A Fortran 2003 introduction by examples

Gunnar Wollan

2012

1 Introduction

The purpose of this book is to give a good insight in the Far2803 program-
ming language.by going through a number of examples shoWwivg computa-
tional problems and the reading and writing data to files @asdived.

2 Why use Fortran?

In the last 15 to 20 years Fortran has been looked upon as dastigbned un-
structured programming language by researchers and ssuitethe field of In-
formatics. Fortran has lacked most of the features foundddem programming
languages like C++, Java etc. Especially the lack of objgentation has been the
main drawback of Fortran. This is no longer true. Fortran308s all the modern
features including®OP (Object Oriented Programming).

The reason we still use Fortran as a programming languageceue of the
exeecutiorspeedof the program. In the field of natural sciences, computetukim
tions of natural phenomena are becoming increasingly nngpeitant. Laboratory
experiments are getting too complex and too costly to beopmdd. The only al-
ternative is to use a computer simulation to try to solve tlablem under study.
Thus the need to have your code execute faster becomes ntbnecai@ important
when the simulations grows larger and larger. In numbenaing Fortran still
has an edge in speed over C and C++. Tests has shown that arizeptiFortran
program in some cases runs up to 30 percent faster than thaleqa C or C++
program. For programs with a runtime of weeks even a smalease in speed
will reduce the overall time it takes to solve a problem.

2.1 Historical background

Seenin a historical perspective Fortran is an old progrargi@inguage. 1954 John
Backus and his team at IBM begin developing the scientifiggamming language
Fortran. It was first introduced in 1957 for a limited set ofrqauter architectures.
In a short time the language spread to other architectur@shas since been the
most widely used programming language for solving numépaablems.

The name Fortran is derived froformula Translation and it is still the lan-
guage of choice for fast numerical computations. A couplgeairs later in 1959
a new version, Fortran Il was introduced. This version wasenamlvanced and
among the new features was the ability to use complex nurmdratssplitting a
program into various subroutines. In the following yearstifem was further de-
veloped to become a programming language that was fairfyteasaderstand and
well adapted to solve numerical problems.

In 1962 a new version called Fortran IV emerged. This versiad among
it's features the ability to read and write direct accessfdad also had a new
data-type called LOGICAL. This was a Boolean data-type with statedrue or
false At the end of the seventies Fortran 77 was introduced. Téiisian con-
tained better loop and test structures. In 1992 Fortran %0faranally introduced
as an ANSI/ISO standard. This version of Fortran has madéatiguage into a
modern programming language. Fortran 95 is a small extersfid-ortran 90.
These latest versions of Fortran has many of the featurexpecefrom a mod-
ern programming languages. Now we have the Fortran 2003hwhaorporates
object-oriented programming with type extension and iithiece, polymorphism,
dynamic type allocation and type-bound procedures.

3 The Fortran syntax

As in other programming languages Fortran has it's own sy shall now take
a look at the Fortran 2003 syntax and also that of the Fortrasyiitax.

4 The structure of Fortran

To start programming in Fortran a knowledge of the syntaxhef language is
necessary. Therefore let us start immediately to see howdhean syntax look
like.

Fortran has, as other programming languages, a divisiomeoédde into vari-
able declarations and instructions for manipulating th&texts of the variables.

An important difference between Fortran 77 and Fortran 28GBe way the
code is written. In Fortran 77 the code is written in fixed fatrwhere each line
of code is divided into 80 columns and each column has its owammg. This
division of the code lines into columns has an historicalchkground. In the
1960s and part of the 1970s the standard media for data inasitire punched
cards.

|||

LR HIE T ::IH!!!.‘.;!!H!!_H‘!HZ. IHEAHR B 22l

Figure 1: A punched card

They were divided into 80 columns and it was therefore néjuta set the
length of each line of code to 80 characters. In table 1 arvawrof the subdivi-
sion of the line of code is given.

Column number Meaning
1 A character here means the line is a comment
2-5 Jump address and format number
6 A character here is a continuation from previous line
7-72 Program code
73-80 Comment

Table 1: F77 fixed format

Fortran 77 is a subset of Fortran 2003 and all programs writté=ortran 77

can be compiled using a Fortran 2003 compiler. In additidhedixed code format
from Fortran 77, Fortran 2003 also supports free formatrandirhis means that
the division into columns are no longer necessary and thgrgno code can be
written in a more structured way which makes it more readabtéeasier to main-
tain. Today the free format is the default settings for thefda 2003 compiler.

4.1 Datatypes in Fortran

Traditionally Fortran has had four basic datatypes. TheseeUNTEGER and
REAL numbers, LOGICAL which is a boolean type and CHARACTERieh
represent the alphabet and other special non numeric tyja¢st the REAL data
type was split into the REAL and COMPLEX data type. In addititm this a
derived datatype can be used in Fortran 2003. A derivedygistatan contain one
or more of the basic datatypes, other derived datatypesnaadidition procedures
which is a part of the new OOP (object Orientee Programmiegfuires in Fortran
2003.

4.1.1 INTEGER

An INTEGER datatype is identified with the reserved word INGER. It has a
valid range which varies with the way it is declared and thehigéecture of the
computer it is compiled on. When nothing else is given an IISHR has a length
of 32 bits on a typical workstation and can have a value frer¢!] to [23°] and a
64bit INTEGER with a minimum value frorf-253] to a maximum value of2%2].

41.2 REAL

In the same manner a REAL number can be specified with variaoges and
accuracies. A REAL number is identified with the reserveddMREAL and can
be declared with single or double precision. In table 2 thelmer of bits and
minimum and maximum values are given.

Precision| Sign | Exponent| Significand| Max. value| Min. value
Single 1 8 23 9128 5—126
Double 1 11 52 51024 5—1022

Table 2: REAL numbers

A double precision real number are declared using the redererds DOUBLE
PRECISION or REAL(KIND=8) this last is now used as the prefdrdeclaration
of a double precision real number.

An extension of REAL numbers are COMPLEX numbers with theal rand
imaginary parts. A COMPLEX number is identified with the mresel word COM-
PLEX. The real part can be extracted by the function REAL() tre imaginary

part with the function AIMAG(). There is no need for writing@icit calculation
functions for COMPLEX numbers like one has to do in C / C++ viahiacks the
COMPLEX data type.

4.1.3 LOGICAL

The Boolean datatype is identified by the reserved word LOX&I@nd has only
two values true or false. These values are identified witHJERor .FALSE. and

it is important to notice that theoint at the beginning and end of the declaration is
a necessary part of the syntax. To omit one or more pointsgivil a compilation
error.

414 CHARACTER

The CHARACTER datatype is identified by the reserved word BAESTER and
contains letters and characters in order to represent watagadable form. Legal
characters are among otharto z, Ato Z and some special characters-, *, / and

4.1.5 Derived datatypes

These are datatypes which are defined for special purposdsrived datatype is
put together of components from one or more of the four baatatgpes and also
of other derived datatypes. A derived datatype is alwaystified by the reserved
word TYPE namas prefix andEND TYPE namas postfix.

4.2 Declaration of variables

In Fortran there are two ways to declare a variable. The firsalled implicit de-
claration and is inherited from the earliest versions otfaor. Implicit declaration
means that a variable is declared when needed by giving itie eamywhere in the
source code. The datatype is determined by the first lettbeinariable name. An
INTEGER is recognized by starting with the lettéreo N and a REAL variable
by the rest of the alphabet. It is important to notice that pecg&l characters are
allowed in a variable name only the lettéks Z, the number® - 9 and the under-
score character. A variable cannot start with a number. In addition a LOGICAL
variable is, in most compilers, identified by the letter

The other way of declaring a variable is by explicit decliaat This is in ac-
cordance with other programming languages where all ia@satas to be declared
within a block of code before any instructions occurs.

As a general rule an implicit declaration is not a good wayrtlgpam. It gives
a code that is not very readable and also it is easily intredwrcors in a program
due to typing errors. Therefore always use explicit detilameof variables. To be
certain that all variables has to be declared all prograumsitions and subroutines
should have as the second line in the declaration the keypabtELICIT NONE

This tells the compiler to check that all variables has besteded. Some variables
must always be declared. These are arrays in one or more siionerand character
strings.

4.2.1 Declaration of INTEGERS

First an example of how to declare an INTEGER in Fortran 95.
| NTEGER Do

| NTEEER K N3-2) S
| NTEER K ND>4) ok
| NTEGER K N3-8) im

| NTEGERD MENS O4100) : : n

As seen in the preceding examples there are certain ditfeseim the Fortran 77
and the Fortran 95 way of declaring variables. It is less tibewwhen the vari-
ables are declared in the Fortran 77 style but this is offggfrbater readability in
the Fortran 95 style. One thing to note is that in Fortran 9%raroent can start
anywhere on the code line and is always preceded by an exitsmnpeint.

4.2.2 Declaration of REAL numbers

The REAL datatype is now in most compilers confirming to thEHStandard for
floating point numbers. Declarations of single and doubéeigion is declared like
in the next example.

