
A Fortran 2003 introduction by examples

Gunnar Wollan

2012

1 Introduction

The purpose of this book is to give a good insight in the Fortran 2003 program-
ming language.by going through a number of examples showinghow computa-
tional problems and the reading and writing data to files can be solved.

2 Why use Fortran?

In the last 15 to 20 years Fortran has been looked upon as an old-fashioned un-
structured programming language by researchers and students in the field of In-
formatics. Fortran has lacked most of the features found in modern programming
languages like C++, Java etc. Especially the lack of object orientation has been the
main drawback of Fortran. This is no longer true. Fortran 2003 has all the modern
features includingOOP(Object Oriented Programming).

The reason we still use Fortran as a programming language is because of the
exeecutionspeedof the program. In the field of natural sciences, computer simula-
tions of natural phenomena are becoming increasingly more important. Laboratory
experiments are getting too complex and too costly to be performed. The only al-
ternative is to use a computer simulation to try to solve the problem under study.
Thus the need to have your code execute faster becomes more and more important
when the simulations grows larger and larger. In number-crunching Fortran still
has an edge in speed over C and C++. Tests has shown that an optimized Fortran
program in some cases runs up to 30 percent faster than the equivalent C or C++
program. For programs with a runtime of weeks even a small increase in speed
will reduce the overall time it takes to solve a problem.

2.1 Historical background

Seen in a historical perspective Fortran is an old programming language. 1954 John
Backus and his team at IBM begin developing the scientific programming language
Fortran. It was first introduced in 1957 for a limited set of computer architectures.
In a short time the language spread to other architectures and has since been the
most widely used programming language for solving numerical problems.

1

The name Fortran is derived fromFormulaTranslation and it is still the lan-
guage of choice for fast numerical computations. A couple ofyears later in 1959
a new version, Fortran II was introduced. This version was more advanced and
among the new features was the ability to use complex numbersand splitting a
program into various subroutines. In the following years Fortran was further de-
veloped to become a programming language that was fairly easy to understand and
well adapted to solve numerical problems.

In 1962 a new version called Fortran IV emerged. This versionhad among
it’s features the ability to read and write direct access files and also had a new
data-type called LOGICAL. This was a Boolean data-type withtwo statestrue or
false. At the end of the seventies Fortran 77 was introduced. This version con-
tained better loop and test structures. In 1992 Fortran 90 was formally introduced
as an ANSI/ISO standard. This version of Fortran has made thelanguage into a
modern programming language. Fortran 95 is a small extension of Fortran 90.
These latest versions of Fortran has many of the features we expect from a mod-
ern programming languages. Now we have the Fortran 2003 which incorporates
object-oriented programming with type extension and inheritance, polymorphism,
dynamic type allocation and type-bound procedures.

2

3 The Fortran syntax

As in other programming languages Fortran has it’s own syntax. We shall now take
a look at the Fortran 2003 syntax and also that of the Fortran 77 syntax.

4 The structure of Fortran

To start programming in Fortran a knowledge of the syntax of the language is
necessary. Therefore let us start immediately to see how theFortran syntax look
like.

Fortran has, as other programming languages, a division of the code into vari-
able declarations and instructions for manipulating the contents of the variables.

An important difference between Fortran 77 and Fortran 2003is the way the
code is written. In Fortran 77 the code is written in fixed format where each line
of code is divided into 80 columns and each column has its own meaning. This
division of the code lines into columns has an historically background. In the
1960s and part of the 1970s the standard media for data input was the punched
cards.

Figure 1: A punched card

They were divided into 80 columns and it was therefore naturally to set the
length of each line of code to 80 characters. In table 1 an overview of the subdivi-
sion of the line of code is given.

Column number Meaning
1 A character here means the line is a comment

2 - 5 Jump address and format number
6 A character here is a continuation from previous line

7 - 72 Program code
73 - 80 Comment

Table 1: F77 fixed format

Fortran 77 is a subset of Fortran 2003 and all programs written in Fortran 77

3

can be compiled using a Fortran 2003 compiler. In addition tothe fixed code format
from Fortran 77, Fortran 2003 also supports free format coding. This means that
the division into columns are no longer necessary and the program code can be
written in a more structured way which makes it more readableand easier to main-
tain. Today the free format is the default settings for the Fortran 2003 compiler.

4.1 Datatypes in Fortran

Traditionally Fortran has had four basic datatypes. These were INTEGER and
REAL numbers, LOGICAL which is a boolean type and CHARACTER which
represent the alphabet and other special non numeric types.Later the REAL data
type was split into the REAL and COMPLEX data type. In addition to this a
derived datatype can be used in Fortran 2003. A derived datatype can contain one
or more of the basic datatypes, other derived datatypes and in addition procedures
which is a part of the new OOP (object Orientee Programming) features in Fortran
2003.

4.1.1 INTEGER

An INTEGER datatype is identified with the reserved word INTEGER. It has a
valid range which varies with the way it is declared and the architecture of the
computer it is compiled on. When nothing else is given an INTEGER has a length
of 32 bits on a typical workstation and can have a value from[−231] to [230] and a
64bit INTEGER with a minimum value from[−263] to a maximum value of[262].

4.1.2 REAL

In the same manner a REAL number can be specified with various ranges and
accuracies. A REAL number is identified with the reserved word REAL and can
be declared with single or double precision. In table 2 the number of bits and
minimum and maximum values are given.

Precision Sign Exponent Significand Max. value Min. value
Single 1 8 23 2128 2−126

Double 1 11 52 21024 2−1022

Table 2: REAL numbers

A double precision real number are declared using the reserved words DOUBLE
PRECISION or REAL(KIND=8) this last is now used as the preferred declaration
of a double precision real number.

An extension of REAL numbers are COMPLEX numbers with their real and
imaginary parts. A COMPLEX number is identified with the reserved word COM-
PLEX. The real part can be extracted by the function REAL() and the imaginary

4

part with the function AIMAG(). There is no need for writing explicit calculation
functions for COMPLEX numbers like one has to do in C / C++ which lacks the
COMPLEX data type.

4.1.3 LOGICAL

The Boolean datatype is identified by the reserved word LOGICAL and has only
two values true or false. These values are identified with .TRUE. or .FALSE. and
it is important to notice that thepoint at the beginning and end of the declaration is
a necessary part of the syntax. To omit one or more points willgive a compilation
error.

4.1.4 CHARACTER

The CHARACTER datatype is identified by the reserved word CHARACTER and
contains letters and characters in order to represent data in a readable form. Legal
characters are among othersa to z, A to Z and some special characters+ , -, * , / and
= .

4.1.5 Derived datatypes

These are datatypes which are defined for special purposes. Aderived datatype is
put together of components from one or more of the four basic datatypes and also
of other derived datatypes. A derived datatype is always identified by the reserved
word TYPE nameas prefix andEND TYPE nameas postfix.

4.2 Declaration of variables

In Fortran there are two ways to declare a variable. The first is called implicit de-
claration and is inherited from the earliest versions of Fortran. Implicit declaration
means that a variable is declared when needed by giving it a value anywhere in the
source code. The datatype is determined by the first letter inthe variable name. An
INTEGER is recognized by starting with the lettersI to N and a REAL variable
by the rest of the alphabet. It is important to notice that no special characters are
allowed in a variable name only the lettersA - Z, the numbers0 - 9 and the under-
score character_. A variable cannot start with a number. In addition a LOGICAL
variable is, in most compilers, identified by the letterL.

The other way of declaring a variable is by explicit declaration. This is in ac-
cordance with other programming languages where all variables has to be declared
within a block of code before any instructions occurs.

As a general rule an implicit declaration is not a good way to program. It gives
a code that is not very readable and also it is easily introduce errors in a program
due to typing errors. Therefore always use explicit declaration of variables. To be
certain that all variables has to be declared all programs, functions and subroutines
should have as the second line in the declaration the keywords IMPLICIT NONE.

5

This tells the compiler to check that all variables has been declared. Some variables
must always be declared. These are arrays in one or more dimensions and character
strings.

4.2.1 Declaration of INTEGERS

First an example of how to declare an INTEGER in Fortran 95.

INTEGER :: i ! Declaration of an INTEGER
! length (32 bit)

INTEGER(KIND=2) :: j ! Declaration of an INTEGER (16 bit)
INTEGER(KIND=4) :: k ! Declaration of an INTEGER (32 bit)
INTEGER(KIND=8) :: m ! Declaration of an INTEGER (64 bit)
INTEGER,DIMENSION(100) :: n ! Declaration of an INTEGER array

! (100 elements)

As seen in the preceding examples there are certain differences in the Fortran 77
and the Fortran 95 way of declaring variables. It is less to write when the vari-
ables are declared in the Fortran 77 style but this is offset by greater readability in
the Fortran 95 style. One thing to note is that in Fortran 95 a comment can start
anywhere on the code line and is always preceded by an exclamation point.

