
CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(0.8125 INCH BULK -- 416 pages -- 50# Thor)

THE EXPERT’S VOICE® IN .NET

Dean C. Wills
Foreword by Jason Shirk, Microsoft Visual C++ Team

Pro
Visual C++ 2005
for C# Developers
Featuring C++/CLI

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Visual C++ 2005 for C#
Developers: Featuring C++/CLI
Dear Reader,

Over the past few years, C# has gained a great deal of well-earned momentum
inside and outside of Microsoft. For a while, C++ appeared to be relegated to
system programmers cloistered in back rooms practicing dark arts.

With the advent of C++/CLI, everything has changed. A new stage has
been set. C++ has met the challenges presented by the popularity of C# and
has returned to the forefront with C++/CLI. Not only does C++ do everything
it used to do, but it has become a full-fledged .NET development language.
C++ is on a par with C# as a .NET development language and has support for
interoperability that C# lacks. C++ is now an essential element of .NET program-
ming, and this book can teach it to you.

I know you’re busy. The last thing you want is to be burdened with a pedes-
trian college textbook or esoteric language specification when you’re learning a
new environment. This book cuts to the chase and tells you exactly what you
need to know to get going. It leverages your level of expertise, anticipates the
issues you’ll run into, and provides plenty of examples to guide you through the
syntax. The first chapters use a straightforward approach to teach you the
basics, and once you’ve reached a level of comfort, you can pick though the
details and advanced topics at your leisure. The complete treatment of the
advanced topics will earn this text a place on your shelf as a ready reference for
years to come.

Enjoy!

Dean C. Wills

Shelve in Programming
Languages/C++

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

THE APRESS ROADMAP

Pro C++/CLI and
the .NET 2.0 Platform

Pro Visual C++ 2005
for C# Developers:
Featuring C++/CLI

Visual C++ 2005 Primer Expert Visual C++ 2005

Pro Visual C+
+

 2005 for C# Developers
Wills

ISBN 1-59059-608-0

9 781590 596081

90000

6 89253 59608 1

Companion
eBook Available

Companion eBook

See last page for details
on $10 eBook version

Pro Visual C++ 2005
for Developers:
Featuring C++/CLI

Dean C. Wills

6080chFM.qxd 10/24/06 1:11 PM Page i

Pro Visual C++ 2005 for Developers: Featuring C++/CLI

Copyright © 2006 by Dean C. Wills

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-608-1

ISBN-10: 1-59059-608-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Alvin Chardón
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole Flores
Copy Editor: Heather Lang
Assistant Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Dina Quan and Kinetic Publishing Services, LLC
Proofreader: Elizabeth Berry
Indexer: Brenda Miller
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

6080chFM.qxd 10/24/06 1:11 PM Page ii

For Ariel and Anna

6080chFM.qxd 10/24/06 1:11 PM Page iii

6080chFM.qxd 10/24/06 1:11 PM Page iv

Contents at a Glance

Foreword. xvii

About the Author . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Preface . xxv

Introduction . xxvii

PART 1 ■ ■ ■ Fast Track to C++/CLI
■CHAPTER 1 Hello, World . 3

■CHAPTER 2 There’s No Place Like Home . 15

■CHAPTER 3 Syntax . 29

■CHAPTER 4 C# to C++/CLI . 41

■CHAPTER 5 Tools . 51

■CHAPTER 6 Data Types . 61

■CHAPTER 7 Arrays . 83

■CHAPTER 8 Polymorphism and Protection . 99

PART 2 ■ ■ ■ Details
■CHAPTER 9 Pointers and Unsafe Code. 129

■CHAPTER 10 Properties and Events . 141

■CHAPTER 11 Expressions and Operators. 171

■CHAPTER 12 The End of the Beginning . 195

■CHAPTER 13 Fun, Fun, and More Fun . 217

v

6080chFM.qxd 10/24/06 1:11 PM Page v

PART 3 ■ ■ ■ Advanced Concepts
■CHAPTER 14 Generics . 233

■CHAPTER 15 Introduction to Templates . 259

■CHAPTER 16 Advanced Generics & Casts . 281

■CHAPTER 17 The Preprocessor . 297

■CHAPTER 18 Native C++ . 315

■CHAPTER 19 Multiple Language Support . 335

■CHAPTER 20 Final Thoughts. 351

■INDEX . 371

vi

6080chFM.qxd 10/24/06 1:11 PM Page vi

Contents

Foreword. xvii

About the Author . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Preface . xxv

Introduction . xxvii

PART 1 ■ ■ ■ Fast Track to C++/CLI

■CHAPTER 1 Hello, World. 3

Starting the Visual Studio 2005 Console . 4

Retrieving the Source Files . 4

Executing HelloCpp.cpp . 5

A Quick Tour of the Visual C++ IDE . 5

Understanding Projects and Solutions . 6

Understanding the Differences . 7

Window Layout. 10

Building, Executing, and Debugging . 12

Summary . 14

■CHAPTER 2 There’s No Place Like Home. 15

Developing the Program. 15

Deal Me In . 15

The Completed C# Program. 18

A Quick Look at the Code . 19

Projects and Solutions . 19

A Quick Look. 20

Building and Executing the Project . 21

Binding C++ . 22

vii

6080chFM.qxd 10/24/06 1:11 PM Page vii

Doing the Shuffle Without the IDE. 26

Basic Command-Line Compilation . 26

Using a Module . 26

Summary . 27

■CHAPTER 3 Syntax . 29

C# class (Reference Type) . 31

C# struct (Value Type) . 31

Caveat . 31

Lack of Locality . 32

The C++ Approach . 33

Types of Member Access Operators . 34

Keyword Differences . 34

Arrays and Functions. 36

The Conversion Operators . 37

Memory Allocation . 38

Accessibility and Visibility. 38

Properties, Events, and Delegates . 39

Generics . 39

Built-in Types . 40

Summary . 40

■CHAPTER 4 C# to C++/CLI . 41

Add the Keyword namespace After using . 43

Add the Punctuator ^ to the Reference Type Declarations. 43

Modify the Built-in Types . 44

Change the Array Declarations and Type Parameters 45

Change the Enumeration Declarations. 45

Change the Object Allocations and Instantiations 46

Change the Pass by Reference Parameters . 46

Change the Class Member Access Operators for Handles 47

Change the Separators for Namespaces and Static Accesses 47

Change the Class Declarations . 48

Add the Function main() . 48

Summary . 50

■CONTENTSviii

6080chFM.qxd 10/24/06 1:11 PM Page viii

■CHAPTER 5 Tools . 51

Lutz Roeder’s .NET Reflector . 51

What Is Reflection? . 51

Lutz Roeder’s .NET Reflector . 52

Installing and Loading .NET Reflector and the
C++/CLI Add-in. 54

Executing .NET Reflector . 56

Instant C++ . 57

Tools Shipped with Visual Studio . 58

Microsoft .NET Framework IL Disassembler (ILDasm) 58

Dependency Walker (Depends) . 58

More Visual Studio Tools. 59

Summary . 60

■CHAPTER 6 Data Types . 61

C# Types vs. C++ Types. 61

The C++ struct Keyword . 62

Native Classes . 62

Value Types and Reference Types. 62

Dynamic Memory Pools . 63

Garbage Collection . 64

Initialization. 64

Boxing . 73

Constructor Forwarding . 77

C# Partial Classes . 78

Reference Types on the Stack. 79

Basic Types. 79

Basic Type Differences . 79

Missing Keywords . 80

Marshaling Required . 80

Summary . 82

■CHAPTER 7 Arrays . 83

Native Arrays . 83

Managed Arrays. 84

■CONTENTS ix

6080chFM.qxd 10/24/06 1:11 PM Page ix

Managed Array Details . 84

A Simple Example . 84

Arrays as Parameters and Return Values. 86

Sophisticated Example . 91

Higher Dimensional Arrays . 93

Native Arrays . 97

Summary . 97

■CHAPTER 8 Polymorphism and Protection . 99

Polymorphism . 99

Inheritance . 100

Interfaces . 102

Abstract Classes . 105

Sealed Classes . 106

Static Classes . 106

Methods . 107

Virtual Methods . 107

Working with Methods . 109

Virtual Methods Summary . 115

Accessing Base Class Fields and Methods . 115

Protection Mechanisms . 117

Visibility . 117

Accessibility . 119

Inheritance . 119

Declaring ref struct and ref class . 122

Overload Resolution. 123

Hide by Name and Hide by Signature. 124

Summary . 126

PART 2 ■ ■ ■ Details

■CHAPTER 9 Pointers and Unsafe Code . 129

The C# View: A Blessing and a Curse. 129

Pointers: A Definition and a Caveat. 130

Valid Targets and Syntax. 131

Common Pointer Operators . 132

Example of Pointer Usage. 132

Verifiable Code and Pointer Usage in C# . 132

■CONTENTSx

6080chFM.qxd 10/24/06 1:11 PM Page x

Side Effects of Writing Unsafe Code . 133

Pointer Usage in C++ . 134

Verifiable Code in C++ . 134

C++ Handles . 137

C++/CLI Address Operators. 138

Complex Examples . 139

Nightmares . 140

Summary . 140

■CHAPTER 10 Properties and Events . 141

A Basic Example Using Properties in C# . 141

A Basic Example Using Properties in C++/CLI 143

A Look Inside the Grammar . 144

Trivial Properties . 145

Indexed Properties. 146

C# Properties . 149

Advanced Properties of Properties . 151

Property Caveats . 158

Miscellaneous Property Details . 159

Events and Delegates . 159

Delegates . 160

Multicast Delegates. 166

Instance Delegates . 167

Events . 168

Summary . 170

■CHAPTER 11 Expressions and Operators . 171

Operator Overloading . 173

Complex Numbers, a Basic Example . 174

A Mathematical Diversion: Numbers Modulo Primes 179

Implicit and Explicit Conversions of Built-in Types. 182

User-Defined Conversions . 188

CLS-Compliant Operators. 190

Summary . 194

■CHAPTER 12 The End of the Beginning . 195

Include Files . 195

Forward Declarations . 195

The Problem . 196

■CONTENTS xi

6080chFM.qxd 10/24/06 1:11 PM Page xi

The Solution . 196

Include File Caveats. 196

Types of Declarations . 197

Scope Resolution Operator . 199

Nullable Types . 201

Examples in C# and C++/CLI . 201

The ?? Operator in C#. 203

Under the Hood . 204

Checked Expressions . 205

Anonymous Methods . 206

Context-Sensitive Keywords . 206

Method Group Conversion . 207

Constructor-Initialized Variables . 208

Expression Statements with No Effect. 209

Exceptions . 210

Basic Exception Handling . 210

Function-Try Blocks. 213

Summary . 215

■CHAPTER 13 Fun, Fun, and More Fun. 217

Dropping Light Bulbs . 217

Initial Thoughts . 217

A Rough Approximation . 218

A Little Algebra . 218

Discovering a Recursive Algorithm . 219

Implementation . 221

First Drop. 222

Bridge Crossing . 222

Background. 222

Algorithm and Implementation . 223

The Code . 224

Taking the Algorithm for a Spin . 226

Dealing with Cannibals . 226

Assumptions . 227

The Code . 227

Summary . 229

■CONTENTSxii

6080chFM.qxd 10/24/06 1:11 PM Page xii

PART 3 ■ ■ ■ Advanced Concepts

■CHAPTER 14 Generics . 233

A Queue of Tasks . 233

C# Implementation Under .NET 1.0 . 233

Moving to Generics . 239

Creating Generic Classes in C++/CLI. 252

Summary . 257

■CHAPTER 15 Introduction to Templates . 259

Comparison with Generics . 259

Syntactic Differences . 260

Summary. 260

Compilation Process . 261

Templates Don’t Really Exist . 263

Constraining Freedom Is a Good Thing . 264

The Template Paradigm . 264

Specialization . 265

Partial Specialization . 266

Partial Ordering of Function Templates . 268

Nontype Template Parameters. 270

Complex Numbers. 273

Overview . 273

Mathematical Formulas . 274

Generic Implementation . 274

Templates to the Rescue . 275

Core Differences: Templates and Generics . 279

Summary . 279

■CHAPTER 16 Advanced Generics and Casts . 281

Constraints . 281

Kinds of Constraints . 281

Type Constraints . 282

Satisfying Type Constraints . 284

The gcnew Constraint . 285

The value class Constraint . 285

The ref class Constraint . 286

Summary. 287

■CONTENTS xiii

6080chFM.qxd 10/24/06 1:11 PM Page xiii

Cast Operators . 288

Runtime Type Identification . 288

const_cast<>() . 289

static_cast<>() . 290

dynamic_cast<>() . 290

reinterpret_cast<>() . 292

safe_cast<>(). 292

An Adder . 293

Generic Delegates . 295

Summary . 296

■CHAPTER 17 The Preprocessor . 297

C# Preprocessor Commands. 297

Code Regions . 297

Conditional Code Compilation . 298

C++ Preprocessor Commands . 298

Full Text Substitution Language . 299

Debugging Support . 299

Function Syntax . 299

Concatenation Operator . 300

String Operator. 301

Macros on Macros . 301

Special Preprocessor Predefined Macros . 303

#define. 304

#undef . 305

Conditional Directives . 305

#include. 305

#using . 306

#error . 306

#pragma . 306

Some Useful Pragmas. 307

Summary . 314

■CHAPTER 18 Native C++ . 315

The iostream Library. 315

Pointers to Members . 316

Operators new and delete . 319

/Zc:forScope . 321

■CONTENTSxiv

6080chFM.qxd 10/24/06 1:11 PM Page xiv

/Zc:wchar_t. 322

Default Parameters . 322

C++ Runtime Library Functions . 323

stdio.h . 323

stdlib.h . 324

Other Include Files . 325

STL. 326

vector . 326

deque . 327

list. 333

auto_ptr . 333

Summary . 333

■CHAPTER 19 Multiple Language Support . 335

.NET Language Integration . 335

Gathering Metadata. 336

Tracking Students Example . 336

Summary. 343

.NET Interoperability . 343

Wait for the Beep . 344

C# Platform Invoke . 344

C++ Built-in Support. 346

Using C++ for C# InterOp. 347

Summary . 349

■CHAPTER 20 Final Thoughts . 351

Standard Dispose Pattern . 351

Destructors and Finalizers . 352

Implementation in C# . 352

Implementation in C++/CLI . 354

For Further Study . 355

Function Objects . 355

Special Pointers . 357

Interior Pointers . 357

Pinning Pointers . 358

Templates Revisited . 359

Class Hierarchy Pitfalls . 361

Type Aliases (typedef) . 364

■CONTENTS xv

6080chFM.qxd 10/24/06 1:11 PM Page xv

Friends. 366

Volatile Data . 366

Constant and Mutable Data . 367

Attributes. 368

More on IntelliSense and Source Browsing . 369

Summary . 369

■INDEX . 371

■CONTENTSxvi

6080chFM.qxd 10/24/06 1:11 PM Page xvi

Foreword

C++/CLI was originally envisioned as a high-level assembler for the .NET runtime, much like
C is often considered a high-level assembler for native code generation. That original vision
even included the ability to directly mix in IL with C++ code, mostly eliminating the need for
the IL assembler ilasm.

As the design of C++/CLI evolved, this vision was scaled back. We, the Microsoft C++
team, still wanted C++/CLI to be a systems programming language for .NET, but we decided
that exposing the full capabilities of the CLR to other languages wasn’t a good idea. After all,
language interoperability is a significant factor in the success of .NET.

We knew C++ programmers would expect powerful features unavailable in other lan-
guages, like C#, so we decided exposing common C++ constructs in a familiar manner when
using C++/CLI was critical. For example, the RAII idiom frequently used in ISO standard C++
programs needed to work in a similar syntactic manner when using a reference type. Likewise,
programmers expected templates to work seamlessly with reference types, value types, and
interfaces.

We were a bit surprised that programmers found C++/CLI’s predecessor Managed C++
unacceptably ugly. We thought new keywords should have leading double underscores,
because that was the way to add such extensions while conforming to standard C++. Early
in the C++/CLI design process, we looked for ways to make the language look nice and still
contain strictly conforming extensions. While contextual and whitespace keywords are a little
unconventional (and a bit of a pain to implement), they certainly make C++/CLI look much
nicer and give it that first-class feel we were looking for.

In the end, I think we found the right balance between C++ power and familiarity and a
clean syntax to enable access to the .NET runtime. Hopefully, you’ll enjoy using C++/CLI as
much as we enjoyed creating it. After working with Dean on the Visual C++ compiler front end,
I know you’ll find his insights and explanations valuable as you learn, and eventually master,
C++/CLI.

Jason Shirk
Software Development Engineer

Visual C++ Front End
Microsoft Corporation

xvii

6080chFM.qxd 10/24/06 1:11 PM Page xvii

6080chFM.qxd 10/24/06 1:11 PM Page xviii

About the Author

■DEAN C. WILLS is a freelance programmer with over 20 years’ experience
in system programming areas such as BIOS, assembly language, C, and
C++. He is the owner of Sandpaper Software and has worked for com-
panies like Compucorp, Cyrix, National Semiconductor, and Virtio. He
was a developer on the Visual C++ front end during the Visual Studio 2005
ship cycle.

xix

6080chFM.qxd 10/24/06 1:11 PM Page xix

6080chFM.qxd 10/24/06 1:11 PM Page xx

About the Technical Reviewer

■ALVIN CHARDÓN grew up in Ponce, Puerto Rico with a passion for academic
competitions, computers, and basketball. He obtained bachelor degrees in
computer engineering and electrical engineering at the University of
Puerto Rico, Mayagüez Campus (UPRM), where he was valedictorian.

Already in love with C++, Alvin first encountered .NET in 2001 dur-
ing Microsoft internship. Since 2002, he’s been a Microsoft employee.
He’s been a member of the Visual Studio and Visual C++ teams as a
software design engineer and occasionally plays the role of program

manager or software developer. Alvin has also worked in the front end of Microsoft’s C++
compiler, assisted in the design and testing of C++/CLI, and helped develop the future road
maps for the IntelliSense and Browsing technologies. He now works on the Visual C++ IDE
team, where he contributes to the development of new testing methodologies, including
compiler-abstract syntax-tree–based test generation and engine-level UI testing. Alvin has
published on MSDN and has been featured in publications ranging from the newspaper
El Nuevo Día and .Code magazine in Latin America to www.microsoft.com in the United States.

Alvin is still part of the Visual C++ family and loves coming to the office every day. When
he is not thinking C++, he likes to read, write stories, go dancing, play a good game of chess or
basketball, and occasionally bungee jump or paraglide from a cliff.

xxi

6080chFM.qxd 10/24/06 1:11 PM Page xxi

6080chFM.qxd 10/24/06 1:11 PM Page xxii

Acknowledgments

A work of this magnitude is always greater than the sum of its parts, and I feel likely to carry on
in this fashion by forgetting to acknowledge half of the people who were vital to its production.

Perhaps it’s best to play it safe and thank groups rather than individuals. That said, let me cat-
egorically thank my family and friends, the Microsoft Visual C++ team, and everyone at Apress.

Those of you who deserve special mention, please feel free to add your own names here:

1.

2.

3.

4.

5.

xxiii

6080chFM.qxd 10/24/06 1:11 PM Page xxiii

6080chFM.qxd 10/24/06 1:11 PM Page xxiv

Preface

I reined my horse to the precipitous brink of a black and lurid tarn that lay in unruffled

lustre by the dwelling, and gazed down—but with a shudder even more thrilling than

before . . .

—Edgar Allan Poe, “The Fall of the House of Usher”

Why C++?
Shall I begin this book by confessing that many a harried day and restless night have I pon-
dered this exact question? Though that might be a bit melodramatic, stating the exact opposite
(that I’ve never even considered it) would be an outright lie. Luckily, the answer is clear. No
other high-level language offers you the same degree of control over the system. In C++, you
can specify exactly what you want to occur, make the difficult design choices along the way,
and customize general-purpose algorithms to fit your application. For this reason, C++ is the
first choice for operating system writers, game developers, and for that matter, writers of large
systems and high-performance applications everywhere. It simply allows you to do whatever
you want to do.

However, sometimes what you really want to do is not worry about all the things you
could do and just get down to producing a simple, modular, secure application. Enter C#, fol-
lowed by Visual C++ 2005 and C++/CLI. C# is a language designed with a .NET mind in a C++
body. It strips out many of the complexities of C++, but it limits what you are able to do at the
same time. C++/CLI aspires to harness the power of the .NET Framework and managed code
without sacrificing any of the power of C++.

What’s in a Name?
C++/CLI is a bit of a misnomer. It is a set of extensions that allow C++ to expose the power of the
Common Language Infrastructure (CLI). Really, it portends the future of C++. There is no reason
that C++/CLI features, such as events and properties, could not be a part of standard C++.

In reality, the CLI is just an abstraction of a different target platform, like Win32. Just
because C++/CLI targets a different platform and supports features endemic to that platform,
like generics, doesn’t mean that it’s a different language. It’s still C++.

Mix It Up a Bit
One of the most powerful features of Visual C++ 2005 is the ability to create mixed-platform
code effortlessly. You can begin in native C++, switch to C++/CLI, call C#, and unwind back to
native C++ with ease. I’ll cover this in detail in Chapter 19.

xxv

6080chFM.qxd 10/24/06 1:11 PM Page xxv

The Flow of Progress
If C++/CLI were an animal, that animal would have to be a salmon, because migrating from
C# to C++ seems a lot like swimming upstream. Just remember that when salmon swim
upstream, they are revisiting their roots, and that’s what we’re doing with C++/CLI. There are
still many compelling reasons to choose C#, but there are as many to choose C++. Now,
programmers have more freedom than ever in selecting the language that is best suited to
developing their applications.

Obtaining Updates for This Book
I think being human is a good thing. Acknowledging that to err is human, of course, gives any
author a unique feeling of inadequacy that can only be earned by struggling for months to get
something exactly right and blowing it in the end. Since it would be presumptuous to expect
this book to be the one that came out perfect on the first pass, instead, let me pledge to con-
tinue to strive to get it right. Any errata, as well as contact information for reporting errors, will
be published on the Apress web site. If you would like to contact me directly, you can e-mail
me at dean@sandpapersoftware.com.

■PREFACExxvi

6080chFM.qxd 10/24/06 1:11 PM Page xxvi

Introduction

. . . for as ten millions of circles can never make a square, so the united voice of myriads

cannot lend the smallest foundation to falsehood.

—Oliver Goldsmith

Apology
This is a book built on a presumption, and that presumption is about you. It presumes that
you have C# experience and that you know your way around the .NET Framework.

Well, I apologize up front. In law school, I learned that a presumption may be no more
than an assumption that becomes the foundation of a faulty argument. In this case, we might
be building our foundation on quicksand.

In this Introduction, I will attempt to fortify your knowledge a bit, with the aim of short-
ening the distance between the average reader and the expert, so that all will profit from the
remainder.

The .NET Framework
The .NET Framework is often touted as being merely Microsoft’s answer to Java, but that’s far
too cynical a summary. The reality is that the inadequacies of Java and Win32 opened up busi-
ness opportunities for something big to happen, and .NET was it.

With .NET, Microsoft turned software design upside down. The .NET Framework is built
on open standards in the software industry and answers growing user concerns over interop-
erability, reliability, and security. It is built on Unicode, XML, HTTP, SOAP, and others, and it
does not mandate C++ as a single, correct language choice. The file formats are all public and
standardized, and there are now several .NET-compatible languages.

The Common Language Infrastructure
The Common Language Infrastructure (CLI) is a standard that describes the execution engine
and file formats of .NET. All .NET implementations follow this standard, although they may
implement the various elements in different ways on different platforms.

The .NET Framework on Windows is made up of an execution model, called the Common
Language Runtime (CLR), and a set of libraries that implement the various features of .NET.
Since the CLR complies with the CLI, it is said to be CLI-compliant. In fact, the CLI was written
in tandem with the development of the CLR, selecting a core subset that would be portable
without sacrificing the essence of the CLR.

xxvii

6080chFM.qxd 10/24/06 1:11 PM Page xxvii

The CLR has elements that go beyond the specifics of the standard. For example, the
standard specifies that the Virtual Execution System (VES) be able to execute Common
Intermediate Language (CIL) instructions, but it does not mandate how. The implementa-
tion must determine whether CIL instructions are translated to native code at load time or
at runtime. Future hardware architectures may even run CIL natively. Microsoft’s imple-
mentation in the CLR uses a special compiler called a just-in-time (JIT) compiler, which
translates the CIL to native code during execution only as needed. This is a CLR optimiza-
tion that is not specified by the CLI standard.

The CLR is the Microsoft Windows implementation of the execution engine, but .NET was
not designed to run exclusively on Windows. Several non-Windows implementations exist,
and they run on the Mac, Unix, and Linux operating systems. These include Mono, Rotor, and
Portable .NET, and they run under FreeBSD and Mac OS X.

Elements of the CLI
The CLI standard defines the various components that make up the CLI, as well as the CIL and
the comprehensive data format called metadata. The primary components follow:

• The VES, which executes code. There are provisions within the CLI for executing both
CLI-compliant code, called managed code, as well as code compiled by existing com-
pilers, called unmanaged or native code. Managed code that has been translated to
a particular host is called managed native code.

• The CTS, which defines the types available to a CLI-compliant language.

• The CLS, which defines language interoperability rules for items that are exported from
an assembly. It does not apply to internal implementation within an assembly. It affects
a subset of the CTS types as well as methods that pertain to these types.

• Assemblies, which are units of deployment for one or more modules. Applications
themselves are not defined by the standard, but the VES defines how to isolate applica-
tions running in the same operating system process using application domains. In
C++/CLI, variables may be per application domain or per process. We will revisit this in
Chapter 20.

• Modules, which are building blocks of the assemblies.

• Metadata, which contain the descriptions of the types, methods, and attributes con-
tained within the module, as well as a manifest, which describes how the module is
deployed. Attributes (see Chapter 20) are user-definable types that can extend CLI-
compliant languages. The manifest includes versioning information for the module
and solves the age-old Windows problem of DLL hell. Modules also support reflection,
which is the process of discovering information about a module, and the types con-
tained therein, by examining the metadata.

• Portable Executable (PE) File Format.

• The CIL, which is the managed instruction set. The Microsoft Windows CLR implemen-
tation of the CIL is called Microsoft Intermediate Language (MSIL).

• Exceptions and exception handling, which are given special mention in Chapters 12
and 20.

■INTRODUCTIONxxviii

6080chFM.qxd 10/24/06 1:11 PM Page xxviii

Standard Libraries
The CLI defines a standard set of libraries to provide the CLI types and runtime mechanisms.
The libraries are fairly self-explanatory and include the following:

• Runtime Infrastructure Library

• Base Class Library

• Network Library

• Reflection Library

• XML Library

• Extended Numerics Library

• Extended Array Library

The CTS
The CTS defines various types and accessors. A quick overview of the principal elements fol-
lows, and we will revisit these in context later in this book.

Type Classes
The CTS supports two basic kinds of data types—value types and reference types—each of
which has advantages and disadvantages. Since they each have a long list of characteristics
and instructions to say how they can and cannot be used, it is difficult to describe them suc-
cinctly beyond saying that value types meet all of the listed requirements for classification as
a value type. Introducing them according to the way they are intended to be used is more
accurate.

Value Types

A value type is a data type that typically contains a small amount of data. It is passed between
methods by value, by copying all of the data. Built-in types including int and float are value
types. Value types are typically allocated on the stack or statically initialized memory, which is
not particular to an instance. Value types may contain other value types. A C# struct or enum is
a value type. Value types are covered in Chapter 6.

Reference Types

A reference type is a data type that typically contains a large amount of data. It is passed
between methods by reference, by copying just a handle to the data. System.Object is a refer-
ence type. Reference types are typically allocated on the managed heap. Reference types may
contain either value types or reference types and may also extend other reference types. A C#
class or string is a reference type. Reference types are the houses; value types are the boards
and nails. Reference types are covered in Chapter 6.

■INTRODUCTION xxix

6080chFM.qxd 10/24/06 1:11 PM Page xxix

Boxing and Unboxing
Most .NET methods accept reference types as parameters. Value types may be converted to
a managed-heap–based reference type object by a process known as boxing. The reverse of
this process, extracting the core value type from the interior of a boxed object, is called
unboxing. In general, boxing is done implicitly, but unboxing must be done explicitly because
of information loss. Boxing and unboxing are covered in Chapter 6.

Properties
Types contain fields that are instances of reference or value types. Properties are methods to
get and/or set data that mimic a field. Although properties do not perform as well as direct
data access, they allow controlled and independent access to the act of reading or writing
data objects. Properties are covered in Chapter 10.

Interfaces
An interface is an abstract type that is intended to represent a contract between the class
designer and the class consumer. Interfaces are similar to C++ abstract base classes with pure
virtual functions. Unlike reference types, they support multiple inheritance, so a single class
or interface may be made up of several interfaces. Interfaces are covered in Chapter 6.

C#
C# is a CLI-compliant language. This means that it produces metadata in the correct file for-
mats. C# primarily uses CTS types, and the types are manipulated using CIL instructions.

Managed C++
Managed C++ was an evolutionary step in the development of C++/CLI. It is still supported by
Microsoft Visual C++ 2005 using the /clr:oldSyntax command-line option. I am not going to
cover it in this book.

Why? Some beautiful quotes from fellow authors follow to answer that:

When I joined Microsoft back in the winter of 2001, it was on the condition that they

accept the fact that I considered their new product, Managed Extensions for C++, an

abomination.

—Stan Lippmann

I’d rather have my teeth drilled than work with managed C++.

—Jesse Liberty

Personally, I don’t think the managed extensions for C++ are as bad as all that. (Note to
self: Send Jesse a copy of this book. He’s earned it for that quote.) They just have the feel of
extensions rather than a language, which makes them somewhat counterintuitive. C++/CLI
is a true extension of C++, a language within a language, which looks at .NET differently. For

■INTRODUCTIONxxx

6080chFM.qxd 10/24/06 1:11 PM Page xxx

example, the managed extensions for C++ deal with reference types using a literal pointer to
an item on the managed heap (R __gc *r), where C++/CLI introduces the concept of a handle
to a type (R^r). In addition to being cleaner, it’s also more intuitive when migrating from C#
and mixing native and managed code.

C++/CLI
C++/CLI, or C++ for the CLI, is also a CLI-compliant language. At the same time, its capabili-
ties go far beyond that. You can write CLI-compliant code, or you can write code that executes
natively on platforms lacking .NET. The choice is yours.

The Common Language Runtime
The CLR is the Microsoft Windows implementation of the CLI. It is CLI-compliant, and it has
a host of features that go beyond the CLI, including the following:

• Security: The CLR allows you to add a digital signature to your assemblies using the
strong name (SN) utility. Strong-named assemblies may be added to the global assem-
bly cache (GAC).

• JIT Complier: As introduced previously, the JIT compiler converts CIL into managed
native code for host execution. Compiling the CIL is significantly faster than interpret-
ing it, and JIT compilation reduces latency by compiling as needed rather than at load
time.

A Note About the C++ Compiler
The C++ compiler has several compilation options, as it is able to produce managed code,
native code, or a combination of the two. I will go over the implications of the various options
in Chapter 9. Here’s a preview to tide you over until then:

• /clr:safe: Produces an IL-only verifiable output file and is used with managed types
and managed code only.

• /clr:pure: Produces an IL-only output file (no native executable code) and is used with
managed and native types and managed code only.

• /clr: Produces a mix of native and IL. Managed and native types and managed code and
native code are allowed.

• <default>: No option specified. The program compiles for native execution.

Summary
When I started programming, you needed to know how to use octal, punched cards, and
teletype machines; a personal computer was a fancy programmable calculator; and raw
intelligence and esoteric knowledge were the elements of power.

■INTRODUCTION xxxi

6080chFM.qxd 10/24/06 1:11 PM Page xxxi

The Wild West of computer programming is gone. Today the game is different. Everyone is
just a surfer on a wave of changing technology, and the ability to find, consume, and classify
information quickly is far more important than the ability to memorize it.

.NET, C#, and C++/CLI are all examples of this difference. Hopefully, this text will help you
gain the information you need to catch and hold this wave until the next one comes along.

■INTRODUCTIONxxxii

6080chFM.qxd 10/24/06 1:11 PM Page xxxii

Fast Track to C++/CLI

P A R T 1

6080CH01.qxp 10/24/06 12:57 AM Page 1

6080CH01.qxp 10/24/06 12:57 AM Page 2

Hello, World

Consistency is the last refuge of the unimaginative.

—Oscar Wilde

Since time immemorial, which pretty much dates back to the release of the Kernighan and
Richie book on C, there has been a tradition of opening a book on C or its descendants with a
short example of how easy it is to display “Hello, World”. This book is no exception. Let’s exam-
ine the C# and C++ versions of “Hello, World” side by side (see Table 1-1).

Table 1-1. “Hello, World” in C# and C++

C# C++

using System; using namespace System;

class HelloWorld
{

static void Main() void main()
{ {

Console.WriteLine("Hello, World"); Console::WriteLine("Hello, World");
} }

}

As you can see in Table 1-1, the languages are clearly different. On the other hand, C# and
C++ are like French and Italian; although the C++ syntax may appear foreign, the meaning is
clear.

Here are some things to notice:

• In C#, Main() is always a method of a class. In C++/CLI (Common Language Infrastruc-
ture), main() is not a class method; it is a global function. It’s easy—just remember that
global functions have no class.

• In the same way that you have a unique static member function named Main() in any
C# program, you have a unique global function named main() in any C++ program.
It is possible to get around this requirement in C# and have multiple Main() methods
by embedding them in different classes. You can then tell the compiler using the
/main:<type> option which class contains the startup method. This trick does not work
in standard C++ since main() must be a global function and any versions of main()
would have the same signature and clash in the global namespace.

3

C H A P T E R 1

6080CH01.qxp 10/24/06 12:57 AM Page 3

• C++ uses :: (colon-colon) to separate namespaces and class names and a dot (.) to
access class members; C# uses a dot for everything. C++ expects you to be more specific
about what you’re doing.

• The C++/CLI using statement requires the additional keyword namespace.

■Note In Microsoft Visual C++, the entry point can be any function as long as it follows the valid
list of signatures. It can be a global function or a member function. You do this by specifying the
/entry:<function_name> linker option. Standard C++ requires a unique global function named main
with an integer return value and an optional argument list. See Section 3.61 of the C++ standard, ISO/IEC
14882:2003(E). A PDF version of this standard can be downloaded from http://webstore.ansi.org
for a small fee.

Starting the Visual Studio 2005 Console
I bet you’re just itching to give this a try. “Real programmers” use the command line, so let’s
start there. We’re now going to construct a console application.

Go to the Start menu, and navigate to the Visual Studio 2005 command prompt, as shown
in Figure 1-1.

Figure 1-1. Select the Visual Studio 2005 command prompt.

This spawns a new command prompt with the environment variables set to work with
Visual Studio 2005. All of the Visual Studio compilers may be run from the command line,
including Visual C++, Visual C#, and Visual Basic.

Retrieving the Source Files
Either pop up notepad.exe (surely your favorite editor) or fetch the source from the Source
Code section of the Apress website. Go to www.apress.com, and search for this book using the
ISBN, 1-59059-608-0.

CHAPTER 1 ■ HELLO, WORLD4

6080CH01.qxp 10/24/06 12:57 AM Page 4

Executing HelloCpp.cpp
Navigate to the sample directory for this chapter, and go to the HelloWorld subdirectory. Here
is HelloCpp.cpp:

using namespace System;

void main()

{

Console::WriteLine("Hello, World");

}

Enter the following command:

cl /nologo /clr HelloCpp.cpp

This command directs the C++ compiler to compile this file targeting the Common Lan-
guage Runtime (CLR) and creates a C++/CLI (Common Language Infrastructure) executable.
The executable is a managed assembly that contains metadata and Common Intermediate
Language (CIL), just like C# executables. CIL is also known as MSIL on the CLR.

Let’s execute this example. First, type

HelloCpp

Next, press Enter. You should see the following:

Hello, World

and that’s a good thing.

A Quick Tour of the Visual C++ IDE
In this section, we go over the steps for making an elementary C++/CLI project using the
Visual Studio 2005 C++ Integrated Development Environment (IDE). This is very similar to
creating a C# project.

1. Load Visual Studio 2005.

2. From the File menu, select New Project. My system is set up with Visual C++ as the
default language, so my New Project dialog box looks like the one shown in Figure 1-2.

3. Navigate to the CLR project types under Visual C++.

4. Select CLR Console Application under “Visual Studio installed templates”.

5. Enter the name HelloWorld in the Name text box.

6. Click OK.

CHAPTER 1 ■ HELLO, WORLD 5

6080CH01.qxp 10/24/06 12:57 AM Page 5

Figure 1-2. Creating a new HelloWorld project and solution

By default, Visual Studio 2005 creates new projects in My Documents\Visual Studio
2005\Projects. Feel free to change the directory and place the project elsewhere if you like.
Click OK.

Understanding Projects and Solutions
The Visual C++ CLR Console Application Wizard creates a new project called HelloWorld in a
solution also called HelloWorld. What is the difference between the project and the solution?

The basic paradigm used in Visual Studio is that you create a solution, which is your main
application. This solution can consist of several projects, which are class libraries or executables.
Each project is language specific, though it is also possible to mix languages within a single
project using custom build rules.

In our case, we want a single Visual C++ project that will generate a single executable
named HelloWorld.exe, so our solution has a single project. By default, the project is created
in a subdirectory, but we can change this behavior by deselecting “Create directory for solu-
tion”. Later in this book, we’ll have more sophisticated solutions that depend on several
projects.

Now you should see two tiled windows: the Solution Explorer and the editor window con-
taining HelloWorld.cpp. It appears that Visual C++ 2005 has gone to all of the trouble of writing
the program for us; now isn’t that nice?

CHAPTER 1 ■ HELLO, WORLD6

6080CH01.qxp 10/24/06 12:57 AM Page 6

Understanding the Differences
There are a few differences between our basic HelloCpp application and the HelloWorld appli-
cation created by the Visual Studio C++ CLR Console Application Wizard, shown in Figure 1-3.
The most obvious difference is that the wizard created several additional supporting files.

Figure 1-3. The HelloWorld application as created by the CLR Console Application Wizard

Let’s have a look at those new files.

Resources
These files outfit your application with a snappy little icon and pave the way for future appli-
cation development. Visual C++ allows you to embed resources in your binary files. They can
be bitmaps, icons, strings, and other types. For more information, consult the Visual C++
documentation.

• resource.h

• app.ico

• app.rc

Precompiled Headers
These files improve compilation speed by avoiding multiple compilations of common code:

• stdafx.h

• stdafx.cpp

One topic that surfaces again and again throughout this book is the distinction between
declarations and definitions in C++. Unlike C#, class prototypes, called declarations, may be
separated from class definitions into distinct files. This improves compilation speed, avoids
circular dependencies, and provides an object-oriented abstraction layer for complex projects.

CHAPTER 1 ■ HELLO, WORLD 7

6080CH01.qxp 10/24/06 12:57 AM Page 7

In many C++ projects, it is common that files containing just declarations, called header files
and terminated with the .h extension, are compiled as a unit at the start of every source file. If
the headers are identical across the project, the compiler ends up compiling the same chunk
of code with each source file. One optimization provided by Visual C++ is to compile the head-
ers referenced in the stdafx.h file en masse into a binary PCH (precompiled header) file in
advance of all other compilation. This is called precompiling the headers. As long as the head-
ers are not modified, subsequent compilations of source files are sped up considerably as the
precompiled headers are loaded from disk as a unit rather than being recompiled individually.
Two files, stdafx.h and stdafx.cpp, are generated by Visual C++ to assist in this mechanism.
For more information, again consult the Visual C++ documentation.

It is possible to disable precompiled headers by changing the project properties. To mod-
ify the project settings, right-click the HelloWorld project in the Solution Explorer. Navigate to
Configuration Properties, and click the plus sign to expand the list. Then expand the plus sign
next to C++, and select Precompiled Headers. The Property Pages window, shown in Figure 1-4,
appears on the screen, which allows you to configure precompiled headers within your appli-
cation.

Figure 1-4. Configuration of precompiled headers from the Property Pages window

AssemblyInfo.cpp
The file AssemblyInfo.cpp contains all of the attribute information for the assembly. This is
similar to the C#-produced AssemblyInfo.cs. This includes, but is not limited to, the copy-
right, version, and basic assembly description information. The default values are fine for
development, but you may not want the copyright for Microsoft Corporation in your assembly
when you ship. Figure 1-5 shows an excerpt from a sample AssemblyInfo.cpp.

CHAPTER 1 ■ HELLO, WORLD8

6080CH01.qxp 10/24/06 12:57 AM Page 8

Figure 1-5. An excerpt from AssemblyInfo.cpp

HelloWorld.cpp
The main source file has a few significant differences as well, as Figure 1-6 shows:

• The main function is defined to accept a managed array of System::String, which is
equivalent to the C# Main(string[] Args). This allows you to access command-line
arguments.

• The precompiled header file stdafx.h is included to support the use of precompiled
headers.

• The literal string “Hello World” is prepended with an L to indicate a wide character
string. In native C++, strings are byte arrays by default. When compiling C++/CLI, the
compiler attempts to distinguish between wide character strings and byte arrays by
context. Whether or not you have an L in this context, a wide character System::String
is created.

Figure 1-6. HelloWorld.cpp

CHAPTER 1 ■ HELLO, WORLD 9

6080CH01.qxp 10/24/06 12:57 AM Page 9

Window Layout
One of the well-designed features of Visual Studio is the ability to customize the appearance
of the IDE by rearranging windows using simple mouse movements. In this section, we learn
how to dock and position the Quick Find window.

The Problem with the Find and Replace Window
To invoke Visual Studio’s Find and Replace window, press Ctrl-F. The window shown in
Figure 1-7 appears.

Figure 1-7. Visual Studio’s Find and Replace window

Now if you click and hold the title bar, you can move this window around and find text in
files quite easily. There is only one big problem with this. Suppose you have a very large file
where the same text appears again and again. Then you might find yourself clicking Find Next
repeatedly until you find the instance you’re searching for. Unfortunately, sometimes after you
click Find Next, Visual Studio elects to move the Find and Replace window to the left or right
in order to make the text visible, rather than displaying it above or below the dialog box. When
the window moves, your mouse cursor is left hovering over where the Find Next button used
to be, rather than where it is now. You move the cursor, click again, and there goes the window.
One word comes to mind—irritating.

Docking the Window
Luckily, there are a few simple solutions. One nice trick is to use a hotkey to cycle through the
results (F3 has this functionality in the standard Visual C++ key bindings; the C# key bindings
are different). Another way is to dock the Find and Replace window on one of the fixed frames
of the IDE. By default, the Find and Replace window is set to Floating, as shown in Figure 1-8.
Right-click the title bar, and select Dockable. Now this window can be part of a window frame.

CHAPTER 1 ■ HELLO, WORLD10

6080CH01.qxp 10/24/06 12:57 AM Page 10

Figure 1-8. Right-clicking on the title bar reveals options for displaying the window.

Now when you click and hold the title bar, you see a small compass in the frame that the
cursor is hovering over, as well as reference markers on each of the other window frames. The
compass allows you to direct the placement of the window with respect to the frame you are
hovering over. Move the window over another frame, and the compass hops to that one.

The Center of the Compass
The compass itself has tabs for the directions (north, south, east, and west) as well as a center
box. If you release the mouse over the center box, the window becomes tabbed within the
current frame. Go ahead and drop it over the main frame, where the documents are edited.
You can see now that it shares a frame with the other main windows. Unfortunately, this is a
terrible place for a Find and Replace window, because you have to have the file you’re search-
ing in visibly available as well when you search for text, and tabbing does not allow you to do
this. Right-click the title bar, and notice that Tabbed Document is checked (Figure 1-9). Click
Dockable, and the Find and Replace window returns to the center of the screen.

When you hover over one of the compass direction tabs, the corresponding portion of the
target frame is grayed out, so that you can preview the new window arrangement. If you drop
the window in the wrong place, you can always either tear it off or manually set it to Dockable
or Floating, depending on its state.

My preference is to move the mouse cursor over the bottommost frame, where the Output
window is normally located, and then use the compass in order to tab the Find and Replace
window on the bottom frame.

CHAPTER 1 ■ HELLO, WORLD 11

6080CH01.qxp 10/24/06 12:57 AM Page 11

Figure 1-9. Find and Replace as a tabbed document in the main frame

Building, Executing, and Debugging
Let’s take a quick tour of some key Visual C++ IDE commands (Table 1-2) as we build and test
HelloWorld.

Table 1-2. Common IDE Commands Quick Reference

C# C++ Explanation

F3 F3 Find next

F8 F4 Go to the next compilation error in the source

Shift-F8 Shift-F4 Go to the previous compilation error in the source

F5 F5 Execute with debugging

Ctrl-F5 Ctrl-F5 Execute without debugging

F6 F7 Build

F9 F9 Toggle breakpoint

F10 F10 Step over

F11 F11 Step into

Building the Program
Depending on our key bindings, we can use either F6 or F7 to build. If there are any errors,
they appear in the Output window at the bottom of the screen, and you can use either F8 or F4
to cycle through them.

In C++, just as in C#, multiple compilation errors are often spurious; the compiler tries to
compile beyond the first detected problem and may get lost. Often this allows you to see two

CHAPTER 1 ■ HELLO, WORLD12

6080CH01.qxp 10/24/06 12:57 AM Page 12

or three errors and fix them all in a single editing pass. Just as often, the extra errors are an
artifact of the compiler going out to lunch based on incorrect syntax, and fixing the first error
or two may make the remainder disappear. I recommend building often.

Executing HelloWorld
The F5 key is the execute command. Since this is a console application, execution spawns a
command window that displays “Hello, World” and then quickly closes, which is somewhat
unsatisfying. There are several ways around this. One approach is to create another Visual
Studio 2005 command prompt, navigate to the debug directory where the executable was
created, and run the program manually, as we did earlier. Another way is to add the following
call to the end of the main() function:

Console::ReadLine()

This method asks for a line of input from the user and keeps the console window open
until the user presses the Enter key.

Another set of solutions presents itself by taking advantage of the built-in Visual C++
debugger. You could either set a breakpoint on the last line of the program using the F9 com-
mand, or you could just step through the program line by line. Either way, you can switch to
the spawned command prompt to see the output as desired.

Let’s try using the debugger.

Using the Visual C++ 2005 Debugger
The debugger is integrated into Visual Studio 2005, so initiating debugging is very simple.
Entering any debugging command launches your application under the debugger. The win-
dow layout is sure to change, as there are several status windows that are only visible while
debugging by default.

■Note There are different window configurations for editing and debugging. Each configuration must be
customized separately.

The basic debugging commands are F5 (Execute with Debugging), F9 (Toggle Break-
point), F10 (Step Over Source Line) and F11 (Step Into Source Line).

Stepping Through the Code
A Step command executes a line of code in the program. There are two varieties of the Step
command: F10 (Step Over) and F11 (Step Into). These are similar, yet they differ when applied
to a function call. F10 executes until the line after the function call, whereas F11 stops execu-
tion at the first line of the function body. Of course, using F11 is always dependent on whether
debugging information is available for the binary the function came from. Since debugging
information for Console::WriteLine() is not distributed with Visual C++ 2005, both F10 and
F11 step over the function.

CHAPTER 1 ■ HELLO, WORLD 13

6080CH01.qxp 10/24/06 12:57 AM Page 13

Press F10 to begin debugging HelloWorld with Visual C++ 2005. The title bar changes to
show “HelloWorld (Debugging)” to indicate debugging mode. In addition, a command win-
dow is spawned in a separate window. At this point, it is blank since HelloWorld has yet to
display any information.

A small yellow arrow appears on the left edge of the editor window, which indicates the
current line of code that is executing. Figure 1-10 shows that execution has stopped at this
point, and the debugger awaits the next command.

Figure 1-10. Debugging HelloWorld

The arrow indicates that we are beginning execution of the main() function, and the next
line to be executed contains the Console::WriteLine() statement.

Press F10 again. The Console::WriteLine() function call executes, and “Hello World”
appears in the separate command window.

If you dare to press F10 a couple more times, you create a nightmare on your screen. The
first time, you execute over the return function. The next time, you return from the HelloWorld
code into the CRT. This module performs important tasks, including initializing your program
in Windows, packaging the command-line arguments for your program, and handling the
program’s exit to Windows. Note that this code calls main() explicitly by name, which explains
why every C++ program requires a global function called main().

Completing Execution
Press F5 once to execute the remainder of the exit code and return to the editor. If
HelloWorld.cpp is not visible, you can click the tab to reveal the source again. At this point,
debugging has completed, and the title bar no longer indicates debugging.

Summary
This chapter provided you with a basic outline of how to create simple C++/CLI applications
from the console and more-sophisticated applications using the IDE. I also showed you how
basic debugging can be performed in Visual C++ 2005 using the integrated debugger.

In the next chapter, we'll see how you can call C# from a simple C++ program.

CHAPTER 1 ■ HELLO, WORLD14

6080CH01.qxp 10/24/06 12:57 AM Page 14

There’s No Place Like Home

I have not ceased being fearful, but I have ceased to let fear control me. I have accepted

fear as a part of life, specifically the fear of change, the fear of the unknown, and I have

gone ahead despite the pounding in the heart that says: Turn back, turn back; you’ll die

if you venture too far.

—Erica Jong

In this chapter, we introduce C++’s interoperability features and show you a quick way to
combine C# and C++. We begin by developing a card-shuffling class in C#. Next we add a C++
stub that uses the C# class. In Chapter 4, we take it one step further and migrate the entire
application to C++. We will return to language integration and interoperability in greater detail
in Chapter 19.

Developing the Program
Suppose you’ve got a perfectly good C# class that you’d like to use with your C++ code. It’d be a
shame to have to throw it all away and rewrite it in C++, wouldn’t it?

When I was developing the .NET Reflector add-in for C++/CLI, I found myself in this exact
situation. During my development, Lutz Roeder, the author of .NET Reflector, was right in the
middle of improving the Reflector interfaces and ended up removing a class I needed. To help
me out, he sent me a C# file with the deleted code. Rather than being forced to rewrite his code
in C++, I added references to his class in my project and went back to work on the add-in.

Deal Me In
It seems that interview questions are always relevant, no matter how many years you’ve been
in the industry. They can be thought-provoking and entertaining. One of my favorites, shuf-
fling a deck of cards, should prove instructive.

On the surface this appears to be an easy problem, but there are several ways you can get
into trouble before you even begin coding.

15

C H A P T E R 2

6080CH02.qxp 10/24/06 12:57 AM Page 15

The Process
One of the first times that the interview starts going wrong is when you try to figure out how to
represent the deck before you shuffle it. The nightmare would unfold something like this:

YOU: What does the deck look like?

INTERVIEWER: It’s random.

YOU: How can I represent the random input? Are you going to give me a list of the cards in
their input states?

Let me say that at this point the interviewer will retreat to the cave and repeat the ques-
tion in some form:

INTERVIEWER: You are given an arbitrary deck of cards, and you need to produce a shuffled
deck of cards. That’s all I’m going to say.

That’s what he says, but he’s thinking “no hire.” You need to pause a moment here and
think about the goal. The goal is to produce a shuffled deck of cards that is perfectly random.
The order of the cards when you start shouldn’t matter. You can pick any order you like.

Enumerating the Cards
The next hurdle in the interview is getting past the idea of representing the cards as ace
through king in four different suits. There is a simple way: identify each card with a number
from 1 to 52. It’s even easier for programming in C++ and C# if the cards are numbered from
0 to 51 given that arrays are zero indexed in these languages.

Assign an arbitrary order to the suits as well as a number between 0 and 3. Bridge uses
alphabetical order, so why not follow suit?

namespace CSharp

{

class Deck

{

enum Suit

{

Clubs = 0, Diamonds, Hearts, Spades

}

}

}

You can use the same trick for the cards themselves:

namespace CSharp

{

class Deck

{

enum Card

{

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME16

6080CH02.qxp 10/24/06 12:57 AM Page 16

Ace=0, Deuce, Trey, Four, Five, Six, Seven,

Eight, Nine, Ten, Jack, Queen, King

}

}

}

We thus have two types of information to represent separately: the Card number between
0 and 12, and the Suit number between 0 and 3. A common solution to this problem is to map
them to a single number using the following formula:

Number = Suit*13+Card

Since Card is less than 13, it is clear that (int)(Card/13) ==0, so dividing both sides by 13
gives the Suit, with the remainder being the Card. Thus we have derived the following equa-
tions for the reverse transformation:

Suit = Number/13

Card = Number%13

Number realizes its minimum when Card and Suit are both 0 and its maximum when
Card=12 and Suit=3.

min(Number) = 0 * 13 + 0 = 0

max(Number) = 3 * 13 + 12 = 51

So, we have mapped an arbitrary card (Suit, Card) to a unique number between 0 and 51.
For all practical purposes, this problem reduces to that of randomizing the numbers between
0 and 51. You would think that this would be an easy thing, but it turns out not to be trivial,
and it’s very easy to get it wrong. This is especially disturbing given the proliferation of online
gambling.

■Note Here’s an intuitive algorithm that just doesn’t work. Put the cards in an array, and iterate through
them, swapping each card with a card in a random position. This does, in fact, mix up the cards quite spec-
tacularly, but it favors certain card sequences and produces an uneven distribution. Can you see why?

Each swap has one chance in 52 of swapping with itself—a trivial swap. One thing you might think
about is that if the result of the shuffle is an unshuffled deck, say, {1 2 3 4. . .51}, then there must
have been an even number of nontrivial swaps. Now the deck {2 1 3 4. . .51} requires an odd number
of nontrivial swaps. That should be a red flag, because our algorithm always executes exactly 52 swaps,
which is even, so it seems doubtful that these two decks are generated with equal likelihood.

The Shuffling Algorithm
A sound algorithm mimics what you do when you deal out cards. First, you pick one card at
random from the 52 in the deck, then you pick one from the 51 that remain, and so on. In
this algorithm, you get an even distribution up to the randomness of the random number
generator:

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME 17

6080CH02.qxp 10/24/06 12:57 AM Page 17

namespace CSharp

{

class Deck

{

void Shuffle()

{

for (uint u = 52; u > 0; --u)

{

Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);

}

}

}

}

The Completed C# Program
This implementation shuffles a deck of cards and “deals” out the first five cards for viewing.
We can conclude that the name of the game is five-card stud.

using System;

namespace CSharp

{

public class Deck

{

uint[] Cards;

Random randomGenerator;

public enum Suit

{

Clubs = 0, Diamonds, Hearts, Spades

}

public enum Card

{

Ace = 0, Deuce, Trey, Four, Five, Six, Seven,

Eight, Nine, Ten, Jack, Queen, King

}

Deck()

{

randomGenerator = new Random();

Cards = new uint[52];

for (uint u = 0; u < 52; ++u)

{

Cards[u] = u;

}

}

void Swap(ref uint u, ref uint v)

{

uint tmp;

tmp = u;

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME18

6080CH02.qxp 10/24/06 12:57 AM Page 18

u = v;

v = tmp;

}

void Shuffle()

{

for (uint u = 52; u > 0; --u)

{

Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);

}

}

uint RandomCard(uint Max)

{

return (uint)((double)Max * randomGenerator.NextDouble());

}

string CardToString(uint u)

{

Suit s = (Suit)(Cards[u] / 13);

Card c = (Card)(Cards[u] % 13);

return c.ToString() + " of " + s.ToString();

}

public static void Main()

{

Deck deck = new Deck();

deck.Shuffle();

for (uint u = 0; u < 5; ++u)

{

Console.WriteLine(deck.CardToString(u));

}

Console.ReadLine();

}

}

}

A Quick Look at the Code
As in every C# application, the code begins with static Main(). Once there, we create a new
Deck, call Shuffle() on it, then display the first five cards. Since WriteLine() is not familiar
with how to print cards, we create a function that converts the card to a string and then call
WriteLine() with its results. The function CardToString(uint cardnumber) does the trick.

Projects and Solutions
First let’s create a simple C# shuffle project. There is nothing particularly unique about this C#
project. To create it, select File ➤ New ➤ Project. Navigate through the New Project tree view
to create a Visual C# console application named Shuffle. If your system is set up like mine, the
console application appears as shown in Figure 2-1.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME 19

6080CH02.qxp 10/24/06 12:57 AM Page 19

Figure 2-1. The C# Shuffle console application

Both the C# and C++ compilers package metadata into modules and assemblies. Modules
are building blocks of assemblies. Assemblies are made up of one or more modules and are
units of deployment. Assemblies are deployed as executable files or class libraries. In this first
version, the Shuffle project is a standalone executable. Later in this chapter, we will change
this executable into a class library without changing a single line of C# code.

A Quick Look
Select Edit ➤ Outlining ➤ Collapse to Definitions. This gives you a bird’s-eye view of the code,
as shown in Figure 2-2.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME20

6080CH02.qxp 10/24/06 12:57 AM Page 20

Figure 2-2. A bird’s-eye view of the code

Placing the cursor over any of the boxes containing an ellipsis pops up a window that dis-
plays the collapsed section of the code.

Building and Executing the Project
Select Build ➤ Build Solution to build the project. With the Visual C++ key bindings, this is the
F7 key. With the Visual C# key bindings, this is the F6 key. In either case, you can execute it
with the F5 key.

You see output similar to the following—your hand may vary:

Ten of Diamonds

Deuce of Clubs

Trey of Clubs

Jack of Hearts

Deuce of Spades

The Command window now pauses, waiting for you to press Enter because of the
Console.ReadLine() call.

Hmmm. Pair of deuces—not bad, but not good enough to open.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME 21

6080CH02.qxp 10/24/06 12:57 AM Page 21

Binding C++
Now we’re going to take this C# class and call it from C++. We’ll take advantage of the fact that
C++/CLI programs begin with a global function named main(), whereas C# programs start
with a class with a static function named Main(). Since these names are distinct, they don’t
conflict, and we can bind them together seamlessly.

Creating the C++ Project
First we merge the C# program with C++/CLI. To create a C++ project, select File ➤ New ➤
Project. Under Templates, select Visual C++, then CLR, then CLR Console Applications. Name
the project CardsCpp, and select Add to Solution from the Solution drop-down list, as shown
in Figure 2-3. Then click OK.

Figure 2-3. Creating the C++/CLI project

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME22

6080CH02.qxp 10/24/06 12:57 AM Page 22

Setting the Startup Project and Project Dependencies
You should have a new project named CardsCpp. Follow these steps in the Solution Explorer:

1. Right-click the CardsCpp project, and select Project Dependencies. Check the box so
that CardsCpp depends on Shuffle. This ensures that the C# project Shuffle is built
before the C++ project CardsCpp. We want a dependency in this direction, because we
will bring in the completed C# project as a class library DLL and the C++ project will be
the master project. See Figure 2-4.

2. Right-click the CardsCpp project again, and select Set as Startup Project.

Figure 2-4. Project Dependencies dialog box

Making the C# Project a Class Library
Now we’ll do a bit of magic and modify the C# application, so that it can be referenced as a
class library by the C++ application. Right-click Shuffle in the Solution Explorer, and select
Properties. In the Application tab, change the Output Type to Class Library, as shown in
Figure 2-5.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME 23

6080CH02.qxp 10/24/06 12:57 AM Page 23

Figure 2-5. Convert the C# project to a class library.

Adding a Reference to the C# Class Library
Right-click the CardsCpp project, and select References. Then click the Add New Reference
button. Click the Projects tab; the Shuffle project should already be selected, as shown in
Figure 2-6. Click OK to add a reference to Shuffle to the C++ project.

Figure 2-6. Add a reference to the C# project.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME24

6080CH02.qxp 10/24/06 12:57 AM Page 24

Creating the C++/CLI Stub
There is one small change to make to the C++ source file, CardsCpp.cpp. Replace the following
line:

Console::WriteLine(L"Hello World");

with

CSharp::Deck::Main();

Note that as you type this, Visual C++ IntelliSense kicks in with a pop-up window and
assists you. Just like C# IntelliSense, it is a context-sensitive code engine that helps you dis-
cover class members and parameter information as you type. As you can see in Figure 2-7,
IntelliSense reveals the methods and fields of the CSharp::Deck class. What they are and how
they are accessible are determined by the miniature icons to the left of the names. A smaller
box adds more information about the selected item as well as XML document comments
where available.

Figure 2-7. IntelliSense helps you code.

Your code should now look like Figure 2-8, ready to execute with F5.

Figure 2-8. The finished C++/CLI stub

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME 25

6080CH02.qxp 10/24/06 12:57 AM Page 25

Doing the Shuffle Without the IDE
Combining C++ and C# programs is also quite easily done without the IDE, although it doesn’t
scale to large projects as easily. The IDE puts power at your disposal, but it also adds a layer of
complexity. With the IDE, you get the following:

• Editing help and code information, with IntelliSense and browsing

• Project management

• Build management

• Integrated debugging

Basic Command-Line Compilation
Since this is a very small and simple project, we don’t need to go through a full IDE setup to
show our demonstration.

Use the following bare-bones C++ program with the precompiled headers removed.
Create a file called cardscpp1.cpp in the same directory as shuffle.cs:

#using "shuffle.dll"

void main()

{

CSharp::Deck::Main();

}

Open a Visual Studio 2005 command prompt and navigate to this directory. Compile and
execute this program as follows:

csc /target:library /out:shuffle.dll program.cs

cl /clr cardscpp1.cpp

cardscpp1

King of Diamonds

Trey of Clubs

Jack of Hearts

Deuce of Diamonds

Four of Hearts

Looks like we should fold this time!

Using a Module
The results of the previous examples are an executable and a separate library in a DLL. Using a
module, we can combine them into a single executable. This can only be done using a custom
build rule in the IDE; “module” is not a valid output type for a C# project. We’ll do it from the
command line.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME26

6080CH02.qxp 10/24/06 12:57 AM Page 26

First, we compile the C# class into a module. Then we gather it into a single executable
assembly using the C++ compiler.

Create a file called cardscpp2.cpp in the same directory as shuffle.cs:

#using "shuffle.netmodule"

void main()

{

CSharp::Deck::Main();

}

Compile the C# into a module, make an executable using C++, and run it:

csc /target:module /out:shuffle.netmodule program.cs

cl /clr cardscpp2.cpp

cardscpp2

King of Clubs

Queen of Diamonds

Queen of Spades

Ten of Spades

Ace of Clubs

Now that’s a winning hand!

Summary
In this chapter, we developed a simple C# program. First, we compiled and ran it standalone
from the IDE. Then we changed its output type to a library in order to create a DLL for use by a
C++ executable, both from the IDE and the command line. Finally, we created a module from
the C# program, which we combined with the C++ in order to create a single executable. This
should give you a fairly good introduction to the various ways you can work with C# and C++
under .NET. In Chapter 19, we will revisit these topics and discuss interoperability with native
code. But let’s not get ahead of ourselves; there are a lot of fundamentals to cover first, and
we'll explore syntax differences in the next chapter.

CHAPTER 2 ■ THERE’S NO PLACE L IKE HOME 27

6080CH02.qxp 10/24/06 12:57 AM Page 27

6080CH02.qxp 10/24/06 12:57 AM Page 28

Syntax

The pure and simple truth is rarely pure and never simple.

—Oscar Wilde

The previous chapters emphasized the similarities between C# and C++/CLI. Now we touch
on the main areas where they differ and begin to understand why. These include additional or
different keywords, separators, and operators.

For example, in C++, the additional keyword namespace is required when using a
namespace (see Table 3-1).

Table 3-1. Namespaces in C# and C++/CLI

C# C++/CLI

using System.Threading; using namespace System::Threading;
System.Console.WriteLine("H"); System::Console::WriteLine("H");

Moreover, where C# uses dot as a general separator, C++ employs several different separa-
tors depending on the context as well as the meanings of the items being separated. The most
common of these separators are colon-colon (::) and dot (.). The colon-colon separator, or
scope resolution operator, is used to qualify identifiers with namespaces, classes, properties,
and events and to access static fields and methods. The dot separator, or member access oper-
ator, is used to access members of instances of classes.

The paradigms of C++, different separators in different contexts, and of C#, a single sepa-
rator for all contexts, are consistent with the overall design philosophy of each of the languages.
C# favors simplicity, whereas C++ demands a deeper level of specificity in exchange for greater
flexibility.

Table 3-2 shows separator differences between C# and C++. I cover all of these separators
in detail as the book progresses.

29

C H A P T E R 3

6080CH03.qxp 10/24/06 12:58 AM Page 29

Table 3-2. Separators in C++

Separator Name Meaning

:: colon-colon Scope resolution operator, used when the expression to the left
of the :: is a namespace, class, property, or event name and the
expression to the right of the :: is a namespace, class name, or
member of a class

. dot Class member access operator, used when the expression to the
left of the arrow is a class object

-> arrow Class member access operator, used when the expression to the
left of the arrow is a pointer or handle to a class object

.* dot star Pointer to a member operator, used when the expression to the
left of the arrow is a class object and the expression to the right of
the arrow is a pointer to a member of the same class

->* arrow star Pointer to a member operator, used when the expression to the
left of the arrow is a pointer to a class object and the expression
to the right of the arrow is a pointer to a member of the same
class

C# and C++ define classes and structures differently. In addition to one obvious syntactic
difference—C++ requires a trailing semicolon after a type definition—significant semantic dif-
ferences exist. See Table 3-3 for an example comparing classes and structures in C# and C++.

Table 3-3. Classes and Structures in C# and C++/CLI

C# C++/CLI

class R {} ref class R {};
N/A ref struct R {};
struct V {} value class V {};
N/A value struct V {};
enum E {} enum class E {};
N/A enum struct E {};
N/A class C {};
N/A struct C{};

In C#, classes and structures are vehicles for implementing reference types and value types
as defined by the CLI. In C++, classes and structures define a type—in general, a related collec-
tion of fields and methods and subtypes.

C++/CLI introduces two class modifiers, ref and value, which provide a way to map the
C++ type specifiers to the CLI types. Together with the class or struct keyword and separated
by whitespace, as in ref class, they form a single new keyword, appropriately called a
whitespace keyword.

Reference types and value types are very important in .NET programming, and it’s a good
idea to review these types a bit before we continue. There are many practical differences
between reference types and value types, but the main differences relate to how they are allo-
cated. A reference type is allocated in two parts. A reference type’s data is allocated on the
managed heap, while a separate handle to this data is allocated on the stack. A value type is
allocated automatically on the stack.

CHAPTER 3 ■ SYNTAX30

6080CH03.qxp 10/24/06 12:58 AM Page 30

A C# class is a reference type; so is a C# string. A C# struct and most C# built-in types,
including int and char, are value types. Value types contained in reference types, either explic-
itly or implicitly via boxing, become elements of the reference type and are allocated on the
managed heap.

C# class (Reference Type)
Suppose you have a C# class named Hello. Allocate an instance using

Hello h = new Hello();

From the syntax, it appears that you have created a single unified entity of type Hello.
Behind the scenes there is much more going on, as data was allocated on the stack as well as
the managed heap. An instance of the Hello object was allocated on the managed heap, and a
handle to this instance was stored on the stack in the variable h.

C# struct (Value Type)
If Hello is defined as a C# struct, then a completely different operation occurs. The entire
instance of Hello is allocated on the stack, and h represents the instance of this object.

Caveat
The fact that reference types are divided between the stack and heap generates some interest-
ing and somewhat unintuitive results when you’re assigning values to reference types. When
you assign one value type to another, you copy the data associated with one instance of the
type to another instance. When you assign one reference type to another, you overwrite the
handle to one instance with the handle of another instance. The instances themselves remain
unchanged.

