Team LiB |

GDI+ Programming
with C#

e
HEE

m Mteshemssty Chan
. able of Contentd

Graphics Programming with GDI+

By Mahesh Chand

Stat Feading »

Publisher: Addison Wesley
Pub Date: October 17, 2003
ISBN: 0-321-16077-0

Pages: 784

"This is the most comprehensive book about graphics programming using GDI+ so far. This book will be a very useful handbook for everyone
who does graphics programming for Windows."
-Min Liu, Software Design Engineer of GDI+, Microsoft Corporation

Graphics Programming with GDI+ is the .NET developer's guide to writing graphics applications for Windows and the Web. Through the use
of detailed examples it provides experienced programmers with a deep understanding of the entire GDI+ API defined in the .NET Framework
class library.

The book begins with an introduction to GDI+ and the basics of graphics programming in Windows. The core of the book is a hands-on guide
to practical topics, including how to use Windows Forms and optimize GDI+ performance. Chapters demonstrate how to develop real-world
tools such as GDI+Painter, GDI+Editor, ImageViewer, and ImageAnimator. The author provides extensive reusable sample code in C#
throughout, and complete downloadable source code in C# and Visual Basic .NET is available online, as are color versions of screen shots
from the book.

Key topics include:

® ow GDI+ compares to GDI
® How GDI+ is defined and used in the .NET Framework

® How to draw, paint, and fill graphics objects

http://www.informit.com/safari/author_bio.asp@ISBN=0321160770

L4 Viewing and manipulating images

® Transforming graphics objects, images, and colors
® Printing in .NET

® Howto develop GDI+ Web applications

® owto optimize drawing quality and performance
® |nteractive color blending and transparent colors
® Gpi interoperability

® Answers to frequently asked GDI+ questions

Graphics Programming in GDI+ is the most in-depth treatment available on writing effective graphics applications for the .NET Framework.

Team LiB

Team LiB I

GDI+ Programming
with C#

e
= =

K .
m Mishersh Thand
. able of Contentd

Graphics Programming with GDI+

By Mahesh Chand

Publisher: Addison Wesley
Pub Date: October 17, 2003
ISBN: 0-321-16077-0
Pages: 784

Eraise forbraghics Programming with GDIi-I

icrosoft .NET Development Serie

FFigure
Table

Acknowledg mentg

ntroduction

ho Is This Book For‘J
1Prere;uisite;
What's in This Book That | Won't See in Other Books’.l
L“hagter Organizatior_‘l
Example Source Codg
Exception and Error Handling in the Samgleé
k;hagter 1. GDI+: The Next-Generation Graphics Interfacd
Eection 1.3. GDI+ from a GDI Perspectiva

Eection 1.4. GDI+ Namespaces and Classes in .NE'I{

bummary

l:thapter 2. Your First GDI+ Applicatiorl

Start Reading »

http://www.informit.com/safari/author_bio.asp@ISBN=0321160770

Eection 2.1. Drawing Surfaceg
Eection 2.2. The Coordinate Svsteq

Eection 2.3. Tutorial: Your First GDI+ Applicatiorl
Eection 2.4. Some Basic GDI+ Obiectsl

hapter 3. The[Graphicg Class

Class Propertieg

Class Methods

Section 3.3. The GDI+Painter A_pplicatio;l
Eection 3.4. Drawing a Pie Cha;I

t;hagter 4. Working with Brushes and Peng
Eection 4.1. Understandin; and Usin; Brusheg
Eection 4.2. Using Pens in GDI

Eection 4.3. Transformation with Peng
Eection 4.4. Transformation with Brusheg

Eection 4.5. System Pens and System BrusheJ

Eection 4.6. A Real-World Example: Adding Colors, Pens, and Brushes to the GDI+Painter Agglicatiogl
SUMMAR

bhapter 5. Colors, Fonts, and Texi

ISection 5.1. Accessing thelgraghicJOb'ecI
Eection 5.2. Working with Color.
Eection 5.3. Working with Fontg

Eection 5.4. Working with Text and Strinqu

Eection 5.5. Rendering Text with Quality and Performancd
Eection 5.6. Advanced Tvpoqraphq

bection 5.7. A Simple Text Edito_rI
Eection 5.8. Transforming Tg

EUMMARX'
k;hagter 6. Rectangles and Regiong

ection 6.1. The Rectanglg| Structur

Eection 6.2. TheRegiorjClas
Eection 6.3. Regions and Cliggind

Eection 6.4. Clipping Regions Examéla

Eection 6.5. Regions, Nonrectangular Forms, and Controlg

bhagter 7._Working with Imageg

Eection 7.1. Raster and Vector Imaqeg

Eection 7.2. Working with Imageg

Eection 7.4. Playing Animations in GDI:|

Eection 7.5. Working with Bitme_[ﬁ

ection 7.6. Working with Icon

Eection 7.7. Skewing Imageg

Eection 7.8. Drawing Transparent Graphics Obiectsl

Eection 7.9. Viewing Multiple Imageg
Eection 7.10. Using a Picture Box to View Ima;e;
Eection 7.11. Saving Images with Different Size;

hhapter 8. Advanced Imaqincl

Eection 8.1. Rendering Partial Bitmgﬁ

Eection 8.2. Working with Metafileg
Eection 8.3. Color Maééin; Usin; Color Ob'ectg
Eection 8.5. Encoder Parameters and Image Formatg

t;hagter 9. Advanced 2D Graghicg
Eection 9.1. Line Caés and Line Stvle;
Eection 9.2. Understanding and Using Graphics Pathsl
Eection 9.3. Graéhics Containers
Eection 9.4. Reading Metadata of Imaqeg
Eection 9.5. Blending Exglained
Eection 9.6. Alpha Blendina
Eection 9.7. Miscellaneous Advanced 2D Togicg

k:hapter 10. Transformatiorl

Eection 10.1. Coordinate Systemg

Eection 10.2. Transformation Tvpea

Eection 10.3. The|MatrilClass and Transformatio
—

Section 10.4. The|Graphicqd Class and Transformatio

Section 10.5. Global, Local, and Composite Transformations

Eection 10.6. Image Transformatiod

Eection 10.7. Color Transformation and the Color Meﬂ

ection 10.8. Matrix Operations in Image Processin

Eection 10.9. Text Transformation

Eection 10.10. The Significance of Transformation Ordel

bhagter 11. Printin(J

Eection 11.1. A Brief History of Printing with Microsoft Windowsl

Eection 11.2. Overview of the Printing Procesy

Eection 11.3. Your First Printing Applicatior{

Eection 11.4. Printer Setting

Eection 11.5. TheIErintDorm]and _|2r|n IEventé
Eection 11.6. Printina Tex
Eection 11.7. Printin; Graéhig

Eection 11.9. Customizing Page Settinqg

Eection 11.10. Printing Multiple Pagé

Eection 11.11. Marginal Printing: A Cautio;l

Eection 11.12. Getting into the Details: Custom Controlling and the Print Controllel

SUMMAR
bhagter 12. Developing GDI+ Web A[:_)Qlicationg

Section 12.1. Creating Your First ASP.NET Web Applicatio

Section 12.2. Your First Graphics Web Applicatio
Eection 12.3. Drawing Simple Graphia

Eection 12.4. Drawing Images on the Wed
Eection 12.6. Drawing a Pie Chaa

t;hagter 13. GDI+ Best Practices and Performance Techniquesl

Eection 13.1. Understanding the Rendering ProcesJ

bection 13.2. Double Buffering and Flicker-Free Drawin
Bection 13.3. Understanding the [SetStyld Method

Bection 13.4. The Quality and Performance of Drzm
l’;hapter 14. GDI Interoperabilit\j
Eection 14.1. Using GDI in the Managed Environmeni
Eection 14.2. Cautions for Using GDI in Managed Coda
bhagter 15. Miscellaneous GDI+ Examgleg

Section 15.1. Designing Interactive GUI Applicationd

Eection 15.2. Drawing Shaped Forms and Windows Controlg

Eection 15.3. Adding Copyright Information to a Drawn Imagd

ection 15.4. Reading and Writing Images to and from a Stream or Databas

ection 15.5. Creating Owner-Drawn List Control

SBUMMAR
Iﬁggendix A. Exception Handling in .NE |

ection A.1. Why Exception Handling%

ection A.2. Understanding thefry...catc BlOCJ

ection A.3. Understanding Exception Classe

Team LiB |

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries and is used
under license from Microsoft.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume
no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of
the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more information, please
contact:

U.S. Corporate and Government Sales
800) 382-3419
:orpsales@pearsontechqroup.corrl

For sales outside of the U.S., please contact:

International Sales
317) 581-3793

.nternational@Qearsontechgroug.cogl

Visit Addison-Wesley on the Web:

l/vww.awprofessional.con{

Library of Congress Cataloging-in-Publication Data

Chand, Mahesh
Graphics programming with GDI+ / Mahesh Chand.
p. cm.
ISBN 0-321-16077-0 (alk. paper)
1. Computer graphics. 2. User interfaces (Computer systems) |. Title

T385.C4515 2003
006.6—dc22
2003057705

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com
http://www.awprofessional.com/default.htm

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper
123456789 10—CRS—0706050403

First printing, October 2003

Dedication

To Mel and Neel

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Praise for Graphics Programming with GDI+

"This is the most comprehensive book about graphics programming using GDI+ so far. A lot of useful sample code
inside this book reveals that Mr. Chand apparently has done a fair amount of research on GDI+. This book will be a
very useful handbook for everyone who does graphics programming for Windows."

—NMin Liu, Software Design Engineer of GDI+, Microsoft Corporation

"Graphics Programming with GDI+ explores and exploits a wonderful range of GDI+ programming concepts,
techniques, and applications for programmers of beginner to intermediate abilities. Being a prolific contributor to the
Internet community of developers, Mahesh Chand is offering what seems to be a natural extension of what he does
best—sharing his programming skills with other talented programmers. Each chapter compels to the next."

—Jason Hattingh, Director, Greystone Digital FX

"Mahesh does a very good job getting .NET developers up to speed using the GDI+ features supported in the .NET
Framework. There is good coverage of graphics fundamentals that helps the reader better understand the concepts of
graphics programming with GDI+, and there are some excellent sample applications that demonstrate the graphics
topics covered to reinforce the concepts presented.”

——Charles G. Parker, President, Parallel Consulting, Inc.

"Graphics Programming with GDI+ is a comprehensive reference for anyone who wants to leverage this technology. It
presents a clear discussion of the topics in such a manner that is comprehensible to the beginner, but sufficiently
in-depth to challenge seasoned programmers."

—Deborah J. Bechtold, MCSD, MCDBA

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of Microsoft development technologies
including Microsoft architects and DevelopMentor instructors. The books in this series provide a core resource of information and
understanding every developer needs in order to write effective applications and managed code. Learn from the leaders how to maximize
your use of the .NET Framework and its programming languages.

Titles in the Series

Keith Ballinger, .NET Web Services: Architecture and Implementation 0-321-11359-4

Don Box with Chris Sells, Essential .NET Volume 1: The Common Language Runtime 0-201-73411-7

Mahesh Chand, Graphics Programming with GDI+, 0-321-16077-0

Anders Hejlsberg, Scott Wiltamuth, Peter Golde,C# Language Specification 0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell,A First Look at ADO.NET and System.Xml v. 2.00-321-22839-1

Alex Homer, Dave Sussman, Rob Howard,A First Look at ASP.NET v. 2.0 0-321-22896-0

Microsoft Common Language Runtime Team,The Common Language Runtime Annotated Reference and Specification 0-321-15493-2
Microsoft .NET Framework Class Libraries Team, The .NET Framework CLI Standard Class Library Annotated Reference 0-321-15489-4
Microsoft Visual C# Development Team, The C# Annotated Reference and Specification 0-321-15491-6

James S. Miller and Susann Ragsdale,The Common Language Infrastructure Annotated Standard 0-321-15493-2

Fritz Onion, Essential ASP.NET with Examples in C# 0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in Visual Basic .NET 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building Applications and Components with Visual Basic .NET 0-201-73495-8

Chris Sells and Justin Gehtland, Windows Forms Programming in Visual Basic .NET, 0-321-12519-3

Chris Sells, Windows Forms Programming in C# 0-321-11620-8

Damien Watkins, Mark Hammond, Brad Abrams, Programming in the .NET Environment 0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data Access for the Internet World 0-201-74568-2

I/vww.awprofessional .CO m/msdotnetseries]

Team LiB |

http://www.awprofessional.com/msdotnetseries/default.htm

Team LiB |

Figures

igure 1. The role of GDI+ 2

The managed GDI+ class wrapper 5
The GDI+ namespaces in the .NET Framework library 14
Color components in GDI+ 29
The Cartesian coordinate system 31
The GDI+ coordinate system 32

Drawing a line from point (0, 0) to point (120, 80) 33

|

igure 2.4
Creating a Windows application 35
Adding a reference to System.Drawing.dll 36
The System.Drawing namespace in a project 36
Adding the Form_Paint event handler 38
Your first GDI+ application 44
Using Point to draw a line 48
Using PointF to draw a line 49
Using Rectangle to create rectangles 53
Using RectangleF to create rectangles 54
Using the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods of Rectangle 57
Using DrawLine to draw lines 67
Using DrawLines to draw connected lines 68
Drawing individual rectangles 69
Drawing a series of rectangles 70
An ellipse 71
Drawing ellipses 72

igure 3. Drawing text 74

igure 3.8 Drawing text with different directions 76

igure 3.9 The line chart application 76

igure 3.1¢ The line chart application with a chart 77

The line chart with rectangles to mark points 78

igure 3.17 Arcs in an ellipse 82

A sample arc application 83

igure 3.14 The default arc, with start angle of 45 degrees and sweep angle of 90 degrees 84
igure 3.15 An arc with start angle of 90 degrees and sweep angle of 180 degrees 85
igure 3.14 An arc with start angle of 180 degrees and sweep angle of 360 degree 86
Two curves 87

igure 3.1§ Open and closed curves 87

igure 3.19 Drawing a curve 88

=

igure 3.20 A curve-drawing application 89

igure 3.2 Drawing a curve with a tension of 0.0F 91
igure 3.27 Drawing a curve with a tension of 1.0F 91
igure 3.2 Drawing a closed curve 94

igure 3.24 A Bézier curve 95

igure 3.29 Drawing Bézier curves 96

E1

iqure 3.24 Drawing a polygon 98

igure 3.2 Drawing icons 99

igure 3.29 A path 100

igure 3.29 Drawing a path 102

igure 3.3@ Four pie shapes of an ellipse 103

igure 3.3 A pie shape—drawing application 103

igure 3.37 A pie shape with start angle of O degrees and sweep angle of 90 degrees 104
igure 3.3 A pie shape with start angle of 45 degrees and sweep angle of 180 degrees 104
igure 3.34 A pie shape with start angle of 90 degrees and sweep angle of 45 degrees 105
igure 3.35 Drawing an image 107

igure 3.39 Filling a closed curve 109

iy T iy
c e c
S S S
(0] [¢] (0]
= = =

igure 3.3 Filling ellipses 110

igure 4.

igure 4.3

Filling a graphics path 112

Filling a polygon 115

Filling rectangles 115

Using MeasureString when drawing text 119
The GDI+Painter application 122

A pie chart-drawing application 128

The Draw Chart button click in action 130
The Fill Chart button click in action 131

Classes inherited from the Brush class 135

Brush types and their classes 135
Graphics objects filled bySolidBrush 137

A sample hatch brush application 142

The default hatch style rectangle 146

The LightDownwardDiagonal style with different colors 146

The DiagonalCross style 147

The texture brush application 148

Using texture brushes 151

Clamping a texture 151

The TileFlipY texture option 152

A color gradient 153

A gradient pattern with pattern repetition 153

Our linear gradient brush application 156

The default linear gradient brush output 160

The Vertical linear gradient mode 161

Using a rectangle in a linear gradient brush 162

Using LinearGradientBrush properties 163

Creating and using pens 166

igure 5.
igure 5.2
igure 5.3

igure 5.4
igure 5.5
igure 5.9
igure 5.
igure 5.8

igure 5.9

™ — M O OE R
e e c c e
- = | E sl E
@ @ @ @ @
o & »] » &
2 gl g1 3
;
s === u M o Bl =

Displaying pen types 171

Our pen alignment application 172

Drawing with center pen alignment 175

Drawing with inset pen alignment 175

Line cap and dash styles 176

Drawing dashed lines with different cap styles 179

Graphics shapes with cap and dash styles 181

Rotation and scaling 183

Transformation in TextureBrush 186

Transformation in linear gradient brushes 187

Transformation in path gradient brushes 189

Using system pens and system brushes 194

GDI+Painter with pen and brush support 195

GDI+Painter in action 200

Creating colors using different methods 208

Getting brightness, hue, and saturation components of a color 210

Using system colors to draw graphics objects 213

Converting colors 215

Fonts available in Windows 217
Font icons represent font types 219
An OpenType font 220

A TrueType font 220

Font components 221

Font metrics 225

Getting line spacing, ascent, descent, free (extra) space, and height of a font 226

Using the FromHFont method 229

Fonts with different styles and sizes 232

Alignment and trimming options 235
Drawing tabbed text on a form 237

Using FormatFlags to draw vertical and right-to-left text 240
Using different TextRenderingHint settings to draw text 243

Using a private font collection 247
A simple text editor application 248

Drawing text on a form 251

Using ScaleTransform to scale text 252

Using RotateTransform to rotate text 252
Using TranslateTransform to translate text 253

A rectangle 256
A rectangle with starting point (1, 2), height 7, and width 6 256
Using Rectangle methods 260
Hit test using the Contains method 262
Complementing regions 266

igure 6.6 Excluding regions 266
Applying Union on regions 267
Using the Xor method of the Region class 268
Using the Intersect method of the Region class 269
Bounds of an infinite region 270
ExcludeClip output 272
Using Clip methods 274
Using TranslateClip 274
Result of the Xor method 275
Result of the Union method 276
Result of the Exclude method 276
Result of the Intersect method 277

14 Client and nonclient areas of a form 278

A nonrectangular form and controls 279
The nonrectangular forms application 280
A circular form 284

A triangular form 284

A zoomed raster image 289

A zoomed vector image 289

A simple image viewer application 295
Browsing a file 299

Viewing an image 300

Reading the properties of an image 304
A thumbnail image 306

Rotate menu items 308

Flip menu items 308

An image with default settings 310

The image of , rotated 90 degrees 310

The image of , rotated 180 degrees 311
The image of , rotated 270 degrees 311
The image of , flipped in the x direction 312
The image of , flipped in the y direction 313

The image of flipped in both the x and the y directions 314

Fit menu items 315

An image in ImageViewer 318

The image of after Fit Width 319
The image of after Fit Height 319
The image of after Fit Original 320

The image of after Fit All 320

Zoom menu items 321

An image in ImageViewer 323

The image of with 25 percent zoom 323
The image of with 50 percent zoom 324

The image of with 200 percent zoom 324

The image of with 500 percent zoom 325
An animated image with three frames 325

An image animation example 327

The first frame of an animated image 329

The second frame of an animated image 330

A bitmap example 333

Changing the pixel colors of a bitmap 336

Viewing icons 338

A skewing application 339

Normal view of an image 341

Skewed image 342

Drawing transparent graphics objects 343

Drawing multiple images 345

Viewing an image in a picture box 348

Saving images with different sizes 349

New image, with width of 200 and height of 200 351
Using BitmapData to set grayscale 359

Changing the pixel format of a partial bitmap 361

Viewing a metafile 363

A metafile created programmatically 365
Reading metafile records 368

Reading metafile header attributes 371
Applying a color remap table 373

Wrapping images 377

Drawing semitransparent images 380
Applying SetGamma and SetColorKey 381

Using the SetNoOp method 382

The relationship among Encoder, EncoderCollection, and Image 385
Lines with different starting cap, ending cap, and dash styles 395
Line dash style 396

Line dash caps 396

Reading line caps 400

Reading line dash styles 401

Getting line dash caps 402

A rectangle, an ellipse, and a curve with different line styles 404
A line with custom caps 404

The line join test application 406

The Bevel line join effect 408

The Miter line join effect 408

The Round line join effect 409

Customized starting and ending caps 409
Setting customized starting and ending caps 411
Adjustable arrow caps 412

A simple graphics path 416

Afilled graphics path 416

A shaped form 417

Three subpaths 422

Nested containers 425

Drawing with different PageUnit values 428

Saving and restoring graphics states 431

Using graphics containers to draw text 433

Using graphics containers to draw shapes 435

Reading the metadata of a bitmap 437

Color blending examples 438

Transparent graphics shapes in an image using alpha blending 439

Mixed blending effects 440

Using linear gradient brushes 443

Using a rectangle in the linear gradient brush 444

Using the SetBlendTriangularShape method 445

Using the SetSigmaBellShape method 446

Comparing the effects of SetBlendTriangularShape and SetSigmaBellShape 447

Setting the center of a gradient 448

A multicolor gradient 450

Using blending in a linear gradient brush 452

Blending using PathGradientBrush 454

Setting the focus scale 455

Blending multiple colors 456

Using the InterpolationColors property of PathGradientBrush 457

Multicolor blending using PathGradientBrush 459

Drawing semitransparent graphics shapes 461

Drawing semitransparent shapes on an image 463
Using CompositingMode.SourceOver 466

Blending with CompositingMode.SourceCopy 467

A mixed blending example 469

Drawing with SmoothingMode set to Default 472
Drawing with SmoothingMode set to AntiAlias 473
Steps in the transformation process 476
Transformation stages 477

Drawing a line from point (0, 0) to point (120, 80) 477
Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40) 479
Drawing with the GraphicsUnit.Inch option 480
Drawing with the GraphicsUnit.Inch option and a pixel width 481
Combining page and device coordinates 482
Drawing a line and filling a rectangle 487

Rotating graphics objects 488

Using the RotateAt method 490

Resetting a transformation 490

Scaling a rectangle 492

Shearing a rectangle 493

Translating a rectangle 494

Composite transformation 499

Local transformation 500

Rotating images 502

Scaling images 503
Translating images 503

igure 10.2

igure 10.28

igure, 10.2

Shearing images 504

An identity matrix 505
A matrix whose components have different intensities 506
A color matrix with multiplication and addition 506

Translating colors 509
Scaling colors 511
Shearing colors 512

RGB rotation space 513
RGB initialization 514

Rotating colors 515
Using the transformation matrix to transform text 516
Using the transformation matrix to shear text 517