4.2.2 Declaration of REAL numbers

The REAL datatype is now in most compilers confirming to the IEEE standard for
floating point numbers. Declarations of single and double precision is declared like
in the next example.

REAL :: x ! Declaration of REAL
! defaultlength (32 bit)

REAL(KIND=8) :: y ! Declaration of REAL
! double precision(64 bit)

REAL, DIMENSION(200) :: z ! Declaration of REAL array
! (200 elements)

4.2.3 Declaration of COMPLEX numbers

Fortran has, unlike C/C++, an intrinsic datatype of complexnumbers. Declaration
of complex variables in Fortran are shown here.

COMPLEX :: a ! Complexnumber
COMPLEX, DIMENSION(100) :: b ! Array of complexnumbers

! (100 elements)

6

4.2.4 Declaration of LOGICAL variables

Unlike INTEGERS and REAL numbers a LOGICAL variable has onlytwo values,
.TRUE. or .FALSE. and therefore only uses a minimum of space.The number of
bits a LOGICAL variable is using depends on the architectureand the compiler.
It is possible to declare a single LOGICAL variable or an array of them. The
following examples shows a Fortran 77 and a Fortran 95 declaration. In other pro-
gramming languages the LOGICAL variable is often called a BOOLEAN variable
after Boole the mathematician.

LOGICAL :: l1 ! Single LOGICALvariable
LOGICAL, DIMENSION(100) :: l2 ! Array of LOGICALvariables

! (100 elements)

4.2.5 Declaration of characters

Characters can either be declared as a single CHARACTER variable, a string of
characters or an array of single characters or character strings.

CHARACTER :: c1 ! Single character
CHARACTER(LEN=80) :: c2 ! String of characters
CHARACTER, DIMENSION(10) :: c3 ! Array of single

! characters
CHARACTER(LEN=80), DIMENSION(10) :: c4 ! Array of character

! strings (10 elements)

4.2.6 Declaration of derived datatypes

The Fortran 95 syntax for the declaration of a derived datatype can be lijke the one
shown here.

TYPE derived
! Internalvariables
INTEGER :: counter
REAL :: number
LOGICAL :: used
CHARACTER(LEN=10) :: string

END TYPE derived
! A declaration of a variableof
! the new deriveddatatype
TYPE (derived) :: my_type

One question arises: why use derived datatypes? One answer to that is that some-
times it is desireable to group variables together and to refer to these variables
under a common name. It is usually a good practice to select a name of the abstract
datatype to indicate the contents and area of use.

7

4.3 Instructions

There are two main types of instructions. One is for program control and the other
is for giving a variable a value.

4.3.1 Instructions for program control

Instructions for program control can be split into three groups, one for loops, one
for tests (even though a loop usually have an implicit test) and the last for assign-
ing values to variables and perform mathematical operations on the variables. In
Fortran all loops starts with the reserved wordDO. A short example on a simple
loop is given in the following piece of code.

DO i = 1, 100
!// Here instructions are performed100 times
!// before the loop is finished

END DO

The next example shows a non terminating loop where anIF-test inside the loop is
used to exit the loop when the result of the test is true.

DO
a = a * SQRT(b) + c
IF (a > z) THEN

!// Jump out of the loop
EXIT

END IF
END DO

This small piece of code gives the variablea a value from the calculation of the
square root of the variableb and multiplied with the last value ofa and the addition
of variablec. When the value ofa is greater then the value of variablezthe program
transfer control to the next instruction after the loop. We assumes here that all
the variables has been initialized somewhere in the programbefore the loop. The
various Fortran instructions will be described in the following chapters through the
examples on how problems can be solved by simple Fortran programs.

8

5 A small program example

To make things a little clearer we shall take a small problem and program it using
what we have learned so far. The problem is to write a small program calculating
the daynumber in a year according to the date. We assume that the year is no a
leapyear.

We start by writing the program skeleton and then fill it up with the code to
solve the problem.

PROGRAMdaynumber
IMPLICITNONE

END PROGRAMdaynumber

All Fortran programs begins with the reserved wordPROGRAMand then the pro-
gram name. In our case the program name isdaynumber. The sentenceIMPLICIT
NONEshould be mandatory and is to prevent the use of implicit declarations which
has been, and still is the default behavior of the Fortran compiler.

The next step is to declare some variables and constants which we are going to
use calculating the daynumber.

PROGRAMdaynumber
IMPLICITNONE
INTEGER :: counter
INTEGER,DIMENSION(12) :: months
INTEGER :: day, month
INTEGER :: daynr
....

END PROGRAMdaynumber

We have here declared four integer variables and one integerarray with 12 ele-
ments. The first variable is a counter variable which will be used to traverse the
array to select the number of days in the months before the given month. A variable
to hold the day and month is also there together with the variable daynrwhich will
contain the result of the calculations.

Then we will have to perform some initializing of the array, the day and month.

PROGRAMdaynumber
IMPLICITNONE
....
daynr = 0
day = 16
month = 9
months(:) = 30
....

END PROGRAMdaynumber

9

Initializing the scalar variables is not difficult, but usually we would have to ini-
tialize each element of the array separately. Fortran 95 and2003 has a built in
functionality allowing us to initialize a whole array with one value. The next step
is to change the number of days in the months that has 28 or 31 days.

PROGRAMdaynumber
IMPLICITNONE
....
months(1) = 31
months(2) = 28
months(3) = 31
....

END PROGRAMdaynumber

The rest of themonthshas to be initialized likemonths(1), months(3)and so forth
for month number 5, 7,8 10 and 12.

The next step is to loop through all the elements in themonthsarray up to the
month minus one and sum up the number of days in each moth into the daynr
variable. After that we just add the value from the variableday to thedaynr and
we have our wanted result. To show the result we can use the commandPRINT *,
daynrwhich will display the number of days for the given date on thedisplay.

PROGRAMdaynumber
IMPLICITNONE
....
DO counter = 1, month - 1
daynr = daynr + months(counter)

END DO
daynr = daynr + day
PRINT *, daynr

END PROGRAMdaynumber

In order to have a executable program we have to compile it. The compilation
process takes the source code and creates a binary file linkedin with the necessary
system libraries so we can run th prgram. We use an open sourcecompiler called
gfortran and the syntax for compiling is shown here

gfortran-o daynrdaynr.f90

wheregfortran is the name of the compiler program, the argument-o means that
the next argument to the compiler is the name of the executable program and the
last argument is the name of the file containing the source code.

The resulting output from out program with themonth = 9and theday = 16 is
259. You can use a calculator and perform the calculations by hand to check that
the result is correct.

So what have we learned here? We have learned to never use implicit declara-
tions of variables which is very important. There is a story from the seventies about

10

implicit declarations where a typing error created an uninitialized variable causing
a NASA rocket launch to fail and the rocket had to be destroyedbefore it could
cause sever damage.

5.1 Exercises

1. Use the code in this section and fill in what is missing. Compile the code
and try to run it

2. Given a radius write a program calculating the circumference of a circle,
compile and run the program and check that the result is correct.

3. Given a radius write a program calculating the surface of acircle, compile
and run the program and check that the result is correct.

4. Given a radius write a program calculating the volume of a sphere, compile
and run the program and check that the result is correct.

11

s

6 Interaction with the user

In the preceding example we had the day and month values as a part of the source
code. if we should change the month or the day we had to do the change in the
source code and compile the program again before we could runit and get the new
result. this is time consuming and absolutely not user-friendly. To remedy this we
add a few lines to the program after the variable declarations shown in the code
below.

PROGRAMdaynumber
IMPLICITNONE
....
PRINT *, "Enterthe day number in the month: "
READ(*,*) day
PRINT *, "Enterthe monthnumber: "
READ(*,*) month
....

END PROGRAMdaynumber

We use thePRINT *, to display a prompt and then theREAD(*,*) to read the
keyboard input into the selected variable. Now we have a muchmore user-friendly
program which will prompt the user for an input for each variable we need. The
READ(*,*) converts the ASCII characters into a binary number corresponding to
the variable name after theREAD(*,*) statement.

It is not a very good programming practice to have text prompts hard coded
like we have done here, but we should declare a text variable using theCARAC-
TER(LEN=??)syntax and put the text into the variable. Using this for all the text
we have a much more readable code which is important when the program code
grows larger than a few lines. So let us again change the program code utilizing
this.

PROGRAMdaynumber
IMPLICITNONE
....
CHARACTER(LEN=35) :: day_prompt
CHARACTER(LEN=24) :: month_prompt
day_prompt= "Enter the day number in the month: "
month_prompt = "Enter the monthnumber: "
....
PRINT *, day_prompt
READ(*,*) day
PRINT *, month_prompt
READ(*,*) month

12

....
END PROGRAMdaynumber

One thing is that when we use thePRINT*, syntax the cursor automatically ad-
vances to the next line. It is much easier to have the cursor stopping at the end
of the prompt waiting for the user input. We can change this behavior by repla-
cing thePRINT *,with another functionWRITE()which allows us to suppress the
automatic linefeed. The following code shows hw we can do it.