Consider the following code in C#:

class Hello

{

int i;

Hello(int number)

{

i=number;

}

static void Main()

{

Hello h = new Hello(1);

Hello j = new Hello(2);

j = h;

System.Console.WriteLine(j.i);

h.i = 3;

System.Console.WriteLine(j.i);

}

}

CHAPTER 3 ■ SYNTAX 31

6080CH03.qxp 10/24/06 12:58 AM Page 31

After compiling and running this code, we get

C:\>csc /nologo test.cs

C:\>test

1

3

In this program, we allocate two objects of type Hello on the managed heap. The handles
to these classes, h and j, are allocated on the stack. We overwrite the handle in j with the
handle in h and orphan Hello(2). Hello(2)becomes available for reclamation by the garbage
collector. Both h and j now reference the Hello(1) object, and there is no difference between
accessing the member field i using h or using j.

In other words, since Hello is a reference type, h and j are handles that point to data on
the managed heap. When the assignment j=h occurs, h and j both refer to the same data.
Assigning 3 to h.i also affects j.i, and displaying j.i results in the number 3.

Contrast
On the other hand, if Hello were a value type, you would see a different result. Change the
declaration of Hello from class to struct:

struct Hello

{ /**/ }

After compiling and executing the program, we see

C:\>csc /nologo test.cs

C:\>test

1

1

The results are different this time, since our objects are all allocated on the stack and are
overwriting one another.

Lack of Locality
A local inspection of the method Main() is insufficient to determine the results of the program.
You cannot determine what result the WriteLine will generate by just looking at the surround-
ing code. C# requires you to refer to the definition of Hello and discover whether Hello is a
class or a struct.

This lack of locality is dangerous and goes against the C++/CLI design philosophy. In
C++/CLI, the distinction between reference types and value types is much more explicit. The
programmer specifies more precisely what he or she wants to do, which avoids confusion
and ultimately makes the code more maintainable. The cost is that the syntax is slightly more
difficult.

CHAPTER 3 ■ SYNTAX32

6080CH03.qxp 10/24/06 12:58 AM Page 32

The C++ Approach
In C++/CLI, handles are typically flagged using the handle punctuator ^. It is also called a
tracking handle, because it points to an object that may be moved around during garbage
collection.

Translating the previous code to C++/CLI, we achieve the following:

private ref class Hello

{

private:

int i;

Hello(int number)

{

i=number;

}

public:

static void Main()

{

Hello ^h = gcnew Hello(1);

Hello ^j = gcnew Hello(2);

j = h;

System::Console::WriteLine(j->i);

h->i = 3;

System::Console::WriteLine(j->i);

}

};

void main()

{

Hello::Main();

}

After compiling and executing, we get

C:\>cl /nologo /clr:pure test.cpp

C:\>test

1

3

There are a few obvious syntactic differences from the C# version. However, I’d like to
start off by pointing out a semantic difference. In C++/CLI, changing Hello from a reference
type to a value type, by changing the whitespace keyword ref class to value class, does not
produce different results on compilation and execution.

Changing the type from a reference type to a value type affected where the type was allo-
cated, but it did not change the fact that in the previous code snippet we are treating the data
as referenced data. If Hello morphs into a value type, then the compiler generates different IL,
so that h and j remain handles to the data on the managed heap, and the result is consistent.
Behind the scenes, the value types are boxed—we’ll revisit that later in Chapter 6.

CHAPTER 3 ■ SYNTAX 33

6080CH03.qxp 10/24/06 12:58 AM Page 33

Types of Member Access Operators
The other important difference between the C++ snippet and the C# snippet is that C++ han-
dles use a different class member access operator. The syntax is similar to that of pointers in
C++, as handles may be considered a special kind of pointer. If you are working with a handle
or pointer to an object, you use the arrow member access operator (->) to access the object’s
members. If you are working with an instance of the object itself, you use the dot member
access operator (.). Although it may seem more complicated to have two different types of
member access operators, one benefit is that code like our previous example always does
what you expect it to, because you are forced to be mindful of what you’re doing as you
write—and that’s a good thing.

Keyword Differences
In this section, we go over the keyword differences between C# and C++. Most of these
differences are because of the evolution of the C++ language and the compatibility and
disambiguation restrictions for adding to the C++ grammar.

Let’s begin with the foreach keyword, shown in Table 3-4.

Table 3-4. foreach in C# and for each in C++/CLI

C# C++/CLI

foreach for each

In C++/CLI, the keyword for each has a space, and the usage differs slightly from foreach
in C#. The converted code appears in Table 3-5.

CHAPTER 3 ■ SYNTAX34

Table 3-5. Examples of foreach in C# and for each in C++/CLI

C# C++/CLI

using System; using namespace System;
using System.Collections; using namespace System::Collections;
class R ref class R
{ {

public:
static void Main() static void Main()
{ {

ArrayList list = new ArrayList(0); ArrayList ^list = gcnew ArrayList(0);
list.Add("hello"); list->Add("hello");
list.Add("world"); list->Add("world");
foreach (Object o in list) for each (Object ^o in list)
{ {

Console.WriteLine(o); Console::WriteLine(o);
} }

} }
} };

void main()
{

R::Main();
}

6080CH03.qxp 10/24/06 12:58 AM Page 34

Review
Let’s review what you’ve seen so far. Differences between C# and C++/CLI include the following:

• The additional keyword namespace is used.

• Namespaces are separated by colon-colon (::) instead of a dot (.).

• ref class is used instead of class.

• The punctuator ^ is used to declare handles.

• An arrow (->) is used as a handle member access operator, not a dot (.).

• for each contains a space.

• The class definition ends with a semicolon (;).

• C++/CLI begins programs with a global function named main().

Now let’s continue on; you can see that C++/CLI uses the keyword nullptr instead of null
in Table 3-6.

Table 3-6. null and nullptr

C# C++/CLI

null nullptr

These keywords are used as shown in Table 3-7.

Table 3-7. Usage of null and nullptr

C# C++/CLI

class R ref class R
{ {

static void Main() static void Main()
{ {

R r = null; R^ r = nullptr;
} }

} };

There are significant differences between switch and goto in C# and C++, as introduced in
Table 3-8.

Table 3-8. switch, case, and goto in C# and C++

C# C++

Does not allow case statements to fall through Allows case statements to fall through

goto case_statement N/A

goto label goto label

switch(string s) N/A

CHAPTER 3 ■ SYNTAX 35

6080CH03.qxp 10/24/06 12:58 AM Page 35

In C#, if a break or goto is missing from a nonempty case statement, the compiler issues
an error. In C++, execution is said to fall through from a case to the case below it and continue
with the next case.

Both languages support a goto keyword to a user-defined label. C# allows an explicit goto
to a case statement. There is no C++ equivalent, and the reason is largely historical. In C, a
switch/case/break construct was not so much a formal fork as a macro replacement for goto.
The cases are not distinct blocks, but rather labels that act as switch targets. C switches were
modeled after assembly language jump tables. C++ retains its heritage. C# attempts to employ
a more formal abstraction, where the cases are truly distinct and disconnected entities, so C#
naturally does not support fall through. Both abstractions have their respective advantages
and disadvantages.

The C# construct switch(string) is not supported in C++. In C++, you must expand your
switch statement using if and else. See Table 3-9 for example uses of switch in goto and fall
through cases in C# and C++.

CHAPTER 3 ■ SYNTAX36

Table 3-9. Usage of switch in C# and C++

C# C++

// switch on a System.String and goto case // equivalent to switch on a System::String
string s="1"; System::String ^s="1";
switch(s) if(s=="1")
{ {

case "1": }
goto case "2"; else if(s=="2")

case "2": {
break; }

}

// fall through case not available // fall through case
int i,j=0;
switch(i)
{

case 1:
j++;

// no break, so case 1 falls into case 2
case 2:

break;
}

Arrays and Functions
Managed arrays are declared differently in C++/CLI (see Table 3-10).

6080CH03.qxp 10/24/06 12:58 AM Page 36

Table 3-10. Managed Arrays in C# and C++/CLI

C# C++/CLI

reftype [] array<reftype^>^
valuetype [] array<valuetype>^

class R ref class R {};
{

static void Main() void main()
{ {

R[] n = new R[5]; array<R^> ^n = gcnew array<R^>(5);
int[] m = {1, 2, 3, 4}; array<int> ^m = {1, 2, 3, 4};
m[3]=0; m[3]=0;

} }
}

Although they both are implemented using System::Array, C++/CLI uses a pseudo-
template syntax for their declaration. Managed arrays will be explained in further detail in
Chapter 7. Pseudo-template syntax is consistent with the way extensions have been added to
the C++ language in the past, such as for the cast operators (see Chapter 16).

In both C# and C++, you can attach modifiers to function arguments. C# and C++/CLI
pass parameter arrays, reference parameters, and out parameters differently, as shown in
Table 3-11.

Table 3-11. Function Argument Modifiers

C# C++/CLI

params T[] ... array<T> ^

ref %

out [System::Runtime::InteropServices::Out] %

We will revisit these later.

The Conversion Operators
The operations performed by the C# operators is and as may be performed by the C++
pseudo-template casting operators static_cast<>() and dynamic_cast<>() (see Table 3-12).

Table 3-12. C# and C++/CLI Conversion Operators

C# C++/CLI

as dynamic_cast<>()

as static_cast<>()

is (dynamic_cast<>()!=nullptr)

Conversion operators will be explained in further detail in Chapter 16.

CHAPTER 3 ■ SYNTAX 37

6080CH03.qxp 10/24/06 12:58 AM Page 37

Memory Allocation
The new operator indicates allocation on the native heap in C++. The gcnew operator was added
in C++/CLI to indicate allocation on the managed heap. C# also uses the new operator to allo-
cate value types on the stack. In C++, this is unnecessary, as the C++ syntax for allocating
instances of user-defined value types is identical to the syntax for built-in types such as int.
See Table 3-13 for a list of keywords used in allocation on the managed heap.

Table 3-13. Allocation on the Managed Heap in C# and C++/CLI

C# C++/CLI

new (reference types) gcnew

new (value types) No operator is necessary.

A short example of memory allocation on both the native and managed heaps in C++/CLI
follows:

value struct V {}; //value type

ref struct R {}; //reference type

struct N {}; //native type

void main()

{

N n;

N *pN = new N();

R ^r = gcnew R();

V v;

}

Memory allocation will be discussed in further detail in Chapter 6.

Accessibility and Visibility
The accessibility and visibility keywords are similar, but the syntax is different. The keyword
differences are listed in Table 3-14, and the syntactic differences will be explained in detail in
Chapter 8.

Table 3-14. Basic Protection Mechanisms

Type Attributes C# C++/CLI

Public public public:

NotPublic private private:

Assembly internal internal:

Family protected protected:

FamilyOrAssembly internal protected protected public:

FamilyAndAssembly N/A protected private:

CHAPTER 3 ■ SYNTAX38

6080CH03.qxp 10/24/06 12:58 AM Page 38

Properties, Events, and Delegates
In Chapter 10, we will discuss properties, events, and delegates, but see Table 3-15 for an
introduction.

Table 3-15. Simple Example of a Property in C# and C++/CLI

C# C++/CLI

class R ref class R
{ {

private:
private int V; int V;

public:
public int Value property int Value
{ {

get int get()
{ {

return V; return V;
} }
set void set(int newV)
{ {

V = value; V = newV;
} }

} }
} };

Generics
In Chapters 14 through 16, you will learn about generics and templates, but see Table 3-16 for
an introduction.

CHAPTER 3 ■ SYNTAX 39

Table 3-16. Simple Example of a Generic in C# and C++/CLI

C# C++/CLI

public class R<T> generic <typename T> public ref class R
{ {

private:
private T m_data; T m_data;

public:
public R(T data) R(T data)
{ {

m_data = data; m_data = data;
System.Console.WriteLine(m_data); System::Console::WriteLine(m_data);

} }
} };
public class R1
{

static void Main() int main()
{ {

R<int> r = new R<int>(3); R<int> ^r = gcnew R<int>(3);
} }

}

6080CH03.qxp 10/24/06 12:58 AM Page 39

Built-in Types
C# and C++/CLI map to the CLI types with different keywords, and the C++/CLI mappings are
consistent with native C++ to the extent possible. See Table 3-17 for an introduction before we
go into greater detail in Chapter 6.

Table 3-17. Built-in Types

C# C++/CLI

byte char

sbyte signed char

short short

ushort unsigned short

int int, long

uint unsigned int, unsigned long

long long long

ulong unsigned long long

single float

double double

string System::String^

object System::Object^

decimal System:Decimal

char wchar_t

bool bool

Summary
Although the sheer volume of differences between C# and C++ may seem daunting at first,
after a while a pattern emerges. Each language is intelligently designed and internally consis-
tent, and C++ syntax will become intuitive quite soon. In the next chapter, we will apply what
we’re learning by converting a C# program to C++/CLI line by line.

CHAPTER 3 ■ SYNTAX40

6080CH03.qxp 10/24/06 12:58 AM Page 40

C# to C++/CLI

This is like déjà vu all over again.

—Yogi Berra

In this chapter, I show you how to convert a basic C# application to C++/CLI. I cover more
advanced conversion methods in greater detail in later chapters.

Let me start by taking apart the elements of the C# shuffling program from Chapter 2 and
detailing the necessary changes, one at a time. Rather than pedantically plodding through the
code line by line, I’ll draw representative samples from the code and present the finished
product.

The code from Chapter 2 follows, with line numbers inserted, just so you don’t have to flip
back and forth:

01 using System;

02 namespace CSharp

03 {

04 public class Deck

05 {

06 uint[] Cards;

07 Random randomGenerator;

08 enum Suit

09 {

10 Clubs = 0, Diamonds, Hearts, Spades

11 }

12 enum Card

13 {

14 Ace=0, Deuce, Trey, Four, Five, Six, Seven,

15 Eight, Nine, Ten, Jack, Queen, King

16 }

17 Deck()

18 {

19 randomGenerator = new Random();

20 Cards = new uint[52];

21

22 for (uint u = 0; u < 52; ++u)

23 {
41

C H A P T E R 4

6080CH04.qxp 10/24/06 12:58 AM Page 41

24 Cards[u] = u;

25 }

26 }

27 void Swap(ref uint u, ref uint v)

28 {

29 uint tmp;

30 tmp = u;

31 u = v;

32 v = tmp;

33 }

34 void Shuffle()

35 {

36

37 for (uint u = 52; u > 0; --u)

38 {

39 Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);

40 }

41 }

42 uint RandomCard(uint Max)

43 {

44 return (uint)((double)Max * randomGenerator.NextDouble());

45 }

46 string CardToString(uint u)

47 {

48 Suit s = (Suit)(Cards[u] / 13);

49 Card c = (Card)(Cards[u] % 13);

50 return c.ToString() + " of " + s.ToString();

51 }

52

53 public static void Main()

54 {

55 Deck deck = new Deck();

56 deck.Shuffle();

57 for (uint u = 0; u < 5; ++u)

58 {

59 Console.WriteLine(deck.CardToString(u));

60 }

61 Console.ReadLine();

62 }

63 }

64 }

We’ll begin with the initial declarative blocks and build from there.

CHAPTER 4 ■ C# TO C++/CLI42

6080CH04.qxp 10/24/06 12:58 AM Page 42

Add the Keyword namespace After using
On line 1, add the namespace keyword to the using statement by changing the following C#
code:

using System;

to this C++

using namespace System;

The using statement, as applied to a namespace, brings all symbols from that namespace
into the scope of the using statement. In this case, we want to use the Console class to output
data to the screen. Without a using statement, we’d have to tell the compiler explicitly how to
find the Console class by writing System::Console whenever we wanted to use it. This is called
fully qualifying the name. In C++/CLI, we are required to add the keyword namespace to the
using declaration.

Add the Punctuator ^ to the Reference Type Declarations
On lines 7 and 55, change the reference type declarations by changing the following C# code:

Random randomGenerator;

Deck deck

to this C++

Random ^randomGenerator;

Deck ^deck

If you look up the word “Random” in the .NET Framework Class Library reference on
MSDN, you find that Random is a reference type. How can you tell?

In the C# section of the MSDN page, you find that Random is declared as follows:

public class Random

In the C++/CLI section, you find that Random is declared as follows:

public ref class Random

Both of these declarations indicate a reference type. In this case, randomGenerator is actu-
ally a handle for an instance of Random that is allocated on the managed heap. In C++/CLI, the
fact that it is a handle is explicitly indicated using the handle punctuator ^, and the type of
randomGenerator is Random^. In many ways, randomGenerator can be thought of as a pointer to
an object of type Random on the managed heap, but don’t take this analogy too far. There are
significant differences between handles and pointers in C++, which we discuss in further
detail in Chapter 9.

CHAPTER 4 ■ C# TO C++/CLI 43

6080CH04.qxp 10/24/06 12:58 AM Page 43

Modify the Built-in Types
On lines 6, 22, 27, 29, 37, 42, 44, 46, and 57, change the C# aliases:

uint

string

to C++

unsigned int

System::String^

Since C# and C++ compiled for the CLR both target the CLI, there is always a direct ana-
logue between managed types of one language and managed types of the other language. C++
does not have the abbreviated form uint and requires you to use the expanded unsigned int.

C++ also does not have a built-in type for string, so you need to use System::String^. In
C#, you can choose between the built-in alias string and System::String; they are equivalent.
The type string is built in to the language, and System.String is the equivalent, which is typi-
cally brought in via a using System statement.

■Note Why doesn’t C++ have standard abbreviated forms for built-in types such as unsigned int? Well,
this was proposed to the ANSI Committee on C in 1987 by me, but it was voted down, because “the addition
of synonyms for existing types would add identifiers to the set of reserved names without adding functional-
ity.” This philosophy is less in vogue today, as evidenced by the fact that C# has a synonym string for
System.String. This does not add any functionality—it’s just convenient.

So what is the practical difference if string and String are the same? Consider the following
C# program, and note the absence of any using statements:

public class Hello

{

static void Main()

{

String s;

}

}

Now try to compile it:

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.42

for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727

Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

g1.cs(5,9): error CS0246: The type or namespace name 'String'

could not be found

(are you missing a using directive or an assembly reference?)

CHAPTER 4 ■ C# TO C++/CLI44

6080CH04.qxp 10/24/06 12:58 AM Page 44

As you can see, without the using System statement, the compiler has no idea what
String is. If we fully qualify String by changing it to System.String, it will compile.

Note that, since System.String is a reference type, the handle punctuator is used in
C++/CLI, so the proper conversion to C++/CLI gives us System::String^. Since we already
have using namespace System, it suffices to use String^.

Change the Array Declarations and Type Parameters
On line 6, change the C# array declaration:

uint[] Cards;

to C++

array<unsigned int>^Cards;

In this case, the declarations look so different it’s difficult to imagine that they indicate the
same thing. The goal here is to instruct the compiler that we would like Cards to be a managed
array of unsigned integers of unknown length. In Table 4-1, you can see how managed array
syntax maps between C# and C++/CLI.

Table 4-1. Managed Array Declaration in C# and C++/CLI

C# Array Syntax C++/CLI Array Syntax

type[] variable-name; array< type >^ variable-name;

The first change is the actual syntax used in array declaration. The C++/CLI language uses
a syntax that is called pseudo-template format, in reference to the fact that it feels like a C++
template but does not exhibit all the characteristics of one. It uses the < and > characters, as in
the case of template declaration, instantiation, and usage. In addition, a managed array is
stored on the managed heap, so variable-name is a handle, and it requires the ^ punctuator.

The second change is the use of the typename unsigned int instead of uint, as explained
previously.

Change the Enumeration Declarations
On lines 8 and 12, change the following enumeration declarations from C#:

public enum Suit {};

public enum Card {};

to C++

public:

enum class Suit {};

enum class Card {};

To get the syntax correct for this enumeration declaration, we have to make three small
changes. Note that to make things more interesting, I added accessibility to our translation
problem. First of all, in C++/CLI, accessibility indicators for nested types, class fields, and
methods, like public, are not item specific; they are context specific. In the C# version, the

CHAPTER 4 ■ C# TO C++/CLI 45

6080CH04.qxp 10/24/06 12:58 AM Page 45

keyword public indicates that the specific enum Suit has public accessibility. In the C++/CLI
version, the keyword public: within a class indicates that all types, methods, and fields from
that point forward have public accessibility. If we neglected to add the keyword public to the
next enum declared after Suit, it would gain the default accessibility of a C# class, which is
private. On the other hand, in the C++/CLI version, absent an accessibility keyword, the suc-
ceeding enum declaration would gain the contextual accessibility level, which in this case is
public because of the explicit use of public: before enum. When dealing with accessibility at a
global scope, the C++ language also has a public keyword that is item specific.

The second change is that C++/CLI managed enumerations, which are the analogue of
C# enumerations, require the additional keyword class to distinguish them from native C++
enumerations.

The final change is one we have seen several times before—that C++/CLI type definitions
are terminated by a trailing semicolon after the closing curly brace. Enumerations are types;
namespaces are not. The easy way to remember this is that if you can make one, you need a
trailing semicolon. You can instantiate a type, but not a namespace.

Change the Object Allocations and Instantiations
On lines 19, 20, 22, 37, and 55, change the following C# code:

randomGenerator = new Random();

Cards = new uint[52];

uint u;

to C++

randomGenerator = gcnew Random()

Cards = gcnew array<unsigned int>^(52);

unsigned int u;

These expressions map from C# to C++/CLI fairly easily, and it’s really just a matter of get-
ting used to the differences. The primary difference is that C++ distinguishes allocations on
the native heap from allocations on the managed heap by requiring the keyword gcnew rather
than the keyword new. If you happen to use the wrong one, the compiler is usually polite
enough to issue an error message to remind you.

Change the Pass by Reference Parameters
On lines 27 and 39, change the following C# code:

void Swap(ref uint u, ref uint v)

Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);

to C++

void Swap(unsigned int %u,unsigned int %v)

Swap(Cards[u - 1], Cards[RandomCard(u)]);

We need to modify both the Swap() function declaration as well as all uses of Swap().
Instead of the C# keyword ref, C++/CLI uses the % punctuator to indicate a tracking reference.
In C++/CLI, the punctuator is only used in the function declaration, not on function usage.

CHAPTER 4 ■ C# TO C++/CLI46

6080CH04.qxp 10/24/06 12:58 AM Page 46

In Table 4-2, I list the correspondences between C# and C++, including the C++ imple-
mentation of the C# out keyword.

CHAPTER 4 ■ C# TO C++/CLI 47

Table 4-2. Parameter Passing in C# and C++/CLI

C# C++/CLI

ErrorCode GetData(ref int data) using namespace System::Runtime::InteropServices;
{ ErrorCode GetData(int %data)

{

} }
ErrorCode GetResult(out int result) ErrorCode GetResult ([Out] int %result)
{ {

return GetData(ref result); return GetData(result);
} }

C++ does not have an out keyword, but its behavior can be duplicated using the
[System::Runtime::InteropServices::Out] attribute.

Change the Class Member Access Operators for Handles
On lines 44, 56, and 59, we modify the class member access operators in C#:

randomGenerator.NextDouble()

deck.Shuffle()

deck.CardToString(u)

to C++

randomGenerator->NextDouble()

deck->Shuffle()

deck->CardToString(u)

Handles and pointers access their members using the -> class member access operator.
As discussed earlier, randomGenerator is a handle, and accessing the data on the managed
heap requires the -> class member access operator.

Change the Separators for Namespaces and Static Accesses
On lines 59 and 61, we change the following separators in C#:

Console.WriteLine()

Console.ReadLine()

to C++

Console::WriteLine()

Console::ReadLine()

The . class member access operator is reserved for instantiations, which indicate that you
are accessing the data directly rather than through a handle or pointer indirection. The ::
separator, the scope resolution operator, is used for qualification of namespaces and static
members.

6080CH04.qxp 10/24/06 12:58 AM Page 47

Change the Class Declarations
On line 4, we change the class declarations in C#:

class

struct

to C++

ref class

value class

In C++, struct differs from class only in the accessibility and inheritance protection
mechanisms. In addition, neither corresponds to the CLI reference and value types. The
whitespace keywords ref class and value class (as well as ref struct and value struct)
were added to C++ in order to represent these types.

Add the Function main()
C++ programs begin with a global function called main(). C# programs begin with a public
static member function called Main(). Since these functions have different signatures, they
can coexist in a C++ program, and we can add a global main() function that calls the C# Main()
method. This is the simplest way to add the function main() without changing the remainder
of the code:

void main()

{

CPP::Deck::Main();

}

The completed program follows:

using namespace System;

namespace CPP

{

public ref class Deck

{

array<unsigned int>^Cards;

Random^ randomGenerator;

enum class Suit

{

Clubs = 0, Diamonds, Hearts, Spades

};

enum class Card

{

Ace=0, Deuce, Trey, Four, Five, Six, Seven,

Eight, Nine, Ten, Jack, Queen, King

};

Deck()

{

randomGenerator = gcnew Random();

CHAPTER 4 ■ C# TO C++/CLI48

6080CH04.qxp 10/24/06 12:58 AM Page 48

Cards = gcnew array<unsigned int>(52);

for (unsigned int u = 0; u < 52; ++u)

{

Cards[u] = u;

}

}

void Swap(unsigned int %u,unsigned int %v)

{

unsigned int tmp;

tmp = u;

u = v;

v = tmp;

}

void Shuffle()

{

for (unsigned int u = 52; u > 0; --u)

{

Swap(Cards[u - 1],Cards[RandomCard(u)]);

}

}

unsigned int RandomCard(unsigned int Max)

{

return(unsigned int)((double)Max * randomGenerator->NextDouble());

}

String^ CardToString(unsigned int u)

{

Suit s = (Suit)(Cards[u] / 13);

Card c = (Card)(Cards[u] % 13);

return c.ToString() + " of " + s.ToString();

}

public:

static void Main()

{

Deck^ deck = gcnew Deck();

deck->Shuffle();

for (unsigned int u = 0; u < 5; ++u)

{

Console::WriteLine(deck->CardToString(u));

}

Console::ReadLine();

}

};

}

void main()

{

CPP::Deck::Main();

}

CHAPTER 4 ■ C# TO C++/CLI 49

6080CH04.qxp 10/24/06 12:58 AM Page 49

Place this code in a file called cardsconverted.cpp, compile, and run:

C:\>cl /nologo /clr:pure cardsconverted.cpp

cardsconverted

C:\>cardsconverted

Four of Diamonds

Ten of Spades

Ace of Spades

Ace of Hearts

Trey of Spades

That’s openers and more. Time to bet; I’m not bluffing.

Summary
In this chapter, we went through the simple shuffling program of Chapter 2, took it apart line
by line, and converted it to C#. Since it is so easy to combine different languages in .NET, you
won’t need to do this often. You’ll be able to create modules and class libraries in C# and
C++/CLI, or even Visual Basic, and bind them all together without changing the individual
source files. Still, the lesson of actually going through the steps of a conversion is quite
valuable.

In the next chapter, we’ll explore some tools that will help you program more effectively in
C#, C++, and .NET.

CHAPTER 4 ■ C# TO C++/CLI50

6080CH04.qxp 10/24/06 12:58 AM Page 50

Tools

When all else fails, clean your tools.

—Robert Pirsig

In this chapter, we’ll acquaint ourselves with a few of the tools that make .NET development
easier in both C# and C++.

Lutz Roeder’s .NET Reflector
One of the most powerful tools for .NET development available today is Lutz Roeder’s .NET
Reflector.1 This program is an invaluable tool for understanding .NET assemblies. It allows you
to decompile .NET executables as well as libraries into IL, C#, C++/CLI, and other languages.
It is currently freely available at www.aisto.com.

What Is Reflection?
A .NET assembly is far more than just a sequence of instructions for execution. It contains
descriptions and attributes about the contents of the assembly, collectively called the
metadata. In .NET parlance, reflection is the ability for the program to read and analyze the
metadata of another assembly at runtime. When a program reads its own metadata, it is a
bit like looking in the mirror, so the term “reflection” seems appropriate. The namespace
System::Reflection is devoted to the .NET’s class library, which implements the primary
reflection mechanisms. There are two others: CCI, which allows you to access information
that System::Reflection cannot, and the IMetadata API. All of these mechanisms complement
each other.

51

C H A P T E R 5

1. .NET Reflector is copyrighted by Lutz Roeder. All images and references are used with permission.

6080CH05.qxp 10/24/06 12:59 AM Page 51

Reflection allows you to discover all metadata information about a type without needing
to instantiate it. This includes but is not limited to the following items:

• Name

• Fields

• Methods

• Visibility

• Attributes

Reflection enables you to discover all sorts of characteristics of these items. These include
field modifiers (initonly, literal, etc.), method types (generic or not), properties, and events.
Reflection even allows you to create types on the fly using Reflection::Emit.

Lutz Roeder’s .NET Reflector
Lutz Roeder’s .NET Reflector implements a reflection mechanism independent of the mecha-
nism implemented in the .NET framework. It is designed to churn the metadata and CIL into
a higher level of abstraction through decompilation. This paradigm is slightly different, as it
is not called from within the program itself, so it is not technically a mirror; it is rather like a
voyage through the looking glass itself. You launch .NET Reflector, specify which assembly
or executable you want to view, and then have a look inside. While the class library in
System::Reflection is primarily used for runtime analysis or processing, .NET Reflector
excels at examining an assembly after it is packaged.

Decodes the Base Class Library Assemblies
The Base Class Library (BCL) is what we call the rich set of assemblies shipped with the .NET
Framework. This program works on all of the BCL .NET assemblies, so you can peek inside any
of the Microsoft DLLs to assist your programming efforts. I find this especially useful when I’m
trying to figure out which DLLs must be referenced or resolved via #using in a program in
order for it to compile correctly. For example, the System::Collections::Generic namespace
is divided into two parts, one part in mscorlib.dll and the other in System.dll. It’s quite easy
to discover which classes are implemented in which DLLs using .NET Reflector. For example,
if you’re using System::Collections::Generic::List<T>, you do not need to reference any
DLL, because mscorlib.dll is implicitly and automatically referenced in every C++/CLI pro-
gram. On the other hand, if you’re using System::Collections::Generic::Stack<T>, you do
need to either add a reference to System.dll in your project settings or add the following line
to your code:

#using "System.dll"

In either case, the following line is required as well if you want to refer to Stack<T> or
List<T> without the explicit namespace qualification:

using namespace System::Collections::Generic

CHAPTER 5 ■ TOOLS52

6080CH05.qxp 10/24/06 12:59 AM Page 52

The keywords #using and using are not the same; they have different purposes in
C++/CLI. It’s a bit confusing, but that is how the language is defined.

#using is a type of compiler directive, meaning it instructs the compiler how to do some-
thing when compiling. In the case of #using, it instructs it to add a reference to that .NET
assembly like what is done with /reference on the C# compiler’s command line. using is a
keyword that is part of the language, and using namespace brings symbols into scope.

Viewing the Metadata and CIL, or Into the Abyss
I’ve mentioned that .NET Reflector “allows you to peek inside” programs and “decode assem-
blies,” but I did not explain exactly what that means. Assemblies, whether compiled as
executables or dynamically linked libraries, contain far more than executable code. This
collection of information is called metadata and, ideally, is a self contained package that
describes everything it needs to know to work with this assembly.

Years ago, programs themselves were merely a combination of executable code and data.
The only program that was capable of executing another program was the operating system
itself, which acted as an information router, defining how to pass information between spe-
cialized components, such as device drivers designed to work with hardware components and
higher level programs that wanted to communicate with these device drivers.

Over time, operating systems and programs evolved. Programs were designed to exchange
information with other programs. In the Windows universe, this initially took the form of the
clipboard for passive exchanges and OLE2 for active exchanges. Programs evolved to contain
more than just executable code; programs were bound to resource files, which contained
localization and globalization information, so that not only could they be translated to other
languages but could also work with foreign character sets, different currencies, ways of deal-
ing with time, and other culture-specific information.

The .NET Framework represents a paradigm shift that really offloads much of these
responsibilities to the operating system, or in this case, the .NET Framework, which can be
thought of as an extension of the operating system.

Binding as much information as possible about an assembly into a single file and organiz-
ing it intelligently as a collection of many types of data, or metadata, are key elements of the
success of the .NET Framework.

Extensible Class Browser
Both the Microsoft .NET Framework IL Disassembler (ildasm.exe) and Dependency Walker
(Depends.exe), shipped with Visual Studio, allow the user to examine or understand the
aspects of metadata. ILDasm allows you to look at the Common Intermediate Language (CIL)
as well as the metadata. CIL constitutes the executable instructions that make up the pro-
gram. Lutz Roeder’s .NET Reflector is a class browser that is able to display the CIL for all
methods inside your assemblies. It also goes one step further and is able to decompile the
CIL into semiordinary C#, Visual Basic, and Delphi.

CHAPTER 5 ■ TOOLS 53

2. OLE was a precursor of COM and stands for “Object Linking and Embedding.”

6080CH05.qxp 10/24/06 12:59 AM Page 53

One of the beautiful things about this program is that it has a well-defined code model
and accepts third-party add-ins. An add-in to decompile CIL into C++/CLI was written by
Jason Shirk and me. It is freely available on my web site, www.sandpapersoftware.com.

■Note Dozens of programs have already been written to do amazing things with .NET Reflector. You can
find them by visiting Lutz’s site at www.aisto.com/incoming/reflector/addins.

From C# to C++/CLI
You can use Lutz’s .NET Reflector as an educational tool to learn C++/CLI’s syntax. It is also
possible to use this as a tool to convert from C# to C++/CLI. Doing so is much less satisfying,
because Reflector decompiles what is literally in the metadata to a high-level format; often-
times there are artifacts in the CIL created by compilation or syntactic conveniences in the
languages themselves. The algorithm to do this is simple and uses the following steps:

1. Create a C# program.

2. Compile the program.

3. Load the program in .NET Reflector.

4. View any class definition or procedure using the C++/CLI add-in.

Installing and Loading .NET Reflector and the C++/CLI Add-in
The first step is to go to Lutz Roeder’s web site, www.aisto.com, and install .NET Reflector. Next,
go to www.mybadhairday.com, and install the C++/CLI add-in for .NET Reflector.

There are two files contained in the latest drop:

• cppclilanguage.dll: This is the actual add-in. Put it anywhere you like. Edit the .cfg file
or use the View ➤ Add-Ins menu to install this DLL.

• reflector.config.exe: This configuration file loads reflector.exe with the 2.0.50727
version of the .NET Framework. This file must reside in the same directory as
reflector.exe.

.NET Reflector (reflector.exe) only requires .NET version 1.0 to execute, but the
cppclilanguage.dll add-in requires .NET 2.0. If you attempt to load it with 1.0 or 1.1, you
get an error pop-up, as shown in Figure 5-1.

CHAPTER 5 ■ TOOLS54

6080CH05.qxp 10/24/06 12:59 AM Page 54

Figure 5-1. C++/CLI add-in fails to load with .NET Framework version 1

If you double-click on the CppLanguage.dll line, a more substantial error message
appears, as shown in Figure 5-2.

Figure 5-2. Exception generated by the .NET Framework

CHAPTER 5 ■ TOOLS 55

6080CH05.qxp 10/24/06 12:59 AM Page 55

Executing .NET Reflector
Let’s do a sample run through with .NET Reflector. Compile the following C# program:

struct S

{

}

class R

{

public static void Main()

{

R r = new R();

S s = new S();

}

}

C# View
Using .NET Reflector, open the executable using File ➤ Open (see Figure 5-3). Navigate to the
Main() routine by clicking on the plus signs. Expand the {}, which correspond to the global
namespace. Then expand R, navigate to Main(), and double-click. Make sure the drop-down
window shows C# as the decompilation view.

Figure 5-3. C# view of the sample code using .NET Reflector

C++/CLI View
Now change the drop-down view to C++/CLI. The view should switch to look like the one
shown in Figure 5-4.

CHAPTER 5 ■ TOOLS56

6080CH05.qxp 10/24/06 12:59 AM Page 56

Figure 5-4. C++/CLI view of the sample code using .NET Reflector

As you can see, value types and reference types are declared and initialized differently in
C++/CLI; this will be discussed in greater detail in Chapter 6.

Instant C++
Instant C++3 is a useful C# to C++/CLI translator, available from Tangible Software Solutions
(www.tangiblesoftwaresolutions.com). This company offers an easy to use, affordable trans-
lator for legacy C# projects. This software not only converts isolated C# code snippets to
C++/CLI but translates complete projects.

For example, suppose we convert the previous sample using the Snippet Converter (see
Figure 5-5).

Figure 5-5. Conversion from C# to C++/CLI using Instant C++

CHAPTER 5 ■ TOOLS 57

3. Instant C++ is copyrighted by Tangible Software Solutions. All images and references are used with
permission.

6080CH05.qxp 10/24/06 12:59 AM Page 57

This snippet is ready to compile, save the necessary global main(), which all C++ pro-
grams require. Just add the following line, and the program compiles in C++:

void main() { R::Main();}

Tools Shipped with Visual Studio
A number of extremely useful tools ship with Visual Studio. I introduce two of my favorites in
this section.

Microsoft .NET Framework IL Disassembler (ILDasm)
ildasm.exe is a metadata and CIL viewer, like .NET Reflector, that cuts at a more basic level.
To use ILDasm from the Visual Studio 2005 command prompt, just enter the following:

ildasm <assembly name>

You can also launch it from the Tools menu in the IDE. In either case, you are greeted with
a window similar to the one shown in Figure 5-6.

Figure 5-6. ILDasm’s view of the test executable

Clicking the plus sign expands the definitions under each class.

Dependency Walker (Depends)
Depends.exe is a dependency walker for Windows binaries. It works with .NET assemblies as
well as native Win32 binaries. It is an invaluable tool for tracking down missing DLLs as well
as working through manifest issues. To use Depends, enter the following command from the
Visual Studio 2005 command prompt:

depends <binary name>

You will see a window similar to the one shown in Figure 5-7.

CHAPTER 5 ■ TOOLS58

6080CH05.qxp 10/24/06 12:59 AM Page 58

Figure 5-7. Dependency Walker

As you can see, it appears that I have some sort of dependency on MSJAVA.DLL that is not
resolved. Wonder what caused that?

More Visual Studio Tools
No matter how clever you are, your productivity is limited by the quality of your tools. Though
it’s beyond the scope of this book to introduce you to all of the tools shipped with Visual
Studio 2005, here are a few more worth investigating:

• PEVerify.exe: The Portable Executable Verifier determines whether an assembly meets
the requirements for verifiable code.

• SN.exe: The Strong Name utility digitally signs assemblies.

• GACUtil.exe: This utility deals with the global assembly cache, a machinewide code
cache for assemblies that are shared between multiple applications on a computer.

• NMake.exe: The Make utility carries out the build process from the command line.

• MT.exe: The Manifest tool is for processing manifests.

• RC.exe: The Resource Compiler is for processing .rc files.

• ResGen.exe: The Resource Generator converts resources between formats.

• CLRVer.exe: The CLR Version tool determines the versions of the CLR installed on a
machine.

CHAPTER 5 ■ TOOLS 59

6080CH05.qxp 10/24/06 12:59 AM Page 59

• where.exe: This tool allows you to track down a file using an environment variable.

• windiff.exe: This tool allows you to compare different versions of the same text file
visually.

• guidgen.exe: This tool generates unique global identifiers.

• TLBImp.exe: The Type Library Conversion tool is used for importing classes from type
libraries.

Summary
Now we have the tools that we need to dig deeper into the C++/CLI and .NET implementation.
Without further ado, let’s go attack data types in the next chapter.

CHAPTER 5 ■ TOOLS60

6080CH05.qxp 10/24/06 12:59 AM Page 60

Data Types

The game’s afoot.

—William Shakespeare, Henry V

In this chapter, we dig deeper into the CLI type system as well as the implementation of
C++/CLI in Microsoft Visual C++ 2005. You should already have a firm base in C# classes,
structures, and interfaces from your previous programming experience, and we want to
build on that knowledge to expose differences between C# and C++/CLI.

C# Types vs. C++ Types
The C# language was designed specifically to target the CLR. Therefore, all of its data types
map directly to CLI types. C++/CLI not only defines data types for the CLI but also defines
data types for use in native C++. All of these data types are defined using the keywords class
and struct. These keywords had a preexisting meaning in C++ before C# was devised. In C++,
class defines a native type, which can be thought of as a general collection of related fields
and methods. A C++ struct is the same as a C++ class except that the default accessibility is
public for all members, and a C++ struct inherits publicly from its base classes.

In C#, class defines a CLI reference type descended from System::Object that has a spe-
cific set of characteristics and limitations. A C# struct defines a CLI value type that has a
different set of characteristics.

In order for C++/CLI to implement the CLI types, new keyword combinations were added
to the language. The class qualifiers ref and value are prepended to the keywords class and
struct to create the new whitespace keywords ref class and value class. These indicate
managed types as defined by the CLI. Table 6-1 illustrates the correspondences. 1

61

C H A P T E R 6

1. A future version of C++/CLI may implement mixed types; a mixed type, according the C++/CLI specifi-
cation, is “either a native class or a ref class that requires object members, either by declaration or by
inheritance, to be allocated on both the CLI heap and the native heap.”

6080CH06.qxp 10/24/06 12:59 AM Page 61

Table 6-1. C++, C#, and CLI Type Comparision

C++ Type C# Type CLI Type Default Accessibility Stored In

ref class class reference private managed heap, stack

ref struct N/A reference public managed heap, stack

value class struct value private native heap, managed
heap, stack

value struct N/A value public native heap, managed
heap, stack

class N/A N/A private native heap, stack

struct N/A N/A public native heap, stack

The C++ struct Keyword
Let me reiterate that the struct keyword is not used in C++/CLI to indicate either a C# class
or a C# struct. A struct in C++ is the exact same thing as a class, except that it has public,
rather than private, accessibility and inherits publicly by default. This is also true of ref
struct and value struct. Other than with respect to protection mechanisms, they are identi-
cal to ref class and value class.

A C++ struct is extremely useful. Whenever I wish to prototype a quick class or method
and don’t want to worry about protection, I use a C++ struct rather than a C++ class. I’m
going to delve deeper into protection mechanisms in Chapter 8.

Native Classes
As mentioned previously, C++/CLI also has native classes. Unlike a ref class and a value
class, which map directly to CLI defined types, a native class is an unmanaged type that does
not have a CLI mapping. Native classes, elements of classic C++, will be discussed further in
Chapter 18.

Value Types and Reference Types
Value types and reference types are allocated, accessed, and copied with the same syntax;
declaring these types as either struct or class is the main difference. As shown previously,
having the same syntax can lead to unintended consequences when instances of these types
are assigned. Value types are copied in their entirety, whereas only handles to the reference
type are actually copied during an assignment. In C#, except for the initial declaration where
you declare struct or class, the syntax is identical for value types and references types. C#
hides the distinction between value types and reference types from the programmer, which
can be both good and bad. C++/CLI, on the other hand, does not hide these details and distin-
guishes between value types and reference types. A quick review of memory allocation during
program execution is a great place to start understanding the different concepts.

CHAPTER 6 ■ DATA TYPES62

6080CH06.qxp 10/24/06 12:59 AM Page 62

Dynamic Memory Pools
During the execution of a C# program, new items are allocated in one of two places: the stack
or the managed heap. C++/CLI adds a third pool, the native heap, which will be discussed fur-
ther in Chapter 18 during the discussion on native C++.

The Managed Heap
When you call new on a C# class, the class data is allocated sequentially in a continuous block
in the managed heap. When the CLR calculates that you have no more references to an object,
the object becomes a candidate for garbage collection.

Over time, multiple object allocations and orphaned objects can cause a single large con-
tinuous block of free memory to become fragmented into allocated memory and bubbles of
unreferenced memory. A subsequent call to the allocation mechanism might not be able to
find a sufficiently large contiguous block of memory to contain the new data, even though the
total free memory in the system is larger than the desired amount. In this case, the CLR is able
to collect the garbage and rearrange memory within the managed heap. In this process, simi-
lar to defragmenting a hard disk, in-use memory is moved to combine available memory
bubbles to create larger contiguous blocks of memory. It is called garbage collection, because
available bubbles of memory are not valid data, they are effectively “garbage,” and combining
available bubbles involves essentially collecting the garbage.

The Stack
In the CLI, the other primary memory buffer used for dynamic allocation of data is the pro-
gram stack. A stack is a memory buffer that grows in a single direction and shrinks in the
opposite direction. New allocations can only be made at the top of the stack, and only the
memory at the top of the stack may be freed. Allocating memory on the stack is called
pushing, and freeing memory off the stack is called popping. In computer science parlance,
the stack is a First-In, Last-Out (FILO) buffer, which means that the first data you push
onto the stack is the last data you pop off.

At first glance, using a stack seems to be overly restrictive and not as useful as you might
like. In reality, a stack is particularly useful for making function calls and essential for recursive
calls. All processors today are speed optimized for using stacks. In C# and C++, the program
stack is where return addresses for procedure calls are stored as well as value types and the
handles to the reference types. Because of the way that stacks are allocated and deallocated,
stacks never become fragmented, and garbage collection is never necessary, thus the restric-
tive nature of a stack realizes performance benefits.

The Native Heap
Native C++ has a third and final memory area for dynamic allocation called the native heap.
Allocations on the native heap are made using the new keyword. C++/CLI applications can use
the native heap as well as the managed heap and stack for memory allocation. We will discuss
this further in Chapter 18.

CHAPTER 6 ■ DATA TYPES 63

6080CH06.qxp 10/24/06 12:59 AM Page 63

Garbage Collection
Recall that when the managed heap becomes fragmented, objects must be moved around to
create larger contiguous blocks of memory in a process called garbage collection. As will be
discussed further in Chapter 20, specific instances of reference types may be excluded from
garbage collection by a process known as pinning, but this can have negative performance
implications.

Let me reiterate: In-use memory is moved. This means that if you have a reference type in
your program, it may be moved without your knowledge.

When you use a reference type, it is made of two parts: the data itself, which is allocated
on the managed heap, and a handle to the data, which is allocated on the stack. I’ll explain the
stack in detail later in this chapter, but for now, suffice it to say that the stack does not move
in the same way.

When garbage collection is performed, the data in the managed heap is moved to make
larger contiguous blocks free for allocation, and at the same time, any handles that point to
this data must continue to point to this data after garbage collection is complete. If you like,
you can think of handles as pointers, and visualize the pointers to the instances of data on
the managed heap being updated each time the data is moved. It does not matter how this is
actually implemented within the CLR, but if the garbage collection mechanism is working
correctly, your handles will continue to track your data after garbage collection is complete.

Initialization
As I mentioned previously, C# hides the implementation differences between reference types
and value types. Consider the following C# example:

struct V

{

}

class R

{

static public void Main()

{

V v = new V();

R r = new R();

}

}

In this example, we have a simple value type V and a reference type R. The procedure
Main() is a public static function that allocates a V as well as an R. When you compile this
example code and examine the resulting executable using ildasm.exe, you find the following
CIL within the Main() method:

.method public hidebysig static void Main() cil managed

{

.entrypoint

// Code size 16 (0x10)

.maxstack 1

.locals init (valuetype V V_0, class R V_1)

CHAPTER 6 ■ DATA TYPES64

6080CH06.qxp 10/24/06 12:59 AM Page 64

IL_0000: nop

IL_0001: ldloca.s V_0

IL_0003: initobj V

IL_0009: newobj instance void R::.ctor()

IL_000e: stloc.1

IL_000f: ret

} // end of method R::Main

As you can see from the CIL, the value type V is initialized with the initobj instruction,
which initializes V on the stack. initobj is used to initialize a value type when there is no
constructor. The reference type R is initialized by the newobj instruction, which calls R’s con-
structor, allocates R’s data on the managed heap, and returns a handle to this data. These are
extremely different operations.

The C++/CLI equivalent
Let’s look at the equivalent code in C++/CLI:

value class V

{

}

ref class R

{

static public void Main()

{

V v = V();

R^ r = gcnew R();

}

}

As you can see, gcnew is not used when v is allocated, which makes sense, because we
don’t want to allocate v on the managed heap. It is allocated on the stack, and the C++/CLI
code reflects that. The CIL also reflects this, as it uses initobj rather than newobj to instantiate
v. Granted, gcnew could have been used to allocate an instance of V on the managed heap. This
operation is called boxing. We discuss boxing later in this chapter. For the sake of this example,
we want to allocate it on the stack.

■Note If you use .NET Reflector on the example, you find it easy to switch between viewing a method as
C#, C++/CLI, or CIL.

We can see from this simple example that where C# attempts to hide the implementation
from the user to ease programming, C++/CLI remains loyal to the implementation and maps
directly to the CIL.

CHAPTER 6 ■ DATA TYPES 65

6080CH06.qxp 10/24/06 12:59 AM Page 65

Uninitialized Declarations
C# has declaration syntax for uninitialized value types but requires them to be initialized
before they can be used. Consider the following C# code:

struct V

{

public int i;

}

class R

{

static public void Main()

{

V v;

System.Console.WriteLine(v.i);

}

}

If you attempt to compile this, you get the following error:

h.cs(10,34): error CS0170: Use of possibly unassigned field 'i'

C# blocks you from using uninitialized memory. Similar syntax in C++/CLI produces dif-
ferent results:

private value class V

{

public:

int i;

};

private ref class R

{

public:

static void Main()

{

V v;

System::Console::WriteLine(v.i);

}

};

This seemingly similar code compiles and runs without error and produces the following
result:

0

Let’s pass it through .NET Reflector to look at Main() and figure out what code the
C++/CLI compiler generates. Figure 6-1 shows .NET Reflector’s view of the code.

CHAPTER 6 ■ DATA TYPES66

6080CH06.qxp 10/24/06 12:59 AM Page 66

Figure 6-1. .NET Reflector’s view of the translation of an uninitialized declaration to C++/CLI

As you can see from the figure, C++ does in fact initialize v, and running the program pro-
duces 0 as a result of the default initialized value of int being zero.

Initialization Variants
Let’s summarize the preceding discussion by using .NET Reflector to analyze the following
code:

value struct V

{

V(int i)

{

}

};

ref struct R

{

static public void Main()

{

V v1;

V v2(1);

V v3 = V(2);

}

};

Figure 6-2 shows what the compilers generate. Note that the variables are renamed in
the IL.

Figure 6-2. Initialization of value types in C++/CLI

As you can see from the figure, all variants of V are initialized in some manner by C++.

CHAPTER 6 ■ DATA TYPES 67

6080CH06.qxp 10/24/06 12:59 AM Page 67

Fields
Consider the following C# code:

using System.Collections;

class R

{

ArrayList a = new ArrayList();

static void Main() {}

}

If we employ Instant C++ to convert this snippet to C++/CLI, it reports that we have some
work to do by hand:

//TODO: INSTANT C++ TODO TASK: C++ does not allow initialization

of non-static fields in their declarations:

ArrayList ^a = gcnew ArrayList();

Think for a moment about what this result means. This correct diagnostic is saying that
the variable a is a nonstatic field and thus cannot be initialized here. Every nonstatic member
belongs to some instance, so this kind of initialization would need to be made for every
instantiation of the class. The class R has no instantiation to which this declaration belongs.
If it were static, we would share a single ArrayList for all instantiations, but it is not static.
One of these objects is allocated for each instantiation of class R. Fields should be initialized
in a constructor, but there is no explicit constructor declared for class R. In fact, C# does a bit
of sleight of hand here and creates a constructor implicitly to initialize the variable a.

Let’s employ .NET Reflector to see the constructor C# generated for this snippet;
Figure 6-3 shows the constructor.

Figure 6-3. The implicitly generated constructor

As you can see, a constructor was generated that initializes the variable a. If we now
switch to C++/CLI mode, we can view the constructor we need to write in order to convert
this snippet, as shown in Figure 6-4.

CHAPTER 6 ■ DATA TYPES68

6080CH06.qxp 10/24/06 12:59 AM Page 68

Figure 6-4. The C++/CLI version of the constructor

Note that this version of the C++/CLI Reflector add-in qualifies ArrayList with the name-
space System::Collections. We don’t need to use this if we have the using statement in the
code, as follows:

using namespace System::Collections;

We now can use this accumulation of knowledge to craft the conversion of the C# code:

using namespace System::Collections;

ref class R

{

ArrayList ^a;

static void Main() {}

public:

R()

{

this->a = gcnew ArrayList();

}

}

Multiple Constructors
As you learned previously, we need to move object initialization code into the class’s construc-
tor. What happens if the class has more than one constructor? What does C# do?

Consider the following C# snippet:

class R

{

class R1 {}

R1 rA = new R1();

R(int i) {}

R() {}

static void Main() {}

}

CHAPTER 6 ■ DATA TYPES 69

6080CH06.qxp 10/24/06 12:59 AM Page 69

In this case, rA needs to be initialized once for each object, and two different constructors
are available. See Figure 6-5 to look at these constructors using .NET Reflector.

Figure 6-5. Class initialization with multiple constructors

As you can see from the figure, C# copies the initialization code to both constructors
independently.

Static Initialization
Let’s now consider a broader example that builds on the previous examples by using both
static and normal initializations. Consider the following C# code:

class R

{

class R1

{

}

struct V1

{

}

V1 vA = new V1();

R1 rA = new R1();

V1 vB;

R1 rB;

static V1 vC = new V1();

static R1 rC = new R1();

R()

{

vB = new V1();

rB = new R1();

}

static public void Main()

{

R r = new R();

}

}

Even though this class already has a constructor, C# still moves initializations around for
the CIL to operate correctly. We can employ .NET Reflector to discover which initializations
were moved during compilation, which guides us on how to make an equivalent C++/CLI pro-
gram. Figure 6-6 shows the members of class R as displayed in .NET Reflector.

CHAPTER 6 ■ DATA TYPES70

6080CH06.qxp 10/24/06 12:59 AM Page 70

Figure 6-6. Class R in .NET Reflector

As you can see, not only does R have a constructor, which is represented as .ctor, it also
has a static constructor, which is represented as .cctor.

Static Constructors
A constructor, more verbosely called an instance constructor, is called each time an instance of
a class is created. A static constructor, also known as a class constructor or a type initializer, is
called only once, before any instances of the class are created. It is used for one-time initializa-
tion of data common to all instances.

Now let’s get back to examining the code and peek at the constructor and static constructor.
Both of these constructors are relocation targets of the C# compiler. The instance constructor
gets all instance initializations, and the static constructor gets all static initializations. First
let’s examine the constructor shown in Figure 6-7.

Figure 6-7. Class R’s constructor

Similar to what you learned previously, the initializations for vA and rA are moved to the
constructor. No surprises there. How about the static constructor shown in Figure 6-8?

Figure 6-8. Class R’s static constructor

CHAPTER 6 ■ DATA TYPES 71

6080CH06.qxp 10/24/06 12:59 AM Page 71

Similar to the move of vA and rA, vC and rC are moved to the static constructor. This makes
sense as well, because if regular initializations are moved to the constructor, then static initial-
izations should be moved to the static constructor. C++/CLI moves the static initializations to
the static constructor automatically, so we can let the compiler create it implicitly. C++/CLI is
able to do this, because there is at most one static constructor in a class, though there may be
multiple instance constructors in a class.

Now we can construct the final C++/CLI code and finish this aspect of the topic of initial-
ization:

ref class R

{

ref class R1

{

};

value class V1

{

};

V1 vA;

R1 ^rA;

V1 vB;

R1 ^rB;

static V1 vC = V1();

static R1 ^rC = gcnew R1();

R()

{

vA = V1();

rA = gcnew R1();

vB = V1();

rB = gcnew R1();

}

public:

static void Main()

{

R ^r = gcnew R();

}

};

Alternatively, in C++/CLI, vC and rC could be initialized using an explicit static construc-
tor as follows:

private:

static R()

{

vC = V1();

rC = gcnew R1();

}

CHAPTER 6 ■ DATA TYPES72

6080CH06.qxp 10/24/06 12:59 AM Page 72

The static constructor is executed before any instantiations of the class R are performed.
Consider the following application:

using namespace System;

ref struct R

{

static R()

{

Console::WriteLine("Static Constructor");

}

R()

{

Console::WriteLine("Constructor");

}

};

int main()

{

R ^r;

Console::WriteLine("in main()");

r = gcnew R();

}

This program has the following output:

Static Constructor

in main()

Constructor

This output shows that the static constructor for R was called before any R objects were
instantiated.

Boxing
Since there are two major categories of types in .NET, value and reference, it is not surprising
that we occasionally need to perform some type of conversion between them.

Oftentimes, we need to pass a value type to a method that requires a reference type. This
task is potentially daunting, as value types are stored on the stack, whereas reference types are
stored on the managed heap. Java has wrapper classes to solve this kind of problem; the CLR
provides boxing.

The process of couching a value type as a reference type is called boxing. Boxing returns a
System::Object^ that references a copy of the value data and can be used to refer to the data
while allocated on the managed heap. Boxing is generally automatic and implicit.

The inverse operation, retrieving the original value type from the boxed object is called
unboxing. Unlike boxing, unboxing must be done explicitly. This is intuitive, because all value
types become a single boxed object, so the CLR knows exactly what to do. On the other hand,
given a boxed object, the CLR cannot determine which value type is contained therein with-
out an explicit cast.

CHAPTER 6 ■ DATA TYPES 73

6080CH06.qxp 10/24/06 12:59 AM Page 73

Method Boxing
Many CLR methods accept reference types as parameters. For example, Console::WriteLine()
accepts either a built-in type or a reference type as parameter.

Example of Boxing and Unboxing
Consider the following example of boxing and unboxing. In this sample, we take a value type
V, box it into an Object, and send it to Console::WriteLine() as an Object. Next, we unbox it
explicitly to a V and send it to Console::WriteLine() again, which boxes it implicitly. There-
fore, the following example contains both implicit and explicit boxing, as well as explicit
unboxing:

using namespace System;

value struct V {};

ref struct R

{

static void Main()

{

V v;

Object ^o = v;

Console::WriteLine(o);

v = (V) o;

Console::WriteLine(v);

}

};

int main()

{

R::Main();

}

The results of this program follow:

V

V

Delving into the IL, we can see the CIL boxing operations:

.method public hidebysig static void Main() cil managed

{

// Code Size: 47 byte(s)

.maxstack 1

.locals (

V v1, //this is ldloc.0

object obj1) //this is ldloc.1

CHAPTER 6 ■ DATA TYPES74

6080CH06.qxp 10/24/06 12:59 AM Page 74

L_0000: ldnull // 0

L_0001: stloc.1 // obj1 = 0

L_0002: ldloca.s v1 //

L_0004: initobj V // v1 = V()

L_000a: ldloc.0 // get v1

L_000b: box V // box it (explicit)

L_0010: stloc.1 // obj1 = boxed(v1)

L_0011: ldloc.1 // get obj1

L_0012: call void [mscorlib]System.Console::WriteLine(object)

L_0017: ldloc.1 // get obj1

L_0018: unbox V // unbox obj1 of type V

L_001d: ldobj V // get V

L_0022: stloc.0 // v1 = unboxed

L_0023: ldloc.0 // get v1

L_0024: box V // box it (implicit)

L_0029: call void [mscorlib]System.Console::WriteLine(object)

L_002e: ret

}

You don’t need to be an expert in CIL to see what is going on here, especially since I have
annotated the individual instructions.

Unboxing Dangers
Since unboxing is explicit, there is the danger of a programmer unboxing an object to the
wrong type, which generally causes the CLR to throw an exception. Consider the following
example:

using namespace System;

using namespace System::Collections;

ref struct R

{

static void Main()

{

ArrayList^ a = gcnew ArrayList();

int i=3;

double d=4.0;

a->Add(i);

a->Add(d);

for each(int j in a)

{

Console::WriteLine(j);

}

}

};

void main() { R::Main();}

CHAPTER 6 ■ DATA TYPES 75

6080CH06.qxp 10/24/06 12:59 AM Page 75

In this example, we implicitly box an int and a double by adding them to an ArrayList().
The for each loop unboxes these values into an int, causing an exception when the double is
unboxed. The results to the screen follow:

Unhandled Exception: System.InvalidCastException: Specified cast is not valid.

at R.Main()

at mainCRTStartup(String[] arguments)

Safe Unboxing
In C#, you can fix the preceding code by using the keyword is as follows:

using System;

using System.Collections;

class R

{

public static void Main()

{

ArrayList a = new ArrayList();

int i = 3;

double d = 4.0;

a.Add(i);

a.Add(d);

foreach(Object o in a)

{

if(o is int)

{

int i1 = (int)o;

Console.WriteLine(i1);

}

else

{

double d1 = (double)o;

Console.WriteLine(d1);

}

}

}

}

In this code, you can see the check to see if the object is a boxed int (o is int). To perform
the same trick in C++/CLI, you use dynamic_cast<>() as follows:

CHAPTER 6 ■ DATA TYPES76

6080CH06.qxp 10/24/06 12:59 AM Page 76

using namespace System;

using namespace System::Collections;

ref struct R

{

static void Main()

{

ArrayList^ a = gcnew ArrayList();

int i=3;

double d=4.0;

a->Add(i);

a->Add(d);

for each(Object ^o in a)

{

if(dynamic_cast<int^>(o) != nullptr)

{

int i1=(int)o;

Console::WriteLine(i1);

}

else

{

double d1=(double)o;

Console::WriteLine(d1);

}

}

}

};

void main() { R::Main();}

The casting operators are revisited in more detail in Chapter 16.

Constructor Forwarding
C# has a special syntax that allows you to defer initialization of objects between constructors.
This is called constructor forwarding, or delegating constructors, and is not supported in the
current version of C++/CLI.2 Here is a C# example of constructor forwarding:

class R

{

R(int i) {}

R() : this(0) {}

public static void Main() {}

}

CHAPTER 6 ■ DATA TYPES 77

2. This feature was recently voted into the C++0x working draft in April 2006, paper N1986.

6080CH06.qxp 10/24/06 12:59 AM Page 77

In this example, the R() constructor forwards construction to the R(int) constructor and
continues construction in the R() method. There is no trick to doing this in C++/CLI. Some-
times programmers attempt to get around this by using the following incorrect syntax:

ref struct R

{

R(int i)

{

}

R()

{

R(0);

}

};

void main()

{

R^ r = gcnew R();

}

This code does not work for the following reason: when the R() constructor calls R(0), it
does not instruct the compiler to forward construction to the R(int) constructor. Rather, it
creates a temporary copy of R, initialized with 0, which is discarded upon exit from the
method. Figure 6-9 shows the R() constructor using .NET Reflector.

Figure 6-9. A failed attempt at constructor forwarding in C++/CLI

As you can see, the compiler creates a temporary of type R with a 0 as an initialization
parameter, which does not accomplish the same thing as C# constructor forwarding. The
recommended paradigm in C++ is for each constructor to call a common method.

C# Partial Classes
C# allows the definition of a single class to span multiple files using the partial keyword.
C++/CLI has no direct analogue, as it supports a different paradigm. As alluded to previously,
C++ allows you to place a class declaration in a single header file and implement the class
members in multiple C++ files, but this has nothing to do with the concept of partial classes.

CHAPTER 6 ■ DATA TYPES78

6080CH06.qxp 10/24/06 12:59 AM Page 78

Reference Types on the Stack
A less-often-used feature of C++/CLI is the ability to declare and use a reference type as if it
were a stack variable like a value class. This is strictly syntactic sugar and is not needed for
standard C++/CLI programming. Even though the memory is still physically allocated on the
managed heap, the compiler makes the object observe the semantics of an object allocated on
the stack.

Basic Types
Let’s look at Table 6-2, which contains the built-in C# types, to see how they map to C++/CLI.

Table 6-2. Mapping Basic C# Types to C++/CLI

C# C++/CLI Size Type Signed Marshal Example

sbyte char 1 SByte Yes No –1, 'A'

byte unsigned char 1 Byte No No 3u, 0xff

short short 2 Int16 Yes No –1

ushort unsigned short 2 UInt16 No No 3u

int int or long 4 Int32 Yes No –1l

uint unsigned int or 4 UInt32 No No 3u, 3ul
unsigned long

long long long 8 Int64 Yes No –1ll

ulong unsigned long long 8 UInt64 No No 3ull

single float 4 Single Yes No 4.0f

double double 8 Double Yes No 3.0

string System::String^ N/A String N/A No "A"

object System::Object^ N/A Object N/A No N/A

decimal System:Decimal 16 Decimal Yes No N/A

char wchar_t 2 Char No Yes L'A'

bool bool 1 Boolean N/A Yes true

Basic Type Differences
One important thing to note is that some of the common C# types have no analogue in
C++/CLI or are slightly different in C++/CLI and require some level of marshaling for
conversion.

CHAPTER 6 ■ DATA TYPES 79

6080CH06.qxp 10/24/06 12:59 AM Page 79

Missing Keywords
The string, object, and decimal keywords in C# have no corresponding built-in type in
C++/CLI. Does this mean we can’t use these types in C++? Not at all. In fact, since both C# and
C++/CLI target the CLI, we can always resort to specifying the CLI target type by name and
using that instead.

Marshaling Required
What is marshaling? In general, a marshaler is a program that translates or packages data
between two programs. A marshaler may be required in a number of circumstances where two
programs cannot operate seamlessly on a single instance of data. The C++/CLI types wchar_t
and bool have marshaling attributes attached to them in the metadata for proper consump-
tion from C# and other .NET languages. Attributes will be discussed in greater detail in
Chapter 20. Until then, let’s look at some marshaling attributes in the metadata.

Consider the CIL for the following simple C++/CLI method. Note that Hello() takes a
wchar_t as a parameter and returns a bool; both of these types are marshaled:

ref class R

{

bool Hello(wchar_t ch)

{

return true;

}

};

Figure 6-10 shows the C# view of the Hello() method using .NET Reflector.

Figure 6-10. C# view of Hello()

As you can see, the MarshalAs(UnmanagedType.U1) return attribute is added to the bool
return value, and MarshalAs(UnmanagedType.U2) is added to the char value (which corresponds
to the wchar_t).

The UnmanagedType enum is a member of System::Runtime::InteropServices and indicates
the kind of data being marshaled. If you look at mscorlib.dll in .NET Reflector and glance at
this enum, you discover that U1 is 4 and U2 is 6.

Now let’s look at the C++/CLI version of Hello() using .NET Reflector shown in Figure 6-11.

CHAPTER 6 ■ DATA TYPES80

6080CH06.qxp 10/24/06 12:59 AM Page 80

Figure 6-11. C++/CLI view of Hello()

Wait—where has the marshaling gone? Well, when we wrote the C++/CLI add-in, we real-
ized that use of a wchar_t or a bool always emits a MarshalAs attribute, so these attributes are
suppressed from the output. On the other hand, if you wanted to communicate something
nonstandard, like the following:

using namespace System::Runtime::InteropServices;

ref class R

{

[returnvalue: MarshalAs(UnmanagedType::Bool)]short Hello(wchar_t ch)

{

return (short)true;

}

};

then the C++/CLI .NET Reflector add-in would not suppress the marshal attributes, because
they differ from the default. We can see this in Figure 6-12.

Figure 6-12. C++/CLI Hello() with special marshaling

As you can see from the screenshot, the special marshaling we have added for our short
conversion to unmanaged bool displays clearly in .NET Reflector.

Table 6-3 lists the various strengths and weaknesses of the C++ class types.

Table 6-3. Feature Limitations by Class Type

Feature Native Class Ref Class Value Class Interface

Assignment operator X X

Class modifier X X X

Copy constructor X X

Delegate definitions X X X X

Default constructor X X

Continued

CHAPTER 6 ■ DATA TYPES 81

6080CH06.qxp 10/24/06 12:59 AM Page 81

Table 6-3. Continued

Feature Native Class Ref Class Value Class Interface

Destructor X X

Events X X X

Finalizer X

Function modifiers X X X X

initonly field X X X

Literal field X X X

Member of delegate type X X

Override specifier X X X

Parameter arrays X X X X

Properties X X X

Reserved member names X X X X

Static constructor X X X

Static operators X X X X

Summary
That concludes our introduction to classes and class types.