REAL D ¢
REAL(KI N3=8) Ly
REAL, DO MENS (O{200) 4

4.2.3 Declaration of COMPLEX numbers

Fortran has, unlike C/C++, an intrinsic datatype of compiambers. Declaration
of complex variables in Fortran are shown here.

QOMPLEX ioa

COMPLEX O MENS O100) :: b

4.2.4 Declaration of LOGICAL variables

Unlike INTEGERS and REAL numbers a LOGICAL variable has dmp values,
.TRUE. or .FALSE. and therefore only uses a minimum of spdt¢® number of
bits a LOGICAL variable is using depends on the architecamd the compiler.
It is possible to declare a single LOGICAL variable or an wroh them. The
following examples shows a Fortran 77 and a Fortran 95 csabar. In other pro-
gramming languages the LOGICAL variable is often called ZBEBAN variable
after Boole the mathematician.

LG3 CAL !
LG3 CA, DMENE O{100) :: 12

4.2.5 Declaration of characters

Characters can either be declared as a single CHARACTERblaria string of
characters or an array of single characters or charactegstr

GHARACTER o cl
CHARACTER (LBENSBO) N o4
CHARACTER O MENS (Y 10) 11 c3

CHARACTER (LENS0), D MENS OM10) :: c4

4.2.6 Declaration of derived datatypes

The Fortran 95 syntax for the declaration of a derived dptatan be lijke the one
shown here.

TYPE deri ved
| NTEEER ;1 count er
REAL ;1 nuniber
LG3 CAL ;. used

CHARACTERLENLO) :: string
END TYPE deri ved

TYPE (deri ved) Il ony_type

One question arises: why use derived datatypes? One arsthet s that some-
times it is desireable to group variables together and ter rief these variables
under a common name. It is usually a good practice to selestre of the abstract
datatype to indicate the contents and area of use.

4.3 Instructions

There are two main types of instructions. One is for prograntrol and the other
is for giving a variable a value.

4.3.1 Instructions for program control

Instructions for program control can be split into threeugrs one for loops, one
for tests (even though a loop usually have an implicit test) the last for assign-
ing values to variables and perform mathematical operat@nthe variables. In
Fortran all loops starts with the reserved w@@. A short example on a simple
loop is given in the following piece of code.

DOi =1, 100

B\D DO

The next example shows a non terminating loop wherg-atest inside the loop is
used to exit the loop when the result of the test is true.

B9

a=a* SRI(b) +c
IF(a>2) THN

EXT
B\DIF
B\D DO

This small piece of code gives the varialsle value from the calculation of the
square root of the variabkeand multiplied with the last value @fand the addition
of variablec. When the value dodiis greater then the value of varialdéhe program
transfer control to the next instruction after the loop. VEsumes here that all
the variables has been initialized somewhere in the prodpefore the loop. The
various Fortran instructions will be described in the foflog chapters through the
examples on how problems can be solved by simple Fortrarr g

5 A small program example

To make things a little clearer we shall take a small problechgrogram it using
what we have learned so far. The problem is to write a smadirara calculating
the daynumber in a year according to the date. We assumehthgesr is no a
leapyear.

We start by writing the program skeleton and then fill it uphatihe code to
solve the problem.

PROEAMdaynuntoer
| MPLI A T NONE

BN\D PROERAMdaynuniper

All Fortran programs begins with the reserved wBfdOGRAMand then the pro-
gram name. In our case the program nanaeignumber The sentencéMPLICIT
NONEshould be mandatory and is to prevent the use of implicitatatibns which
has been, and still is the default behavior of the Fortranpiiem

The next step is to declare some variables and constantf wiei@are going to
use calculating the daynumber.

PROGRAMdaynunioer
| MPLI A T NONE
| NTEGR ;. count er
| NTEGERO MENS OM12) :: nonths
| NTEEER .. day, nonth
| NTEEER ;. daynr
BN\D PROERAMdaynuniper

We have here declared four integer variables and one insegay with 12 ele-
ments. The first variable is a counter variable which will Isedito traverse the
array to select the number of days in the months before tlemgnonth. A variable
to hold the day and month is also there together with the br@daynrwhich will
contain the result of the calculations.

Then we will have to perform some initializing of the arrdye tday and month.

PROGRAMdaynunioer
| MPLI A T NONE
daynr =0
day = 16
nonth =9
nonthg(:) =30
BN\D PROERAMdaynuniper

Initializing the scalar variables is not difficult, but uiyave would have to ini-
tialize each element of the array separately. Fortran 952888 has a built in
functionality allowing us to initialize a whole array witme value. The next step
is to change the number of days in the months that has 28 on&l da

PROGRAMdaynunfoer
| MPLI A T NONE

nonths(1) =31
nont hg(2) = 28
nont hg(3) = 31

BEND PROG=AMdaynunioer

The rest of themonthshas to be initialized likenonths(1), months(3nd so forth
for month number 5, 7,8 10 and 12.

The next step is to loop through all the elements inrtt@thsarray up to the
month minus one and sum up the number of days in each mothhetdaynr
variable. After that we just add the value from the variaddg to the daynr and
we have our wanted result. To show the result we can use thmaodPRINT *,
daynrwhich will display the number of days for the given date ondisplay.

PROGRAMdaynunioer
| MPLI A T NONE

DOcounter =1, nonth- 1
daynr = daynr + nont hs(count er)
BE\D DO
daynr = daynr + day
PR NT *, daynr
BEN\D PROE=AMdaynuntoer

In order to have a executable program we have to compile ite ddmpilation
process takes the source code and creates a binary file limkéth the necessary
system libraries so we can run th prgram. We use an open soonagiler called
gfortran and the syntax for compiling is shown here

gf ortran-o daynr daynr.f 90

wheregfortran is the name of the compiler program, the argumentneans that
the next argument to the compiler is the name of the exeautadolgram and the
last argument is the name of the file containing the source.cod

The resulting output from out program with theonth = 9and theday = 16is
259 You can use a calculator and perform the calculations by baicheck that
the result is correct.

So what have we learned here? We have learned to never useitmigtlara-
tions of variables which is very important. There is a stoonf the seventies about

10

implicit declarations where a typing error created an uigilized variable causing
a NASA rocket launch to fail and the rocket had to be destrdyefdre it could
cause sever damage.

5.1 Exercises

1. Use the code in this section and fill in what is missing. Cibenghe code
and try to run it

2. Given a radius write a program calculating the circumfeecof a circle,
compile and run the program and check that the result is ciorre

3. Given a radius write a program calculating the surface cfde, compile
and run the program and check that the result is correct.

4. Given a radius write a program calculating the volume gfteese, compile
and run the program and check that the result is correct.

11

6 Interaction with the user

In the preceding example we had the day and month values as @f fize source
code. if we should change the month or the day we had to do thegehin the
source code and compile the program again before we coulid and get the new
result. this is time consuming and absolutely not usenétig To remedy this we
add a few lines to the program after the variable declarat&hmown in the code
below.

PROGRAMdaynunioer
| MPLI A T NONE

PRNT*, "Enter the day nunber inthe nonth "
REARR*, *) day

PRNT *, "Enter the nont h nunier: "

REAY*, *) nont h

BEND PROG=AMdaynunioer

We use thePRINT *, to display a prompt and then tiREAD(*,*) to read the
keyboard input into the selected variable. Now we have a rmumte user-friendly
program which will prompt the user for an input for each vialéawe need. The
READ(*,*) converts the ASCII characters into a binary number cormegdipg to
the variable name after tHREAD(*,*) statement.

It is not a very good programming practice to have text preniatrd coded
like we have done here, but we should declare a text variaditegihe CARAC-
TER(LEN=??)syntax and put the text into the variable. Using this for ladl text
we have a much more readable code which is important whenrtigggm code
grows larger than a few lines. So let us again change the aumogode utilizing
this.

PROGRAMdaynunioer
I MPLI A T NONE
CHARACTER LENS35) .. day_pronpt
GHARACTERLEN24) > > nont h_pr onpt

day pronpt = "Enter the day nunber inthe nonth "
nont h_pronpt = "Ent er t he nont h nunber: "

PR NT *, day_pr onpt
REAY™, *) day

PR NI *, nont h_pr onpt
REAY*, *) nont h

12

BN\D PROERAMdaynuniper

One thing is that when we use tRRINT*, syntax the cursor automatically ad-
vances to the next line. It is much easier to have the cursppstg at the end
of the prompt waiting for the user input. We can change thtzab®r by repla-
cing thePRINT *, with another functioWRITE()which allows us to suppress the
automatic linefeed. The following code shows hw we can do it.

PROE3RAMdaynuntoer
| MPLI A T NONE

i/ﬁil'&’*,Fl\/r:’ (A’ ,ADVANE"ND) day_pronpt
REAR™, *) day

VR TH *, FVI= (A", ADVANCE="ND) nont h_pr onpt
REAY*, *) nont h

BN\D PROERAMdaynuniper

The syntaxWRITE(*,FMT="(A)’,ADVANCE="NO")tells the compiler that the
outputis ASCIl text FEMT="(A)") and also to suppress the linefe@dDVANCE="NO".
The* in the first argument to th&/RITEfunction means that the output is to the
screen and not to a file.