PROGRAMdaynumber
IMPLICITNONE
....
WRITE(*,FMT=’(A)’,ADVANCE="NO") day_prompt
READ(*,*) day
WRITE(*,FMT=’(A)’,ADVANCE="NO") month_prompt
READ(*,*) month
....

END PROGRAMdaynumber

The syntaxWRITE(*,FMT=’(A)’,ADVANCE="NO") tells the compiler that the
output is ASCII text (FMT=’(A)’) and also to suppress the linefeed (ADVANCE="NO").
The * in the first argument to theWRITEfunction means that the output is to the
screen and not to a file.

6.1 Exercises

1. Use the first code in this section and fill in what is missing.Compile the
code and try to run it.

2. Make the changes to the program so the cursor stops after the prompt, com-
pile the program and run it. Note the in the way the program intaract with
the user and see which approach you find you like best.

3. Take the programs calculating the circumference, area and volume from the
exercises in the previous section and write one program where you shall use
the user interface code from this section asking the user to enter a radius and
the calculate all three values and display them on the screen

13

7 Using command line argument for running programs in
batch mode

A user dialog is what we mostly use today to interact with a computer program
filling in values and click on a button. This is satisfying in most cases, but if we are
to run the same program with different input values the interactive use of menus
and dialog boxes can take too much time. Back in the "prehistoric" time of com-
puter science all programs were run in what is calledbatch modethat is there was
no interactivity with the user. The program got the input values from the com-
mand line on the terminal. Large simulation models mostly uses this "prehistoric"
approach for getting input values to the program or the values are read from a file.

In this section we will take a look at how we can pass the command line argu-
ment in to a Fortran program and run it in batch mode. So let us take the program
from the previous section and modify it to accept both command line arguments
and a user dialog. The code below, borrowed from the previoussection where we
calculated the day number for a given month an day, shows how this can be done.

PROGRAMdaynumber
IMPLICITNONE
....
INTEGER :: nargs
CHARACTER(LEN=20) :: buffer
nargs = COMMAND_ARGUMENT_COUNT()
IF(nargs < 2) THEN
WRITE(*,FMT=’(A)’,ADVANCE="NO") day_prompt
READ(*,*) day
WRITE(*,FMT=’(A)’,ADVANCE="NO") month_prompt
READ(*,*) month

ELSE
buffer = ’’
CALLGET_COMMAND_ARGUMENT(1,buffer)
READ(TRIM(buffer),FMT=’(I)’) day
buffer = ’’
CALLGET_COMMAND_ARGUMENT(2,buffer)
READ(TRIM(buffer),FMT=’(I)’) month

END IF
....

END PROGRAMdaynumber

A little explanation might be a good idea here. First we declare two variables
which we will use to check if there is enough input arguments to the program and
to store each argument as we retrieve them from the system. The functionCOM-
MAND_ARGUMENT_COUNT()returns the number of command line arguments
which we then checks to see that we have at least two arguments. If we have
enough arguments we use the subroutineGET_COMMAND_ARGUMENTwhich

14

has two arguments, the first is the argument number, that is the first, second etc.,
and the second argument is a character string to hold the argument. In our case the
first argument is the day and the second argument is the month which we use the
READfunction to convert the digits to an integer.

8 Exercises

1. Take the code above and extend the test to see that we have exactly two input
arguments and if the number of input arguments is greater than two print a
usage message and exit the program.

15

9 The Basics of File Input/Output

In the previous section we was exploring the input from the keyboard and the output
to the display. In most Fortran programs the input of values are read from files and
the result written to another file. We shall now take an ordinary text file (ASCII
text) and as an example on how to read the contents of a file intoan array of values.

PROGRAMreadvalues
IMPLICITNONE
....

END PROGRAMreadvalues

As usual we start with the program skeleton and add the necessary program code as
we proceeds. First we need to know how the input file looks likeso we can declare
the correct array to read the values into. The firs seven linesin the file looks like
this:

Number of lineswith valuepairs: 12481
Date Water-flow
717976 7.140
717977 6.570
717978 6.040
717979 5.780
717980 5.530

The first line tells us the number of lines which contains the date and value pairs.
Note that the date is the number of days since January the firstyear zero and the
value pairs are separated with the "tab" character.

So how do we go about getting the contents of this file into an array for the
dates and another for the water-flow values? First of all we need to declare some
variables which will be used for opening the file and read the contents line by line.

PROGRAMreadvalues
IMPLICITNONE
INTEGER, PARAMETER :: lun = 10
INTEGER :: res, i
CHARACTER(LEN=80) :: cbuffer
INTEGER :: flength
INTEGER,ALLOCATABLE,DIMENSION(:) :: dates
REAL,ALLOCATABLE,DIMENSION(:) :: water_flow

END PROGRAMreadvalues

Now we have declared an integer constant "lun" with the value10. This constant
will be used as a file pointer for opening and reading the file. The next step is to
open the file using theOPENfunction.

PROGRAMreadvalues
IMPLICITNONE

16

....
OPEN(UNIT=lun,FILE="waterflow.txt",FORM="FORMATTED",IOSTAT=res)
IF(res /= 0) THEN
PRINT *, ’Error in opening file, status: ’, res
STOP

END IF
....

END PROGRAMreadvalues

The arguments for theOPENfunction are first the unit number, then the filename,
next is the form of the file which in this case isFORMATTEDmeaning it is a
readable text file and last is the return status from the underlying operating system.
If the file was opened properly the return status is zero whichwe used anIF test to
test. If an error occurred the return status would be a numberdifferent from zero
and we would then stop the program.

Assuming the opening of the file was ok we proceed to read the first line into
the variablecbuffer

PROGRAMreadvalues
IMPLICITNONE
....
READ(UNIT=lun,FMT=’(A)’,IOSTAT=res) cbuffer
IF(res /= 0) THEN
PRINT *, ’Error in reading file, status: ’, res
CLOSE(UNIT=lun)
STOP

END IF
....

END PROGRAMreadvalues

Again we have some arguments to theREADfunction. Firs is, as always, the unit
number followed by the format which is in this case an ASCII character string
(FMT=’(A)’) and the last is the return status from the underlying operating system.
Outside the parenthesis enclosing the arguments is the variablecbufferwhere the
value will be placed. If an error occurs we close the file usingtheCLOSEfunction
and the stops the program. Now that we have the first line read into the variable we
can convert the character string into an integer using theREADfunction we used
to rad the first line from the file. Of course we have to extract the file length from
the character string since the file length is the last part in the string.

PROGRAMreadvalues
IMPLICITNONE
....
INTEGER :: c_position, string_length
string_length = LEN_TRIM(cbuffer)
c_position= INDEX(cbuffer,’:’)

17

READ(cbuffer(c_position+1:string_length),FMT=’(I15’)) flength
....

END PROGRAMreadvalues

To extract the file length we has to find the position of the colon in the string and
we use theINDEX function to get the character position in the string. To find the
last non blank character in the string we use theLEN_TRIM function. Now we
have the position where teh number starts and ends in thecbufferstring and to get
the ASCII digits into an integer we use theREADfunction to read the contents of
the part of thecbufferinto theflengthusing the internal conversion functionality in
theREADfor the conversion.

Now that we have the length of the file we can start to allocate the memory
space we need to be able to read the dates and values into the allocatable variables.
To get the memory space we need we use theALLOCATEfunction on both the
datesandwater_flowas shown in the next example.

PROGRAMreadvalues
IMPLICITNONE
....
ALLOCATE(dates(flength),STAT=res)
IF (res /= 0) THEN
PRINT *, ’Error in allocatingmemory, status: ’, res
CLOSE(UNIT=lun)
STOP

END IF
....

END PROGRAMreadvalues

Like in the file operations we get a return status from the callto theALLOCATE
function and any status number except zero is an error. We should always perform
a test on return status to catch possible errors. Note that intheALLOCATEwe have
two arguments, one is the allocatable variable and the second is the return status
which here is preceded with theSTATin contrast to theIOSTATfor file operations.

All we have to do now is to skip the next header line and read therest of the
file into the respective variables.

PROGRAMreadvalues
IMPLICITNONE
....
READ(UNIT=lun,FMT=’(A)’,IOSTST=res) cbuffer
DO i = 1, flength
READ(UNIT=lun,FMT=’(I6,X,F6.3)’) dates(i), water_flow(i)

END DO
END PROGRAMreadvalues

The only difference from the previous call to theREADinside the lopp is that we
have a more complex formatting statement. TheI6 means we have an integer with

18

six digits, theX means we skip this character and the last item tells us that wehave
a real number with a total of six positions including the decimal point. Also we
have two variables in stead of one where the variablei is the index (or counter)
variable telling in which position of the two arrays we want to place the values
from the file. What is missing from this code is the test of the status variable and
the error handling.