If you didn’t understand everything in this chapter, that’s OK—go on to the next one. You
see, the goal of this chapter is not to drill in the details about the type system but to expose
you to a little bit more of what is going on behind the scenes. We will continue this strategy as
the book unfolds and come back to the important concepts again and again.

Next let’s look at that all-important basic data structure, the array.

CHAPTER 6 ■ DATA TYPES82

6080CH06.qxp 10/24/06 12:59 AM Page 82

Arrays

Give me a place to stand, and I will move the earth.

—Archimedes of Syracuse

In this chapter, we will deal with C++ arrays, beginning with syntactic differences. C++/CLI
offers two types of arrays:

• Native arrays that are elements of classic C++

• Managed arrays that are identical to C# arrays, though with different syntax

One of the first things you notice about managed arrays in C++ is that their declarations
are completely different, and that’s not a bad thing. When two languages are as similar as C#
and C++, you can get a false sense of security and end up writing incorrect code that can come
back to haunt you. You might use a keyword in C++ that has a different meaning in C#, such as
class, and expect it to act the same way. Alternatively, you might have trouble remembering
seemingly esoteric syntactic differences, such as whether a semicolon is required after a par-
ticular closing curly brace. With managed arrays, this is unlikely to happen, since the C++
declaration syntax is completely different from the C# declaration syntax.

Within C++, native and managed arrays differ in both declaration and implementation.
Because of the constraints of extending a well-defined array structure for C++ in a language-
compatible fashion, the C++/CLI syntax for managed arrays turned out to be somewhat
complex. Never fear though—after a while, the syntax feels quite intuitive.

Native Arrays
A native array is always a single buffer in which array elements are arranged contiguously. This
is true no matter the rank or dimension. An array is a buffer, and array indices are shortcuts to
calculating the offset within this buffer. In other words, every usage of an array in native C++
could be simulated through the use of a single, one-dimensional buffer and a bit of mathe-
matics. Because of this, many authors treat native C++ arrays as if they always have a rank or
dimension of one. Higher dimensional native arrays are always rectangular; the number of
elements in any given dimension is always a constant.

Oftentimes in native C++, you find programmers accessing buffers using both pointers
and arrays, and this can be quite confusing. In addition, accessing C++ array buffers directly
through direct calculation and casts may not be type safe.

83

C H A P T E R 7

6080CH07.qxp 10/24/06 1:01 AM Page 83

Managed Arrays
Managed arrays are different. Managed arrays are full-fledged .NET citizens descended from
System::Array. Multidimensional arrays can either be rectangular or jagged. Rectangular
arrays have a constant number of elements for each dimension. You can think of them as
rectangles or blocks.

Jagged arrays are arrays in which the number of elements of a particular dimension can
vary; you can think of a jagged array as an array of arrays, each with its own declaration and
definition.

Managed Array Details
Managed arrays are declared using a kind of pseudo-template syntax. You do not need to
become an expert on templates to understand how to declare and use managed arrays in C++.
The syntax is borrowed from template syntax, but arrays are not templates and cannot be
specialized.

To use managed arrays, you need to learn only this particular syntax, either by definition
or example (I will be sure to provide a lot of examples).

Managed arrays are declared and defined using the array context-sensitive keyword fol-
lowed by the type of the array element in angle brackets, followed by the number of elements
in the array in parentheses. Rectangular arrays of a rank greater than one can be declared, as
well, in a slightly more-sophisticated manner by including the rank inside the angle brackets
and the individual definitions within the parentheses. I will describe in detail the declaration,
definition, and use of jagged arrays later on in this chapter.

The built-in definition of a managed array looks something like the following:

namespace cli

{

template<typename Type, unsigned int dimension = 1>

ref class array : System::Array

{

public:

array(unsigned int size);

};

}

A Simple Example
Let’s consider an example and wrap it in a function to use it. First let’s look at how to declare,
allocate, and initialize a simple managed array in C++/CLI.

Declaration
Here’s a C# array:

int [] a = new int[] {1,2,3,4};

CHAPTER 7 ■ ARRAYS84

6080CH07.qxp 10/24/06 1:01 AM Page 84

The same statement in C++/CLI follows:

array<int>^ a = gcnew array<int>(4) {1,2,3,4};

Now let’s go over this a bit. First of all, consider the following expression:

array<int>^ a

This expression declares a as a handle, because of the ^ punctuator, to an array of integer
type. The number of elements within this array is not part of the declaration of a.

The next part is

gcnew array<int>(4)

The gcnew keyword is used, because we want to allocate an array on the managed heap.
Remember, gcnew is the equivalent of the new keyword in C# for allocations on the managed
heap. This statement means “allocate an array of four integers on the managed heap.” The new
keyword in C++ is used for allocations on the native heap. If you mistakenly use the new key-
word in this context, the compiler issues an error like the following:

t.cpp(3) : error C2750: 'cli::array<Type>' : cannot use 'new'

on the reference type; use 'gcnew' instead

with

[

Type=int

]

The last part of the allocation looks like this:

{1,2,3,4}

In C++ jargon, this is called an aggregate initialization and is used to define the elements
of the newly allocated array. Aggregate initialization is also supported in the C++ language
without gcnew to provide for a less-verbose array initialization syntax:

array<int>^ a = {1,2,3,4};

Adding Usage
Now let’s examine this declaration in the context of a simple, yet illuminating, standalone
example. We can declare, allocate, and initialize the array as described previously and use a
simple for each loop to display the values of the array on the console. In order to compile this
snippet, use the Visual Studio 2005 command prompt, and enter the following code:

cl /clr test.cpp

int main()

{

array<int>^ a = gcnew array<int>(4) {1,2,3,4};

for each(int i in a)

{

CHAPTER 7 ■ ARRAYS 85

6080CH07.qxp 10/24/06 1:01 AM Page 85

System::Console::Write(i);

}

System::Console::WriteLine();

}

When executed, this snippet displays the four elements of the array, {1,2,3,4}, as
expected:

1234

Arrays as Parameters and Return Values
Similar to C#, in C++/CLI, an array may be passed as a parameter to a method as well as
returned from a method as the method’s return value.

Passing an Array to a Method
Standard parameter lists are a good example of arrays passed as parameters to a method.
When a C# or C++/CLI console application is executed, an array of the command-line argu-
ments is passed to the unique entry point, which is either a class’s static Main() method in
C# or main() in C++/CLI.

In C#, parameter lists passed to Main() are declared as follows:

public static void Main(string [] args) {}

This line indicates that Main() takes an array of string type as a parameter. The C++/CLI
equivalent looks like the following, using the pseudo-template syntax:

public:

static void Main(array<String^>^ args) {}

This seemingly completely different statement does the same thing as its C# counterpart.
Let’s break it down bit by bit.

First of all, string is the C# alias for System::String. Note that String has a capital “S” in
this context. This is a reference type, so it requires the ^ punctuator. Let’s proceed, assuming
we have added

using namespace System;

to the top of the file, so the System:: prefix is not required to resolve String. Next, we get the
C# keyword string mapped to the C++/CLI expression String^.

Continuing to assemble the pseudo-template syntax on the fly, we have array<String^>
for the string array, and since args is really a handle to an array allocated on the managed
heap, we end up with array<String^>^ args. Now, you might ask how we know that args is a
handle and not the array itself. Remember that in C++ handles refer to objects on the man-
aged heap, and .NET arrays are always allocated on the managed heap and never on the stack.
Only value types are allocated on the stack, and System::Array is a reference type.

CHAPTER 7 ■ ARRAYS86

6080CH07.qxp 10/24/06 1:01 AM Page 86

Returning an Array from a Method
Similar to C#, in C++/CLI a method can have an array as a return value. In actuality, the array
itself is not being returned; rather, a handle to the array on the managed heap is returned.
C++/CLI clearly reflects this. Consider the following C# snippet:

static string[] GetStrings()

{

string[] strings = {"1", "2"};

return strings;

}

The equivalent C++/CLI is constructed as follows:

static array<String^>^ GetStrings()

{

array<String^>^strings = {"1", "2"};

return strings;

}

As you can see, an array is allocated on the managed heap within the GetStrings() func-
tion, and a handle to this array is the return value of the method.

Passing a Variable Number of Parameters
In C#, a variable number of parameters may be passed to a method and converted to an array
using the params keyword. The C++/CLI equivalent of the params keyword is an ellipsis (. . .).
There may be, at most, one parameter array for a method, and it must be the last parameter.
The parameter array is declared, similar to C#, using the array type preceded by the parameter
array construct, which in C++ is the ellipsis.

Example
Suppose you wanted to write a method that returns the sum of an arbitrary number of inte-
gers in C#. You might end up with something like the following:

class R

{

static int Sum(params int [] Arr)

{

int r = 0;

foreach(int i in Arr)

{

r+=i;

}

return r;

}

static void Main()

{

CHAPTER 7 ■ ARRAYS 87

6080CH07.qxp 10/24/06 1:01 AM Page 87

int[] Arr2 = {1,2,3,4,5};

System.Console.WriteLine(Sum(Arr2));

System.Console.WriteLine(Sum(1,2,3,4));

}

}

The method Sum() takes an array of integers as its single parameter. It accepts either an
array of integers or an arbitrary sequence of integers, which are bundled into an array auto-
matically by the compiler.

In the example, Main() calls Sum() twice. The first time Sum() is called with an explicitly
declared and initialized array of integers. The second time Sum() is called using a sequence of
integers as arguments, which are bundled into an array by the compiler.

Here is some similar C++/CLI with translated array and params syntax:

ref struct R

{

static int Sum(... array<int> ^Arr)

{

int r = 0;

for each(int i in Arr)

{

r+=i;

}

return r;

}

static void Main()

{

array<int> ^Arr2 = {1,2,3,4,5};

System::Console::WriteLine(Sum(Arr2));

System::Console::WriteLine(Sum(1,2,3,4));

}

};

void main() {R::Main();}

Note that the params keyword has been changed to the ellipsis, and the array declarations,
allocations, and initializations have been converted. The C++ language already supports
something similar in native code. The ellipsis was chosen to implement .NET param arrays,
because it is a natural extension of the language that feels familiar to the C++ programmer. In
native code, a function taking an indeterminate number of variables uses the ellipsis. This
function, known as a vararg function, looks something like the following:

int printf(char *format, ...);

The first parameter is used as a placeholder in memory from which to access the rest
of the parameters by their offsets. The compiler provides a library of functions to help you
extract and use the arguments inside your function body. By contrast, .NET param arrays feel
natural and are easy to grasp by the programmer, since all support is built into the language
instead of accessed in a library.

CHAPTER 7 ■ ARRAYS88

6080CH07.qxp 10/24/06 1:01 AM Page 88

Type Safety and Implicit Conversions
C# and C++/CLI parameter arrays are both type safe. If you have a method that accepts a param-
eter array of integers, it just doesn’t make sense to pass it an element of type System::String.
In this case, you get a diagnostic. But what about other conversions that are not so obvious,
like passing a 3.0f float instead of an integer 3? Suppose we have the following C# program:

class R

{

static void Test(params int [] Arr)

{

foreach(int i in Arr)

{

System.Console.WriteLine(i);

}

}

static void Main()

{

Test(1, 2, 3, 4.2f);

}

}

Here we attempt to assemble an array of integer type using a floating point number. If you
try to compile this with the C# compiler, you see the following diagnostic:

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.42

for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727

Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

t.cs(12,9): error CS1502: The best overloaded method match

for 'R.Test(params int[])' has some invalid arguments

t.cs(12,23): error CS1503: Argument '4': cannot convert from 'float' to 'int'

As you can see, the compiler recognizes that 4.2f is not an integer and issues a diagnostic.
Let’s look at the translated example in C++/CLI:

void Test(... array<int> ^Arr)

{

for each(int i in Arr)

{

System::Console::WriteLine(i);

}

}

void main()

{

Test(1,2, 3, 4.2f);

}

CHAPTER 7 ■ ARRAYS 89

6080CH07.qxp 10/24/06 1:01 AM Page 89

Now let’s attempt to compile it, though we probably do not expect this to succeed:

C:\>cl /clr:pure t.cpp

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42

for Microsoft (R) .NET Framework version 2.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

t.cpp

Microsoft (R) Incremental Linker Version 8.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

/out:t.exe

/clrimagetype:pure

t.obj

We are surprised again! It turns out that C#’s rules for implicit conversions are stricter
than those of C++/CLI. C++ allows an automatic conversion from float to int, because this
was allowed in C, and C++ is an extension of C.

If we attempt to execute the program now, we see the results:

C:\>t

1

2

3

4

The float 4.2f was truncated to 4 without a diagnostic. This seems to be a bit of a bad
thing, so Microsoft Visual C++ added a level-two diagnostic to warn you about conversions
which can truncate data.

■Note Warnings are enabled using the /W{n} command-line option, where n varies from 0 (no warnings)
to 4 (strict warnings). The default in the compiler is n=1, although projects created using the Visual C++ IDE
get a warning level of n=3.

If you now recompile at warning level 2, you see the following:

CHAPTER 7 ■ ARRAYS90

6080CH07.qxp 10/24/06 1:01 AM Page 90

C:\>cl /clr:pure /W2 t.cpp

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42

for Microsoft (R) .NET Framework version 2.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

t.cpp

t.cpp(10) : warning C4244: 'argument' : conversion from

'float' to 'int', possible loss of data

Microsoft (R) Incremental Linker Version 8.00.50727.42

Copyright (C) Microsoft Corporation. All rights reserved.

/out:t.exe

/clrimagetype:pure

t.obj

This gives you the diagnostic you need.
The complete list of automatic conversions and their priorities are listed in detail in the

C++ standard.1 In general, it’s a good idea for your code to compile cleanly at level 3. Level 4
warnings, the highest level of warnings generated by the compiler, are often spurious and can
be taken on advisement. Still, it is worthwhile to compile your code at level 4 at least once
before every release and be able to justify any warnings that you choose to ignore.

Summary
Parameter arrays are type safe, but we always have to be on the lookout for conversions, espe-
cially the kind where data might be lost, as C#’s conversion rules are more strict than C++’s
conversion rules. We’ll revisit conversions in Chapter 11.

Sophisticated Example
Here’s a more sophisticated example of the usage of managed arrays in C++/CLI. In this case,
we’re trying to answer a common algorithm question: given a sequence, how can you find the
subsequence with the largest sum?

This is an ideal place to use parameter arrays, because we would like to call the method
with several different examples, each with an arbitrarily long sequence.

At first glance, you might imagine yourself making many passes over the same array,
starting at a different index to discover the largest partial sum. It turns out that an efficient
one-pass algorithm exists; the insight you need to find it is to realize that once a partial sum
becomes negative, it cannot make any sum going forward larger, so there’s no reason to con-
tinue adding to this sum. Many people go wrong with this question, because they either don’t
realize the one-pass nature of the problem or don’t deal effectively with the special case when
all of the numbers are negative.

CHAPTER 7 ■ ARRAYS 91

1. Standard conversions are covered in chapter 4 of the C++ standard, ISO/IEC 14882:2003(E).

6080CH07.qxp 10/24/06 1:01 AM Page 91

I won’t go into the following program line by line, as it is short enough to be an excellent
study piece and serve as an example of C++/CLI arrays in action:

using namespace System;

void MaxSubSequence(...array<int>^Sequence)

{

int MaxStart, MaxEnd, MaxSum, Sum, Start;

for each(int j in Sequence)

{

Console::Write("{0} ", j);

}

MaxSum = Int32::MinValue;

Start = 0;

Sum = 0;

for(int i=0; i<Sequence->Length; i++)

{

// don't carry negative sums forward

if(Sum<0)

{

Sum = 0;

Start = i;

}

Sum += Sequence[i];

// is our new sum better?

if(Sum > MaxSum)

{

MaxSum = Sum;

MaxStart = Start;

MaxEnd = i;

}

}

Console::Write(" has subsequence: ");

for(int j=MaxStart; j<= MaxEnd; j++)

{

Console::Write("{0} ", Sequence[j]);

}

Console::WriteLine();

}

int main()

{

MaxSubSequence(1,1,-1,-4,5,-3,6,7,-17,3,5,-2,8);

MaxSubSequence(1,1,-1,-4,5,2,6,7);

MaxSubSequence(-5,1,-3,-4);

MaxSubSequence(-5,-2,-3,-4);

MaxSubSequence(-5,1,1,1,-1,-3,1,1);

MaxSubSequence(-10,2,3,-2,0,5,-15);

}

CHAPTER 7 ■ ARRAYS92

6080CH07.qxp 10/24/06 1:01 AM Page 92

Let’s give it a try:

1 1 -1 -4 5 -3 6 7 -17 3 5 -2 8 has subsequence: 5 -3 6 7

1 1 -1 -4 5 2 6 7 has subsequence: 5 2 6 7

-5 1 -3 -4 has subsequence: 1

-5 -2 -3 -4 has subsequence: -2

-5 1 1 1 -1 -3 1 1 has subsequence: 1 1 1

-10 2 3 -2 0 5 -15 has subsequence: 2 3 -2 0 5

And that’s correct.

Higher Dimensional Arrays
Both C# and C++/CLI allow the allocation and initialization of multidimensional managed
arrays. As mentioned previously, there are two types of multidimensional arrays:

• Rectangular arrays: These are rectangles, or blocks, in which the number of elements
per dimension is constant.

• Jagged arrays: These are arrays of arrays. Each subarray has a different dimension,
although the type of each subarray must be identical.

Basics
A short C# program follows that shows rectangular and jagged arrays in action:

using System;

class R

{

static void Main()

{

int[,] Rect = new int[3,4];

for(int i=0; i<3; i++)

{

for (int j=0;j<4;j++)

{

Rect[i,j]=i+j;

}

}

int [][] Jagged = new int[3][];

for(int i=0; i<3; i++)

{

Jagged[i] = new int[i+1];

for(int j=0; j<i+1; j++)

{

Jagged[i][j]=i+j;

CHAPTER 7 ■ ARRAYS 93

6080CH07.qxp 10/24/06 1:01 AM Page 93

}

}

}

}

The first array, Rect, is a 3✕4 rectangular array of 12 elements. It is declared with the fol-
lowing syntax:

int[,] Rect = new int[3,4];

The C++/CLI equivalent, using pseudo-template syntax follows:

array<int, 2>^ Rect = gcnew array<int, 2>(3, 4);

This line says that we are allocating a two-dimensional array of integer type. The second
array is jagged and contains three arrays of varied length. It is declared with the following
syntax:

int [][] Jagged = new int[3][];

The C++/CLI equivalent, using the pseudo-template syntax, follows:

array<array<int>^>^ Jagged = gcnew array<array<int>^>(3);

The C++/CLI code says that Jagged is a reference to an array of references to arrays of
integer type. Here is the entire snippet in equivalent C++/CLI; note that the usage of array
elements is identical:

using namespace System;

ref struct R

{

static void Main()

{

array<int, 2> ^Rect = gcnew array<int, 2>(3,4);

for(int i=0; i<3; i++)

{

for (int j=0;j<4;j++)

{

Rect[i,j]=i+j;

}

}

array<array<int>^> ^Jagged = gcnew array<array<int>^>(3);

for(int i=0; i<3; i++)

{

Jagged[i] = gcnew array<int>(i+1);

for(int j=0; j<i+1; j++)

{

Jagged[i][j]=i+j;

CHAPTER 7 ■ ARRAYS94

6080CH07.qxp 10/24/06 1:01 AM Page 94

}

}

}

};

void main() {R::Main();}

Differences
One of the major differences between rectangular arrays and jagged arrays is the ability to
isolate a single row of the array. For example, suppose Rect and Jagged are defined as in the
previous example. What happens if we attempt to use the following syntax to recall the length
of the first row?

int k = Rect[0]->Length;

The compiler issues the following diagnostic:

t.cpp(23) : error C3262: invalid array indexing: 1 dimension(s)

specified for 2-dimensional 'cli::array<Type,dimension>^'

with

[

Type=int,

dimension=2

]

t.cpp(23) : error C2227: left of '->Length' must point to

class/struct/union/generic type

type is 'int'

This correct diagnostic is attempting to say that Rect requires two indices rather than one,
and that Rect[0]->Length doesn’t resolve to anything (because it is not a subarray). On the
other hand, the following code

int k = Jagged[0]->Length;

is perfectly valid and results in k=1. Jagged[i] is an array in its own right. In fact, we could
even pass it as an argument to the MaxSubSequence() method defined previously, as follows:

MaxSubSequence(Jagged[0]);

Real World Example of a Jagged Array
People tend to have more trouble visualizing uses for jagged arrays in our structured and
organized world. As an example, though, students each have some kind of recorded informa-
tion for each homework assignment and test, whether that information is a grade or just an
indication that the test was not taken, but different classes have different numbers of students,
and students have taken different numbers of classes. Jagged arrays are ideal for representing
data structures where the number of elements of a subitem varies from item to item.

CHAPTER 7 ■ ARRAYS 95

6080CH07.qxp 10/24/06 1:01 AM Page 95

Suppose we were keeping track of major works by renowned painters. There is often little
correlation between the number of surviving paintings by an artist and the influence of the
artist. Michelangelo only has one surviving easel painting, but attempts to dismiss his influ-
ence would certainly be misguided.

Consider the following example of jagged arrays:

using namespace System;

ref struct Painting

{

String ^artist;

String ^name;

int date;

Painting(String ^artist, String ^name, int date)

{

this->artist = artist;

this->name = name;

this->date = date;

}

virtual String ^ToString() override

{

return String::Format("{0} ({1})", name, date);

}

};

ref struct R

{

static void Main()

{

array<array<Painting^>^> ^Painters =

{

{

gcnew Painting("Leonardo da Vinci", "Mona Lisa", 1505)

},

{

gcnew Painting("Marc Chagall", "I and the Village", 1911),

gcnew Painting("Marc Chagall", "La Mariee", 1927)

}

};

for each(array<Painting^>^ painter in Painters)

{

Console::WriteLine("Paintings by {0}", painter[0]->artist);

for each(Painting ^painting in painter)

{

Console::WriteLine(" {0}",painting);

}

}

}

};

void main() {R::Main();}

CHAPTER 7 ■ ARRAYS96

6080CH07.qxp 10/24/06 1:01 AM Page 96

In this example, we create a jagged array of Painters. Each element of Painters is a sub-
array of Painting by the corresponding painter, and their lengths differ.

If we compile and execute this, we see the following:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

Paintings by Leonardo da Vinci

Mona Lisa (1505)

Paintings by Marc Chagall

I and the Village (1911)

La Mariee (1927)

Summary of Managed Arrays of Higher Dimensions
Rectangular arrays are blocks of the defined type that are allocated, defined, and accessed as
such. Jagged arrays are arrays of arrays, and reflect this as well.

Native Arrays
Native arrays may also be used in C++/CLI, but it is best to discuss the use of native arrays
within the context of pointers and other native structures in Chapters 9 and 18.

Summary
It’s all about how you handle your data—that’s the key to programming. By now, you should be
feeling pretty confident with built-in types and arrays. Stay tuned for queues, trees, and more.
The list goes on and on!

In the next chapter, we’ll begin to delve into the object-oriented features of C++ in the
context of polymorphism and protection.

CHAPTER 7 ■ ARRAYS 97

6080CH07.qxp 10/24/06 1:01 AM Page 97

6080CH07.qxp 10/24/06 1:01 AM Page 98

Polymorphism and Protection

We have met the enemy and he is us.

—Walt Kelly (Pogo)

Both C# and C++ are object-oriented languages, which means that both languages support
the creation of objects that encapsulate not only data but associated methods or operations
on that data. Both languages also provide mechanisms to relate different objects to one other,
ranging from operator overloading to inheritance, interfaces, and parametric polymorphism.
Both languages provide mechanisms to restrict and control the access to data, ranging from
limitations on accessibility and visibility to canning and filtering data using properties.

In this chapter, we will discuss some of these mechanisms, insofar as they differ from
those of C#.

Polymorphism
Polymorphism, from the Greek poly morphos, meaning “many shapes,” is common jargon in
many of the sciences and is rapidly moving into the vernacular. In object-oriented program-
ming, polymorphism refers to the way objects can be grouped and classified, so that an object
may either be treated as a different object, a member of a group of objects, or accessed in
terms of defined characteristics. The following list highlights some important concepts in
polymorphism:

Inheritance: “Inheritance” refers to treating objects as different objects. This is done by
allowing an object, or class in general terms, to draw data and characteristics from other
classes, called base classes. For example, a GoldenRetriever object might have a base
class of Dog. In this case, GoldenRetriever objects can be treated as if they are Dog objects,
because they are.

Interfaces: “Interfaces” refers to considering objects in terms of their characteristics; inter-
faces allow you to organize objects according to what they can do rather than what they
are. For example, Car and Dog objects can both make noise. It is often much simpler to
represent that both of these objects support the MakeNoise interface rather than making
them both inherit from a common NoiseMaker base class. Inheriting from the NoiseMaker
class would be problematic, as not all animals speak but many do. For example, giraffes
have no vocal chords, but rabbits squeak and growl; cars are required by law to have
horns, but the horns may be broken. 99

C H A P T E R 8

6080CH08.qxp 10/24/06 1:01 AM Page 99

Generics: Treating objects as groups of objects (in CLI) is done via parametric polymor-
phism, or generics. In this case, Kennel<Animal> could represent an Animal within a
Kennel. Specializations of the behavior of individual Animals within a Kennel can be
accomplished using constraints. Generics work best with types that are opaque to
the generic class and types that implement multiple interfaces that the generic class
supports.

Templates: “Templates” refers to treating objects as groups of objects (in C++ only). Tem-
plates are similar to generics in that they allow code to be written for a group of objects,
but they also allow object-specific code or specializations (both full and partial) to deal
with differences between objects. Templates are generally more powerful and more com-
plex than generics.

Inheritance
Inheritance is a common subject in elementary C# books. Consistent with the goals of this
text, in this section, I try to focus on the differences between inheritance in C# and inheritance
in C++.

In general, C# implements the CLI inheritance model. C++ implements this model too,
but it builds on and extends it in several ways. Some of these extensions are supported on the
CLI and compile in safe or pure modes. Others are beyond the CLI and must be implemented
using native C++.

Multiple and Virtual Inheritance
In C#, each class can only inherit from a single base class. C++ supports multiple inheritance,
which means that a class can have more than one base class. Multiple inheritance certainly
adds a level of complexity that was avoided by the CLI. Let’s consider a short example.

Suppose you have a Mule object. Well, a Mule object can be thought of as a Horse as well as
a Donkey, right? After all, a Mule is a product of a male Donkey and a female Horse, thus you
might have the following valid native C++:

class Horse {};

class Donkey {};

class Mule : Horse, Donkey {};

In order to compile this, let’s use the /c option to indicate that we just want to compile,
not create, an executable; that way we skip the overhead of linking, which we do not care
about for the purpose of observing the compilation, and avoid the linker error that indicates
we have not defined the global function main():

cl /c /clr:pure /nologo test.cpp

Now we know we can create a Mule object and treat it either as an instance of Horse or
Donkey. Here’s where things start to get tricky.

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION100

6080CH08.qxp 10/24/06 1:01 AM Page 100

Aren’t horses and donkeys both animals? Let’s add that to the code:

class Animal {};

class Horse : Animal {};

class Donkey : Animal {};

class Mule : Horse, Donkey {};

In this case, for a given Mule, how many instances of Animal are created? How many
should be created? Perhaps with some object paradigms, you would like to have two common
base classes. In this case, there really is only one Animal that is the Mule, and we’d like to
represent this in the code. C++ allows you to define your class hierarchy using both of these
paradigms. If we want just a single Animal, as we do in this case, we can inherit virtually using
the virtual keyword. Otherwise, we leave it as is. Virtual inheritance tells the compiler to
include only one subobject of each type in a class hierarchy. Suppose we want to feed the
mule lunch, and Lunch consists of an Apple object and a Carrot object. In this case, the relation
between Lunch and Apple is not an is relationship; rather Lunch contains Apple and Carrot,
and they are two pieces of Food. In this case, we do not want to use virtual inheritance. Let’s
look at the completed C++ program:

using namespace System;

class Animal

{

public:

Animal()

{

Console::WriteLine("Animal");

}

};

class Horse : virtual Animal {};

class Donkey : virtual Animal {};

class Mule : Horse, Donkey {};

class Food

{

public:

Food()

{

Console::WriteLine("Food");

}

};

class Apple : Food {};

class Carrot : Food {};

class Lunch : Apple, Carrot {};

void main()

{

Mule m;

Lunch l;

}

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 101

6080CH08.qxp 10/24/06 1:01 AM Page 101

As you can see, Horse and Donkey both inherit virtually from Animal. Let’s try it out:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

Animal

Food

Food

We accomplished the goal of creating a single animal and serving him two pieces of food.

Private and Protected Inheritance
Unlike C#, access to base classes can be restricted by inheriting via private or protected inheri-
tance. These are discussed in the section titled “Protection Mechanisms.”

The CLI and Multiple Inheritance
The CLI allows a type of multiple inheritance using interfaces. Suppose we attempt to use ref-
erence types instead of native types for our Food class hierarchy:

ref class Food {};

ref class Apple : Food {};

ref class Carrot : Food {};

ref class Lunch : Apple, Carrot {};

Let’s compile this code:

C:\>cl /c /nologo /clr:pure test.cpp

test.cpp

test.cpp(4) : error C2890: 'Lunch' : a ref class can only have one non-interface

base class

the ref class 'Apple' is a base class of 'Lunch'

the ref class 'Carrot' is a base class of 'Lunch'

Error 2890 states that we cannot do this, and in a way, it’s a blessing. Having your objects
inherit from multiple objects can make your code hard to understand, and interfaces allow
you to do many of the same things without the confusion.

Interfaces
Rather than dealing with an object based on what it is and implying what it does based on
that, an interface defines what an object is able to do.

Interfaces Are Specifications
Interfaces embody a specification of what classes must implement to support an interface;
think of it as a contract if you will. The only methods that interfaces are allowed to implement

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION102

6080CH08.qxp 10/24/06 1:01 AM Page 102

are static methods. Interfaces are similar to abstract classes, which are described and distin-
guished later in this chapter.

A Class May Inherit From Multiple Interfaces
Not only can interfaces be inherited, but a single class may inherit from multiple interfaces in
addition to inheriting from a single base class. This allows you to create an object that has sev-
eral well-defined ways or interfaces in which you can use it but is still clearly ordered within
the class hierarchy, because it has a single, unique base class. This paradigm works well for the
vast majority of object-oriented applications.

Interfaces May Inherit From Other Interfaces
Because interfaces may inherit from other interfaces, objects can define a basic contract for
communicating with an object. This also allows for the possibility of a more elaborate level of
communication if the object supports a more-advanced version of a contract.

A Value Type May Inherit From an Interface
The CLI does not allow value types to inherit from other classes, but it does allow value types
to inherit interfaces. Value types, by default, are sealed classes, which means that they cannot
be inherited and thus cannot be extended. We will revisit sealed classes later in this chapter.

A Simple Example
Let’s go back to the animal farm and see what we can do with interfaces. Suppose we want to
create objects of types Dog and Cat and say that they can do things like eat and sleep. It seems
reasonable to make Eat and Sleep interfaces. We could then use Eat and Sleep as the base
classes for Dog and Cat as follows:

using namespace System;

interface class Sleeps

{

void GoToSleep();

};

interface class Eats

{

void Feed();

};

ref struct Cat : Eats, Sleeps

{

virtual void GoToSleep()

{

Console::WriteLine("Cat is Catnapping");

}

virtual void Feed()

{

Console::WriteLine("Cat is Eating");

}

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 103

6080CH08.qxp 10/24/06 1:01 AM Page 103

};

ref struct Dog : Eats, Sleeps

{

virtual void GoToSleep()

{

Console::WriteLine("Dog is Sleeping");

}

virtual void Feed()

{

Console::WriteLine("Dog is Eating");

}

};

void main()

{

Cat ^c = gcnew Cat();

Dog ^d = gcnew Dog();

c->Feed();

c->GoToSleep();

d->Feed();

d->GoToSleep();

}

■Note In C++, types can inherit and restrict access to base class members, which sets their default
accessibility. This inheritance can be public, private, or protected. Any C++ struct, interface, or CLI type
inherits public by default. Using struct for everything ensures that we don’t run into any protection
issues. We will revisit inheritance later in this chapter.

Here are a couple of important things to notice about this example:

• C++/CLI uses interface class rather than just interface to declare an interface, similar
to its use of enum class instead of enum.

• The use of the virtual keyword is the same as in C#, which allows the derived class to
either implement or override methods. In polymorphism jargon, the topmost (base)
method is the implementation, and derived methods are overrides.

This is a pretty basic example, but it’s not as simple as we’d like it to be. Since Cat and Dog
each support the Eats and Sleeps interfaces, they are each forced to implement the GoToSleep()
and Feed() functions. Another inefficiency is that the implementations for Feed() are practi-
cally identical between the two animals.

A logical solution would be to create an Animal class that could contain the default behav-
iors for each of these interfaces. Dog and Cat could then inherit from Animal. But what is to
prevent someone from instantiating an Animal? We never want that to happen; we only want
to be able to instantiate Dog and Cat. The next section on abstract classes will help.

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION104

6080CH08.qxp 10/24/06 1:01 AM Page 104

Abstract Classes
An abstract class is a class that cannot be instantiated. Interfaces answer the question, “Does
this class do this?” Abstract classes answer the question, “Is this class a kind of that?” Abstract
classes are used quite often; some examples follow:

• Use an abstract class when creating a class that has default behavior for interfaces but
should never be instantiated. Our Animal example fits into this category.

• Use an abstract class when creating a class that, by its nature, is never instantiated,
because it is made up of a collection of static methods. System::Console is this type of
class and contains static methods such as Write() and WriteLine(). Don’t bother to
even try to instantiate an object of type Console—you won’t be able to.

Let’s make Animal an abstract class and outfit it with default methods for the interfaces.
We can also apply a small trick. Let’s use ToString() to get the name of the animal, so we don’t
have to hard code it into the routine. Here is the new code:

using namespace System;

interface class Sleeps

{

void GoToSleep();

};

interface class Eats

{

void Feed();

};

ref struct Animal abstract: Eats, Sleeps

{

virtual void GoToSleep()

{

Console::WriteLine("{0} is Sleeping", ToString());

}

virtual void Feed()

{

Console::WriteLine("{0} is Eating", ToString());

}

};

ref struct Cat : Animal

{

virtual void GoToSleep() override

{

Console::WriteLine("{0} is Catnapping", ToString());

}

};

ref struct Dog : Animal

{

};

void main()

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 105

6080CH08.qxp 10/24/06 1:01 AM Page 105

{

Cat ^c = gcnew Cat();

Dog ^d = gcnew Dog();

c->Feed();

c->GoToSleep();

d->Feed();

d->GoToSleep();

}

This code is vastly improved and much easier to maintain. The abstract keyword after
the class name Animal indicates that Animal is an abstract class. Dog contains no methods at
all and uses the default Animal behavior for all interfaces. Cat contains only the method that
needs to be different and uses the default behavior for Eats::Feed(). Since the GoToSleep()
function already existed in Animal, we are forced to add the keyword override to indicate how
we want to replace this method. The keyword new is also a possibility; we discuss this later in
the chapter.

Just one thing is disturbing about the example as it relates to our previous discussion of
System::Console. In the example, we are not able to instantiate an object of type Animal, but
we are able to derive a class Dog from Animal and instantiate it, and Dog uses all of Animal’s
methods. In a way, Dog is a clone of Animal that is not abstract. This seems like a backdoor
method of instantiating a System::Console, and we don’t want to allow that—if only there was
a way to indicate that a class cannot serve as a base class for any other classes. Your wish is my
command.

Sealed Classes
Recall that a sealed class is a class that cannot be extended through inheritance. For example,
let’s see what happens when you have a sealed class named Base, and you try to derive from it:

class Base sealed {};

class Derived : Base {};

Now let’s compile it:

C:\>cl /clr:pure /nologo test.cpp

test.cpp

test.cpp(2) : error C3246: 'Derived' : cannot inherit from 'Base' as it has been

declared as 'sealed'

test.cpp(1) : see declaration of 'Base'

Just as we expected; it cannot be extended, because it’s a sealed class. Now let’s see what
happens when you declare a class as both abstract and sealed.

Static Classes
Let’s use .NET Reflector to peek in mscorlib.dll, and look up the declaration of
System::Console:

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION106

6080CH08.qxp 10/24/06 1:01 AM Page 106

public ref class Console abstract sealed

{

};

Declaring a class as both abstract and sealed further limits the class. It only is allowed to
have static members, nested types, literal fields, and typedefs. The C# equivalent for abstract
sealed classes is to define a static class. If you switch the view in .NET Reflector to C#, you see
the following:

public static class Console

Declaring Console as both abstract and sealed, or as static in C#, allows it to be the con-
tainer for static methods, and it can be neither instantiated nor derived from. It is interesting
to note that this can be achieved in C++ by just using a namespace to scope and contain a
group of global functions. Of course, you might be thinking, “But can global functions be
exported outside the assembly?” You are right to wonder; the answer is that they cannot. When
used in a class, the keyword static in the C# language is just syntactic sugar. If you look at the
CIL in .NET Reflector, you see the abstract and sealed descriptors in the metadata. These are
analogous to the C++ language’s context-sensitive keywords, so if you plan to export your con-
tained group of functions from a C++ assembly, don’t use a namespace; just use an abstract
sealed class. C++ is a language of flexibility, giving you the freedom to achieve your goals in
different ways, depending on your requirements, which in this case is the encapsulation level
of your group of functions.

Methods
Methods in the base and derived classes commonly have the same name and perform the
same function. In the previous example, we have a method GoToSleep(), which is implemented
in the base class and reimplemented in the derived class. If you create an instance of the
derived class and you treat it like a derived class, it almost goes without saying that you would
prefer to use the derived version of the method. But what happens when you treat the derived
class as an instance of the base class? This is quite common in object-oriented programming;
for example, you might want to create a Menagerie from a collection of Animal. How can you
tell the compiler which implementation of the common method to use?

Virtual Methods
In short, a virtual method is a base class method that can be changed by a derived class’s
implementation. If a method is not marked as virtual, treating the derived class as an
instance of the base class revives the base class implementation.

The use of virtual methods gives you the ability to choose whether an implementation of
a method in a derived class replaces the implementation in the base class. In both C# and
C++, you can create virtual methods. There are few differences beyond syntax between virtual
methods in C# and C++, but I would like to review this topic here, as it seems to be either
glossed over or not explained sufficiently in many texts.

Let’s consider a somewhat contrived example, just for entertainment.

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 107

6080CH08.qxp 10/24/06 1:01 AM Page 107

Example of Virtual and Nonvirtual Methods
Animal is a base class, and John is a derived class. John is a normal human, and when you ask
him to say hello, he says, “Hello.” On the other hand, if you treat John like an Animal, he is
reduced to the level of an animal and can only mutter “ugh.” He’s still John no matter how
you treat him, and his name does not change:

using namespace System;

ref struct Animal

{

virtual String ^ Name()

{

return "Animal";

}

String ^Hello()

{

return "ugh";

}

};

ref struct John : Animal

{

virtual String ^ Name() override

{

return "John";

}

String ^Hello()

{

return "Hello";

}

};

void main()

{

John ^j = gcnew John();

Console::WriteLine("{0} says {1}", j->Name(), j->Hello());

Console::WriteLine("Oh no! He's an Animal! ");

Animal ^a = j;

Console::WriteLine("{0} says {1}", a->Name(), a->Hello());

}

In this example, we have two methods in each of the base and derived classes: Name() and
Hello(). The method Name() is virtual. It is declared in both classes with the virtual keyword,
and the keyword override is used in the derived class as well (more on that later). Since it is
virtual, John’s implementation of Name() replaces that of Animal’s for all instances of John.

On the other hand, Hello() is not marked virtual, so when we treat instances of John as
John, we see John’s implementation of Hello(), and when we treat instances of John as Animal,
we see Animal’s implementation of Hello(). This gives us the desired result:

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION108

6080CH08.qxp 10/24/06 1:01 AM Page 108

C:\>cl /clr:pure /nologo test.cpp

C:\>test

John says Hello

Oh no! He's an Animal!

John says ugh

In this way, we are able to pick and choose which methods are replaced in the base by the
implementation of the method in the derived class.

Working with Methods
C++/CLI has several ways of overriding virtual methods. Each of these was created with a spe-
cific paradigm in mind. I’d like to go over some of the paradigms and reveal the motivation
where appropriate. This allows us to see how the implementation affects the required syntax
and how the compiler helps us do the right thing and issues diagnostics when potentially dan-
gerous situations occur.

Nonvirtual Methods in Base and Derived Classes
In this case, we have a plain vanilla method in both the base and derived classes. We followed
this paradigm before with the Hello() method in both John and Animal. The key thing to note
here is that, although the derived implementation hides the base implementation when work-
ing with an instance of the derived class, the base implementation is revived when the same
instance is cast to the base class. In addition, accessing the base method from the derived
class is still possible using the Base:: qualification prefix, similar to the way we specify and
access a definition inside a namespace:

using namespace System;

ref struct Base

{

void Method()

{

Console::WriteLine("Base::Method");

}

};

ref struct Derived : Base

{

void Method()

{

Console::WriteLine("Derived::Method");

}

void MethodBase()

{

Base::Method();

}

};

void main()

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 109

6080CH08.qxp 10/24/06 1:01 AM Page 109

{

Derived ^d = gcnew Derived();

Console::Write("from the Derived class: ");

d->Method();

Console::Write("from the Derived class: ");

d->MethodBase();

Base ^b = d;

Console::Write("from the Base class: ");

b->Method();

Console::Write("from the Base class: ");

d->Base::Method();

}

Let’s compile this and give it a try:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

from the Derived class: Derived::Method

from the Derived class: Base::Method

from the Base class: Base::Method

from the Base class: Base::Method

The output shows clearly that we are able to access both the derived and base methods
from the derived class, and the base method from the base class. Is it possible to access the
derived method from the base class?

Virtual Methods in Base and Derived Classes
Let’s start this subtopic with a similar code sample:

using namespace System;

ref struct Base

{

virtual void Method()

{

Console::WriteLine("Base::Method");

}

};

ref struct Derived : Base

{

virtual void Method() override

{

Console::WriteLine("Derived::Method");

}

void MethodBase()

{

Base::Method();

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION110

6080CH08.qxp 10/24/06 1:01 AM Page 110

}

};

void main()

{

Derived ^d = gcnew Derived();

Console::Write("from the Derived class: ");

d->Method();

Console::Write("from the Derived class: ");

d->MethodBase();

Base ^b = d;

Console::Write("from the Base class: ");

b->Method();

}

This code generates the following output:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

from the Derived class: Derived::Method

from the Derived class: Base::Method

from the Base class: Derived::Method

Now this output is extraordinary. Changing the method to virtual changed only the third
output line; in Base, Method() has been replaced with Derived::Method() for implicit calls. It is
still possible to call the original Base::Method() explicitly, as seen in the second line. In fact, the
first line of the following code always calls the original Base::Method(), regardless of whether
it is found in the base or derived classes, because it fully qualifies the name:

void Test()

{

Base::Method();

Method();

}

The first call, Base::Method(), calls the base class implementation. The second call,
Method(), calls either Derived::Method() or Base::Method(), depending on where this method
is implemented and whether we are using virtual functions.

Note that the override keyword is added to the declaration of Method() in the derived
class.

If you do not include a keyword here, you are greeted with the following diagnostic:

C:\>cl /clr:pure /nologo test.cpp

test.cpp

test.cpp(15) : error C4485: 'Derived::Method' : matches base ref class

method 'Base::Method', but is not marked 'new' or

'override'; 'new' (and 'virtual') is assumed

test.cpp(4) : see declaration of 'Base::Method'

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 111

6080CH08.qxp 10/24/06 1:01 AM Page 111

Specify 'override' (and 'virtual') to override the ref class virtual method

Specify 'new' (and 'virtual') to hide the ref class virtual method with a

new virtual method

Position for 'new' and 'override' keywords is after method parameter list

This diagnostic is fairly complicated, but it pretty much distills to the fact that either the
keyword override or the keyword new is required in this context.

The Keywords new and override
To prevent unexpected results when a derived class hides a virtual method from a base class,
the compiler requires an explicit keyword, new or override, to indicate how you wish the
method to hide the base class method.

The rationale for the override keyword is fairly straightforward, and we’ve seen its use
several times in this chapter. The override keyword is used when you want the base class’s
implementation to be overridden by the derived class’s implementation.

On the other hand, the keyword new is completely different. This keyword is used to say
that you are specifying this method to act at as the virtual method for this class as a base class
for another class. It effectively begins a new virtual chain and discards the old one.

An example follows:

using namespace System;

ref struct Base

{

virtual void Method()

{

Console::WriteLine("Base::Method");

}

};

ref struct Derived : Base

{

virtual void Method() new

{

Console::WriteLine("Derived::Method");

}

};

ref struct Derived2 : Derived

{

virtual void Method() override

{

Console::WriteLine("Derived2::Method");

}

};

void main()

{

Derived2 ^d2 = gcnew Derived2();

d2->Method();

Derived ^d = d2;

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION112

6080CH08.qxp 10/24/06 1:01 AM Page 112

d->Method();

Base ^b = d;

b->Method();

}

Let’s look at this code sample. It has three classes, Base, Derived, and Derived2. Derived
is also a base class for the Derived2 class. When you use an instance of Derived2 and call
Method(), you get Derived2’s implementation. When you cast this instance to Derived, you
get Derived2’s implementation as well, since the override keyword is used on Derived2 to
override Derived’s version of Method(). However, when you further cast to Base, you go beyond
the Derived::Method() virtual chain, because the new keyword is used on Derived to say how
Method() should be treated with respect to Base. The result is that Base::Method()’s call is used,
since Derived2::Method doesn’t override Base::Method.

Here is the output, which reflects this:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

Derived2::Method

Derived2::Method

Base::Method

You might ask, “What possible paradigm would require you to use such a construction?”
It seems difficult and unpredictable without a thorough examination of each method’s decla-
ration. As it turns out, you don’t have to look far to find a reasonable need for this sort of
construction.

Suppose you are writing code that uses a third party’s base class library. Suppose you are
making objects derived from one of the third-party objects, called Component.

As far as you know, Component looks something like the following:

ref struct Component

{

};

You create your own components that are more complicated, so you derive other sub-
classes from it. You add a method to it, called Act(), which does not exist (yet) in the base class
library. You add a more-advanced version to your advanced component that overrides the
base version. You end up with something like the following:

ref struct MyBasicComponent : Component

{

virtual void Act() {}

};

ref struct MyAdvancedComponent : MyBasicComponent

{

virtual void Act() override {}

};

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 113

6080CH08.qxp 10/24/06 1:01 AM Page 113

Suppose this works fine over several generations of your code. You have shipped your
interface, and others are relying on your routine named Act(). Then, your third party
announces that it has upgraded its base class library and fixed several nagging issues. You pur-
chase it and attempt to recompile, and you discover that a version of Act() has been released
for the basic component.

You now have the following choices:

• Rename every instance of Act() in your code, so that it doesn’t conflict, thereby con-
founding your customers and breaking their implementations of your interface.

• Override the third party’s version of Act(), so that its internal routines call your version
of Act(). This is done using the override keyword.

• Ignore the third-party version of Act(), as it either does not do the same thing or replac-
ing the third-party version with yours would be inappropriate. Peaceful coexistence is
possible, and you can always call the other version of Act() using Component::Act() or
by casting your object to Component. This is done using the new keyword.

The first option is usually unreasonable, but the other two independently justify the need
for their respective keywords.

Overriding With Different Method Names
What if the third-party base class library comes out with a new method you want to override,
but you have already given a different name in your code?

You could add code to chain to the third-party method, or you could use the named over-
ride syntax. The named override syntax replaces the keyword override with the qualified name
of the method you are replacing and allows you to override the base class’s implementation
even if it was named differently. Here is how it is used:

using namespace System;

ref struct Component

{

virtual void ActOut()

{

Console::WriteLine("Component::ActOut");

}

};

ref struct MyBasicComponent : Component

{

virtual void Act() = Component::ActOut

{

Console::WriteLine("MyBasicComponent::Act");

}

};

ref struct MyAdvancedComponent : MyBasicComponent

{

virtual void Act() override

{

Console::WriteLine("MyAdvancedComponent::Act");

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION114

6080CH08.qxp 10/24/06 1:01 AM Page 114

}

};

void main()

{

MyAdvancedComponent ^ac = gcnew MyAdvancedComponent();

ac->Act();

MyBasicComponent ^bc = ac;

bc->Act();

Component ^c = bc;

c->ActOut();

}

As you can see, ActOut() is replaced by Act() in the declaration of
MyBasicComponent::Act().

Let’s see what happens when we try to execute this:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

MyAdvancedComponent::Act

MyAdvancedComponent::Act

MyAdvancedComponent::Act

As you can see, all versions of both Act() and ActOut() are replaced with the most-
advanced component’s Act() method, declared in MyAdvancedComponent.

Virtual Methods Summary
You should now have a pretty good idea of the possibilities inherent in virtual methods. Using
the new and override keywords, it is possible not only to create a virtual chain of methods but
to chain the virtual chains themselves, even if the names of the methods differ.

Accessing Base Class Fields and Methods
In C#, when you want to access base class methods and fields, you use the base keyword.
Since native classes in C++ support multiple inheritance, such syntax would be either ambigu-
ous or inconsistent for C++/CLI. C++/CLI adopts the C++ syntax and requires you to specify
the name of the base class using the full qualification syntax. We did this a little in the previous
examples; let’s review it more explicitly here.

Consider the following C# sample:

using System;

class Base

{

public int i;

}

class Derived : Base

{

public new int i;

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 115

6080CH08.qxp 10/24/06 1:01 AM Page 115

public void Access()

{

base.i = 3;

i=4;

Console.WriteLine("Base i = {0}, Derived i = {1}",base.i, i);

}

public static void Main()

{

Derived d = new Derived();

d.Access();

}

}

Note the following important points:

• The variable i is declared using the keyword new in Derived, the derived class, to indi-
cate that it hides the variable i in Base, the base class. The override keyword is not used
in this context.

• The variable i in the base class is accessed from the method Access() using the expres-
sion base.i.

Let’s compare and contrast the following C++/CLI version:

using namespace System;

ref struct Base

{

int i;

};

ref struct Derived : Base

{

int i;

void Access()

{

Base::i = 3;

i=4;

Console::WriteLine("Base i = {0}, Derived i = {1}",Base::i, i);

}

static void Main()

{

Derived ^d = gcnew Derived();

d->Access();

}

};

void main() {Derived::Main();}

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION116

6080CH08.qxp 10/24/06 1:01 AM Page 116

The following points are important to note about this code:

• The variable i in Derived does not require the keyword new. It hides the base class
version implicitly.

• The variable i in the base class is accessed from the method Access() using the syntax
Base::i. Therefore, the name of the base class is named explicitly. This has several
advantages with native classes, as it allows you to not only choose between various
base classes but to access grandparent classes with ease.

Protection Mechanisms
Like C#, C++ has several protection mechanisms to manage the accessing of data:

• Visibility: This mechanism affects whether the top-level types within your assembly
may be used by external assemblies.

• Accessibility: Accessibility affects whether constructs may access methods and fields
within a given type.

• Restricted inheritance: This feature, which does not exist in C# or in the CLI object
model, allows you to override the accessibility of a native C++ derived type.

Visibility
The visibility of a nonnested class, struct, interface, delegate, or enum determines whether it
can be seen outside its parent assembly. The visibility of a class is set by prepending the visi-
bility keyword to the class definition. The default visibility for a nonnested type is private, for
example:

public ref class R {}; //visible outside the assembly

private ref class S {}; //visible only within the assembly

ref class T {}; //defaults to private visibility

Table 8-1 maps the C# visibility keywords to the C++/CLI visibility keywords for top-level
types; the name from the System::Reflection::TypeAttributes namespace is included.

Table 8-1. Visibility Keywords in C# and C++/CLI for Top-Level Types

Top-Level Types TypeAttributes C# C++/CLI

Visibility limited to the current assembly NotPublic internal private

Visible to external assemblies as well the Public public public
current assembly

Table 8-2 maps the C# visibility keywords to the C++/CLI visibility keywords for nested
types.

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 117

6080CH08.qxp 10/24/06 1:01 AM Page 117

Table 8-2. Visibility Keywords in C# and C++/CLI for Nested Types

Nested Types TypeAttributes C# C++/CLI

Public visibility NestedPublic public public:

Private visibility NestedNotPublic private private:

Visible only to methods NestedAssembly internal internal:
from types within its
assembly

Visible to methods NestedFamily protected protected:
within its own type
and subtypes

Visible to methods that NestedFamilyOrAssembly internal protected public protected:
are within either its own protected internal
assembly or its own type
or subtypes

Visible to methods that NestedFamilyAndAssembly N/A private protected:
are within its own
assembly and within
its own type or subtypes

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION118

A C++/CLI code sample for nested types follows:

public ref class publicClass

{

public:

ref class NestedPublic

{

};

private:

ref class NestedPrivate

{

};

internal:

ref class NestedAssembly

{

};

protected:

ref class NestedFamily

{

};

private protected:

ref class NestedFamilyAndAssembly

{

};

public protected:

ref class NestedFamilyOrAssembly

{

};

};

6080CH08.qxp 10/24/06 1:01 AM Page 118

Accessibility
Accessibility is often confused with visibility. Visibility determines which types are visible;
accessibility governs which fields and methods may be accessed within a visible type.

There are several different accessibility indicators; they are constructed with a keyword
followed by a colon.

In C#, accessibility is declared for each member. If you do not declare accessibility for a
member in C#, the accessibility becomes private by default.

In C++, accessibility is modal, and accessibility is set independently of any member. All
subsequent members are given the accessibility of the preceding accessibility declaration. If
no accessibility is declared within a type in C++, the default becomes public for struct and
private for class.

In summary, C# accessibility is set for each item, and C++ accessibility is set by an accessi-
bility declaration that affects all further members. C++/CLI accessibility is defined just like
nested types (see Table 8-2).

■Note class has private accessibility by default; struct has public accessibility by default.

Inheritance
In C++, you can also affect accessibility of base class members via inheritance. Public and pro-
tected members of the base class may be accessed as if they were members of the derived
class. Members of the base class that are private are inaccessible to the derived class no matter
how the derived class inherits.

■Note CLI types, including reference and value types, always inherit public.

You declare how a derived class should inherit by specifying one of the following key-
words before the name of the base class:

public: Members of the base class that are public or protected are treated as if they
are public or protected members of the derived class, respectively. Every member of the
base class retains its accessibility in the derived class.

private: Members of the base class that are public or protected are treated as if they
are private members of the derived class. Every member of the base class becomes
private in the derived class.

protected: Members of the base class that are public or protected are treated as if they
are protected members of the derived class.

As you can see, inheritance can only reduce the accessibility of a member, never increase
it. Allowing greater accessibility in a derived class than in the base class would defeat the pur-
pose of protection and class encapsulation.

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 119

6080CH08.qxp 10/24/06 1:01 AM Page 119

A derived class inherits private by default, and a derived struct inherits public by
default, with the following major caveat: CLI types always inherit public by default.

For example, consider the following:

ref struct Base

{

int var;

};

ref class Derived : Base

{

public:

void Test()

{

var = 3;

}

};

void main()

{

Derived d;

d.var = 3;

}

In this example, Derived inherits publicly from Base, since they are both reference types,
and reference types always inherit publicly. The member var is public in the base class, so it is
accessible in the derived class no matter how the derived class inherits. All that is in question
is whether it is accessible via the instance variable d in the function main().

Let’s give it a try:

C:\>cl /c /clr:pure /nologo test.cpp

C:\>

No diagnostic appears, so we were successful. Now let’s attempt to inherit privately with
these reference types. Change the following line:

ref class Derived : Base

to

ref class Derived : private Base

Now let’s try it again:

C:\>cl /c /clr:pure /nologo test.cpp

test.cpp(6) : error C3628: 'Derived': managed classes only support public

inheritance

test.cpp(17) : error C2247: 'Base::var' not accessible because 'Derived' uses

'private' to inherit from 'Base'

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION120

6080CH08.qxp 10/24/06 1:01 AM Page 120

test.cpp(3) : see declaration of 'Base::var'

test.cpp(5) : see declaration of 'Derived'

test.cpp(2) : see declaration of 'Base'

As you can see, managed (CLI) types always inherit publicly.
Now change the following code:

ref struct Base

ref class Derived : private Base

to make these types native and remove the private keyword:

struct Base

class Derived : Base

And let’s try it again:

C:\>cl /c /clr:pure /nologo test.cpp

test.cpp

test.cpp(17) : error C2247: 'Base::var' not accessible because 'Derived' uses

'private' to inherit from 'Base'

test.cpp(3) : see declaration of 'Base::var'

test.cpp(5) : see declaration of 'Derived'

test.cpp(2) : see declaration of 'Base'

In this case, Derived is a class, and a C++ class inherits privately by default.
There are a couple ways to fix this. We can change Derived from a class to a struct, or add

the public keyword before the name of the base class. Alternatively, we could cast d to an
instance of Base and access the variable in that manner.

Here’s a revamped example:

struct Base

{

int var;

};

struct Derived : Base

{

public:

void Test()

{

var = 3;

}

};

int main()

{

Derived d;

static_cast<Base&>(d).var = 4;

System::Console::WriteLine("{0}", d.var);

}

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 121

6080CH08.qxp 10/24/06 1:01 AM Page 121

Let’s run it:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

4

In this example, we inherit publicly from Base, since we changed Derived to a struct. In
addition, we can also access the base class variable using a cast, as shown in the function
main(). We will revisit the case operators in Chapter 16.

Declaring ref struct and ref class
As you have seen, declaring a reference type or value type using the struct keyword instead of
the class keyword affects the default accessibility of the type. It does not affect inheritance,
because in the CLI object model, all inheritance is public. It also does not affect the visibility
of a type.

For example, consider the following short code sample:

ref class R

{

static void Main() {}

};

void main()

{

R::Main();

}

If you try to compile this, you get the following result:

C:\>cl /clr:pure /nologo test.cpp

test.cpp(7) : error C3767: 'R::Main': candidate function(s) not accessible

Now change R to a ref struct rather than a ref class as follows:

ref class R

{

static void Main() {}

};

The program now compiles fine. We can examine the generated metadata and CIL using
.NET Reflector (see Figure 8-1).

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION122

6080CH08.qxp 10/24/06 1:01 AM Page 122

Figure 8-1. ref struct R under .NET Reflector

As you can see from .NET Reflector, type R still has private visibility (private ref class R),
but the default accessibility is public (see the first public: in //Methods). Therefore, changing
to a ref struct affects accessibility but not visibility.

For the purposes of accessibility and visibility, the following code:

ref struct R

{

};

is equivalent to this:

private ref class R

{

public:

};

Overload Resolution
One important distinction between visibility and accessibility is that if a method is visible, it is
considered for overload resolution even if it is inaccessible. In so doing, it may potentially hide
another viable overload. For example, consider the following example:

class Base

{

public:

int f(int i)

{

return i;

}

};

class Derived : public Base

{

};

class Hello : Derived

{

void test()

{

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 123

6080CH08.qxp 10/24/06 1:01 AM Page 123

f(3);

}

};

In this example, f(3) resolves to Base::f(int i). On the other hand, look what happens
when we modify Derived to add an inaccessible function:

class Derived : public Base

{

private:

int f(int i)

{

return i;

}

};

Now we try to compile it:

C:\>cl /clr:pure /nologo test.cpp

test.cpp

test.cpp(21) : error C2248: 'Derived::f' : cannot access private member declared in

class 'Derived'

test.cpp(12) : see declaration of 'Derived::f'

test.cpp(9) : see declaration of 'Derived'

The potentially accessible method in Base is completely hidden by the inaccessible
method in Derived. The work-around is to access Base’s method by fully qualifying its name—
Base::f(3).

Hide by Name and Hide by Signature
One key difference between method accessibility in C# and C++ is that C# hides by signature,
whereas C++ hides by name. The distinction is as follows: If a method in a derived class has
the same name as a method in a base class, the base class method is hidden, because C++
implements “hide by name.” In C#, the base class method is visible if it has a different signa-
ture, meaning it takes a different set of function parameters.

Hide by Signature
Consider the following C# sample:

using System;

class Base

{

public void f(int i)

{

Console.WriteLine("Base.f()");

}

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION124

6080CH08.qxp 10/24/06 1:01 AM Page 124

}

class Derived : Base

{

public void f(char c)

{

Console.WriteLine("Derived.f()");

}

static void Main()

{

Derived d = new Derived();

d.f(3);

}

}

When we compile and execute it, we get the following:

C:\>csc /nologo test.cs

C:\>test

Base.f()

The compiler first gathered the list of viable candidates and then selected the best match
given the passed function arguments. In this example, this list of viable candidates included
both versions of f(), since they have different signatures; f(int) is the best match. This exam-
ple shows that C# is “hide by signature,” as Base.f and Derived.f have different signatures.

Hide by Name
Let’s look at a similar sample using C++/CLI:

using namespace System;

ref struct Base

{

public:

void f(int i)

{

Console::WriteLine("Base.f()");

}

};

ref struct Derived : Base

{

void f(wchar_t c)

{

Console::WriteLine("Derived.f()");

}

static void Main()

{

Derived ^d = gcnew Derived();

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION 125

6080CH08.qxp 10/24/06 1:01 AM Page 125

d->f(3);

}

};

void main() { Derived::Main(); }

Note that this code is more or less identical, and we could expect to see similar results:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

Derived.f()

Again, the compiler first gathered the list of viable candidates and then chose the best
match given the passed function arguments. In this example, the list of viable candidates
included only the derived version of f(), since both the base and derived version of f() have
the same name. Then the only remaining candidate is chosen, and an implicit conversion
from int to wchar_t is done (wchar_t is C++/CLI’s alias for System::Char, which is char in C#).
Derived::f() is the only, and thus the best, match available.

As for which design is better, one can make an argument either way. The key thing when
converting code from C# to C++ is to watch out for this difference. Automatic translators from
C# to C++, and vice versa, cannot easily handle this kind of difference, and the translated
code may compile without error, even though the resulting program might produce different
results.

Summary
In this chapter, we covered polymorphism and protection to learn about writing clean
objected-oriented code. You should now have a good working knowledge of the key type
differences between C# and C++. I suggest you use .NET Reflector on the .NET BCLs to
explore a little and look at how various common methods are implemented.

In the next chapter, we’ll look at coding in C++ from the opposite angle by having a
look at pointers and unsafe code.

CHAPTER 8 ■ POLYMORPHISM AND PROTECTION126

6080CH08.qxp 10/24/06 1:01 AM Page 126

Details

P A R T 2

6080CH09.qxp 10/24/06 1:02 AM Page 127

6080CH09.qxp 10/24/06 1:02 AM Page 128

Pointers and Unsafe Code

It is not enough that you should understand about applied science in order that your

work may increase man’s blessings. Concern for the man himself and his fate must

always form the chief interest of all technical endeavors; concern for the great unsolved

problems of the organization of labor and the distribution of goods in order that the cre-

ations of our mind shall be a blessing and not a curse to mankind. Never forget this in

the midst of your diagrams and equations.

—Albert Einstein

Since its inception, the use of pointers has been the best and worst of C and ultimately C++
(though many would argue that the esoteric use of C++ templates has given pointers a run for
their money). No other feature gives you the power to strip away the veneer of your program-
ming language and get to the core, and no other feature is as prone to generating hidden bugs
that can go undetected for years.

The C# View: A Blessing and a Curse
The designers of C# and the .NET Framework have done a lot of work to make the use of
pointers unnecessary in day-to-day programming. Most common tasks can now be written as
safe, verifiable code. The entire garbage collection system was designed with the obsoletion
of pointers in mind. Reference types, implemented as allocated data and a pointer to data in
.NET, appear as a single entity in C#. Type safety on handles is also enforced to avoid pointer
issues.

Verifiable code is preferable, because it allows the execution system to know the types
of all allocated items at all times; it guarantees a common exception handling system for all
types; and it provides a leak-free, common-memory, managed-memory allocation system.

Despite all of this, the designers of C# restrained themselves from omitting pointers from
C# altogether.

The use of pointers in C# is supported in code that uses the unsafe keyword and is com-
piled with the /unsafe compiler option. C++, on the other hand, supports pointers as a part
of its primary programming model. It’s an interesting fact that C# is verifiable by default and
requires a keyword or compiler option to compile otherwise, and C++ is not verifiable by
default and uses a compiler option to compile verifiable.

129

C H A P T E R 9

6080CH09.qxp 10/24/06 1:02 AM Page 129

Pointers: A Definition and a Caveat
So, what is a pointer anyway? A pointer is a data type that contains the address of another data
type. It seems fairly harmless, but there is a catch: Suppose you set a pointer to point to an
instance of a type. The idea is that you then can refer to the instance using the pointer alone.
You can pass this pointer to other methods, and every method is working on what it considers
to be a pointer to an instance of the data type; this usually works fine. Things start to go wrong
when, perhaps, the data goes out of scope or one of the holders of the pointer changes the
data it points to in a way the others do not expect, so rather than pointing to an instance of the
data on the stack, it ends up pointing to stack data from a completely different method. Then,
a method that uses the pointer isn’t really writing to a data instance; it’s writing garbage.

The most common way for pointer bugs to occur is when the pointer and data go out of
sync; then, the contract between the pointer and data, which says that the pointer points at
valid data, is broken. Perhaps the pointer is old, or the data no longer exists, and the pointer
points nowhere. Alternatively, the pointer could start off as the only way to access the data, as
is common when using new, and the pointer later goes out of scope and access to the data is
lost. Without a garbage collection mechanism, this results in an unreferenceable or orphaned
data object and a memory leak.

The following presents a war story from a friend as an example.

HOW TO BRING A 5,000,000-FAULT–TOLERANT SERVER TO ITS KNEES
BY PAUL CAYLEY

I assume that all folks reading this book either know what memory leaks are, and, perhaps, may have actu-
ally caused a few in their day. Memory leaks are commonplace and happen despite the best efforts of bright
people. When I heard that Java would bring about the end of memory leaks, I was not sure if I should be
ecstatic that one of programming’s greatest banes was now a thing of the past or skeptical. “Skeptical”
seems to be the correct answer, as trade publications are full of advertisements for tools to eliminate Java
memory leaks.

Why are memory leaks so hard to eliminate? There are lots of reasons. I think the biggest one is design-
time decisions that are opaque downstream. Memory allocation and deallocation happen at different times
and in different places. Architects and designers don’t adequately anticipate how their code will be used.
Worse yet, some even assume that others will read their documentation and inline comments and correctly
understand the cryptic wisdom and caveats contained therein. (Of course, this supposes that programmers
document their code, which may or may not be the case.)

Of course, silliness and sloppiness may also play a role. Programmers can just lose track of what they
are doing or have done. And because some people write poor code—which may end up linked to your code,
call your bits, or even be your bits—memory may be leaked by the byte or by the bucketful! Let’s look at
some examples.

Remember Microsoft Outlook? The early versions of Outlook leaked about 100KB of memory per hour,
just sitting there. So if you were in the habit of turning on your machine and leaving it on for weeks on end,
you had to exit and restart Outlook every few days. If you didn't, after about a week, your system would be
slow and unpredictable.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE130

6080CH09.qxp 10/24/06 1:02 AM Page 130

Unfortunately, most programmers expect things to work more often than not, and error checking is
sometimes incomplete or omitted altogether. Some programs may continue moving forward, piddling bits
and generating faults, after malloc() returns empty-handed. The steps in this scenario follow:

1. Outlook leaks memory to the point that other programs and/or the OS become starved.

2. Calls to malloc() start failing in new and unusual places.

3. Even though memory is freed by exiting Outlook, things are no longer stable.

4. You bring up the Task Manager to kill the lingering Outlook Messaging Application Programming
Interface (MAPI) pump, but things are iffy still.

