl is initially loaded by the Web application server. Instance
variables are initialized, and remain active (persistent) for the life of the
servlet.

QTwo Web browser clients have requested the services of Servletl. A
handler thread is spawned by the server to handle each request. Each
thread has access to the originally loaded instance variables that were
initialized when the servlet was loaded.

QEach thread handles its own requests, and responses are sent back to the
calling client.

44 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

. Servlet1
Client1 Servlet1
Thread2
- |_— * loaded before
Client2 Servlet1 Instance first request

Web Application Server

Figure 32. Basic client-to-servlet interaction

The life cycle of a servlet is expressed in the Java Servlet API in the init,
service (doGet or doPost), and destroy methods of the Servlet interface. We
will discuss the functions of these methods in more detail and the objects that
they manipulate. Figure 33 is a visual diagram of the life-cycle of an
individual servlet.

(Initialization failed)

Available
for
service

Unavailable
for
service

(Unavailable
exception
thrown)

Figure 33. Servlet life-cycle

The WebSphere administrator can set an application and its servlets to be
unavailable for service. In such cases, the application and servlets remain
unavailable until the administrator changes them to available.

Understanding the life-cycle

This section describes in detail some of the important servlet life-cycle
methods of the Java Servlet API.

Chapter 4. Servlets 45

46

Servlet Initialization: init method

Servlets can be dynamically loaded and instantiated when their services are
first requested, or the Web server can be configured so that specific servlets
are loaded and instantiated when the Web server initializes.

In either case, the init method of the servlet performs any necessary serviet
initialization, and is guaranteed to be called once for each servlet instance,
before any requests to the servlet are handled. An example of a task which
may be performed in the init method is the loading of default data
parameters or database connections.

The most common form of the init method of the servlet accepts a
ServletConfig object parameter. This interface object allows the servlet to
access name/value pairs of initialization parameters that are specific to that
servlet. The ServletConfig object also gives us access to the SevletContext
object that describes information about our servlet environment. Each of
these objects will be discussed in more detail in the servlet examples sections.

Serviet request handling

Once the servlet has been properly initialized, it may handle requests
(although it is possible that a loaded serviet may get no requests). Each
request is represented by a ServletRequest object, and the corresponding
response by a ServletResponse object in the Java Servlet API. Since we will
be dealing with HttpServlets, we will deal exclusively with the more
specialized HttpServiletRequest and HttpServletResponse objects.

The HttpServletRequest object encapsulates information about the client
request, including information about the client’s environment and any data
that may have been sent from the client to the servlet. The
HttpServletRequest class contains methods for extracting this information
from the request object.

The HttpServletResponse is often the dynamically generated response, for
instance, an HTML page which is sent back to the client. It is often built with
data from the HttpServietRequest object. In addition to an HTML page, a
response object may also be an HTTP error response, or a redirection to
another URL, servlet, or JavaServer Page. The redirection techniques will be
discussed in more detail in the servlet interaction section of this chapter.
JavaServer Pages and interactions with servlets will be discussed in Chapter
5, “JavaServer Pages” on page 95.

Each time a client request is made, a new servlet thread is spawned which
services the request. In this way, the server can handle multiple concurrent
requests to the same servlet. For each request, usually the service, doGet, or
doPost methods will be called. These methods are passed the
HttpServletRequest and HttpServletResponse parameter objects.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

doPost: Invoked whenever an HTTP POST request is issued through an
HTML form. The parameters associated with the POST request are
communicated from the browser to the server as a separate HTTP request.
The doPost method should be used whenever modifications on the server will
take place.

doGet: Invoked whenever an HTTP GET method from a URL request is
issued, or an HTML form. An HTTP GET method is the default when a URL
is specified in a Web browser. In contrast to the doPost method, doGet should
be used when no modifications will be made on the server, or when the
parameters are not sensitive data. The parameters associated with a GET
request are appended to the end of the URL, and are passed into the
QueryString property of the HttpServletRequest.

Other serviet methods worth mentioning

destroy: The destroy method is called when the Web server unloads the
servlet. A subclass of HttpServlet only needs to implement this method if it
needs to perform cleanup operations, such as releasing database connections
or closing files.

getServletConfig: The getServletConfig method returns a ServletConfig
instance that can be used to return the initialization parameters and the
ServletContext object.

getServletinfo: The getServletinfo method is a method that can provide
information about the servlet, such as its author, version, and copyright. This
method is generally overwritten to have it return a meaningful value for your
application. By default, it returns an empty string.

Basic serviet examples

In this section, we will build on the foundation in the previous sections, by
describing some servlets that demonstrate additional capabilities and
concepts of the Java Servlet API.

Simple HTTP servlet

We begin with a look at a very simple servlet, SimpleHttpServlet (Figure 34).

Chapter 4. Servlets 47

48

package itso.servjsp.servletapi;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleHttpServlet extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><TITLE>SimpleHttpServiet</TITLE><BODY>");
out.printin("<H2>Serviet API Example - SimpleHttpServlet</H2><HR>");
out.printin("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

}

Figure 34. Simple HTTP servlet

As the title indicates, SimpleHttpServlet is a very simple HTTP servlet that
accepts a request and writes a response. Let’s break out the components of
this servlet so we can discuss them individually.

Basic servlet structure

Figure 35 shows that we have defined this servlet to be part of an
itso.servjsp.servletapi Java package. This is the naming convention used for
all the servlet examples in this chapter.

package itso.servjsp.servletapi;

Figure 35. SimpleHttpServlet package declaration

Figure 36 shows the import statements used to give us access to other Java
packages. The import of java.io is so that we have access to some standard 10
classes. More importantly, the javax.servlet.* and javax.servlet.http.* import
statements give us access to the Java Servlet API set of classes and
interfaces.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Figure 36. SimpleHttpServlet import statements

Figure 37 shows the SimpleHttpServlet class declaration. We extend the
HttpServlet class (javax.servlet.http.HttpServlet) to make our class an HTTP
protocol servlet.

public class SimpleHttpServlet extends HttpServlet {

Figure 37. The SimpleHttpServlet class declaration

Figure 38 is the heart of this servlet, the implementation of the service
method for the handling of the request and response objects of the servlet.

protected void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><TITLE>SimpleHttpServiet</TITLE><BODY>");
out.printin("<H2>Serviet API Example - SimpleHttpServlet</H2><HR>");
out.printin("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

Figure 38. SimpleHttpServlet service method

What the service method does

Let's examine this service method in more detail. Notice that the method
accepts two parameters, HttpServletRequest and HttpServletResponse. The
request object contains information about and from the client. In this
example, we don't do anything with the request.

This method is declared Abstract in the basic GenericServlet class, and so
subclasses, such as HttpServlet, must override it. In our subclass of
HttpServlet, when using this method, we must implement this method
according to the signature defined in HttpServlet, namely, that it accepts
HttpServletRequest and HttpServletResponse arguments.

We do some handling of the response object, which is responsible for sending
our response back to the client. Our response here is a formatted HTML

Chapter 4. Servlets 49

page, so we first set the response content type to text/html by coding
res.setContentType("text/htm1"). Next, we request a PrintWriter object to write
text to the response by coding PrintWriter out = res.getWriter(). We could also
have used a ServletOutputStream object to write out our response, but
getWriter gives us more flexibility with Internationalization. In either case,
the content type of the response must be set before references to these objects
can be made.

The remaining out.println statements write our HTML to the PrintWriter,
which is sent back to the client as our response. It is pretty simple HTML, so
we do not display it here. We use out.close more for completeness, because
the Web application server automatically closes the PrintWriter when the
service method exits.

How the servlet gets invoked

We could invoke this servilet with either a GET or POST form action method,;
the service method will execute for either. If we knew something about how
this servlet was ultimately to be called, for instance, what the HTML form
method was going to be, we could have implemented the above functionality
through specific doGet or doPost methods. The result would be the same.

The simplest way to invoke the servlet would be by specifying a URL in the
Web browser. This does not work for every servlet, but would work for the
above example. A URL forces the Web browser to send the request using
GET, similar to the way a standard HTML page is requested. The above
servlet could be invoked from the Web browser with the URL:

http://host/serviet/itso.servjsp.servletapi.SimpleHttpServiet
http://host/itsoservjsp/serviet/itso.servjsp.servletapi.SimpleHttpServiet

Note: the second form invokes a servlet in a Web application.

Running the serviet

At this point we have not discussed the specifics of running servlets in a Web
server environment. If you want to run this servlet, you should be able to
follow the steps in Chapter 7, “Development and testing with VisualAge for
Java” on page 167, code the SimpleHttpServlet, and run it under the
WebSphere Test Environment. The WebSphere Test Environment provides a
simulated Web server environment within the VisualAge for Java product
and enables you to test and debug your servlets. Later, in Chapter 6,
“WebSphere Application Server” on page 123, we discuss deploying servlets
to the actual application server environment.

50 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTML form generator servlet

We next look at another simple HTTP servlet, HTMLFormGenerator (Figure
39).

package itso.servjsp.servletapi;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HTMLFormGenerator extends HttpServlet {

public void init(ServletConfig config) throws ServletException {
super.init(config);
System.out.printin("In the init() method of HTMLFormGenerator");

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
performTask(req, res, "POST",
"jtso.servjsp.servletapi.HTMLFormHandler");
// "/itsoservjsp/serviet/itso.servjsp.servietapi.HTMLFormHandler");
1
public void performTask (HttpServletRequest req, HttpServletResponse res,
String method, String url) throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><TITLE>HTMLFormGenerator</TITLE><BODY>");
out.printin("<H2>Servlet API Example - HTMLCreatingServlet</H2><HR>");
out.printin("<FORM METHOD=\"" + method + "\" ACTION=\"" + url + "\">");
out.printin("<H2>Tell us something about yourself: </H2>");
out.printin("Enter your name: ");
out.printin("<INPUT TYPE=TEXT NAME=firstname>
");
out.printin("Select your title: ");
out.printin("<SELECT NAME=title>");
out.printin("<OPTION VALUE=\"Web Developer\">Web Developer");
out.printIn("<OPTION VALUE=\"Web Architect\">Web Architect");
out.printin("<OPTION VALUE=\"Other\">Other");
out.printin("</SELECT>
");
out.printin("Which tools do you have experience with:
");
out.printIn("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"WebSphere Application Server\">WebSphere Application Server
");
out.printIn("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"WebSphere Studio\">WebSphere Studio
");
out.printIn("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"VisualAge for Java\">VisualAge for Java
");
out.printIn("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"IBM Http Web Server\">IBM Http Web Server
");
out.printin("<INPUT TYPE=checkbox NAME=\"tools\" VALUE=\"DB2 UDB\">DB2 UDB
");
out.printin("<INPUT TYPE=\"SUBMIT\" NAME=\"SENDPOST\" NAME=\"SENDPOST\">");
out.printin("</FORM>");

out.printin("</BODY><HTML>");
out.close();
System.out.printin("In the doGet method");

Figure 39. HTML form generator servlet

Chapter 4. Servlets 51

init method

This servlet implements the init method. The init method only prints a
message to standard output and call the super-class constructor. As we
mentioned before, the init method is called only once, when the servlet is
loaded. This message, therefore, should only be printed to the Web server’s
console or log once (wherever standard output is defined), regardless of how
many times the servlet is actually invoked.

doGet method

We decided that this servlet is always called through a GET request, we have
chosen to implement the doGet method, instead of the more generic service
method. We developed a performTask method to which we pass a method
posting type and a target URL.

Response object

The HTML page that this servlet generates is a bit more complex than the
previous example. It actually builds an HTML form that can be used in the
future to call other servlets. This is not the same as a servlet calling a servlet,
which is a server-side process, and is discussed in “Servlet interaction
techniques” on page 73. Here, we are just using one servlet to generate the
HTML back to the browser, so we can call our other example servlets, and we
do not have to create separate HTML files for each servlet.

Notice that this servlet has many out.print1n statements. This is just the
HTML that is written back to the browser. Despite the size of this servlet, it
is still only doing one simple thing, writing HTML output.

Invoking the servlet
This servlet can be invoked directly by a URL command:
http://hostname/serviet/itso.servjsp.servletapi.HTMLFormGenerator

http://hostname/webappname/serviet/itso.xxxx <== with web application

Notice the output line for the form that this servlet generates in the
performTask method:

<FORM METHOD="POST"
ACTION="itso.servjsp.servletapi.HTMLFormHandler">

This line demonstrates another way of invoking a servlet, in this case from a
Web browser using a form action event. The form is generated by the
HTMLFormGenerator servlet.

Note: The relative URL in the action is added to the current prefix of the
generating servlet, such as http://hostname/..../servlet/.

52 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet output
The HTML Page that this servlet generates is shown in Figure 40.

HTMLFormGenerator - Netscape
Edit Wiew Go Communicator Help

< 2 A N . @ 3 & @ |
Back Fopward Reload Home Search Metzcape Frint Security Stop

W'thookmarks J‘ Location:I:.-".-"‘I2?.0.0.1:SDSD.-"servIet.-"itso.servisp.servletapi.HTMLFormGenerator j @v\w’hat's Fielated
ﬁolnstantMessage wi'ebbd ail Contact People ‘rellow Pages Download Find Sites Ci Channels

-

Servlet API Fxample - HTMLCreatingServlet M

Tell us something about yourself:

Enter your name: |

Select your title: IWeh Dieveloper vl

Which tools do you have experience with:
[WebSphere Application Server

[WebSphere Studio

™ VisualAge for Java

[IEM Hitp Web Server

[DBz UDB

Submit Query |

’E == | |Document: Done

Figure 40. HTML form generator servlet: response output

HTML form processing servlet

We next look at a servlet that processes HTML form data. Figure 41 and
Figure 42 show the HTMLFormHandler servlet.

package itso.servjsp.servletapi;
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HTMLFormHandler extends HttpServlet {

public void init (ServletConfig srvCfg) throws ServletException {
super.init(srvCfg);
1

Figure 41. HTML form handler servlet (part 1)

Chapter 4. Servlets 53

54

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/htm1"); //must be before first ref to PrintWriter
PrintWriter out = res.getWriter();

out.printin("<HTML><TITLE>HTMLFormHandler</TITLE></BODY>");
out.printin("<H2>Servlet API Example - HTMLFormHandler</H2><HR>");

//Retrieving the single-value parameters
out.printin("Hi " + req.getParameter("firstname") + ",<P>");
out.printin("I see you are a " + req.getParameter("title") + ",<P>");
out.printin("And have worked with the following tools:
");
//Retrieving the multi-value parameters
String vals[] = (String []) req.getParameterValues("tools");
if (vals != null) {

for(int i = 0; i<vals.length; i++)

out.printin("" + vals[i] + "
");

1

else out.print;n(" None
");

out.printin("<HR>");
getReqInfo(req, out); //gets the standard request information

out.printin("</BODY></HTML>");
out.close();

}

public void getReqInfo(HttpServletRequest req, PrintWriter out)
throws ServletException, IOException {

out.printin("<H4>Additional Request Information:</H4>");
out.printin("Request method: " + req.getMethod() + "
");
out.printin("Request URI: " + req.getRequestURI() + "
");
out.printin("Request protocol: " + req.getProtocol() + "
");
out.printin("Request scheme: " + req.getScheme() + "
");
out.printin("Servlet path: " + req.getServletPath() + "
");
out.printin("Servlet name: " + req.getServerName() + "
");
out.printin("Servlet port: " + req.getServerPort() + "
");
out.printin("Path info: " + req.getPathInfo() + "
");
out.printin("Path translated: " + req.getPathTranslated() + "
");
out.printin("Character encoding: "+req.getCharacterEncoding()+ "
");
out.printin("Query string: " + req.getQueryString() + "
");
out.printin("Content length: " + req.getContentlLength() + "
");
out.printin("Content type: " + req.getContentType() + "
");
out.printin("Remote user: " + req.getRemoteUser() + "
");
out.printin("Remote address: " + req.getRemoteAddr() + "
");
out.printin("Remote host: " + req.getRemoteHost() + "
");
out.printin("Authorization scheme: " + req.getAuthType() + "
");

}
} //end of class

Figure 42. HTML form handler servlet (part 2)

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Request object handling

So far, all of our servlet examples have only used the response object, but not
the request object. This example shows how to process the data in the

request. We assume that this servlet is always called using a POST request,
and have therefore chosen to implement the doPost request handling method.

doPost method

Incidentally, this servlet has been designed to handle the particular type of
request from the HTML page that was generated in the previous servlet
example. In that HTML page, the user could fill out information in the form
and submit it. The action in the HTML form causes the HTMLFormHandler
servlet to be invoked, and the doPost request handler method to be called:

<FORM METHOD="POST"
ACTION="itso.servjsp.servletapi.HTMLFormHandler">

In the doPost method, we handle the HttpServletResponse in the same way as
before, except that this time, we are also handling the HttpServletRequest.

Getting form values

We use the getParameter method of the request to extract the values of the
request parameters (name/value fields passed in from the HTML page). We
extract parameters named firstname and title from the request:

req.getParameter("firstname")
req.getParameter("title")

These are two of the input fields that were passed from the HTML form. The
getParameter method requires as an argument the name of the parameter
that we want to extract (so it must be known), and returns the value of that
parameter, or null. To get a list of the all parameter names, we could use the
getParameterNames method. This method returns an enumeration of all the
parameter names in the request, which we could then iterate through to get
the individual parameter values.

To extract the value of the tools parameter, however, we must apply a slightly
different technique. The tools’ parameter is a multi-value input field (in this
case, a checkbox). Because there could be more than one value to extract, we
use the getParameterValues method, which returns an array of values.

General request properties

We can pull environment properties and other information about the client
from the HttpServletRequest object and echo them to the response. We choose
to put all this code in a separate method, getReqlnfo, for ease of use.

Chapter 4. Servlets 55

The HTML page that this servlet generates is shown in Figure 43.

HTMLFormHandler - Netscape

File Edit “iew Go Communicator Help

<« 2 A 4 =+ & &
Back Forward Reload Home Search Metscape Print Security Stap
wtv Bookmarks \{& Location:Ittp:ﬁlocalhost:SDSDa’servIet.-’itso.sewisp.servletapi.HTMLFormHandler ﬂ ﬁv\v\"’hat's Fielated
(,r%lnstantMessage Wehhd ail Contact People Yellow Pages Download Find Sites L‘i Chanrels

-

Servlet API Example - HTMLFormHandler _

Hi ITSO Resident,

I see you are a Weh Developer,

And have worked with the following tools:
VisualAge for Java

Additional Request Information:

Request method: POST

Request URT: /zervietfitso. serwisp. servletapt HTMLFormBHandler
Request protocol: HTTF/1.0

Request scheme: hitp

Servlet path: /servletfitzo servisp. servletapt HIMLFormHandler
Servlet name: localhost

Servlet port: 2020

Path info: null

Path translated: null

Character encoding; i50-385%-1

CQuery string: null

Content length: 30

Content type: application/z-weww-form-urlencoded

Remote user: null

Remote address: 127.0.0.1

Remote host: locathost

Authorization scheme: null

|=F [=b=| |Document: Done

Figure 43. HTML form handler servlet response output

Simple counter servlet

SimpleCounter is another simple servlet, but here we have an instance
counter variable that is initialized in the init method (Figure 44).

56 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SimpleCounter extends HttpServlet {
private int calledCount;

public void init(ServietConfig config) throws ServletException {
super.init(config);
calledCount = 0;
}
protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><BODY>");
out.printin("<H2>Serviet API Example - SimpleCounter</H2><HR>");
++calledCount;
out.printin("<H4>This servlet has been called: " + calledCount +
" times.</H4>");
out.println("</BODY><HTML>");
out.close();
}
}

Figure 44. Simple counter servlet

Every time this servlet is invoked, we increment this counter variable,
calledCount, by one. The first time this servlet loads, we initialize the
counter to 0. Subsequent invocations keep incrementing the counter.

Persistence

This example demonstrates the persistence property of servlets, where an
instance variable can remain active for the life of the servlet. Every time a
servlet thread is spawned to handle the servlet request, it has access to this
global instance variable. This could be useful in the case where these
instance variables take a long time to initialize, such as database
connections, and we want to set them once and reuse them with each
invocation, without having to incur the initialization overhead each time.

This is a commonly used technique, particularly when we are only
initializing data, and then reading global variables, as is the case with
database connections. In this example, however, we are reading and updating

Chapter 4. Servlets 57

this global variable. This introduces some issues that you have to consider
when designing your servlets.

Multi-Threaded

Because our requests to this servlet are handled in threads against the same
servlet object, we must implement mechanisms to guarantee thread safety
for these shared instance variables, because we can update them in separate
threads. In other words, there is no guarantee that the line that increments
the counter and the line that prints out the counter will be executed
asynchronously within a thread. So, we must identify critical sections of code,
and synchronize these sections if appropriate.

There are many books that deal with concurrent programming issues,
therefore we do not describe how to do this, but it is an important point to
remember when designing your servlets. Please refer to Appendix E,
“Related publications” on page 433 for a list of useful references.

Servlet initialization parameters

58

The SimplelnitServlet servlet shows how to retrieve initialization
parameters from the servlet configuration object (Figure 45).

ServletConfig object

The ServletConfig object is a parameter that can be passed into the init
method of the servlet. You can also get the ServletConfig object from the
request object through the getServletConfig method, but it is most commonly
used in the init method to initialize the servlet’s instance variables.

Methods of the ServletConfig object allow us to extract the parameter
information from this object. This parameter information is in a name/value
pairs format, and can be stored in a file in XML format. We do not have to
read the file, however, because the methods of the class provide us with some
handy helper methods.

What this serviet does

This servlet simply extracts the parameter information from the
configuration file, and stores those values in instance variables. It then
echoes this information back to the client that invoked the servlet. In a
real-life application, these variables would most likely be used to make a
connection to the database, and this connection would be stored in a global
instance variable for later use in the doGet method.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SimpleInitServlet extends HttpServlet {

protected String mydriver;
protected String myurl;
protected String myuserID;
protected String mypassword;

public void init(ServletConfig config) throws ServletException {
super.init(config);
mydriver = config.getInitParameter("driver");
myurl = config.getInitParameter("URL");
myuserID = config.getInitParameter("userID");
mypassword = config.getInitParameter("password");

}

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType ("TEXT/HTML");
PrintWriter out = res.getWriter();
out.println("<HTML>");
out.printin("<TITLE>Date Display</TITLE>");
out.printin("<BODY>");
out.println("<H2>Servlet Initialization Parameters (ServletConfig):
</H2><HR>") ;

out.printin("driver: " + mydriver + "</BR>");
out.printin("url: " + myurl + "</BR>");
out.printin("password: " + mypassword + "</BR>");
out.printin("userID: " + myuserID + "</BR>");
out.println("</BODY></HTML>");
out.close();

}

}

Figure 45. Simple initialization servlet source: ServletConfig parameters

Servlet configuration file

The statement mydriver = config.getInitParameter("driver") extracts the driver
parameter by name from the configuration file, and stores it in a global
instance variable. The parameter information itself is actually stored in XML
format, in a file called SimplelnitServlet.servlet. This file must be found
through the class path. Where this file actually exists depends on your
application server implementation, and is discussed in “Testing the servlets
and JSPs” on page 423.

Chapter 4. Servlets 59

For VisualAge for Java testing, the file can be put into
d:\1BMVvJava\ide\project_resources\..yourproject..\itso\servjsp\servletapi.

The XML configuration file used in this example is shown in Figure 46. Here
we have specified four parameters, for demonstration purposes only. These
could be used to make a connection to a database.

<?xml version="1.0"?>
<servlet>
<code>itso.servjsp.servietapi.SimplelnitServiet</code>
<init-parameter value="COM.ibm.db2.jdbc.app.DB2Driver" name="driver"/>
<init-parameter value="itso" name="password"/>
<init-parameter value="jdbc:db2:sample" name="URL"/>
<init-parameter value="itso" name="userID"/>
</serviet>

Figure 46. Servlet configuration file for simple initialization servlet

Understanding the configuration file format

Figure 47 shows the XML format of a configuration file. The WebSphere
Application Server supports XML configuration files in this format.

<?xml version="1.0"?>
<servlet>
<code>itso.servjsp.servlietapi.SimplePagelListServiet</code>
<description>Shows how to use PagelistServlet class</description>
<init-parameter name="namel" value="valuel"/>
<page-list>
<default-page>
<uri>/index.jsp</uri>
</default-page>
<error-page>
<uri>/error.jsp</uri>
</error-page>
<page>
<uri>/itso/OutputA.jsp</uri>
<page-name>pageA</page-name>
</page>
<page>
<uri>itso/OutputB. jsp</uri>
<page-name>pageB</page-name>
</page>
</page-list>
</serviet>

Figure 47. General XML configuration file format

60 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Some of the parameters are beyond the scope of this section, however, we
describe a few of the more important parameters that you should know. The
elements (also known as tags) are:

Qservlet: The root element. The XMLServletConfig class automatically
generates this element.

Qcode: The class name of the servlet (without the .class extension), even if
the servlet is in a JAR file.

Qinit-parameter: The attributes of this element specify a name/value pair to
be used as an initialization parameter. A servlet can have multiple
initialization parameters, each within its own init-parameter element.

Qpage-list: The elements within this tag specify JavaServer Pages that may
be called by the servlet.

HTTP request handling utility serviet

We next look at a servlet, ServletEnvironmentSnoop. Because the source for
this servlet is rather large, we have chosen to include it in Appendix B,
“Utility servlet and utility JSP” on page 407.

This is a good utility servlet that extracts a lot of information from the
request, and echoes its contents back to the client in the response. You should
spend some time looking through the source code to see what kind of data can
be extracted from a request object, and how to manipulate that data. Use this
servlet as a future reference. Sample output of this servlet is also included in
the appendix.

The ServletEnvironmentSnoop servlet demonstrates the handling of the
following request data:
QRequest information—HTTP specific request information

QRequest header— data passed in the header of the request, such as the
character and encoding sets

QRequest parameters—name/value pairs of parameter data

QRequest attribute names—attributes of the class

QRequest cookies—an array containing all cookies present in the request
asServlet configuration—values used for initializing the serviet

QServlet context attributes—information about the environment where the
application server is running

QSession information—session data associated with the request

Chapter 4. Servlets 61

Additional servlet examples

Now that we have covered some servlet basics, we will demonstrate some
additional servlet techniques. We do not go into painstaking detail about how
some of these work, and you can research the details by reading a more
comprehensive book on servlets. Instead, we will focus on the important
concepts each servlet demonstrates.

Cookie servlet

A cookie is a piece of data passed between a Web server and a Web browser.
The Web server sends a cookie that contains data it requires the next time
the browser accesses the server. This is one way to maintain state between a
browser and a server.

The CookieServlet (Figure 48) demonstrates a servlet which gets and sets a
cookie stored at a client. Initially, the browser may not have sent the cookie
as part of the request, (for example, the first time it is called), so we just
initialize a local calledCount variable to 0. If we are able to get this cookie
from the request, we set the local calledCount to the value of the cookie.

The servlet first tries to get the calledCount by iterating through the cookies
it received as part of the request. If no cookie contains the calledCount item,
then the servlet initializes the calledCount value to 0. This value is then
incremented, and a new cookie instance is created for calledCount and added
to the response.

If we call this servlet from a URL, we find that the first time we call it, the
calledCount is 0. Subsequent calls to the same servlet from this Web browser
will show that we keep incrementing the counter, and storing it into the
cookie sent back to the browser.

This is one way by which we can maintain state between the Web browser
and the server. The major drawback with cookies is that most browsers
enable the user at the client machine to deactivate (not accept) cookies.

62 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CookieServliet extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)

}

throws ServletException, IOException {
int calledCount = 0;
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>CookiesServlet</TITLE><BODY>");
out.printin("<H2>Servlet Cookie Example:</H2><HR>");
if (getReqCookie(req, out, "calledCount") == null)
calledCount = 0;
else
calledCount = new Integer(getReqCookie(req, out,
"calledCount")).intValue();
out.print("The value of the cookie calledCount sent in on the request: ");
if (calledCount == 0) out.println
("nu11 - value not sent in on request<HR>");
else out.printin(calledCount + "<HR>");
calledCount++;
Cookie cookie = new Cookie("calledCount",
new Integer(calledCount).toString());
res.addCookie(cookie);
out.println("The value of the cookie calledCount set on the response: " +
calledCount);
out.println("</BODY><HTML>");
out.close();

private String getReqCookie(HttpServletRequest req, PrintWriter out,

String name) {

Cookie[] cookies = req.getCookies();
if (cookies != null && cookies.length > 0) {

for(int i=0; i<cookies.length; i++) {

if (cookies[i].getName().equals(name))
return (cookies[i].getValue());

}

}

return null;

Figure 48. Cookie servlet: state tracking using cookies

Chapter 4. Servlets 63

URL rewriting servlet

URL rewriting is another way to support state tracking. With URL rewriting,
the parameter that we want to pass back and forth between the Web browser
and client is appended to the URL. URL rewriting is the lowest common
denominator of session tracking, and is used when a client does not accept
cookies. We modified the CookieServlet to implement the same state tracking
mechanism technique, but by using URL rewriting. The URLServlet (Figure
49) demonstrates this technique.

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class URLServlet extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
int calledCount = 0;
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>URLServlet</TITLE><BODY>");
out.printin("<H2>Serviet URL Rewriting Example:</H2><HR>");
calledCount = getReqURLInt(req, “calledCount™);
out.printin("The value of the url-parm calledCount received in the
request:");
if (calledCount == 0) out.printin("null - value not received <HR>");
else out.printin(calledCount + "<HR>");
calledCount++;
out.printin("The value of the url-parm calledCount sent back: " +
calledCount);
out.print("<HR><P><A HREF=\"itso.servjsp.servletapi.URLServiet");
out.print("?calledCount=" + calledCount +
"\"> Click to reload");
out.println("</BODY><HTML>");
out.close();
}
public int getReqURLInt(HttpServletRequest req, String name) {
int val = 0;
if (req.getParameter(name) != null)
val = new Integer(req.getParameter(name)).intValue();
return val;
}
}

Figure 49. URL servlet: state tracking using URL rewriting

64 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

A real persistent serviet — between servlet life-cycle

In the SimpleCounter servlet (Figure 44 on page 57) we introduced a servlet
that incremented a counter with every request to the servlet. We wanted to
demonstrate that the servlet is persistent between requests.

The problem

If the server is brought down, however, the servlet would be reloaded, and the
counter set back to zero. What if we wanted to store this counter between
servlet life-cycle sessions? Every time the servlet initializes, we want to be
able to reset it to the value of the last servlet life-cycle session.

A solution

We could do this by storing the counter variable in a file, and then loading
this file into the counter variable in the next initialization. In this way, we
have persistence between servlet life-cycle sessions.

The PersistentCounter servlet demonstrates how we might do this. We create
our own object type, SaveServletStats, with a calledCount variable. We make
the SaveServletStats object Serializable, so that we can save it to an
ObjectOutputStream file (we use an object here because serialization is not
supported for native data types, such as int).

The init method gets the file name of the stats file from the ServletConfig,
then rebuilds the SaveServletStats object from the serialized file by using the
ObjectInputStream. Once the SaveServletStats object has been rebuilt, we
now have restored the calledCount value from our last servlet life-cycle
session. If the file does not exist, we initialize it for the first time to zero. The
PersistentCounter.servlet file is shown in Figure 50.

<?xml version="1.0"?7>

<servlet>
<code>itso.servjsp.servletapi.PersistentCounter</code>
<init-parameter value="statsfile" name="filename"/>

</servlet>

Figure 50. Servlet configuration file for persistent counter servlet

The PersistentCounter servlet is shown in Figure 51. In the doGet method we
save the file after each invocation (which would slow down performance
slightly). To be thread safe, we synchronized this block. We could have put
saving the file in the destroy method, but if the server crashed, we would not
have the interim values.

Chapter 4. Servlets 65

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PersistentCounter extends HttpServlet {
private int calledCount;
private SaveServletStats stats;
private String filename;

public void init(ServietConfig config) throws ServletException {
super.init(config);
calledCount = 0;
filename = config.getInitParameter("filename");
stats = new SaveServletStats();
if (filename != null) {
try { ObjectInputStream in = new ObjectInputStream(
new FileInputStream(filename + ".ser"));
stats = (SaveServletStats) in.readObject();
in.close(); }
catch (Exception e) { e.printStackTrace(); }
}
}
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("TEXT/HTML");
PrintWriter out = res.getWriter();
calledCount++;
out.println("<HTML><TITLE>PersistentCounter</TITLE><BODY>");
out.println("<H4>This servlet has been called: </H4>
");
out.printin("" + calledCount + " times since the servlet was Toaded
THIS serviet life-cycle session
");
out.printin("" + stats.calledCount + " times since the servlet was
loaded ALL servlet Tife-cycle sessions
");
out.println("</BODY></HTML>");
stats.calledCount++;
synchronized (this) {
if (filename != null) {
ObjectOutputStream outstats = new ObjectOutputStream(
new FileOutputStream(filename + ".ser"));
outstats.writeObject(stats);
System.out.printin("Saving stats file: " + stats.calledCount);
outstats.close(); } }
out.close();

I

Figure 51. Persistent counter servlet: state tracking in a file

66 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Synchronizing access to our instance variables slows down the performance
of this servlet, but it guarantees that only one thread can update the data at
a time. This trade-off between servlet performance and data integrity is a
common issue you must deal with when designing servlets.

The object that we are saving in serialized format is of type SaveServletStats
(Figure 52).

package itso.servjsp.servletapi;

import java.io.*;

public class SaveServletStats implements Serializable {
public int calledCount = 0;

}

Figure 52. SaveServletStats: serialized object

The file that stores the serialized object is written to the directory:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment
c:\Winnt\system32

VA Java
WebSphere

<==
<==
You can delete this file to restart the counter at zero.

User sessions

We have introduced several approaches to session and state tracking
between Web browsers and the Web server. One limitation with our first two
counter servlet examples, SimpleCounter (Figure 44 on page 57) and
PersistentCounter (Figure 51 on page 66), is that they maintain the counter
variable globally, within the servlet session, not by user.

We also showed a couple of session tracking mechanisms at the user level,
CookieServlet (Figure 48 on page 63) and URLServlet (Figure 49 on page 64),
where we maintain the counter variable per user, between multiple requests
from the same Web browser to the Web server. In these methods, the
developer is responsible for manually managing all of the session information
within the code.

HttpSession

Luckily, the Java Servlet API has a class, HttpSession, which supports
built-in session tracking between the client and the server, by user. HTTP is,
by design, a stateless protocol. The HttpSession interface allows a server to
use several approaches to track a user’s session, or state, and makes it easy
for the developer to use. The session information is managed at the user
level.

Chapter 4. Servlets 67

The Java Servlet API supports two ways to associate multiple requests with
a session: URL rewriting and cookies. In either case, the implementation
details in the servlet are the same. A unique session ID is used to track
multiple requests from the same client to the server, and this is what is
passed as the URL or cookie parameter. The actual session object that we are
tracking is maintained on the server.

Cookies

Session tracking through HTTP cookies is the most commonly used session

tracking mechanism. In this way, the servlet container sends a cookie to the
client, and the client will return the cookie on each subsequent request. The
name of the session tracking cookie is JSESSIONID.

Although it is sent as a cookie, you as the developer do not need to
manipulate it as such; the HttpSession class does all that for you.

Using HttpSession

Using HttpSession makes it easy for the developer to maintain and access
session information within a servlet. It associates an HTTP client with an
HTTP session, and it persists over multiple connections by the same user.

User session counter servlet

68

The UserSessionCounter servlet (Figure 53) demonstrates how to keep a
session counter by user, using the HttpSession tracking technique.

The flow of this servlet can be described in the following steps:

QWe get a handle to a session object using the getSession method of the
request. This method returns the current valid session associated with
this request and user. This method takes a boolean argument, true means
a new session should be created if none exists, false only returns an
existing session, or null.

Qlf it is a new session, or if the session does not contain our object, we must
add an object into the session of the type that we want to keep around,
using the putValue method of HttpSession. In this case, the
SaveServletStats object (Figure 52 on page 67) contains the counter
variable.

QWe now have to create a reference to the SaveServletStats object in the
servlet. We use the getValue method of HttpServlet to retrieve this object.

Once you have a reference to your object through getValue, you can just
manipulate the object as needed; updates to the object are automatically
stored as part of the session object.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;
import java.io.*;

import java.util.*;

import java.lang.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UserSessionCounter extends HttpServiet {
private int calledCount;

public void init(ServietConfig config) throws ServletException {
super.init(config);
calledCount = 0;

}

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType ("TEXT/HTML");
PrintWriter out = res.getWriter();

HttpSession session = req.getSession(true);
if (session.isNew() || session.getValue("usersession")==null) {
session.putValue("usersession", new SaveServletStats());
}
SaveServletStats ustats =
(SaveServletStats)session.getValue("usersession");
calledCount++;
ustats.calledCount++;
out.println("<HTML><TITLE>SessionCounter</TITLE><BODY>");
out.printin("<H4>This servlet has been called: </H4>
");
out.printin("" + calledCount + " times since the servlet was Toaded
THIS serviet life-cycle session
");
out.printin("" + ustats.calledCount + " times since the servlet was
loaded by this user
");
out.println("</BODY></HTML>");
out.close();
}
}

Figure 53. User session servlet: state tracking by user

Session object types

As you can see, you can store different object types in a session, distinguished
by name. We used the SaveServletStats class (Figure 52 on page 67) as a
session object.

Chapter 4. Servlets 69

JDBC servlet

In JDBCInitServlet (Figure 54 and Figure 55) we extend the
SimplelnitServlet example of Figure 45 on page 59 to actually make a
connection to a DB2 database from the variables we initialize from the
servlet configuration file. This example demonstrates how to make a
connection to an external resource, and print the results back in the
response.

package itso.servjsp.servletapi;
import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class JDBCInitServlet extends SimplelnitServlet {
protected Connection conn = null;

public void init(ServietConfig config) throws ServletException {
super.init(config);
try {
// load JDBC driver
Class.forName (mydriver).newInstance();
conn = DriverManager.getConnection(myurl, myuserID, mypassword);
System.out.printIn("Connection successful..");
}
catch (SQLException se) { System.out.printin(se); }
catch (Exception e) { e.printStackTrace(); }
}
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("TEXT/HTML");
PrintWriter out = res.getWriter();
out.println("<HTML>");
out.println("<TITLE>JDBC Init Connection</TITLE>");
out.println("<BODY>");
try { executeSQL(out); }
catch (SQLException se) { se.printStackTrace(); }
out.println("</BODY></HTML>");
out.close();

}

Figure 54. JDBC servlet: part 1 — connecting to a JDBC database

70 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

public void executeSQL(PrintWriter out) throws SQLException{
Statement stmt = conn.createStatement();
String sql = "SELECT * FROM DEPARTMENT";
stmt.executeQuery(sql);
ResultSet rs = stmt.getResultSet();
int count = 1;
while (rs.next()) {
out.println(""+rs.getString ("DEPTNAME")+"
<BLOCKQUOTE>") ;
String sql2 = "SELECT * FROM EMPLOYEE WHERE WORKDEPT = '" +
rs.getString ("DEPTNO") + "'";
Statement stmt2 = conn.createStatement();
stmt2.executeQuery(sql2);
ResultSet rs2 = stmt2.getResultSet();
while(rs2.next()) {
out.printin(rs2.getString("FIRSTNME") + " " +
rs2.getString("LASTNAME") + "
");
}
out.println("</BLOCKQUOTE>");

}
}

Figure 55. JDBC servlet: part 2 — SQL access

The JDBClInitServlet extends the SimplelnitServlet. This demonstrates that
we can consider designing base servlet classes at an application level and
then extend them for a specific function. This servlet was built primarily to
demonstrate functionality; exception handling has been left out in order to
keep the code concise.

We choose to extend the SimplelnitServlet, and override the doGet method to
make our processing specific to this example. The executeSQL method
performs the actual SQL database calls.

This servlet connects to the SAMPLE database that is installed with DB2. It
must first load up the database driver and make the connection. In this case,
we choose to make the connection object (Connection conn) a shared instance
variable, which we reuse from servlet request to servlet request, but initialize
only once.

The connection information (user ID, password, URL, and driver) is specified
in the JDBClInitServlet.servlet file, which must be copied to the appropriate
directory.

Chapter 4. Servlets 71

Servlet tag with SHTML

With the SHTMLServlet, we demonstrate how to make the Web application
server dynamically generate part of its HTML file. Using the servlet tag
technique, the server converts a section of an HTML file into a dynamic
portion each time the document is sent to the client. This dynamic portion
invokes an appropriate servlet, and inserts the response of that server in the
HTML page that is sent to the Web client. Initialization and other serviet
parameters can be passed through the tag syntax, similar to the way an
applet's parameters are set in the HTML. Here, the Web browser is calling
the servlet indirectly, through the SHTML page. The Web server is
responsible for including the output of the specified servlet in the HTML
response.

The HTML syntax is as follows:

<servlet> name="myServlet" code="package.classname" </serviet>
Figure 56 shows the HTML that we used to call our servlet, and Figure 57
shows the servlet whose response is dynamically included between the tags.

Notice that this servlet only generates a part of the total response back to the
Web client.

<HTML><BODY>
<H2>Start of SHTML Servlet Example, the following lines are from the servlet:
</H2> <HR>
<SERVLET name="SHTMLServlet”
CODE="itso.servjsp.servietapi.SHTMLServlet"> </SERVLET>
<HR> <H2>ENd of servlet include</H2>
</HTML></BODY>

Figure 56. SHTML file: servlet include (SHTMLServlet.shtml)

The <SERVLET> tag has been replaced with <jsp:include> in JSP 1.0. See
“Calling a servlet from a JSP” on page 107 for examples of how to invoke a
servlet from a JSP, which is a more modern technique to accomplish the same
purpose.

To get this example working in WebSphere and VisualAge for Java, you must
associate the .shtml extension with the JSP 0.91 compiler (it does not work
with JSP 1.0). See “Additional servlet examples” on page 424 for instructions.

Because this technique is not commonly used, we do not elaborate further on
this technique, but rather focus on JavaServer Pages (JSPs) and other
server-side techniques in the chapters that follow.

72 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SHTMLServlet extends HttpServlet {

public void service(HttpServietRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
PrintWriter out = res.getWriter();
out.println("<HR><H4>Servlet API Example - SHTMLServlet</H4>");
out.printin("<H4>Basic included servlet...</H4><HR>");
}
}

Figure 57. SHTML servlet: included servlet

Servlet interaction techniques

In our examples so far, we have demonstrated various servlet concepts and
techniques. In most cases, these examples consisted of stand-alone serviet
programs that handled a request and returned a response.

In the real world, servlets would not be stand-alone programs, but rather,
they would be grouped together as part of an application; and the application
components could consist of servlets, shared objects, and other resource files,
such as HTML and JSPs. We call this our Web application in the WebSphere
Application Server environment.

It would be expected that the servlets of an application would need some way
to communicate and interact, either with each other or with the resources of
the application. The ServletContext object, which we describe in more detail
in “Application level scope” on page 89, provides a way for us to define this
Web application level, and the resources that it can access and interact with.

This section describes various techniques for servlet interaction and
communication. We will discuss the following types:

QServlet collaboration: Two techniques for servlet collaboration are servlet
filtering and chaining. Here multiple servlets collaborate on producing a
single response for a client. The servlets themselves are not really
interacting directly with each other, rather, the Web application server is
responsible for tying the servlets together.

Chapter 4. Servlets 73

QCalling servlets from servlets: Since servlets are Java programs, they can
do anything a standard Java program can do, such as make a network
connection. In this way, we have implicit servlet interaction. Additionally,
because a servlet is just a Java class, we can instantiate and call a
servlet's public methods.

QResponse redirection: We can redirect the servlet response to another
application resource, such as another servlet or an error page (HTML or
JSP). We discuss JSPs, and their interactions with servlets, in detail in
Chapter 5, “JavaServer Pages” on page 95. They are just mentioned here
as another servlet resource.

QRequest dispatching: Through the RequestDispatcher object, we can
forward a request to another servlet, which can handle the request and
return the response. Additionally, we can include directly another serviet’s
response within the context of a calling servlet. We can use request
dispatching to dispatch the handling to another active application
resource.

QResource usage: We can interact with an application’s resources through
the servlet context. The ServletContext object allows us access to these
resources through the getResource method.

asSharing of objects in scope: There are three levels of object scope for a
servlet. Application scope is between all servlets in the same application,
and is accessed through the ServletContext object. User session objects are
accessed through the HttpSession object, and request level objects through
the servlet request.

We will provide a more detailed discussion, and some examples for each of
these techniques.

Servlet collaboration: filtering and chaining

If multiple servlets are needed to produce a response to a particular client,
then the normal procedure for producing HTML responses becomes a little
more complex. Two ways for multiple servlets to collaborate on the response
are filtering and chaining. We will discuss how these techniques work in the
WebSphere Application Server environment.

Note: We recognize that sometimes the terms filtering and chaining are used
interchangeably. However, in our discussion here, we use filtering to refer to
only the MIME type filtering.

74 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Serviet MIME filtering

In servlet filtering, the servlet changes the MIME type of the response it
sends from text/html to a user-defined MIME type. When using text/html,
the Web application server would normally send the response straight back
to the browser. With our own MIME type, we configure the Web application
server to associate the MIME type with a particular servlet, and the output
of the first servlet is used as input to the second servlet. In this way, servlets
can filter their output as input to other servlets. Figure 58 shows the servlet
filtering process flow.

Response

= Serviett

Request
Browser Response q

- Servlet2

Web Application Server

Figure 58. Servlet filtering process flow

In taking the output of one servlet, and using it as input to another servlet,
this is useful for translation or substitution, for example, if you want to
convert from the XML of one servlet into HTML for the user. Servlet filtering
may have to be explicitly enabled in the Web Application Server through the
httpd.properties, enable.filters=true property.

See “Servlet interaction techniques” on page 426 for instructions on how to
set up this example.

Figure 59 shows how we can write to a specially defined MIME type from one
servlet. On the server, we define a second servlet to be the handler of this
MIME type (Figure 60).

Chapter 4. Servlets 75

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FilterFirst extends HttpServiet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/Deb");
PrintWriter out = res.getWriter();
out.printin("<H2>Serviet API Example - FilterFirst</H2><HR>");
out.printin("<H4>0utput from the FilterFirst serviet</H4>");
out.close();

Figure 59. Servlet filtering example — MIME caller

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FilterSecond extends HttpServiet {

protected void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType("text/html");

PrintWriter out = res.getWriter();

//reading the output from the first servlet..

BufferedReader in = req.getReader();

String line;

out.println("<HTML><BODY>");

while((line = in.readLine()) != null)

out.printin(line);
out.println("<H4>This part of the output produced
by the second filter servlet..</H4>");
out.println("</BODY></HTML>");
out.close();

Figure 60. Servlet filtering example — MIME handler

76 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet chaining

In servlet chaining, multiple servlets are called for a single client HTTP
request, each servlet providing part of the HTML output. Each servlet
receives the original client HTTP request as input, and each servlet produces
its own output independently. Figure 61 shows the servlet chaining process
flow.

B ChainerServlet

Serviet1 Response1

Browser

Composite
Response

Servlet2 Response2

Web Application Server

Figure 61. Servlet chaining process flow

WebSphere provides a ChainerServlet (in com.ibm.websphere.servlet.filter)
that is invoked through a servlet alias. This servlet is specified on the
original request, and multiple servlets are specified in an initialization
parameter as the target:

Parameter name: chainer.pathlist
Parameter value: /chainFirst /chainSecond

Each servlet is called in the order specified on the alias, and the output
HTML is made up of the output from all of the servlets.

Servlet filtering and chaining have the advantage of allowing the Web
developer to create modular servlets that can, for example, output standard
HTML headers and footers or provide common dynamic content for pages.

Figure 62 and Figure 63 show how two servlets can be used in collaboration
to produce a single output response. Notice that the second servlet must
process the output of the first servlet, in order to produce the desired
composite result. One possible application of this technique might be when
one servlet produces as its output an XML formatted response, and we chain
it to another servlet that wraps the appropriate style sheet around the XML
before sending it back to the browser.

Chapter 4. Servlets 77

78

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ChainerFirst extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>ChainerFirst</TITLE><BODY>");
out.printin("<H2>Serviet API Example - ChainerFirst</H2><HR>");
out.printin("<H4>This part of the output produced by
the first servlet..</H4>");

Figure 62. Servlet chaining: first servlet in the chain process

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ChainerSecond extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType(req.getContentType());
PrintWriter out = res.getWriter();
//Need this to read through the output of the last servlet:
BufferedReader in = req.getReader();
String line;
while((line = in.readLine()) != null)
out.printin(line);
out.printin("<H4>This part of the output produced
by the second serviet..</H4>");
out.println("</BODY></HTML>");
out.close();
}
}

Figure 63. Servlet chaining: second servlet in the chain process

See “Servlet interaction techniques” on page 426 for instructions on how to

set up this example.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Calling serviets from servlets

By using standard features of the Java language, such as the built-in
networking support of the java.net package, a servlet can access another
servlet's resources in a number of different ways.

A servlet can make an HTTP request to another servlet, and filter this
response back to the client. By opening a connection to a URL, an HTTP
request can be made, and a response received. In this way, the servlet is
acting as both a client and a server-side process, and it has access to
resources that could be on another server. There is really no magic here, any
Java program can theoretically perform this kind of function.

A servlet can also instantiate a servlet object, and call its public methods
directly, if the called servlet class is found relative to the original serviet’s
scope (which is usually on the same server). To instantiate a servlet object,
you can use these methods:

QGetting the object via servlet context: Using the ServletContext object, we
can get access to any other servlets that are part of the Web application
that we defined:

myHttpServiet myServiet =
getServletConfig().getServletContext().getServiet ("myServiet");

QUsing class instantiation: This is just standard Java class instantiation,
and we just have to find the servlet class in the class path of the Web
application:

myHttpServiet myServiet =
(myHttpServilet)Class.forName("myServlet").newInstance()

This technique was common in the JSDK 2.0. We will not show any
examples of this technique because request dispatching, available in
JSDK 2.1, is more preferred. It does, however, demonstrate one technique
for servlet-to-servlet interaction.

Response redirection

We can redirect the response of the servlet to another application resource.
This resource may be another servlet, an HTML page, or a JSP. The resource
(URL) must be available to the calling servlet, in the same servlet context.

There are two forms of response redirection that we discuss:

QSending a standard redirect: Using a response.sendRedirect ("myHtml.htm1")
page sends the HTML page as the response. If this page were another
servlet, that servlet does not have access to the original request object, but

Chapter 4. Servlets 79

its response would be sent. To have access to the request object, you must
use the request dispatching technique discussed below.

QSending a redirect to an error page: Here, an error code is sent as a
parameter of the method, as in response.sendError(response.SC_NO_CONTENT).
The error numbers are predefined constants of the response. The defined
error page is displayed with the appropriate error message. What this
page looks like is dependent on how this feature is configured for the
application.

Figure 64 shows a servlet which redirects its response conditionally to either
an error page, using the sendError method, or a standard HTML page, using
the sendRedirect method, depending on the contents of the request. This
servlet example is called from a form POST in an HTML page, generated by
the servlet HTMLFormGeneratorRedirect (subclass of
HTMLFormGenerator).

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HTMLFormHandlerRedirect extends HTMLFormHandler {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.println("<HTML><TITLE>HTMLFormHandler</TITLE></BODY>");

out.printin("<H2>Serviet API Example -

HTMLFormHand1lerRedirect</H2><HR>") ;

out.println("Hi " + req.getParameter("firstname") + ",<P>");

String title = req.getParameter("title");

if (title.equals("Web Architect"))

res.sendError(res.SC_BAD_REQUEST, "Sorry, but Web architects can't

see the page");

else res.sendRedirect ("HTMLFormHandlerRedirect.htm1");

out.printin("And have worked with the following tools:
");

out.println("</BODY></HTML>");

Figure 64. Response redirection servlet: redirecting using two techniques

80 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Request dispatching

When building a Web application, it is often useful to forward the processing
of a request to another servlet, or to include the output of another servlet in
the response. The RequestDispatcher interface provides a mechanism to
accomplish this, by defining a request dispatcher object that receives a
request from the client and sends it to any resource to be further processed.

Similar to response redirection, this resource may be another active server
resource, such as a servlet or JSP file, and the resource (URL) must be
available to the calling servlet, in the same servlet context. Unlike response
redirection, however, the request object is available to the called resource, in
other words, it remains in scope.

We define an active application resource as one which can handle the
request, such as another servlet or a JSP file (something in this case which
has access to the request object). A passive resource would be an HTML file,
which cannot explicitly handle the request, but is available to the
application, usually in the document root.

An object implementing the RequestDispatcher interface may be obtained by
the ServletContext through the getRequestDispatcher method. This method
takes a String argument describing a path within the scope of the
ServletContext. The path must be relative to the root of the ServletContext.

There are two ways to use a request dispatcher object:

QRequestDispatcher.forward: Forwards the responsibility of processing the
request and creating the response to another active resource. It is illegal
to use this method if a reference to the PrintWriter output object has
already been made (which is responsible for sending the response).
HTMLFormHandlerDispatcherl (Figure 65) calls DispatcherForward
(Figure 66) using the forward method to hand off the responsibility of
processing the request and sending the response from the calling servlet
to the called servlet.

QRequestDispatcher.include: The include method of the RequestDispatcher
interface provides the calling servlet the ability to respond to the client,
but to use the included object’s resource for part of the reply. Here, it can
have the PrintWriter output object open, because the calling servlet is still
responsible for handling the request. The called resource, however, cannot
set headers in the client response. HTMLFormHandlerDispatcher2
(Figure 67) calls DispatcherlInclude (Figure 68) where we are using these
two servlets together to produce a single response. Control is returned to
the calling servlet.

Chapter 4. Servlets 81

In both the forward and include methods, the request object remains in the
scope of the called object. The primary point to remember here is that when
using forward, you must handle all writing of the response in the called
servlet. When using include, you can write in either, or both, but you can only
set the headers in the calling servlet.

The HTMLFormHandlerDispatcherX servlets are invoked from an HTML
form generated by appropriate HTMLFormGeneratorDisplatcherX servlets.

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HTMLFormHandlerDispatcherl extends HttpServlet {

public void service(HttpServietRequest req, HttpServletResponse res)
throws ServletException, IOException {
RequestDispatcher rd = getServletContext().getRequestDispatcher
("/servlet/itso.servjsp.servletapi.DispatcherForward");
rd.forward(req, res);
}
}

Figure 65. Request dispatching servlet: calling servlet through forward method

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DispatcherForward extends HttpServlet {

public void service(HttpServietRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><BODY>Start of FORWARDED request");
out.printin("<P>Hi " + req.getParameter("firstname"));
out.println("
I see you are a " + reqg.getParameter("title"));
out.printin("<P>End of request</BODY></HTML>");

Figure 66. Request dispatching servlet: called servlet through forward method

82 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HTMLFormHandlerDispatcher2 extends HttpServlet {

public void service(HttpServietRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><BODY>Start of INCLUDED request");
out.printin("<P>Hi " + req.getParameter("firstname"));
out.flush();
RequestDispatcher rd = getServletContext().getRequestDispatcher
("/servlet/itso.servjsp.servietapi.DispatcherInclude");

rd.include(req, res);
out.printin("<P>End of request</BODY></HTML>");

}

}

Figure 67. Request dispatching servlet: calling servlet through include method

Note: You must flush the output before including the servlet, otherwise the
output may be in the wrong order.

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DispatcherInclude extends HttpServlet {

public void service(HttpServietRequest req, HttpServletResponse res)
throws ServletException, IOException {
PrintWriter out = res.getWriter();
out.println("<HR>I see you are a " + reqg.getParameter("title"));
out.printin("<P>End of include<HR>");
}
}

Figure 68. Request dispatching servlet: called servlet through include method

Chapter 4. Servlets 83

Resource usage

84

In request dispatching, discussed above, we can only dispatch to another
active application resource, such as another servlet. We described passive
application resources as elements such as HTML files.

We have shown that we can redirect to an application’s resources, such as
HTML files. But how do we get access to this application’s resources directly,
without having to redirect?

We can interact with an application’s passive resources through the servlet
context. The ServletContext object allows us access to these resources
through the getResource or getResourceAsStream methods:

QgetResource: This method returns a URL object to a resource known to the
servlet context, and we can access the resource as a URL object:

URL url = servletContext.getResource("resourcefilename");

QgetResourceAsStream: This method allows us to read the resources body
directly as an InputStream that we can manipulate:

InputStream is = servletContext.getResourceAsStream("resourcefilename");

The ResourceHandler servlet (Figure 69) shows how we can implement these
objects. In this example, we are accessing the HTML file shown in Figure 70.
We reference it as a URL, through the getResource method, and also as an
input stream, through the getResourceAsStream method.

Note that only the TITLE tag of the servlet is displayed in the output, not the
title of the included HTML file.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;

import java.io.*;

import java.net.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ResourceHandler extends HTMLFormHandler {

public void service(HttpServietRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>HTMLFormHandlerResource</TITLE></BODY>");
out.printin("<H2>Serviet API Example -
HTMLFormHand1erResource</H2><HR>") ;
ServletContext sc = getServletContext();
URL url = sc.getResource("HTMLFormHandlerRedirect.html1");
out.println("URL name: " + url.getFile());
out.printin("<HR> Now the input file html:");
BufferedReader in = new BufferedReader(new

InputStreamReader(sc.getResourceAsStream("ResourceHandlerHTML.htm1")));

String str;

while ((str = in.readLine()) != null)
out.printlin(str);

in.close();

out.println("<HR></BODY></HTML>");

Figure 69. Resource handler servlet: accessing passive application resources

<HTML>

<HEAD>

<TITLE>Servlet Examples - ResourceHandlerHTML</TITLE>
</HEAD>

<BODY>

<h4> Just a plain-old static HTML page </h4>

</BODY>

</HTML>

Figure 70. Resource handler html file: application resource

Chapter 4. Servlets

85

Sharing of objects in scope

We have seen that servlets may interact by calling each other’s methods,
redirecting, and dispatching (forwarding) their requests. Servlets may also
communicate by accessing objects (attributes) which they have in common
with other servlets. Attributes are available to servlets within the scope of
request, session, and application. This section describes the ways in which
objects may be shared at these different levels.

Request level scope

We have already seen how request level scope can be implemented, through
the RequestDispatcher forward method. Here, the request object stays in
scope as it is passed from resource to resource.

But in addition to the objects that are natively part of the request, how do we
pass other objects along with the request? We do this by using the
request.setAttribute method. This method allows us to store an object type by
name, which we can later reference by that name as we forward the request
to another servlet for processing. The object we store can be of a user-defined
type, such as a JavaBean, which is accessible within the called servlet.
Objects at this level remain in scope as long as the request is active, which is
until the server sends back the response.

Figure 71 shows how we can set a request attribute called count. This code
would be found in a calling (forwarding from) servlet in the request
dispatching process.

//calledCount is the value we are storing to the attribute

int calledCount;

//Cast our int object to Integer, because cannot store native types
request.setAttribute("count", new Integer(calledCount));

Figure 71. Request attribute setting code snippet

Figure 72 shows how we can retrieve this attribute. This code would be found
in a called (forwarded to) servlet in the request dispatching process.

//getting count attribute, and casting back to an int
Integer tempCount = (Integer)request.getAttribute("count");
int calledCount = tempCount.intValue();
out.println("Called count is: " + calledCount);

Figure 72. Request attribute getting code snippet

86 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Session level scope

We have discussed the HttpSession object in “User sessions” on page 67. We
showed how multiple requests from the same user to the same servlet can
maintain state between request invocations. This information was managed
at the user session level, and is referred to as session scope.

Session objects may be shared among other servlets and resources as well,
within the scope of the same user. The only restriction is that the session
object can only be shared among servlets that are within the same
application server context of the original session; but this is true for all our
servlet resources.

Session scope sharing example

In this example, we use the UserSessionCounterSetter (Figure 73) to generate
and update the session counter with a variable each time that servlet is
called by the user.

We also create another servlet, UserSessionCounterGetter (Figure 74), which
gets the counter set in the UserSessionCounterSetter servlet. This
demonstrates how these different servlets interact with the same
SaveServletStats session object, through the HttpSession object.

We have also used a variable named calledCount, used in many examples
thus far, to demonstrate the different values that are set when a counter is
incremented by the servlet instance verses the user instance.

Chapter 4. Servlets 87

package itso.servjsp.servletapi
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UserSessionCounterSetter extends HttpServlet {
private int calledCount;

public void init(ServietConfig config) throws ServletException {
super.init(config);
calledCount = 0;

}

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType ("TEXT/HTML");
PrintWriter out = res.getWriter();

HttpSession session = req.getSession(true);
if (session.isNew() || session.getValue("usersession")==null) {
session.putValue("usersession", new SaveServletStats());
}
SaveServletStats ustats =
(SaveServletStats)session.getValue("usersession");

calledCount++;

ustats.calledCount++;

out.println("<HTML><TITLE>SessionCounter</TITLE><BODY>");

out.println("<H4>This servlet has been called: </H4>
");

out.printin("" + calledCount + " times since the servlet was Toaded
THIS servlet life-cycle session
");

out.printin("" + ustats.calledCount + " times since the servlet was
loaded by this user
");

out.println("</BODY></HTML>");

out.close();

Figure 73. User session counter servlet: set user session data

88 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UserSessionCounterGetter extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType ("TEXT/HTML");
PrintWriter out = res.getWriter();
HttpSession session = req.getSession(true);
if (session.isNew() || session.getValue("usersession")==null) {
session.putValue("usersession", new SaveServletStats());
}
SaveServletStats ustats =
(SaveServletStats)session.getValue("usersession");
out.println("<HTML><TITLE>SessionCounter</TITLE><BODY>");
out.printin("<H4>SessionCounter - UserSessionCounterGetter
servliet</H4>");
out.printin("" + ustats.calledCount + " times since the
UserSessionCounter serviet was loaded by this user
");
out.println("</BODY></HTML>");
}
}

Figure 74. User session counter servlet: get user session data

Application level scope

We introduced the term application context, where we described how Web
applications are a grouping of servlets and resources that can share
information and interact. This concept of Web applications is expressed in the
ServletContext object.

The ServletContext object defines a servlet’s view of the Web application
within which the servlet is running, and gives the servlet the ability to access
resources that are explicitly available to it. Using such an object, a servlet
can log events, obtain URL references to resources, and get and set attributes
at the application level that are available to other servlets in the same
context, in much the same way as we set attributes at the request and
session level.

Chapter 4. Servlets 89

The ServletContext is rooted at a specified path within a Web server. For
example, a context could be located at http://mywebserver/itsoservjsp. All
requests that start with the /itsoservjsp request path, which is known as the
context path, will share the same servlet context.

ServietContext scope

Only one instance of a ServletContext may be available to the servlets of a
Web application. Servlets that exist in WebSphere that are not part of a Web
application are implicitly part of a default Web application called default_app
in WebSphere Application Server.

ServletContext attributes

The Web application, through the ServletContext object, can also put object
attributes into the context by name, using the setAttribute method. Any
object in the context is available to other servlets that are part of the Web
application through the getAttribute method. These objects may be of any
object type, even JavaBeans.

ServietContext example

By being able to use the ServletContext object, we can share data among
servlets at the application level, within the same servlet context.

In the next example, we demonstrate this servlet interaction technique. We
have two simple servlets, ContextSetAttribute (Figure 75) that sets an
attribute in the ServletContext, and ContextGetAttribute (Figure 76) that gets
the attribute of the servlet context. These two servlets do not interact
directly, but by the sharing of data in the ServletContext object.

Every time the ContextSetAttribute servlet is invoked, it increments a
counter, and stores it in the servlet context, which is available to all servlets
in the application. When ContextGetAttribute is called, it retrieves the last
attribute value set, and prints it to the response.

We call this kind of scope application level scope. For the objects which we
store in the session context, we can say they have application level scope.
This concept ties directly into the application level scope of a JavaBean as
discussed in Chapter 5, “JavaServer Pages” on page 95.

Servlets loaded by System class loader cannot be used for inter-servlet
communication because they are not recognized in the servlet context, even
though they may be part of the same application. To get a list of all other
servlets in the servlet context, you can use the getServletNames method.

90 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ContextSetAttribute extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, I0Exception {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SetContextAttribute</TITLE><BODY>");
out.printin("<H4>ServietContext example - Attribute Setter</H4><HR>");
ServletContext sc = getServletContext();
int calledCount = 0;
if (sc.getAttribute("calledCount") != null) {
Integer tempCount = (Integer)sc.getAttribute("calledCount");
calledCount = tempCount.intValue();
}
out.printin("ServletContext, server info: " + sc.getServerInfo() +
"
");

out.printin("SerlvetContext, real path: " + sc.getRealPath("") + "
");

out.printin("The attribute 'calledCount' value we retrieved: " +
calledCount + "
");

calledCount++;

sc.setAttribute("calledCount", new Integer(calledCount));

out.printin("We set the ServletContext attribute 'calledCount' to: " +
sc.getAttribute("calledCount"));

out.println("</BODY><HTML>");

Figure 75. Context set attribute servlet: setting application scope attribute

Chapter 4. Servlets

91

package itso.servjsp.servletapi;
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ContextGetAttribute extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SetContextAttribute</TITLE><BODY>");
out.printin("<H4>ServietContext example - Attribute Getter</H4><HR>");
ServletContext sc = getServletContext();
int calledCount = 0;
if (sc.getAttribute("calledCount") != null) {
Integer tempCount = (Integer)sc.getAttribute("calledCount");
calledCount = tempCount.intValue();
}
out.printin("The attribute 'calledCount' value we retrieved: " +
calledCount + "
");
out.println("</BODY><HTML>");
out.close();

Figure 76. Context get attribute servlet: getting application scope attribute

New features of Java Servlet API 2.2

The following is a summary of new features available in the Java Servilet API
2.2. We did not use the API 2.2 convention in this chapter, because the
WebSphere Application Server currently supports only Version 2.1.

Changes made to the specification
Qlntroduction of the Web application concept
Qlntroduction of the Web application archive files
Qlntroduction of response buffering
Qlntroduction of distributable servlets
QADbility to get a RequestDispatcher by name
QAbility to get a RequestDispatcher using a relative path

92 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Qlnternationalization improvements

QMany clarifications of distributed servlet engine semantics

Changes made to the API

QAdded the getServletName method to the ServletConfig interface to allow
a servlet to obtain the name by which it is known to the system, if any.

QAdded the getlnitParameter and getlnitParameterNames method to the
ServletContext interface so that initialization parameters can be set at
the application level to be shared by all servlets that are part of that
application.

QAdded the getLocale method to the ServletRequest interface to aid in
determining what locale the client is in.