10 Binary files

In the previous section we took a look at ordinary text files (ASCII files). In this
section we will take a look at the binary files which is mostly used by Fortran
programs.

We start by asking what the difference is between a text file and a binary file.
A text file is a file which can be displayed in a readable format on the screen and
modified by using an ordinary text editor. In contrast a binary file will not be
displayed in a readable format and cannot be modified by usinga text editor. The
example below shows how a part of a binary file would look like on the screen.

p=
-@>
=1@>
<BD>5@>
<BD>5@<CD><CC><CC><CC><CC><CC>8@
=<8A>7@<9A><99><99><99><99>̂ Y6@<A4>p=
+@<CC><CC><CC><CC><CC><CC>-@<B8>̂ <̂85><EB>Q8<@̂ _<85><EB>Q<B8><9E>
A@\<8F><C2><F5>(<9C>B@<E6>@@
<CD><CC><CC><CC><CC>̂ LD@<85><EB>Q<B8>̂ <̂85>B@<B8>̂ <̂85><EB>Q<B8>@@
Ŵ@@<AE>G<E1>ẑ T.@@\<8F><C2><F5>(\7@

The data this shows is really a set of numbers.

14.7200
17.2400
21.7400
21.7400
24.8000
23.5400
22.1000
13.8200
14.9000
28.2200

So why, can we ask, do we use binary files at all? The answer is storage space
and the speed of writing data to a file and reading data from a file. Let us take an
example of one large number like18734991.344679912691132where each digit
uses one byte (8 bits) of memory and storage and therefore would use 24 bytes to

19

represent this number. In contrast a single precision number uses only 4 bytes and
a double precision number uses 8 bytes. So each time we would read this number
from a disk file or write it to a disk file we could read 3 binary numbers with the
same speed as one number ofASCII text. In addition the computer would use time
to convert the number from theASCII representation to the binary counterpart. If
we had a very large file (which is very common in the field of natural sciences) we
waste a lot of time usingASCIInumbers.

Let us take look at how we perform binary I/O operations usingFortran. Like
the text files we have to open it before we can access the contents. The following
code snippets shows how we open a binary file and read the contents into an array.

PROGRAMreadbinary
IMPLICITNONE
INTEGER, PARAMETER :: lun = 10
INTEGER :: res, i, l
REAL,ALLOCATABLE,DIMENSION(:) :: temperatures

....
END PROGRAMreadbinary

We use a unit number to refer to the file once we have opened it like we did for text
files. The file contains a set of temperatures. The first entry in the file is an integer
number containing the size of the temperature data which is in single precision
format.

PROGRAMreadbinary
IMPLICITNONE

....
OPEN(UNIT=lun,FILE=’temperature.bin’,FORM=’UNFORMATTED’,IOSTAT=res)
IF(res /= 0) THEN
PRINT *, ’Error in opening file’
STOP

END IF
....
END PROGRAMreadbinary

After opening the file we have to allocate space for the array before we can read the
data from the file into the array. To do this we first have to readthe integer number
to get the legnth of the array

PROGRAMreadbinary
IMPLICITNONE

....
READ(UNIT=lun,IOSTAT=res) l
IF(res /= 0) THEN
PRINT *, ’Error in reading file’
CLOSE(UNIT=lun)
STOP

20

END IF
ALLOCATE(temperatuers(l),STAT=res)
IF(res /= 0) THEN
PRINT *, ’Error in allocatingspace’
CLOSE(UNIT=lun)
STOP

END IF
....
END PROGRAMreadbinary

It is a good programming practice to test if any I/O operationfailes. The same is
for the allocation of memory space. It is no use to continue torun the program if
we cannot get the data or allocate space for the data in memory. So now we have
allocated space and can start to read the data into the array.

PROGRAMreadbinary
IMPLICITNONE

....
READ(UNIT=lun,IOSTAT=res) temperature
IF(res /= 0) THEN
PRINT *, ’Error in readingfile file’
STOP

END IF
....
END PROGRAMreadbinary

In contrast to the text file we read the whole dataset in one operation thus sav-
ing execution time. Also there is no need to convert fromASCII digits to binary
number since the data is stored as binary numbers. Now that wehave gotten the
temperatures into the array we can perform the operations onthe data as we wish.

In addition to ASCII files and binary files Fortran has a third type of files. it is
called aNAMELISTfile. A namelist file is used to load values to a set of variables
in one read operation without specifying any variables receiving data like in an
ordinary read. So how are we using this namelist construct? The code example
below shows how this can be done.

PROGRAMnml_test
IMPLICITNONE
INTEGER, PARAMETER :: lun = 10
INTEGER :: res
INTEGER :: x, y, z
INTEGER :: l

....
NAMELIST /ints/ x, y, z, l

....
END PROGRAMnml_test

21

The line containing theNAMELISTis split into three parts. First it is the keyword
namelist, then the name of the namelist/ints/ in this case and lst the variables
belonging to the namelist. Note that the name of the namelistis enclised in slashes.
To read the contents of the namelist file we open it as an ordinary file, but we use
another use of the read function. The code below shows how this can be done.

PROGRAMnml_test
IMPLICITNONE

....
OPEN(UNIT=lun,FILE=’’,STATUS=’OLD’,IOSTAT=res)
READ(UNIT=lun,NML=ints,IOSTAT=res)

....
END PROGRAMnml_test

So how does a namelist file look like? The code below shows how an namelist file
for the ints namelist is written.

&ints
x = 10
y = 14
z = 6
l = 99
/

The first line starts with an ampersand& followed by the name of the namelist.
The next lines is the variables we have declared together with the values for each
variable. Te last line is a slash/ denoting the end of the namelist. A namelist file
can have several namelists each namelist enclosed in the ampersand and slash.

10.1 Exercises

1. Write a program which reads the contents of a short ASCII file into an array,
perform the calculationarray(i) = array(i) + i and save the result in a
new file

2. Do the same, but this time read and write in binary format

22

11 Introduction to functions

In the previous section we learned how to read ASCII data froma file and allocating
memory space for arrays using several intrinsic functions like OPENetc. Fortran
has a large amount of intrinsic functions, but sometimes it is necessary to write
your own to break down a complex problem into smaller more manageable parts.
In this section we shall make an introduction to writing yourown functions.

Let us take the program calculating thedaynumberand add a function deciding
if we have a leap year. The program would then have an additional declaration
of the functionleapyear. As we know we have to declare our own functions as
an external function. The code snippet show how we declare anexternal logical
(boolean) function.

PROGRAM
IMPLICITNONE

....
LOGICAL, EXTERNAL :: leapyear
INTEGER :: year

....
IF(leapyear(year)) THEN
month(2) = 29

ELSE
month(2) = 28

END IF
END PROGRAM

For those who are familiar withMatlab knows that each function has to reside in
a separate file with the same name as the function. InFortran we can have several
functions in the same file. The next code example shows how we program the
leapyearfunction.

FUNCTIONleapyear(year) RESULT(isleapyear)
IMPLICITNONE
INTEGER, INTENT(IN) :: year
LOGICAL :: isleapyear

END FUNCTIONleapyear

The declaration of a function starts with the keywordFUNCTION then the name
of the function, the input arguments and finally the keywordRESULTwith the
variable holding the result of the function as the output argument. The type of the
output argument defines the type of the function. In our case we have alogical
function, but we can have functions returning a value from all of our datatypes.
So let us program the rest of theleapyearfunction. Note the use of the construct
INTENT(IN)which prevents us to overwrite the contents of the input argument.

FUNCTIONleapyear(year) RESULT(isleapyear)

23

IMPLICITNONE
....
INTEGER :: res1, res2, res3
isleapyear= .FALSE.
res1 = MOD(year,4)
res2 = MOD(year,100)
res3 = MOD(year,400)
PRINT *, res1, res2, res3
IF(res1 == 0) THEN
IF((res1 == 0) .AND. (res2 == 0) .AND. (res3 /= 0)) THEN
isleapyear = .FALSE.
RETURN

END IF
IF((res1 == 0) .AND. (res2 == 0) .AND. (res3 == 0)) THEN
isleapyear = .TRUE.
RETURN

END IF
isleapyear = .TRUE.
RETURN

END IF
END FUNCTIONleapyear

A little explanation of what we have done here might be appropriate. We have
declared three help variables to contian themodulodivision of the year and the
nubers 4, 100 and 400. As we all know the formula to determine if a year is a
leapyear or not is tha tif the year is divisible with 4 and not divisible with 100 we
have a leapyear. If the year is divisible with 4 and also with 100, but not with 400
we have a leapyear. For all othe results we do not have a leapyear.