6.1 Exercises

1. Use the first code in this section and fill in what is missif@pmpile the
code and try to run it.

2. Make the changes to the program so the cursor stops adt@rempt, com-
pile the program and run it. Note the in the way the prograraradt with
the user and see which approach you find you like best.

3. Take the programs calculating the circumference, ardara@lnme from the
exercises in the previous section and write one programewu shall use
the user interface code from this section asking the userttr a radius and
the calculate all three values and display them on the screen

13

7 Using command line argument for running programs in
batch mode

A user dialog is what we mostly use today to interact with a jgoter program
filling in values and click on a button. This is satisfying irost cases, but if we are
to run the same program with different input values the attive use of menus
and dialog boxes can take too much time. Back in the "prefii$tome of com-
puter science all programs were run in what is cabbatth modehat is there was
no interactivity with the user. The program got the inputuesl from the com-
mand line on the terminal. Large simulation models mosthsuthis "prehistoric”
approach for getting input values to the program or the waére read from a file.
In this section we will take a look at how we can pass the conthliae argu-
ment in to a Fortran program and run it in batch mode. So ledkes the program
from the previous section and modify it to accept both conuirlare arguments
and a user dialog. The code below, borrowed from the pre\season where we
calculated the day number for a given month an day, shows hisvean be done.

PROE3RAMdaynuntoer
I MPLI A TNONE
| NTEGER . nargs
CHARACTERLENE20) o buffer

nar gs = COMVMND ARGIMENT_CONT ()
| {nargs < 2) THEN
VR TE *, FVIE (A’ , ADVANCE"ND) day_pr onpt
REAY™, *) day
VR TH *, FVI= (A’ , ADVANCE="ND) nont h_pr onpt
REAY*, *) nont h
BSE
buffer ="’
CALL GET_GOMMAND ARGUMENT 1, buf f er)
REAXTR Mbuf fer), FMIZ (1)’) day
buffer ="’
CALL GET_GOMMAND ARGUMENT 2, buf f er)
REAC¥ TR Mbuf fer), AMIZ (1)) nont h
B\DIF

BEND PROG=AMdaynunioer

A little explanation might be a good idea here. First we declavo variables
which we will use to check if there is enough input argumeatthée program and
to store each argument as we retrieve them from the systemfuhictionCOM-

MAND_ARGUMENT_COUNT¢eturns the number of command line arguments
which we then checks to see that we have at least two arguméintge have
enough arguments we use the subrou@®tl COMMAND_ARGUMENWhich

14

has two arguments, the first is the argument number, thaeiért, second etc.,
and the second argument is a character string to hold thenargfu In our case the
first argument is the day and the second argument is the mdrithwe use the
READfunction to convert the digits to an integer.

8 Exercises

1. Take the code above and extend the test to see that we tatlydéwo input
arguments and if the number of input arguments is greatertihia print a
usage message and exit the program.

15

9 The Basics of File Input/Output

In the previous section we was exploring the input from thgkard and the output
to the display. In most Fortran programs the input of values@ad from files and
the result written to another file. We shall now take an ongirtaxt file (ASCII

text) and as an example on how to read the contents of a filam&ray of values.

PROERAMr eadval ues
| MPLI A T NONE

BEN\D PROGRAMr eadval ues

As usual we start with the program skeleton and add the naggggogram code as
we proceeds. First we need to know how the input file looksdikeve can declare
the correct array to read the values into. The firs seven Imé%e file looks like
this:

Nuniber of lineswthval ue pairs 12481
Dot e Vet er-fl ow

717976 7.140
717977 6.570
717978 6.040
717979 5.780
717980 5.530

The first line tells us the number of lines which contains thtedand value pairs.
Note that the date is the number of days since January thedastzero and the
value pairs are separated with the "tab" character.

So how do we go about getting the contents of this file into aayafor the
dates and another for the water-flow values? First of all wexlrte declare some
variables which will be used for opening the file and read trgents line by line.

PROGRAMr eadval ues
I MPLI O T NONE
| NTEGER PARAMETER o lun=10
| NTEER ores i
CHARACTER LENSB0) ;. chuffer
| NTEEER .. flength
| NTEGERALLCCATAB ED MENS ;) :: dates
REAL ALLCOATABLED MENS ;) @ : water flow

BN\D PROZRAMIr eadval ues

Now we have declared an integer constant "lun" with the vallleThis constant
will be used as a file pointer for opening and reading the filee Mext step is to
open the file using th®@PENfunction.

PRO3RAMr eadval ues
| MPLI A T NONE

16

CPENWN ™ unH LEE"wat er f | owt xt", FORW'FORVATTED, | CBTAT= es)
| Hres /=0) THEN

PRNT*, "Brorinopeningfile status. ', res

STCP
BDIF

BN\D PROZRAMIr eadval ues

The arguments for th@PENfunction are first the unit number, then the filename,
next is the form of the file which in this case FKORMATTEDmeaning it is a
readable text file and last is the return status from the Uyidgroperating system.
If the file was opened properly the return status is zero whvelused anF test to
test. If an error occurred the return status would be a numiifferent from zero
and we would then stop the program.

Assuming the opening of the file was ok we proceed to read thlifie into
the variablecbuffer

PRO3RAMr eadval ues
| MPLI A T NONE

READFUN TH un FMI= (A, | GBTATr es) cbuf fer

| Hres /=0) THEN
PRNT*, "Brorinreadingfile status. ', res
A.CGHWN ™ un)
STCP

B\DIF

BEN\D PROGRAMr eadval ues

Again we have some arguments to READfunction. Firs is, as always, the unit
number followed by the format which is in this case an ASClarettter string
(FMT="(A)") and the last is the return status from the underlying opeyatystem.
Outside the parenthesis enclosing the arguments is thetladbuffer where the
value will be placed. If an error occurs we close the file usirCLOSEfunction
and the stops the program. Now that we have the first line rdadhe variable we
can convert the character string into an integer usingRBADfunction we used
to rad the first line from the file. Of course we have to extrhetfile length from
the character string since the file length is the last pahérstring.

PRO3RAMr eadval ues
| MPLI A T NONE

| NTEEER ;. c_position string length
string | ength = LEN TR Mcbuf f er)
c position=1NXE{cbuffer,’:")

17

REA¥cbuf f er(c_posi tionrl:string length,AMI= (118)) flength

BN\D PROZRAMIr eadval ues

To extract the file length we has to find the position of the ndfothe string and
we use thdNDEX function to get the character position in the string. To fine t
last non blank character in the string we use tfiEN_TRIMfunction. Now we
have the position where teh number starts and ends iakiliéer string and to get
the ASCII digits into an integer we use tREADfunction to read the contents of
the part of thecbufferinto theflengthusing the internal conversion functionality in
the READfor the conversion.

Now that we have the length of the file we can start to allocagenhemory
space we need to be able to read the dates and values inttottagadhle variables.
To get the memory space we need we useAhEOCATEfunction on both the
datesandwater_flowas shown in the next example.

PRO3RAMr eadval ues
| MPLI A T NONE

AL GCATH dat es(f | engt h), STAT es)

IF(res/=0) THEN
PRNI*, '"BEror inallocatingnenory status. ', res
A.CHW ™ un)
STCP

B\DIF

BN\D PROZRAMIr eadval ues

Like in the file operations we get a return status from the tcathe ALLOCATE
function and any status number except zero is an error. Wadkbdbvays perform
a test on return status to catch possible errors. Note thiae iLLOCATEwe have
two arguments, one is the allocatable variable and the deisotne return status
which here is preceded with tl8TATin contrast to theOSTATfor file operations.

All we have to do now is to skip the next header line and readdktof the
file into the respective variables.

PRO3RAMr eadval ues
| MPLI A T NONE

READJUN TH un FMIZ (A’ , | CBTST=r es) chbuf fer
DOi =1, flength
REARWN TH un AVIZ (16 X F6.3)’) dates(i), water flowi)
BE\D DO
BN\D PROG=AMr eadval ues

The only difference from the previous call to tREADiInside the lopp is that we
have a more complex formatting statement. Theneans we have an integer with

18

six digits, theX means we skip this character and the last item tells us thhewe
a real number with a total of six positions including the deali point. Also we
have two variables in stead of one where the variabethe index (or counter)
variable telling in which position of the two arrays we waatglace the values
from the file. What is missing from this code is the test of ttaus variable and
the error handling.

10 Binary files

In the previous section we took a look at ordinary text fil_SClI files). In this
section we will take a look at the binary files which is mostsed by Fortran
programs.

We start by asking what the difference is between a text fittahbinary file.
A text file is a file which can be displayed in a readable formrathe screen and
modified by using an ordinary text editor. In contrast a bynfile will not be
displayed in a readable format and cannot be modified by wsiegt editor. The
example below shows how a part of a binary file would look liketloe screen.