Using the transformation matrix to reverse text 518

Scale ; Rotate ; Translate composite transformation 520

Translate ; Rotate ; Scale composite transformation withAppend 521

LY LY
Translate # Rotate # Scale composite transformation withPrepend 522

A simple drawing process 528

A simple printing process 528

Conceptual flow of the printing process 530
A flowchart of the printing process 532
Process A 533

Creating a Windows application 534

Your first printing application 535

The printer settings form 547

Reading printer properties 551

Print events 553

The print events application 555

The form with text file printing options 558

A graphics-printing application 563

Drawing simple graphics items 564

Viewing an image 567

Print dialogs in the Visual Studio .NET toolbox 569

The print dialog application 574

Viewing an image and text 579

The print preview dialog 579

The page setup dialog 580

The print dialog 580

The custom page settings dialog 584

The PageSetupDialog sample in action 588

A form for printing multiple pages 591

Print preview of multiple pages 595

Setting a document name 595

Marginal-printing test application 596

PrintController-derived classes 600

Print controller test form 601

Print controller output 604

Drawing in Windows Forms 608
Drawing in Web Forms 608

The FirstWebApp project 610

The default WebForm1.aspx page 611

The HTML view of WebForm1.aspx 611

An ASP.NET document's page properties 612

The WebForm1.aspx design mode after the addition of Web Forms controls 613

Viewing an image in an Image control 614

Drawing simple graphics objects on the Web 617

Drawing various graphics objects 621

Drawing an image 623

Using LinearGradientBrush and PathGradientBrush 625

Drawing semitransparent objects 626

Entering points on a chart 630

A line chart in ASP.NET 632

A pie chart—drawing application in ASP.NET 633

The Draw Chart button click in action 636

The Fill Chart button click in action 637

The Form class hierarchy 641

Drawing on a form 643

Drawing on Windows controls 644

Drawing lines in a loop 651

The same result from two different drawing methods 657

Using DrawRectangle to draw rectangles 658

Using system pens and brushes 661

An interactive GUI application 677

Designing transparent controls 680

Drawing a circular form and Windows controls 682

A graphics copyright application 683

Thumbnail view of an image 684

An image after copyright has been added to it 688

Users table schema 689

Reading and writing images in a database form 690
Displaying a bitmap after reading data from a database 694
An owner-drawn ListBox control 699

An owner-drawn ListBox control with images 701
igure 15.1
An error generated from 705

An exception-handled error message 706
igure A.4

.awprofessional.com/titles/032116077Q.

the Addison-Wesley Web site at

http://www.awprofessional.com/titles/0321160770
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Tables

able 1.9 System.Drawing classes 15
System.Drawing.Design classes 19
able 1.3: System.Drawing.Design interfaces 20
able 1.4 System.Drawing.Drawing2D classes 20
able 1.5 System.Drawing.Imaging classes 22
able 1.6 System.Drawing.Printing classes 23
able 1.74: System.Drawing.Text classes 25

able 2.1 Color properties 45

able 2.4: Color methods 46

able 2.3: Rectangle and RectangleF properties 51
able 2.4 Rectangle and RectangleF methods 55
Graphics properties 62

able 3.4: Graphics draw methods 64

able 3.3: Icon properties 98

able 3.4 Icon methods 99

able 3.9 Graphics fill methods 108

able 3.64: Some miscellaneous Graphics methods 116
able 4.4 HatchStyle members 139
TextureBrush properties 147

able 4.3 LinearGradientMode members 154
able 4.4 LinearGradientBrush properties 155
able 4.9 LinearGradientBrush methods 155

able 4.64: PathGradientBrush properties 164

o o o
=2 = =
© o ©
B w =

able 4.7 WrapMode members 164

able 4.13

able 4.1

Q Q Q Q Q Q Q Q
=2 =2 = =) =) =2 =2 =
(] @D @ @] (] @D @
& & & A & & A A
= = = = [= Q fes
(@) I AN AN (@]

able 5.7}

able 5.4

able 5.3:

able 5.4

able 5.4

able 5.4

able 5.4

able 5.9

)
=2
o
o
D

able 5.1

able 5.13

Q Q
=) =2
] @D
o 1
= =
D (@]

able 6.7

able 6.4

able 7.

able 7.4

able 7.

able 7.9

o
=
o
N
-L

Pen properties 168

Pen methods 169

PenType members 169
PenAlignment members 171
LineCap members 177

DashCap members 177

DashStyle members 178
TextureBrush methods 184
SystemPens properties 190
SystemBrushes properties 191
SystemColors properties 210
Common TypeConverter methods 214
ColorTranslator methods 216
FontStyle members 223
FontFamily properties 223
FontFamily methods 224
GraphicsUnit members 227

Font properties 228
StringAlignment members 233
StringTrimming members 233
StringFormatFlags members 238
StringDigitSubstitute members 240
TextRenderingHint members 242
Region methods 265
CombineMode members 273
Number of bits and possible number of colors per pixel 290
Image class properties 293

Image class methods 294
ImageFormat properties 301

RotateFlipType members 307

able 7.4

able 8.

able 8.

able 8.4

able 8.4

able 8.

able 8.9

able 8.9:

o)
= =2
o o
e ©
0 A

able 8.1

Q Q
= =)
@ @
00 0
= =
AN (@)

able 9.7

able 9.4

able 9.

able 9.4

able 9.9

able 9.4

able 9.

o
=
o
©
0

able 9.9:

able 9.10

able 9.1

able 9.12

able 9.14

able 10.

able 11.

Q D
= =
©)
= ©
o [
D\ A

PictureBoxSizeMode members 348
ImageLockMode members 355
PixelFormat members 356

BitmapData properties 358
MetafileHeader methods 369
MetafileHeader properties 370
ColorPalette.Flags values 375

WrapMode members 376
ColorAdjustType members 378

The clear methods of ImageAttributes 383
Encoder fields 386

EncoderParameter properties 387
ImageCodeclinfo properties 388
System.Drawing.Drawing2D classes 394
Line cap styles 395

Pen Class Members for Setting Line Caps and Styles 397
CustomLineCap properties 405

LineJoin members 405

PathPointType members 415
GraphicsPath properties 418

Some GraphicsPath methods 420
GraphicsUnit members 427

Id values 436

Format of Type property values 436
CompositingQuality members 464
SmoothingMode members 471
PixelOffsetMode members 473

Matrix properties 484
Transformation-related members defined in theGraphics class 495

Duplex members 540

able 11.3

able 11.

able 11.9

able 11.10:

able 13.

able 14.

able 15.

) QD)) QD

= =2 = = =2

(0] e (0] (0] e

= = [[[5Y

o » = = =

AN N [[@
N

—
D
QO
3
.
m

Other PrinterSettings properties 543
PrinterResolutionKind members 545
PrintDocument properties 551
PrintDocument methods 552
PrintPageEventArgs properties 554
PrintDialog properties 570
PageSetupDialog properties 571
Some PrintPreviewDialog properties 573
PageSettings properties 582
PaperSourceKind members 583
PrintRange members 590
ControlStyle members 652
DllimportAttribute field members 665
CallingConvention members 666
DrawltemEventArgs properties 695

MeasureltemEventArgs properties 696

Team LiB |

Acknowledgments

First of all, | would like to thank a great team at Addison-Wesley, including Stephane Thomas, John D. Ruley, Michael Mullen, Stephanie
Hiebert, and Tyrrell Albaugh, all of whom were very helpful from time to time.

Technical reviewers played a vital role in improving the technical aspects of this book. Their comments and suggestions made me think from
various different programming perspectives. | would like to thank technical reviewers Charles Parker, Min Liu, Gilles Khouzam, Jason
Hattingh, Chris Garrett, Jeffery Galinovsky, Darrin Bishop, and Deborah Bechtold.

| would also like to thank John O'Donnell for his contribution to the printing chapter of the book).

Team LiB |

Team LiB |

Introduction

By introducing the .NET Framework to the programming world, Microsoft has changed the perspective and vision of programming and
programmers. Unlike previous programming environments, the .NET Framework is designed with the future of software development in mind.
Besides introducing the new C# language and significant additions to Visual Basic .NET and other languages, the .NET Framework provides
many new tools and utilities that make a programmer's life easier.

Languages, tools, and utilities aside, the .NET Framework library is the real power of the .NET Framework. It's an object-oriented class
library that defines an interface to interact with various programming technologies. Any programming language that is designed to work with
the .NET Framework can access the library, which makes a programmer's life easier because the methods and properties defined in the
library are the same, regardless of the language.

Each class defined in the .NET Framework library belongs to a particular namespace—a logical unit that is used to separate a particular
programming interface from others. For example, the System.Windows.Forms namespace defines classes that are used for Windows Forms

development. System.Data and its subnamespaces define classes that are used for database development (ADO.NET).

GDI+ is the next-generation graphics device interface, defined inSystem.Drawing and its subnamespaces. This book focuses on how to write
graphical Windows and Web applications using GDI+ and C# for the Microsoft .NET Framework.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Who Is This Book For?

This book is designed for intermediate developers who want to write graphics applications for the .NET Framework using GDI+ and C#. Here
are the topics we will cover:

Team LiB |

What GDI+ is all about, and how it differs from GDI

How GDI+ works, and where it is defined in the .NET Framework library

How to draw text, lines, curves, rectangles, ellipses, and other graphics shapes in GDI+
How to fill rectangles, ellipses, and other closed curves with different colors, styles, and textures
Painting and drawing in .NET

Viewing and manipulating images

How Windows Forms and Web Forms are related to drawing

How to write Web-based graphics applications

Printing in .NET

Transforming graphics objects, colors, and images

Interactive color blending and transparent colors

Using GDI in .NET applications

Precautions to take when writing GDI+ applications

Optimizing the performance of GDI+ applications

Team LiB |

Prerequisites

There are some things you should know before beginning this book:

L4 Language: This book is written in C#, but developers who want to use GDI+ with other .NET Framework languages—including
Visual Basic .NET—can also use this book. Because C# and VB.NET share the same .NET Framework library, there isn't much
difference aside from the language syntaxes. Knowledge of C# or VB.NET is not a requirement, however. If you are a C++
developer, you should have no difficulty using this book.

® ramework: | used Visual Studio .NET to develop and test the samples in this book. Knowledge of Visual Studio .NET and basics
of the .NET Framework is a requirement.

® Basics of graphics programming: A basic understanding of graphics programming is a plus but is not mandatory.

® cp programming experience: Experience with GDI programming is a plus but is not mandatory.

Team LiB |

Team LiB |

What's in This Book That | Won't See in Other Books?

® This book is written by an experienced author who has been watching every .NET move closely since the birth of .NET.
® The author works very closely with the .NET community and has extensive experience developing real-world .NET applications.
® Besides covering GDI+-related namespaces and classes, this book takes a practical approach, discussing all concepts.

® Almost every chapter of the book ends with a real-world application, including FirstWebApp, GDI+Painter, ImageViewer, and many
more.

® One chapter (is dedicated to GDI+ performance techniques, discussing what to do and whatnot to do, when we're
writing graphics applications in .NET using GDI+.

Team LiB |

BTy rrevious [ecr]

Chapter Organization

Before we start, let's take a quick tour of this book. It has 15 chapters and one appendix. Here's a brief introduction:

: GDI+: The Next-Generation Graphics Interface

GDI+ is a new and improved version of GDI. This chapter introduces the GDI+ library, its advantages over previous versions, new features
and additions to the library, and how it is related to the .NET Framework.

: Your First GDI+ Application

In the .NET Framework Library, GDI+ functionality is defined in the System.Drawing namespace and its subnamespaces. This chapter
discusses the contents of these namespaces. After finishing this chapter, you will understand which functionality is defined where and when
to which namespace.

Chaéter 3: The Graphics Class

The Graphics class plays a major role in GDI+. Whenever you need to draw a graphics object, you must use th&raphics class. This chapter
discusses Graphics class methods and properties, and how to use them. After completing this chapter, you'll have a pretty good idea how to
draw and fill various graphics objects.

Chapter 4: Working with Brushes and Pens

Brushes and pens are used to fill and draw graphics objects. GDI+ provides many classes for working with brushes and pens. This chapter
describes how to work with them.

: Colors, Fonts, and Text

This chapter discusses the color-, font-, and text-related classes provided by the .NET Framework class library in more detail.

Chaéter a: Rectangles and Regions

Rectangles and regions can be very useful—and very tricky. This chapter covers them in detail.

Chapter 7: Working with Images

The .NET Framework divides GDI+ functionality between two hamespaces: System.Drawing and System.Drawing.Imaging. This chapter
covers the basic imaging-related functionality defined in the System.Drawing namespace.

: Advanced Imaging

This chapter discusses more imaging functionality, including the System.Drawing.Imaging namespace and how to work with metafiles in the
.NET Framework. We will also see how to maintain the gquality and rendering speed of images in GDI+.

Chaéter Q: Advanced 2D Graphics

This chapter discusses advanced two-dimensional graphics programming using GDI+. Advanced 2D techniques and tools include blending,
matrices, graphics paths, and gradient brushes.

Chaéter 1&}: Transformation

This chapter examines GDI+ transformation. Transformation can be applied not only to graphics shapes, curves, and images, but also to
image colors.

Chaéter 1ﬂ: Printing

Printing functionality in the .NET Framework library is defined in the System.Drawing.Printing namespace. This chapter explores this
namespace and how to write printing applications.

Chaéter lg: Developing GDI+ Web Applications

GDI+ can also be used in Web applications. This chapter discusses how to use GDI+ in Web applications with ASP.NET.

Chaéter 13: GDI+ Best Practices and Performance Techniques

This chapter concentrates on GDI+ best practices and GDI+-related tips and tricks to improve the quality and performance of drawing.

: GDI Interoperability

This chapter demonstrates how GDI can be used with GDI+ in managed applications.

: Miscellaneous GDI+ Examples

In this chapter we have some fun with GDI+. Among the topics in this chapter are designing interactive GUI applications, creating shaped
forms, and adding custom text in images.

Eééendix Al: Exception Handling in .NET

This appendix introduces exception and error handling in .NET.

Team LiB |

Team LiB |

Example Source Code

Complete source code for the examples in |

his book (in both C# and Visual Basic .NET) is available for download at

vww.awprofessional.com/titles/0321160770.

Team LiB |

http://www.awprofessional.com/titles/0321160770
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Exception and Error Handling in the Samples

The .NET Framework supports structured exception handling that's similar to C++ exception handling. The examples in this book do not
include exception handling code. Adding exception handling code to every code snippet would have been_confusing and redundant. Instead,
we discuss exception and error handling concepts in '. It is highly recommended that you read. and apply exception and

error handling techniques in your applications.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

SUMMARY

This introduction explained the book's organization and answered basic questions about the book. In , you will learn the basics of
GDI+. Topics we will cover include

® \What is GDI+, and why it is a better programming interface than its predecessors?
® How is GDI+ designed and used in the .NET Framework?

® \What are the major advantages of GDI+ over GDI?

® owdo you write your first graphics application in .NET using GDI+?

® \What are some of the basic graphics concepts?

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 1. GDI+: The Next-Generation Graphics

Interface

Welcome to the graphics world of GDI+, the next-generation graphics device interface. GDI+ is the gateway to interact with graphics device
interfaces in the .NET Framework. If you're going to write .NET applications that interact with graphics devices such as monitors, printers, or
files, you will have to use GDI+.

This chapter will introduce GDI+. First we will discuss the theoretical aspects of GDI+, which you should know before starting to write a
graphics application.

After reading this chapter, you should understand the following topics:

Team LiB |

What GDI+ is

How GDI+ is defined

How to use GDI+ in your applications

What's new in GDI+

What the major programming differences between GDI and GDI+ are

Which major namespaces and classes in the .NET Framework library expose the functionality of GDI+

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

1.1 Understanding GDI+

If you want to write efficient and optimized graphics applications, it's important to understand the GDI+ class library. In this section we will
discuss how GDI+ is defined, and how it can be used in managed and unmanaged applications.

1.1.1 Definition

GDI+ is a library that provides an interface that allows programmers to write Windows and Web graphics applications that interact with
graphical devices such as printers, monitors, or files.

All graphical user interface (GUI) applications interact with a hardware device (a monitor, printer, or scanner), that can represent the data in a
human-readable form. However, there is no direct communication between a program and a device; otherwise, you would have to write user
interface code for each and every device with which your program interacts!

To avoid this monumental task, a third component sits between the program and device. It converts and passes data sent by the program to
the device and vice versa. This component is the GDI+ library. Typing a simple "Hello World" on the console, drawing a line or a rectangle,

and printing a form are examples in which a program sends data to GDI+, which converts it for use by a hardware device. figure 1.
illustrates this process.

Figure 1.1. The role of GDI+

Printer

Application } —v‘ Monitor

Files

Now let's see how GDI+ works. Suppose your program draws a line. A line is displayed as a set of pixels drawn in sequence from the starting
location to the ending location. To draw a line on a monitor, the monitor needs to know where to draw the pixels. Instead of telling the monitor
to draw pixels, your program calls the DrawLine method of GDI+, and GDI+ draws the line from point A to point B. GDI+ reads the point A and
point B locations, converts them to a sequence of pixels, and tells the monitor to display the sequence of pixels.

GDI+ allows you to write device-independent managed applications and is designed to provide high performance, ease of use, and
multilingual support.

1.1.2 What Is GDI+?

The previous section defined GDI+. But how is it implemented? GDI+ is a set of C++ classes that are located in a class library called
Gdiplus.dll. Gdiplus.dll is a built-in component of the Microsoft Windows XP and Windows Server 2003 operating systems.

Tip

You can use GDI+ on Windows operating systems other than XP. You just need to install GDI+ on the computer, which
means that Gdiplus.dll must be copied to the system directory. Installing the .NET SDK, Visual Studio .NET, or .NET
redistributable copies Gdiplus.dil automatically.

Comparing GDI+ to GDI, as we do later in this chapter, is a natural way to introduce GDI+. Note, however, that prior knowledge of GDI is not
a prerequisite for learning GDI+ or using this book. This book is about GDI+ development in the .NET Framework, which provides new
classes and a new way to write graphics applications. Prior experience with GDI will aid your understanding of the basic concepts, but it is not
necessary.

GDI Interoperability

You can use GDI in managed applications with GDI+. GDI interoperability allows you to use GDI functignality in managed
applications with GDI+, but you need to take some precautions. We will discuss GDI interoperability in[Chapter 14.

1.1.3 The GDI+ Library in the .NET Framework

The previous section said that the GDI+ library is a set of C++ classes that can be used from both managed and unmanaged code. Before we
discuss how GDI+ is represented in the .NET Framework library, let's review the concepts of managed and unmanaged code.

1.1.3.1 Managed and Unmanaged Code

Code written in the Microsoft .NET development environment is divided into two categories: managed and unmanaged. In brief, code written
in the .NET framework that is being managed by the common language runtime (CLR) is called managed code. Code that is not being
managed by the CLR is called unmanaged code.

Managed code enjoys many rich features provided by the CLR, including automatic memory management and garbage collection,
cross-language integration, language independence, rich exception handling, improved security, debugging and profiling, versioning, and
deployment. With the help of a garbage collector (GC), the CLR automatically manages the life cycle of objects. When the GC finds that an
object has not been used after a certain amount of time, the CLR frees resources associated with that object automatically and removes the
object from the memory. You can also control the life cycle of objects programmatically.

You can write both managed and unmanaged applications using Microsoft Visual Studio .NET. You can use Visual C++ 7.0 to write
unmanaged code in Visual Studio .NET. Managed Extensions to C++ (MC++) is the way to write C++ managed code. Code written using C#
and Visual Basic .NET is managed code.

1.1.3.2 GDI+ in Managed Code

GDI+ exposes its functionality for both managed and unmanaged code. As noted earlier, GDI+ is a set of unmanaged C++ classes.
Programmers targeting unmanaged code can use these C++ classes to write their graphics applications.

Note

This book targets only managed code development. Unmanaged GDI+ development will not be discussed.

The .NET Framework library provides managed classes that are a nice wrapper around GDI+ C++ classes. The GDI+ managed classes

provided by the .NET Framework library are defined in the System.Drawing.dll and System.Drawing.Design.dll assemblies. ‘ shows
a conceptual diagram of the communication between managed Windows and Web applications and display devices through managed GDI+.
As the diagram shows, the managed GDI+ classes defined in the System.Drawing namespace and its subnamespace are a wrapper around

the GDI+ C++ classes defined in the Gdiplus.dll unmanaged library.

Figure 1.2. The managed GDI+ class wrapper

Managed GDI+
Managed GDI+ classes are
defined in system.Drawing and

M od its subnamespaces and reside in
anag the System.Drawing.d11 and Graphics
Windows or —p System.Drawing.Design.dll — Display
Web assemblies. Devices
Applications
Unmanaged GDI+

C++ classes are defined
IN Gdiplus.dll library.

The managed GDI+ classes provided in the .NET Framework library are defined in the System.Drawing namespace and its five

subnamespaces: System.Drawing.Design, System.Drawing.Drawing2D, System.Drawing.Imaging, System.Drawing.Printing, and
System.Drawing.Text. We will discuss these namespaces and their classes in more detail i

1.1.3.3 GDI+ Revisited

In brief,

® GDl+isa component that sits between an application and graphical devices. It converts data into a form compatible with a
graphical device, which presents the data in human-readable form.

® GDI+is implemented as a set of C++ classes that can be used from unmanaged code.

® |n the .NET Framework library, GDI+ classes are exposed through System.Drawing (and its subnamespaces), which provides a
managed class wrapper around the GDI+ C++ classes.

In this book we will be using GDI+ through the namespaces provided by the .NET Framefﬂg_ﬁhmwmmfore about GDI+
C++ classes, search for GDI+ references on MSDN. On the GDI+ references page (go to http://msdn.microsoft.com/library, expand Graphics

and Multimedia, and then click onGDI+), you can find all GDI+ classes, functions, constants, enumerations, and structures.

1.1.4 What's New in GDI+ for GDI Programmers?

GDI+ provides significant improvements over its predecessor, GDI. In this section we will take a quick look at these improvements.

GDI+ provides some nice features for 2D vector graphics. One of the many nice features is support for floating point coordinates. For
example, the PointF, SizeF, and RectangleF classes represent a floating point, size, and rectangle, respectively. Other objects that uséoint,
Size, and Rectangle objects also have overloaded methods that can use thePointF, SizeF, and RectangleF objects.