11.1 Exercises

1. Take the program calculating the circumference of a circle and make a func-
tion of it

2. Do the same with the area of a circle and the volume of a sphere

3. Write a main program testing the three functions and checkthat it is working
properly

24

12 Introduction to subroutines

In the previous section we learned how to program a function.UsingFortran we
have also the use of subroutines. A subroutine is in most waysthe same as a
function, but without returning a value like a mathematicalfunction. So why use
subroutines? A subroutine can have several input argumentslike a function, but in
addition a subroutine can have one or more output arguments thus allowing for a
more flexible way of performing calculations.

Let us take the functionleapyearand make a subroutine out of it. When we are
using subroutines we do not have to declare the subroutine asan external procedure
like we had to do with the function.

PROGRAM
IMPLICITNONE

....
INTEGER :: year
LOGICAL :: isleapyear

....
CALL leapyear(year,isleapyear)
IF(isleapyear) THEN
month(2) = 29

ELSE
month(2) = 28

END IF

END PROGRAM

Like functions we can have several subroutines in the same file. The next code
example shows how we program the subroutineleapyear.

SUBROUTINEleapyear(year, isleapyear)
IMPLICITNONE
INTEGER, INTENT(IN) :: year
LOGICAL, INTENT(OUT) :: isleapyear

END SUBROUTINEleapyear

The declaration of a subroutine starts with the keywordSUBROUTINEthen the
name of the subroutine and the arguments where one or more of the arguments
are used to transfer the result of the subroutine call back tothe calling process.
The keywordsINTENT(IN)and INTENT(OUT)are used to prevent wrong use of
the arguments. UsingINTENT(IN) tells the compiler that we can only read the
contents of the argument andINTENT(OUT)means we can only write values to
the argument.

SUBROUTINEleapyear(year, isleapyear)
IMPLICITNONE

25

....
INTEGER :: res1, res2, res3
isleapyear= .FALSE.
res1 = MOD(year,4)
res2 = MOD(year,100)
res3 = MOD(year,400)
PRINT *, res1, res2, res3
IF(res1 == 0) THEN
IF((res1 == 0) .AND. (res2 == 0) .AND. (res3 /= 0)) THEN
isleapyear = .FALSE.
RETURN

END IF
IF((res1 == 0) .AND. (res2 == 0) .AND. (res3 == 0)) THEN
isleapyear = .TRUE.
RETURN

END IF
isleapyear = .TRUE.
RETURN

END IF
END SUBROUTINEleapyear

In our main program we use the syntaxCALL leapyear(year,isleapyear)andIF(isleapyear)
THEN instead of the constructIF(leapyear(year)) THEN.

So then we can ask when do we use subroutines and when functions? There is
no exact asnwer to this question, but it has been more common to use subroutines
which can have optional input and output arguments.

12.1 Exercises

1. Take the program calculating the circumference of a circle and make a sub-
routine of it

2. Do the same with the area of a circle and the volume of a sphere

3. Write a main program testing the three subroutines and check that it is work-
ing properly

26

13 Arrays and pointers

Let us take a closer look at arrays. An array can be a vector or amatrix in two or
more dimensions. The data type can be of all the standard datatypes in addition
to derived data types. A Fortran pointer is an alias for a variable or an array. In
addition a pointer can work as an allocatable array.

For those who have a knowledge of C/C++ programming the pointer is a way
to pass the address of a variable through an argument to the called function. This
is known ascall by referencein contrast to thecall by valuewhich is the default
way of passing arguments in C/C++. In Fortran all arguments are addresses so it is
call by referencewhich is the default here.

So how do we use a pointer in Fortran? First of all we declare a pointer just
like any other variable. Next we have to point the pointer at some target. The target
have to have the attributeTARGETand can be of any data type included a derived
data type. The pointer has to be declared as the same data typeas the target and has
to have the same shape. The following code show how we declarea target variable
and a corresponding pointer.

REAL, TARGET, DIMENSION(10,10) :: matrix
REAL, TARGET, ALLOCATABLE,DIMENSION(:,:) :: matrix2
REAL, POINTER :: p(:,:)
....
ALLOCATE(matrix2(20,20))
p => matrix(2:3,2:3)
p => matrix2(10:12,18:20)

Here we have declared a real array,matrix in two dimensions which has the target
attribute allowing a pointer to point at it. The pointerp is declared as a real pointer
with the same shape as the target. We then let the pointerp point to a part of the
matrix array from row 2 to 3 and column 2 to 3. To traverse the contentsof the
pointer we use indexes from 1 to 2 in both direction. This means that p(1,1) is the
same as matrix(2,2). Next we let p point to matrix2 from row 10to 12 and column
18 to 20. Traversing p we use the same indexes as when p pointedto matrix.

27

In addition to be used as an alias for an array or a part of an array the pointer
can also be used as an allocatable array by itself. In contrast to the target array we
used above the pointer always has to be allocated since it is pointing to nothing
when we declare it.

REAL, POINTER :: p(:,:)
....
ALLOCATE(p(10,10))

Here we declare a pointer array in two dimensions. In order toassign values to the
array we have to allocate space which is done using theALLOCATEfunction. Now
we can assign values to p just like any other array. If we declare another pointerp2
we can use the new pointer to point to a part of p just like we used p to point to a
part of matrix an matrix2.

13.1 Exercises

1. Write a program using two arrays of different dimensions and one pointerP
which will point to different places in the two arrays and print the contents
of the pointer to the screen. Let the pointer point to a very small part of the
arrays so it is easier to see the contents on the screen

2. Extend the program changing the values in the arrays wherethe pointer is
pointing and write the values to the screen

3. Extend the program by declaring a second pointerP2. Let P pointer point
to a small part of the first array and P2 to the second array. Print the values
from P and P2 to the screen. Then use the construct

P2 = P

and print again the contents of P and P2. Try to explain what happens.

28

14 Introduction to modules

In the previous sections we have used programs, functions and subroutines to solve
our computing problems. With less complex problems this is an ok approach, but
when the problem increases in complexity we have to change the way we break
down the problem and start to look into the data structures and procedures. To
illustrate this we will take the program reading water flow values and the date as the
number of days after 01.01.0000 and make a global data structure with procedures
working on the global data structures.

To facilitate this we will introduce theModulewhich is a structure with variable
declarations and procedure declarations. We start breaking down the problem by
looking at the data structure. We know that the file contains one line with the
number of lines with the value pairs (date and water flow) and aline with the
description of each column in the file. We need then one variable to store the
number ov value pairs and two single dimension arrays to store the date and water
flow. We have to have these array allocatable since we do not know in advance
the number of value pairs. In addition we need a variable to hold the filename,
theASCII-digits, the unit number, a status variable and a loop variable. The code
snippet below shows a working module containing the necessary data structure to
solve our problem.

MODULE flowdata
IMPLICITNONE
INTEGER, PARAMETER :: lun = 10
INTEGER :: res
INTEGER :: flength
CHARACTER(LEN=80) :: filename
CHARACTER(LEN=80) :: cbuffer
INTEGER :: c_position, string_length
INTEGER,ALLOCATABLE,DIMENSION(:) :: dates
REAL,ALLOCATABLE,DIMENSION(:) :: water_flow

END MODULE flowdata

In addition to the global data structure we need the procedures to get the data into
the variables. The code below shows how we declare the subroutine to read the
number of value pairs into the arraysdatesandwater_flowvariable. the arrays.

MODULE flowdata
IMPLICITNONE
....

CONTAINS
SUBROUTINEread_data()
IMPLICITNONE
INTEGER :: i
OPEN(UNIT=lun,FILE=filename,FORM=’FORMATTED’,IOSTAT=res)
READ(UNIT=lun,FMT=’(A)’,IOSTAT=res) cbuffer

29

string_length = LEN_TRIM(cbuffer)
c_position = INDEX(cbuffer,’:’)
READ(cbuffer(c_position+1:string_length),FMT=’(I15)’) flength
ALLOCATE(dates(flength),STAT=res)
ALLOCATE(water_flow(flength),STAT=res)
READ(UNIT=lun,FMT=’(A)’,IOSTAT=res) cbuffer
DO i = 1, flength
READ(UNIT=lun,FMT=’(I6,X,F6.3)’,IOSTAT=res) dates(i), water_flow(i)

END DO
CLOSE(UNIT=lun)

END SUBROUTINEread_data
....
END MODULE flowdata

A little explanation is in place here. First we separate the declarations of the global
variables from the procedure declarations with the keywordCONTAINS. Since the
variables with the exception of the index variable in the do-loop are global we can
use them directly in the subroutine. The subroutine is declared as usual, but is now
residing inside the module. In the same manner we shall proceed with the rest of
the necessary procedures in order to extract the data we needfrom the arrays. We
will of course need a function to convert a date to an integer according to the date
array in the file. The date should have the formatdd-mm-yyyyand the result an
integer containing the number of days from 01.01.0000. To make this correct we
also need the functionleapyearwhich we solved in the section about functions. In
the code below we have the first part of the functiondate2number.