=

-@

=1@

<BD>5@

<BD5@CD<0C<OC<CC<CC<CC8@
=<8A>7@9A<OP<IP<OP<9PY6 @A =

+HAOC<CC<OC<OC<CC<CC~ @B3"\<85<EB(B<(@_<85<EB-GB3<9%E>
AQ<BP<C2><F5>(<9CBEEED

<CD<OC<OC<0C<0CL DE@B5<EB-GB3><85-B@B3>"\<85<EB-GB3>@R)
MEBABGEZNT. @R<8R<C2=<F5>(\ 7@

The data this shows is really a set of numbers.

14. 7200
17. 2400
21. 7400
21. 7400
24. 8000
23. 5400
22.1000
13. 8200
14. 9000
28. 2200

So why, can we ask, do we use binary files at all? The answeolage space
and the speed of writing data to a file and reading data fronealfiét us take an
example of one large number liK88734991.34467991269113¢here each digit
uses one byte8(bits) of memory and storage and therefore would use 24 bytes to

19

represent this number. In contrast a single precision nuen®Es only 4 bytes and
a double precision number uses 8 bytes. So each time we weaddthis number
from a disk file or write it to a disk file we could read 3 binarymmipers with the
same speed as one numbeA&CIItext. In addition the computer would use time
to convert the number from th&SCII representation to the binary counterpart. If
we had a very large file (which is very common in the field of natsciences) we
waste a lot of time usindSCII numbers.

Let us take look at how we perform binary 1/0 operations ustogran. Like
the text files we have to open it before we can access the ¢enfEne following
code snippets shows how we open a binary file and read thentsiitéo an array.

PROGRAMr eadbi nary

| MPLI A TNONE

| NTEGEER PARAMETER ;o lun=10

| NTEER ores i, |
REAL ALLGCATABLED MENS ;) ;. tenperatures

BEN\D PROG=AMr eadbi nary

We use a unit number to refer to the file once we have opende e did for text
files. The file contains a set of temperatures. The first enttie file is an integer
number containing the size of the temperature data which &rigle precision
format.

PROGRAMr eadbi nary
I MPLI A TNONE

CPENWIN ™ unH LE2 tenper at ur e bi i, FORW UNFGRVATTED, | CBTAT= €9)
| Hres /=0) THEN

PRNT*, "BErorinopeningfilé

STCQP
B\DIF

BN\D PRO3RAMr eadbi nary

After opening the file we have to allocate space for the aredgrie we can read the
data from the file into the array. To do this we first have to ris@dnteger number
to get the legnth of the array

PROG3RAMr eadbi nary
| MPLI A T NONE

REAFUN ™ un | CBTATr e9) |

| Hres /=0) THEN
PRNT*, "Brorinreadingfilé
A.CGHWN ™ un)
STCP

20

B\DIF

ALLGCATEt enper at uer (1), STATr es)

| Hres /=0) THEN
PRNT*, "BEror inallocatingspacée
A.CGHWN ™ un)
STCQP

B\DIF

BN\D PRO3AMr eadbi nary

It is a good programming practice to test if any I/O operafaifes. The same is
for the allocation of memory space. It is no use to continuautothe program if
we cannot get the data or allocate space for the data in mer8orgow we have
allocated space and can start to read the data into the array.

PROGRAMr eadbi nary
| MPLI A T NONE

REACYUN TH un | GSTAT=r es) t enper at ure
I {res/=0) THEN
PRNT*, "Brorinreadingfilefilé
STCP
BE\DIF

BEN\D PROG=AMr eadbi nary

In contrast to the text file we read the whole dataset in oneatipe thus sav-
ing execution time. Also there is no need to convert frABCII digits to binary
number since the data is stored as binary numbers. Now thhbawe gotten the
temperatures into the array we can perform the operatiotiseodata as we wish.

In addition to ASCI! files and binary files Fortran has a thiypgd of files. it is
called aNAMELISTfile. A namelist file is used to load values to a set of variables
in one read operation without specifying any variables ivéog data like in an
ordinary read. So how are we using this namelist construdi@ cbde example
below shows how this can be done.

PROE=AMnnh_t est

I MPLI A TNONE

| NTEGEER PARAMETER ;o lun=10
| NTEGER 1o res

| NTEEER XY Z
| NTEEER o

NAMELIST/ints Xy, z |

BND PROEAMINnh_t est

21

The line containing th&lJAMELISTis split into three parts. First it is the keyword
namelist, then the name of the namelisits/ in this case and Ist the variables
belonging to the namelist. Note that the name of the namsl@siclised in slashes.
To read the contents of the namelist file we open it as an ardfila, but we use
another use of the read function. The code below shows havc#n be done.

PROE=AMnnh_t est
| MPLI A T NONE

CPENWN ™ un A LE2 ", STATUS® ALD, | GSTAT es)
REACFUN TH un NM= nt 5 | CBTAT= es)
BEND PROGRAMInnh _t est

So how does a namelist file look like? The code below shows momaaelist file
for theints namelist is written.

&ints
x =10
y=14
Z=6
| =99
/

The first line starts with an ampersa&dfollowed by the name of the namelist.
The next lines is the variables we have declared togethér thvit values for each
variable. Te last line is a slaghdenoting the end of the namelist. A namelist file
can have several namelists each namelist enclosed in thersamgal and slash.

10.1 Exercises

1. Write a program which reads the contents of a short AS@lirfilo an array,
perform the calculatiomrray(i) = array(i) + i and save the result in a
new file

2. Do the same, but this time read and write in binary format

22

11 Introduction to functions

In the previous section we learned how to read ASCII data fadike and allocating
memory space for arrays using several intrinsic functidtesOPEN etc. Fortran
has a large amount of intrinsic functions, but sometimes itdcessary to write
your own to break down a complex problem into smaller moreaganble parts.
In this section we shall make an introduction to writing yown functions.

Let us take the program calculating tth@ynumbeiand add a function deciding
if we have a leap year. The program would then have an additideclaration
of the functionleapyear As we know we have to declare our own functions as
an external function. The code snippet show how we declarxtarnal logical
(boolear) function.

PROEAM
I MPLI O T NONE
LO3 CA, BEXTEHR\AL .. | eapyear
| NTEGER 1 oyear
| K|l eapyear(year)) THEN
nont (2) =29
BSE
nont (2) = 28
BE\DIF
B\D PROG=AM

For those who are familiar witMatlab knows that each function has to reside in
a separate file with the same name as the functiokoltran we can have several
functions in the same file. The next code example shows howragrgm the
leapyearfunction.

FUNCTI ONI eapyear(year) RESLLT{i sl eapyear)

I MPLI O T NONE
I NTEGER | NTENI(I N ;. oyear
L3 CAL .1 i sl eapyear

BEN\D RUNCT1 ON| eapyear

The declaration of a function starts with the keyw&dNCTIONthen the name
of the function, the input arguments and finally the keywBRESULTwith the
variable holding the result of the function as the outputiargnt. The type of the
output argument defines the type of the function. In our caséhave dogical
function, but we can have functions returning a value frohofbur datatypes.
So let us program the rest of theapyearfunction. Note the use of the construct
INTENT(IN)which prevents us to overwrite the contents of the input rzueyut.

FUNCTT ONI eapyear(year) RESLLT{i sl eapyear)

23

[MPLI A T NONE

I NTEAR ;. resl res2 res3
i sl eapyear = .FALSE
resl = MIjyear, 4)
res2 = MIyear, 100)
res3 = MIjyear, 400)
PRNI*, resl res2 res3
| {resl==0) THaN
IH(resl=0) .A\D (res2=0) .AND (res3/=0)) THEN
i sl eapyear = .FALSE
RETLRN
B\DIF
I (resl=0) .A\D (res2=0) .A\ND (res3=0)) THN
i sl eapyear = . TR.E
RETLRN
B\DIF
i sl eapyear = . TR.E
RETURN
B\DIF
BEN\D RUNCT1 ON| eapyear

A little explanation of what we have done here might be appabe. We have
declared three help variables to contian thedulodivision of the year and the
nubers 4, 100 and 400. As we all know the formula to deternfimeyiear is a
leapyear or not is tha tif the year is divisible with 4 and nieisible with 100 we
have a leapyear. If the year is divisible with 4 and also wiif,lbut not with 400
we have a leapyear. For all othe results we do not have a laapye

11.1 Exercises

1. Take the program calculating the circumference of aeiacld make a func-
tion of it

2. Do the same with the area of a circle and the volume of a spher

3. Write a main program testing the three functions and cheatkit is working
properly

24

12 Introduction to subroutines

In the previous section we learned how to program a functigsing Fortran we
have also the use of subroutines. A subroutine is in most vl@same as a
function, but without returning a value like a mathematitadction. So why use
subroutines? A subroutine can have several input argurtikata function, but in
addition a subroutine can have one or more output argumleassailowing for a
more flexible way of performing calculations.