The alpha component, which represents the opacity of a color, is a new addition to the Color structure. Alpha blending, anti-aliasing, and color
blending are other new additions to the library. We will discuss these topics in more detail in andf.

Texture and gradient brushes are another new addition. Some other additions to the basic primitives are compound lines, cardinal splines,
scalable regions, inset pens, high-quality filtering and scaling, and many new line styles and line cap options.

Imaging is another area where GDI developers will find many new additions in GDI+. Some of the additions are native support for image file
formats such as .jpeg, .png, .gif, .bmp, .tiff, .exif, and .icon; support for encoding and decoding raster formats; native image processing
support; brightness, contrast, and color balance; and support for transformations, including rotation and cropping.

In color management, support for SRGB, ICM2, and sRGB64 is a new addition. Typography support includes the ClearType, texture, and
gradient-filled texts, as well as support for Unicode and Windows 2000 scripts.

Team LiB |

http://www.msdn.microsoft.com/library

Team LiB |

1.2 Exploring GDI+ Functionality

Microsoft's managed GDI+ documentation divides its functionality into three categories: 2D vector graphics, imaging, and typography. This
book divides the GDI+ functionality into five categories:

1. 2D vector graphics
2. Imaging

3. Typography

4. Printing

5. Design

1.2.1 2D Vector Graphics Programming

Vector graphics concerns the drawing of shapes that can be specified by sets of points on a coordinate system. Such shapes are called
primitives; examples include lines, curves, rectangles, and paths. In managed GDI+, a class object or structure represents a graphics
primitive. Each class or structure provides members that can be used to get and set a primitive's properties. For example, the Point structure
provides X and Y properties that represent thex- and y-coordinate values of a point. ThePoint structure also provides methods, including
Ceiling, Round, and Truncate. We will discuss these methods in more detail i.

In the .NET Framework library, 2D vector programming is divided into two categories: general and advanced. General 2D vector graphics
programming functionality is defined in the System.Drawing namespace; advanced functionality is defined in theSystem.Drawing.Drawing2D
namespace.

The major 2D vector programming classes defined in the System.Drawing namespace are Pen, Pens, Brush (and Brush-derived classes),
Brushes, Font (and Font-related classes), Point, Rectangle, and Size. We will discuss these classes and their members in more detail in other
chapters according to how they are categorized.

The System.Drawing.Drawing2D namespace provides blending, color blending, graphics paths, custom line caps, hatch and linear gradient
brushes, and matrices. We will discuss these classes and their members in more detail in _Chagter Q

1.2.2 Imaging

Imaging involves viewing and manipulating images. In managed GDI+, imaging functionality is divided into two categories: basic and
advanced. The basic functionality is defined in the Image class, which also serves as the base class of theBitmap and Metafile classes. The
Image class provides members to load, create, and save images.

The Bitmap and Metafile classes define functionality for displaying, manipulating, and saving bitmaps and metafiles andE cover

imaging functionality in more detail.

1.2.3 Typography

Typography refers to the design and appearance of text. GDI+ provides classes to create and use fonts. Some of the font-related classes are
Font, FontFamily, and FontConverter. GDI+ also provides classes to read all installed fonts on a system. You can also add custom fonts to the
font collection. We will cover the capabilities of GDI+ with respect to fonts and typography in Ehagter g

1.2.4 Printing

GDI+ provides easy-to-use classes that encapsulate Windows printing functionality. The printing classes defined in the .NET Framework
class library provide access to and control over available printers, printer sources, paper and paper sources, pages, printer resolution, and so
on. GDI+ printing functionality is defined in the System.Drawing.Printing namespace. [Chapter 1] is dedicated to printing functionality.

1.2.5 Design

The GDI+ class library also provides classes that extend design-time user interface (Ul) logic and drawing functionality. These classes are
defined in the System.Drawing.Design namespace. Examples of extended Ul functionality include creating custom toolbox items, type-specific
value editors, and type converters.

Team LiB |

Team LiB |

1.3 GDI+ from a GDI Perspective

This section is for GDI programmers. To build on your existing knowledge, we will compare and contrast GDI and GDI+. If you've never
worked with GDI, we recommend that you skip this section.

We have already mentioned the first and major difference between the two versions: Whereas GDI+ exposes its functionality as both
unmanaged and managed classes (through the System.Drawing namespace), GDI is unmanaged only. Besides this major difference, some
of the important changes in GDI+ are as follows:

® No handles or device contexts

® Object-oriented approach

® Graphics object independence

® \ethod overloading

® Separate methods for draw and fill

® Regions and their styles

1.3.1 Elimination of Handles and Device Contexts

As a GDI programmer, you must be familiar with the device context. A device context is a structure that stores information about a particular
display device, such as a printer or monitor. This structure specifies how the graphics objects will be drawn on the output device. The device
context also stores information about the properties of graphics objects, such as the quality of rendering and so on. To draw an object on a
device, first an application needs to get a handle to the device context (HDC), which is used by GDI to send information to the device.

In GDI+, the concept of device context and handle to the device context is replaced by the Graphics object. The Graphics class provides
methods and properties to draw various graphics objects; these methods and properties are very easy to use compared to the earlier device
context—based programming model.

Suppose that you need to draw a line from point (20, 20) to point (200, 200). In GDlI, first an application creates an HDC using the BeginPaint
function, which takes a window handle and a PAINTSTRUCT structure. Alternatively, you can call theGetDC function. To draw a line, the
application must create a pen object and draw a line using this pen. An application can obtain a pen object by making a call to the CreatePen
function, which returns a handle to the pen.

Before starting to draw, the application needs to call the SelectObject function, which takes the device context and pen handle as arguments.
Now the application can draw any graphics object. The application calls the EndPaint function to end the drawing process. For example, the

code snippet in Listing 1.1 draws a line using theMoveToEx and LineTo functions.

Listing 1.1 C++ code to draw a line

LRESULT APIENTRY MainWndProc(
HWND hwnd, UINT message, WPARAM wParam,
LPARAM [Param)

PAINTSTRUCT ps;
switch (message)
{
case WM_PAINT:
HDC handle;
PAINTSTRUCT pstruct;
HPEN hPen;

handle = BeginPaint(hWnd, &pstruct);
hPen = CreatePen(PS_SOLID, 5,
RGB(255, 255, 0));
SelectObject(handle, hPen);
MoveToEx(handle, 20, 20, NULL);
LineTo(handle, 200, 200);
EndPaint(hWnd, &pstruct);

Now let's see the same example in GDI+: First you need a Graphics object associated with a form, which is usually available on the form's
Form_Paint event or OnPaint method. Once you've got the Graphics object associated with a form, you can call its draw and fill methods to
draw and fill various graphics objects, such as lines, rectangles, and curves. For example, the code written in‘ is the form's paint
method. As this code shows, first we get a Graphics object associated with the form by usingPaintEventArgs.Graphics. After that we create a

Pen object and pass it as an argument to theDrawLine_method. The DrawLine method takes aPen object and the starting and ending points
of a line, and draws a line on the form. Notice also in that there is noMoveTo call.

Listing 1.2 GDI+ code in C#to draw a line

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{

Graphics g = e.Graphics;

Pen pn = new Pen(Color.Red, 3);
g.DrawLine(pn, 20, 20, 200, 200);
}

Note

There are other ways to get a Graphics object in your application. We will look at these options in more detail i.

1.3.2 Object-Oriented Approach

If you compare and B it's easy to see that the GDI+ model is more flexible, easier to use, and more object-oriented. GDI
provides functions to draw graphics objects; GDI+ provides objects. Each graphics primitive is an object. For example, in GDI+, a pen is
represented by a Pen object, as opposed to theHPEN structure in GDI.

1.3.3 Graphics Object Independence

In GDI, first you select a brush, path, image, or font and pass this object a device context. Then you use the device context handle to draw a
graphics object, which means all the objects drawn using that device context will have the same effects.

Unlike GDI, GDI+ provides an object-independent model, which means that pens, brushes, images, or fonts can be created and used
independently and can be changed at any time. In addition, an application can even use different pens to draw different graphics objects on
the same form, which is not true in the case of a device context.

1.3.4 Method Overloading

GDI+ methods provide many overloaded forms to provide more flexibility to developers. For example, the DrawRectangle method has three
overloaded forms:

1. public void DrawRectangle(Pen, Rectangle);
2. public void DrawRectangle(Pen, int, int, int, int);
3. public void DrawRectangle(Pen, float, float, float, float);

These forms allow developers to draw a rectangle from a rectangle object, four integer values, or floating point values. The DrawRectangle
method draws a rectangle specified by a coordinate pair, a width, and a height. The Drawlmage method, used to draw images, has no fewer
than 30 overloaded forms. We will discuss these methods in more detail and see them in action i.

1.3.5 Draw and Fill Methods

Drawing and filling are analogous to writing and painting. When you write, you use a pen to "draw" symbols made up of lines and curves.
Painting means you take a brush, dip it into a color, and fill in areas with the color.

In GDI, both actions (fill and draw) are done in one step. For example, consider drawing and filling a rectangle. First an application creates a
pen and a brush and calls SelectObject to select that pen and brush. Then the application calls theRectangle method, which draws and fills
the rectangle. [istin; 1.3 shows a code snippet that draws and fills a rectangle.

Listing 1.3 GDI code to draw and fill a rectangle

hBrush = CreateHatchBrush(HS_CROSS, RGB(255, 0, 0));
hPen = CreatePen(PS_SOLID, 3, RGB(255, 0, 0));
SelectObject(hdc, hBrush);

SelectObject(hdc, hPen);

Rectangle(hdc, 20, 20, 200, 200);

In GDI+, the Graphics class provides separate draw and fill methods. For example, thédrawRectangle method takes a Pen object and draws
an outline of a rectangle, and the FillRectangle method takes aBrush object and fills the rectangle with the specified brush, ag.isting 1.4

shows.

Listing 1.4 GDI+ code to draw and fill arectangle

Graphics g = e.Graphics;

Pen pn = new Pen(Color.Red, 3);

HatchBrush htchBrush = new HatchBrush(HatchStyle.Cross,
Color.Red, Color.Blue);

g.DrawRectangle(pn, 50, 50, 100, 100);
g.FillRectangle(htchBrush, 20, 20, 200, 200);

We will discuss the draw and fill methods in more detail i

1.3.6 Regions and Their Styles

Regions are another area where a GDI developer may find minor changes in GDI+. GDI provides several functions for creating elliptical,
round, and polygonal regions. As a GDI programmer, you are probably familiar with the CreateRectRgn, CreateEllipticRgn,
CreateRoundRectRgn, CreatePolygonRgn, and CreatePolyPolygonRgn functions.

In GDI+, the Region class represents a region. TheRegion class constructor takes an argument of typeGraphicsPath, which can have a
Holygon. a circle, or an ellipse to create a polygonal, round, or elliptical region, respectively. We will discuss regions in more depth in

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

1.4 GDI+ Namespaces and Classes in .NET

In the .NET Framework library, six namespaces define managed GDI+: System.Drawing, System.Drawing.Design
System.Drawing.Drawing2D, System.Drawing.Imaging, System.Drawing.Printing, and System.Drawing.Text. ‘ shows these

namespaces. To use any of the classes defined in these namespaces, you must include them in your application.

Figure 1.3. The GDI+ namespaces in the .NET Framework library

System.Drawing

—» System.Drawing.Design

——» System.Drawing.Design2D

—» System.Drawing. Imaging

—» System.Drawing.Printing

——» System.Drawing.Text

Note

The .NET Framework class library is also referred as the .NET runtime class library or base class library (BCL).

This section will provide an overview of GDI+ namespaces, their contents, and why and when to use them. These classes and their members
will be discussed in more detail in subsequent chapters, according to how they're categorized.

Note

If you are already aware of the .NET Framework library's GDI+ objects and class hierarchy, you may want to skip the rest of
this chapter.

1.4.1 The System.Drawing Namespace

The System.Drawing namespace defines basic GDI+ functionality. This namespace contains theGraphics class, which provides methods for
filling and drawing graphics objects. It also provides classes that encapsulate GDI+ primitives such as rectangles, points, brushes, and pens.
Brush and its derived classes are used to fill interiors of graphics objects such as ellipses, rectangles, and polygons with the specified color
and pattern. The Pen class is used to draw lines and curves with a specified color.

briefly describes the classes of the System.Drawing namespace. We will not discuss these classes in depth here; they are
discussed in more detail in later chapters.

The System.Drawing namespace also contains some structures that we will be using throughout this book. These structures are
CharacterRange, Color, Point, PointF, Rectangle, RectangleF, Size, and SizeF.

In addition, this namespace defines some delegates and enumerations, which we will discuss in later chapters.

Table 1.1. System.Drawing classes

Class Description
Bitmap Encapsulates a bitmap, which is an image (with its properties) stored in pixel format.
Brush An abstract base class that cannot be instantiated directly. The Brush class provides functionality used by its

derived brush classes and represents a brush graphics object. A brush is used to fill the interior of a graphical
shape with a specified color.

Brushes Represents brushes with all the standard colors. This class has a static member for each standard color. For
example, Brushes.Blue represents a blue brush.

ColorConverter Provides methods and properties to convert colors from one type to another.
ColorTranslator Provides various methods to translate colors from one type to another.
Font Provides members to define the format of font text, name, face, size, and styles. The Font class also provides

methods to create a Font object from a window handle to a device context or window handle.

FontConverter Provides members that convert fonts from one type to another.
FontFamily Defines a group of typefaces having a similar basic design and certain variations in styles.
Graphics A key class that encapsulates drawing surfaces. Among many other things, the Graphics class provides

members to draw and fill graphical objects.

Icon Represents a Windows icon. Thelcon class provides members to define the size, width, and height of an icon.

IconConverter Provides members to convert anlcon object from one type to another.

Class

Description

Image

Provides members to define the size, height, width, and format of an image. The Image class also provides
methods to create Image objects from a file, a window handle, or a stream; and to save, rotate, and flip images. It
is an abstract base class, and its functionality is used through its derived classes: Bitmap, Icon, and Metafile.

ImageAnimator

Provides methods to start and stop animation, and to update frames for an image that has time-based frames.

ImageConverter Provides members to convertimage objects from one type to another.

ImageFormatConverter Defines members that can be used to convert images from one format to another.

Pen Defines a pen with a specified color and width. A pen is used to draw graphical objects such as a line, a
rectangle, a curve, or an ellipse.

Pens Provides static members for all the standard colors. For examplePens.Red represents a red pen.

PointConverter

Defines members that can be used to convertPoint objects from one type to another.

RectangleConverter

Defines members that can be used to convertRectangle objects from one type to another.

Region

Represents a region in GDI+, which describes the interior of a graphics shape.

SizeConverter

Defines members that can be used to convert size from one type to another.

SolidBrush

Inherited from the Brush class. This class defines a solid brush of a single color.

StringFormat

Provides members to define text format, including alignment, trimming and line spacing, display manipulations,
and OpenType features.

SystemBrushes

Defines static properties. Each property is a SolidBrush object with a Windows display element such asHighlight,
HighlightText, or ActiveBorder.

SystemColors

Defines static properties of aColor structure.

Systemlcons

Defines static properties for Windows systemwide icons.

SystemPens Defines static properties. Each property is a Pen object with the color of a Windows display element and a width
of 1.
TextureBrush Inherited from the Brush class. This class defines a brush that has an image as its texture.

ToolboxBitmapAttribute

Defines the images associated with a specified component.

1.4.2 The System.Drawing.Design Namespace

As its name suggests, the System.Drawing.Design namespace provides additional functionality to develop design-time controls such as

custom toolbox items, graphics editors, and type converters. The classes of the System.Drawing.Design namespace are described briefly in

lrae 1.4

Besides the classes discussed in , the System.Drawing.Design namespace also defines a few interfaces, delegates, and
enumerations. ‘ lists the interfaces defined in this namespace.

1.4.3 The system.Drawing.Drawing2D Namespace

The System.Drawing.Drawing2D namespace defines functionality to develop advanced two-dimensional and vector graphics applications.
This namespace provides classes for graphics containers, blending, advanced brushes, matrices, and transformation. [Table 1.j briefly
describes these classes.

Besides the classes discussed in , the System.Drawing.Drawing2D namespace provides dozens of enumerations. We will discuss
these enumerations when we use them in examples in later chapters.

1.4.4 The system.Drawing.Imaging Namespace

Basic imaging functionality is defined in the System.Drawing namespace. The System.Drawing.Imaging namespace provides functionality for
advanced imaging. Before an application uses classes from this namespace, it must reference the System.Drawing.Imaging namespace.

able 1.9 briefly describes the classes of the System.Drawing.Imaging namespace. These classes and their use are discussed in more detail

1.4.5 The System.Drawing.Printing Namespace

The System.Drawing.Printing namespace defines printing-related classes and types in GDI+. Before an application uses classes from this
namespace, it must include the namespace.

briefly discusses the classes provided by theSystem.Drawing.Printing namespace. These classes and their use are discussed in
_

more detail in

1.4.6 The System.Drawing.Text Namespace

The System.Drawing.Text namespace contains only a few classes related to advanced GDI+ typography functionality. Before an application
ses classes from this namespace, it must include the namespace. describes these classes; they will be discussed in more detail in
Chapter

Table 1.2. System.Drawing.Design classes

Class

Description

BitmapEditor

User interface (Ul) for selecting bitmaps using aProperties window.

CategoryNameCollection

Collection of categories.

FontEditor

Ul for selecting and configuring fonts.

ImageEditor

Ul for selecting images in aProperties window.

PaintValueEventArgs

Provides data for thePaintValue event.

PropertyValueUlltem

Provides information about the property value Ul for a property.

ToolboxComponentsCreatedEventArgs Provides data for the ComponentsCreated event, which occurs when components are added to

the toolbox.

ToolboxComponentsCreatingEventArgs Provides data for the ComponentsCreating event, which occurs when components are added to

the toolbox.

Toolboxltem

Provides a base implementation of a toolbox item.

ToolboxltemCollection

Collection of toolbox items.

UITypeEditor

Provides a base class that can be used to design value editors.

Table 1.3. System.Drawing.Design interfaces

Interface

Description

IPropertyValueUIService

Manages the property list of the Properties window.

IToolboxService

Provides access to the toolbox.

IToolboxUser

Tests the toolbox for toolbox item support capabilities and selects the current tool.

Table 1.4. System.Drawing.Drawing2D classes

Class

Description

AdjustableArrowCap

Represents an adjustable arrow-shaped line cap. Provides members to define the properties to fill, and to set the
height and width of an arrow cap.

Blend Gradient blends are used to provide smoothness and shading to the interiors of shapes. A blend pattern contains
factor and pattern arrays, which define the position and percentage of color of the starting and ending colors. The
Blend class defines a blend pattern, which usesLinearGradientBrush to fill the shapes. TheFactors and Positions
properties represent the array of blend factors and array of positions for the gradient, respectively.

ColorBlend Defines color blending in multicolor gradients. The Color and Position properties represent the color array and

position array, respectively.

CustomLineCap

Encapsulates a custom, user-defined line cap.

GraphicsContainer

Represents the data of a graphics container. A graphics container is created by Graphics.BeginContainer followed
by a call to Graphics.EndContainer.

GraphicsPath

In GDI+, a path is a series of connected lines and curves. This class provides properties to define the path's fill
mode and other properties. This class also defines methods to add graphics shapes to a path. For instance, the
AddArc and AddCurve methods add an arc and a curve, respectively, to the pathWrap, Transform, Reverse, and
Reset are some of the associated methods.

GraphicsPathlterator

A path can contain subpaths. This class provides the ability to find the number of subpaths and iterate through
them. Count and SubpathCount return the number of points and the number of subpaths in a path, respectively.

GraphicsState

Represents the state of aGraphics object.

HatchBrush

Hatch brushes are brushes with a hatch style, a foreground color, and a background color. This class represents a
hatch brush in GDI+.

LinearGradientBrush

Represents a brush with a linear gradient.

Matrix Encapsulates a 3x3 matrix that represents a geometric transformation. This class defines methods for inverting,
multiplying, resetting, rotating, scaling, shearing, and translating matrices.

PathData Contains the data in the form of points and types that makes up a path. The Points property of the class represents
an array of points, and the Types property represents the types of the points in a path.

PathGradientBrush Represents a brush with a graphics path. PathGradientBrush contains methods and properties for blending,
wrapping, scaling, and transformation. This class encapsulates a Brush object that fills the interior of aGraphicsPath
object with a gradient.

RegionData Represents the data stored by a Region object. The Data property of this class represents the data in the form of an

array of bytes.

Table 1.5. System.Drawing.Imaging classes

Class Description
BitmapData Often we don't want to load and refresh all data of a bitmap because rendering each pixel is not only a slow
process, but also consumes system resources. With the help of the BitmapData class and itsLockBits and
UnlockBits methods, we can lock the required data of a bitmap in memory and work with that instead of
working with all the data.
ColorMap Defines a map for converting colors.ColorMap is used by thelmageAttributes class.
ColorMatrix Defines a 5x5 matrix that contains coordinates for the ARGB space. ColorMatrix is used by thelmageAttributes

class.

ColorPalette

Defines an array of colors that make up a color paletteColorPalette is used by thelmageAttributes class.

Encoder Represents an encoder, which represents a globally unique identifier (GUID) that identifies the category of an
image encoder parameter. Encoder is used by theEncoderParameter class.

EncoderParameter An encoder parameter, which sets values for a particular category of an image. This class is used in the Save
method with the help of EncoderParameters.

EncoderParameters An array of EncoderParameter objects.

FrameDimension

Provides properties to get the frame dimensions of an image.

ImageAttributes

ontains jnformation about how image colors are manipulated during rendering (for more information, see

Chapter 7).

ImageCodeclinfo

Retrieves information about the installed image codecs.

ImageFormat

Specifies the format of an image.

Metafile

Defines a graphic metafile, which contains graphics operations in the form of records that can be recorded
(constructed) and played back (displayed).

MetafileHeader

Stores information about a metafile.

MetaHeader

Contains information about a Windows-format (WMF) metafile.

Propertyltem

Encapsulates a metadata property to be included in an image file.

WmfPlaceableFileHeader

Defines a placeable metafile.