MODULE flowdata
IMPLICITNONE

....
CONTAINS

....
FUNCTIONdate2number(datestr) RESULT(datenum)
IMPLICITNONE
CHARACTER(LEN=10) :: datestr
INTEGER :: datenum
INTEGER :: i
INTEGER :: year
INTEGER :: month
INTEGER :: day
INTEGER,DIMENSION(12) :: marray
marray = 31
marray(2) = 28
marray(4) = 30
marray(6) = 30
marray(9) = 30

30

marray(11) = 30
datenum = 0

....
END MODULE flowdata

This function has a character string as an input argument andan integer as the
result. The input argument is in the format ofdd-mm-yyyy. the arraymarraywill
contain the number of days in each month. Note thar we use themarray = 31 to
initialize the whoel array with the value of 31. Then we just modify the elements
for the moths with fewer than 31 days afterwards. We also initialize the resulting
variable to zero so we can add the number of days to it for each iteration.

MODULE flowdata
IMPLICITNONE

....
READ(datestr(1:2),FMT=’(I2)’) day
READ(datestr(4:5),FMT=’(I2)’) month
READ(datestr(7:10),FMT=’(I4)’) year
DO i = 0, year-1
IF(.NOT. leapyear(i)) THEN
datenum = datenum + 365

ELSE
datenum = datenum + 366

END IF
END DO
DO i = 1,month-1
datenum = datenum + marray(i)

END DO
datenum = datenum + day
IF(leapyear(year)) THEN
datenum = datenum + 1

END IF
END FUNCTIONdate2number

....
END MODULE flowdata

Note that we use theREAD function to extract part of the input argument and
store the binary value in the variablesday, monthandyear. Now we can begin
to take a look at the part that extracts the indexes of a subsetof the arraysdates
and water_flow. We call this subroutinefind_indexes. Using this subroutine to
find the indexes of the subset we can in our main program accessthe subset of the
water_flowdata using the start date and end date of the subset. The code below
shows how this can be done.

MODULE flowdata
IMPLICITNONE

31

....
SUBROUTINEfind_indexes(start_date, end_date, start_index, end_index)
CHARACTER(LEN=10),INTENT(IN) :: start_date
CHARACTER(LEN=10),INTENT(IN) :: end_date
INTEGER, INTENT(OUT) :: start_index
INTEGER, INTENT(OUT) :: end_index
INTEGER :: sday
INTEGER :: eday
INTEGER :: i
PRINT *, start_date
PRINT *, end_date
sday = date2number(start_date)
eday = date2number(end_date)
PRINT *, sday, eday
start_index = 0
end_index = 0
DO i = 1, flength
IF(sday == dates(i)) THEN
start_index = i

END IF
IF(eday == dates(i)) THEN
end_index= i
EXIT

END IF
END DO

END SUBROUTINEfind_indexes
....
END MODULE flowdata

14.1 Exercises

1. Write a main program using the moduleflowdatato read the values of the in-
put file, extract data ranging from the date 01.03.1989 to thedate 31.05.1989
and display the contents of thewater flowon the screen.

2. Take the main program and add code to write the extracted data to a new
file. Then use a program to plot the extracted data (you can useany plotting
program available for you).

3. Add code to the main program to have a user interface askingfor the start
and end date.

4. Run the new main program and extract the data from 01.01.1989 to 31.08.1990
which is what is called a hydrological year and plot the extracted data. Look
at the plot and try to explain the variations in the water flow.

32

15 Introduction to derived data types

Using modules is a way to structure the program code making iteasier to maintain
and utilizing more advanced features writing more secure programs. In order to
make variables easier to access and use as arguments we will now take a look at
deriveddata types.

In the second section we looked at the syntax and then thederiveddata types
was mentioned. To show how we can utilize a derived data type let us take some
of the global data declarations from the module in the previous section and modify
the code as shown below.

TYPE flow
IMPLICITNONE
INTEGER :: flength
CHARACTER(LEN=80) :: filename
CHARACTER(LEN=80) :: cbuffer
INTEGER :: c_position, string_length
INTEGER,POINTER :: dates(:)
REAL,POINTER :: water_flow(:)

END TYPE flow

Here we have taken the variables needed to extract the flow data and packe them
into a derived data type calledflow. Note that in contrast to the original declarations
of the arrays holding the date and water flow we now use thePOINTERattribute.
This is necessary because the syntax demands the use ofPOINTERin stead of
ALLOCATABLEinside aTYPEdeclaration. To declare a variable of their new data
type we use the following code:

TYPE(flow) :: my_data

Here we declare a new variable namedmy_dataof theflowdata type. Note that the
name of the derived data type is enclosed in a left and right parenthesis So how do
we access the variables internal to the derived data type? The syntax for this is that
we use the name of the derived variable, add a percent sign andthen the name of
the internal variable. The code below shows how this can be done.

my_data%filename
my_data%water_flow(1:20)

Even though the variablemy_data%water_flowis aPOINTERwe access the ele-
ments just as we would an ordinary array. Using derived data types is, among other
things, a way to write safer code by using one name to refer to aset of variables of
different types.

A more complicated use of derived data types and modules is the case which
we will look into now. We have a terrain model where the terrain is divided into
a grid and the height for each grid point is stored in an ASCII file. The format
of the file is four header lines where the first is the number of grid points in the

33

y-directionand the next is the number of grid points in thex-direction(i.e. number
of columns and rows), the third line is cell size and the fourth is the no data value.
The rest of the file is the height for each grid point. Our job isto crate a module
that can read the contents of such a file and have the values stored in a derived data
type created for such a data set.

So how do we go about to create such a module? As we already has seen the
file is in ASCII format with header lines and terrain data. First we will create the
derived data type to hold the variables we need.

TYPE terrain_data
INTEGER :: n_cols
INTEGER :: n_rows
INTEGER :: cell_size
INTEGER :: no_value
REAL, POINTER :: heights(:,:)

END TYPE terrain_data

Now we have the derived data typeterrain_datawith all the necessary variables
to hold all information about a specific terrain with the height in each grid point
serves as a topographic map. All we have to do now is to implement the differ-
ent procedures to read the data into the variables. The following code snippets
illustrates how such a module can be created.

MODULE terrain_map
IMPLICITNONE

....
TYPE(terrain_data) :: topographic_map

CONTAINS
SUBROUTINEread_data(f_name, res)
CHARACTER(LEN=80),INTENT(IN) :: f_name
INTEGER, INTENT(OUT) :: res
INTEGER, PARAMETER :: u_number = 10
CHARACTER(LEN=512) :: buffer
INTEGER :: b_start, b_end
INTEGER :: i, j, k, l
OPEN(UNIT=u_number,FILE=f_name,FORM=’FORMATTED’,IOSTAT=res)

....
END SUBROUTINEread_data

END MODULEterrain_map

The first steps to solve the process of reading the data into the variables is the same
as earlier wit the opening of the filename. Note thebuffer which is declared large
enough to hold the longest line in the file with some extra space. Now we come to
the tricky part of the code. How do we extract the values from the buffer variable
into the respective places in theheightsarray? The solution is to split the problem
into smaller parts. The first part is to read the header lines and extract the values

34

into the respective variables in thetopographic_maptype. The following code
solves this problem.

SUBROUTINEread_data(f_name, res)
....

buffer = ’ ’
READ(UNIT=u_number,FMT=’(A)’,IOSTAT=res) buffer
b_end = LEN_TRIM(buffer)
DO i = b_end, b_start, -1
IF(buffer(i:i) .EQ. ’ ’) THEN
READ(buffer(i+1:b_end),FMT=’(I5)’) topographic_map%n_cols
EXIT

END IF
END DO

....
END SUBROUTINEread_data

Since we know that the first line int the file isncols 125with spaces between the
label and the value we have to find the position in the buffer where the value is
placed. To do this we use the functionLEN_TRIMto find the position of the last
non space character in the buffer. Then we loop through the characters from the
found position down to where the first space character beforethe value. The we
simply use theREAD function to extract the value and place it into the variable.
The same algorithm is used to extract the other header values.

the next item on the agenda is to extract the height for each grid point from the
file and into the array. A suggestion on how this can be done is sketched below.

SUBROUTINEread_data(f_name, res)
....

DO i = 1, topographic_map %n_rows
buffer = ’ ’
READ(UNIT=u_number,FMT=’(A)’,IOSTAT=res) buffer
!// Here we write the code to extracteach
!// number from the buffer

END DO
....
END SUBROUTINEread_data

First we have to clear the character buffer for the previous contents. Then we have
to read each line containing the grid points. After we have read the line we have
to extract the values for each grid point and store them it thecorrect position in the
array. Since Fortran is very sensitive to theFORMATwe will use another way to
extract the corresponding integer numbers from the buffer.The function is called
a2i and have to be declared external since it is not an intrinsic Fortran function.
Also we have to traverse the buffer to locate the comma separating one number
from another and to send the digits between two commas to thea2i function which

35

will return the binary number to be stored in the array. The next code example
show how this can be done.