QAdded the isSecure method to the ServletRequest interface to indicate
whether or not the request was transmitted via a secure transport such as
HTTPS.

QReplaced the construction methods of UnavailableException, as existing
constructor signatures caused some amount of developer confusion. These
constructors have been replaced by simpler signatures.

QAdded the getHeaders method to the HttpServletRequest interface to
allow all the headers associated with a particular name to be retrieved
from the request.

QAdded the getContextPath method to the HttpServietRequest interface so
that the part of the request path associated with a Web application can be
obtained.

QAdded the isUserInRole and getUserPrinciple methods to the
HttpServletRequest method to allow servlets to use an abstract role based
authentication.

QAdded the addHeader, addIntHeader, and addDateHeader methods to the
HttpServletResponse interface to allow multiple headers to be created
with the same header name.

QAdded the getAttribute, getAttributeNames, setAttribute, and
removeAttribute methods to the HttpSession interface to improve the
naming conventions of the API. The getValue, getValueNames, setValue,
and removeValue methods are deprecated as part of this change.

Chapter 4. Servlets 93

Summary

We have covered a lot of ground in this chapter:

QWe provided an overview of the Java Servlet API, and described how
servlets interact with the Web application server.

QWe described the servlet life-cycle, and discussed the important serviet
life-cycle methods of init, service, doGet, doPost, and destroy.

QWe introduced a number of servlet examples. In these examples, we
covered the topics of:

= Life-cycle execution

= Persistence

= Multi-threading

= Servlet initialization

= State maintaining mechanisms, including:

= Cookies
= URL rewriting
= HttpSession objects

QWe discussed various servlet interaction techniques, including:
= Servlet collaboration
= Calling servlets from servlets
= Response redirection
= Request dispatching
= Resource usage
= Sharing of object in scope

94 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

5 JavaServer Pages

In this chapter, we discuss JavaServer Pages and how to use the JavaServer
Pages Version 1.0 specification to create dynamic Web pages.

This chapter begins with a high-level introduction to JavaServer Pages, how
they interact with the application server, and what benefits the technology
offers over previous technologies. Later in the chapter, we provide details on
JavaServer Page syntax elements and offer simple working examples which
demonstrate the use of these elements. Finally, we describe some of the
differences between the JSP 0.91 specification and the 1.0 specification.

In addition to reading this chapter, you may also want to refer to Appendix A,
“JSP tag syntax” on page 401 for a summary of JSP tags and syntax.

If you are unfamiliar with Java servlets, we suggest you read “Servlets” on
page 41 prior to reading this chapter.

If you want to run the examples presented here, refer to Chapter 6,
“WebSphere Application Server” on page 123 and to Chapter 7, “Development
and testing with VisualAge for Java” on page 167. All the examples are
provided on the Internet (see Appendix C, “Using the additional material” on
page 417).

© Copyright IBM Corp. 2000 95

Overview

JavaServer Pages (JSPs) are similar to HTML files, but provide the ability to
display dynamic content within Web pages. JSP technology was developed by
Sun Microsystems to separate the development of dynamic Web page content
from static HTML page design. The result of this separation means that the
page design can change without the need to alter the underlying dynamic
content of the page. This is useful in the development life-cycle because the
Web page designers do not have to know how to create the dynamic content,
but simply have to know where to place the dynamic content within the page.

To facilitate embedding of dynamic content, JSPs use a number of tags that
enable the page designer to insert the properties of a JavaBean object and
script elements into a JSP file. A number of development tools, such as the
WebSphere Studio Page Designer, can be used to visually create a page
containing dynamic contents based on the properties of Java beans (this is
covered in more detail in Chapter 8, “Development with WebSphere Studio”
on page 227).

Here are some of the advantages of using JSP technology over other methods
of dynamic content creation:

QSeparation of dynamic and static content

This allows for the separation of application logic and Web page design,
reducing the complexity of Web site development and making the site
easier to maintain.

QPlatform independence

Because JSP technology is Java-based, it is platform independent. JSPs
can run on any nearly any Web application server. JSPs can be developed
on any platform and viewed by any browser because the output of a
compiled JSP page is HTML.

aComponent reuse

Using JavaBeans and Enterprise JavaBeans, JSPs leverage the inherent
reusability offered by these technologies. This enables developers to share
components with other developers or their client community, which can
speed up Web site development.

QScripting and tags

JSPs support both embedded JavaScript and tags. JavaScript is typically
used to add page-level functionality to the JSP. Tags provide an easy way
to embed and modify JavaBean properties and to specify other directives
and actions.

96 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Throughout this book, we use the JSP 1.0 specification; however, WebSphere
Application Server 3.02 and Visual Age for Java 3.02 support both JSP 1.0
and JSP 0.91 specifications.

At the time of writing, the JSP 1.1 Specification - Final Release was available
at http://java.sun.com/products/jsp/.

How JavaServer Pages work

JavaServer Pages are made operable by having their contents (HTML tags,
JSP tags and scripts) translated into a servlet by the application server. This
process is responsible for translating both the dynamic and static elements
declared within the JSP file into Java servlet code that delivers the
translated contents through the Web server output stream to the browser.

Because JSPs are server-side technology, the processing of both the static and
dynamic elements of the page occurs in the server. The architecture of a
JSP/serviet-enabled Web site is often referred to as thin-client because most
of the business logic is executed on the server.

The following process outlines the tasks performed on a JSP file on the first
invocation of the file or when the underlying JSP file is changed by the
developer (Figure 77):

QThe Web browser makes a request to the JSP page.
QThe JSP engine parses the contents of the JSP file.

QThe JSP engine creates temporary servlet source code based on the
contents of the JSP. The generated servlet is responsible for rendering the
static elements of the JSP specified at design time in addition to creating
the dynamic elements of the page.

QThe servlet source code is compiled by the Java compiler into a serviet
class file.

QThe servlet is instantiated. The init and service methods of the servlet are
called, and the servlet logic is executed.

QThe combination of static HTML and graphics combined with the dynamic
elements specified in the original JSP page definition are sent to the Web
browser through the output stream of the servlet’'s response object.

Chapter 5. JavaServer Pages 97

Web Web Server
Browser
JSP JSP Java
Request » Source » Parser » Source
r— — — =1 *
I Web I JSP Java
Page
! | serviet ~<&—| compiler

Figure 77. The JSP processing life-cycle on first-time invocation

Subsequent invocations of the JSP file will simply invoke the service method
of the servlet created by the above process to serve the content to the Web
browser. The servlet produced as a result of the above process remains in
service until the application server is stopped, the servlet is manually
unloaded, or a change is made to the underlying file, causing recompilation.

In the source code examples provided with this book, we have included the
compiled JSP source for the DateDisplay.jsp (Figure 79 on page 108) in the
file _DateDisplay_xjsp.java. This code is useful in understanding the
relationship between JSPs and servlets and to help you understand the role
of the JSP engine in converting a JSP to a servlet.

Components of JavaServer Pages

JavaServer Pages are composed of standard HTML tags and JSP tags. The
available JSP tags defined in the JSP 1.0 specification are categorized as
follows:

QDirectives
QDeclarations
QScriptlets
aComments
QExpressions

This section describes each of these categories in more detail.

98 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTML tags

JavaServer Pages support all HTML tags. For a listing of HTML tags, refer
to your HTML manual.

JSP directives

A JSP directive is a global definition sent to the JSP engine that remains
valid regardless of any specific requests made to the JSP page. A directive
always appears at the top of the JSP file, before any other JSP tags. This is
due to the way the JSP parsing engine produces servlet code from the JSP
file.

The syntax of a directive is:

<%0 directive directive_attr_name = value %>

Directives are grouped as follows:

page
The page directive defines page dependent attributes to the JSP engine.

<%@ page language="java" buffer="none" isThreadSafe="yes"
errorPage="/error.jsp" %>

The attributes of the page directive are listed in Table 1.

Table 1. Attributes of the page directive

Attribute Name | Description

language Identifies the scripting language used in scriptlets in the JSP
file or any of its included files. JSP supports only the value of
“java”. WebSphere extensions provide support for other
scripting languages.

<%0 page language = "java" %>

extends The fully-qualified name of the superclass for which this JSP
page will be derived. Using this attribute can effect the JSP
engine’s ability to select specialized superclasses based on the
JSP file content, and should be used with care.

import When the language attribute of "java" is defined, the import
attribute specifies the additional files containing the types used
within the scripting environment.

<%@ page import = "java.util.*" %>

Chapter 5. JavaServer Pages 99

Attribute Name

Description

session
"true" | "false"

If true, specifies that the page will participate in an HTTP
session and enables the JSP file access to the implicit session
object. The default value is true.

buffer Indicates the buffer size for the JspWriter. If none, the output
"none" | from the JSP is written directly to the ServletResponse
"sizekb" PrintWriter object. Any other value results in the JspWriter
buffering the output up to the specified size. The buffer is
flushed in accordance with the value of the autoFlush attribute.
The default buffer size is no less than 8kb.
autoFlush If true, the buffer will be flushed automatically. If false, an

"true" | "false"

exception is raised when the buffer becomes full.
The default value is true.

isThreadSafe
"true" | "false"

If true, the JSP processor may send multiple outstanding client
requests to the page concurrently. If false, the ISP processor
sends outstanding client requests to the page consecutively, in
the same order in which they were received.

The default is true.

info Allows the definition of a string value that can be retrieved
using Servlet.getServletinfo().

errorPage Specifies the URL to be directed to for error handling if an
exception is thrown and not caught within the page
implementation. In the JSP 1.0 specification, this URL must
point to a JSP page.

isErrorPage Identifies that the JSP page refers to a URL identified in

"true" | "false"

another JSP’s errorPage attribute. When this value is true, the
implicit variable exception is defined, and its value set to
reference the Throwable object of the JSP source file which
causes the error.

contentType

Specifies the character encoding and MIME type of the JSP
response. Default value for contentType is text/html. Default
value for charSet is 1ISO-8859-1. The syntax format is:
contentType="text/html; charSet=150-8859-1"

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

include

The include directive allows substitution of text or code to occur at
translation time. You can use the include directive to provide a standard
header on each JSP page, for example:

<%@ include file="copyright.html" %>

The include directive has the attributes shown in Table 2.

Table 2. Attributes for the include directive

Attribute Name | Description

file Directs the JSP engine to substitute the text or code specified by
file or URL reference. The URL reference can be another JSP
file.
taglib

The taglib directive allows custom extensions to be made to the tags known
to the JSP engine. This tag is an advanced feature. Refer to the Sun
JavaServer Page 1.0 specification for more information about this tag.

Declarations

A declaration block contains Java variables and methods that are called from
an expression block within the JSP file. Code within a declaration block is
usually written in Java, however, the WebSphere application server supports
declaration blocks containing other script syntax. Code within a declaration
block is often used to perform additional processing on the dynamic data
generated by a JavaBean property.

The syntax of a declaration is:

<%! declaration(s) %>

For example:

!

private int getDateCount = 0;

private String getDate(GregorianCalendar gcl)
{ ...method body here...}

o\

<

o\
v

Chapter 5. JavaServer Pages 101

Scriptlets

JSP supports embedding of Java code fragments within a JSP by using a
scriptlet block. Scriptlets are used to embed small code blocks within the JSP
page, rather than to declare entire methods as performed in a declarations
block. The syntax for a scriptlet is:

<% scriptlet %>

The following example uses a scriptlet to output an HTML message based on
the time of day. You can see that the HTML elements appear outside the
script declarations.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM)
%>
How are you this morning ?
<% } else
{ %>
How are you this afternoon ?
} %>

N

<

°
N

Comments

You can use two types of comments within a JSP. The first comment style,
known as an output comment, enables the comment to appear in the output
stream on the browser. This comment is an HTML formatted comment whose
syntax is:

<!-- comments ... -->
The second comment style is used to fully exclude the commented block from

the output and is commonly used when uncommenting a block of code that so
that the commented block is never delivered to the browser. The syntax is:

0

<%-- comment text --%>

You can also create comments containing dynamic content by embedding a
scriptlet tag inside a comment tag. For example:

<!-- comment text <%= expression %> more comment text ->

Expressions

Expressions are scriptlet fragments whose results can be converted to String
objects and subsequently fed to the output stream for display in a browser.
The syntax for an expression is:

<%= expression %>

102 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Typically, expressions are used to execute and display the String
representation of variables and methods declared within the declarations
section of the JSP, or from JavaBeans that are accessed by the JSP. If the
conversion of the expression result is unsuccessful, a ClassCastException is
thrown at the time of the request.

The following example calls the incrementCounter method declared in the
declarations block and prints the result.

<%= incrementCounter() %>
All primitive types such as short, int, and long can be automatically

converted to Strings. Your own classes must provide a toString method for
String conversion.

WebSphere extensions to JSP scripting

WebSphere Application Server Version 3 offers a number of enhancements
over the JSP 1.0 specification and includes the ability to:

QUse non-Java scripting languages within JSP pages.

QUse multiple scripting languages within the same JSP file.
You can use any of the Bean Scripting Framework (BSF) 1.0 compliant
languages in your JSP by specifying it within the language_name attribute of

the page directive. Information about using BSF compliant scripting
languages can be found at

http://www.alphaWorks.ibm.com/tech/bsf

See Table 3 for semantics of using multiple scripting languages within a JSP.

Table 3. WebSphere scripting language extensions

SpecifySyntax

<jsp:scriptlet language="language_name">

<jsp:expr language="language_name">

<jsp:declaration language="language_name">

Chapter 5. JavaServer Pages 103

http://www.alphaWorks.ibm.com/tech/bsf

Accessing implicit objects

When you are writing scriptlets or expressions, there are a number of objects
that you have automatic access to as part of the JSP standard without having
to fully declare them or import them. Table 4 summarizes these implicit
objects available in JSP 1.0.

You can use these implicit objects directly in your code. The following code
snippet is an example of accessing the out implicit object to display a line of
text in the browser:

out.printin("Here is the Date Display JSP");

Table 4. Summary of implicitly declared objects

Object name | Type Description

request javax.servlet.HttpServletRequest The request triggering the
service invocation

response javax.servlet.HttpServletResponse The response to the request

pageContext javax.servlet.jsp.PageContext Page context of this JSP. By
accessing this object, you
have access to a number of
convenience objects and
methods such as
getException, getPage, and
getSession providing an
explicit method of
accessing JSP
implementation-specific
objects.

session javax.servlet.http.HttpSession Session object created for
the requesting client

application javax.servlet.ServletContext The servlet context as
obtained from the servlet
configuration object

out javax.servlet.jsp.JspWriter Output stream writer
config javax.servlet.ServletConfig ServletConfig for this JSP
page java.lang.Object Instance of this page’s

implementation class
processing the current
request

104 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Putting it all together

Figure 78 shows an example which combines many of the JSP components
previously discussed in this chapter. In the example, the current date is
displayed together with a count of the number of times the getDate function
has been called.

Note that the counter continues to increment until the servlet is manually
stopped, the Application Server is restarted, or the JSP page is modified,
forcing a page compilation to occur.

Note also that the calledCount variable is a private variable declared outside
of the getDate function. This has implications in a multi-user environment,
as each browser accessing the servlet causes the count to be updated, and is
therefore not thread-safe. For thread-safety, the variable should be accessed
in an access function that implements the synchronized modifier.

Chapter 5. JavaServer Pages 105

106

<html>
<title>Date Display</title>
<body>

<I--DIRECTIVES -->

<%@ page language = "java" %>

<%0 page import = "java.util.*" %>
<%@ page contentType = "TEXT/HTML" %>

<l--SCRIPTLETS-->

<H3>

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM)
{5
How are you this morning,
<%} else {%>
How are you this afternoon,
<%}

%>

WebSphere 3 User ?

</H3>

<HR>

<l--ACCESSING IMPLICIT OBJECTS -->
<% out.printin("Here is the Date Display JSP"); %>

<I--DECLARATIONS -->

o
<%!

private int calledCount = 0;
private String getDate(GregorianCalendar gcalendar) {

StringBuffer dateStr = new StringBuffer();
dateStr.append(gcalendar.get(Calendar.DATE));
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.MONTH) + 1);
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.YEAR));
return (dateStr.toString());

1

private int incrementCounter() {
return (++calledCount);
}

o
%>

<H1> Today's Date is: <%= getDate(new GregorianCalendar()) %> </H1>
<H1> This page has been called: <%= incrementCounter() %> time(s)</H1>
</body>

</html1>

Figure 78. Sample JSP demonstrating JSP components (DateDisplay.jsp)

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

JSP interactions

There are a number of methods that a JSP can use to interact with the Web
environment. Primarily, a JSP will use a JavaBean object to present dynamic
content. However, a JSP can also invoke another JSP page by URL, by
including another JSP or HTML page in the include directive, or by calling a
servlet.

This section describes these interactions.

Invoking a JSP by URL

A JSP can be invoked by URL, from within the <FORM> tag of a JSP or

HTML page, or from another JSP.

To invoke a JSP by URL, use the syntax:
http://servername/path/filename.jsp

For example, to invoke the DateDisplay.jsp, use this URL:

http://localhost/itsoservjsp/DateDisplay.jsp
http://Tocalhost:8080/itsoservjsp/DateDisplay.jsp

<
<

== WebSphere
VA Java

Calling a servilet from a JSP

You can invoke a servlet from a JSP either as an action on a form, or directly
through the jsp:include or jsp:forward tags.

Form action

Typically, you want to call a servlet as a result of an action performed on a
JavaServer Page. For example, you may want to process some data entered
by the user in an HTML form when they click on the Submit button.

To invoke a servlet within the HTML <FORM> tag, the syntax is:

<FORM METHOD="POST|GET" ACTION="application URI/JSP_URL">
<!-- Other tags such as text boxes and buttons go here -->
</FORM>

For example:

<form method="POST"
action="/itsoservjsp/servlet/itso.servjsp.jspsamples.DateDisplayServiet">

Figure 79 shows the code to call the DateDisplayServlet from within a JSP.

Chapter 5. JavaServer Pages 107

<HTML>

<HEAD> <TITLE> Call Servlet from JSP </TITLE> </HEAD>

<CENTER>

<H1> Call Servlet from JSP </H1>

<FORM method="POST"
action="/itsoservjsp/servlet/itso.servjsp.jspsamples.DateDisplayServiet">

<H2> DateDisplay Servlet Launcher </H2>

Click the button below to display the current date

<p> <INPUT type="submit" name="CALL_SERVLET" value="Call the Servlet">
</FORM>
</CENTER>
</BODY></HTML>

Figure 79. Sample JSP invoking a servlet from a form (JspToServlet.jsp)

JSP include tag
You can include the output of a servlet in a JSP using the jsp.include tag:

<jsp:include page="/servlet/itso.servjsp.servletapi.SHTMLServiet" />

Figure 80 shows a JSP that includes the servlet that we used in Figure 57 on
page 73.

<HTML><BODY>

<H2> JSP to Servlet </H2>

<HR>

<jsp:include page="/servlet/itso.servjsp.servletapi.SHTMLServlet" />
<HR>

<H2>End of servlet include</H2>

</HTML></BODY>

Figure 80. Sample JSP including a servlet (Isplnclude.jsp)

When you run this JSP the output of the servlet is imbedded in the JSP
output.

JSP forward tag
You can forward processing from a JSP to a servlet using the jsp.forward tag:

<jsp:forward page="/servlet/itso.servjsp.servletapi.SHTMLServiet" />

Figure 81 shows a JSP that forwards processing to the servlet that we used
in Figure 57 on page 73.

108 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<HTML><BODY>

<H2> JSP to Servlet </H2>

<HR>

<jsp:forward page="/servlet/itso.servjsp.servlietapi.SHTMLServlet" />
<HR>

<H2>End of servlet include</H2>

</HTML></BODY>

Figure 81. Sample JSP forwarding processing to a servlet (JspForward.jsp)

When you run this JSP, the output of the processing servlet replaces the
output of the JSP. All output of the JSP is lost.

Calling a JSP from a servlet

Figure 82 shows the DateDisplayServlet's doPost method, which is called
when the Submit button is clicked. The servlet simply calls the sendRedirect
method of the HttpServletResponse object, directing the response to the
DateDisplay.jsp. This example simply demonstrates the redirection
capability of the response object. In reality, the doPost method could invoke
other methods which process the form data, instantiate other beans that
perform the business logic, and finally redirect the user to the JSP.

import javax.servlet.http.*;
public class DateDisplayServlet extends HttpServiet {

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws javax.servlet.ServletException, java.io.IOException {
// Redirect to the DateDisplay JSP page
resp.sendRedirect ("/DateDisplay.jsp");

// alternate call to JSP
// getServletContext().getRequestDispatcher("/DateDisplay.jsp").forward(req,resp);

}

Figure 82. DateDisplayServlet demonstrating simple redirection

You can also use the RequestDispatcher object (see “Request dispatching” on
page 81) to invoke a JSP:

getServletContext ().getRequestDispatcher("/DateDisplay.jsp").forward(req,resp);

Chapter 5. JavaServer Pages 109

PageListServilet Class

IBM provides the PageListServlet class in the com.ibm.servlet package. This
is a subclass of HttpServlet that provides a callPage method to invoke JSPs.

Servlets generated by the WebSphere Studio wizards are subclasses of the
PageListServlet class. Such a servlet must have an associated servlet
configuration file (.servlet) that specifies all the possible JSPs that the
servlet may invoke. See “Servlet configuration file” on page 59 for a
description.

A typical call to invoke a JSP from a PageListServlet is:

callPage("myJSP", request, response);

The name of the JSP can be a short name (alias) that is assigned to the real
file name of the JSP in the servlet configuration file (Figure 83).

<?xml version="1.0"?>
<!-- This file was generated by IBM WebSphere Studio 3.0.2 -->
<servlet>
<page-Tlist>
<default-page>
<uri>/itsoservjsp/photo/photoResults.jsp</uri>
</default-page>
<error-page>
<uri>/itsoservjsp/photo/photoError. jsp</uri>
</error-page>
<page>
<uri>/itsoservjsp/photo/photoNoData.jsp</uri>
<page-name>com.ibm.webtools.runtime.NoDataException</page-name>
</page>
<page>
<uri>/itsoservjsp/photo/photoSpecial.jsp</uri>
<page-name>myJSP</page-name>
</page>
</page-list>
<code>itso.servjsp.photo.photo</code>
</serviet>

Figure 83. Servlet configuration file with JSP names

Because the JSP names used in the callPage method of the servlet are
aliases, a change of directory can be accomplished by changing the servlet
configuration file, without touching the servlet code.

110 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Invoking a JSP from a JSP

To invoke a JSP file from another JSP file, you can:
aSpecify the URL of the second JSP file on the FORM ACTION attribute:
<FORM action="/itsoservjsp/DateDisplay.jsp">
aSpecify the URL of the second JSP file in an anchor tag HREF attribute:
 reference-text

QUse the javax.servlet.http.RequestDispatcher.forward method to invoke
the second JSP file (see “Request dispatching” on page 81). This is the
same as using the jsp:forward tag.

Creating dynamic content in JSPs

This section discusses some of the more commonly used tags available in the
JSP 1.0 specification which assist you in creating dynamic content within a
JSP. In addition to describing some of the more commonly used JSP tags, we
also describe how to use the WebSphere-specific tags that provide support for
relational database access.

For a complete description of all tags supported by the JSP 1.0 specification,
please refer to the Sun JavaServer Pages Specification Version 1.0 available
on the Sun Web site.

Standard JSP tags

jsp:useBean

The jsp:useBean tag is used to declare a JavaBean object that you want to
use within the JSP. Before you can use the jsp:getProperty and
jsp:setProperty tags, you must have first declared your JavaBean using the
jsp:useBean tag. When the jsp:useBean tag is processed, the application
server performs a lookup of the specified given Java object using the values
specified in the id and scope attributes. If the object is not found, it will
attempt to create it using the values specified in the scope and class
attributes.

The syntax for inserting a JavaBean is:

<jsp:useBean id="beanInstanceName" scope="page|request|session|application"
typespec>
optional scriptlets and tags
</jsp:useBean>

Chapter 5. JavaServer Pages 111

112

Here, typespec can be declared using any of the following variations:

class="package.class"
type="package.class"
type="package.class" beanName="package.class"

You can also embed scriptlets and tags such as jsp:getProperty within the
jsp:useBean declaration which will be executed upon creation of the bean.
This is often used to modify properties of a bean immediately after it has

been created.

An example of a simple form of bean instantiation is:

<jsp:useBean id ="DateDisplayBean"
class="itso.servjsp.jspsamples.DateDisplayBean"/>

This example tries to locate an instance of the DateDisplayBean class. If no
instance exists, a new instance is created. The instance can then be accessed
within the JSP using the specified id of DateDisplayBean.

Table 5 describes the jsp:useBean attributes.

Table 5. jsp:useBean attributes

Parameter Name | Description

id Identifies the object name within the name space of the
specified scope. This name is used to reference the bean
throughout the JSP file and is case sensitive.

scope Valid values are page, request, session, and application. If
omitted, the value defaults to page scope.

page: Objects declared with page scope are only valid until the
response is sent back from the server or until the request is
forwarded elsewhere. References to objects in page scope are
only valid within the page where the object is declared. Objects
declared in page scope are stored in the pagecontext object.
request: Objects declared within request scope are valid for
the duration of the request and are accessible if the request is
forwarded to a resource in the same runtime. Objects
referenced in request scope are stored in the request object.
session: Session-scope objects are available for the duration of
the session provided that the page is made “session aware”
using the page directive.

application: Application-scope objects are available from
pages that are processing requests within the same Web
application (as defined in the application server setup) and are
valid until the ServletContext object is reclaimed by the
application server. Objects with this scope are stored in the
application object.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Parameter Name | Description

class The name of the object’s implementation class, for example:
itso.servjsp.jspsamples.DateDisplayBean. This value is case
sensitive.

Specify the class attribute if you want to instantiate the bean
if it does not already exist within the specified scope.

beanName Specifies the class name or serialized file (.ser) containing the
bean which is used when first creating the bean.

type Identifies the type of the specified object. This allows the
scripting variables type to be declared as the class itself, the
superclass or an interface implemented by the class.

By specifying the type attribute, you can avoid automatic
instantiation of the bean if it does not already exist within the
specified scope, effectively reproducing the behavior of the JSP
.91 create="yes/no" attribute on the <BEAN> tag.

The default value is the value specified in the class attribute.
If the object is not of the specified type, you may receive a
java.lang.ClassCastException.

If you do not want to automatically instantiate a bean if it does not already
exist within the specified scope, use the type attribute rather than the
beanName or class attributes. The following line will result in an
InstantiationException if the object specified by the type attribute does not
exist in the session scope, and as a result, the bean will not be instantiated.

<jsp:useBean id="DateDisplayBean"
type="itso.servjsp.jspsamples.DateDisplayBean" scope="session"/>

jsp:getProperty

Once the bean has been declared with jsp:useBean, you can access its
exposed properties through the jsp:getProperty tag, which inserts the String
value of the primitive type or object into the output stream. For primitive
types, the conversion to String is performed automatically. For object types,
the toString method of the object is called.

The syntax for the jsp:getProperty tag is

<jsp:getProperty name="beanName" property="propertyName"/>

Chapter 5. JavaServer Pages 113

The jsp:getProperty tag has a number of attributes as defined in Table 6.
Table 6. jsp:getProperty attributes

Attribute Name Description

name The name (id) of the bean instance specified in the jsp:useBean
tag.
property The name of the property to get.

Figure 84 shows the source code of a JavaBean called DateDisplayBean that
we are referencing in a JSP.

package itso.servjsp.jspsamples;
import java.util.*;

public class DateDisplayBean {
private int counter = 0;
private String dateString = null;

public DateDisplayBean() {
super();
dateString = buildDateString(new GregorianCalendar());
counter = 0;

}

public String buildDateString(GregorianCalendar gcalendar) {
StringBuffer dateStr = new StringBuffer();
dateStr.append(gcalendar.get(Calendar.DATE));
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.MONTH) + 1);
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.YEAR));
return dateStr.toString();

}

public int getCounter() {
return counter;

}

public void setCounter(int newCounter) {
counter = newCounter;

}

public java.lang.String getDateString() {
counter++;
return dateString;

}

}

Figure 84. JavaBean to be used by a JSP (DateDisplayBean.java)

114 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The example JSP file in Figure 85 below declares the DateDisplayBean and
displays the two properties, dateString and counter.

<html> <title>Date Display Bean </title> <body>
<H1> Date Display with JSP and JavaBean </H1>
<jsp:useBean id="DateDisplayBean"
class="itso.servjsp.jspsamples.DateDisplayBean" scope="session" />
<H2> Today's Date is:
<jsp:getProperty name="DateDisplayBean" property="dateString"/>
</H2>
<H2> This page has been called:
<jsp:getProperty name="DateDisplayBean" property="counter"/>
time(s)
</H2>
</body> </html>

Figure 85. JSP with jsp:useBean and jsp:getProperty (JspWithBean.jsp)

jsp:setProperty
The properties of beans can be set by using the jsp:setProperty tag. The
syntax for this tag is:

<jsp:setProperty name="beanName" prop_expr/>

For example, to initialize the counter variable used in Figure 85, you could
use the code:

<jsp:setProperty name="DateDisplayBean" property="counter" value="0"/>

The jsp:setProperty tag has a number of attributes, as defined in Table 7.

Table 7. jsp:setProperty attibutes

Attribute Name Description

name The name (id) of the bean instance specified in the jsp:useBean
tag.
property The name of the property to set. By setting this value to “**,

you can automate the setting of properties, provided that
form-element names match the property name. For example, if
a bean has a property called dateString, and the JSP page
contains a text box named dateString, then the dateString
property of the bean will be looked up and set automatically.
For this feature to work, your beans must conform to the
JavaBeans API specification 1.0.

Chapter 5. JavaServer Pages 115

Attribute Name Description

param The request parameter name to give to the Bean property.
Request parameters usually refer to the names of HTML form
elements, and are used to implicitly set the value of a
particular bean property based on the value of the HTML form
element. This attribute cannot be used with the value
attribute.

value The new value for the property.

WebSphere-specific tags

WebSphere provides a number of extensions to the JSP language.

tsx:dbconnect

The tsx:dbconnect tag is required to connect to JDBC or ODBC databases.
This tag does not actually make the connection, but rather sets the
connection attributes used by the tsx:dbquery and tsx:dbmodify tags, which
are responsible for making the database connection before interacting with
the database.

The syntax of the tsx:dbconnect tag is:

<tsx:dbconnect id="connection_id"
userid="db_user" passwd="db_password"
url="jdbc:subprotocol :database"
driver="database_driver_name" >
</tsx:dbconnect>

The tsx:dbconnect tag has the attributes shown in Table 8.

Table 8. tsx:dbconnect attributes

Attribute Name Description

id The name of the connection. This tag is used by the
tsx:dbquery and tsx:dbmodify tags as a reference to the
connection.

userid A valid database user ID. If omitted, the user ID and password

should be specified using the tsx:userid tag.

password The password for the database.If omitted, the user ID and
password should be specified using the tsx:password tag.

url The JDBC URL of the database, for example:
url="jdbc:db2:sample"

116 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Attribute Name Description

driver The name of the driver used to establish the connection:
driver="COM.ibm.db2.jdbc.app.DB2Driver"

The tsx:dbconnect tag does not support INDI datasource lookup, as in the
example:

url="jdbc/sample"

tsx:dbquery
The tsx:dbquery tag provides the mechanism to get a result set containing
database data. It relies on the connection attributes specified by the
tsx:dbconnect tag, which must be defined before this tag can be used.
The responsibilities of the tsx:dbquery tag are to:
QReference the connection object attributes created by tsx:dbconnect.
QEstablish the database connection.
QRetrieve and cache the result set data.
QRelease the connection resource.

The tsx:dbquery tag has the following syntax:

<tsx:dbquery id="query_id" connection="connection_id" Timit="value">
SELECT statement
</tsx:dbquery>

The tsx:dbquery tag has the attributes shown in Table 9.
Table 9. tsx:dbquery attributes

Attribute Name Description

id The name of the query. This becomes the name of the result
bean.
connection The name given to the id attribute specified in the

tsx:dbconnect tag.

limit Specifies the maximum number of rows to return in the result
set. This attribute is optional.

When a tsx:dbquery tag is compiled by the JSP engine, the name specified in
the id parameter is used to create a JavaBean of that name containing the
result set. The bean will also have properties that match the names of the
database columns returned in the result set. Figure 87 on page 120

Chapter 5. JavaServer Pages 117

demonstrates using these properties to embed values from the record set
within the formatted output.

If you want to customize the property names within the bean, you can use a
column name alias in the SQL query. The SQL statement below will create a
bean with a property of Dept rather than WORKDEPT:

Select WORKDEPT As Dept from Department

tsx:dbmodify

The tsx:dbmodify tag enables you to perform INSERT and UPDATE SQL
commands on a database. Similar to the tsx:dbquery tag, it relies on the
connection attributes specified by the tsx:dbconnect tag, which must be
defined before this tag can be used.

The tsx:dbmodify tag has the following syntax:

<tsx:dbmodify connection="connection_id">
INSERT/UPDATE/DELETE SQL statement
</tsx:dbmodify>

The attributes for the tsx:dbmodify tag are defined in Table 10.
Table 10. tsx:dbmodify attributes

Attribute Name Description

connection The name given to the id attribute specified in the
tsx:dbconnect tag.

The example in Figure 86 demonstrates how to insert a row into the
EMPLOYEE table.

<tsx:dbmodify connection="conn" >
insert into EMPLOYEE
(EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, EDLEVEL)
values (
'<%= request.getParameter("EMPNO") %',
'<%= request.getParameter("FIRSTNME") %>',
'<%= request.getParameter("MIDINIT") %',
'<%= request.getParameter("LASTNAME") %>',
'<%= request.getParameter("WORKDEPT") %>',
'<%= request.getParameter("EDLEVEL") %>')
</tsx:dbmodify>

Figure 86. Using the tsx:dbmodify tag to insert a row in the sample database

118 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

tsx:getProperty

The tsx:getProperty tag is a WebSphere extension to the jsp:getProperty tag.
This implementation includes all the functionality of jsp:getProperty and
adds the ability to introspect a database bean created by the tsx:dbquery or
tsx:dbmodify tags. You can use this tag to get properties from your own
JavaBeans, or to get properties from the JavaBeans created by a call to
tsx:dbquery where the beans properties refer to database columns, as in the
following example:

<tsx:getProperty name="queryid" property="DEPTNAME"/>

tsx:repeat

The tsx:repeat tag is used to iterate over a database query result set using
the optional start and end values as the bounding indexes for the iteration.
The syntax is:

<tsx:repeat index=name start=start_index end=end_index>
</tsx:repeat>

The start and end attributes are optional attributes that can be implicitly or
explicitly set. By default, these values are 0 and the upper bound of the result
set respectively. You can use either attribute on its own or as a pair.

The iteration is complete when either the end value has been reached or an
ArraylndexOutOfBounds exception is thrown. No output is written until a
complete iteration of the tsx.repeat block is complete. If an
ArraylndexOutOfBounds exception is thrown during an iteration, no output
is written, and the repeat block is terminated.

The attributes for the tsx:repeat tag are listed in Table 11.
Table 11. tsx:repeat attributes

Attribute Name Description

index The name of the index. This name has JSP file scope and is
case sensitive.

start The optional start index for the iteration, with a default of 0.

end The optional end index for the interaction. The maximum
value for this attribute is 2,147,483,647. If the end attribute is
less than the start attribute, it is ignored. The default is the
number of available values in the bean.

Chapter 5. JavaServer Pages 119

120

Nesting of tsx:repeat tags is permissible and can be used to provide

sub-category information during a query. For example, for each department

in the department table, you might wish to list each employee associated

with the department. You would do this by nesting tsx:repeat tags as shown

in Figure 87.

<HTML>
<HEAD> <TITLE>Call Servlet</TITLE> </HEAD>

<H1> Department Listing with a JSP and TSX tags </H1>

<tsx:dbconnect id="conn"
userid="itso" passwd="itso"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">
</tsx:dbconnect>

<tsx:dbquery id="dept" connection="conn" >
SELECT * FROM DEPARTMENT ;
</tsx:dbquery>

<tsx:repeat index="deptidx">
<H2> <tsx:getProperty name="dept" property="DEPTNAME" /> </H2>

<tsx:dbquery id="emp" connection="conn" >
SELECT FIRSTNME, LASTNAME FROM EMPLOYEE
WHERE WORKDEPT = '<tsx:getProperty name="dept" property="DEPTNO"/>';
</tsx:dbquery>

<tsx:repeat index="empidx">
 <tsx:getProperty name="emp" property="FIRSTNME" />
<tsx:getProperty name="emp" property="LASTNAME" />
</tsx:repeat>

</tsx:repeat>
</BODY>
</HTML>

Figure 87. Database access JSP demonstrating WebSphere tsx tags

In this example we use the tsx:dbquery tag to select all the departments and
then all the employees within one department. For the second query we use

the deptno property of a department in the WHERE clause. In the inner
repeat loop we list the first name and last name of each employee.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Repeating over nondatabase properties

The tsx:repeat tag is not limited to iterating over the properties provided by
the tsx:dbquery tag.

You can also use this tag to iterate over any indexed property within a
JavaBean class or repeatedly call any method in a JavaBean until an
ArraylndexOutOfBounds exception is thrown.

Figure 88 shows a JSP that iterates over a JavaBean using a tsx:repeat tag.
Figure 89 shows the source code of the JavaBean with a vector where each
element is an array of two values. The bean provides two get methods to
return the values from the array of a vector element.

<HTML>
<HEAD> <TITLE> JSP with Repeating Bean </TITLE> </HEAD>
<H1> CD Listing </H1>
<jsp:useBean id="vectorBean"
class="itso.servjsp.jspsamples.VectorBean" scope="session" />
<tsx:repeat index="i">
 <%= vectorBean.getTitle(i) %> by
 <%= vectorBean.getArtist(i) %>
</tsx:repeat>
</BODY></HTML>

Figure 88. JSP using a bean with repeating attributes

package itso.servjsp.jspsamples;
public class VectorBean {
java.util.Vector cdList = new java.util.Vector();
public VectorBean() {
cdList.addETement(new String[] {"Woman In Me","Shania Twain"});
cdList.addETement(new String[] {"Come On Over","Shania Twain"});
cdList.addETement(new String[] {"When I Call Your Name","Vince Gill1"});
}
public String getArtist(int ix) {
try { return ((String[])cdList.elementAt(ix))[1]; }
catch (Exception e) { throw new ArrayIndexOutOfBoundsException(); }
}
public String getTitle(int ix) {
try { return ((String[])cdList.elementAt(ix))[0]; }
catch (Exception e) { throw new ArrayIndexOutOfBoundsException(); }

I3

Figure 89. JavaBean with repeating attributes

Chapter 5. JavaServer Pages 121

JSP utility example

See “Utility JSP” on page 415 in Appendix B, “Utility servlet and utility JSP”
for an example of a complex utility JSP that collect useful information about
the WebSphere configuration and the servlet environment.

Differences between JavaServer Page specification
91 and 1.0

The JSP 1.0 specification contains the following changes and additions over
the JSP .91 specification:

QTags use XML formatting. For example, the JSP bean declaration tag
<BEANZ> is now declared using the syntax <jsp:useBean ...>. Similarly,
WebSphere specific tags such as <REPEAT> are now declared using the
syntax <tsx:repeat>.

QTags are case sensitive.

QaStandard tags use the mixed-case convention of Java code, for example,
Jjsp:useBean.

QServer-side includes (SSI) have been replaced with the <%@ include %>
directive.

Qjsp:getProperty and jsp:setProperty tags have been defined.

Qjsp:request has been added, providing runtime forward and include
functionality.

Qjsp:include has been added to include resources from other files.
Qjsp:plugin has been added.

Qlmplementation of LOOP, ITERATE, INCLUDEIF and EXCLUDEIF tags have been
postponed pending enhancements to the tag extension mechanism.

Q<SCRIPT> </SCRIPT> tags have been superseded with <%! ... %>

There have been other releases of the JSP specification such as .92 and .93.
The additional functionality offered by these releases has not been discussed
in this chapter.

122 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

6 WebSphere
Application Server

In this chapter we describe how to use WebSphere Application Server, which
throughout this chapter will be referred to as WAS.

We explain the administration environment that comes with WAS, how it is

structured, and how you will use it to configure your server environment. For
each of the components within the WAS topology, we show with an example

how they are used in supporting the applications created in this book.

We look at where the physical files have to be placed when you are deploying
applications to the WAS environment. We use our sample applications as
examples for deployment.

We then discuss security in WAS and how you can use it to protect your
applications and resources.

© Copyright IBM Corp. 2000 123

WAS overview

124

The WAS execution environment is shown in Figure 90.

Admin Console

HTTP Server

DataSources, JDBCDrivers

Default Server

Web Application

Serviet

JSP Compiler

config -

TTP Server
htdocs
L htmi

WebSphere
L AppServer
osts
efault_host
efault_app
E servlets
web
I-myWebApp
servlets
package
web

access

jsp
html

Figure 90. WebSphere Application Server execution environment

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components of WAS:

QAWAS contains a plug-in for many HTTP servers, including the IBM HTTP
Server.

QAWAS runs on a node (a TCP/IP host name).

QJDBC drivers and DataSources describe how relational databases are
accessed from servlets.

QMultiple servers (for example, the Default Server), each with a servlet
engine, run on the node.

QServlets and JSPs are grouped into Web applications. A server contains
multiple Web applications.

QAN administrative console program maintains the configuration of the
Application Server in a DB2 (or Oracle) database. The configuration
contains information about servers, Web applications, servlets, EJBs, the
JSP compiler, DataSources, and other resources.

QThe right side of the diagram shows the directory structure for the HTTP
Server and the Application Server.

The HTTP Server directory contains static HTML files.

The Application Server directory contains the directories for the Web
applications, such as the default application and any user defined Web
applications. For each Web application there is normally a servlets and a
web subdirectory.

= The servlets subdirectory contains executable code for servlets and
JavaBeans.

= The web subdirectory contains HTML and JSP files. HTML files are
served to a browser by a special file handling servlet. JSP files are
compiled into servlets the first time they are invoked.

QThe code in Web applications can access enterprise resources, such as
relational databases (DB2 and others), CICS, MQSeries, IMS, SAP, and
others. This is normally done using the Common Connector Framework
and WebSphere connection pools.

Chapter 6. WebSphere Application Server 125

WAS administration

The WebSphere administrative model allows you to:
QConfigure applications and their components
QControl access to applications (security)
QPerform daily administrative operations

QAnalyze usage statistics and optimize performance

WAS provides centralized administration of all your components with an
administrative server tracking all of a domain’s® contents and activities in an
administrative repository. Details on how to start up a WebSphere
AdminServer can be found in “Starting the WS AdminServer service” on
page 30.

The administrative repository

The repository is the database of information about an administrative
domain, and all its resources. Each resource in a WebSphere administrative
domain corresponds to an object in the repository. So for every Web
application you add to the domain, a matching Web application object,
containing descriptive information about that resource, is created in the
repository.

Administration servers on different machines can all access the same
repository, allowing you to administer the domain from any machine.

The WebSphere Administrative Console

The WebSphere Administrative Console is a graphical administrative client
that enables you to makes requests to an administrative server to access and
make changes to resources in the domain. For example, you can start, stop,
ping, and modify application servers in the WebSphere Administrative
Console, which in turn invokes methods on the resource beans for the
application servers.

For a guide on to how to start the console, see “Starting the Administrative
Console” on page 31.

1 An administrative domain can be comprised of one or more administrative servers who share an administrative
repository.

126 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Navigating the console
The console has three main areas (Figure 91):
QThe navigation pane on the left, with Tasks, Types, and Topology pages.

QThe content pane on the right, for displaying information based on what
has been selected in the navigation pane.

QThe messages pane on the bottom, for displaying high-level messages of
important events.

Each of these panes can be resized appropriately (although you may find that
the console is occasionally a little stubborn when trying to do this).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

a

Typesl Topologyl

ﬁl Configuratian Bl
Az Performance |-

Security

H*

Systems Management

Navigation | _|

Congole i 12

Z/26/00 5:27 AM : Console Ready.
2/28/00 8:27 AM : AUDIT [chusa/_ adminierwer]: Initializing Webiphere Administration server

2/28/00 §:27 AM : AUDIT [chusa/_adminierwer]: Dridmin awailable on port 1,045
2/28/00 §:27 AM : AUDIT [chusa/_adminierwer]: Webiphere Administration server open for e-business

4] >

L]

Figure 91. Navigating the WAS console

Navigation Pane

The navigation pane enables you to control what appears in the content pane.
It has three different views which are accessible by selecting on the tabs at
the top of the pane. Selecting any of the items within each view brings up
relevant information, and sometimes editable fields, in the contents pane.
The different tabs are:

QThe Tasks tab is for performing administrative tasks, such as creating
new Web applications.

Chapter 6. WebSphere Application Server 127

QThe Types tab is for specifying defaults and taking inventory of your
components.

QThe Topology tab is primarily for surveying and managing existing
components, although you can create new ones here also.

We will be using elements within each of these different views throughout
this chapter.

WAS Topology

We now discuss the topology of the WAS environment, which can be accessed
in the console by selecting the Topology tab. The topology within WebSphere
is built on a containment hierarchy which can be seen in Figure 92.

Admin Node Virtual
Domain Host

Application Servlet

Servers Engine
Web
one Applications
e B
Servlets JSPs HTML

Figure 92. Topology in WAS

Node

A node represents a physical machine. After installation, WAS will have
created a node representing your machine, named after the machine’s host
name. In Figure 93, our node is named chusa.almaden.ibm.com after the
machine where WAS was installed.

128 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command View Troubleshooting Help

S| ol @]| a

Tasks | Tynes Topologyl Node: chusa

q; WebSphere Administrative Do General |
3 Adminapplication

MNode name: chusa

% 8';;3?;2?\15: Current State: Running

~Iah Remote Servlet Redireg Desired State: Running

default_host Start Time: 28-Feb-00 8:25:33 AM

Host name: chusa.almaden.ibm.com
Host system type: *86
In=tall root: EWWehSphereldppServer
Frocess ID: 298

Deployed JAR directary: |E:IWebSphereLAppServendeployedEJEls

Dependent classpath: |

_‘I | » Apply Reset |
Congaole i 12

Z/26/00 5:27 AM : Console Ready. =

4 >

L2}

Figure 93. Viewing a node in WAS

You can have more than one node, each of which would represent different
machines to which you can distribute various resources. In this book, we will
keep it simple and stick with the default node provided.

Application server

Application servers are used to extend the capabilities of a Web server to
handle requests for servlets, enterprise beans and Web applications. It is
important to note that the IBM WebSphere Application Server product is
more than just an application server, and can actually be used to support
multiple application server processes.

An application server in WAS has two main components:
QA Java virtual machine configuration
aSupport for a servlet engine to handle servlet requests
After installation, WAS is configured with the default application server,

appropriately named Default Server (Figure 94). We used this application
server exclusively in our examples.

Chapter 6. WebSphere Application Server 129

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command View Troubleshooting Help

O o
Tasks | Types Topologyl Application Server: Default Server
WebSphere Administrative Domain||| General |Advanced| Debugl
ﬂ AdminApplication .
& chusa Application Server Mame: |DefauItServer —
E}m OLT Cantraller Current State: Running
Q Default Container Desired State: Running
G- senvletEngine Start Time: 28-Feb-00 10:03:42 AM
PR Remate Servet Redirector) _ -
default host Executable in use: EAJDK 1 ~1 . Fibin. Abinljava
Command line arguments: |-mx128m
Environment: Environment...
Frocess ID:
warking directory; |
Standard input: | -
il [Apply Reset
Congaole i 12
init"” s
Z/28/00 10:09 AM : AUDIT [chusa/Default 3erver]: Servlet.available.for.serwvice:."J3F 1.0 Processor™
Z/28/00 10:10 &AM : Command "Default Server.refresh” running ...
Z/28/00 10:10 &AM : Command "Default Server.start” completed successfully. -
a IlNNNNNNENEND

Figure 94. Viewing an application server in WAS

The application server can be started and stopped by clicking on the “green
light” and “red light” buttons in the tool bar.

Servlet engine

A servlet engine is a program that runs within the application server and
handles the requests for servlets, JavaServer Pages, and other types of
server-side include coding. The servlet engine is responsible for creating
instances of servlets, initializing them, acting as a request dispatcher, and
maintaining servlet contexts for use by your Web applications.

WAS only supports one servlet engine per application server. For the

purposes of the examples in this book, we will be using the one that is created
by default for our application server and is named servletEngine (Figure 95).

130 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

¥WebSphere Advanced Administrative Console

Console Administrative Server Command Wiew Help
c|l@| @ | o

Tasks| Tynes Topologyl Servlet Engine: servietEngine

B q; YWebSphere Administrative Domai ||| General |Advanced|
"3 Adminapplication

-5 thusa

PR OLT Controller _ _
E}g Default Server Servlet Engine Mame: |servietEngine
Q Default Container Current State: Running
: .. default_app Desired State: Running
" adrmin Start Time: 28-Feh-00 10:19:37 A
b exarnples
i User Profile Manag Application Server: Default Server LI
-5 Session Manager
PR Remaote Servet Redirector
[+-F default_host
- Apply | Reset |
Congaole i 12
[Servlet.LOG]:."com.ibm.servlet. engine.webapp. S3inpleFilelfervlet: init” ;ﬂ

Z/26/00 10:19 &AM : AUDIT [chusa/Default Server]: Servlet.available.for.serwvice:."file”
Z/26/00 10:19 AM : Command "Default Server.start” completed successfully.

o |

Figure 95. Viewing a servlet engine in WAS

Web application

A Web application represents a grouping of servlets, JSPs, and their related
resources. Managing these elements as a unit allows you to stop and start
servlets in a single step. You can also define a separate document root and
class path at the Web application level, thus allowing you to keep different
Web applications separate in the file system.

Servlets that are running within a Web application share the same servlet
context with others in the same application, allowing them to communicate
with each other.

Installation of WAS creates three Web applications under the default serviet
engine, and each comes with a number of default servlets. For a list of some
of the common servlets that are included (and that you may also want to
include in your own Web applications), see “Internal servlets” on page 134.

QThe default_app Web application (Figure 96) can be used to deploy simple
servlets for testing. It has been designed to ease the migration of servilets
and applications from WAS version 2. You can also use the default_app as
a template for your own Web applications.

QThe admin Web application is used by WAS to install the AdminServer
GUI, and you will not normally have to change it.

Chapter 6. WebSphere Application Server 131

QThe examples Web application contains a few sample servlets that you can
run from day-one to test your environment and give you an idea of some
basic designs. You can invoke these samples using the URL
http://yourHostName/webapp/examples/.

¥WebSphere Advanced Administrative Console

Console Administrative Server Command Wiew Help
ol @ | @ | e
Task5| Tipas Topologyl Web Application: default_app
= q; WebSphere Administrative Domain General |Advanced|
Fa Adminapplication
% chusa Web Application Name: [default_app
-~ F OLT Controller
= Default Server Current State: Running
(g Default Container Desired State: Running
=15 servietEngine
E}@ Start Time: 28-Feb-00 10:19:34 A
Enabled: True
Description: [default application
Yirtual Host: [default_nast =]
Wirtual Hostin use: default_haost
examples N .
5 User Profile Manager Weh Application Web Path: lr
Zh Session Manager Full ek Path in use: i
----- A Remate Serviet Redirector
[+-F default_host
Apply | Reset |
Congaole i 18
Z/26/00 10:19 AM : Command "Default Server.start” completed successfully. ﬁ
L2}

Figure 96. Default Web application in WAS

On the Advanced page of the Web application, you will find the file locations
for documents (HTML, JSP) and servlets. We will show these when we define
our own Web application in “Creating your own Web application” on

page 135.

Virtual host

132

A virtual host is a mechanism allowing a single physical machine to resemble
multiple host machines. Different resources, including servlets, JSPs, and
Web applications, are associated with a single virtual host, and are not
shared with other virtual hosts, even if they are on the same physical
machine. You can also specify MIME type support at a virtual host level. This
might be a common setup for an ISP who has one physical machine
managing sites for a number of different customers who would not want their
data visible to others.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Each virtual host has a logical name and a list of DNS aliases by which it is
known, for example, yourHostName:80. When a servlet request is made, the
server name and port number entered are compared to the list of aliases.
Once a match is located with a virtual host, the servlet is then found and
served up. If no match is found, an error is returned to the browser.

WAS comes configured with a default virtual host, default_host, with some
common aliases, such as the machine's IP address, short host name, and fully
qualified host name. All the default Web applications and their resources are
set up to use this virtual host. This configuration is fine for the purposes of
most examples in this book, and is shown in Figure 97.

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

o|l @ | @ | o

Tasks | Types Topologvl Virtual Host: default_host

B q; WehSphere Administrative Domai 2| | General Advanced |
"3 Adminapplication
@ chusa Mime Table Parameters: Mime T BT
B2 OLT Controller Ime T¥pe ENSIOn
]g Default Server set application/set -
PR Remote Serdet Redirector asm testheasm
. [ra multiparti-gzip
-----) FS applicationfpostscript ;I
----- & iservletisnoop |) . -
----- & iservletisnoop2 Aliases: Host Aliases
..... & iservlethelln localhost -
..... & ErrarReporter 127.0.0.1
----- 2 iserviet chusa.almaden.ibm.com
..... & jsp chusa LI
----- 2 fadmin
----- +# fadmininstall -
‘| | _,I_I Apply | Reset |
Congaole i 12
Z/26/00 10:19 AM : Command "Default Server.start” completed successfully. j

2]

Figure 97. Virtual host in WAS

For the sample application described in Part 2, we defined a separate virtual
host for the Web application that uses the secure HTTPS protocol. For more

information on how to set up another virtual host, refer to Managing virtual
hosts in the Administration Console documentation that comes with the WAS
product.

Chapter 6. WebSphere Application Server 133

Internal servliets

The servlets shown in Table 12 are provided by WAS in the default_app and
can also be loaded as part of your own Web application. You must add some of
these servlets to your Web application for file serving from WAS directories
and to compile JSPs.

Table 12.

Internal Servlets for WAS

Function

Class

Additional Information

Invoke a servlet by
class name

com.ibm.servlet.engine.
webapp.
Invoker

In addition to invoking the
servlet by the servlet Web paths
configured via the
Administrative Console, the
Invoker servlet enables you to
invoke servlets by their class
names. Using the Invoker
servlet is considered a security
exposure.

Serve HTML files
in the application's
document root
using the Web
application prefix

com.ibm.servlet.engine.
webapp.
SimpleFileServiet

This servlet handles files in the
application document root whose
URLs are not covered by the
HTTP server configuration
through pass rules.

Enable the JSP
0.91 page compiler

com.ibm.servlet.jsp.http.

pagecompile.
PageCompileServlet

This servlet is in ibmwebas.jar.

Enable the JSP 1.0
page compiler

com.sun.jsp.runtime.
JspServlet

This servlet is in jspl0.jar. See
the Sun JSP 1.0 specification for
more information.

Use the extended
error reporting
function

com.ibm.servlet.engine.
webapp.
DefaultErrorReporter

Use this servlet if you want error
reporting through an error page,
butyou do not want to write your
own error page.

Enable a servlet
chain

com.ibm.websphere.
servlet. filter.
ChainerServlet

Use this servlet for chaining
multiple servlets together.

See “Adding JSP support to a Web application” on page 147 for more
information on how to set up the JSP compiler at 0.91 or 1.0 specification.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Creating your own Web application

We suggest that you create a Web application for all the servlets and JSPs
that have to work together. For this redbook we created our own Web

application.

Using the Task Wizard

When creating and adding new resources to your WAS setup, you can
generally use one of the task wizards to help you through the process. These
can be found by selecting the Task tab in the Administrative Console.

Select the wizard you want to use—in our case this is Configure a Web
application—and click on the green Start Task button (Figure 98). The
wizard appears in the right-hand pane and prompts you for the name of the
new Web application, for example, itsoservjsp. You then select which internal
servlets you would like pre-loaded (for more information see “Internal
servlets” on page 134) and the level of JSP support. For more information on
setting up JSP support, see “Adding JSP support to a Web application” on

page 147.

Console

Administrative Server

¥WebSphere Advanced Administrative Console
Command

Wiew Help

o

Tasks |Types| Topologyl

(=4 Configuration

Configure an application server
Configure a servlet engine
Configure a vitual host

2]

= Add a senet

& Add aJSP file orWeb resour
& Add aJSP enabler
Configure an enterprize applicati
{2 Edit an enterprise application
Ferformance
Security

R
H-@

4| | »

~TaskWizard Instructions

Mame the Web application. Select any system serviets to add to the YWeb
application.

- Set'Weh App Mame and Select System Servlets

Wieb Application Mame |itsoservjsp

o2

Serve Servlets By Classname: W

Enable File Servlet:

Selectwhich JSP versionto use:———————————
Enahble JSP 1.0; &

Enable JSP 91:

= Hack: | Mext = | Finished

Congaole i 12

2]

Figure 98. Configuring a Web application: name, servlets, JSP support

Chapter 6. WebSphere Application Server

135

Click on Next and you are prompted to select a servlet engine. Our
configuration has only one node with one application server (Default Server),
therefore we can only select the servletEngine belonging to the default server.
Expand the node until you find the servlet engine, select it, and click on Next
(Figure 99).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

o | @
Tasks |Tvpes| Topologyl Task'Wizard Instructions

E}"'L'_I Configuration Choose a Servlet Engine

= Configure an application server

Configure a servlet engine

~dx Configure a virtual host
2l

~[E Addasenlet E£3 Modes
B Add a JSP file orWeb resour = chusa
& AddaJSP enabler =I5 Default Server
=1 Configure an enterprise applicatii o

~-L7 Edit an enterprise application
i@ Performance
H-@ Security .
i | b < Back | :

s
E

Mext = Finished

Congaole i 12
@ |

Figure 99. Configuring a Web application: servlet engine

The next step prompts you for the virtual host and the Web application Web
path. The Web path, when combined with the virtual host, is the base URL
that is used in Web browsers to locate a resource within the Web application
(Figure 100).

For instance, if you wanted to access the snoop servlet that was part of a Web
application with a Web path of /webapp/itsoservjsp and that Web application
was on a virtual host with an alias of chusa.almaden.ibm.com, then the
correct URL would be:

http://chusa.almaden.ibm.com/webapp/itsoservjsp/snoop
For our Web application we select the default virtual host (default_host),

however, we set up the Web path as Zitsoservjsp (the default would be
/webappl/itsoservjsp). Therefore, our URL for servlets and JSP will be:

http://chusa.almaden.ibm.com/itsoservjsp/..servlietname...

136 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

S| @ | @

Tasks |Types| Topologyl

~TaskWizard Instructions

Mame the Web application and specify the servlet engine with which to associate it.

[—}-FL-J Configuration : ; S
Specify & unigue Weh path for invoking it.
Configure an application server ey ! i B

Configure a servlet engine
Sz Configure a virtual host
i

] Add a servlet =\ywieh Application Marne: Jitsosenisp

Add aJSF file orWeb resour o
- Add a JSP enabler Description: I|TSO Servlet JSF Redbook

{3 Configure an enterprise applicatif)| ., . .
Wirtual Host: -
1 Edit an enterprise application |defau|t_host =]
i @ Performance *iffeh Application Web Path: fitsosenjsp
[+-@y Security
4 e = Back | Mext = Finished |
Console Message
(2]

Figure 100. Configuring a Web application: virtual host and Web path

The next step prompts you for the document root and the class path (for
servlets) of the Web application (Figure 101). The document root is where all
your document files used in this Web application reside; this includes HTML
files and JSPs. For more information on the class path and class loading in
general, see “Class loading and reloading” on page 142.

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

S| @ | @

Tasks |Types| Topologyl

~TaskWizard Instructions

Specify Advanced settings such as the servlet caontext attributes and whether to

E}"FL-' Configuration - automatically reload servlet classes that have been modified.
Configure an application server

@ Configure a servlet engine
= Configure a virtual host
2l

[z Add a serviet Document Root: EphereLAppServenh0Sts‘tdefault_hosnitsoservjsplweb =
& Add aJSP file orWeb resour

& AddaJSP enahler Gy
Canfigure an enterprise applicati Classpath

=) Editan enterprise application E:twiehSphereltppServerhostswdefault_hostitsosenispserdets
H-{: Performance

[+-@y Security

3

X «]»]:

=
4 | = Back | [t I Finished |

Consaole Message
2 |

Figure 101. Configuring a Web application: document root and class path

Chapter 6. WebSphere Application Server 137

The directories that are proposed are based on the Web path specified in the

previous step, in our case:

d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\web
d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\serviets

These directories are not automatically created for you, so you will have to do
this as a manual step afterwards (see “Creating the required Web application
directories” on page 139). For now, leave the proposed values and click on
Finished. Check the messages pane for a confirmation: Command
"WebApplication.create" completed successfully.

Setting up your default error page

In the Administrative Console, click on the Topology tab and navigate down
the tree until you see your newly created Web application (Figure 102).

Console Administrative Server

¥WebSphere Advanced Administrative Console
Command

Wiew Help

a Q D a

Tasks| Types Topology |

Web Application: itsoservjsp

q; WebSphere Administrative Domain
= Fa Adminapplication
& Chusa
-~ F OLT Controller
=-E Default Server
[+-{g Default Container
=54 servietEnaine
w= default_app
7 admin

examples
User Profile Manager

% Session Manager
E8C

- Error Reporting Facilit]
[File Serving Enabler
[Auto-Invaker

------- [JSP 1.0 Processar
----- -_ﬁ Remate Serviet Redirector
[+-F default_host

Bl I

General Advanced |

Document Root: IE:IWebSpherelAppServenhoataldefault_hrL

Document Roaot in Use: EWWehSphereldppServerhostsidefault_h

- Classpath

Classpath
E:MiehSphereifppServerhosts/default_hostitzsozerispiservets [—

Classpath in Use

E:MiehSphereifppServerhosts/default_hostitzsozerispiservets

4 |

Errar Fage: lerrorReponer

aoply |

Figure 102. Viewing a newly created Web application

Notice that in addition to the three servlets we set up with the wizard,
another servlet called ErrorReporter has appeared. This is what the Web
application uses for handling errors in JSPs and servlets.

138

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

If you want to use your own error page instead, change the value on the
Advanced page, for example, enter error.jsp, which can be found in the
document root of default_app. However, for the purposes of our application,
we leave it set to the ErrorReporter, as it does all we need.

Creating the required Web application directories

For every new Web application that you create, you probably have to create
the physical directories for the documents and Java classes (servlets).

Underneath the Websphere/AppServer/hosts/default_host directory is where each
of the Web applications that are part of the default_host has a directory. For

each Web application directory, you normally have a servlets directory for the
class path and a web directory for the document root. These three directories
have to be created for our new Web application itsoservjsp (Figure 103).

1 WebSphere

.1 AppServer

=1 bin

=-[1 classes

----- [deployableEJBs

----- [0 deployedEJBs

=1 EJBSamples

=1 hosts

-1 default_host | virtual host |
=1 admin

ECI default_app

w1 serviets

| WebSphere Application Server |

=1 examples
EE=itsoservjsp I Web application I
----- {1 servlets servlets, beans

..... {1 web JSP, HTML, images, ...

Figure 103. Web application directory structure

For simple tests you can copy the SnoopServlet.class and the very _simple.jsp
files from the default_app directories to the itsoservjsp directories. Another
nice test servlet is the ServletEngineConfigDumper.class from the
examples\servlet directory.

Chapter 6. WebSphere Application Server 139

Deploying files to WAS

When you have developed an application in your test environment, you will
at some stage want to deploy that application to the WAS environment.

After creating the necessary components—such as a Web application—in the
WS Admin Console interface, you have to physically put the resource files
into the correct directories. Table 13 displays where particular files must
reside.

Table 13. WebSphere application directories

Description File extension Directory path

HTML documents html, .shtml, The Web application document root

and related files Jhtml, .gif, .jpg, (or under the HTTP server root)
.au, and so forth

JavaServer Pages Jsp The Web application document root

Servlets, .class, .jar, .ser The application class path or the

JavaBeans, and Application Server class path (for

other Java classes classes that are not to be reloaded,

such as serialized objects and servlets
that use Java Native Interface
methods)?. If the servlets are in a
package, mirror the package
structure as subdirectories under the
application class path.

Servlet .servlet The directory that contains the
configuration file servlet

a. See “Class loading and reloading” on page 142

For more information on how to deploy Java classes from VisualAge for Java
into specific directories, see “Importing and exporting code” on page 172. For
information on how to deploy files of all types from WebSphere Studio into
specific directories, see “Project relationships and integrity” on page 253.

Defining servlets

We set up the Web application in a way that servlets can be invoked by class
name. WAS also enables us to invoke servlets by an alias name, and this is
the preferred technique.

Let us take the simple HTTP servlet of Figure 34 on page 48. We deploy the
servlet to WebSphere\AppServer\hosts\default_host\itsoservjsp\servlet into the
subdirectory itso\servjsp\servletapi.

140 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

We define the servlet in WAS by selecting the itsoservjsp Web application in
the Topologies pane and selecting Create -> Servlet from the context menu.
We enter simple as the servlet name, itsoservjsp as the Web application
(prefilled), a short description, and itso.servjsp.servletapi.SimpleHttpServiet
as the class name. Click on Add and enter Zitsoservjsp/simple as the servlet
Web path (this is the alias to be used in the browser). Click on Create to
define the servlet (Figure 104). This action adds the servlet to the list of
servlets under the itsoservjsp Web application.

¥ Create Serviet M[=] B3
General | advanced|

* Gervlet Marme: Jsimple

*iWeb Application: |itsoseszp LI
Cescription: |Simp|e Hitp Servlet

* Servlet Class MName: Iaer\rjsp.5ewletapi.SimpIeHﬁpSeNIet

Servlet Wueb Path List

default_hostlitsozenjsprsimple

Add | Edit | Femove

*- Indicates a required field.

Create | Clear

Figure 104. Creating a servlet for the Web application

Start the Web application

If the application server is already running, you can start the new Web
application from the console. Right-click on the Web application and select
Restart Web App. The Web application is also started when the application
server is started or restarted.

Test the sample servlets
Open a browser and enter the following URLSs:

http://localhost/itsoservjsp/simple
http://localhost/itsoservjsp/very_simple.jsp
http://localhost/itsoservjsp/serviet/SnoopServiet
http://localhost/itsoservjsp/serviet/ServietEngineConfigDumper

Chapter 6. WebSphere Application Server 141

Class loading and reloading

Class loading and automatic reloading in the WAS environment has been
written to help keep all the Web application components synchronized when
there are any code changes.