Table 1.6. System.Drawing.Printing classes

Class

Description

Margins

Specifies the margins of a printed page. The Bottom, Left, Right, and Top properties are used
to get and set the bottom, left, right, and top margins, respectively, of a page in hundredths of
an inch.

MarginsConverter

Provides methods to convert margins, including CanConvertFrom, CanConvertTo,
ConvertFrom, and ConvertTo.

PageSettings Specifies settings of a page, including properties such as Bounds, Color, Landscape, Margins,
PaperSize, PaperSource, PrinterResolution, and PrinterSettings.

PaperSize Specifies the paper size. Its properties include Height, Width, PaperName, and Kind. The Kind
property is the type of paper, represented by the PaperKind enumeration, which has
members that represent A3, envelopes, sheets, ledgers, and so on.

PaperSource Specifies the paper tray from which the printer gets paper, with properties Kind and

SourceName. SourceName is a type of PaperSource enumeration, which defines members
based on the Kind property.

PreviewPagelnfo

Provides print preview information for a single page. The Image property returns the image of
the printed page, and the PhysicalSize property returns the size of the printed page in 1/1000
inch.

PreviewPrintController

Displays a document on a screen as a series of images for each page. The UseAntiAlias
property gets and sets the anti-aliasing when displaying the print preview.

PrintController

Controls how a document is printed. The class provides four methods: OnStartPage,
OnStartPrint, OnEndPage, and OnEndPrint.

PrintDocument

Starts the printing process. Creates an instance of this class, sets the printing properties that
describe how to print, and calls the Print method to start the process.

PrinterResolution

Provides properties to return a printer resolution. The Kind, X, and Y properties return the
printer resolution, horizontal resolution in dots per inch (dpi), and vertical printer resolution in
dpi, respectively.

PrinterSettings Provides methods and properties for setting how a document is printed, including the printer
that prints it. Some of the common properties are MinimumPage, MaximumPage, Copies,
MaximumCopies, PrinterName, and so on.

PrinterSettings.PaperSizeCollection Collection of PaperSize objects.

PrinterSettings.PaperSourceCollection Collection of PaperSource objects.

PrinterSettings.PrinterResolutionCollection Collection of PrinterResolution objects.

PrinterUnitConvert Specifies a series of conversion methods that are useful when interoperating with the Win32
printing application program interface (API).

PrintEventArgs Provides data for theBeginPrint and EndPrint events.

PrintingPermission Controls access to printers.

PrintingPermissionAttribute Allows declarative printing permission checks.

PrintPageEventArgs Provides data for thePrintPage event.

Class Description

QueryPageSettingsEventArgs Provides data for theQueryPageSettings event.

StandardPrintController Specifies a print controller that sends information to a printer.

Table 1.7. System.Drawing.Text classes

Class Description

FontCollection Abstract base class for installed and private font collections. It provides a method to get a list of the font families
contained in the collection. Two derived classes from the FontCollection class are InstalledFontCollection and
PrivateFontCollection.

InstalledFontCollection Represents the fonts installed on the system.

PrivateFontCollection Represents a collection of font families built from font files that are provided by the client application.

Team LiB |

Summary

GDI+ is an improved version of Microsoft's graphics device interface (GDI) API. In this chapter we learned how GDI+ is designed for use in
both managed and unmanaged code. System.Drawing and its helper namespaces defined in the .NET Framework library provide a managed
class wrapper to write managed GDI+ applications. We also learned the basics and definition of GDI+ and what major improvements are
offered by GDI+ in comparison to GDI. At the end of this chapter, we took a quick look at the System.Drawing namespace and its

subnamespaces, and classes defined in these namespaces.

Now that you've learned the basics of GDI+, the next step is to write a fully functional graphics application. In you will learn how to
write your first graphics application using GDI+ in a step-by-step tutorial format.

Team LiB |

Team LiB |

Chapter 2. Your First GDI+ Application

In this chapter we move to the more practical aspects of writing graphics applications using GDI+ in the .NET Framework. This chapter is the
foundation chapter and discusses vital concepts, including the life cycle of a graphics application. After reading this chapter, you should
understand the basics of the GDI+ coordinate system, basic graphics structures used by GDI+, drawing surfaces, and how to write a graphics
application using GDI+.

To write a graphics application, a good understanding of drawing surfaces and coordinate systems is necessary. We will begin by discussing
these concepts and how they are represented in GDI+. Then you'll learn step-by-step how to write a graphics application in the .NET
Framework using GDI+. We will cover the following topics:

How to add a reference to the GDI+ library
How to get a drawing surface in the program
How to create pens and brushes

How to use pens and brushes to draw graphics objects

At the end of this chapter we will discuss some basic graphics structures and their members. These structures are used in examples
throughout this book and include the following:

Team LiB |

Color
Point and PointF
Rectangle and RectangleF

Size and SizeF

Team LiB |

2.1 Drawing Surfaces

Every drawing application (regardless of the operating system), consists of three common components: a canvas, a brush or pen, and a
process.

1. The canvas is the space on which objects will be drawn. For example, in a Windows application, a Windows Form is a canvas.
2. Abrush or apen represents the texture, color, and width of the objects to be drawn on the canvas.
3. The process describes how objects are drawn on the canvas.

To draw graphics objects you need to have a pen or a brush, which defines the texture, color, and width of the drawing. For example, if you
draw a line or a rectangle, you need to create a pen with a color and width.

The process component of the drawing application includes making a call to draw the line or rectangle on the form.

Each drawing surface has four common properties: width, height, resolution, and color depth.

® The width and height properties of a surface determine the size of the surface, and they are specified by the number of pixels
horizontally and vertically, respectively.

The resolution property of a surface is a measurement of the output quality of graphics objects or images in dots per inch (dpi).
For example, a resolution of 72 dpi means that 1 inch of the surface holds 72 horizontal and 72 vertical pixels. For monitors and
LCDs, the resolution is frequently specified in terms of the total number of pixels horizontally and vertically rather than a pixel
density. Thus a monitor resolution of 1280x1024 means that the screen of the monitor can hold 1,280 horizontal pixels and 1,024
vertical pixels.

The color depth of a surface is the number of colors used to represent each pixel.

Definition: Pixel

A pixel is the smallest element that participates in the drawing process to display graphics objects or images on the screen.
The pixel density is often represented by a value in dots per inch (dpi).

The quality of a pixel is directly proportional to the color depth. The Color structure represents a color in GDI+. It has four components: alpha,
red, green, and blue. The RGB (red-green-blue) components of a color represent the number of possible colors (se. Each

component in RGB has 256 (28) color combinations. Hence all three components of GDI+ color represent 256x256x256 possible colors. The
alpha component determines the transparency of the color, which affects how the color mixes with other colors.

Figure 2.1. Color components in GDI+

8 bits 8 bits 8 bits 8 bits
> >t

Alpha Red Green Blue

To see the proper colors defined in the GDI+ color structure, a drawing surface must support at least a 24-bit color system (for the RGB
components of a color structure), which means that each pixel of the surface must be able to hold 24 bits (8 bits each for the R, G, and B
components, as noted already). Surfaces with less than 24 hits per pixel may not display graphics objects and images exactly as defined in a
drawing application. We will discuss colors in more detail in

Note

The color depth of a surface is different from the color depth of a particular display device, such as a monitor or a printer.
Most monitors can support over a million colors, and some printers may support only black and white.

GDI+ provides three types of drawing surfaces: forms, printers, and bitmaps.

2.1.1 Forms as a Surface

When you write a Windows application that draws something on a form, the form acts as a drawing surface and supports all the properties
required by a drawing surface.

2.1.2 Printers as a Surface

When you print from an application, the printer acts as a drawing surface. Y a printer's resolution and color depth, as well as the
height and width of the paper. We will discuss printer-related functionality in Chapter 11

2.1.3 Bitmaps as a Surface

When you create images in memory and save them as a bitmap, the bitmap functions as a drawing surface. You can set the image width,
height, resolution, and color depth properties. Bitmap surfaces are commonly used for writing graphics Web applications. Drawing works a
little differently in Web applications. For example, if you want to draw a line and a rectangle in a Web page using GDI+, you need to create an
image, use this image as a surface for the line and rectangle objects, set i irface-related properties, and then send the image to the
browser. We will discuss Web graphics applications in more detail in .

Team LiB |

Team LiB |

2.2 The Coordinate System

Understanding the coordinate system is another important part of graphics programming. The coordinate system represents the positions of
graphic objects on a display device such as a monitor or a printer.

2.2.1 The Cartesian Coordinate System

The Cartesian coordinate system (shown in divides a two-dimensional plane into four regions, also called quadrants, and two
axes: x andy. The x-axis is represented by a horizontal line and they-axis by a vertical line. An ordered pair ofx andy positions defines a point
in a plane. The origin of the plane is a point with x = 0 andy = 0 values, and the quadrants divide the plane relative to the origin.

Figure 2.2. The Cartesian coordinate system

! 27 |

—
o
.

L=
=

o

o
o
R

X g i i e x
-2 =1 1 2
=1
i ol I
v
Y

To find out which point falls in which quadrant, we compare the point's x- and y-positions relative to the origin:

Quadrant I: x>0 andy >0

Quadrant Il: x <0 andy >0

Quadrant Ill: x<0andy <0

Quadrant IV:x >0 andy <0

A point with positive x and y values will fall in quadrant I. A point with y and —x values will fall in quadrant 1l. A point with ¥ and -y values will fall

in quadrant Ill, and a point with +x and -y values will fall in quadrant IV. For example, a point at coordinates (2, —3) will fall in quadrant IV, and
a point at coordinates (-3, 2) will fall in quadrant I1.

2.2.2 The Default GDI+ Coordinate System

Unlike the Cartesian coordinate system, the defay + coordinate system starts with the origin in the upper left corner. The defaulk-axis
points to the right, and the y-axis points down. Asfigure 2.3 shows, the upper left corner starts with pointsx = 0 andy = 0. Points to the left of
x = 0 are negative values in thex-direction, and points abovey = 0 are negative values in they-direction.

Figure 2.3. The GDI+ coordinate system

(x=0, y=0)

L 2
™

L
Y

Because the default GDI+ coordinate system starts with (x = 0, y = 0) in the upper left corner of the screen, by default you can see only the
points that have positive x and y values. Objects with either x or —y values will not be visible on the screen. However, you can apply
transformations to move objects with negative values into the visible area.

GDI+ provides three types of coordinate systems: world coordinates, page coordinates, and device coordinates.

1.
The coordinate system used in an application is called world coordinates. Suppose that your application draws a line from point

A (0, 0) to point B (120, 80), as shown in fFigure 2.4. If you don't apply any transformation, the line will be displayed at the right
location. Now suppose you want to draw a line from point A (-40, —-50) to point B (-10, —20). The line drawn using these two points
will not be displayed on the screen because the GDI+ coordinate system starts at point (0, 0). However, you can transform the
coordinates such that (40, —50) is the starting point at the top left corner of the surface.

Figure 2.4. Drawing a line from point (0, 0) to point (120, 80)

™ GDI+ Coordinate System

100 200

100

200

2. The new coordinate system is called page coordinates. The process of converting world coordinates to page coordinates is
called the world transformation.

3. You can also control the actual size of graphics objects. For example, if you want to draw a line in inches instead of pixels, you
can simply draw a line from point A (1, 1) to point B (1, 2), thereby creating a line that is 1 inch long. The new coordinates are
called device coordinates. The process of converting page coordinates to device coordinates is called thepage transformation.

We will discuss coordinate systems and transformation in more detail i .
Team LiB | m MEXT k

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

2.3 Tutorial: Your First GDI+ Application

In this section you'll learn how to write your first GDI+ application, step-by-step. You will create a Windows application and draw a few simple
objects, such as lines, rectangles, and ellipses, on a Windows Form.

Here are the steps we will cover:
1. Creating a Windows application
2. Adding references to the GDI+ library
3. Obtaining the graphics surface
4. Setting the graphics surface properties (optional)
5. Drawing or filling graphics shapes
6. Releasing objects

7. Building and running the application

2.3.1 Creating a Windows Application

The first step of this tutorial is to create a Windows application using Visual Studio .NET.

Open Visual Studio .NET, select File | New | Project, and then chooseVisual C# Projects under Project Types and Windows
Application under Templates, as shown infigure 2.9.

Figure 2.5. Creating a Windows application

x

Eroject Types:

) Vrsual Basic Projects

-y Visusl C# Projects

() Wisual C++ Projects

1 Setup and Deployment Projects
[] Other Projects

(2] vesual Studo Sohutions

ASP.NET Web ASP.NET Web Web Contrel
Appheation SErvice Library ;I

|u-'¢}m for creating an appication with & Windows user inkerface

heame: | FirstGOl+App

Location: [0:1BockstGDI+ ReadyForE Btor|ChOZICOde st GOl 4 ¥ Browse... |

" fdd to Sohation & Close Sohtion

Project vell be created at D:{Books|GDI+|ReadyForEdtor| ChO2|Code Fr st GDI+App|Fr st GDI+ApD.
srore | oK cacel | hep |

2. Enter the application name, "FirstGDI+App", and click OK.

Note

Clicking the OK button creates a Windows application with a form and opens the Form Designer, in which you can build
Windows applications.

2.3.2 Adding a Reference to GDI+

As mentioned in , GDI+ functionality resides in the System.Drawing.dll namespace and is defined in theSystem.Drawing namespace.
Hence the System.Drawing namespace must be included in the application. Visual Studio .NET automatically adds a reference to this
namespace, which you can see in the beginning of the class. If the namespace is not defined there, you must add a reference manually. To
add a reference to the GDI+ library, you use the Add Reference dialog.

1. Open the Add Reference dialog by selectingProject | Add Reference.

2. Select the System.Drawing.dll assembly from the libraries listed under the.NET tab.

3.
Click the Select button to add the library to theSelected Components list, as shown in.

Figure 2.6. Adding a reference to System.Drawing.dll

X

.1 | 2

| B LT [T

 Lomponent ame |verson | van 12

System. Data. il 1.0.3300.0 C:IWINNT | Micrasoft NETVFra... SEa
System.Data.OracleChent.dl 1.0.3300.0 C:\Program Fles\Microsoft N...
System. Dedgn.dl 1.0.3300.0 W INNT | Microsoft NET\Fra. ..
System.DirectoryServices.dl 1,0.3300.0 C:\WINNT\Microsoft .NET\Fra. .
System.dl 1.0.3300.0 CUWINNT Microsoft NET\Fra. ..

1.0.3300.0

VW INNT T orsaft . NE 7
C:\WINNT NETiFra...

System. Management 1.0.3300.0 CoAWINNT\Microsoft NETVFra. .. J

System. Messagng. di 1.0.3300.0 C:\WINNTMicrosoft NET\Fra...

“Shrsben, Fusnine. Feroling 1.0.3300.0 C:\WINNT Microsoft NET\Fra. ..

Gipatmen Rndine. Sarisliealinn. . . 10330000 AW IRMT iMrrnendt WNFTIFra. . ll
Selacted Coenponents:
[Companent Name [Type | Source [Remoye |
System, Draving.di [% HET CAWINNTMcrosolt NETiFram. ..

o cocel | Hep

4. Click the OK button to add the System.Drawing nhamespace reference to your project.

5. Go to the Solution Explorer window and expand the References node. The System.Drawing namespace is listed there

Figure 2.7. The System.Drawing namespace in a project

Solution Explorer - FirstGDI +#8 X
B
o5 Solution ‘FirstGDI+App' (1 project)

= (3 FirstGDI+App
=) References
#J System
«) System.Data

J2) System, Windolad.Forms

- +D System. XML
) App.ico
#] AssemblyInfo.cs

ES] Forml.cs

miﬂhﬁ.u Class ... |$G:-nl:e.-. |[2] 1ndex |

Note

Visual Studio .NET version 1.0 (or later) automatically adds a reference to the System.Drawing.dll library. In that case,

you may not need to add a reference to the library.

After adding a reference to System.Drawing.dll, you must importSystem.Drawing and other related namespaces, depending on the
classes your application will use. For now, we will import the System.Drawing and System.Drawing.Drawing2D namespaces. We

add the following two lines to the top of our class:

using System.Drawing;
using System.Drawing.Drawing2D;

You can also qualify a namespace reference by directly adding it as a prefix of the class. For example, if you don't want to use the using

statements defined here, you can define a class as follows:

System.Drawing.Graphics g = e.Graphics;

Note

If you create a Windows application using VS.NET, only the line using System.Drawing.Drawing2D needs to be written
because using System.Drawing will already be there.

2.3.3 Getting a craphics Object in an Application

After adding a GDI+ library reference to the project, the next step is to decide on a drawing surface. In a Windows application, a form is a
drawing surface. Every form has a Graphics object associated with it, which provides the drawing functionality.

In the .NET Framework, the Graphics class represents a GDI+Graphics object, which defines methods and properties to draw and fill graphics
objects. Whenever an application needs to draw anything, it must go through the Graphics object.

Caution

There is no way to create a Graphics object using thenew operator. For example, if you write the following code, you will get
a compiler error:

Graphics g = new Graphics ()

There are several ways to obtain a Graphics object associated with a form. Three of them are described in the following sections.

2.3.3.1 Using the Paint Event of a Form

You can get a Graphics object corresponding to a form using thePaintEventArgs property of the form's paint event. For example, the following
code gets a Graphics object from PaintEventArgs:

private void form1_Paint(object sender, PaintEventArgs e)

{
Graphics g = e.Graphics;

}

You can add the form's paint event handler using the Properties window. As shows, we add Form1_Paint (the default name) as the
paint event handler.

Figure 2.8. Adding the Form_Paint event handler

z

Forml System.Windows.Forms. Form ﬂ
AR LA l=

Move :I
I o1 Pont |
ParentChanged

-

QueryAccessibiityHelp
QueryContinuelrag
Resize

Right ToleftChanged
SizeChanged
StyleChanged
SystemColorsChanged
TablndexChanged
TabStopChanged
TextChanged

Paint
Ocours when a control needs repainting.

Tip

Double-clicking in the paint event drop-down menu in the Properties window also adds the event handler.

2.3.3.2 Overriding the onPaint Method

Another way to get a Graphics object associated with a form is to override theOnPaint method of the form, which usesPaintEventArgs in a
manner similar to the Form1_Paint event. The following code snippet overrides the OnPaint method of a form:

protected override void OnPaint(PaintEventArgs e)

{
Graphics g = e.Graphics;
}

2.3.3.3 Using Other Methods

Sometimes you don't want to use the OnPaint method. For example, you might want to draw something on a button or a menu click event
handler. The Form class provides the CreateGraphics method, which returns aGraphics object. The following code snippet creates aGraphics
object using the CreateGraphics method and calls a method of theGraphics class:

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
g.Dispose();

As this snippet shows, we call the Clear method of the Graphics class, which sets the background color of the surface as the background color
of the form.

Caution

When you create a Graphics object using the CreateGraphics method, you must dispose of that object explicitly by calling the
Dispose method to release the resources associated with it.

You can also use the Fromlmage, FromHwnd, and FromHdc static methods of the Graphics class to create Graphics objects from images
handles, and window handles to device contexts, respectively. We will discuss these methods in more detail in Chapter 3 (
B.2.3.3)

The following code creates a Bitmap object and calls the staticFromlmage method, using aBitmap object as an input parameter, which returns
a Graphics object.

Bitmap bmp =
new Bitmap(600,400,PixelFormat.Format32bppArgb);
Graphics g = Graphics.Fromlmage(bmp);

The following code creates a Graphics object from a window handle. In this example this refers to a Windows Form. You can even pass
Form1.Handle if your form isForm1.

Graphics g = Graphics.FromHwnd(this.Handle);

2.3.4 Creating Pens and Brushes

Once you have a Graphics object, the next step is to decide what you're going to draw on the surface. You may need one or more of the three
objects: pen, brush, or image. In this chapter we will concentrate on pens and brushes only. Images are discussed in andf.

In GDI+ the Pen and Brush classes represent a pen and a brush, respectively. The abstracBrush class functionality is accessed through its
derived classes: SolidBrush and HatchBrush, among others. Pens are used when you need to draw lines, rectangles, and curve boundaries.

Brushes are used when you need to fill graphics objects. [Chapter 4 discusses pens and brushes in detail.

The Pen class constructor takes as arguments the color and width of the pen. The following code creates a red pen with a width of 3 pixels and
a black pen with a width of 1 pixel. The Pens class provides static members, each of which represents a pen with a particular color.

Pen redPen = new Pen(Color.Red, 3);
Pen blackPen = Pens.Black;

The SolidBrush class represents a solid brush in GDI+. This class's constructor takes a color as an argument. The following code creates a
green solid brush.

SolidBrush greenBrush = new SolidBrush(Color.Green);

2.3.5 Drawing Graphics Shapes

Once you have the surface, pens, and/or brushes, you can draw lines, shapes, curves, or images. The Graphics class provides draw and fill
methods to draw and fill graphics shapes, curves, or images. For example, the FillRectangle method draws a rectangle with a filled color, and
DrawRectangle draws the boundary of a rectangle with the specified pen. Draw methods take a pen as an argument, and fill methods take a
brush.

We override the OnPaint method and write the code in on this method. As shows, we first set the smoothing mode of the

Graphics object by setting itsSmoothingMode property. The SmoothingMode enumeration is defined in theSystem.Drawing.Advanced2D

namespace and | ed to set the quality of a graphics object. In our code, we set the smoothing mode to anti-aliasing. We will discuss this in
more detail in and

After that we create a rectangle, two pens, and a solid brush. In the next code snippet, we call the DrawRectangle, FillEllipse, and DrawLine
methods. The DrawRectangle method draws the boundaries of a rectangle, theFillEllipse method fills an ellipse with the specified brush, and
the DrawLine method draws a line using the specified pen will discuss the fill and draw methods in more detail.