SUBROUTINEread_data(f_name, res)
....

b_end = LEN_TRIM(buffer)
j = 1
l = 1
DO k = 1, b_end
IF(buffer(k:k) .EQ. ’,’) THEN
topographic_map%heights(i,l) = a2i(buffer(j:k-1))
j = k+1
l = l + 1

END IF
END DO

....
END SUBROUTINEread_data

The first thing we do here is to find the position for the last nonspace character in
the buffer and initialize two counter variables. Next step is to traverse the buffer
and find the position of the next comma in the buffer. Finding this we send the
part of the buffer between the commas to the function and stores the result in the
array. Note that this solution contains an error which we will fix now. In the loop
we are not extracting the value after the last comma. To extract this we have to do
it outside the innermost loop. The code would then look like the example below.

SUBROUTINEread_data(f_name, res)
....

b_end = LEN_TRIM(buffer)
j = 1
l = 1
DO k = 1, b_end
IF(buffer(k:k) .EQ. ’,’) THEN
topographic_map%heights(i,l) = a2i(buffer(j:k-1))
j = k+1
l = l + 1

END IF
END DO
topographic_map%heights(i,l) = a2i(buffer(j:b_end))

....
END SUBROUTINEread_data

15.1 Exercises

1. Take the code in the moduleflowdatamodify it to use the derived type flow
and call the moduleflowmoduleso we keep the original code intact.

36

2. Rewrite the main program utilizing the new structure and extract the same
amount of data as in the last exercise in the previous section.

3. Rewrite the part of the code where we extract the data from the buffer into
the variables using a subroutine with two arguments, the buffer and the target
variable.

37

16 Introduction to Object Oriented Programming

It is very likely that you have heard the notionObject Oriented Programmingor
OOPfor short. An excerpt from Wikipedia explains the various parts of the notion
of OOP as:
Object-oriented programming (OOP) is a programming paradigm using "objects",
i.e. data structures consisting of data fields and methods together with their inter-
actions, to design applications and computer programs. Programming techniques
may include features such as data abstraction, encapsulation, polymorphism, and
inheritance.

Data abstractionis explained as:
In computer science, abstraction is the process by which data and programs are
defined with a representation similar in form to its meaning (semantics), while hid-
ing away the implementation details. Abstraction tries to reduce and factor out
details so that the programmer can focus on a few concepts at atime.

Encapsulationis explained as:
In a programming language encapsulation is used to refer to one of two related but
distinct notions, and sometimes to the combination thereof:

• A language mechanism for restricting access to some of the object’s com-
ponents.

• A language construct that facilitates the bundling of datawith the methods
(or other functions) operating on that data.

The notion ofpolymorphismis:
Subtype polymorphism, almost universally called just polymorphism in the context
of object-oriented programming, is the ability to create a variable, a function, or
an object that has more than one form.

Last we have theinheritancewhich is explained as:
In object-oriented programming (OOP), inheritance is a wayto reuse code of ex-
isting objects, establish a subtype from an existing object, or both, depending upon
programming language support. In classical inheritance where objects are defined
by classes, classes can inherit attributes and behavior (i.e., previously coded al-
gorithms associated with a class) from pre-existing classes called base classes or
superclasses or parent classes or ancestor classes. The newclasses are known as
derived classes or subclasses or child classes.
Having explained a few things about OOP we are now ready to tryout the theory
in solving a known problem by using the OOP technique.
In the previous section we used derived data types to encapsulate several variables
that was connected to a data structure. We will now use this and change the code
putting everything into an object which can have several instances with different

38

data values. The object is a part of a module where the type is declared as usual,
but with one exception. The type also has a contains statement where the names of
the procedures to be used is declared. The code snippet showshow this is done.

MODULE class_terrain
IMPLICITNONE
PRIVATE
TYPE, PUBLIC :: terrain
CHARACTER(LEN=80) :: filename
INTEGER, POINTER :: map(:,:) => null()
INTEGER :: n_cols = 0
INTEGER :: n_rows = 0
INTEGER :: cell_size = 0
INTEGER :: no_value = 0

CONTAINS
PROCEDURE :: load => load_data
PROCEDURE :: dump => dump_data

END TYPE terrain
CONTAINS
....
END MODULEclass_terrain

The first difference from the usual declaration of the type isthat we do not enclose
the type name in a set of parenthesis, but use the syntax of an ordinary variable de-
claration. Note also that we have introduces thePRIVATEkeyword which means
that anything not specific declared asPUBLIC is not accessible from outside the
module. This is done to prevent procedures not part of the module to make unin-
tentionally changes to values inside the module. The declaration of a procedure
with the constructfload => load_datagives an alias for the procedureload_data
declared after the contains keyword in the module. In addition we initialize the
pointer to aNULL value using the constructmap(:,:) => null(). Also the other
variables are getting initialized so we can use the intrinsic constructor to create
an instance of the object without having to supply values foreach variable in the
object.

PROGRAMctest
USE class_terrain
IMPLICITNONE
TYPE(terrain) :: td1

....
td1 = terrain(’demfile.dat’)
CALL td1%fload()

....
END PROGRAMctest

Declaring a new object of theterrain type is done the normal way. Then we call the

39

implicit constructortd1 = terrain(’demfile.dat’)where we give the input filename
as the only argument. If we had not initialized the internal variables in the declar-
ation of the type we would have to usetd1 = terrain(’demfile.dat’, null(),0,0,0,0).
Omitting these last arguments to the constructor and not having the internal vari-
ables initialized in advance, the program would not compile.

Having set up the object and learned how to use the constructor to create an
instance of the object we will now take a look at how the rest ofthe module can
be programmed. Using the module from the previous section wenow that we need
at least two procedures, one to read the file, allocate space etc. and one to take the
header lines and extract the values we need to allocate spacefor the terrain map.

CONTAINS
....
SUBROUTINEload_data(this)
CLASS(terrain) :: this
INTEGER, DIMENSION(4) :: vars
INTEGER, PARAMETER :: u_number = 10
CHARACTER(LEN=512),DIMENSION(4) :: buffer
INTEGER :: b_start, b_end
INTEGER :: i, j, k, l, res
INTEGER, EXTERNAL :: a2i

....
END SUBROUTINEload_data

The only argument to theload_datasubroutine is a class variable of type terrain
namedthis. The variable is an instance of the class of type terrain and contains the
filename, the pointer array and the four integer values. The variables local to this
subroutine is used to extract the contents of the file into thevariables of the class
instance. So let us take a look at the rest of the code for this subroutine.

SUBROUTINEload_data(this)
....

OPEN(UNIT=u_number,FILE=this%filename,FORM=’FORMATTED’,IOSTAT=res)
buffer = ’ ’
DO i = 1, 4
READ(UNIT=u_number,FMT=’(A)’,IOSTAT=res) buffer(i)
IF(res /= 0) THEN
PRINT*, ’Error in readingline 1, status ’, res
CLOSE(UNIT=u_number)
RETURN

END IF
END DO

....
END SUBROUTINEload_data

The only difference from this version of the subroutine and the one in the previous

40

section is that we precede the name of the variables withthis% just like we would
for a non object derived type. Of course the local variables for the subroutine is
not preceded bythis%. In addition we use an array of character strings to hold
the header lines in stead of a single character string and another array to hold the
integer values extracted from the header lines.

SUBROUTINEload_data(this)
....

CALLextract_header_lines(buffer,vars)
this%n_cols = vars(1)
this%n_rows = vars(2)
this%cell_size= vars(3)
this%no_value = vars(4)
ALLOCATE(this%map(this%n_rows,this%n_cols),STAT=res)
IF(res /= 0) THEN
PRINT *, ’Allocationfailure, status ’, res
CLOSE(UNIT=u_number)

END IF
....
END SUBROUTINEload_data

Here we have modified theextract_header_linessubroutine to take two arrays as
input arguments. After extracting the values from the header lines we copy them
into the various internal variables for this class instance. The rest of the subroutine
is the same as the one in the previous section.

The next part we have to program is thedump_datasubroutine. It can be
constructed like the code snippet below.