A Web application's scope is its application class path plus the system class
loader class path. When you configure a Web application, you specify its class
path, which contains the servlets and the non-servlet Java components, such
as JavaBeans that are used in the servlets. Whenever one of the loaded
classes in that class path has been changed, all of the classes in that class
path are reloaded. This helps to keep the Java components synchronized.

There will be occasions where you do not want certain classes to be reloaded,
and you can prevent this from happening by adding those classes to the
application server class path instead of the application class path. The
classes are then not reloaded, although the objects will be.

Java components that should not have their classes reloaded are:
QJava objects that are added to sessions because they are serialized.

QJava classes that call Java Native Interface (JNI) methods.
QObjects passed as arguments for remote calls.

Changing the application server class path

The application server class path is automatically set when you install WAS.
The default setting for the class path contains all of the Application Server
APIls (the JAR files in the d:\WebSphere\AppServer\1ib directory). When the
Application Server starts, the system class loader automatically loads the
classes in the application server class path. Classes in this class path are not
reloaded.

If you want to add individual classes or jar files to the application server class
path, you set up a command-line argument (see Figure 105).

You then have to restart the application server, which adds the additional
directories (in this case d:\java\loadOnce) to the system class loader class path.

142 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command View Troubleshooting Help

S| ol @]| a

Tasks| Tipas Topologvl Application Server: Default Server

B Qg ‘WehSphere Administrative Domain General |Advanced| Debugl
"3 Adminapplication
% chusa Application Server Name: |DefauItServer

I OLT Controller

|»

Current State: Running
Q Default Container Desired State: Running
- B+ senvletEngine Start Time: 26-Feh-00 10:19:09 AM =
w= default_app _ -
admin Executable in use: EIDk1 11 Tihint binijava

examples Command line arguments:
t% User Profile Manager
% Session Manager Enviranment:
itzosernvjsp
-FR Remote Serdet Redirector <
[+-F default_host

Apply | Reset |

Congaole i 12

Figure 105. Updating the Application Server class path

Using JNI in WAS

If your application needs to use JNI, then there are two configuration steps
that need to be completed:

1. Add the jar file containing your JNI classes to the application server class
path (see “Changing the application server class path” on page 142 for
instructions on how to do this).

2. Create a path environment variable for the application server that points
at the location of the relevant DLL files.

Creating an application server environment variable

To create an environment variable for an application server, select the

application server within the Topology view and make sure the General tab is
selected in the right-hand pane (Figure 106).

Chapter 6. WebSphere Application Server 143

¥WebSphere Standard Administrative Console

Console Administrative Server Command View Troubleshooting Help

cj|lole].

Tasks| Tynes Topologyl Application Server: Default Server
[“%; Wieb3phere Admini «| || General |Advanced| Debugl

AdminApplicatic .
testsecure Application Server Mame: |DefauItServer —
a23hh... . Current State: Running
@ﬁ JOBC Driver
-8, OLT Contral Desired State: Running
- Start Time: 02-har-00 1:56:56 P
P4 journal : B
..E historicalData Executable in use: DDk ~1 . Fibim. Abinljava
G+-{¥% menuoptions Command line arguments: frmx128m -classpath d.BackuptNI
-8 secedata |
Frocess ID: 520
warking directory; |
Standard input: | =
< | o aoply | Reset

Figure 106. Locating the environment variables for an application server

Click on the Environment field, and the Property Editor Environment Editor
window will appear. Enter path for the Variable Name and the location of the
DLL files as the Value (separating different locations with a semi-colon).
Then click Add and the window should look similar to Figure 107.

variahle Mame: |

value: |

path=0/Backup/dM

Add Remaye |
Ok |

Figure 107. Property Editor Environment Editor

144 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Select OK to close this window. You must then click Apply to complete this
change.

Restarting the application server should enable you to use the JNI
functionality.

Setting up connection pools

WAS provides you with the ability to access databases through connection
pools. In particular, you can use the DataSource mechanism to set up
connection pools to particular databases, and then within your code simply
ask the DataSource to pass you a connection to the database. This
architecture helps to provide robustness and efficiency when dealing with
database connections.

Creating a JDBC driver

To set up a DataSource, you first need to create a JDBC driver. Select the
Types view in the left-hand pane, and right-click on JDBC Drivers. Select
Create and you are prompted for the specification of the driver (Figure 108).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

cl@| @« |E| B

Tasks Tynes |T0p0|0gy| JDBC Drivers
______ D Enterprise Applications Name I Implementation class I JTA Enabled
(1] Models
g g;?aessources ¥ Create a JDBC Driver M=l B3
@ ~JDBC Propedies
(3 vitual Hosts e — |
ove...
Default Properties... * Marme: |[DB2AppDriver

*lmplementation class: |com.ibm.db2.jdbc.app.DElEDriver LI

URL prefix: Jidbc:dbz

JTA Enahled: [Faise =l

*- Indicates a required field.
Create | Clear Quit | -

Figure 108. Creating a JDBC driver

Enter a name for the driver and select the Implementation class from those
available. Click on Create and the driver is created.

Chapter 6. WebSphere Application Server 145

Creating a DataSource

Once you have created a JDBC driver, you can create a DataSource.
Right-click on DataSources in the Types view, select Create and complete the
fields in the dialog (Figure 109).

General | advanced|

* Mame: Jsampledb

* Databasze name: |samp|e

* Diriver; |DEleppDri\ter LI
*- Indicates a required field.

Create | Clear | Quit |

Figure 109. Creating a DataSource

Enter the name of the DataSource and the database name that you want to
access, and then click on Create. The advanced page of the dialog contains
parameters that set the size of the connection pool and time-out values.

You now have created a DataSource with an underlying connection pool
through which you can access the SAMPLE database. For more information
on how to use this, and on DataSources and connection pooling in general,
you can refer to the user documentation that comes with WAS.

The JDBC driver and the DataSource are now visible at the bottom on the
Topology page.

Migrating from the connection manager

WAS also provides support for handling connection pools through the
connection manager, a facility that was available in older versions of WAS.
However, for any new code that you write, we recommended that you use the
new connection pool implementation, as it conforms closer to the JDBC 2.0
API standard, and the connection manager classes are deprecated in WAS
Version 3.0. You should also consider migrating old database access code to
use the new DataSource capabilities, because the code changes are fairly
simple (refer to Connection pooling implementation in the user
documentation).

146 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Using JavaServer Pages in WAS

WAS supports the use of JavaServer Pages at both the 0.91 and 1.0 API
levels, as well as extending the base JSP 1.0 specification (see Chapter 5,
“JavaServer Pages” on page 95).

Adding JSP support to a Web application

You can configure individual Web applications to support a specific level of
the JSP API by adding the appropriate JSP enabler to a Web application. If
you used the Task Wizard to create the Web application, this may already
have been done.

Click on the Tasks tab of the Administrative Console and select Add a JSP
Enabler and click on the green Start Task button.

Select the Web application, the desired level of ISP support, and click on
Finished (Figure 110). You can check that the servlet has been successfully
added by locating it in the Web application under the Topology tab.

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

o

Tasks |Tvpes| Topologyl Task'Wizard Instructions
’ﬁ':l Canfiguration Specify the Wehb application towhich the enabler applies. Specify the JSP level to

use.

Configure an application server
--@ Configure a servlet engine

-- Configure a vitual host

-fegll Configure a Weh application
[Add a serviet Selectthe Type of JSP you want to configure:

- Add a J3P file or'Weh resource

o Select the Weh App: Iitsoservjsp 'l
Configure an enterprize application

-1 Edit an enterprise application Create JSP .91 Enabler:

- Performance
@ Security Create JSP 1.0 Enabler; &

o I gak | we- | Finished

[Console Message

Figure 110. Configuring a JSP Enabler

Chapter 6. WebSphere Application Server 147

Keeping Java source files from JSP 1.0 compilation

The JSP 1.0 enabler generates a Java source file for each JSP 1.0 file. If you
want to keep the generated .java files for a JSP 1.0 page, then you need to
add an extra initialization parameter to the JSP servlet.

Select the JSP 1.0 servlet in your the application, and click on the Advanced
tab in the right-hand pane. Here you can add the initialization parameter
keepgenerated with a value of true to the JSP servlet (Figure 111).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

| @ | o

Tasks | Types Topology | Servlet: JSP 1.0 Processor
Elg Default Server General Advanced |

a

=

Q Default Container
=15 servietEngine
=]

5
[default_app

Init Parameters:

Init Parm MName

Init Parm Yalue

warkingDir

EWWehSphereldppSer... i’

keepgenerated rue

i35 User Profile Manager

i
-y Session Manager
= itsoserdsp

Init Parameters in use: Init Parm Mame

warkingDir

Init Parm Yalue
EWWehSphereldppSer... [&

----- PR Remaote Servet Redirector =
& default_host hd ,—I
P | » Apply . | Reset

LS
Console M 12 "Ny
a |

Figure 111. Adding an initialization parameter to a servlet

You have to restart the Web application to activate the change. The Java
source files will be stored under the Temp subdirectory of the WAS
installation directory:

d:\WebSphere\AppServer\temp\default_host\...yourwebapplication...

Use this option to keep the generated .java file for debugging purposes only,
and empty the directory from all the Java files now and then. It is safer and
more efficient not to use this option in a production environment.

Note: The temp subdirectory will contain many files. Each compilation of a
JSP adds a new file with a suffix (it does not overlay the previous
compilation). You should periodically remove old files from this directory.

148 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Security

WAS provides a unified security model for both Web resources (such as
servlets and JSPs), and enterprise beans. Because we are not using
enterprise beans in this book, we will not be concerned with how security
works for these in particular, although most of what we cover applies to
enterprise beans also.

In this section, we discuss the basics of how security works within a WAS
environment, and then we explain how you can set up security through the
administrative console on your Web resources.

How security works in WAS

Figure 112 describes basic steps that are carried out when a user requests a
Web resource that has been made secure with basic authentication.2

Client Web Server Security

Server

(Browser)

- Servlet Request —— @Hﬂﬂmmmm
= :
~«—— 401 Challenge—B)———|— Was ~a-{(5)-Authenticate—m

—

| || Web Server
" —t I |
(8)—userid, Password—T—> Plug-in (6)-Authorize—m
P

I
Invoke

Servlet

@Resnonse /
f WebSphere

Application
Server

Servlet
Engine

Figure 112. Basic security in WAS

1. The user requests a Web resource.

2. The Web server determines that the resource is a protected URI serviced
by WebSphere.

3. The Web server issues a challenge back to the user asking them to prove
who they are.

2 There are other forms of authentication, but for now we will focus on the basic method.

Chapter 6. WebSphere Application Server 149

4. The user responds with their user ID and password.

5. The Web server delegates this information to WebSphere’s security server
that authenticates the user ID and password.

6. Once the user has been authenticated, the user’s permissions are
consulted to see if the user is authorized to access the requested resource.

7. Upon successful authorization, a security context is set up for the request,
and this is passed on to the servlet engine.

8. Upon invocation of the method (for example, doGet) on the resource, the
user information is extracted from the security context, and the user’s
authorization to access that method is verified.

9. The results of the method are sent back to the user’s browser.

Configuring an enterprise application

150

Before we can configure security in WAS, we have to define an enterprise
application containing resources such as Web applications. Enterprise
applications are a grouping that WAS uses for security configurations.

Select the Configure an enterprise application task from the Task pane, and
click on the green Start button. You are prompted to give enter an enterprise
application name, for example, itsosecure (Figure 113).

¥WebSphere Advanced Administrative Console

Console Administrative Server Command Wiew Help

S| @ | @

Tasks |Types| Topologyl
E}'L'_I

~TaskWizard Instructions

Enter a name far the application.

onfiguration

Configure an application server
Configure a servlet engine

- Configure a vitual host

! Configure a Weh application
| Add a senet General
2 Add aJSPfile arweb resour
& Add aJSP enabler

Edit an enterprise application
-6 Performance
[+-@y Security

MNamefitsosecure

MNext = | Einizted

4 |

Congaole i 12
2 |

Figure 113. Creating an enterprise application

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Click on Next, and you are prompted to add resources to the enterprise
application. Expand Web applications, select itsoservjsp, and click on Add
(Figure 114).

WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

S| @ | @

Tasks |Tvpes| Topologyl Task'Wizard Instructions
E}"'L'_I Canfiguration Add one or more resources to the application.

Configure an application server

Configure a servlet engine

Configure a vitual host

o Configure a Weh application

[Add a senet Add Resaurce =

RV Al | ST
=143 Weh Applications

2 default_app
7 admin

]
{2 Edit an enterprise application

-8 Performance e
examples I
[+-@y Security _ n
(-1 Virtual Hosts Add... .
{ 1B < Back Firinedl |
Congaole i 1e
= [

Figure 114. Adding resources to an enterprise application

When you are finished adding the Web resources, click on Next. All enterprise
application resources are listed for confirmation. Click on Finished and the
enterprise application is built.

If you want to see your enterprise application, select the Topology view
(Figure 115).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

S8
Task8| Types Topology Web Applications
(] - WehSphere Administrative Dormai < Mieb App Name I unEntistate I SHSUTI I
Fa Adminapplication || tsoservise [Running |28-Feb-00 12:90:05 PM |

=% db2sample
=3 itsosecure
gl Wiieh Resources

Figure 115. Enterprise application topology

Chapter 6. WebSphere Application Server 151

You can add or remove resources associated with an enterprise application
with the Edit an enterprise application task.

Setting up security in WAS

152

We now discuss the steps required in setting up security in a WAS
environment. Now that we have an enterprise application created, we are
ready to begin setting up security.

The tasks for setting up security are listed in the Tasks pane under security
(Figure 116). You have to go through all of the tasks to have basic security
configured and enabled.

------ Specify Global Settings

------ T4 Configure Application Security

o Wark With Method Groups

------ e Configure Resource Security

e Assign Permissions

Figure 116. WAS security tasks

Specify global settings

You must first enable security globally for the WAS environment, and set up
the default settings that all your enterprise applications will inherit.

Start the Specify Global Settings task under Security in the Tasks view. This
displays a multi-tabbed view, and you will see the dialog shown in Figure
117. We will go through each tab one at a time.

General

Make sure the check box marked Enable Security is selected; this will turn on
security for your WAS environment, although you will not yet have protected
any individual resources.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

¥WebSphere Advanced Administrative Console

Console Administrative Server Command Wiew Help

c | e

4]

=B Configuration

8

Tasks |Types| Topologyl

S| Configure an application server
Configure a servlet engine

----- Configure a vitual host

----- o Configure a Weh application

------ e Add a senet

----- & Add aJSP file orWeb resour
----- & Add aJSP enabler

----- Configure an enterprize applicati
----- {2 Edit an enterprise application

Cﬁ Ferformance

----- Wiark With Method Groups
----- dE Configure Resource Security
----- Assign Permissions

~TaskWizard Instructions

Enahle or dizable security for all of WebSphere with the "Enahle Security" checkbox
Use the "Security Cache Timeout' value to specify how long a successful
authentication lasts.

General | Application Defaults | Authentication Mechanism | User Registry

Security Cache

* Security Cache Timeaout: |GDD seconds

= Hack: [l et = Finished

Figure 117. Enabling security: Global

The Security Cache Timeout value is how long the server will retain security
information regarding users. We will leave this on the default of 600 seconds.

We are going to use the default settings for all the other values in this task
wizard as well, but it is worth looking through them to understand what is
happening.

Figure 118 shows the other three pages for global security: Application
Defaults, Authentication Mechanism, and User Registry.

Chapter 6. WebSphere Application Server 153

154

General Application Defaults |Authenticati0n Mechanism | User Registry

Realm R
*MName Jalmaden.ibm.com

Challenge Type
 Mone

& Basic (User ID and Password) General | Application Defaults Authentication Mechanism | User Registry

) Authentication Mechanism -
 Cetificate) —
@ Local Operating System
2| Default o Basic _ _ . _
" Lightweight Third Party Authentication (LTPA)
® Cusion = Taken Expiration frmindies) |30
= Lagin LIRLE |
: Geferate Keys | Impart Brom Eile | Exp
= Relogin LIEL |
[~ Use S5Lto connect client and Wieb ser 2 Erahle SinaleSion G (S e
~ Shared Hame |
= Barmain |
= Lirmitto 5L connections anly, .
e F_i;l
) »
General | Application Defaultsl Authentication Mechanism User Registry
Local Operating Systemn
* Gecurity Server 1D Jitso

* Security Server Passward |**ﬂ|
* - indicates a required field

Figure 118. Global security defaults

Application defaults

On the Application Defaults page, you specify the security realm that your
enterprise applications will belong to. If so configured, a user is prompted
only once for their identity information within a realm, no matter how many
different resources they access.

You can also specify the default challenge type that your enterprise
applications will use. This is how the Web server will ask the user to identify
themselves. For the purposes of our book, basic HTTP authentication is fine.
This will simply ask the user to provide a user ID and password.

You can also opt to use an SSL connection between the client and Web server,
but this is a little excessive for our examples.

Authentication mechanism

On the Authentication Mechanism page, choose what system the user will be
authenticated against. You can either use the local operating system’s user
registry, or you can connect to a Lightweight Third Party Authentication
(LTPA) system, for example, IBM SecureWay Directory. To keep our example
simple, we are going to use the Windows NT User Registry as our
authentication mechanism.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

User registry

The contents of the User Registry page varies depending on the selection
made in the Authentication Mechanism page. The image shown in Figure 118
is a result of having chosen the local operating system as our authentication
mechanism.

The user ID and password that the security server will use to run under
should have been pre-filled in, based on information given during the install
of WAS. Again, you can leave these fields as they are.

Click on Finished when you have reviewed all the settings, and you will be
informed that your changes will not take effect until the Administration
server is restarted. We will delay this step until we have finished configuring
all of our security settings.

Configure enterprise application security

The next step is to configure the security at the individual enterprise
application level. Even if you just want to use the default settings that you
configured in “Specify global settings” on page 152, you still have to complete
this step.

Start the task wizard called Configure Application Security. You are
prompted to select the enterprise application that you want to configure
(Figure 119).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

S| @ | @

Typesl Topologyl
= B e e . Fram "Enterprise Applications", select the enterprize application to configure.
Configure an enterprize applic—l

E Edit an enterprise application
Cﬁ Ferformance ﬂ

~TaskWizard Instructions

E}ﬁ Security =43 Enterprise Applications
Specify Global Settings o E AdminApplication

0
é Wiark With Method Groups
ig Configure Resource Security | hd

Assign Permissions = ; = .
’r = Hack: Mext = Finished |

Figure 119. Choosing an enterprise application to secure

It is worth noting that, in addition to the enterprise applications you have
created, there is also one named AdminApplication. This is used by
WebSphere to provide security for the administrative console. A side effect of
enabling global security is that the next time you start the administrative

Chapter 6. WebSphere Application Server 155

console, you are asked for a user ID and password (see “Restarting the
administration server” on page 160).

Select itsosecure, and click on Next. This displays the same dialog as for
global application defaults (Figure 118 on page 154). Here you can override
many of the default values that you set up as global settings. However, we
will leave all the values set to the defaults. Click on Finished, and the
enterprise application is configured for security, although individual
resources still have to be configured.

Method groups

Method groups are categories of methods, grouped for the purpose of
assigning permissions to the method group as a whole, instead of having to
assign permissions at an individual level.

WAS provides six default groups, and you can create your own method groups
through the Work with Method Groups task wizard. For the purposes of our
example, we will just use the default groups that have already been created.

Default method groups
QReadMethods

e GET and POST methods of Web resources
= Enterprise bean methods that have the prefix get

QWriteMethods

= PUT methods of Web resources
= Enterprise bean methods that have the prefix set

QRemoveMethods

< DELETE methods of Web resources
< REMOVE methods of an enterprise bean Home

QCreateMethods

= CREATE methods of an enterprise bean Home
AFinderMethods

=« FIND methods of an enterprise bean Home
QExecuteMethods

= Methods that do not fit in the other default categories.

You do not have to run this wizard if you only use the default method groups.

156 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Configuring the resource security

Now we need to actually place some security on individual resources. Start
the Configure Resource Security task wizard. Here you can select the Web
resource that you want to protect (Figure 120).

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

S| @ | @

Tasks |Tvpes| Topologyl Task'Wizard Instructions
=1 configuration Select a resource to configure. To configure a'Weh Resource (Servlet, JSP, HTML,
= = anﬂgure an application server and so on), selectthe appropriate URI for that resource.

----- # configure a serviet engine

----- Configure avirtual host
o Configure a Weh application

...... g Add a senet [EnterpriseBeans =
----- & AddaJSP file orWeh resour|| | =43 Yirtual Hosts
----- & Add aJSF enabler = default_host
----- =] Configure an enterprise applicatiy Lt
----- 21 Edit an enterprise application - fsenetisnoop
5@ Performance ||| & isenvletisnoop2
o€ secuity ||l & isendetihello
..... Specify Global Settings '1: IErrarReporter
----- g configure Application Security AR RN

----- Wiark With Method Groups Lo .
----- dE g fitsnsenisp

""" é Assign Permissions - fitsnsenjsp/ErrorReparter
----- & litsozenjspl

----- 2 litsozenjspiseret

..... = ;l

4| | v ST Mext = Finished |

Figure 120. Selecting a resource to configure for security

Expand the virtual hosts (default_host) to see the list of resources. Select one
of the resources, for example, Zitsoservjsp/*.jsp (meaning all JSP files of our
Web application) and click on Next.

You are prompted if you wish to use the default method groups. Because we
did not create any of our own method groups, select Yes. On the following
page you can see that the methods of the selected resource have been
associated with their appropriate groups (Figure 121).

Click on Finished, and resource security for the selected resource is
configured.

Chapter 6. WebSphere Application Server 157

Resource: litsoservjspl*.jsp

(=143 HTTP_DELETE

[remove Methods

3 HTTP_GET

[Read Methods

4 HTTP_POST

[Read Methods

=S HTTP_PUT —
2] write Methods

| v

-

= Back | [l et = I Finished |

Figure 121. Viewing methods associated with method groups

You have to repeat this step for all the resources that you want to be secure.
All resources that you do not configure are left open and not secure. As a
minimum, you should secure JSPs (/itsoservjsp/*.jsp) and your servlets
(/itsoservjsp/simple), or you can secure all the resources that start with
/itsoservjsp. Do not secure /itsoservjsp/ErrorReporter, otherwise security
errors cannot be reported properly.

Configuring the File Serving Enabler servlet

If you want to add security to all normal files (for example, .html and .gif
files) that are served by WAS, then you have to configure security for the File
Serving Enabler servlet resource. The File Serving Enabler servlet is used by
WAS to return Web files that are not served by the HTTP server.

In our example the default URI for the File Serving Enabler servlet resource
is /itsoservjsp/.

To make this work, you have to add all file types to the Servlet Web Path List
for this servlet (Figure 122). Click Apply when all file types have been added.
Otherwise, you may find yourself being able to load up a JSP, but an image it
contains will be reported as not found.

Restart the Web application after adding file types to the Web path. When
you select the File Serving Enabler servlet again, you should see the file
types in the bottom pane.

158 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

¥WebSphere Advanced Administrative Console

Console Administrative Server Command Wiew Help
c|l@| @ | o
Task5| Tipas Topologyl Servlet: File Serving Enabler
WehSphere Administrative Domain | «||| General |Advanced|
3 AdminApplication ;I
% chusa Wieb Application: |itsoservjsp LI
-~ F OLT Controller
-5 Default Server Description: IAuto-Generated - File Serving Servlet
[+-{g Default Container . - - - -
Ei@ servietEngine Servlet Class Name: |.|bm.Servlet.eng|ne.webapp.S|mpIeF|IeServIet
" default_app Serdet Class Marme in use: carm.ibm.serdet engine wehapp SimpleFileSerdet
5 adimin .
1| examnples ServletWeb Path List
User Profile Manager default_hostitsoserjspl =
: % _SESSIDn_ Manager default_hastitzsosenjsps html
=Hg itsosendsp _ default_hostitsosergsp. oif |
(5 Error Reporting Fac default_hostitsoserdspi*jpg hd
Add Edit Remove |
[y JBP 1.0 Processor —
----- A Remate Serviet Redirector s Aeh P [o hd
default_host =
& " i | _>l_| sty | Reat

Figure 122. File Serving Enabler servlet Web path list

Resource Security

Go back to the Configure Resource Security task wizard. The new resources
that you added to the File Serving Enabler are now listed as well. Select each
one and add them to the default method groups; when done, click Finished.

Assigning permissions

Once you have specified which resources in your enterprise applications are
protected, you have to assign method groups to users to set up which user(s)
are to have permission to see these resources.

Select the Assign Permissions task, and a list of all the enterprise application
and method groups pairings is displayed. Select individual pairings or all the
itsosecure-Xxxx Methods, and click on Add (Figure 123).

You are prompted to identify a user or user group that can access that
application — method group pairing.

You can select Everyone, All Authenticated Users (by the operating system or
LDAP), or Selection. For Selection you can use the search capability to search
for the individual user that you want to give access to the resource pairing.

You can select a number of users or even user groups, but for the purposes of

Chapter 6. WebSphere Application Server 159

our example, a single user is sufficient. When done with selecting users, click
on OK.

One user is now allowed to access the selected application - method group
pairings. The permissions configuration is now complete.

¥ WebSphere Advanced Administrative Console
Console Administrative Server Command Wiew Help

< @ @ .
¥ Search [%]
Tasks |Typ95| Tgpmggyl Instructions Select Everyone, All Authenticated

To associate a user registry entry i Users, orSelection. For Selection,
permission (such as Application Naw(type a search filter, press Search, and

Configure an appllcatlon S8\ disassociate a user registry entry, | selectfromthe Search Results.
@ Configure a servlet engine Remowre.

----- Configure a virtual host - [Evervone

----- =l Configure aWeh application EEINEE PETISEETE All Authenticated U

------ [Add a servet & AdminApplication-Read Methods I UHTIEHHIEENENE WSS

..... = Add 2 JSP file orvieb res E] AdminApplication-Write Methods ¥ Selection

..... = Add a JSP enabler E AdminApplication-Remaove Methods

..... Configure an enterprise appli|| BEHEE AdminApplication-Create Methods BEGlEh Fo_ SEa RESL”S
s
s

=+ Configuration

=

..... B Edit an enterprise application||| B Adminapplication-Execute Methods IUser :l'
-8 Performance +-{E] AdminApplication-Finder Methods Search Filter

-y Security s
..... TR i :
Specify Glohal Settings ,ml

----- 5 Configure Application Securit|
----- Wiark With Method Groups
----- % Caonfigure Resource Security

Ok | Cancel |
d LB [[s |

Figure 123. Assigning permissions to access method groups by users

Restarting the administration server

The final step before testing the newly-secured resources is to restart the
administration server. You can do this by locating the node in the Topology
view, and right-clicking on it and selecting Restart. Because the
administrative console is running on the same node as the administration
server, the console is automatically closed as well (after prompting you).

Check that the administration server has been restarted (by looking at the
Services window in the Control Panel). When the server is up, start the
administrative console. During start up, you are prompted for a user ID and
password to access the console (see “Specify global settings” on page 152).
Figure 124 shows the login with values that were configured for the security
server.

When the administrative console appears, make sure that your application
server and all its Web applications are started. You are now ready to test the
security setup.

160 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Login at the Target Server. [X]
Enter login information far ITS0SJIMT

Realmi{Cell) Name | [TSOSJNT
UseriD |itsu:|
Fasgsword I"""‘ﬂ

ﬁl Cancel |

Figure 124. Login for the administration console

Testing your secure Web resources

After restarting the application server, test security from a browser by
entering the URLSs:

http://Tocalhost/itsoservjsp/simple
http://localhost/itsoservjsp/very_simple.jsp
http://Tocalhost/itsoservjsp/serviet/SnoopServlet
http://Tocalhost/itsoservjsp/serviet/ServletEngineConfigDumper

You should be prompted once for user ID and password, and all the requests
should complete.

Making further changes

If you wish to make any changes to the resource security and permissions at
an enterprise application level, you can do so without having to restart the
administration server. Simply make your changes, and then locate your
application server in the Topology view, and restart it. When this is complete,
your changes should be in effect.

Chapter 6. WebSphere Application Server 161

XML configuration interface

WebSphere Application Server provides an XML interface that can be used to
import and export definitions into the administrative database. This facility
is a technology preview of the product.

The XML configuration utility is invoked as:

d:\WebSphere\AppServer\bin\xmlconfig -adminNodeName nodename
-import input.xml
-export output.xml -partial select.xml

The nodename is required and identifies the node for which the operation
is performed.

For import, the input file contains the changes for the configuration.

For export, the output file contains the result. The -partial specification is
optional and can be used to select what part of the configuration should be
exported (default is the whole node).

Exporting configuration data

To export a complete or partial configuration for the chusa node, run:

xmlconfig -export chusa.xml -adminNodeName chusa
xmlconfig -export export.xml -partial select.xml -adminNodeName chusa

The select.xml file specifies what part of the system to export. For example, to
export the itsoservjsp Web application, the select file would be:

<websphere-sa-config>
<node name="chusa" action="locate">
<application-server name="Default Server" action="locate">
<servlet-engine name="servletEngine" action="locate">
<web-application name="itsoservjsp" action="export">
</web-application>
</servlet-engine>
</application-server>
</node>
</websphere-sa-config>

To export a JDBC driver and a data source, the select file would be:

<websphere-sa-config>
<jdbc-driver name="DB2AppDriver" action="export"> </jdbc-driver>

<data-source name="sampledb" action="export"> </data-source>
</websphere-sa-config>

162 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Importing configuration data

Examples

To import a definition, run:

xmlconfig -import input.xml -adminNodeName chusa

The input.xml file contains the definitions that have to be added or updated.
For example, to define a JDBC driver and a data source, the input file would
contain these statements:

<websphere-sa-config>
<jdbc-driver name="DB2AppDriver" action="update">
<implementation-class>COM.ibm.db2.jdbc.app.DB2Driver
</implementation-class>
<url-prefix>jdbc:db2</url-prefix>
<jta-enabled>false</jta-enabled>
<install-info>
<node-name>fundy</node-name>
<jdbc-zipfile-Tocation>D:\SQLLIB\java\db2java.zip
</jdbc-zipfile-location>
</install-info>
</jdbc-driver>
<data-source name="sampledb" action="update">
<database-name>sample</database-name>
<jdbc-driver-name>DB2AppDriver</jdbc-driver-name>
<minimum-pool-size>1</minimum-pool-size>
<maximum-pool-size>30</maximum-pool-size>
<connection-timeout>300</connection-timeout>
<idle-timeout>1800</idle-timeout>
<orphan-timeout>1800</orphan-timeout>
</data-source>
</websphere-sa-config>

Note: Export of a IDBC driver generates an incomplete file in WebSphere
Version 3.02; the install information is missing.

A number of import and export examples are provided in the sample code in
the wasxml directory. See Appendix C, “Using the additional material” on
page 417 for more information.

A number of examples for importing of definitions are provided in Part 2 of
this book. Refer to “Tailor the XML files” on page 365 for examples.

Chapter 6. WebSphere Application Server 163

User profiling

The need to manage user profiles within Web applications is becoming very
common. Handily, WAS comes ready-built with some helper classes for
managing your user profiles.

Built-in WAS functionality enables you to create a database table that will
store user data, with common columns such as name and title provided. This
table maps to the com.ibm.websphere.userprofile.UserProfile class. WAS also
contains a com.ibm.websphere.userprofile.UserProfileManager class which
allows you to perform the following tasks:

QCreation and deletion of user profiles
QGetting and updating (cached and immediate) from/to the database
QGetting a user profile for read-only tasks
QQueries on database columns
This should be enough to provide a solid foundation for building user

profiling capabilities into your application, although you can easily extend
the user profile for anything else you require.

For an example of implementing and extending user profiling in WAS Version
3, refer to “The XML Files: Using XML and XSL with IBM WebSphere 3.0”,
SG24-5479.

Troubleshooting

Although you will carry out the majority of your development in the
VisualAge for Java and WebSphere Studio environment described in earlier
chapters, there will be occasions when you will need to perform some
troubleshooting activities in WAS.

WAS provides two levels of tracing support:
QTracing within WAS
QTracing your application components using the Object Level Trace (OLT)
and debugging tool.

We briefly discuss how to enable tracing within WAS, but will not cover using
the OLT, as it is outside the scope of this book. For more detailed information
on all aspects of tracing, please refer to the documentation that comes with
the WAS product.

164 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tracing within WAS
Within WAS there are three different ways of collecting troubleshooting
information:
QMessages
Qlogs
QTraces

Messages

These provide a high-level view of important events, such as successful
completions and fatal errors, as your code runs on the Application Server
product.

Console message pane

Messages are visible in the Console Message pane of the Administrative
Console (see Figure 91 on page 127). If you require more detailed information
regarding a message, you view it in the Serious Event Viewer.

Serious event viewer

This tool can be started from the menu option Console -> Trace -> Serious
Events. Using this tool, you can show combinations of audit, fatal, terminate,
and warning message events.

Logs

The WAS log files are kept within the d:\WebSphere\AppServer\logs directory.
Here, you can find the standard error and standard output files for each
application server that is running. In most setups, this will include the files:
default_server_stderr.log and default_server_stdout.log. Servlets and JSPs
will place the System.out.println output into these files.

Traces

These are collections of data from trace statements placed throughout the
WebSphere product code or from any trace statements you may have added
to your application code.

To enable tracing, select the menu option Console -> Trace -> Enabled.
Obviously, enabling tracing will impact performance, and so it should be used
sparingly.

Chapter 6. WebSphere Application Server 165

Trace settings

It is possible to specify the trace settings for the administrative server and
the application servers. You can specify which components the data is
collected from, what type of data is collected, and where this data is placed
(which file or which stream).

Monitoring resources

As well as tracing through the code, WAS provides a method of tracking
resources running in your application server using the Resource Analyzer.

The Resource Analyzer can be started from under the Performance heading
within the Tasks view. From here you can track different statistics for a
number of resources, such as servlets, sessions, and data pools. You are then
able to take this data and plot it in various combinations onto different types
of charts, including graphs and pie charts.

For more detailed information on this topic and how to use the Resource
Analyzer, refer to the documentation that comes with the WAS product.

Reference information

166

For more information about WebSphere Version 3. refer to the redbook
“WebSphere Application Servers: Standard and Advanced Editions”,
SG24-5460.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

7/ Development and
testing with
VisualAge for Java

In this chapter we discuss the VisualAge for Java environment for developing
and testing Java servlets and JavaServer Pages (JSP).

We introduce the VisualAge for Java development environment for the
development of servlets. We then discuss how to build, test, and run servlets
in the WebSphere Test Environment under VisualAge for Java, and the use of
the JSP Execution Monitor for the testing of JSPs. We show how to test
complete Web applications, which include interacting application resources,
such as servlets and JSPs; and passive application resources, such as static
HTML files.

We will not discuss the Servlet Builder capabilities of the VisualAge for Java
product. For information about the Servlet Builder, please refer to the IBM
Redbook, “VisualAge for Java Enterprise - Data Access Beans - Servlets -
CICS Connector”, SG24-5265.

© Copyright IBM Corp. 2000 167

VisualAge for Java overview

The VisualAge for Java application development environment is shown in

Figure 125.
VisualAge for Java
9 WebSphere
Workbench - AppServer
servlets
Console tudio
] projects
Project/Package/Class exchange
IBMVJava
L ide
WebSphere Test Environm. L roject_res.
Servlet JSP | | | | |
Engine Monitor myProject
TE
Web Application Egsts
efault_host
|—default_app
Servlet JSP \ A - myWebApp
<, > servlets
‘ package
web
JSP Compiler .
\ P - jsp
html
+ access

'L

Figure 125. VisualAge for Java application development environment

168 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components of VisualAge for Java:
QaVisualAge for Java provides many windows to work with Java code:

= The Workbench is the main window. It shows all the code that one
developer works with.

= The Debugger window is used to step through Java source code while
debugging an application (or servlet).

= The Console window shows output that normally would go to the
system console.

= The Browser windows for projects, packages, and classes provide views
into smaller subsets of the code.

aVisualAge for Java incorporates the WebSphere Test Environment that
enables the testing of complete Web interactions involving HTML files,
servlets, JSPs, and JavaBeans.

= A servlet engine runs the servlet code.

< HTML files, servlets, and JSPs can be grouped into Web applications
to mirror the support that is available in WebSphere Application
Server.

= A JSP compiler compiles JSPs on first usage into servlets.

QAII the code of multiple developers is stored in a central repository and
can be versioned.

QThe right side shows the directory structure. The most important
directory for Web development is the IBM WebSphere Test Environment
(abbreviated WTE) directory in the project_resources.

Each Web application has its own subdirectories for servlets and Web
resources (HTML and JSP).

QSource and class files can be exported from VisualAge for Java into
appropriate directories of WebSphere Application Server or WebSphere
Studio.

QWebSphere Studio provides a facility to interact directly with VisualAge
for Java to exchange source and class files.

QThe code in Web applications can access enterprise resources, such as
relational databases (DB2 and others), CICS, MQSeries, IMS, SAP, and
others. This is normally done using the Common Connector Framework
and connection pools.

Chapter 7. Development and testing with VisualAge for Java 169

Application development with VisualAge for Java

VisualAge for Java is a complete, integrated environment for creating Java
applications. We first familiarize you with the VisualAge for Java
development environment essentials, so that you have a solid background
before beginning your servlet development.

This is a summary of the information that can be found in the product
documentation, and is structured to get you on the fast-track to developing,
testing, and debugging your servlets.

For additional information about the VisualAge for Java product, refer to
http://www.ibm.com/software/ad/vajava/.

Rapid application development (RAD)

You can use VisualAge for Java’s visual programming features to quickly
develop Java applets and applications, using the Visual Composition Editor.
Although we do not use the Visual Composition Editor in this chapter, we
mention it here because it is a key component of the VisualAge for Java
environment.

SmartGuides

In addition to its visual programming features, VisualAge for Java gives you
SmartGuides (Wizards) to lead you quickly through many development
tasks, including:

QCreating new applets
QCreating new program elements, such as:

= Project: The top-level program element in Visual Age for Java. A project
contains packages. Projects are for organizational purposes, for
example, versioning and deployment.

= Package: The Java language construct. Packages contains classes and
interfaces, also called types.

= Class: The Java language construct. Classes contain methods and
fields.

= Interface: The Java language construct. Interfaces contain methods
and fields. The fields in interfaces must be static final fields.

= Method: The Java language construct.

QThe ability to visually create and manage JavaBeans and Enterprise
JavaBeans.

170 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.software.ibm.com/ad/vajava/

Qlmporting and exporting of code from the file system, for deployment, or
for integration with other tools, such as WebSphere Studio and
WebSphere Application Server.

Create industrial-strength Java applications

VisualAge for Java gives you the programming tools that you need to develop
industrial-strength code. Specifically, you can:

QUse the completely integrated visual debugger to examine and update
code while it is running

QaBuild, modify, and use JavaBeans and Beanlnfo classes

aBrowse your code at the level of project, package, class, or method
QPackage code into projects and packages

QaShare a common repository of code among team members

Qlnstantly see all program errors across all projects and packages

Maintain multiple editions of programs

VisualAge for Java has a sophisticated code management system that makes
it easy for you to maintain multiple editions of programs. When you want to
capture the state of your code at any point, you can version an edition. An
edition is a specific cut of a program element. This marks the particular
edition as read-only, and allows you to give it a version identification.

VisualAge also provides integration with other external Source Code
Management Systems (SCMS), such as ClearCase, Microsoft Visual
SourceSafe, and PVCS.

VisualAge for Java components

In this section we describe the key components of the VisualAge for Java
development environment:

Development with a repository

Within the VisualAge for Java environment, you do not manipulate Java code
files directly. Instead, VisualAge for Java manages your code in a database of
structured objects, called a repository. VisualAge for Java shows code to you
as a hierarchy of program elements:

QProject: This is the highest organizational level within VisualAge for Java,
also referred to as the application level, and it contains packages.

Chapter 7. Development and testing with VisualAge for Java 171

QPackage: Packages in VisualAge for Java are basically Java packages, a
related grouping of classes in an application.

QClass or interface: These are the individual source code elements, also
called types.

QMethod: This is an individual method of a type.

Because you are manipulating program elements rather than files, you can
concentrate on the logical organization of the code without having to worry
about file names or directory structures.

The workspace and the repository

All activity in VisualAge for Java is organized around a single workspace,
which contains the code for the Java programs that you are currently
working on. The workspace also contains all the packages, classes, and
interfaces that are found in the standard Java class libraries and other class
libraries that you may need. When you exit from VisualAge for Java, the
workspace is stored as a file.

While you work on code in the workspace, the code is automatically stored in
a repository. In addition to storing all the code that is in the workspace, the
repository contains other packages that you can add to the workspace if you
have to use them.

In Chapter 3, “Product installation”, Figure 12 on page 25, we added two
features that we need for servlet development to the workspace.

Importing and exporting code

You can easily move your code between your file system and VisualAge for
Java. If you want to bring existing Java code into VisualAge for Java, you use
the Import SmartGuide to specify the files (or whole directory structures)
that you want to bring in. VisualAge for Java compiles your code, indicates if
there are any errors, and adds the appropriate program elements to the
workspace.

When you want to run your program outside of VisualAge for Java, you can
export it using the Export SmartGuide. VisualAge for Java creates a Java
source (*.java) file or compiled (*.class) file for each class that you export.

All the source code used in this redbook can be found at the ITSO Web site.
The detailed instructions for importing this code into the VisualAge for Java
environment can be found in Appendix C, “Using the additional material” on
page 417.

172 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The Workbench

VisualAge for Java gives you a variety of ways to examine and manipulate
your code using different windows. The primary window you use in
VisualAge for Java is called the Workbench. This window displays all the
program elements in the workspace. It is important to make a clear
distinction between the Workbench and the workspace. The Workbench is a
window in the VisualAge for Java user interface. It displays the program
elements that are in the user’'s workspace.

Pages (tabs) in the Workbench

Each page gives you a specific viewpoint on the application and code in the
workspace.

Projects page

The Projects page displays all the projects in the workspace. You can expand
projects to see the contained program elements (Figure 126). For this book we
created a project named ITSO Servlet JSP Redbook.

% Workbench [Administrator] =] E3
File Edit ‘workspace ected 'Window Help

¥y Y U890 YDY) B
@Proiects %Packages @ Classes |48 Interfaces @Managing 1% &Il Froblems |

5 Al Projects +H o 8

I

fin Ikz0.servisp. servletapl
&= a Java clazz libraries
i@ JFC clazz libraries

4 4

S8 Comment

T

H

|IT50 Serviet JSP Fedback [(2/16/00 11:15:43 &) | Administrator

Figure 126. Projects page in Workbench

Packages page

The Packages page displays all the packages in the workspace. You can
expand packages to see the contained program elements (Figure 127).

Chapter 7. Development and testing with VisualAge for Java 173

174

Eworkbench [Administrator]
File Edit ‘“Workspace Packages Tepes Members ‘Window Help

IS[=] E3

¥ Y 9999wy HE
@Proiects %Packages @ Classes |48 Interfaces @Managing 1% &Il Froblems

c s 1k

I

&M Source

public woid init(ServletConfig config) throws ServletException
super.init{config):
calledCount = 0;

il

el B

I itz0.servizp. servletapi. SimpleCounter. init[S ervietConfig) | [2/9/00 10:59:19 Ak)

|Administrator

Figure 127. Packages page in Workbench

Classes page

The Classes page displays all the classes in the workspace in a hierarchy
rooted at java.lang.Object. You have the choice of displaying the hierarchy as
a list or as a graphical view. You can expand a class to see what classes
inherit from it. Figure 128 shows some of the classes in the ITSO Servlet JSP

Redbook project.

File Edit ‘Workspace Project Claszes Members W'lndow Help

¥y O 99wy B
%Packages @ Classes |48 Interfaces @Managlng .Edltlons @Hesources 1) Problems |

@ Clasz Hierarchy

Members

ervietBean
=] @ GenericServietAZ
=] @ HitpServdetASl
o ContextGetattribute
o ContextSetittibute
o CookieServlet
o DbServiet
o DispatcherFonward
o Dispatcherlnclude
HH o HTMLFormiG eneratar

L

E Comment

IITSD Servlet JSP Redbook

[(2/16/00 11:15:43 &) | Administrator

Figure 128. Classes page in Workbench

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Interfaces page

The Interfaces page displays all the interfaces in the workspace. Figure 129
shows the interfaces in the ITSO Servlet JSP Redbook project.

File Edit ‘“Workspace Project |nterfaces Members W'lndow Help

» J 9wy B
%Packages @ Classes | €3 Interfaces @Managing 10 E dfitians @Hesources 1) Problems |

public interface GeneralServletInterface {
il

I itzo.servizp.zervletapi GeneralS ervietinterface | [2A6400 11:32: 37 AM] |Administrator

Figure 129. Interfaces page in Workbench

All Problems page

The All Problems page displays all the classes and methods in the workspace
that have unresolved problems (Figure 130). When you save code, VisualAge
for Java compiles it automatically.

Edit Workspace Selected Window Help

h% Packages @ Classes |48 Interfaces |) Managing Editions @ Fesources | %) Problems il

(%)) 422 Problems: 2 Errors, 420 Warnings vy o

Element |Enor Message ;I
= oxSnoopServlet Impart refers to a missing package: java.security. cert.* Lond

#1205 t{Hips o

spon [1 of 2] The type name:

&M Source

AR EEgA= certChain [] = (HE09Certificate []) ;I
req.getittribute {"javax net Sjl;l
3

1 |

I X The type named ®509Certificate is not defined

Figure 130. Problems page in Workbench

Navigating in VisualAge for Java

VisualAge for Java gives you many ways to look at and manage your code.
This section gives you a brief overview of primary windows in the VisualAge
for Java environment, and tells you how to move from one window to another.

Chapter 7. Development and testing with VisualAge for Java 175

Moving between windows

Every window in VisualAge for Java has a Window menu. You can move
between windows by selecting the window you want from this menu.
Additionally, double-clicking on a program element may bring up the specific
window browser associated with that element.

If the window you select is already open, it becomes the active window. If the
window you want is not open, it is opened and becomes the active window. If
you select Switch To in the Window menu, you can select from any of the
windows that are currently open.

Windows you can open from the Window menu
Here is a summary of the windows that you can open from the Window menu.

Scrapbook

The Scrapbook window is a place to try out code (Figure 131). You can enter
and run code fragments, without making them a part of any project, package,
or class.

El Scrapbook =] B3

File Edit ‘Workspace Page ‘Window Help

2998 Y 9Y

.out .println{"Hi from the scapbook"):

I Run the selected code.

Figure 131. Scrapbook window in VisualAge for Java

Console

The Console window displays standard out. It also gives you an area for
entering input to standard in. If more than one thread is waiting for input
from standard in, you can select which thread gets the input. Figure 132
shows the Console window (with the results from the scrapbook above).

176 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

[E Console [(O]]

File Edit ‘“Workspace Programs ‘window Help

Dy By

All Programs

Olutput

Hi from the scapbook ;ll

L o
R

—

Figure 132. Console window in VisualAge for Java

Log
The Log window displays messages and warnings from VisualAge for Java,
for example, when a new edition is created from a version (Figure 133).

BE|Log [(O]]
File Edit ‘Workspace ‘Window Help

v ® Y

Meszages

Connecting workspace to .. - repository-ivj.dat.

done. J
Checking workspace consistency. ..

done. -
L z

=

Figure 133. Log window in VisualAge for Java

Debugger

The Debugger window displays running threads and the contents of their
runtime stacks (Figure 134). In the Debugger you can suspend and resume
execution of threads; inspect and modify variable values; and set, remove,
and configure breakpoints.

Chapter 7. Development and testing with VisualAge for Java 177

i® Debugger [Administrator] [(O]]
File Edit “Workspace Selected Inspector Window Help

- SimpleCounterHttpi—
4™ StictServietinstanc:

M StictServletinstanc:

4" SewvicingSerdetSta ||+ res T =
4 I I 3 4 4 4 4

Source

protected wvold service(HttpServletRequest reg. HttpServletResponse res) 4
res. setContentType("text html")
PrintWriter out = res.getWriter():
out .println{"<HTHL:<TITLE:SimpleCounter< - TITLE:><BODY ")

4 B println("<H2:Servlet API Exanple - SimpleCounter<-H2:<HRE:"):
Dut.pr:i.ntln("<H4>ThiS =zervlet ha= been called: " + {++calledCount) «

1 | »

Iitso.servisp.servletapi.simpleEounter.service[HttpServIetHequest, HitpServle |[2.-"9.-"DD 10:59:19 AM) |Administrator

Figure 134. Debugger window in VisualAge for Java

Repository Explorer

The Repository Explorer window displays all the editions of program
elements in the repository (Figure 135). In the Workbench you can only find
one edition of program elements that were loaded from the repository.

ry Explorer [Administrator]
File Edit ‘Workspace Admin Mames Editions Packages Tepes ‘Window Help

IS[=] E3

ﬁJava class libraries
BJEIES Application Progran
9JCICS Samples

o CookieServlet 1.0

o Source

o ContextSetattribute 1.0

import jawva.io. *;
import jawvax.servlet . *;
import jawvax. servlet http.*;

public cla=s ContextGetAttribute extends HttpServlet {

Kl

Iitso.servisp.servletapi.Eontextﬁebﬂttribute | 1.0 |Administrator

Figure 135. Repository Explorer window in VisualAge for Java

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Searching

The IDE gives you several choices for searching program elements. For
example, in program element panes, if you press a letter key, VisualAge for
Java selects the first displayed program elements that begins with that
letter.

You have the following search options:
aSearching with the Search dialog
aSearching for references and declarations
aSearching from the Workspace menu
QaSearching for a program element within a browser page

Browsing

VisualAge for Java gives you extensive facilities for browsing program
elements. In the IDE, you browse a program element by opening it. There are
many ways to open a program element in VisualAge for Java, but for now,
here are two simple methods:

QSelect the program element, and select Open from the Selected menu or
from the pop-up menu of the program element.

QSelect the appropriate browser in the Workspace menu, (Open Type
Browser, Open Package Browser, Open Project Browser) for the program
elements.

Project browser

The Project browser displays the following pages of one project: Packages,
Classes, Interfaces, Editions, and Problems (Figure 136).

TSO Servlet JSP Redbook(2{16/00 11:15:43 AM) [Administrator]
File Edit ‘“Workspace Project Packages Tepes Members ‘Window Help

¥y Y 999y B
%Packages @ Classes |48 Interfaces @Managing 10 E dfitians @Hesources 1) Problems |

S Packages = = o Members + 5tk F
: »GeneralServietinterface[2/1 ;I - dolGet[HitpServletRequest, Htt;ﬂ
=l

L) HTMLFormGenerator 1.0 - init[S ervletCanfig)
[Moo ois | n___:_._.T_......._p_...._.n__.._'_l'
3 4 3
@sowes]

I itzo. servizp. servletapi H TMLFormiG enerator | 1.0 |Administrator

Figure 136. Project browser

Chapter 7. Development and testing with VisualAge for Java 179

Package browser

The Package browser displays the following pages for one package: Classes,
Interfaces, Editions, and Problems (Figure 137).

itso.servjsp.servietapi(2/16700 11:32:36 AM) [Administrator]
File Edit ‘Workspace Package Claszes Members “Window Help

¥y Y 9wy G

(& Classes |48 Interfaces Editions [*!! Prablems |

7 Class Hierarchy = e oMembers + STk F
= @ GerenicSerdet A 2.1 ;I - service[HttpS ervietR equest, HitpServietResponze] ;I
=1(C) HipServdet AR 21 =l
L) ContestGetdthibute 108 - ¥

é 3 1 3

|6 Source
I itzo. servizp. zervletapi. ContextG etbttibute 1.0 Adminiztrator

Figure 137. Package browser

Class browser

The Class browser displays the following pages for one class: Methods,
Hierarchy, Editions, Visual Composition, and BeanlInfo (Figure 138).

o Members + 5tk F
i calledCount ;I
- init[S ervletCanfig)
ald service[HttpS ervietR equest, HitpServietResponze] =

L ’

o Source

inport jawva.ioc.*; ;I

import javax. servlet . *;

import jawvax. servlet http.*;

public cla=s SinpleCounter extends HttpSerwvlet {
private int calledCount:

f o

I itzo.servizp. servletapi. SimpleCounter 1.0 Adminiztrator

Figure 138. Class browser

Method browser

When you open a method, you get a window with two pages: the Source page
lists the source code, and the Editions page lists all the available editions
(Figure 139).

180 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Flle Edit ‘Workspace Method W'lndow Help

3 U
i Source Editions |

M Source

protected void service(HttpServletRequest reg. HttpServletResponse res) thyﬂ
res.setContentType(" texthtmnl"};
PrintWriter out = res.getWriter():
out . println{"<HTHL:<TITLE:SimpleCounter< -TITLE:<BODY>";
out . println{"<H2:Servlet API Examnple - SimpleCounter<-H2:<HE:"}:
out . println{"<H4:Thi= =servlet has been called: " + (++calledCount) + "
out .println{ "< BODY:<HTHL:"):
out .close();

I ' ’ =
1 | »

Iitso.servisp.servletapi.simpleEounter.service[HttpServIetHequest, HitpServletRe |[2.-"9.-"DD 10:59:19 AM) |Administrator

Figure 139. Method browser

Additional VisualAge for Java concepts

The following are a few additional items worth mentioning about the
VisualAge for Java environment.

Adding features

We mentioned previously that you can use the SmartGuide to add features to
the system as needed. You can access this SmartGuide through File ->
QuickStart -> Features -> Add Features. The F2 key is a fast path to the
QuickStart menu.

Setting preferences

The VisualAge for Java IDE is a flexible work environment that you can
adjust to meet your needs and preferences. You can change the way the IDE
appears and functions by changing settings in the Options dialog.

To open the Options dialog, select Options from the Window menu, which
appears on all IDE windows. The Options dialog contains settings for each of
the customizable features. The settings are initially set to default values, but
you can change the defaults to suit your work style or environment.

Java version

The VisualAge for Java product which we are running supports the Java API
Version 1.1.7. There is another version of VisualAge for Java that supports
Java 2.

Chapter 7. Development and testing with VisualAge for Java 181

182

VisualAge for Java IDE symbols

This section describes some of the symbols (icons) used in the VisualAge for
Java environment. Use this mainly as a reference.

Hover help

When you move and hold the pointer over most symbols in the IDE, hover
help and the status line present information about them, and the function
that they perform. Figure 140 shows how the hover help displays when we
move the mouse over the Search icon. From this page, we can also see
symbols for creating projects, classes, applets, methods, and fields. We will
discuss these more as we actually build our servlets.

&11TS0 Servlet JSP Redbook(2/16/00 11:15:43 AM) [Administrator]

File Edit ‘“Workspace Project Packages Tepes Members ‘Window Help

¥y QWoovydeywy G

%Packages C' 8 Interfaces @Managing 10 E dfitions @Hesources (%)) Problems

Figure 140. Hover help actions

Other options from this page include the icons for creating packages, classes,
applets, applications, methods, fields, opening and running the debugger,
searching, viewing editions, and versioning.

The following symbols do not display this help, and may be used to display
information about the programming elements.

Program elements

Figure 141 shows the symbols used to describe information at the program
element level.

] project
7 package
clazs

mterface

4] applet

Figure 141. Program element symbols

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Access modifiers for methods and fields

Figure 142 shows the symbols used to describe information about the
program and its elements:

A" default method % default field
" private rethod " private Held
M protected method o protected field
" public method < publc feld

Figure 142. Program access modifiers

Other modifiers for classes, methods, and fields

Figure 143 shows the symbols used to describe additional information about

the program and its elements:

A abstract

F final

native

static
synchronized
transient

= = @ «u =

wolatile

Figure 143. Other modifiers

Other symbols

Figure 144 shows some other symbols in the VisualAge for Java
environment:

* executable class

B only bytecode, not source code, exists m workspace (imported . class file).
¥ tlass or method with unresclved problems

% tlass with methods that have unresolved problems

A clags or method with compiler warnings

A class with methods that have compiler warnings

® . ode that the Visual Cotnposition Editor generated

&5 Class that the Visual Compostion Editor edited

K thread

Figure 144. Other symbols

Chapter 7. Development and testing with VisualAge for Java

183

184

Bookmarking elements

The Workbench lets you bookmark program elements, making it quick and
easy to return to a frequently-used project, package, class, interface, or
member within the Projects page. You can bookmark up to nine program
elements.

To bookmark a program element:
Qln the Workbench, select the Projects page.
QSelect the program element you want to bookmark.

QSelect the bookmark button, located in the top right-hand corner of the All
Projects pane. A bookmark number appears next to the bookmark button.

'Ju S F

QTo see which bookmark relates to a particular program element, move the
mouse pointer over it.

Code assist

Source panes, SmartGuides, and some other dialogs and browsers (for
example, the Configure Breakpoints dialog) contain code assist, a tool to help
you find the classes, methods, and fields you are looking for without having
to refer to class library reference information. Code assist is accessed by
typing Ctrl+Spacebar.

When you type Ctrl+Spacebar, classes, methods, parameters, and types that
could be inserted in the code at the cursor are shown in a pop-up list, from
which you can select one.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet development

In this section we discuss how to develop servlets in the VisualAge for Java
environment.

Rapid servlet development

VisualAge for Java gives you the ability to rapidly develop programs because
of the Visual Composition editor and the built-in SmartGuides. VisualAge for
Java gives you the ability to develop servlets visually as well, through the
Servlet Builder interface. We have already mentioned that we will not cover
the Servlet Builder in this chapter, but you might want to know why. In the
following paragraphs, we provide some background about the serviet
development process which might help explain this concept in more detail.

Model-View-Controller

We introduce the term Model-View-Controller (MVC) to describe a paradigm
that has become popular in design, where we separate out the user interface
in the view layer from the control layer, which manages the flow of the
application, and the model layer, which handles our business logic and access
to application resources.

We will describe this concept in more detail and other design techniques in
Chapter 12, “Using Patterns for e-business to build the PDK” on page 347.
This is a popular technique, because we can separate out our design
components into different objects, making it a more modular, and
object-oriented design.

Servlet-only applications

In servlet-only applications, the servlet is used as both the controller and the
view. We can see this in our examples in Chapter 4, “Servlets” on page 41,
where the servlets process our requests (control) AND produce the HTML
response (view). In some cases, such as the JDBC servlet example, the servlet
also acted as the model, because it referenced our data source.

Since we have tightly coupled the code for the controller and the view
together in a single process, making changes to the HTML output will be
difficult, because we have to modify source code, and recompile our program.
One of the benefits of JSPs is that we can separate the view from the control.

Chapter 7. Development and testing with VisualAge for Java 185

Servlet-JSP applications

In servlet-JSP-based Web applications, discussed in Chapter 5, “JavaServer
Pages” on page 95, the servlet can be used as the controller, and the JSP can
be responsible for the view layer. (Note that the JSP can also be the

controller, but this moves us away from a separation of view and controller.)

Servlet Builder

The Servlet Builder feature of VisualAge for Java enables us to build servlets
visually, using JavaBean elements to visually design our servlet's HTML
response page. Because we can do this HTML formatting in a JSP, and have
a separate view layer to do so, we will not use the Servlet Builder for any of
these examples. (We will be building JSPs visually in Chapter 8,
“Development with WebSphere Studio” on page 227.) The Servlet Builder
still has a role in development (although not implemented here) because it
can be used to tie the servlet to other types of non-visual JavaBeans as well.

Even though we are not choosing to develop servlets using the Servlet
Builder, VisualAge for Java is still a very rapid application development
environment for servlets because of its many built-in features, including:

QBuilt-in support for managing code versions

QEasy Navigation

aSmartGuides for developing everything from projects, packages, classes,
and methods

Qlntegrated visual debugging, which allows incremental code compilation
while debugging a program.

The development process

The development process is more than just writing code. It is usually an
incremental process that involves coding, testing, and debugging (and then
some more coding). VisualAge for Java is uniquely suited for servlet
development because it integrates all of these development tasks within a
single environment.

We will use VisualAge for Java to develop and test our serviet examples. In a
typical environment, you might develop your servlets in a tool such as
VisualAge for Java, and then deploy them to run on a Web application server
for testing. Additionally, your code could be shared with other development
tools, such as WebSphere Studio (see Chapter 8, “Development with
WebSphere Studio” on page 227).

VisualAge for Java provides not only a development environment in which to
create and manage our servlets, but also a WebSphere Test Environment in

186 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

which to run and test; as well as a debugger to interactively debug our
servlets. We can also interactively run and debug JSPs in VisualAge using
the JSP Execution Monitor. We discuss the WebSphere Test Environment
and the JSP Execution Monitor in the next sections. Having integrated these
development tasks in a single environment, VisualAge for Java is truly a
rapid application development tool.

We will talk about each of these tasks later in this chapter, but for now, we
will concentrate on how to code our servlets in VisualAge for Java. We will be
creating our first servlet, SimpleHttpServlet, in VisualAge for Java.

Developing our first serviet

In walking through the steps below, we will be setting up our environment to
allow us to create our first servlet, SimpleHttpServlet. We have already
discussed the various windows in the VisualAge for Java environment. We
will touch on each one when building our servlet.

Workbench

This is your IDE. It is the launching point for the other function specific
browser windows. This is the window that you start on in the VisualAge tool.
Start VisualAge, and go to the Workbench.

Workspace

This is your development environment. It contains references to all your
source code, and it is customized and configured by you according to your
specifications. The repository, which contains your workspace in addition to
other VisualAge resources, is saved as a file <IBMVJava>\ide\repository\ivj.dat,
where <IBMVJava> is your installation root. The workspace is stored as a
separate file, <IBMvJava>\ide\program\ide.icx. All source code and resources
become part of your workspace. You can see all the projects available to you
in the workspace.

Projects

Projects are the highest level organizational structure within VisualAge for
Java. All source code and application resources must belong to a project that
enables a high level grouping of an application’s resources. You have to create
a new project if you plan on running the servlet examples.

QFrom the workbench, click on the Project (folder) icon to Add New or
Existing Project to Workspace and enter ITSO Servlet JSP Redbook as the
name of the project.

Chapter 7. Development and testing with VisualAge for Java 187

Packages

Packages in VisualAge for Java are like Java packages. It is a way to create
groupings of related classes within an application. You will need to create a
package to contain all of the servlet example source code that you create.

QSelect the ITSO Servlet JSP Redbook project.
QClick on the Package icon to Add New or Existing Package to Workspace.

QCreate a new package named itso.servjsp.servletapi.

Note: If you have already imported the source code for this redbook, this
package should already exist. If you still want to develop the source code
from the ground up, we suggest you use a different project and package name
(to guarantee uniqueness). However, we will use these naming conventions in
this chapter.

Classes

What you actually create here are the Java source code programs which
compile into Java class files. These classes should always be added to the
ITSO Servlet JSP Redbook project and the itso.servjsp.serlvetapi package
(unless this package already exists, and you have created your own).

To create a new Java source file:

QSelect the ITSO Servlet ISP Redbook project and the
itso.servjsp.servletapi package in your workspace.

QClick on Create Class icon to Add New or Existing Class. The project and
package name should already be filled in and match the names above.
Select the default options on this page.

QEnter the class name as SimpleHttpServlet, and the superclass name as
javax.servlet.http.HttpServlet. Select the default options on this page and
click Next.

QAdd the following packages: java.io.*, javax.servlet.*, and
javax.servlet.http.*.

QClick Finish, and the skeleton class is generated.

Viewing and modifying the Java source code

The servlet which you just created above has the signature and methods of a
servlet, but no implementation. You have to modify this new servlet to add
some basic functionality. Figure 145 shows the source of the service method.

QDouble-click on the new class to open the Class browser.
QSelect the service method and edit the code to match Figure 145.

188 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

QTo save the code, hit Ctrl-s, or select another method (when a method
object loses focus, you will force VisualAge for Java to re-compile the code
if it has been changed).

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><TITLE>SimpleHttpServiet</TITLE><BODY>");
out.printin("<H2>Serviet API Example - SimpleHttpServlet</H2><HR>");
out.printin("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

Figure 145. SimpleHttpServlet: service method

Viewing the class declaration

To see the servlet class declaration, select the class. (If a method already has
focus, use the ctrl+mouse combination, and reselect the class). You should see
the Java source code declaration shown in Figure 146. One thing you do not
see is the package declaration (package itso.servjsp.servletapi;). You do not
programmatically have to specify this in the source code; VisualAge for Java
adds it for you by default in the package where you create the class.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* ITSO SimpleHttpServiet - Basic servlet example
*/

public class SimpleHttpServlet extends HttpServiet {

}

Figure 146. SimpleHttpServlet: class declaration

Viewing the complete source code

In VisualAge for Java, all of the individual properties and methods of your
class file are stored as their own objects for easy manipulation within the
IDE environment, and this is stored in the repository. You cannot see a full
source code listing within VisualAge for Java; to do this you would have to
export the source code from VisualAge to the file system. Because the
VisualAge for Java environment itself can easily be navigated, you will find
that you require the complete source very seldom, if ever. We will, however,

Chapter 7. Development and testing with VisualAge for Java 189

discuss the details of importing and exporting in VisualAge later in this
chapter.

Complete SimpleHttpServiet

Figure 147 shows the entire SimpleHttpServlet source code that you just
created. This is the same SimpleHttpServlet that we introduced in Chapter 4,
“Servlets” on page 41. The primary differences from the source code you see
here, and what you see in the Servlets chapter, is that VisualAge for Java
built a default constructor, and added a number of nice comments. We like
the comments, but have eliminated them here to condense the code.

package itso.servjsp.servletapi; <=== generated on export

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* ITSO SimpleHttpServiet - Basic servlet example
*/

public class SimpleHttpServlet extends HttpServlet {

}

/**
* SimpleHttpServiet constructor comment.
*/
public SimpleHttpServlet() {
super();

}

/‘k‘k

* service method comment.

*/

protected void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.printin("<HTML><TITLE>SimpleHttpServiet</TITLE><BODY>");
out.printin("<H2>Serviet API Example - SimpleHttpServlet</H2><HR>");
out.printin("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

Figure 147. SimpleHttpServlet: complete source code

190 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Test Environment

VisualAge for Java integrates much of the WebSphere Application Server
Advanced runtime so that debugging servlets and JSPs (and EJBS) is
possible in a highly integrated development environment. The WebSphere
Test Environment (WTE) in VisualAge for Java actually encompasses the
servlet and JSP runtime and test environments.

The WTE enables us to run our servlet examples in a controlled, simulated
Web application server environment. Typically, one consequence of the
servlet life-cycle is that you must normally stop and restart the Web
application or reload the class file to apply your updated code changes. This
can become tedious during development, when you are making lots of
changes.