Listing 2.1 Drawing lines, rectangles, and ellipses

protected override void OnPaint(PaintEventArgs e)
{
/I Obtain the Graphics object
Graphics g = e.Graphics;
/I Set the smoothing mode of the surface
g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create a rectangle with height 100 and width 100
Rectangle rect = new Rectangle(20, 20, 100, 100);
/I Create two Pen objects, one red and one black
Pen redPen = new Pen(Color.Red, 3);
Pen blackPen = Pens.Black;

/I Create a SolidBrush object

SolidBrush greenBrush = new SolidBrush(Color.Green);
/I Draw shapes and lines
g.DrawRectangle(redPen, rect);
g.FillEllipse(greenBrush, rect);
g.DrawLine(blackPen, 0, 250, this.Width, 250);
g.FillEllipse(Brushes.Blue, 70, 220, 30, 30);
g.FillEllipse(Brushes.SkyBlue, 100, 210, 40, 40);
g.FillEllipse(Brushes.Green, 140, 200, 50, 50);
g.FillEllipse(Brushes.Yellow, 190, 190, 60, 60);
g.FillEllipse(Brushes.Violet, 250, 180, 70, 70);
g.FillEllipse(Brushes.Red, 320, 170, 80, 80);

2.3.6 Releasing Objects

When you are done using objects, you must release them. In the .NET Framework library, most objects provide a Dispose method, which can
be used to dispose of an object. The Dispose method makes sure that all resources allocated for an object are released.

The following code snippet creates Pen and SolidBrush objects asredPen and greenBrush, respectively:

Pen redPen = new Pen(Color.Red, 3);
SolidBrush greenBrush = new SolidBrush(Color.Green);

When you are done with these objects, call the Dispose method to release the resources allocated with them. For example, the following code
snippet disposes of the redPen and greenBrush objects:

redPen.Dispose();
greenBrush.Dispose();

Now we will Dispose of the previously created objects using theDispose method to the objects we created in, as shown in.

(Boldface lines are the new lines added to the listing.)

Listing 2.2 Using Dispose calls

protected override void OnPaint(PaintEventArgs e)
{
/I Obtain the Graphics object
Graphics g = e.Graphics;
/I Set the composite quality and smoothing mode
/I of the surface
g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create a rectangle from point (20, 20) to (100, 100)
Rectangle rect = new Rectangle(20, 20, 100, 100);
/I Create two Pen objects, one red and one black
Pen redPen = new Pen(Color.Red, 3);
Pen blackPen = Pens.Black;
/I Create a SolidBrush object

SolidBrush greenBrush = new SolidBrush(Color.Green);
/I Draw shapes and lines
g.DrawRectangle(redPen, rect);
g.FillEllipse(greenBrush, rect);
g.DrawLine(blackPen, 0, 250, this.Width, 250);
g.FillEllipse(Brushes.Blue, 70, 220, 30, 30);
g.FillEllipse(Brushes.SkyBlue, 100, 210, 40, 40);
g.FillEllipse(Brushes.Green, 140, 200, 50, 50);
g.FillEllipse(Brushes.Yellow, 190, 190, 60, 60);
g.FillEllipse(Brushes.Violet, 250, 180, 70, 70);
g.FillEllipse(Brushes.Red, 320, 170, 80, 80);

/I Dispose of objects
greenBrush.Dispose();

/I blackPen.Dispose();

redPen.Dispose();

g.Dispose();

Disposing of Objects

In the .NET Framework, the garbage collector is responsible for managing resources associated with an object. When you
dispose of an object, the garbage collector collects the object right away and frees all the resources associated with that object.
If you don't dispose of an object, the garbage collector will keep track of the objects, and if an object is not used for a certain
amount of time, it will dispose of it automatically.

It is always best programming practice to dispose of any objects that you create explicitly (using th@ew operator).

2.3.7 Building and Running the Application
The final step in creating an application is to build and run it. To do this, in Visual Studio .NET you can simply select Debug | Start (F5) or
Debug | Start Without Debugging (Ctrl+F5).

The output of the application looks like . The application draws a line, a rectangle, and some ellipses with different colors.

Figure 2.9. Your first GDI+ application

My First GDI+ Application ;]E.IEI

Congratulations! You have finished the first step toward becoming a GDI+ expert. Now you can write simple graphics applications in Visual
Studio .NET.

Team LiB |

2.4 Some Basic GDI+ Objects

In previous sections we discussed the steps required to write a simple graphics application using Visual Studio .NET. Before we move on to
the next chapter, let's discuss some basic GDI+ objects, such as the color-, point-, and rectangle-related structures provided by the .NET
Framework library. Understanding these structures is very important because they are used throughout the book.

2.4.1 The color Structure

You may have noticed that we used the Color structure in our previous example. TheColor structure represents a GDI+ ARGB

(alpha-red-green-blue) color. This class contains a static property for almost every possible color. For example, Color.Black and Color.Red

represent black and red, respectively. Besides these static properties, this structure has the additional properties defined in .

IsknownColor, IsNamedColor and IsSystemColor represent members of the KnownColor enumeration, which again defines almost every color

as a member.

describes the methods of the Color structure.

Table 2.1. color properties

Property

Description

Red, Blue, Green, Aqua, Azure, and

A specified color static property for almost every color.

so on

A Returns the alpha component value in a Color structure. We discuss alpha in color-related sections
in later chapters.

R Returns the red component value in aColor structure.

G Returns the green component value in aColor structure.

B Returns the blue component value in aColor structure.

IsEmpty Indicates whether aColor structure is uninitialized.

IsknownColor

Indicates whether a color is predefined.

IsNamedColor

Indicates whether a color is predefined.

IsSystemColor

Indicates whether a color is a system color.

Name

Returns the name of the color.

Table 2.2. color methods

Method Description
FromArgh Creates a Color structure from the four 8-bit ARGB component (alpha-red-green-blue) values.
FromKnownColor Creates a Color structure from the specified predefined color.
FromName Creates a Color structure from the specified name of a predefined color.
GetBrightness Returns the hue-saturation-brightness (HSB) brightness value of thisColor structure.
GetHue Returns the HSB hue value, in degrees, of thisColor structure.
GetSaturation Returns the HSB saturation value of thisColor structure.
ToArgb Returns the 32-bit ARGB value of thisColor structure.
ToKnownColor Returns the KnownColor value of this Color structure.

2.4.2 The point and pointF Structures

In GDI+, the Point structure represents an ordered pair of integerx- and y-coordinates that define a point in a two-dimensional plane. ThePoint
structure's constructor initializes a new instance of the Point structure. The Point constructor has three overloaded forms that allow you to
create a Point object from an integer, aSize object, or two integers as follows:

1. public Point(int);
2. public Point(Size);
3. public Point(int, int);

The following code snippet creates Point objects using all three forms of the constructor:

Point ptl = new Point(10);
Point pt2 = new Point(new Size(20, 20));
Point pt3 = new Point(30, 30);

The PointF structure is similar to the Point structure, but it uses floating point values instead of integers. Unlike thePoint structure, PointF has
only one constructor, which takes two floating point values as x- and y-coordinates.

PointF pt3 = new PointF(30.0f, 30.0f);

Both the Point and the PointF structures define three properties: ISEmpty, X, and Y. The ISsEmpty property returnstrue if a point is empty, which
means that both X and Y values are zero; otherwise it returnsfalse. The X and Y properties return thex- and y-coordinates of a point,
respectively. The Empty static field of the Point structure creates a new point withX and Y values set to zero.

creates a point with zeroX and Y values using Point.Empty and assigns new coordinate values using theX and Y properties. This

example creates a Graphics object using the Graphics.FromHwnd method and returns the graphics surface for a form. The
Graphics.FromHwnd method creates a Graphics object from a window handle, which we pass aghis.Handle. The DrawLine method draws a
line starting from the first point to the second point using the defined pen. You can test this code on a button or a menu click event handler.

Listing 2.3 Creating Point objects

/I Create a new Point object

Point pt = new Point(50, 50);

/I Create a new point using Point.Empty
Point newPoint = Point.Empty;

/I Set X and Y properties of Point
newPoint.X = 100;

newPoint.Y = 200;

/I Create a Graphics object from the

/I current form's handle

Graphics g = Graphics.FromHwnd(this.Handle);
/I Create a new pen with color blue

/I and width = 4

Pen pn = new Pen(Color.Blue, 4);

/I Draw a line from point pt to

/I new point

g.DrawLine(pn, pt, newPoint);

/I Dispose of Pen and Graphics objects
pn.Dispose();

g.Dispose();

shows the output of. The program draws a line from point 1 to point 2. The "Point" text in this figure is a menu item.

Figure 2.10. Using point to draw a line

JSI=TEY
Fosnt

Like the Point structure, PointF can also use Empty, X, and Y properties, as shown in. You can test this code on a button or a menu
click event handler.

Listing 2.4 Creating PointF objects

/I Create a new PointF object

PointF pt = new PointF(50.0F, 50.0F);

/I Create a new point using PointF.Empty
PointF newPoint = PointF.Empty;

/I Set X and Y properties of PointF
newPoint.X = 100.0F;

newPoint.Y = 200.0F;

/I Create a Graphics object from the

/I current form's handle

Graphics g = Graphics.FromHwnd(this.Handle);
/I Create a new pen with color blue

/I and width = 4

Pen pn = new Pen(Color.Blue, 4);

/I Draw a line from point pt to

/I new point

g.DrawLine(pn, pt, newPoint);

/I Dispose of Pen and Graphics objects
pn.Dispose();

g.Dispose();

shows the output of. It is identical to.

Figure 2.11. Using PointF to draw a line

"M point Structure Sample =10 x|
Front

The Point structure also defines methods to convert from PointF to Point. The Ceiling method of the Point structure converts aPointF object to
a Point object by rounding off the values of thePointF object to the next higher integer values. TheRound method converts aPointF object to

Point by rounding floating values to the nearest integer values. TheTruncate method converts aPointF object to Point by truncating the floating
values to integers. ‘ shows how to use the Ceiling, Round, and Truncate methods. You can test this code on a button or a menu click

event handler.

Listing 2.5 Using the cCeiling, Round, and Truncate methods of Point

/I Create three points

PointF ptl = new PointF(30.6f, 30.8f);

PointF pt2 = new PointF(50.3f, 60.7f);

PointF pt3 = new PointF(110.3f, 80.5f);

/I Call Ceiling, Round, and Truncate methods

/I and return new points

Point pt4 = Point.Ceiling(pt1);

Point pt5 = Point.Round(pt2);

Point pt6 = Point.Truncate(pt3);

/I Display results

MessageBox.Show("Value of pt4: " +pt4.ToString());
MessageBox.Show("Value of pt5: " +pt5.ToString());
MessageBox.Show("Value of pt6: " +pt6.ToString());

The Point structure also defines addition, equality, inequality, subtraction, Point-to-Size, and Point-to-PointF conversion operators.
shows how to add and subtract a Size object from aPoint object, convert fromPoint to PointF, and convert from aPoint object to a Size object.
You can test this code on a button or a menu click event handler.

Listing 2.6 Some Point and PointF conversions

/ Create a Size object

Size sz = new Size(12, 12);

/I Create a Point object

Point pt = new Point(20, 20);

/I Add point and size and copy to point

pt = pt+sz;

MessageBox.Show("Addition :"+ pt.ToString());
/I Subtract point and size

pt = pt-sz;

MessageBox.Show("Subtraction :"+ pt.ToString());
/I Create a PointF object from Point

PointF ptf = pt;

MessageBox.Show("PointF :"+ pt.ToString());

/I Convert Point to Size

sz = (Size)pt;

MessageBox.Show("Size :"+ sz.Width.ToString()
+""+ sz.Height.ToString());

2.4.3 The Rectangle and Rectangler Structures

The Rectangle and RectangleF structures represent a rectangle in GDI+. ARectangle structure stores the top left corner and height and width
of a rectangular region. You can create a Rectangle object from Point and Size objects or by using four integer values as starting and ending
coordinates of the rectangle.

The Rectangle and RectangleF structures provide properties that can be used to get the height, width, and position of the rectangl
describes the properties of the Rectangle and RectangleF structures.

Listing 2.7 Using Rectangle properties

/I Create Point, Size, and Rectangle objects
Point pt = new Point(10, 10);
Size sz = new Size(60, 40);
Rectangle rectl = Rectangle.Empty;
Rectangle rect2 = new Rectangle(20, 30, 30, 10);
/I Set Rectangle properties
if (rectl.IsEmpty)
{

rectl.Location = pt;

rectl.Width = sz.Width;

rectl.Height = sz.Height;
}
/I Get Rectangle properties
string str = "Location:"+ rectl.Location.ToString();
str+=", X:" +rectl.X.ToString();
str+=", Y:"+ rectl.Y.ToString();
str+=", Left:"+ rectl.Left. ToString();
str +=", Right:"+ rectl.Right. ToString();
str+=", Top:"+ rectl.Top.ToString();
str +=", Bottom:"+ rectl.Bottom.ToString();
MessageBox.Show(str);

Table 2.3. Rectangle and RectangleF properties

Property Description
Bottom Returns the y-coordinate of the bottom edge.
Height Represents the rectangle's height.
ISEmpty Returns true if all of the rectangle's values (starting point, height, and width) are zero; otherwise returnalse.
Left Returns the x-coordinate of the left edge.
Location Represents the coordinates of the upper left corner.
Right Returns the x-coordinate of the right edge.
Size Represents the size of a rectangle.
Top Returns the y-coordinate of the top edge.
Width Represents the width of a rectangle.
X Represents the x-coordinate of the upper left corner.
Y Represents the y-coordinate of the upper left corner.

uses three different methods to create three Rectangle objects. The first method creates aRectangle object by using aPoint and a
Size. The second and third methods create aRectangle by using four integer values as the startings- and y-coordinates and the width and
height of the rectangle. After creating the rectangles, the program creates pen and brush objects using the Pen and SolidBrush classes and
calls the fill and draw methods of Graphics to draw and fill the rectangles. Finally, we dispose of the objects. You can test this code on a

button or a menu click event handler.

Listing 2.8 Creating Rectangle objects

/I Create a Graphics object
Graphics g = this.CreateGraphics();
int x = 40;

inty = 40;
int height = 120;
int width = 120;

/I Create a Point object
Point pt = new Point(80, 80);
/I Create a Size object
Size sz = new Size(100, 100);
/I Create a rectangle from Point and Size
Rectangle rectl = new Rectangle(pt, sz);
/I Create a rectangle from integers
Rectangle rect2 =

new Rectangle(x, y, width, height);
/I Create a rectangle from direct integers
Rectangle rect3 =

new Rectangle(10, 10, 180, 180);
/I Create pens and brushes
Pen redPen = new Pen(Color.Red, 2);
SolidBrush greenBrush =

new SolidBrush(Color.Blue);
SolidBrush blueBrush =

new SolidBrush(Color.Green);
/I Draw and fill rectangles
g.DrawRectangle(redPen, rect3);
g.FillRectangle(blueBrush, rect2);
g.FillRectangle(greenBrush, rectl);
/I Dispose of the objects
redPen.Dispose();
blueBrush.Dispose();
greenBrush.Dispose();
g.Dispose();

shows the output from

: three different rectangles.

Figure 2.12. Using Rectangle to create rectangles

Rectangle RextangleF

=10} x|

You can create a RectangleF object in a similar way. The on

SizeF instead of Size, and PointF instead of Point. Listing 2.

test this code on a button or a menu click event handler.

Listing 2.9 Creating RectangleF objects

/I Create a Graphics object
Graphics g = this.CreateGraphics();
float x = 40.0f;
float y = 40.0f;
float height = 120.0f;
float width = 120.0f;
/I Create a PointF object
PointF pt = new PointF(80.0f, 80.0f);
/I Create a SizeF object
SizeF sz = new SizeF(100.0f, 100.0f);
/I Create a rectangle from PointF and SizeF
RectangleF rectl = new RectangleF(pt, sz);
/I Create a rectangle from integers
RectangleF rect2 =
new RectangleF(x, y, width, height);
/I Create a rectangle from direct integers
RectangleF rect3 =
new RectangleF(10.0f, 10.0f, 180.0f, 180.0f);
/I Create pens and brushes
Pen redPen = new Pen(Color.Red, 2);
SolidBrush greenBrush =
new SolidBrush(Color.Blue);
SolidBrush blueBrush =
new SolidBrush(Color.Green);
/I Draw and fill rectangles
g.DrawRectangle(redPen, rect3.X, rect3.Y,
rect3.Width, rect3.Height);
g.FillRectangle(blueBrush, rect2);
g.FillRectangle(greenBrush, rectl);
/I Dispose of objects
redPen.Dispose();
blueBrush.Dispose();
greenBrush.Dispose();
g.Dispose();

ly difference is thaRectangleF takes floating point arguments instead of integers,
creates RectangleF objects from SizeF, PointF, Size, and Point objects. You can

shows the output from: three different rectangles, as i.

Figure 2.13. Using RectangleF to create rectangles

rormt =101 x]
Rectangle RectangieF

Table 2.4. Rectangle and RectangleF methods

Method Description

Ceiling

Converts a RectangleF object to aRectangle object by rounding theRectangleF values to the next higher integer values.

Contains Determines if the specified point is contained within the rectangular region of a rectangle.
FromLTRB Creates a rectangle with the specified edge locations.

Inflate Creates and returns an inflated copy of a rectangle.

Intersect

Replaces a rectangle with the intersection of itself and another rectangle.

IntersectsWith Determines if a specified rectangle intersects withrect.

Offset Adjusts the location of a specified rectangle by the specified amount.
Round Converts a RectangleF object to aRectangle object by rounding theRectangleF values to the nearest integer values.
Truncate Converts aRectangleF object to aRectangle object by truncating theRectangleF values.
Union Returns a rectangle that contains the union of twoRectangle structures.
Like the Point and PointF structures, Rectangle and RectangleF define Ceiling, Round, and Truncate methods. These methods are described

in

. shows how to use these methods.

Listing 2.10 Using the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods of Rectangle

/I Create a Graphics object
Graphics g = this.CreateGraphics();
/I Create PointF, SizeF, and RectangleF objects
PointF pt = new PointF(30.8f, 20.7f);
SizeF sz = new SizeF(60.0f, 40.0f);
RectangleF rect2 =
new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);
RectangleF rectl = new RectangleF(pt, sz);
Rectangle rect3 = Rectangle.Ceiling(rectl);
Rectangle rect4 = Rectangle. Truncate(rectl);
Rectangle rect5 = Rectangle.Round(rect2);
/I Draw rectangles
g.DrawRectangle(Pens.Black, rect3);
g.DrawRectangle(Pens.Red, rect5);
/I Intersect rectangles
Rectangle isectRect =
Rectangle.Intersect(rect3, rect5);
/' Fill new rectangle
g.FillRectangle(
new SolidBrush(Color.Blue), isectRect);
/I Create a Size object
Size inflateSize = new Size(0, 40);
/I Inflate rectangle
isectRect.Inflate(inflateSize);
/I Draw new rectangle
g.DrawRectangle(Pens.Blue, isectRect);
/I Set Rectangle properties
rect4 = Rectangle.Empty;
rect4.Location = new Point(50, 50);
rect4.X = 30;
rectd.Y = 40;
/I Union two rectangles
Rectangle unionRect =
Rectangle.Union(rect4, rect5);
/I Draw new rectangle
g.DrawRectangle(Pens.Green, unionRect);
/I Dispose of the Graphics object
g.Dispose();

shows the output from .

Figure 2.14. Using the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods of Rectangle

™ Formi =10} %]
Rectangle RectangieF

—

2.4.4 The size and sizeF Structures

The Size and SizeF structures represent the size of a rectangular area. LikePoint/PointF and Rectangle/RectangleF, Size and SizeF also each
have an Empty static field, which creates aSize object with zero height and zero width. The only difference betweerSize and SizeF is that Size
uses integer values and SizeF uses floating point values.

You can create Size and SizeF objects by passing the width and height of thePoint and PointF objects as constructor arguments, respectively.
shows different ways to create Size and SizeF objects.

Listing 2.11 Creating Size and SizeF objects

Point ptl = new Point(20, 40);

PointF pt2 = new PointF(50.0f, 80.0f);
Size sz1 = new Size(ptl);

SizeF sz2 = new SizeF(pt2);

Size sz3 = new Size(100, 150);
SizeF sz4 = new SizeF(12.5f, 87.6f);

The Height and Width properties represent the height and width, respectively, of the area represented by theSize and SizeF structures. The
IsEmpty property returnstrue if Size has zero height and zero width; otherwise it returnsfalse.

Like the Point/PointF and Rectangle/RectangleF structures, Size and SizeF have Ceiling, Truncate, and Round static methods. Each method
can convert a SizeF object to aSize object: the Ceiling method, by rounding the values of theSize structure to the next higher integer values;
the Round method, by rounding the values of theSize structure to the nearest integer values; and theTruncate method, by truncating the
values to the next lower integer values.

shows the use of the Ceiling, Round and Truncate methods. You can test this code on a button or a menu click event handler.

Listing 2.12 Using the cCeiling, Round, and Truncate methods of Size and SizeF

PointF ptl = new PointF(30.6f, 30.8f);
PointF pt2 = new PointF(50.3f, 60.7f);
PointF pt3 = new PointF(110.3f, 80.5f);

SizeF sz1 = new SizeF(ptl);
SizeF sz2 = new SizeF(pt2);
SizeF sz3 = new SizeF(pt3);
Size sz4 = Size.Ceiling(szl);
Size sz5 = Size.Round(sz2);
Size sz6 = Size.Truncate(sz3);

Team LiB |

SUMMARY

Before you write a graphics application, a basic understanding of drawing surfaces and coordinate systems is a must. This chapter began
with the basics of the drawing surfaces and the coordinate system, describing how drawing surfaces and coordinate systems are represented
in GDI+ and how the GDI+ coordinate system differs from other coordinate systems.

Before using any GDI+-related classes defined in the .NET Framework library, you must reference System.Drawing and its subnamespaces.
In this chapter you learned how to add references to the GDI+ library and how to import the GDI+-related namespaces into your application.
After adding a reference to the GDI+ library and namespaces to the application, the next step is to get the Graphics object. There are several
ways to get a Graphics object in an application. This chapter discussed three different ways, and then showed how to use th&raphics class
methods to draw and fill lines, rectangles, and ellipses. You also learned to dispose of objects when you're finished with them.

Finally, we covered some basic GDI+ structures—including Color, Rectangle, RectangleF, Point, PointF, Size, and SizeF—describing their
members and how to use them in your applications.

You should now be able to write simple graphics applications using GDI+.

is all about the Graphics class and will demonstrate how quickly you can write real-world applications. By the end , you

will be able to write your own 2D paint application similar to Microsoft's PaintBrush, using your newly acquired GDI+ skills.

Tean Lip]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 3. The capnics Class

Graphics objects are the heart of GDI+. They are represented by the Graphics class, which defines methods and properties to draw and fill
graphics objects. Whenever an application needs to draw or paint something, it has to use the Graphics object. Hence, understanding the
Graphics class, its methods, and its properties is very important. We will uséSraphics methods and properties in all the chapters that follow.