SUBROUTINEdump_data(this)
CLASS(terrain) :: this
INTEGER, PARAMETER :: u_number = 11
INTEGER :: i, j, res
OPEN(UNIT=u_number,FILE=this%filename,FORM=’FORMATTED’,IOSTAT=res)
WRITE(UNIT=u_number,FMT=’(I5)’,IOSTAT=res) this%n_cols
WRITE(UNIT=u_number,FMT=’(I5)’,IOSTAT=res) this%n_rows
WRITE(UNIT=u_number,FMT=’(I5)’,IOSTAT=res) this%cell_size
WRITE(UNIT=u_number,FMT=’(I5)’,IOSTAT=res) this%no_value
DO i = 1, this%n_rows
DO j = 1, this%n_cols
WRITE(UNIT=u_number,FMT=’(I4,A2)’,ADVANCE=’NO’,IOSTAT=res) &

this%map(i,j), ’, ’
END DO
WRITE(UNIT=u_number,FMT=’(A)’,IOSTAT=res) ’ ’

END DO
CLOSE(UNIT=u_number)

END SUBROUTINEdump_data

41

Like the subroutineload_datawe have only the instance of the object as an input
argument. After opening the file we write the four header variables to the file, but
in this version we do not use any preceding header text. Then we loop and write
each value for the columns separated with a comma to the file. Note the use of
ADVANCE=’NO’which prevents the automatic line feed after each write. To write
the column values for the next line we simply write a space character to the file
without theADVANCE=’NO’ to get a new line.

16.1 Exercises

1. Change the dump_data subroutine so that the header lines contains the ncols,
nrows, cellsize and NODATA_value text strings in addition to the values.

2. Write a subroutine to clear the contents of an object instance using the same
type of argument as the load_data and the dump_data subroutines. Note
that the map array has to be deallocated in order so have a completely clean
object instance.

3. Extend the main program with code to create a new instance with a different
name and copy the contents of the first instance into the new one. Hint: you
have to allocate the space for the map array in the new instance before you
can copy the contents from the first instance.

42

A Operators

Operators in Fortran 95 are for exampleIF(a > b) THEN which is a test using
numerical values in the variables. For other types of variables like characters and
character strings we use the constructIF(C1 .GT. C2) THEN.

A.1 Overview of the operators

Table3 gives an overview of the operators

Numerical Other Explanation

** Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

== .EQ. Equal
/= .NE. Not equal
< .LT. Less
> .GT. Greater
<= .LE. Less or equal
>= .GE. Greater or equal

.NOT. Negation, complement
.AND. Logical and
.OR. Logical or
.EQV. Logical equivalence

.NEQV. Logical not equivalence, exclusive or

Table 3: Logical operators

43

B Intrinsic functions

Intrinsic functions in Fortran 96 are functions that can be used without referring to
them via include files like in other languages where functions has to be declared
before being used in the program

B.1 Intrinsic Functions

Table4, table5 and table7 gives an overview of the intrinsicfunctions in Fortran 95

44

Function Argument Result Explanation

ABS Integer real com-
plex

Integer real complex The absolute value

ACHAR Integer Character Integer to ASCII character
ACOS Real Real Arcuscosine
ADJUSTL Character string Character string Left adjustment
ADJUSTR Character Character Right adjustment
AIMAG Complex Real Imaginary part
AINT Real Real Truncate to a whole number
ALL Logical mask, dim Logical True if all elements == mask
ALLOCATED Array Logical True if allocated in memory
ANINT Real Real Round to nearest integer
ANY Logical mask, dim Logical True if all elemnts == mask
ASIN Real Real Arcsine
ASSOCIATED Pointer Logical True if pointing to target
ATAN Real Real Arctangent
ATAN2 X=Real,Y=Real Real Arctangent
BIT_SIZE Integer Integer Number of bits in argument
BTEST I=Integer,Pos=IntegerLogical Test a bit of an integer
CEILING Real Real Leat integer <= argument
CHAR Integer Character Integer to ASCCI character
CMPLX X=Real,Y=Real Complex Convert to complex number
CONJG Complex Complex Conjugate the imaginary part
COS Real Complex Real complex Cosine
COSH Real Real Hyperbolic cosine
COUNT Logical mask, dim Integer Count of true entries in mask
CPU_TIME Real Real Returns the processor time
CSHIFT Array, shift, dim Array Circular shift of elements
DATE_AND_TIME Char D,T,Z,V Character Realtime clock
DBLE Integer real com-

plex
Double precision Convert to double precision

DIGITS Integer real Integer Number of bits in argument
DIM Integer real Integer real Difference operator
DOT_PRODUCT X=Real,Y=Real Real Dot product
DPROD X=Real,Y=real Double precision Double precision dot prod.
EOSHIFT Array-

shift,boundary,dim
Array Array element shift

EPSILON Real Real Smallest positive number
EXP Real complex Real complex Exponential
EXPONENT Real Integer Model exponenet of argument
FLOOR Real Real Integer <= argument
FRACTION Real Real Fractional pert of argument
HUGE Integer real Integer real Largest number

Table 4: Intrinsic functions
45

Function Argument Result Explanation

IACHAR Character Integer Integer value of argument
IAND Integer,Integer Integer Bitwise logical and

IBCLR Integer,pos Integer Setting bit in pos = 0
IBITS Integer,pos,len Integer Extract len bits from pos
IBSET Integer,pos Integer Set pos bit to one
ICHAR Character Integer ASCII number of argument
IEOR Integer,integer Integer Bitwise logical XOR
INDEX String,substring Integer Position of substring
INT Integer real com-

plex
Integer Convert to integer

IOR Integer,integer Integer Bitwise logical OR
ISHFT Integer,shift Integer Shift bits by shift
ISHFTC Integer,shift Integer Shift circular bits in argument
KIND Any intrinsic type Integer Value of the kind
LBOUND Array,dim Integer Smallest subscript of dim
LEN Character Integer Number of chars in argument
LEN_TRIM Character Integer Length without trailing space
LGE A,B Logical String A <= string B
LGT A,B Logical String A > string B
LLE A,B Logical String A <= string B
LLT A,B Logical String A < string B
LOG Real complex Real complex Natural logarithm
LOG10 Real Real Logarithm base 10
LOGICAL Logical Logical Convert between logical
MATMUL Matrix,matrix Vector matrix Matrix multiplication
MAX a1,a2,a3,... Integer real Maximum value of args
MAXEXPONENT Real Integer Maximum exponent
MAXLOC Array Integer vector Indices in array of max value
MAXVAL Array,dim,mask Array element(s) Maximum value
MERGE Tsource,Fsource,

mask
Tsource or Fsource Chosen by mask

MIN a1,a2,a3,... Integer real Minimum value
MINEXPONENT Real Integer Minimum exponent
MINLOC Array Integer vector Indices in array of min value
MINVAL Array,dim,mask Array element(s) Minimum value
MOD a=integer real,p Integer real a modulo p
MODULO a=integer real,p Integer real a modulo p
MVBITS From pos to pos Integer Move bits
NEAREST Real,direction Real Nearest value in direction
NINT Real,kind Real Round to nearest integer value
NOT Integer Integer Bitwise logical complement

Table 5: Intrinsic functions46

Function Argument Result Explanation

PACK Array,mask VEctor Vector of array elements
PRECISION Real complex Integer Decimal precision of arg
PRESENT Argument Logical True if optional arg is set
PRODUCT Array,dim,mask Integer real complex Product along dim
RADIX Integer real Integer Radix of integer or real

RANDOM_NUMBER Harvest = real Real0 <= x <= 1 Subroutine returning a random
number in harvest

RANDOM_SEED Size, put or get Nothing Subroutine to set a random num-
ber seed

RANGE Integer real com-
plex

Integer real Decimal exponent

REAL Integer real com-
plex

Real Convert to real type

REPEAT String,ncopies String Concatenate n copies of string
RESHAPE Array,shape,pad,orderArray Reshape source array to array
RRSPACING Real Real Reciprocal of relative spacing of

model
SCALE Real,integer Real ReturnsX · bI

SCAN String,set,back Integer Position of first of set in string
SELECTED_INT_KIND Integer Integer Kind number to represent digits
SELECTED_REAL_KINDInteger Integer Kind number to represent digits
SET_EXPONENT Real,integer Resl Set an integer as exponent of a

realX · bI − e

SHAPE Array Integer vector Vector of dimension sizes
SIGN Integer real,integer

real
Integer real Absolute value ofA · B

SIN Real complex Real complex Sine of angle in radians
SINH Real Real Hyperbolic sine
SIZE Array,dim Integer Number of array elements in

dim
SPACING Real Real Spacing of model number near

argument
SPREAD Source,dim,copies Array Adding a dimension to source
SQRT Real complex Real complex Square root
SUM Array,dim,mask Integer real complex Sum of elements
SYSTEM_CLOCK Count,count,count Trhough the argu-

ments
Subroutine returning integer
data from a real time clock

Table 6: Intrinsic functions

47

Function Argument Result Explanation

TAN Real Real Tangent of angle in radians
TANH Real Real Hyperbolic tangent
TINY Real Real Smallest positive model repres-

entation
TRANSFER Source,mold,size Mold type Same bits, but new type
TRANSPOSE Matrix Matrix The transpose of matrix
TRIM String String REmove trailing blanks
UBOUND Array,dim Integer Largest subscript of dim in array
UNPACK Vector,mask,field Vector type, mask

shape
Unpack an array of rank one into
an array of mask shape

VERIFY String,set,back Integer Position in string not in set

Table 7: Intrinsic functions

48