Let us take the functiokeapyearand make a subroutine out of it. When we are
using subroutines we do not have to declare the subroutiae esternal procedure
like we had to do with the function.

PROEAM

I MPLI A TNONE

| NTEGER 1 oyear

L3 CAL .1 i sl eapyear

CALL | eapyear(year,i sl eapyear)
| i sl eapyear) THEN

nont (2) =29
BSE
nont (2) = 28
B\DIF
B\D PROG=AM

Like functions we can have several subroutines in the same Tihe next code
example shows how we program the subroutaapyear

S.BRAJN NE| eapyear(year, i sl eapyear)

I MPLI A TNONE
| NTEGER | NTENI(I N ;o oyear
LG3 CAL | NTENI{QJN) .. i sl eapyear

BND SLBROJMN NEI| eapyear

The declaration of a subroutine starts with the keywSdBROUTINEhen the
name of the subroutine and the arguments where one or mote @rguments
are used to transfer the result of the subroutine call badkdcocalling process.
The keyworddNTENT(IN)and INTENT(OUT)are used to prevent wrong use of
the arguments. UsinNTENT(IN)tells the compiler that we can only read the
contents of the argument aldTENT(OUT)means we can only write values to
the argument.

S.BRAJN NE| eapyear(year, i sl eapyear)
| MPLI A T NONE

25

| NTEEER i resl res2 res3
i sl eapyear = .FALSE
resl = MIjyear, 4)
res2 = MIyear, 100)
res3 = MIyear, 400)
PRNT*, res]l res2 res3
| Hresl =0) THEN
IH(resl=0) .A\D (res2=0) .A\D (res3/=0)) THaN
i sl eapyear = . FALSE
RETURN
B\DIF
IH(resl=0) .A\D (res2=0) .A\D (res3==0)) THaN
i sl eapyear = . TRLE
RETURN
B\DIF
i sl eapyear = . TR.E
RETURN
B\DIF
BND SLBROJIN NE| eapyear

In our main program we use the syn@ALL leapyear(year,isleapyeaandlF(isleapyear)
THEN instead of the construtE(leapyear(year)) THEN

So then we can ask when do we use subroutines and when fus’fidrere is
no exact asnwer to this question, but it has been more commaset subroutines
which can have optional input and output arguments.

12.1 Exercises

1. Take the program calculating the circumference of aeiarid make a sub-
routine of it

2. Do the same with the area of a circle and the volume of a spher

3. Write a main program testing the three subroutines anckdhat it is work-
ing properly

26

13 Arrays and pointers

Let us take a closer look at arrays. An array can be a vectomuatex in two or
more dimensions. The data type can be of all the standardiyfada in addition
to derived data types. A Fortran pointer is an alias for aaldei or an array. In
addition a pointer can work as an allocatable array.

For those who have a knowledge of C/C++ programming the eoiata way
to pass the address of a variable through an argument to led @anction. This
is known ascall by referencen contrast to thesall by valuewhich is the default
way of passing arguments in C/C++. In Fortran all argumergsddresses so it is
call by referencavhich is the default here.

So how do we use a pointer in Fortran? First of all we declareiatgr just
like any other variable. Next we have to point the pointeioats target. The target
have to have the attribufBARGETand can be of any data type included a derived
data type. The pointer has to be declared as the same datastiipetarget and has
to have the same shape. The following code show how we dexlarget variable
and a corresponding pointer.

REAL, TARET O MBS O{1Q, 10) coonmatrix
REAL, TARET ALCCATABEOMENS QN:,:) :: natrix2
REAL RO NIER opc,)

'Al'_l'_'CIATE{natrixZZQ 20))
p=natrix2: 323
p = natri x4 10: 12 18: 20)

Here we have declared a real arrmatrix in two dimensions which has the target
attribute allowing a pointer to point at it. The pointeis declared as a real pointer
with the same shape as the target. We then let the pgirpeint to a part of the
matrix array from row 2 to 3 and column 2 to 3. To traverse the contehthe
pointer we use indexes from 1 to 2 in both direction. This nsehat p(1,1) is the
same as matrix(2,2). Next we let p point to matrix2 from rontdQ2 and column
18 to 20. Traversing p we use the same indexes as when p poineakrix.

27

In addition to be used as an alias for an array or a part of ay ane pointer
can also be used as an allocatable array by itself. In cantréise target array we
used above the pointer always has to be allocated since dimsiqy to nothing
when we declare it.

REAL, PO NIER oopls,)

ALLCOATE p(10, 10))

Here we declare a pointer array in two dimensions. In ordassign values to the
array we have to allocate space which is done usin\thedOCATEfunction. Now
we can assign values to p just like any other array. If we dedaother pointep2
we can use the new pointer to point to a part of p just like wel ysto point to a
part of matrix an matrix2.

13.1 Exercises

1. Write a program using two arrays of different dimensiong ane pointeP
which will point to different places in the two arrays andnprihe contents
of the pointer to the screen. Let the pointer point to a verglspart of the
arrays so it is easier to see the contents on the screen

2. Extend the program changing the values in the arrays wherpointer is
pointing and write the values to the screen

3. Extend the program by declaring a second poiRt2r Let P pointer point
to a small part of the first array and P2 to the second arrapt B values
from P and P2 to the screen. Then use the construct

P=pP

and print again the contents of P and P2. Try to explain whapéias.

28

14 Introduction to modules

In the previous sections we have used programs, functichswroutines to solve
our computing problems. With less complex problems thisiislkaapproach, but
when the problem increases in complexity we have to changevily we break
down the problem and start to look into the data structurespocedures. To
illustrate this we will take the program reading water flohuess and the date as the
number of days after 01.01.0000 and make a global datasteustith procedures
working on the global data structures.

To facilitate this we will introduce th&lodulewhich is a structure with variable
declarations and procedure declarations. We start brgalown the problem by
looking at the data structure. We know that the file contains line with the
number of lines with the value pairs (date and water flow) arithea with the
description of each column in the file. We need then one viarith store the
number ov value pairs and two single dimension arrays t@ $kar date and water
flow. We have to have these array allocatable since we do rat km advance
the number of value pairs. In addition we need a variable td tie filename,
the ASCII-digits, the unit number, a status variable and a loop vhiabhe code
snippet below shows a working module containing the necgsisa structure to
solve our problem.

MDLLE f | owdat a
I MPLI A TNONE
| NTEGER PARAMETER :: lun=10
| NTEGR il res
| NTEEER .. flength
CHARACTER LENSB0) oo fil enane
CHARACTER LENSB0) .. chuffer
| NTEGR ;1 c_position stringlength
| NTEEERALLCCATABLED MENS ;) :: dates
REAL ALLGCATABLED MENS Q) coovater _flow

ENDMIDLULEf| ondat a

In addition to the global data structure we need the proesdiar get the data into
the variables. The code below shows how we declare the stitecio read the
number of value pairs into the arragatesandwater_flowvariable. the arrays.

MIDLLE f | owdat a
I MPLI A TNONE
GONTAI NS
S BROJN NEread dat g)
I MPLI A T NONE
| NTEGR S
CPENWN ™ un A LEF i | enang FORW FORVATTED, | CSTAT= es)
READFUN TH un FMI= (A, | GBTATr es) cbuf fer

29

string | ength = LEN TR Ncbuf f er)
c position=1NXE{cbuffer,’:")
REA¥cbuf fer(c_posi tionrl:string | ength, AMI= (115’) flength
ALLGCATE dat eS(f| engt h) , STAT=r es)
ALLCCATEvat er _fl owf | engt h), STAT= es)
REAJUN TH un FMIZ (A’ , | GsTATr es) cbuf f er
DOi =1, flength
REACXUN TH un FMI= (1 6 X F6. 3)’ | G5TATres) dates(i), water_flowi)
BE\D DO
A.CGHWN ™ un)
BND S_LBROJN NEread dat a

BE\D MIDLLE f | owdat a

A little explanation is in place here. First we separate taatations of the global
variables from the procedure declarations with the keyv@@INTAINS Since the
variables with the exception of the index variable in thelatp are global we can
use them directly in the subroutine. The subroutine is dedlas usual, but is now
residing inside the module. In the same manner we shall pcbedth the rest of
the necessary procedures in order to extract the data wefroeedhe arrays. We
will of course need a function to convert a date to an integeowling to the date
array in the file. The date should have the forrddtmm-yyyyand the result an
integer containing the number of days from 01.01.0000. Tkenthis correct we
also need the functioleapyearwhich we solved in the section about functions. In
the code below we have the first part of the functitate2number

MDLLE f | ondat a
| MPLI A T NONE

QONTA NS

FUNCTT ONdat e2nunfoer (dat est r) RESLLT(dat enun

I MPLI A TNONE

CHARACTER LEN-10) :: datestr
| NTEGR ;1 datenum
| NTEEER Do

| NTEGER L oyear

| NTEGR 1 nonth
| NTEGER .1 day

| NTEGEERDO MENS (N 12) Doonarray
narray = 31

narray(2) = 28

narray(4) =30

narray(6) = 30

narray(9) = 30

30

narray(11) =30
dat enum= 0

BE\DMIDLLE f | owdat a

This function has a character string as an input argumentaanithteger as the
result. The input argument is in the formatdd-mm-yyyy the arraymarray will
contain the number of days in each month. Note thar we usem#reay = 31to
initialize the whoel array with the value of 31. Then we justdify the elements
for the moths with fewer than 31 days afterwards. We alsdaiite the resulting
variable to zero so we can add the number of days to it for éacdtion.