Specifically, in this chapter we will discuss the methods and properties of the Graphics class, and how to use them in real-world applications,
including line charts, pie charts, and our GDI+Painter application. GDI+Painter is similar to the PaintBrush application, which allows you to
draw simple graphics objects such as lines, rectangles, and circles and save the images as bitmaps.

Team LiB

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

3.1 craphics Class Properties

The Graphics class provides a long list of properties (se) and methods. We will discuss and use these properties and methods in
this and following chapters.

Table 3.1. Graphics properties

Property Description
Clip Gets and sets aRegion type that limits the drawing region of theGraphics object.
ClipBounds Returns a RectangleF structure that bounds the clipping region of thisGraphics object. Supports read-only access.
CompositingMode Returns a value of type CompositingMode enumeration representing how composite images are drawn to the

Graphics object.

CompositingQuality

Gets and sets the rendering quality (directly proportional to the visual quality of the output and inversely proportional
to the rendering time) of composite images, represented by the CompositingQuality enumeration.

DpiX

Returns the horizontal resolution (dots per inch) of aGraphics object.

DpiY

Returns the vertical resolution (dots per inch) of aGraphics object.

InterpolationMode

Gets and sets the interpolation mode (which determines intermediate values between two endpoints), represented
by the InterpolationMode enumerator.

ISClipEmpty

Returns a value indicating whether the clipping region of a Graphics object is empty. When there is no clipping, this
property returns false.

IsVisibleClipEmpty

Returns a value indicating whether the visible clipping region of araphics object is empty.

PageScale Gets and sets a value for scaling between world units and page units for thisraphics object.
PageUnit Gets and sets a value that represents the unit of measure for page coordinates.
PixelOffsetMode Gets and sets a value for the pixel offset mode RixelOffsetMode enumeration).

RenderingOrigin

Represents the rendering origin of aGraphics object for dithering and hatch brushes.

SmoothingMode

Gets and sets the smoothing mode of a Graphics object (SmoothingMode enumeration). Does not affect text.
Smoothing modes include high quality, high speed, and anti-aliasing.

TextContrast

Gets and sets the gamma correction value for rendering anti-aliased and ClearType text values, ranging from 0 to
12. The default is 4.

TextRenderingHint

Gets and sets the text rendering quality (TextRenderingHint enumeration). Affects only text drawn on theGraphics
object.

Transform

Gets and sets the world transformation matrix (transformation is the process of converting graphics objects from one
state to another). The transformation state is represented by a transformation matrix.

Property

Description

VisibleClipBounds

Gets and sets the visible clipping region of the Graphics object (the intersection of the clipping region of theGraphics

object and the clipping region of the window).

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

3.2 Graphics Class Methods

We can divide Graphics class methods into three categories:draw, fill, and miscellaneous. Draw methods are used to draw lines, curves, and
outer boundaries of closed curves and images. Fill methods fill the interior area of graphics objects. There are also a few miscellaneous
methods that fall in neither category—for example, MeasureString and Clear.

3.2.1 Draw Methods

The draw methods of the Graphics class are used to draw lines, curves, and outer boundaries of closed curves and image lists the
draw methods of the Graphics class.

3.2.1.1 Drawing Lines

The DrawLine method draws a line beween two points specified by a pair of coordinateDrawLines draws a series of lines using an array of
points.

Table 3.2. Graphics draw methods

Method Description
DrawArc Draws an arc (a portion of an ellipse specified by a pair of coordinates, a width, a height, and start and end angles).
DrawBezier Draws a Bézier curve defined by fourPoint structures.

DrawBeziers

Draws a series of Bézier splines from an array ofPoint structures.

DrawClosedCurve

Draws a closed cardinal spline defined by an array ofPoint structures.

DrawCurve Draws a cardinal spline through a specified array ofPoint structures.
DrawEllipse Draws an ellipse defined by a bounding rectangle specified by a pair of coordinates, a height, and a width.
Drawlcon Draws an image represented by the specifiedlcon object at the specified coordinates.

DrawlconUnstretched

Draws an image represented by the specifiedlcon object without scaling the image.

Drawlmage

Draws the specified Image object at the specified location and with the original size.

DrawlmageUnscaled

Draws the specified Image object with its original size at the location specified by a coordinate pair.

DrawLine Draws a line connecting two points specified by coordinate pairs.

DrawLines Draws a series of line segments that connect an array ofPoint structures.

DrawPath Draws a GraphicsPath object.

DrawPie Draws a pie shape specified by a coordinate pair, a width, a height, and two radial lines.
DrawPolygon Draws a polygon defined by an array ofPoint structures.

DrawRectangle

Draws a rectangle specified by a coordinate pair, a width, and a height.

DrawRectangles

Draws a series of rectangles specified by an array ofRectangle structures.

DrawsString

Draws the specified text string at the specified location using the specified®rush and Font objects.

DrawLine has four overloaded methods. The first argument of allDrawLine methods is a Pen object, with texture, color, and width attributes.

The rest of the arguments vary. You can use two points with integer or floating point values, or you can pass four integer or floating point

values directly:

1. public void DrawLine(Pen, Point, Point);

2. public void DrawLine(Pen, PointF, PointF);

3. public void DrawLine(Pen, int, int, int, int);

4. public void DrawLine(Pen, float, float, float, float);

To draw a line, an application first creates a Pen object, which defines the color and width. The following line of code creates a red pen with a

width of 1:

Pen redPen = new Pen(Color.Red, 1);

After that we define the endpoints of the line:

float x1 = 20.0F, y1 = 25.0F;
float x2 = 200.0F, y2 = 100.0F;

Finally, we use the pen and points as input to DrawLine:

Graphics.DrawLine(redPen, x1, y1, x2, y2);

shows how to use the different overloaded methods. We create four pens with different colors and widths. After that we call
DrawLine with different values—including integer, floating point, andPoint structures—to draw four different lines. Three of them start at point
(20, 20).

Listing 3.1 Drawing lines

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create four Pen objects with red,

/I blue, green, and black colors and

/1 different widths

Pen redPen = new Pen(Color.Red, 1);

Pen bluePen = new Pen(Color.Blue, 2);
Pen greenPen = new Pen(Color.Green, 3);
Pen blackPen = new Pen(Color.Black, 4);
/I Draw line using float coordinates

float x1 = 20.0F, y1 = 20.0F;

float x2 = 200.0F, y2 = 20.0F;
e.Graphics.DrawLine(redPen, x1, y1, x2, y2);
/I Draw line using Point structure

Point ptl = new Point(20, 20);

Point pt2 = new Point(20, 200);
e.Graphics.DrawLine(greenPen, ptl, pt2);
/I Draw line using PointF structure

PointF ptfl = new PointF(20.0F, 20.0F);
PointF ptf2 = new PointF(200.0F, 200.0F);
e.Graphics.DrawLine(bluePen, ptfl, ptf2);
/I Draw line using integer coordinates

int X1 =60, Y1 =40, X2 = 250, Y2 = 100;
e.Graphics.DrawLine(blackPen, X1, Y1, X2, Y2);
/I Dispose of objects

redPen.Dispose();

bluePen.Dispose();

greenPen.Dispose();

blackPen.Dispose();

}

The output from is shown in . We've drawn four lines starting at point (20, 20).

Figure 3.1. Using DrawLine to draw lines

I PTEEE Cimt il

3.2.1.2 Drawing Connected Lines

Sometimes we need to draw multiple connected straight line segments. One way to do this is to call the DrawLine method multiple times.

The Graphics class also provides the DrawLines method, which can be used to draw multiple connected lines. This method has two
overloaded forms. One takes an array of Point structure objects, and the other takes an array ofPointF structure objects:

1. public void DrawLines(Pen, Point[]);
2. public void DrawLines(Pen, PointF[]);

To draw lines using DrawLines, an application first creates aPen object, then creates an array of points, and then call®rawLines. The code in

isting 3.4 draws three line segments.

Listing 3.2 Using DrawLines to draw connected lines

PointF[] ptsArray =

{
new PointF(20.0F, 20.0F),
new PointF(20.0F, 200.0F),
new PointF(200.0F, 200.0F),
new PointF(20.0F, 20.0F)

h

e.Graphics.DrawLines(redPen, ptsArray);

The code in draws what is shown in.

Figure 3.2. Using DrawLines to draw connected lines

=101 =]

3.2.1.3 Drawing Rectangles

The next basic drawing object is a rectangle. When you draw a rectangle through your applications, you need to specify only the starting
point, height, and width of the rectangle. GDI+ takes care of the rest.

The Graphics class provides the DrawRectangle method, which draws a rectangle specified by a starting point, a width, and a height. The
Graphics class also provides the DrawRectangles method, which draws a series of rectangles specified by an array oRectangle structures.

DrawRectangle has three overloaded methods. An application can use aRectangle structure or coordinates of integer or float types to draw a
rectangle:

1. public void DrawRectangle(Pen, Rectangle);
2. public void DrawRectangle(Pen, int, int, int, int);
3. public void DrawRectangle(Pen, float, float, float, float);

To draw a rectangle, an application first creates a pen and a rectangle (location, width, and height), and then it calls DrawRectangle.
draws rectangles using the different overloaded forms ofDrawRectangle.

Listing 3.3 Using DrawRectangle to draw rectangles

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create pens and points

Pen redPen = new Pen(Color.Red, 1);

Pen bluePen = new Pen(Color.Blue, 2);
Pen greenPen = new Pen(Color.Green, 3);

float x = 5.0F, y = 5.0F;
float width = 100.0F;
float height = 200.0F;
/I Create a rectangle

Rectangle rect = new Rectangle(20, 20, 80, 40);

/I Draw rectangles

e.Graphics.DrawRectangle(bluePen,
X, Y, width, height);

e.Graphics.DrawRectangle(redPen,
60, 80, 140, 50);

e.Graphics.DrawRectangle(greenPen, rect);

/I Dispose of objects
redPen.Dispose();
bluePen.Dispose();
greenPen.Dispose();

}

shows the output from .

Fig

B Eoim)

ure 3.3. Drawing individual rectangles

The DrawRectangles method draws a series of rectangles using a single-pen. It is useful when you need to draw multiple rectangles using
the same pen (if you need to draw multiple rectangles using different pens, you must use multiple calls to DrawRectangle). A single call to

DrawRectangles is faster than multipleDrawRe

RectangleF structures—as shown inListing 3.4.

ctangle calls. DrawRectangles takes two parameters—a pen and an array ofRectangle or

Listing 3.4 Using DrawRectangles to draw a series of rectangles

Pen greenPen = new Pen(Color.Green, 4);
RectangleF[] rectArray
{

new RectangleF(5.0F, 5.0F, 100.0F, 200.0F),
new RectangleF(20.0F, 20.0F, 80.0F, 40.0F),
new RectangleF(60.0F, 80.0F, 140.0F, 50.0F)

h

e.Graphics.DrawRectangles(greenPen, rectArray);

greenPen.Dispose()

shows the output from . As you can see, it's easy to draw multiple rectangles using thédrawRectangles method.

Figure 3.4. Drawing a series of rectangles

=10l

”@%_
=

3.2.1.4 Drawing Ellipses and Circles

An ellipse is a circular boundary within a rectangle, where each gpposite point has the same distance from a fixed point, called the center of
the ellipse. An ellipse within a square is called a circle. . shows an ellipse with its height, width, and center indicated.

Figure 3.5. An ellipse

Width

Center Height

|

To draw an ellipse, you need to specify the outer rectangle. GDI+ takes care of the rest. DrawEllipse draws an ellipse defined by a rectangle
specified by a pair of coordinates, a height, and a width (an ellipse with equal height and width is a circle). DrawEllipse has four overloaded
methods:

1. public void DrawEllipse(Pen, Rectangle);

2. public void DrawEllipse(Pen, RectangleF);

3. public void DrawEllipse(Pen, int, int, int, int);

4. public void DrawEllipse(Pen, float, float, float, float);

To draw an ellipse, an application creates a pen and four coordinates (or a rectangle), and then calls DrawEllipse. draws ellipses
with different options.

Listing 3.5 Drawing ellipses

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create pens
Pen redPen = new Pen(Color.Red, 6);
Pen bluePen = new Pen(Color.Blue, 4);
Pen greenPen = new Pen(Color.Green, 2);
/I Create a rectangle
Rectangle rect =
new Rectangle(80, 80, 50, 50);
/I Draw ellipses
e.Graphics.DrawEllipse(greenPen,
100.0F, 100.0F, 10.0F, 10.0F);
e.Graphics.DrawEllipse(redPen, rect);
e.Graphics.DrawEllipse(bluePen, 60, 60, 90, 90);
e.Graphics.DrawEllipse(greenPen,
40.0F, 40.0F, 130.0F, 130.0F);
/I Dispose of objects
redPen.Dispose();
greenPen.Dispose();
bluePen.Dispose();

}

shows the output from .

Figure 3.6. Drawing ellipses

Brom T

3.2.1.5 Drawing Text

This section briefly discusses the drawing of text. covers this topic in more detail.

The DrawString method draws a text string on a graphics surface. It has many overloaded form®rawString takes arguments that identify the
text, font, brush, starting location, and string format.

The simplest form of DrawString looks like this:

public void DrawString(string, Font, Brush, PointF);

where string is the text that you want to draw,Font and Brush are the font and brushes used to draw the text, andPointF is the starting point of
the text.

uses the DrawString method to draw "Hello GDI+ World!" on a form.

Listing 3.6 Drawing text

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
e.Graphics.DrawString("Hello GDI+ World!",
new Font("Verdana", 16),
new SolidBrush(Color.Red),
new Point(20, 20));
}

Note

You might notice in that we createFont, SolidBrush, and Point objects directly as parameters of theDrawString
method. This method of creating objects means that we can't dispose of these objects, so some cleanup is left for the
garbage collector.

shows the output from .

Figure 3.7. Drawing text

Hello GDI+ World!

The DrawString method has several overloaded forms, as shown here:

public void DrawString(string, Font, Brush, RectangleF);

® public void DrawString(string, Font, Brush, PointF, StringFormat);

public void DrawsString(string, Font, Brush, RectangleF, StringFormat);

public void DrawString(string, Font, Brush, float, float);

public void DrawString(string, Font, Brush, float, float, StringFormat);

Now let's see another example of drawing text—this time using the StringFormat class, which defines the text format. UsingStringFormat, you
can set flags, alignment, trimming, and other options for the text. ‘discusses this functionality in more detail.. shows

different ways to draw text on a graphics surface. In this example the FormatFlags property is set to StringFormatFlags.DirectionVertical,

which draws vertical text.

Listing 3.7 Using DrawsString to draw text on a graphics surface

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create brushes
SolidBrush blueBrush = new SolidBrush(Color.Blue);
SolidBrush redBrush = new SolidBrush(Color.Red);

SolidBrush greenBrush = new SolidBrush(Color.Green);
/I Create a rectangle
Rectangle rect = new Rectangle(20, 20, 200, 100);
/I The text to be drawn
String drawString = "Hello GDI+ World!";
/I Create a Font object
Font drawFont = new Font("Verdana", 14);
float x = 100.0F;
float y = 100.0F;
/I String format
StringFormat drawFormat = new StringFormat();
/I Set string format flag to direction vertical,
/I which draws text vertically
drawFormat.FormatFlags =
StringFormatFlags.DirectionVertical;
/I Draw string
e.Graphics.DrawString("Drawing text",
new Font("Tahoma", 14), greenBrush, rect);
e.Graphics.DrawString(drawString,
new Font("Arial", 12), redBrush, 120, 140);
e.Graphics.DrawString(drawString, drawFont,
blueBrush, x, y, drawFormat);
/I Dispose of objects
blueBrush.Dispose();
redBrush.Dispose();
greenBrush.Dispose();
drawFont.Dispose();

}
shows the output from .

Figure 3.8. Drawing text with different directions

3.2.1.6 Creating a Line Chart Application

As promised, the examples in this book not only show the use of GDI+, but also encourage you to use GDI+ practices in real-world
applications, We will create one more real-world application, a line chart application. In this example we will use all the functionality we have
discussed so far. Our line chart application will draw lines when a user clicks on a form.

We create a Windows application and add a check box and a button. Then we change the Text properties of the button and the check box to
call them Clear All and Rectangle, respectively. Then we add code to draw two lines and some numbers (using thBrawString method). The
initial screen of the line chart application looks like .

Figure 3.9. The line chart application

™ GDI+ Line Chart - 0] x|

=]

=T
=1 R
] R
L
enf
(=21 B
=L
@k
‘=] 8
E_

When you click on the form, the application draws a line. The first line starts from the bottom left corner, where the values of our x- and y-axes
are both 0. After a few clicks, the chart looks like fFigure 3.1d. Every time you click on the form, the application draws a line from the previous
point to the current point and draws a small ellipse representing the current point.

Figure 3.10. The line chart application with a chart

™ GDI + Line Chart i =10 x|

100y | own |

The Clear All button removes the lines and initializes the first point to (0, 0). Now if you check th&®ectangle box and click on the form, the
chart looks like ‘. When you click the left mouse button for the first time, the application draws a line from point (0, 0) to the point
where you clicked the button.

Figure 3.11. The line chart with rectangles to mark points

M GDI+ Line Chart '- =10 x|

90
80
70
60
S50

30
20
10

Now let's see the code. First we declare starting and ending points. These points will be used to draw a line when you click the left mouse
button. The default values of both points are shown in the following code fragment, which represents position (0, 0) on the screen:

private Point startPoint = new Point(50, 217);
private Point endPoint = new Point(50, 217);

The next step is to draw vertical and horizontal axis lines with index numbers. We do this on the form's paint event handler with the help of the
DrawString method. . provides code for the form-paint event handler. As the listing shows, we simply draw a vertical line, a

horizontal line, and the marks on these lines.

Listing 3.8 Drawing lines and marks

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

Graphics g = e.Graphics;
Font vertFont =

new Font("Verdana", 10, FontStyle.Bold);
Font horzFont =

new Font("Verdana", 10, FontStyle.Bold);
SolidBrush vertBrush = new SolidBrush(Color.Black);
SolidBrush horzBrush = new SolidBrush(Color.Blue);
Pen blackPen = new Pen(Color.Black, 2);
Pen bluePen = new Pen(Color.Blue, 2);
/I Drawing a vertical and a horizontal line
g.DrawLine(blackPen,50,220,50, 25);
g.DrawLine(bluePen,50,220,250,220);
/I x-axis drawing
g.DrawsString("0",horzFont,horzBrush,30, 220);
g.DrawsString("1",horzFont,horzBrush,50,220);
g.DrawsString("2",horzFont,horzBrush,70,220);
g.DrawsString("3",horzFont,horzBrush,90,220);
g.DrawsString("4",horzFont,horzBrush,110,220);
g.DrawsString("5",horzFont,horzBrush,130,220);
g.DrawsString("6",horzFont,horzBrush,150,220);
g.DrawsString("7",horzFont,horzBrush,170,220);
g.DrawsString("8",horzFont,horzBrush,190,220);
g.DrawsString("9",horzFont,horzBrush,210,220);
g.DrawsString("10",horzFont,horzBrush,230,220);
/I Drawing vertical strings
StringFormat vertStrFormat = new StringFormat();
vertStrFormat.FormatFlags =

StringFormatFlags.DirectionVertical;

g.DrawsString("-",horzFont,horzBrush,
50, 212, vertStrFormat);

g.DrawsString("-",horzFont,horzBrush,
70, 212, vertStrFormat);

g.DrawsString("-",horzFont,horzBrush,
90, 212, vertStrFormat);

g.DrawsString("-",horzFont,horzBrush,
110, 212, vertStrFormat);

g.DrawString("-",horzFont,horzBrush,

130, 212, vertStrFormat);
g.DrawString("-",horzFont,horzBrush,

150, 212, vertStrFormat);
g.DrawString("-",horzFont,horzBrush,

170, 212, vertStrFormat);
g.DrawString("-",horzFont,horzBrush,

190, 212, vertStrFormat);
g.DrawString("-",horzFont,horzBrush,

210, 212, vertStrFormat);
g.DrawString("-",horzFont,horzBrush,

230, 212, vertStrFormat);
/I y-axis drawing
g.DrawString("100-",vertFont,vertBrush, 20,20);
g.DrawString("90 -",vertFont,vertBrush, 25,40);
g.DrawString("80 -",vertFont,vertBrush, 25,60);
g.DrawString("70 -",vertFont,vertBrush, 25,80);
g.DrawString("60 -",vertFont,vertBrush, 25,100);
g.DrawString("50 -",vertFont,vertBrush, 25,120);
g.DrawString("40 -",vertFont,vertBrush, 25,140);
g.DrawString("30 -",vertFont,vertBrush, 25,160);
g.DrawString("20 -",vertFont,vertBrush, 25,180);
g.DrawString("10 -",vertFont,vertBrush, 25,200);
/I Dispose of objects
vertFont.Dispose();
horzFont.Dispose();
vertBrush.Dispose();
horzBrush.Dispose();
blackPen.Dispose();
bluePen.Dispose();

Note

The idea in is to show an extensive use of the DrawString method. Alternatively and preferably, you could
replace DrawString with the DrawLine and/or DrawLines method.

Now on the mouse-down event handler, we draw a line from the starting point (0, 0) to the first mouse click. We store the mouse click position
as the starting point for the next line. When we click again, the new line will be drawn from the current starting position to the point where the
mouse was clicked. shows the mouse-down click event handler. We create a newGraphics object using the CreateGraphics
method. After that we create two Pen objects. We store the previous point as the starting point and the current point as the ending point. Thé
and Y properties of MouseEventArgs return the x- and y-values of the point where the mouse was clicked.

Now we check to see if the Rectangle check box is checked. If so, we draw a rectangle to mark the connecting point of the two lines. If not,
we draw an ellipse as the connecting point.