5. You rename outlook.exe to lookout.exe as a reminder and reboot.

No big deal, you had to reboot your workstation—unless, of course, you are in a terminal server envi-
ronment where a single box hosts a number of user sessions. Then you have the added fun of a number of
instances of Outlook harmoniously working together to leak lots and lots of memory. And when you reboot,
everyone has to start over—happy, happy, joy, joy!

Let's look at another scenario of a long-running process—system status monitors. In this scenario, you
have a big, fault-tolerant server that supports a mission-critical application. Not only do you pay $500,000
for a box with multiple power supplies, RAID drives, redundant networks, and such, but you even shell out
$50,000 for some system monitoring tools. This system is going to run 24✕7 into the next decade. Then a
service pack for the OS is shipped, and a new code path is exposed. The monitoring application works fine
and does not leak any memory. Unfortunately, the OS API that retrieves OS status updates does leak memory,
so every time you call through this API, a record set is returned, and 50 bytes or more of memory are lost. In
about 3 months, the monitoring software will do its job and reboot the bulletproof, gold-plated server.

In short, memory leaks are evil. Computers are good. But is there ever good without evil?

Valid Targets and Syntax
In C#, pointers may be set to the address of a value type or to another pointer. In addition,
pointers may be freely cast to other pointers.

Since objects in the managed heap are moved around by the garbage collector at seem-
ingly arbitrary intervals, .NET languages must restrict pointers to objects on the managed
heap. C# pointers are primarily designed to work with pointers or value types, which reside on
the stack. C++/CLI and C# both allow you to temporarily fix the location of an object on the
managed heap, although they use different syntaxes. Blocking the garbage collection mecha-
nism, even for a short while, might seem risky, but it’s quite useful for making calls to native
APIs, called InterOp. We will revisit each of these topics in Chapters 19 and 20.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE 131

6080CH09.qxp 10/24/06 1:02 AM Page 131

Common Pointer Operators
The C# pointer operators are listed in Table 9-1. All of these operators exist and have the same
definition and usage in C++.

Table 9-1. Common Pointer Operators in C++ and C#

Operator Meaning

& Take the address of a value. This is the address of the operator in C++ nomenclature.

* Get the value that a pointer or reference points to. This is the dereference operator in
C++. When you use it, you are dereferencing a pointer.

-> ptr-> is an alias for (*ptr).
ptr-> is the member-access operator. This is a handy shortcut when ptr points at
an instance of a C# struct or value type, and you want to access a member of the
structure.

Example of Pointer Usage
A few short examples of pointer usage in both C# and C++/CLI follow.

Declare a pointer to an integer:

int *ptr;

Assign the address of an integer to an integer-pointer:

int i;

ptr = &i

Assign a value to the original integer by dereferencing the pointer:

*ptr = 3;

At this point, the integer i is assigned the value of 3. Now let’s wrap this functionality in a
program and give it a try.

Verifiable Code and Pointer Usage in C#
Since pointer usage is unverifiable, C# limits the usage of pointer operators to blocks marked
with the unsafe keyword. In addition, the /unsafe command-line option must be specified
when compiling. This can either be done directly from the command line or by checking the
appropriate box in the Project Properties dialog box’s Build tab in the Visual Studio IDE. For
example, look at the following program, called test.cs:

class R

{

static void Main()

{

int i;

unsafe

{

CHAPTER 9 ■ POINTERS AND UNSAFE CODE132

6080CH09.qxp 10/24/06 1:02 AM Page 132

int *ptr = &i;

*ptr = 3;

}

System.Console.WriteLine(i);

}

}

To compile and run this program, do the following; the /nologo option suppresses the
copyright message:

csc /unsafe /nologo test.cs

test

You should receive the following output:

3

As you can see, the /unsafe command option is used to instruct the compiler to accept
usages of the unsafe keyword. If you neglect to compile with the /unsafe option, you see the
following diagnostic, if the compiler is doing its job:

test.cs(12,9): error CS0227: Unsafe code may only appear if compiling with /unsafe

Side Effects of Writing Unsafe Code
There are a few interesting side effects of writing unsafe code. Since it is possible to initialize
variables indirectly using pointers, the use of unsafe code affects the compiler’s ability to
detect uninitialized variables. For example, consider the following C# fragment:

int i;

System.Console.WriteLine(i);

If you compile this in the context of a program, you see the following diagnostic:

test.cs(9,29): error CS0165: Use of unassigned local variable 'i'

If you wrapped this code in an unsafe block and added a pointer reference as follows:

unsafe

{

int i;

int *p = &i;

System.Console.WriteLine(i);

}

the compiler compiles this without a diagnostic even though the variable i remains
uninitialized.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE 133

6080CH09.qxp 10/24/06 1:02 AM Page 133

If you then execute this block, you see the default value for an uninitialized variable:

C:\>test

0

In this case, it’s not a big deal, but you can see how using unsafe blocks and pointers lim-
its the compiler’s ability to help you write solid code.

Pointer Usage in C++
C++ pointers are similar to C# pointers, with many of the same restrictions. The base syntax is
identical, which is not surprising given the history and evolution of the languages. There are
some important differences, all of which attest to the power of C++:

• C++ does not require the use of the unsafe keyword within the source.

• C++ has four compilation options; C# has safe and unsafe.

• C++ allows pointers to arrays.

• C++ allows pointers to native functions.

• C++ allows pointers to members independent of the instance.

• C++ allows you to mix and combine pointers to arrays, pointers to pointers, pointers to
members, and pointers to native functions in the same declaration.

Since the goal of this chapter is to introduce pointers and related concepts, let’s postpone
discussion of the advanced aspects until Chapters 18 and 19. After all, you don’t want to spend
too much time trying to decode a valid C++ declaration like the following one before you are
ready!

void (**(*(*p)(int, char))[])(int);

Verifiable Code in C++
The /clr switch determines how your C++ code is compiled to target the CLR. It governs how
strict the compiler needs be in disallowing constructs such as pointers and nonmanaged types
as well as determining whether your code is compiled to run under the CLR in .NET or as a
standalone native executable.

Here are the ways you can compile your code in C++:

• /clr:safe produces an IL-only, verifiable output file and can be used with only man-
aged types and managed code.

• /clr:pure produces an IL-only output file (and no native executable code) and can be
used with only managed and native types and managed code.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE134

6080CH09.qxp 10/24/06 1:02 AM Page 134

• /clr produces a mix of native and IL files. Managed and native types and managed
code and native code are allowed.

• <default> indicates that no option is specified. The program compiles for native
execution.

In addition, two other options are provided for compatibility with Visual C++ 2002 and
2003:

• /clr:oldSyntax accepts the managed extensions syntax from Visual C++ 2002 and 2003.

• /clr:initialAppDomain indicates the use of the initial AppDomain1 behavior of Visual C++
2002.

In general, C# produces verifiable code by default but is able to use pointers and unverifi-
able code using the unsafe keyword or command-line option. C++ expects you to define the
target executable on the command line, as C# and C++ tend to reflect different paradigms rather
than verifiable code with optional optimizations, or tweaks, as in C#. The direct equivalent to
C# compilation in C++ is /clr:safe, but this model does not allow you to take advantage of
much of the true power of C++. For that reason, I prefer using /clr:pure in general and
switching to /clr:safe or /clr as needed.

Now let’s take the exact same pointer usage as the C# example and convert it to C++/CLI:

ref struct R

{

static void Main()

{

int i;

int *ptr = &i;

*ptr = 3;

System::Console::WriteLine(i);

}

};

void main() {R::Main();}

As you can see, C++ pointer usage in the program is identical to the C# version. Since
pointers are not verifiable, or safe, we should compile this as pure. Enter the following line:

cl /clr:pure test.cpp

This compiles into a CLR executable that writes 3 to the console, just like the C# version.
On the other hand, if you try to compile this as safe, you see the following (the /nologo

option suppresses the copyright message):

cl /clr:safe /nologo test.cpp

test.cpp

test.cpp(6) : error C4956: 'int *' : this type is not verifiable

CHAPTER 9 ■ POINTERS AND UNSAFE CODE 135

1. For detailed information about clr:initialAppDomain, refer to the Visual C++ documentation.

6080CH09.qxp 10/24/06 1:02 AM Page 135

If you attempt to compile this code without the clr flag in any form, you receive a more
esoteric message:

cl /nologo test.cpp

test.cpp

test.cpp(2) : error C2143: syntax error : missing ';' before '<class-head>'

test.cpp(2) : error C4430: missing type specifier - int assumed. Note: C++ does not

support default-int

test.cpp(8) : error C2653: 'System' : is not a class or namespace name

test.cpp(8) : error C3861: 'WriteLine': identifier not found

If you do not specify the /clr option, the compiler compiles this code as native C++. In
native C++, ref is not a keyword, so the compiler does not know that it indicates anything spe-
cial, and what you get follows the old computer science rule of garbage-in, garbage-out from
the compiler. It is always a good idea to double-check the setting of the clr flag in either the
IDE or the makefile when the compiler appears to spit out seemingly nonsensical diagnostics.

BEHIND THE SCENES

In the previous example, it’s quite instructive to understand what the parser is doing. When it sees the key-
word class, it realizes that, because classes can only be declared in certain places, whatever came before
should have already completed, so it outputs the following diagnostic:

test.cpp(2) : error C2143: syntax error : missing ';' before '<class-head>'

Note that this occurs on line 2, because the parser continues to the open curly bracket before making a
judgment on the expression.

error C4430: missing type specifier - int assumed. Note: C++ does not

support default-int

The next error message is a carryover from traditional C, which allowed you to declare a variable or
function without specifying the type. The type would then be identified as int by default. This behavior was
called, not surprisingly, default-int.

Therefore in traditional C, the following declaration was valid:

ref;

This line declared ref to be a global variable of type int.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE136

6080CH09.qxp 10/24/06 1:02 AM Page 136

C++ Handles
In the CLR, reference types are divided into two entities: the objects on the managed heap
and a handle to those objects. C# obscures this division and provides syntax that allows you to
work with a handle as if it is the object itself. C++/CLI, on the other hand, treats the handle as
if it is a pointer to the object on the managed heap. In doing so, it uses the pointer syntax out-
lined in this chapter.

Let’s review that syntax here. First let’s declare a reference type and a value type:

//declare a reference type

ref struct R { int i; };

//declare a value type

value struct V { int j; };

Now let’s instantiate them (in the context of a method):

V v;

R ^ r = gcnew R();

The variable v has been allocated on the stack. The variable r is also allocated on the
stack, and it is a handle, or managed pointer, to an R object allocated on the managed heap.

Suppose now we want to access the field variable j within V. We would use the . field-
access operator and write the following:

v.j = 3;

In Chapter 3, I showed that for reference types you needed to use the -> member-access
operator instead. Previously, I also mentioned that ptr-> is an alias for (*ptr). Let’s see how
this all comes together.

Set the field i to 3 using pointer syntax:

r->i = 3;

The equivalent in regular syntax follows:

(*r).i = 3;

In this case, the variable r is living on the stack and is a handle, or pointer, to an R object
on the managed heap:

(*r)

This expression indicates that the pointer should be dereferenced, which means “go to
the object pointed to by the variable r.” In other words, this expression returns the actual
object on the managed heap. Adding the .i accesses the field itself, which is the same as C#
or as a stack-allocated value type in C++.

Of course, using the -> operator is simpler, but knowing the syntax is important.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE 137

6080CH09.qxp 10/24/06 1:02 AM Page 137

C++/CLI Address Operators
We have learned that the & operator is used to take the address of a value type or pointer type.
Specifically, in C#, this means that it can take the address of a variable on the stack. If you use
this operator to take the address of a variable that is not on the stack in C++, you will get a
diagnostic. To test this out, we need to use the expression (*r) to get an object on the man-
aged heap. Let’s use the address of operator to determine its address and see what happens:

&(*r);

If you try to compile it, you see the following diagnostic:

C:\>cl /clr:pure /nologo test.cpp

test.cpp

test.cpp(12) : error C3072: operator '&' cannot be applied to an instance of a

ref class

use the unary '%' operator to convert an instance of a ref class to a

handle type

Error 3072 is the important diagnostic here, as it says that the address of the operator
cannot be used on an object in the managed heap.

To allow you to take the address of an object on the managed heap, C++/CLI introduces
the % operator. This operator is the equivalent of the & operator for objects on the managed
heap.

In summary, Table 9-2 shows the correspondence among native and managed pointers in
C++/CLI.

Table 9-2. Native to Managed-Pointer Operator Correspondence in C++/CLI

Operator Stack / Native Heap Managed Heap

Address & %

Pointer declaration * ^

Dereference * *

Example value struct V{ int i; }; ref struct R{ int i; };
V v; R ^r1 = gcnew R();
V * pV = &v; R ^r2 = %(*r1);
v.i; R r;
pV->i; R ^r3 = %r;

r1->i;
(*r2).i;

As you can see, there are different address and pointer-declaration operator syntaxes,
depending on whether the target is on the managed heap, native heap, or stack. On the other
hand, there is only a single dereference operator, because dereferencing a pointer is unam-
biguous. In any case, you end up with an expression that represents the object either on the
stack or the managed heap.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE138

6080CH09.qxp 10/24/06 1:02 AM Page 138

Complex Examples
A more-sophisticated example follows that shows how to take the addresses of pointers. Note
that, since pointers and handles are allocated on the stack, we use the & address operator in
both cases:

static void Main()

{

V v;

V *pV = &v;

R ^ r;

R ^ * phR = &r;

}

This example has the following interesting and more-advanced declaration for phR:

R ^ * phR

In this case, phR is a pointer to a handle to an R object. This may seem a little strange at
first, but you’ll grow accustomed to it. Note the following details:

• *phR is an R^ pointer.

• **phR is an R object.

Here’s another interesting construct:

V ^hV = %v;

Is this correct? It says, “Give me a handle to a value type living on the managed heap.” But
don’t value types live on the stack? This shouldn’t compile, should it? It turns out that this
compiles just fine. Why?

Let’s use .NET Reflector to investigate the following sample:

static void Main()

{

V v;

V ^hV = %v;

}

We end up with the code shown in Figure 9-1.

Figure 9-1. A handle to a V is created via boxing.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE 139

6080CH09.qxp 10/24/06 1:02 AM Page 139

As you can see from the metadata using .NET Reflector, a boxed version of the value type
V is automatically created on the managed heap. The expression then sets the variable hV with
a handle to that object.

Nightmares
Since types are defined recursively in C++, there are few limitations on the types of nightmar-
ish expressions you can create beyond the limitations of the CLR.

For example, the following valid expression declares the variable p to be a pointer to a
function taking int and char and returning a pointer to an array of pointers of pointers
to functions taking int and returning handles to R:

R ^ (**(*(*p)(int, char))[])(int);

In general, this is how you read complex declarations: Start at the name of the variable
in the center. In this case, the variable name is p. From there, look to the right. If you see an
opening parenthesis, it’s a function. If you see an opening square bracket, it is an array. If you
see a semicolon, a closing parenthesis, or nothing at all, look to the left. If you see a ^, it’s a
handle. If you see a *, it’s a pointer. From there, continue to telescope your way outward,
respecting parentheses and skipping over tokens you’ve already used. Clearly, this is an algo-
rithm that is easier said than done.

The nice thing about complex declarations is that the only limits are those of your imagi-
nation.

Summary
In this chapter, I introduced you to pointers and unsafe code, hopefully without scaring you so
much that you’ll give up programming and move to Antarctica. If I’ve failed, be sure to send
me a postcard—preferably one with penguins or dogs.

You may not be an expert on pointers now, but given the run-through and examples in
this chapter, you’ll know, at least, how to recognize them as well as apply them in simple cases.
In the next chapter, we’ll look at properties and events in C++/CLI.

CHAPTER 9 ■ POINTERS AND UNSAFE CODE140

6080CH09.qxp 10/24/06 1:02 AM Page 140

Properties and Events

Annual income twenty pounds, annual expenditure nineteen nineteen six, result happi-

ness. Annual income twenty pounds, annual expenditure twenty pound ought and six,

result misery.

—Charles Dickens, David Copperfield

Properties were created to provide field-like functionality for data in a context that allows
the programmer to either access the data or abstract the data in an entirely different fashion
than is provided by the type system.

Normal fields are simple type declarations within a class. A property contains a method
for retrieving data called a getter, a method for storing data called a setter, or both wrapped in
a single, consistent syntax that allows a property to look and act like a field. The getter and
setter are also commonly known as the get accessor and the set accessor, respectively.

Properties are common elements of both C# and C++/CLI, although their syntax is quite
different. Properties are not currently an element of standard C++, although there is no reason
why they may not be added to the language and standardized at some future date.

A Basic Example Using Properties in C#
Suppose we want to write a Clock class in which we store the hour as a number between 0 and
11, but we still want the caller to be able to use the hour as a number between 1 and 12. We
could use a property in C# to store the data any way we want and use getters and setters to
convert the data between formats. I won’t dwell on the merits of this sort of representation
here; suffice it to say that it is useful for performing various calculations.

Here is this example in C#:

using System;

class Clock

{

public int Hour

{

get

{

if(hour == 0)

{

return 12;
141

C H A P T E R 1 0

6080CH10.qxp 10/24/06 1:02 AM Page 141

}

else

{

return hour;

}

}

set

{

hour = value % 12;

}

}

private int hour;

public static void Main()

{

DateTime t = DateTime.Now;

Clock c = new Clock();

c.Hour = t.Hour;

Console.WriteLine("The little hand is on the {0}", c.Hour);

c.Hour = 12;

Console.WriteLine("at midnight it will be {0} o'clock", c.Hour);

}

}

In this example, Hour is a property. Let’s have a look at the setter:

set

{

hour = value % 12;

}

In this case, the variable value is the implied input to the setter. Our private variable hour
is then set to value modulo 12, which converts it into a number between 0 and 11.

The getter handles the interaction in the other direction. If hour is 0, it returns 12, and
returns the clock hour for any other value:

get

{

if(hour == 0)

{

return 12;

}

else

{

return hour;

}

}

Here are the results:

CHAPTER 10 ■ PROPERTIES AND EVENTS142

6080CH10.qxp 10/24/06 1:02 AM Page 142

C:\>csc /nologo test.cs

C:\>test

The little hand is on the 7

at midnight it will be 12 o'clock

A Basic Example Using Properties in C++/CLI
A similar program in C++/CLI follows:

using namespace System;

private ref class Clock

{

public:

property int Hour

{

int get()

{

if(hour == 0)

{

return 12;

}

else

{

return hour;

}

}

void set(int value)

{

hour = value % 12;

}

}

private:

int hour;

public:

static void Main()

{

DateTime t = DateTime::Now;

Clock ^c = gcnew Clock();

c->Hour = t.Hour;

Console::WriteLine("The little hand is on the {0}", c->Hour);

c->Hour = 12;

Console::WriteLine("at midnight it will be {0} o'clock", c->Hour);

}

};

void main() { Clock::Main();}

CHAPTER 10 ■ PROPERTIES AND EVENTS 143

6080CH10.qxp 10/24/06 1:02 AM Page 143

Let’s look at the results in C++/CLI:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

The little hand is on the 7

at midnight it will be 12 o'clock

Although this example produces the same results, the syntax is completely different. The
setter is written as follows:

void set(int value)

{

hour = value % 12;

}

Rather than having a distinct syntax, C++/CLI accessors are written just like methods. In
this case, the C# implicit parameter value is declared explicitly as a function parameter. In
fact, it could be named anything in C++/CLI, not just value. Note that the set accessor returns
void; a void return is required by the standard.

The getter has similar distinctions:

int get()

{

if(hour == 0)

{

return 12;

}

else

{

return hour;

}

}

It has method-style syntax and has a return value, int, identical to the type of the prop-
erty. Although the C++/CLI syntax is completely different than the C# syntax, it is also quite
intuitive, because it reflects the fact that the getter and setter are methods in actuality.

A Look Inside the Grammar
When properties are parsed in C++/CLI, the accesses are converted to either set() or get()
method calls depending on whether the property is being read or written, for example:

c->Hour = t.Hour

This expression would be converted to the following:

c->Hour::set(t.Hour);

Now take the following line for example:

int i = c->Hour;

CHAPTER 10 ■ PROPERTIES AND EVENTS144

6080CH10.qxp 10/24/06 1:02 AM Page 144

This expression would be converted to

int i = c->Hour::get();

In fact, the language itself accepts this explicit syntax as well as the implicit syntax. We can
rewrite the previous Main() method as follows and see the same results:

static void Main()

{

DateTime t = DateTime::Now;

Clock ^c = gcnew Clock();

c->Hour::set(t.Hour);

Console::WriteLine("The little hand is on the {0}", c->Hour::get());

c->Hour::set(12);

Console::WriteLine("at midnight it will be {0} o'clock",c->Hour::get());

}

Of course, this defeats some of the purpose of properties in the first place. Still, knowledge
of this conversion helps in understanding some tricky diagnostics we will encounter later in
the chapter. It is also important to note that the property name scopes the get and set methods.
In other words, it can be viewed as a namespace that contains the methods inside the class,
which makes the syntax used to explicitly access the methods intuitive.

Trivial Properties
A trivial property is one in which there is no explicit getter or setter; it is the compiler that
creates a default getter and setter from the property declaration as well as a data placeholder
to hold the information. The property is just another field inside the class and is called the
backing store in compiler terminology. This is clearly the most basic kind of property and dif-
fers only slightly from a field declaration, but there are advantages. A trivial property is useful
as a placeholder during the development stage for items that will eventually be rewritten as
full properties. In the meantime, their existence as properties prevents you from inadvertently
writing expressions that work for fields but not for properties; see the section titled “Caveats”
below.

Syntax
To declare a trivial property, you declare a property without the curly bracketed getter or setter,
as follows:

property int Hour;

This creates a property called Hour, with implicitly created methods Hour::get() and
Hour::set() and a backing store of type int to store the property data. The compiler-generated
getter and setter methods have the following declarations:

int get();

void set(int);

In other words, the basic syntax for a trivial property is

property-type property identifier;

CHAPTER 10 ■ PROPERTIES AND EVENTS 145

6080CH10.qxp 10/24/06 1:02 AM Page 145

You may be asking yourself, “If this is called a trivial property, what do we call the prop-
erty we defined explicitly in the previous example?” Well, you guessed it. We intuitively call it a
nontrivial property.

Example
A simple example of the use of a trivial property follows:

using namespace System;

ref struct Test

{

property int Item;

int UseItem()

{

Item = 3;

return Item;

}

};

The method UseItem() both reads and writes the trivial property item.

Indexed Properties
An indexed property is like a property array. An indexed property uses other parameters, called
indices, to determine the result of a get or set operation. These parameters need not be inte-
gers; in fact, property indices may be of any type.

Syntax
To declare an indexed property, you surround the list of comma-separated parameters in
square brackets. You also need to copy this list to the declaration of the getter and the setter,
starting with the indices from left to right and ending with the property type, in the case of the
setter. This syntax makes declaration of properties of certain complex pointer types (those
similar to the nightmares encountered in Chapter 9) problematic. You can get around that
with a typedef, a C++ language feature that will be covered in Chapter 20. In addition, indexed
properties cannot be trivial, because the compiler would be at a loss to figure out what kind of
implicit accessors to create.

Example
An example using an indexed property follows:

using namespace System;

ref struct R

{

String ^m_Key;

int m_Value;

property int Hash[String ^]

{

CHAPTER 10 ■ PROPERTIES AND EVENTS146

6080CH10.qxp 10/24/06 1:02 AM Page 146

int get(String^Key)

{

if(Key == m_Key)

{

return m_Value;

}

else

{

return -1;

}

}

void set(String^Key, int Value)

{

m_Key = Key;

m_Value = Value;

}

}

R()

{

Hash["dog"]=3;

}

static void Main()

{

R ^ r = gcnew R();

r->Hash["first"]=42;

Console::WriteLine(r->Hash["first"]);

Console::WriteLine(r->Hash["second"]);

}

};

void main() { R::Main(); }

In this example, we create a very simple hash. It is only capable of storing a single value;
trying to read any other value returns –1. A string is used to index this hash. In main(), we first
prime the hash by setting the Hash property with index "first" to be 42. All subsequent reads
of the hash return 42 if the index first is used, or else –1 for errors. Ignore the constructor for
now; it will be used to demonstrate differences between C# and C++/CLI later in the chapter.

Let’s examine the results:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

42

-1

CHAPTER 10 ■ PROPERTIES AND EVENTS 147

6080CH10.qxp 10/24/06 1:02 AM Page 147

Default Indexed Properties
For indexed properties, the keyword default may be substituted instead of the property iden-
tifier. This is not allowed for scalar, or nonindexed, properties. Using default allows you to
think of the class itself as the container for a property, because the property has no unique
identifier. This concept might be easier to understand using an example.

We can translate the previous example into a default-indexed property as follows:

using namespace System;

ref struct R

{

String ^m_Key;

int m_Value;

property int default[String ^]

{

int get(String^Key)

{

if(Key == m_Key)

{

return m_Value;

}

else

{

return -1;

}

}

void set(String^Key, int Value)

{

m_Key = Key;

m_Value = Value;

}

}

R()

{

default["dog"]=3;

}

static void Main()

{

R ^ r = gcnew R();

r["first"]=42;

Console::WriteLine(r["first"]);

Console::WriteLine(r["second"]); }

};

void main() { R::Main(); }

As you can see, the only difference between these code examples is that the identifier Hash
is not used for default-indexed properties.

CHAPTER 10 ■ PROPERTIES AND EVENTS148

6080CH10.qxp 10/24/06 1:02 AM Page 148

C# Properties
Because of the way properties are implemented transparently as methods in C++/CLI, I felt it
instructive to explain C++/CLI indexed properties directly rather than basing the discussion
on a translation from C#. Personally, I consider the C# property syntax somewhat ad hoc.

There remain, however, some interesting C# idiosyncrasies that still deserve a place in
this section.

Scalar Properties in C#
An example of a scalar, or nonindexed, property in C# follows:

class R

{

int savedValue;

public int BasicProperty

{

get

{

return savedValue;

}

set

{

savedValue = value;

}

}

}

In C#, the value parameter to the set accessor is implicitly declared and has an identifier
of value. Using .NET Reflector, we can see that these accessors translate to the following
methods:

public int get_BasicProperty()

{

return this.savedValue;

}

public void set_BasicProperty(int value)

{

this.savedValue = value;

}

As you can see, the C# syntax generates code similar to the C++/CLI syntax.

Indexed Properties in C#
The main difference between indexed properties in C# and indexed properties in C++/CLI is
that all indexed properties are default-indexed properties in C#. In C++/CLI, you can have
more than one indexed property in a class, whereas you are limited to exactly one in a C#

CHAPTER 10 ■ PROPERTIES AND EVENTS 149

6080CH10.qxp 10/24/06 1:02 AM Page 149

class. Because of this limitation, both C++/CLI and C# allow you to avoid using a keyword like
default to access the property. Since there is at most one default property in a class, the iden-
tifier is implicit. Here is our default-indexed property example converted to C#:

using System;

class R

{

string m_Key;

int m_Value;

public int this[string Key]

{

get

{

if (Key == this.m_Key)

{

return this.m_Value;

}

return -1;

}

set

{

this.m_Key = Key;

this.m_Value = value;

}

}

R()

{

this["dog"]=3;

}

public static void Main()

{

R r = new R();

r["first"]=42;

Console.WriteLine(r["first"]);

Console.WriteLine(r["second"]);

}

}

In the Main() function, you access the property using the following syntax:

r["first"]=42;

In C++/CLI, the equivalent syntax is the same:

r["first"]=42;

The C# constructor uses the following syntax, using the keyword this to access the
property:

this["dog"]=3;

CHAPTER 10 ■ PROPERTIES AND EVENTS150

6080CH10.qxp 10/24/06 1:02 AM Page 150

In C++/CLI, the equivalent syntax is

default["dog"]=3;

The C++/CLI version uses the keyword default, although for reference types, you can also
use keyword this.1

Advanced Properties of Properties
There are many benefits to choosing properties over fields when implementing object-oriented
paradigms and abstractions, because you can do just about everything with a property that
you can do with a method. Since they are supported within the framework, you can pretty
much have the best of both worlds.

Read-Only and Write-Only Properties
It is quite simple to make a property read-only or write-only. To do this, merely do not provide
a setter or a getter, respectively.

Read-Only Property

A read-only property follows; a read-only property is one that lacks a set accessor:

using namespace System;

ref struct R

{

property DateTime Time

{

DateTime get()

{

return DateTime::Now;

}

}

static void Main()

{

R ^ r = gcnew R();

Console::WriteLine(r->Time);

}

};

void main() { R::Main(); }

CHAPTER 10 ■ PROPERTIES AND EVENTS 151

1. Something interesting happens when the class is of value type. In value types, this is considered an
interior pointer to the value type instead of a tracking handle. Therefore, when the compiler sees
this["dog"], it tries to dereference the pointer like it would a native array and complains that "dog" is
not a valid array subscript. Remember that in C++ native arrays behave exactly like pointers, except
they are bound to a specific length.

6080CH10.qxp 10/24/06 1:02 AM Page 151

This property allows us to read the current time. Here is what I got when I ran this:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

2/18/2006 12:16:12 PM

Your results may vary.

Write-Only Property

Creating a write-only property is similar to creating a read-only property, except that, in this
case, the getter is missing. I am including the following example anyway to show you how
write-only can be useful; using a property is not the only way to access the data:

using namespace System;

ref struct R

{

int SavedValue;

property int SetOptions

{

void set(int Value)

{

SavedValue = Value;

}

}

static void Main()

{

R ^ r = gcnew R();

r->SetOptions = 3;

Console::WriteLine(r->SavedValue);

}

};

void main() { R::Main(); }

And the results are as follows:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

3

Static Properties
Just like fields and methods, properties can also be made static, so that they do not require
instantiation for use. In fact, let’s rewrite our time example using a static property, which
makes more sense when you think about it:

CHAPTER 10 ■ PROPERTIES AND EVENTS152

6080CH10.qxp 10/24/06 1:02 AM Page 152

using namespace System;

ref struct R

{

static property DateTime Time

{

DateTime get()

{

return DateTime::Now;

}

}

};

void main()

{

Console::WriteLine(R::Time);

}

In fact, if you use .NET Reflector to look at System::DateTime::Now, you find that it is also a
static read-only property (see Figure 10-1).

Figure 10-1. System::DateTime::Now in .NET Reflector

Virtual Properties
Not only can properties be virtual but they can also be used to override other methods, just
like regular methods. Consider the following example, where the get accessor is overridden in
a base class, just like the examples in Chapter 8:

using namespace System;

ref struct Base

{

property int Prop

{

CHAPTER 10 ■ PROPERTIES AND EVENTS 153

6080CH10.qxp 10/24/06 1:02 AM Page 153

virtual int get()

{

return 1;

}

}

void Test()

{

Console::WriteLine(Prop);

}

};

ref struct Derived : Base

{

int value;

property int Prop

{

virtual int get() override

{

return 3;

}

}

};

void main()

{

Derived ^d = gcnew Derived();

Base ^b = gcnew Base();

b->Test();

Console::WriteLine(d->Prop);

d->Test();

}

The results follow:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

1

3

3

In this example, the get() method from the base class returns 1, whereas the overridden
method returns 3. As you can see from the output, Derived::Prop::get() not only returns 3
but also affects Base::Prop::get() when called on an instance of the derived class.

Abstract and Sealed Properties
Property accessors may also be declared abstract and sealed. The following example shows
an abstract getter in a base class implemented and sealed in a derived class:

CHAPTER 10 ■ PROPERTIES AND EVENTS154

6080CH10.qxp 10/24/06 1:02 AM Page 154

using namespace System;

ref struct Base abstract

{

property int Prop

{

virtual int get() abstract;

}

};

ref struct Derived : Base

{

property int Prop

{

virtual int get() override sealed

{

return 1;

}

}

};

void main() {}

Properties declared in an interface are also abstract by definition. It is not necessary to
state this explicitly.

Named Overriding
Explicit overriding of a virtual function by a property is also possible. Consider the following
example:

using namespace System;

ref struct Base

{

virtual String ^GetProp()

{

return "Base";

}

};

ref struct Derived : Base

{

property String ^ Prop

{

virtual String ^ get() = Base::GetProp

{

return "Derived";

}

}

};

void main()

{

CHAPTER 10 ■ PROPERTIES AND EVENTS 155

6080CH10.qxp 10/24/06 1:02 AM Page 155

Derived ^d = gcnew Derived();

Base ^b = d;

Console::WriteLine(b->GetProp());

}

Here are the results:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

Derived

In Chapter 8, you saw an example where a third-party library release forced you to explic-
itly override a virtual function of a different name. This is the same situation. In this case, you
have an existing function, GetProp(), in the base class that you would like to override by a
property get accessor in the derived class. This allows you to replace an obsolete paradigm
with a more-abstracted paradigm with minimal impact on preexisting code.

Though not as common, it is also possible to make a named override in the opposite
direction, for example:

using namespace System;

ref struct Base

{

property String^ Prop

{

virtual String^ get()

{

return "Base";

}

}

};

ref struct Derived : Base

{

virtual String ^ GetProp() = Base::Prop::get

{

return "Derived";

}

};

void main()

{

Derived ^d = gcnew Derived();

Base ^b = d;

Console::WriteLine(b->Prop);

}

In this example, the derived method overrides the get accessor in the base class. Here are
the results when overriding in this direction:

CHAPTER 10 ■ PROPERTIES AND EVENTS156

6080CH10.qxp 10/24/06 1:02 AM Page 156

C:\>cl /clr:pure /nologo test.cpp

C:\>test

Derived

As you can see, either way, we are always displaying the results from the Derived class that
has the overriding method.

Property Protection Mechanisms
You can restrict the accessibility of a property, its getter, its setter, or both its getter and setter.
Accessibility applied to the property carries over to the accessibility of the getter and setter
unless you specify otherwise. The only restriction is that the accessibility of the getter and set-
ter cannot be less restrictive than that of the property itself.

For example, consider the following code:

using namespace System;

ref struct R

{

private:

static property DateTime Time

{

public:

DateTime get()

{

return DateTime::Now;

}

}

};

void main()

{

Console::WriteLine(R::Time);

}

When we try to compile this, we encounter the following diagnostic:

C:\>cl /clr:pure /nologo test.cpp

test.cpp(7) : error C3908: access level less restrictive than that of 'R::Time'

test.cpp(5) : see declaration of 'R::Time'

This diagnostic is issued, because the property access level is private, which limits the
getter and setter to, at most, private.

On the other hand, consider the following code:

using namespace System;

ref struct R

{

public:

static property DateTime Time

CHAPTER 10 ■ PROPERTIES AND EVENTS 157

6080CH10.qxp 10/24/06 1:02 AM Page 157

{

DateTime get()

{

return DateTime::Now;

}

private:

void set(DateTime t)

{

}

}

};

void main()

{

Console::WriteLine(R::Time);

}

In this case, the protection level of the setter is more restrictive than that of the property,
and this program compiles fine. All that is left to do is fill in the set accessor!

Property Caveats
Since properties follow field syntax, it is tempting to use them in complex expressions as you
might use a regular field. This does not always work because of the restriction that the set
accessor returns void rather than the type of the property.2 Consider the following example:

ref struct Test

{

property int PropInt;

int RealInt;

};

void main()

{

Test ^a = gcnew Test();

Test ^b = gcnew Test();

Test ^c = gcnew Test();

a->RealInt = b->RealInt = c->RealInt;

a->PropInt = b->PropInt = c->PropInt;

}

CHAPTER 10 ■ PROPERTIES AND EVENTS158

2. There was a huge discussion about setters needing to return void on the C++ Language Designers dis-
tribution list before the current version of the language was finalized. Both this book’s technical
reviewer and I were among those advocating for allowing users to be flexible on set method return
codes; we lost.

6080CH10.qxp 10/24/06 1:02 AM Page 158

Let’s try to compile this:

C:\>cl /clr:pure /nologo test.cpp

test.cpp(12) : error C2664: 'Test::PropInt::set' : cannot convert parameter 1 from

void' to 'int'

Expressions of type void cannot be converted to other types

The first construction, a->RealInt = b->RealInt = c->RealInt, works fine and is resolved
from right to left using C++/CLI’s order of evaluation rules. The second example, using a
property of type int, does not compile because of the fact that setters return void.

The property expression is converted to the following by the compiler:

a->PropInt::set(b->PropInt::set(c->PropInt::get()));

In fact, if you replace the property expression with this expression, you get the exact same
error code. As you can see, a->PropInt::set() is attempting to act on an item of type void,
which is what is returned by b->PropInt::set().

It was designed this way because of optimization and design concerns. Requiring the
return of a value from the set() method would cause a quandary for programmers. What if the
property mimics or accesses a hardware device in which the set() method indicates device-
programming information and the get() method returns the status? Should the compiler
always automatically insert an additional call to get() each time this kind of syntax arises?
There are well-defined rules dealing with programming languages that define acceptable opti-
mizations. These rules govern whether the compiler may attempt spurious reads of addresses
and so on, as often these sorts of operations have real results, though of course the CLR is an
emulated environment, or at least it is right now. Someday there may be hardware that imple-
ments the CLR directly.

I think these sorts of concerns influenced the design of properties, though there is no
guarantee that future revisions of the compiler may support set() functions that return values
other than void.

Miscellaneous Property Details
Property types cannot be const, volatile, or mutable. You can add the const keyword to a vari-
able to make it read-only. Classes can be constant, which makes the class instance read-only;
only const methods can be called with const classes. The mutable keyword attached to a vari-
able of a const class exempts that variable from being const. The volatile keyword indicates
that optimizations that assume that the variable never changes should not be performed. This
is useful for memory-mapped variables. We will revisit these keywords in context as the book
unfolds.

Events and Delegates
C++/CLI events and delegates are similar in form and function to the corresponding C# forms.
This section focuses primarily on the syntactic differences, but it still provides some illustra-
tive examples.

CHAPTER 10 ■ PROPERTIES AND EVENTS 159

6080CH10.qxp 10/24/06 1:02 AM Page 159

Delegates
A delegate is a type-safe version of a pointer to a function. In .NET, a single delegate can
embody calls to several methods, and it is the ideal way to encapsulate callbacks from external
or asynchronous occurrences or events.

Sorting
In this section, I present an example of a simple sort and guide its evolution using delegates.
Suppose you have an array of classes, named MyObject, each of which has a field named Value,
and you want to sort them by this Value. A simple implementation of a bubble sort might look
something like this:

using namespace System;

ref struct MyObject

{

int Value;

MyObject(int Value)

{

this->Value = Value;

}

virtual String ^ToString() override

{

return Value.ToString();

}

};

void main()

{

array<MyObject^> ^myObjectArray = gcnew array<MyObject^>

{

gcnew MyObject(5),

gcnew MyObject(3),

gcnew MyObject(1),

gcnew MyObject(4),

gcnew MyObject(2),

};

for(int i=1; i<myObjectArray->Length; i++)

{

for (int j=0; j<i; j++)

{

if(myObjectArray[i]->Value < myObjectArray[j]->Value)

{

MyObject ^tempObject;

tempObject = myObjectArray[i];

myObjectArray[i]=myObjectArray[j];

myObjectArray[j]=tempObject;

}

}

CHAPTER 10 ■ PROPERTIES AND EVENTS160

6080CH10.qxp 10/24/06 1:02 AM Page 160

}

for each(MyObject^ o in myObjectArray)

{

Console::Write(o);

}

Console::WriteLine();

}

This is all pretty standard: you take several passes over the array, swapping neighbors if
they’re in the wrong order, and the larger objects bubble up to the top.

There are a couple of interesting things to note about the code. I am sometimes a bit lazy,
and I like to use ToString() to print the type. In this case, I do that as follows:

int Value;

return Value.ToString();

This allocates a string on the managed heap that has the Unicode representation of the
value of the integer Value.

Another interesting piece from the constructor follows:

int Value;

MyObject(int Value)

{

this->Value = Value;

}

In this case, there are two distinct integers named Value; it is true that I did not have to
give both of them the same name. In fact, people usually don’t, using something like m_Value
for the member variable. In this case, I wanted to show how you can distinguish them using
this; the variable pointed to by this is the instance variable, and the variable lacking this is
the input parameter.

We can make this code more versatile using delegates in the following ways:

• Decouple the sorting procedure from the type of the array. Create a generic sort class,
which sorts objects of an arbitrary type.

• Decouple the sorting algorithm from the sorting procedure. Sorting algorithms perform
differently depending on the order of the array. Some algorithms excel at sorting ran-
dom arrays; others excel when the array has just a few elements out of order. It would
be nice to allow the user to select the algorithm based on the data.

We will do both of these using delegates.

• We will first cast so that the sort procedure can sort an array of Object^ and use a class-
specific comparison procedure to sort the actual objects. A delegate will be used to
access the comparison procedure.

• Next, we will implement a delegate for the sorting algorithm itself. In this case, the dele-
gate will point to an implementation of the bubble sort algorithm.

CHAPTER 10 ■ PROPERTIES AND EVENTS 161

6080CH10.qxp 10/24/06 1:02 AM Page 161

Determining Delegates

To create a delegate, we first have to decide what kind of method we want to call. There are a
couple of fundamental ways of dealing with objects of arbitrary types. One way is to perform
polymorphism of parameters, discussed in Chapter 14 and beyond, when I cover generics and
templates. Another is to perform polymorphism of types, cast the arbitrary types to a common
base class, and perform operations on the base class. Let’s adopt the latter strategy and cast
the arbitrary objects to Object^.

This strategy decouples the type of the object from the sorting procedure. Our invoking
algorithm passes the address of a method that can compare two items for the sorting program.
We use a delegate to represent this. The model for our method follows:

bool Compare(Object ^, Object ^);

The Compare() method returns true if the first Object is smaller than the second. A dele-
gate is a type, so it appears at class-level scope and has visibility specifiers. It is created by
prepending a similar method declaration with the keyword delegate. To enforce type safety,
the input parameters and return type must match the target method exactly:

public delegate bool DelCompare(Object ^o1, Object^ o2);

The grammar is a little delicate here. Suppose you forget the return type:

public delegate dog();

If so, you may see a somewhat misleading diagnostic:

test.cpp(1) : error C2059: syntax error : 'public'

If you ever get a misleading diagnostic, do not assume that it is caused by a compiler bug.
Rather double- and triple-check your code to make sure it is valid C++.

The new MyObject class with the comparison method and delegate declaration follows:

using namespace System;

public delegate bool DelCompare(Object^, Object^);

ref struct MyObject

{

int Value;

static DelCompare ^dCompare = gcnew DelCompare(Compare);

MyObject(int Value)

{

this->Value = Value;

}

static bool Compare(Object ^o1, Object ^o2)

{

MyObject ^m1 = (MyObject^) o1;

MyObject ^m2 = (MyObject^) o2;

return (m1->Value < m2->Value);

}

virtual String ^ToString() override

CHAPTER 10 ■ PROPERTIES AND EVENTS162

6080CH10.qxp 10/24/06 1:02 AM Page 162

{

return Value.ToString();

}

};

Now we need to create a sorting class for an arbitrary type. This gives us an opportunity to
see a delegate type’s method taking a delegate as a parameter. We want to have a delegate for
our sort algorithm that provides it with the exact information it needs to sort the array—in this
case, a delegate for the comparison procedure and a reference to the array. Therefore, in this
case, we have the following:

public delegate void DelAlgorithm(DelCompare ^dCompare, array<Object^> ^a);

Next we add the sorting class and the bubble sort algorithm itself:

ref struct Sorter abstract sealed

{

static DelAlgorithm ^dAlgorithm = gcnew DelAlgorithm(Bubble);

static void Bubble(DelCompare ^dCompare, array<Object^> ^a)

{

for(int i=1; i<a->Length; i++)

{

for (int j=0; j<i; j++)

{

if(dCompare(a[i], a[j]))

{

Object ^tempObject;

tempObject = a[i];

a[i]=a[j];

a[j]=tempObject;

}

}

}

}

static void Sort(array<Object^> ^a, DelCompare ^dCompare)

{

dAlgorithm(dCompare, a);

}

};

Note that this class is abstract sealed. We want to make sure that no one ever instantiates
this class, either as itself or as a derived class. It is designed to be a container for the Sort()
method, just as System::Console is a container for Write().

And finally, here is the modified main() procedure:

void main()

{

array<MyObject^> ^myObjectArray = gcnew array<MyObject^>

{

gcnew MyObject(5),

CHAPTER 10 ■ PROPERTIES AND EVENTS 163

6080CH10.qxp 10/24/06 1:02 AM Page 163

gcnew MyObject(3),

gcnew MyObject(1),

gcnew MyObject(4),

gcnew MyObject(2),

};

Sorter::Sort(myObjectArray, MyObject::dCompare);

for(int i=0; i< myObjectArray->Length; i++)

{

Console::Write(myObjectArray[i]);

}

Console::WriteLine();

}

Is that all? Perhaps we can kick it up a notch.

The Next Level

This implementation is fairly slick, but there is still one bit of unnecessary tedium. We are
required to pass the dCompare delegate to the Sort() routine. Perhaps we have smoothed over
MyObject too much; it is nice to still remember that MyObject is a class that has the needed del-
egate. Interfaces can help us out here. We create an interface, ICompare, that tells the compiler
that our special object has the ability to return a delegate that directs ordering of the elements
in the array. The completed routine follows for you to study on your own:

using namespace System;

public delegate bool DelCompare(Object^, Object^);

interface class ICompare

{

virtual DelCompare ^getCompareDelegate();

};

ref struct MyObject : ICompare

{

int Value;

static DelCompare ^dCompare = gcnew DelCompare(Compare);

MyObject(int Value)

{

this->Value = Value;

}

static bool Compare(Object ^o1, Object ^o2)

{

MyObject ^m1 = (MyObject^) o1;

MyObject ^m2 = (MyObject^) o2;

return (m1->Value < m2->Value);

}

virtual String ^ToString() override

{

return Value.ToString();

}

virtual DelCompare ^getCompareDelegate()

CHAPTER 10 ■ PROPERTIES AND EVENTS164

6080CH10.qxp 10/24/06 1:02 AM Page 164

{

return dCompare;

}

};

public delegate void DelAlgorithm(DelCompare ^dCompare, array<Object^> ^a);

ref struct Sorter abstract sealed

{

static DelAlgorithm ^dAlgorithm = gcnew DelAlgorithm(Bubble);

static void Bubble(DelCompare ^dCompare, array<Object^> ^a)

{

for(int i=1; i<a->Length; i++)

{

for (int j=0; j<i; j++)

{

if(dCompare(a[i], a[j]))

{

Object ^tempObject;

tempObject = a[i];

a[i]=a[j];

a[j]=tempObject;

}

}

}

}

static void Sort(array<Object^> ^a)

{

ICompare ^ic = (ICompare^)a[0];

dAlgorithm(ic->getCompareDelegate(), a);

}

};

void main()

{

array<MyObject^> ^myObjectArray = gcnew array<MyObject^>

{

gcnew MyObject(5),

gcnew MyObject(3),

gcnew MyObject(1),

gcnew MyObject(4),

gcnew MyObject(2),

};

Sorter::Sort(myObjectArray);

for(int i=0; i< myObjectArray->Length; i++)

{

Console::Write(myObjectArray[i]);

}

Console::WriteLine();

}

CHAPTER 10 ■ PROPERTIES AND EVENTS 165

6080CH10.qxp 10/24/06 1:02 AM Page 165

When we run the routine, we get the following results:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

12345

Multicast Delegates
Multicast delegates are delegates that call more than one method. To create a multicast delegate,
add more methods to the delegate itself; there is no difference in the declaration. Methods
may be added to a delegate using the += operator, and likewise subtracted using -=. To make
this work, we need to use the gcnew operator with each method, as follows:

using namespace System;

public delegate void Handler(String^);

ref struct Class1

{

static void News(String^s)

{

Console::WriteLine("Class1 : {0}",s);

}

};

ref struct Class2

{

static void News(String^s)

{

Console::WriteLine("Class2 : {0}",s);

}

};

ref struct Class3

{

static void News(String^s)

{

Console::WriteLine("Class3 : {0}",s);

}

};

void main()

{

Handler ^dNews1 = gcnew Handler(Class1::News);

Handler ^dNews2 = gcnew Handler(Class2::News);

Handler ^dNews3 = gcnew Handler(Class3::News);

Handler ^dNews;

dNews = dNews1 + dNews2 + dNews3;

dNews("News has arrived!");

dNews -= (dNews2+dNews3);

dNews("We lost subscribers");

CHAPTER 10 ■ PROPERTIES AND EVENTS166

6080CH10.qxp 10/24/06 1:02 AM Page 166

dNews += dNews3;

dNews("A subscriber has returned");

}

In this example, we have three classes, Class1, Class2, and Class3, each of which is inter-
ested in receiving news. They each have a static method, News(), which should be called when
we have news to broadcast. In main(), we create a delegate dNews, which is allocated to send
news to all three classes using the + operator. We then use the += and -= operators to change
who receives news. In this way, many classes can subscribe to the same news feed using a
delegate.

Instance Delegates
All of the examples of delegates so far have used a static method within a class to receive
notifications. Unfortunately, static methods cannot be virtual, which restricts how we
can override them. We can pass an instance method to a delegate. Rather than writing the
following:

Handler ^dNews1 = gcnew Handler(Class1::News);

write

Handler ^dNews1 = gcnew Handler(gcnew(Class1),&Class1::News);

In this way, we pass a handle to the instance of the class as well as the address of the
method, as denoted by the & operator. We don’t have to write this on one line; the following
also works:

Class1 ^ pClass1 = gcnew(Class1);

Handler ^dNews1 = gcnew Handler(pClass1,&Class1::News);

Now that we are using instances, we can refactor the previous example:

using namespace System;

public delegate void Handler(String^);

ref struct Base

{

virtual void News(String^s)

{

Console::WriteLine("{0} : {1}",ToString(),s);

}

};

ref struct Class1 : Base {};

ref struct Class2 : Base {};

ref struct Class3 : Base {};

void main()

{

Handler ^dNews1 = gcnew Handler(gcnew(Class1),&Class1::News);

Handler ^dNews2 = gcnew Handler(gcnew(Class2),&Class2::News);

Handler ^dNews3 = gcnew Handler(gcnew(Class3),&Class3::News);

Handler ^dNews;

CHAPTER 10 ■ PROPERTIES AND EVENTS 167

6080CH10.qxp 10/24/06 1:02 AM Page 167

dNews = dNews1 + dNews2 + dNews3;

dNews("News has arrived!");

dNews -= (dNews2+dNews3);

dNews("We lost subscribers");

dNews += dNews3;

dNews("A subscriber has returned");

}

This version is much cleaner. The base class now has the common message, and the
derived classes are free to change it if that’s desired.

Events
Events are the .NET mechanism for notification. Events provide protection for delegates and
allow customization through adding and removing subscribers, as well as activating another
event, such as sending the news in the previous example.

Events contain three methods: add, remove, and raise. Each of these methods has it own
accessibility. Like properties, these methods can be declared and implemented explicitly or
implicitly by the compiler. Events with implicit add, remove, and raise methods are called
trivial events.

Trivial Events
Here is the previous example modified to use a trivial event:

using namespace System;

public delegate void Handler(String^);

ref struct Base

{

virtual void News(String^s)

{

Console::WriteLine("{0} : {1}",ToString(),s);

}

};

ref struct Class1 : Base {};

ref struct Class2 : Base {};

ref struct Class3 : Base {};

ref struct Holder

{

void Deliver(String ^s)

{

News(s);

}

event Handler ^News;

};

void main()

{

CHAPTER 10 ■ PROPERTIES AND EVENTS168

6080CH10.qxp 10/24/06 1:02 AM Page 168

Holder ^h = gcnew Holder();

h->News += gcnew Handler(gcnew(Class1),&Class1::News);

h->Deliver("News has arrived!");

}

We can compile and run this:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

Class1 : News has arrived!

This is a simple example with just one news delivery.

Nontrivial Events
In the previous example, we used the following construction:

event Handler ^News;

to declare a trivial event. We could have declared an explicit event and implemented the add,
remove, and raise methods. The following code is the previous trivial event code translated to
the nontrivial event equivalent; note the different protection levels for add, remove, and raise:

using namespace System;

public delegate void Handler(String^);

ref struct Base

{

virtual void News(String^s)

{

Console::WriteLine("{0} : {1}",ToString(),s);

}

};

ref struct Class1 : Base {};

ref struct Class2 : Base {};

ref struct Class3 : Base {};

ref struct Holder

{

void Deliver(String ^s)

{

News(s);

}

event Handler ^News

{

public:

void add(Handler^ d)

{

this->_News += d;

CHAPTER 10 ■ PROPERTIES AND EVENTS 169

6080CH10.qxp 10/24/06 1:02 AM Page 169

}

protected:

void remove(Handler^ d)

{

this->_News -= d;

}

private:

void raise(String ^s)

{

this->_News(s);

}

}

private:

Handler ^_News;

};

void main()

{

Holder ^h = gcnew Holder();

h->News += gcnew Handler(gcnew(Class1),&Class1::News);

h->Deliver("News has arrived!");

}

If we compile and run this, we get the same results:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

Class1 : News has arrived!

Summary
The examples in this chapter should provide you with a base for using properties, delegates,
and events. Don’t worry if it feels overwhelming at first. Even though this is an area that takes a
bit of getting used to, it certainly adds a few powerful tools to your coding arsenal.

In the next chapter, we’ll have a look at expressions and operators in both C# and C++.

CHAPTER 10 ■ PROPERTIES AND EVENTS170

6080CH10.qxp 10/24/06 1:02 AM Page 170

Expressions and Operators

Argue for your limitations, and sure enough, they’re yours.

—Richard Bach, Illusions

In this chapter, we’ll cover expressions and operators in the context of how they differ from
C#. We’ll start with a caveat: don’t assume that expression evaluation is the same in C# and
C++. C# and C++/CLI have different rules that control the evaluation of expressions, and this
can surprise you if you’re writing overly complex expressions.

Here is an old C++ trick that often shows up on interview questions. It is not guaranteed
to work according to the C++ standard, but it works on all of the major C++ compilers for the
x86. It is called the XOR swap, and it allows you to swap the values of two integers without
declaring an explicit temporary. The code follows:

using namespace System;

void main()

{

int i=3, j=6;

Console::WriteLine("{0}, {1}", i, j);

i ^= j ^= i ^= j;

Console::WriteLine("{0}, {1}", i, j);

}

Let’s run it:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

3, 6

6, 3

Look at the following line:

i ^= j ^= i ^= j;

171

C H A P T E R 1 1

6080CH11.qxp 10/24/06 1:03 AM Page 171

As you can see, it swaps the values of i and j, because it evaluates the same as the
following:

i ^= j;

j ^= i;

i ^= j;

The first XOR swap stores the bitwise difference between i and j in i. The next line
changes j by this difference, turning it into i. The last line, in turn, changes what’s left of i into
j by changing what was originally i (currently j) by the difference (currently i) too. This relies
on the following identities for exclusive OR:

x == y ^ (x^y)

It more or less breaks up x and y into two parts: the part they have in common, and the
part that differs, like taking two numbers and knowing they are equidistant from their average.

Now let’s try to do this in C#:

using System;

class R

{

public static void Main()

{

int i=3, j=6;

Console.WriteLine("{0}, {1}", i, j);

i ^= j ^= i ^= j;

Console.WriteLine("{0}, {1}", i, j);

}

}

The results follow:

C:\>csc /nologo test.cs

C:\>test

3, 6

0, 3

As you can see, this just does not work. It’s probably just a lack of parentheses, right? What
if we try this?

i ^= (j ^= (i ^= j));

That won’t work either; we get the same results. The answer here is that C# and C++ evalu-
ate expressions differently. The rules are pretty complicated, and you don’t really need to know
them that well unless your chosen vocation is rules lawyer.

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS172

6080CH11.qxp 10/24/06 1:03 AM Page 172

■Note In this case, the C# code evaluates differently, because C# separates the evaluation of an
expression with the evaluation of a variable, in order to help optimizers. C++ evaluates expressions as
parenthesized; C# is free to scan the entire statement, preevaluate variables, and use those values to evalu-
ate the expression. This code relies on the interim values of i and j being updated in the middle of the
expression in order to work correctly.

It’s good programming practice simply to avoid these esoteric constructs. The easy and
safe way to write code that works correctly with both languages is to subdivide the expression:

i ^= j;

j ^= i;

i ^= j;

This sequence works correctly in both C# and C++. Ten years ago, weaving these expres-
sions together might have produced faster code; today’s optimizing compilers are sophisticated
enough to figure out what you’re trying to do and compensate for the expansion.

Operator Overloading
One of the most important aspects of C# and C++/CLI is the support that they offer for elevat-
ing user-defined types to the level of built-in types; one important aspect of this is the ability
to define operators to work with new types. The examples most commonly encountered in the
published literature define types for complex variables or fractions, but that is really just the
tip of the iceberg. It is also common practice to define operators to perform operations that
have absolutely nothing to do with their mathematical definitions, pushing the boundaries of
our limited paradigms and often redefining new ones.

Of course, there are limitations, which include the following:

• Unary operators must remain unary; binary operators must remain binary. In other
words, you cannot redefine the plus sign (+) to take three arguments instead of two.

• You cannot make up operators that do not exist. You cannot define a /% operator, even
though it could logically be disambiguated by the grammar. You are limited to the lan-
guage’s built-in operators.

• You cannot control the predefined order of evaluation, and you can’t expect compli-
cated expressions to evaluate the same way across C++/CLI and C#. As mentioned
before, C# and C++/CLI have different rules that control the evaluation of expressions.

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 173

6080CH11.qxp 10/24/06 1:03 AM Page 173

Complex Numbers, a Basic Example
Recall that we can consider a simple complex number class in C++/CLI and that complex
numbers are numbers of the form:

where

This helps us to lay a foundation for Chapter 15, when we revisit complex numbers using
templates in the context of numbers of the form:

This form is very useful when working with the golden ratio:

Using the golden ratio, we can calculate the Fibonacci numbers with a nonrecursive, sim-
ple, closed form.1

A Review of Complex Numbers
A review of the fundamental mathematical operations using complex numbers follows:2

Addition:

Subtraction:

Complex conjugation:

Multiplication:

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS174

1. Knuth, Donald E. Art of Computer Programming, vol. 1: Fundamental Algorithms, 3rd ed. (Boston:
Addison-Wesley, 1997).

2. These are derived from the associative, commutative, and distributive laws of the field of complex
numbers, along with the definition of i.

6080CH11.qxp 10/24/06 1:03 AM Page 174

Division by a scalar (real) number:

Division between complex numbers: Using complex conjugation, multiplication, division
by a scalar, and the following identity,

we can derive division between complex numbers:

Note how this divide operation defers to complex conjugation as well as multiplication
for calculation of the quotient.

Simple Implementation
We implement this class by defining class data as well as the operators that act on the data.
The class data is, very simply, two doubles that correspond to the real part and the imaginary
part, which is multiplied by the following:

The data structure follows:

value struct Complex

{

double re;

double im;

}

As for the operators themselves, there are several ways to define them, depending on
whether we want our code to be Common Language Specification (CLS) compliant (we’ll
revisit this later in the chapter). Essentially, our operators are static member functions, and
they return objects rather than references.

Unary Operators

CLI unary operations have the following format:

static type operator op (type a)

We’ll use the following operator in our class:

Complex conjugation:

static Complex operator ~ (Complex a);

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 175

6080CH11.qxp 10/24/06 1:03 AM Page 175

Binary Operators

CLI binary operations have the following format:

static type operator op (type a, type b)

We’ll use these operators in our class:

Addition:

static Complex operator + (Complex a, Complex b);

Subtraction:

static Complex operator - (Complex a, Complex b);

Multiplication:

static Complex operator * (Complex a, Complex b);

Division by double:

static Complex operator / (Complex a, double b);

Division by complex:

static Complex operator / (Complex a, Complex b);

Order Matters

Note that the code makes no assumption of commutativity; it is perfectly reasonable to define
a/b to be different from b/a, so it is also possible to implement the following line:

static Complex operator / (Complex a, double b)

in a different method from this line:

static Complex operator / (double a, Complex b)

The Product of Our Efforts

The completed program follows:

using namespace System;

value struct Complex

{

double re;

double im;

Complex(double re, double im)

{

this->re = re;

this->im = im;

}

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS176

6080CH11.qxp 10/24/06 1:03 AM Page 176

static Complex operator + (Complex a, Complex b)

{

return Complex(a.re+b.re, a.im+b.im);

}

static Complex operator - (Complex a, Complex b)

{

return Complex(a.re-b.re, a.im-b.im);

}

static Complex operator ~ (Complex a)

{

return Complex(a.re, - a.im);

}

static Complex operator * (Complex a, Complex b)

{

return Complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re);

}

static Complex operator / (Complex a, Complex b)

{

return a / (b.re*b.re+b.im*b.im) * ~b;

}

virtual String ^ ToString() override

{

String ^s = re.ToString();

if(im != 0)

{

return s += " + " + im.ToString() + "i";

}

return s;

}

private:

static Complex operator / (Complex a, double f)

{

return Complex(a.re/f, a.im/f);

}

};

void main()

{

Complex a(-5,10), b(3,4);

Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);

}

As you can see, the basic operators +, -, *, and / have been overloaded to operate on
Complex types rather than the subtypes they are based on, which in this case is double.

The unary complement operator ~ from Boolean logic doesn’t intuitively correspond to
any operation that you would perform on a complex number over the real numbers. It is,
therefore, an ideal candidate for satisfying our need for a unary operator for complex conjuga-
tion, which we need to implement operator/. The compiler does not enforce any logical

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 177

6080CH11.qxp 10/24/06 1:03 AM Page 177

paradigm beyond number of arguments and argument type. You are free to define operator*
as division and operator/ as multiplication. This, of course, is bad form unless obfuscation is
your goal.

The results from a quick compile and run follow:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

(-5 + 10i) / (3 + 4i) = 1 + 2i

Resolution of Overloads
You might also have noticed that there are two different operator/ methods for division. Both
C# and C++ have built-in rules for choosing which method to call, but these differ in surprising
ways. Two methods that share the same name yet have different parameters are called
overloads. The process of determining the closest match for a given set of parameters is called
overload resolution, and I introduce it here in the context of operator/, though it will continue
to be a topic we cover in passing.

Suppose we replace the previous main() function with the following one:

void main()

{

Complex a(-5,10);

float b = 5.0f;

Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);

}

Let’s run this example:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

(-5 + 10i) / (5) = -1 + 2i

When this example is executed, the compiler needs to look up how to calculate a/b, where
the variable a is of type Complex, and the variable b is of type float.

The compiler parses a/b and begins to look for a compatible method of the form

operator/(Complex a,float b)

In the source of the program, there is no method that has this exact signature, so the com-
piler gathers up a list of possible candidate methods and tries to determine the best match. In
this case, the possible choices are as follows:

operator/(Complex a,double b)

operator/(Complex a,Complex b)

Neither of these is an exact match. There are well-defined rules within the C++ standard
governing the resolution of overloads, and these rules apply not only to operators but to func-
tions in general. I don’t want to dwell too much on this; for now, know that the intuitive choice

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS178

6080CH11.qxp 10/24/06 1:03 AM Page 178

in this case is the winner. A permitted operation is to promote (extend) the float to a double
and choose the following:

operator/(Complex a,double b)

The rules for overload resolution provide a multitiered approach to dealing with implicit
and explicit conversions. Certain conversions are favored over other conversions, and this is
anything but arbitrary. At first glance, it does not seem to be a topic fraught with danger, but
consider the following: Suppose we added an implicit conversion from double to Complex to
our code. If the compiler could perform this conversion automatically, would we have to
worry about creating an infinite recursion? Since operator/(Complex, Complex) calls operator/
(Complex, double), adding an implicit conversion from double to Complex might result in
either an ambiguity or an infinite loop. In this case, it does not because of the prioritization
rules in the C++ specification, which assign a rank to each type of conversion and prioritize
them by rank. We’ll discuss implicit and explicit conversions later on in the chapter.

Just when you thought that the subject of complex numbers was getting too mathemati-
cal, brace yourself—I am pleased to present the following mathematical diversion.

A Mathematical Diversion: Numbers Modulo Primes
Both C# and C++/CLI use the percent sign as an operator for the calculation of one number
modulo a different number. Recall that (number%p) is equal to the remainder when number
is divided by p. It is easy to define a class of numbers modulo a number p. The following is
simply the set of numbers:

Now we just need to figure out how to perform operations on them.
We can easily redefine the basic operators of addition, multiplication, and subtraction

by calculating the result modulo p. Division would normally cause us to run into the use of
fractions, but a result from elementary number theory tells us that division can be defined
without fractions when the modulus p is prime. For example, let’s consider the numbers
modulo 13, and suppose we’re trying to figure out what a quarter, 1 divided by 4, is. In other
words, what is the inverse of 4?

A simple calculation shows that (4 * 10) % 13 = 1, since 4*10=40=39+1, thus 1 is the
remainder when 40 is divided by 13.

Let’s use the compiler to prove this:

using namespace System;

void main()

{

Console::WriteLine("4 * 10 = {0} (13)", 4*10%13);

}

When we compile and execute this, we have the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

4 * 10 = 1 (13)

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 179

6080CH11.qxp 10/24/06 1:03 AM Page 179

10 is the inverse of 4. If we divide both sides by 4, we get the following:

because

Likewise, all nonzero numbers modulo 13 have an inverse in the same way. To find it, we
have to use another result from number theory. It turns out, that for every two numbers a and
b, there exist numbers x and y such that

If one of the numbers is a prime, and the other is not a multiple of this prime, then the
greatest common divisor (gcd) of these two numbers is 1, and we have the following:

Since any multiple of p is 0 by definition, we get

Read the preceding expression as follows: py is congruent to 0 modulo p, since py has
remainder 0 when divided by p. Combining these facts, we conclude that there exists a
number x such that

In other words, we just need to find the number x, and we have our inverse! I won’t bore
you with any more details or derivations, but there is an extended version of the Euclidean
algorithm that will do this for you.3 It’s in the following code; note that ExtendedEuclid() is
implemented as a global function, not a class method, and it takes references to integers as
some of its parameters:

using namespace System;

void ExtendedEuclid(int a, int b, int %d, int %x, int %y)

{

if(b==0)

{

d=a;

x=1;

y=0;

}

else

{

ExtendedEuclid(b,a%b, d, y, x);

y-= (a/b)*x;

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS180

3. Cormen, Thomas H. Introduction to Algorithms, 2nd ed. (Cambridge, MA: MIT Press, 2001).

6080CH11.qxp 10/24/06 1:03 AM Page 180

}

}

value struct F13

{

unsigned Value;

initonly static unsigned P = 13;

F13(unsigned Val)

{

Value = Val % P;

}

static F13 operator * (F13 arg1, F13 arg2)

{

return F13((arg1.Value * arg2.Value) % P);

}

static F13 operator + (F13 arg1, F13 arg2)

{

return F13((arg1.Value + arg2.Value) % P);

}

static F13 operator - (F13 arg1, F13 arg2)

{

return F13((arg1.Value - arg2.Value) % P);

}

static F13 operator - (F13 arg1)

{

return F13((P - arg1.Value) % P);

}

static F13 operator / (F13 arg1, F13 arg2)

{

int d, x, y;

ExtendedEuclid(arg2.Value,P,d,x,y);

return arg1*F13(x*d);

}

virtual String ^ ToString() override

{

Value = (Value+P) % P;

String ^s = Value.ToString();

return s;

}

};

void main()

{

F13 a(6), b(9), c(4), d(10);

Console::WriteLine("{0} * {1} is {2}", a, b, a*b);

Console::WriteLine("{0} / {1} is {2}", a, b, a/b);

Console::WriteLine("{0} * {1} is {2}", c, d, c*d);

}

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 181

6080CH11.qxp 10/24/06 1:03 AM Page 181

And here are the results:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

6 * 9 is 2

6 / 9 is 5

4 * 10 is 1

Implicit and Explicit Conversions of Built-in Types
Both C# and C++/CLI support defining implicit and explicit conversions between types. This
is the user-defined type equivalent of promoting a float to a double or a short to an int.
Implicit conversions are the conversions that the compiler can apply automatically, where
explicit conversions require a cast operator. Let’s talk a little bit about conversions between
built-in types.