Fortunately, WTE offers a much more productive way to develop and test
servlets (and JSPs) for WebSphere. When you change a method in the
servlet, VisualAge for Java incrementally compiles only this modified method
of the class, not the entire class, and hot-links it into the running program.
This type of incremental compilation is an important productivity boost,
because you do not have to stop and restart the WTE in programs that you
are debugging to execute your updated code, and rebuild program state.

There are two different ways to configure and run the WebSphere Test
Environment:

QSERunner
aServietEngine

The first way, using SERunner, is described in this section, and is the
primary method we use when talking about running the WebSphere Test
Environment. We describe how to configure, run, and test our
SimpleHttpServlet using the WTE within the VisualAge for Java tool.

The second way, using ServletEngine, is not documented (yet) in the
VisualAge for Java help. With the ServletEngine we can configure the test
environment to support multiple Web applications, to mirror what can be
done in WebSphere. This gives us more flexibility and control over the testing
environment, but is much harder to configure. We discuss this second method
in more detail in “Configuring multiple Web applications” on page 215.

Chapter 7. Development and testing with VisualAge for Java 191

VisualAge for Java configuration for WebSphere

You need to ensure that the WebSphere Test Environment feature under
VisualAge for Java have been successfully installed and configured. See
“VisualAge for Java” on page 15 for detailed instructions on what features
must be added to the VisualAge for Java workspace.

WebSphere Test Environment setup

There several steps that you have to perform to configure the WebSphere
Test Environment for servlet development and testing:

Qln the Workbench, find the IBM WebSphere Test Environment project,
and select the com.ibm.servlet package. Find the SERunner class.

QCreate a bookmark to this class by selecting the bookmark icon in the top
right of the window. This step is optional, but will make it easier to find
this class in the future.

QSelect Run -> Check Class Path in the context menu of the SERunner
class.

QSelect the Class Path tab. Click the Edit button to edit the Project Path.
Select the project ITSO Servlet ISP Redbook. Save this setting by
selecting OK.

Note: You may have to come back here in the future to manipulate the
class path settings for the application. One option (but unscientific and
potentially unsafe with complex configurations) is to select all the projects
and add them to the class path of the SERunner class.

Start the WebSphere Test Environment

Now we want to run the SimpleHttpServlet example in the WebSphere Test
Environment.

There are a couple of ways to start the WebSphere Test Environment and
launch the servlet. The WebSphere Test Environment starts a local
WebSphere Application Server process (localhost, or 127.0.0.1), running on
port 8080, by default.

Starting the SERunner class directly

To start the SERunner process directly, select the SERunner class, and select
Run -> Run Main from the context menu. You can also click on the running

192 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

man icon in the tool bar. Once started, you invoke the servlet from a Web
browser by entering the appropriate URL of the servlet, for example:

http://lTocalhost:8080/serviet/itso.servjsp.serviatapi.SimpleHttpServiet

Of course, this assumes you know the URL of the servlet, and we have not yet
discussed this.

A more direct way to run your servlet is to use the Servlet Launcher.

Using the Servlet Launcher to launch the servlet

You can also start the SERunner class by using the Servlet Launcher
capabilities. Select your servlet, SimpleHttpServlet, and Tools -> Servlet
Launcher -> Launch from the context menu. If the SERunner is not yet
running, it is started for you.

This method launches the servlet by starting a Web browser to invoke the
servlet. The first time you launch the servlet, you are prompted for servlet
parameters. This servlet does not require any parameters, so just click OK to
continue.

Considerations when launching SERunner

If your servlet process requires any classes (jar files) that are not part of the
VisualAge for Java workspace (for instance, external API or DB2 jars, such
as d:\SQLLIB\java\db2java.zip), you have to either:

Qlmport the jar or class directory into the VisualAge for Java workspace,
and add this project to the SERunner class path, as described.

QSelect Run -> Check Class Path for the SERunner class and Edit
directories path, then add the directory or jar file to the list.

QAdd the directory or jar file to the VisualAge for Java system class path in
the Resources setting of the Window -> Options dialog.

Importing the classes or jar files increases the size of the workspace file.
Additionally, unless you have the corresponding Java files, you will not be
able to interactively debug your code.

This is why it may be desirable to use the second approach. This, however,
forces you to always launch the SERunner before invoking a servlet.
Otherwise, launching SERunner using the Servlet Launcher does not load
the external classes.

The last approach is most often used for jar files that are required for many
servlets and applications. For example, we suggest to add the
D:\SQLLIB\java\db2java.zip to the workspace class path.

Chapter 7. Development and testing with VisualAge for Java 193

WebSphere Test Environment windows

If the SERunner class starts correctly, you will see a little pop-up window
entitled WebSphere Test Environment (Figure 148). This is your indication
that SERunner is running.

&zWebSphere Test Environm... [l

gl B o
Figure 148. WebSphere Test Environment window

Stopping SERunner

You can stop the SERunner process from the WebSphere Test Environment
window. This will gracefully shut down the Web server and call the destroy
methods for any loaded servlets. One of the nice things about this test
environment, however, is that if you change your underlying class, you most
likely do not have to restart SERunner, allowing for incremental
development and debugging within the VisualAge for Java environment.

One situation where you may have to restart the SERunner is if you change
the init method of the class. Because the init is processed only once within a
servlet’s life-cycle, changes to this method (such as the changing of
initialization parameters), do not take effect until SERunner is restarted.

Console window

The VisualAge for Java Console window is also opened and displays the
status of the SERunner process, and any servlets that you launch. The
Console window basically displays the standard output and standard error of
the Java program’s execution. If there were problems starting up the
environment, they would be display here. The messages that you see on
successful start-up of the SERunner process are shown in Figure 149.

We mentioned that the status of any of our servlets is also displayed in this
window. The simple servlet has started successfully if the line: Instantiate:
itso.servjsp.servletapi.SimpleCounter appears in the Console window (Figure
149).

194 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

File Edit ‘“Workspace Programs ‘window Help

Dy E Y

All Programs

] A runiner. Hty | =l
Olutput

Supported Transports: .:J

transport-namne]: http

transport—args]: =erver_root=D:~IBHVJavaide“project_resocurces-~IBH WebSphere Test Ent
transport-args]: mnaxConcurrency=50

transport—args]: port=8080

Ho=tname bindings:

hos=tname-binding]: hostname=localhost————> servletho=t=Ho=t for Visualige for Jawva We
hos=tname-binding]: hostname=127 . 0.0.1-———> =servletho=t=Ho=t for Visualige for Jawva We
ho=tname-binding]: hostname=localho=st:8080-————> servletho=t=Ho=t for Visualige for J:
hos=tname-binding]: hostname=127.0.0.1:8080-———> servletho=t=Ho=t for Visualige for J:
hos=tname-binding]: hostname=a23iblvra:8080-———: =ervlethost=Host for Visualige for Ja:
hostname-binding]: hostname=9.1.151 . 38:8080————> servlethost=Ho=t for Visualige for .
hostname-binding]: hostname=aZ3blvra:f80-———: =ervlethost=Host for VisualAge for Jawva
ho=tname-binding]: hostname=9.1.151.38: 80— =ervlethost=Host for Visualige for Ja:

In=tantiate: it=o.servisp.servletapi. SimpleHttpServlet

| | »

Standard In

Figure 149. SERunner Console status

Launching the browser

If you launched your servlet through the Servlet Launcher method, you
should see the results of your servlet’s execution displayed in your Web
browser window. The results of the SimpleHttpServlet are shown in Figure
150.

SimpleHttpServiet
File Edit

< 2 A3 D} 2 wWm I & @

Back Fieload H.oliﬁe Search Metzcape Frint Security
Mthookmarks)E Location:|http:.-".-"12?.0.0.1:SDSD.-"servIet.-"itso.servisp.servletapi.SimplthtpServIetﬂ @v\w’hat's Fielated
j%lnstantMessage wi'ebbd ail Contact People ‘rellow Pages Download Find Sites Ci Channels

Servlet API Example - SimpleHttpServlet

Wiew Go Communicator Help

This is about as simple a servlet as it gets!

= =B= Dacument: Dane ipe ek AR [Eal 2

Figure 150. SimpleHttpServlet output

Chapter 7. Development and testing with VisualAge for Java 195

It is possible to invoke the servlet directly from the browser, without having
to use the Servlet Launcher method. You would use this same URL, as long
as the SERunner process is running. This may also be a desired approach,
especially when you are testing servlets that interact with each other, or with
other servlet resources. You do not want to be limited to having to invoke
each servlet from the Servlet Launcher each time.

Web host path

Notice that the servlet is invoked with http://127.0.0.1:8080 (or
http://localhost:8080). There may be variations here based upon your TCP/IP
settings, and any special configuration that you may do under WTE.

Servlet root path

The servlet Web path is /servlet/itso.servjsp.servietapi.SimpleHttpServiet.
The /servlet/ path is the default for servlets running in the default
application environment in the WebSphere Test Environment. This
corresponds to the default_app Web application in the Web Application
Server environment.

Fully qualified class name

The fully qualified class name, itso.servjsp.servietapi.SimpleHttpServiet,
contains the package name, itso.servjsp.servietapi.

In our true WebSphere Application Server environment, we most likely
would not invoke our servlets directly by their fully qualified name, because
we would want to hide this implementation detail from the user. We do this
by creating aliases for Web invocation. Because this is how servlets are
invoked by default in the WTE, you have to keep this in mind when designing
your programs, and use relative paths in your code when appropriate.

VisualAge for Java provides the facility to use multiple Web applications and
servlet aliases. See “WebSphere Test Environment — multiple Web
applications” on page 215 for more information.

What have we accomplished?

So far, we have been able to successfully create a Java servlet class in the
VisualAge for Java development environment. We have modified the code,
which caused VisualAge for Java to recompile it. We then set up the
WebSphere Test Environment and launched the servlet using the SERunner
process and the Servlet Launcher. We were able to see the results of the
servlet's execution in the Web browser.

196 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

You now have the basis for developing and running servlets in Visual Age for
Java. The remainder of this chapter does not focus on how to create and
develop more servlets. You should be able to repeat the steps above to
accomplish that. Rather, we will focus on how to configure, run, and debug
these servlets in VisualAge for Java.

Testing JSPs under WebSphere Test Environment

This section describes how to run JSPs under the VisualAge for Java
environment, and how to have those JSPs interact with other servlets and/or
JavaBeans.

VisualAge for Java configuration for JSPs

You have to make sure that the WebSphere test environment features under
VisualAge for Java have been successfully installed and configured. See
“VisualAge for Java” on page 15 for detailed instructions on the necessary
features which must be added to the VisualAge for Java workspace.

Configuring the JSP version used by VisualAge for Java

Visual Age for Java version 3 supports both JSP .91 and JSP 1.0 versions,
and defaults to JSP .91 for backward compatibility. To change the version of
the JSP support used by the Visual Age Test Environment, perform these
steps:

QOpen the configuration file of the default application:

d:IBMVJava\ide\project_resources\IBM WebSphere Test Environment
\hosts\default_host\default_app\serviets\default_app.webapp

aFind the JSP compiler servlet (Figure 151):

<servlet>
<name>jsp</name><
description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
<init-parameter>

Figure 151. default_app.webapp: JSP 0.91 configuration

Chapter 7. Development and testing with VisualAge for Java 197

QChange the text for the <code> tag (Figure 152):

<servlet>
<name>jsp</name><
description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter>

Figure 152. default_app.webapp: JSP 1.0 configuration

Running our first JSP

JSPs in VisualAge for Java run in the same WebSphere Test Environment
that servlets do. (After all, JSPs actually become servlets once they are page
compiled.) Because we cannot create JSP files directly in the VisualAge tool
(we will use WebSphere Studio to develop our JSPs), we have to make sure
that SERunner can find the JSP files in the file system.

Location of JSP files
The default location for HTML and JSP files is specified in the file:

<IBMVJavaRoot>\ide\project_resources\IBM WebSphere Test Environment\
SERunner.properties

in the line:
docRoot=D:\\IBMVJava\\ide\\project_resources\\IBM WebSphere Test Environment
\\hosts\\default_host\\default_app\\web

To qualify this path, you could create a subdirectory within this Web
directory, for example, \itsoservjsp.

Running a simple JSP

VisualAge for Java ships with a couple of sample JSPs that we can use to test
out our configuration, and see that JSPs have been enabled. Follow these
steps to run the very_ simple.jsp example:

asStart the SERunner process and wait until it is ready.

QEnter the following URL in a Web browser:
http://127.0.0.1:8080/very_simple.jsp

Figure 153 shows a successful JSP response.

198 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

File Edit “iew Go Communicator Help
4 2 A A a =2 N
i Back Forward. Reload Home Search Metscape Frirt Security Stop
r wt' Bookmarks \.k Location:lhttp:x’ﬂ 27.0.0.1:8080/vem_simple.jzp j @' Wwihat's Related
4 &InstantMessage Wehhd il Contact People Vellow Pages Download Find Sites Ci Channels

-
Very Simple JSP :|
[

|=F [=b=| |Document: Done 4

Figure 153. Very simple JSP response

As the message indicates, this is a VERY simple JSP. In fact, the only tags it
uses are HTML tags (Figure 154). It is essentially an HTML file saved with a
Jjsp extension.

<html><head><title>Very Simple JSP</title></head>
<body>

<hl>Very Simple JSP</hl>

</body>

</html>

Figure 154. Very simple JSP source

How do we know it ran as a JSP?

This file is still very much a JSP. This example does not have any advanced
JSP tags, so how do we know that SERunner really ran it as a JSP and not as
a regular HTML file? Its because of the .jsp file extension.

When SERunner (and the WebSphere Application Server) receives a request
for a .jsp file, it compiles this JSP into a servlet. This happens only the first
time the JSP is requested; subsequent requests use the already compiled
JSP. This JSP life-cycle is described more in the Chapter 5, “JavaServer
Pages” on page 95.

So where is the compiled JSP stored? The JSP is translated into a servlet
Java source file, and imported into VisualAge for Java (JSP Page Compile
Generated Code project). The intermediate .java files, however, can be found
in the file system, in the WebSphere Test Environment \temp\ directory:

<IBMVJava>\ide\project_resources\IBM WebSphere Test Environment
\temp\default_app\pagecompile\ very _simple_xjsp.java <=== JSP 0.91
\temp\Jspl.0\default_app\very_simple_jsp_0.java <=== JSP 1.0

Chapter 7. Development and testing with VisualAge for Java 199

Creating and running a JSP

200

The very_simple.jsp file does not demonstrate much, except that the system
can run JSPs. Our next step is to take one of the JSP examples from Chapter
5, “JavaServer Pages” on page 95, and run it within the VisualAge for Java
WebSphere Test Environment.

We have not yet talked about the WebSphere Studio environment, which is a
fully integrated Web site development environment that enables us to
visually create JSPs (in addition to other application resources). So for now,
you have to create this file by hand, using a standard editor of your choice.

Creating the JSP
Create a new folder: \...\hosts\default_host\default_app\web\itsoservjsp. This

is the root Web path that we will use for all of our JSP examples.

Create a new file in this directory, DateDisplay.jsp, and add the code from
Figure 78 on page 106 from Chapter 5, “JavaServer Pages”. This JSP file
contains many of the standard types of JSP tags, including directives,
scriptlets, declarations, and accessing of implicit objects.

Run the JSP

Start the WebSphere Test Environment (SERunner) and enter the following
browser command: http://127.0.0.1:8080/itsoservjsp/DateDisplay.jsp

Figure 155 shows the results of the JSP execution.

. sl @'What's Related m
How are you this morning, WebhSphere 3 User ? [

Here is the Date Display JSP

Today's Date is: 28/3/2000

This page has been called: 1 tlme(s)

= == |Dacument: Done

Figure 155. DateDisplay.jsp output

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Debugging serviets and JSPs

VisualAge for Java includes an integrated visual debugger with a rich set of
features. This section outlines some of these features, and describes how we
can debug our servlets and JSPs within the VisualAge for Java environment.

Debugger basics

This section outlines the basics of the VisualAge for Java debugging
environment.

Opening the debugger

You can open the debugger manually by selecting Debug -> Debugger from
the Window menu. If a program is running, you can suspend its thread, and
view its stack and variable values. Alternatively, the debugger will
automatically open with the current thread suspended for the following
reasons:

QA breakpoint in the code is encountered.

QA conditional breakpoint that evaluates to true is encountered
QAnN exception is thrown and not caught

QAN exception selected in the Caught Exceptions dialog is thrown.
QA breakpoint in an external class is encountered.

Setting breakpoints

When a program is running in the IDE and encounters a breakpoint, the
running thread is suspended and the Debugger browser is opened so that you
can work with the method stack and inspect variable values. In the IDE, you
can set breakpoints in any text pane that is displaying source.

To set a breakpoint

Find the code you want, and double-click in the left-margin of the source
pane.

To remove a breakpoint

Find the breakpoint that is set in the code, and double-click on it in the left
margin of the source pane.

Note: There are other ways to remove breakpoints while debugging, and we
will discuss these as we walk through an example.

Chapter 7. Development and testing with VisualAge for Java 201

Figure 156 shows a breakpoint that is set in the source pane.

ITSO Servlet JSP Redbook{2{16/00 11:15:43 AM) [Administrator]
File Edit ‘“Workspace Project Packages Tepes Members ‘Window Help

¥ Y 9999wy HE
%Packages @ Classes |48 Interfaces @Managing 10 E dfitians @Hesources 1) Problems |

S Packages = = || Types
£# Default package for ITSI;I o PerzsistentCounter
£F# itso.servisp.jspsamples o FesourceH andler
| i | ¢letapi o SaveServletStats
o ServletE nvironmentSnoop
{3 SHTMLServlet
o SimpleCounter

L) SimpleHttpServlet
o Simplelnits ervlet
3 URLServet

M Source

protected woid service(HttpServletRegquest reg. HttpServletResponse res) throws St;l

res. setContentType("text html")
PrintWriter out = res.getWriter():
out .println{"<HTHL><TITLE:SimpleHttpServlet< TITLE:<BODY>"):

Fl out .println"<H2:Servlet API Exanple — SimpleHttpSerwlet< -HZ:<HRE:"):

d out .println{"<H4:Thi= i= about a= =inple a =s=ervlet as it getsl< Hd:>"):

out .println{ "< BODY:<HTHL:"):

out .close():

i -
1 | »

Iitso.servisp.servletapi.SimpIeHttpServlet.service[HttpServIetHequest, HitpServletResy |[2.-"1 8/00 5:41:10 PM] |Administrator

Figure 156. Breakpoint set in the source pane

Using the Debugger window

We indicated that the Debugger window can be opened by choosing Window
-> Debug -> Debugger. The Debugger window is also opened if you execute
any code that has a breakpoint. You can interact with your program by
controlling the program execution flow and by interacting with the threads.

Controlling program execution flow

QStep in: Steps into the current statement or method.

QStep over: Runs the current statement, and stops before the next
statement.

QRunN to return: Runs the current method, up to the return statement.

QResume: Runs to the next breakpoint, until you manually suspend the
thread, or to the end of the program.

QRun: Runs the program code, until the next breakpoint or end of program.

202 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Controlling the execution of the program threads

QaSuspend a thread: To examine a thread at any point while it is running,
you must suspend it manually. Threads halted because of a breakpoint or
an uncaught exception are suspended automatically.

QResume a thread: Resumes the suspended thread. The program will
continue running until it is suspended again or until it terminates.

QTerminate a thread: Terminates a thread, and removes it from the
debugger.

Debugging a servlet

Now we will walk through the debugger by debugging and stepping through
one of our servlet examples.

SimpleHttpServlet serviet changes

You have to modify the SimpleHttpServlet class and add a field. This makes it
more interesting for the debugger, and allow us to demonstrate an important
concept about threading. Add the variable calledCount to the class, and add
the code snippet to the service method (Figure 157).

class:
private int calledCount;

service:
++calledCount;
out.printin("<H4>This servlet has been called: " + calledCount +
" times.</H4>");
out.println("</BODY><HTML>");

Figure 157. Changes to the simple servlet

Set a breakpoint
Set a breakpoint at the ++calledCount statement.

Run the servlet

Start the SERunner class and launch the servlet. The browser window will
be launched, but will be waiting for the response from the servlet. You should
see the code stop at your breakpoint in the Debugger window (Figure 158).

Chapter 7. Development and testing with VisualAge for Java 203

i® Debugger [Administrator] [(O]]
File Edit “Workspace Selected Inspector Window Help

HIVY HOHH »HWse

E Breakpoints Exceptions

W ariable
= this =
= configT
calledCount

All Programs/T hreads
=| com.ibm.ivj.zervlet. runner HitpS erverStarter. main(] [2/29/00 11:59.00 AM]j

_‘k Thread[&Ww T -EventQueue-0.5.main] [&live]
_‘k Thread[Server Thread 5 WA5_HTTP_TRANSPORT-] [Alive]
= _‘k Thread[Server Thread 5wWA5_HTTP_TRANSPORT-] [&live]: Bre
'!.[;] SimpleHttpS el ice[HitpServletRequest, HitpServietR

- SimpleHttpServletiHitpServlet). service[ServietRequest, Seryl
ald ShictServietinstance. doService[ServletRequest, ServletResp
2t Stric:tServletlnstance[StrictLifec:yc:IeServlet]._service[ServIe_tli;I

3

Source

protected wold service(HttpServletRequest reg. HttpServletResponse res)+
res. setContentType("text html")
PrintWriter out = res.getWriter():
out .println{"<HTHL><TITLE:SimpleHttpServlet< TITLE:<BODY>"):
out . println{"<H2:Servlet API Examnple - SimpleHttpSerwlet<- HZ:<HE:")
out . println{"<H4:Thi= i= about a= simple a =ervlet asz it get=l<-Hi:

4 +-+H==0 gk 111t

out . pr n{"<H4:Thi= =ervlet ha= been called: " + calledCount + "
out .println{ "< BODY:<HTHL:"): |

out .closei)
T -
4| | _’I_I

Iitso.servisp.servletapi.SimpIeHttpServlet.service[HttpServIetHequest, Hitp5e |[2.-"29.-"DD 11:50:09 AM) |Administrator

Figure 158. Debugging the SimpleHttpServlet

Stepping through the program

There are a lot of options you can choose when stepping through the program.
You can look at the variable stack, you can suspend the code, you can run till
return, or you can step through the program and watch the calledCount get
incremented by one.

This program can be called multiple times from the browser just by hitting
the refresh button. Each time, it will stop at the selected breakpoint. To see
that the debugger is performing incremental compiles, you can update the
value of calledCount yourself, and verify that the new value is sent back to
the browser. In the debugger window, edit the value of calledCount, and
select Save from the context menu (Figure 159).

204 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

i® Debugger [Administrator] [(O]]
File Edit “Workspace Selected Inspector Window Help

HIVY HOHH »HWse 2 &) @

Fium
Wisplay

E Breakpoints Exceptions

All Programs/T hreads Wariable [Fspest
=| com.ibm.ivj.zervlet. unner HitpS erverStarter. main(] [2.-"29.-"DI§ = thiz Save
_‘k Thread[&Ww T -EventQueue-0.5.main] [&live] # @ config!
_‘k Thread[Server Thread 5 wAS_HTTP_TRANSPO + #" calledCount
4 I I 3 4
Source
Fl calledCountf§ =]
out . println{"<H4:Thi= =servlet has been called: " + calledCount + " —
out .println{ "< BODY:<HTHL:"): i
| | i
Iitso.servisp.servletapi.SimpIeHttpServlet.service[HttpServIetHequest, Hitp5e |[2.-"29.-"DD 11:50:09 AM) |Administrator

Figure 159. Changing values while debugging

Working with servlet threads

In the All Program/Threads window pane of the debugger, you can see that
there are multiple threads of execution. Many of these threads have to do
with the running of the SERunner class. In addition, you will see a Thread
for each servlet that is running. In the example below, we have triggered
SimpleHttpServlet from two browser windows. We can see that both threads
are running, and have stopped at the breakpoint (Figure 160).

i® Debugger [Administrator] =1 E

File Edit “Workspace Selected Inspector Window Help
HHY HYHH He 9y Y

E Breakpoints Exceptions

All Programs/T hreads

=| com.ibm. gervlet. SERunner. main] [2/29/00 12:34:39 Fh) o
_‘k Thread[&Ww T -EventQueue-0.5.main] [&live]
_‘k Thread[Server Thread 5 WA5_HTTP_TRANSPORT-] [Alive]
I _'k Thread[Server Thread 5 w45 _HTTP_TRAMNSPORT-] [Alive]: Breakpaint #
I _‘k Thread[Server Thread 5 wA5_HTTP_TRAMSPORT-] [&live]: Ereakpoint #
_‘k Thread[Sezsiont anagerServiet- nvalidationT hread-68.5 W45 _HTTP_TRA

_‘k Thread[Thread-0,5,main] [&live)
_>l_I

F ThieadThiead-1,10WAS HTTP TRANSPORT-] [4live]

Figure 160. SERunner Threads
This is a useful technique to show thread interaction among servlets. For

instance, we can step through one thread of the SimpleHttpServlet and see
the calledCount value being incremented, then step on over to the second

Chapter 7. Development and testing with VisualAge for Java 205

SimpleHttpServlet thread, and verify that it has the value set in the first
thread.

JSP Execution Monitor

The JSP Execution Monitor enables you to monitor the execution of JSP
source, the JSP-generated Java source, and the HTML output. With the JSP
Execution Monitor, you can efficiently monitor JSP run-time errors. The JSP
Execution Monitor displays the mapping between the JSP and its associated
Java source code, and enables you to insert breakpoints in the JSP source.

If you find an error in a JSP page, you can also modify the JSP source in a
text editor, and then run the JSP source in the JSP Execution Monitor. To
load the updated version of the JSP source into the JSP Execution Monitor,
you simply have to refresh from the Web browser.

The JSP Execution Monitor highlights the location of syntax errors in both
the JSP and JSP-generated Java source.

Launching the JSP Execution Monitor
To launch the JSP Execution Monitor, perform these steps:

QFrom the Workspace menu, select Tools -> JSP Execution Monitor. The
JSP Execution Monitor Option dialog box opens (Figure 161). (The default
internal port number for the use of the JSP Execution Monitor is 8082. If
port number 8082 is already in use, change the port number in the JSP
Execution Monitor internal port number field.)

%] JSP Execution Monitor Option []

JSP Execution Manitar internal port number: m—

[Enahble monitaring JSP execution
[Load generated servet externally
= Halbat the beainming afthe semvice method

[Retrieve syntax errar infarmation

Ok | Cancel |

Figure 161. JSP Execution Monitor launch window
By default, the ISP Execution Monitor mode is disabled. You must select

Enable monitoring JSP Execution to activate monitoring when a JSP file
gets loaded.

206 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

0By default, the Load generated servlet externally option is disabled.
Selecting this option enables you to load a generated servlet, so that the
servlet does not get imported into the IDE. We usually recommend leaving
this unchecked because you do not get the class path options that were
configured in the WebSphere Test Environment, and your JSPs might not
load properly.

Stepping through the JSP

VisualAge for Java ships with a couple of sample JSPs that we can use to test
out our configuration, and see that JSPs have been enabled. Follow these
steps to run the DateDisplay JSP example, and test its result:

QStart the SERunner process.

QEnable the JSP Execution Monitor.

QEnter the following browser command:
http://127.0.0.1:8080/itsoservjsp/DateDisplay.jsp

The JSP Execution Monitor window appears and displays the current status
of the JSP (Figure 162).

&2 JSP Execution Monitor BI=l EY

File Action Yiew Problems

PP

J5P Source |

. of

@JSP Source # Java Source
<l-—- S CRIPTLETS—> ;I /f begin [file=D:,.-"IBHUJava,-"ide,-"project,_l;I
<H3> out.print(_ jspx_html datal[20]):
<% if (Calendar.getInstance(|.get (Calendar._|| // end
{%> // begin [file=D:/IBMVJava/ide/project 1
How are you this morning, out.print(_ jspx_html datal[21]]: =l
<%} else {%> /4 end
How are you this afterncon, /4 begin [file=D:/IBMVJava/ide/project 1
<% b hd } hd
4| | » K | »

(3] Generated HTML Source

“<l-— SCRIPTLETS-—> Al
<H3>

=
4 | 3
v |

Figure 162. JSP Execution Monitor window

Chapter 7. Development and testing with VisualAge for Java 207

Similar to the debugger window for our servlets, you can step through this
code, or run to completion. We can also fast-forward and terminate. Using the
JSP source and Java source panes, you can see the JSP that was invoked,
and the corresponding Java source file that was compiled, and walk through
them simultaneously. The HTML output pane shows the JSP response that is
generated.

Debugging JSP generated source code

We mentioned earlier that the compiled .java files for JSPs are stored in the
file system (WebSphere Test Environment\temp). These files are also
imported into the workspace, in the project JSP Page Compile Generated
Code, and a package named after the \web subdirectory.

JSP compilation occurs when a JSP is invoked the first time (each time after
starting the WebSphere Test Environment), or when the underlying JSP file
is changed.

Because these servlets exist in the workspace, they are candidates for
interactive debugging. You can set breakpoints in the JSP generated source
servlets, and debug these servlets in the same way as you debugged the
servlet.

You can also step through the code using the JSP Execution Monitor, but this
does not give you the ability to interactively change the variable values, or
inspect the call stack or threads.

WebSphere Test Environment — advanced configuration

In “Servlet interaction techniques” on page 73 we discussed how servlets can
be grouped under a single Web application context. In the VisualAge for Java
SERunner environment, all servlets and JSPs, by default, belong to the same
default Web application. Thus, they share a common ServletContext, and can
share resources even if we have defined them in different VisualAge projects.

In this section, we describe the WTE SERunner default configuration, and
how (and where) to locate, build, and/or change servlet resources that your
Web application might need. Being part of the same Web application, all
servlets and JSPs that are launched through SERunner share this same
configuration. Keep this in mind when configuring the test environment.

Later, in “WebSphere Test Environment — multiple Web applications” on
page 215, we describe how to set up additional Web application environments

208 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

in VisualAge for Java, by bypassing SERunner and running the
ServletEngine process directly.

Types of resources

Servlets may require additional resources as part of a Web application. These
could include active server resources, such as other servlets and JSPs, or
passive resources, such as HTML files. Additionally, servlets may require
access to servlet configuration files, or other system resources, such as JDBC
databases.

Additional serviet examples

Many of the servlet and JSP examples that we have discussed in previous
chapters require additional resources. We will describe the basics here so
that you can find your way around the WebSphere Test Environment. In the
next section, we describe how to configure for specific situations.

Resource locations

In this section, we use <IBMVJava> to describe the root path where VisualAge
for Java is installed on your system, and <IBMvJavaWTE> for the resource
directory of the IBM WebSphere Test Environment, for example:

<IBMVJava>: d:\IBMVJava
<IBMVJavaWTE>: d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment

WebSphere Test Environment root locations
These describe the default root locations for the server process:

QServer root: <IBMVJava>\ide\project_resources\IBM WebSphere Test
Environment: This is the server root from which all paths are derived.

QDefault file root: <IBMvVJava>\ide\project_resources\IBM Servlet IDE Utility
class libraries\filename. When running servlets that perform I/O and you
do not specify a path, files will be created here, for example, SaveStats.ser,
for a serialized file.

WebSphere Test Environment default application locations
By default, the WTE uses the following directory locations:

QDocument root: <IBMVJavaWTE>\hosts\default_host\default_app\web, is the root
directory for HTML and JSP files. For example, index.html and
very simple.jsp are found here, and are invoked through
http://Tocalhost:8080/very_simple.jsp.

Chapter 7. Development and testing with VisualAge for Java 209

QDocument root folders: You can create additional folders under the
document root for specific configurations, for example, itsoservjsp.

The URL path for a JSP in this folder would be:
http://lTocalhost:8080/itsoservjsp/myjsp.jsp.

QCompiled JSP: <IBMVJavaWTE>\temp\Jspl O\default_app\filename. (For JSP
0.91 the directory is \temp\default_app\pagecompile\filename.) This is useful
if you want to see the compiled JSP’s servlet code.

QClass path for servlets: <IBMVJavaWTE>\hosts\default_host\default_app
\servlets. This is where the default_app.webapp configuration file can be
found.

Configuring project resources

If a servlet requires a configuration file (for example, impleInitServiet.serviet,
which is an XML servlet configuration file), or a property file, you can place
this file anywhere in the SERunner class path. However, we suggest using
the following conventions in order to keep your various project resources
separate:

QBuild project specific resource directory root: <IBMVJava>\ide
\project_resources\ITSO Servlet JSP Redbook, isthe ITSO Servlet JSP
Redbook project resources root. This assumes that the ITSO Servlet JSP
Project has been added to the SERunner class path.

QBuild package directories: You have to create fully qualified directories
that match the servlet’s package name, for example, <IBMVJava>\ide
\project_resources\ITSO Servlet JSP Redbook\itso\servjsp\servietapi
(...\itso\servjsp\servletapi\SimpleInitServlet.serviet).

The four key configuration files

The following four files are the primary files used to configure the WebSphere
Test Environment. Many parameters are not applicable to the SERunner
environment, so we will not go into much detail here. These files will be
reintroduced later in this chapter when we discuss configuring for the
ServletEngine test environment. The configuration matches very closely the
configuration in the WebSphere Application Server environment.

SERunner.properties
Location: <IBMVJavaWTE>\SERunner.properties.

This is a standard Java property file. You probably do not have to change this
file, however, the parameters are:

QhttpPort: 8080 (default)

210 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

QdocRoot: <IBMVJavaWTE>\\hosts\\default_host\\default_app\\web
QserverRoot: <IBMVJavaWTE>

default.servlet_engine
Location: <IBMVJavaWTE>\default.serviet_engine

This is an XML formatted file. It is the main configuration file for the servlet
engine. The key parameters are:

QVirtual host: <websphere-serviet-host name="Host for VisualAge for Java
WebSphere Unit Test Environment">. This tag defines the virtual host in the
servlet engine. Only one single virtual host is used in SERunner.

Qwebgroup tag: <websphere-webgroup name="default_app">. This tag defines the
Web application deployment bindings within the servlet engine. Only the
default application (default_app) is valid when using SERunner.

QHostname bindings: <hostname-binding hostname="localhost" servlethost=
"Host for VisualAge for Java WebSphere Unit Test Environment">. This tag is
for binding a DNS name to a virtual host.

AQMIME types: This tag defines a mime type mapping for the virtual host.

default_app.webapp

Location: <IBMVJavaWTE>\hosts\default_host\default_app\servlets\
default_app.webapp

This is the configuration file for the default Web application. The SERunner
environment supports only this default_app. The key parameters are:

QError page: <error-page>/ErrorReporter/</error-page>, the URI page that is
called in response to an error during the processing of a servlet; it can be a
customized servlet, JSP, or HTML file.

QServlet properties: <servlet> <name>myser</name> <code>MyServlet</code>
<init-parameter> <name>key</name> <value>123</value>
<servlet-path>/servlet</servlet-path> <autostart>true</autostart> ...
</servlet>, defines a servlet within a Web application. There can be many
servlets defined in this file. A user defined servlet in our application does
not have to be defined here (by default, it will be invoked by its class
name), but we can use this to specify some additional servlet properties,
such as the name (alias) that we use in the browser, and configuration
parameters.

Qlnvoker servlet: <servlet> <name>invoker</name> <servlet-path>/serviet
</servlet-path> ... </servlet>, is a special servlet that allows us to load a
class by name, such as itso.servjsp.serviletapi.SimpleHttpServlet. The

Chapter 7. Development and testing with VisualAge for Java 211

servlet-path value of /servlet specifies the URL prefix used to invoke
servlets in the browser.

QJSP: <servlet> <name>jsp</name> <code>...</code> </servlet>, is a special
servlet that is used to compile JSPs. The init parameter of jspemEnable
allows us to enable or disable JSP Execution Monitor support. The class
specified in the <code> tag specifies the level of JSP support:

e com.ibm.ivj.jsp.runtime.JspDebugServiet <== JSP 1.0
e com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet <== JSP 0.91

QError Reporter: <servlet> <name>ErrorReporter</name> ...< /serviet>, is a
special servlet that handles the error reporting in our application.

session.xml
Location: <IBMVJavaWTE>\session.xml

This controls the WebSphere Session Management functions in the servlet
engine. All tags within <session-data> are valid in WTE. All others should be
ignored.

Configuration for servlet chaining, filtering, and SHTML

This section describes how to configure the WebSphere Test Environment to
support servlet chaining, filtering, and the processing of SHTML files. These
servlet techniques were discussed in Chapter 4, “Servlets” on page 41.

Servlet chaining

To support servlet chaining, we define a sequence of two or more servlets,
such that the response of one servlet is chained as the request into another
servlet, until the final servlet in the chain is executed, and the accumulated
response sent back to the Web browser. In this way, the execution of all the
servlets in the chain produce our composite response.

Figure 163 shows how to add support for servlet chaining. You need to define
a ChainerServlet in your Web application file, default_app.webapp (or
itsoservjsp.webapp). For this example, we are chaining two servlets in the
itso.servjsp.serviletapi package together to create our composite response.

212 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<servlet>
<name>Servlet Chaining Servlet</name>
<description>Servlet Chaining Servlet</description>
<code>com.ibm.websphere.serviet.filter.ChainerServiet</code>
<servlet-path>/chainer</servlet-path>
<autostart>true</autostart>
<init-parameter>
<name>chainer.pathlist</name>
<value>/servlet/itso.servjsp.servletapi.ChainerFirst
/servlet/itso.servjsp.servietapi.ChainerSecond</value>
</init-parameter>
</serviet>

Figure 163. Servlet chaining specification in default_app.webapp

Servlet filtering

In servlet filtering, the servlet changes the MIME type of the response from
text/html to a user-defined MIME type, and tie this MIME type to a servlet.

We do not know how to configure the VisualAge for Java Test Environment
for servlet filtering.

See “Servlet interaction techniques” on page 426 on how to configure
WebSphere Application Server for servlet filtering.

Running SHTML

See “Additional servlet examples” on page 424 for instructions on how to set
up WebSphere or VisualAge for Java to run the SHTML example. Basically,
you have to associate .shtml files with the JSP 0.91 compiler to have the
source compiled into a servlet.

Chapter 7. Development and testing with VisualAge for Java 213

Developing and testing additional serviet and JSP
configurations

We have really only covered the very basics of servlet and JSP development,
testing, and debugging in VisualAge for Java. This section covers some
specific servlet and JSP configurations, primarily to support servlet and JSP
interactions discussed in Chapter 4, “Servlets” on page 41 and Chapter 5,
“JavaServer Pages” on page 95.

Creating additional serviet examples

We will not provide the detail to create the rest of the servlet examples by
hand. You can choose to go through the class creation process for each servlet
you create, or you can use code reorganization to copy the first servlet,
SimpleHttpServlet, using it as a template for your other servlets. You can
also import the code from the 5755samp.zip file that is available on the
Internet (see Appendix C, “Using the additional material” on page 417.).

To copy a class for a new servlet
QSelect the class file.

QSelect Reorganize -> Copy from the context menu.
QKeep the same package, and select Rename the copy. Click on OK.

QEnter the new name, then click on OK to generate the new class.

Configuring and running additional servlets

In “Testing the servlets and JSPs” on page 423 (in Appendix C, “Using the
additional material”), we provide the detailed steps to allow you to configure
and test most of the servlet examples discussed in Chapter 4, “Servlets” on
page 41. Some of these servlets have dependencies, such as they may require
for supporting HTML pages, initialization files, or servlet configuration files.
The steps to configure and run these servlets can be classified as:

asServlet configuration files — servlet initialization parameters and names
of called JSPs

QJDBC database connections—configuring DB2 JDBC connections
QRedirecting to HTML files — location of HTML files for redirection
QRedirecting to error_Page — location of error page file
QDependencies on generated forms — other servlets

214 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Test Environment — multiple Web
applications

We mentioned earlier that SERunner might not provide all of the
functionality required to fully test your application, such as the ability to
configure multiple Web applications in the WebSphere Test Environment.

You can run the ServletEngine directly, which gives you the following control
over your Web application environment:

QYou can run multiple Web applications with their own document root
configurations

QYou can set the servlet class path individually for each Web application
QYou can define individual Web application servlet contexts

The following section describes how to configure the environment for a
tailored Web application, in addition to the default application.

Configuring multiple Web applications

In this section, we build a new Web application, itsoservjsp, to run our
examples. The following sections walk us through the steps to configure the
ServletEngine for two Web applications.

Create new directories

Create the following directories under the WTE root directory
<IBMVJava>\ide\project_resources\IBM WebSphere Test Environment:

O\hosts\default_host\itsoservjsp\servlet—class path for servlets, and
location of the .webapp file

O\hosts\default_host\itsoservjsp\web—document root (for testing, we
suggest you include an index.html document in this directory)

O\temp\JSP1_0\itsoservjsp—scratch directory for compiled JSPs (1.0)

You have to create these three directories for each Web application that you
define.

Modify default.serviet_engine

Edit the <IBMVJavaWTE>\default.servlet_engine file to set up the itsoservjsp Web
application. We suggest that you back up this file first prior to making any
changes so that you can restore the default SERunner environment.

Chapter 7. Development and testing with VisualAge for Java 215

216

QChange the WebSphere servlet host name to default_host:
<websphere-servlet-host name="default_host">
QAdd a <websphere-webgroup> for itsoservjsp:

<websphere-webgroup name="itsoservjsp">
<description>ITSO Servlet JSP Redbook</description>
<document-root>$approot$/web</document-root>
<classpath>$approot$/serviets$psep$$server_root$/serviets</classpath>
<root-uri>/itsoservjsp</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>

</websphere-webgroup>

In this definition, we set the <root-uri>to /itsoservjsp, so that servlets are
invoked with http://localhost:8080/itsoservisp/servletname.

QChange the hostname binding to match the servlet host:

<hostname-binding hostname="Tlocalhost:8080" servlethost="default_host"/>
<hostname-binding hostname="127.0.0.1:8080" servlethost="default_host"/>

With this configuration, we should be able to call HTML files, servlets, and
JSP for the itsoservjsp Web application as:

http://lTocalhost:8080/itsoservjsp/index.html
http://lTocalhost:8080/itsoservjsp/myPackage.myServietClass
http://localhost:8080/itsoservjsp/myJSP.jsp

Create a new itsoservjsp.webapp file

We use the default_app.webapp file as our initial template. Copy the file into
the new servlets directory (<IBMVJavaWTE>\hosts\itsoservjsp\servlets) and
rename it as itsoservjsp.webapp. This provides us with some basic support.
such as the ErrorReporter, Invoker, and JSP servlets.

Customize the itsoservjsp.webapp file as follows:
QProvide a tailored name and a description for the application:

<webapp>
<name>itsoservjsp</name>
<description>ITSO Serviet JSP Redbook</description>

QChange the JSP servlet to use JSP 1.0 and point to the correct directories
for compiled JSPs:

<servlet>
<name>jsp</name><description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter> <name>workingDir</name>
<value>$server_root$/temp/itsoservjsp</value> </init-parameter>

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<init-parameter> <name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/itsoservjsp</value> </init...>

</serviet>
QConfigure one servlet for this application to demonstrate how to specify
specific servlet parameters and an alias:

<servlet>
<name>SimpleHttpServlet</name>
<description>Simple Http Servlet</description>
<code>itso.servjsp.servlietapi.SimpleHttpServiet</code>
<servlet-path>/simple</serviet-path>
<init-parameter>
<name>xXxXxxxxx</name> <value>yyyyyyyy</value>
</init-parameter>
<autostart>true</autostart>
</serviet>

You can later configure additional servlets.

Configuring the ServletEngine class

We will use our existing ITSO Servlet JSP Redbook project for the serviet
code. When using multiple Web applications, we have to start the WebSphere
Test Environment using the ServletEngine class instead of the SERunner
class.

Configuration of ServietEngine

Qln the Workbench, find the IBM WebSphere Test Environment project,
select the com.ibm.servlet.engine package, and find the ServletEngine
class.

QCreate a bookmark to this class by selecting the bookmark icon in the top
right of your window. This step is optional, but will make it easier to find
this class in the future.

Setting command line arguments

Open the Properties of the ServletEngine class from the context menu, then
select the Program page. Enter following single command line argument:

-serverRoot "<IBMVJavaWTE>"

For example:

-serverRoot "d:\IBMVjava\ide\project_resources\IBM WebSphere Test Environment"

Chapter 7. Development and testing with VisualAge for Java 217

Setting the ivj.version

The SERunner class sets a system property called ivj.version to a non-null
value. This tells the WebSphere runtime that it is running in VisualAge for
Java and performs a special setup required for this environment. To emulate
this behavior when launching ServletEngine directly, it is important to set
this value to a non-null value. On the same Properties - Program page, enter
the following line into the Properties pane:

ivj.version=3.02

Setting the class path

In the same Properties dialog, select the Class Path page to set up the class
path for the ServietEngine.

QEdit the Project path and add the ITSO Servlet JSP Redbook project.

QEdit the Extra directories path and enter all the directories listed in
Figure 164. To save you all the typing, you can copy these entries from the
same dialog of the SERunner class, and add your Web application servlets
directory.

../IBM WebSphere Test Environment/1ib/db2java.zip;

../IBM WebSphere Test Environment/lib/ns.jar;

../IBM WebSphere Test Environment/1ib/ibmwebas.jar;

../IBM WebSphere Test Environment/Tib/serviet.jar;

../JFC class libraries/;

../IBM Persistence EJB Library/;

../IBM JSP Examples/;

../Servlet API Classes/;

../IBM Data Access Beans/;

../IBM XML Parser for Java/;

../JSP Page Compile Generated Code/;

../IBM WebSphere Test Environment/;

../IBM IDE Utility local implementation/;

../IBM IDE Utility class libraries/;

D:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment\
hosts\default_host\itsoservjsp\serviets\;

Figure 164. Servlet engine class path directories

Note: This list is dependent on the Version of VisualAge for Java. The best
way is to copy the entries from the SERunner class.

218 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Launching ServletEngine

To start the ServletEngine process directly, select the ServletEngine class and
Run -> Run Main, or click on the Running man icon in the tool bar.

Console window

The VisualAge for Java Console window displays the status of the
ServletEngine process. If there are problems starting up the environment,
messages would be displayed here. The messages that you see for a
successful start-up of the ServletEngine are shown in Figure 165.

Load group: default_app

Instantiate: com.ibm.servlet.engine.webapp.DefaultErrorReporter

009.481 76be ServletInstan A Loading servlet: "ErrorReporter"

009.626 76be WebGroup A [Servlet LOG]:
"com.ibm.servlet.engine.webapp.DefaultErrorReporter: init"

009.630 76be ServletInstan A Servlet available for service: "ErrorReporter"
Instantiate: com.ibm.ivj.jsp.runtime.JspDebugServiet

009.714 76be ServletInstan A Loading serviet: "jsp"

009.784 76be WebGroup A [Servlet LOG]: "com.ibm.ivj.jsp.runtime.JspDebugServiet:
Scratch dir for the JSP engine is: d:\IBMVJava\ide\project_resources\IBM WebSphere
Test Environment/temp/JSP1_0/default_app

IMPORTANT: Do not modify the generated servlets

009.864 76be ServletInstan A Servlet available for service: "jsp"

Instantiate: com.ibm.servlet.engine.webapp.SimpleFileServiet

009.906 76be ServletInstan A Loading servlet: "file"

009.929 76be WebGroup A [Servlet LOG]: "com.ibm.servlet.engine.webapp.SimpleFile
Servlet: init"

010.035 76be ServletInstan A Servlet available for service: "file"

Load group: itsoservjsp

Instantiate: SnoopServlet

010.338 76be ServletInstan A Loading servlet: "snoop"

010.421 76be WebGroup A [Servlet LOG]: "SnoopServlet: init"

010.424 76be ServletInstan A Servlet available for service: "snoop"

Instantiate: com.ibm.servlet.engine.webapp.SimpleFileServiet

010.861 76be ServletInstan A Loading servlet: "file"

010.872 76be WebGroup A [Servlet LOG]:
"com.ibm.servlet.engine.webapp.SimpleFileServlet: init"

010.874 76be ServletInstan A Servlet available for service: "file"

011.778 76be HttpTransport A HTTP Transport Started on Port 8,080

Figure 165. ServletEngine console status

Launching the browser and testing URLs

Start a Web browser, and enter the following URLS to test the Web
application configuration:

QTo test that your servlet alias is configured properly, enter
http://Tocalhost:8080/itsoservjsp/simple

Chapter 7. Development and testing with VisualAge for Java 219

QTo test other servlets not defined in the itsoservjsp.webapp file, you must
use the fully qualified class name:
http://Tocalhost:8080/itsoservjsp/serviet/itso.servjsp.servietapi.SimpleHttpServiet

Stopping the ServietEngine

To stop the ServletEngine process, select the ServletEngine process in the
Console window and select Programs -> Terminate or click on the black
square stop button.

Note that killing the ServletEngine is a forceful stop that does not shut down
cleanly, and therefore the destroy methods of the servlets are not called. This
function will be enhanced in the future.

Using the ServletEngineConfigDumper servlet

The ServletEngineConfigDumper servlet is a servlet provided with the
WebSphere Application Server. The Java and the class files are in:
d:\WebSphere\AppServer\hosts\default_host\examples\servlets

You can import this servlet into the VisualAge for Java environment to
display additional information about the ServletEngine environment.

Import the ServletEngineConfigDumper

You can either copy the class file into the VisualAge for Java directories, or
you can import the source code into the Workbench for debugging.

Copy: <IBMVJavaWTE>\hosts\default_host\itsoservjsp\ServletEngineConfigDumper.class

Configuring the servlet in the Web application

Locate the itsoservjsp.webapp file, and add the following <servlet>
configuration:

<servlet>
<name>ServletEngineConfigDumper</name>
<description>Servlet Engine Configuration Dumper</description>
<code>ServletEngineConfigDumper</code>
<servlet-path>/configDump</servlet-path>
<autostart>true</autostart>

</serviet>

Running the serviet

To run this servlet, enter the following URL:
http://Tocalhost:8080/itsoservjsp/configDump

Figure 166 shows a partial display of the servlet output that is generated.

220 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

3 Current Servlet Engine Configuration - Microsoft Internet Explorer =] E3
J File Edit “iew Favortes Toolz Help

IR . a4 |8 G @"”

Back Forward Stop Refresh Home Search Fawvorites History
JAQdFBSS I@ http:fffundyfitsoservjspfserviet/ServietEngineConfigDumper j i Go |J Links *
Virtual Hosts B

Configuration for Virtual Host: defusnit host

WebSphere Application Server Version Info

|Product Mame |IBM Web3phere Application Server

|Product Edition |advanced

|Product Wersion |3. 0.z

|Product Mlajor Version |3

|Product Minor Version |0 I
|Product Service Level |2

[Product Build Level lesa40 01

[Product Build Date [Mon Dec 06 00:00:00 PST 1999

System Properties

| Property | Value
|Operating Zystem |Windows HNT
|Operating Zystem Version |4. 0
|Hardware Architecture |X86
[PV Version [117
\m{[Vendor |IBM Corporation | _lLI
4 »
|@ ’_ ’_ |E'g Local intranet él

Figure 166. ServletEngineConfigDumper output

Restoring SERunner
The SERunner process can easily be restored by restoring the original

default.servilet_engine file. Any additional Web application directories are
ignored.

Chapter 7. Development and testing with VisualAge for Java 221

Configuring and testing servlet and JSP interactions

See Appendix C, “Using the additional material” on page 417 for instructions
on how to load the sample code into VisualAge for Java and test the servlets
and JSPs.

Support for JavaBeans

VisualAge for Java includes first-class support to create and manage
JavaBeans. The class browser has a BeanlInfo page where you can define
properties, methods, and events for a JavaBean and generate the associated
Beanlnfo class.

Refer to “Programming with VisualAge for Java Version 27, SG24-5264, for
detailed instructions on JavaBeans.

Team development

The software development process is becoming more and more complex. End
users are demanding that more function be delivered in less time. Many
companies are extending their core business applications to enable new users
to work in new ways through their intranet and the Internet, and new
applications are required to run on many different platforms. All this often
results in the need for large development teams to design, build, and
maintain applications. Additionally, the teams are often forced to maintain or
expand existing code in a very short time.

Java programmers need development tools that enable them to work
together in a highly dynamic environment. They require facilities that easily
allow them to manage multiple versions of their work and switch quickly
between the different versions. VisualAge for Java Enterprise provides an
extremely flexible, productive, and secure built-in team environment for
managing the software life cycle process.

The VisualAge for Java team environment is described in detail in the
redbook “VisualAge for Java Enterprise Version 2 Team Support”, SG24-5245.
The team development environment has only minor changes between Version
2 and Version 3; the concepts described in the book are still valid. An extract
from the introduction chapter of this redbook is given below.

222 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Overview

At its simplest level, the architecture of the VisualAge for Java Enterprise
team environment is a two-tier client/server model: multiple developer
workstations connected to a single file server.

Residing on the file server is a shared file, which stores all code for all
developers of the development team. This file is called the repository.

Each developer workstation has a set of executable files that are common to
every client, as well a unique file that contains a single developer’s working
code set. This file is called the workspace.

The client connection to the server is established over a local area network
(LAN), and communication between client workspaces and the repository
server is through TCP/IP.

Figure 167 shows the VisualAge for Java Enterprise team development
environment.

Eate e

e/

Developer
Workstations

i,

Il

|

Local
Workspace
File

Shared
Repository

Figure 167. VisualAge for Java Enterprise team development environment
The repository is a large binary file that stores the source and bytecodes of all

developer workspaces connected to it. It can be thought of as an
object-oriented database that houses all development objects.

Chapter 7. Development and testing with VisualAge for Java 223

The workspace file is unique to each client that is connected to the repository.
It contains the bytecodes for the development environment and all program
elements that the developer has loaded and is working with. A developer
makes changes to code inside the workspace. These changes are always
saved immediately into the repository.

Starting VisualAge for Java causes the local workspace file to be loaded into
memory and connected to the repository. A VisualAge for Java team client
cannot run without a live connection to a repository.

Developers can add program elements, for example, classes or packages, from
the repository into their workspace. Only loaded program elements are
subject to change by a developer. Generally, many more program elements
are stored in the repository than are loaded in a developer’s workspace.
Developers can also delete program elements from their workspace. Deleted
program elements still exist in the repository and can be added back into the
workspace.

The workspace file also defines the context of execution when applets and
applications are tested during development. All classes and packages that
are required to successfully run a program must be loaded into the
workspace.

Adding program elements from the repository is a way of easily sharing code
among developers working with the same repository. In contrast to other
file-based source code management systems, code changes are immediately
available to other developers in the group. This does not mean that each
developer is directly informed about any changes made by other users. A
changed piece of code must be loaded into the workspace in order for it to be
accessible. Therefore, each developer has full control over which program
elements reside in the workspace.

A powerful system of ownership supports the dynamic, concurrent VisualAge
for Java team environment. Each program element must have an owner.
Thus developers have the freedom and flexibility to make changes and try
new things, and at the same time the integrity of each program element is
ensured. The ownership model assigns distinct responsibilities to different
team members, imposes discipline on the team during the development cycle,
and facilitates tracking of changes at maintenance time.

224 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Resource management

Complete applications are composed of Java code and external resources,
such as images, sound files, property files, and so forth. The VisualAge for
Java repository only handles the Java code. The external resources are stored
in the directory structure, and every project has an associated directory, for
example:

d:\IBMvJava\ide\project_resources\ITSO Servlet JSP Redbook

In this directory you would manage the external resource files. If you open a
project browser, you can see the list of resources when you select the
Resources page in the project browser. The ITSO Servlet ISP Redbook project
does not have any resources, but the IBM WebSphere Test Environment
project shows many resources (Figure 168).

&11BM WebSphere Test Environment 3.02 [Ueli TP]

File ‘“Workspace FHesource ‘Window Help

1)

& Packages | Classes |4 Interfaces | Managing | 2 Editions | 5/ Resources |2 Problems

54 DRBMYJavatide'project_resourcesi|BM WehSphere Test Environment
= 5§ hosts =]
= &5 default_host
5§ default_app
= & itsoservsp
= 5§ serviets
= 5§ itso
B 5§ servisp
5§ jspsamples
5§ photo
5§ servietapi
& studio
B itsoservispawehapp
B ServietEngineConfigDumper.class
B SnoopServietclass

N # =5 weh _,ILI

| 0 items selected.

Figure 168. Project resources

You can perform limited function from that window, such as rename, delete,
and open. You can associated an external program with specific file types for
the Open action. Associations are defined in the Windows -> Options ->
Resources -> Resource Associations dialog.

When you package code into a jar file using the export function, you can
select that the resources will be included with the Java and class files.

Chapter 7. Development and testing with VisualAge for Java 225

226 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

8 Development with
WebSphere Studio

In this chapter, we describe the features and functionality available within
WebSphere Studio Version 3.0 and demonstrate how to use this functionality
to create, manage, and deploy your Web development projects.

This chapter begins with some background information describing how to use
WebSphere Studio to create and manage projects, folders, and files. We then
describe, by example, how to use the tools provided in WebSphere Studio to
edit project resources, and to add components such as servlets and
JavaBeans to your Web pages.

Later in the chapter, we discuss how to deploy your project resources using
publishing stages and publishing targets. Then we move on to describe the
WebSphere Studio Wizards and how you can use them to easily create Web
pages for database and JavaBean interaction.

The final section of this chapter describes how we created a simple
application using WebSphere Studio. The example demonstrates how you can
easily produce the majority of the code using the wizards, and then customize
the generated code to add functionality.

© Copyright IBM Corp. 2000 227

WebSphere Studio overview

The WebSphere Studio application development environment is shown in

Figure 169.
WebSphere Studio WebSphere
L AppServer
Project Relations | | [| |
servlets/web
. 4
HTML [GEKD
1 O
N :
. R\ . Studio
‘_ -
: rojects
Production
\:_k yProject
Servlet Test html
=> Server Isp
- html servlet
— lsp bean
--- serviet
--- bean
IBMVJava
3 L ide
8. Lproject._res.
B e
oan i Project
ard Wizard yFroj
TE
osts
\ |-Eefault_host
access yWebApp
' exchange Eservlets
web
Page Designer

VisualAge for Java

HTL ISP Workbench

Figure 169. WebSphere Studio application development environment

228 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components of WebSphere Studio:

QWebSphere Studio is a Workbench for developing components of a Web
application.

QThe user works on a project. Such a project can easily be mapped to a Web
application. The Workbench displays the Project view on the left side, and
either a Relations view or a Publish view on the right side.

= The project files are organized into folders at the user’s discretion.
Normally there is a folder for servlets, and multiple folders for other
Web resources, such as HTML, JSPs, and JavaBeans.

= The Relations view shows how the files are interconnected, for
example, an HTML file invokes a servlet, and the servlet invokes a
JSP.

= The Publish views define where files are placed through a publishing
action. Normally there are at least two Publish views (Test and
Production), but you can define as many as you want. For example, you
can map the Test view to place files into the VisualAge for Java
WebSphere Test Environment directories, and the Production view into
WebSphere Application Server directories.

QWebSphere Studio provides three wizards:

= The SQL Wizard is used to develop SQL statements based on table
definitions in a relational database.

= The Database Wizard generates HTML, servlet, and JSP code for an
SQL statement created with the SQL Wizard.

= The JavaBean Wizard generates HTML, servlet, and JSP code for a
JavaBean.

QWebSphere Studio provides a Page Designer that is used to edit HTML
pages and JSPs. The Page Designer generates the HTML and JSP code
for static and dynamic Web pages.

QWebSphere Studio can exchange source and class files with the VisualAge
for Java Workbench and repository.

QThe right side shows the directory structure. WebSphere Studio provides
a projects directory where individual projects maintain their subdirectory
structure.

QA team of developers can share a project directory. When editing files,
they are checked out, and only one developer can edit a specific file at a
time.

Chapter 8. Development with WebSphere Studio 229

The WebSphere Studio IDE

The WebSphere Studio Integrated Development Environment (IDE) allows
you to develop, manage, and deploy Web site resources. The IDE consists of
the Project view in the left hand pane and either the Publish view or
Relations view in the right hand pane, depending on the selected view option.
From any of these panes, you can launch and edit the selected file in its
associated editor by double-clicking the file icon.

The Publish view shows the folder structure for the selected publishing stage.
The Relations view graphically shows the logical links, if any, between the
files in your project.

Refer to the WebSphere Studio Guide for further information on the features
and functionality of the IDE.

When you start WebSphere Studio the first time, you are prompted to either
create a new project or to open an existing project (see Figure 23 on page 35).

Creating a project

230

WebSphere Studio is a project-based tool which organizes the resources in a
project hierarchy. The first task you will want to do in WebSphere Studio is to
create a new project that will provide a top-level folder under which all other
resources will be placed.

To create a new project, select File -> New Project.

The New Project window is displayed as in Figure 170. Here you can type a
name for the project and select a project template for your project. A directory
will be created based on the project name specified in this dialog. WebSphere
Studio offers two template project structures, Corporatel and Corporate2,
which include pre-defined folder structures and basic HTML files that
provide a good starting point for a typical Web site. You can create your own
folder structure by selecting <none> for the Project Template field.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

MNew Project [X]

Project Mare:

IITSD Servlet J5P Redbook

Project Folder:

IE:\WebSpherekS tudiotProjectzhl TS0 Serviet Browse... |

Project Template:

I <hioner ﬂ
QK. I Cancel | Help |

Figure 170. Creating a new project

Once the project is created, two folders named servlet and theme are created
by default. Included in the theme folder is a cascading style sheet named
Master.css. Style sheets allow the Web page designer to define the appearance
of HTML tags such as <H1> or <BLOCKQUOTE> in one place. Subsequently
developed HTML and JSP pages can link to these predefined styles, thus
making maintenance of the pages a much easier task. For example, to change

the appearance of all <H1> tags in a project, we simply modify the definition
within the style sheet.

Figure 171 shows the Studio Workbench for the new project.

ez & /e | g waes- glyoe a

v@, IE'Ij'LSD Se:'v:etJSP Red e Test
b servie

: - &2 http:illocalhost
+q

|Inserts & folder into the selected server or folder |Stage: Test

Figure 171. Studio Workbench

Chapter 8. Development with WebSphere Studio 231

Setting the JSP version

232

WebSphere Studio 3 can be configured to use either JSP 0.91 or JSP 1.0
specifications, depending on which application server you are using. For
WebSphere Application Server Version 2, only the JSP 0.91 specification is
valid. For WebSphere Application Server Version 3, both JSP 0.91 and
JSP 1.0 specifications are valid.

Before starting a new project, you should set the JSP version to the setting
appropriate for your project. This is necessary, as the wizards will generate
code compatible with the version you specify, and the code is not
interchangeable. Also, WebSphere Studio does not allow you to mix JSP 1.0
and JSP 0.91 tags in the same Studio project, or in the same JSP page.

To specify the JSP version, highlight the project node and select Edit ->
Properties to display the project Properties dialog shown in Figure 172.

ITSO Servlet JSP Redbook Properties

General | Version Control | Connectivity Advanced |

° ITS0 Serdet JSP Redbook,

Start Page:
Project Folder: E:\webSphere\Studio'ProjectshIT ..

Application Server Wersion: |3-D j
JSP Wersion: i

Code Generation 351 IW’ebSphere j
Compile-tinme Classes: IAppServeNS j

Diebug Server Mame: IDefauIt Server

QK. I Cancel Help

Figure 172. Set the JSP version in WebSphere Studio

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Setting up folders

Defining a folder structure for your project is an important part of organizing
project resources into logical groupings. You should consider creating folders
which separate HTML files, JSP files, and servlets.

To create a new folder, click the project node and select Insert -> Folder
(Figure 173). On the Create New page, type a name for the folder. This
creates a folder under the project level icon. If you want to create nested
folders, select a folder, which will be the parent folder, and select Insert ->
Folder.

Insert Folder E3

Create Hew | IIse Existing I

Folder Mame:

Jisp

Destination;
E:\wiebSpherehStudiot Projectstl TS0 Serviet JSP Redbook,

Figure 173. Creating a new folder

When you create a new folder in WebSphere Studio, a physical folder is

created on the hard disk under the \projects directory, for our example:
d:\WebSphere\Studio\projects\ITSO Servlet JSP Redbooks\

You can also browse for an existing folder on the hard disk for inclusion in the
project as shown in Figure 174.

Insert Folder E3

Create Mew Use Existing |

Folder Mame:

E:A5G 24570545 ampCodebStudioh zamples Browsze |

E:ASG 24575545 ampCodet Studiohsamples

Remove |

Figure 174. Inserting an existing folder

Note that when you select an existing folder, the folder and its contents are
copied into a sub-directory beneath the Studio project directory mentioned
above, and the original folder and its contents are not referenced again.

Chapter 8. Development with WebSphere Studio 233

You can insert multiple existing folders by clicking the Add button after
navigating to each folder.

When the folder structure is complete, you can expand the folders to see the
complete structure (Figure 175).

0 jsp -

=-&] samples

.] very_simple jsp —

] servlet e

=43 theme -
...] Master.css -

[[Stage: Test

R

Figure 175. Completed folder setup

Adding files to the project

The next task you want to do is to create or insert files into the project. Select
the folder in the Project file pane where the file will reside, and select Insert
-> File.

WebSphere Studio provides a number of file templates that you can use as a
starting point for your project resources. For example, the HTML file
template includes the minimum HTML tags required for a HTML page.

We have added a blank HTML file template named Samp1eHTML.htm1 to the
html folder, and a blank JSP file template named Samp1eJSP. jsp to the jsp
folder, using the Insert File dialog shown in Figure 176.

The Insert File dialog also enables you to insert existing files (Use Existing
page) and provides a function to interface to Visual Age for Java (From
External Source page) to import files directly from the VisualAge IDE (see
“Interfacing to VisualAge for Java” on page 291 for details about this
feature).

234 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Insert File

Create New | Use Existing I From External Source I

E.&nimation.gif o T =
AppletDesigner.app

1»:'—1| Blank. htrn Custom Template... |

. Blank.html

.| Blark. jsp File: Mame:

7| Blank [SampleHTHML il

| CERNImagst ap. map

@ Click. au Destination:

. | ClientSidslmaneMap hml E:\webS phere\StudioProjects\M TS0 Servlet .

@JavaBean.iava
;j JavaBean.jzp
K| d 3vaSoript s

@JavaSewlet.iava ;I

QK. I Cancel Help

Figure 176. Insert a new file based on a template

At this point, the project now has a JSP file and an HTML file.

We also add the JavaBeans and servlets that were developed in Chapter 5,
“JavaServer Pages” on page 95 to enable us to demonstrate how we can use
WebSphere Studio to call servlets and embed JavaBeans to create dynamic
content.