Listing 3.9 The mouse-down event handler

private void Form1_MouseDown(object sender,

System.Windows.Forms.MouseEventArgs e)

if (e.Button == MouseButtons.Left)
{

/I Create a Graphics object

Graphics g1 = this.CreateGraphics();

/I Create two pens

Pen linePen = new Pen(Color.Green, 1);

Pen ellipsePen = new Pen(Color.Red, 1);

startPoint = endPoint;

endPoint = new Point(e.X, e.Y);

/I Draw the line from the current point

/I to the new point

gl.DrawLine(linePen, startPoint, endPoint);

/'If Rectangle check box is checked,

/I draw a rectangle to represent the point

if(checkBox1.Checked)

{

gl.DrawRectangle(ellipsePen,

eX-2,e.Y-2,4,4);

}

/I Draw a circle to represent the point

else

{

gl.DrawEllipse(ellipsePen,

eX-2,e.Y-2,4,4);

}

/I Dispose of objects

linePen.Dispose();

ellipsePen.Dispose();

gl.Dispose();

The Clear All button removes all the lines by invalidating the form'
values. Code for the Clear All button click event handler is given i

Listing 3.10 The Clear All button click event handler

private void button1_Click(object sender,

System.EventArgs e)

startPoint.X = 50;

startPoint.Y = 217,

endPoint.X = 50;

endPoint.Y = 217;
this.Invalidate(this.ClientRectangle);

3.2.1.7 Drawing Arcs

a and sets the starting and ending points back to their initial

jent area
isting 3.1

An arc is a portion of an ellipse. For example, shows an ellipse that has six arcs. An arc is defined by a bounding rectangle (just as
an ellipse), a start angle, and a sweep angle. The start angle is an angle in degrees measured clockwise from thex-axis to the starting point
of the arc. The sweep angle is an angle in degrees measured clockwise from thestartAngle parameter to the ending point of the arc. So an
arc is the portion of the perimeter of the ellipse between the start angle and the start angle plus the sweep angle.

Figure 3.12. Arcs in an ellipse

The DrawArc method draws an arc on a graphics surface DrawArc takes a pen, a pair of coordinates, a width, and a height. There are many
DrawArc overloaded methods. An application can use aRectangle or RectangleF object and integer or float coordinates:

® public void DrawArc(Pen, Rectangle, float, float);
L4 public void DrawArc(Pen, RectangleF, float, float);
° public void DrawArc(Pen, int, int, int, int, int, int);

® public void DrawArc(Pen, float, float, float, float, float, float);

The Pen object determines the color, width, and style of the arcRectangle or RectangleF represents the bounding rectangle; and the last two
parameters are the start angle and sweep angle.

To draw an arc, the application creates Pen and Rectangle objects and defines start and sweep angles. Then it calls theDrawArc method.

Let's create an application that will draw an arc to match the values of the start and sweep angles. We create a Windows application, adding
add two text boxes and a button control. The final form looks like Eigure 3.13.

Figure 3.13. A sample arc application

™ Arc Sample

SRR)
o
o om oww
Ml omw .
A]

e]

LR]

We define two floating variables on the class level to store the start and sweep angles:

private float startAngle = 45.0f;
private float sweepAngle = 90.0f;

Now let's draw an arc on the form's paint event handler. draws an arc. We first create a pen and a rectangle, and we use them in
the DrawArc method with start and sweep angles.

Listing 3.11 The paint event handler

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

Pen redPen = new Pen(Color.Red, 3);
Rectangle rect =
new Rectangle(20, 20, 200, 200);
e.Graphics.DrawArc(redPen,
rect, startAngle, sweepAngle);
redPen.Dispose();

}

Now we add code for the Reset Angles button. simply sets the start and sweep angles by reading values from the text boxes and
calls the Invalidate method, which forces GDI+ to call the form's paint event handler.

Listing 3.12 The Reset Angles button click event handler

private void ResetAnglesBtn_Click(object sender,
System.EventArgs €)

{
startAngle =
(float)Convert.ToDouble(textBox1.Text);
sweepAngle =
(float)Convert.ToDouble(textBox2.Text);
Invalidate();
}

shows the default output from the application.

Figure 3.14. The default arc, with start angle of 45 degrees and sweep angle of 90 degrees

F= ' p— al

HArc Sample

hange the start and sweep angles to 90 and 180 degrees, respectively, and click the Reset Angles button. The new output looks

Figure 319

= Arc Sample

Let's change angles one more time. This time our start angle will be 180 degrees, and the sweep angle will be 360 degrees. The new output

looks like .

Figure 3.16. An arc with start angle of 180 degrees and sweep angle of 360 degree

™ arc Sample ' =10 x|
Shart Angle: IlEu]
Sweep Angle: [360

ResetAngles |

IEEESEAEE RS RS R

3.2.1.8 Drawing Splines and Curves

Acurve is a sequence of adjoining points with a tension. The tension of a curve provides its smoothness and removes corners. Aardipal

shows

spline is a sequence of multiple joined curves. Basically, in a curve there is no straight line between two points. To illustrat
two curves.

Figure 3.17. Two curves

There are two types of curves: open and closed. A closed curve is a curve whose starting point is the ending point. A curve that is not a
closed curve is called an open curve. In figure 3.1§ the first curve is an open curve, and the second curve is a closed curve.

Figure 3.18. Open and closed curves

4
—

v

3.2.1.9 Drawing Open Curves

Programmatically, a curve is an array of connected points with a tension. A curve has a starting point and an ending point. Between these two
points can be many intermediate points. The Graphics class provides two methods for drawing curves:DrawCurve and DrawClosedCurve.
The DrawCurve method draws a curve specified by an array oPoint structures. The DrawClosedCurve draws a closed curve specified by an
array of Point structures. Both DrawCurve and DrawClosedCurve have overloaded methods.

DrawCurve has the following overloaded forms:

® public void DrawCurve(Pen, Point[]);

® public void DrawCurve(Pen, PointF[]);

® public void DrawCurve(Pen, Point[], float);

° public void DrawCurve(Pen, PointF[], float);

® public void DrawCurve(Pen, PointF[], int, int);

® public void DrawCurve(Pen, Point[], int, int, float);

° public void DrawCurve(Pen, PointF[], int, int, float);

The simplest form of DrawCurve is

public void DrawCurve(Pen pen, Point[] points);
where points is an array of points.

To test the DrawCurve methods, we create a Windows application and ad to the form's paint event handler. It creates an array of
points and draws a curve using the DrawCurve method.

Listing 3.13 Drawing a curve

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create a pen
Pen bluePen = new Pen(Color.Blue, 1);

/I Create an array of points

PointF ptl = new PointF(40.0F, 50.0F);
PointF pt2 = new PointF(50.0F, 75.0F);
PointF pt3 = new PointF(100.0F, 115.0F);
PointF pt4 = new PointF(200.0F, 180.0F);
PointF pt5 = new PointF(200.0F, 90.0F);
PointF[] ptsArray =

{

ptl, pt2, pt3, pt4, ptS

h
/I Draw curve
e.Graphics.DrawCurve(bluePen, ptsArray);
/I Dispose of object

bluePen.Dispose();

}

shows the output from our.

Figure 3.19. Drawing a curve

Note

The default tension is 0.5 for this overloaded version of DrawCurve.

The second form of DrawCurve is

public void DrawCurve(Pen pen,
Point[] points,
float tension

);

Here the tension parameter determines the shape of the curve. If the value otension is 0.0F, the method draws a straight line between the
points. The value of tension should vary between0.0F and 1.0F.

Now let's update the example in | jsting 3,13 We add a text box, a label, and a button to the form. We change the properties of these
controls, and the form looks like Figure 3.2q.

Figure 3.20. A curve-drawing application

n s e e BT

Now we will update our sample code to draw a curve using the tension value entered in the text box. We add &float type variable, tension, at
the class level:

private float tension = 0.5F;

Then we update the form's paint event handler as shown in . We provide tension as the third argument to theDrawCurve method.

Listing 3.14 Drawing a curve with tension

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create a pen

Pen bluePen = new Pen(Color.Blue, 1);

/I Create an array of points

PointF ptl = new PointF(40.0F, 50.0F);
PointF pt2 = new PointF(50.0F, 75.0F);
PointF pt3 = new PointF(100.0F, 115.0F);
PointF pt4 = new PointF(200.0F, 180.0F);
PointF pt5 = new PointF(200.0F, 90.0F);
PointF[] ptsArray =

{

ptl, pt2, pt3, pt4, pt5

h
/I Draw curve

e.Graphics.DrawCurve(bluePen, ptsArray, tension);
/I Dispose of object

bluePen.Dispose();

}

Now we add code for the Apply button, which simply reads the text box's value and sets it as the tension, as i.

Listing 3.15 The Apply button click event handler

private void ApplyBtn_Click(object sender,
System.EventArgs e)
{

tension = (float)Convert.ToDouble(textBox1.Text);
Invalidate();

}

If you enter "0.0" in tand hit Apply, the output looks Iike, and if you enter the value "1.0" in the text box and hiApply,

the output looks like Figure 3.24.

Figure 3.21. Drawing a curve with a tension of 0.0F

=101 x|
Enter Tensior oo

Figure 3.22. Drawing a curve with a tension of 1.0F

You can also add an offset and specify a number of segments for the curve:

public void DrawCurve(
Pen pen,
PointF([] points,
int offset,
int numberOfSegments

);

The offset specifies the number of elements to skip in the array of points. The first element after the skipped elements in the array of points
becomes the starting point of the curve.

The numberOfSegments property specifies the number of segments, after the starting point, to draw in the curve. It must be at least 1. The
offset plus the number of segments must be less than the number of elements in the array of the points.

The following method skips the first element of the array of points and starts drawing a curve from the second point in the array, stopping after
three segments:

int offset = 1;

int segments = 3;

e.Graphics.DrawCurve(bluePen, ptsArray,
offset, segments);

The final version of DrawCurve takes a pen, points array, offset, number of segments, and tension:

public void DrawCurve(
Pen pen,
Point(] points,
int offset,
int numberOfSegments,
float tension

);

Here's an example:

int offset = 1,

int segments = 3;

e.Graphics.DrawCurve(bluePen, ptsArray,
offset, segments, tension);

3.2.1.10 Drawing Closed Curves

As stated earlier, a closed curve is a curve whose starting and ending points are the same. The Graphics class provides the
DrawClosedCurve method to draw closed curves. It has the following overloaded forms:

® ublic void DrawClosedCurve(Pen, Point[]);
® public void DrawClosedCurve(Pen, PointF[]);
° public void DrawClosedCurve(Pen, Point(], float, FillMode);

® public void DrawClosedCurve(Pen, PointF[], float, FillMode);

The simplest form of DrawClosedCurve takes two parameters: a pen and an array of points creates an array of points and a pen
and calls the DrawClosedCurve method.

Listing 3.16 Drawing closed curves

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create a pen

Pen bluePen = new Pen(Color.Blue, 1);
/I Create an array of points

PointF ptl = new PointF(40.0F, 50.0F);
PointF pt2 = new PointF(50.0F, 75.0F);
PointF pt3 = new PointF(100.0F, 115.0F);
PointF pt4 = new PointF(200.0F, 180.0F);
PointF pt5 = new PointF(200.0F, 90.0F);

PointF[] ptsArray =

{

ptl, pt2, pt3, pt4, pt5
h
/I Draw curve
e.Graphics.DrawClosedCurve(bluePen, ptsArray);
/I Dispose of object
bluePen.Dispose();

}

shows the output from . The result is a closed curve.

Figure 3.23. Drawing a closed curve

=101 %

The second form of DrawClosedCurve takes as arguments the tension of the curve andrillMode. We have already discussed tension.FillMode
specifies how the interior of a closed path is filled and clipped. The FillMode enumeration represents the fill mode of graphics objects. It has
two modes: Alternate (the default mode) and Winding.

As the documentation says,

To determine the interiors of a closed curve in the Alternate mode, draw a line from any arbitrary start point in the path
to some point obviously outside the path. If the line crosses an odd number of path segments, the starting point is
inside the closed region and is therefore part of the fill or clipping area. An even number of crossings means that the
point is not in an area to be filled or clipped. An open figure is filled or clipped by using a line to connect the last point to
the first point of the figure.

The Winding mode considers the direction of the path segments at each intersection. It adds one for every clockwise
intersection, and subtracts one for every counterclockwise intersection. If the result is nonzero, the point is considered
inside the fill or clip area. A zero count means that the point lies outside the fill or clip area.

We will clarify these definitions with examples in the discussion of paths in .

uses DrawClosedCurve to draw a closed curve with a tension and fill mode.

Listing 3.17 Drawing a closed curve with a tension and fill mode

/I Draw curve

float tension = 0.5F;
e.Graphics.DrawClosedCurve(bluePen, ptsArray,
tension, FillMode.Alternate);

3.2.1.11 Drawing Bézier Curves

The Bézier curve, developed by Pierre Bézier in the 1960s for CAD/CAM operations, has become one of the most used curves in drawing. A
Bézier curve is defined by four points: two endpoints and two control point shows an example of a Bézier curve in which A and B
are the starting and ending points and C and D are two control points.

Figure 3.24. A Bézier curve

D

The Graphics class provides the DrawBezier and DrawBeziers methods for drawing Bézier curves. DrawBezier draws a Bézier curve defined
by four points: the starting point, two control points, and the ending point of the curve. The following example draws a Bézier curve with
starting point (30, 20), ending point (140, 50), and control points (80, 60) and (120, 18).

e.Graphics.DrawBezier(bluePen, 30, 20,
80, 60, 120, 180, 140, 50);

DrawBeziers draws a series of Bézier curves from an array ofPoint structures. To draw multiple beziers, you need % + 1 points, wherex is the
number of Bézier segments.

draws Bézier curves using bothDrawBezier and DrawBeziers.

Listing 3.18 Drawing Bézier curves

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)
{
Graphics g = e.Graphics ;
/I Create pens
Pen bluePen = new Pen(Color.Blue, 1);
Pen redPen = new Pen(Color.Red, 1);
/I Create points for curve
PointF p1 = new PointF(40.0F, 50.0F);
PointF p2 = new PointF(60.0F, 70.0F);
PointF p3 = new PointF(80.0F, 34.0F);
PointF p4 = new PointF(120.0F, 180.0F);
PointF p5 = new PointF(200.0F, 150.0F);
PointF p6 = new PointF(350.0F, 250.0F);
PointF p7 = new PointF(200.0F, 200.0F);
PointF[] ptsArray =
{
pl, p2, p3, p4, p5, p6, p7
h
/I Draw a Bézier
e.Graphics.DrawBezier(bluePen, 30, 20,
80, 60, 120, 180, 140, 50);
/I Draw Béziers
e.Graphics.DrawBeziers(redPen, ptsArray);
/I Dispose of objects
redPen.Dispose();
bluePen.Dispose();

}

shows the output from .

Figure 3.25. Drawing Bézier curves

1l

3.2.1.12 Drawing a Polygon

A polygon is a closed shape with three or more straight sides. Examples of polygons include triangles and rectangles.

The Graphics class provides aDrawPolygon method to draw polygons. DrawPolygon draws a polygon defined by an array of points. It takes
two arguments: a pen and an array of Point or PointF strucures.

To draw a polygon, an application first creates a pen and an array of points and then calls the DrawPolygon method with these parameters.
draws a polygon with five points.

Listing 3.19 Drawing a polygon

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

Graphics g = e.Graphics ;
/I Create pens
Pen greenPen = new Pen(Color.Green, 2);
Pen redPen = new Pen(Color.Red, 2);
/I Create points for polygon
PointF pl = new PointF(40.0F, 50.0F);
PointF p2 = new PointF(60.0F, 70.0F);
PointF p3 = new PointF(80.0F, 34.0F);
PointF p4 = new PointF(120.0F, 180.0F);
PointF p5 = new PointF(200.0F, 150.0F);
PointF[] ptsArray =
{

pl, p2, p3, p4, p5
I
/I Draw polygon
e.Graphics.DrawPolygon(greenPen,ptsArray);
/I Dispose of objects
greenPen.Dispose();
redPen.Dispose();

}

shows the output from .

Figure 3.26. Drawing a polygon

™ Form? = 3 |

3.2.1.13 Drawing Icons

The Drawlcon and DrawlconUnstretched methods are used to draw icons.Drawlcon draws an image represented by a specified object at the
specified coordinates—stretching the image to fit, if necessary. DrawlconUnstretched draws an image represented by anlcon object without

scaling the image.

Drawlcon and DrawlconUnstretched take two arguments: anlcon object and upper left corner coordinates of a rectangle. To draw an icon
using these methods, an application first creates an icon and either a Rectangle object or coordinates to the upper left corner at which to draw

the icon.

An Icon object represents a Windows icon. An application creates anlcon object using its constructor, which takes arguments ofstring, Icon,

Stream, and Type. describes the properties of thelcon class.

describes some of the methods of thelcon class.

Table 3.3. Icon properties

Property Description
Handle Represents the window handle of an icon.
Height Represents the height of an icon.
Size Represents the size of an icon.
Width Represents the width of an icon.

Table 3.4. Icon methods

Method Description
Clone Clones an Icon object, creating a duplicate image.
Save Saves an Icon object to the output stream.
ToBitmap Converts an Icon object to aBitmap object.

draws icons. The application first creates twolcon objects, then creates aRectangle object and callsDrawlcon and
DrawlconUnstretched.

Listing 3.20 Drawing icons

Icon iconl = new Icon("mouse.ico");

Icon icon2 = new Icon("logo.ico");

int x = 20;

inty = 50;

e.Graphics.Drawlcon(iconl, X, y);

Rectangle rect = new Rectangle(100, 200, 400, 400);
e.Graphics.DrawlconUnstretched(icon2, rect);

shows the output from .

Figure 3.27. Drawing icons

(Mrom1 =Dl x|

3.2.1.14 Drawing Graphics Paths

Agraphics path is a combination of multiple graphics shapes. For example, the graphics path i is a combination of lines, an
ellipse, and a rectangle.

Figure 3.28. A path

iy

The GraphicsPath class represents graphics paths. It provides methods to add graphics objects. For example, thé\ddLine, AddRectangle,
AddEllipse, AddArc, AddPolygon, AddCurve, and AddBezier methods add a line, a rectangle, an ellipse, an arc, a polygon, a curve, and a
Bézier curve, respectively.

GraphicsPath is defined in the System.Drawing.Drawing2D namespace. You must import this namespace using the following line:

using System.Drawing.Drawing2D;
The Graphics class provides aDrawPath method, which draws a graphics path. It takes two argumentsPen and GraphicsPath.

To draw a graphics path, first we create a GraphicsPath object, then we add graphics shapes to the path by calling ité\dd methods, and finally
we call DrawPath. For example, the following code creates a graphics path, adds an ellipse to the path, and draws it.

GraphicsPath graphPath = new GraphicsPath();
graphPath.AddEllipse(50, 50, 100, 150);
g.DrawPath(greenPen, graphPath);

Let's add more shapes to the graph. creates a graphics path; adds some lines, an ellipse, and a rectangle; and draws the path.
Listing 3.21 Drawing a graphics path

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
/I Create a pen
Pen greenPen = new Pen(Color.Green, 1);
/I Create a graphics path

GraphicsPath path = new GraphicsPath();
/I Add a line to the path
path.AddLine(20, 20, 103, 80);
/I Add an ellipse to the path
path.AddEllipse(100, 50, 100, 100);
/I Add three more lines
path.AddLine(195, 80, 300, 80);
path.AddLine(200, 100, 300, 100);
path.AddLine(195, 120, 300, 120);
/I Create a rectangle and call
/I AddRectangle
Rectangle rect =

new Rectangle(50, 150, 300, 50);
path.AddRectangle(rect);
/I Draw path
e.Graphics.DrawPath(greenPen, path);
/I Dispose of object
greenPen.Dispose();

}

shows the output from .

Figure 3.29. Drawing a path

8 Formi

3.2.1.15 Drawing Pie Shapes

Apieis a slice of an ellipse. A pie shape also consists of two radial lines that intersect with the endpoints of the ar shows an

ellipse with four pie shapes.

Figure 3.30. Four pie shapes of an ellipse

The Graphics class provides the DrawPie method, which draws a pie shape defined by an arc of an ellipse. TheDrawPie method takes aPen
object, a Rectangle or RectangleF object, and two radial angles.

Let's create an applicati vs pie shapes. We create a Windows application and add two text boxes and a button control to the form.
The final form looks like Eigure 3.3]

Figure 3.31. A pie shape—-drawing application

The Draw Pie button will draw a pie shape based on the values entered in theStart Angle and Sweep Angle text boxes. shows
the code for the Draw Pie button click event handler.

Listing 3.22 Drawing a pie shape

private void DrawPieBtn_Click(object sender,
System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

/I Get the current value of start and sweep

/I angles

float startAngle =
(float)Convert.ToDouble(textBox1.Text);

float sweepAngle =
(float)Convert.ToDouble(textBox2.Text);

/I Create a pen

Pen bluePen = new Pen(Color.Blue, 1);

/| Draw pie

g.DrawPie(bluePen, 20, 20, 100, 100,
startAngle, sweepAngle);

/I Dispose of objects

bluePen.Dispose();

g.Dispose();

}

Now let's run the pie shape—drawing application and enter values for the start and sweep angles. shows a pie for start and sweep
angles of 0.0 and 90 degrees, respectively.

Figure 3.32. A pie shape with start angle of 0 degrees and sweep angle of 90 degrees

it Shapes

shows a pie for start and sweep angles of 45.0 and 180.0 degrees, respectively.
Figure 3.33. A pie shape with start angle of 45 degrees and sweep angle of 180 degrees

shows a pie for start and sweep angles of 90.0 and 45.0 degrees, respectively.

Figure 3.34. A pie shape with start angle of 90 degrees and sweep angle of 45 degrees

Note

We will see a real-world pie chart application in .

3.2.1.16 Drawing Images

The Graphics class also provides functionality for drawing images, usingDrawlmage and DrawlmageUnscaled. Drawlmage draws an Image
object with a specified size, and DrawlmageUnscaled draws an Image object without scaling it. TheDrawlmage method has many overloaded

forms.

Note

Here we discuss simple images. andH discuss the Image class, its members, and imaging-related functionality
in detail.

An application creates an Image object by calling thelmage class's static FromFile method, which takes a file name as an argument. After that
you create the coordinates of a rectangle in which to draw the image and call Drawlmage. draws an image on the surface with a
size of ClientRectangle.

Listing 3.23 Drawing an image

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

try
{
/I Create an image from a file
Image newlmage =
Image.FromFile("dnWatcher.gif");

/I Draw image

e.Graphics.Drawlmage(newlmage,

this.ClientRectangle);
newlmage.Dispose();

catch (Exception ex)

{
MessageBox.Show(ex.Message.ToString());

}
}

shows the output from .