Conversion Differences Between C# and C++
Unfortunately, the implicit conversions over the built-in types differ between C++ and C#. C++
is historically notoriously lax in preventing conversions that risk data loss. Consider the fol-
lowing example:

using namespace System;

void main()

{

long l=65537;

short s=0;

s=l;

l=s;

Console::WriteLine(l);

}

Now let’s give this a try:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

1

In this case, the compiler implicitly converted between short and long, and vice versa,
without a warning as to the possible loss of data. If we raise the warning level to 3, we get the
following output:

C:\>cl /clr:pure /nologo /W3 test.cpp

test.cpp(6) : warning C4244: '=' : conversion from 'long' to 'short', possible loss

of data

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS182

6080CH11.qxp 10/24/06 1:03 AM Page 182

Now that’s more like it!
Suppose we change the long to an int and compile at warning level 3. The data loss

remains:

C:\>cl /clr:pure /nologo /W3 test.cpp

C:\>test

1

At best, that’s an annoyance. At worst, it’s a recall-class bug. Luckily, if we boost the
warning level to level 4, we get the following:

C:\>cl /clr:pure /nologo /W4 test.cpp

test.cpp

test.cpp(6) : warning C4244: '=' : conversion from 'int' to 'short', possible loss

of data

The only problem with level-4 warnings is that they are considered more advisory than
diagnostic, and sometimes come up as spurious or noisy warnings. The lesson learned is that
you need to be careful. The C++ compiler isn’t watching your back as much as the C# compiler
in this area, and as I’ve recommended before, when you’re developing your code, turn on /W4
warnings every now and then.

Signed/Unsigned Mismatches
The C++/CLI compiler does have the ability to warn if you attempt to assign a signed value
to an unsigned variable and vice versa. It is disabled by default, but can be enabled using
the /Wall compiler option, which enables all warnings that are disabled by default in the
compilation.

For example, consider the following:

void main()

{

unsigned u=0;

int i=0;

i=u;

}

After compiling, we get

C:\>cl /Wall /nologo test.cpp

test.cpp(5) : warning C4365: '=' : conversion from 'unsigned int' to 'int',

signed/unsigned mismatch

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 183

6080CH11.qxp 10/24/06 1:03 AM Page 183

Integer Conversion Tables
Let’s go over some of the built-in conversions in C++ and C#. Use the following list of abbrevia-
tions as a key to interpret the integer conversion tables (Table 11-1 to Table 11-5):

ex: Explicit

im: Implicit, no warning

i2: Implicit, warning level 2

i3: Implicit, warning level 3

i4: Implicit, warning level 4

ia: Implicit, warning /Wall only (to indicate signed/unsigned mismatch)

X: No conversion needed

Let’s first look at the integer types in Table 11-1.

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS184

Table 11-1. C++/CLI Conversion Table for a Sampling of Built-in Integer Types

C++ From

To From From From From From From unsigned
short int long long long unsigned int long long

To short X i4 i3 i3 i4 i3

To int im X im i3 ia i3

To long im im X i3 ia i3

To long long im im im X im ia

To unsigned int ia ia ia i3 X i3

To unsigned
long long ia ia ia ia ia X

Let’s look at the C# table for the integer types in Table 11-2.

Table 11-2. C# Conversion Table for a Sampling of Built-in Integer Types

C++ From

To From From From From From
short int long uint ulong

To short X ex ex ex ex

To int im X ex ex ex

To long im im X im ex

To uint ex ex ex X im

To ulong ex ex ex im X

6080CH11.qxp 10/24/06 1:03 AM Page 184

Remember when you read these tables that you must take into account that long means a
different thing in C# than in C++. In C++/CLI, both long and int are aliases for System::Int32,
and long long is used for System::Int64, whereas C# achieves it by using long. Table 11-3 is an
excerpt from the type table included in Chapter 6.

Table 11-3. A Partial Type Table

C# C++/CLI Size Type Signed Marshal Example

short short 2 Int16 Yes No –1

ushort unsigned short 2 UInt16 No No 3u

int int 4 Int32 Yes No –1l

uint unsigned int 4 UInt32 No No 3ul

long long long 8 Int64 Yes No 3ll

ulong unsigned long long 8 UInt64 No No 3ull

float float 4 Single Yes No 4.0f

double double 8 Double Yes No 3.0

Now let’s look at the conversion tables. You may notice in the C# table that there is no pos-
sible loss of data. I’m a C++ advocate, but I must admit that I prefer the C# implementation in
this area. Notice also that C++/CLI also considers implicit every conversion that C# considers
implicit but still reports a signed/unsigned mismatch when extending from unsigned int to
long.

The good news is that, when we look at these tables, we discover that C++/CLI has a way
to get the same warning levels you’ve come to expect in C#. It’s unintuitive but simple—don’t
use int.

In C++/CLI, int and long both map to System::Int32, and unsigned int and unsigned
long both map to System::UInt32, but they are treated differently for warning purposes by the
C++ compiler. Much of the reason for this is historical; short and long were initially defined as
the minimum and maximum integer sizes supported by the target architecture. The type int
was defined as the most efficient size for the target architecture. Over time, implementations
found that this sort of floating definition made porting programs between platforms problem-
atic. This led to the current implementation on .NET which fixes short at 16 bits, and int and
long at 32 bits. The type long long was added to the language for 64 bits for .NET.

For other target architectures, int is either implemented as a short or a long, making the
issuance of warnings problematic. The unofficial programming practice was to use int when
you didn’t really care about conversion problems and needed fast, efficient code; if the data
itself called for it, you’d use short or long. This practice still applies today in .NET: use short
and long over int, and the compiler will do its part and issue warnings.

Now let’s have a look at floating point conversions.

Floating Point Conversion Tables
Let’s examine some cross conversions in C++ in Table 11-4.

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 185

6080CH11.qxp 10/24/06 1:03 AM Page 185

Table 11-4. C++ Conversion Table for Floating Point Types and for a Sampling of Integer Types

C++ From

To From int From float From double

To int X i2 i2

To float i2 X i3

To double im im X

Let’s examine some cross conversions in C# in Table 11-5.

Table 11-5. C# Conversion Table for Floating Point Types and for a Sampling of Integer Types

C++ From

To From int From float From double

To int X ex ex

To float im X ex

To double im im X

One interesting thing to note about the floating point conversion tables is that C++ issues
a level 2 warning when promoting an int to a float but not when promoting an int to a
double. Consider the following snippet:

using namespace System;

void main()

{

int i0 = int::MaxValue;

int i;

float f;

double d;

f = i0;

i = f;

Console::WriteLine("int {0}, to float {1}, back to int {2}", i0, f, i);

d = i0;

i = d;

Console::WriteLine("int {0}, to double {1}, back to int {2}", i0, d, i);

}

In this example, we take the maximum positive integer and convert it to a float and back,
with loss of data. Even though int and float are both 4 bytes long, float uses some of those
bits to store exponent and sign information, so it is not able to store the integer information
with full precision. If you take a similar round-trip using double, there is no data loss. Thus, the
warning is correct:

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS186

6080CH11.qxp 10/24/06 1:03 AM Page 186

C:\>cl /clr:pure /nologo /W4 test.cpp

test.cpp(8) : warning C4244: '=' : conversion from 'int' to 'float', possible loss

of data

test.cpp(9) : warning C4244: '=' : conversion from 'float' to 'int', possible loss

of data

test.cpp(12) : warning C4244: '=' : conversion from 'double' to 'int', possible loss

of data

C:\>test

int 2147483647, to float 2.147484E+09, back to int -2147483648

int 2147483647, to double 2147483647, back to int 2147483647

You might think there is a problem with the C# compiler, as it allows the conversion from
int to float without warning about possible loss of data. However, C# requires the conversion
back to int from float to have an explicit conversion or cast, so you can argue that a warning
on the outbound direction is extraneous. The C# code follows:

using System;

class R

{

public static void Main()

{

int i0 = int.MaxValue;

int i;

float f;

double d;

f = i0;

i = (int)f;

Console.WriteLine("int {0}, to float {1}, back to int {2}", i0, f, i);

d = i0;

i = (int)d;

Console.WriteLine("int {0}, to double {1}, back to int {2}", i0, d, i);

}

}

The results for the C# version follow:

C:\>csc /nologo test.cs

C:\>test

int 2147483647, to float 2.147484E+09, back to int -2147483648

int 2147483647, to double 2147483647, back to int 2147483647

Note that the C# version required explicit conversions in order to compile.

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 187

6080CH11.qxp 10/24/06 1:03 AM Page 187

User-Defined Conversions
In the same way that the compiler defines implicit and explicit conversions between built-in
types, users can define implicit and explicit conversions between user-defined types. In C#,
you use the implicit and explicit keywords. In C++/CLI, conversions are implicit by default,
and you use the explicit keyword to specify an explicit conversion.

Implicit Conversions
In our Complex class, we used a private helper function to define division of a complex number
by a double. Why not expose this? Beyond that, why not allow users to multiply a complex
number by a double or a double by a complex number?

We could write specific overloads for each of these operations, or we could define an
implicit operator that converts a double to a Complex. Here it is, in C++/CLI syntax; it is a static
member function that takes a double parameter:

static operator Complex(double re)

{

return Complex(re,0);

}

Now users can perform all of the basic mathematical operations on complex numbers
and doubles. Here is a new version of main() that uses this implicit operator:

void main()

{

Complex a(-5,10), b(3,4);

double c(3.5);

Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);

Console::WriteLine("({0}) * ({1}) = {2}",a,c,a*c);

Console::WriteLine("({0}) / ({1}) = {2}",c,a,c/a);

}

After compiling and running, we get the following:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

(-5 + 10i) / (3 + 4i) = 1 + 2i

(-5 + 10i) * (3.5) = -17.5 + 35i

(3.5) / (-5 + 10i) = -0.14 + -0.28i

That’s a lot of power for a little bit of work. What about going the other direction, from a
Complex to a double?

Explicit Conversions
Going from a Complex to a double is going to involve some data loss, so this should not be an
implicit conversion. What might this mean? Should we project the complex number onto
the real line, and just return the real part of the complex number? Should we return the

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS188

6080CH11.qxp 10/24/06 1:03 AM Page 188

magnitude of the complex number? Should a conversion to double even exist? It’s really up to
us to decide which way to go.

Personally, I am drawn to the idea of using magnitude:

The explicit conversion looks the same as the implicit conversion, except for the explicit
keyword:

static explicit operator double(Complex c)

{

return Math::Sqrt(c.re*c.re + c.im * c.im);

}

Just for neatness, we can replace the following code:

static Complex operator / (Complex a, Complex b)

{

return a / (b.re*b.re+b.im*b.im) * ~b;

}

with

static Complex operator / (Complex a, Complex b)

{

return a / ((double)b * (double)b) * ~b;

}

This gives us the following finished program; note that operator/(Complex, double) is no
longer private:

using namespace System;

value struct Complex

{

double re;

double im;

Complex(double re, double im)

{

this->re = re;

this->im = im;

}

static Complex operator + (Complex a, Complex b)

{

return Complex(a.re+b.re, a.im+b.im);

}

static Complex operator - (Complex a, Complex b)

{

return Complex(a.re-b.re, a.im-b.im);

}

static Complex operator ~ (Complex a)

{

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 189

6080CH11.qxp 10/24/06 1:03 AM Page 189

return Complex(a.re, - a.im);

}

static Complex operator * (Complex a, Complex b)

{

return Complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re);

}

virtual String ^ ToString() override

{

String ^s = re.ToString();

if(im != 0)

{

return s += " + " + im.ToString() + "i";

}

return s;

}

static Complex operator / (Complex a, Complex b)

{

return a / ((double)b * (double)b) * ~b;

}

static operator Complex(double re)

{

return Complex(re,0);

}

static explicit operator double(Complex c)

{

return Math::Sqrt(c.re*c.re + c.im * c.im);

}

static Complex operator / (Complex a, double f)

{

return Complex(a.re/f, a.im/f);

}

};

void main()

{

Complex a(-5,10), b(3,4);

double c(3.5);

Console::WriteLine("({0}) / ({1}) = {2}",a,b,a/b);

Console::WriteLine("({0}) * ({1}) = {2}",a,c,a*c);

Console::WriteLine("({0}) / ({1}) = {2}",c,a,c/a);

}

CLS-Compliant Operators
There are several ways to define the operators in C++, depending on your intentions and
goals. In this case, the goal is to create a CLS-compliant application. The Common Language
Specification (CLS) defines how code may be made compatible with multiple CLI languages.
Therefore, it is best to adopt this paradigm when writing programs that link with C# or other

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS190

6080CH11.qxp 10/24/06 1:03 AM Page 190

.NET languages. An operator is said to be CLS-compliant when all of the following criteria
are met:

• The operator is listed in the CLS-compliant tables, as stated in the CLS.

• The operator is a static member of a reference or value class.

• Parameters and return values of the operator function are not passed or returned by
any pointer, reference, or handle.

Let’s examine the CLS-compliant unary operators in Table 11-6. 4

Table 11-6. CLS-Compliant Unary Operators

Operator Name Function Name C# C++

operator& AddressOf No Yes

operator! LogicalNot Yes Yes

operator~ OnesComplement Yes Yes

operator* PointerDereference No Yes

operator- UnaryNegation Yes Yes

operator+ UnaryPlus Yes Yes

operator true true Yes No

operator false false Yes No

Let’s examine the CLS-compliant binary operators in Table 11-7.

Table 11-7. CLS-Compliant Binary Operators

Operator Name Function Name C# C++

operator+ Addition Yes Yes

operator& BitwiseAnd Yes Yes

operator| BitwiseOr Yes Yes

operator, Comma Yes Yes

operator-- Decrement Yes Yes

operator/ Division Yes Yes

operator== Equality Yes Yes

operator^ ExclusiveOr Yes Yes

operator> GreaterThan Yes Yes

operator>= GreaterThanOrEqual Yes Yes

operator++ Increment Yes Yes

operator!= Inequality Yes Yes

Continued

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 191

4. These tables are from the C++/CLI Language Specification.

6080CH11.qxp 10/24/06 1:03 AM Page 191

Table 11-7. Continued

Operator Name Function Name C# C++

operator<< LeftShift Yes Yes

operator< LessThan Yes Yes

operator<= LessThanOrEqual Yes Yes

operator&& LogicalAnd No Yes

operator|| LogicalOr No Yes

operator% Modulus Yes Yes

operator* Multiply Yes Yes

operator>> RightShift Yes Yes

operator- Subtraction Yes Yes

Most of these operators are fairly self-explanatory. Only a few merit special mention:

• operator* can either be Multiply or PointerDereference, depending on whether it is a
binary or unary operator.

• operator& can either be BitwiseAnd or AddressOf, depending on whether it is a binary or
unary operator.

• Both operator&& and operator|| can be overloaded in C++/CLI. These cannot be over-
loaded in C#.

• operator true and operator false are not implemented in C++.

operator true and operator false
operator true and operator false are used in the following C# code, which cannot be written
similarly in C++/CLI:

using System;

class R

{

int value;

R(int V)

{

value = V;

}

public static bool operator true (R r)

{

return r.value!=0;

}

public static bool operator false (R r)

{

return r.value==0;

}

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS192

6080CH11.qxp 10/24/06 1:03 AM Page 192

public void Test(String name)

{

if(this)

{

Console.WriteLine("{0} is true", name);

}

else

{

Console.WriteLine("{0} is false", name);

}

}

public static void Main()

{

R r3 = new R(3);

r3.Test("r3");

R r0 = new R(0);

r0.Test("r0");

}

}

If you compile and run this in C#, you get the following results:

C:\>csc /nologo test.cs

C:\>test

r3 is true

r0 is false

There is a nice workaround in C++ using an implicit conversion to bool:

using namespace System;

ref class R

{

private:

int value;

R(int V)

{

value = V;

}

public:

static operator bool(R^ r)

{

return r->value != 0;

}

void Test(String^ name)

{

if(this)

{

Console::WriteLine("{0} is true", name);

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS 193

6080CH11.qxp 10/24/06 1:03 AM Page 193

}

else

{

Console::WriteLine("{0} is false", name);

}

}

static void Main()

{

R ^r3 = gcnew R(3);

r3->Test("r3");

R ^r0 = gcnew R(0);

r0->Test("r0");

}

};

void main()

{

R::Main();

}

Other Operators
C++ allows you to overload the assignment operators, function calls (operator()), and indices
(operator[]) in a manner that is not CLS compliant.

Summary
Having a good feel for expressions and operators is essential in object-oriented programming.
They allow you to extend your classes and work with them as if they were built-in types.

In the next chapter, we’ll complete our tour of basic C++ by filling in some of the details
that have not been covered in any of the broad categories of previous chapters. After that, you
will be well prepared to go into greater depth and detail in the chapters that follow.

CHAPTER 11 ■ EXPRESSIONS AND OPERATORS194

6080CH11.qxp 10/24/06 1:03 AM Page 194

The End of the Beginning

Yu, shall I teach you what knowledge is? When you know a thing, to realize that you

know it; and when you do not know a thing, to allow that you do not know it: this is

knowledge.

—Confucius

In this chapter, we’ll fill in the gaps and complete our introduction to basic C++. We’ll talk
about include files, scope resolution, miscellaneous operator details, and exceptions.

Include Files
One major difference between C# and C++/CLI is the multipass nature of C#. C++ was
designed as a wrapper around C, which was designed to function on computers far less pow-
erful than the contemporary home PC relegated to the den as too slow to be good for anything
other than checking e-mail. Therefore, C was essentially a one-pass language in that the com-
piler could compile the entire program, digesting and translating C into assembly language,
statement by statement. This required either the programmer to arrange the code so that
basic subroutines came first, followed by subroutines that called the basic subroutines, finally
followed by the main() procedure, which could call any of the preceding subroutines.

This requirement works for simple code, but it does not work when subroutines or classes
are cross-referential, which is quite common in everyday coding. One common data structure
that is typically cross referential is a type-safe function callback: a method of one class calls a
second class to register a callback to the first class.

Forward Declarations
To get around this, C added the concept of forward declarations. A forward declaration is a
prototype of a function or class that tells the compiler that a certain identifier is a class or
function or provides details the class structure itself. When C++ added methods to classes, it
also expanded the design of classes, so that classes themselves are not single-pass but two-
pass elements. In case you are wondering, in C, a class is declared using the struct keyword.

C++ is a one-pass language, but classes themselves are resolved in two passes. Therefore,
forward declarations are required when you access a function or variable before its definition,
except when they are members of the same class. In addition, C++ compiles files into object

195

C H A P T E R 1 2

6080CH12.qxp 10/24/06 1:03 AM Page 195

files first and requires declarations to bind these object files into a single module or executable
using a program called a linker.

In contrast, C# is not only essentially a two-pass language, but it also considers all the files
of a single module at the same time when compiling. Compilation of C# becomes more and
more inefficient when more and more source files are added without subdividing them into
modules. On the other hand, C++ scales well, since each source file generates a new object file.
Also, declarations describe what is external to the file, so a new file can be added and recom-
piled without requiring a complete rebuild of the entire module.

The Problem
The advantages and disadvantages of C++’s approach are fairly clear. Since C++ requires
accurate declarations to compile correctly and bind object files together, what happens if the
declarations are inaccurate? What happens if you change the definition of a function without
changing the corresponding declaration of the function? If these become out of sync, the
program does not compile correctly. Even worse, you could make a mistake in the order of
compilation and it could compile, thus the linker would end up binding usage of a particular
function with the function definition for another function.

The Solution
To keep all of the forward declarations and prototypes in sync, both C and C++ make use of
include files to keep track of prototypes. Include files are files containing declarations and pro-
totypes that are included into the source of the program when it is compiled. In this way, one
include file can be shared by multiple source files, so everyone is always working with the
most up-to-date version of the prototypes and declarations. If an include file changes, a make
program can be used to force recompilation of all the source files that include it. If a declara-
tion of an item in an include file ever becomes out of sync with the corresponding definition
in a source file, the compiler issues an error, and the declaration can be corrected. Include
files typically have an extension of .h, for header files that contain declarations, class defini-
tions, and preprocessor definitions, and .hxx and .hpp for header files that also contain
instantiations and variable definitions.

Include File Caveats
Note that this paradigm is user-defined. The compiler does not compile code differently if it
originates in an included file versus a top-level source file—to the compiler, C++ is C++. You
can, therefore, get into trouble if you place definitions in included files. If a definition is
included into multiple source files, it is defined in each one, and you end up with a multiply
defined symbol error. For example, consider the following three files:

// test1.cpp

#include "a.h"

// test2.cpp

#include "a.h"

CHAPTER 12 ■ THE END OF THE BEGINNING196

6080CH12.qxp 10/24/06 1:03 AM Page 196

// a.h

void hello()

{

}

Compile test1.cpp and test2.cpp with the following command line:

C:\>cl /nologo test1.cpp test2.cpp

test1.cpp

test2.cpp

Generating Code...

test2.obj : error LNK2005: "void __cdecl hello(void)" (?hello@@YAXXZ) already

defined in test1.obj

LINK : fatal error LNK1561: entry point must be defined

Note that we also get a linker error, because the global function main() is nowhere to be
found in any of our source files.

Types of Declarations
Declarations come in all shapes and sizes. They can define classes or global objects, and class
declarations may occur with anything from no definition to a complete definition.

Class Declaration Without Definition
When the knowledge of the internal structure of a class is not needed to compile a file, it suf-
fices to declare that an identifier is a class, as in the following example:

class A;

class B

{

A *pA;

};

Since we only have a pointer to type A, class B does not need to know the definition of A in
order to allocate space for a pointer, pA—the simple declaration suffices.

Class Declaration With Definition
The following code does not compile:

class A;

class B

{

A a;

};

The compiler is being asked to create an instance of A with every instance of B. In this
example, the compiler needs to know the size and structure of A before it can complete the
definition of B. Define A to fix the code.

CHAPTER 12 ■ THE END OF THE BEGINNING 197

6080CH12.qxp 10/24/06 1:03 AM Page 197

The compiler output follows:

C:\>cl /nologo test.cpp

test.cpp(4) : error C2079: 'B::a' uses undefined class 'A'

Declaration of Global Variables
Global variables may or may not be declared using the extern keyword, as follows:

class A;

extern int i;

extern A * pA;

Variables declared at global scope are extern by default, which means that they are visible
outside the compilation unit in which they are declared. This is also known as external
linkage. The opposite of external linkage is internal linkage, which is achieved with the static
keyword.

Separation of the Declaration and Definition of a class
The declaration of a class may be separated from the definition as follows:

//include file (a.h)

class A

{

A();

void Method();

};

//source file (a.cpp)

A::A()

{

}

void A::Method()

{

}

In this example, the declaration of class A can appear in an include file, which is included
into several source files, and the definition of the individual methods, using the fully qualified
name, appears in a single source file. Recall that partial classes are not supported in C++; par-
tial classes are incompatible with the C++ paradigm. In C#, the compiler can search all source
files for the partial class definitions and gather them together before defining the class. In C++,
this is not possible.

Implicit Forward Reference to the Multipass Nature of Class Parsing
The following code works fine in C++, even without a forward declaration. The real question is
which version of Hello() does the compiler use?

CHAPTER 12 ■ THE END OF THE BEGINNING198

6080CH12.qxp 10/24/06 1:03 AM Page 198

using namespace System;

void Hello()

{

Console::WriteLine("::Hello");

}

ref class R

{

public:

R()

{

Hello();

}

void Hello()

{

Console::WriteLine("R::Hello");

}

};

void main()

{

R ^r = gcnew R();

}

Let’s try it and see:

C:\>cl /nologo /clr test.cpp

C:\>test

R::Hello

As you can see, the class version of Hello() is preferred over the global version, even
though R::Hello() has not yet appeared in the code when Hello() is called from the construc-
tor. A class version will always be preferred over a global version, because it is closer in scope,
and the class version will be a candidate, because the entire class is parsed for declarations
before any of the definitions are parsed. This is an example of the two-pass nature of C++ class
parsing. This implementation is on par with the scoping rules of C++, which specify that the
class scope has preference over the global scope while inside the class scope.

Scope Resolution Operator
What if we wanted, in the previous example, to invoke the global version of the Hello() func-
tion rather than the class version? In C++, you specify the global namespace by preceding the
name with colon-colon. For example, let’s change the constructor to the following:

R()

{

::Hello();

Hello();

}

CHAPTER 12 ■ THE END OF THE BEGINNING 199

6080CH12.qxp 10/24/06 1:03 AM Page 199

Now let’s see what happens:

C:\>cl /nologo /clr test.cpp

C:\>test

::Hello

R::Hello

As you can see, the first call, ::Hello(), invoked the global function, and the second
Hello() call invoked the member function. Preceding an identifier with the colon-colon scope
resolution operator begins the search for the identifier at the global namespace.

In the following example the identifier in question is not a global function but a member
function of another class:

using namespace System;

ref struct Outer

{

ref struct Inner

{

Inner()

{

Console::WriteLine(__FUNCSIG__);

}

ref struct Outer

{

ref struct Inner

{

Inner()

{

Console::WriteLine(__FUNCSIG__);

}

public:

static void Test()

{

Outer::Inner ^m0 = gcnew Outer::Inner();

::Outer::Inner ^m1 = gcnew ::Outer::Inner();

}

};

};

};

};

void main()

{

Outer::Inner::Outer::Inner::Test();

}

In this code, we use the __FUNCSIG__ macro to print the signature of each Inner() method.
If we compile and run this, we get the following:

CHAPTER 12 ■ THE END OF THE BEGINNING200

6080CH12.qxp 10/24/06 1:03 AM Page 200

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

__clrcall Outer::Inner::Outer::Inner::Inner(void)

__clrcall Outer::Inner::Inner(void)

This output shows that the colon-colon scope resolution operator at the beginning of
the second allocation referenced Outer::Inner from the global context rather than the local
context.

Nullable Types
Version 2.0 of the .NET Framework added nullable data types. A nullable data type is an exten-
sion of an underlying type that adds the null value to the set of legal values of the underlying
type. Nullable types are supported in C++/CLI as well as C#.

Examples in C# and C++/CLI
In C#, the construction of a nullable type is indicated by appending a question mark to the
type name. For example, consider the following C# code for a nullable instance of bool:

class R

{

static void Main()

{

bool? b = null;

if(b != null)

{

System.Console.WriteLine(b);

}

else

{

System.Console.WriteLine("null");

}

}

}

The expression

bool? b = null;

declares a nullable type based on a bool and sets it to null. The next line contains the following
expression:

(b != null)

CHAPTER 12 ■ THE END OF THE BEGINNING 201

6080CH12.qxp 10/24/06 1:03 AM Page 201

This expression, in turn, determines whether b has been set to null. C++/CLI also sup-
ports nullable types, but the syntax is not as simple. The C++/CLI syntax more closely reflects
the generated IL, whereas the C# syntax is at a higher level of abstraction.

In order to use nullable types in C++/CLI, you need to do the following:

• Use pseudo-template syntax for the nullable type based on the keyword Nullable.

• Use the System namespace; Nullable<> is defined in this namespace.

• Use Nullable<type>() instead of null when you assign to an instance of a nullable type.

• Use the property HasValue rather than comparing to null when you use the instance in
a comparison expression.

The C# declaration and initialization line that follows

bool? b = null;

becomes the following one in C++/CLI:

Nullable<bool> b = Nullable<bool>();

This C# expression

(b != null)

becomes the following one in C++/CLI:

(!b.HasValue)

Taking these guidelines and conversions into account, we discover C++/CLI code that
accomplishes the same thing:

using namespace System;

ref struct R

{

static void Main()

{

Nullable<bool> b = Nullable<bool>();

if(!b.HasValue)

{

System::Console::WriteLine("null");

}

else

{

System::Console::WriteLine(b);

}

}

};

void main() {R::Main();}

CHAPTER 12 ■ THE END OF THE BEGINNING202

6080CH12.qxp 10/24/06 1:03 AM Page 202

Executing either version gives the following result:

null

Note that nullable data types may be created from user-defined types as well as built-in
types. Consider the following example based on the user-defined type V, which also displays
null:

using namespace System;

value struct V {};

ref struct R

{

static void Main()

{

Nullable<V> b = Nullable<V>();

if(!b.HasValue)

{

System::Console::WriteLine("null");

}

}

};

void main() {R::Main();}

The ?? Operator in C#
In C#, the ?? is a binary operator that works on nullable types. It evaluates to the first argu-
ment if it is not equal to null, or else it evaluates to the second. Although this syntax is not
supported in C++/CLI, crafting code to perform an identical operation is straightforward.

Consider the following C# code:

using System;

class R

{

static void Main()

{

bool? b;

bool? c = true;

b = null;

Console.WriteLine(b ?? c);

b = false;

Console.WriteLine(b ?? c);

}

}

CHAPTER 12 ■ THE END OF THE BEGINNING 203

6080CH12.qxp 10/24/06 1:03 AM Page 203

After compiling and executing, we find the following:

C:\>csc /nologo test.cs

C:\>test

True

False

The first time (b??c) is evaluated (b==null), so the result of the expression is the value of
c. The second time (b!=null), so the result of the expression is the value of b.

In C++/CLI, you can accomplish the same thing using the ?: ternary operator by chang-
ing the following:

(b??c)

to

Nullable<bool>(b.HasValue ? b : c);

This statement checks to see if b has a value and, if so, uses that value. Otherwise, the
value of c is used. It’s not as succinct as the C# version, but it accomplishes the same thing.
Here is the entire snippet redone:

using namespace System;

ref struct R

{

static void Main()

{

Nullable<bool> b;

Nullable<bool> c = Nullable<bool>(true);

b = Nullable<bool>();

Console::WriteLine(Nullable<bool>(b.HasValue ? b : c));

b = Nullable<bool>(false);

Console::WriteLine(Nullable<bool>(b.HasValue ? b : c));

}

};

void main() {R::Main();}

Under the Hood
Interestingly enough, if you load .NET Reflector and examine the IL for nullable types, you
do not see anything remotely resembling the slick C# syntaxes of type? or ??. What you see
instead is something much more akin to the C++/CLI code, which shows Nullable imple-
mented as a generic class. Generics will be explained in more detail in Chapter 14. In fact, the
C# version of the method Main() follows, decompiled to C++/CLI from .NET Reflector. Similar
to the C++/CLI version, isn’t it?

CHAPTER 12 ■ THE END OF THE BEGINNING204

6080CH12.qxp 10/24/06 1:03 AM Page 204

private:

static void Main()

{

Nullable<Boolean> nullable2 = Nullable<Boolean>(1) ;

Nullable<Boolean> nullable1 = Nullable<Boolean>();

Nullable<Boolean> nullable3 = nullable1;

Console::WriteLine((nullable3.HasValue ? nullable3 : nullable2));

nullable1 = Nullable<Boolean>(0) ;

nullable3 = nullable1;

Console::WriteLine((nullable3.HasValue ? nullable3 : nullable2));

}

Checked Expressions
In a previous example, we used the following expression:

int i0 = int::MaxValue;

This expression allows us to determine the maximum value of an integer. There is a highly
questionable, and unfortunately somewhat common, way of doing the same sort of thing in
C++. It takes advantage of the fact that integers are stored in two’s complement on most target
architectures, and a conversion between integers and unsigned integers is a conversion
between data types of the same size. In this case, the int “–1” corresponds to the highest pos-
sible unsigned int, and this number, divided by 2, allows us to calculate the highest possible
integer. Here is the expression in C++:

int i0=(int)(((unsigned)(int)-1)/2);

The preceding code does not compile in C#, even after you change the keyword unsigned
to uint. The C# compiler knows you’re doing a scary thing with this expression, and it requires
you to embed this into an unchecked expression block to compile it, as follows:

class R

{

public static void Main()

{

unchecked

{

int i0 = (int)(((uint)(int)-1)/2);

System.Console.WriteLine(i0);

}

}

}

CHAPTER 12 ■ THE END OF THE BEGINNING 205

6080CH12.qxp 10/24/06 1:03 AM Page 205

After compiling and executing this code in C#, we get the following:

C:\>csc /nologo test.cs

C:\>test

2147483647

In C#, there are two ways to control the checking of expressions:

• Embed the code in a checked or unchecked block; these are blocks preceded by the
checked or unchecked keyword.

• Specify /checked+ or /checked- on the command line to enable or disable expression
checking globally for code not embedded in checked or unchecked blocks.

C++ has no analogue to this type of checked expression.

Anonymous Methods
C# has a nifty syntax for creating nested methods using delegates called anonymous methods.
It was added for C# 2.0, and C++ has no analogue yet. Anonymous methods allow you to cre-
ate a method on the fly within the context of another method; they save time and can lead to
greater code clarity. Anonymous methods are allowed to access local variables in the contain-
ing methods, as demonstrated in the following example:

using System;

class R

{

public delegate void SayHello(string Message);

SayHello dSayHello;

public static void Main()

{

int Count = 0;

R r = new R();

r.dSayHello += delegate(string Message)

{

Console.WriteLine("{0} : {1} ", ++Count, Message);

};

r.dSayHello("call");

r.dSayHello("call");

}

}

Context-Sensitive Keywords
A context-sensitive keyword is an identifier that is interpreted as a keyword in specific gram-
matical contexts. Most of the new C++/CLI keywords were added as context-sensitive
keywords, so that that the majority of legacy code would compile under C++/CLI unchanged.

CHAPTER 12 ■ THE END OF THE BEGINNING206

6080CH12.qxp 10/24/06 1:03 AM Page 206

For example, consider the following snippet:

void main()

{

int property = 3;

int event = 2;

}

This code was valid C++ before the new C++/CLI syntax was developed, and the compiler
needs to compile it correctly. It uses the identifiers property and event, but they are not con-
sidered keywords in this context, so this code can be compiled for the CLR without error.

Context-sensitive keywords can lead to some entertaining examples, where identifiers are
sometimes keywords and sometimes not. Consider the following valid C++/CLI code:

value struct property {};

ref struct Test

{

property property property;

};

void main() {}

In this case, we have a trivial property named property that is of type property.

Method Group Conversion
C# has an abbreviated syntax for registering event handlers called method group conversion.
This provides a simpler syntax for using events and delegates, as in the following example:

using System;

class R

{

public delegate void SayHello(string Message);

SayHello dSayHello;

int Count = 0;

public void DisplayMessage(string Message)

{

Console.WriteLine("{0} : {1} ", ++Count, Message);

}

public static void Main()

{

R r = new R();

// r.dSayHello = new SayHello(r.DisplayMessage);

r.dSayHello = r.DisplayMessage;

r.dSayHello("call");

r.dSayHello("call");

}

}

CHAPTER 12 ■ THE END OF THE BEGINNING 207

6080CH12.qxp 10/24/06 1:03 AM Page 207

The commented out line may be replaced by the bold line following it. C++ has no equiva-
lent syntax.

This sort of syntactic sugar is very common in the C# language. The language offers a lot
of these little shortcuts that save the user a few lines of code here and there, thus making
developing applications with C# faster.

■Note Delegate and event code is always tricky to translate, as diagnostics can be misleading. We can
lay most of the blame at the doorstep of the compiler’s ability to interpret context-sensitive keywords. These
keywords are determined in a disambiguation grammar, and if this grammar concludes that either delegate
or event is not a keyword in this context, they are interpreted as regular identifiers, and the diagnostics are
less than helpful.

Here is the previous example converted to C++/CLI, without using method group
conversion:

using namespace System;

ref struct R

{

delegate void SayHello(String^ Message);

SayHello ^dSayHello;

int Count;

R() : Count(0) {}

void DisplayMessage(String^ Message)

{

Console::WriteLine("{0} : {1} ", ++Count, Message);

}

static void Main()

{

R^ r = gcnew R();

r->dSayHello = gcnew SayHello(r, &R::DisplayMessage);

r->dSayHello("call");

r->dSayHello("call");

}

};

void main() {R::Main();}

Constructor-Initialized Variables
In C#, variables that can only be initialized within the constructor, the constructor member
initializer list, or the class declaration are defined by marking them readonly. In C++/CLI,
these variables are marked using the initonly keyword.

CHAPTER 12 ■ THE END OF THE BEGINNING208

6080CH12.qxp 10/24/06 1:03 AM Page 208

In C++, only static variables may be initialized within the class declaration, whether or not
they are marked initonly. C# is able to create an implicit instance and static constructors that
initialize class variables, whereas C++/CLI only creates implicit static constructors.

For example consider the following C# code:

using System;

class R

{

readonly int i0=3;

static readonly int i1=4;

static void Main() {}

}

Here is the C++/CLI equivalent:

using namespace System;

ref class R

{

initonly int i0;

static initonly int i1=4;

R()

{

i0=3;

}

public:

static void Main() {}

};

void main() {R::Main();}

The compiler creates a static constructor implicitly; initialization of nonstatic initonly
variables must be explicitly performed within the instance constructor.

Expression Statements with No Effect
C# disallows most expression statements that have no effect. These are allowed in C++,
because they are often useful for debugging or used as a remnant of a conditional preproces-
sor statement.

Consider the following C# code:

using System;

class R

{

static void Main()

{

int i=3;

(i==2); // invalid in C#

}

}

CHAPTER 12 ■ THE END OF THE BEGINNING 209

6080CH12.qxp 10/24/06 1:03 AM Page 209

The results follow:

C:\>csc /nologo test.cs

test.cs(7,9): error CS0201: Only assignment, call, increment, decrement, and new

object expressions can be used as a statement

An expression statement like (i==2); is valid syntax in C++ and compiles with neither
error nor warning.

Exceptions
For the most part, exception handling is quite similar in C# and C++/CLI.1 C++ supports
exceptions in the same contexts as C# with the addition of a special construct called function-
try blocks, which we will cover later in this section.

Let’s start with the basics.

Basic Exception Handling
Here is a short yet comprehensive example of basic exception handling in C#:

using System;

class MyException : Exception

{

public MyException(string message) : base(message)

{

}

}

class R

{

static void Main()

{

try

{

throw new MyException("exception");

}

catch (MyException e)

{

Console.WriteLine("caught : {0}", e);

return;

}

catch

CHAPTER 12 ■ THE END OF THE BEGINNING210

1. Native C++ exception handling can get complicated, as several variants are supported by the compiler.
Consult the Visual C++ documentation for further details.

6080CH12.qxp 10/24/06 1:03 AM Page 210

{

}

finally

{

Console.WriteLine("in the finally block");

}

}

}

In this example, we start by defining a custom exception called MyException derived from
System::Exception. The constructor takes a string as a parameter and forwards it to the base
class. In order to convert this to C++, we have to take the following steps:

1. Change class to ref class.

2. Change string to String^. string is an alias that does not exist in C++; C++ invokes the
reference type System::String explicitly.

3. Change base to Exception, as C++ refers to the base class constructor explicitly by
name.

4. Add a semicolon to the end of the class definition.

5. Add a colon to the public keyword.

We then have the following:

ref class MyException : Exception

{

public:

MyException(String ^message) : Exception(message)

{

}

};

Next, we make similar changes to the body.
Since MyException is a reference type, we need to treat it as such, and change

MyException e

to

MyException ^e

In addition, we need to take these steps:

1. Change class to ref class.

2. Change new to gcnew.

3. Change Console.WriteLine to Console::WriteLine.

4. Add a semicolon to the end of the class definition.

CHAPTER 12 ■ THE END OF THE BEGINNING 211

6080CH12.qxp 10/24/06 1:03 AM Page 211

5. Change the generic catch handler from catch to catch(. . .). The generic catch
handler is the last handler that catches all exceptions previously uncaught. The C++
syntax requires the ellipsis.

6. Insert the public: keyword before the Main()function, and add a global main()function
to invoke it.

The resulting code follows:

using namespace System;

ref class MyException : Exception

{

public:

MyException(String ^message) : Exception(message)

{

}

};

class R

{

public:

static void Main()

{

try

{

throw gcnew MyException("exception");

}

catch (MyException ^e)

{

Console::WriteLine("caught : {0}", e);

return;

}

catch(...)

{

}

finally

{

Console::WriteLine("in the finally block");

}

}

};

void main() {R::Main();}

Let’s compile and execute this:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

caught : MyException: exception

at R.Main()

in the finally block

CHAPTER 12 ■ THE END OF THE BEGINNING212

6080CH12.qxp 10/24/06 1:03 AM Page 212

Note that the finally block is always executed at the end of the try block, whether or not
there is an exception. This is true even if there is a return or break statement that might osten-
sibly circumvent this mechanism. In fact, the finally is always executed.

You might be tempted to use the finally statement to control the deallocation of unman-
aged resources or other similar applications, but there are better ways to do this, ranging from
the using statement in C# to the destructor, finalizer, or dispose paradigms in .NET and C++.
We will cover this in detail in Chapter 20.

Function-Try Blocks
Function-try blocks are features unique to C++ that allow you to catch any exception that
occurs within the entire body of a function. This feature may seem insignificant until you real-
ize that it allows you to catch exceptions within the base class constructor during construction
of a derived class.

The Problem
Let’s look at an example in order to elucidate. In C#, it is very difficult to catch an exception
generated in the base class in the context of the derived class. It needs to be caught within the
method that created the derived class object, which is not local to the exception. As such, it
makes exception handling problematic. A C# example with a base class and a derived class
follows:

using System;

class Base

{

public Base(int i)

{

throw new Exception("throwing in Base's constructor");

}

}

class Derived : Base

{

Derived(int i) : base(i)

{

}

static void Main()

{

Derived r = new Derived(3);

}

}

Let’s try to compile and run this:

C:\>csc /nologo test.cs

C:\>test

Unhandled Exception: System.Exception: throwing in Base's constructor

at Base..ctor(Int32 i)

at Derived.Main()

CHAPTER 12 ■ THE END OF THE BEGINNING 213

6080CH12.qxp 10/24/06 1:03 AM Page 213

Enter the Function-Try Block
In C++, you can catch this exception using a function-try block. A function-try block catches
exceptions that occur anywhere in the function body and, as applied to constructors, also
catches exceptions thrown in the base class constructor. Here is the syntax for a function-try
block on a constructor:

Derived(int i)

try

: Base(i)

{

}

catch(Exception ^e)

{

}

It’s a little different, but it works.
Since we’re throwing an exception in construction, there is an implicit rethrow at the end

of this sequence to notify the method that attempted to create an instance of Derived, just as
in C#. We can either let this rethrow happen and catch it at the top level, or we can change
the type of exception to signal that it was caught earlier. Here is a complete example, with a
rethrow of a different type of exception:

using namespace System;

ref class MyException : Exception

{

public:

MyException(String ^message) : Exception(message)

{

}

};

ref class Base

{

public:

Base(int i)

{

throw gcnew Exception("throwing in Base's constructor");

}

};

ref class Derived : Base

{

Derived(int i)

try

: Base(i)

{

}

catch(Exception ^e)

{

Console::WriteLine("caught {0}", e);

CHAPTER 12 ■ THE END OF THE BEGINNING214

6080CH12.qxp 10/24/06 1:03 AM Page 214

throw gcnew MyException("caught");

}

public:

static void Main()

{

try

{

Derived ^r = gcnew Derived(3);

}

catch(Exception ^e)

{

Console::WriteLine("caught {0}", e);

}

}

};

void main() {Derived::Main();}

In this sequence, we use the function-try block to catch the exception thrown in base-
class construction and then throw an exception of a different type within the catch clause.

Here are the results when the code compiled and executed:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

caught System.Exception: throwing in Base's constructor

at Base..ctor(Int32 i)

at Derived..ctor(Int32 i)

caught MyException: caught

at Derived..ctor(Int32 i)

at Derived.Main()

Exercise

The complexity of exception handling tends to befuddle decompilers. Compile this example, and inspect it using
.NET Reflector. How does the IL look? How does it decompile into C# and C++/CLI?

Summary
In this chapter, we finished our tour of basic C++. We talked about include files, scope resolu-
tion, miscellaneous operator details, and exceptions. In the chapters that follow, we will
explore both C++/CLI and native C++ in greater depth and learn practical examples as well
as more-advanced constructs.

I think it would be fun to postpone that exploration for one chapter and take a quick
break in Chapter 13 to play with a few common interview questions.

CHAPTER 12 ■ THE END OF THE BEGINNING 215

6080CH12.qxp 10/24/06 1:03 AM Page 215

6080CH12.qxp 10/24/06 1:03 AM Page 216

Fun, Fun, and More Fun

How does a project get to be a year late? One day at a time.

—Frederick P. Brooks, Jr., The Mythical Man-Month

As we conclude the basic introduction to C++ and prepare to tackle more-advanced topics,
perhaps it might be fitting to reward our efforts with a slight diversion. We’ll look at some fun
interview questions with programmatic C++ solutions.

Dropping Light Bulbs
There’s an interview question floating around on the Internet1 that asks you to determine how
far a superstrong light bulb can drop without breaking. We’ll break down this program mathe-
matically and implement a nice recursive algorithm to show the solution.

Light Bulbs

You have two nearly unbreakable light bulbs and a 100-floor building. Using the fewest possible drops, determine
how much of an impact this type of light bulb can withstand (e.g., it can withstand a drop from the 17th floor, but it
breaks when dropped from the 18th). Note that the ever-popular binary search gives you a worst case of 50 drops.
You should be able to do it in less than 20.

Initial Thoughts
The first thing to notice about this problem is that you only have two light bulbs. Once the first
is broken, you can’t take chances anymore. You need to follow the most conservative strategy
you can to nurse your bulb until you are sure you have found the correct floor when it breaks.

217

C H A P T E R 1 3

1. You can find the questions in this chapter and others like them at http://www.techinterview.org.
This site, in turn, cites How Would You Move Mount Fuji, by William Poundstone, as a source. Pound-
stone lays no claim to having invented these problems, but he has gathered them together in a single
interesting text.

6080CH13.qxp 10/24/06 1:04 AM Page 217

This means you have to go up a single floor at a time, starting just above the first floor you are
sure the bulb can survive a drop from. You can’t risk the second bulb breaking unless this tells
you for sure what the maximum allowable impact is.

In other words, if the second bulb breaks in falling from floor n, you should have already
determined that the bulb would survive a fall from floor n–1.

Our initial instinct is to divide the number of floors by two and go from there, so let’s work
out what happens when we drop the bulb from the 50th floor.

Well, what happens if it breaks on that very first drop? Since there is only one bulb left, we
can’t take a chance on skipping a single floor. The only strategy left is to be ultra conservative
and start at the lowest possible floor and go up one at a time. We are then forced to drop the
second bulb from the first floor, then the second, and so on. The worst case is then that we are
forced to climb all the way up to the 49th floor, one floor at a time. This would mean a total of
50 drops (1+49 drops).

So dividing the number of floors by two for our initial drop is very inefficient. What would
happen if we divided the number of floors by a larger number for our initial drop, and go from
there?

A Rough Approximation
Suppose we divided the number of floors by five. Then our first drop would be from the
20th floor. If the initial bulb does not break, we could attempt drops from the 40th floor, the
60th floor, and so on up to 100. If the bulb breaks, we are left with, at most, the number of
floors between the drops to determine a bulb break. In this case, that makes for 19 drops
(20–1 drops). Now we can calculate the worst case. The first bulb will be dropped at most once
for each floor that is a multiple of 20, or {20, 40, 60, 80, 100}. This makes five possible drops,
which is also equal to 100 divided by 20, or 100/20. After any break, the second bulb will be, at
most, dropped the difference between these multiples of 20, or 20-1 times. So we see that the
worst case number of drops is as follows:

Certainly 24 drops is a lot better than our previous algorithm’s worst case of 50.

A Little Algebra
Perhaps, with a little bit of algebra, we can see how far we can we can push this idea. Suppose
we drop our first bulb from the nth floor, for all possible values of n. By following the pattern
derived previously, we get

There is a slight inaccuracy caused by the facts that 100 may not be exactly divisible by n,
and dropping the bulb from floor 100 after a previous drop from 80 does not give you as much
new information as the drop from 80 after a previous drop from 60. Still, the formula easily
allows us to calculate an upper bound for an optimal algorithm.

Suppose k is the worst case for the algorithm given n. Then we have the following formula:

and essentially,

CHAPTER 13 ■ FUN, FUN, AND MORE FUN218

6080CH13.qxp 10/24/06 1:04 AM Page 218

Now we have a quadratic equation in n, and we can use a little bit of elementary algebra
to make a rough calculation. We would like to minimize k over all possible values of n and that
will give us the best worst case.

A quadratic factors as follows:

Since the arithmetic mean is always at least as large as the geometric mean,

this achieves equality when a=b, and we get the following:

and here

and here.

We should drop the first bulb every ten floors to get the best results from this algorithm.
In this case, that is k=19 drops.2

The goal of the interview question is to see if you can discover the 19-drop algorithm,
even if you don’t use algebra to reveal it.

Don’t be mistaken—I am not asserting that this is the best possible algorithm. It seems to
make sense to drop the first bulb the first time from the tenth floor, but if the bulb does not
break, can we not use this information to reevaluate the problem? Isn’t it a new problem now?
It is now the problem of two bulbs and the 90-story building. For this reason, it seems a clear
optimization to decrease the distance between drops if the first bulb survives the fall. This
could then continue to be reevaluated with every drop. We should not be tied to dropping the
bulb every ten floors simply because the tenth floor was the best place for the first drop.

Discovering a Recursive Algorithm
In this way, the recursive nature of this problem arises. Rather than thinking about this prob-
lem in terms of 100 stories, we should think of the problem in terms of N stories and consider
it recursively. Then perhaps we can divine a more efficient algorithm.

CHAPTER 13 ■ FUN, FUN, AND MORE FUN 219

2. This method can be generalized. For a building N stories tall, we can perform the same factoring if we
choose:

Then we can see that

6080CH13.qxp 10/24/06 1:04 AM Page 219

In order to do this we need to define a function:

int Drop(int floors);

The function Drop() returns the minimal number of drops for a given number of floors.
Of course, this doesn’t tell us the floor to drop from as such, but we could adapt the program
to do just that if we desired.

Suppose we are in a building where the number of floors equals floors. If we drop the
first bulb from floor i, and the bulb breaks, we need to use the other bulb to determine
whether it would break when falling from floors 1, 2, 3. . .(i-1) inclusive. This could take
at most (i-1) drops. If the bulb does not break, then Drop(floors-i) calculates the best we
can do with a building of height floors-i. As long as floors-i is always strictly less than floors,
and we make note of the fact that Drop(1)==1, we will not be locked in an infinite loop.3

The worst case number of drops in this case is:

max(i, Drop(floors-i)+1)

If we loop on reasonable values of i, we can find the smallest worst case. What is a
reasonable value for i? Trying all possible values of i, from 1 to floors is overkill. An easy
optimization is to realize that we should never drop higher than the halfway from the binary
example shown previously. It seems intuitive that trying values of i from 1 to the square root
of floors would suffice by the argument presented previously. In the following code, I use a
range of [1, floors/2]:

using namespace System;

ref struct Drops

{

array<int>^floordata;

Drops()

{

floordata = gcnew array<int>(300);

floordata[1] = 1;

}

int Drop(int floors)

{

if(floordata[floors])

{

return floordata[floors];

}

int best = Int32::MaxValue;

if(floors == 1)

{

best = 1;

}

else

{

CHAPTER 13 ■ FUN, FUN, AND MORE FUN220

3. Do you notice any similarities between the implementation of a recursive algorithm and a proof by
mathematical induction?

6080CH13.qxp 10/24/06 1:04 AM Page 220

int i;

for(i=1;i<floors/2+1;i++)

{

int drops = Drop(floors-i) + 1;

int thisone = (drops>i) ? drops : i;

best = thisone<best ? thisone : best;

}

}

floordata[floors]=best;

return best;

}

};

void main()

{

Drops ^d = gcnew Drops();

Console::WriteLine("For {0} floors, the minimum is {1}", 100, d->Drop(100));

}

The output follows:

For 100 floors, the minimum is 14

Implementation
The code itself is pretty straightforward, though one optimization is needed.

The initial version I wrote ran so slowly I thought about grabbing a cup of coffee while
waiting for it to finish. Since the code is recursive, Drop(n) called Drop(n-1), Drop(n-2), and so
on and caused all of those to be recalculated. Drop(n+1) does more of the same thing, in addi-
tion to invoking Drop(n), so there is so much repetition of calculation that we have to very be
careful how we spend our cycles.

We need to insure that Drop(floors) is only calculated, at most, once for each value of
floors, or we end up doing the same work again and again and again. To do this, we create the
floordata array to save the results of previous calls to Drop(). This array is a member of the
Drops class and is allocated by the constructor Drops(). For each value of floors, we check the
array to see if a value has been calculated. If not, we go ahead and do the work in the Drop()
function and save the result in the floordata array upon exit.

The program does make use of the ?: ternary conditional operator:

expression ? value1 : value2

This operator evaluates to value1 if expression is true, or else it evaluates to value2. It
allows us to avoid if else statements for simple constructs and write in a more compact form.

Show the Way: Part 1

The program calculated that our algorithm will require at least 14 drops. Discover the bulb strength, and display
the sequence of drops that leads to the worst case of 14 drops for a 100-story building.

CHAPTER 13 ■ FUN, FUN, AND MORE FUN 221

6080CH13.qxp 10/24/06 1:04 AM Page 221

First Drop
This program doesn’t tell you the best place to drop the bulb, although it can be modified
to do exactly that. It turns out that which floor you should drop the bulb from depends very
strongly on how many floors are left because of the discrete nature of the problem. It is not
possible, therefore, to print out a short list of instructions on how to drop the bulbs; rather,
the solution is a graph. If the bulb breaks at this floor, do this, or else do that. For any given
bulb strength, however, printing the sequence of drops that this optimal algorithm would
follow is straightforward.

One thing you might notice, though, is that you would do well to make the first drop from
the 14th floor. The rationale for this is simple: we want to make the first drop from as high a
floor as possible, so we reduce the problem the most quickly. If the bulb breaks, we have at
most 13 second bulb drops to determine the bulb strength, so we do no worse than our opti-
mal worst case of 14 drops. Using a program, you can determine that an initial drop anywhere
from the 11th to the 14th floor still allows you to achieve the optimal sequence of at most
14 drops.

Bridge Crossing
Another common question going around the Internet that sometimes pops up in technical
interviews is that of four men crossing a dark bridge with a single flashlight.

Four Men on a Bridge

Four men have to cross a bridge at night. The bridge is old, dilapidated, and can hold, at most, two people at a
time. There are no railings, and the men have only one flashlight. Anytime someone crosses, whether one or two
men go, the flashlight must be carried. The flashlight must be walked back and forth; it cannot be thrown. Each
man walks at a different speed. One takes 1 minute to cross, another 2 minutes, another 5, and the last 10 min-
utes. If two men cross together, they must walk at the slower man’s pace. What is the minimum amount of time
required for all four men to cross?

Background
Now the reason that this question is so popular is that there is an obvious and logical incorrect
conclusion that everyone jumps to. It is only after deeper thought and a bit of insight that you
can arrive at the correct answer.4

Think about this a moment before you read on. There you are on the bridge, walking back
and forth. A couple of fast people, one extremely fast, and a couple of slower people, are sit-
ting there on the bridge. You can even indulge yourself; imagine you’re the walker who can
cross in 1 minute.

CHAPTER 13 ■ FUN, FUN, AND MORE FUN222

4. Or shall we say with a bit of luck, as you’re sitting there sweating in an interviewer’s office with your
mind frozen with fear?

6080CH13.qxp 10/24/06 1:04 AM Page 222

The initial incorrect conclusion is that the faster walker should shepherd everyone back
and forth. The 1-minute walker walks over with the 10-minute walker, which takes 10 minutes.
She returns, which takes 1 minute. She fetches the next guy, and so on. This solution gives you
a best case of 19 minutes for all to cross the bridge. You proudly announce this to the inter-
viewer, who smugly says that there is a better solution. Horrified, you stumble back to the
whiteboard and try to write something intelligent.

A better solution relies on a classic scheduling algorithm. You try to balance your tasks,
so tasks are accomplished simultaneously. In the 19-minute solution, the 10- and 5-minute
walkers go across separately, which gives you a base time of 15 minutes, no matter who is trav-
eling with them. That’s a tough thing to optimize. If you send the 5- and 10-minute walkers
together, then your slow people get across in only 10 minutes, and with a bit of a flashlight
handoff, you calculate that you can get everyone across in 17 minutes total. I’ll leave figuring
out how that works to you.

This of course, brings us to another question: Is this the best possible algorithm?
We would also love to know what kind of results we might get if we varied the speeds of

the crossers. What would be the best possible traveling time then?
We can answer these questions by writing a short computer program. In order to imple-

ment it, we make the following assumptions:

• Every crossing from the start to the end contains exactly two walkers.

• Every crossing from the end to the start contains exactly one walker.

These are fairly reasonable assumptions given the nature of the problem. I am sure that it
is possible to prove that no optimal solution will violate these assumptions, but proof is not
the goal here, so we’ll push on.

Algorithm and Implementation
One obvious algorithm is to try all possible traversals of walkers across the bridge given these
assumptions. In order to do this, we have to keep track of who is on which side of the bridge
as well as the location of the flashlight. Because of the assumptions, we know that every trip
across the bridge with two walkers is followed by a return trip with a single walker, until we’re
done. Then the location of the flashlight is implicit.

We could then write a function crossover(State, Direction) that we could use for cross-
ing the bridge in either direction. I initially wrote the program this way, and it does work, but it
turns out that splitting the crossing into an outbound start(State) function, and an inbound
end(State) function is cleaner.

There are several possibilities for how we keep track of the State of the crossing, but a
simple bit field that indicates who is on the starting side of the bridge is sufficient and
clean. We use an unsigned int to indicate who is on the starting side of the bridge. For the
start(unsigned here) function, this data indicates who is on the starting side of the bridge, or
“here.” For the end(unsigned there) function, this data indicates who is on the other side, or
“there.” In either case, the data always indicates who is on the starting side of the bridge. We
could always pass who is on the side where the flashlight is, by continually applying the exclu-
sive OR on the data with a bit field, but I find that always passing the state on the starting side
is the simplest way for debugging purposes.

CHAPTER 13 ■ FUN, FUN, AND MORE FUN 223

6080CH13.qxp 10/24/06 1:04 AM Page 223

The Code
We use a ref struct named Crossing that contains constant information that we’d prefer not
to keep passing recursively. In this case, we have the traversal speed for the walkers, stored in
the times array, and a Mask that allows us to calculate who is on the opposite of the bridge via
a simple exclusive OR. We do not initialize these in the constructor; rather, we save times from
an input parameter and recalculate Mask each time a crossing is initiated. This was more a
matter of taste and style than an aspiration for accuracy. The code itself is interesting and
instructive; take the time to pick through it, and continue to familiarize yourself with C++/CLI:

using namespace System;

ref struct Crossing

{

array<unsigned>^ times;

unsigned int Mask;

int cross(...array<unsigned>^ times)

{

this->times = times;

Mask = (1u<<times->Length)-1;

return start(Mask);

}

int end(unsigned there)

{

if(there==0)

{

return 0;

}

unsigned here = Mask^there;

unsigned best = 0xffff;

for(int i=0;i<times->Length; i++)

{

if(here & (1<<i))

{

unsigned thistrip;

thistrip = times[i] + start(there^(1<<i));

if(thistrip<best)

{

best = thistrip;

}

}

}

return best;

}

int start(unsigned here)

{

CHAPTER 13 ■ FUN, FUN, AND MORE FUN224

6080CH13.qxp 10/24/06 1:04 AM Page 224

if(here==0)

{

return 0;

}

unsigned best = 0xffff;

for(int i=0;i<times->Length; i++)

{

if(here & (1<<i))

{

unsigned thistrip;

for(int j=i+1;j<times->Length; j++)

{

if(here & (1<<j))

{

thistrip =

(times[i]>times[j]? times[i] : times[j])

+ end(here^((1<<i)|(1<<j)));

if(thistrip<best)

{

best = thistrip;

}

}

}

}

}

return best;

}

};

void main()

{

Crossing ^c = gcnew Crossing();

int time = c->cross(1,2,5,10);

Console::WriteLine("It takes at least {0} minutes", time);

}

If you execute this program, you get the expected result:

It takes at least 17 minutes

Show the Way: Part 2

Enhance the program so that the actual minimum order of crossings is displayed. This requires passing more data
recursively.

CHAPTER 13 ■ FUN, FUN, AND MORE FUN 225

6080CH13.qxp 10/24/06 1:04 AM Page 225

Taking the Algorithm for a Spin
Of course, since we implemented this with a param array that accepts a variable number of
arguments, it is easy to try a different case, with a different number of walkers. If we change
the following line:

int time = c->cross(1,2,5,10);

to

int time = c->cross(1,2,5,10,7);

then intuitively, we expect this to take an additional 7 minutes perhaps. The truth is out there:

It takes at least 23 minutes

That’s a bit of a surprise. Adding a 7-minute walker only slows the entire process by 6
more minutes. It turns out that the 7-minute walker ends up crossing with the 10-minute
walker, which leaves the 5-minute walker to deal with. The 5-minute walker does a round-trip
with the 1-minute walker, which takes a total of 6 additional minutes. OK, that makes sense.

What if we add another 7-minute walker?

int time = c->cross(1,2,5,10,7,7);

Well, since he can’t cross with the 10-minute walker, he’s got to cross with the 5-minute
walker, so that adds another 7 minutes. Let’s try it out:

It takes at least 29 minutes

Wait, that’s only 6 minutes more—that’s another counter-intuitive answer. I’m sure there’s
a simple explanation; perhaps the 1-minute walker's return trip can be avoided?

This is definitely a program that is fun to play with.

Dealing with Cannibals
This question does not seem to come up in interviews as often as the other two, but it has an
interesting and instructive twist.

River Crossing

Three cannibals and three anthropologists have to cross a river. Their boat is only big enough for two people. If at
any point in time there are more cannibals on one side of the river than anthropologists, the cannibals will eat
them. What plan can the anthropologists use for crossing the river, so they don’t get eaten?

CHAPTER 13 ■ FUN, FUN, AND MORE FUN226

6080CH13.qxp 10/24/06 1:04 AM Page 226

Assumptions
This problem does not seem, at first glance, to be as difficult as the bridge problem. We have a
discrete number of cannibals and anthropologists, with no attached concept of traversal time
(or eating time, shall we say?).

We were able to approach the previous problem by making a couple of clear assumptions
about who is crossing the river. We would love to make similar assumptions here, for example:

• Two people always cross from the launching side to the landing side.

• One person always returns.

Unfortunately, these assumptions are invalid. There are very clear reasons why you might
want to send two people on the return journey to maintain a safe combination of people on
each side of the river. In fact, the optimal solution of 11 crossings does just this.

How can we come up with an algorithm that is guaranteed to terminate in all cases? If we
try a path in which we are sending exactly two people back and forth, our recursive algorithm
does not work.

The trick here is to think of this algorithm in terms of a depth-first traversal of possibili-
ties. Rather than letting the algorithm go deeper and deeper down a potentially infinite path
searching for a solution, we structure the algorithm so it asks, iteratively, “Is there a solution
with iteration crossings?” We start iteration at 1, and go up until this is answered in the affir-
mative. This algorithm is guaranteed to succeed if a solution exists. If no solution exists, this
loop continues until resources exhaust themselves; in this case, the resource is the stack.

The Code
In this program, I created a single subroutine for crossing in either direction, since these oper-
ations are completely symmetric because of the lack of assumptions. The variable dir is in the
set {1,–1} and determines which way we are crossing.

Since there are only five possible combinations of people in the boat, I list them discretely
using a logical OR to separate the possibilities. Just as in C#, short-circuit evaluation prevents
further calls to crossover() once a call returns true.

The rest of the code is fairly simple and might be just what you need to produce on a
whiteboard someday:

using namespace System;

ref struct Crossing

{

int MaxA;

int MaxC;

int cross(int MaxA, int MaxC)

{

this->MaxA=MaxA;

this->MaxC=MaxC;

int iterations;

for(iterations=1; ;iterations++)

{

CHAPTER 13 ■ FUN, FUN, AND MORE FUN 227

6080CH13.qxp 10/24/06 1:04 AM Page 227

if(crossover(MaxA, MaxC, iterations, -1))

{

break;

}

}

return iterations;

}

bool crossover(int A, int C, int iterations, int dir)

{

if(iterations--<0)

{

return false;

}

if(A==0 && C==0)

{

return true;

}

if(A<0 || C<0)

{

return false;

}

if(A>0 && C>A)

{

return false;

}

int Ap = MaxA-A;

int Cp = MaxC-C;

if(Ap>0 && Cp>Ap)

{

return false;

}

return (

crossover(A+dir,C,iterations,-dir) ||

crossover(A,C+dir,iterations,-dir) ||

crossover(A+dir,C+dir,iterations,-dir) ||

crossover(A+dir+dir,C,iterations,-dir) ||

crossover(A,C+dir+dir,iterations,-dir)

);

}

};

void main()

{

Crossing ^c = gcnew Crossing();

int Count = c->cross(3,3);

Console::WriteLine("It takes at least {0} crossings", Count);

}

CHAPTER 13 ■ FUN, FUN, AND MORE FUN228

6080CH13.qxp 10/24/06 1:04 AM Page 228

After we run this program with three cannibals and three anthropologists, we get the
expected result:

It takes at least 11 crossings

What happens if we try more or less? If there are only two cannibals and two anthropolo-
gists, we get the following result:

It takes at least 5 crossings

What if there are 4 of each? It turns out that there is no solution. The program runs until it
overflows its storage capacity.

Summary
All of these examples show elegant recursive solutions to tricky problems. It’s a great exercise
to challenge your assumptions with these types of problems and look for not only logical solu-
tions but also programmatic ones.

In the next chapter, we will begin to gain a deeper understanding of C++ by learning
about parametric polymorphism in the context of basic generics.

CHAPTER 13 ■ FUN, FUN, AND MORE FUN 229

6080CH13.qxp 10/24/06 1:04 AM Page 229

6080CH13.qxp 10/24/06 1:04 AM Page 230

Advanced Concepts

P A R T 3

6080CH14.qxp 10/24/06 1:04 AM Page 231

6080CH14.qxp 10/24/06 1:04 AM Page 232

Generics

A common mistake that people make when trying to design something completely fool-

proof is to underestimate the ingenuity of complete fools.

—Douglas Adams

In this chapter, I introduce generics. This feature was introduced in version 2.0 of the .NET
Framework and is supported by all of the Microsoft Visual Studio 2005 languages. You will
learn how generics can help us solve a variety of problems that arise when we wish to build
classes that act on different types of data without sacrificing type safety. In this chapter, we
will also begin using a variety of .NET Framework classes to create more interesting and
instructive examples.

A Queue of Tasks
Let’s start with a simple example. We have a queue of custom classes called Task. We add Task
items to the end of the queue with the main thread and read them off the beginning of the
queue with a second thread. We then execute our classes in a First-In, First-Out (FIFO) fashion.