To add the required Java files and classes, the process is similar to adding an
HTML or JSP file except that we select the Use Existing tab to navigate to
the directories containing the .class and . java files. You should always place
these files underneath the servlet folder in the WebSphere Studio project
view.

Servlets should also be stored in a folder structure that represents the
package name of the class:

...\projects\ITSO Serviet JSP Redbook\servlets\itso\servjsp\jspsamples
This is a requirement of the JavaBean Wizard. If you do not intend to use the
JavaBean Wizard, you do not have to adhere to this structure; however, you

will have to set up publishing targets to ensure that these files are placed in
the correct folder structure when published to the target server.

At this point, we have a number of files included in our WebSphere Studio
project (Figure 177).

Chapter 8. Development with WebSphere Studio 235

e r Rz et e [ckla

4] ITSO Servlet JSP Redbook P
=4 html
..] SampleHTML htm =
=4 Jsp
...] SampleJSP.jsp -
—-4&] samples =
...] very_simple.jsp +*
=51 serviet 25
=4 itso %
E@ servjsp -3
—=-%] jspsamples Py
------- i7 DateDisplayBean.java —
------- i7 DateDisplayServlet.java
... {9 VectorBean java
=43 theme
...] Master.css

.

|E:4w/ebSpherehStudichProjectsM TS0 Serviet JSP Redbook [[Stage: Test

Figure 177. Project structure with folders and files

Setting the file status

Before doing anything further with the project, it is often useful to tag the
resources in the project with a status. Files marked with a status are colored
to provide a visual clue which is associated with a particular text label.
Typically, you use the status feature to identify a particular phase in the
development cycle.

WebSphere Studio offers the following status colors by default:
QWork-in-Progress (Red)
aSubmitted-for-Approval (Yellow)
QReady-for-Publishing (Green)

The status names and colors are fully configurable. You can configure a

Status by selecting Edit -> Set Status -> Customize status and modifying one
of the existing status entries, as shown in Figure 178.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Customize Status

ird ! IWDIk-in-F‘mgress
=l J ISubmitted-fnl-ﬁpprnval

i J IHead_l,l-fnl-F'uinshing

v J IITSD Development Stage

~ ! [Labels
~ ! [Lecels
v Wl [reee7
[N

0K I Cancel Help

Figure 178. Creating a custom status

To apply the new status to selected files in the project pane, select Edit -> Set
Status -> ITSO Development Stage (or any other predefined status).

Editing project resources

WebSphere Studio allows developers to edit project resources using built-in
editing tools. When a resource is being edited, WebSphere Studio flags the
resource as checked-out, preventing other developers from modifying the
same resource in a team environment.

This section describes how to edit resources in WebSphere Studio.

Checking-out and checking-in files

When a resource is edited in WebSphere Studio, the resource is marked as
checked-out. When a resource is checked-out, it is locked so that other
developers in the team do not have write access to it.

Resources that are checked-out have a small red check mark placed in front
of the file name, providing a visual clue to other developers as to which
resources are checked-out (Figure 177 on page 236 shows the two new files

Chapter 8. Development with WebSphere Studio 237

with the mark). This mechanism is very useful in a team environment to
prevent simultaneous edits to the same project resource which may result in
loss of data. A checked-out file remains that way until a check-in option is
performed on the file.

Checking out a file is done automatically if the file is edited by launching it
from WebSphere Studio. Developers can also manually check-out a selection
of files by highlighting them and selecting Project -> Check Out (or use the
pop-up context menu).

When a resource is checked-out, a copy of the resource is placed in the
directory:

d:\WebSphere\Studio\check_out\ITSO Serviet JSP Redbook\..folder..\

Any editing of the resource is performed on this copy of the file. Only when
the file is checked-in does the edited resource get copied back into the
original project directory. This feature allows the developer to easily undo
any changes made to a file before it is checked-in.

If you want to undo a check-out operation, or you do not want to save any
changes made while editing a particular project resource, highlight the files
and select Project -> Undo Check Out.

When a check-in or an undo check-out operation is performed, the copy of the
resource in the \check out directory is deleted.

Invoking Page Designer

Most graphical project resources can be edited using WebSphere Page
Designer. To edit a page resource such as the SampleHTML.htm1, invoke the
WebSphere Page Designer by double-clicking the file icon in the Project file
view WebSphere Studio. This launches the Page Designer and loads the
selected file into the Page Designer workspace, as shown in Figure 179.

238 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

File Edit “iew Format Inzert Table Frame Toolz Window Help
O-FE &) ER X o | EEE | (EE @

B SampleHTML html - Put Your Title Here

IF‘ut your text here

Momal I HTHL Sourcel F'reviewl

| BODY | Put ¥our Title Here 4

Figure 179. WebSphere Page Designer

Once the resource is loaded, you can add other HTML page elements using
the features provided in WebSphere Page Designer.

Using forms and input fields

Many Web sites contain HTML forms which are used to capture user input.
We are going to create a form using the sample.html file, which will capture
details about the user. Later, we will call a servlet from within this form to
process the information inside the form and return the entered information
back to the user.

First, we insert a form by selecting Insert -> Form and Input Fields -> Form.
This creates a form body in which you can insert other input fields. The
bounds of the form are denoted by a pink rectangle.

In this example, we create a simple survey form, where we can capture
details about the user. You can add a heading to the page by typing inside or
outside the form boundary.

We add a large heading titled WebSphere User Survey Form and give it the
Heading 1 format tag by highlighting the text and selecting Insert ->
Paragraph -> Headingl. We also add a horizontal rule tag beneath the
heading by selecting Insert -> Horizontal Rule.

Chapter 8. Development with WebSphere Studio 239

Next we will use WebSphere Page Designer to insert the user-input fields
that will capture user-entered data. This is done by selecting Input -> Form
and Input Fields -> [input field type]. Input fields can be of the types
identified in Table 14.

Table 14. Summary of form input fields

Name Description

Submit button | Used to send form data to the Web server. You can specify a name
and caption for the button which can be used to determine which
button was pressed in the case of a multi-button form.

Reset button Used to resent data within the form to default values.

Image button Used to convert an image to a button and trigger script code for
special processing. Does not interact with the server directly.

Push button Used to trigger script code for special processing. Does not interact
with the server directly.

Radio Button Allows selection of one option from a group of two or more option
buttons within the same group.

Check Box Used to make multiple selections within a particular grouping.
Text Area Multiple line text entry field.

Text Field Single-line data entry fields.

List Box Allow single or multiple selection of values from a list.

Option Menu Provides a drop-down list of values where only one value can be
selected.

In general, each input field requires that you define a name for the field. For
input fields that are grouped, such as radio button and check boxes, you
provide one name (a group name) with different values.

For this example, we name the entry field firstname, the drop-down list title,
and all the check boxes tools, with values that match the description of the
check boxes.

When programming a servlet that will respond to the Submit button action,
this enables you to iterate through the group and determine which fields are
selected within the group. This is described in more detail in “Calling a
servlet” on page 241.

The are many attributes and configuration options available for each input
type. Refer to the WebSphere Page Designer documentation for detailed
information on these attributes.

240 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Building the form is simply a matter of placing the required input fields
within the form and providing text labels next to each field in a typical
WYSIWYG manner. Figure 180 shows the completed form.

WebSphere User Survey Form

ETeII us something about yourself:

:Enter your name: I d
Select your title: [ieb Developer ~| d

Wich tools do you have experience with: @
I~ WebhSphere Application Server @

™ webSphere Studio d

i_ Yisualdge for Java d

I~ IBM HTTP ¥eh Server d

.’_ CBZ DB d

W

| SUEMIT

Momnal IHTML Snurcel F'reviewl =

Figure 180. Completed survey form

Calling a servlet

Now that the form is complete, we need a way to send the form data to the
Web server for processing. In this example, we call a servlet that iterates
through the form elements and performs some actions based on the selections
made by the user.

The itso.servjsp.servletapi.HTMLFormHandler is provided with the source code
examples that accompanies this book.

To modify the form to call the servlet that performs this task, select the form
by clicking on its bounding rectangle, and select Edit -> Attributes (or
double-click). This brings up the attributes dialog for the form, where you can
provide a value for the form'’s action attribute, as shown in Figure 181.

Chapter 8. Development with WebSphere Studio 241

Tag: I Farm ﬂ

Form | Hidden Fields |

UBL Template: I j
Action:
feervletfitso. servisp. servietapi HTMLF ormH andled
tethod: ' Get ' Post
Encoding Type: I j
— Parameters
MHame | Walue
<] | »]
Edi... |
Target: j
Extended... |

0K I Cancel | Help |

Figure 181. Setting the action attribute to call a servlet

Preview the form and view HTML source

You can use the Preview tab at the bottom of the survey form in the Page
Designer to see how the HTML page might look in a browser.

To view the HTML source code, use the HTML Source tab. You can make
modifications in the source and they are reflected in the Normal view.

Figure 182 shows the source of the HTML page. The actual listing in the

Page Designer is color coded, with blue for tags, red for strings, black for text,
and purple for keywords.

242 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"><!-- Sample HTML file -->

<HTML>

<HEAD>

<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.2 for Windows">
<META http-equiv="Content-Style-Type" content="text/css">

<TITLE>WebSphere User Survey</TITLE>

<LINK href="file:///E:/WebSphere/Studio/Projects/ITSO Serviet JSP Redbook/theme
/Master.css" rel="stylesheet" type="text/css">

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>WebSphere User Survey Form</H1>

<HR>

<FORM action="/servlet/itso.servjsp.servletapi.HTMLFormHandler">

<H3>Tell us something about yourself:</H3>

<P>Enter your name: <INPUT size="20" type="text" maxlength="30"
name="firstname">

Select your title: <SELECT name="title">

<OPTION selected>Web Architect</OPTION>

<OPTION>GUI Designer</OPTION>

<OPTION>Web Developer</OPTION>

</SELECT>

Wich tools do you have experience with:

<INPUT type="checkbox" name="tools" value="WebSphere Application Server"> WebSphere
Application Server

<INPUT type="checkbox" name="tools" value="WebSphere Studio"> WebSphere Studio

<INPUT type="checkbox" name="tools" value="VisualAge for Java"> VisualAge for Java

<INPUT type="checkbox" name="tools" value="IBM HTTP Web Server"> IBM HTTP Web Serve

<INPUT type="checkbox" name="tools" value="DB2 UDB"> DB2 UDB

<INPUT type="submit" name="Submit" value="SUBMIT"></P>

</FORM>

</BODY>

</HTML>

r

Figure 182. HTML source view

Save the HTML page and exit the page. Do not close the Page Designer
window; it is reused for all editing activities started from the Studio
Workbench.

The Web page is now ready to be published to the Web server for testing. As
an exercise, use the check-in function on the saved file as a preparation for

publishing.

See “Project relationships and integrity” on page 253 for detailed instructions

on publishing project resources.

Chapter 8. Development with WebSphere Studio

243

Inserting a JavaBean into a JSP

WebSphere Page Designer provides an interface to easily insert JavaBeans
into JSPs. Using the Samp1eJSP. jsp file, we will add the DateDisplayBean that is
provided with the source code that accompanies this book.

Launch the Samp1eJSP. jsp file from the WebSphere Studio Workbench to load
it into the Page Designer. We add labels to the page that identify the
properties of the bean that we want to insert, counter and dateString.

Next we need to declare the JavaBean that we want to use. Before we can
insert properties of the bean, it must first be declared. Select a position at the
top of the page, before any usage of properties from the bean. Select Insert ->
JSP Tags -> Insert a Bean (Figure 183).

Tag: I izpuzeBean ﬂ
jspiuseBean | setProperty |
10 IDateDispIa_l,J
Clazz: Iilsn. zervizp.jspsamples. D ateDisplayB ean
Beanname: I
Tupe: |
Scope: I zEszian j

0K I Cancel | Help |

Figure 183. Declaring a JavaBean

In the JSP file, you will notice that a green marker (J) identifies the location
of the declared bean, and a jsp:useBean tag is generated.

Once the bean declaration has been made, you can extract the properties of
the bean. Click on where you want the bean property to be inserted and
select Insert -> JSP Tags -> jsp:getProperty Tag to display the Attribute
dialog.

This dialog enables you to specify the bean name and the bean property that
you want to insert. Click the Browse button to display the list of the available
objects and select the DateDisplay bean as shown in Figure 184.

244 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Bean Property Selection [x|

Propertiez oK.

@ application
@ config
ateDlizplay
-~ exception
[Eghe ot

------ g page
H-- @ pageContest
H g request
H[gh rezponse
H-- (g $2s3ion

Cancel

Help

plel

TF T TF T

itzo.servisp.jspsamples. D ateDisplayBean DateDisplay

Figure 184. Browsing beans and properties

In addition to user-defined objects, this dialog lists other implicit objects
available to the page. Refer to Chapter 5, “JavaServer Pages” on page 95 for
more information on implicit objects.

Next, in the Attribute dialog, type dateString as the name of the property to
insert. When complete, notice another green (J) marker embedded in the file
where the property is inserted. Repeat this for the counter properties that
you want to insert into the JSP.

The completed page is shown in Figure 185.

JSP with Java Bean Properties

This is an example of inserting a JavaBean and accessing its properties.

o - Bean declaration |

The date today is: B0 <l { Bean properties I
d A/I J

The date display bean has been called times il @

& Momal IHTML Sourcel F'reviewl BODY I

Figure 185. Completed JSP including bean properties

Chapter 8. Development with WebSphere Studio 245

By selecting the HTML Source tab in WebSphere Page Designer, you can
view the source code for the page as shown in Figure 186. This is often useful
to see the syntax used to declare and insert bean properties. You can add and
edit code directly in the source code view, for example, to change the title.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"><! >

<HTML>

<HEAD>

<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.2 for Windows">

<META http-equiv="Content-Style-Type" content="text/css"><TITLE>

JSP with Bean

</TITLE>

</HEAD>

<BODY BGCOLOR="#FFFFFF">

<H1>JSP with Java Bean Properties</H1>

<P>This is an example of inserting a JavaBean

and accessing its properties.</P>

<jsp:useBean id="DateDisplay" class="itso.servjsp.jspsamples.DateDisplayBean"
scope="session" />

<P>The date today is: <jsp:getProperty name="DateDisplay" property="dateString"

/>

The date display bean has been called

 times.<jsp:getProperty name="DateDisplay" property="counter" />

</P>

</BODY>

</HTML>

Figure 186. JSP source

Modifying JavaBeans and servlets

In addition to modifying Web page resources, such as JSP and HTML files,
WebSphere Studio allows you to modify Java source code files and recompile
the modified source code into class files.

Changing the default editor

The default editor for Java files is Notepad.exe. You can change the default
editor for a particular MIME time by selecting Tools -> Tools Registration
(Figure 187).

You can then edit the file with your chosen editor by highlighting the file in
the WebSphere Studio Project file view and selecting Tools -> Edit With ->
[your editor]. You may consider registering VisualAge for Java as an editing
tool in addition to your favorite text editor (see “Editing Studio files with
VisualAge for Java” on page 390).

246 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tools Registration []

£ Extension | MIME tupe | E ditor | Publishable | Customized |:|
ivf videos-iv IWFFile Mo Mo
jar jar_auto_file Yes Mo

WOTEPAD

ot PSP Browser s Mo No
ifif image/pjpeg JPEG Image Mo Mo
jhtrml textshtml Page Designer Yes Yes
jif Paint Shop Pro 5 Image Mo Mo
job JobObject Mo Mo

File extenzion: Iiava MOTERAD
Browse Example File... | Add.. | Edi... | Delete |
Lloze I Help |

Figure 187. Tool registration for editing

Compiling source files

If you have made changes to the Java source file and want to recompile it,
highlight the source file and select Compile (or Project -> Compile).

This invokes the Java compiler specified in the Java tab in the Tools ->
Preferences dialog. You can change the Java compiler and class path used by
this process by editing the values displayed there.

Publishing stages and publishing targets

WebSphere Studio enables you to set up multiple publishing stages for
deployment of WebSphere Studio resources to different locations. You can set
up different deployment servers and configurations, depending on how your
development environment is structured.

For example, in most development environments, you would probably have,
as a minimum, a test server and a production server. During the development
cycle, you would publish your files to the test stage, which would reflect a
Web server in your test environment. Later, when the project or a project
phase is complete, you would publish the files to the production stage.
Publishing stages are fully configurable, and you can add any number of

stages to your project.

Chapter 8. Development with WebSphere Studio 247

WebSphere Studio provides two publishing stages by default, Test and
Production.

QWe configure the Test stage to publish to the WebSphere Test
Environment of VisualAge for Java that runs on the same machine as
WebSphere Studio.

QWe configure the Production stage to publish to the WebSphere
Application Server and IBM HTTP Server. We use a real TCP/IP
hostname for publishing, although it might actually be the same machine.

Setting up the Test stage

By default, WebSphere Studio provides a configuration for localhost that is
configured by default to publish all files to the document root of the IBM
HTTP Server. Because we want our Test stage to publish to the WebSphere
Test Environment, we have to modify the configuration of this stage.

To configure the Test stage, ensure that your WebSphere Studio project is set
to the Publishing view by selecting View -> Publishing. Next, select the test
configuration by selecting Project -> Publishing Stage -> Test (Figure 188).

2 Test

=43 html

... @ SampleHTML html
e, 1] SampleJSP.jsp
-] samples
=- %] servlet
= 4] itso

=-4] servjsp

= 4] jspsamples

- [#] DateDisplayBean.class
. [#] DateDisplayServlet.class
... [F] VectorBean.class

=& theme
..,] Master.css

Figure 188. Editing the Test publishing stage

The server name is used for testing directly from WebSphere Studio. The
VisualAge WebSphere Test Environment runs (by default) on port 8080,
therefore we must redefine the server as localhost:8080. Select the Test stage
and Insert -> Server, and enter localhost:8080. Then select each folder under
localhost and move (drag) it to localhost:8080. When done, select the
localhost server and delete it.

248 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Select the server-level node as shown in Figure 188 and select Edit ->
Properties. This displays the properties for the localhost:8080 server (Figure
189).

http:/flocalhost:8080 Properties]

Publishing | Server |

!!! hitp: / flocalhost: 2080

™ Do not publish

& File zystem publish:

File System: IWindows 'l

" ETP publish:
FTP Login | FTP ot [21 =]
Fasswnrd: l—
™| Save Password
I=| Rsy
™| Wse Firewallsequetice Set Frewal Sequence. . |
Publishing Target: html | Define Publishing T argets. . i

QK | Cancel | Help |

Figure 189. Defining publishing properties

Because we will be publishing to the local file system, select the File system
publish option button and select Windows NT as the file system from the
drop-down list. Next, we have to configure the publish locations for the files.
Select the Define Publishing Targets button to display the Publishing Targets
dialog (Figure 190).

Publishing Targets

Publizhing T argats:

Mame | Path | Add |

html EMEM HTTP Serverihidocs

serdet E:NwebSpherebAppServeriserdets Eemoye

Erawse.,. |

Cancel | Help

Figure 190. Defining publishing targets for resources

Chapter 8. Development with WebSphere Studio 249

WebSphere provides two publishing targets by default:

QThe servlet target is used to publish any files in the servlet folder, and
points to the WebSphere Application Server if that product is installed on
the same machine.

QThe html target is used for all other project resources in the project,
unless you have manually added other publishing targets and linked
those to folders in the project. It points to the root document of the HTTP
Server if that product is installed on the same machine.

We change the default configuration of the Test stage to publish to the
WebSphere Test Environment. The publishing paths that we require for our
project resources are shown in Table 15.

Table 15. Publishing paths for the WebSphere Test Environment

Resource type Path
(folder name)

html d:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web

servlet d:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets

Change the directory for both the html and servlet entries by clicking on the
path and selecting Browse to navigate to the appropriate directory.

With this setup, when you publish to the Test publishing target, WebSphere
Studio creates the folders of your project structure underneath these
publishing root directories and copy the files from the project to these folders.
You can then start the WebSphere Test Environment from VisualAge for Java
and execute the Web pages in the project.

Setting up the Production stage

250

The process for setting up the publishing targets for the Production stage is
identical to the Test stage. However, there is one step you may have to
complete before setting up the publishing targets. WebSphere may not
provide a default server (depending on the order of product installation) for
the Production stage, we have to define the production server.

Display the Production publishing stage by selecting Project -> Publishing
Stage -> Production. Click the node displaying Production and select Insert ->
Server. Enter the hostname of your WebSphere server:

QWe used the hostname fundy as our production host
QYou can use localhost if the server is on the same machine

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

This defines a new server for which you can now set publishing targets. If
your server name is a remote server, you can type a meaningful server name
here to identify it.

Provided that you have WebSphere Application Server and Web Server
installed locally, WebSphere Studio should default the publishing targets to
the correct products, but you may want to change the servlet path to the
default application instead of the default servlets directory. Table 16 shows
possible options for production publishing targets.

Table 16. Publishing paths for WebSphere application and Web servers

Resource type Path
(folder name)

html c:\Program Files\IBM HTTP Server\htdocs
e:\IBM HTTP Server\htdocs

servlet e:\WebSphere\AppServer\servlets
e:\WebSphere\AppServer\hosts\default_host\default_app\serviets

On the publishing Properties you can use file system publishing or FTP
publishing (Figure 189 on page 249). File publishing is appropriate when the
server is accessible through a LAN connection, and FTP publishing is used if
the server is remote and not accessible through the file system.

Publishing to a Web application

In a larger environment you will have multiple Web applications defined in
WebSphere Application Server, and you want to publish directly to those Web
applications. See “Creating your own Web application” on page 135 on how to
set up a Web application.

To publish to a Web application, you can modify the standard publishing
stages, or you can set up new publishing stages.

Create a new publishing stage

Select Project -> Customize Publishing Stages, and enter a new name in the
Stage name field, such as WebApplication. Switch the publishing view by
selecting Project -> Publishing Stage -> WebApplication.

Qlnsert a server as described for the production stage, for example, fundy.
QDefine the publishing targets (select Properties for the server):

htm1: E:\WebSphere\AppServer\hosts\default_host\itsoservjsp\web
serviet: E:\WebSphere\AppServer\hosts\default_host\itsoservjsp\serviets

Chapter 8. Development with WebSphere Studio 251

The URLs for invoking the resources of a Web application must be prefixed
by the name of the Web application. To achieve this, insert a folder in the
publishing view under the server (select Insert -> Folder), and name the
folder itsoservjsp. Select all the old folders and drag them into the new
itsoservjsp folder. The resulting publishing view is shown in Figure 191.

@ WebApplication

- 22 http:lifundy
R
H- (1 html
- (1 isp
- 7] samples
..] servlet
-] theme

Figure 191. Defining a folder for Web application publishing

Publishing creates subdirectories matching the structure defined in the
publishing view, and this creates the wrong structure for Web applications.
We have to set up the itsoservjsp folder to publish into the proper directory.
Select the itsoservjsp folder and change its properties (Edit -> Properties) as
shown in Figure 192.

itsoservjsp Properties

Folder Publish |
I:_tjl itsnzervisp

¥ Publish this folder to a publishing target

[t =l

[itake this folder a wirtual directong

QK I Cancel | Help |

Figure 192. Defining publishing properties for folders

Do not select Make this folder a virtual directory, otherwise the itsoservjsp
folder name is not inserted into the URL for the browser.

You can also check the servlet folder. It is already set up to publish into the
servlet publishing target, overwriting its parent folder.

252 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Manage folder structure

When new directories are added to the project, they may be added to the
publishing server, instead of being added to the itsoservjsp subfolder.

In such a case, select the new folder in the publishing view and move (drag) it
to the itsoservjsp folder.

Publishing to a Web application in VisualAge for Java

Repeat this process and define another publishing stage named
WebApplicationVVAJ for a tailored Web application in the WebSphere Test
Environment of VisualAge for Java (see “WebSphere Test Environment —
multiple Web applications” on page 215).

Insert a server named localhost:8080 and define the publishing stages as:

d:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment\hosts\
default_host\itsoservjsp\web
default_host\itsoservjsp\servlets

Define the itsoservjsp folder under the server and move all other folders
under the itsoservjsp folder. This step is identical to publishing to a
WebSphere Web application. You also have to open the Properties and select
the check box labeled Publish this folder to a publishing target.

Another option is to copy a complete publishing stage to another stage
(Project -> Copy Publishing Stage) and then just change what is different.

Project relationships and integrity

The parts of a project are interrelated and should be checked periodically for
relationship integrity.

Project relationships

For each part in the project you can display its relationship in the Relations
view (select View -> Relations). For example, when you select the
SampleHTML.html file, the relationship diagram shown in Figure 193 is
displayed.

.] Master.css
S|
Samp.leﬁTML html -2 [7] \servletlitso.servjsp.servletapi.H-TMLFormHandler

Figure 193. Relationship diagram

Chapter 8. Development with WebSphere Studio 253

This diagram shows one broken link because the SampleHTML.html file
invokes the HTMLFormHandler servlet, and we have not added that servlet
to the project.

Project integrity

Before publishing files in the project, you should check if there are any
broken links within any of the project files. Select Tools -> Check Project
Integrity. This will generate a report similar to Figure 194, detailing any
broken links within the project files. The report is displayed in a Web
browser.

Project Integrity Report for Project ITSO Servlet JSP Redbook
For Publishing Stage Test
3/11/00 6:57:53 PM
Project Summary
Publishing Stage Test
Total mumber of folders 9
Total mumber of files 10
Completion Integrity check completed without interraption

Files Found with Exrors and Warnings

Broken links 1
Links to missing files 1]
Inaccessible outside links 0
Publishable files with source links 0
Publishable files with parameterlinks 0
Sets of duplicate file names 1]
Publishable orphan files 3
Hon-publishable associated orphan files 3

Files without publishing information
Hone

Files not in Project
The following links are broken because the file is not in this project

Broken links From file Folders

wservletiitso.servisp servietapt HTMLF ormH andler | MhtmlSampleHTIML html | hitmd

Figure 194. Project integrity report

You can fix the broken link by adding the HTMLFormGenerator servlet (Java
and class files) to the servlet\itso\servjsp\servlatapi folder.

You may have to invoke the Page Designer and save the HTML file to
regenerate the relationship diagram without the broken link.

254 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Publishing a project

Provided that publishing stages and publishing targets have been defined,
the project files can be published to any of the publishing stages. WebSphere
Studio allows you to publish selected files or the entire project.

To publish selected files to the selected publishing stage, select the file(s) and
the select File -> Publish selected files. The Publishing Options dialog is
displayed, allowing configuration of a number of publishing options (Figure
195).

Publishing Options
General | Prompts I Wamings I Advanced I
[Werify published files via HT TP
[" Clean up publishing
¥ Show these options before nest publishing
¥ Generate publishing report
¥ Publizh only modified files

Stule of links:

+ Helative to document rook

" Relative ta parent file

QK. I Cancel Help

Figure 195. Publishing options

By default, WebSphere Studio only publishes modified files. Most of the
configuration options in this dialog relate to the warnings and prompts
displayed during the publishing operation. During development, you may
find it convenient to turn off all warning and prompts to expedite file
publishing.

Clicking the OK button starts the publishing operation to the specified
publishing stage. Once complete, an HTML formatted report is generated.

Note: We suggest that you select the Relative to document root radio button;

the other option may create a problem with the style sheet when using the
Netscape browser.

Chapter 8. Development with WebSphere Studio 255

Testing published files

To test a published file directly from WebSphere Studio, select Tools ->
Preview File With -> Internet Explorer (or Netscape).

This invokes the selected Web browser with a URL generated for the current
publishing stage, for example:

http://localhost:8080/htm1/Samp1eHTML.html <= Test
http://fundy/html/Samp1eHTML.html <= Production
http://fundy/itsoservjsp/html/SampleHTML.html <= WebApplication

http://lTocalhost:8080/itsoservjsp/html/SampleHTML.htm1 <= WebApplicationVAJ

This process is very fast and efficient if the Web server is up and running.

256 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Studio wizards

WebSphere Studio provides a number of wizards that guide you through the
process of creating Java servlets and JavaBeans. The wizards provided in
WebSphere Studio are:

asqQL Wizard
QDatabase Wizard
QJavaBean Wizard

In addition to generating Java source, HTML, and JSP files for you, the
WebSphere Studio wizards also invoke the Java compiler where appropriate
to produce the class files from the Java source files.

In this section, we will use the DB2 sample database with department and
employee information to demonstrate the functionality provided by the
wizards.

Code produced by the wizards

When you use WebSphere Studio wizards, by default, the code produced is
compatible with WebSphere Application Server Version 2.0. However, if you
are using WebSphere Application Server Version 3, you should configure
WebSphere Studio to generate code compatible with Version 3 to leverage the
enhancements offered in the new version.

WebSphere Application Server Version 3 now supports the JDBC 2.0
Standard Extension API, which provides extensions to support connection
pooling. In WebSphere Application Server Version 2, where the JDBC 1.0
specification was implemented, support for connection pooling was only
available through special classes provided in the WebSphere environment.

While code generated for Application Server Version 2.0 generally works
under Version 3.0, the connection pool support objects used in Version 2.0 are
now deprecated and may not be supported in future releases of WebSphere
Application Server. For any new code you develop, we recommend that you
use the enhancements offered by Version 3.0. You should also consider
upgrading your existing code for future compatibility.

To have the wizards generate Version 3.0 compatible code, check that you
have selected 3.0 in the Application Server Version field in the Advanced tab
of the project properties dialog (Figure 172 on page 232).

Chapter 8. Development with WebSphere Studio 257

SQL Wizard

The SQL Wizard guides you through the process of building an SQL query
that can be used by the Database Wizard to build Web pages. Similar to other
visual SQL tools, the SQL Wizard enables you to compose your SQL
statements by selecting tables, columns, and operations through a GUI
dialog, rather than by typing the statement manually.

In this example, we create a query that lists all employees by department
and we will sort the department in ascending order.

Before you access the SQL Wizard, you should first highlight the folder in
which the completed .sq1 file will be placed. For example, you can create a
folder named sq|l.

Run the SQL Wizard

To invoke the SQL Wizard, select Tools -> Wizards -> SQL Wizard. The dialog
consists of a number of steps.

Welcome page

In the Welcome page, specify a meaningful name for the new SQL statement,
for example, AlIEmployeesByDept.

Logon page
Enter the database connection details for the DB2 sample database as shown
in Figure 196.

Because the database is installed locally on our machines, we select the IBM
DB2 UDB Local database driver. Before proceeding, you click the Connect
button so that the wizard can establish a connection to the database. This
allows the wizard to query the structure of the database so that it can be
presented to you visually.

You are prompted to select a database schema, and the wizard displays the
list of tables. The tables of the sample database are usually under the schema
of the user ID that installed DB2. (We used a schema name of USERID for
the tables.)

258 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Connectto s datahase

Database URL:

debc:dhz:sample

Userid: Fassward:
Iitsn I“"""1
Criver: Other driver:

|iEM DB2 UDB local ~] | Com.ibm.db2 jdbe.app.L

Cannect |

I Enter the required information and click 'Connect' to hegin.

<Back | 1o | Finisn | cancel |

Figure 196. SQL Wizard: database logon page

Tables page

Select statement type (Select) and the tables (DEPARTMENT and
EMPLOYEE) to be used in the query.

The wizard steps to complete the SQL statement depend on the statement
type selected in this page:

Select: Join, Columns, Conditions, Sort, SQL, Finish
Insert: Insert, SQL, Finish
Update: Update, Conditions, SQL, Finish
Delete: Conditions, SQL, Finish
Join page

The Join page allows us to tell the wizard how our tables relate to each other.

From observing the table definitions, we can see that the common field
between the two tables is a department number, called DEPTNO in the
DEPARTMENT table and WORKDEPT in the EMPLOYEE table.

Chapter 8. Development with WebSphere Studio 259

Join these two tables by selecting the join fields and click on Join (Figure
197). A red line is drawn for a successful join operation.

¥ SOL Wizard - EA\WebSphere\Studio\check_out{ITSO Serviet JSP Redbo... A=]
welcame| Logan| Tables JDinlCnIumnsl Candition 1| Sort| SaL| Finish|

Show how the tables are related by joining them.

»
[
=
=

USERID.EMPLOYEE
EMPMO

on|

BB
FIRETMNME

G|

MIDINIT
USERID.DEPARTMENT LASTMAME

WORKDEPT
R i
MGRMO

J0B
ADMRDEPT EDLEVEL

LOCATION SE Jﬂ

Inner Join: Only include roves where the joined fields from hoth tables are equal.

X

Click ‘Join'to create a join.

<Back | Next> | Finish | cancel |

Figure 197. SQL Wizard: joining tables

You can specify the type of join by clicking the Options button to display the
Join Properties dialog. In this example, the default join type of Inner Join is
appropriate for the way we want to present our data, but outer joins are
supported as well. Consult the SQL or DB2 documentation for information on
other types of joins.

Columns page

On the Columns page you select the columns that you want to include in the
result set produced by the query. For this example, select the columns shown
in Figure 198. You can change the order in which the column data is placed in
the result set by clicking the Move up and Move down buttons.

260 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Welcnmel Lngnnl Tahlesl Join Columng | Condition 1| 50n| SQL' FInIShl

Select the columns you wish to include.

Selected table(s):

USERID.DEFARTMENT j ol —
olumns 1o ncidde:

Columns:

IUSERID. EMPLOYEE. FIRSTMHME
MGRMNO USERID EMPLOYEE LASTHNAME
AOMRDERT IUSERID.DEPARTMENT DEPTHAME
LOGATION

USERID.DEPARTMENT.DEPTMO

Select all

Deselect all |

<Back | Next> | Finish | cancel |

Figure 198. SQL Wizard: selecting columns

Condition page

Conditions enable you to specify restrictions on the data retrieved by the
guery. You can specify conditions for all statement types other than Insert.
Adding a condition builds a WHERE clause to the SQL statement using the
columns, operators, and values specified in this screen.

For example, we could add a condition to the select query to retrieve only
employees over a given education level, as shown in Figure 199. You can use
the Find button to query the table for values.

Similarly, we could add a condition to an update statement to change only
employees below a given salary.

Chapter 8. Development with WebSphere Studio 261

Select a column, an operator, and enter the values you want to find.

Selected table(s): Operatar: Walues:

is exactly equal to - -
| USERID EMPLOYEE = nmeq\‘fua?m 1 —

; is greater than (=) o

Columns: is greater than or equal to (=
0B a| [isless than (=)

is less than or equal to {==) ﬂ
SEW = is hetween | i
BIRTHDATE i hlank < |
SALARY =] 4] | B

In table WWSERID.EMFLOYEE',
find all rowes in column 'EDLEWVEL that
are greater than (=3 12

J Find on another column ‘

|

EDLEVEL, SMALLIMNT

<Back | Next> | Finish | cancel |

Figure 199. SQL Wizard: specifying conditions

You can add values either by hard-coding the value or by specifying a
parameter. If you specify a parameter, the Database Wizard generates HTML
input fields to capture the parameters from the user.

Click on Find on another column to add another Condition page. For
example, we want to retrieve only male or female employees, by user input.
To specify a value by parameter, click the Parameter button to display the
Create a new parameter dialog as in Figure 200.

¥ Create a new parameter

Enter the parametar name belaw:

|sext{ur]i‘|

oK | Cancel| |

Figure 200. SQL Wizard: condition parameter

262 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

When adding parameters, each parameter name must be unique and must
not have been used in any prior step in the wizard. There are many operators
available in the Conditions screen that determine the type of filtering to
perform in the query. Depending on the selected operator, the values you
have to specify will vary.

Sort page
On the Sort page, you can order the results of the query. This step builds an
ORDER BY clause to the SQL statement.

For our example, select Ascending sort order and add the DEPTNAME and
LASTNAME columns. You must select the Sort order before you add a
column.

SQL page
The SQL page displays the accumulated SQL query that the wizard has
generated (Figure 201).

SELECT
USERID.EMPLOYEE.FIRSTNME,
USERID.EMPLOYEE.LASTNAME,
USERID.DEPARTMENT.DEPTNAME,
USERID.DEPARTMENT.DEPTNO
FROM
USERID.DEPARTMENT,
USERID.EMPLOYEE

WHERE
(
(
USERID.DEPARTMENT.DEPTNO = USERID.EMPLOYEE.WORKDEPT <=== join
)
AND
((
USERID.EMPLOYEE.EDLEVEL > 12 <=== condition
)
AND
(
USERID.EMPLOYEE.SEX = ? <=== parameter
))
)
ORDER BY

USERID.DEPARTMENT.DEPTNAME,
USERID.EMPLOYEE.LASTNAME

Figure 201. SQL Wizard: generated SQL

Chapter 8. Development with WebSphere Studio 263

Testing the SQL statement

From this page you test that the query works by clicking on Run SQL. You
are prompted for the parameter (enter M or F), and the query is run and the
results are displayed.

You can also copy the contents of the query to the clipboard. This is useful if
you want to paste the SQL query into the DB2 Command window.

Finish page

Clicking the Finish button completes the wizard and creates the .sql file in
the folder you selected before invoking the wizard. This file includes details of
the SQL statement in addition to other information required by WebSphere
Studio.

Insert page

The Insert page enables you to specify values to be inserted into a table. This
screen is only presented if you have select the Insert statement type in the
Tables page. Data can be entered as hard-coded values or as parameters.

To create a parameter field, click the Parameters button and type a name for
the parameter. The names entered will correspond to the names of the Bean
properties generated by the Database Wizard. For example, if there is a
database column named MGRNO, and a parameter named ManagerNumber
is created for this field, the bean created by the Database Wizard contains a
property called ManagerNumber. Similarly, any HTML pages generated by
the Database Wizard will use the specified parameter name as the name for
the HTML input field and its associated label.

Update page
The Update page enables you to specify column values and conditions for the

Update statement. Similar to the Insert statement type, you can hard-code
values or use parameters.

Changing the SQL statement

264

The query can be modified at any time using the SQL Wizard by
double-clicking on the file. Although you can view the .sql file in an editor,
you cannot modify the SQL statement produced by the SQL Wizard by
manually changing the .sql file.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Database Wizard

The Database Wizard uses .sql files created by the SQL Wizard to generate
input pages, results pages, error pages, and the corresponding JavaBeans
and servlets responsible for performing the database interaction.

Run the Database Wizard

Start the wizard from the Tools menu.

SQL statement selection

In the first step of the Database Wizard, you select the .sq1 file to be used.
You can preselect the .sql file before starting the wizard, or you can use the
Browse button to find it. This page also displays the SQL statement
corresponding to the selected file (Figure 202).

Database Wizard

Thiz wizard will help you add database access bo youwr
weh pages.

What SHL statement would pou fike to uge?

E:\webSphereh Studio'Projects\ TS0 Serviet JSP Fiag

Browsze... |

SELECT USERID.EMPLOYEE.FIRSTHME. -
USERID.EMPLOYEE. LASTHAME,
USERID.DEPARTMENT .DEPTHAME.
USERID.DEPARTMEMT.DEPTHO FROM
USERID.DEFARTMENT, USERID EMPLOYEE
WHERE ([USERID.DEPARTMENT.DEPTHO =
USERID.EMPLOYEE. WORKDEPT JAMD [[
USERID EMPLOYEE. EDLEVEL » 12) AND [
USERID.EMPLOYEE.S5E* =7) 1) ORDER BY

¢ Bacl I Ment » I Cancel | Help |

Figure 202. Database Wizard: SQL statement selection

Note: You get an error message box if your project name contains blanks or
invalid characters. The default package name used for the generated code is
the project name, and invalid characters are eliminated. You can overwrite
the package name before generating the code.

Chapter 8. Development with WebSphere Studio 265

Web Pages
On this page you select the Web pages that the wizard should produce.

B

¥ Create a results page.

¥ Create a page for when an eror ocours,

¥ Create a page for when no data is retumed.

The available options are shown in Table 17.

Table 17. Web pages generated by the Database Wizard

Page Type Description

Input page A Web page containing an HTML form with user input fields. If
your query contains parameters, you want to generate an input
page to capture the parameter data from the user. You can also
capture database connection information such as user ID and
password.

Results page For a Select query, this page displays the data returned by the
query. You can specify whether to return the results in table or list
form. For Insert and Update queries, you can choose to display the
values used in the Insert or Update operation and optionally
display the number of rows affected by the query.

Error page These pages are displayed when an unexpected error occurs or
when no data is returned from a query. The pages may be existing
No Data page | pages you have created or you can let the wizard create them for
you. For Insert and Update queries, the No Data page is
unavailable.

Input page

Here you specify the inputs fields to be included in the input HTML page
generated by the wizard. The fields that are presented are the parameters of
the SQL statement and database connection information (Figure 203).

To customize the behavior of the input fields created by the wizard, select the
field that you want to customize and click the Change button to display the
Change Details dialog shown in Figure 203.

You may want to change the length of the fields, for example, the employee
sex field is only 1 character, and user ID and password are 8 characters.

Select as many fields as you want included on your data entry page. As a
minimum, you would include all fields specified as parameters during in the

266 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

SQL Wizard. Remember that other than the database connection fields, only
those fields identified as parameters in the SQL Wizard are available for
selection.

Input Page x|

Check the fieldz pou want to dizplay on wour input page. “'ou can alzo change the settings for
each field and rearder the fields.

Mame | Tupe | Caption | Size | b amimum.... | Initi.... | InputSt...l -
zerkorF javalang Shing zeRhdorF 20 20 text ad
O driver jawa.lang.String driver Change Details

passward java.lang. Sting pazsword

DUHL jawa.lang.String JRL LCaption: ISEHMQ[F
uzerlD java.lang.String uzerlD
Imitial % alue: I—
Size: |1
b aximurn Length: I'I

Cha Input Style: Iter:t vI
’TI Canrcel |

< Back Mewut » | Cancel | Help |

Figure 203. Database Wizard: input fields

Results page

You can configure the way the results are displayed to the user in the Results
page. The page produced by the Database Wizard is displayed to the user
after execution of the SQL query or statement.

For all queries, you can chose to include any of the parameters specified
during the SQL Wizard. In addition, you may chose to display information
fields, such as the SQL statement text or the connection information.

Results from a Select query can be presented either in table format or as a
drop-down list:

Qlf you select the List format, a drop-down list is created for each column
specified in the Select query. For example, Figure 204 shows the results of
a Select statement where department name and employee last name are
displayed.

alf you select the Table format, results are displayed in an HTML table.

Chapter 8. Development with WebSphere Studio 267

Fil= Edit “iew Favoriter Toolz Help “
.) 2] fa) Q ”
Back Stop Refresh Home Search
Address |€| http:/flocalhost:8080/serviet{itsoservjsp. Quenyl 3j @ Go || Links ®
-
| SPIFFY COMPUTER SERVICE DI, =
HAAS -
Subrmnit | Reset |
a
&1 Dore :'I_L! Local intranet

Figure 204. Generated results page in list format

For our example, select the result columns and the parameter. Change the
caption of each result to a descriptive table heading (Figure 205).

Results Page

Check the fieldz pou want to dizplay on pour results page. v'ou can aleo change the gettings for
each field and rearder the fields.

268

MName

O driver
zewbd orF
O 50L statement

0

[#] USERID_EMPLOYEE_FIRSTNME
[#] USERID_EMPLOYEE_LASTHNAME
[#] USERID_DEPARTMENT_DEPTMAME javalang Sting
[#] USERID_DEFARTMENT _DEFTHO

Hows would you like ta farmat the data?

+ Table " List

| Type | Caption - i'
java.lang Sting Firsthame 2/
java.lang. String Laztname

Department
java.lang. String Dept-Mumbe
java.lang Sting driver
java.lang. String Male or Fem:
java.lang Sting SOL stateme =
PR PP o F S [Rim]}

| of
Check A1 | Uncheck a1 |
Ment » Cancel Help

< Back

Figure 205. Database Wizard: results page

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

For Select queries, data from the returned result set is displayed. For Insert
statements, the inserted data is displayed using the default format, which is
not configurable from the wizard.

By selecting the num affected rows field, the number of rows affected by the
Insert or Update statement is displayed in the results page. This feature may
be useful during development and testing phases, where an Update
statement may effect many rows in the database.

Standard Error page

If your Web site uses a standard error reporting page, you can specify it in
this step, or you can have the wizard generate a basic page for you containing
default error text. You can later edit this text in WebSphere Page Designer.

If you have an existing error page, you must know the path and file name of
the page, as you cannot browse for it. The specified path is relative to the
document root.

No Data page

Similar to the Standard Error page, you can display a different page if the
result set from your query does not return any data.

Methods page

The Methods page enables you to select the methods of the JavaBean
generated by the wizard that are to be executed. The only method presented
here will be the execute method.

Session page
The Session page allows you to specify the scope of the bean generated by the
wizard.

alf you want to access the data access bean generated by the wizard from
another page, select Yes, store it in the user’s session. With this option
selected, the wizard creates the bean using the jsp:useBean tag (if JSP 1.0
is selected) and will set its scope attribute to session.

alf you do not select this option, the scope attribute will be set to request.
This means that access to the bean is limited to the current page request
only, and is not visible to any other pages, as each JSP page invocation is a
separate request.

You should overwrite the generated name of the bean, for example,
allEmpByDeptBean.

Chapter 8. Development with WebSphere Studio 269

Finish

On the last page you are prompted with a list containing the files to be
generated. You can change the default prefix for the files be selecting the
Rename button to display the Rename dialog (Figure 206). You can also
rename the default package name for the generated classes.

Finish x|

That's it. When you click finish, the following files will be
created for you,

Description | File Mames |
Input Page Quere2linput.html
Resultz Page Querny2Results.jsp
Standard Error Page QueryZEmorjsp
Mo Data Page Query2NoD ata.jsp

. Database Bean Sou.. Query2DEBean.java

i i Semvlet Source Query2.java

Pl - = J Servlet Configuration QueryZ serviet

Package Marne: Iilso.servisp.sludio

Prefis: I-"\”EmpEyD ept

ak. I Cahicel |

< Back | Finizh | Cancel | Help |

Rename... |

Figure 206. Database Wizard: tailor generated files

Click on Finish to generate and compile the files. The HTML and JSP files
are generated into the folder you selected when the wizard was started. The
servlet files are generated into the package structure specified.

Database Wizard generated code

Figure 207 shows the Studio Workbench after generation. The HTML and
JSP files are in the sql folder. The Java files and the compiled class files are
in servlet\itso\servjsp\studio.

There is one additional file, AHEmpByDept.servlet. This is the servlet
configuration file required for servlets that are subclasses of PageListServlet.
If you inspect this file with an editor, you can see all the JSP output pages
listed, and also the database connection information, as initialization
parameters.

270 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

You may want to change the generated DataSource value to one that you
have defined in WebSphere Application Server:

old: <init-parameter value="jdbc/jdbcdb2sample" name="dataSourceName"/>
new: <init-parameter value="sampledb" name="dataSourceName"/>

4 1TSO Servlet JSP Redbook.wao - WebSphere Studio M=l E3

File Edit “iew |nset Project Tools Help

leza | ree|vw|ded olsola

4] ITSO Servlet JSP Redbook |2 WebApplicationVAJ P
-1 html = 2 http:localhost:8080 -
o1 jsp 34 itsoservjsp -
[samples g html
£ 4] serviet 1 jsp e
=41 itso] samples
=41 servjsp [servlet
#-] jspsamples - [theme

#-1] servletapi =43 serviet
=] studio =4 itso
- &F| AlEmpByDeptDBBean.java =43 servisp

io

- AlEmpByDept.class

- /. & NIEmpByDept.serviet

/... #] AlIEmpByDeptDBBean.class

) AlIEmpByDept.java = 4] st
.] AIEmpByDeptDBBean.class
. #] AlIEmpByDept.class

- @) AIEmpByDept.serviet

[_]@ sql =- @' sql
- @ AlIEmployeesByDept.sql L i,] AIEmpByDeptError.jsp
--.] AlIEmpByDeptResults.jsp .] AllIEmpByDeptinput.html
-, 2] AlEmpByDeptError.jsp . 1] AIEmpByDeptNoData.jsp
-,] AlEmpByDeptNoData.jsp = i, 1] AIEmpByDeptResults jsp

I [[Stage: Webdpplicatio

Figure 207. Database Wizard: generated files

Note. In the publishing views for Web applications, the new folders are
placed at the root level and must be manually moved to the Web application
folder itsoservjsp. Otherwise, the files will be published to the wrong
directories. You have to perform this step for the WebApplicationVAJ and
WebApplication publishing views.

Relationships

Select the Relations view (View -> Relations) and look at the diagrams for the
input page, the servlet, and the result JSPs. These diagrams show you how
the files are connected (Figure 208).

——+—_ 1] AlIEmpByDeptResults jsp
——¢——_] AlIEmpByDeptError.jsp

AlEmpByDeptinput.html . £ @ AlEmMPBYDeptNoData.i

AllEmpByDept.serviet ¢ .3 mpByDepthoData jsp

——+—— [#] AlIEmpByDept.class

Figure 208. Database Wizard: generated relations

Chapter 8. Development with WebSphere Studio 271

Run the generated application

You can run the generated code without tailoring the HTML pages and JSPs.
Use either the VisualAge for Java Test Environment or WebSphere
Application Server. Publish the project to the selected publishing stage.

Test in VisualAge for Java

Perform these steps:
QPrepare the SERunner or the ServletEngine class path.
QStart the WebSphere Test Environment.

QLaunch a Web browser from the Studio Workbench by selecting Preview
File With -> [browser] for the AIIEmpByDeptinput.html file. The URL
http://localhost:8080/sq1/A11EmpByDeptInput.html is sent to the server.

aFill the form with suitable data:

Please complete the form.

sexMorfF W

password |’°‘°‘°"
userlD IITSO

Feset |

QClick Submit to invoke the servlet. Our first test ended in the Debugger
when executing the compiled result JSP with error message:

The type named itso.servjsp.studio.AT1EmpByDeptDBBean is not defined

Import the source of the AIIEmpByDeptDBBean class into the VisualAge
for Java Workbench to resolved the syntax error in the JSP.

QTest again, and the list of employees should appear in the browser:

Male or Fermale M

‘ Firsthname | Lastname Department N?J?nptft;l‘
[18MES [JEFFERSCON [ADMINISTRATION SYSTEMS [D21
[SALVATORE [MARING [ADMINISTRATION SYSTEMS D21
[CaMIEL [sMITH [ADMINISTRATION SYSTEMS D21
[BRUCE [ADAMSON [MANUFACTURING SYSTEMS D11
[Cavin [BROWN [MANUFACTURING SYSTEMS D11

....abbreviated....

272 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Enhance the application

The generated form and JSP contain only the necessary fields, but no
headings and other nice features.

You can use the Page Designer to enhance the AIIEmpByDeptinput.html
input page. Publish the changed file for testing while it is checked-out. This
enables you to keep the master file until the test is successful. Then you can
check-in the file to replace the master copy.

Understanding the result JSP
Open the Page Designer for the AIIEmpByDeptResult.jsp file (Figure 209).

Lastname | Department Dept-Number

Figure 209. Database Wizard: result JSP in Page Designer

Most of the green (J) markers refer to the generated bean. Investigate the (J)
markers by double-clicking:

QThe first marker declares the AIIEmpByDeptDBBean bean, similar to
Figure 183 on page 244.

QThe second marker is the sexMorF property of the bean.

QThe four markers in the table retrieve the SQL column value properties of
the bean, for example, USERID_EMPLOYEE_FIRSTNME().

Note the parenthesis in the property. The SQL statement retrieves
multiple rows, and the parentheses indicate that it is a repeating
property.

QThe last marker is a JSP scriptlet to close the SQL result set; it contains
the code al1EmpByDeptBean.closeResultSet();

The table displays multiple rows. So where is the loop? Here is how this
works:

QSelect the table by clicking on the outside border of the table (a pink
rectangle should surround the table).

QDouble-click, or Edit -> Attributes, and the Attributes dialog appears.
Select the Dynamic page (Figure 210). The Loop check box is selected, and
one of the column properties of the bean is the loop property.

Chapter 8. Development with WebSphere Studio 273

274

QThe setup of a loop property generates a Java for loop in the JSP.

Tag: I Table j

Table Dynamic | Row | Cel |

¥ Locp Direction: % Yertical " Horizontal

Loop property: IaIIEmpByDeptBean.USEHlD_EM Browse... |
Fiow/Column range: Start: I 23: End: I 23:

™ Outer loop

Loop property: | Browse,. |
I~ “ariable prefis l—

— Display when no element:
& Tent | |v|
' Image
File Mame: I
Sige———————— Brawsze... |
“fidth: | :’
Height: l?

QK I Cancel | Help |

Figure 210. Page Designer: table loop

View the JSP source
Click on the HTML Source tab in the Page Designer to analyze the JSP
source code. An extract of the code is shown in Figure 211. Notice:

Qa<jsp:usebean> tag to declare the bean.

QEach table is preceded by a <!--METADATA> tag that contains the
reference bean properties. From this specification, the actual code is
generated.

QThe repeating column values are retrieved into temporary variables using
a for loop with an index variable, and the values are placed into the table
using a JSP expression:

_p0 = allEmpByDeptBean.getUSERID_EMPLOYEE_FIRSTNME(_i0);
<TD><%= _p0 %> </TD>

OBefore the table is started, the loop property is checked with index value
0. If no data was retrieved the table is bypassed.

QThe ArraylndexOutOfBoundsException triggers the end of the loop. You
can see this exception being fired in the AIIEmpByDeptDBBean Java code.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>

<l-- This file was generated by IBM WebSphere Studio 3.0.2 using
E:\WebSphere\Studio\BIN\GenerationStyleSheets\AppServerV3\JSP1.0\WebSphere\Pages.xs]

-

<BODY>

<jsp:useBean id="allEmpByDeptBean" type="itso.servjsp.studio.A11EmpByDeptDBBean"
scope="request"> </jsp:useBean>
<TABLE border="0">

<TR> <TD>Male or Female</TD>

<TD>

<!--METADATA <WSPX:PROPERTY property="allEmpByDeptBean.sexMorF"> -->
<%=al1EmpByDeptBean.getSexMorF () %>

...... </TABLE>

<!--METADATA type="DynamicData" startspan

<TABLE border="1" width="567" dynamicelement

innerloopproperty="allEmpByDeptBean.USERID_EMPLOYEE_FIRSTNME()"

innerloopdirection="vertical" innerloopstartindex="1" innerloopendindex="1">

<TR><TH>Firstname</TH><TH>Lastname</TH><TH>Department</TH><TH>Dept-Number</TH></TR>
<TR><TD><WSPX:PROPERTY property="allEmpByDeptBean.USERID EMPLOYEE_FIRSTNME()"></TD>
...... </TR> </TABLE>-->

try {
java.lang.String _pO = allEmpByDeptBean.getUSERID_EMPLOYEE_FIRSTNME(0); // throws an
exception if empty.
java.lang.String p0_0 = allEmpByDeptBean.getUSERID DEPARTMENT DEPTNAME (0);

...... d

<TABLE border="1" width="567">

<TBODY>
<TR><TH>Firstname</TH><TH>Lastname</TH><TH>Department</TH>...... </TR>
<% for (int _i0=0; ;) { %
<TR> <TD><%= _p0 %> </TD> <TD><%= _p0_2 %> </TD> </TR><%
_10++;
try {

_p0 = allEmpByDeptBean.getUSERID EMPLOYEE_FIRSTNME(_i0);
_p0_0 = allEmpByDeptBean.getUSERID_DEPARTMENT DEPTNAME(_i0);
...... }
catch (java.lang.ArrayIndexOutOfBoundsException _e0) f{
break;
1
) %>
</TBODY>
</TABLE><%
1
catch (java.lang.ArrayIndexOutOfBoundsException _e0) { } %>
<!--METADATA type="DynamicData" endspan-->
<%al1EmpByDeptBean.closeResultSet() ;%>
</BODY>
</HTML>

Figure 211. Database Wizard: generated result JSP source (extract)

You can use the Page Designer to enhance the result page with a heading and
other HTML features.

Chapter 8. Development with WebSphere Studio 275

JavaBean Wizard

The JavaBean Wizard helps you create Web pages based on properties of a
JavaBean. The JavaBean Wizard interrogates the specified Bean object and
steps you through the process of creating pages to display and update the
properties of the Bean. In addition to normal JavaBean objects, the wizard
supports command and navigator beans developed in Visual Age for Java,
and access beans created in the VisualAge for Java EJB development
environment.

Before using the JavaBean Wizard

To invoke and use the JavaBean Wizard, you must have at least one
JavaBean in your project, and the folder structure containing the JavaBean
you want to use must match the package name of the Bean.

For example, the DateDisplayBean used in this section must be placed in the
path itso\servjsp\jspsamples\DateDisplayBean underneath the servlets node in
the WebSphere Studio project view. You have to manually create this folder
structure.

Run the JavaBean Wizard

276

Start the wizard from the Tools menu and the wizard welcome dialog appears
(Figure 212).

JavaBean Wizard

Thiz wizard will help you add Java logic to vour web
pages.

"Which JavaBean do vou want to use?
Lok, in:

| E:\webS pherehStudiotProjectsh TS0 Servlet JSP F 7 |

JavaBean:

Figure 212. JavaBean Wizard: select a bean

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

JavaBean Wizard

In the first page of the wizard, you must specify the JavaBean that the
wizard will use. Select the bean from the drop-down list of available beans,
and the full package and name of the bean is displayed (Figure 212).

Web pages

The Web pages dialog allows you to specify the pages produced by the wizard.
The function of each page is described in Table 18.

Table 18. Database Wizard generated pages

Page Type Description

Input page A Web page containing user input fields to capture data from the
user. The data entered in this form will be used to update the
properties of the bean. The form field data is passed as URL
parameters to the servlet generated by the wizard.

Results page A page containing the properties of the JavaBean. You can specify
which properties are displayed in a later step in the wizard.

Error page A page containing error text displayed when an unexpected error
occurs. An error may be triggered by the bean not being found or an
error in the bean syntax.

Input page

Here you specify which fields are included in the HTML input page
generated by the wizard. The wizard interrogates the Bean object and lists
the properties exposed by the JavaBean.

In our example, only one property (counter) has a set method, and it is
displayed in the list of properties. The semantics of the input field and its
associated caption (Enter the counter value:) can be changed by highlighting
the property and clicking the Change button (similar to Figure 203 on page
267).

Results page

The results JSP is displayed following successful invocation and processing of
the input page. You can display the data entered by the user in the input
page and all the bean properties. In our example, select the counter and the
dateString properties and change the captions for the output.

Standard Error page

You can optionally specify a JSP page that is displayed if errors occur. For
more information see “Standard Error page” on page 269).

Chapter 8. Development with WebSphere Studio 277

Methods page

The Methods dialog enables you to specify additional methods that are
executed in the servlet generated by the wizard. By default, no additional
methods are selected. If you specify additional methods, they will be called
from the performTask method of the generated servlet.

The standard methods of the servilet produced by the wizard are executed as
follows:

doPost/doGet -> performTask -> [set propertys] -> [call additional methods]

Figure 213 shows the servlet code produced when the method toString is
specified.

public void performTask (HttpServletRequest request, HttpServletResponse response)
{
try
{
// instantiate the beans and store them so they can be accessed by the called page
itso.servjsp.jspsamples.DateDisplayBean dateDisplayBean = null;
dateDisplayBean = (itso.servjsp.jspsamples.DateDisplayBean)
java.beans.Beans.instantiate(getClass().getClassLoader(),
"itso.servjsp.jspsamples.DateDisplayBean");

setRequestAttribute("dateDisplayBean", dateDisplayBean, request);

// Initialize the bean counter property from the parameters
dateDisplayBean.setCounter(Integer.valueOf(
getParameter(request, "counter", true, true, true, null)).intValue());

// Call the toString action on the bean.
dateDisplayBean.toString();

// Call the output page. If the output page is not passed
// as part of the URL, the default page is called.
callPage (getPageNameFromRequest (request), request, response);

catch (Throwable theException)

{
// uncomment the following Tine when unexpected exceptions are occuring

to aid in debugging the problem

// theException.printStackTrace();
handleError(request, response, theException);

1

1

Figure 213. Code snippet demonstrating calling additional methods

When clicking Next, we got an error box that the package nhame contains
invalid characters. This is because the default package name is the project
name, and our project includes blanks.

278 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Finish

The last step of the wizard displays the list of generated files. Click Rename
to specify the package name (itso.servjsp.studio) and the prefix
(DateBeanWiz). This is similar to the Database Wizard (Figure 206 on page
270).

We got an error message from code generation:

E:\WebSphere\Studio\check out\ITSO Servlet JSP Redbook\serviet\
itso\servjsp\studio\DataBeanWiz.java:20:
Class ITSOServletJSPRedbook.DateDisplayBean not found in import.
import ITSOServletJSPRedbook.DateDisplayBean;

The generated servlet uses the wrong package for the DateDisplayBean!

—Fix the broken code

Edit the DateBeanWiz.java source code and replace all occurrences of
ITSOServletJSPRedbook with itso.servjsp.jspsamples. Recompile the
source, then check-in the changed files.

You also have to edit the generated JSP files and change the package name
of the DateDisplayBean.

Organize the folders

The generated HTML and JSP files are in the root folder. Move these files to
the HTML and JSP folders.

Check the publishing views. For publishing to a Web application, you must
move all folders under the itsoservjsp folder.

Tailor the input form and the output JSP

Optionally, you can use the Page Designer to edit the input and result page
and improve their appearance.

Chapter 8. Development with WebSphere Studio 279

Test the JavaBean Wizard code

Before testing, import the DateDisplayBean into the Workbench, otherwise
you will get syntax errors in the JSPs.

Check that the SERunner (or ServletEngine) class path includes the serviet
directory:

D:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment\
hosts\default_host\...webapp....\servlets\;

Publish the files, and start the test from the DateBeanWizlnput.html file.
The browser should display output as shown in Figure 214.

Updating a JavaBean

Flease complete the form.

Enter the counter value: |3

Reset |

Result of the JavaBean Update

MNew counter value: 3
and the date is: 12/3/2000

Figure 214. JavaBean Wizard: test run

JavaBean Wizard — what for?

This example does not make much sense, because the JavaBean is not
persistent and does not perform any processing.

However, just imagine that the JavaBean is an access bean for an Enterprise
JavaBean, or a command bean that connects to a back-end system, and you
will understand the power of the concept.

280 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Developing an application in WebSphere Studio

This section discusses the necessary steps to develop an extended application
using the DEPARTMENT, EMPLOYEE, and EMP_PHOTO tables of the DB2
sample database. The example was developed using WebSphere Studio and
demonstrates the following scenario:

QDisplay a form where the user can enter a department number.
QDisplay a list of employees in that department.

QFor each employee, check if a GIF photo is available in the EMP_PHOTO
table. If so, provide an HTML reference link for the photo.

QWhen a photo link is clicked, display the photo in the browser.
In the example, we used the SQL Wizard and Database Wizard to generate
the input and output pages, the servlets, and the data access beans. We also

developed a stand-alone JSP to display an employee photo using one of the
data access beans.

We had to make a few changes to the generated code to deal with the photo
BLOB and to implement the optional link to the employee photo.

The steps are described in sequence. Some of the details of the SQL and
Database Wizards are omitted because they can be performed in exactly the
same way as described in the previous sections about the wizards.

Create the SQL statement for the employees of a department

Define a new folder called photo for this application.

Start the SQL Wizard and create an SQL statement called EmplnDept with
the select statement shown in Figure 215.

SELECT DISTINCT USERID.EMPLOYEE.EMPNO, USERID.EMPLOYEE.LASTNAME,
USERID.EMPLOYEE.JOB, USERID.EMPLOYEE.SEX, USERID.EMPLOYEE.SALARY,
USERID.EMP_PHOTO.PHOTO_FORMAT

FROM USERID.EMPLOYEE LEFT OUTER JOIN USERID.EMP_PHOTO ON
(USERID.EMPLOYEE.EMPNO = USERID.EMP_PHOTO.EMPNO)
WHERE ((USERID.EMPLOYEE.WORKDEPT = ?) AND
((USERID.EMP_PHOTO.PHOTO_FORMAT = 'gif') OR
(USERID.EMP_PHOTO.PHOTO_FORMAT is null)))
ORDER BY USERID.EMPLOYEE.EMPNO

Figure 215. SQL statement for employees in a department

Chapter 8. Development with WebSphere Studio 281

This statement returns all the employees in a given department. The photo
format is returned if it is GIF or null. We must use an outer join, because
there are no photographs for most employees.

Note: Your statement may require a right outer join, such as:

FROM USERID.EMP_PHOTO RIGHT OUTER JOIN USERID.EMPLOYEE ON
(USERID.EMP_PHOTO.EMPNO = USERID.EMPLOYEE.EMPNO)

Here are the steps in the SQL Wizard:
QName the statement EmpInDept and logon as ITSO/itso.

aSpecify a Select Unique and select the EMPLOYEE and EMP_PHOTO
tables.

QJoin the two tables on the EMPNO column. Click on Options and select
the left outer join.

aSelect the columns EMPNO, LASTNAME, JOB, SEX, SALARY (from
EMPLOYEE), and PHOTO_FORMAT (from EMP_PHOTO).

QFirst condition: WORKDEPT is exactly equal to deptnum (a parameter).

aSecond condition (AND): PHOTO_FORMAT is exactly equal to gif
(a constant)

QThird condition (OR): PHOTO_FORMAT is blank (this means null).
QaSort ascending by EMPNO.
QCheck that the SQL statement matches the statement in Figure 215.

Note one difference: The wizard cannot generate the extra set of
parentheses around the OR conditions. You have to fix this later in
the generated code!

QFinish to save the statement.

Create the SQL statement for the employee photo

282

Start the SQL Wizard and create an SQL statement called EmpPhoto with
the select statement shown in Figure 216.

SELECT USERID.EMP_PHOTO.PICTURE
FROM USERID.EMP_PHOTO
WHERE ((FUNDY.EMP_PHOTO.EMPNO = ?) AND
(FUNDY.EMP_PHOTO.PHOTO_FORMAT = 'gif'))

Figure 216. SQL statement for employee photos

This statement returns the employee picture for a given employee number.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here are the steps in the SQL Wizard:

QName the statement EmpPhoto and logon as ITSO/itso.

aSpecify a Select and select the EMP_PHOTO table.

aSelect the PICTURE column.

QFirst condition: EMPNO is exactly equal to empno (a variable).

aSecond condition (AND): PHOTO_FORMAT is exactly equal to gif
(a constant).

QCheck the SQL statement. It should match Figure 216.

QClick Finish to save the statement.

Generate the code for the employees in a department

Here are the steps in the Database Wizard:

QStart the Database Wizard and select the EmplnDept SQL statement.

QWeb pages: Select all four pages to be generated.