MDLLE f | ondat a
| MPLI A T NONE

REAT{dat est r(1: 2),AVIZ (12)’) day
REAT{dat est r(4: 5),AVIZ (12)") nonth
REA{dat est r(7: 10), AVI= (14)’) year
DOi =0, year-1
| R.NO. | eapyear(i)) THEN
dat enum= dat enum+ 365
BHSE
dat enum= dat enum+ 366
B\DIF
BE\D DO
DOi =1 nonth1
dat enum= dat enum+ narray(i)
BE\D DO
dat enum= dat enum+ day
| K| eapyear(year)) THEN
dat enum= dat enum+ 1
B\DIF
BND FUNCTT QN dat e2nunfoer

BE\D MIDLLE f | owdat a

Note that we use th&EAD function to extract part of the input argument and
store the binary value in the variablday, monthandyear. Now we can begin
to take a look at the part that extracts the indexes of a sufgbe arraysdates
andwater_flow We call this subroutindind_indexes Using this subroutine to
find the indexes of the subset we can in our main program atltessibset of the
water_flowdata using the start date and end date of the subset. The etme b
shows how this can be done.

MIDLLE f | owdat a
| MPLI A T NONE

31

S.BROJN NEfind i ndexes(start _date end date start_index end i ndeX
GHARACTERLENF10), | NTENT(I N . start_date
CHARACTER LENE10), | NTENTTT N . end date

| NTEGER | NTENI{QJ) ;1 start_index
| NTEGER | NTENI{QJ) ;1 end_i ndex

| NTEEER .. sday

| NTEGER .. eday

| NTEGR D

PRNT*, start date
PRNT *, end date
sday = dat e2nuniper(start _dat e
eday = dat e2nuntoer (end_dat €
PR NI *, sday, eday
start index =0
end index =0
DOi =1, flength
| {sday == dateg(i)) THEN
start_index =i
B\DIF
| Heday = dateg(i)) THEN
end i ndex =i
EXT
B\DIF
BE\D DO
BEND SLBROJN NEfi nd i ndexes

BE\DMIDLLE f | owdat a

14.1 Exercises

1. Write a main program using the moddi@wdatato read the values of the in-
put file, extract data ranging from the date 01.03.1989 taltte 31.05.1989
and display the contents of theater flowon the screen.

2. Take the main program and add code to write the extractedtdaa new
file. Then use a program to plot the extracted data (you caamgelotting
program available for you).

3. Add code to the main program to have a user interface adkingpe start
and end date.

4. Runthe new main program and extract the data from 01.89.tt631.08.1990
which is what is called a hydrological year and plot the ectrd data. Look
at the plot and try to explain the variations in the water flow.

32

15 Introduction to derived data types

Using modules is a way to structure the program code makiegsier to maintain
and utilizing more advanced features writing more secuog@ms. In order to
make variables easier to access and use as arguments wewithke a look at
deriveddata types.

In the second section we looked at the syntax and thedehgeddata types
was mentioned. To show how we can utilize a derived data typed take some
of the global data declarations from the module in the prevgection and modify
the code as shown below.

TYPEf| ow

I MPLI A TNONE

| NTEGR . flength

CHARACTER LENSB0) oo filenane

CHARACTER LENSB0) ;. chuffer

| NTEEER ;. c_position string length

| NTEEERPQ NTER ;o dateq:)

REAL PO NTER cowater_flow:)
BENDTYPEfI ow

Here we have taken the variables needed to extract the flavedhat packe them
into a derived data type calldéldw. Note that in contrast to the original declarations
of the arrays holding the date and water flow we now useP@E&NTERattribute.
This is necessary because the syntax demands the UWRB@INMTERIn stead of
ALLOCATABLENside aTYPEdeclaration. To declare a variable of their new data
type we use the following code:

TYPH T ow ;o ny data
Here we declare a new variable namrmay dataof theflow data type. Note that the
name of the derived data type is enclosed in a left and rigtetrplaesis So how do
we access the variables internal to the derived data typeyiitax for this is that
we use the name of the derived variable, add a percent sigthandhe name of
the internal variable. The code below shows how this can be.do

ny_dat &@bi | enane
ny_dat &eat er fl owl: 20)

Even though the variabley_data%water_flois aPOINTERwe access the ele-
ments just as we would an ordinary array. Using derived dgiestis, among other
things, a way to write safer code by using one name to refesei af variables of
different types.

A more complicated use of derived data types and moduleisdke which
we will look into now. We have a terrain model where the teriaidivided into
a grid and the height for each grid point is stored in an AS@4l fiThe format
of the file is four header lines where the first is the numberraf goints in the

33

y-directionand the next is the number of grid points in thdirection(i.e. number
of columns and rows), the third line is cell size and the foistthe no data value.
The rest of the file is the height for each grid point. Our joloisrate a module
that can read the contents of such a file and have the valuesl $toa derived data
type created for such a data set.

So how do we go about to create such a module? As we alreadybashe
file is in ASCII format with header lines and terrain data.sFive will create the
derived data type to hold the variables we need.

TYPEterrain data

| NTEEER ;i ncas

| NTEGER coonrows

| NTEEER . cell_size
| NTEEER ;. no_val ue
REAL RO NIER ;> heightq:,:)

BENDTYPEterrain data

Now we have the derived data typerrain_datawith all the necessary variables
to hold all information about a specific terrain with the Heigh each grid point
serves as a topographic map. All we have to do now is to impherie differ-
ent procedures to read the data into the variables. Thewfiolgp code shippets
illustrates how such a module can be created.

MDULEterra n_nap

I MPLI A T NONE
TYPHterrai n_dat g : : topographi c_nap
GONTAI NS

S.BRAJN NEread dat gf _nane res)
CHARACTER LENSB0), | NTENT(I N oo f_nane
| NTEGER | NTENI{ QJT) 1l res
| NTEGER PARAMETER ;. U_nunber =10
CHARACTER LENS12) ;1 buffer
| NTEEER ;. b start, b end
| NTEGER oy g, ko

CPENWN T=u_nuntoer, H LEf _nang FORW FORVATTED, | GBTAT= eS)

BEND SLBROJIN NEread dat a
BENDMDULEterrai n_nap

The first steps to solve the process of reading the data iateatiables is the same
as earlier wit the opening of the filename. Note thdfer which is declared large
enough to hold the longest line in the file with some extra spalow we come to
the tricky part of the code. How do we extract the values fromhuffer variable
into the respective places in theightsarray? The solution is to split the problem
into smaller parts. The first part is to read the header limgsextract the values

34

into the respective variables in thepographic_mapype. The following code
solves this problem.

S.BROJN NEread dat gf _nane res)

buffer ="’
REAT¥UN T=u_nuntoer, FIVIZ (A’ , | GBTATr es) buf f er
b _end = LEN TR Mbuf f er)
DOi =b end b start, -1
| Hbuffer(i:i) .EQ ’ ') THEN
REAXbuf fer(i+1:b_end , FMI= (15") topographi c_na@a col s
EXT
B\DIF
BE\D DO

END SLBROJMN NEr ead dat a

Since we know that the first line int the file ieols 125with spaces between the
label and the value we have to find the position in the buffeerstthe value is
placed. To do this we use the functicEN_TRIMto find the position of the last
non space character in the buffer. Then we loop through theacters from the
found position down to where the first space character bafmresalue. The we
simply use theREADfunction to extract the value and place it into the variable.
The same algorithm is used to extract the other header values

the next item on the agenda is to extract the height for eadtpgint from the
file and into the array. A suggestion on how this can be donkeitcked below.

S BROJN NEread dat gf _nang res)

DOi =1, topographi c_nap % rows
buffer ="’
REAYUN T=u_nunioer, FVIZ (A’ , | GBTATr es) buf f er

B\D DO

BND S_LBROJN NEread dat a

First we have to clear the character buffer for the previargents. Then we have
to read each line containing the grid points. After we hawarihe line we have
to extract the values for each grid point and store them ittimeect position in the
array. Since Fortran is very sensitive to f®@RMATwe will use another way to
extract the corresponding integer numbers from the buffbe function is called
a2i and have to be declared external since it is not an intringitré&n function.
Also we have to traverse the buffer to locate the comma stipgrane number
from another and to send the digits between two commas t@2tfenction which

35

will return the binary number to be stored in the array. Thet m@de example
show how this can be done.