C# Implementation Under .NET 1.0
In .NET version 1.0, we would implement this in C# using the System.Collections.Queue class.
Let’s have a look at this using the Object Browser in the Visual Studio 2005 IDE.

Select Object Browser from the View menu, and an Object Browser tab is added to the
main frame. We can expand the plus signs on mscorlib, System.Collections, and Queue, and
then we can view the methods, fields, properties, and events of the System.Collections.Queue
class. The Enqueue(object o) and Dequeue() methods provide the functionality we need.

233

C H A P T E R 1 4

6080CH14.qxp 10/24/06 1:04 AM Page 233

Enqueue
System.Void Enqueue(System.Object obj)

Membership: Member of System.Collections.Queue.
Description: Adds an object to the end of the System.Collections.Queue.
Argument:

• obj: The object to add to the System.Collections.Queue. The value can be null.

Dequeue
System.Object Dequeue()

Membership: Member of System.Collections.Queue.
Description: Removes and returns the object at the beginning of the
System.Collections.Queue.
Return Value:

• The object that is removed from the beginning of the System.Collections.Queue.

Exception:

• System.InvalidOperationException: The System.Collections.Queue queue is
empty.

Implementation
To implement our queue of instances of Task, we need to convert the Task object to a System.
Object or object, since we’re using C#, so that it can be used by the Enqueue() routine. This is
performed automatically by the compiler, since object is a base class. Dequeuing presents
more of a problem though. Dequeuing returns an object that must be recast to an instance
of Task. This recasting opens up the possibility that someone somewhere down the line may
Enqueue() an object of a type other than Task, thus generating an exception and making this
implementation not type safe.

The core of our application looks like this:

using System.Collections;

namespace Task

{

class Task

{

public void Execute()

{

}

}

class Program

{

static Queue q = new Queue();

static void ExecutionThread()

CHAPTER 14 ■ GENERICS234

6080CH14.qxp 10/24/06 1:04 AM Page 234

{

Task t = (Task)q.Dequeue();

t.Execute();

}

static void Main(string[] args)

{

q.Enqueue((object) new Program());

ExecutionThread();

}

}

}

Note that the compiler automatically converts an instance of Task to an object for
Enqueue(), since object is a base class for Task. The recast from Dequeue(), however, requires
an explicit cast since, on its face, the compiler has no way of knowing that the queue contains
a Task object. In fact, you can change the Enqueue() line to the following:

q.Enqueue(new Program());

The snippet compiles without error. Try to execute it now:

Unhandled Exception: System.InvalidCastException: Unable to cast

object of type 'Task.Program' to type 'Task.Task'.

at Task.Program.ExecutionThread()

at Task.Program.Main(String[] args)

Your program compiles without any errors but generates an error on execution. You
would certainly catch this upon testing if it were in one of your main code paths, but what
would happen if it only existed in some seldom-used routine that would only be called under
certain circumstances? This could get ugly. We’ll get back to fixing this later, when we switch to
generics. Meanwhile, let’s get back to the sample.

Threads
To make our sample more meaningful, we want to Enqueue() and Dequeue() tasks on separate
threads. For this, we take advantage of the System.Threading namespace.

The Thread Class
Let’s turn to the Visual Studio Object Browser. Expand the Thread class under [mscorlib]
System.Threading to find the Thread class. We are interested in this constructor overload.

Constructor
public Thread(System.Threading.ThreadStart start)

Membership: Member of System.Threading.Thread.
Description: Initializes a new instance of the System.Threading.Thread class.

CHAPTER 14 ■ GENERICS 235

6080CH14.qxp 10/24/06 1:04 AM Page 235

Argument:

• start: A System.Threading.ThreadStart delegate that represents the methods to be
invoked when this thread begins executing.

Exception:

• System.ArgumentNullException: The start argument is null.

Methods
We will use the Start() and Sleep() methods.

Start

public void Start()

Membership: Member of System.Threading.Thread.
Description: Causes the operating system to change the state of the current instance to
System.Threading.ThreadState.Running.
Exceptions:

• System.Threading.ThreadStateException: The thread has already been started.

• System.Security.SecurityException: The caller does not have the appropriate
System.Security.Permissions.SecurityPermission.

• System.OutOfMemoryException: There is not enough memory available to start this
thread.

Sleep

public static void Sleep(int millisecondsTimeout)

Membership: Member of System.Threading.Thread.
Description: Suspends the current thread for a specified time.
Argument:

• millisecondsTimeout: The number of milliseconds for which the thread is blocked.
Specify zero (0) to indicate that this thread should be suspended to allow other
waiting threads to execute. Specify System.Threading.Timeout.Infinite to block
the thread indefinitely.

Exception:

• System.ArgumentOutOfRangeException: The time-out value is negative and is not
equal to System.Threading.Timeout.Infinite.

CHAPTER 14 ■ GENERICS236

6080CH14.qxp 10/24/06 1:04 AM Page 236

The ThreadStart class
In .NET, threads are initialized through the use of a delegate that contains the main method of
the new thread. As you can see, the Thread class accepts a ThreadStart delegate.

Let’s look at the description.

ThreadStart

public delegate void ThreadStart()

Membership: Member of System.Threading.
Description: Represents the method that executes on a System.Threading.Thread.

Making Threading Work
In order to use a second thread, we declare a method that takes no arguments and returns
void, so that it matches the signature of the ThreadStart delegate. Next, we create an instance
of ThreadStart and pass it to the Thread constructor in order to create a new thread. We can
then start this thread using the Start() method of the Thread class.

Putting It Together
We now have two threads operating on our queue: the main thread adds tasks, and the back-
ground thread executes them. Since they are both accessing the same data object, the queue,
we need to take pains to ensure that they take turns with this object. If we don’t, the thread-
switch mechanism may suspend one thread right in the middle of updating the state of the
queue, and the resuming thread could be passed a queue in an invalid state. To make sure the
threads take turns, we use the lock keyword in C#:

static Queue q = new Queue();

lock(q)

{

//exclusive access to q here

}

Using .NET Reflector in IL view, we can see that the lock keyword calls System.Threading.
Monitor.Enter(object) at the beginning of the lock block and System.Threading.Monitor.
Exit(object) at the end. In this way, we can assure that access to the q object is reserved until
the block completes, even if the thread is switched in the middle of the lock block.

Therefore, we end up with the following:

using System;

using System.Collections;

using System.Threading;

namespace Task

{

class Task

{

private string taskname;

public Task(string s)

{

CHAPTER 14 ■ GENERICS 237

6080CH14.qxp 10/24/06 1:04 AM Page 237

taskname = s;

}

public void Execute()

{

Console.WriteLine(taskname);

}

}

class Program

{

static Queue q = new Queue();

static Thread executionThread =

new Thread(new ThreadStart(ExecutionThread));

static void ExecutionThread()

{

while (true)

{

Task t;

lock (q)

{

if (q.Count == 0)

{

continue;

}

t = (Task)q.Dequeue();

}

if (t == null)

{

return;

}

t.Execute();

}

}

static void Main(string[] args)

{

executionThread.Start();

lock(q)

{

q.Enqueue(new Task("task #1"));

q.Enqueue(new Task("task #2"));

q.Enqueue(null);

}

while (true)

{

Thread.Sleep(10);

lock (q)

{

if (q.Count == 0)

CHAPTER 14 ■ GENERICS238

6080CH14.qxp 10/24/06 1:04 AM Page 238

{

break;

}

}

}

}

}

}

In this sample, we spawn and start the execution thread. Next, we use the Enqueue()
method for various tasks, enqueuing a final null to indicate that all of the work is done. We
then enter a loop and wait for the tasks to be complete.

One important thing to note is that we minimize the amount of time we hold the lock on
the queue so as not to interfere with the other task. In the execution thread, this takes the form
of postponing the execution of a task until after the lock is released.

Executing this program gives the following output:

C:\>csc /nologo task.cs

C:\>task

task #1

task #2

Moving to Generics
Let’s move to C++/CLI and .NET 2.0 using a more-sophisticated sample. We will go over it first
in C# to ease the transition.

Workin’ at the Car Wash
Suppose we are simulating a car wash. First, each car is vacuumed and has its interior cleaned.
Next, it is moved onto the conveyor belt that drags it through a machine that cleans its exte-
rior. We can take advantage of pipelining: cars can have their interiors cleaned at the same
time other cars are having their exteriors washed. To implement this, we maintain a separate
queue as well as dedicated execution threads for each of the interior and exterior stations.
Pipelining the cars allows us to increase the throughput of the car wash without affecting
latency.

Let’s have a look at the code in C#:

using System;

using System.Collections.Generic;

using System.Threading;

namespace CarWash

{

class Car

{

private string CarName;

public override string ToString()

CHAPTER 14 ■ GENERICS 239

6080CH14.qxp 10/24/06 1:04 AM Page 239

{

return CarName;

}

public Car(string s)

{

CarName = s;

}

}

class Program

{

static Queue<Car> washQueue = new Queue<Car>();

static Queue<Car> vacuumQueue = new Queue<Car>();

static Thread WashThread = new Thread(new ThreadStart(Wash));

static Thread VacuumThread = new Thread(new ThreadStart(Vacuum));

static void Wash()

{

for (; true; Thread.Sleep(10))

{

Car c;

lock (washQueue)

{

if (washQueue.Count == 0)

{

continue;

}

c = washQueue.Dequeue();

}

if (c == null)

{

break;

}

Console.WriteLine("-Starting Wash of {0}", c);

Thread.Sleep(1300);

Console.WriteLine("-Completing Wash of {0}", c);

}

}

static void Vacuum()

{

for(;true;Thread.Sleep(10))

{

Car c;

lock(vacuumQueue)

{

if(vacuumQueue.Count == 0)

{

continue;

}

CHAPTER 14 ■ GENERICS240

6080CH14.qxp 10/24/06 1:04 AM Page 240

c = vacuumQueue.Dequeue();

}

if (c != null)

{

Console.WriteLine("+Starting Vacuum of {0}", c);

Thread.Sleep(1000);

Console.WriteLine("+Completing Vacuum of {0}", c);

}

lock (washQueue)

{

washQueue.Enqueue(c);

}

if (c == null)

{

break;

}

}

}

static void Main(string[] args)

{

VacuumThread.Start();

WashThread.Start();

lock (vacuumQueue)

{

vacuumQueue.Enqueue(new Car("Volvo"));

vacuumQueue.Enqueue(new Car("VW"));

vacuumQueue.Enqueue(new Car("Jeep"));

vacuumQueue.Enqueue(null);

}

while (VacuumThread.IsAlive || WashThread.IsAlive)

{

Thread.Sleep(10);

}

}

}

}

Now let’s run it:

C:\>csc /nologo carwash.cs

C:\>carwash

+Starting Vacuum of Volvo

+Completing Vacuum of Volvo

-Starting Wash of Volvo

+Starting Vacuum of VW

+Completing Vacuum of VW

+Starting Vacuum of Jeep

CHAPTER 14 ■ GENERICS 241

6080CH14.qxp 10/24/06 1:04 AM Page 241

-Completing Wash of Volvo

-Starting Wash of VW

+Completing Vacuum of Jeep

-Completing Wash of VW

-Starting Wash of Jeep

-Completing Wash of Jeep

Note that you can see the overlapping of task as well as dependency delays just from the
order in which the tasks started and completed in the output.

A Review of the C# Code
This code has more or less the same elements as the previous sample, but there are some
major differences.

In the first example, we used the Queue class from System.Collections to manage a queue
of tasks. Since the Queue class operates on elements of type System.Object, we had to cast Task
to a base class, System.Object, in order to enqueue it. This was done automatically by the
compiler. When we wanted to dequeue it, we had to explicitly recast it back to Task. Recasting
to the wrong type would not be caught by the compiler at compile time and could potentially
cause a runtime error.

The Generic Version of Queue
In this example, we use the generic version of Queue, called Queue<T>. Using the Object
Browser, we can find that this class is part of System.dll instead of mscorlib and exists in the
System.Collections.Generic namespace. Now, do not be misled by the fact that these classes
have similar names. Queue and Queue<T> are completely different classes. They each represent
different types. Queue<T> has a more complex type, as it relies on the type parameter T. Since
these types are completely different, the compiler defines no conversions, either implicit or
explicit, between them. In addition, Queue<T> is an inchoate type until the type parameter T is
specified. When the code, which uses Queue<T> with a defined type parameter, is executed, the
runtime specializes Queue<T> using intermediate language appropriate to the type parameter
T. This may vary depending on whether T is a reference type or a value type.

Let’s examine the methods.

Enqueue
public void Enqueue(T item)

Membership: Member of System.Collections.Generic.Queue<T>.
Description: Adds an object to the end of the System.Collections.Generic.Queue<T>.
Argument:

• item: The object to add to the System.Collections.Generic.Queue<T>. The value
can be null for reference types.

CHAPTER 14 ■ GENERICS242

6080CH14.qxp 10/24/06 1:04 AM Page 242

Dequeue
public T Dequeue()

Membership: Member of System.Collections.Generic.Queue<T>.
Description: Removes and returns the object at the beginning of the System.Collections.
Generic.Queue<T>.
Return value:

• The object that is removed from the beginning of the
System.Collections.Generic.Queue<T>.

Exception:

• System.InvalidOperationException: The System.Collections.Generic.Queue<T> is
empty.

Analysis
As you can see, the methods for Enqueue() and Dequeue() in Queue<T> are similar to the ones in
Queue. In this case, “vive la différence” seems an appropriate phrase. The Enqueue() method
takes an item of type T, and Dequeue() returns an item of type T. In our example code, we are
moving instances of class Car through the pipeline. Since we want a queue of Cars, we start by
creating an instance of Queue<T>, where T is Car:

static Queue<Car> washQueue = new Queue<Car>();

If we think of Queue<Car> as a single identifier, we find this is a simple call to the construc-
tor. Next, we can enqueue and dequeue instances of class Car, and the compiler does all of the
type checking for us:

Car c;

washQueue.Enqueue(c);

//

c = washQueue.Dequeue();

And that’s all there is to it. For what it’s worth, Queue is a class that acts very similarly to
Queue<object>, though, of course, they are not identical. They accomplish the same things
though—they each manage a queue of elements of type object or System.Object.

We also use the IsAlive property to manage our threads in the car wash. We use this
property to wait for the vacuuming and washing threads to complete.

IsAlive
public bool IsAlive { get; }

Membership: Member of System.Threading.Thread.
Description: Gets a value indicating the execution status of the current thread.

CHAPTER 14 ■ GENERICS 243

6080CH14.qxp 10/24/06 1:04 AM Page 243

Return values:

• true if this thread has been started and has not terminated normally or aborted.

• false otherwise. As you can see, IsAlive is a read-only property. It has a get
accessor but no set accessor.

Moving to C++/CLI
In this section, we are going to go over the C++ syntax for generics. I will also switch to C++
syntax when describing namespaces and such.

The syntax for creating and defining generic classes in C# is very different from C++. How-
ever, the syntax for using and consuming them is almost identical. This is similar to the way
that managed arrays differ in the way they are declared in C# and C++, yet they are used simi-
larly in both languages.

Because of the differences in syntax, we will first convert the CarWash program to
C++/CLI and examine the definition and usage of generics in C++/CLI. Next, we will begin
creating generic classes of our own.

Now let’s translate the CarWash program sample into C++/CLI:

#using <System.dll>

#include <msclr\lock.h>

using namespace msclr;

using namespace System;

using namespace System::Collections::Generic;

using namespace System::Threading;

namespace CarWash

{

ref class Car

{

private:

String ^CarName;

public:

virtual String ^ ToString() override

{

return CarName;

}

Car(String ^s)

{

CarName = s;

}

};

ref class Program

{

static Queue<Car^> ^washQueue = gcnew Queue<Car^>();

static Queue<Car^> ^vacuumQueue = gcnew Queue<Car^>();

static Thread ^washThread =

gcnew Thread(gcnew ThreadStart(wash));

CHAPTER 14 ■ GENERICS244

6080CH14.qxp 10/24/06 1:04 AM Page 244

static Thread ^vacuumThread =

gcnew Thread(gcnew ThreadStart(vacuum));

static void wash()

{

for (; true; Thread::Sleep(10))

{

Car ^c;

{

lock l(washQueue);

if (washQueue->Count == 0)

{

continue;

}

c = washQueue->Dequeue();

}

if (c == nullptr)

{

break;

}

Console::WriteLine("-Starting wash of {0}", c);

Thread::Sleep(1300);

Console::WriteLine("-Completing wash of {0}", c);

}

}

static void vacuum()

{

for(;true;Thread::Sleep(10))

{

Car ^c;

{

lock l(vacuumQueue);

if(vacuumQueue->Count == 0)

{

continue;

}

c = vacuumQueue->Dequeue();

}

if (c != nullptr)

{

Console::WriteLine("+Starting vacuum of {0}", c);

Thread::Sleep(1000);

Console::WriteLine(

"+Completing vacuum of {0}", c);

}

{

lock l(washQueue);

washQueue->Enqueue(c);

CHAPTER 14 ■ GENERICS 245

6080CH14.qxp 10/24/06 1:04 AM Page 245

}

if (c == nullptr)

{

break;

}

}

}

public:

static void Main(...array<String^> ^ args)

{

vacuumThread->Start();

washThread->Start();

{

lock l(vacuumQueue);

vacuumQueue->Enqueue(gcnew Car("Volvo"));

vacuumQueue->Enqueue(gcnew Car("VW"));

vacuumQueue->Enqueue(gcnew Car("Jeep"));

vacuumQueue->Enqueue(nullptr);

}

while (vacuumThread->IsAlive || washThread->IsAlive)

{

Thread::Sleep(10);

}

}

};

}

void main()

{

CarWash::Program::Main();

}

It turns out that this sample is somewhat difficult to translate to C++/CLI. In addition to
the run-of-the-mill translations, I’d like to point out a few in the following sections.

Override
To override a virtual method, we need to use both the virtual and override keywords in
C++/CLI. Also, the order of keywords is different.

In C#, we can use the following line to override a virtual method:

public override string ToString()

In C++/CLI, we need this one:

public:

virtual String ^ ToString() override

CHAPTER 14 ■ GENERICS246

6080CH14.qxp 10/24/06 1:04 AM Page 246

Add a Reference to System.dll
When we use Queue<T>, we need to tell the compiler not only which namespace contains the
class but which assembly DLL. This can be done from the C# or C++/CLI command line or by
an explicit #using reference within the code. You can also specify a reference to this DLL using
the IDE. Specify the reference within the code as follows:

#using <System.dll>

If you neglect to add this line, the compiler issues a syntax error, as it does not find that
the identifier Queue is defined, or it confuses it with the System::Collections::Queue class
defined in mscorlib.dll, which is not a generic.

Translate the lock Keyword
The lock keyword in C# generates a set of blocks using the System::Threading::Monitor class.
In C#, the following code:

class Program

{

public static void Main()

{

string s = "hello";

lock(s)

{

//inside the lock

}

}

}

is equivalent to this code:

using System.Threading;

class Program

{

public static void Main()

{

string s = "hello";

Monitor.Enter(s);

try

{

//inside the lock

}

finally

{

Monitor.Exit(s);

}

}

}

CHAPTER 14 ■ GENERICS 247

6080CH14.qxp 10/24/06 1:04 AM Page 247

Monitor.Enter() claims exclusive access to the object for the duration of the try block.
When the try block completes, whether or not there has been an exception, the object is
released using Monitor.Exit().

Enter
public static void Enter(object obj)

Membership: Member of System.Threading.Monitor.
Description: Acquires an exclusive lock on the specified object.
Argument:

• obj: The object on which to acquire the monitor lock.

Exception:

• System.ArgumentNullException: The obj argument is null.

Exit
public static void Exit(object obj)

Membership: Member of System.Threading.Monitor.
Description: Releases an exclusive lock on the specified object.
Argument:

• obj: The object on which to release the lock.

Exceptions:

• System.Threading.SynchronizationLockException: The current thread does not
own the lock for the specified object.

• System.ArgumentNullException: The obj argument is null.

Lock in C++/CLI
It is possible to use the exact same construction in C++/CLI:

using namespace System;

using namespace System::Threading;

ref class Program

{

public:

static void Main()

{

String ^s = "hello";

Monitor::Enter(s);

try

{

CHAPTER 14 ■ GENERICS248

6080CH14.qxp 10/24/06 1:04 AM Page 248

//inside the lock

}

finally

{

Monitor::Exit(s);

}

}

};

In addition, there are other ways to create a lock in C++, because it has deterministic
destruction of objects. Where C# treats destructors as .NET finalizers, C++/CLI has explicit
finalizers as well as destructors that are capable of deallocating resources as soon as an object
goes out of scope. It is possible to duplicate much of the same functionality in C# using the
IDisposable interface and the .NET Dispose() pattern, but it is much more tedious. In C++, it’s
automatic. Allocate an instance of a class, and it is destroyed when the block ends. Therefore,
a constructor can be used to claim the lock, and the destructor used to release it.

A C++ implementation to do this would look like the following:

using namespace System;

using namespace System::Threading;

ref struct Locker

{

Object ^o;

Locker(Object ^s)

{

o = s;

Monitor::Enter(o);

}

~Locker()

{

Monitor::Exit(o);

}

};

ref class Program

{

public:

static void Main()

{

String ^s = "hello";

{

Locker lk(s);

//inside the lock

}

}

};

CHAPTER 14 ■ GENERICS 249

6080CH14.qxp 10/24/06 1:04 AM Page 249

We first create a class called Locker, which is the holder for the System::Threading::
Monitor class. The constructor is called when the locked section is entered, and the destructor
is called when the locked section is exited.

The following line creates an instance of Locker and calls the constructor with arguments:

Locker lk(s);

When the instance variable lk goes out of scope with the next closing curly brace, Locker’s
destructor is called along with Monitor::Exit().

Note that the destructor is called even if the code inside the lock throws an exception. For
example, let’s modify the previous code to display status as well as throw an exception:

using namespace System;

using namespace System::Threading;

ref struct Locker

{

Object ^o;

Locker(Object ^s)

{

o = s;

Console::WriteLine("Lock acquired");

Monitor::Enter(o);

}

~Locker()

{

Console::WriteLine("Lock released");

Monitor::Exit(o);

}

};

ref class Program

{

public:

static void Main()

{

String ^s = "hello";

{

Locker lk(s);

Console::WriteLine("throw exception");

throw;

}

}

};

void main()

{

try

{

Program::Main();

}

catch(Exception ^e)

CHAPTER 14 ■ GENERICS250

6080CH14.qxp 10/24/06 1:04 AM Page 250

{

Console::WriteLine("catch exception");

}

}

If we run this, we see the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Lock acquired

throw exception

Lock released

catch exception

This output shows that there is no danger of leaving locks lying around, and deterministic
class construction and destruction are viable alternatives to try finally blocks in C++/CLI.

To do the same thing in C#, you would take advantage of the variant of using for limiting
the scope of an instance to a block with a class that implements System::IDisposable. A pro-
totype for this method in C# follows:

using System;

class Locker : IDisposable

{

public void Dispose()

{

}

public Locker()

{

}

~Locker()

{

}

}

class Program

{

public static void Main()

{

using(Locker l = new Locker())

{

}

}

}

The Predefined Lock Class
The include file msclr\lock.h defines a sophisticated class that is able to lock resources. It uses
System::Threading::ReaderWriterLock as well as template programming.

CHAPTER 14 ■ GENERICS 251

6080CH14.qxp 10/24/06 1:04 AM Page 251

All we have to do in order to take advantage of it is to add the following lines:

#include <msclr\lock.h>

using namespace msclr;

We can then instantiate msclr::lock classes the same way as the Locker class:

{

lock l(vacuumQueue);

// locked code

}

// destructor has been called and lock is released.

Compile and Run
Let’s compile CarWash, and check the results:

C:\>cl /clr:pure /nologo carwash.cpp

C:\>carwash.exe

+Starting vacuum of Volvo

+Completing vacuum of Volvo

-Starting wash of Volvo

+Starting vacuum of VW

+Completing vacuum of VW

+Starting vacuum of Jeep

-Completing wash of Volvo

-Starting wash of VW

+Completing vacuum of Jeep

-Completing wash of VW

-Starting wash of Jeep

-Completing wash of Jeep

Creating Generic Classes in C++/CLI
In C++/CLI, the syntax for generic types is modeled off the syntax for templates. Templates are
similar to generics in that they both accept type parameters. The primary difference between
them is that templates are processed at compile time, and generics are processed at runtime.
Templates are both more complex and more powerful because of this distinction, and we will
cover this in detail in Chapter 15. For now, what is important is to realize that the C++/CLI
syntax for generics is based on the syntax for C++ templates.

A basic, generic class with a single type parameter T is declared in C# as follows:

class R<T> {}

The same class is declared as follows in C++/CLI:

generic <typename T> ref class R {};

CHAPTER 14 ■ GENERICS252

6080CH14.qxp 10/24/06 1:04 AM Page 252

In C++/CLI, it is necessary to tell the compiler that T is a type parameter, whereas this is
implicit in C#. The reason for this is that C++ has several different types of parameters for tem-
plates, including the following ones:

• Type template parameter

• Nontype template parameter

• Template template parameter

For generics under .NET 2.0, the only supported scenario is that T represents a type, but
for syntactic consistency and ease of implementation under current C++ compiler grammars,
the long form of declaration is required.

Within the definition of the class, the letter T is used freely as a substitute for the type
name with a few caveats.

When you write a generic class, the compiler has no idea what kind of types you intend to
use as generic arguments. For this reason, the class has to compile for all types, not just the
ones you have in mind. The Queue<T> class is a good example of a class that operates on han-
dles to items, without doing anything with the item themselves. The compiler need not know
anything about the type T beyond the fact that it is derived from System::Object. All generic
types are assumed to derive from System::Object. More specialized classes that can work with
instances of the data themselves can be created using templates, generic constraints, or the
cast operators. The next two chapters on templates and advanced generics and classes will
help you to write more powerful classes.

A simple generic class follows:

using namespace System;

generic <typename T>

ref struct Test

{

static void Print(T t)

{

Console::WriteLine(t->ToString());

}

};

int main()

{

Test<int>::Print(3);

}

After compiling and running, we get

C:\>cl /nologo /clr:pure test.cpp

C:\>test

3

In this code snippet, we are creating a generic class named Test. Inside of it, we have
a static method called Print(), which calls ToString(). Our type T inherits the method
ToString() from System::Object. Note that the only methods that can be used on instances
of T are those from System:Object.

CHAPTER 14 ■ GENERICS 253

6080CH14.qxp 10/24/06 1:04 AM Page 253

For example, consider the following code:

using namespace System;

ref struct Hello

{

void Function()

{

Console::WriteLine("Hello!");

}

};

generic <typename T>

ref struct Test

{

static void Run(T t)

{

t->Function();

}

};

void main()

{

Hello ^ hello = gcnew Hello();

Test<Hello^>::Run(hello);

}

Will this compile? The snippet we have to worry about is right here:

static void Run(T t)

{

t->Function();

}

For this code to compile, the type T would need to have a method called Function() that
it could call, right? In this case, we are passing Hello^ as our type T when calling Run(). This
seems reasonable, because when Run() executes, it finds that Hello^ has a method called
Function() and this code compiles, right?

Let’s give it a shot:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

test.cpp(13) : error C2039: 'Function' : is not a member of 'System::Object'

c:\windows\microsoft.net\framework\v2.0.50727\mscorlib.dll :

see declaration of 'System::Object'

Code inside a generic class (or function) only compiles if every possible type that could
conceivably be inserted for T would be valid for the code. In this case, the only assumption the
compiler makes is that T derives from System::Object; therefore, you get the stated error mes-
sage. There are a few ways to do this sort of thing, and we will see them in detail in Chapters 15
and 16, but I’d like to introduce them here.

CHAPTER 14 ■ GENERICS254

6080CH14.qxp 10/24/06 1:04 AM Page 254

Use a Constraint
A constraint tells the compiler that the generic type always has certain characteristics. One
possibility is to say that the type T has Hello as a base class. In order to declare this, we change
the generic declaration of Test to the following:

generic <typename T>

where T : Hello

ref struct Test

{

static void Run(T t)

{

t->Function();

}

};

We added this line:

where T : Hello

This line instructs the compiler to assume that Hello is a base class of T. Now let’s
compile it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Hello!

Of course, if we then modify main() to pass a type that is not derived from Hello, we get a
compilation error. Try the following lines:

void main()

{

Test<int>::Run(0);

}

And compile the code:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

test.cpp(21) : error C3214: 'int' : invalid type argument for generic

parameter 'T' of generic 'Test', does not meet constraint 'Hello ^'

test.cpp(12) : see declaration of 'Test'

For more on constraints, see Chapter 16.

Use a Template
Generics are runtime mechanisms in which the code has to work for all types. Templates are
compile-time mechanisms in which the code can be specialized for a specific type. If we

CHAPTER 14 ■ GENERICS 255

6080CH14.qxp 10/24/06 1:04 AM Page 255

merely change the single word generic to template in the original sample code before my
introduction to constraints, we will get the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Hello!

And everything works. If we use the modified main() that passes an int instead of a
Hello^, we get

C:\>cl /nologo /clr:pure test.cpp

test.cpp(14) : error C2227: left of '->Function' must point to

class/struct/union/generic type

type is 'int'

test.cpp(13) : while compiling class template member function

'void Test<T>::Run(T)'

with

[

T=int

]

test.cpp(20) : see reference to class template instantiation

'Test<T>' being compiled

with

[

T=int

]

For more on templates, see Chapter 15.

Use a Cast
A third way to deal with this is to let the compiler assume that the generic type parameter is
only derived from System::Object and cast it at runtime to the type desired. Since this is not
type safe, we want to add a bit more code to do this in an intelligent manner. Using the equiv-
alent of the C# is and as keywords, we construct code as follows, checking to see if the type
really is derived from Hello^:

static void Run(T t)

{

if(t->GetType() == Hello::typeid)

{

Hello ^hello = safe_cast<Hello^>(t);

hello->Function();

}

}

For more on the casting mechanisms, see Chapter 16.

CHAPTER 14 ■ GENERICS256

6080CH14.qxp 10/24/06 1:04 AM Page 256

Generic Functions
When you only need a type parameter for a specific function rather than an entire class, it is
possible to use a generic function. Generic functions are simpler than generic classes and
have the advantage that the compiler can often deduce the type parameter of the function
automatically from its arguments. To declare a generic function, you use a similar syntax to
that of a generic class.

Here is a simple generic function that just prints out the type of a type argument:

using namespace System;

generic <typename T>

void Function(T t)

{

Console::WriteLine(t->GetType());

}

ref class Test {};

int main()

{

Function(0);

Function<short>(0);

Test ^t = gcnew Test();

Function(t);

}

The first time we call Function(), we use type deduction, and the compiler determines
that 0 is of type int. In the second call, we explicitly state that we are passing a short 0. In the
last call, we are back to type deduction, as the compiler determines that Function() is passed
an instance of type Test^.

Now let’s compile and execute it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

System.Int32

System.Int16

Test

Summary
You should now feel that you have a basic understanding of generics along with some of the
support for multiple threads provided in the .NET Framework. Now let’s take it to the next
level. We will build on this foundation and tackle templates in Chapter 15 and advanced
generics in Chapter 16.

CHAPTER 14 ■ GENERICS 257

6080CH14.qxp 10/24/06 1:04 AM Page 257

6080CH14.qxp 10/24/06 1:04 AM Page 258

Introduction to Templates

Even for practical purposes, theory generally turns out the most important thing in

the end.

—Oliver Wendell Holmes

In the previous chapter, we saw what you could do with C++/CLI generics. In this chapter, I
will introduce templates, which are similar to generics in many ways and different in many
others.

Comparison with Generics
Templates and generics both allow you to create functions and classes that implement func-
tionality for multiple types. We can approach this in one of two ways:

• Write code that is decoupled from the type of data that is being acted upon. The code
only implements algorithms that do not depend on the data type, so the algorithms act
on the data in a generic fashion. This is the idea behind CLI generics.

• Write generalized high-level code that the compiler adapts for each type of data. The
result is a separate set of data-dependent methods and types for each type of data that
is acted upon. This is the idea behind C++ templates.

Generics types are decoupled from the data types until execution, and templates are also
decoupled but bound by the compiler to specific data types during the compilation. The result
of a generic method is a single method specified in the IL; the result of a template method is
one method generated in the IL for each combination of type arguments passed to the tem-
plate during compilation.

■Note Generics is a feature supported by the CLR, and generics is implemented in a variety of .NET
languages including C#. In Visual Studio 2005, however, templates are unique to C++.

259

C H A P T E R 1 5

6080CH15.qxp 10/24/06 1:04 AM Page 259

Because generic methods and classes are ignorant of their type parameters, they can
easily be defined in one module, be referenced in another module defining a new type, and
still be used on that type. For example, the generic Stack<T> class in System.Collections.
Generics can be used to manage a stack of any number of user-defined types.

Template methods and types, although defined in a general fashion, depend on their type
parameters and require a level of runtime compilation that does not exist in the CLI to operate
on types defined elsewhere. For this reason, templates are compilation-unit specific.

The requirement that generic methods and classes be completely ignorant of their type
parameters places severe restrictions on generics. Generic constraints help a little, in that they
allow the generic types to make some assumptions about the possible type parameters and to
act only on type parameters that implement a given set of interfaces.

Templates have no such restriction. A template can be applied to any type, and the
compiler can determine if a syntax error is generated by an invalid type parameter. Type
parameters are even able to fail during the initial substitution phase, and rather than aborting
the compilation, the compiler continues to look for an appropriate template candidate for
substitution without generating a syntax error. Templates can also have parameters that are
not types, called nontype template parameters, and parameters that are templates themselves,
called template template parameters.

Where generic types represent an efficient way to reduce code by allowing the program-
mer to write a single method that applies to multiple types, templates emerge as a powerful
C++ metaprogramming environment and allow the programmer to take advantage of the
compilation process to implement sophisticated algorithms and language extensions at
compile time.

Syntactic Differences
These two type-parameter mechanisms have great a deal in common and can often be used
interchangeably. The similarity of templates and generics in terms of functionality is reflected
in the C++/CLI syntax. Switching from one to the other is often as simple as changing the
generic keyword to template, or vice versa.

Consider the following line:

generic <typename T> ref class TypeGeneric {};

TypeGeneric <T> is a complete generic type capable of runtime creation. Now consider
this line:

template <typename T> ref class TypeTemplate {};

TypeTemplate <T> is not a type at all. It is a model for a type, which can be generated by
the compiler when it is used or instantiated later on in the compilation process.

Summary
While templates and generics are similar in many ways, there is one major difference between
the two mechanisms. Unlike generic types, which are instantiated by the Virtual Execution
System (VES) at runtime, templates are fully resolved, instantiated, and compiled by the C++
compiler. Generic types can be thought of as a packaging mechanism for CLI types, whereas
templates act more like smart macros that are expanded, verified, and executed at compile
time.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES260

6080CH15.qxp 10/24/06 1:04 AM Page 260

Compilation Process
When the compiler encounters a generic function, it verifies that it makes sense for all possible
types given its constraints and implementation. A single function is then generated in the IL.

Consider the following simple generic function:

generic <typename T>

ref class Test

{

public:

Test()

{

System::Console::WriteLine(this->ToString());

}

};

void main()

{

Test<int> i;

Test<float> j;

}

When the class Test is parsed, IL and metadata are created for a generic class. Let’s com-
pile and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Test`1[System.Int32]

Test`1[System.Single]

Now let’s run ildasm.exe on it. In the ILDasm main window, open the constructor (.ctor)
definition. You should find IL and metadata similar to the following:

.method public hidebysig specialname rtspecialname

instance void .ctor() cil managed

{

// Code size 18 (0x12)

.maxstack 1

IL_0000: ldarg.0

IL_0001: call instance void [mscorlib]System.Object::.ctor()

IL_0006: ldarg.0

IL_0007: callvirt instance string [mscorlib]System.Object::ToString()

IL_000c: call void [mscorlib]System.Console::WriteLine(string)

IL_0011: ret

} // end of method Test`1::.ctor

The compiler created a method named Test`1::.ctor, which is the constructor of a
class named Test with a single generic parameter. Note that, in this case, Test<int> and
Test<float> have nothing to do with the constructor. The constructor for Test<T> is inde-
pendent of the type parameter.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 261

6080CH15.qxp 10/24/06 1:04 AM Page 261

On the other hand, take the exact same example and substitute the keyword generic for
template. Compile and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Test<int>

Test<float>

As you can see, two completely different classes, Test<int> and Test<float>, are created.
Let’s run ildasm.exe on this and have a look (see Figure 15-1). Note that Test<float> and
Test<int> are distinct.

Figure 15-1. Metadata for the different compile-time–generated template instantiations

Now let’s have a look at the code, along with a description of how the compiler parses it:

01: template <typename T>

02: ref class Test

03: {

04: public:

05: Test()

06: {

07: System::Console::WriteLine(this->ToString());

08: }

09: };

10: void main()

11: {

12: Test<int> i;

13: Test<float> j;

14: }

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES262

6080CH15.qxp 10/24/06 1:04 AM Page 262

By line 9, the compiler has recognized that there is a template. It then figures out which
types are determinate and indeterminate, binds any reference it can, issues any detectable
syntax errors, and files the template away for future instantiation.

If a generic were used, by line 9, the compiler would have enough information to commit
the class to metadata. With a template, it is just a potential class until it is instantiated. The
template tells the compiler how to make a certain kind of class if you decide to make one.

Now back to parsing. On line 12, the compiler attempts to instantiate Test<int>. The tem-
plate is reparsed, int is substituted for typename T, any unbound references are bound, and
the class is generated. The compiler is now ready to commit Test<int> to metadata. Likewise,
on line 13, the compiler is able to parse and determine whether Test<float> is valid.

■Note The CLR requires that generics are designed to work for all possible types meeting any given type
restraints, whereas templates only need to be designed to work with the types you actually instantiate.

Now open the Test<int> constructor (.ctor) definition. You should find metadata and IL
similar to the following:

.method public hidebysig specialname rtspecialname

instance void .ctor() cil managed

{

// Code size 18 (0x12)

.maxstack 1

IL_0000: ldarg.0

IL_0001: call instance void [mscorlib]System.Object::.ctor()

IL_0006: ldarg.0

IL_0007: callvirt instance string [mscorlib]System.Object::ToString()

IL_000c: call void [mscorlib]System.Console::WriteLine(string)

IL_0011: ret

} // end of method 'Test<int>'::.ctor

A quick comparison shows you that the metadata and IL for the method of the template
class and the method of the generic class are identical. In this case, it seems to make more
sense to use a generic, because the int and float cases are duplicates. In actuality, the per-
formance implications are unclear, because the CLR creates duplicate instantiations for value
types and creates a single, common instantiation for reference types.

Templates Don’t Really Exist
Since templates are instantiated into regular CLI types and methods, from the CLI perspec-
tive, they don’t exist as a special entity. The CLR supports generics explicitly, meaning that it
supports IL packaging types as generic parameters. There is no specific IL for templates, and
it’s easy to see why.

The compiler sees a template as a set of instructions for creating a class based on type
parameters. Once the types are instantiated with template arguments, the compiler knows
exactly what kind of class to create, and this class is written to metadata and IL specific to the

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 263

6080CH15.qxp 10/24/06 1:04 AM Page 263

types used in the instantiation. Only instances of the template, not the template itself, make it
into the module. Therefore, templates cannot be exported from an assembly like generics, and
the only way for a programmer to reuse a template is to reuse the source code definition of
that template.

Exercise

In theory, you could create a template generic, though this is not yet a part of the C++/CLI specification. Can you
think of a compelling reason to add this feature?

Constraining Freedom Is a Good Thing
To make the generics feature somewhat useful, being able to restrict the types in some fashion
became necessary. This is called generic constraints. Writing something using a completely
arbitrary type that is in any way useful is very difficult. After all, what could you do with it?
Even the previous sample routine relies on the fact that all CLR types support an interface that
has the ToString() method. Without that implicit constraint, even the previous simple exam-
ple would not compile. Therefore, constraints restrict, at compile time, the kinds of types that
may be used as generic type arguments and, equivalently, tell the generic what kinds of types
it needs to support. The typical paradigm is that you have a particular interface that you want
to use, so you constrain your generic type to derive from that interface. I’ll show an example
later in the chapter.

Unlike generics, templates do not support explicit type constraints. Because generics are
instantiated by the VES at runtime, they require a compile-time mechanism to prevent instan-
tiation of a generic type with invalid type arguments, and generic type constraints are that
mechanism. On the other hand, templates are resolved and instantiated by the compiler at
compile time, and thus do not suffer from the invalid runtime instantiation problem. It can
still be argued that some forms of explicit type constraints may be useful when used with tem-
plates, but, as a matter of design, C++ makes use of the type constraints implicitly present in
the template code instead.

The Template Paradigm
Generic types are designed to work under the following paradigms:

• You only call methods from System::Object.

• You use a constraint to restrict the possible type parameters and only use methods
enabled by the constraint (see Chapter 16).

• You use a cast operator to perform a runtime switch on the type parameter and to per-
form type-specific operations.

The basic idea is that generics either have to work for all possible types given the
restraints, which means either System::Object or any constraint you define, or the types
have to be forked and processed at compile time.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES264

6080CH15.qxp 10/24/06 1:04 AM Page 264

Templates are broader. Rather than the compiler checking that the class or method will
work for all or a class of type parameters when it is compiled, the compiler only checks that it
is possible for some type; that is, the template is preparsed for syntax errors.

When a template is instantiated with a particular set of type parameters, the template is
reevaluated in this context and compiles into code that is specific for the type parameters.

Specialization
A template may be specialized by redefining it with a more-specific set of type parameters.
The template engine favors the most-specialized version during compilation. For example, if
you wanted to make a default class template for all types, you would write the following:

template <typename T> ref class R {};

If you later decided that you wanted to handle a certain type, such as a double, in a custom
fashion, you would declare

template<> ref struct R<double> {};

A more-complicated example using a template function and a nontemplate function
overload follows:

using namespace System;

template <typename T> void function(T t)

{

Object ^o = t;

Console::WriteLine(o->GetType());

};

template<> void function(int i)

{

Console::WriteLine("template integer");

};

void function(int j)

{

Console::WriteLine("not a template");

}

void main()

{

String ^s="hello";

function(s);

function(3.0);

function(1);

function<int>(1);

}

In this example, we declare a template function, appropriately named function(). The
primary template function displays the type name of the type parameter on the screen. There
are specializations for an integer type parameter and a final nontemplate function with the
same function name. In the main() routine, we use the compiler’s ability to deduce the type
of the arguments to call the correct template function.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 265

6080CH15.qxp 10/24/06 1:04 AM Page 265

Let’s compile and run this sample:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

System.String

System.Double

not a template

template integer

In this case, the calls to function() with String and double are routed to the primary tem-
plate. The first call to function() passing an integer goes to the nontemplate version, and the
call that explicitly specified function<int>() is sent to the explicit specialization with int.

One important thing to note is the explicit boxing in the primary template. In the code,
I wrote the following:

Object ^o = t;

Console::WriteLine(o->GetType());

rather than

Console::WriteLine(t->GetType());

Unlike generic types, which merge the reference and value-type syntax, templates are
literal parses of the code. In this case, we want the template to work with both value and refer-
ence types. If it’s a handle, the following syntax is correct:

t->GetType()

If it’s a value type (or a reference type on the stack), the following line is the correct syntax:

t.GetType()

We can take care of this difference in syntax by either converting to System::Object^, as
shown in the example, or by using a partial specialization for reference types, as I will show
next.

Partial Specialization
A declaration of a class template that partially qualifies its template parameters is called a
partial specialization. Partial specializations are still templates, not instantiations or explicit
specializations, as they need to be instantiated with full type parameters before code is gener-
ated. Template parameters may be specialized by pointer indirection, type, duplication of
parameters, and in other ways, as described in the C++ standard.

Consider the following example:

using namespace System;

template <typename T, typename W> ref struct R

{

static R()

{

Console::WriteLine("T,W: "+__FUNCTION__);

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES266

6080CH15.qxp 10/24/06 1:04 AM Page 266

}

};

template <typename T, typename W> ref struct R<T^,W>

{

static R()

{

Console::WriteLine("T^,W: "+__FUNCTION__);

}

};

template <typename T, typename W> ref struct R<T*,W>

{

static R()

{

Console::WriteLine("T*,W: "+__FUNCTION__);

}

};

template <typename T> ref struct R<T,T>

{

static R()

{

Console::WriteLine("T,T: "+__FUNCTION__);

}

};

void main()

{

R<int,double> Primary;

R<R^,int> First;

R<int,int> Second;

R<char*,int> Third;

}

We have a primary template and three partial specializations. The first specialization
requires the first type parameter to be some kind of reference type, and the second specializa-
tion requires both parameters to be the same. The third specialization requires a pointer to a
native type.

Let’s compile and run this:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

T,W: R<int,double>::R (static class constructor)

T^,W: R<struct R ^,int>::R (static class constructor)

T,T: R<int,int>::R (static class constructor)

T*,W: R<char *,int>::R (static class constructor)

As you can see from the results, the primary template and each of the two partial special-
izations are instantiated in turn.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 267

6080CH15.qxp 10/24/06 1:04 AM Page 267

Partial Ordering of Function Templates
What if you wanted to distinguish functions in a manner similar to partial specialization?
Suppose, for example, you wanted to replace ToString() with a custom version that formats
strings for your built-in variables in a certain fashion; perhaps you want to display all doubles
in scientific notation:

using namespace System;

template <typename T> String ^MyToString(T t)

{

return t.ToString();

}

template <typename T> String ^MyToString(T ^t)

{

return t->ToString();

}

template <> String ^MyToString(double d)

{

return d.ToString("0.###e+00");

}

value struct V

{

virtual String ^ToString() override

{

return "it's V";

}

};

void main()

{

V v;

int i = 23;

double d=47.3;

Console::WriteLine(MyToString<int>(i));

Console::WriteLine(MyToString<double>(d));

Console::WriteLine(MyToString<V>(v));

}

In this example, we provide a template for our most general case:

template <typename T> String ^MyToString(T t) {}

and an overload that is more specific:

template <typename T> String ^MyToString(T ^t) {}

When we invoke MyToString(), the compiler picks out the more explicit or restrictive
match by a process known as partial ordering during overload selection. Partial ordering
allows us to distinguish between a typical value type being passed by value and a typical
reference type being passed by handle.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES268

6080CH15.qxp 10/24/06 1:04 AM Page 268

Let’s compile and run this:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

23

4.73e+01

it's V

In this case, we are still using ToString(), which is a method from System::Object, for
our example. Unlike a generic type, the template compiles even if it does not recognize the
method to be called, as long as it is not resolvable without the determination of the type
parameter. For example, consider the following:

using namespace System;

template <typename T> String ^MyToString(T ^t)

{

return t->MyFunction();

}

void main() {}

This program compiles fine even though the compiler is unable to determine whether
the hypothetical handle T^t has a member method called MyFunction(). Only when the user
attempts to instantiate the template using a real type parameter can the compiler determine
success or failure. Generic types assume the worst; templates hope for the best.

Let’s now complete this program, realizing the template’s hopes:

using namespace System;

template <typename T> String ^MyToString(T ^t)

{

return t->MyFunction();

}

ref struct R

{

String ^ MyFunction()

{

return "Hello";

}

};

void main()

{

R ^r = gcnew R();

Console::WriteLine(MyToString(r));

}

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 269

6080CH15.qxp 10/24/06 1:04 AM Page 269

Now let’s compile and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Hello

And that is correct.

Nontype Template Parameters
One of the primary advantages of templates is the ability to have template parameters that are
not types; they can be integer values, for example.

Fibonacci Number Template
Consider the following template, which generates Fibonacci numbers:

using namespace System;

template <int N>

struct Fibonacci

{

enum { Value = Fibonacci<N-1>::Value + Fibonacci<N-2>::Value};

};

template <>

struct Fibonacci<0>

{

enum {Value = 0 };

};

template <>

struct Fibonacci<1>

{

enum {Value = 1 };

};

void main()

{

Console::WriteLine(Fibonacci<7>::Value);

}

This code uses an enumeration value to set a number within a class; then it uses a recur-
sive algorithm with two explicit specializations to calculate a Fibonacci number.

Let’s compile and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

13

The interesting thing about this program is that it allows the value of the template to be
calculated at compile time because of the way that it’s written.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES270

6080CH15.qxp 10/24/06 1:04 AM Page 270

If we look at the program in .NET Reflector, we see the following decompiled output:

int main()

{

Console::WriteLine(13);

return 0;

}

The entire recursive nature of the algorithm was handled at compile time.

Square Roots Template
Let’s try a more-complicated example. This example calculates the rounded square root of an
integer. It uses default values in the template parameters, which is permitted in C++:

using namespace System;

template <int N, int low=1, int high=N>

struct Root

{

enum { Value = Root<N, ((low+high)/2), N/((low+high)/2)>::Value};

};

template <int N, int R>

struct Root<N,R,R>

{

enum {Value = R};

};

void main()

{

Console::WriteLine(Root<196>::Value);

}

Let’s compile and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

14

This program attempts to calculate the square root iteratively by continually averaging a
guess and the number divided by the guess. The square root is always somewhere in between
the two. The program is only guaranteed to work if the input is a perfect square, or else a com-
pilation error may result.

Prime Numbers Template
In 1994, Erwin Unruh distributed a program at a C++ standards committee meeting to print
out prime numbers as error messages using templates. Although the original program does
not issue the same diagnostics on Visual C++ 2005, here is a version I wrote that has the same
effect:

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 271

6080CH15.qxp 10/24/06 1:04 AM Page 271

template <int p, int i=p-1> struct is_prime

{

enum { value = (p%i) && is_prime<p,i-1>::value };

};

template<int p> struct is_prime<p,1>

{

enum { value=1 };

};

template<> struct is_prime<2>

{

enum { value=1 };

};

template <int p> ref struct Prime_print

{

Prime_print<p-1> a;

static void *ptr = (int)is_prime<p>::value;

};

template<> ref struct Prime_print<1> {};

void main()

{

Prime_print<9> d;

}

Let’s compile and run this:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

test.cpp(16) : error C2440: 'initializing' : cannot convert from 'int' to 'void *'

Conversion from integral type to pointer type requires

reinterpret_cast, C-style cast or function-style cast

This diagnostic occurred in the compiler generated function

'void Prime_print<p>::Prime_print(void)'

with

[

p=2

]

test.cpp(16) : error C2440: 'initializing' : cannot convert from 'int' to 'void *'

Conversion from integral type to pointer type requires

reinterpret_cast, C-style cast or function-style cast

This diagnostic occurred in the compiler generated function

'void Prime_print<p>::Prime_print(void)'

with

[

p=3

]

test.cpp(16) : error C2440: 'initializing' : cannot convert from 'int' to 'void *'

Conversion from integral type to pointer type requires

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES272

6080CH15.qxp 10/24/06 1:04 AM Page 272

reinterpret_cast, C-style cast or function-style cast

This diagnostic occurred in the compiler generated function

'void Prime_print<p>::Prime_print(void)'

with

[

p=5

]

test.cpp(16) : error C2440: 'initializing' : cannot convert from 'int' to 'void *'

Conversion from integral type to pointer type requires

reinterpret_cast, C-style cast or function-style cast

This diagnostic occurred in the compiler generated function

'void Prime_print<p>::Prime_print(void)'

with

[

p=7

]

As you can see, all primes less than or equal to the nontype template parameter are dis-
played in the diagnostics.

Complex Numbers
In Chapter 11, we did several interesting things:

• We defined a complex number class.

• We defined a class of integers modulo 13.

• We introduced the fact that the Fibonacci numbers can be calculated using the golden
ratio.

In this section, we will gather together these ostensibly different concepts into a single
program that calculates Fibonacci numbers modulo any prime using the golden ratio for-
mula. This program will use templates, type and nontype parameters, and specializations in
order to create clean, modular code.

Overview
It might seem odd that to use a complex number class in association with the Fibonacci num-
ber formula, but it all depends on our definition of complex number pairs. Let’s generalize
what it means to be a complex number by consider pairs (a, b) where the second number is
multiplied by the square root of 5 instead of the square root of –1. In fact, we can use a non-
type template parameter of type integer to indicate what number is under the square root.
Our complex number class will also have a type parameter to indicate the type of each num-
ber in our pair (a,b). We will use this type parameter to allow us to feed the class type of
Modulo<P>, where Modulo is our class template for numbers modulo a prime P, and P is the
nontype template parameter.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 273

6080CH15.qxp 10/24/06 1:04 AM Page 273

Mathematical Formulas
It is a mathematical fact that the sequence of Fibonacci numbers can be produced from
powers of the golden ratio and its conjugate. The specific formulas follow:

As stated previously, our Complex class template is able to use pairs of arbitrary types,
where the number inside the radical is an arbitrary integer, such as 5. To do this, we use a non-
type template parameter whose nontype template arguments are integer constants, as well as
another type parameter for the underlying type of the pair:

template <typename T, int N> value struct Complex;

In our complex number class in Chapter 11, we used two doubles as our private data
members, corresponding to the real and imaginary parts of the complex number. The imagi-
nary part was the double that was implicitly multiplied by the square root of –1 to create the
complex number. In this chapter’s class, we will also use a real and an imaginary part of an
arbitrary type and consider the part that is multiplied by the integer under the square root of
the imaginary part.

We will implement the complex number class using 5 as the radix to create the golden
ratio and its complement for the Fibonacci formula. But again, why stop there? Rather than
using doubles, why not use integers modulo a prime for our numbers? Having types with
operators for the basic mathematical operations allows us to do just that.

So we’re going to base our complex numbers on types other than int, such as float and
double. It seems like a natural task for generics, right? In order to implement a generic com-
plex number class, all we have to do is to be able to add, subtract, multiply, and divide these
built-in types. That is an ostensibly simple thing to do but looks can be deceiving.

Generic Implementation
Generic operations are all defined in terms of virtual function calls in the IL. Therefore, when
generics are parsed, the compiler has to be able to figure out which functions to call for a par-
ticular expression. If there were a common multiply interface that all types supported, then
generic classes would be able to call a multiply function for the arbitrary types and resolve the
expression. As it is, there is no common arithmetic interface for all types, for two reasons:

• Arithmetic doesn’t always have any meaning for an arbitrary type that is descended
from Object^. For example, what does String^ multiplied by String^ mean?

• Implementing extra interfaces for arbitrary types is burdensome to programmers.

Of course, it is also impossible to rewrite retroactively the built-in types to support an
arithmetic interface, so we are faced with the unpleasant task of creating a wrapper class for

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES274

6080CH15.qxp 10/24/06 1:04 AM Page 274

each of the built-in types that support the kind of arithmetic interface required to implement
a Complex variable based on an arbitrary built-in type. We could then constrain the types to
derive from the arithmetic interface. This solution is neither elegant nor optimal.

Templates to the Rescue
Implementation using class templates is as straightforward as it is efficient. The compiler can
determine at compile time that it already knows how to multiply two items of type float.
When the template is instantiated, the types are not a mystery to the compiler, so it is able to
produce the correct IL in each case. There is no need to create a single function that is able
to handle arbitrary types. In fact, the instantiations may produce completely different code
based on the definitions of the types themselves!

Without further ado, here are the Complex<typename T,int N>, Modulo<int P>, and
Fibonacci<typename T> classes; it’s probably the longest example in the book, but I think
it’s worth it:

using namespace System;

template <int P> String^ Radix()

{

return " sqr("+P.ToString()+")";

}

template <> String^ Radix<-1>()

{

return "i";

}

template <typename T, int N>

value struct Complex

{

T re;

T im;

Complex(T _re, T _im)

{

re = _re;

im = _im;

}

Complex(T _re)

{

re = _re;

im = T(0);

}

static Complex operator* (Complex lhs, Complex rhs)

{

return Complex(lhs.re*rhs.re + (lhs.im*rhs.im*T(N)),

lhs.re*rhs.im + lhs.im*rhs.re);

}

static Complex operator/ (Complex lhs, Complex rhs)

{

T bottom = rhs.re*rhs.re - rhs.im*rhs.im*T(N);

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 275

6080CH15.qxp 10/24/06 1:04 AM Page 275

Complex product = Complex(lhs * ~rhs);

return Complex(product.re/bottom, product.im/bottom);

}

static Complex operator+ (Complex lhs, Complex rhs)

{

return Complex(lhs.re+rhs.re, lhs.im+rhs.im);

}

static Complex operator- (Complex lhs, Complex rhs)

{

return Complex(lhs.re-rhs.re, lhs.im-rhs.im);

}

static Complex operator~ (Complex lhs)

{

return Complex(lhs.re, -lhs.im);

}

virtual String^ ToString() override

{

return re.ToString() + (!!im ? " + " + im.ToString() + Radix<N>() : "");

}

};

template <int P>

value struct Modulo

{

int Value;

Modulo(int Val)

{

Value = Val % P;

}

static bool operator!(Modulo rhs)

{

return !rhs.Value;

}

static void ExtendedEuclid(int a, int b, int %d, int %x, int %y)

{

if(b==0)

{

d=a;

x=1;

y=0;

}

else

{

ExtendedEuclid(b,a%b, d, y, x);

y-= (a/b)*x;

}

}

static bool operator==(Modulo lhs, Modulo rhs)

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES276

6080CH15.qxp 10/24/06 1:04 AM Page 276

{

return((rhs.Value-lhs.Value) % P == 0);

}

static bool operator!=(Modulo lhs, Modulo rhs)

{

return !(lhs == rhs);

}

static Modulo operator* (Modulo lhs, Modulo rhs)

{

return Modulo((lhs.Value * rhs.Value) % P);

}

static Modulo operator+ (Modulo lhs, Modulo rhs)

{

return Modulo((lhs.Value + rhs.Value) % P);

}

static Modulo operator- (Modulo lhs, Modulo rhs)

{

return Modulo((lhs.Value - rhs.Value) % P);

}

static Modulo operator- (Modulo lhs)

{

return Modulo((P - lhs.Value) % P);

}

static Modulo operator/ (Modulo lhs, Modulo rhs)

{

int d, x, y;

ExtendedEuclid(rhs.Value,P,d,x,y);

return lhs*Modulo(x*d);

}

virtual String ^ ToString() override

{

Value = (Value+P) % P;

String ^s = Value.ToString();

return s;

}

};

template <typename T> ref struct Fibonacci

{

static T half = T(1)/T(2);

static Complex<T,5> phi = Complex<T,5>(half,half);

static Complex<T,5> theta = Complex<T,5>(half,-half);

static Complex<T,5> difference = phi-theta;

template <int N>

ref struct Result

{

static initonly Complex<T,5> phi_n = Result<N-1>::phi_n * phi;

static initonly Complex<T,5> theta_n = Result<N-1>::theta_n * theta;

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 277

6080CH15.qxp 10/24/06 1:04 AM Page 277

static initonly Complex<T,5> Value = (phi_n-theta_n)/difference;

};

template <>

ref struct Result<0>

{

static initonly Complex<T,5> phi_n = Complex<T,5>(T(1));

static initonly Complex<T,5> theta_n = Complex<T,5>(T(1));

static initonly Complex<T,5> Value = Complex<T,5>(T(0));

};

template <int N>

static void Print()

{

Print<N-1>();

Console::Write("{0,4} ", Result<N>::Value);

}

template <>

static void Print<0>()

{

}

};

void main()

{

Fibonacci<double>::Print<14>();

Console::WriteLine();

Fibonacci<Modulo<7>>::Print<14>();

Console::WriteLine();

Fibonacci<Modulo<13>>::Print<14>();

Console::WriteLine();

}

C:\>cl /clr:safe /nologo test.cpp

C:\>test

1 1 2 3 5 8 13 21 34 55 89 144 233 377

1 1 2 3 5 1 6 0 6 6 5 4 2 6

1 1 2 3 5 8 0 8 8 3 11 1 12 0

Note that the 7th Fibonacci number is (–1 modulo 7), and the 13th is (–1 modulo 13). In
fact, for prime numbers p other than 5, the pth Fibonacci number is always equal to either 1
or –1 modulo p.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES278

6080CH15.qxp 10/24/06 1:04 AM Page 278

Core Differences: Templates and Generics
Templates and generics have the following core differences:

• Generics stay generic until the type substitution is performed at runtime. Templates are
specialized at compile time.

• The CLR specifically supports generic types in metadata and IL. Template’s types are
resolved into ordinary types at compile time.

• The compiler generates a single class or function for all types. Templates generate dif-
ferent classes and functions for each specialized parameter list.

• Generics specialized in different assemblies with identical type parameters are the
same generic type; template types are unique inside a compilation and cannot be
exported outside assemblies.

• Templates alone allow nontype parameters.

• Templates alone allow type parameters to have default values.

• Templates allow partial and explicit specialization.

• Templates support template template parameters.

• Template classes can have type parameters as base classes.

Summary
Templates seem straightforward at first, but the details and ramifications of the implementa-
tion boggle the mind. Having this exposure to templates sets us up well to take another look at
generic types, which we will do in the next chapter.

CHAPTER 15 ■ INTRODUCTION TO TEMPLATES 279

6080CH15.qxp 10/24/06 1:04 AM Page 279

6080CH15.qxp 10/24/06 1:04 AM Page 280

Advanced Generics and Casts

If a man empties his purse into his head, no one can take it from him.

—Benjamin Franklin

In Chapter 14, we saw how generic types descended from System::Object and were able to
access all of the System::Object methods. In addition, we found that we could use the collec-
tion classes such as Stack<T> and Queue<T> to maintain type-safe lists of generic objects. In
this chapter, we learn how to use constraints, cast operators, and runtime type identification
to write generic classes and functions that do more than gather handles to objects descended
from System::Object; these classes and functions will act on the instances of the data them-
selves.

Constraints
Constraints allow us to do just that: they instruct the compiler that the given generic function
or class can only be instantiated with types that have certain defined characteristics. This
allows the compiler to accomplish the following:

• Verify that the given generic type is only used with type parameters that meet the given
constraints.

• Treat the type parameters as if they satisfy the given constraint within the body of the
generic class or function. For example, if a constraint says that a type possesses a given
interface, interface methods of instantiations of this type become available within the
body of the generic class or function.

Kinds of Constraints
There are several kinds of valid constraints in C++/CLI and the .NET 2.0 Framework. The syn-
tax is similar for each. After the generic keyword and type list and before the class or function
declaration, the where keyword is inserted to specify the constraints on the type parameters.
This takes the following form:

281

C H A P T E R 1 6

6080CH16.qxp 10/24/06 1:05 AM Page 281

generic <typename T1, typename T2>

where T1 : Constraint1, Constraint2

where T2 : T1, Constraint3

ref class R {};

There are many kinds of supported constraints.

Type Constraints
A type constraint tells the compiler that the type parameter is of a given type. The type param-
eter might be descended from the constraint type, with the constraint type either a direct base
class of the type parameter or a more-remote ancestor. Likewise, the constraint type could
also be an interface that the type parameter supports. In either case, the constraint’s member
fields, methods, properties, and events become accessible within the generic class.

Consider the following code:

using namespace System;

ref struct R

{

virtual property String^ P

{

String^ get()

{

return "Property P";

}

}

};

ref struct R1 : R

{

};

generic <typename T>

where T : R

void Function(T t)

{

Console::WriteLine(T::typeid);

Console::WriteLine(t->P);

}

int main()

{

R1 ^r = gcnew R1();

Function(r);

}

In this example, we have a ref class R containing a property P. We use R both as a base
class for R1 and as a type constraint for a generic function named Function(). Inside the body
of our generic function, we access the property P and display the String data from the prop-
erty. In the body of the function main(), we set the ball rolling by instantiating an element of R1
and passing that to Function(). Type deduction determines that T is an R1 and verifies that R is
a base class of R1, and the code compiles without error.

CHAPTER 16 ■ ADVANCED GENERICS & CASTS282

6080CH16.qxp 10/24/06 1:05 AM Page 282

Suppose we compile and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

R1

Property P

You might notice there is a bit of strangeness within a generic in that function takes “T t”
as a parameter rather than T^t. Removing the caret allows the compiler to use a common syn-
tax within the body of a generic class or function without forcing the programmer to specify
whether T represents a reference type or a value type.

Suppose we modify this example a bit by changing the definition of R1:

ref struct R1 : R

{

int P;

};

Now R1::P means something completely different. It is no longer a String property
defined in the base class but rather an integer defined in the derived class. To the generic
function, however, nothing has changed. During execution, it determines that T is of type R1
by runtime type identification, but it continues to access P according to the rules of the con-
straint, that is, that T is of type R.

What would happen if we said that T is of both type R and type R1, as follows?

where T : R, R1

Now the compiler would have trouble figuring out which version of P to use. Let’s give it
a try:

C:\>cl /nologo /clr:pure test.cpp

test.cpp(18) : error C3219: 'T' : generic parameter cannot be

constrained by multiple non-interfaces : 'R ^'

test.cpp(21) : error C2385: ambiguous access of 'P'

could be the 'P' in 'R'

or could be the 'P' in 'R1'

The ambiguity is avoided, because the rule for type constraints is the same as the rule for
inheritance: a type may possess at most one base class that is not an interface.

Let’s try changing this example one more time. Let’s add another property P to the derived
class R1 and make it virtual override:

ref struct R1 : R

{

virtual property String^ P

{

String^ get() override

{

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 283

6080CH16.qxp 10/24/06 1:05 AM Page 283

return "overridden Property P";

}

}

};

At first glance, we expect the generic function to call the base class get accessor for P,
R::P:get(). In actuality, we end up with the derived version, since it is virtual override.
Let’s have a look:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

R1

overridden Property P

Satisfying Type Constraints
The C++/CLI Standard says that a type parameter can satisfy a type constraint in the following
ways:

• Identity conversion

• Handle conversion

• Boxing conversion

The following example incorporates each of them:

using namespace System;

interface class I {};

ref struct R : I {};

value struct V : I {};

generic <typename T>

where T : I

ref struct G

{

generic <typename V>

ref struct N

{

G<T>^g;

};

};

int main()

{

G<I^> ^ i;

G<R^> ^ r;

G<V> ^ v;

}

CHAPTER 16 ■ ADVANCED GENERICS & CASTS284

6080CH16.qxp 10/24/06 1:05 AM Page 284

In this example, we have a generic class G, which has a single type parameter T. A type
constraint on T indicates that it has to support the interface I. In this case, I^ satisfies this via
the identity conversion; R^ supports I^ through the handle conversion, and the value type V
may be boxed and passed to G. In addition, the nested class N is able to use T as a type argu-
ment, since T satisfies V’s constraint by definition.

The gcnew Constraint
The gcnew constraint allows you to allocate instances of the type parameter by calling the
default constructor. Since not all types may be freely allocated (consider sealed or abstract
types), this constraint allows you to write generic functions and classes that can allocate
instances. The gcnew constraint also verifies that the constrained type parameter of the generic
function or class may be allocated on the managed heap via a public parameterless construc-
tor, for example:

using namespace System;

generic <typename T>

where T : gcnew()

void Function()

{

T t = gcnew T();

}

ref class R {};

int main()

{

Function<R^>();

}

The value class Constraint
The value class constraint instructs the compiler that the type parameter is a value type.
Recall that, when you work with value types, you are working with the data itself rather than
a handle to the data. This makes functions like the following one possible:

using namespace System;

generic <typename T>

where T : value class

void Swap(T % a, T % b)

{

Console::WriteLine("Swapping...");

T temp = a;

a = b;

b = temp;

}

int main()

{

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 285

6080CH16.qxp 10/24/06 1:05 AM Page 285

int i=3, j=4;

Console::WriteLine("i = {0}, j={1}", i, j);

Swap<int>(i,j);

Console::WriteLine("i = {0}, j={1}", i, j);

}

In this program, we constrain T to be a value type. The global function Swap() expects two
references to value types and performs a simple swap. The result follows:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

i = 3, j=4

Swapping...

i = 4, j=3

Try instantiating the generic type parameter with a ref class argument to see how the
compiler enforces the constraint.