Qlnput page: Select the deptnum field and change the caption to some
descriptive text (Enter a department number:); change the length to 3.

QResults page: Select the table columns and the deptnum field. Change the
captions to appropriate table headings.

QaSession: Select No for session and name the bean empdeptBean.

QFinish: click Rename and set the package to itso.servjsp.photo and the
prefix as Empdept. Click Finish to generate the code.

Generate the code for the employee photo

Here are the steps in the Database Wizard:

QStart the Database Wizard and select the EmpPhoto SQL statement.

QWeb pages: Select all four pages to be generated.

Qlnput page: Select the empno field and change the caption to some
descriptive text (Enter an employee number:); change the length to 6.

QResults page: Select only the table column and change the caption to
appropriate table heading (Photo).

QSession: Select No for session and name the bean photoBean.

QFinish: Click Rename and set the package to itso.servjsp.photo and the
prefix as photo. Click Finish to generate the code.

Change the generated DataSource

Edit the generated servlet configuration files (Empdept.servlet and
photo.servlet) and change the DataSource from jdbc/jdbcdb2sample to
sampledb, which is the DataSource we defined in WebSphere Application
Server (see “Creating a DataSource” on page 146).

Chapter 8. Development with WebSphere Studio 283

Fixing the problems

The generated code has two problems. The first SQL statement has a missing
set of parentheses for the OR conditions, and the second SQL statement uses
a wrong data type for the picture BLOB.

Changing the SQL statement

Edit the EmpDeptDBBean.java file and add the extra parenthesis around
the OR condition. Save the file and compile it. Check-in the Java and class
file.

Changing the Java data type for the picture

The data type of the BLOB is generated as java.lang.Byte, instead of byte[].
Edit the photoDBBean.java file, search for java.lang.Byte and replace the 3
occurrences with byte[]. Save the file and compile it. Check-in the Java and
class file.

The photoResults.jsp file uses the bean and also has the java.lang.Byte data
type. Open the bean with the Page Designer and check the JSP source code.
It should now pick up the new data type (byte[]) from the bean. Save the file.

Testing in VisualAge for Java

Publish all the new files, basically, the photo and the itso.servjsp.photo
folders. Import the two beans into the Workbench, EmpdeptDBBean and
photoDBBean.

Start the WebSphere Test Environment and launch the browser for the
Empdeptinput.html file. Enter CO1 or D11 as department number (the other
departments have no pictures). A sample output is shown in Figure 217.

Employees for department: CO1

| Number | Lastname | Job [sex | Salary || Photo?
[ooo030 [ivan [MaNaGER |F [38750.00

[0oo130 [QuINTANA [aMaLYST |F [23300.00 |[gif
[0oo140 [NICHOLLS [aMaLysT |F [28420.00 |[gif

Figure 217. Employees in department test run

Now launch the browser for the photolnput.html file and enter 000130 as
employee number. A sample output is shown in Figure 218.

284 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

| Photo
[[B@307b

Figure 218. Employee photo test run

At this point the code to display the real GIF picture is not there yet, and the
link between the first servlet and the second servlet is missing too.

Displaying a picture

How do we display the picture? We have to create a different kind of output,
instead of text/html we use image/gif and write the byte stream to the
response object.

Open the photoResult.jsp in the Page Designer. Delete the (J) marker in the
table, and add a scriptlet instead (Insert -> JSP Tags -> Scriptlet). Enter the
code into the box (Figure 219).

try {
byte[] photo = photoBean.getUSERID _EMP_PHOTO PICTURE(0);

response.setContentType("image/gif");
javax.servlet.ServletOutputStream outx = response.getOutputStream();
outx.write(photo,0,photo.length); }

catch (Exception e){}

M Script (O]]
JSP Scriptlet -
Cancel |
— Script
) Spesity External Bl I Help |

%) Save in Working Decument Browse... |

—Authar Time Yisual

Setting... | Welete |

=-ca application ii 2. <BODY> B
&3 config try { j
-G exception Y . - e an

out try =
R _ILI byte[] photo = photoBean.yetUSERID EMP PHOTO PICTURE(0):
u I I k response . setContentType (" image fgif") ;
Library | javax.servlet.ServletDutputStream outx = response.getOutputStream();

outx.write(photo,0,photo.length); }
catch (Exception e){}

K|

I [Fiow - 2 | Calurnir : 35

SL

Figure 219. Employee photo scriptlet

Chapter 8. Development with WebSphere Studio 285

Next, open the table itself and deselect the loop property on the Dynamic
page. There is only one picture per employee.

Test with the modified JSP and the picture should be displayed by the
browser. Note that the table itself is not shown, just the picture.

Linking the servlets

The changes needed to link from the department listing to the photo servlet
are in the EmpdeptResults.jsp output page. When the value in the photo
column is gif, we have to add HTML tags with a reference to the photo servlet
into that column.
What we want to construct is a conditional link:

if photo_format = gif then

Display

Edit the EmpdeptResults.jsp with the Page Designer.

QCheck the source code. The variable used in the table loop is _i0. We have
to use the variable in our test of the picture format.

QDelete the (J) marker in the photo column. We do not display the photo
format. Instead we build the HTML reference.

QAdd this scriptlet into the table column:
if (empdeptBean.getUSERID_EMP_PHOTO_ PHOTO_ FORMAT(_i0) != null) {

Note that you can drag properties from the left pane into the code pane to
build the code, then you replace the index with _i0.

QAdd a second scriptlet (to end the if statement) with the code: }

QBetween the two scriptlets, add a link (Insert -> Link), and an Attribute
dialog opens (Figure 220).

= On the Dynamic URL page, enter itso.servjsp.photo.photo, the name of
the target servlet, as the URL.

= Click on Edit in the Parameters pane. This opens the URL Parameter
Editor dialog. Enter empno as name. For the value select Specify by
property and click on Browse.

= In the Bean Property Selection dialog, select the EMPNO property of
the empdeptBean and click OK.

= In the URL Parameter Editor, click Add to add this parameter to the
list. Close the dialog.

Figure 220 shows the completed Attribute dialog. Close the dialog.

286 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tag |Link =

ToFile| ToURL| ToURL Alias Dynamic URL | To Label | EMaid] ®

LBL Template: I j
URL: Iitso.servisp.photo.photo
Mame | Walue |

Empho empdeptBean USERID_EMPLOYEE_EMPMO[)

Edit.. |
Alias: [Add | Ed... |
Target I j

QK I Cancel | Help |

Figure 220. Dynamic HTML link

QThis dialog enters the link into the table. The text for the link is taken
directly from the URL and reads as itso.servisp.phot.photo.

QYou can overtype the text with Display, which will be the link.

JSP compile problem

If you save and publish this code, the JSP does not compile in JSP 1.0. The
code that is inserted into the METADATA tag for the table produces a
compile error.

To fix that compile error, switch to the source view. Find the METADATA tag
that starts like:

<!--METADATA type="DynamicData" startspan

<TABLE border="1" width="600" dynamicelement
innerloopproperty="empdeptBean.USERID_EMPLOYEE_EMPNO()"
innerloopdirection="vertical" innerloopstartindex="1" innerloopendindex="1">

</TABLE>

-

Change this code to be a ISP comment so that nothing inside is compiled:
<%=-METADATA « it eieiaenes

-=%>

Save the completed JSP (Figure 221), publish it, and test again.

Chapter 8. Development with WebSphere Studio 287

Department Listing
o

L]

| Number | Lastname | Job | Sex | Salary Ph%tl:l?

7] 7] 7] (7] 7] inisplay B]
IR] = =

Figure 221. Completed employee in department JSP

Run the application

The complete application is shown in Figure 222.

288

Department Listing

Employees for department: 200

Please complete the form.

Enter a department number: |ZDD

Feset |

[Number | Lastname | Job [Sex | Salary | Photo?
[999001 [RedbookTeam [WRITE M o.00 Cisplay
[999002 [shaddon [valaya IF [0.00
[999003 [Mackown [was M o.00
[999004 [Fielding [sTUDIO M o.00
[999005 [Hekkenberg PROCESS M [0.00
[999006 [wiahli |LEADER M Jo.oo0 /IDisplay

Figure 222. Complete application flow

..

This is the team that
produced the redbook:

QGareth Mackown
QDeborah Shaddon
aMitch Fielding
QUeli Wahli

QGert Hekkenberg

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Problems

Not everything worked fine with this level of the WebSphere Studio product.
We have already touched on some of the problems we encountered during the
previous sections. In the sections below, we discuss these problems.

Resolving parsing problems

Occasionally, the parsing engine used by WebSphere Studio updates the links
between parts incorrectly.

For example, in WebSphere Studio 3.02, a scriptlet embedded in the ACTION
attribute of a FORM declaration gets incorrectly prefixed with a leading "/"
when the file is published:

<FORM action="<%= myObject.myProperty %>" method="POST"></FORM> <
<FORM action="/<%= myObject.myProperty %>" method="POST"></FORM> <

original
after parse

To overcome any parsing problems such as this, select the file in WebSphere
Studio and Edit -> Properties (Figure 223). By deselecting the Use Parser
check box, you can force WebSphere Studio to not change URL information in
this file during the publishing operation.

Blank.jsp Properties []

General |Versi0n Eontroll Helationsl Publishingl

e i | Blank.jsp
—

Folder: D:‘WwebSpherehStudio'Projectshtesths
Size: 426 bytes [426 bytes)
MIME type: [test/xisp = '&useparser
Created: Monday, February 28, 2000, 4:17:35 P
Modified: Monday, February 28, 2000, 4:18:04 PM
Modified by: stadel
Owned by [stadel

LComments:

QK I Cancel | Help |

Figure 223. Toggling the Use Parser checkbox on a file

Chapter 8. Development with WebSphere Studio 289

Folders in publishing stages for a Web application

When new folders are created, they are not automatically subfolders of the
Web application folder in the publishing view. You have to move them
manually. This is even true for the servlet folder that already exists in the
Web application folder.

Refer to “Publishing to a Web application” on page 251 for directions on how
to publish to a Web application.

SQL Wizard generates wrong data type for a BLOB column

The SQL Wizard generates the Java type java.lang.Byte instead of a byte
array (byte[]) for a BLOB column.

Database Wizard JSP code is compiled within METADATA tag

The code to retrieve properties that is placed into a METADATA tag in the

result JSP is compiled by the JSP 1.0 compiler. (It is not compiled under JSP
0.91)

When updating such a result table with user defined code in a scriptlet, this
can lead to compile errors.

A circumvention is to change the METADATA comment into a JSP comment

(as discussed in “JSP compile problem” on page 287), but we have seen
problems when such a JSP is updated a few times.

JavaBean Wizard generates bad code

The JavaBean Wizard generates the wrong package name if the project name
contains blanks or other invalid characters. See “Finish” on page 279.

290 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Interfacing to VisualAge for Java

WebSphere Studio provides two-way communication with Visual Age for
Java, allowing you to keep your Java source files synchronized between
WebSphere Studio and the VisualAge for Java repository.

You should use this feature if VisualAge for Java is your primary Java
development and test tool.

Setting up the environment

Before WebSphere Studio can interface to Visual Age for Java, you must
enable the Remote Access to Tool API feature within VisualAge for Java.
Select Window -> Options to display the dialog shown in Figure 224.

%] Options [<]
& General Remote Access To Tool API
Cache
F.ey Bindings ¥ Start Remote Access To Tool AP on Visualbge startup 4

=l Appearance start aIWayS

Lists
Source

I~ Enable tracing of Remaote Access To Tool AP

Dialog

Banner * Use system-generated port

Printer
Coding " Use user-defined port |32?5?
Help

=l Resources
Resource Associations
Fit| Registry

Visual Composition " Start Remote Access To Tool AF | 4

Stop Femote Aecess 1o Toal AF] |

Femote Access To Tool AP iz not curmently running

start now

Access permitted from the following hogts:

Defaults | Apply |
Cancel |

Figure 224. Configuring Visual Age for Java for WebSphere Studio interface

If you will be using this feature regularly, ensure that the Start Remote
Access to Tool API on VisualAge startup option is checked. To start the
communication, click the Start Remote Access to Tool API button.

Chapter 8. Development with WebSphere Studio 291

WebSphere Studio

The menu interface to VisualAge for Java is under Project -> VisualAge for
Java, once you select a Java or class file.

If the menu items in WebSphere Studio are greyed-out, you may have
installed WebSphere Studio before you installed Visual Age for Java. If so,
try reinstalling WebSphere Studio after you have installed Visual Age for
Java.

Receiving updates from Visual Age for Java

Similarly, you can update the WebSphere Studio project’s files with the
source updated in the Visual Age for Java projects.

Highlight the files that you want to update from Visual Age for Java. Note
that you should highlight both the .java and .class files if you want the . java
source file to be updated, otherwise you have to compile the source file
yourself afterwards.

Select Project -> Visual Age for Java -> Update from VisualAge (Figure 225).
Again, no visual notification is provided, so manually verify that the update
was successful by checking your code.

|@@ & | p g Creckb IR

[Stiesk [t —

Undo Check Out Test .

Check Dut Info £ http:/flocalhost

----- 1 html 4
"y -

—_—

Wersion Contral »

Visualbge for Java

Campile - playl e
Debug b DateDisplayl -7-
Publishing Stage 3 . DateDisplay: %
Copy Publishing Stage.. | E : e
Cuzstomize Publishing Stages... Master.css L
=5
i
h:
[|]
[| |Stage: Test 4

Figure 225. Updating WebSphere Studio files from Visual Age for Java

292 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Sending updates to Visual Age for Java

If you make changes to Java source code files in WebSphere Studio, you can
send these changes to Visual Age for Java.

Select Project -> Visual Age for Java -> Send to VisualAge. You must tell
VisualAge for Java the project into which the class is inserted. Once this is
done, you will not receive any further visual notification that the operation is
complete; however, you can simply view the class in VisualAge for Java to
check that the update operation was successful.

Using VisualAge for Java as an editor

See “Editing Studio files with VisualAge for Java” on page 390 for
instructions on how to register VisualAge for Java as an editor for Java files.

Archiving

You can archive a whole project into a WebSphere Studio archive (.war) file.
Select File -> Save as Archive and enter the name of the generated file in the
dialog that follows.

An archive file contains the project structure, publishing stages, and all the
files.

Opening an archive

You can restore an archive file onto a developer’s machine by using the File ->
Open Archive action. A dialog opens and you should carefully go through the
three pages:

QOnN the Extract page, either create a new project or replace the current
project folders (a merge operation).

QoOn the Destination page (only for a new project), select original locations
or custom locations. If you use original locations, the disk letter must exist
on your system, otherwise extract fails with an error box saying that a file
could not be written (not a very helpful message). With custom locations,
you can control the directory where the project will be stored.

QOnN the Options page, select Use archived publishing targets if you want to
preserve the publishing target locations for the publishing stages. If you
do not select this check box, the publishing targets are lost, and you must
update the project manually.

Chapter 8. Development with WebSphere Studio 293

Working in a team

Multiple team members can use the same directory structure for their Studio
project. Files (HTML, JSP, Java source) are checked-out for editing by team
members. A checked-out file cannot be edited by another developer.

This support is not very comprehensive, and it only protects the files if all
developers use the Studio Workbench and do not modify files outside of the

Workbench.

More information and examples

Refer to Chapter 15, “Developing the PDK using WebSphere Studio” on page
383 for more information and examples of using WebSphere Studio.

294 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

9 Software
Configuration
Management

In this chapter we describe the challenging area of Software Configuration
Management (SCM), and how it relates to WebSphere Studio and VisualAge
for Java.

While the starting point of customer involvement with SCM varies, no
customer can afford to ignore this area. In fact, after implementing SCM
processes, the resulting improvements in IT reaction times to meet business
demands could well prove to be a key success factor for being successful with
e-business.

© Copyright IBM Corp. 2000 295

Introduction

SCM is one of the key areas that has to be addressed when developing and
maintaining applications. This is not only true for managing the software
configuration within your development environment, but also applies to the
software configuration within the production environment.

Application architectures, methodologies, technologies, and associated tools
put into a development process context potentially fail on delivering the
appropriate functionality to the business if SCM processes and supporting
tools are not in place.

Pressure to deliver faster and more complex applications makes it more
urgent to implement SCM. At the same time, businesses that are developing
and deploying applications in the e-business space may find themselves open
to exposure when SCM problems occur.

Although this calls for an end-to-end (E2E) approach for SCM throughout the
complete application life cycle, we will limit ourselves by addressing some
SCM aspects within the scope of this book. Although an E2E approach is still
advisable, addressing all aspects of SCM would be a book in itself.

We will illustrate some aspects of SCM using Rational’s ClearCase product.
Our choice for ClearCase is driven by the fact that ClearCase has a
prominent role within IBM’s SCM strategy.

First, we will start with some general thoughts on SCM.

What is Software Configuration Management?

296

The U.S Department of Defense, in its standard on software development,
DOD-STD-2167A, defines SCM as follows:

Software Configuration Management is the discipline of identifying the
configuration of software systems at discrete points in time for the purpose
of controlling changes and maintaining traceability of changes throughout
the software life cycle.

Other definitions from IEEE or 1SO are more or less the same, although the
focus differs.

Over the years, two groups have expanded on the definition of SCM, with
each providing a different perspective. One group, the Software Engineering
Institute (SEI) at Carnegie Mellon University, has approached SCM from the

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

process side; while the second group, the International Standards
Organization (1SO), has approached it from the management side.

While it appears that these groups have worked in different areas, they have
in fact addressed the two major areas needed for successfully implementing
SCM. It is not only important to know WHAT to manage and HOW to
manage development artifacts, but this should be put into a context, which
calls for a repeatable process.

Successful software development organizations are measured by SEI
maturity levels and by compliance with 1SO 9000 standards. These maturity
levels and standards present new challenges to development teams that are
being asked to deliver software to market at faster and faster rates, while at
the same time improving the quality.

In order to raise an organization’s maturity level or to comply with 1SO 9000
standards, tools are required. These tools must support the following related
and sometimes overlapping functional areas:

QVersion management

The capability of managing versions is one of the building blocks of SCM.
Being able to restore to the exact point-in-time when an application was
working properly is just one example of the necessity of versioning.

QChange management

Being able to apply changes to an existing situation in a controlled
manner is important. This is especially true when applying changes to the
production environment. In order to have flexibility in this respect, there
is a requirement to be able to separate changes, attach them to identified
work items, and create flexible baselines based upon sets of changes.

QChange request tracking

Strongly related to change management, this means tracking change
requests and associated work items over time during their life cycle.
Tracking is applicable to both planned work items (new release,
improvements) and unplanned work items (problems).

QBuild management

Throughout the development life cycle, there is a requirement to be able
to build the software at hand in a repeatable manner. This might call for
multiple platform build capabilities if your applications span multiple
platforms.

Chapter 9. Software Configuration Management 297

QDeployment

A natural extension to build management is to have functions available
that are capable of deploying the resulting artifacts to the execution
environment, which can reside on multiple platforms.

Qlmpact analysis

From both a development and runtime perspective, there is a requirement
to be able to predict and assess the impact potential changes have.

QProcess

The above-mentioned functions are not independent from each other.
They should work in a concerted manner. At least, the functions should be
embedded into a set of procedures to follow when applying changes to IT
solutions. Given the importance of this aspect, it calls for a tool that
supports and enforces an SCM process while at the same time providing
flexibility in this respect.

As indicated, we will only skim the surface of SCM in this book. We wanted to
illustrate in this section that SCM is important, and which areas it should
cover. If this summary has fueled your interest, we suggest that you read
Managing the Software Process, by Watts S. Humphrey (see “Other
resources” on page 435).

SCM for architectural pattern based development

Chapter 8 of the redbook Patterns for e-business: User to Business Patterns
for Topology 1 and 2 using WebSphere Advanced Edition, SG24-5864,
addresses various aspects of the application development process and
associated work products that are being created throughout the application
development life cycle.

We will build upon that chapter by adding some SCM aspects. In the
introduction, we said that SCM processes and implementing tools should
cover the whole application life cycle, covering not only the development
phase but also the deployment and maintenance phases as well (Figure 226).

298 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Developer

Release Cycle

Project I ,l High-level] J Detailed . Deol ;
Startup Design J rl Design Implementation eploymen

Software Configuration Management processes

Figure 226. SCM and development process overview

This means that all work products that are created and or updated during
the development process should be managed by the SCM processes and the
toolset used to implement the required SCM functionality.

There will be many pieces to manage; not only the developed code artifacts
such as .jsp, .java, .class, .servlet, .html, and .gif files, but also the business,
functional, and database models involved, test cases, and runtime artifacts,
such as .jar files, DLLs, and executables.

Moreover, versions of these artifacts do have relationships. A specific version
of an application model relates to a specific version of the implementing code,
test cases and test beds.

These related configurations of artifacts are usually referred to as being
baselines or drivers (we will use the term baselines). Typically, you would
have developer baselines, staging or development baselines (test, integration
test, preproduction test), and production baselines.

While developers are focused on crafting the work products, they typically do
not bother much about how to manage these baselines. The pressures of
delivering work faster and faster, with higher quality, paired with the
increasing complexity of the development environment, should give some
food for thought in this respect.

roles

Developers have different roles within the development process, and they
have a different perspective, thus they have different requirements for SCM
functionality.

In Figure 227 we illustrate that, in our opinion, SCM functions call for at
least one additional development role.

Chapter 9. Software Configuration Management 299

JSPs / Servlets_ Java classes —
s, - Beans

\
Interaction R Y
HTML Control \ S ~..sqQul
'__ N,
‘*--ﬂ.*”‘ Business k. ..
\ : Y "=l _Logic Tee N
ﬂ :".\ T -.. T
Browser W~ JSPS = vy T e v
Client \ Page Y H ‘ T
\ Construction| % :
\ .'._\ |
\ \ !
\ \ :
\
AR, ! Legend
@ L (P
\‘ ' ' | B Consumes

% @ - — — —p» Creates

——p Control flow

view script business
developer developer logic - SCM
developer

Figure 227. Application topology 1: additional SCM role

We introduce an SCM role to emphasize the importance of SCM for a
development project. The person in this role should make sure that the
developers are provided with SCM functionality, and should accept
responsibility for making sure that the development baselines are managed
throughout the development life cycle.

From this perspective, the SCM role has SCM requirements beyond those of
the other developer roles. While the developers’ SCM requirements perhaps
could be fulfilled with a relatively simple tool or process (for example, copy
before update), the requirements of the SCM role cannot be met easily. This
provides one more reason to identify this role. This does not mean we should
forget about the developers, they simply have other SCM requirements.

The SCM role is often embedded within the project leader’s role, although
given the complexity, we would advise assigning a separate developer for this
role. Note that Figure 227 only covers the development perspective. From a
runtime and production perspective, there will be more roles that have
interest in SCM functionality.

300 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Some aspects of the latter perspective are covered in the redbook Managing
Your Java Software with IBM SecureWay On-Demand Server Release 2.0,
SG24-5846.

We will focus on the development process SCM requirements, and thus focus
on the development roles.

In an application topology with enterprise data, legacy systems, and third
party applications, the SCM complexity is growing. There are more artifacts
to manage, and artifacts may reside not only in the distributed environment,
but also on a mainframe. This also means that build, deployment, and testing
is more challenging (Figure 228).

>
JSPs / Servlets Java classes m
Beans
Interaction BJBs JDBC /

HTML Control \ sQLy
} Business | | » Legacy
‘ = by Logic systems
2 i\ N
&

Browser \ JSPs 3\ .

Client \ Page |4
\

Construction| 3\ Fo

NMIVOHOmMZZ0O

|
4\ { il > 3rd party
\ ‘ \ Yy i | R - applications
\ 5 { i . |
L\ i | R
\ \' \\ W i R ‘4]
A \3 \' ‘ . 4 P { ! /
AL \‘ ' VI 7/ a. K4 \‘ ',
&1 =’ e
“« : ,
view ‘. . o .
developer N\ script 1 business ¢ 3rd tier
.dsveloper . logic . integration
. ! developer .,/ developer
Legend
""""" - Consumes
— — —p» Creates
—— Control flow
SCM role - __> "SCM"

Figure 228. Application topology 2: more complexity
On top of that, it is very likely that multiple SCM tools have to inter-operate.

Most organizations have mastered SCM from a mainframe perspective. They
have deployed tools, and have implemented SCM processes in that area.

Chapter 9. Software Configuration Management 301

In order to be successful with topology 2 based development efforts, it will be
key to integrate at least the SCM processes on both sides. It might well be
that the organization will continue to use multiple tools to implement E2E
SCM. Even if there were to be a single E2E tool set available, migration costs
might prevent the implementation.

However, if possible, you should have a strategic objective to implement an
integrated E2E SCM solution, not only from a process perspective, but also
from a tools perspective.

For this book, we had to make a choice. Therefore, we will focus on the
distributed environment, where a lot of organizations are struggling to get
SCM in place.

It is not just a matter of defining processes and buying supporting tools; SCM
should become a fact of development life. New technology that is thrown at
development organizations comes with an associated new generation of
developers, who will not necessarily appreciate the requirement for SCM.

Therefore, the SCM tools should at least be easy to use, and if possible,
provide transparent SCM functionality from the developers’ points of view,
that is, from their IDEs.

The next section provides an example of SCM in the context of the
WebSphere development work done for this redbook.

Implementing SCM aspects in a WebSphere Studio
environment
In this section, we introduce various SCM aspects within our WebSphere
environment. The result is that our sample code is version controlled by an

external SCM tool in a manner that supports the SCM requirement to have a
repeatable development process.

SCM aspects
The most important aspects of SCM are versioning and single point of
control.

Versioning

Versioning of related artifacts is a foundation for all other SCM functions. In
fact, this is a function developers understand. Before applying changes, you

302 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

make a copy to be able to travel back in time to a situation when you knew
things were working. If we can provide an easy-to-use function that supports
versioning, that is an easy sell to a developer.

As stated before, other SCM stakeholders will have functional requirements
beyond that. Project leaders or developers who have SCM roles assembling
work from various developers to create a new version of the system or
application will have different requirements.

In fact, depending on the role, developers will have other requirements as
well:

QTesters would like to be able to raise test environments, encompassing the
right level of all required artifacts, be it code, test beds, or test cases.

QAnalysts would like to have impact analysis tools spanning all technology
at hand, operating on various versions of the application or system.

In this chapter we will focus on providing a sound versioning capability for
all roles involved, without forgetting the requirements other roles are having.
We strongly suggest that you assign a separate developer to the identified
SCM role. This developer must understand the SCM requirements of the
complete development process to design one SCM solution to meet those
requirements.

Single point of control

Within our development environment we are using both VisualAge for Java
and WebSphere Studio. From a versioning perspective, only one of both tools
can be the master.

Because WebSphere Studio provides an open environment, integrates all
possible tools, and provides two-way integration with VisualAge for Java, we
decided to use WebSphere Studio as the single point of control. Figure 229
shows that this is an obvious choice.

However, this means that the people performing the different roles identified
should have a level of discipline as far as the process to follow is concerned.
This is especially the case when you have to change existing Java code or
craft new Java code.

The other development artifacts, given our choice, are by default controlled
through WebSphere Studio.

The development of such procedures is required because multiple roles are
stakeholders in the Java code, for example, view developers, script
developers, and business logic developers (see Figure 228 on page 301).

Chapter 9. Software Configuration Management 303

Use design artifacts to

generate initial controller

and business logic code

Check files in and out,
manage baselines

Rational
Rose

Import initial Java code for SCM Tool

controller and business logic

VisualAge for
Java Create,
then keep in sync

Deploy controller and

Create and debug business logic code
servlets, Java beans (servlets, beans and classes) Application
and other Java classes WebSphere Publish Server
Studio >
Deploy view code Web
(HTML, JSP and image files) Server

Edit HTML
WebSphere -
A and JSP files
Studio Page Import
Designer initial
prototype
Create HTML and)

JSP view code Pul_allsh_ a_n.d
review initial
prototype

Use for initial NetObjects
prototyping Fusion

Figure 229. Tools usage in the source code implementation phase

The requirement to keep the Java code artifacts synchronized between
VisualAge for Java and WebSphere Studio is also illustrated in Figure 229.

To make things a bit more challenging, we have to consider as well that
VisualAge for Java does have a team-based version management
environment of its own, and because of the characteristics of developing fine
grained object-oriented code, it should have those capabilities.

The team environment capabilities are covered in VisualAge for Java
Enterprise Version 2 Team Support, SG24-5245.

The current level of the Software Configuration Control (SCC) API
implementation in between VisualAge for Java with external SCM is not
sufficient for our requirements. When using this integration, there is no
indication whatsoever in the IDE that definitions are controlled by external
SCM.

This implies that the synchronization effort must be manual, preferably
performed by one role.

304 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

We would recommend that, given the Java task at hand, it is the
responsibility of the project leader role or SCM role to load and create an
open edition of the code within the VisualAge for Java repository. If a load of
Java code is required, use the point-to-point integration capability of
WebSphere Studio and VisualAge for Java.

You could argue that the start is an in-sync situation. In that case, you only
have to create an open edition. We suggest that prior to that, you should
run “compare” on the versions held in VisualAge for Java and WebSphere
Studio.

After exploiting the VisualAge for Java environment to create, change, and
test the code (including the versioning of code increments during the
development of the code) this should result in an edition that is ready to
integrate with other artifacts being part of the same development effort.

It will be once again the responsibility of the project leader to move that
edition of the code to the WebSphere Studio environment.

In the case of a servlet, this code might have to be integrated with a possibly
changed JSP and deployed to the test environment, after which another
iteration might be needed.

When everyone involved agrees, the project leader should create a version
and move that version to the WebSphere Studio environment, after which the
project can move to the next development stage in the development cycle.

For the time being, this synchronization effort is the pain you must endure if
you would like to exploit the best of both worlds with a single point of control
in mind.

In section “Working from WebSphere Studio” on page 325, we show that
ClearCase has the capability to group related changes through its activities
concept. This can be exploited to synchronize the Java code versions with JSP
versions, thus providing additional support in the synchronization effort.

Note that this is true for the tactical time frame. Given IBM's SCM direction,
the requirement for synchronization would still exist, but would be available
when tools at hand are integrated with the SCM solution. Therefore, we
suggest that you should not invest too much in creating automatic
synchronization procedures, and instead use a procedural approach.

Note that the choice for project leader or SCM role to perform the
synchronization task is arbitrary. It could just as well be the developer
performing this task, depending on project and organization.

Chapter 9. Software Configuration Management 305

Choice for Clearcase as physical single point of control

We chose ClearCase as our SCM tool because it is positioned as the preferred
tool for SCM. Its functionality will play an important role in the toolset
implementing IBM's application for the e-business framework. Rational is a
business partner signed up to integrate its toolset to this framework.

The relationship regarding SCM is even more fundamental. IBM will port
ClearCase and ClearQuest to UNIX System Services (USS) on 0S/390, thus
creating a multiplatform toolset which can fulfill E2E SCM requirements.

Besides that, IBM will integrate the SCM functionality in future versions of
the framework supporting development IDEs.

Selected functions of IBM’s existing SCM offering will also be integrated
within these SCM offerings.

However, this is not the only reason. ClearCase is also chosen because it does
provide support to enforce an SCM oriented development process.

Rational SCM toolset

The SCM toolset from Rational includes ClearCase, ClearQuest, and Unified
Change Management (UCM).

ClearCase

Rational ClearCase is a configuration management system designed to help
software development teams track the files and directories used to create
software. ClearCase enables you to manage the development and build
process, and to enforce your site-specific development policies.

ClearCase is specifically designed to support parallel development, whether
you are simply isolating the work of one developer from others on a small
team, developing multiple releases in parallel using different teams, or
sharing a source code base between multiple teams at geographically
distributed sites.

ClearCase enables you to recreate the source base from which a software
system was built, allowing it to be rebuilt, debugged, and updated, all
without interfering with other development work.

306 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

In ClearCase, files and directories, or elements, are stored in a repository
called a versioned object base or VOB. A version is a particular revision of a
file or directory element.

Similar to many configuration management systems, ClearCase uses a
“check-out, edit, check-in” model to manage software changes. When you
check-out a file, ClearCase creates an editable copy, or checked-out version,
in your view. When you check-in a file, ClearCase creates a new, permanent
version of the file in the VOB.

You access and change elements using a view. A VOB contains all versions of
a particular set of elements; a view selects a specific version of each element
using a set of rules called a configuration specification (or config spec). The
result is that when accessed through a view, a VOB looks just like an
ordinary file system directory tree.

ClearQuest

Rational ClearQuest is a change request management application that
allows you to track change requests for your products. Using ClearQuest, you
can submit change requests, view and modify existing change requests, and
create and run user-specific or site-specific queries and reports to determine
the current state of your project.

In ClearQuest, change requests are stored as records in a ClearQuest
relational database. Each record consists of all the data related to that
record. ClearQuest supports different types of records for different projects
and uses. For example, you might have record types for enhancements,
defects, and activities, each with unique fields and data requirements.

ClearQuest records move through a pattern, or life cycle, from submission
through resolution. In ClearQuest, each stage in this life cycle is called a
state, and each movement from one state to another is called a state
transition.

Unified Change Management

Rational Unified Change Management (UCM) combines ClearCase and
ClearQuest to provide a complete, out-of-the-box, activity-based change
management process.

UCM combines ClearCase configuration management capabilities (such as
version control, parallel development, build management, and
component-based management of directories and files) with ClearQuest
change request and activity management capabilities (such as task

Chapter 9. Software Configuration Management 307

management, state transition support, parent/child associations, policy
enforcement rules, and extensive querying and reporting).

Our approach

Note that we will not write extensively on ClearCase concepts. We will only
address ClearCase aspects briefly. Sometimes we will copy some descriptions.

The help information offered by ClearCase is both extensive and well
structured. An approach that proves to be useful is to click on the Help
button while performing the tasks we describe. Within these descriptions you
will see hyperlinks to more information and, for instance, concept definitions
that we do not want to replicate in this book.

Furthermore, ClearCase offers a fast path to a lot of information on
Rational’s ClearCase customers Web site. This site can be accessed by
clicking on the ClearCase on the Web entry from the ClearCase
administration console (Figure 230).

¥ ccadminconsole - [ClearCase\ClearCase on the Weh] =] B3

| Action Yiew |« o Em @
| |

@f ClearCase Site M ;I
-7 ClearCase on the Web g el
-2 My Host " Welcome | |
-85 All Views B I raeiee
: All VOBs Eeleases i
w-¢> ClearCase Registry (ai| .. i Rational
#-25 ClearCase Network SEduest ClearCase
Upgrades
* Documentation _Ij
1] | Kl | 3

|htlp:.:"£DD2DSEaeEIEaE: ClearCasze ATRIA *.2 20000424 38215381 4631 |

Figure 230. ClearCase on the Web from administration console

308 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

ClearCase in the WebSphere Studio environment

In this section we illustrate our approach of using ClearCase as the SCM tool
in conjunction with WebSphere Studio and VisualAge for Java.

Installation

We installed ClearCase V4.0 in evaluation mode to avoid setting up a
network installation of ClearCase.

A consequence of this approach is that you have to redo the installation,
project setup, and project population steps when moving to a real
installation. Therefore we suggest that you evaluate ClearCase by enabling
one project (our sample).

Basically you have to execute the following steps to install ClearCase. We
identified two starting points:

QUse the autostart facility of the CD-ROM drive (Figure 231). Select the
second radio button (evaluation install).

Choose Installation Mode

We suggest vou run Site Preparation to create a network, release
area containing:

- all the files necessary to install ta individual wark stations

- the gite-wide default infarmation needed ta share source
contral information.

Albernatively, to test out the features of ClearCaze, perform an
evaluation inztall to this work station.

£~ Start the Site Preparation step of ClearCase Installation,

& Do an Evaluation Installation of ClearCase to this workstation;

< Bach I Hewt » I Cancel

Figure 231. ClearCase autostart installation mode panel

Qlf for some reason the CD does not autostart, run the setup.exe from
cd_drive:\cpf\nt_i386 and the Switch Setup Mode dialog is displayed
(Figure 232). Select the second radio button for an evaluation installation.

Chapter 9. Software Configuration Management 309

Switch Setup Mode

Y'ou are trying to install ClearCaze directly fram CO-ROM. wWe
strongly adwize against this.

We suggest vou do one of the following:

' Perform Site Preparation first

€+ I you are evaluating ClearCase, do an E valuation [nstalt

€ [NOT Advized] Continue with Install fram CO-FOM

< Hask Mewut » I Cancel

Figure 232. ClearCase switch setup mode panel

QaoOn the Welcome to ClearCase install panel, click on Next.
QNow the ClearCase Doctor screen is displayed (Figure 233).

ClearCase Doctor Discovered Problems [%]

Heed Adobhe Acrobat Reader, Version 3.0 or Later ——
Problem:

Some ClearCase online manuals are in POF format and require Adobe
Acrobat Reader, version 3.0 or later, to display and print.

Solution:
Goto

http: M. adobe. cormfacrobat/readstep html

and download and install Acrobat Reader.

=

ClearCaze Doctor analysiz has found the serious problems shown above.

Do you want to continue the installation, even though ClearCasze may not work immediately, or quit the
installation to fix these problems?

To ask ClearCase Doctor ta fix a problem, right-click on the problem for the shortcut menw, or left-click
on the problem to set focus to that problem and then click the "Fix Problem button.

FErint Problemsl Eiw Broblem | LContinue Install |

Figure 233. ClearCase Doctor Discovered Problems panel

310 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

You should look at the messages presented and possibly fix the problems
after assessment. Note that if a TCP/IP DHCP problem is identified, it is
not applicable for an evaluation installation. However, this might need to
be considered when installing for real. We did assess all messages and
decided that we did not have a real problem, and continued by clicking the
Continue Install button.

QAfter stepping through various panels, including the copying of files and
reading the installation notes file, we clicked on Finish to reboot the
machine.

QAfter reboot, another Clearcase Doctor screen is displayed (Figure 234).
We recommend selecting the first radio button to prevent starting of
ClearCase Doctor at the next reboot.

ClearCase Doctor Logon Testing []
ClearCaze has been inzstalled on this workstation since you last logged in. Start Analyzis I
e recommend that you allow ClearCaze Doctor to check for any compatiblity problems. Euit |
& Dion't Start ClearCase Doctor on subsequent logons: Hel
Help |

" In future, run in background and only report problems.

' Always iun at logon time,

Figure 234. ClearCase Doctor Logon Testing
Qlnstallation should be complete after this.

If you would like to de-install after the evaluation and prior to a real
installation, you should run cd_drive:\cpfint_i386\uninstal.exe. Note that you
must make sure by selecting the appropriate options that all information,
including the variable directory, is removed. Not doing so results in confusing
results after re-installation.

Testing the installation

After the installation is complete, there are various ways of working with
ClearCase. Either go through the Windows start menu, ClearCase and
ClearCase administration submenus, or double-click the ClearCase Home
Base icon that should be on your desktop:

iClearCas!
i e Home !

Chapter 9. Software Configuration Management 311

In the remainder of this chapter, we used the ClearCase Home Base route to
complete the setup and configuration. After bringing a project under control
of ClearCase, ClearCase will be used transparently from WebSphere Studio.

The ClearCase Home Base is shown in Figure 235.

i@ ClearCase Home Base [_ =]
Wi | WOBz I Administration I Optiong
Getting Started | Elements and Versions I Eranches I Projects

ClearCasze Help
Dizplays Orientation to ClearCaze help

Tutorial
Starts the ClearCaze tutorial

What's a ¥IEW?
Dizplays help which explaing what a

ClearCaze Wiew iz

What's a VOB?

Dizplays help which explaing what a
ClearCaze VOB iz

What's a Project?

Dizplays help which explaing what a project
is

Cloze Help

Figure 235. ClearCase Home Base

WebSphere Studio and ClearCase considerations

312

Because of the fact that we are in favor of following a structured process
throughout the development life cycle, the obvious choice was made to exploit
the process that is shipped with ClearCase. Furthermore, we kept our role
approach in mind when making decisions on the implementation. Ease of use
from a role perspective was also instrumental in making our implementation
choices.

We will illustrate the integration using our redbook project. We suggest that
you use the same project to evaluate ClearCase. We will take you through all
the steps needed to enable the redbook project code as project within a
ClearCase environment.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

As indicated, ClearCase comes with an out-of-the-box process called Unified
Configuration Management (UCM). This does not mean that this process
cannot be changed, but everything is set up to support a development effort
with a development process in mind. Throughout the setup steps documented
in the following sections, we will comment on some aspects of UCM and the
choices that we made.

Setting up a ClearCase project

To set up the ClearCase project environment, you have to create datastores
containing project definitions and components.

Creating a datastore: Project VOB (PVOB)

First of all ClearCase must have a place to store the project meta data. Recall
that in ClearCase, the data stores are called versioned object bases (VOBS).

To create the PVOB, follow these steps:

Qln the Home base (Figure 235) select the VOB tab, and click the Create
VOB button.

QEnter the project name (ITSO_Servlet JSP_Redbook) on the VOB
Creation Wizard panel (Step 1 of 3), and make sure that only the UCM
project data check box is selected (Figure 236). Click Next.

B2 VOB Creation Wizard - Step 1 of 3 =] B3

'hat would wou like the new YOB to be named?
IITSEI_Sewlet_JSF'_Fiedbook
[™ Create VOB az a UCHM component

) Please enter a comment for the WOB

— ThizWOB will alzo store:
¥ LCH project data

< Each Eirmsty Cancel Help

Figure 236. ClearCase VOB Creation Wizard: project

Chapter 9. Software Configuration Management 313

Checking the UCM project data check box results in creating a VOB that only
contains project meta data, and not actual development artifacts. This way,
we separate interests. Probably the SCM role will be responsible for the
content of this VOB (in consultation with the project leader and project
management). The SCM role will tailor the project setup, including setup of
component VOBs and developer views through which the developers can
work with the component VOBs. We will discuss components and developer
views when we create them in future steps.

QOnN the next VOB Creation Wizard panel (Step 2 of 3), accept the defaults
and click Next.

QoOn the next VOB Creation Wizard panel (Step 3 of 3), click Finish.
QThen click OK in the confirmation panel, and after the processing is
finished, you can click Close on the summary panel.

This completes the steps to create the project VOB.

Creating datastores: Component VOBs

After successful creation of the project VOB, you have to create one or more
VOBs holding the project artifacts. We did choose an approach that separates
our development artifacts in components.

Figure 237 shows the definition of a component.

component

A ClearCase object that you use to group a set of related directory
and file elements within a UCM project. Typically, yvou develop,
integrate, and release the elements that make up a component
together. A project must contain at least one component, and it
can contain multiple components. Projects can share components.

Figure 237. ClearCase Component definition

Actually, there are numerous valid approaches. One could store all artifacts

in one VOB, or have multiple ones. We suggest that the choice of component
VOBs should be guided by the roles identified and the tools that are used by
these roles. The real separation of interests will be established with the view
concept, which will be discussed later.

Knowing that we did choose WebSphere Studio as being the central point of
control of all of our development artifacts, and having multiple roles with a
requirement to have a broad working view on various artifacts, we made the
decision to create a component VOB for the artifacts created and updated
through the WebSphere Studio tool environment.

314 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Definitely, this is an area you should plan for, and make proper decisions
upon, after you have had more working experience. Note that the UCM
approach is new in version 4.0 of ClearCase.

To create the component VOBSs, you have to step through the same steps
performed for the creation of the PVOB:

Qln the first step of the wizard (Step 1 of 3), select the Create VOB as a
UCM component check box and enter Studio as the component name
(Figure 238).

B2 VOB Creation Wizard - Step 1 of 3 =] B3

'hat would wou like the new YOB to be named?
|5tudio

¥ Create VOB as a UCM component

) Please enter a comment for the WOB

— Thiz VOB will alzo storer—————————
[~ UCH project data

< Each I Hewt » I Eirmsty Cancel Help

Figure 238. ClearCase VOB Creation Wizard: component

QRun through the other steps in the same way as for the PVOB.

QRepeat the process and create a component called Rose. We will describe
the purpose of this component later.

Create the project

The next step is to create a ClearCase project. Figure 239 shows the
definition of a project.

Chapter 9. Software Configuration Management 315

ClearCase Glossary M[=] B3

Eack | Cloge

project

A ClearCase UCM object that contains the configuration
information nesded to manage a significant development effort,
such as a product release. Use the project to set policies that
gowern how developers acoess and update the set of files and
directories used in the development effort. A project includes
one integration stream, which configures views that select
the latest wersions of the project's shared elements, and
typically multiple development streams, which configure
wiews that allow developers to work in isolation from the rest of
the project team.

Figure 239. ClearCase Glossary: project definition

QSelect the project tab in the ClearCase Home Base and click on the Project
Explorer button (Figure 240).

i ClearCase Home Base ME E3
Wi I WOBz I Administration I Optiong |
Getting Started I Elements and Yerziong I Branches Projects

Join Project
Begin working on a project

Deliver from Stream

Deliver changes in strear ta the project

Rebase Stream

Update gtream with changes from the
project

Project Explorer

Starts the Project Explorer

Cloze Help

Figure 240. ClearCase Home Base: Projects

316 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

QThe Exploring ClearCase Projects window is displayed (Figure 241).

F-1Exploring ClearCase Projects O] =]
Filz Wiew Toolz Help
ITS0_Servlet_JSP_Redboalk » = (= [o |
I@ _ervel_ ' Re DDJ | ‘lgf| = -ﬂ*|
EESTE TS0 Serviet JSP_Redbook
@
Compo...
Faor Help, press F1 o

Figure 241. ClearCase project explorer

QSelect the ITSO_Servlet JSP_Redbook VOB entry, then select File -> New
Project and enter the project title (Figure 242). Click Next.

MNew Project - Step 1

Project title:
IITSD_Servlet_.JSF'_Fledbook_Sample

Dezcription:

< Bask I Mewut » I Cancel Help

Figure 242. ClearCase create sample project

Chapter 9. Software Configuration Management 317

QLeave the default (“no” radio button selected) and click Next. The Step 3
panel, where you can add component baselines, is displayed (Figure 243).

New Project - Step 3 E3

Add the component baselings to be uzed in thiz project:

—

-

C

Eemnowe | [Ehange,.. |

< Back | Hewt » | Cancel | Help |

Figure 243. ClearCase create sample project (step 3)

QClick Add, and the Add Baseline dialog is displayed. Select the
Studio_INITIAL baseline (Figure 244).

Add Baseline =
Lompanent [gy, qiq =

Bazelines: Cancel

Title | Created On | Help

Studio_ INITIAL 0327700 21:3...

Properties

438

¥ &llow project to modify the component

Figure 244. ClearCase create sample project: add baseline

QClick OK, and repeat the Add action for the Rose component.

318 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Note that the actions performed in the previous steps provided you with
an opportunity to choose a different starting point for your project.
Although we only had an initial baseline, you could already have a
production or tested baseline.

These standard baselines can be configured per installation and can be
created by the project leader or SCM role.

Work from developers performed in private work areas (streams) can be
moved to a shared work area (integration stream) that can be baselined at
meaningful moments in time. This is a powerful concept to “stage” your
development project.

These baselines can be the starting point for the developer’s work areas
(views).

Also, note that rebasing is sometimes required to incorporate other
people’s work or to incorporate versions of artifacts from baselines created
after you baselined your work area. Thus, for example, you might
incorporate a production version of a component in your view while you
are still working with a tested version.

QAfter adding the two components, click Next to get to the step 5 panel.

Note that this panel provides you with the opportunity to select if the
activities of this project are to be managed by ClearQuest.

QClick Finish to have the project defined. The result in the project explorer
is shown in Figure 245.

-]Exploring ClearCase Projects =] E3
File “iews Toolz Help

I) Components j
|

| ‘
B ITS0_Servlet_JSP_Redbook

----- b Components

Ei’!‘,‘ ITSO_Servlet_JSP_Redbook_Sample

Studio

Faor Help, press F1 i

Figure 245. ClearCase project explorer after project creation

Chapter 9. Software Configuration Management 319

Create a view

The next step is to create a view. As indicated in “ClearCase” on page 306, a
view is a ClearCase object that represents a work area for one or more

developers.

By now you should be familiar with navigating in ClearCase. Furthermore,
we will stick to the defaults all the way. So this task is only documented in
text without screen captures. We recommend that you read the panels,

though.

Qln the Exploring ClearCase Projects window, select the project, right

mouse click, and choose New -> Stream.

Qln the Create a Development View panel, click OK to open a dialog for all

the view options.
QStep 1: The project is preselected; just click Next.

QStep 2: Select Reuse a Development Stream, and click Next.

QStep 3: Select Create a Development View, accept the proposed name, and

click Next.

QStep 4: Accept the proposed drive to connect to this view, and click Finish.

QClick OK on the Confirm panel.
QClick OK again to terminate the dialog.

The resulting project explorer window is shown in Figure 246.

f: JExploring ClearCase Projects
File Wiew Toolz Help

[[0 x]

I £ Components j
|

BN

E|_.%J ITSO_Serviet_JSP_Redbook

----- flComponents.

=% ITSO_Servlet_JSP_Redbook_Sample
.2 Integration

L.~ staded_ITSO_Servlet_JSP_Redbook_Sample

Faor Help, press F1

Rose

Lz

Studio

Figure 246. ClearCase project explorer project complete

Let’s discuss some aspects of what happened during the creation of the view.

320 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 247 shows the Windows explorer after the creation of the views.

@ Desktop
EIS My Computer
%4 3% Floppy (A)
Hag (C)
Haw (D)
#-u5 (E)
-2 stade3_ITSO_Servlet JSP_Redbook_Sample_integration on 'view' ()
Eg staded_ITS0_Servlet_JSP_Redbook_Sample on "view' (£}
_I ITS0_Servlet_JSP_Redbook
-1 Rose
=1 Studio

-1 html
=L itso
-5 servjsp
| jspsamples
~__1 photo

_I servietapi
-] studio

..... Clijsp
----- _| lost+found
#-__| photo I
#-L_| samples
=L sql
#-__| theme
----- 5] Control Panel j

|»

Figure 247. Windows Explorer view on views

Notice these views are linked as disks with letters starting backward from Z.
The last view is expanded and you can see that there are three subfolders
reflecting the project and the defined components.

These folders provide you with a dynamic view on the content of the real
storage, that is, the VOBs in the ClearCase_Storage folder, which is located
on your installation drive (for example, C:\ClearCase_Storage\VOBs).

In a normal distributed installation, these real VOBs will be placed on a
secure ClearCase server somewhere in the network, and you would not see

them. If you explore the content of these folders, you will see that the project
folder contain information on the processes.

The other folders are empty for now. The next task at hand is to get
development data into one of these folders, namely the Studio folder.

Chapter 9. Software Configuration Management 321

Enable ClearCase to the WebSphere Studio environment

Before you can populate the view, and in particular the Studio folder, you
have to make sure that WebSphere Studio can operate through the views.

Note: Consulting the WebSphere Studio help files will not help you much,
because the description there is quite cryptic! Instead, follow these
instructions:

Qln WebSphere Studio select Tools -> Preferences.
QSelect the Check Out tab.
aFill-in the appropriate drive and component name (Figure 248).

If you have accepted the defaults when creating the views, it is likely that
your view is connected on “Z” as well. If not, change this accordingly.

Preferences

General Check Out |Java I Freviewing applicatinnsl .t’-‘-.dvancedl

Local Check-out Folder;

IZ: sStudioy Browse... |

QK. I Cancel Help

Figure 248. WebSphere Studio Tools Preferences: Check-Out

Now you are ready to let the SCM interface populate ClearCase with the
project artifacts. Currently, the integration of WebSphere Studio with third
party SCM tools is exploiting Microsoft's Software Configuration Control
(SCC) API.

The current thinking is that this proprietary API will be replaced by a
standard committee endorsed standard such as Web-based Distributed
Authoring and Versioning (WebDAYV). For more information on WebDAV, see:

http://www.webdav.org <== WebDAV Resources
http://www.alphaworks.ibm.com/tech/DAV4J <== WebSphere DAV for Java

322 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Bring the projects artifacts under ClearCase control

To bring the project development artifacts under ClearCase control now takes
only a few steps:

QOpen the project in WebSphere Studio first.

QSelect the project and Project -> Version Control (Figure 249). Note that
WebSphere Studio has identified that ClearCase is present on the
machine and presents you with a choice.

¥ ITS0 Servlet JSP Redbook.wao - WebSphere Studio

Fle Edit “iew |nsert ESi=el Toolz Help
Ehech [*
E I s 40 | 43 ‘
.............. ARG o6l et |
TS0 Servlet] ey M=o O & WebApplication
T L
html Check Out Info =52 http:/ffundy
iSP [T . WS S a
hot “erzion Control Add toWersion Contral... age
photo Visualbge for Java b Hemoeve am Yerson Contol. Lotus Web Content Libramy
samples
serviet Eompile [pdate with Latest Y ersmmn hto e
sql Debug [pdate maartHay Skatus mples =9
theme Publishing Stage b Shov Histon viet =
Copy Publizhing Stage... Shovs Mifferences... na
Customize Publishing Stages... Broperties,.. me i
¥y
I ptichs..
[pen ersiom Cantral... L = e
[&dd entire project to version contral. e Dn, r Stage: Webdpplicatio

Figure 249. WebSphere Studio project version control

QSelect ClearCase, and processing begins. ClearCase prompts you to enter
an activity. Typically this is the development task at hand; in our case the
development of the Redbook samples (Figure 250).

New Activity [X]

Create activity to record new versions.
M Activity:
IITSDDevelanedbnnkSamples

ok I Cancel Help

EE
Ly

Figure 250. WebSphere Studio project version control activity prompt

QEnter a new activity name and click OK. Processing takes quite a while to
bring all the Studio components into the ClearCase repository.

This was pretty easy, wasn't it? And this is the way it should be!

Chapter 9. Software Configuration Management 323

What is an activity?

ClearCase groups and relates changes and associated versions to an activity.
The project leader or SCM role can use these activities to move the changes
associated with these activities and integrate them in the integration stream.
Moreover, ClearQuest can be used to drive the activities that might need
changes applied to various components through a defined process and track
these throughout the development cycle.

In a normal life project, the project leader would now promote the defined
artifacts to a production baseline, which could be the starting point for new
development and maintenance. We are not changing anything, so we will
stick to this initial baseline.

WebSphere Studio with external SCM

After processing has finished, you can tell from the WebSphere Studio
window that the project artifacts are now controlled by external SCM,
because black locks are displayed now behind the folders (Figure 251).

..... 8 himl -
..... e jsp &
..... []® photo .
----- (] samples
----- E]® sendet -
..... # sql -7-
-----)¢ theme e
[[|Stage: Webdpplicatio 2

Figure 251. WebSphere Studio external version control GUI identification

In the next section, you will see that the use of SCM underlying WebSphere
Studio is transparent (after set up, of course, which is one more reason to
have a special SCM role who takes care of this without the developers
needing to bother with it.)

324 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Working from WebSphere Studio

Working with WebSphere Studio means modifying artifacts with Studio
tools. Each operation requires checking-out an artifact for modification, then

checking-in this artifact when done.

Check-out

There is not much difference in the way developers would work with the
development artifacts, as opposed to the situation when the check-outs are
made to a shared disk. Refer to “Checking-out and checking-in files” on

page 237 for more information.

The big difference, obviously, is that the external SCM is now taking care of

locking and versioning.

Because of the fact that we have implemented ClearCase with UCM, the
developers have to specify an activity when they want to work with a
development artifact. This is illustrated in Figure 252. Installations that are

set up without UCM do not prompt the user for this.

FITSO Serviet JSP Redbook wao - WebSphere Studio gl =l
File Edit View [nset Project Tools Help
l0oz8 /o 3@ We ok olal
'@, ITSO Servlet JSP Redbook Select Activity <] f
=43 html
....... +| DateBeanWizInput.html Select activity to record new versions. &
. :1' P ~-
------- . &] SampleHTML html Activits
R =l s e
=43 jsp o
------- . 1] DateBeanWizError jsp e — [Mast |7
------- .] DateBeanWizResults_js| Browse.. | -9-
....... .] SampleJSP.jsp — . & Date ;
=-4J* photo .
------- .] EmpdeptError.jsp Ciec) | | [2f
------- .] Empdeptinput.html -
------- .] EmpdeptNoData.jsp ?
------- | EmpdeptResuIts isp 2
| | [~
|D:\W’ebSphere\Studio\Proiects\ITSD ServletJSF’ FiedbookhtmlsD ateBeantwizlnput. html |Stage Wwebdpplicatio él

Figure 252. WebSphere Studio project external version control check-out

Check-in

Another difference occurs when a developer wants to check-in an artifact the
developer has been working on. At check-in time, a pop-up panel is
presented. (Figure 253). The two options are obvious. We suggest that you
select the second check box, because it does make sense to record why you are

creating a new version.

Chapter 9. Software Configuration Management 325

326

BITS0 Servlet JSP Redbook wao - WebSphere Studio =131 x|
File Edit “iew Insert Project Tool: Help
|lozsa|rue(del9e@- -kl al

%] ITSO Serviet JSP Redboo MUl [x)—

E Eﬂ html

| e
v] DateBeanWizlnpu

L— ﬂ SampleHTML htm [Query for comment on sach file Cancel | ™
e Eﬁlﬁ jsp
= gl L] phutu e
------- . v EmpdeptError)s RIS | — S
»| EmpdeptError jsp _ 1:3'

------- . 1] Empdeptinput_html
------- B :{l EmpdeptNoData.jsp
....... .] EmpdeptResults.jsp
------- 22 EmpInDept.sql

Heanwizinput.htm | s

ria
Lt

=

....... 22 EmpPhoto.sql ?

....... . 1] photoError.jsp e

------- . 2] photolnput.html 4| KT [i
|D:8w/ebSpherehStudio"Projects\ TS0 Servlet JSP Redbon [text/himl |Stage: WebApplicatin 7

Figure 253. WebSphere Studio Project external version control check-in

Dependency relationships

If the artifact you want to operate on has dependencies, you will be asked if
you want to preserve this relationship in the sense that the associated
artifacts can be locked for the same activity as well.

Note that undo check-out is not implementing this behavior.

New artifacts and import from VisualAge for Java

If you define new artifacts, ClearCase prompts you to define the newly
created artifact. This also means that on importing artifacts from VisualAge
for Java, ClearCase prompts you to define the artifact.

Working with files directly

You can operate directly on the source files that are visible in the Studio
component folders (from the Windows explorer). If you right-click on a file in
these folders, you have more ClearCase functionality available to you than in
the WebSphere Studio IDE. (This integration is limited by the capabilities of
the SCC API.)

The pop-up menu listing the available functions is illustrated in Figure 254.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

ClearCase Details
Fitd Checkouts

Check In...

Undo Checkout...

Histary

Wergion Tree

Compare with Previous Version

Help
Properties of YWerzion
Propertiez of Element

Figure 254. ClearCase direct functions from Windows Explorer

As far as we have explored, there is no limitation imposed on the capabilities
you have within WebSphere Studio when working with ClearCase, as
opposed to working on a project that is not controlled by ClearCase.

Note that implementations of other external SCM tools could well be
different. It is up to the SCM tool vendor to decide which SCC capabilities to
implement.

Reflections on SCM procedures

In “SCM aspects” on page 302, we indicated that you should have procedures
in place to make sure that the developers operate on the correct version and
deliver the right version.

Although we have provided some procedural guidelines for the interaction
between VisualAge for Java and WebSphere Studio, this clearly is a moving
target. These procedures will change as soon as you are implementing more
and more SCM functionality. And, moreover, they are tool dependent as well.

This makes it difficult to write down explicit procedures for each case. If you
would only deploy the ClearCase tool for versioning, without the project
approach (UCM), the procedures would differ from a situation in which UCM
is used, and it would differ from a situation when ClearQuest is implemented
as well.

When other technologies are introduced and other associated development
roles are identified, everything could change again.

We suggest that this calls for a pragmatic approach that avoids too much
overhead. In particular, the developers want to produce artifacts instead of
paperwork. The SCM role should make this happen by crafting a good E2E
SCM design and implementing supporting tools.

Chapter 9. Software Configuration Management 327

WebSphere Studio and ClearCase in the broader SCM context

We started this chapter by defining and talking about aspects of SCM. In this
last part of the chapter, we briefly comment on some of the other aspects in
the context of the tools we used.

Build and deploy

In “Publishing stages and publishing targets” on page 247, we explain that
WebSphere Studio has publishing capabilities.

At various moments within the development life cycle, it is required to deploy
or redeploy the changed content of a Web site to the server where it should
run. It is likely that this action needs to be synchronized with performing
builds, creating baselines, and deploying (or publishing) actions.

We suggest that you exploit ClearCase to create a baseline, perform builds to
create the baseline, and trigger the deployment/publishing operations. This
can be done, because WebSphere Studio has APIs enabling you to trigger
various publishing actions.

Activities and change management

If development teams are growing beyond just a few developers who can
shout at each other, functions are required to track tasks and gather all
changed artifacts together in project baselines.

This is even more true if, at the same time, the number of different roles and
the number of associated tools were to increase. One way of accomplishing
this is to use an integrated toolset providing those capabilities. ClearCase
combined with ClearQuest, both of which play an integral role within the
UCM approach, provide such integrated capabilities.

Rational Rose

Thus far we have not mentioned the Rose component that we created in
addition to the Studio component.

We created this component to illustrate that it is easy to expand our sample

implementation of ClearCase to other areas of the overall development effort
and the associated roles. A systems analyst or designer using Rational Rose

can exploit the ClearCase/ClearQuest combination for SCM functionality as

well.

328 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

This way, we can expand the implementation to cover the whole proposed
toolset for Topology 1 oriented development efforts (see Figure 229 on page

304).

Note that this is not limited to Rational and IBM development tools.

In fact, we know that there are more tools involved during the development
process, such as documentation tools, discussion tools, and database tools. In
Figure 255 we added some of these aspects to the Topology 1 tool diagram.

Use design artifacts to
generate initial controller
and business logic code

Other tools used during
development process.
Word/Notes/Test/DB......

N/

ClearCase provides multi-user Check files in and out,
Rational 1 multi-project environment manage PROJECT baselines (o) ’
Rose
Rational L
Import initial Java code for ClearCase/ClearQuest
controller and business logic SCM role

VisualAge for
Java Create,

then keep in sync

Trigger Publish action
through build/make

Deploy controller and

Create and debug business logic codg —
servlets, Java beans (servlets, beans anfl classes) Application
Server
and other Java classes WebSp_here Publish '
Studio >
Web
Deploy view code e
(HTML, JSP and image files) Server
Edit HTML
WebSphere -
= and JSP files
Studio Page Import
Designer initial
prototype
Create HTML and)
JSP view code Publish and
review initial
prototype
Use for initial NetObjects
prototyping Fusion

Figure 255. Topology 1 tools used during source code implementation

If the IBM/Rational alliance delivers an MVS (USS) version of

ClearCase/ClearQuest, this toolset is well positioned to be able to manage

Topology 2 development efforts from an E2E SCM perspective.

Chapter 9. Software Configuration Management

329

Epilog

If we look at Figure 226 on page 299, we indeed have barely scratched the
surface in this chapter by covering only the implementation part of the
process.

Our intention was to provide the reader with an example of how an
important SCM aspect, version control, can be implemented with existing
tools.

Looking at the environment created, we have the feeling that you will
appreciate the functionality and integration provided. Furthermore, we
argued that the implementation provided can be quickly expanded to cover
more roles, more processes, and more SCM functions.

Besides this pragmatic objective, we conveyed the message that SCM is an
important matter and should be handled accordingly (by SCM professionals
having an SCM role in the development process.)

You really should target creating a firm E2E SCM implementation, building
on top of the foundation we laid, to be successful in developing and deploying
e-business applications at a pace needed by the business.

330 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

10 Web application
design with serviets
and JSPs

In this chapter we present a short overview of a guideline for designing Web
applications consisting of servlets, JSPs, and JavaBeans.

Application structure

The general structure of a well-architected user interaction in a Web
application is shown in Figure 256.

© Copyright IBM Corp. 2000 331

332

HTTP Server

HTLM
page
with
Form

Result
JSPs

Application
Server

Figure 256. Web application design overview

The major parts of such a design are discussed in the sequence of the flow of
the application.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTML page

Servlet

The input page for each step is either a static HTML page or a dynamic
HTML page created from a previous step. The HTML page contains one or
multiple forms that invoke a servlet for processing of the next interaction.

Input data can be validated through JavaScript in the HTML page or passed
to the servlet for detailed validation.

The servlet gets control from the Application Server to perform basic control
of flow. The servlet validates all the data, and returns to the browser if data
is incomplete or invalid.

For valid data, processing continues. The servlet sets up and calls command
beans that perform the business logic.

The servlet initializes the view beans and registers them with the request
block so that the JSPs can find the view beans.

Depending on the results of the command beans, the servlet calls a JSP for
output processing and formatting.

Command beans

Command beans control the processing of the business logic. Business logic
may be imbedded in the command bean, or the command bean delegates
processing to back-end or enterprise systems, such as relational databases,
transaction systems (CICS, MQSeries, IMS, and so forth).

A command bean may perform one specific function, or it may contain many
methods, each for a specific task. Command beans may be called Task
Wrappers in such a case.

Results of back-end processing are stored in data beans.

Data beans

Data beans hold the results of processing that was performed by the
command bean or by back-end systems. For example, a data bean could
contain an SQL result or the communication area of a CICS transaction.

Data beans may not provide the necessary methods for a JSP to access the
data; that is where the view beans provide the function.

Chapter 10. Web application design with servlets and JSPs 333

View beans

View beans provide the contract between the output producing JSPs and the
data beans that contain the dynamic data to be displayed in the output.

Each view bean contains one or multiple data beans and provides tailored
methods so that the JSP has access to the data stored in the data beans.

JSPs

The JSPs generate the output for the browser. In many cases that output
again contains forms to enable the user to continue an interaction with the
application.

JSPs use tags to declare the view beans. Through the view beans, the JSP
gets access to all the dynamic data that must be displayed in the output.

Model-View-Controller

This design follows the Model-View-Controller design pattern:
QThe JSPs (and HTML pages) provide the view.
QThe servlet is the controller.
QThe command beans represent the model.

The data beans contain the data of the model, and the view beans are helper
classes to provide a data channel between the view and the model.

The servlet (controller) interacts with the model (the command beans) and
the view (the JSPs). The servlet controls the application flow.

Detailed information

For detailed information about Web application design, refer to:

QThe patterns for e-business described in Chapter 12, “Using Patterns for
e-business to build the PDK” on page 347.

QThe redbook: Patterns for e-business: User to Business Patterns for
Topology 1 and 2 using WebSphere Advanced Edition, SG24-5864.