S BRAJN NEread dat gf _nang res)

b _end = LEN TR Nbuf f er)
j =1
| =1
DOk =1, b end
I Rbuffer(k:k) .EQ ',’) THEN
t opogr aphi ¢_naghei ght s(i,1) = a2i (buffer(j: k1))
j =kl
[=1 +1
B\DIF
BEND DO

END SLBROJMN NEr ead dat a

The first thing we do here is to find the position for the last space character in
the buffer and initialize two counter variables. Next stepa traverse the buffer
and find the position of the next comma in the buffer. Findinig ive send the
part of the buffer between the commas to the function anestibre result in the
array. Note that this solution contains an error which we fixdlnow. In the loop

we are not extracting the value after the last comma. To extings we have to do
it outside the innermost loop. The code would then look Iie éxample below.

S BRAJN NEread dat gf _nang res)

b _end = LEN TR Mbuf f er)
j =1
l =1
DOk =1, b end
| Hbuffer(k k) .EQ ',’) THEN
t opogr aphi ¢_nag@kei ght (i, 1) = a2i (buffer(j: k1))
j = k+1
l =1 +1
B\DIF
BEND DO

t opogr aphi c_naphei ght (i,1) = a2i(buffer(j:b_end)
BEN\D SLBROJN NEread dat a

15.1 Exercises

1. Take the code in the modullewdatamodify it to use the derived type flow
and call the moduliowmoduleso we keep the original code intact.

36

2. Rewrite the main program utilizing the new structure axilaet the same
amount of data as in the last exercise in the previous section

3. Rewrite the part of the code where we extract the data fr@buffer into
the variables using a subroutine with two arguments, thiebahd the target

variable.

37

16 Introduction to Object Oriented Programming

It is very likely that you have heard the noti@bject Oriented Programmingr
OOPfor short. An excerpt from Wikipedia explains the varioustpaf the notion
of OOP as:

Object-oriented programming (OOP) is a programming pagadiusing "objects",
i.e. data structures consisting of data fields and methogeth®r with their inter-
actions, to design applications and computer programs.gRmmming techniques
may include features such as data abstraction, encapsalagolymorphism, and
inheritance.

Data abstractioris explained as:

In computer science, abstraction is the process by which datl programs are
defined with a representation similar in form to its meanisgnantics), while hid-
ing away the implementation details. Abstraction trieseduce and factor out
details so that the programmer can focus on a few conceptgiatea

Encapsulationis explained as:
In a programming language encapsulation is used to refen®af two related but
distinct notions, and sometimes to the combination thereof

* A language mechanism for restricting access to some of fects com-
ponents.

» A language construct that facilitates the bundling of dafth the methods
(or other functions) operating on that data.

The notion ofpolymorphisnis:

Subtype polymorphism, almost universally called justimalgphism in the context
of object-oriented programming, is the ability to createaiable, a function, or
an object that has more than one farm

Last we have thnheritancewhich is explained as:

In object-oriented programming (OOP), inheritance is a viayeuse code of ex-
isting objects, establish a subtype from an existing obgadboth, depending upon
programming language support. In classical inheritanceev@objects are defined
by classes, classes can inherit attributes and behavier, (areviously coded al-
gorithms associated with a class) from pre-existing classsled base classes or
superclasses or parent classes or ancestor classes. Thelasses are known as
derived classes or subclasses or child classes.

Having explained a few things about OOP we are now ready toutyhe theory
in solving a known problem by using the OOP technique.

In the previous section we used derived data types to enlcd@several variables
that was connected to a data structure. We will now use tldschange the code
putting everything into an object which can have severabhimses with different

38

data values. The object is a part of a module where the typedisaued as usual,
but with one exception. The type also has a contains statent@re the names of
the procedures to be used is declared. The code snippet bloawtbis is done.

MDLLE cl ass terrain

| MPLI A TNONE
PR VATE
TYPE PLBLIC ;o terrain
GHARACTER LENSB0) o filenane
I NTEEER PO NTER oomap(c,) =ndll()
| NTEGR ::ncas=0
| NTEGER onrows =0
| NTEEER ;o cell_size=0
| NTEEER :novaue=0
GONTAI NS
PROCEOLRE .. load => | oad data
PROCEDLRE ;. dunp => dunp_dat a
BENDTYPEterrain
GONTAI NS

BENDMDULECc| ass terrain

The first difference from the usual declaration of the typihé we do not enclose
the type name in a set of parenthesis, but use the syntax aflaragy variable de-
claration. Note also that we have introduces BfiVATEkeyword which means
that anything not specific declared BE/BLIC is not accessible from outside the
module. This is done to prevent procedures not part of theuledd make unin-
tentionally changes to values inside the module. The detider of a procedure
with the construcfload => load_datagives an alias for the procedulead data
declared after the contains keyword in the module. In aglditve initialize the
pointer to aNULL value using the construchap(:,:) => null(). Also the other
variables are getting initialized so we can use the intirginstructor to create
an instance of the object without having to supply valuesefirh variable in the
object.

PROGRAMct est
USEcl ass terrain
| MPLI A T NONE

TYPHterrai n ;ootdl

tdl =terrai n(’denfiil e dat’)
CALL t d19%l oad)

BN\D PRO3RAMCt est

Declaring a new object of therrain type is done the normal way. Then we call the

39

implicit constructortd1 = terrain('demfile.dat’)where we give the input filename
as the only argument. If we had not initialized the interreiables in the declar-
ation of the type we would have to ut#l = terrain(’demfile.dat’, null(),0,0,0,0)
Omitting these last arguments to the constructor and nangate internal vari-
ables initialized in advance, the program would not compile

Having set up the object and learned how to use the constrtcireate an
instance of the object we will now take a look at how the reghef module can
be programmed. Using the module from the previous sectionomethat we need
at least two procedures, one to read the file, allocate spgacaral one to take the
header lines and extract the values we need to allocate &pabe terrain map.

GONTAI NS

SUBROUJT NE| oad_dat &(t hi)

AASSterrain :: this

| NTEGER O MENS O 4) Dlvars

| NTEGER PARAMETER ;. U _nunier =10

CHARACTER LEN512) , 0 MENS O\ 4) ;. buffer

| NTEEER ;. b start, b end
| NTEER o, g, koI, res
| NTEGER EXTERNAL oali

END SLBROJT NE| oad_dat a

The only argument to thivad_datasubroutine is a class variable of type terrain
namedthis. The variable is an instance of the class of type terrain antains the
filename, the pointer array and the four integer values. En@bles local to this
subroutine is used to extract the contents of the file intovtli@bles of the class
instance. So let us take a look at the rest of the code for tiiostine.

SLBROUT NEl 0ad_dat &(t hi S)

CPENWN T=u_nunber, H LEt hi s%i | enang FORE FORVATTED, | GSTAT= e9)
buffer ="’
DOi =1, 4
REAYUN T=u_nunioer, FVIZ (A’ , | CBTATr es) buffer(i)
| Hres/=0) THEN
PRNF, 'Erorinreadinglinel, status’, res
A_.CH UN T=u_nuntoer)
RETLRN
B\DIF
BE\D DO

END SLBRQJMN NE| oad_dat a

The only difference from this version of the subroutine ameldne in the previous

40

section is that we precede the name of the variables thighojust like we would

for a non object derived type. Of course the local variabtesthie subroutine is
not preceded byhis% In addition we use an array of character strings to hold
the header lines in stead of a single character string antthenarray to hold the
integer values extracted from the header lines.

SLBROUT NEl oad_dat &(t hi S)

CALL extract _header | i negbuf fer,vars)

thi s%a col s = varg(1)

thi s% rows = var 4 2)

t hi s%el | _size = varq 3)

t hi s%0 val ue = var §(4)

ALLGCATEt hi s%ap(t hi s%a_rowst hi s%a cal s), STAT es)

IHres/=0) THEN
PRNIr*, "Alocationfailure status’, res
A_.CH UN T=u_nuntoer)

BNDI F

END SLBROJMN NE| oad_dat a

Here we have modified thextract_header_linesubroutine to take two arrays as
input arguments. After extracting the values from the he#ides we copy them
into the various internal variables for this class instaridee rest of the subroutine
is the same as the one in the previous section.

The next part we have to program is tdamp_datasubroutine. It can be
constructed like the code snippet below.

S_BRAJN NEdunp_dat &t hi s)

AASKterrain ;. this
| NTEGER PARAMETER . U nunier =11
| NTEER 20, j, res

CPENWN T=u_nuntper, H LEt hi s%i | enang FORW FORVATTED, | CSTAT es)
VIR TE N T=u_nunioer, FMI= (15", | G5TATres) thi s% cal s
VR THE N T=u_nunber, FIVIZ (15", 1 CGBTAT=r es) thi % rows
VIR TE N T=u_nuntoer, FMI= (15)", | CG5TATr es) t hi s%el | _si ze
VR TH N T=u_nunber, FMIZ (15", | GBTAT=r es) t hi s%o val ue
DOi =1, this¥ rows

DOj =1, this%h col's

VIR THUN T=u_nunier, FMI= (1 4 A2)’ , ADVANCE= NO, | CBTATr es) &
thi sap(i,j), ', ’

BEND DO

VR TE N T=u_nunier, FMI= (A’ , | GBTAT=res) '
BE\D DO
Q.G N T=u_nunter)

BND SLBROJN NEdunp_dat a

41

Like the subroutindoad_datawe have only the instance of the object as an input
argument. After opening the file we write the four headeralads to the file, but

in this version we do not use any preceding header text. Theloep and write
each value for the columns separated with a comma to the fitde the use of
ADVANCE="NO’which prevents the automatic line feed after each write. fiitew
the column values for the next line we simply write a spaceaattar to the file
without theADVANCE="NQO’to get a new line.