The ref class Constraint
Here is an example of a similar construct using reference types:

using namespace System;

interface class I

{

virtual property int P;

};

ref struct R : I

{

virtual property int P;

};

value struct V : I

{

virtual property int P;

};

generic <typename T>

where T : I

void ChangePropertyData(T t)

{

t->P = 2;

}

int main()

{

R ^ r = gcnew R();

CHAPTER 16 ■ ADVANCED GENERICS & CASTS286

6080CH16.qxp 10/24/06 1:05 AM Page 286

Console::WriteLine("changing R...");

ChangePropertyData(r);

Console::WriteLine("r->P == {0}", r->P);

V v = V();

Console::WriteLine("changing V...");

ChangePropertyData(v);

Console::WriteLine("v.P == {0}", v.P);

}

In this code sample, we have an interface with a property P. We have a generic function
constrained to accept a type parameter that has this interface. This function uses the property
to modify the underlying value. If we call this function with a reference type, we get the desired
behavior, since we pass a handle to the data, and this handle can be used to modify the origi-
nal data. On the other hand, if we call this function with a value type, we pass a copy of the
data, and the original data is unchanged.

Here are the results:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

changing R...

r->P == 2

changing V...

v.P == 0

As you can see, the original value of v.P is unchanged, which is not what we wanted the
function to do. To prevent this kind of behavior, we can constrain the type T to be a ref class
by adding the ref class constraint:

where T : I, ref class

Now when we compile, we get the following results:

C:\>cl /nologo /clr:pure test.cpp

test.cpp(28) : error C3390: 'V' : invalid type argument for generic parameter 'T'

of generic 'ChangePropertyData', must be a reference type

test.cpp(16) : see declaration of 'ChangePropertyData'

Summary
Constraints are useful for creating generic functions and classes for operating on custom
sets of types or types that have predefined interfaces. Oftentimes, however, you do not have
control over the definitions of the type for which you wish to write a generic; for example,
System::Int32. Suppose you want to write a simple generic function to add two numbers,
where the numbers can be either float or double or of integer type, depending on the context.
Constraints won’t solve this problem; a cast will. I’ll show how in the next section.

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 287

6080CH16.qxp 10/24/06 1:05 AM Page 287

Cast Operators
In C++, there are several types of cast operators that are designed to make your code accurate
and easily maintainable. Think of the standard “type inside parenthesis” operator as a sledge
hammer that smashes everything. The C++ cast operators are restricted in that they only per-
form certain types of conversions, and in this way, you ensure that the code is not changing in
an unexpected fashion. Rather than using a sledge hammer or fire-fighter’s axe to open a door,
first, we can try to see if one of our keys fits.

The special cast operators help you avoid problems in two primary ways:

Casts during development: When you use a cast in code development, you are effectively
overriding the compiler and forcing it to attempt to convert the item in question. In doing
so, you prevent the compiler from issuing diagnostics that ought to tell you that what
you’re doing is a bad idea. Each time you use a cast, you should be asking yourself
whether it’s really a good idea. When the special cast operators are used, the compiler is
not taken out of the picture altogether. Rather, it is instructed to let certain kinds of con-
versions pass and to block others. Therefore, you are forced to think about what you are
doing and make sure the contemplated cast in your mind coincides with the actual kind
of cast required to create accurate code.

Casts during maintenance: Working with polymorphic classes with abstracted interfaces
means that you possess a somewhat-limited knowledge of the definitions of classes. You
may write code relying on the facts that the class possessed a certain defined pedigree of
base classes and that the classes are defined in certain ways, but that may change as the
code matures. Somewhere down the line, your analysis that an instance of one class may
be converted into an instance of another without issues may be completely wrong. In
addition, the standard cast operator prevents the compiler from notifying the individual
who modifies the class definitions that there may be a problem downstream. Therefore,
hidden bugs are introduced that may go unnoticed until after the code is shipped to the
end user. The special cast operators reduce the likelihood of such an occurrence. The use
of explicit and implicit conversion operators and runtime type identification further
reduce the likelihood of such an occurrence.

Runtime Type Identification
Runtime type identification is the ability of the instances of the classes themselves to
identify what type they are. In the .NET Framework, the method GetType() is a member of
System::Object, so it is always available to obtain information about object instances of
reference types and value types. C# has the typeof() operator, which allows you to get the
System::Type information for a class. The C++/CLI equivalent is the ::typeid static property.
You can use these functions to identify a class or object and work with it.

Consider the following generic function:

using namespace System;

generic <typename T>

void Function()

{

Console::WriteLine(T::typeid);

CHAPTER 16 ■ ADVANCED GENERICS & CASTS288

6080CH16.qxp 10/24/06 1:05 AM Page 288

}

ref struct R {};

generic <typename T> ref struct GenericType {};

generic <typename T> ref struct Outer

{

generic <typename V, typename W> ref struct Inner

{

};

};

int main()

{

Function<int>();

Function<R^>();

Function<GenericType<int>^>();

Function<Outer<int>::Inner<R^, short> ^>();

}

This function prints out the typeids. If we execute it and compile it, we get the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

System.Int32

R

GenericType`1[System.Int32]

Outer`1+Inner`2[System.Int32,R,System.Int16]

As you can see, the typeids for the generics display with decoration. The back tick (`)
indicates a generic, and it indicates the number of generic parameters at that level of nesting.
The plus sign (+) divides the nesting of generic types. Although it is not shown here, the signa-
tures of generic functions are similar, except that they use two back ticks (``) between the
function identifier and the number of generic parameters.

const_cast<>()
Several modifiers in both C# and C++ affect the mutability of fields and types. The
const_cast<>() operator allows you to add or remove the const or volatile type qualifiers
to the type of an expression. An example follows:

void main()

{

const int i = 0;

//i=2 will not compile

*const_cast<int *>(&i) = 2;

}

I will return to the mutability type qualifiers in Chapter 20.

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 289

6080CH16.qxp 10/24/06 1:05 AM Page 289

static_cast<>()
static_cast<>() is used to call user-defined conversions as well as to cast an instance of a
base class back to a derived class. You should only do the latter when you are sure it will work,
as this is a fast cast, and the compiler does not do any further checking.

An example using static_cast<>() follows:

using namespace System;

ref class Base {};

ref class Derived : Base {};

void main()

{

Base ^ b = gcnew Derived();

Derived ^ d = static_cast<Derived^>(b);

Console::WriteLine("{0}, {1}", b->GetType(), d->GetType());

}

Here are the results:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Derived, Derived

dynamic_cast<>()
dynamic_cast<>() is also used to cast an instance of a base class back to a derived class,
but dynamic_cast<>() is used only when the types involved are polymorphic, meaning they
have a virtual function. The compiler uses this information to determine whether the cast is
allowed. If the cast is not allowed, dynamic_cast<>() returns nullptr. Since reference types
inherit virtually from System::Object, and value types are sealed and cannot be inherited
from at all, if the cast is valid, it works; for example:

using namespace System;

ref class Base {};

ref class Derived : Base {};

ref class Cat {};

void main()

{

Base ^ b = gcnew Derived();

Derived ^ d = dynamic_cast<Derived^>(b);

Cat ^ c = dynamic_cast<Cat^>(b);

Console::WriteLine("Derived^d = {0}, Cat^c = {1}",

d!=nullptr ? d->ToString() : "nullptr",

c!=nullptr ? c->ToString() : "nullptr");

}

CHAPTER 16 ■ ADVANCED GENERICS & CASTS290

6080CH16.qxp 10/24/06 1:05 AM Page 290

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Derived^d = Derived, Cat^c = nullptr

In a previous example in Chapter 14, we used typeid or GetType() along with
safe_cast<>() rather than dynamic_cast<>(), even though dynamic_cast<>() seems like
a more accurate solution.

Consider the following code:

using namespace System;

ref class Base {};

ref class Derived : Base {};

generic <typename T>

void Function(T t)

{

if(Derived ^d = dynamic_cast<Derived^>(t))

{

Console::WriteLine("success");

}

}

void main()

{

Base ^b = gcnew Derived();

Function(b);

}

If you attempt to compile this, you receive the following error:

C:\>cl /nologo /clr:pure test.cpp

test.cpp(9) : error C2681: 'T' : invalid expression type for dynamic_cast}

There is one case in which dynamic_cast<>() does not return nullptr and throws an
exception—when casting to a reference (& or %). Since only pointer and handle types can be
assigned nullptr, and references are neither pointer nor handle types, the compiler needs
another way to report an unsuccessful cast. Try out the following code:

ref class A

{

public:

virtual void f() {}

};

ref class B : public A

{

};

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 291

6080CH16.qxp 10/24/06 1:05 AM Page 291

void main()

{

A a;

B %rb = dynamic_cast<B%>(a);

}

reinterpret_cast<>()
reinterpret_cast<>() is used to convert constants into instances of types and to convert
between completely unrelated pointers types, for example:

void main()

{

char *pVideo = reinterpret_cast<char *>(0xb8000000);

}

This is sometimes necessary in unsafe or low-level code. It comes in handy when you’re
working with native programming, inline assembly, and low-level coding. This cast is the “you
must really know what you are doing” cast.

safe_cast<>()
safe_cast<>() allows you to do much the same thing as static_cast<>(), except that it raises
an exception if it cannot perform the conversion. It also only attempts conversions that make
sense. It works with generic types as well. It is a variant that is limited to C++/CLI as it does not
exist in native C++. A safe_cast<>() example follows:

using namespace System;

ref class Base {};

ref class Derived : Base {};

ref class Cat {};

void main()

{

Base ^ b = gcnew Derived();

Cat ^ c = safe_cast<Cat^>(b);

}

And here are the results:

C:\>cl /nologo /clr:pure test.cpp

test.cpp(8) : error C2682: cannot use 'safe_cast' to convert from

'Base ^' to 'Cat ^'

No user-defined-conversion operator available, or

Types pointed to are unrelated; conversion requires reinterpret_cast,

C-style cast or function-style cast

CHAPTER 16 ■ ADVANCED GENERICS & CASTS292

6080CH16.qxp 10/24/06 1:05 AM Page 292

The following example uses safe_cast<>() with generics:

using namespace System;

ref class Base {};

ref class Derived : Base {};

ref class Cat {};

generic <typename T>

void Function(T t)

{

try

{

Cat ^c = safe_cast<Cat^>(t);

}

catch(Exception ^e)

{

Console::WriteLine("Exception: {0}", e);

}

}

void main()

{

Base ^ b = gcnew Derived();

Function(b);

}

with the following results:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

Exception: System.InvalidCastException: Unable to cast object of type

'Derived' to type 'Cat'.

at Function[T](T t)

An Adder
Earlier in this section, I pledged to show you how to use casts to do something you cannot do
with constraints—add two integers or floats. The problem arises because there is no defined
interface that states that System::Int32 has an Add() function. Of course, we can create cus-
tom types with this functionality, but it’s nice to just use the built-in types—here’s how:

using namespace System;

generic <typename T>

where T : value class

T Add(T a, T b)

{

if(T::typeid == int::typeid)

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 293

6080CH16.qxp 10/24/06 1:05 AM Page 293

{

int a0 = safe_cast<int>(a);

int b0 = safe_cast<int>(b);

return safe_cast<T>(a0+b0);

}

if(T::typeid == double::typeid)

{

double a0 = safe_cast<double>(a);

double b0 = safe_cast<double>(b);

return safe_cast<T>(a0+b0);

}

String ^s = String::Format("{0} is not a valid type for addition", T::typeid);

throw gcnew Exception(s);

}

int main()

{

try

{

Console::WriteLine("{0}+{1}={2}", 3, 4, Add(3,4));

Console::WriteLine("{0}+{1}={2}", 3.1, 4.2, Add(3.1,4.2));

Console::WriteLine("{0}+{1}={2}", 3.1, 4.2, Add(3.1f,4.2f));

}

catch(Exception ^e)

{

Console::WriteLine("Exception: {0}", e);

}

}

In this snippet, we use ::typeid and safe_cast<>() to add instances of the types we know
how to add. In this case, we can add integers and doubles. When we try to call Add<T>() with
float values, we generate an exception:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

3+4=7

3.1+4.2=7.3

Exception: System.Exception: System.Single is not a valid type for addition

at Add[T](T a, T b)

at main()

The following version of the code uses templates:

using namespace System;

template <typename T>

T Add(T a, T b)

{

return a+b;

}

CHAPTER 16 ■ ADVANCED GENERICS & CASTS294

6080CH16.qxp 10/24/06 1:05 AM Page 294

int main()

{

try

{

Console::WriteLine("{0}+{1}={2}", 3, 4, Add(3,4));

Console::WriteLine("{0}+{1}={2}", 3.1, 4.2, Add(3.1,4.2));

Console::WriteLine("{0}+{1}={2}", 3.1, 4.2, Add(3.1f,4.2f));

}

catch(Exception ^e)

{

Console::WriteLine("Exception: {0}", e);

}

}

As you can see, the version that uses templates is far shorter. We ask the compiler to per-
form the add operation on the two instances of the type parameters, and we get a compiler
error if the operation is not possible on the types, such as when we try to add instances of
System::Object.

Generic Delegates
Delegates may also be generic. A simple example follows:

using namespace System;

ref struct Test

{

generic<typename T> delegate void Del(T item);

static void Notify(int i)

{

Console::WriteLine("notified...");

}

};

void main()

{

Test::Del<int> ^m1 = gcnew Test::Del<int>(Test::Notify);

m1(3);

}

In this example, we create a generic delegate and call it with an integer type. Let’s compile
and execute it:

C:\>cl /clr:pure /nologo test.cpp

C:\>test

notified...

CHAPTER 16 ■ ADVANCED GENERICS & CASTS 295

6080CH16.qxp 10/24/06 1:05 AM Page 295

Summary
In this chapter, I’ve gone a little deeper with generics, but you really have no idea how deep
the rabbit hole goes yet. In Chapter 20, we’ll revisit templates and generics to consider them
separately and in combination one last time.

In the next chapter, we’ll have a look at the other C++ compile-time metaprogramming
sublanguage, the preprocessor.

CHAPTER 16 ■ ADVANCED GENERICS & CASTS296

6080CH16.qxp 10/24/06 1:05 AM Page 296

The Preprocessor

Power tends to corrupt; absolute power corrupts absolutely.

—Lord Acton

The preprocessor in C was historically a separate program that was able to affect code compi-
lation based on the value of flags defined at compile time. Over time, the preprocessor was
extended and integrated into the C++ compiler. The designers of C# chose to adopt a subset of
the C++ preprocessor, retaining only the conditional compilation commands and rejecting the
macro substitution language in order to keep C# code simple.

Preprocessor directives all begin with the # symbol. Modern compilers increase through-
put by integrating the preprocessor into the compiler so that they may perform preprocessing
on a line-by-line basis. The preprocessor plays a much greater role in C++ programming than
it does in C# programming. It implements a rich text substitution language that allows you to
completely change the face of your code.

For a while, using the C preprocessor to do complex and amazing things was in vogue.
Oftentimes, the motivation for generating these esoteric constructions was to develop a founda-
tion for object-oriented programming on a platform that did not yet support it. Unfortunately,
this practice often led to obfuscation, and code became more and more difficult to debug and
maintain.

The emergence and standardization of C++ obviated most of these sorts of heroic measures,
but there remain several important ways in which the preprocessor can make your code cleaner
and more efficient.

C# Preprocessor Commands
The C# preprocessor is fairly limited in scope and function. It defines code regions and deter-
mines compilation options at no finer granularity than the class level.

Code Regions
C# has two preprocessor commands, #region and #endregion, which allow you to tag certain
areas of the code as having a function or label, so that you may hide these intelligently using
the IDE. These do not yet exist in standard C++, though they exist in the Microsoft Visual C++
compiler as a #pragma directive (see the “#pragma” section later in this chapter).

297

C H A P T E R 1 7

■ ■ ■

6080ch17.qxd 10/24/06 1:06 AM Page 297

Conditional Code Compilation
The C# directives #define, #undef, #if, #else, #elif, and #endif enable you to specify code
sections that are compiled depending on the state of certain flags. Flags can be defined at the
start of the file before compilation begins or on the command line. This makes it very easy to
add a section of code that will only be added to the executable during a debug build. In C#,
#define and #undef may only be used at the start of a file. If you violate this rule in C#, you will
get the following diagnostic:

test.cs(5,2): error CS1032: Cannot define/undefine preprocessor symbols

after first token in file

C++ Preprocessor Commands
C++ also supports the conditional code compilation directives, but without the restriction that
#define and #undef must be used at the start of a file. But the C++ preprocessor is even more
powerful than that.

In C++, the preprocessor is a full macro replacement language. You can use #define to
create macros that allow you to make sweeping changes to both the appearance and function
of your code.

For example, if we wanted to make our C++ look a tiny bit more C# like, we could do the
following:

#define USING using namespace

USING System;

#define NEW gcnew

#define CLASS ref class

#define STRUCT value class

#define PUBLIC public:

public STRUCT Struct

{

PUBLIC int i;

};

public CLASS Test

{

PUBLIC static void Main()

{

Struct ^ s = NEW Struct();

s->i = 42;

Console::WriteLine(s->i);

}

};

void main()

{

Test::Main();

}

CHAPTER 17 ■ THE PREPROCESSOR298

6080ch17.qxd 10/24/06 1:06 AM Page 298

Of course, if you write code like this, you will drive other programmers nuts trying to figure
out what your code really does. You might drive yourself nuts as well.

Full Text Substitution Language
Just like template metaprogramming, the collection of C++ preprocessor commands is con-
sidered a sublanguage all by itself. Not only can you assign values to flags but you can also
create function-style macros that are able to perform function-like tasks in your code.

Debugging Support
Microsoft Visual C++ 2005 supports debugging preprocessor macros in a few different ways.
The /E and /P compilation options can be used to restrict compiler execution to the preprocessor.
The /E option sends the output to stdout, where it can be redirected to a file or piped through
a process, and the /P option writes the output directly to a file.

The IDE supports the use of macros by displaying tool tips with macro definitions and
graying out code that is part of an inactive, conditional compilation block. You can also see
a list of the macros defined in your projects by going to Class View and expanding the Macros
and Constants node.

Function Syntax
Function syntax for macros is pretty much what you’d expect it to be. Rather than defining the
value of a flag or label to be a fixed value, you define it to be a text operation that works on
arguments or parameters. There is no concept of type checking relative to these parameters,
and whether the parameters ultimately end up being identifiers, keywords, or literals depends
on the macro definition and implementation context. Here is a function-style macro to calcu-
late the maximum of two numbers:

#define max(a,b) a>b?a:b

Here it is in action:

using namespace System;

#define max(a,b) a>b?a:b

void main()

{

Console::WriteLine(max(3,4));

}

When we attempt to run this, we get

C:\>cl /nologo /clr:pure test.cpp

C:\>test

4

Unfortunately, there’s a bug in this program. Can you see it?
Suppose we want to add 2 to the value before we printed it out, so we modify the invoca-

tion of max() as follows:

CHAPTER 17 ■ THE PREPROCESSOR 299

6080ch17.qxd 10/24/06 1:06 AM Page 299

Console::WriteLine(2+max(3,4));

Let’s compile and execute this:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

3

We added 2 to the result and got one number less. What’s going on here? We can use the
/E option of the C++ compiler to help determine the problem.

C:\>cl /nologo /clr:pure /E test.cpp

test.cpp

#line 1 "test.cpp"

using namespace System;

void main()

{

Console::WriteLine(2+3>4?3:4);

}

Using the /E option, it’s clear why this program does not do what we expect. Since there are no
parentheses around the calculation in the max() macro, the expansion is calculated differently than
we’d like by the compiler. We can fix this by redefining the macro with parentheses as follows:

#define max(a,b) ((a)>(b)?(a):(b))

Now when we compile and execute, we get the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

6

And that is what we expect.

■Note The compiler keeps track of line numbers and file names using the #line directive. This allows you
to compile the results of a file that is preprocessed using the /E (preprocess to stdout) or /P (preprocess to
file) command-line options and still get the same diagnostics as you would with a direct compile. This is true
even if your primary file brings in several other files using #include. Many companies use these flags to
insert custom passes between the preprocessor and the main compilation phase.

Concatenation Operator
C++ allows you to use the ## concatenation operator within a macro to indicate that two symbols
should be concatenated to make a new symbol. An interesting variant of the “Hello, World” pro-
gram follows:

CHAPTER 17 ■ THE PREPROCESSOR300

6080ch17.qxd 10/24/06 1:06 AM Page 300

using namespace System;

#define CONCAT_(x,y) x##y

void CONCAT_(ma, in) ()

{

Console::WriteLine("Hello, World");

}

In this case, CONCAT_(ma, in) expands to main, and the program compiles. Let’s compile
and run it:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Hello, World

Wow, “Hello, World” yet again!

String Operator
Using the # prefix operator within a macro converts an argument into a string, for example:

#define STR_(x) #x

using namespace System;

void main()

{

Console::WriteLine(STR_(Hello));

}

If we compile and execute this, we see the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Hello

Macros on Macros
Things start to get interesting when macros call other macros. In general, macro recursion is
not the same as template or function recursion, since macro expansion is not infinitely recur-
sive. For example, consider the following:

using namespace System;

#define CONCAT_(x,y) x##y

void main()

{

int i = CONCAT_(1, CONCAT_(2,3));

Console::WriteLine(i);

}

Preprocessing, we get

CHAPTER 17 ■ THE PREPROCESSOR 301

6080ch17.qxd 10/24/06 1:06 AM Page 301

C:\>cl /nologo /clr:pure /E test.cpp

#line 1 "test.cpp"

using namespace System;

void main()

{

int i = 1CONCAT_(2,3);

Console::WriteLine(i);

}

As you can see, the concatenation of (2,3) was not performed. The compiler took the
enclosing macro literally and concatenated the symbol “1” to the symbol “CONCAT_(2,3)”,
resulting in “1CONCAT_(2,3)”, which is ineligible for further macro expansion. If we want a con-
catenation macro that can work around this problem, we need to define a second macro.

Consider the following snippet:

#define CONCAT_(x,y) x##y

#define CONCAT(x,y) CONCAT_(x,y)

void main()

{

int i = CONCAT(1, CONCAT(2,3));

System::Console::WriteLine(i);

}

Preprocessing, we get

C:\>cl /nologo /clr:pure /E test.cpp

#line 1 "test.cpp"

void main()

{

int i = 123;

System::Console::WriteLine(i);

}

Why did it work this time? To understand this, it’s necessary to understand a bit more
about how the preprocessor works. The preprocessor scans the parameters of the macro as
either potential tokens or literals depending on the context. Only tokens are able to undergo
further macro expansion. The presence of the # or ## operators classifies the arguments as lit-
erals. Lacking these, the argument is scanned for macro replacement.1

CHAPTER 17 ■ THE PREPROCESSOR302

1. Section 16.3.1 of the C++ Standard of April 1, 2003, says about argument substitution ([cpp.subst]), “After
the arguments for the invocation of a function-like macro have been identified, argument substitution takes
place. A parameter in the replacement list, unless preceded by a #or ##preprocessing token or followed by
a ##preprocessing token . . . is replaced by the corresponding argument after all macros contained therein
have been expanded. Before being substituted, each argument’s preprocessing tokens are completely macro
replaced as if they formed the rest of the translation unit; no other preprocessing tokens are available.”

6080ch17.qxd 10/24/06 1:06 AM Page 302

Consider the following macro:

#define CONCAT_(x,y) x##y

The preprocessor treats x and y literally, and no further expansion occurs because of the
operator. On the other hand, in

#define CONCAT_(x,y) x##y

#define CONCAT(x,y) CONCAT_(x,y)

the macro CONCAT(x,y) parses x and y for potential macro replacement because of the lack of
string or concatenation operators the first time x and y are encountered.

Here’s another example from basic algebra. Remember the “first, inner, outer, last” (or
FOIL) rule for multiplying binomials?

#define FOIL(a,b,c,d) ((a)*(c) + (b)*(c) + (d)*(a) + (b)*(d))

#define STR_(x) #x

#define STR(x) STR_(x)

using namespace System;

void main()

{

Console::WriteLine("(x+1)*(x+2)={0}", STR(FOIL(x,1,x,2)));

}

The preceding code generates

C:\>cl /nologo /clr:pure test.cpp

C:\>test

(x+1)*(x+2)=((x)*(x) + (1)*(x) + (2)*(x) + (1)*(2))

Of course, this result is not as pretty as the following:

CHAPTER 17 ■ THE PREPROCESSOR 303

x x x x+() +() = + +1 2 3 22

But it is just as accurate.

Special Preprocessor Predefined Macros
There are several macros, wrapped in double underscores, that are predefined for use in your
code:

• __LINE__: Evaluates to the current line number

• __FILE__: Evaluates to the current file name

• __DATE__: Evaluates to the date of compilation

• __TIME__: Evaluates to the time of compilation

• __FUNCTION__: Evaluates to the name of a function or method

• __FUNCSIG__: Evaluates to the complete signature of a function or method

6080ch17.qxd 10/24/06 1:06 AM Page 303

They’re fairly self explanatory; the latter two are only valid within a function. Here is
a quick example that allows you to find the origin of exceptions in your code:

using namespace System;

#define THROWIF(condition) ThrowIf(condition, #condition, __LINE__)

void ThrowIf(bool condition, String^ message, int line)

{

if(condition)

{

String ^s =

"(" + message + ")" + " @ line " + line + "\n"

+ "in " + __FILE__

+ ", build " + __DATE__

+ " " + __TIME__;

throw gcnew Exception(s);

}

}

void main()

{

int x = 1, y = 2;

try

{

THROWIF(x != y);

}

catch(Exception ^e)

{

Console::WriteLine("Exception: {0}\n{1}", e->Message, e->StackTrace);

}

}

Compiling and executing, we get the following:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Exception: (x != y) @ line 20

in macro.cpp, build Aug 13 2006 23:49:03

at ThrowIf(Boolean condition, String message, Int32 line)

at main()

#define
This command is used to define a macro, for example:

#define DEBUG 1

#define function(x) (x)

Function-style macros can not be overloaded. Once a macro is defined with a fixed num-
ber of parameters, it remains defined that way until either it is undefined or the compilation
unit ends. Special kinds of function-like macros, called variadic macros, allow you to have an

CHAPTER 17 ■ THE PREPROCESSOR304

6080ch17.qxd 10/24/06 1:06 AM Page 304

undetermined number of macro parameters. To define a variadic macro, use the ellipsis (...)
as the final formal argument to the macro. In usage, use the __VA_ARGS___ replacement identi-
fier to access the variable argument list. Here is a code example:

#include <stdio.h>

#define err_printf(...) fprintf (stderr, __VA_ARGS__)

void main()

{

err_printf("Error number %d\n", 42);

}

Compiling and running this, we get the following:

C:\>cl /nologo test.cpp

C:\>test

Error number 42

#undef
Delete a macro definition with the #undef directive.

Conditional Directives
In this section, we’ll have a look at the following conditional compilation directives:

#ifdef <macro>

#ifndef <macro>

#if <mathematical argument>

#else

#elsif <mathematical argument>

#endif

These directives are similar to those found in C#. For the mathematical arguments, all of
the standard operators work, including +, -, *, /, %, &, |, ^, &&, |, !, ==, !=, <, >, <=, >=, <<, and >>.
There is also a special operator called defined(), which allows you to determine whether
a macro is defined. This defined(macro) is true if the macro is defined. Therefore, the follow-
ing two macros are equivalent:

#ifdef MACRO

#if defined(MACRO)

#include
#include is used to insert a file into the current compilation unit. There are two forms of this
directive:

#include "file.h"

#include <file.h>

CHAPTER 17 ■ THE PREPROCESSOR 305

6080ch17.qxd 10/24/06 1:06 AM Page 305

The angle-bracket version searches the system include directories, which includes any
directories specified in the /I compiler option or in the INCLUDE environmental variable. The
double–quotation mark version additionally searches the directory of the current compiland
for files to include, plus any directories of any files that included the current file. The search
algorithm recourses upward through the include list hierarchy, if there is one. Note that any
file can be included, not just those with the extension .h. The convention is that .h files con-
tain only macro definitions, declarations, and no instantiations of any definitions. Include
files that also contain definitions are typically named with the extension .hpp.

#using
The C++/CLI #using directive instructs the compiler that certain assemblies must be refer-
enced during the compilation process. It is the analogue to what you achieve in the C#
compiler with the /reference compiler option. These files are searched for in the following
order: the full path in the #using directive, the current working directory of the compilation
(when deploying with the IDE, this is the folder containing your Visual C++ project file), the
.NET Framework system directory, and finally, any directories added with the /AI compiler
option or in the LIBPATH environmental variable. As opposed to #include, there is no differ-
ence between the quoted and angle-bracket forms of #using.

#error
The #error directive issues an immediate error. It can be used to stop a compile when compile
time errors are encountered, for example:

#if _MSC_VER < 1400

#error "Code requires VS2005 or above."

#endif

#pragma
The #pragma directive encodes compiler-specific instructions. These instructions are generally
not portable, as they pertain to a particular implementation. One of the more useful #pragma
directives in Microsoft Visual C++ is #pragma warning. This directive allows you to enable or
disable warnings in the compiler. This is especially useful if you are compiling your code with
the /WX option, which treats all warnings as errors.

In C++, the function main() is defined as a global function returning int. The Microsoft
Visual C++ compiler allows you to declare it as a function of type void as well, but this is not
standard C++.2 To help the porting process of converting main() entry points so they return
void instead of int, the compiler allows you to skip returning a value from main() and injects
a return of 0 for you. In the case of any other function, it generates warning 4716 if you forget
to return a value.

CHAPTER 17 ■ THE PREPROCESSOR306

2. Section 3.6.1 of the C++ Standard of April 1, 2003, says about the main function ([basic.start.main]),
“A program shall contain a global function called main, which is the designated start of the program . . .
It shall have a return type of type int, but otherwise its type is implementation-defined.”

6080ch17.qxd 10/24/06 1:06 AM Page 306

Consider this one-line program:

int hello() {}

After compiling it, we get

C:\>cl /nologo /clr:pure test.cpp

c:\test.cpp(1) : error C4716: 'hello' : must return a value

Although 4716 is a warning, it is considered an error by default by the compiler. You can
still disable it with #pragma warning().

Let’s add the following directive:

#pragma warning (disable:4716)

Now this compiles without warning or error.
Here’s a less-contrived example:

#pragma warning (disable:4706)

void main()

{

int i=3; int j;

if(j=i)

{

System::Console::WriteLine(j);

}

}

and the results

C:\>cl /nologo /clr:pure test.cpp

C:\>test

3

When compiling, the compiler would tell you that you have an assignment within a con-
ditional expression with warning 4706. Usually this means that you forgot the extra = when
using the conditional operator ==, but in this case, it’s not a problem.

Some Useful Pragmas
As we already discussed, the following directives allow you to enable or disable one or more
warnings:

#pragma warning (enable: <n>[,<n>, ...])

#pragma warning (disable: <n>[,<n>, ...])

They also work on warnings that are errors by default, such as warning 4716 (discussed
previously). The diagnostics with numbers in the 4000 range are all warnings.

CHAPTER 17 ■ THE PREPROCESSOR 307

6080ch17.qxd 10/24/06 1:06 AM Page 307

The following #pragma directive displays a string during the compilation process:

#pragma message("string")

If you are redirecting the compiler output, this can be useful for postprocessing:

#pragma message("Compiling: "__FILE__ " " __DATE__ " " __TIME__)

void main()

{

}

After compiling this, we get the following:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

Compiling: test.cpp May 11 2006 20:44:13

One interesting thing to note about this code is that the strings used are not joined
together with the + symbol, because this code uses a native array of char and not a handle to
System::String. In this case, the preprocessor concatenates the strings into a single literal
for you. Earlier, I showed an example of using the predefined macros in the context of
a System::String. This behavior is not limited to the predefined macros, but is rather
an idiosyncrasy of the implementation. There are two kinds of strings in C++: char[] and
System::String^. We will revisit this in the context of #pragma managed and #pragma unmanaged:

#pragma managed

#pragma unmanaged

These directives allow you to designate particular sections of the code as unmanaged or
managed, which allows you to convert your native C++ to managed code on your own schedule.
Much of legacy native C++ is able to compile managed out of the box because of the compiler
feature named IJW (it just works), which handles transitions to native code automatically. For
example, you can compile the next native C++ code example as managed as well as unmanaged.
If you compile it managed, it transitions to the native library function printf() automatically
through managed-to-native and native-to-managed transitions.

Let’s use the /FAsc compiler option (configure assembly listing) to see the native code
generated by the compiler:

cl /nologo /FAsc test.cpp

We find the following example within the test.cod file (note that the source code for
test.cpp is inline within the assembly listing):

_main PROC

; 3 : {

00000 55 push ebp

00001 8b ec mov ebp, esp

; 4 : printf("Hello, World\n");

00003 68 00 00 00 00 push OFFSET $SG3669

CHAPTER 17 ■ THE PREPROCESSOR308

6080ch17.qxd 10/24/06 1:06 AM Page 308

00008 e8 00 00 00 00 call _printf

0000d 83 c4 04 add esp, 4

; 5 : }

00010 33 c0 xor eax, eax

00012 5d pop ebp

00013 c3 ret 0

_main ENDP

This is 32-bit code generated for the x86 family of processors, and it runs fine on my Mac-
Book Pro with Intel Inside.

Compiling the code managed

cl /nologo /clr:pure /FAsc test.cpp

we get the following:

; 4 : printf("Hello, World\n");

0000b 7f 00 00 00 00 ldsflda $SG6951

00010 28 00 00 00 00 call ?printf@@$$J0YAHPBDZZ

00015 26 pop

; 5 : }

00016 16 ldc.i.0 0 ; i32 0x0

00017 2a ret

This is CIL for the same program. It also runs on my MacBook Pro. The call to printf()
has been replaced with a call to the transition code.

Using #pragma managed and #pragma unmanaged, we can merge code that will not compile
managed with managed code as well as maintain certain areas as native for compatibility or
performance.

Let’s consider the following program:

#pragma managed

void Managed()

{

System::String ^s = "Hello " + "world";

System::Console::WriteLine(s);

}

#pragma unmanaged

#include <stdio.h>

void main()

{

Managed();

char t[]="Hello " "world";

printf("%s\n", t);

}

Let’s compile this using /clr. You cannot compile this using /clr:pure or /clr:safe
because of the #pragma directives.

CHAPTER 17 ■ THE PREPROCESSOR 309

6080ch17.qxd 10/24/06 1:06 AM Page 309

cl /nologo /FAsc /clr test.cpp

If you now examine the test.cod file, you will find a mixture of managed code and native
code. In the managed section, "Hello " and "world" are combined via a compiler-generated
call to String::Concat. In the native section, "Hello " and "world" are concatenated automati-
cally by the compiler. We will revisit the use of these #pragma directives in Chapter 19 within
the context of interoperability between native C++, C++/CLI, and C#.

The following directives implement the C++ version of #region and #endregion:

#pragma region any_name

#pragma endregion [any_comment]

Since #pragma directives are ignored by compilers that don’t recognize them, avoiding
adoption of the C# versions and implementing them as #pragma directives allows C++/CLI
code to be preprocessed by standard C++ preprocessors.

The following directive signals to the compiler that this include file should only be
processed once by the compiler:

#pragma once

In native C++ programming, since library class declarations are located in include files,
interclass dependencies cause include file dependencies. Rather than requiring the program-
mer to unravel these dependencies by including files in the right order, the include files
themselves use the #include directive for the definitions of the classes they need in order to
compile. In a complex system, several classes may depend on a single class, which would
cause a single include file to be brought in multiple times. This can cause performance degra-
dation as well as compilation errors if the include file has not been designed for this scenario.

Adding #pragma once at the beginning of an include file signals to the compiler that the
include file should only be processed one time per compilation. Consider Listings 17-1 and
17-2.

Listing 17-1. File test.h

#pragma once

#pragma message("compiling " __FILE__)

#include "test.h"

Listing 17-2. File test.cpp

#include "test.h"

#include "test.h"

void main() {}

In Listing 17-1, we are not only including test.h multiple times but also including it
recursively:

C:\>cl /nologo test.cpp

test.cpp

compiling c:\test.h

CHAPTER 17 ■ THE PREPROCESSOR310

6080ch17.qxd 10/24/06 1:06 AM Page 310

As you can see, the body of the include file is only compiled once.
One way to accomplish the same goal while avoiding #pragma directives is to use #define.

In this paradigm, you define a flag when an include file is compiled and only compile the body
of the include file if the flag is not defined.

For example, consider the following self-protected header file:

#ifndef TEST_H

#define TEST_H

#pragma message("compiling " __FILE__)

class Class

{

public:

void Method();

};

#endif //TEST_H

This is a fairly common construction.
The following #pragma directives allow you to select from the instrinsic (built-in) versions

of functions and the library versions, which is especially important if you wish to create cus-
tom implementations of functions that can be generated as intrinsic functions:

#pragma intrinsic(function1 [, function2, ...])

#pragma function(function1 [, function2, ...])

For example, the memset() (native) library function is generated intrinsically by the com-
piler.

Consider the following example:

#include <memory.h>

#pragma intrinsic(memset)

int main()

{

char Hello[12];

memset(Hello, 3 ,sizeof(Hello));

return Hello[7];

}

Compile this with the command line option /Oi, which enables intrinsic functions, as
follows:

cl /nologo /Oi /FAsc test.cpp

Let’s examine the test.cod file:

; 5 : char Hello[12];

; 6 : memset(Hello, 3 ,sizeof(Hello));

00010 b8 03 03 03 03 mov eax, 50529027 ; 03030303H

00015 89 45 f0 mov DWORD PTR _Hello$[ebp], eax

00018 89 45 f4 mov DWORD PTR _Hello$[ebp+4], eax

0001b 89 45 f8 mov DWORD PTR _Hello$[ebp+8], eax

CHAPTER 17 ■ THE PREPROCESSOR 311

6080ch17.qxd 10/24/06 1:06 AM Page 311

In this case, we can see how the compiler has generated memset() intrinsically.
Changing the #pragma directive to the following:

#pragma function(memset)

and recompiling gives us a different test.cod file:

; 5 : char Hello[12];

; 6 : memset(Hello, 3 ,sizeof(Hello));

00010 6a 0c push 12 ; 0000000cH

00012 6a 03 push 3

00014 8d 45 f0 lea eax, DWORD PTR _Hello$[ebp]

00017 50 push eax

00018 e8 00 00 00 00 call memset

0001d 83 c4 0c add esp, 12 ; 0000000cH

As you can see, the function version of memset() has been generated instead. Common
intrinsic functions include the following:

Absolute Value:

#include <math.h>

fabs() //absolute value of a float

abs() //absolute value of an integer

labs() //absolute value of a long

String Manipulation:

#include <string.h>

strcmp() //compare two strings

strcpy() //string copy

strlen() //string length

strcat() //string concatenation

Memory Manipulation:

#include <memory.h>

memcmp() //memory comparison

memcpy() //memory copy

memset() //set memory to a value

An updated list of library functions that may be generated intrinsically by the compiler
can be found on the Visual C++ documentation in the MSDN site.

The following directives allow you to temporarily redefine a macro:

#pragma push_macro("macro_name")

#pragma pop_macro("macro_name")

Redefining a macro is useful in a complex system that may have multiple modules that
wish to use macros in different ways.

CHAPTER 17 ■ THE PREPROCESSOR312

6080ch17.qxd 10/24/06 1:06 AM Page 312

The following #pragma directive places comments in the compiled file; these comments
are used by the linker or other programs:

#pragma comment(lib, "emapi")

#pragma comment(compiler)

#pragma comment(user, "Compiled on " __DATE__ " at " __TIME__)

Attributes (see Chapter 20) are used to add information at the class or function level.
The following directive works with the /Gs command-line option to enable or disable

stack checking:

#pragma check_stack(on|off)

This #pragma and command-line option is useful for tuning the balance of heap and stack
allocation in a native program.

As C++ has evolved, library functions have been deleted or revamped to encourage pro-
grammers to use more universal and secure functions. These library functions are labeled
“deprecated,” and the use of these functions generates a warning at compile time:

#pragma deprecated(func1, func2)

__declspec(deprecated) void func1(int) {}

The #pragma directive is used to deprecate an entire function, whereas the __declspec()
is used to deprecate a particular overload of a function. __declspec() is another source of
compiler-specific extensions (see the Visual C++ documentation on MSDN for more informa-
tion). In C++/CLI, the class ObsoleteAttribute indicates obsolescence, just like in C#.

A comprehensive example follows:

#pragma unmanaged

void test1()

{

}

void test2(int)

{

}

__declspec(deprecated) void test2(char)

{

}

void func1(int)

{

}

#pragma deprecated(test1)

#pragma managed

using namespace System;

[Obsolete] void test()

{

}

void main()

{

#line 100

test1();

CHAPTER 17 ■ THE PREPROCESSOR 313

6080ch17.qxd 10/24/06 1:06 AM Page 313

#line 200

test2((char)0);

#line 300

test2((int)0);

#line 400

test();

}

This program uses the #line directive to make our test cases easy to find.
Compiling this, we get the following:

C:\>cl /nologo /clr test.cpp

test.cpp

test.cpp(100) : warning C4995: 'test1': name was marked as #pragma deprecated

test.cpp(200) : warning C4996: 'test2' was declared deprecated

test.cpp(8) : see declaration of 'test2'

test.cpp(400) : warning C4947: 'test' : marked as obsolete

The overloaded call to test2(int) does not generate a warning. The remainder generates
various diagnostics depending on whether the function was declared deprecated or obsolete.

Summary
The preprocessor is one of the most powerful aspects of C++. Used properly, the possibilities
are endless. Abused, it can render your code esoteric and unmaintainable. As Niccolò Machi-
avelli wrote, “In the actions of all men . . . when there is no impartial arbiter, one must consider
the final result.”

In the next chapter, we’ll look deeper at native C++ and see how it differs both from
C++/CLI and C#.

CHAPTER 17 ■ THE PREPROCESSOR314

6080ch17.qxd 10/24/06 1:06 AM Page 314

Native C++

Wise men learn by other men’s mistakes, fools by their own.

—H. G. Wells

In this chapter, we’ll take a survey of some of the characteristics of native C++ programming.
We will look at common library functions, template libraries, and C++ features that do not
work on managed types.

The iostream Library
In native C++ programming, one of the most popular libraries for file input and output is the
iostream library. It is part of the C++ Standard. In it, the << and >> operators are overloaded
within the include file iostream to provide easy output to the console. They are used with the
types cout for output and cin for input and provide a syntax similar to operating system pip-
ing operators. The type endl is used to indicate the end of the line.

An example follows:

#include <iostream>

using namespace std;

int main()

{

int i;

cout << "enter a number" << endl;

cin >> i;

cout << "the number was " << i << endl;

}

After compiling and running, we get the following:

C:\>cl /nologo /EHsc test.cpp

C:\>test

enter a number

4

the number was 4

315

C H A P T E R 1 8

■ ■ ■

6080ch18.qxd 10/24/06 1:06 AM Page 315

Since this is C++, it almost goes without saying that all of these can be overloaded again
locally, for example:

#include <iostream>

using namespace std;

namespace R

{

ostream& endl (ostream& os)

{

::operator<<(os, " <END> ");

::endl(os);

return os;

}

ostream& operator<< (ostream& os, const char* str)

{

::operator<<(os, " -> ");

::operator<<(os, str);

::operator<<(os, " <- ");

return os;

}

static int Test()

{

cout << "Hello" << endl;

return 0;

}

};

int main()

{

R::Test();

}

Again, after compiling and executing, we get

C:\>cl /nologo /EHsc test.cpp

C:\>test

-> Hello <- <END>

Pointers to Members
In C++, it is possible to create a pointer to an element of a class that is not bound to a particu-
lar instance of a class. These are called pointers to members.

Pointers to members are not really pointers per se. Rather, they are offsets within a class
definition to a particular member, and when combined with a pointer to a class instance, they
can be resolved to an actual member. Pointers to members turn out to be extremely powerful
in several areas. Since pointers to members are not supported by the .NET Framework, they
may only be used with native classes.

CHAPTER 18 ■ NATIVE C++316

6080ch18.qxd 10/24/06 1:06 AM Page 316

Why Use Pointers to Members?
Pointers to members are extremely useful in switching control between classes, which is
important in native C++ programs that use callbacks. A callback is a mechanism where an
address of a function, named a callback function, is passed to a second function for later invo-
cation. In .NET, you can use delegates to perform callbacks; native C++ lacks delegates.

Syntax
A pointer-to-member function is declared in a similar fashion to a regular pointer except that
the asterisk is preceded by a class specification. They are assigned by taking the address of
a class member in the same manner as a static member—without regard to any particular
instance. Dereferencing uses an extra asterisk just before the pointer-to-member function.

Perhaps a few examples will clarify faster than using Backus-Naur Form (BNF)1:

struct Class

{

int i;

void Function(int i) {}

};

void main()

{

Class c;

Class *pClass = &c;

int Class:: *pInt = &Class::i;

void (Class::*pFunction)(int) = &Class::Function;

c.*pInt = 3;

(c.*pFunction)(3);

pClass->*pInt = 4;

(pClass->*pFunction)(4);

}

In this example, we have a class with an int field and a member function taking an int
and returning void. We declare a couple of pointers to members, pInt and pFunction, and ini-
tialize them to point at the corresponding members of Class.

Using an instance variable c and a pointer to Class, pClass, we then observe the syntax for
dereferencing each of these.

Motivation
Where would a pointer-to-member function come in handy? Suppose you have a queue of
tasks that are being consumed by a background thread. As each task is performed, you would
like to notify the class that requested the task (the producer) that the task is completed. Differ-
ent types of tasks may have different entry points for notification within the requesting task.

CHAPTER 18 ■ NATIVE C++ 317

1. BNF is the syntax definition language we all love.

6080ch18.qxd 10/24/06 1:06 AM Page 317

One way to solve this problem is with a pointer-to-member function. You define the pro-
totypical signature of a generic notification procedure and define several notification procedures
consistent with the requesting class. Within the task itself, you can declare a holder to point at
the instance of the requesting class along with a pointer-to-member function for the proper
notification routine within the requesting class. When the task is completed, it is able to call
the proper notification routine within the requesting class using the pointer-to-member func-
tion, in the case of the following example, a pointer to a member function:

#include <iostream>

#include <deque>

using namespace std;

enum REQUEST

{

READ, WRITE

};

struct Task;

deque<Task*> t;

struct Requestor

{

void ReadDone(bool success)

{

cout << "Read Done notification" << endl;

}

void WriteDone(bool success)

{

cout << "Write Done notification" << endl;

}

void SetupRequests();

};

struct Task

{

enum REQUEST request;

Requestor *pCallBackInstance;

void (Requestor::*Notify)(bool);

};

void Requestor::SetupRequests()

{

Task *readTask = new Task();

readTask->Notify = &Requestor::ReadDone;

readTask->pCallBackInstance = this;

readTask->request = READ;

t.push_front(readTask);

Task *writeTask = new Task();

writeTask->Notify = &Requestor::WriteDone;

writeTask->pCallBackInstance = this;

writeTask->request = WRITE;

t.push_front(writeTask);

}

CHAPTER 18 ■ NATIVE C++318

6080ch18.qxd 10/24/06 1:06 AM Page 318

int main()

{

Requestor *r = new Requestor();

r->SetupRequests();

while(!t.empty())

{

Task *pTask = t.back();

t.pop_back();

switch(pTask->request)

{

case READ:

cout << "reading " << endl;

break;

case WRITE:

cout << "writing " << endl;

break;

}

((pTask->pCallBackInstance)->*pTask->Notify)(true);

delete pTask;

}

delete r;

}

Let’s compile and run this one:

C:\>cl /nologo /EHsc test.cpp

C:\>test

reading

Read Done notification

writing

Write Done notification

The examples are definitely getting more complicated as the text progresses. In this exam-
ple, we define a producer class named Requestor. Requestor allocates a READ task and a WRITE task,
each with a different notification callback. These tasks are pushed onto a Standard Template
Library (STL) deque for consumption (see the section on STL later in this chapter).

We then consume these tasks first-in, first-out in the main loop, call the appropriate noti-
fication callback using the pointer to the member, free the task’s memory (more on this later
in the chapter), and then we’re finished.

Similar to standard pointers, the pointer operator, ->*, may be overloaded by defining
operator->*. On the other hand, the instance operator.* is not overloadable.

Operators new and delete
C++/CLI uses gcnew to allocate memory on the managed heap and new to allocate memory on
the native heap. All types—reference, value, and native—may also be allocated on the stack.
Reference types are special though. Even though they behave semantically as allocated on the

CHAPTER 18 ■ NATIVE C++ 319

6080ch18.qxd 10/24/06 1:06 AM Page 319

stack, they are still physically contained in the managed heap. Since there is no garbage collection
support on the native heap, it is the programmer’s responsibility to make sure that memory is
freed when it is no longer required. Deterministic destruction of types makes sure that types
on the stack are destroyed and deallocated when appropriate; memory allocated on the native
heap must be freed explicitly using delete as observed in the previous code sample. Both new
and delete can be overloaded using operator new() and operator delete().

There are two versions of the new and delete operators: one version appropriate for single
instances and another appropriate for arrays.

An example of new and delete follows:

#include <iostream>

using namespace std;

static int Count = 0;

struct N

{

int _Count;

N() : _Count(Count++)

{

cout << "constructor of " << _Count << endl;

}

~N()

{

cout << "destructor of " << _Count << endl;

}

};

void main()

{

N n;

N *pN = new N;

N *pNs = new N[3];

delete pN;

delete [] pNs;

}

After compiling and running this, we get

C:\>cl /nologo /EHsc test.cpp

C:\>test

constructor of 0

constructor of 1

constructor of 2

constructor of 3

constructor of 4

destructor of 1

destructor of 4

destructor of 3

destructor of 2

destructor of 0

CHAPTER 18 ■ NATIVE C++320

6080ch18.qxd 10/24/06 1:06 AM Page 320

Note that each constructed instance of N is destroyed exactly once.

Confusing delete and delete[]
Always make sure that you do not confuse the single and array versions of the delete operator.
If you confuse them, you will plant hidden problems in your code. For example, in the previ-
ous example case, the destructor will not be called for all three allocated instances of N.

Suppose we change the main() routine from the previous example to the following one:

void main()

{

N *pNs = new N[3];

delete pNs;

}

Compiling and running this, we get

C:\>cl /nologo /EHsc test.cpp

C:\>test

constructor of 0

constructor of 1

constructor of 2

destructor of 0

Now we have a memory leak caused by using the wrong version of delete.

/Zc:forScope
In standard C++, the scope of a variable declared within the initialization of a for loop is
limited to the scope inside the loop itself. This standard behavior is turned on by using the
/Zc:forScope compiler option, which is used by default in a compilation. The behavior can be
relaxed by using /Zc:forScope- to expand the scope of this variable to the scope containing
the loop declaration, for example:

int main()

{

for(int i=0; i<3; i++)

{

}

i = 3;

}

C:\>cl /nologo /EHsc test.cpp

test.cpp

test.cpp(6) : error C2065: 'i' : undeclared identifier

Using /Zc:forScope-, the program compiles without error:

CHAPTER 18 ■ NATIVE C++ 321

6080ch18.qxd 10/24/06 1:06 AM Page 321

C:\>cl /nologo /EHsc /Zc:forScope- test.cpp

/Zc:wchar_t
This switch controls whether wchar_t is considered a fundamental type within C++. This switch
is provided for backwards compatibility with previous versions of Microsoft Visual C++, in
which the type was defined in a header file using a typedef.

int main()

{

wchar_t c;

}

In Visual C++ 2005, the preceding code compiles by default. With /Zc:wchar_t-, you get
the following diagnostics:

C:\>cl /nologo /EHsc /Zc:wchar_t- test.cpp

test.cpp

test.cpp(3) : error C2065: 'wchar_t' : undeclared identifier

test.cpp(3) : error C2146: syntax error : missing ';' before identifier 'c'

test.cpp(3) : error C2065: 'c' : undeclared identifier

Default Parameters
C++ allows you to specify default parameters for methods in native types as well as global
functions. To use default parameters, append =<value> to each parameter in the function dec-
laration. Note that default parameters must start with the last parameter (moving from right to
left), must be consecutive, and cannot be repeated in the function definition.

An example follows:

#include <iostream>

using namespace std;

int f(int i = 3)

{

return i;

}

int main()

{

cout << f() << endl;

}

Compiling and running, we get

C:\>cl /nologo /EHsc test.cpp

C\>test

3

CHAPTER 18 ■ NATIVE C++322

6080ch18.qxd 10/24/06 1:06 AM Page 322

The CLI still does not support default parameters, so if you try this with a method of
a managed class, you get a compiler error. This might, nonetheless, change in the future. In
the meantime, you can get away with a nifty but not very elegant workaround using paramar-
rays. Can you construct a managed method with default parameters?

C++ Runtime Library Functions
I’m not going to try and cover the entire C++ runtime library. There are dozens of books writ-
ten on this subject, and the universe does not need another. Rather, I will try to introduce
some of the major modules and outline some of their functions, with the goal here being
exposure to the basics.

stdio.h
stdio is an acronym for “standard input/output.” stdio.h is the include file that contains the
prototypes for the major input/output functions, which include the following:

• printf: Formatted output to stdout, the console

• fprintf: Formatted output to a file

• sprintf: Formatted output to a string

• scanf: Formatted input from the console

• gets: Get a string from the console

• puts: Put a string to the console

The parameters of printf() are similar to the .NET method family for
System::Console::Write() and String::Format(). All of these accept a format string, which
determines the position of the parameters in a string, followed by the parameters themselves.
Where the .NET versions draw information from the arguments themselves, the C++ versions
require that you specify exactly what they are, and how they should be printed. The compiler
does not check that the format specification is compatible with the arguments provided, so
you have to be careful.

Here are some the function prototypes:

int printf(const char *format [,argument...]);

int wprintf(const wchar_t *format [,argument...]);

Some common format specifications follow:

• %d: integer

• %c: char

• %s: string

• %ld: long

• %f: float

• %x: hexadecimal integer

CHAPTER 18 ■ NATIVE C++ 323

6080ch18.qxd 10/24/06 1:06 AM Page 323

A complete list of format specifications is available on MSDN, along with the size and
spacing parameters.

Here is a brief example:

#include <stdio.h>

int main()

{

wchar_t s[20];

printf("%d\n", 3);

swprintf(s, sizeof(s), L"ABC \u00E9\n");

for(int i=0; s[i] ; i++)

{

printf("0x%04x ", s[i]);

}

printf("\n");

return 0;

}

Compiling and executing this, we get the following:

C:\>cl /nologo test.cpp

test.cpp

C:\>test

3

0x0041 0x0042 0x0043 0x0020 0x00e9 0x000a

stdlib.h
This include file contains the prototypes for the memory allocation and freeing functions,
malloc() and free():

void *malloc(size_t size);

void free(void *ptr);

malloc() stands for “memory allocate”, and size_t is a type standardized by ANSI C for defin-
ing sizes of strings and memory blocks. It is essentially an int on modern 32-bit architectures.

Every call to malloc() should be matched by a corresponding call to free(), or you risk
a memory leak. The following local class version allocates and automatically frees a block of
memory using C++’s deterministic destruction:

#include <stdio.h>

#include <stdlib.h>

void main()

{

struct Memory

{

unsigned char *ptr;

Memory(int n)

CHAPTER 18 ■ NATIVE C++324

6080ch18.qxd 10/24/06 1:06 AM Page 324

{

ptr = (unsigned char *)malloc(n);

printf("Allocated %d bytes\n", n);

}

~Memory()

{

if(ptr != NULL)

{

free(ptr);

printf("Freed memory\n");

}

}

};

Memory m(10);

m.ptr[3] = 0;

}

After compiling and running this, we get

C:\>cl /nologo test.cpp

C:\>test

Allocated 10 bytes

Freed memory

Other Include Files
Here are some more include files that will be essential to your native C++ programming.

string.h

Functions:
• strcpy: Copy a string

• strlen: Get the length of a string

■Note Strings in native C++ are zero-delimited arrays of 8-bit char. Wide strings are similar to C# strings,
zero-delimited arrays of wchar_t, which in .NET is equivalent to System::Char.

memory.h

Functions:
• memcpy: Copy a chunk of memory

• memset: Set a chunk of memory to a value

CHAPTER 18 ■ NATIVE C++ 325

6080ch18.qxd 10/24/06 1:06 AM Page 325

time.h

Measurements:
• Date

• Time of day

• Time

math.h

Measurements:
• Trigonometric funtions: Secant, tangent, cosine, and sine

• Pi: 3.14159

STL
The Standard Template Library (STL) is a set of collection classes along with the methods that
act on them. The genius of the library is that it is truly generic in that it decouples acting on
a collection of data from acting on the data elements themselves.

Among other collection classes, it implements arrays called vectors, double-ended
queues called deques, and doubly linked lists called lists. The STL has a string type and
algorithms, such as sort, to rearrange elements.

Vectors build functionality on the concept of a basic array, so you can have the best of
both worlds.

vector
The following example uses STL vectors:

#include <vector>

#include <iostream>

#include <string>

#include <algorithm>

using namespace std;

int main()

{

vector<string> VString;

VString.push_back("String 1");

VString.push_back("String 4");

VString.push_back("String 3");

VString.push_back("String 2");

cout << endl << "In order:" << endl;

for (unsigned int i=0; i < VString.size(); i++)

{

cout << VString[i] << endl;

}

CHAPTER 18 ■ NATIVE C++326

6080ch18.qxd 10/24/06 1:06 AM Page 326

cout << endl << "Sorted:" << endl;

sort(VString.begin(),VString.end());

vector<string>::iterator iter;

for (iter = VString.begin(); iter != VString.end(); ++iter)

{

cout << *iter << endl;

}

cout << endl << "Reversed:" << endl;

vector<string>::reverse_iterator revIter;

for (revIter=VString.rbegin(); revIter!=VString.rend(); ++revIter)

{

cout << *revIter << endl;

}

return 0;

}

In this example, we take a vector of strings, add some values to it, display it, sort it, redis-
play it, and display it reversed.

After compiling and executing, we get the following:

C:\>cl /nologo /EHsc test.cpp

C:\>test

In order:

String 1

String 4

String 3

String 2

Sorted:

String 1

String 2

String 3

String 4

Reversed:

String 4

String 3

String 2

String 1

deque
A deque is a double-ended queue. You can push and pop items from both ends of the queue, as
well as iterate through the queue.

Here is a native C++ version of the Carwash using deque:

#include <deque>

#include <iostream>

CHAPTER 18 ■ NATIVE C++ 327

6080ch18.qxd 10/24/06 1:06 AM Page 327

#include <string>

#include <algorithm>

#include <windows.h>

#include <process.h>

using namespace std;

namespace CarWashBusiness

{

CRITICAL_SECTION IOcs;

class Lock

{

CRITICAL_SECTION *pCS_;

public:

Lock(CRITICAL_SECTION *pCS) : pCS_(pCS)

{

EnterCriticalSection(pCS_);

}

~Lock()

{

LeaveCriticalSection(pCS_);

}

};

struct Car

{

string Name_;

Car(string Name) : Name_(Name)

{

}

};

struct Process

{

bool open;

CRITICAL_SECTION cs;

deque<Car*> Queue;

HANDLE hThread;

unsigned int nThreadId;

static unsigned int WINAPI Proc(void *param)

{

return((Process *)param) -> Run();

}

virtual unsigned int Run() = 0;

Process() : open(false)

{

InitializeCriticalSection(&cs);

}

void Open()

{

open=true;

}

CHAPTER 18 ■ NATIVE C++328

6080ch18.qxd 10/24/06 1:06 AM Page 328

void Close()

{

open=false;

}

size_t Count()

{

Lock l(&cs);

return Queue.size();

}

void AddQueue(Car *pCar)

{

Lock l(&cs);

Queue.push_back(pCar);

}

Car *GetNext()

{

Lock l(&cs);

if (Queue.empty())

{

return NULL;

}

Car *pCar = Queue.front();

Queue.pop_front();

return pCar;

}

void Done(Car *pCar)

{

if (pNextProcess)

{

pNextProcess->AddQueue(pCar);

}

}

Process *pNextProcess;

virtual void DoStage()

{

while (!open)

{

;

}

for (;open;)

{

Car *pCar = GetNext();

if (!pCar)

{

Sleep(30);

continue;

}

CHAPTER 18 ■ NATIVE C++ 329

6080ch18.qxd 10/24/06 1:06 AM Page 329

Doit(pCar);

Done(pCar);

}

}

virtual void Doit(Car *pCar) = 0;

};

struct Vacuum : Process

{

virtual unsigned int Run()

{

{

Lock io(&IOcs);

cout << "vacuum running" << endl;

}

DoStage();

return 1;

}

virtual void Doit(Car *pCar)

{

Lock io(&IOcs);

cout << "vacuuming " << pCar->Name_ << endl;

Sleep(1000);

cout << "vacuuming done " << pCar->Name_ << endl;

}

};

struct Wash : Process

{

virtual unsigned int Run()

{

{

Lock io(&IOcs);

cout << "wash running" << endl;

}

DoStage();

return 1;

}

virtual void Doit(Car *pCar)

{

Lock io(&IOcs);

cout << "washing: " << pCar->Name_ << endl;

Sleep(1200);

cout << "washing done: " << pCar->Name_ << endl;

}

};

struct Done : Process

{

virtual unsigned int Run()

CHAPTER 18 ■ NATIVE C++330

6080ch18.qxd 10/24/06 1:06 AM Page 330

{

return 1;

}

virtual void Doit(Car *pCar)

{

}

};

struct CarWash

{

size_t Countin;

bool open;

string Name_;

Vacuum v;

Wash w;

Done d;

CarWash(string Name) : Name_(Name), open(false)

{

Countin = 0;

{

Lock io(&IOcs);

cout << Name_ << " Car Wash" << endl;

}

v.pNextProcess = &w;

w.pNextProcess = &d;

d.pNextProcess = NULL;

}

void Open()

{

open = true;

v.Open();

w.Open();

v.hThread=(HANDLE)_beginthreadex

(NULL,0,Process::Proc,&v,0,&v.nThreadId);

w.hThread=(HANDLE)_beginthreadex

(NULL,0,Process::Proc,&w,0,&w.nThreadId);

}

void Close()

{

open = false;

size_t Count;

do

{

Sleep(30);

Count = d.Count();

}

while (d.Count() != Countin);

v.Close();

CHAPTER 18 ■ NATIVE C++ 331

6080ch18.qxd 10/24/06 1:06 AM Page 331

w.Close();

WaitForSingleObject(v.hThread, INFINITE);

WaitForSingleObject(w.hThread, INFINITE);

}

~CarWash()

{

}

void Clean(Car *pCar)

{

{

Lock io(&IOcs);

cout << "Cleaning: " << pCar->Name_ << endl;

}

Countin++;

v.AddQueue(pCar);

}

};

}

using namespace CarWashBusiness;

int main()

{

InitializeCriticalSection(&IOcs);

Car Volvo("Volvo");

Car VW("VW");

Car Audi("Audi");

CarWash PicoAndSep("Pico and Sepulveda");

PicoAndSep.Open();

PicoAndSep.Clean(&Volvo);

PicoAndSep.Clean(&VW);

PicoAndSep.Clean(&Audi);

PicoAndSep.Close();

return 0;

}

After compiling and running, we get the following results:

CHAPTER 18 ■ NATIVE C++332

6080ch18.qxd 10/24/06 1:06 AM Page 332

C:\>cl /nologo /EHsc test.cpp

C:\>test

Pico and Sepulveda Car Wash

vacuum running

Cleaning: Volvo

wash running

Cleaning: VW

Cleaning: Audi

vacuuming Volvo

vacuuming done Volvo

vacuuming VW

vacuuming done VW

washing: Volvo

washing done: Volvo

vacuuming Audi

vacuuming done Audi

washing: VW

washing done: VW

washing: Audi

washing done: Audi

This example uses the deque<T> class to keep track of the cars at the washing and vacu-
uming stations, uses critical sections to control access to the queues and to the console, and
uses threads to multitask and pipeline operations. In short, it does the same things as the
example from Chapter 14, just in a native fashion.

list
list is a doubly linked list that supports bidirectional traversal.

auto_ptr
auto_pr is an intelligent pointer type that automatically frees memory when the pointer goes
out of scope. It can help you when you forget your calls to the delete operator.

Summary
There are several great texts on native C++ that you should have a look at if you want to learn
more about native programming. Some of my favorites include Stephen Prata’s C++ Primer
Plus (Sams, 2001), Stanley Lippman, Josée Lajoie, and Barbara Moo’s C++ Primer (Addison-
Wesley, 2005), any of Bjarne Stroustrup’s C++ books, and Herb Sutter’s Exceptional C++ series
(Addison-Wesley). I hope this chapter has given you a taste of native programming and inspired
you to read on!

In the next chapter, we’ll take a deeper look at multiple language integration and interop-
erability.

CHAPTER 18 ■ NATIVE C++ 333

6080ch18.qxd 10/24/06 1:06 AM Page 333

6080ch18.qxd 10/24/06 1:06 AM Page 334

Multiple Language Support

The pursuit of truth and beauty is a sphere of activity in which we are permitted to

remain children all our lives.

—Albert Einstein

In this chapter, I will cover the various ways to combine different .NET languages as well as
interface with unmanaged code. I’ll start by reviewing the standards that govern language
integration and interoperability in .NET.

With the arrival of Microsoft Visual Studio 2005, it’s easier than ever to develop applica-
tions using more than one programming language. Not only can you take advantage of full
language integration between .NET languages, but you can also call native code with .NET
interoperability.

Let’s have a look at .NET language integration and then move on to .NET interoperability.

.NET Language Integration
The .NET platform is programming language agnostic. You can develop a class in Visual Basic,
derive a class from it in C#, and then use both of these classes in C++/CLI. The keys to lan-
guage integration lie in the Common Language Infrastructure (CLI), Common Type System
(CTS), and Common Language Specification (CLS) standards.

The CLI standard describes the execution engine and file formats of .NET. All .NET imple-
mentations follow this standard, although they may implement the various elements in different
ways on different platforms.

The Common Type System (CTS) is a subset of the CLI standard that describes the types
available to a CLI compliant language.

The CLS is a subset of the CLI standard that describes language interoperability rules for
items that are exported from an assembly. It does not apply to the internal implementation
within an assembly. It affects a subset of the CTS types as well as methods that pertain to these
types.

The practical import of all of this is that CLI-compliant languages can not only share data
but also data types, and they can create polymorphic types based in one language and derived
in another.

335

C H A P T E R 1 9

■ ■ ■

6080ch19.qxd 10/24/06 1:07 AM Page 335

Gathering Metadata
The CLI defines metadata, the Common Intermediate Language (CIL) instruction set, mod-
ules, and assemblies. Modules are units of metadata that contain, among other things, type
descriptions and managed code in CIL. Assemblies are units of deployment for one or more
modules. Assemblies are packaged as a class library file (DLL) or an application file (EXE),
and they can optionally load classes from other class libraries.

Language integration is typically accomplished by limiting modules to a single .NET lan-
guage, optionally gathering these modules into assemblies, and binding the results together
for deployment.

If a building block is a completed module, subsequent code will use this block by inte-
grating it with other modules into a new module or an assembly. If a building block is an
assembly, or class library, then subsequent code will use it by linking to it and loading it as
a DLL file at runtime.

In the following example, we’re taking the first choice—working with modules to create
a single executable.