334 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Part2 Pattern
Development
Kit: a sample
application

We will now walk you through a complete application. This application has
been created to demonstrate a recommended design pattern.

We will take you through the purpose of the application, the design decisions
involved, and then finally cover how to run it under both development and
production environments.

Throughout this Part, the Pattern Development Kit will be referred to as the
PDK.

© Copyright IBM Corp. 2000 335

336 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

11 Pattern
Development Kit
overview

In this chapter we will provide a brief overview of the Pattern Development
Kit (PDK). We will then walk you through the application’s front-end.

The underlying design of the application is discussed in Chapter 12, “Using
Patterns for e-business to build the PDK” on page 347.

For detailed information about design patterns used in the PDK, refer to
Patterns for e-business: User to Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864.

© Copyright IBM Corp. 2000 337

Background

The Patterns for e-business aim to communicate in a highly accessible
fashion the business patterns, systems architecture (application and runtime
topologies), product mappings, and guidelines required for different classes of
applications. For the User-to-Business patterns there is also an associated
Pattern Development Kit, which provides sample application code to
illustrate effective use of those patterns.

For more information visit the Patterns for e-business Web site at
http://www.ibm.com/software/developer/web/patterns/.

Application description

The PDK allows you to view some interplanetary weather data, although we
should probably stress that the data is not completely authentic! The
application behind the PDK is fairly straightforward, as it is merely a vehicle
for demonstrating the patterns that have been used.

In the full version of the PDK, the weather data will be retrieved from a
number of back-end systems and transports including DB2, MQ Series,
CICS, and IMS.

However, for the purposes of this book, we are dealing with a subset of the
application. We communicate with the SecureWay Directory for logon, but we
do not connect to any of the subsystems. The infrastructure to connect to the
other back-end systems exists in the code, but to keep this application simple,
the systems themselves have not been included.

We modified the code to return dummy data to simulate IMS, CICS, and
MQSeries.

Application walkthrough

To give you a better understanding of the application, we will first do a
walkthrough using the functionality of the PDK. To be able to do this on your
own machine, you will need to complete the instructions found in Chapter 13,
“Running the PDK in WebSphere” on page 363.

338 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Welcome page

The starting page of the PDK (Figure 257) is merely a front door to the
application. From here you can click on the jigsaw piece graphic to go through
to the PDK'’s home page.

Welcome to the e-Business Patterns Solution Kit - Netscape

Edit Wiew Go Communicator Help
9 9 A 4 <+ & @
Back Fopward Reload Home Search Metzcape Frint Security Stop
wiv Bookmarks A Location:Ihttp:.-".-"Iocalhost.-"u2btop.-"index.html j @'W’hat's Related

—

w
~

’E == | |Document: Done

Figure 257. Application welcome page

Home page

This page provides a very brief description of the PDK, including a quick
overview of the two topologies being used. For more details on these
topologies and the design patterns behind them, refer to Chapter 12, “Using
Patterns for e-business to build the PDK” on page 347.

Available links

From this page (Figure 258) you can navigate to the two levels of application
that are supported in this book:

Chapter 11. Pattern Development Kit overview 339

QTopology 1: Access to relational database on the Web server
QTopology 2: Access to back-end enterprise systems (CICS, MQSeries, IMS)

If you choose one of these two links from the left-hand frame, then the
application appears in the right-hand pane.

i 'Welcome to the User-to-Business Topology 1 + 2 Pattern Development Kit Kit - Microsoft Inter... [H[=] E3
J File Edit “iew Favorites Toolz Help |

J@v»,@ﬁ‘@@ég‘%"’

Back Forward Stop Refresh Home Search Favorites History Mail
JAQdFBSS I@ http:#flocalhostfu2btop/fframeset html j @ Go |J Links *
TOPOLOGY —
IBM
WebSphere

Inter-Planetary Weather

Welcome to the User-to-Business Topology 1 and 2 Pattern
Development Kit sample web site.

This sample web site uses Interplanetary Weather Data as a L
vehicle to demonstrate the User-to-Business Pattern.

help you understand the Pattern.

Click the Patterns for e-Business menu item for more details
the User-to-Business Design Pattern (make sure that your
computer is connected to the Internet).

This sample web site was created and may be modified with :
WebSphere Studio 3.0x.

We hope you enjoy using the kit - IBM User-to-Business Patte
Development Kit Team | _|LI
»

4] I
"@ ’_ ’_ |::'l Local intranet /Ll

Figure 258. The application’s home page

In the screen captures that follow, we only show the right frame. The left
frame does not change during the application run.

340 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Topology 1 — historical data

This application allows you to retrieve any historical weather data that has
been stored about the planets. At the top of this page is the application itself,
while beneath is a description of what is happening behind the scenes. For
more details on this, see “Design techniques used” on page 353.

Select a planet, enter a valid date range and click on Submit (Figure 259).
You should then be returned all the valid weather data on that planet for the

given time period.

Topology 1 - Historical Data

I1BM
WebSphere

Planet Mame IMercury 'I

Start Date |qu23fznqn

End Diate |11f 13/2700

Teat Start Date: 010172000
Tost End Date: 0170173000

Submit | Clearl

Figure 259. Topology 1: input page

If you enter any invalid data into the fields, (including not completing a
field), then an appropriate error message is returned. Also, if there is no
weather data available for the date range that you provided, then a separate
page will appear.

Returned data

If your request for data is successful, the application returns the data in one
of two formats:

axXML
QHTML table

Chapter 11. Pattern Development Kit overview 341

XML

If your browser is XML enabled, then the weather data is returned in an
XML format (Figure 260). Although this may not look particularly nice at
this stage, it provides the browser with greater flexibility about how it may
wish to display this information. You could have a designer create an
appropriate XSL style sheet, and combine this with the output to create
nicely formatted HTML.

For more information about XML and its uses, refer to the redbook “The XML
Files: Using XML and XSL with IBM WebSphere 3.0”, SG24-5479.

Internet Explorer 5.0 is currently the only mainstream browser that is
XML-enabled.

<7uml version="1.0" standalone="yes" 7=
- <historicalDataz
- <weatherReading=
<planetName=Mercury</planetName=
<temp=24</temp=
<humidity>90=</humidity>
<windspeeds=14</windspeed=
zlocalDate=2300-03-02</localDates
ZlocalTime=12:00:00=/ccalTime:s
</ weatherReading=
- <weatherReading>
<planethame=Mercury</planethamez=
<temp=24</temp=
<humidity=40=</humidity=
wwindspeed=14</windspeed:
zlocalDate=2300-03-02</localDate:
zlozalTime=13:00:00</localTimez
</ weatherReading=
- <weatherReading>
<planethame=Mercury</planethamez=
<temp=20</temp=
<humidity=20=</humidity=
<windspeed=89</windspeed:=
zlozalDate>=2400-08-01</localDates
ZlocalTime=12:00:00=/ccalTime:s
</ weatherReading>
- <weatherReading=

Figure 260. Topology 1: output for XML enabled browsers

HTML table

For other browsers that are not XML enabled, the weather data is displayed
as an HTML table (Figure 261).

342 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

IBM
WebSphere

g

Topology 1 - Historical Data

Planet Name Temperature Hunmidity WindSpeed Local Date Local Tine

Mercury 24 a0 14 2300-03-02 12:00:00
Mercury 24 40 14 2300-03-02 13:00:00
Mercury 20 20) 2400-08-01 12:00:00
Mercury 20 20 8 2400-08-01 12:08:09

Figure 261. Topology 1: output for all other browsers

Topology 2 -— visit planets

This part of the PDK has security applied to it, so when you first follow the
Topology 2 link, you are asked if you accept the certificate that is being sent.
As we trust the owners of this application (and its certificate), we choose to
accept it. Depending on the browser, you have to go through a few warning
dialogs before being allowed to accept that certificate.

Logon

When you are passed any certificate-related queries, you are prompted by the
logon page (Figure 262). Here you need to enter the details of a user on the
system.

To make things easier, a valid user ID (jadams) and password (password)
combination are already listed on this page, to the right of the input fields.
Enter these values in the fields and click on the Submit button.

Chapter 11. Pattern Development Kit overview 343

1BM
WebSphere

Topology 2 - Logon

Tser MName |j adams - jadams

Password I”””” - password

Submit | Reset |

Figure 262. Topology 2: logon

Validated logon

The user ID and password are validated against the LDAP directory. Based
on the type of user, the allowed menu options are retrieved from the database
and displayed in the response (Figure 263).1

IBM o= e W&
WebSphere

Topology 2 - Visit Planets

Eeading - Mars (ThS & DBZ) Eeadmg - Saturn (WO & CICSY Save Feadines (EJB)

Figure 263. Topology 2: weather readings options

From here, you can follow the three options:

QUse an IMS connector to retrieve new weather readings from an IMS
system.

QUse CICS and MQSeries connectors to retrieve new weather readings
from CICS and MQSeries products.

QUse an EJB to save the new weather readings in a DB2 table.

1t logon is not successful, make sure that the SecureWay Directory server has been started.

344 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

IMS connector

The real PDK application ships with an IMS simulator. For our purpose, we
did not install the IMS simulator, and we modified the code to return dummy
data (Figure 264).

IBM & e W
WebSphere

Topology 2 - Visit Planets

Eeading - MWars (IS & DEZ2) Reading - Satumn (MO & CICE) Save Eeadings (ETE)

001
Mars

2000-03-11
14:14:14

* & & & & & 2
—
—

Figure 264. Topology 2: IMS result

CICS and MQSeries connector

The real PDK application ships with MQSeries, but CICS is simulated. For
our purpose, we modified the code to return dummy data (Figure 265).

@9

Topology 2 - Visit Planets

IBM
WebSphere

Eeadmg - Mars (IS & DEZ2Y Beadme - Saturm (WMD) & CICS) Save Beadmgs (ETB)

Station Planet Name Temperature Hunidity WindSpeed Local Date Local Time
002 Satum 20 44 33 2000-03-0% 13:13:13

Figure 265. Topology 2: CICS and MQSeries result

Chapter 11. Pattern Development Kit overview 345

346

EJB

The real PDK application ships with an Enterprise JavaBean that stores the
collected new weather readings in a DB2 table. For our purpose, we did not
install the EJB, and we modified the code to not invoke the EJB (Figure 266).

IBM ' - EY
WebSphere @ e

Topology 2 - Visit Planets

The following readings has been saved.

Station Planet Name Temperature Humidity WindSpeed Local Date Local Time
001 Mars a7 7 11 2000-03-11 14:14:14
0oz Saturn 33 20 44 2000-03-09 13:13:13

The session has been mvahdated.
To gather Weather Eeadings vou will must to logon again- Select Topology 2 on the menu,

Figure 266. Topology 2: EJB result

This is the full extent of the PDK application which has been implemented
for this book.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

12 Using Patterns for
e-business to build
the PDK

This chapter discusses the design of some of the applications contained in the
Pattern Development Kit (PDK). In doing so, we provide a brief introduction
to how you can use Patterns for e-business to build an e-business application.

We will go through the different types of Patterns for e-business, and then
focus in on the pattern that is used in the PDK. In our explanation of the

pattern, we will work through the different steps required in creating the
overall application architecture used in our examples.

This chapter is not intended to be a complete guide to using Patterns for
e-business. For more information, visit the Patterns for e-business Web site
at http://www.ibm.com/software/developer/web/patterns/.

For detailed information about design patterns used in the PDK refer to
Patterns for e-business: User to Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864.

© Copyright IBM Corp. 2000 347

Benefits of Patterns for e-business

Patterns for e-business can be used to assist you when designing and
building an e-business application. They give you starting templates upon
which to build your solution, saving you from having to architect your
application from scratch. They can both speed up the design process and aid
you in making sure that you have considered all relevant architectural tiers.
By using Patterns for e-business, you can utilize the experience of others,
while also customizing the solution to your own needs.

It is worth noting that these patterns should be used in conjunction with a
proven development methodology to help ensure customer requirements are
fully met.

Applying Patterns for e-business

When using Patterns for e-business, we apply a top-down approach. Starting
at a higher, more abstract level, we decide on the type of business the
application is for. We then take this pattern and begin to drill down through
the levels until we reach the physical products that will underlay the
application’s actual implementation.

The steps involved are:

1. Choose a business pattern.

2. Choose a related logical pattern.

3. Choose a related physical pattern.

4. Design your solution.

We will now follow through these steps as if we were using them to create the
PDK application. As a result, we will not show all the options available at

each step. For the full set of expanded options, refer to the Patterns for
e-business Web site.

Choose a business pattern

Business patterns are used to describe the interaction between the different
participants in an e-business application. Those participants can be physical
users, data, or businesses.

348 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The following are some well-defined business patterns:
QUser-to-business
QUser-to-online buying
QBusiness-to-business
QUser-to-data
QUser-to-user
QApplication integration
We will be looking more closely at the user-to-business pattern. For more

information on the others, please refer to the Patterns for e-business Web
site.

User-to-business pattern

This pattern is used to deal with cases of users (internal or external),
interacting with existing enterprise transactions or data. It is commonly used
in situations where the enterprise handles goods and services that are not
normally listed in, or sold from a catalog. It basically covers all
user-to-business transactions not covered by the User-to-Online Buying
pattern.
Common business scenarios
Scenarios that easily fit under this pattern include:

QConvenience banking

Q@Discount brokerage (online share-trading)

Choose a related logical pattern

Once you have selected the appropriate business pattern for your scenario,
you need to then look at the associated logical patterns and decide which best
suits your application.

Logical patterns (or topologies) allow you to describe how the applications
within your solution will interact. They also describe the runtime
infrastructure required to deliver the necessary functionality.
There are two logical patterns you will need to make selections from:
QLogical application topology
QLogical runtime topology

Chapter 12. Using Patterns for e-business to build the PDK 349

Logical application topology

This topology is primarily focused on showing the shape of the application, its
logic and associated data. They are not concerned with showing things like
middleware, or file location.

The PDK utilizes the user-to-business application topologies 1 and 2. We will
describe topology 2 in more depth, as topology 1 is really just a subset of this.
However, if you refer back to the Patterns for e-business Web site, you will be
able to see the other variations in full.

User-to-business application topology 2

This solution is referred to as Web-centric. While focusing on a clean
separation between the presentation and application logic, it allows for one
or more point-to-point connections to back-end legacy applications or
databases (Figure 267).

Application Topology 2

g s synchronous Aol synchronous /
resentation pplication [oS

Application

6 Read / Write data [__| Application node D Application node containing
CDﬂtaining new or E){istiﬂg components with
maodified components na need for modification or

which cannot be changed

Figure 267. U2B application topology 2

Logical runtime topology

The runtime topology identifies the different nodes which are responsible for
your functional requirements. It also begins to place those nodes in
conceptual locations.

User-to-business runtime topology 2

This runtime topology (Figure 268) is used in conjunction with the
user-to-business application topology 2.

350 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Outside Worl

Transactional
Web server

Domain Firewall

Protocol Firewall

Application Topology 1& 2
Application

Figure 268. U2B runtime topology 2

Choose a related physical pattern

So far, what we have discussed has been platform-independent. It is now
time to apply these patterns to a physical platform.

Applying the product mapping

For the purposes of the PDK, we apply the chosen topologies to the UNIX and
NT platforms (Figure 269).

Chapter 12. Using Patterns for e-business to build the PDK 351

352

Outside world Demilitarized Zone Internal network

(DMZ)
Al 4.2.1
SecureWay Directory 2.1
AlX 4.2.1
Lotus Go Webserver 4.6.2.5
I1BM SecureWay Flrewall 3.2 D2 UDE 5.2
JDK 1.4*
b
adl Secutly
Public key and secu
infrastructure Earvices
= = _—
E E :
Dnn&ain Name E]
enver] = Transactional =
it § Web server £
Retail ﬂé
- 4
customer) £ &
>
Windows NT 4.0 -8
Websphere App. Svr. 2.02 Q54390 2.7
IEM HTTP Server 1.3.3.1 CICE Txn Server 1.3
(Apache) IM5 TM 6.0
CICE Txn Gateway DBE2 V5.1
M5 TOC Connector for Jave
clagses

DB2 Connect 6.0 +
SecureWay Communications
Server 5.01
{or DB2 5.2 CAE for DBZ on
LUINIXINT)
(CICS and DB2 connectors
usimg SNA do not need 2md
firawall)
JOK 1.1t

* Use most curent version avallabie
Figure 269. U2B runtime topology 2 product mapping

Once again, variations upon this are available, and you should refer to the
Patterns for e-business Web site for more information.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The next steps

We now have a good idea of the underlying architecture to our application.
All that is left is to actually create it! We will not be going into detail about
the design decisions involved in creating the PDK. However, in the next
section (“Design techniques used”), we will discuss two of the techniques that
are commonly used throughout.

Design techniques used

To provide robust and scalable software, the PDK has based its solution

design around some universally-accepted design techniques. The two
prominent ones are:

QModel-View-Controller framework
aCommand design patterns

The Model-View-Controller framework

When designing an application, you first need to understand the structure of
how your various components are going to interact. Taking the information
from the Logical Patterns above and what we know about Web applications,

we can begin to develop a general picture of how things may work (Figure
270).

Interaction
Control

- Business
—

Logic
F F1
Browser Page
Clients Construction

Figure 270. The structure of Web interactions

Chapter 12. Using Patterns for e-business to build the PDK 353

Those who are familiar with this structure will begin to see that it very
closely resembles the well-known Model-View-Controller (MVC) framework.
As its name suggests, it is made up of three components:

QThe model is responsible for the underlying data, and transactions that
can be associated with it. This is the business logic.

QThe view is responsible for displaying the data. This is the page
construction.

QThe controller is responsible for decoupling the interactions between the
model and the outside world. This is the interaction control and need have
no knowledge of how the View works.

The benefits of using MVC

This separation of business logic from the user interface allows you greater
flexibility in your application. If your user interface (the Web pages) must
change in look and feel, then the other segments of the application need not
be heavily affected, if at all.

Also, the very fact that you can split your application into three fairly distinct
sections, each requiring different skills, allows you to better manage your
development cycle and team.

This separation into model, view, and controller sections can be clearly seen
in the final designs of the PDK (see “The design for the PDK” on page 355).

The Command bean design pattern

Design patterns have been well-recognized for a number of years now, and
they provide useful templates for solutions to common problems. For more
information on the Command pattern and design patterns in general, refer to
the book “Design Patterns - Elements of Reusable Object-Oriented Software”,
by Gamma, Helm, Johnson and Vlissides.

The Command pattern is a type of behavioral design pattern, which means it
is concerned with how objects relate to and communicate with each other.

Where is it used?

The Command pattern is useful in scenarios where it is necessary to issue
requests to an object without knowing anything about the operation being
requested or how that operation is carried out. For example, in a menu
system each menu item triggers a command request, but the menu item need
not know anything about the request, except for when it must be triggered.

354 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

How is it implemented?

This pattern is commonly implemented by making all your commands objects
of a defined class (Command) which responds to an execute method. The
object that requests the command merely needs to populate the command
object with any required data, and then simply call the execute method. This
enables the calling object to succeed in its task, while knowing little about
the command it is actually calling.

What are the benefits

This pattern provides an extra level of decoupling within your application. As
the calling object is protected from knowing how or what the command is, it
is more robust should changes to this command be required. The command
could achieve its task in a completely different way from how it was first
envisaged (for example, retrieving data from a new database as opposed to a
legacy application), and the calling object would not have to be changed. This
provides you with a much more flexible product in the long term.

Implementing the command pattern will make things easier if you wished to
implement a logging system for the commands, or even the ability to
roll-back your commands in a clean and simple manner.

Also, in the shorter term, the use of the Command pattern can help you break
up development into its separate components, and allow you to focus your
team into specific areas.

The design for the PDK

The PDK combines the patterns and techniques described above into a real
application. To give you a clearer understanding of how this works, we will
now break down the design of topology 1 and topology 2. These are the two
parts of PDK that are included with this book.

To make full use of the following descriptions and illustrations, you should
use them in combination with Chapter 11, “Pattern Development Kit
overview” on page 337, which walks you through the running of topology 1
and 2.

Topology 1

The part of the PDK referred to as topology 1 is responsible for doing a
database query based on user input, and displaying the result back to the
user. Also, it carries out a database update, storing the user’s query.

Chapter 12. Using Patterns for e-business to build the PDK 355

Stage A

Figure 271 displays the component flow of topology 1. In particular, it shows
how the Command pattern is used.

<
Home (1/
Page

!

2 Controller @ .
Form © Servlet Command \4_»
Beans

Error Page

©

Form
Incomplete

Page

Results : Data
. View —
Page @ Beans ! Bean

Figure 271. Topology 1 component flow: stage A

Interaction steps

1.

o

The user selects Topology 1 from the home page.

2. The Web server returns a JSP form requesting some input parameters.
3.
4. The controller servlet instantiates the command bean responsible for

The form data is posted to the controller servlet which validates it.

retrieving the search results and sets its properties with the appropriate
data.

The controller servlet calls the command bean’s execute method.

6. The command bean retrieves historical data from the database and stores

8.
9.

the results in a historical data bean.

The controller servlet initializes and sets the properties for a second
command bean responsible for storing the user’s query request in a
journal table.

The controller servlet calls the second command bean’s execute method.
The servlet stores the historical data bean on the request object.

10.The servlet invokes a JSP to display the results. The servlet determines if

the browser can display XML and depending on the result, a different JSP
is used.

356 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

11.The JSP uses a related view bean to retrieve the historical data from the
request object, and to format it appropriately for output.

Topology 2

Topology 2 consists of a multiple stage process. The first stage is responsible
for authenticating the user via LDAP using SecureWay Directory, and the
second stage retrieves available menu options from the database, based on
that user’'s employee type. The steps that follow retrieve data from enterprise
resources.

Stage B
Figure 272 displays the component flow of topology 2 stage B.

Home @

Page

®

Logon @ Q Controller (5 @
Page Servlet Command Bean LDAP

Logon | o Incorrect/ Exception
Page Retry
Correct
Controller
Servlet Error Page

SessionData

Figure 272. Topology 2 component flow: stage B

Interaction steps
1. The user selects Topology 2 from the home page.

2. An SSL connection is established between the user’s browser and the Web
server.

3. The user is presented with a HTML logon form requesting a user name
and password.

Chapter 12. Using Patterns for e-business to build the PDK 357

358

4. The user completes the form and posts it to the controller servlet (B).

5. The controller servlet instantiates a command bean which is responsible

for authenticating the user based on the form data.

6. The command bean binds to LDAP to authenticate the user.

7. The servlet then retrieves the employee type for that user and stores it as
session data.

8. After the user is authenticated, a second controller servlet (C) responsible

for retrieving the list of menu options is called by the first controller
servlet. The list returned is based on the user's employee type.

Stage C

Figure 273 displays the component flow of topology 2 stage C.

Return
Result

Page

B

Controller
Servlet

Pooled

Controller <@ Connectiog DB2
Servlet

Exception

Error Page

Figure 273. Topology 2 component flow: stage C

Interaction steps

1. The controller servlet (C) in this interaction is called by the controller
servlet (B) in the previous step.

2. The servlet retrieves the user’s profile (the employee type) from the

session.

3. The servlet instantiates a command bean, set the properties and invokes

the execute method. The command bean is cached in the session object.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

4. The command bean, in its execute method, obtains a DB2 connection from
the pool and queries the database for the required data.

The servlet stores the menu options returned on the request object.
The servlet then calls the output JSP to display the results.
The JSP interrogates the view bean to display the results to the user.

© N o O

The view bean retrieves the menu options from the request object, and
formats them appropriately.

Stages D through F retrieve data from enterprise resources. We do not
describe these in as much detail as the previous stages; rather, we just show
an overview diagram for each stage.

Stage D
Stage D (Figure 274) interacts with CICS and MQSeries systems.

Browser Business Logic Server Legacy Application

Interaction Interactions Interactions

o |
-

[Controler g
Serviet |

Coniraler Logic | l—w_’@
invoks JSP
Error Paga - ; - ‘LJ'
Excay | | Command M Ma
3 Bean '3‘_.‘_?
Return rasult ‘. - r
Page Sassion Dala @

Topology 2
Figure 274. Topology 2 component flow: stage D

Stage E
Stage E (Figure 275) interacts with IMS and DB2 systems.

Chapter 12. Using Patterns for e-business to build the PDK 359

Browser Business Logic Server Legacy Application
Interaction Interactions Interactions

Command
Baan

Faturn Rasuli
Fage

Figure 275. Topology 2 component flow: stage E

Stage F
Stage F (Figure 276) interacts with DB2 through an Enterprise JavaBean.

Browser Business Logic Server Legacy Application

Interaction Interactions Interactions
l Command Manager
Return Page Command
Resul Bean
Success
Error Fage -
Excaption

Figure 276. Topology 2 component flow: stage F

360 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

In Summary

We have now discussed the design used in the PDK, and walked through the
different steps that make up some of its applications.

For more information on the PDK, and for the full set of applications it
contains, please refer to Patterns for e-business: User to Business Patterns
for Topology 1 and 2 using WebSphere Advanced Edition, SG24-5864.

For more information on Patterns for e-business, refer to the Patterns for
e-business Web site:

http://www.ibm.com/software/developer/web/patterns/

Chapter 12. Using Patterns for e-business to build the PDK 361

362 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

13 Running the PDK in
WebSphere

This chapter describes how to install the Pattern Development Kit
application for use under WebSphere Application Server and IBM HTTP
Server.

Much of the installation process has been automated by using CMD files.
While it would have been possible to merge these CMD files into a more
seamless process, we have chosen to break out the installation steps as much
as possible, thus allowing us to discuss the details of each step.

The installation instructions provided in this chapter are intended to be
followed sequentially.

© Copyright IBM Corp. 2000 363

Extracting the resources

The Pattern Development Kit source files are provided in the 5755pdk.zip file.
Extract the file to the root directory of your hard disk. When extracted, your
top-level directory structure should look like this:

d:\sg245755\pdk\...

All scripts (.cmd files) to configure the application can be found in the
\pdk\cmd directory. All scripts to reset the changes made to configure the
application can be found in the \pdk\cmdReset directory.

To run a script, double-click on the file in the Windows NT Explorer.

Tailoring the installation system

There are a number of configuration steps that you have to complete before
executing further scripts in the installation process. The steps in this section
make the required modifications to the XML configuration files used by
WebSphere Application Server to support the sample code.

User ID

The DB2 database is accessed through the user ID USERID with password
password (in lower case). Define such a user ID in your Windows NT system.

Set up environment parameters

The first script that you have to edit sets up environment variables used by
other scripts during the installation process.

Open the itsoEnv.cmd file in a text editor. Configure each line in this file
according to the product installation directories on your computer. A typical
configuration may look like this:

set NODENAME=fundy

set IBMHTTPSERV=C:\Program Files\IBM HTTP Server

set IBMKEYMAN=C:\Program Files\IBM\GSK

set WSAPPSERV=C:\WebSphere\AppServer

set VAJAVARES=C:\IBMVJava\ide\project_resources\
IBM WebSphere Test Environment

set ITSOTOPO=D:\SG245755\Pdk

364 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The nodename variable is case-sensitive, so make sure that you enter it in
lowercase, identical to the WebSphere Application Server topology view.

Be careful and verify for each product that the information entered in this
step is correct.

Tailor the XML files

Now you have to tailor the XML files that are used to configure the
application server.

Run the script tailorXMLfiles.cmd.

This script uses the Notepad editor to display a number of XML configuration
files that you have to update with information specific to your computer
setup. Save the changes for each edited file.

Edit db2jdbcdriver.xml

The db2jdbcdriver.xml file defines DB2 driver information used by WebSphere
data sources for the PDK.

Replace the Xs with the host name that you specified in the itsoEnv.cmd file,
ensuring that it is in lower case:

<node-name>XXXXXXXX</node-name>

Also, change the following line to reflect the correct path to the db2java.zip
file on your computer.

<jdbc-zipfile-Tocation>C:\SQLLIB\java\db2java.zip</jdbc-zipfile-location>

Edit securehost.xml
The securehost.xml file defines a second host, in addition to the default_host.

Toward the end of this file, you need to specify the host aliases for your
computer by replacing the lines marked by X with appropriate values. The
configuration specified in this file is used when a secure request is made via
HTTPS in the topology two example.

<alias-list>
<alias>xxxxxxxx.almaden.ibm.com:443</alias>
<alias>xxxxxxxx:443</alias>
<alias>XXX.XXX.XXX.xxx:443</alias>
<alias>127.0.0.1:443</alias>
<alias>localhost:443</alias>

</alias-list>

Chapter 13. Running the PDK in WebSphere 365

In the first two aliases, use the computer host name entered in the
itsoEnv.cmd file. In the third alias, specify the IP address of the host computer.
To obtain the IP address, type the following in a command prompt on the host
computer (the host is our local machine in this case):

ping <hostname>

You should be presented with a number of lines of return data from the ping
command as shown below. Enter this IP address into the third alias line.

Reply from 9.1.151.36: bytes=32 time<lOms TTL=128

The default port used by the HTTPS protocol is :443. You should not have to
change this value.

Edit webapptopologyone.xmli

The webapptopolgyone.xml file is responsible for updating the WebSphere
Application Server to reflect the correct paths to the source code and
HTML/JSP files required by the topologyone Web application. These changes
are necessary, as the topology application runs under Web applications called
topologyone and topologytwo, rather than running under the default_app
Web application provided by default in WebSphere Application Server.

The first change requires that you specify the computer host name in the
line:

<node name="XXXXXXXX" action="update">
Next, locate the lines specified below and change the paths to reflect the

correct path on your machine. This tells the application server where to find
HTML/JSP pages and class files for the application.

<document-root>C: \WebSphere\AppServer\hosts\default_host\topologyone\web
</document-root>

<classpath>

<path
value="C:/WebSphere/AppServer/hosts/default_host/topologyone/serviets"/>

</classpath>

Locate the text block beginning with:

<servlet name="JSP 1.0 Processor" action="update">

Within this block, find the following lines and change the value attribute of
the <parameter name> tag to the correct path for your machine. This updates
the path used by the JSP engine to locate and compile the applications’ JSPs:

366 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<init-parameters>
<parameter name="workingDir"
value="C:\WebSphere\AppServer\hosts\default_host\topologyone\web"/>

</init-parameters>
Edit webapptopologytwo.xml
Repeat the instructions for editing webapptopologyone.xml.

Edit start. xml, stop.xml, restart.xml, reset.xml
In these four files, enter the correct host name in the line:

<node name="XXXXXXXX" action="update">

Installing and running the Pattern Development Kit

In the following steps, we will configure the application resources and
database in addition to configuring the IBM HTTP Server and SecureWay
LDAP directory services required by the Pattern Development Kit example.

Restart the HTTP Server

The first script you run stops and then restarts the IBM HTTP Server
service:

RestartHttpServer.cmd

Create a self-signed SSL certificate

This step creates a new SSL certificate which allows the HTTP Server to
perform encrypted communication over HTTPS. The
startIBMKeyManagementUtility.cmd script executes the key management
software provided with the IBM HTTP Server to create and manage the
certificate.

First, you have to create the \key directory underneath the \IBM HTTP Server\
directory to store the key created in the next step:

createSSLKeyDirectory.cmd
Next, you run a script to start the IBM key management software that
enables you to create the certificate:

startIBMKeyManagementUtiTity.cmd

Chapter 13. Running the PDK in WebSphere ~ 367

In the IBM Key Management window, select Key Database File -> New to
commence the certificate creation process. The New dialog appears (Figure
277). Click the Browse button and locate the d:\..\IBM HTTP Server\key
directory. Enter apachekeyfile.kdb in the Key Database File Dialog and click
the Save button.

EiNew
Key database type | CMS key database file b |
File Hame: |apachekeyﬂ|e.kdb | Browse...
Location: |D:1F'r0gram FilesUBM HTTP Servenkey, |

| 0], | | Cancel | | Help |

Figure 277. Creating a new key file

Click OK in the New dialog to display the Password Prompt dialog (Figure
278). This dialog allows you to enter a password for the Key file. Enter the
same password that you have specified in your WebSphere Application
Server and DB2 configurations for your administrative logon name.

Select the options as shown in Figure 278 and click OK. You should receive a
prompt alerting you that the password has been saved.

EiPassword Prompt [X]

Password: [~ |

Confirm Password: |*”“** |

[v] Set expiration time? 364 Days

[¥] Stash the password to a file?

oK || Reset || Cancel || Help

Figure 278. Setting options in the Password Prompt dialog

In the main IBM Key Management window, click the drop-down list titled
Signer Certificates and select Personal Certificates from the list. Click the
New Self Signed... button to display the Create New Self-Signed Certificate
dialog. Enter the following values for the specified fields:

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Qln the Key Label field enter, User-to-Business Design Pattern Certificate.
Qln the Version field, ensure that X509 V3 is selected.
Qln the Key Size field, select 512.

Qln the Common Name field, enter the fully qualified host name of your
computer.

Qln the Organization field, enter IBM Hursley.

Qln the Organization Unit field, enter ASG.

Qln the Country field, ensure the selected country is US.

Qln the Validity Period field, ensure the selected period is 365.

Click the OK button in the Create New Self-Signed Certificate dialog.

You will notice that the certificate is added to this list of certificates in the
Personal Certificates category in the main window. You can now exit the IBM
Key Management utility by selecting Key Database File -> EXxit.

Create the Web site

This step creates the directory structure under the \IBM HTTP Server\htdocs\
directory and populates these directories with core resources required by the
PDK applications:

createSkeletonWebSite.cmd

The PSK application uses this directory setup:

\IBM HTTP Server\htdocs\U2BTop\
\U2BTop\images
\U2BTop\theme

Configure IBM HTTP Server

The next step modifies the httpd.conf file of the IBM HTTP Server using the
values you provide in this step:

createSkeletonConfig.cmd

The changes.conf file is displayed.

Edit changes.conf
Locate the following line and modify it to reflect your computer’s host name:

ServerName yourHostname

Chapter 13. Running the PDK in WebSphere 369

Locate lines that contain the path of the IBM HTTP Server and change the
path to your installation:

LoadModule ibm_ss1_module "C:/IBM HTTP Server/modules/IBMModuleSSL128.d11"
<Directory "C:/IBM HTTP Server/htdocs/u2btop" >
Keyfile "C:/IBM HTTP Server/key/apachekeyfile.kbd"

Note: Outside the USA you may have to use the IBMModuleSSL56.d11.

Check http.conf

The changes.conf file is appended to the http.conf file of the HTTP server and
then displayed to you. Verify that the changes made to the http.conf file are
correct. In particular, locate the comment block below and check the
subsequent line entries to ensure correct server name and path values are
correctly specified.

changes to IBM HTTP Server\conf\http.cnf for User-to-Business Patterns

Restart the IBM Http Server

Following these changes, you must restart by IBM HTTP Server to activate
the new configuration:

restartHttpServer.cmd

Quick test of HTTP Server configuration

To quickly test if the configuration is successful at this point, run the script
appropriate for your Web browser.

For Internet Explorer users, run: startIE5.cmd

For Netscape Navigator users, run: startNetscape.cmd

LDAP configuration

The Pattern Development Kit authenticates users via LDAP directory
services. This step sets up the LDAP services provided with IBM SecureWay
to enable this authentication process to function correctly.

If you have not already installed IBM SecureWay Directory, refer to the
Product Installation chapter for information about this product. At the time
of writing, IBM SecureWay Directory 3.1.1 does not work with DB2 Fixpack 2
and requires DB2 Fixpack 1A, but Version 3.1.1.5 does work.

370 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Start the LDAP directory server
To start the LDAP directory server, run the script:
startLDAPServer.cmd

This will start the IBM SecureWay Directory V3.1 service. When it has
started successfully, display the LDAP configuration panel by launching your
Web browser and entering the URL:

http://<YourHostName>/1dap

In the Logon panel, enter the following values:
Qln the User ID field enter, cn=youruserid

QlIn the Password field, enter, yourpassword

Click the Logon button to display the LDAP configuration options. Select Add
a Suffix from the Suffix node in the tree (Figure 279).

Directory Server

D Intraduction
¥] Server
* 3 Suffives

List suff . . _
A'desi e To add a new suffix, please type in the suffix E

Dlete suffives distinguished name.
» £3 FReplicas
¥ (] Databasze Suffix
»] Directary/dccess contal DM

|D=ibm, c=uk

¥] dcoess groups

» £ Access roles
Emor log
Logoff

Add a new suffix

Related tasks:

« List suffixes - List configured suffixes for this
server

« [Delete suffixes - Delete suffixes from those
configured for this server

la

Figure 279. Adding a new suffix to LDAP

Enter the following text in the Suffix DN field:

o=ibm, c=uk

Chapter 13. Running the PDK in WebSphere ~ 371

Click the Add a new suffix button to confirm the new suffix definitions. Next,
from the following confirmation screen, select the restart the server link.

Import the LDIF file

The final step for LDAP configuration is to import the LDIF file. This file
updates the LDAP directory with user information required by the
application:

importLDIFfile.cmd

Create the ITSOTOPO database

To create the DB2 database with all the tables used by the application, run:

createDatabase.cmd

This script launches the DB2 command-line processor and issues the
CREATE DATABASE command. Afterwards the tables are defined and
loaded with initial data. This process may take some time.

You can also reload the tables using the script:

reloadDatabase.cmd

Copy application-specific files

Now you have to create the Web application directories under the default_host
and secure_host directories of the WebSphere Application Server:

createWebAppDirectories.cmd

The directories created by this step are:

d:\WebSphere\AppServer\hosts\default_host\topologyone
d:\WebSphere\AppServer\hosts\secure_host\topologytwo

%WSAPPSERV% = d:\WebSphere\AppServer (in itsoenv.cmd)

Next, you copy the servlet classes and JSPs required by each application step
to the \web and \servlet directories for each host:

copyWebAppFiles.cmd

372 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Import the XML configurations into WebSphere

To complete the installation, you run the scripts that import the XML
configuration files generated by previous steps into the WebSphere
Application Server.

First, you start the WebSphere Application Server service, if it is not
running:

startWebSphereAdmin.cmd

Next, you start (or restart) the default server in WebSphere Application
Server. The process of initializing the default server in WebSphere may take
some time, so allow a minute or two after executing this step before moving
on to subsequent steps:

startWebSphereServer.cmd
Now, you run the scripts responsible for importing the XML files that

configure the WebSphere Application Server to run the example applications.
Follow this sequence:

wasJDBCDriver.cmd
wasDataSources.cmd
wasVirtualHost.cmd
wasWebAppOne.cmd
wasWebAppTwo.cmd

Restart the default server node in WebSphere Application Server to enable
the changes made by the previous scripts:

startWebSphereServer.cmd

Now, you start the WebSphere Administration Console:
startWebSphereClient.cmd
You should be able to expand the Topology in the Administration Console to

view the configuration changes that have been made during this installation
process.

Run the application

The installation is complete. You can run the Pattern Development Kit
application by executing the script appropriate for your browser:

startIE5.cmd
startNetscape.cmd

Chapter 13. Running the PDK in WebSphere ~ 373

You should see the main page as shown in Figure 257 on page 339. Click the
Continue image to start using the application.

Follow the application as described in Chapter 11, “Pattern Development Kit
overview” on page 337.

Resetting changes

We have included a number of script files that reset the configuration
changes made during the setup of the Pattern Development Kit example.
Run these scripts if you want to undo the changes or if you have made a
mistake and want to restart the installation process:

resetHTTPServer.cmd <== reset the IBM HTTP Server configuration
resetWebSphere.cmd <== reset the WebSphere configuration
resetDatabase.cmd <== remove the ITSOTOPO database from DB2

374 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

14 Running the PDK in
VisualAge for Java

In this chapter, we describe how to install the Pattern Development Kit to
run under the WebSphere Test Environment in Visual Age for Java.

This chapter assumes that you have completed the installation for the
WebSphere Application Server detailed in Chapter 13, “Running the PDK in
WebSphere” on page 363. As a minimum, the ITSOTOPO database must be
created and loaded with data.

Most of the configuration is performed to files in directories in the
WebSphere Test Environment path, which is usually:

d:\IBMVJava\ide\project resources\IBM WebSphere Test Environment\...

Where appropriate, we use the abbreviation of <WTE> to indicate this path.

© Copyright IBM Corp. 2000 375

Automatic configuration

You can perform an automatic update of the necessary configuration files for
this application. Using the automatic configuration is the easiest way to
configure the Pattern Development Kit to run in the WebSphere Test
Environment. If you do not want to automate this process, you could make all
changes manually as described in “Manual configuration” on page 378.

Running the configuration script
Provided in the\Pdk\Cmd directory is the script that performs most of the
WebSphere Test Environment configuration:

setupVaJdava.cmd

The functions performed by this script are:

QBack up the default.serviet_engine file as default.servlet_engine.save in the
<WTE> directory.

QCreate the following directories under the WebSphere Test Environment:

\hosts\default_host\topologyone\web
\hosts\default_host\topologyone\servlets
\hosts\default_host\topologytwo\web
\hosts\default_host\topologytwo\servlets
\temp\Jspl 0\topologyone

\temp\Jspl 0\topologytwo

QCopy the preconfigured default.serviet_engine file from the \Pdk\VaJava
directory to the <WTE> directory. The new file contains web-group
configuration information for the two topology Web applications.

QCopy preconfigured .webapp files provided with the kit to the \servilets
directory for each Web application.:

<WTE>\hosts\default_host\topologyone\servlets\topologyone.webapp
<WTE>\hosts\default_host\topologytwo\servlets\topologytwo.webapp

QCopy the error. jsp page to the web subdirectory of each Web application.
QCopy the SnoopServlet.class to the servlets subdirectory for topology 2.

QCopy the HTML files and images from the PDK to the default_app
application:

\hosts\default_host\default_app\web\U2BTop\...
QCopy the JSPs from the PDK to the Web application’s web subdirectory.
QCopy the .serviet files used in topologytwo to the <WTE> directory.

376 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Prepare a project and import the Java code

Start VisualAge for Java and create a new project named ITSO Pattern
Development Kit.

Load the following features into the Workbench:

QlBM WebSphere Test Environment
QIBM Enterprise Access Builder Library
aConnector HOD

aConnector IMS TOC

QConnector MQSeries

QIBM Common Connector Framework
QlBM Java Record Library

Import the Java source files from the two directories:
\SG245755\Pdk\Was\topologyone\serviets
\SG245755\Pdk\Was\topologytwo\serviets

Alternatively, you can import the 5755pdk.dat repository file and then load
the project or the packages into the Workbench.

Servlet engine configuration

The steps in this section configure the servlet engine in the WebSphere Test
Environment. If you have chosen to do an automatic installation, you should
complete these steps after running the setupVaJava.cmd script.

This setup is described in “WebSphere Test Environment — multiple Web
applications” on page 215, and is repeated here in abbreviated format.

Modify ServietEngine properties

The first step is to modify the properties of the ServietEngine class in the
WebSphere Test Environment. This step configures the ServletEngine class
with class path and IDE version information and tells the ServletEngine
which path it should consider as its application server root directory.

Locate the following class in the Visual Age for Java workbench:

com.ibm.servlet.engine.ServletEngine

In the properties dialog for this class, make the following changes:
Qln the Program tab edit the command-Iline field to read:

-serverRoot "d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment"

Chapter 14. Running the PDK in VisualAge for Java 377

QEdit the Properties field by adding the property:
ivj.version=3.02

Qln the Class Path tab edit the Extra directories path and copy all the
entries from the com.ibm.servlet.SERunner class. (See Figure 164 on page
218.)

QEdit the Project path and select Connector IMS TOC, Connector
MQSeries, IBM Common Connector Framework, IBM Enterprise Access
Builder Library, IBM Java Record Library, and the ITSO Pattern
Development Kit.

Manual configuration

If you want to configure the WebSphere Test Environment manually to gain a
more thorough understanding of the setup process, follow the manual
configuration steps provided in this section.

First, complete the steps detailed in “Servlet engine configuration” on
page 377 to configure the servlet engine. Then move on to complete the
remaining steps in this section.

The files for manual configuration are contained in the \Pdk\VaJava directory.

Configure the Web applications

The PDK consists of two Web applications that must be configured in
VisualAge for Java as described in “WebSphere Test Environment —
multiple Web applications” on page 215. The steps are:

QUpdate the default.servlet_engine file and add two
<websphere-webgroups> for the two Web applications.

QCreate directories for the two Web applications:

<WTE>\hosts\default_host\topologyXXX\serviets
<WTE>\hosts\default_host\topologyXXX\web
<WTE>\temp\Jspl 0\topologyXXX

QCopy the error.jsp file into the web subdirectory of each application.

QCopy the HTML and image files to the default application web
subdirectory:

<WTE>\hosts\default_host\default_app\web\U2BTop
QCopy the JSPs to the Web application web subdirectory:
<WTE>\hosts\default_host\topologyXXX\web

378 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

QCopy .servlet files to the <WTE> directory.
QCopy the topologyXXX.webapp configuration files to the servlets

subdirectories of each application. One example is shown in Figure 280.

<?xml version="1.0"?>
<webapp>
<name>topologyone</name>
<description>Pattern Development Kit Topology One</description>
<error-page>/ErrorReporter</error-page>
<servlet>
<name>histData</name>
<description>Topology One Historical Data Servlet</description>
<code>com.ibm.hursley.asg.ws.skeleton.topologyone.sectiona.
RetrieveHistoricalDataServlet</code>
<servlet-path>/histData</serviet-path>
<autostart>false</autostart>
</servlet>
<servlet>
<name>ErrorReporter</name>
</servlet>
<servlet>
<name>invoker</name>
</servlet>
<servlet>
<name>jsp</name>
<init-parameter>
<name>scratchdir</name>
<value>$server_root$/temp/JISP1_0/topologyone</value>
</init-parameter>
</servlet>
<servlet>
<name>file</name>
</servlet>
</webapp>

Figure 280. Web application configuration file

Chapter 14. Running the PDK in VisualAge for Java

379

Running the application

Because we configured multiple Web applications, we have to use the
ServletEngine (and not SERunner) to start the WebSphere Test
Environment.

Start the ServietEngine

Run the ServletEngine class to start the WebSphere Test Environment.
Check the Console window to ensure that the Web applications are loaded
successfully.

To run the application, enter the following URL in a browser:
http://lTocalhost:8080/U2BTop/indexVAJ.html

We have two copies of the HTML files because the VisualAge for Java Test
Environment does not support the HTTPS protocol for the topology 2
application.

Running without SecureWay LDAP

To run topology 2 without an active LDAP server, you can modify the
SecurityServlet class (com.ibm.hursley.asg.ws.skeleton.topologytwo.sectionb).

If logon fails, a CommandException is thrown and an error page is displayed.
To bypass the exception, locate the performTask method and scroll to the
bottom. You should find this code fragment:

} catch (CommandException e) {
/*
* Call the logonError page - inform the user
*/
getServletConfig().getServletContext().getRequestDispatcher
("sectionB/TogonError.jsp").forward(req, res);

// if SecureWay is not installed
// comment out above statement and use code below

//String employeeType = "1";

//boolean create = true;

//HttpSession session = req.getSession(create);

//session.putValue("skeleton.userType", employeeType);

//RequestDispatcher rd = getServietContext().getRequestDispatcher
("/menuOptions");

//rd.forward(req, res);

380 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Deactivate the call to the logonError.jsp and uncomment the code that
simulates a successful logon. This enables you to get to the remaining
functions of the application.

Resetting changes

To reset any configuration changes made by the installation process, run:
resetVaJava.cmd

You should only run this script if you have performed an automatic
installation. If you have performed a manual installation, you must manually
reverse the change made to the configuration.

Chapter 14. Running the PDK in VisualAge for Java 381

382 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

15 Developing the PDK
using WebSphere
Studio

This chapter describes how to build topology 1 and topology 2 of the Pattern
Development Kit in the WebSphere Studio environment, so that it can be
further extended to include additional functionality.

We show how to build the PDK application as a project in the WebSphere
Studio environment, how to integrate with VisualAge for Java, and how to
deploy changes to the WebSphere Application Server environment.

© Copyright IBM Corp. 2000 383

Overview

The Pattern Development Kit (PDK) topology 1 and topology 2 examples
included with this book are structured to deploy directly into the WebSphere
Application Server environment. The step-by-step instructions in Chapter
13, “Running the PDK in WebSphere” on page 363, provide the information
on how to deploy directly to the WAS environment, through executing a
series of scripts which build and configure the PDK in the WAS environment.

The PDK is meant to provide useful examples of fully functioning Web
applications that demonstrate important architectural and design concepts,
in addition to important servlet interaction techniques that we discussed in
Chapter 4, “Servlets” on page 41. The PDK is also meant to be extensible, in
that it can be customized to add additional functionality, and perhaps provide
a framework for a possible solution.

In this chapter, we show you how to load these topology examples into the
WebSphere Studio environment, so that you can further extend the code to
test out other configurations that you may want. We describe two scenarios,
including one where we integrate with VisualAge for Java.

We recognize that this looks like reverse engineering. We do not necessarily
endorse this as a common development process; however, you may find the
information in this chapter useful when you want to port a Web application
into WebSphere Studio for future development and management.

You can follow the steps outlined here to gain experience with setting up a
WebSphere Studio project, or you can work with the Studio archive file
ITSO Pattern Development Kit.war that we provide in $g245755\pdk\studio.
See “Opening an archive” on page 293 on how to work with an archive file to
preserve the publishing targets.

384 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Building the WebSphere Studio project

This section describes the configuration of the PDK in the WebSphere Studio

environment.

Creating the WebSphere Studio project

Create a new project in WebSphere Studio named ITSO Pattern Development
Kit. By default, you get servlet and theme folders. The final state is shown in

Figure 281.

F|Ie Edit “iew Inzert Project Tools Help
lo@ S|V meeeltaee [oiile|a
%] ITSO Pattern Development Kit: || Test -
] servlet = 59 htip:localhost:8080 i
= '@ topologyone = '@ uZbtop N
= senvlets - [j images s
Y e] com - [] theme i
----- (3 web I e .] content_html
B '@ topologytwo 1P e .] framesethtml 1
E ----- '@ servletconfip || i e . 1 framesetVAJ html | 2
i i, &7 CommandManager.serv || | - .] indexhtmil Lo
.. {7 IMSHeritageData.serde || | - . [indesxtvAd html Bl
.. {7 MQCICSHeritageData.s(|| @ - .] menu_html e
-----] serdets [e .] menuvA.J html -1
= web =% webapp s
] sectionB = '@ topologyone '
] sectionC E ----- 4] servlets
Eﬁ[secionD |l i He Eﬁ[com
Eﬁ[sectionE = '@ web
] sectionF - [] sectionA
['§1 uZbtop ['@ topologytwo
#--] images ------- 7] servletconfig
[E'ﬂ theme 1 H- E'ﬂ serviets
------- .] content html =4 web
------- .] frameset html :] sectionB
------- .] framesetvAd_html] sectionC
------- .] index_html] sectionD
------- .] index¥AJ html b] sectionE
------- . 1] menu_html -] sectionF
@ il
[[[Stage: Test 4
Figure 281. Pattern Development Kit WebSphere Studio project
Chapter 15. Developing the PDK using WebSphere Studio 385

Create the project folders

All the base code is available in subdirectories was and website of
d:\SG245755\pdk. Here are the steps to arrive at the project layout. Use the
Insert -> File and Insert -> Folder menu options and click on the Use existing
tab:

Qlnsert a new folder named u2btop.
Qlnsert the HTML files from website\htdocs into the u2btop folder.

Qlnsert a new folder under u2btop (use existing) and select
website\htdocs\images.

Qlnsert a new folder under u2btop (use existing) and select
website\htdocs\theme.

Qlnsert a new folder (use existing) and select was\topologyone.
Qlnsert a new folder (use existing) and select was\topologytwo.

Qlnsert a new folder named servletconfig under topologytwo. We want to
publish the .servlet files separately from the servlets. Move the three
.servlet files from topologytwo\servlets to topologytwo\servletconfig.

QRemove the theme folder in the project, we have one under u2btop.

This completes the project layout, that is, the left half of Figure 281.

Define the publishing stages

We want to publish to VisualAge for Java (WebSphere Test Environment)
and to WebSphere Application Server; therefore we require two publishing
stages.

Create the Test publishing stage

We use the Test stage as the publishing view for the VisualAge for Java
WebSphere Test Environment. Select the Test publishing view (Project ->
Publishing Stage -> Test).

QThe default server is http://localhost. We want the Test stage for
VisualAge for Java. Insert a new server (Insert -> Server) called
http://localhost:8080.

QMove all the existing folders in the publishing view from localhost to
localhost:8080, and delete the localhost server.

Qlnsert a new folder named webapp.
QMove the topologyone and topologytwo folders into the webapp folder.
QDelete the original servlets folder in the publishing view.

386 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Create the WebSphere publishing stage

By default, Studio provides an empty Production stage. Rather than using
the empty stage, we create a new tailored stage.

QCreate a new publishing stage. Select Project -> Customize Publishing
Stages and enter the name WebSphere and click Add.

QCopy the Test stage to the WebSphere stage. Select Project -> Copy
Publishing Stage and copy from Test to WebSphere. This is easier than
creating manually.

asSwitch to the WebSphere stage (Project -> Publishing Stage ->
WebSphere).

Qlnsert a new server named http://localhost (or your target host name).
QMove all folders from localhost:8080 to localhost.

QDelete the localhost:8080 server.

QCheck that the folder structure is identical to the Test stage.

This folder structure mirrors the layout of a Web application in WebSphere.

Configure the WebSphere publishing targets

We have to set up the target directories for publishing the files from Studio to
WebSphere Application Server.

Select the localhost server and Properties, then click on Define Publishing
Targets. Click on Add to define four new targets and set the path for each
target to the proper directory:

topologyone servlets: <WAS>\hosts\default_host\topologyone\serviets

topologyone web: <WAS>\hosts\default_host\topologyone\web
topologytwo servlets: <WAS>\hosts\secure_host\topologytwo\servlets
topologytwo web: <WAS>\hosts\secure_host\topologytwo\web

html: E:\IBM HTTP Server\htdocs\U2BTop

serviet: <WAS>\hosts\default_host\topologyone\serviets

<WAS> is d:\WebSphere\AppServer

We do not use the servlet target (because we have our own), but it should
point to a valid directory.

Assign publishing targets to folders

In the publishing views, select the individual folders listed below and
Properties. On the Publish page, select the check box Publish this folder to a
publishing target, and select the correct target from the drop-down list:

Chapter 15. Developing the PDK using WebSphere Studio 387

Folder Publishing target

U2BTop html

web (in webapp\topologyone) topologyone web

web (in webapp\topologytwo) topologytwo web
servlets (in webapp\topologyone) topologyone servlets
servlets (in webapp\topologytwo) topologytwo servlets
servietconfig (in webapp\topologytwo) topologytwo servlets

Configure the Test publishing targets
We have to set up the target directories for publishing the files from Studio to
the VisualAge for Java WebSphere Test Environment.
Select the localhost:8080 server, define five new publishing targets, and set
the path for each target to the proper directory:

topologyone servlets: <WTE>\hosts\default_host\topologyone\serviets

topologyone web: <WTE>\hosts\default_host\topologyone\web
topologytwo servlets: <WTE>\hosts\default_host\topologytwo\serviets
topologytwo web: <WTE>\hosts\default_host\topologytwo\web
servletconfig: <WTE>\

htm1: <WTE>\hosts\default_host\default_app\web\U2BTop
serviet: <WTE>\hosts\default_host\topologyone\serviets

<WTE> is d:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment

Assign publishing targets to folders

In the publishing views, select the individual folders listed below and
Properties. On the Publish page, select the check box Publish this folder to a
publishing target, and select the correct target from the drop-down list:

Folder Publishing target
U2BTop html

web (in webapp\topologyone) topologyone web

web (in webapp\topologytwo) topologytwo web
servietconfig (in webapp\topologytwo) servietconfig
servlets (in webapp\topologyone) topologyone servlets
serviets (in webapp\topologytwo) topologytwo servlets

We do not want to publish the servlets folders because we import the Java
source into the Workbench of VisualAge for Java. Select the servlets folder
and remove the mark from the Publish this folder to a publishing target.

388 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Interfacing with VisualAge for Java

WebSphere Studio provides for two-way communication with VisualAge for
Java, and we can use VisualAge to manage changes to the Java code.

VisualAge for Java setup

We assume (and recommend) that VisualAge for Java will be your primary
tool for maintaining these Java files. For successful cooperation between
Studio and VisualAge for Java, check that:

aVisualAge for Java is running.

QThe VisualAge for Java project named ITSO Pattern Development Kit has
been defined as described in Appendix C, “Using the additional material”
on page 417.

QThe Remote Access to Tool API service in VisualAge for Java has been
started (Window -> Options -> Remote Access to Tool API).

Initial loading of files from VisualAge for Java

In Studio, you can use the Insert -> File -> From External Source to initially
pull files into our Studio project from VisualAge. However, there is a
limitation to this method. When pulling from VisualAge, you can only pull at
the file level, not the package or project level. Therefore, because the PDK
examples have many files, it would be extremely tedious to have to select the
files individually, by class name, and insert them into the Studio package.

Therefore we loaded the files from the file system.

Updating from VisualAge for Java

Here are the steps to update Studio files for VisualAge for Java:

QSelect one or multiple files in a Studio folder. For Java code, always select
both the source (.java) and the class files, otherwise you have to compile
the source yourself afterwards.

QSelect Project -> VisualAge for Java -> Update from VisualAge (Figure
282).

Chapter 15. Developing the PDK using WebSphere Studio 389

¥ 1T50 Pattern Development Kit.wao - WebSphere Studio

File Edit “iew |nsert WS Tool: Help
) Ehieck | *
IR o8 %o | 2|
&1 ITSO Pattern L (i Check i Al[@ Test A
Check Dut Info 22 hp |
= -@ -
Send|taisualsae S TaE
L —________________ [| ! I S >
Debtg i =7
Publishing Stage vl
Copy Publishing Stage... (@ S&
Customize Publishing Stages... n.
>0
ftf command L e
[+ 3 serdet -3-
=-%] topologyone =4 -
=] sectiona =
------- R HistoricalData.class
W5 HistoricalData java
------- . .}, RetrieveHistoricalDataComma

------- #7) RetrieveHistoricalDataComma —
. RetrieveHistoricalDataServiet
-) RetrieveHistoricalDataServiet
------- A TableView.class

% TestCommand.class
.) TestCommand._java |
------- . .} UpdateJournalCommand.JDBC
------- @ UpdateJournalCommandJDBC
L XMLView. class

....... 7] XMLView. java hd a7
o : | I e

I [|Stage: Test |

Figure 282. Updating from VisualAge for Java

You will not get a status window indicating if the update was successful or
not. The new code is in checked-out status (red check mark). You can consult
the check_out directory in the file system to verify that the code is there.

When satisfied, check-in the file to replace the master copy.

Editing Studio files with VisualAge for Java

You can choose to associate VisualAge for Java as an editor for your Java
files. Here are the steps:

QRegister VisualAge for Java as a tool. Select Tools -> Tools Registration
(Figure 283).

aFind the .class file extension (not the .java extension).

390 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tools Registration

4 Extension | MIME tvpe | E ditar | Publizhable | Cuztomized |ﬂ
chm Compiled HTML Help fileMao

chn textfu-chn es —
clp Clipboard Clip Mo Mo

crnd Windows MT Command (Mo & [x]

C Faint Shop Pro B lmage Mo Mo

com wMS5-005 Application Mo MHa

conf conf_auto_file Mo Mo

cpl cplfile MHa MHa

~nn tewtfe-rnn NOTFRAD Mn ‘e ﬂ

File extenzian: |class :n}g JAR Wwizard

Browwse Example File... |

Figure 283. Tool registration for .class files

Click on Edit and the Edit object type dialog is displayed. Select the Editing
Applications tab, find VisualAge for Java, and click Add (Figure 284).

Edit object type
MIME Type Editing Applications l Source Link]

File extension: class

Default editor: ::}y JAR Wizard

Fegistered applications: Editors;

URL:Mews Protocol — « J&R Wizard

URL:MMTP Protocol Wisualhge for Java
URL:RLogin Protocol
URL:Telhet Protocol
URL:TH3270 Protacal

B Script Encoded File Add -
YESciipt Fie _ s |

wCard File

t

wieb Art Designer
“windows Media Audio . ¥

4 3

QK | Cancel | Help |

Figure 284. Adding VisualAge for Java as an editor

Chapter 15. Developing the PDK using WebSphere Studio 391

392

Managing changes between Studio and VisualAge for Java

We recommend that you only edit your files using the VisualAge for Java
editor. This way, your files should not get out of sync, as VisualAge for Java
always has the most update-to-date version.

To edit a Java source file, select its class file and Edit with -> VisualAge for
Java. (Note that you get an error prompt if you select the .java file.)

This will launch a VisualAge for Java class browser window, but it does not
give focus to the window. You must switch to the class browser window
yourself. You make the changes in VisualAge for Java and you save the
changes, however, saving does not automatically update the files in Studio.

You have to reselect the .class and .java files, and update again from
VisualAge for Java to pull the changes back into Studio.

Note that the files to be edited must exist in VisualAge for Java, that is, you
must have sent the files to VisualAge for Java before.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Managing the Studio project

After importing the Web site with HTML, servlets, and JSPs, we want to
manage the project in WebSphere Studio.

Integrity checking for broken links

You can check the integrity of the project that was imported by running Tools
-> Check Project Integrity. This produces a report in a browser window. The
report shows many broken links (Figure 285).

Project Integrity Report for Project ITSO Pattern Development Kit
For Publishing Stage WebSphere
3/14/00 11:49:34 AM
Project Summary
Publishing Stage Web3phere
Total mumber of folders 54
Total mumber of files 306
Completion Integrity check completed without interraption

Files Found with Exrors and Warnings

Broken links 21
Links to missing files 1]
Inaccessible outside links 2
Publishable files with source links 1]
Publishable files with parameterlinks 0
Sets of duplicate file names 36
Publishable orphan files 48

Hon-publishable associated orphan files 115

Files without publishing information

Hone

Files not in Project
The following links are broken because the file is not in this project

Broken links From file Folders
wrebappitopologyoneihistData ‘topologyonewebisectiondsectionalF omm jsp topologyonewebisectionsd
wrebappitopologytwoilogon ‘topologytwoiwebisectionB\ogonError jsp topologytwoiwebisectionB

wrebappitopologytwoisectionB\ogonError jsp ‘topologytwotservlets\ MOCICEHeritazeData servlet | topologytwotservlets

weervlet WMOQCICSHeritageDataServlet.class ‘topologytwotservlets\ MOCICEHeritazeData servlet | topologytwotservlets
wrebappitopologyoneiseciondisectionaF omm jsp | Zbtopumenu html uibtop
wrebappitopologytwoisectionBo gonF omm jsp wizbtopimenuV AT html uibtop
wrebappitopologyoneisectiondisectionaF omm jsp | w2btopimenuV AT himl uibtop

Figure 285. Project integrity report

Chapter 15. Developing the PDK using WebSphere Studio 393

Broken links

When you import an existing site into WebSphere Studio, you get broken
links if the site uses servlet aliases, or has hard-coded fully qualified
references from one file to another.

The broken links in the PDK can be categorized into three categories:

QServlets invoked through a short alias name (instead of the full class
name)

QJSP specifications in servlet configuration files (.servlet)
QJSPs called from the HTML files.

We cannot fix these broken links because of the way the application is set up.

Fixing broken links

Let construct a broken link that we can fix. Assume that the index.html file
points to an image that does not exist (splashBAD.jpg).

In such a case, the Relations view displays a broken link. Select the broken
link and Edit Link from the pop-up menu (Figure 286). Enter the correct
name (u2btop\images\splash5.jpg) and click OK to fix the link.

——— splashl_jpg
-~ —— % splash2_ jpg
p
) _rl\:illm & .= splash3.jpg
i
index.html . ™ splash4.jpg
opyimages\splashBAD.pg

..... R] @ uZbt

Copy as URL Text
Copy as HTML Tag

Edit Link

Edit Link

Iku2btop\images\splash5. iPg

ak. I Cancel |

Figure 286. Fixing broken links

394 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Publishing files

In this section, we describe how to publish the files to WebSphere and
VisualAge for Java.

Publishing to WebSphere Application Server

If you have successfully tested the PDK application in the WebSphere
Application Server environment, then it is recommended that you test the

WebSphere publishing stage.

Note. This process overwrites files in the WebSphere environment. You may

want to back up the WebSphere target directory, for example:
d:\WebSphere\AppServer\hosts\default_host\topologyone

Make sure that all parts are checked-in. Select the WebSphere publishing
view. Select File -> Publish whole project (or use the pop-up menu).

The Publishing Options dialog is displayed (Figure 287). Walk through all the
option pages, then publish the project.

Publishing Options []

General | Frompts I Warnings I Advanced I
V' Werify published files via HTTP
" Clean up publishing
[V Show these options before nest publishing
V¥ Generate publishing repart
V' Publish only modified files

Style of links:

" Relative to parent file

QK I Cancel | Help

Figure 287. Publishing options

You are prompted with a number of dialogs:
QFiles that have broken links (select all the files and continue with OK).

QFolders that must be created.
QClass files that have time stamps older than the Java source file.

Chapter 15. Developing the PDK using WebSphere Studio 395

Publishing report

After the publishing process completes, an HTML Publishing Report for the
project and publishing stage is displayed in the browser (Figure 288).

Publishing Report for Project ITSO Pattern Development Kit
For Publishing Stage WebSphere

Publishing Summary

Publishing Stage Web3phere
Type of publishing File System
Completion Publishing completed without internption

Files Published and Verified 0
Files Re-published and Verified 191
Files Dieleted 1]

Files Found with Exrors and Warnings

While publishing 1]
While re-publishing 1]
While verifiring 1]
While deleting 1]
Publishing Options
Selected:
Style of links Relative to document root
WVetification Wetify published files
Clean up Do not clean up publishing
P Before overwtiting files BEefore creating folders Eefore publishing linked changed files Before publishing
rompts
checked out files

Files Requested for Publishing and Re-publishing
Server Files | Size* (KB) | Time (min)

http:flocathost | 191 | 1,332.00 182

Totals: 191 | 133200 182

Figure 288. Publishing report

The publishing report contains details about all the published files and all
the activities, such as creating directories.

Verify that the code has been placed in the correct WebSphere Application
Server directories.

396 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Publishing to VisualAge for Java

Switch the publishing view to the Test stage and repeat the publishing
process. Verify that the files are placed into the correct directories of the
WebSphere Test Environment.

Suppress publishing of servlet class files

For testing, you want to import the Java source into VisualAge for Java. You
can suppress the publishing of the servlet class files by deleting the servlets
folder.

You are prompted with a dialog before the action is performed. Select Delete
from current stage (do not select Delete from current stage and disk).