16.1 Exercises

1. Change the dump_data subroutine so that the header tintsirts the ncols,
nrows, cellsize and NODATA_value text strings in additiortiie values.

2. Write a subroutine to clear the contents of an object mtgtaising the same
type of argument as the load data and the dump_data suiesutiNote
that the map array has to be deallocated in order so have deteglean
object instance.

3. Extend the main program with code to create a new instaitbeawdifferent
name and copy the contents of the first instance into the newldimt: you
have to allocate the space for the map array in the new instagfore you
can copy the contents from the first instance.

42

A Operators

Operators in Fortran 95 are for example(a > b) THENwhich is a test using
numerical values in the variables. For other types of véglike characters and
character strings we use the constriue{ C1 . GT. C2) THEN.

A.1 Overview of the operators

Table3 gives an overview of the operators

| Numerical| Other | Explanation |

*x Exponentiation
* Multiplication
/ Division
+ Addition
Subtraction
== .EQ. | Equal
/= .NE. | Notequal
< LT. Less
> .GT. | Greater
<= .LE. Less or equal
>= .GE. | Greater or equal
.NOT. | Negation, complement
AND. | Logical and
.OR. | Logical or
.EQV. | Logical equivalence
.NEQV. | Logical not equivalence, exclusive ar

Table 3: Logical operators

43

B Intrinsic functions

Intrinsic functions in Fortran 96 are functions that can bediwithout referring to
them via include files like in other languages where fundibas to be declared
before being used in the program

B.1 Intrinsic Functions

Table4, table5 and table7 gives an overview of the intrifgictions in Fortran 95

44

| Function | Argument | Result | Explanation |

ABS Integer real com-q Integer real complex The absolute value
plex

ACHAR Integer Character Integer to ASCII character
ACOS Real Real Arcuscosine
ADJUSTL Character string Character string Left adjustment
ADJUSTR Character Character Right adjustment
AIMAG Complex Real Imaginary part
AINT Real Real Truncate to a whole number
ALL Logical mask, dim | Logical True if all elements == mask
ALLOCATED Array Logical True if allocated in memory
ANINT Real Real Round to nearest integer
ANY Logical mask, dim | Logical True if all elemnts == mask
ASIN Real Real Arcsine
ASSOCIATED Pointer Logical True if pointing to target
ATAN Real Real Arctangent
ATAN2 X=Real,Y=Real Real Arctangent
BIT_SIZE Integer Integer Number of bits in argument
BTEST I=Integer,Pos=Integédrogical Test a bit of an integer
CEILING Real Real Leat integer <= argument
CHAR Integer Character Integer to ASCCI character
CMPLX X=Real,Y=Real Complex Convert to complex number
CONJG Complex Complex Conjugate the imaginary part
COS Real Complex Real complex Cosine
COSH Real Real Hyperbolic cosine
COUNT Logical mask, dim | Integer Count of true entries in mask
CPU_TIME Real Real Returns the processor time
CSHIFT Array, shift, dim Array Circular shift of elements
DATE_AND_TIME CharD,T,Z,V Character Realtime clock

DBLE

Integer real com-
plex

Double precision

Convert to double precision

DIGITS Integer real Integer Number of bits in argument
DIM Integer real Integer real Difference operator
DOT_PRODUCT X=Real,Y=Real Real Dot product
DPROD X=Real,Y=real Double precision Double precision dot prod.
EOSHIFT Array- Array Array element shift

shift,boundary,dim
EPSILON Real Real Smallest positive number
EXP Real complex Real complex Exponential
EXPONENT Real Integer Model exponenet of argument
FLOOR Real Real Integer <= argument
FRACTION Real Real Fractional pert of argument
HUGE Integer real Integer real Largest number

45

Table 4: Intrinsic functions

| Function | Argument | Result | Explanation |

IACHAR Character Integer Integer value of argument
IAND Integer,Integer Integer Bitwise logical and
IBCLR Integer,pos Integer Setting bitin pos =0
IBITS Integer,pos,len Integer Extract len bits from pos
IBSET Integer,pos Integer Set pos bit to one
ICHAR Character Integer ASCII number of argument
IEOR Integer,integer Integer Bitwise logical XOR
INDEX String,substring Integer Position of substring
INT Integer real com+ Integer Convert to integer

plex
IOR Integer,integer Integer Bitwise logical OR
ISHFT Integer,shift Integer Shift bits by shift
ISHFTC Integer,shift Integer Shift circular bits in argument
KIND Any intrinsic type | Integer Value of the kind
LBOUND Array,dim Integer Smallest subscript of dim
LEN Character Integer Number of chars in argument
LEN_TRIM Character Integer Length without trailing space
LGE AB Logical String A <= string B
LGT AB Logical String A > string B
LLE AB Logical String A <= string B
LLT AB Logical String A < string B
LOG Real complex Real complex Natural logarithm
LOG10 Real Real Logarithm base 10
LOGICAL Logical Logical Convert between logical
MATMUL Matrix,matrix Vector matrix Matrix multiplication
MAX al,a2,a3,... Integer real Maximum value of args
MAXEXPONENT Real Integer Maximum exponent
MAXLOC Array Integer vector Indices in array of max value
MAXVAL Array,dim,mask Array element(s) Maximum value
MERGE Tsource,Fsource, | Tsource or Fsource| Chosen by mask

mask
MIN al,a2,a3,... Integer real Minimum value
MINEXPONENT Real Integer Minimum exponent
MINLOC Array Integer vector Indices in array of min value
MINVAL Array,dim,mask Array element(s) Minimum value
MOD a=integer real,p Integer real amodulo p
MODULO a=integer real,p Integer real amodulo p
MVBITS From pos to pos Integer Move bits
NEAREST Real,direction Real Nearest value in direction
NINT Real,kind Real Round to nearest integer value
NOT Integer Integer Bitwise logical complement

Table 5: IntgBsic functions

| Function | Argument | Result | Explanation |
PACK Array,mask VEctor Vector of array elements
PRECISION Real complex Integer Decimal precision of arg
PRESENT Argument Logical True if optional arg is set
PRODUCT Array,dim,mask Integer real complex Product along dim
RADIX Integer real Integer Radix of integer or real

RANDOM_NUMBER

Harvest = real

Real0 <=z <=1

Subroutine returning a randor
number in harvest

=)

RANDOM_SEED Size, put or get Nothing Subroutine to set a random nurp-
ber seed
RANGE Integer real com-q Integer real Decimal exponent
plex
REAL Integer real com- Real Convert to real type
plex
REPEAT String,ncopies String Concatenate n copies of string
RESHAPE Array,shape,pad,ondArray Reshape source array to array
RRSPACING Real Real Reciprocal of relative spacing q
model
SCALE Real,integer Real ReturnsX - b!
SCAN String,set,back Integer Position of first of set in string
SELECTED _INT_KIND | Integer Integer Kind number to represent digitg
SELECTED_REAL_KINDInteger Integer Kind number to represent digitg
SET_EXPONENT Real,integer Resl Set an integer as exponent of]
real X - bl —e
SHAPE Array Integer vector Vector of dimension sizes
SIGN Integer real,integer Integer real Absolute value ofd - B
real
SIN Real complex Real complex Sine of angle in radians
SINH Real Real Hyperbolic sine
SIZE Array,dim Integer Number of array elements i
dim
SPACING Real Real Spacing of model number neg
argument
SPREAD Source,dim,copies| Array Adding a dimension to source
SQRT Real complex Real complex Square root
SUM Array,dim,mask Integer real complex Sum of elements

SYSTEM_CLOCK

Count,count,count

Trhough the arguf
ments

Subroutine returning intege
data from a real time clock

-

Table 6: Intrinsic functions

47

| Function | Argument | Result | Explanation |
TAN Real Real Tangent of angle in radians
TANH Real Real Hyperbolic tangent
TINY Real Real Smallest positive model repres

entation
TRANSFER Source,mold,size | Mold type Same bits, but new type
TRANSPOSE Matrix Matrix The transpose of matrix
TRIM String String REmove trailing blanks
UBOUND Array,dim Integer Largest subscript of dim in arra)
UNPACK Vector,mask,field | Vector type, mask Unpack an array of rank one intp
shape an array of mask shape

VERIFY String,set,back Integer Position in string not in set

Table 7: Intrinsic functions

48