Tracking Students Example
Suppose we have developed a Student class in Visual Basic .NET. This class encapsulates
everything administrative we need to know about students. It supports the IComparable<T>
interface, which allows us to sort students by identification number using generic collection
classes. On top of that, let’s make a Tree in C#. Tree is a generic collection class of our own for
organizing arbitrary types: it knows nothing particular about students, but it doesn’t need to.
Finally, let’s finish with a C++/CLI class that overrides Tree’s tree-walking method, VisitLeaf(),
to change the tree into a linked list. We’ll display the list of students sorted by identification
number.

Student in Visual Basic .NET
The VB Student class has a small Main() procedure for unit testing. The Student class has the
following significant methods:

• New(): The constructor

• CompareTo(): Used for implementing IComparable

• NewStudents(): A static method for creating an array of Student objects

Here is the VB Student class:

Imports System

Namespace Sample

Public Class Student

Implements IComparable(Of Student)

' Constructor

Private Sub New(ByVal Id As Integer)

Me.Id = Id

End Sub

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT336

6080ch19.qxd 10/24/06 1:07 AM Page 336

' IComparable

Public Function CompareTo(ByVal other As Student) As Integer _

Implements System.IComparable(Of Student).CompareTo

Return Me.Id.CompareTo(other.Id)

End Function

Public Shared Function

NewStudents(ByVal ParamArray Ids As Integer()) As Student()

Dim students As Student() = New Student(Ids.Length - 1) {}

Dim index As Integer = 0

For Each id As Integer In Ids

students(index) = New Student(id)

index += 1

Next

Return students

End Function

Public Overrides Function ToString() As String

Return String.Format("ID:{0}", Me.Id)

End Function

' Fields

Private Id As Integer

End Class

Module Run

Sub Main()

Dim students As Student() = Nothing

students = Student.NewStudents(5, 2, 6, 8, 10, 9, 7, 1, 3, 4)

For Each student As Student In students

Console.WriteLine(student)

Next

End Sub

End Module

End Namespace

Let’s compile and run this:

C:\>vbc /nologo student.vb

C:\>student

ID:5

ID:2

ID:6

ID:8

ID:10

ID:9

ID:7

ID:1

ID:3

ID:4

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 337

6080ch19.qxd 10/24/06 1:07 AM Page 337

The preceding Visual Basic command line compiles the sample into an assembly exe-
cutable; later, we will compile the same sample into a module for use with C# and C++/CLI.

A Generic Tree Class in C#
Next, we examine the Tree<T> class in C#. It accepts types that implement the IComparable<T>
interface. Let’s examine the code a bit, as this program looks far worse than it really is. The
Tree<T> class has a nested class named Leaf. Each Leaf not only contains a data element but
also references to the left and right branches of the tree. Leaf contains the following methods:

• CompareTo(): Implements IComparable

• operator>= and operator<=: Shortcuts for the CompareTo() method

• Leaf(): The constructor

• ToString(): Displays the data element contained within the Leaf

The Tree<T> class is a generic collection of types that implement IComparable<T>. Tree<T>
knows nothing about a Student class. It stores data items of generic type T in instances of the
nested class Leaf. Tree<T> has the following public methods:

• Add(): There are two overloads of the Add() method: one adds a single data item to the
tree; the other adds an array of data items. This method seems a little complicated,
because it is long, but in reality, all it does is traverse the tree downward looking for
a place to store the new Leaf.

• Inorder(): This method traverses the tree using the in-order algorithm; this algorithm
visits the left child, the current leaf, and finally the right child. Based on the way we
added the leaves to the tree, this algorithm will visit all of the leaves in the order defined
by the results of IComparable<T> applied to two data instances.

• VisitLeaf(): This method is called by Inorder() each time a leaf is visited. It is currently
implemented to write the leaf to the console using Leaf.ToString(). This method is
important, because we will override it in the C++ class to save the leaf data rather than
writing it to the console.

The code for Tree<T> follows:

using System;

using System.Collections.Generic;

namespace Sample

{

public class Tree<T> where T : IComparable<T>

{

public class Leaf

{

public Leaf left = null;

public Leaf right = null;

public T data;

public Leaf(T data)

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT338

6080ch19.qxd 10/24/06 1:07 AM Page 338

{

this.data = data;

}

public static bool operator>=(Leaf lhs, Leaf rhs)

{

return lhs.data.CompareTo(rhs.data) >= 0;

}

public static bool operator<=(Leaf lhs, Leaf rhs)

{

return lhs.data.CompareTo(rhs.data) <= 0;

}

public override string ToString()

{

return data.ToString();

}

}

public Leaf root = null;

public void Add(T[] adata)

{

foreach(T data in adata)

{

Add(data);

}

}

public void Add(T data)

{

Leaf leaf = new Leaf(data);

if(root == null)

{

root = leaf;

}

else

{

Leaf current = root;

for(;;)

{

if(current >= leaf)

{

if(current.left == null)

{

current.left = leaf;

break;

}

else

{

current = current.left;

}

}

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 339

6080ch19.qxd 10/24/06 1:07 AM Page 339

else

{

if(current.right == null)

{

current.right = leaf;

break;

}

else

{

current = current.right;

}

}

}

}

}

public virtual void VisitLeaf(Leaf leaf)

{

Console.WriteLine(leaf);

}

private void DoInorder(Leaf leaf)

{

if(leaf==null)

{

return;

}

DoInorder(leaf.left);

VisitLeaf(leaf);

DoInorder(leaf.right);

}

public virtual void Inorder()

{

DoInorder(root);

}

}

class Test

{

public static void Main()

{

Tree<int> tree = new Tree<int>();

tree.Add(3);

tree.Add(1);

tree.Add(5);

tree.Inorder();

}

}

}

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT340

6080ch19.qxd 10/24/06 1:07 AM Page 340

The final class Test is just for unit testing; it has a static public method Main(), so let’s
compile and run this as follows:

C:\>csc /nologo tree.cs

C:\>tree.exe

1

3

5

Again, the csc command line compiles the sample into an assembly executable; later, we
will compile the same sample into a module for use with C# and C++/CLI.

Gathering the Pieces in C++/CLI
The goal of our C++ application is to create a linked list of students sorted by identification
number. The Inorder() method in the Tree<T> class can traverse the tree in order, but it has the
side effect of displaying the students on the console in the VisitLeaf() method. We can take
advantage of this by deriving our linked list class from Tree<T> and overriding the VisitLeaf()
method. Since VisitLeaf() is called for each element in sorted order when the tree is traversed,
we can override VisitLeaf() in our derived class to add the element to a linked list. We use
LinkedList<T> in System::Collections::Generic for our linked list.

This class is also a good example of working with nested classes using generics across lan-
guages because of the nested class Tree<T>::Leaf.

Here is the C++ code, which uses and combines the C# and VB:

#using "System.dll"

using namespace System;

using namespace Collections::Generic;

using namespace Sample;

generic <typename T>

where T : IComparable<T>

ref struct LList : public Tree<T>

{

LinkedList<T> list;

virtual void VisitLeaf(Leaf^ leaf) override

{

list.AddLast(leaf->data);

}

virtual void Dump()

{

for each(T t in list)

{

Console::WriteLine(t);

}

}

};

void main()

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 341

6080ch19.qxd 10/24/06 1:07 AM Page 341

{

array<Student^>^ students = Student::NewStudents(25, 46, 34, 12, 1);

LList<Student^>^ ll = gcnew LList<Student^>();

ll->Add(students);

ll->Inorder();

ll->Dump();

}

This class is much simpler than the other two; LList<T> only has two significant methods:

• VisitLeaf(): Overrides Tree<T>::VisitLeaf() to add a data item to our linked list
rather than displaying it as the base class method does

• Dump(): Displays the entire linked list on the console

This time, we want to create modules for both VB and C#. We’ll compile the C++ code
using these modules. We can compile and run the finished program:

C:\>vbc /nologo /target:module /out:student.netmodule student.vb

C:\>csc /nologo /target:module /out:tree.netmodule tree.cs

C:\>cl /nologo /clr:pure /FUstudent.netmodule /FUtree.netmodule test.cpp

C:\>test

ID:1

ID:12

ID:25

ID:34

ID:46

Note that we use /FU (force using) to add a reference to the C# and VB modules; using
force using is equivalent to adding a #using statement within the source code itself.

Using the IDE
The core IDE project system only supports modules using custom build steps. In Visual C++,
you can also do this with the /LN command-line option, which you can set in a project’s prop-
erties. To take advantage of the power of the IDE, let’s modify our application a tiny bit. We will
create three projects: one in VB, one in C#, and one in C++.

We set the VB and C# targets as class libraries. Make sure the Root Namespace in the VB
project’s Property page (under Application) is blank, or else the entire VB application will be
hidden inside of the root namespace.

Add references to the VB and C# projects in the C++ project. This automatically creates
a dependency on the other two for the C++ project. In addition, make sure the C++ project is
the startup project.

That should do it. This will create an executable that loads the VB and C# class library DLLs
at runtime. The results will be the same as before, although your application will consist of
three different assemblies, an EXE and two DLLs, rather than just the one EXE assembly in the
previous example.

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT342

6080ch19.qxd 10/24/06 1:07 AM Page 342

Summary
Well, gathering code together from three different languages wasn’t that hard, was it? You do
need a rudimentary knowledge of each language to pull it off, because you need to be able to
map class declarations and method declarations across languages, but that isn’t terribly difficult
once you get the basic feel for each language. If you ever get stuck, there are several publically
available language tools, including .NET Reflector, which can help you with the basic language
differences.

Interoperability with native code is not as elementary, but it is straightforward for
C++/CLI programs. Using language integration, we can also use C++/CLI as the bridge to
native code and easily incorporate C++/CLI modules in C# or VB code.

.NET Interoperability
Interoperability, or InterOp for short, is the ability for a .NET application to connect with
unmanaged, or native, code.

“Of course,” you say, “this is important for legacy code development, but with so much
development happening on the .NET side, does it really affect me?”

These days you might easily be misled into believing that native code doesn’t matter any-
more. Let me set the record straight right now—native development is vital.

When I spoke on C++ at TechEd 2006 in New Zealand, Jason McConnell, a Visual Studio
product marketing manager, suggested I use the following slide:

Windows = Native + Managed

Much of the Windows API remains native, and that’s not likely to change anytime soon,
not even with Vista. The good news is that, when you use C++, it matters little whether an API
is managed or native. InterOp is extremely easy to do with C++; it is built right into the lan-
guage. Even developers who pass on C++ as a primary development platform for a particular
project still rely on managed C++ modules or assemblies for calling native APIs. They also rely
on .NET language integration to bind the managed C++ to their C# or VB assembly.

In C#, it’s not so simple. You need to adhere to some mechanism, like platform invoke or
COM InterOp, and take care to marshal, or translate, your data correctly between managed
and native code. In addition, the C++ header files, which contain the definitions of the param-
eters that must be passed to native APIs, are not usable in C#, so you must define parallel
constructs. If the API changes, your code breaks.

C++ has built-in interoperability, so you can access all of your native code and APIs directly.
The native C++ header files are directly usable in C++/CLI, so that you don’t go through an error-
prone step to translate anything to a different language, and if the API changes, recompiling
your code with the updated header file updates your code to the new API. What’s just as impor-
tant is that C++ knows about both native and managed types, so that marshaling is automatic.
C++/CLI was designed so that native types would become a natural part of the language. For
example, int can be considered either as a native type or an instance of System::Int32. Both
paradigms are supported. C++ is also aware of the difference between a managed string and
a byte or character array. It’s built into the language.

Let’s have a look at some examples of InterOp in C# and C++.

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 343

6080ch19.qxd 10/24/06 1:07 AM Page 343

Wait for the Beep
Let’s pick a very simple native Windows call, MessageBeep(). According to the MSDN definition
MessageBeep() “plays a waveform sound. The waveform sound for each sound type is identified
by an entry in the registry.” The MessageBeep() code follows:

BOOL MessageBeep(

UINT uType

);

Parameters
For a parameter, MessageBeep() takes the sound type, as identified by an entry in the registry:

uType

This input parameter can be one of the values shown in Table 19-1.

Table 19-1. Possible uType Parameter Values

Value Meaning

–1 Simple beep. If a sound card is not available, the sound is generated
using the speaker.
Note that this value is resolved to 0xFFFFFFFF within the function.

MB_ICONASTERISK SystemAsterisk
0x00000040L

MB_ICONEXCLAMATION SystemExclamation
0x00000030L

MB_ICONHAND SystemHand
0x00000010L

MB_ICONQUESTION SystemQuestion
0x00000020L

MB_OK SystemDefault
0x00000000L

Now let’s see how to call MessageBeep(ICONEXCLAMATION) from C#.

C# Platform Invoke
Platform Invoke, or P/Invoke for short, is C#’s primary method for calling native code. We can use
P/Invoke by declaring the MessageBeep() function within C# and defining the parameter defini-
tions using C# language features. The very-useful, third-party web site called www.pinvoke.net
can be used to get all the information you need to use P/Invoke on a Windows API call. If you are
interfacing to other native code, you’ll have to discover all of this on your own. While you’re
doing this, remember that methods for calling native code are all built-in and automatic in C++.

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT344

6080ch19.qxd 10/24/06 1:07 AM Page 344

Here is the C# code for MessageBeep():

using System.Runtime.InteropServices;

class Test

{

public enum beepType

{

Beep = -1,

OK = 0x00,

Question = 0x20,

Exclamation = 0x30,

Asterisk = 0x40,

}

[DllImport("User32.dll", ExactSpelling=true)]

static extern bool MessageBeep(uint type);

public static void Main(string[] args)

{

MessageBeep((uint)beepType.Exclamation);

}

}

Several things about this example are disturbing. First of all, we have to create an enum for
the parameters passed to MessageBeep(). This is inherently error prone, as there are now two
distinct definitions for the API: the original defined in User32.dll and declared in the C++
header files and our copy here.

We next have to marshal the data explicitly by casting our parameter to a uint for passing
to MessageBeep(). Anytime you perform a cast, you run the risk of hiding things that should
not be hidden, and this case is no exception.

A red flag that you pop out in this case is that there is a bug in the MessageBeep() API defini-
tion—we have an signed/unsigned mismatch for Beep in the API. The API expects an unsigned
integer, as well as a –1, for a standard beep. There is a note on MSDN that 0xFFFFFFFF is used
instead of –1 in this case, but it still points out the futility of trying to make something clean in
C# that is not clean in reality.

A small improvement can be attempted by changing the enum definition to the following:

public enum beepType : uint

If we now compile this, we see

C:\>csc /nologo test.cs

test.cs(6,23): error CS0031: Constant value '-1' cannot be converted to a 'uint'

We could go about fixing our C# code to use 0xFFFFFFFF instead of –1, but this just causes
us to deviate further from the published API, making our code less maintainable.

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 345

6080ch19.qxd 10/24/06 1:07 AM Page 345

C++ Built-in Support
Here’s the code in native C++:

#include "windows.h"

int main()

{

MessageBeep(MB_ICONEXCLAMATION);

return 0;

}

It’s extremely clean, uses the Windows header file definition, and calls the API using the
published API parameter definitions. No parameter cast or enum is required, and the code
maintains itself.

In order to compile this, you’d enter the following:

cl /nologo test.cpp user32.lib

Note that user32.lib is added to the command line, since this is the location of
MessageBeep() in Windows. There is a way to bring the library in using a DLL import style
attribute in native C++ as well, but adding it to the command line or project is standard
practice.

You probably find yourself unimpressed by how easy it is to call MessageBeep() from
native C++. After all, it’s a native API, so it’s pretty intuitive that it would be supported seam-
lessly. Check out the following C++/CLI application though:

#include "windows.h"

using namespace System;

int main()

{

MessageBeep(MB_ICONEXCLAMATION);

Console::WriteLine("Did you hear the beep?");

return 0;

}

We compile this with the /clr command line option:

C:\>cl /nologo /clr test.cpp user32.lib

C:\>test

Did you hear the beep?

Now, that is easy. All you have to do is add the /clr option, add your managed calls, and it
just works. A hybrid of native and managed code is produced.

With Visual C++, you can keep your existing code and add managed functionality. Your
migration to managed code occurs gradually and naturally as needed, and no one has a new
paradigm forced down his throat. After all, the only thing more difficult to update than legacy
code is a legacy programmer.

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT346

6080ch19.qxd 10/24/06 1:07 AM Page 346

Let’s review the compiler options for managed and native code again:

• /clr:safe: This produces an IL-only verifiable output file and can be used with man-
aged types and managed code only.

• /clr:pure: This produces an IL-only output file (no native executable code) and can be
used with managed and native types and managed code only.

• /clr: This produces a mix of native and IL output. Managed and native types and man-
aged code and native code are allowed.

• <default>: No option is specified, so the program compiles for native execution.

For a visual representation, refer to Figure 19-1.

Figure 19-1. /clr command line options

Using C++ for C# InterOp
In this section, I’ll focus on how easy it is to use C++/CLI as a translation layer between C# and
native C++.

Wrapping MessageBeep in a C++ class
Let’s start by creating a C++ /clr application that wraps MessageBeep() in a reference type for
use in C#:

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 347

6080ch19.qxd 10/24/06 1:07 AM Page 347

#include "windows.h"

using namespace System;

using namespace System::Runtime::InteropServices;

public ref struct Beep

{

enum struct BeepTypes : unsigned int

{

Beep = (unsigned int) -1,

Asterix = MB_ICONASTERISK,

Exclamation = MB_ICONEXCLAMATION,

Hand = MB_ICONHAND,

Question = MB_ICONQUESTION,

OK = MB_OK,

};

static void MessageBeep(enum class BeepTypes beep)

{

::MessageBeep((unsigned int)beep);

}

};

void main()

{

Beep::MessageBeep(Beep::BeepTypes::Exclamation);

}

We can compile and run this as follows:

C:\>cl /nologo /clr beep.cpp user32.lib

C:\>beep

Too bad this book isn’t written in “sound on” or something like that, so you’d be able to
hear the beep.

You might notice that I created a managed enum for the beep as in the C# example, but this
time, I was able to take advantage of the C++ header file definition from Windows and only
had to explicitly define the basic beep as –1. This keeps the code more able to move with pos-
sible changes to the API.

Using the Wrapped Class in C#
Let’s create a simple C# program that uses the wrapped C++/CLI class:

class Test

{

public static void Main()

{

Beep.MessageBeep(Beep.BeepTypes.Exclamation);

}

}

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT348

6080ch19.qxd 10/24/06 1:07 AM Page 348

As you can see, this is extremely tight and clean. The difficulties of the managed native
transitions and interface differences are hidden within the C++ portion.

Let’s compile and run this final program. Again, listen for the sound of the beep, like the
sound of one hand clapping.

C:\>cl /nologo /LD /clr beep.cpp user32.lib

C:\>csc /nologo /r:beep.dll test.cs

C:\>test

In this case, we create a mixed processor-specific assembly, beep.dll, and a processor-
agnostic assembly, test.exe, and they work together to perform the managed/native calls.

Summary
Switching between C# and native C++ is not a trivial matter, but C++/CLI forms a natural
bridge between the two. Also, since C++/CLI is on a par with C# as a managed language, devel-
oping applications completely in C++ is actually an extremely easy and convenient solution.

In addition, .NET language integration makes it simple to hook up modules and assem-
blies written in different languages. Gone are the days when code needed to be rewritten or
to follow a restrictive API with marshalling hoops and hurdles in order to connect to other
languages. The CTS and CLS standards ensure that .NET languages pass data in a compatible
fashion.

All .NET programs target the same platform—the IL defined in the CLI standard. In other
words, all .NET compilers share the same target language, and the runtime and JIT has no idea
whether it is running IL generated from C#, C++/CLI, or even VB.NET. The VES reads and inter-
prets the binary metadata produced by the compilers and executes the program.

Native C++ is a different story. It is composed of the actual machine code ready for exe-
cution by the processor. The intermediate layer that translates between native and managed
code is supported by the runtime and is integrated transparently. It’s all fairly well done, if
you ask me.

In the next and final chapter, I will finish off the book by filling in some details and sug-
gesting directions for further study.

CHAPTER 19 ■ MULTIPLE LANGUAGE SUPPORT 349

6080ch19.qxd 10/24/06 1:07 AM Page 349

6080ch19.qxd 10/24/06 1:07 AM Page 350

Final Thoughts

Pessimists, we’re told, look at a glass containing 50 percent air and 50 percent water and

see it as half empty. Optimists, in contrast, see it as half full. Engineers, of course, under-

stand the glass is twice as big as it needs to be.

—Bob Lewis, InfoWorld

This chapter reminds me of Thanksgiving, which is said to be all about the stuffing—the goal
of this chapter is to stuff in as much information as possible before this book ends.

Well, that seems rather backwards, don’t you think? You’d think that a book is finished
when an author has said everything that needs to be said. There are several reasons why this
just is not true with a book on C++, to say nothing of what’s true in the publishing industry.
Before a book can be published, you need to dot every “i” and cross every “t” up to the end of
the final chapter.

The problem here is that C++ is pretty much unbounded. The language features are finite,
but the paradigms and practices are unlimited. C++ is a wonderful, general-purpose language.
Since C++ is so versatile, general, and unlimited, there are points that don’t quite fit elsewhere
in this book but that are handy to know. In this chapter, I’ve picked some of the more impor-
tant ones; these include the standard dispose pattern, function objects, pseudo-template
special pointers, keywords for volatile, constant, and mutable data, and a few final thoughts
on IntelliSense.

It’s time to start stuffing.

Standard Dispose Pattern
To ensure that unmanaged resources are released when they are no longer used, in .NET
programming, you need to follow the standard dispose pattern. This pattern, which uses the
System::IDisposable interface, allows programmer-initiated destruction of objects while also
working alongside the garbage collection thread to ensure that every object following this pat-
tern is destroyed exactly once.

Although it is straightforward to implement the standard dispose pattern in C#, it is even
easier to implement in C++ because of C++’s direct support for this pattern through determin-
istic destruction as well as the support of two special member functions related to the release
of an object: the destructor and the finalizer.

351

C H A P T E R 2 0

■ ■ ■

6080ch20.qxd 10/24/06 1:07 AM Page 351

Destructors and Finalizers
In both C# and C++, a destructor is a special member function that is called when an object is
no longer needed. In C#, a destructor is an override of the System.Object.Finalize() method.
This method is called nondeterministically by a garbage collector routine during garbage col-
lection. Execution of this method is nondeterministic, because you have no control over when
an object’s resources are released. In C#, the standard dispose pattern provides a way for you
to release an object’s resources right after you are finished with it.

Having control over the release of objects is important in both native and managed code.
If you rely on the garbage collector to release your managed resources, you get into trouble in
native code, because not only do you have no control over when garbage collection is per-
formed, but you have no guarantee that it will be performed at all. Your managed code could
be cruising along doing what it needs to do while your native code grinds to a screeching halt
as it becomes starved for resources.

In managed code, memory is managed for you, so that is not an issue. But what if you
create an object that locks a file for exclusive use? If you put the release code in the object’s
destructor, you need to make sure that the destructor is called in a timely fashion or other
processes that rely on that file will stall.

The standard dispose pattern handles this for you. It provides a method for you to call
explicitly when you are finished with an object. This method can be called implicitly, if you
create a using block, or explicitly, in a try finally block. In addition, it allows for the deter-
ministic nature of garbage collection by handling the possibility that the garbage collection
finalizing routine is called before your call to destroy the object and by suppressing the finaliz-
ing routine from being called afterwards.

In C++, the standard dispose pattern is also supported, but it is implemented directly within
the language by the support of both a destructor and a finalizer, as well as deterministic destruc-
tion of objects. Deterministic destruction in C++ provides an implicit, nested C# using block for
every allocated object.

In C++, a destructor is a special member function that is called either when an object
allocated on the stack goes out of scope or when the delete keyword is called on an object’s
pointer or handle to release an object’s resources. When a destructor is used on a managed
class, it implements the Dispose() method of the IDisposable interface.

A finalizer is a special member function that overrides the System.Object.Finalize()
method; it is equivalent to the C# destructor. Together, the C++/CLI definitions of the destruc-
tor and finalizer allow you to implement the standard dispose pattern implicitly.

Implementation in C#
In C#, the standard dispose pattern looks like the following code:

using System;

class R : IDisposable

{

R()

{

}

~R()

{

Dispose(false);

CHAPTER 20 ■ FINAL THOUGHTS352

6080ch20.qxd 10/24/06 1:07 AM Page 352

}

public void Dispose()

{

GC.SuppressFinalize(this);

Dispose(true);

}

protected virtual void Dispose(bool fDisposing)

{

if(disposed_)

{

return;

}

if(fDisposing)

{

Console.WriteLine("Free managed resources");

}

Console.WriteLine("Free unmanaged resources");

disposed_ = true;

}

private bool disposed_ = false;

public static void Main()

{

using(R r = new R())

{

;

}

}

}

As you can see, it’s not trivial to implement. You need to derive your class from
System.IDisposable and implement this interface by defining the Dispose() method. The
Dispose(bool) method is used to distinguish between direct calls to dispose the object,
such as those generated by a using block, and indirect calls, such as those generated during
garbage collection.

There are several keys to understanding this code:

• Use a local flag, such as disposed_ in the previous example, to ensure that resources are
not released more than once by mistake.

• In the sample code, a distinction is made between code that is called via a direct call to
Dispose from a using block and an indirect call from the garbage collector. The direct
calls generate Dispose(true) calls, and the indirect calls generate Dispose(false) calls.

• If disposing of the object occurs during garbage collection, you should not free any
managed resources associated with the object. Therefore Dispose(false) does not free
managed resources.

• When Dispose() is called directly, such as at the end of a using block, the garbage
collector must be notified that garbage collection is unnecessary and should be
suppressed. This is accomplished via the call to GC.SuppressFinalize(this).

CHAPTER 20 ■ FINAL THOUGHTS 353

6080ch20.qxd 10/24/06 1:07 AM Page 353

Implementation in C++/CLI
In C++/CLI, the IDisposable components are generated automatically by the compiler. The
same example follows in C++/CLI:

using namespace System;

ref struct R

{

R()

{

disposed_ = false;

}

!R()

{

Console::WriteLine("Free unmanaged resources");

}

~R()

{

GC::SuppressFinalize(true);

if(!disposed_)

{

disposed_ = true;

Console::WriteLine("Free managed resources");

this->!R();

}

}

static void Main()

{

R r;

}

private:

bool disposed_;

};

void main()

{

R::Main();

}

The C++/CLI sample is much easier to understand as well as to maintain. You do need to
initialize the member variable disposed_ separately from the declaration and within the con-
structor, but you already saw this difference from C# in Chapter 6.

The C++ destructor houses the equivalent of Dispose(true), and the C++ finalizer houses
Dispose(false). The code implements the IDisposable interface automatically, and allocating
R on the stack in the method R::Main() ensures that it is destroyed when the method com-
pletes execution. This happens thanks to deterministic destruction in the C++ language.

Let’s look at this C++ example decompiled using .NET Reflector:

CHAPTER 20 ■ FINAL THOUGHTS354

6080ch20.qxd 10/24/06 1:07 AM Page 354

private ref class R : public IDisposable

{

// Methods

private:

void !R() {}

public:

R() {}

private:

void ~R() {}

public:

virtual void Dispose() sealed override {}

protected:

virtual void Dispose(bool) {}

protected:

virtual void Finalize() override {}

public:

static void Main() {}

// Fields

private:

bool disposed_;

};

As you can see, the compiler implements the IDisposable interface automatically. Let’s
compile and execute the C++ sample; the C# sample generates the same result:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

Free managed resources

Free unmanaged resources

For Further Study
This introduction to IDisposable only shows the tip of the iceberg. Joe Duffy, a program man-
ager at Microsoft, has written a somewhat exhaustive treatise on this topic. You can find at
www.bluebytesoftware.com/blog by going to the Design Guideline category in the Browse By
Category section of his blog and looking for “Dispose, Finalization, and Resource Management.”

Function Objects
A function object allows an object to be called as if it were a function. This works well when
you have a problem with a solution requiring a bit more than a function but less than a class.

Suppose, for instance, you have a function that reads data from a data store into a buffer.
Ideally, you’d pass a pointer to the buffer to this function, the function would automatically
update your pointer past the end of the data, and then the pointer would be ready for subse-
quent calls. The disadvantage of this approach is that you are always passing the same pointer

CHAPTER 20 ■ FINAL THOUGHTS 355

6080ch20.qxd 10/24/06 1:07 AM Page 355

variable to the function. It would be more efficient if the pointer variable were somehow inter-
nal to the function, like object would be.

Function objects solve this problem in C++ by granting function syntax to regular objects
using operator().

A common example is a Fibonacci number generator that keeps track of the two integers
needed to generate the next number in the sequence. An implementation follows:

using namespace System;

ref struct Fibonacci

{

int f0;

int f1;

Fibonacci()

{

f0=0;

f1=1;

}

int operator()()

{

int temp = f0+f1;

f0 = f1;

f1 = temp;

return temp;

}

};

void main()

{

Fibonacci fib;

for(int i=0; i<10; i++)

{

Console::Write("{0} ", fib());

}

Console::WriteLine();

}

Let’s compile and run this:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

1 2 3 5 8 13 21 34 55 89

In the preceding example, the fib object is called as a pseudo-function using the function
syntax, fib(), and it is used to generate the next Fibonacci number in the sequence.

CHAPTER 20 ■ FINAL THOUGHTS356

6080ch20.qxd 10/24/06 1:07 AM Page 356

Special Pointers
C++/CLI supports two special types of pointers, other than tracking handles, for referencing
data on the managed heap. Since the data on the managed heap is likely to move about with-
out warning, you need to update the pointer when the data moves using a tracking pointer
called an interior pointer or prevent the movement of the data on the managed heap using
a process known as pinning.

Interior Pointers
Interior pointers are pointers that track the movement of data on the managed heap. They can
also be used to point at native data, so they are an ideal choice for a single pointer object for
referencing data on the stack, managed heap, and native heap.

In this example, we create a managed array on the managed heap as well as a native array
on the stack and declare an interior pointer to reference each of them in turn:

using namespace System;

int native_array[] = {120, 24, 6, 2, 1};

void Show(interior_ptr<int> ptr, int length)

{

for(int i=0; i<length; i++, ++ptr)

{

Console::Write("{0} ", *ptr);

}

Console::WriteLine();

}

void main()

{

array<int> ^managed_array = {1,2,6,24,120};

Show(&managed_array[0], managed_array->Length);

Show(&native_array[0], sizeof(native_array)/sizeof(int));

}

Let’s compile and run this:

C:\>cl /nologo /clr:pure test.cpp

C:\>test

1 2 6 24 120

120 24 6 2 1

In the preceding example, I also used sizeof() to calculate the number of elements in
the native array, since a native array is not a descendent of System::Object, and thus does
not have a member called Length that allows you to access the length of the array.

CHAPTER 20 ■ FINAL THOUGHTS 357

6080ch20.qxd 10/24/06 1:07 AM Page 357

■Note Interior pointers must be allocated on the stack. If you attempt to allocate one on the managed or
native heap, you see a syntax error.

Pinning Pointers
Just as in C#, it is possible to temporarily fix the location of an item on the managed heap
using a process known as pinning. This is generally a bad idea, as it potentially fragments the
managed heap and negatively affects the performance of your application. Still, it is also nec-
essary, so that the address of an object may be passed to native APIs.

Whenever possible, avoid pinning and use a temporary object to transfer data to native
APIs. When this is not possible, the special pinning pointer and deterministic destruction
make pinning easy in C++.

In C++, you create a pinned object by using the pin_ptr<T> special pointer. The supported
paradigm in C++ is that the object is pinned when the pin_ptr is created and unpinned when
the pin_ptr is destroyed. It is convenient to surround the usage of the pin_ptr with the curly
bracket scope operators.

An example might be illustrative. This example mixes native and managed code in a sin-
gle source file using the managed and unmanaged #pragma directives. The code creates an
instance of a class, pins an element of the class, and modifies it using a native API. When the
pin_ptr goes out of scope, the item is automatically unpinned. The changed class is then dis-
played using Console::WriteLine():

using namespace System;

#pragma unmanaged

void change(int *ptr)

{

*ptr = 3;

}

#pragma managed

ref struct R

{

R()

{

i = -1;

}

int i;

};

void main()

{

R ^ r = gcnew R();

{

pin_ptr<int> p_int = &r->i;

change(p_int);

}

Console::WriteLine(r->i);

}

CHAPTER 20 ■ FINAL THOUGHTS358

6080ch20.qxd 10/24/06 1:07 AM Page 358

Now let’s give this a try:

C:\>cl /nologo /clr test.cpp

C:\>test

3

Notice that we need to use /clr rather than /clr:safe or /clr:pure because of the native
code in this file. A common mistake using the pin_ptr pseudo-template is to pin the tracking
handle to the object instead of the object itself. In the preceding code example, notice that we
assigned the pinning pointer to data inside the object, R::i, rather than assigning the handle
to the object, r.

The following code is incorrect; will it compile?

using namespace System;

ref struct R

{

R()

{

i = -1;

}

int i;

};

void main()

{

R ^ r = gcnew R();

{

pin_ptr<R^> p_r = &r;

Console::WriteLine("R is not pinned");

}

}

Remember, in C++, just because code compiles, that doesn’t mean it is correct.

Templates Revisited
Templates are a rich and complex area of C++, and we really only scratched the surface of their
applications in Chapter 15. I mentioned that you could not easily add functionality to built-in
types using generics. The natural idea is to try to do something with a base class. With templates,
you can use a template-type parameter as a base class as follows:

ref struct Base

{

};

template <typename T> ref struct Wrapper : T

{

};

CHAPTER 20 ■ FINAL THOUGHTS 359

6080ch20.qxd 10/24/06 1:07 AM Page 359

public ref struct Test

{

static void Main()

{

Wrapper<Base> ^b = gcnew Wrapper<Base>();

}

};

void main()

{

Test::Main();

}

Unfortunately, this trick won’t help you add functionality to a built-in type, since built-in
types are declared sealed and cannot be used as a base class. You have to be a little trickier to
make a base class support a custom interface.

The following straightforward template code allows you to take a built-in or user-defined
type, define an interface for it, and use this interface with a generic type to accomplish a
mathematical squaring operation:

using namespace System;

generic <typename T>

interface class MyMath

{

T Multiply(T lhs, T rhs);

};

generic <typename T>

where T : MyMath<T>, ref class

void square(T t, int N)

{

while(--N > 0)

{

t = t->Multiply(t,t);

}

Console::WriteLine(t);

}

template <typename T>

ref struct Container : MyMath<Container<T>^ >

{

T value;

Container(T t)

{

value = t;

}

CHAPTER 20 ■ FINAL THOUGHTS360

6080ch20.qxd 10/24/06 1:07 AM Page 360

virtual Container<T> ^Multiply(Container<T> ^lhs, Container<T> ^rhs)

{

return gcnew Container<T>(lhs->value * rhs->value);

}

virtual String ^ToString() override

{

return value.ToString();

}

};

void main()

{

Container<int> ^r = gcnew Container<int>(2);

square(r,4);

}

I suggest C++ Templates: The Complete Guide by David Vandevoorde and Nicolai M. Josut-
tis as the next stop in your template education (Boston: Addison-Wesley Professional, 2002).

Class Hierarchy Pitfalls
In the CLI, a class may implement multiple interfaces, yet it is limited to a single base class.
That makes the C# syntax for accessing members of a base class quite logical and intuitive.
You just use the base keyword:

using System;

public class B

{

public void method()

{

Console.WriteLine("B method");

}

}

public class A : B

{

public new void method()

{

base.method();

}

public static void Main()

{

A a = new A();

a.method();

}

}

CHAPTER 20 ■ FINAL THOUGHTS 361

6080ch20.qxd 10/24/06 1:07 AM Page 361

Let’s compile and run this:

C:\>csc /nologo test.cs

C:\>test

B method

Here is the C++ equivalent:

using namespace System;

public ref struct B

{

void method()

{

Console::WriteLine("B method");

}

};

public ref struct A : B

{

void method() new

{

B::method();

}

static void Main()

{

A ^a = gcnew A();

a->method();

}

};

void main()

{

A::Main();

}

Now this seems quite natural, but what happens in C# if you add a new class D in the mid-
dle of the hierarchy?

using System;

public class B

{

public void method()

{

Console.WriteLine("B method");

}

}

CHAPTER 20 ■ FINAL THOUGHTS362

6080ch20.qxd 10/24/06 1:07 AM Page 362

public class D : B

{

public new void method()

{

Console.WriteLine("D method");

}

}

public class A : D

{

public new void method()

{

base.method();

}

public static void Main()

{

A a = new A();

a.method();

}

}

If you now try to compile and run this, you get a different result:

csc /nologo test.cs

C:\>test

D method

In standard C++, there is no base keyword that refers to the base class. All references to
base class explicitly name the base class, and this can produce different results. If we now
insert a new class in the C++ hierarchy, the result is unchanged:

using namespace System;

public ref struct B

{

void method()

{

Console::WriteLine("B method");

}

};

public ref struct D : B

{

void method() new

{

Console::WriteLine("D method");

}

};

CHAPTER 20 ■ FINAL THOUGHTS 363

6080ch20.qxd 10/24/06 1:07 AM Page 363

public ref struct A : D

{

void method() new

{

B::method();

}

static void Main()

{

A ^a = gcnew A();

a->method();

}

};

void main()

{

A::Main();

}

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

B method

As mentioned previously, the power of C++ lies in its flexibility and versatility. If the pro-
grammer wants to achieve the same results as the C# code snippet above, she can use the
__super keyword, a Microsoft Visual C++ extension that behaves exactly as the C# base key-
word. If we change the definition of A::method to the following:

void method() new

{

__super::method();

}

and compile and execute, we observe exactly the same results:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

D method

Type Aliases (typedef)
In C#, you can use the using statement to create a shortcut or alias for a type name. For exam-
ple, consider the following lines:

CHAPTER 20 ■ FINAL THOUGHTS364

6080ch20.qxd 10/24/06 1:07 AM Page 364

using Hello = System.Console;

public class R

{

public static void Main()

{

Hello.WriteLine("Hello, World");

}

}

If we compile and run this example, we get

C:\>csc /nologo test.cs

C:\>test

Hello, World

In C++, a typedef is an alias for a type definition. typedefs play an extremely important
role in native C++, because type declarations can become extremely complex. They play a
smaller role in CLI programming because of the simplified type structure.

A typedef is created by prepending a declaration with the keyword typedef. The identifier
in the declaration becomes the name of the alias for the type.

You might typically use a typedef when you are maintaining a list of objects of different
types. Perhaps you need to keep track of all the assignments a student completed; you might
have a CEssay, CArtwork, CMidterm, and so on.

In CLI programming, all objects are descended from System::Object, so it is natural to
create a list of references to this base class, as described in Chapter 14. In native code, there
may not be a common base class, and you might describe an object as a pointer to void or as
a pointer to some definition header (e.g., the first integer in every object might determine the
type) and use some other mechanism to cast back to the original data type at a later time.

If we were to use a pointer to a void, it would be nice to create a new data type, rather
than always needing to refer to objects as void*.

An example follows:

typedef void * pvoid_t;

In this case, the identifier pvoid_t is used to refer to a pointer to void as a data type.
Remember the nasty example at the end of Chapter 9? Look how much easier it is to deal
with using a typedef:

using namespace System;

ref struct R;

typedef R ^ (**(*(*pDEF)(int, char))[])(int);

void main()

{

pDEF p;

}

CHAPTER 20 ■ FINAL THOUGHTS 365

6080ch20.qxd 10/24/06 1:07 AM Page 365

Friends
Native C++ and the CLI have different visibility and accessibility paradigms. The CLI defines
a way that you can grant access to classes beyond a hierarchy tree by allowing access within an
assembly.

In C++, you can also grant specific access of a class to another class or function using the
friend keyword. As the name implies, a friend class is allowed access that would otherwise be
denied outside of the class hierarchy or even the class itself. Here is a simple example:

using namespace System;

class CPlusPlusModule

{

friend class CSharpModule;

static int CSharpModuleCount;

};

int CPlusPlusModule:: CSharpModuleCount=1;

struct CSharpModule

{

int MyCount;

CSharpModule()

{

MyCount = CPlusPlusModule:: CSharpModuleCount++;

}

};

void main()

{

CPlusPlusModule cpp;

CSharpModule cs0;

CSharpModule cs1;

Console::WriteLine(cs1.MyCount);

}

In this example, CPlusPlusModule has a private static member CSharpModuleCount that is
used to keep track of instantiations of other classes, CSharpModule in particular. Without the
friend declaration inside CPlusPlusModule, instances of CSharpModule would not be able to
access its private data. This example shows how friend declarations work and how C# mod-
ules are friends with C++ modules in the neatly integrated and tightly interoperable .NET
environment.

Volatile Data
The volatile keyword in C++ has similar meaning to its C# counterpart. It indicates that
a field might be modified behind the scenes by another thread or process, so the compiler
should not optimize the value of this variable. An example follows:

CHAPTER 20 ■ FINAL THOUGHTS366

6080ch20.qxd 10/24/06 1:07 AM Page 366

void main()

{

volatile bool fWait = true;

WaitFiveSeconds(&fWait);

while(fRun)

{

Sleep(1);

}

}

The preceding example calls a routine to spawn a timer thread for five seconds, and this
thread resets the fWait variable to false. Without the volatile keyword, the compiler reads
fWait’s value once at the beginning of the loop and loops forever. The volatile keyword
instructs the compiler to disable optimization of fWait and continue reading the value of
fWait to see if it has changed.

Constant and Mutable Data
The special keywords const and mutable are used to make read-only objects. In C++, an entire
instance of a class may be set to const by declaring it as such. If you have a const object, you
can only call member functions that are also set to const. The keyword mutable allows you to
make fields nonconstant within a const object, for example:

#include <iostream>

using namespace std;

struct N

{

int ValueC;

mutable int ValueM;

void Show() const

{

cout << ValueC << " " << ValueM << endl;

}

N()

{

ValueC = ValueM = 0;

}

};

void main()

{

const N n;

n.Show();

CHAPTER 20 ■ FINAL THOUGHTS 367

6080ch20.qxd 10/24/06 1:07 AM Page 367

n.ValueM = 3;

n.Show();

}

We create an const N object n. We can call n.Show(), since it is a const function. Also, we
are allowed to change n.ValueM, because it is declared mutable.

Let’s compile and run this:

C:\ >cl /nologo /EHsc test.cpp

test.cpp

C:\ >test

0 0

0 3

Attributes
In C++, you can attach attributes just as in C#. For example, in Chapter 3, I mentioned that out
parameters had special syntax in C++. Here is how you do it using C++:

using namespace System;

public ref struct R

{

static void f([System::Runtime::InteropServices::Out] int % i)

{

i = 20;

}

};

void main()

{

int Number = 0;

Console::WriteLine("Before: {0}", Number);

R::f(Number);

Console::WriteLine("After: {0}", Number);

}

Let’s compile and run this:

C:\>cl /nologo /clr:pure test.cpp

test.cpp

C:\>test

Before: 0

After: 20

There are attributes in native C++ as well. You can refer to the Visual C++ documentation
for, say, ATL attributes.

CHAPTER 20 ■ FINAL THOUGHTS368

6080ch20.qxd 10/24/06 1:07 AM Page 368

More on IntelliSense and Source Browsing
IntelliSense and Source Browsing are the names Microsoft assigns to the array of features that
help you resolve references as well as assist with coding within the editor. IntelliSense encom-
passes everything related to presenting to the programmer information about his code. Source
Browsing, sometimes called Live Browsing in Visual Studio 2005, deals more with information
about how the code is referenced and interacts with itself.

The major IntelliSense features are Quick Information, Auto Completion, and Parameter
Help. Alvin Chardon of the Microsoft Visual C++ Team has written a wonderful article on MSDN
that describes the features in greater detail as well as comments on their design and implemen-
tation. You can find it at

http://msdn.microsoft.com/library/default.asp

?url=/library/en-us/dnvs05/html/vcintellisense.asp

Some of the more helpful features of Source Browsing are Class View, Object Browser, Call
Browser, Find All References, and Code Definition Window. Some of these features are available
in Visual C# as well. Ameya Limaye and Boris Jabes, also of the Microsoft Visual C++ Team, wrote
an article for the MSDN Magazine highlighting some of the Source Browsing features, as well as
discussing its usage and limitations. You can find it at

http://msdn.microsoft.com/msdnmag/issues/06/02/PureC

These are very powerful features that come to the aid of the programmer to help develop
applications faster using Visual C++. Take advantage of them!

Summary
In this chapter, you learned about the dispose pattern, function objects, and a bit about con-
stant, mutable, and volatile data, in addition to some other details.

If you’ve made it to this paragraph, you’ve certainly learned a lot of C++, and you should have
built a very strong foundation in C++/CLI. C# maps to a subset of the C++ language, C++/CLI.
This book’s intention is to use your C# roots to get you to a place where you are comfortable with
C++ programming, so you are able to build on your C# knowledge to learn all about C++ without
compromising that knowledge. You are well prepared to tackle—undaunted—any of the dozens
of excellent texts on native C++ that you’ll find crowding the shelves of your favorite bookstore.
Although C++ can be esoteric at times, it is a beautiful language with a rich history and is well
worth the effort.

CHAPTER 20 ■ FINAL THOUGHTS 369

6080ch20.qxd 10/24/06 1:07 AM Page 369

6080ch20.qxd 10/24/06 1:07 AM Page 370

■symbols
` back tick, 289

^ handle punctuator, 33, 43, 45
?? operator (C#), 203
:: colon-colon, 4, 29
% operator, 138
symbol, 297, 301
-> arrow operator, 30, 34, 132, 137
->* arrow star operator, 30, 319
& operator, 132, 138
* operator, 132
+ plus sign, 289
+= operator, 166
-= operator, 166
. dot operator, 4, 29, 34
.* dot star operator, 30, 319
... ellipsis, 305

■A
abstract classes, 105
abstract properties, 154
accessibility, 117, 119, 122

friend keyword and, 366
hide by name/hide by signature and, 124
overload resolution and, 123
restricting for properties, 157

accessibility keyword, 38
add method, 168
Add() method, 338
addition, 174
address operators, 138
advanced generics, 281–296
advanced properties, 151–158
aggregate initialization, 85
/AI compiler option, 306
algebra, 218
algorithms

bridge crossing, 223, 226
C# to C++/CLI, 54
card-shuffling program and, 17
dropping light bulbs, 219

anonymous methods, 206
applications, converting C# to C++/CLI,

41–50
array context-sensitive keyword, 84
array declarations, 45
arrays, 36, 83–97

higher dimensional, 93–97
managed, 84–97
multidimensional, 84, 93–97
native, 83, 97
as parameters/return values, 86–91

arrow operator (->), 30, 34, 132, 137
arrow star operator (->*), 30, 319
as keyword, 256
as operator (C#), 37
assemblies, 20, 336
AssemblyInfo.cpp file, 8
AssemblyInfo.cs file (C#), 8
assignment operators, 194
attributes, 368
Auto Completion (IntelliSense), 369
auto_pr pointer type, 333

■B
back tick (`), 289
backing store, 145
Backus-Naur Form (BNF), 317
Base Class Library (BCL), 52
base classes, 99, 109

accessing fields/methods and, 115
hierarchy pitfalls and, 361

base keyword, 115, 361
BCL (Base Class Library), 52
binary operators, 176, 191
binding functions, 22
BNF (Backus-Naur Form), 317
boxing, 65, 73–77
break statement, 36
bridge crossing question, 222–226
built-in types, 40, 44, 182–187

Index

371

6080chIDX.qxd 10/24/06 12:59 PM Page 371

■C
C#

built-in data types and, 79
compiling programs and, 56
converting applications to C++/CLI,

41–50
Hello, World and, 3–14
interoperability and, 15–27, 343–349
partial classes and, 78
standard dispose pattern and, 352
viewing code using .NET Reflector, 56
vs. C++, 29–40

C# preprocessor commands, 297
C# projects

converting to class library, 23
creating, 19–25

C# properties, 149
C++

class type limitations and, 81
Hello, World and, 3–14
interoperability and, 15–27, 343–349
native C++ and, 315–333
standard for, 4
syntax and, 29–40
vs. C#, 29–40

C++ preprocessor commands, 298–314
C++ runtime library functions, 323–326
C++ stubs, 25
C++/CLI, 54

initialization and, 65
Instant C++ and, 57
language support and, 335–349
missing keywords and, 80
standard dispose pattern and, 354
templates and, 263
viewing code using .NET Reflector, 56

C++/CLI projects
converting applications to C#, 41–50
creating, 5–9, 22

Call Browser (Source Browsing), 369
callback functions, 195, 317
callbacks, 317
cannibals question, 226–229
card-shuffling program, 15–19

algorithm for, 17
converting to C#, 41–50

CardsCpp project, 23
cardscpp1.cpp file, 26
cardscpp2.cpp file, 27

CarWash sample program, 239–246
compiling, 252
deques and, 327–333

case statements, 35
cast operators, 288–295
casting mechanisms, 256
Cayley, Paul, 130
CCI, 51
checked expressions, 205
CIL (Common Intermediate Language), 53
class constructors, 71
class declarations, 48, 197
class definitions, 198
class keyword, 61, 122
class libraries, converting C# projects to, 23
class member access operators, 47
class names, colon-colon (::) and, 4
class parsing, 198
class templates, 274
Class View (Source Browsing), 369
classes, 30

abstract, 105
base. See base classes
derived, 109
generic, 260
hierarchy pitfalls and, 361
sealed, 103, 106
static, 106
visibility and, 117
wrapped, 347

classes members, dot (.) and, 4
CLI (Common Language Infrastructure),

language integration and, 335
clock (sample), 141–145
CLR Version tool (CLRVer.exe), 59
CLS (Common Language Specification),

language integration and, 335
CLS-compliant operators, 190–194
/clr switch, 134
code. See also sample code

native/managed, 343–349
unsafe, 133

Code Definition (Source Browsing), 369
code development, cast operators and, 288
code maintenance, cast operators and, 288
code regions, 297
colon-colon (::), 4, 29
colon-colon scope resolution operator, 199
command-line compilation, 26

■INDEX372

6080chIDX.qxd 10/24/06 12:59 PM Page 372

commands
preprocessor, 297–314
for Visual C++ IDE, 12

Common Intermediate Language (CIL), 53
Common Language Infrastructure (CLI),

language integration and, 335
Common Language Specification (CLS),

language integration and, 335
Common Type System (CTS), language

integration and, 335
compass, window placement and, 11
Complex class, 274
complex conjugation, 174
complex numbers, 174–179, 273–279
Complex<typename T,int N> class, 275
concatenation operator, 300
conditional code compilation commands,

298
conditional commands, 305
Console class, 43
Console::WriteLine() method, 74
const keyword, 159, 367
constraints, 255, 281–287

explicit type, 264
generic, 260, 264
types of, 281–287

constructor forwarding, 77
constructor-initialized variables, 208
constructors, 69, 71
const_cast<>() operator, 289
context-sensitive keywords, 206
conversion operators, 37
conversions, implicit, 89–91
cppclilanguage.dll file, 54
creating

C# projects, 19–25
C++/CLI projects, 5–9, 22
card-shuffling project, 19–25
delegates, 162, 166

CSharp::Deck class, 25
CTS (Common Type System), language

integration and, 335

■D
data types, 61–82

built-in, 79
C# vs. C++, 61

__DATE__ macro, 303
DDLs, Base Class Library and, 52
debugging preprocessor macros, 299

declarations, 7, 195–199
__declspec(), 313
default keyword, 148
default parameters, 322
#define command, 298, 304, 311
defined() operator, 305
definitions, 7
delegates, 39, 159–170, 207, 295

callbacks and, 317
creating, 162, 166
instance, 167
multicast, 166
visibility and, 117

delete operator, 319–323
Dependency Walker (Depends.exe), 53, 58
deques, 234, 326, 327–333
Dequeue method

Queue class, 234
Queue<T> class, 243

derived classes, 109
destructors, 352
directives, 12, 297–314
division, 175
dot operator (.), 4, 29, 34
dot star operator (.*), 30, 319
dynamic memory pools, 63
dynamic_cast<>() operator, 37, 76, 290

■E
#elif command, 298
ellipsis (...), in variadic macros, 305
else command, 305
#else command, 298
elsif command, 305
end1 type, 315
#endif command, 298, 305
#endregion command, 297, 310
Enqueue method

Queue class, 234
Queue<T> class, 242

Enter method, 248
enumeration declarations, 45
enums, visibility and, 117
#error command, 306
event handlers, registering, 207
event identifier, 207
events, 39, 159, 168
exception handling, 210–215
Exit method, 248
explicit keyword, 188

■INDEX 373

Find it faster at http://superindex.apress.com
/

6080chIDX.qxd 10/24/06 12:59 PM Page 373

explicit type constraints, 264
explicit type conversions, 182–187
explicit user-defined conversions, 188
expression statements, 209
expressions, 171–194
extern keyword, 198
external linkage, 198

■F
F10 (step over command), 13
F11 (step into command), 13
F4/F8 (go to command), 12
F5 (execute command), 13
F6/F7 (build command), 12
F9 (breakpoint command), 13
Fibonacci numbers, 270, 273–278, 356
Fibonacci<typename T> class, 275
fields, 68, 141, 151, 158
__FILE__ macro, 303
file names, #line command and, 300
FILO (First-In, Last-Out) buffer, 63
finalizers, 352
finally statement, 213
Find All References (Source Browsing), 369
Find and Replace window, 10
First-In, Last-Out (FILO) buffer, 63
flags, 298
floating point conversion tables, 185
floats, adding two, 293
for each loop, 85
for loops, 321
foreach keyword, 34
forward declarations, 195
fprintf function, 323
free() function, 324
freeing function, 324
friend keyword, 366
fully qualified names, 43
__FUNCSIG__ macro, 303
function calls, 194
function keys, 12
__FUNCTION__ macro, 303
function objects, 355
function-style macros, 299, 304
function templates, 268
function-try blocks, 213
functions, 3, 36

C++ runtime library and, 323–326
deprecating, 313
trigonometric, 326

■G
GACUtil.exe utility, 59
garbage collection, 63, 129
gcnew constraint, 285
gcnew operator, 38, 65, 166
generic constraints, 260, 264
generic delegates, 295
generic functions, 257
generic keyword, 260, 281
generic methods, 260
generics, 39, 100

advanced, 281–296
C#/NET 1.0 and, 233–239
C++/CLI/NET 2.0 and, 239–252
creating generics classes and, 252–257
implementing, 274
vs. templates, 252, 255 259–265, 279

get accessors, 141, 153, 156
get() method, 144
gets function, 323
getters, 141
global functions, 3
global variable declarations, 198
golden ratio formula, 274
goto statement, 35
group method conversion, 207
guidgen.exe tool, 60

■H
.h extension, 8
.h files, 196
handle punctuator (^), 33, 43, 45
handles, 137
header files, 8
Hello, World, 3–14

building/executing/debugging, 12
concatenation operator and, 300

HelloCpp.cpp file, executing, 5
HelloWorld.cpp file, 9
HelloWorld.exe file, 6
hide by name, 125
hide by signature, 124
higher dimensional arrays, 93–97
.hpp files, 196
.hxx files, 196

■I
/I compiler option, 306
IComparable<T> interface, 336, 338
IDisposable interface, 351–355

■INDEX374

6080chIDX.qxd 10/24/06 12:59 PM Page 374

#if command, 298, 305
ifdef command, 305
ifndef command, 305
IL Disassembler (ildasm.exe), 53, 58
IMetadata API, 51
implementation, polymorphism and, 104
implicit conversions, 89–91
implicit keyword, 188
implicit type conversions, 182–187
implicit user-defined conversions, 188
#include command, 305, 310
INCLUDE environmental variable, 306
include files, 195–199, 323–326
indexed properties, 146
indices, 146, 194
inheritance, 99, 100, 102

accessibility and, 119
restricted, 117

initialization, 64–73
aggregate, 85
static, 70

initobj instruction, 65
initonly keyword, 208
Inorder() method, 338, 341
input/output functions, 323
installing

.NET Reflector, 54
C++/CLI add-in, 54

instance constructors, 69, 71
instance delegates, 167
instance operator (.*), 30, 319
Instant C++, 57
instantiations, 46
integer conversion tables, 184
integers

adding two, 293
XOR swap and, 171

IntelliSense, 25, 369
interfaces, 99, 102, 117
interior pointers, 357
internal keyword, 117
internal linkage, 198
interoperability, 15–27, 343–349
interview questions, 217–229
iostream include file, 315
iostream library, 315–323
is keyword, 76, 256
is operator (C#), 37
IsAlive property, 243

■J
jagged arrays, 84, 93–97

■K
keywords, context-sensitive, 206

■L
lack of locality, 32
language integration, 335–343
Leaf class, 338
LIBPATH environmental variable, 306
light bulbs dropping question, 217–222
#line command, 300, 314
__LINE__ macro, 303
LinkedList<T> class, 341
linkers, 196
lists, 326, 333
locality, lack of, 32
lock keyword, 237, 247
lock, in C++/CLI, 248–251

■M
macros, 298–312

calling other macros, 301
debugging preprocessor, 299
defined() operator and, 305
function-style, 299, 304
maximum of two numbers, calculating,

299
predefined, 303
variadic, 304

main() global function, 3, 48, 86
Main() method (C#), 3, 48, 86
make programs, 196
Make utility (NMake.exe), 59
malloc() function, 324
managed arrays, 36, 84–97, 357
managed code, 343–349
managed heap, 63, 357
Manifest tool (MT.exe), 59
MarshalAs attribute, 80
marshaling, 80
math.h include file, 326
mathematical formulas, 274
mathematical operators, 305
member access operators, 30, 34
memcpy function, 325
memory allocation, 38
memory allocation function, 324
memory leaks, 130

■INDEX 375

Find it faster at http://superindex.apress.com
/

6080chIDX.qxd 10/24/06 12:59 PM Page 375

memory pools, 63
memory.h include file, 325
memset function, 325
MessageBeep(), 344–349
metadata, 51

gathering, 336
viewing, 53

methods, 107
anonymous, 206
arrays and, 86
generic, 260
nonvirtual, 108
template, 260
virtual, 107–115

modules, 20, 26, 336
Modulo<int P> class, 275
msclr\lock.h include file, 251
multicast delegates, 166
multidimensional arrays, 84, 93–97
multiple inheritance, 100, 102
multiplication, 174
mutable keyword, 159, 367

■N
named override syntax, 114
named overriding, 155
namespace keyword, 4, 29, 43
namespaces, 4, 29
native arrays, 83, 97
native C++, 315–333
native classes, 62
native code, 343–349
native heap, 63
.NET interoperability, 343–349
.NET language integration, 335–343
.NET Reflector, 15, 51–57

executing, 56
initialization and, 66–70
installing, 54

new keyword, 63, 112–114
new operator, 38, 319–323
newobj instruction, 65
NMake.exe (Make utility), 59
nontrivial events, 169
nontype template parameters, 260, 270
nonvirtual methods, 108
null keyword (C#), 35
nullable types, 201–205
nullptr keyword, 35

numbers
macro for calculating maximum of two,

299
complex, 174–179

numbers module, 179–182

■O
object allocations, 46
Object Browser (Source Browsing), 369
operator false, 192
operator true, 192
operators, 171–194
output functions, 323
overload resolution, 123, 178
overloading operators, 173–194
overloads, 178
override keyword, 112–115, 246
overrides

named, 155
polymorphism and, 104

overriding virtual methods, 246

■P
P/Invoke (Platform Invoke), 344
parameter arrays, 86–91
Parameter Help (IntelliSense), 369
parameter passing, 46
parameters

default, 322
nontype template, 260, 270
pass by reference, 46
template template, 260

params keyword, 87
partial keyword, 78
partial ordering, 268
partial specializations, 266
pass by reference parameters, 46
pinning, 64
pinning pointers, 358
pin_ptr<T> pointer, 358
plus sign (+), 289
pointer operators, 132
pointers, 129–140, 357–359

addresses of, 138
in C++ vs. C#, 134

pointers to members, 316–319
polymorphism, 99–117, 290
popping, 63
Portable Executable Verifier (PEVerify.exe), 59

■INDEX376

6080chIDX.qxd 10/24/06 12:59 PM Page 376

Poundstone, William, 217
#pragma commands, 297, 306–314
#pragma endregion command, 310
#pragma function command, 311
#pragma intrinsic command, 311
#pragma managed command, 308
#pragma message command, 308
#pragma once command, 310
#pragma region command, 310
#pragma unmanaged command, 308
#pragma warning command, 306
precompiled headers, 7
predefined lock class, 251
preprocessors, 297–314
prime numbers templates, 271
printf function, 323
private inheritance, 102
private keyword, 117, 119
programming language support,

335–349
projects. See also sample code

card-shuffling, 19–25
creating, 5–9

properties, 39, 141–159
advanced, 151–158
C#, 149
indexed, 146
named overriding and, 155
restricting accessibility of, 157
trivial, 145

property identifier, 207
protected inheritance, 102
protected keyword, 118
protection mechanisms, 117–126
prototypes, 195
pseudo-template casting operators, 37
pseudo-template format, 45
pseudo-template syntax, 37
ptr -> operator, 132, 137
public keyword, 117, 119
punctuator (^), 33, 43, 45
pushing, 63
puts function, 323

■Q
Queue class, 233
Queue<T> class, 242, 247, 253
queues, 233–257

deques and, 326, 327–333
implementing, 234

Quick Find window, 10
Quick Information (IntelliSense), 369

■R
raise method, 168
read-only properties, 151
rectangular arrays, 83, 93–97
recursive algorithms, 219
ref class, 122
ref class constraint, 286
ref class keyword, 61
ref struct, 122
ref struct keyword, 61
reference types, 30–33, 43, 62–77

boxing and, 73–77
stacks and, 79

reflection, 51
reflector.config.exe file, 54
reflector.exe file, 54
#region command, 297, 310
reinterpret_cast<>() operator, 292
remove method, 168
Resource Compiler (RC.exe), 59
Resource Generator (ResGen.exe), 59
resources, 7, 351–355
resources for further reading

IDisposable interface, 355
IntelliSense, 369
native C++, 333
P/Invoke, 344
Source Browsing, 369
templates, 361

restricted inheritance, 117
Roeder, Lutz, 15, 51–57
runtime type identification, 281, 288

■S
safe_cast<>() operator, 291, 294
sample code

bridge crossing, 224
cannibals, 227
card-shuffling program, 15–19
CarWash program, 239–246, 252, 327–333
clock, 141–145
dropping light bulbs, 220
Hello, World, 3–14
student tracking program, 336–342

scalar properties, in C#, 149
scanf function, 323
scope, of variables, 321

■INDEX 377

Find it faster at http://superindex.apress.com
/

6080chIDX.qxd 10/24/06 12:59 PM Page 377

scope resolution operator, 199
sealed classes, 103, 106
sealed properties, 154
separators, 29, 47
set accessors, 141, 151
set() method, 144
setters, 141
Shirk, Jason, 54
signed/unsigned mismatches, 183
size_t type, 324
Sleep method, 236
SN.exe (Strong Name utility), 59
solutions, 6
Source Browsing, 369
source files, retrieving, 4
specialization, 265–273
sprintf function, 323
square roots templates, 271
stacks, 63
standard dispose pattern, 351–355
Standard Template Library (STL), 326–333
Start method, 236
static classes, 106
static constructors, 71
static initialization, 70
static keyword, 198
static properties, 152
static_cast<>() operator, 37, 290
stdafx.cpp file, 8
stdafx.h file, 8
stdio.h include file, 323
stdlib.h include file, 324
STL (Standard Template Library), 326–333
strcpy function, 325
string operator, 301
string.h include file, 325
strings, 323–327
strlen function, 325
Strong Name utility (SN.exe), 59
struct keyword, 61, 122, 195
structs, 30
visibility and, 117
student tracking program (sample), 336–342
subtraction, 174
Sum() method, 88
__super keyword, 364
switch statement, 35
symbols, concatenating two, 300
syntax, 29–40

System::Array class, 37, 84, 86
System::Reflection namespace, 51
System::String class, 89

■T
Tangible Software Solutions, 57
tasks, pointers to members and, 317
techinterview.org, 217
template keyword, 260
template methods, 260
template template parameters, 260
templates, 39, 100, 259–279, 359

class, 274
CLI and, 263
Fibonacci number, 270
function, 268
vs. generics, 252, 255, 259–265, 279
prime numbers, 271
specializing, 265–273
square roots, 271

Thread class, 235
Thread constructor, 235
threads, 235–239
ThreadStart class, 237
time.h include file, 326
__TIME__ macro, 303
tools, 51–60
tracking handle (^), 33, 43, 45
tracking students program (sample),

336–342
Tree<T> class, 338–342
trigonometric functions, 326
trivial events, 168
trivial properties, 145
type initializers, 71
Type Library Conversion tool (TLBImp.exe),

60
type parameters, 45
type safety, 89, 129
typedef, 322, 364
typeids, 289
types constraints, 282

■U
unary operators, 175, 191
unboxing, 73, 75
#undef command, 298, 305
uninitialized declarations, 66
unmanaged resources, standard dispose

pattern and, 351–355

■INDEX378

6080chIDX.qxd 10/24/06 12:59 PM Page 378

unsafe code, 133
unsafe keyword, 129, 132, 135
/unsafe option, 129, 132
user-defined conversions, 188–190
#using command, 306
#using compiler directive, 52
using keyword, 53
using namespace, 53
#using reference, 247
using statement, 4, 29, 43

utilities, 51–60

■V
__VA_ARGS___ replacement identifier,

305
value class constraint, 285
value class keyword, 61
value struct keyword, 61
value types, 30–33, 62–77

boxing and, 73–77
interfaces and, 103
uninitialized, 66

vararg functions, 88
variadic macros, 304
vectors, 326
VES (Virtual Execution System), 260
virtual inheritance, 101
virtual keyword, 104, 246
virtual methods, 107–115, 246
virtual override, 283
virtual properties, 153

visibility, 117, 122, 123
visibility keyword, 38
VisitLeaf() method, 338, 341
Visual C++ CLR Console Application

Wizard, 6
Visual C++ IDE, 5–9, 12
Visual Studio 2005, window layout and, 10
Visual Studio 2005 command prompt, 4
Visual Studio 2005 console, starting, 4
Visual Studio compilers, 4
Visual Studio tools, 58
volatile keyword, 159, 366

■W
wchar_t type, 322
web sites

Dean Wills’, 54
Lutz Roeder’s, 51, 54

where keyword, 281
where.exe tool, 60
whitespace keyword, 30
windiff.exe tool, 60
wrapped classes, 347
write-only properties, 151

■X
XOR swap, 171

■Z
/Zc:forScope, 321
/Zc:wchar_t, 322

■INDEX 379

Find it faster at http://superindex.apress.com
/

6080chIDX.qxd 10/24/06 12:59 PM Page 379

	Pro Visual C++ 2005 for Developers: Featuring C++/CLI
	Table of Content
	Chapter 1 Hello,World
	Chapter 2 There’s No Place Like Home
	Chapter 3 Syntax
	Chapter 4 C# to C++/CLI
	Chapter 5 Tools
	Chapter 6 Data Types
	Chapter 7 Arrays
	Chapter 8 Polymorphism and Protection
	Chapter 9 Pointers and Unsafe Code.
	Chapter 10 Properties and Events
	Chapter 11 Expressions and Operators.
	Chapter 12 The End of the Beginning
	Chapter 13 Fun, Fun, and More Fun
	Chapter 14 Generics
	Chapter 15 Introduction to Templates
	Chapter 16 Advanced Generics & Casts
	Chapter 17 The Preprocessor
	Chapter 18 Native C++
	Chapter 19 Multiple Language Support
	Chapter 20 Final Thoughts.
	Index