Publishing selected folders

A better approach may be to select only individual folders for publishing,
instead of the whole project. Select the u2btop, webapp\topologyXXX\web,
and webapp\topologytwo\servletconfig folders and Publish selected folders
from the pop-up menu.

Editing files

You can edit the HTML and JSP files using the Page Designer. However, you
will notice that these files were not created with WebSphere Studio, and the
Page Designer does not display the beans that are used in the JSPs.

In the JSPs, the <jsp:usebean> tag is placed before the <HTML> tag, with
the effect that the bean is not displayed with the yellow (J) mark. If you
switch to the source view and move the <jsp:usebean> tag below the
<HTML> tag, you will see the (J) marker when returning to the normal view.

We suggest that you open a few JSPs and HTML files to study the normal
and source code views in the Page Designer.

Chapter 15. Developing the PDK using WebSphere Studio 397

398 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Appendixes

© Copyright IBM Corp. 2000 399

400 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

A JSP tag syntax

In this appendix we review the JSP tag syntax.

JSP tag syntax summary

See Table 19 for a summary of the all tags available in JSP 1.0.

Table 19. Summary of JSP tag syntax

Tag Description Syntax
Output Generates a
Comment comment thatissent | <!- - comment [<%= expression %>]
to the client in the -—>
viewable page source
Hidden Documents the JSP <%- - comment --%>
Comment page, but is not sent
to the client
Declaration Declares variables or
methods valid in the .) .
. <%! declarations %>
page scripting
language

© Copyright IBM Corp. 2000

401

source file

Tag Description Syntax

Expression Contains an
expression valid in . L,

S <%= expression %>

the page scripting
language

Scriptlet Contains a code
fragment valid in the . .

- <% code fragment %>

page scripting
language

Include Includes a file of text

Directive or code in the JSP <%@ include file="relativeURL" %>

Page Directive

Defines attributes
that apply to an
entire JSP page

<%@ page [language="java"]
[extends="package.class"]
[import= "{ package.class |
package.*} , ..."]
[session="true | false"]
[buffer="none | 8kb | size kb"]
[autoFlush="true | false"]
[isThreadSafe="true | false"]
[info="text"]
[errorPage="relativeURL"]
[contentType="mimeType
[; charset=characterSet 1" |
"text/html; charset=I150-8859-1"]
[isErrorPage="true | false"] %

Taglib Directive

Defines a tag library
and prefix for the
custom tags used in
the JSP page

<%@ taglib uri="URIToTagLibrary"
prefix="tagPrefix" %>

custom tag:

< tagPrefix:name attribute="value"
+ />

< tagPrefix:name attribute="value"
+ ... > other tags

</ tagPrefix:name >

jsp:forward

Forwards a client
request to an HTML
file, ISP file or
servlet for processing

<jsp:forward
page="{ relativeURL |
<%= expression %> }" />

jsp:getProperty

Gets the value of a
Bean property so
that you can display
itin a JSP page

<jsp:getProperty
name="beanInstanceName"
property="propertyName" />

402

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tag

Description

Syntax

jsp:setProperty

Sets a property value
or values in a bean

<jsp:setProperty
name="beanInstanceName"
{ property="*" |
property="propertyName"
[param="parameterName"] |
property="propertyName"
value="{string |
<%= expression %> }"}/>

jsp:include Includes data in a <jsp:include
JSP page from page="{ relativelRL |
another file, without <%= expression %> }"
parsing the data flush="true" />

jsp:plugin Downloads a Java <jsp:plugin type="bean | applet"

plugin to the client
Web browser to
execute an applet or
Bean

code="classFileName"
codebase="classFileDirName "
[name="instanceName"]

[archive="URIToArchive, ... "]
[align="bottom | top | middle |
Teft | right"]

height="displayPixels"]
width="displayPixels"]
hspace="leftRightPixels"]
vspace="topBottomPixels"]

[jreversion="JREVersion | 1.1"]

[nspluginurl="URLToPlugin"]

[iepluginurl="URLToPlugin"] >
[<jsp:params>

[<jsp:param name="parameterName"

value="parameterValue" />]
</jsp:params>]
[<jsp:fallback> text message for
user </jsp:fallback>]

</jsp:plugin>

L M W e W |

jsp:useBean

Locates or
instantiates a Bean
with a specific name
and scope.

<jsp:useBean id="beanInstanceName"
scope="page | request | session |
application”

{ class="package.class" |
type="package.class " |
class="pkg.cls" type="pkg.cls" |
beanName=" { package.class |

<%= expression %> } "
type="package.class "}
{ /> | > other tags </jsp:useBean> }

Appendix A. JSP tag syntax 403

WebSphere specific tags

WebSphere Application Server offers a number of tags in addition to the

standard tags in the JSP 1.0 specification

Table 20 describes WebSphere specific extensions to the JSP 1.0 syntax.

Table 20. IBM extensions to JSP for variable data

Tag

Description

Syntax

tsx:getProperty

The IBM extension
implements all of the
<jsp:getProperty>
function and adds the
ability to introspect a
database bean that was
created using the IBM
extension <tsx:dbquery>
or <tsx:dbmodify>.

<tsx:getProperty name="bean_name"
property="property _name" />

tsx:repeat

Use the <tsx:repeat>
syntax to iterate over a
database query results
set or a repeating
property in a JavaBean.

<tsx:repeat index=name
start=starting_index
end=ending_index>

</tsx:repeat>

tsx:dbconnect

Use the <tsx:dbconnect>
syntax to specify
information needed to
make a connection to a
JDBC or an ODBC
database. The
<tsx:dbconnect> syntax
does not establish the
connection. Instead, the
<tsx:dbquery> and
<tsx:dbmodify> syntax
are used to reference a
<tsx:dbconnect> in the
same JSP file and
establish the connection.

<tsx:dbconnect
id="connection_id"
userid="db_user"
passwd="user_password"
url="jdbc:protocol :database"
driver="database_driver_name

</tsx:dbconnect>

404 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tag

Description

Syntax

tsx:userid and

Instead of hardcoding

<tsx:dbconnect

tsx:passwd the user ID and id="connection_id"
password in the <userid>
<tsx:dbconnect>, you can <%= request.
use <tsx:userid> and getParameter("userid") %>
<tsx:passwd> to accept </userid>
user input for the values <passwd>
and then add that data <%= request.
to the request object getParameter("passwd") %>
where it can be accessed </passwd>
by a JSP that requests url="jdbc:protocol :database"
the database connection. driver="database_driver_name"

</tsx:dbconnect>

tsx:dbquery Use the <tsx:dbquery>
syntax to establish a <tsx:dbquery id="query_id"
connection to a database, connection="connection_id"
submitdatabase queries, limit="value" >
and return the results </tsx:dbquery>
set.

tsx:dbmodify Use the <tsx:dbmodify>

syntax to establish a
connection to a database
and then add recordstoa
database table.

<tsx:dbmodify
connection="connection_id" >
</tsx:dbmodi fy>

WebSphere Application Server also extends three JSP 1.0 tags by adding the
"language" attribute as shown in Table 21. This enables you to use different
scripting syntax for different elements of your JSP.

Table 21. WebSphere scripting language extensions (XML format only)

Syntax

<jsp:scriptlet language="language_name">

<jsp:expr language="language_name">

<jsp:declaration language="Tlanguage_name">

Appendix A. JSP tag syntax 405

406 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

B Utility serviet and
utility JSP

In this appendix we list the source code and output of a utility servlet,
ServletEnvironmentSnoop, and of a utility ISP, WebPaths.jsp.

These utilities can be run in WebSphere to display useful information about
the current configuration, the request block, and the servlet environment.

The ServletEnvironmentSnoop can also run in the VisualAge for Java
WebSphere Test Environment.

© Copyright IBM Corp. 2000 407

Utility servlet

The ServletEnvironmentSnoop utility servlet lists information about the
current servlet environment and the current user request and session
information.

ServiletEnvironmentSnoop serviet source
Class declaration

package itso.servjsp.servletapi;
import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletEnvironmentSnoop extends HttpServlet {

Initialization

public void init(ServietConfig srvCfg) throws ServietException {
super.init(srvCfg);

}

Service

public void service(HttpServietRequest req, HttpServletResponse res)

throws ServletException, IOException {

res.setContentType("text/html");

PrintWriter out = res.getWriter();

out.printin("<HTML><TITLE>ServietEnvironmentSnoop</TITLE><BODY>");

out.printin("<H2>Serviet API Example -

ServletEnvironmentSnoop</H2><HR>");

getReqInfo(req, out);

getRegHeaderNames (req, out);

getRegParmValues(req, out);

getReqgCookies(req, out);

getRegAttributeNames(req,out);

getInitParms(req, out);

getHttpSessionInfo(req, out);

getServletContextAttributes(req, out);

out.println("</BODY></HTML>");

out.close();

408 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Request information

public void getReqInfo(HttpServietRequest req, PrintWriter out)

throws ServletException, IOException {
out.printin("<H4>Basic Request Information</H4>");
out.printin("This is basic information retrieved from the request

object.<P>");

out.printin("Request method: " + req.getMethod() + "
");
out.printin("Request URI: " + req.getRequestURI() + "
");
out.printin("Request protocol: " + req.getProtocol() + "
");
out.printin("Request scheme: " + req.getScheme() + "
");
out.printin("Servlet path: " + req.getServletPath() + "
");
out.println("Servliet name: " + req.getServerName() + "
");
out.printin("Servlet port: " + req.getServerPort() + "
");
out.println("Path info: " + req.getPathInfo() + "
");
out.printin("Path translated: "+req.getPathTranslated()+"
");
out.println("Character encoding:"

+ req.getCharacterEncoding()+"
");
out.println("Query string: " + req.getQueryString() + "
");
out.printin("Content length: " + req.getContentlLength() + "
");
out.printin("Content type: " + req.getContentType() + "
");
out.println("Remote user: " + req.getRemoteUser() + "
");
out.println("Remote address: " + req.getRemoteAddr() + "
");
out.println("Remote host: " + req.getRemoteHost() + "
");
out.println("Authorization scheme: "+req.getAuthType()+"
");
out.println("<HR>");

Request header names

public void getReqHeaderNames (HttpServletRequest req, PrintWriter out) {
Enumeration e = req.getHeaderNames();
out.printin("<H4>Request Header Information</H4>");
out.printin("This is information passed in on the request header
(http)<P>");
if(e.hasMoreETements()) {
while(e.hasMoreElements()) {
String name = (String)e.nextElement();
out.println(""+name+": "+req.getHeader(name)+"
");
}
}

else out.printIn("There are no request headers.");
out.printin("<HR>");

Appendix B. Utility servlet and utility JSP 409

Request parameters

public void getReqParmValues(HttpServletRequest req, PrintWriter out) {
out.printin("<H4>Request Parameter Names/Values</H4>");
out.printin("Contains the name/value pairs of the information sent in
on the request<P>");
Enumeration e = req.getParameterNames();
if (e.hasMoreElements()) {
out.printin("<H4>Servlet parameters
(Single Value style):</H4>"); //ex, regular fields.
while (e.hasMoreElements()) {
String name = (String) e.nextElement();
out.println(""+name+": "+req.getParameter(name)+"
");
}
}
else out.printin("
No request parameters");
e = req.getParameterNames();
if (e.hasMoreElements()) {
out.println("<H4>Servlet parameters
(Multiple Value style):</H1>"); //ex, checkbox's
while (e.hasMoreElements()) {
String name = (String) e.nextElement();
String vals[] = (String[]) req.getParameterValues(name);
if (vals != null) {
out.print("" + name + ": ");
out.printin(vals[0]);
for (int i = 1; i < vals.length; i++)
out.printin(" " + vals[i]);
}
out.printin("
");
}

}
out.printin("<HR>");

Request attributes

public void getRegAttributeNames (HttpServietRequest req, PrintWriter out)
Enumeration e = req.getAttributeNames();
out.printin("<H4>Request Attribute Information</H4>");
if(e.hasMoreETements()) {
while(e.hasMoreElements()) {
String name = (String)e.nextElement();
out.println(""+name+": "+req.getAttribute(name)+"
");
}
}
else out.printIn("There are no request attributes");
out.printin("<HR>");

410 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Cookies

public void getReqCookies(HttpServletRequest req, PrintWriter out) {
out.printin("<H4>Cookie Information</H4>");
out.printin("These are the cookies passed in on the request.
Will be null if client cookies disabled<P>");
Cookie[] cookies = req.getCookies();
if(cookies != null && cookies.length > 0) {
out.println("<H4>Client cookies</H4>");
for(int i=0; i<cookies.length; i++) {
out.println("" + cookies[i].getName() + ": " +
cookies[i].getValue() + "
");
}
}

else out.printin("Cookies are null");
out.printin("<HR>");

Initialization parameters

public void getInitParms(HttpServlietRequest req, PrintWriter out) {
Enumeration e = getServletConfig().getInitParameterNames();
out.printin("<H4>ServietConfig Initialization Information</H4>");
out.printin("This is basic information retrieved from the ServletConfig
file
");
out.printin(" (usually BigRequestHandler.servlet, if exists)<P>");
if (e !'= null) {
while (e.hasMoreElements()) {
String param = (String) e.nextElement();
out.printin(""+param+": "+getInitParameter(param)+"
");
}
}

else out.printin("ServletConfig is null");
out.printin("<HR>");

Session information

public void getHttpSessionInfo(HttpServletRequest req, PrintWriter out) {
HttpSession session = req.getSession(false);
out.println("<H4>HttpSession information</H4>");
out.println("Will be null if session information is not utilized<P>");
if(session != null) {
out.printin("Session ID: " + session.getId() + "
");
out.println("Requested Session ID: " +
req.getRequestedSessionId() + "
");
out.printin("Last accessed time: " +
new Date(session.getlLastAccessedTime()).toString() + "
");
out.printin("Creation time: " +
new Date(session.getCreationTime()).toString() + "
");

Appendix B. Utility servlet and utility JSP 411

String mechanism = "unknown";
if(req.isRequestedSessionIdFromCookie()) {
mechanism = "cookie";
}
else if(req.isRequestedSessionIdFromURL()) {
mechanism = "url-encoding";
}
out.println("Session-tracking mechanism: " + mechanism +
"
");
String[] vals = session.getValueNames();
if(vals != null) {
out.println("Session values:
");
for(int i=0; i<vals.length; i++) {
String name = vals[i];
out.println("" + name + ": " + session.getValue(name) +
"
");

}
}
else out.printin("Session object is null");
out.printin("<HR>");

Context attributes

public void getServletContextAttributes(HttpServletRequest req,
PrintWriter out) {
Enumeration e = getServletContext().getAttributeNames();
out.println("<H4>ServletContext attributes</H4>");
out.printin("Contains information about the environment the servlet is
running under<p>");
if(e.hasMoreETements()) {
while(e.hasMoreElements()) {
String name = (String)e.nextElement();
out.printin("" + name + ": " +
getServletContext().getAttribute(name) + "
");
}

}
out.printin("<HR>");

412 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

ServiletEnvironmentSnoop serviet output

The output HTML page of the servlet is shown here without the browser
frame.

Serviet APl example — ServletEnvironmentSnoop

Basic Request Information
This is basic information retrieved from the request object.
Request method: GET
Request URI:
/itsoservjsp/serviet/itso.servjsp.servietapi.ServietEnvironmentSnoop
Request protocol: HTTP/1.1
Request scheme: http
Servlet path: /servlet/itso.servjsp.servietapi.ServletEnvironmentSnoop
Servlet name: 127.0.0.1
Servlet port: 80
Path info: null
Path translated: null
Character encoding: is0-8859-1
Query string: null
Content length: 0
Content type: null
Remote user: null
Remote address: 127.0.0.1
Remote host: null
Authorization scheme: null

Request Header Information
This is information passed in on the request header (http)
accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
accept-encoding: gzip, deflate
accept-language: en-us
connection: Keep-Alive
cookie: calledCount=2; sesessionid=GOL4ZAQAAAAAACIJBEE2GNA
host: 127.0.0.1
referer: http://127.0.0.1/itsoservjsp/itsoservjsp.html
user-agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)

Request Parameter Names/Values
Contains the name/value pairs of the information sent in on the request
No request parameters

Cookie Information
These are the cookies passed in on the request.
Will be null if client cookies disabled
Client cookies
calledCount: 2
sesessionid: GOL4ZAQAAAAAACIJBEE2GNA

Appendix B. Utility servlet and utility JSP 413

414

Request Attribute Information

There are no request attributes

ServletConfig Initialization Information

This is basic information retrieved from the ServletConfig file
(usually BigRequestHandler.servlet, if exists)

HttpSession Information

Will be null if session information is not utilized

Session ID: GOL4ZAQAAAAAACIJBEE2GNA

Requested Session ID: GOL4ZAQAAAAAACIJBEE2GNALast accessed time:
Wed Mar 29 09:15:08 PST 2000

Creation time: Wed Mar 29 08:45:25 PST 2000

Session-tracking mechanism: cookie

Session values:

usersession: itso.servjsp.servletapi.SaveServletStats@22a0c0

vectorBean: itso.servjsp.jspsamples.VectorBean@3f7065

DateDisplayBean: itso.servjsp.jspsamples.DateDisplayBean@278631

ServletContext Attributes

Contains information about the environment the servlet is running under

javax.servlet.context.tempdir:
E:\WebSphere\AppServer\temp\default_host\itsoservjsp

calledCount: 2

com.ibm.servlet.engine.webapp.WebAppServletRegistry:
com.ibm.servlet.engine.webapp.WebAppServletRegistry@350247

com. ibm.websphere.servlet.event.ServletContextEventSource:
com.ibm.servlet.engine.webapp.WebAppEventSource@34f729

com.ibm.websphere.servlet.application.classpath:
E:/WebSphere/AppServer/1ib/ibmwebas.jar;E:/WebSphere/AppServer/properties;E
:/WebSphere/AppServer/lib/servlet.jar;E: /WebSphere/AppServer/1ib/webtIsrn.j
ar;E:/WebSphere/AppServer/1ib/lotusxs1.jar;E:/WebSphere/AppServer/lib/ns.ja
r;E:/WebSphere/AppServer/lib/ejs.jar;E:/WebSphere/AppServer/1ib/ujc.jar;D:/
SQLLIB/java/db2java.zip;E:/WebSphere/AppServer/1ib/repository.jar;E:/WebSph
ere/AppServer/1ib/admin.jar;E:/WebSphere/AppServer/1ib/swingall.jar;E:/WebS
phere/AppServer/lib/console.jar;E:/WebSphere/AppServer/1ib/tasks.jar;E:/Web
Sphere/AppServer/1ib/xml4j.jar;E: /WebSphere/AppServer/1ib/x509v1.jar;E:/Web
Sphere/AppServer/1lib/vaprt.jar;E:/WebSphere/AppServer/1ib/iioprt.jar;E:/Web
Sphere/AppServer/1ib/iioptools.jar;E:/WebSphere/AppServer/1ib/dertrjrt.jar;
E:/WebSphere/AppServer/1ib/sslight.jar;E:/WebSphere/AppServer/1ib/ibmjndi.j
ar;E:/WebSphere/AppServer/1ib/deployTool.jar;E:/WebSphere/AppServer/Tib/dat
abeans.jar;E:/WebSphere/AppServer/classes;E:/JDK11™1.7/1ib/classes.zip;E:/W
ebSphere/AppServer/1ib/jspl0.jar;E: \WebSphere\AppServer\hosts\default_host\
itsoservjsp\serviets

com.ibm.websphere.servlet.application.host: default_host
com.ibm.websphere.servlet.application.name: itsoservjsp

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Utility JSP

The WebPaths utility JSP only runs in the default application of WebSphere

Application Server. Be sure to place the file into the Web server directory, for
example:

d:\IBM HTTP Server\htdocs

WebPaths.jsp source

The source code of this JSP is very long and therefore not listed here. You can
find the code in sg245755\SampCode\itsoservjsp\web\WebPaths. jsp.

WebPaths.jsp output

The output HTML page consists of serveral parts. Some of the ouptut is
shown here.

‘Web Path Information

In order to view configuration mformation that explams how WebSphere mterprets and processes URLs, you must first provide enough

information below to connect to and query the admin repository. Enter a test URL to determine the servlet that would be invoked in response
to that URL.

Mote: You can click on "Medes" under the Types tab m the Admin Conscle for a hist of nodes

|Nam5 of one of the nodes (machines) in the WebSphere domain ‘Ichusa

|WebSphere edition ‘lAdvancedj

|TCP1']:P host name of the Object Name Server ‘IW 27.0.01

|TCP1']:P port name of the Object Name Server ‘IBDD

|Opmonal test URL ‘Ihlauser\/jap;‘s\mp\e |
Get Configuration | Reset |

Output if no optional test URL is entered:

Interpreting URL requests

Virtual host aliases

Host names Virtual Host

o locathost default_host
+ 127.0.0.1

» chusaalmaden ibm.com
.

chusa

9.1.150.66

Appendix B. Utility servlet and utility JSP 415

Output with an optional test URL.:

416 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

C Using the additional
material

This redbook also contains additional material on the Internet. See the
appropriate section below for instructions on using or downloading each type
of material.

Locating the additional material on the Internet

The CD-ROM, diskette, or Web material associated with this redbook is also
available in softcopy on the Internet from the IBM Redbooks Web server.
Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245755/

Alternatively, you can go to the IBM Redbooks Web site at:
http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with
the redbook form number.

© Copyright IBM Corp. 2000 417

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this redbook includes the

following:

File name Description

5755samp.zip Sample code used in Part 1
5755pdk.zip Pattern Development Kit of Part 2
readme.txt Description and updates

System requirements for downloading the Web material

The following system configuration is recommended for downloading the
additional Web material.

Hard disk space: 10 MB minimum
Operating System: Windows NT
Processor: 233 Mhz or better
366 MHz with WebSphere Application Server
Memory: 128 MB

256 MB with WebSphere Application Server

How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of
the Web material into this folder.

Unzip the 5755samp.zip and 5755pdk.zip files onto a hard drive. This creates
the directory structure:

SG245755
sampcode
subdirectories for servlet and JSP samples (Part 1)
pdk
subdirectories for Pattern Development Kit (Part 2)

Pattern Development Kit

The usage of the PDK files is described in Part 2, “Pattern Development Kit:
a sample application.”

See Chapter 13, “Running the PDK in WebSphere” on page 363, Chapter 14,
“Running the PDK in VisualAge for Java” on page 375, and Chapter 15,
“Developing the PDK using WebSphere Studio” on page 383 for detailed
instructions.

418 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet and JSP sample files

The rest of this chapter describes how to use the servlet and JSP sample files.

Directory structure

The sample files are provided in subdirectories of S6245755\sampcode as shown

in Table 22.

Table 22. Servlet and JSP sample file directory structure

Directory

Description

cmd

Command files that can be used to install the samples:
itsoenv.cmd <=== tailor first
copyVajava.cmd <=== copy files to VA Java
copyWebSphere.cmd <=== copy files to WebSphere

itsoservjsp
web
servlet

Source for servlet and JSP examples
- HTML and JSP
- Java and class files of the itso.servjsp.xxxxx packages

wte

Configuration files for the servlet engine of the VisualAge for Java
WebSphere Test Environment:
default.servlet_engine
Configuration file for the itsoservjsp Web application:
itsoservjsp.webapp

project_
resources

Project resource files for VisualAge for Java WTE. A subdirectory
contains the .servlet files for the ITSO Servlet JSP Redbook
project.

repository

VisualAge for Java repository files:
5755samp.dat <=== servlet and jsp samples
5755pdk.dat <=== PDK application

wasxml

XML files to load definitions into WebSphere Application Server:
itsoservjsp.xml (and others)

studio

itso\....

Archive files for WebSphereStudio projects:
ITSO Servlet JSP Redbook, ITSO Servlet JSP Redbook Total
Java program to load photos into EMP_PHOTO table.

If you want to use the copyVajava.cmd or copyWebSphere.cmd files provided
in the cmd subdirectory to set up the VisualAge for Java WebSphere Test
Environment or the WebSphere Application Server, you have to tailor the
itsoenv.cmd with the correct directory names.

Appendix C. Using the additional material 419

Test preparation

This section provides the steps necessary to configure and run the servlet and
JSP examples, using either the WebSphere Application Server (as discussed
in Chapter 6, “WebSphere Application Server” on page 123) or the VisualAge
for Java WebSphere Test Environment (as discussed in Chapter 7,
“Development and testing with VisualAge for Java” on page 167).

The sample files that are distributed must be placed into the proper
directories for testing under WebSphere and Visual Age for Java.

Web application

You can either test the servlets in the default application, or you can set up a
separate Web application.

We suggest that you set up a Web application called itsoservjsp. Some of the
code assumes that such a Web application exists. Instructions for setting up
the Web application are in “Creating your own Web application” on page 135
(for WebSphere) and in “WebSphere Test Environment — multiple Web
applications” on page 215 (for VisualAge for Java).

WebSphere
Set up the directories manually or use the copyWebsphere.cmd file:

d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\web
d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\serviets

Copy HTML and JSP files from sg245755\sampcode\itsoservjsp\web\ to the web
subdirectory, and copy servlet class and configuration (.servlet) files from
sg245755\sampcode\itsoservjsp\serviets\ to the servlets subdirectory.

The XML files in the wasxml subdirectory can be used to load the itsoservjsp
Web application into WebSphere Application Server:

= load JDBC driver
= load data source
load Web application
start/stop App server
cmd to Toad xml files

jdbcdriver.xml <
datasource.xml
itsoservjsp.xml
start.xml, stop.xml
xm1Import.cmd

A
I}

A
I}
n

A
I}
n

A
I}
]

A
I}
n

exportWebapp.xml
xmlExportWebapp.cmd

xml to export Web application
cmd to run the export

A
I}
n

Refer to “XML configuration interface” on page 162 for instructions on how to
use XML files.

420 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

VisualAge for Java
Set up the directories manually or use the copyVajava.cmd file:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\
\hosts\default_host\itsoservjsp\web
\hosts\default_host\itsoservjsp\serviets

Store HTML and JSP files in the web subdirectory, and store utility servlet
class files (SnoopServlet, ServletEngineConfigDumper) in the servlets
subdirectory. The itsoservjsp.webapp configuration file must be in the
servlets subdirectory as well.

Import the Java source code from sg245755\sampcode\itsoservjsp\servlets\ into
the ITSO Servlets JSP Redbook project. Alternatively, you can import the
information from the sg245755\sampcode\repository\5755samp.dat file into the
VisualAge for Java repository and load the project into the Workbench.

Before invoking the examples, configure the ServletEngine as described in
“Configuring the ServletEngine class” on page 217 and start the class to
bring up the WebSphere Test Envrionment.

WebSphere Studio project

You can set up a WebSphere Studio project from the archive file
ITSO Servlet ISP Redbook.war provided in the Studio folder. This project is
described in Chapter 8, “Development with WebSphere Studio” on page 227.

We also provide an archive file for a project that contains all the sample code
(ITSO Servlet ISP Redbook Total.war).

See instructions in “Opening an archive” on page 293 on how to create a new

project from an archive file and how to preserve the publishing target
locations.

Appendix C. Using the additional material 421

Servlet configuration files

Several servlets require servlet configuration files (.servlet). These files must
be found in the class path by WebSphere or the WebSphere Test
Environment.

WebSphere Application Server

Put the servlet configuration files into the directory
d:\WebSphere\AppServer\hosts\default_host\application\serviets\package

where application is either the default_app or the tailored application, such

as itsoservjsp. Build the package subdirectories according to the full class
name, for example, itso\servjsp\servletapi:

...\host\default_host\itsoservjsp\serviets\itso\servjsp\servietapi\

VisualAge for Java WebSphere Test Environment

The servlet configuration files (.servlet) must be in a directory that is part of

the class path of the SERunner or ServletEngine class.

You can copy the files into either of these directories
d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\package\
d:\IBMVvJava\ide\project_resources\yourproject\package\

where yourproject is ITSO Servlet JSP Redbook, and build the package

subdirectories according to the full class name (itso\servjsp\servletapi):
...\project_resources\ITSO Servlet JSP Redbook\itso\servjsp\servietapi\

You can also put the servlet configuration files under the servlets directory,

but then you have to add the servlets directory to the class path of SERunner
or ServletEngine:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\yourapplication\serviets\

Note: If a servlet is invoked from an HTML file by the short alias name, then
the .servlet file must be placed into a root directory of the class path and not
in the package subdirectory. For example:

HTML: <form method="post" action="/itsoservjsp/simple">

.serviet: d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\servlets

422 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Testing the servilets and JSPs

We provide an HTML file named itsoserv.html that can be used to invoke the
sample servlets and JSPs:

http://hostname/itsoservjsp/itsoservjsp.html <=== WebSphere
http://hostname:8080/itsoservjsp/itsoservisp.html <=== VisualAge Java

Figure 289 shows the HTML file as it appears in a browser.

ITSO Servlet JSP Redbook

Servlet API
s Snoop by alias s Simple Tt s Servlet Chatting
s Snoop « Servlet Environment Snoop s Eesponse Bedirection
o Confisuration Dumper by alias e Cookie « Eequest Displatching Forward
e Co ation Dumper s TTEL Eewriting « Eequest Displatching Include
o Simple Hitp Servlet s Dersistent Counter s Eesource Handler
s Simple Hitp Serviet using ahias s [Tser Session Counter s TTser Session Counter SET
o« HTML Form GeneratonHandler s JDBC Dept-Emp o [Tser Session Counter GET
o« HTMWL Form Handler o SHTMWL with Servlet s Context Attribute SET
s Simple Counter s Serviet Filtering s Contesxt Attribute GET
JSPs
° get g‘?n 11e ISP o ISP with a Bean o ISP Including a Servlet
* =de Ly » JSP with SOL and TSX » JSP Forwarding to a Servlet
« Call Servict from ISP TSP with Repeating Bean Utility ISP
- -
+ Call ISP from Servlet D
Studio
s Sample HTWL s Sample ISP s Display Emplovee Photo
s Data Bean Wirard s Emplovees by Department s Department Listing

Figure 289. HTML to invoke servlets and JSPs

You can also start individual examples by direct URL, such as

http://hostname:8080/itsoservjsp/serviet/itso.servjsp.servietapi.Xxxxxxx

Read the instructions on how to set up files required by individual examples.

Appendix C. Using the additional material 423

Basic servlet examples

The following servlets are part of the basic servlet examples (see “Basic
servlet examples” on page 47):

asSimpleHttpServlet (Figure 34 on page 48): This servlet can be run with no
additional environmental setup.

QHTMLFormGenerator (Figure 39 on page 51): This servlet can be run
with no additional setup.

AQHTMLFormHander (Figure 42 on page 54): Not called directly through
the Servlet Launcher, it is the target of HTML page generated in
HTMLFormGeneratingServlet above.

aSimpleCounter (Figure 44 on page 57): This servlet can be run with no
additional setup. You can reload the page multiple times from the browser
to see the counter incremented.

asimplelnitServiet (Figure 45 on page 59): This servlet requires as input
the SimpleInitServlet.serviet configuration (Figure 46 on page 60). See
“WebSphere Studio project” on page 421 for the location of this file.

asServletEnvironmentSnoop (“Utility servlet” on page 408): This servlet can
be run with no additional setup.

Additional serviet examples

These servlets are part of the additional examples (see “Additional servlet
examples” on page 62):

QCookieServlet (Figure 48 on page 63): This servlet requires no additional
setup, other than to be invoked from a cookie-enabled browser. It requires
multiple invocations to demonstrate the results. If you have two browsers
installed (for example, IE and Netscape), you can demonstrate that the
state is maintained by users. This is because each browser maintains its
own cookies, so it is treated as two different users.

QURLServlet (Figure 49 on page 64): This servlet requires no additional
setup, but as in the cookie servlet above, requires multiple invocations to
demonstrate results.

QPersistentCounter (Figure 51 on page 66): This servlet requires a
PersistenCounter.servlet file (Figure 50 on page 65). See “WebSphere
Studio project” on page 421 for the location of this file. To adequately test
this servlet, you have to start and stop the servlet runner. This servlet
stores the state in afile, called statsfile.ser, in:

A Java

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment <==V
<== WebSphere

c:\Winnt\system32

424 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

QUserSessionCounter (Figure 53 on page 69): This servlet requires no
additional setup, but requires multiple invocations to demonstrate
results.

QJDBCInitServlet (Figure 54 on page 70): This servlet requires a
configuration file, but because it inherits from SimplelnitServlet, it will
use the file from the superclass, unless we explicitly create one for this
servlet. This servlet also assumes that DB2 has been installed, and the
SAMPLE database created. The user ID and password in the
SimpleInitServlet.serviet (or JDBCInitServiet.servlet) file may have to be
changed to match your specific installation.

QASHTMLServlet (Figure 57 on page 73): The .shtml extension must be
associated with the JSP 0.91 compiler.

In WebSphere, if the jsp support servlet is specified as 0.91, you can add
the *.shtml extension to the Servlet Web Path List.

If the jsp support servlet is for 1.0, then you have to create an additional
servlet in the Web application. Name it jsp91, for example, with the class
name com.ibm.servlet.jsp.http.pagecompile.PageCompileServlet, and the
Web path list *.shtml (default_host/itsoservjsp/*.shtml).

You can define the target servlet of the <SERVLET> tag as well and call it
by NAME, or you can call the target servlet by CODE (class name).

For VisualAge for Java you have to define the JSP 0.91 support servlet
(com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet) in the
Web application (itsoservjsp.webapp file) and associate it with *.shtml.

<servlet>
<name>jsp91</name>
<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
<init-parameter>
<name>workingDir</name>
<value>$server_root$/temp/default_app</value>
</init-parameter>
<init-parameter>
<name>jspemEnabled</name> <value>true</value>
</init-parameter>
<init-parameter>
<name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/default_app</value>
</init-parameter>
<init-parameter>
<name>keepgenerated</name> <value>true</value>
</init-parameter>
<autostart>true</autostart>
<servlet-path>*.shtml</serviet-path>
</serviet>

Appendix C. Using the additional material 425

Servlet interaction techniques

426

These servlets are part of the servlet interaction techniques (see “Servlet
interaction techniques” on page 73). Many of these servlets require a calling
HTML page to properly invoke the results. These are included in the
instructions below:

QServlet filtering: The first servlet writes an output of mime-type text/Deb.
This output is routed to the second servlet.

We do not know how to tailor VisualAge for Java to make this work.

For WebSphere you have to define the two servlets with their Web paths,
for example, FilterFirst, default_host/itsoservjsp/filterFirst. Then you
define the filter for the Web application on the Advanced properties page:

Mime Type: text/Deb
Servlet Web Path: FilterSecond

Note that the servlet Web path is the name of the second servlet
(FilterSecond), not the Web path name (filterSecond). We could not make
it work with the Web path name.

Test the second servlet by itself (http://hostname/itoservjsp/filterSecond),
then run the first servlet to verify the filtering.

QaServlet chaining: The two servlets, ChainerFirst and ChainerSecond,
have to run in sequence.

For VisualAge for Java you have to update to the default_app.webapp file
for the chainer servlet as described in “Servlet chaining” on page 212.

For WebSphere you have to define the two servlets with their Web paths,
for example, default_host/itsoservjsp/chainFirst. Then you define the
ChainerServlet (in com.ibm.websphere.serviet.filter) where you define an
init parameter in the Advanced properties page:

chainer.pathlist: /chainFirst /chainSecond
Invoke the ChainerServlet as http://host/itsoservjsp/chainer.

QResponse redirection: Requires the HTMLFormHandlerRedirect.html file to bein
the resource path and must be invoked from a cookie-enabled browser. It
requires multiple invocations to demonstrate the results. If you have two
browsers installed (for example, IE and Netscape), you can demonstrate
that the state is maintained by users. This is because each browser
maintains its own cookies, so it is treated as two different users.

QRequest dispatching - forward: The HTMLFormGeneratorDispatcherl
creates the HTML form that invokes the HTMLFormHandlerDispatcher1l,
which calls the DispatcherForward servlet.

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

QRequest dispatching - include: The HTMLFormGeneratorDispatcher2
creates the HTML form that invokes the HTMLFormHandlerDispatcher2,
which calls the DispatcherInclude servlet.

QResourceHandler: This servlet requires the two HTML files
ResourceHandlerHTML.html and HTMLFormHandlerRedirect.html.

QUserSessionCounterSetter and UserSessionCounterGetter: These two
servlets work together.

QContextSetAttribute and ContextGetAttribute: These two servlets work
together.

JSP testing

To test the JSPs in VisualAge for Java, you have to import the Java source
files of the servlets and beans that are used by the JSPs into the Workbench.
As a minimum you have to import:
itso.servjsp.jspsamples <== import this package
itso.servjsp.servletapi.SHTMLServiet <== jmport this class

Run individual JSPs from the HTML menu or invoke them through the
browser with:
http://hostname/itsoservjsp/filename.jsp <=== WebSphere
http://hostname:8080/itsoservisp/filename.jsp <=== VisualAge Java

Note that the JSPs are compiled on first usage after you start the WebSphere
Test Environment, therefore the initial access is always slow.

Special instructions

The JIspSqlTsx.jsp file must be updated with correct user ID and password to
access the DB2 sample database.

Appendix C. Using the additional material 427

428 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

D Special notices

This publication is intended to help WebSphere and VisualAge for Java
developers build Web server applications using servlets, JSPs, and HTML.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by WebSphere Application Server,
WebSphere Studio, and VisualAge for Java Enterprise. See the
PUBLICATIONS section of the IBM Programming Announcement for
WebSphere Application Server, WebSphere Studio, and VisualAge for Java
Enterprise for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which
IBM operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

© Copyright IBM Corp. 2000 429

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk,
NY 10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-1IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes

430 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

IBM ® AIX

AS/400 CICs

DB2 DB2 Universal Database
MQSeries 0s/2

0S/390 S/390

SecureWay System/390

TXSeries VisualAge

WebSphere Wizard

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere., The Power To Manage., Anything.
Anywhere., TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of
Tivoli Systems Inc., an IBM company, in the United States, other countries,
or both. In Denmark, Tivoli is a trademark licensed from Kjgbenhavns
Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of
Intel Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Appendix D. Special notices 431

Other company, product, and service names may be trademarks or service
marks of others.

432 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

E Related publications

The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this redbook.

© Copyright IBM Corp. 2000 433

IBM Redbooks publications

For information on ordering these publications see “How to get IBM
Redbooks” on page 437.

QPatterns for e-business: User to Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

QServlet/JSP/EJB Design and Implementation Guide, SG24-5754
(to be published)

QThe XML Files: Using XML and XSL with IBM WebSphere 3.0, SG24-5479

QVisualAge Generator WebSphere Transactions using Generated JSPs and
JavaBeans, SG24-5636.

QWebSphere Version 3 Performance Tuning Guide, SG24-5657

QWebSphere Application Servers: Standard and Advanced Editions,
SG24-5460

QaVisualAge for Java Version 3 Persistence Builder with GUIs, Servlets, and
Java Server Pages, SG24-5426

QlBM WebSphere and VisualAge for Java Database Integration with DB2,
Oracle, and SQL Server, SG24-5471

QDeveloping an e-business Application for the IBM WebSphere Application
Server, SG24-5423

QThe Front of IBM WebSphere, Building e-business User Interfaces,
SG24-5488

QEnterprise JavaBeans Development Using VisualAge for Java, SG24-5429

QVisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265

QProgramming with VisualAge for Java Version 2, SG24-5264, published by
Prentice Hall, ISBN 0-13-021298-9, 1999 (IBM form number SR23-9016)

QVisualAge for Java Enterprise Version 2 Team Support, SG24-5245

QJava Thin Client Systems: With VisualAge Generator - In IBM WebSphere
Application Server, SG24-5468.

QUsing VisualAge for Java Enterprise Version 2 to Develop CORBA and
EJB Applications, SG24-5276

QaVisualAge Java-RMI-Smalltalk, The ATM Sample from A to Z, SG24-5418
QUsing VisualAge UML Designer, SG24-4997
QApplication Development with VisualAge for Java Enterprise, SG24-5081

QManaging Your Java Software with IBM SecureWay On-Demand Server
Release 2, SG24-5846

QCreating Java Applications with NetRexx, SG24-2216

434 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number
System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

Other resources

These publications are also relevant as further information sources:

QJava Servlet Programming, Jason Hunter with William Crawford,
published by O'Reilly, ISBN 1-56592-391-X.

QDeveloping JavaBeans with VisualAge for Java Version 2, SC34-4735

QDesign Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides, published by
Addison-Wesley Professional Computing Series, ISBN 0-201-63361, 1995
(IBM form number SR28-5629)

QManaging the Software Process, Watts S. Humphrey, published by
Addison-Wesley, ISBN 0-201-18095-2.

Appendix E. Related publications 435

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Referenced Web sites

These Web sites are also relevant as further information sources:
Qhttp://www.ibm.com/software/webservers/httpservers
Qhttp://www.ibm.com/software/webservers/appserv
Qhttp://www.ibm.com/software/webservers/studio
Qhttp://www.ibm.com/software/ad/vajava
Qhttp://www.ibm.com/software/data/db2/udb
Qhttp://www.ibm.com/software/network/directory
Qhttp://www.ibm.com/software/developer/web/patterns
Qhttp://www.ibm.com/java/jdk/download
Qhttp://www.alphaWorks.ibm.com/tech/bsf
Qhttp://www.alphaworks.ibm.com/tech/DAV4J
Qhttp://java.sun.com/products/serviet
Qhttp://java.sun.com/products/jsp
Qhttp://www.webdav.org

436 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

How to get IBM Redbooks

This section explains how both customers and I1BM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

< Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from

this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the

formal publishing process allows.

e E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

In United States
Outside North America

= Telephone Orders

United States (toll free)
Canada (toll free)
Outside North America

e Fax Orders

United States (toll free)
Canada
Outside North America

e-mail address

usib6fpl@ibmmail.com

Contact information is in the “How to Order” section at this
site:

http://www.elink.ibmlink.ibm.com/pb1/pbl

1-800-879-2755

1-800-1BM-4YOU

Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl1/pb]l

1-800-445-9269

1-403-267-4455

Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pb1/pb]l

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

— IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed and
written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

© Copyright IBM Corp. 2000

437

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

Title

Order

Quantity

First name Last name

Company

Address

City Postal code

Country

Telephone number Telefax number

O Invoice to customer number

VAT number

[Credit card number

Credit card expiration date Card issued to

Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

438

Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Glossary

API
ASP
CGlI
CICS

DBMS
DLL
E2E
EJB
GUI
HOD
HTML
HTTP
IBM

IDE

IMS
ITSO

JAR
JDBC
JDK
JFC
JSDK
JSP
JVM
LDAP

MVvC
PDK
RAD

application programming interface
Active Server Pages
Common Gateway Interface

Customer Information Control
System

database management system
dynamic link library
end-to-end

Enterprise JavaBeans
graphical user interface
host-on-demand

Hypertext Markup Language
Hypertext Transfer Protocol

International Business Machines
Corporation

integrated development
environment

Information Management System

International Technical Support
Organization

Java archive

Java Database Connectivity
Java Developer’s Kit

Java Foundation Classes
Java Servlet Development Kit
JavaServer Pages

Java Virtual Machine

Lightweight Directory Access
Protocol

model-view-controller
Pattern Development Kit

rapid application development

© Copyright IBM Corp. 2000

RDBMS

RMI
SCC
SCM

SCMS
sSQL
SSL
TCP/IP

UCM
uDB
uow
UssS
URL
VCE
VOB
WAS
WML
WTE
Www
XML

relational database management
system

Remote Method Invocation
software configuration control

software configuration
management

source code management systems
structured query language
secure socket layer

Transmission Control
Protocol/Internet Protocol

Unified Change Management
Universal Database

unit of work

UNIX System Services
uniform resource locator
visual composition editor
versioned object base
WebSphere Application Server
Wireless Markup Language
WebSphere Test Environment
World Wide Web

eXtensible Markup Language

439

440 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Index

pools 145
Console 176, 194
cookie 62,68
A D
additional material 417 Database Wizard 229, 265, 283

Administrative Console 31, 126
administrative repository 126
AdminServer 30

DataSource 125, 146
datastore 314
DateDisplayBean 114

allaI?)BZ 23 DB2
Apache 12 Command Center 22
Ag?c € installation 21
ITSOTOPO database 372

servlet 43,92 .

L overview 16
application server 129 SAMPLE database 22
appklll_(;at;on tlo pology 355 SecureWay Directory database 37
arc i ectural patterns 298 WAS database 29
archive 293

Debugger 177,202
debugging 201
declaration 101

default method groups 156

attribute 86
authentication mechanism 154

B Default Server 32, 129
BLOB 284, 290 default.servlet_engine 211,215
breakpoint 201 default_app 131
broken links 393 default_app.webapp 211, 216
build management 297 default_host 133
developer role 299
c Distributed Debugger 16
installation 26
change

document root 137
driver
JDBC 117,145

management 297
request tracking 297

check-in 238
check-out 238
CICS connector 345 E
class path 137, 142 enterprise application 150
ClearCase 171, 296, 306 security 155
ClearQuest 306, 307 Enterprise JavaBean 96, 346
code assist 184 environment variable 143
Command bean 333 expression
Command Center 22 JSP 102, 402
comments

JSP 102 F

configuration

WebSphere Test Environment 210
connection

manager 146

features 181
form
action 52, 107
call servlet 241

© Copyright IBM Corp. 2000 441

method 52
forward

JSP 108
FTP site 417

G

GenericServiet 49

H
HTML form generator servlet 51
HTML form processing servlet 53
HTML source

Page Designer 242

HTTP request handling utility servlet 61

HTTP Server 4, 367
administration 20
installation 19
overview 12
PDK configuration 369

HTTPS 133

HttpServlet 46

HttpServletRequest 46, 93

HttpServletResponse 46

HttpSession 67, 74

|
impact analysis 298
IMS connector 345
include
JSP 101, 108
installation 17
ClearCase 309
DB2 21
Distributed Debugger 26
HTTP Server 19
JDK 18
SecureWay Directory 35
VisualAge for Java 24

WebSphere Application Server 26

WebSphere Studio 33
itsoservjsp.webapp 216

J
Java Development Kit
see JDK
Java virtual machine 129
java.net 79

JavaBean 96
inJSP 244
Wizard 229, 276
JavaScript 96
JavaServer Pages
see JSP
javax.servlet 43, 48
javax.servlet.http 43, 48
JDBC
driver 117, 125, 145
servlet 70
JDK 27
JNDI 117
JNI 142,143
join 260, 282
JSP
.91 specification 122
1.0 specification 122
call JsSP 111
call servlet 107
comment 102, 401
compile problem 287
DateDisplay 106
dbconnect 116
dbmodify 118
dbquery 117
declaration 101, 401, 405
directive 99
display GIF 285
Execution Monitor 25, 206
expr 405
expression 102, 402
flow 97
forward 108, 402
getProperty 113, 244, 402
include 72,101, 108, 402, 403
insert JavaBean 244
interactions 107
iterate 121
JspSqlTsx 120, 427
keep Java source 148
life-cycle 98
overview 96
page 99, 402
plugin 403
repeat 119
sample files 419
scriptlet 102, 402, 405
setProperty 115, 403

442 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

setting the version in WebSphere Application
Server 147

setting version in VisualAge for Java 197
setting version in Web application 135
setting version in WebSphere Studio 232
source code in Page Designer 274
specification 97

tag syntax 401

taglib 101, 402

URL 107

useBean 111, 121, 244, 403

utility 122, 407

WebPaths 415

WebSphere extensions 103, 116
WebSphere Studio generated source code 274
WebSphere Test Environment 197

K
keep generated Java code for JSP 148
key management 367

L
LDAP 16, 344, 357, 370, 380
log files 165

M

method groups 156

methods
addDateHeader 93
addHeader 93
addIntHeader 93
callPage 110
destroy 45
doGet 45, 47
doPost 45, 47
forName 79
forward 81
getAttribute 90
getContextPath 93
getHeaders 93
getInitParameter 59
getLocale 93
getParameter 55
getParameterNames 55
getResource 84
getResourceAsStream 84
getServiet 79

getServletConfig 47,79
getServletContext 79
getServletinfo 47
getServletName 93
getSession 68
getUserPrinciple 93
getValue 68
include 81
init 45, 46
isSecure 93
isUserInRole 93
newlnstance 79
performTask 52
printin 50
putValue 68
sendError 80
sendRedirect 79
service 45, 46
setAttribute 86, 90
setContentType 50
toString 113

MIME type 74, 213

Model-View-Controller 185, 353

MQSeries connector 345

N

NetObjects
BeanBuilder 14
ScriptBuilder 14

node 128

o

Object Level Trace 26
ObjectlnputStream 65
ObjectOutputStream 65
outer join 282
ownership 224

P
page
JSP 99, 402
Page Designer 6, 229, 238, 273, 285
PageContext 104
PageListServlet 110, 270
Pattern Development Kit
see PDK
Patterns for e-business 338, 348

Index

443

PDK
design 347
overview 337
publishing 395
VisualAge for Java 375
walkthrough 338

WebSphere Application Server 363

WebSphere Studio 383
persistence 57
persistent servlet 65
picture
display in browser 285
POST request 52, 55
PrintWriter 50
process flow
servilet 42
production
publishing stage 250
project
ClearCase 313
integrity 254, 393
publishing 255
relationships 253
VisualAge for Java 171
WebSphere Studio 230
publishing 247
PDK 386
project 255
report 396
stage 248
target 250
PVCS 171

R
rapid application development 170
Rational Rose 328
Redbooks Web server 417
relations view 271
Remote Access to Tool APl 291
repository 171, 223
Repository Explorer 178
request 104

attribute 86

dispatching 81, 426

properties 55

scope 86
RequestDispatcher 74, 81
resource

management 225
security 157
usage 84
Resource Analyzer 166
response 104
redirection 79, 426
runtime topology 350

S

sample database
DB2 22

SaveServletStats 65, 67

scope 86, 112

Scrapbook 176

scriptlet 102

SecureWay Directory 4
configuration 38
DB2 database 37
installation 35
LDAP configuration 370
PDK 357

security 149

SERunner 191, 210

server-side include 122

servlet
AlIEmpByDept 270
APl 43,92
call JSP 109
ChainerFirst 78, 426
ChainerSecond 78, 426
ChainerServilet 77,134, 213, 426
chaining 74,77, 212, 426
configuration file 59, 65, 110, 422
ContextGetAttribute 92, 427
ContextSetAttribute 90, 427
CookieServlet 62, 424
DateDisplayServiet 109
debugging 203
DefaultErrorReporter 134
define in WAS 140
DispatcherForward 82, 426
Dispatcherinclude 83, 427
engine 130
File Serving Enabler 158
FilterFirst 76
filtering 74,75, 213, 426
FilterSecond 76
HTMLFormGenerator 51, 424

444 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTMLFormGeneratorDispatcherl 426
HTMLFormGeneratorRedirect 80
HTMLFormHander 424
HTMLFormHandler 53

HTMLFormHandlerDispatcherl 82, 426

HTMLFormHandlerDispatcher2 83
HTMLFormHandlerRedirect 80
IBMPageCompileServlet 197
initialization parameters 58
interaction techniques 73

Invoker 134

JDBClInitServiet 70
JspDebugServlet 198

JspServlet 134

launcher 193

life cycle 44

methods 45

multi-threaded 58

overview 42

PageCompileServiet 134
persistence 57

PersistentCounter 65, 424

process flow 42

ResourceHandler 84, 427

sample files 419

scope 86
ServletEngineConfigDumper 139, 220
ServletEnvironmentSnoop 61, 408, 424
SHTMLServlet 72, 425
SimpleCounter 56, 424
SimpleFileServlet 134

SimpleHttpServlet 47, 141, 190, 203, 424

SimplelnitServlet 58, 424
SnoopServiet 139
tag 72
URL 50
URLServlet 64
UserSessionCounter 68
UserSessionCounterGetter 89, 427
UserSessionCounterSetter 87, 427
utility 407
Servlet Builder 186
ServletConfig 58, 93
ServletContext 73, 84, 90
ServletEngine 191, 217, 377
ServletOutputStream 50
ServletRequest 46, 93
ServletResponse 46
session 67, 104

scope 87
session.xml 212
SHTML 72
simple counter servlet 56
simple HTTP servlet 47
SmartGuide 170
Software Configuration Management 295
SQL Wizard 229, 258, 281
SSL certificate 367

T

taglib directive 101

task wizard 135

TCP/IP 223

team development
VisualAge for Java 223

Test
publishing stage 248

threads 58, 205

tracing 165

tsx
dbconnect 116, 404
dbmodify 118, 405
dbquery 117, 405
getProperty 404
passwd 405
repeat 119, 404
userid 405

U
Unified Change Management 307
URL rewriting servlet 64
user

ID 18

profiles 164

registry 155

session counter servlet 68
UserProfileManager 164
user-to-business pattern 349
utility servlet and JSP 407

Vv

version management 297
versioning 302

virtual host 132

Visual SourceSafe 171
VisualAge for Java

Index

445

add features 25

development environment 5

installation 24

interface with WebSphere Studio 7, 291, 389
JSP version 197

overview 15, 168

PDK 375

team development 222

w
WAS database 29
Web application 125, 131
create 135
design 331
directories 139
publishing 251
sample 420
WebSphere Test Environment 215
Web path 138
WebSphere Application Server
administration 126
Administrative Console 31, 126
AdminServer 30
Advanced Edition 13
connection pools 145
Default Server 32
Enterprise Edition 14
execution environment 4
installation 26
internal servlets 134
JSP extensions 103, 116
JSP version 134, 135
overview 123
PDK 363
security 149
Standard Edition 13
topology 128
XML configuration 162
WebSphere Studio
archive 293
broken links 393
development environment 6
editing 237
enable ClearCase 322
installation 33
interface with VisualAge for Java 7, 291, 389
JSP version 232
overview 14,228

PDK 383
project 230
publishing 247
sample application 281
sample project 421
Software Configuration Management 302
Workbench 231
WebSphere Test Environment 25, 169, 191, 208
configuration 210
Web application 215
Workbench
VisualAge for Java 169
WebSphere Studio 231
workspace 172,223

X

XML
configuration interface 162, 373
servlet configuration file 58
WebSphere Application Server 365

XML-enabled browser 342

446 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and

quality as appropriate.

¢ Use the online Contact us review redbook form found at ibm.com/redbooks
e Fax this form to: USA International Access Code + 1 914 432 8264
e Send your comments in an Internet note to redbookeus . ibm.com

Document Number
Redbook Title

SG24-5755-00
Servlet and JSP Programming with IBM WebSphere Studio and
VisualAge for Java

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good OGood O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:

The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

© Copyright IBM Corp. 2000

447

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

Ui

Redbooks

Servlet and JSP Programming with IBM

WebSphere Studio and VisualAge for Java

7/8"- (1.0” spine) -1.5”

460 <-> 788 pages

Serviet and JSP
Programming

with IBM WebSphere Studio and VisualAge for Java

Teach yourself
serviet and JSP
programming
techniques

Develop and test
with WebSphere
Studio and VisualAge
for Java

Deploy to WebSphere
Application Server

This IBM Redbook provides you with sufficient information to effectively use
the WebSphere and VisualAge for Java environments to create, manage and
deploy Web-based applications using methodologies centered around
servlet, JavaServer Pages, and JavaBean architectures.

In Part 1 we describe the products used in our environment and provide
instruction on product installation and configuration. Following this, we cover
servlet and JSP programming, which provide you with both a theoretical and
practical understanding of these components, together with working
examples of the concepts described. For execution of the sample code, we
provide information on configuring the WebSphere Application Server and
deploying and running the sample Web applications in WebSphere. Using the
knowledge developed in these chapters, we then provide detailed
information on the development environments offered by VisualAge for Java
and WebSphere Studio. These chapters assist you in using the features
offered by these tools, such as integrated debugging, the WebSphere Test
Environment, Studio Wizards, and publishing of Web site resources. We also
describe how Rational's ClearCase product can be integrated with our
environment for Software Configuration Management.

In Part 2 we describe the Pattern Development Kit sample application,
including installation, configuration, and operation. We also discuss the
application’s use of Patterns for e-business, which presents information on
some of the design decisions employed when creating the application.

This IBM Redbook is intended to be read by anyone who requires both
introductory and detailed information on software development in the
WebSphere environment using servlets and JavaServer Pages. We assume
that you have a good understanding of Java and some knowledge of HTML.

SG24-5755-00

m
@

Redhooks

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
IBM's International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic

scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	Sample code on the Internet
	The team that wrote this redbook
	Comments welcome

	IBM Sponsorship
	IBM Software Accelerated Value Program

	Part 1 Web application development
	1 Environment overview
	WebSphere execution environment
	VisualAge for Java development environment
	WebSphere Studio development environment
	VisualAge for Java and WebSphere Studio interactions
	Complete product environment

	2 Product overview
	How the products work together
	IBM HTTP Server
	WebSphere Application Server
	WebSphere Studio
	VisualAge for Java
	Distributed Debugger
	DB2 Universal Database (UDB)
	SecureWay Directory

	3 Product installation
	Starting environment
	Creating a dedicated user ID
	Java Development Kit
	IBM HTTP Server
	Installing the product
	Testing the install

	DB2 Universal Database
	Installing the product
	Testing the installation

	VisualAge for Java
	Installing the product
	Testing the installation
	Existing errors

	Distributed Debugger
	WebSphere Application Server
	Installing the product
	Testing the installation

	WebSphere Studio
	Installing the product
	Testing the installation

	SecureWay Directory
	Incompatibilities with DB2 UDB
	Installing the product
	Configuring SecureWay Directory
	Testing the installation

	What we have achieved

	4 Servlets
	Overview of Java servlets
	Servlet process flow
	The Java Servlet API
	The servlet life cycle

	Basic servlet examples
	Simple HTTP servlet
	HTML form generator servlet
	HTML form processing servlet
	Simple counter servlet
	Servlet initialization parameters
	HTTP request handling utility servlet

	Additional servlet examples
	Cookie servlet
	URL rewriting servlet
	A real persistent servlet — between servlet life-cycle
	User sessions
	User session counter servlet
	JDBC servlet
	Servlet tag with SHTML

	Servlet interaction techniques
	Servlet collaboration: filtering and chaining
	Calling servlets from servlets
	Response redirection
	Request dispatching
	Resource usage
	Sharing of objects in scope

	New features of Java Servlet API 2.2
	Summary

	5 JavaServer Pages
	Overview
	How JavaServer Pages work
	Components of JavaServer Pages
	HTML tags
	JSP directives
	Declarations
	Scriptlets
	Comments
	Expressions
	WebSphere extensions to JSP scripting
	Accessing implicit objects
	Putting it all together

	JSP interactions
	Invoking a JSP by URL
	Calling a servlet from a JSP
	Calling a JSP from a servlet
	Invoking a JSP from a JSP

	Creating dynamic content in JSPs
	Standard JSP tags
	WebSphere-specific tags

	JSP utility example
	Differences between JavaServer Page specification .91�and�1.0

	6 WebSphere Application Server
	WAS overview
	WAS administration
	The administrative repository
	The WebSphere Administrative Console

	WAS Topology
	Node
	Application server
	Servlet engine
	Web application
	Virtual host

	Internal servlets
	Creating your own Web application
	Using the Task Wizard
	Setting up your default error page
	Creating the required Web application directories
	Deploying files to WAS
	Defining servlets
	Start the Web application

	Class loading and reloading
	Changing the application server class path

	Using JNI in WAS
	Creating an application server environment variable

	Setting up connection pools
	Creating a JDBC driver
	Creating a DataSource
	Migrating from the connection manager

	Using JavaServer Pages in WAS
	Adding JSP support to a Web application
	Keeping Java source files from JSP 1.0 compilation

	Security
	How security works in WAS
	Configuring an enterprise application
	Setting up security in WAS

	XML configuration interface
	Exporting configuration data
	Importing configuration data
	Examples

	User profiling
	Troubleshooting
	Tracing within WAS
	Monitoring resources
	Reference information

	7 Development and testing with VisualAge for Java
	VisualAge for Java overview
	Application development with VisualAge for Java
	Rapid application development (RAD)
	Create industrial-strength Java applications
	Maintain multiple editions of programs
	VisualAge for Java components
	Navigating in VisualAge for Java
	Additional VisualAge for Java concepts

	Servlet development
	Rapid servlet development
	The development process
	Developing our first servlet

	WebSphere Test Environment
	VisualAge for Java configuration for WebSphere
	WebSphere Test Environment setup
	Start the WebSphere Test Environment
	What have we accomplished?

	Testing JSPs under WebSphere Test Environment
	VisualAge for Java configuration for JSPs
	Configuring the JSP version used by VisualAge for Java
	Running our first JSP
	Creating and running a JSP

	Debugging servlets and JSPs
	Debugger basics
	Debugging a servlet
	JSP Execution Monitor
	Debugging JSP generated source code

	WebSphere Test Environment — advanced configuration
	Types of resources
	Additional servlet examples
	Resource locations
	The four key configuration files
	Configuration for servlet chaining, filtering, and SHTML

	Developing and testing additional servlet and JSP configurations
	Creating additional servlet examples

	WebSphere Test Environment — multiple Web applications
	Configuring multiple Web applications
	Configuring the ServletEngine class
	Launching ServletEngine
	Using the ServletEngineConfigDumper servlet
	Restoring SERunner

	Configuring and testing servlet and JSP interactions
	Support for JavaBeans
	Team development
	Overview

	Resource management

	8 Development with WebSphere Studio
	WebSphere Studio overview
	The WebSphere Studio IDE
	Creating a project
	Setting the JSP version
	Setting up folders
	Adding files to the project
	Setting the file status

	Editing project resources
	Checking-out and checking-in files
	Invoking Page Designer
	Using forms and input fields
	Calling a servlet
	Preview the form and view HTML source
	Inserting a JavaBean into a JSP
	Modifying JavaBeans and servlets
	Compiling source files

	Publishing stages and publishing targets
	Setting up the Test stage
	Setting up the Production stage
	Publishing to a Web application

	Project relationships and integrity
	Publishing a project
	Testing published files
	WebSphere Studio wizards
	Code produced by the wizards

	SQL Wizard
	Run the SQL Wizard
	Changing the SQL statement

	Database Wizard
	Run the Database Wizard
	Database Wizard generated code
	Run the generated application
	Enhance the application

	JavaBean Wizard
	Run the JavaBean Wizard
	Test the JavaBean Wizard code
	JavaBean Wizard — what for?

	Developing an application in WebSphere Studio
	Create the SQL statement for the employees of a department
	Create the SQL statement for the employee photo
	Generate the code for the employees in a department
	Generate the code for the employee photo
	Change the generated DataSource
	Fixing the problems
	Testing in VisualAge for Java
	Displaying a picture
	Linking the servlets
	Run the application

	Problems
	Resolving parsing problems
	Folders in publishing stages for a Web application
	SQL Wizard generates wrong data type for a BLOB column
	Database Wizard JSP code is compiled within METADATA tag
	JavaBean Wizard generates bad code

	Interfacing to VisualAge for Java
	Setting up the environment
	WebSphere Studio
	Receiving updates from Visual Age for Java
	Sending updates to Visual Age for Java
	Using VisualAge for Java as an editor

	Archiving
	Opening an archive

	Working in a team
	More information and examples

	9 Software Configuration Management
	Introduction
	What is Software Configuration Management?

	SCM for architectural pattern based development
	Developer roles

	Implementing SCM aspects in a WebSphere Studio environment
	SCM aspects
	Choice for Clearcase as physical single point of control

	Rational SCM toolset
	ClearCase
	ClearQuest
	Unified Change Management
	Our approach

	ClearCase in the WebSphere Studio environment
	Installation
	WebSphere Studio and ClearCase considerations
	Setting up a ClearCase project
	Create the project
	Create a view
	Enable ClearCase to the WebSphere Studio environment
	Bring the projects artifacts under ClearCase control
	Working from WebSphere Studio
	Reflections on SCM procedures
	WebSphere Studio and ClearCase in the broader SCM context

	Rational Rose
	Epilog

	10 Web application design with servlets and JSPs
	Application structure
	HTML page
	Servlet
	Command beans
	Data beans
	View beans
	JSPs

	Model-View-Controller
	Detailed information

	Part 2 Pattern Development Kit: a sample application
	11 Pattern Development Kit overview
	Background
	Application description
	Application walkthrough
	Welcome page
	Home page
	Topology 1 — historical data
	Topology 2 -— visit planets

	12 Using Patterns for e-business to build the PDK
	Benefits of Patterns for e-business
	Applying Patterns for e-business
	Choose a business pattern
	Choose a related logical pattern
	Choose a related physical pattern
	The next steps

	Design techniques used
	The Model-View-Controller framework
	The Command bean design pattern

	The design for the PDK
	Topology 1
	Topology 2
	In Summary

	13 Running the PDK in WebSphere
	Extracting the resources
	Tailoring the installation system
	User ID
	Set up environment parameters
	Tailor the XML files

	Installing and running the Pattern Development Kit
	Restart the HTTP Server
	Create a self-signed SSL certificate
	Create the Web site
	Configure IBM HTTP Server
	Restart the IBM Http Server
	Quick test of HTTP Server configuration
	LDAP configuration
	Create the ITSOTOPO database
	Copy application-specific files
	Import the XML configurations into WebSphere
	Run the application

	Resetting changes

	14 Running the PDK in VisualAge for Java
	Automatic configuration
	Running the configuration script
	Prepare a project and import the Java code

	Servlet engine configuration
	Manual configuration
	Running the application
	Resetting changes

	15 Developing the PDK using WebSphere Studio
	Overview
	Building the WebSphere Studio project
	Creating the WebSphere Studio project
	Define the publishing stages

	Interfacing with VisualAge for Java
	VisualAge for Java setup
	Initial loading of files from VisualAge for Java
	Updating from VisualAge for Java
	Editing Studio files with VisualAge for Java

	Managing the Studio project
	Integrity checking for broken links

	Publishing files
	Publishing to WebSphere Application Server
	Publishing report
	Publishing to VisualAge for Java

	Editing files

	Appendixes
	A JSP tag syntax
	JSP tag syntax summary
	WebSphere specific tags

	B Utility servlet and utility JSP
	Utility servlet
	ServletEnvironmentSnoop servlet source
	ServletEnvironmentSnoop servlet output

	Utility JSP
	WebPaths.jsp source
	WebPaths.jsp output

	C Using the additional material
	Locating the additional material on the Internet
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Servlet and JSP sample files
	Directory structure
	Test preparation
	Web application
	WebSphere Studio project
	Servlet configuration files

	Testing the servlets and JSPs
	Basic servlet examples
	Additional servlet examples
	Servlet interaction techniques
	JSP testing

	D Special notices
	E Related publications
	IBM Redbooks publications
	IBM Redbooks collections
	Other resources
	Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