Figure 3.35. Drawing an image

Drawing Inmages

C# Comer Weekly Newslehter

3.2.2 Fill Methods

So far we have seen only the draw methods of the Graphics class. As we discussed earlier, pens are used to draw the outer boundary of

graphics shapes, and brushes are used to fill the interior of graphics shapes. In this section we will cover the Fill method
class. You can fill only certain graphics shapes; hence there are only a few Fill methods available in the Graphics class. |

3.2.2.1 The FiliClosedCurve Method

s of the Graphics

Table 3.3 lists them.

FillClosedCurve fills the interior of a closed curve. The first parameter of-illClosedCurve is a brush. It can be a solid brush, a hatch brush, or a
Chaéter }

gradient brush. Brushes are discussed in more detail in

. The second parameter is an array of points. The third and fourth

parameters are optional. The third parameter is a fill mode, which is represented by the FillMode enumeration. The fourth and last optional

parameter is the tension of the curve, which we discussed in Section 3.2.1.1d.

The FillMode enumeration specifies the way the interior of a closed path is filled. It has two modes: alternate or winding. The values for
alternate and winding are Alternate and Winding, respectively. The default mode isAlternate. The fill mode matters only if the curve intersects
itself (see [Section 3.2.1.1;]).

To fill a closed curve using FillClosedCurve, an application first creates aBrush object and an array of points for the curve. The application can
then set the fill mode and tension (which is optional) and call FillClosedCurve.

creates an array of PointF structures and aSolidBrush object, and callsFillClosedCurve.

Listing 3.24 Using FiliClosedCurve to fill a closed curve

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
/I Create an array of points
PointF ptl = new PointF(40.0F, 50.0F);
PointF pt2 = new PointF(50.0F, 75.0F);
PointF pt3 = new PointF(100.0F, 115.0F);
PointF pt4 = new PointF(200.0F, 180.0F);
PointF pt5 = new PointF(200.0F, 90.0F);
PointF[] ptsArray =
{
ptl, pt2, pt3, pt4, pt5
k%
/I Fill a closed curve
float tension = 1.0F;
FillMode flMode = FillMode.Alternate;
SolidBrush blueBrush = new SolidBrush(Color.Blue);
e.Graphics.FillClosedCurve(blueBrush, ptsArray,
flMode, tension);
/I Dispose of object
blueBrush.Dispose();

Table 3.5. Graphics fill methods

Method Description

FillClosedCurve Fills the interior of a closed cardinal spline curve defined by an array oPoint structures.

FillEllipse Fills the interior of an ellipse defined by a bounding rectangle specified by a pair of coordinates, a width, and a height.

FillPath Fills the interior of aGraphicsPath object.

FillPie Fills the interior of a pie section defined by an ellipse specified by a pair of coordinates, a width, a height, and two radial
lines.

FillPolygon Fills the interior of a polygon defined by an array of points specified bfoint structures.

FillRectangle Fills the interior of a rectangle specified by a pair of coordinates, a width, and a height.

FillRectangles Fills the interiors of a series of rectangles specified byRectangle structures.

FillRegion Fills the interior of aRegion object.

shows the output from .

Figure 3.36. Filling a closed curve

:__;!EFI]II‘!'II _I_l- = EI

3.2.2.2 The FillEllipse Method

FillEllipse fills the interior of an ellipse. It takes &Brush object and rectangle coordinates.

To fill an ellipse using FillEllipse, an application creates aBrush and a rectangle and callsFillEllipse. creates three brushes and
calls FillEllipse to fill an ellipse with a brush.

Listing 3.25 Filling ellipses

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
Graphics g = e.Graphics ;
/I Create brushes
SolidBrush redBrush = new SolidBrush(Color.Red);
SolidBrush blueBrush = new SolidBrush(Color.Blue);
SolidBrush greenBrush = new SolidBrush(Color.Green);
/I Create a rectangle
Rectangle rect =
new Rectangle(80, 80, 50, 50);
/I Fill ellipses
g.FillEllipse(greenBrush,
40.0F, 40.0F, 130.0F, 130.0F);
g.FillEllipse(blueBrush, 60, 60, 90, 90);
g.FillEllipse(redBrush, rect);
g.FillEllipse(greenBrush,
100.0F, 90.0F, 10.0F, 30.0F);
/I Dispose of objects
blueBrush.Dispose();
redBrush.Dispose();
greenBrush.Dispose();

}

shows the output from .

Figure 3.37. Filling ellipses

3.2.2.3 The FillPath Method

FillPath fills the interior of a graphics path. To do this, an application create8rush and GraphicsPath objects and then callsFillPath, which

takes a brush and a graphics path as arguments. Listing 3.2§ creates GraphicsPath and SolidBrush objects and callsFillPath.

Listing 3.26 Filling a graphics path

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create a solid brush
SolidBrush greenBrush =

new SolidBrush(Color.Green);
/I Create a graphics path
GraphicsPath path = new GraphicsPath();
/I Add a line to the path
path.AddLine(20, 20, 103, 80);
/I Add an ellipse to the path
path.AddEllipse(100, 50, 100, 100);
/I Add three more lines
path.AddLine(195, 80, 300, 80);
path.AddLine(200, 100, 300, 100);
path.AddLine(195, 120, 300, 120);

/I Create a rectangle and call
/I AddRectangle
Rectangle rect =

new Rectangle(50, 150, 300, 50);
path.AddRectangle(rect);
/I Fill path
e.Graphics.FillPath(greenBrush, path);
/I Dispose of object
greenBrush.Dispose();

}

shows the output from. As the figure shows, the fill method fills all the covered areas of a graphics path.

Figure 3.38. Filling a graphics path

3.2.2.4 The Fillrie Method

FillPie fills a pie section with a specified brush. It takes four parameters: a brush, the rectangle of the ellipse, and the start and sweep angles.
The following code calls FillPie.

g.FillPie(new SolidBrush(Color.Red),
0.0F, 0.0F, 100, 60, 0.0F, 90.0F);

We will discuss the FillPie method in the pie chart application in.

3.2.2.5 The FillPolygon Method

FillPolygon fills a polygon with the specified brush. It takes three parameters: a brush, an array of points, and a fill mode. TiéIMode
enumeration defines the fill mode of the interior of the path. It provides two fill modes: Alternate and Winding. The default mode is Alternate.

In our application we will use a hatch brush. So far we have seen only a solid brush. A solid brush is a brush with one color only. Ahatch
brush is a brush with a hatch style and two colors. These colors work together to support the hatch style. THeatchBrush class represents a

hatch brush. We will discuss hatch brushes in more detail in Chapter

The code in uses FillPolygon to fill a polygon using theWinding mode.

Listing 3.27 Filling a polygon

Graphics g = e.Graphics ;
/I Create a solid brush
SolidBrush greenBrush =
new SolidBrush(Color.Green);
/I Create points for polygon
PointF p1 = new PointF(40.0F, 50.0F);

PointF p2 = new PointF(60.0F, 70.0F);
PointF p3 = new PointF(80.0F, 34.0F);
PointF p4 = new PointF(120.0F, 180.0F);
PointF p5 = new PointF(200.0F, 150.0F);
PointF[] ptsArray =
{

pl, p2, p3, p4, p5
h
/I Draw polygon
e.Graphics.FillPolygon(greenBrush, ptsArray);
/I Dispose of object
greenBrush.Dispose();

shows the output from . As you can see, the fill method fills all the areas of a polygon.

Figure 3.39. Filling a polygon

(Mrormt =10l x|

3.2.2.6 Filling Rectangles and Regions

FillRectangle fills a rectangle with a brush. This method takes a brush and a rectangle as arguments:illRectangles fills a specifiedseries of

rectangles with a brush, and it takes a brush and an array of rectangles. These methods also have o
For instance, if you're using a HatchStyle brush, you can specify background and foreground colors.|

options in more detail.

Note

erloaded forms with additional options.
discusses FillRectangle and its

The HatchBrush class is defined in the System.Drawing.Drawing2D namespace.

The source code in uses FillRectangle to fill two rectangles. One rectangle is filled with a hatch brush, the other with a solid brush.

Listing 3.28 Filling rectangles

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Create brushes
SolidBrush blueBrush = new SolidBrush(Color.Blue);
/I Create a rectangle
Rectangle rect = new Rectangle(10, 20, 100, 50);
/I Fill rectangle
e.Graphics.FillRectangle(new HatchBrush
(HatchStyle.BackwardDiagonal,
Color.Yellow, Color.Black),
rect);
e.Graphics.FillRectangle(blueBrush,
new Rectangle(150, 20, 50, 100));

/I Dispose of object

blueBrush.Dispose();
}

shows the output from .

Figure 3.40. Filling rectangles

=101 x|

FillRegion fills a specified region with a brush. This method takes a brush and a region as input paramete creates aRegion object
from a rectangle and calls FillRegion to fill the region.

Listing 3.29 Filling regions

Rectangle rect = new Rectangle(20, 20, 150, 100);
Region rgn = new Region(rect);
e.Graphics.FillRegion(new SolidBrush(Color.Green)
, rgn);

Note

hapter { discusses rectangles and regions in more detail.

3.2.3 Miscellaneous acraphics Class Methods

The Graphics class provides more than just draw and fill methods. Miscellaneous methods are defined i. Some of these methods
are discussed in more detall later.

3.2.3.1 The Clear Method

The Clear method clears the entire drawing surface and fills it with the specified background color. It takes one argument, of typ&olor. To
clear a form, an application passes the form's background color. The following code snippet uses the Clear method to clear a form.

form.Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
g.Dispose();

Table 3.6. Some miscellaneous Graphics methods

Method

Description

AddMetafileComment

Adds a comment to a Metafile object.

Clear Clears the entire drawing surface and fills it with the specified background color.

ExcludeClip Updates the clip region to exclude the area specified by &Rectangle structure.

Flush Forces execution of all pending graphics operations and returns immediately without waiting for the operations
to finish.

FromHdc Creates a new Graphics object from a device context handle.

FromHwnd Creates a new Graphics object from a window handle.

Fromimage Creates a new Graphics object from anImage object.

GetHalftonePalette Returns a handle to the current Windows halftone palette.

GetHdc Returns the device context handle associated with aGraphics object.

GetNearestColor

Returns the nearest color to the specifiedColor structure.

IntersectClip

Updates the clip region of a Graphics object to the intersection of the current clip region and aRectangle
structure.

IsVisible

Returns true if a point is within the visible clip region.

MeasureCharacterRanges

Returns an array of Region objects, each of which bounds a range of character positions within a string.

MeasureString

Measures a string when drawn with the specified=ont object.

MultiplyTransform Multiplies the world transformation and theMatrix object.

ReleaseHdc Releases a device context handle obtained by a previous call to theGetHdc method.

ResetClip Resets the clip region to an infinite region.

ResetTransform Resets the world transformation matrix to the identity matrix.

Restore Restores the state of a Graphics object to the state represented by aGraphicsState object. Takes
GraphicsState as input, removes the information block from the stack, and restores theGraphics object to the
state it was in when it was saved.

RotateTransform Applies rotation to the transformation matrix.

Save Saves the information block of a Graphics object. The information block stores the state of theGraphics object.
The Save method returns a GraphicsState object that identifies the information block.

ScaleTransform Applies the specified scaling operation to the transformation matrix.

SetClip Sets the clipping region to theClip property.

TransformPoints

Transforms an array of points from one coordinate space to another using the current world and page
transformations.

TranslateClip

Translates the clipping region by specified amounts in the horizontal and vertical directions.

TranslateTransform

Prepends the specified translation to the transformation matrix.

3.2.3.2 The MeasureString Method

MeasureString measures a string when it is drawn with a~ont object and returns the size of the string as &izeF object. You can useSizeF to
find out the height and width of string.

MeasureString can also be used to find the total number of characters and lines in a string. It has seven overloaded methods. It takes two
required parameters: the string and font to measure. Optional parameters you can pass include the width of the string in pixels, maximum
layout area of the text, string format, and combinations of these parameters.

Note

discusses string operations in detail.

uses the MeasureString method to measure a string's height and width and draws a rectangle and a circle around the string. This
example also shows how to find the total number of lines and characters of a string.

Listing 3.30 Using the MeasureString method

Graphics g = Graphics.FromHwnd(this.Handle);
g.Clear(this.BackColor);

string testString = "This is a test string”;
Font verdanal4 = new Font("Verdana", 14);
Font tahomal8 = new Font("Tahoma", 18);
int nChars;

int nLines;

/I Call MeasureString to measure a string

SizeF sz = g.MeasureString(testString, verdanal4);
string stringDetails = "Height: "+sz.Height. ToString()

+ ", Width: "+sz.Width.ToString();
MessageBox.Show("First string details: "+ stringDetails);
g.DrawString(testString, verdanal4, Brushes.Green,
new PointF(0, 100));

g.DrawRectangle(new Pen(Color.Red, 2), 0.0F, 100.0F,
sz.Width, sz.Height);

sz = g.MeasureString("Ellipse", tahomals,

new SizeF(0.0F, 100.0F), new StringFormat(),

out nChars, out nLines);

stringDetails = "Height: "+sz.Height.ToString()

+ ", Width: "+sz.Width.ToString()

+", Lines: "+nLines.ToString()

+ ", Chars: "+nChars.ToString();
MessageBox.Show("Second string details: "+ stringDetails);

g.DrawsString(“Ellipse”, tahomal8, Brushes.Blue,
new PointF(10, 10));

g.DrawEllipse(new Pen(Color.Red, 3), 10, 10,
sz.Width, sz.Height);g.Dispose()

shows the output from .

Figure 3.41. Using MeasureString when drawing text

B Form1

3.2.3.3 The Fromimage, FromHdc, and FromHwnd Methods

As we discussed earlier, an application can use Graphics class members to get aGraphics object. The Graphics class provides three methods
to create a Graphics object: FromHwnd, FromHdc, and Fromimage.

Fromimage takes an Image object as input parameter and returns eGraphics object. We will discuss Fromlmage in more detail in
and f. The following code snippet creates aGraphics object from anImage object. Once aGraphics object has been created, you can call its
members.

Image img = Image.FromFile("Rose.jpg");
Graphics g = Graphics.Fromlmage(img);
/I Do something

g.Dispose();

Note

Make sure you call theDispose method of the Graphics object when you're finished with it.

FromHdc creates aGraphics object from a window handle to a device context. The following code snippet shows an example in which
FromHdc takes one parameter, of type IntPtr.

IntPtr hdc = e.Graphics.GetHdc();
Graphics g= Graphics.FromHdc(hdc);
/I Do something
e.Graphics.ReleaseHdc(hdc);
g.Dispose();

Note

You need to call the ReleaseHdc method to release resources allocated by a window handle to a device context, and also
make sure you call the Dispose method of the Graphics object when you're finished with it.

FromHwnd returns a Graphics object for a form. The following method takes a window handle.

Graphics g = Graphics.FromHwnd(this.Handle);

To draw on a form, an application can pass this handle. Once an application has a Graphics object, it can call anyGraphics class method to
draw graphics objects.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

3.3 The GDI+Painter Application

Almost every chapter of this book will show a real-world example to illustrate the concepts discussed in it. In this chapter we create an
application, GDI+Painter, that you can use to draw and fill simple graphics objects. If you wish, you can add more functionality to the
application. Once you are done drawing graphics shapes, the program allows you to save your drawing in bitmap format. You can modify the
program to save a drawing in .jpeg or .gif format.

The program is a Windows Forms application and looks like . It has three draw buttons (line, ellipse, and rectangle) and two fill
buttons (rectangle and ellipse). The Save Image button allows you to save the image.

Figure 3.42. The GDI+Painter application

o GD1+Pamnte:

o= Save Image

Click on a button and the program draws the selected item on the form. Here's how it works:

First we define some private class-level variables:

I Variables

private Bitmap bitmap = null;
private Bitmap curBitmap = null;
private bool dragMode = false;
private int drawindex = 1,

private int curX, curY, X, y;
private int diffX, diffY;

private Graphics curGraphics;
private Pen curPen;

private SolidBrush curBrush;
private Size fullSize;

Note

Please download GDI+Painter application source code from online (l/vww.awprofessional.com/titles/032116077d).

The next step is to initialize objects. On the form-load event handler, we create a bitmap and a Graphics object from the bitmap, which
represents the entire form. We set its background color to the form's background color by calling the Graphics.Clear method. We also create a
Pen object and aBrush object when the form Ioads. gives the form-load event handler code.

Listing 3.31 The form-load event handler

private void Form1_Load(object sender,
System.EventArgs e)
{
/I Get the full size of the form
fullSize = SystemInformation
.PrimaryMonitorMaximizedWindowSize;
/I Create a bitmap using full size
bitmap = new Bitmap(fullSize.Width,
fullSize.Height);
/I Create a Graphics object from Bitmap
curGraphics = Graphics.Fromlmage(bitmap);
/I Set background color as form's color
curGraphics.Clear(this.BackColor);
/I Create a new pen and brush as
/I default pen and brush
curPen = new Pen(Color.Black);
curBrush = new SolidBrush(Color.Black);

}

When we click on a button, we find out which button was selected and save it in the drawIndex variable. gives code for the button
click event handler for all buttons.

Listing 3.32 Saving a selected button

private void LineDraw_Click(object sender,
System.EventArgs e)

{

drawindex = 1;

}

http://www.awprofessional.com/titles/0321160770

private void RectDraw_Click(object sender,
System.EventArgs e)
{

drawindex = 2;

private void EllipseDraw_Click(object sender,
System.EventArgs e)

{
drawlndex = 3;

}

private void FilledEllipse_Click(object sender,
System.EventArgs e)

{

drawindex = 5;

Nhen we start drawing on the form, we save the starting point on the mouse-down events and the ending point on the mouse-up events (see
). From these two points we can determine the area of the rectangle we're trying to draw. We use this rectangle in draw and fill
methods.

On a mouse-move event, we calculate the difference between the ending and starting points that are used to draw the rectangle. Notice also
that on mouse down we set dragMode to true, and on mouse up we setdragMode to false. On the basis of the area covered by user
selection, we draw or fill objects on mouse up, which gives the user a visible drawing effect. You will also see the RefreshFormBackground
method, which we will discuss shortly.

Listing 3.33 The mouse-down event handler

private void Form1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{

/] Store the starting point of

/I the rectangle and set the drag mode

/I to true

curX = e.X;

curY =e.y,

dragMode = true;

private void Form1_MouseMove(object sender,

System.Windows.Forms.MouseEventArgs e)
{

/I Find out the ending point of

/I the rectangle and calculate the

/I difference between starting and ending

/I points to find out the height and width

/I of the rectangle

X=e.X;

y=e.,

diffX = e.X - curX;

diffy = e.Y - curY;

/I'If dragMode is true, call refresh

/I to force the window to repaint

if (dragMode)

{

this.Refresh();

private void Form1_MouseUp(object sender,
System.Windows.Forms.MouseEventArgs e)
{
diffX = x - curX;
diffY =y - curY;
switch (drawIndex)
{
case 1:
{
/I Draw a line
curGraphics.DrawLine(curPen,
curX, curY, X, y);
break;
}
case 2:
{
/I Draw an ellipse
curGraphics.DrawEllipse(curPen,
curX, curY, diffx, diffY);
break;
}
case 3:
{
/I Draw a rectangle
curGraphics.DrawRectangle(curPen,
curX, curY, diffx, diffY);
break;
}
case 4:
{
/I Fill the rectangle
curGraphics.FillRectangle(curBrush,
curX, curY, diffx, diffY);
break;
}
case 5:
{
/I Fill the ellipse
curGraphics.FillEllipse(curBrush,
curX, curY, diffx, diffY);
break;
}

}
/I Refresh

RefreshFormBackground();
/I Set drag mode to false
dragMode = false;

}

Now we add code to the form's paint event handler, which draws and fills the object. gives the code for theOnPaint method.

Listing 3.34 The onpPaint method

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{

Graphics g = e.Graphics;
/I If dragMode is true, draw the selected
/I graphics shape
if (dragMode)
{
switch (drawlndex)
{
case 1:
{
g.DrawLine(curPen, curX, curY, X, y);
break;
}
case 2:
{
g.DrawEllipse(curPen,
curX, curY, diffX, diffY);
break;
}
case 3:
{
g.DrawRectangle(curPen,
curX, curY, diffX, diffY);
break;
}
case 4:
{
g.FillRectangle(curBrush,
curX, curY, diffX, diffY);
break;
}
case 5:
{
g.FillEllipse(curBrush,
curX, curY, diffX, diffY);
break;
}
}

Here's a little trick. You may have noticed that we used the RefreshFormBackground method. This method sets the current drawing as the
_

background of the form. Listing 3.35 gives code for the method.

Listing 3.35 The RefreshFormBackground method

private void RefreshFormBackground()
{
curBitmap = bitmap.Clone(
new Rectangle(0, O, this.Width, this.Height),
bitmap.PixelFormat);
this.Backgroundimage = curBitmap;

The Save Image button allows us to save the image by simply calling theSave method of Bitmap. The Save method takes a file name and
format. We use SaveFileDialog to select the file name.tistin; 3.36 gives code for the Save Image button.

Listing 3.36 The Save Image button click handler

private void SaveBtn_Click(object sender,
System.EventArgs €)

{
/I Save file dialog
SaveFileDialog saveFileDIlg = new SaveFileDialog();
saveFileDlg.Filter =
"Image files (*.bmp)|*.bmp|All files (*.*)[*.*" ;
if(saveFileDlg.ShowDialog() == DialogResult.OK)
{
/I Create bitmap and call Save method
/l to save it
Bitmap tmpBitmap = bitmap.Clone
(new Rectangle(0, 0,
this.Width, this.Height),
bitmap.PixelFormat);
tmpBitmap.Save(saveFileDlg.FileName,
ImageFormat.Bmp);
}
}

In the end we release all objects, which we can do on the form-closed event (se.
Listing 3.37 The form-closed event handler

private void Form1_Closed(object sender, System.EventArgs €)
{

/I Dispose of all public objects

curPen.Dispose();

curBrush.Dispose();

curGraphics.Dispose();

}

In We will add functionality to select different pens and brushes to draw and fill graphics shapes.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

3.4 Drawing a Pie Chart

Let's look at one more real-world application. In this example we will develop an application that draws pie charts based on a data feed. Pie
charts are useful when you need to represent statistical data in a graphical way—for example, the percentage of users visiting a Web site
from different countries, or the percentage grades in different subjects. In our example we will use the DrawPie and FillPie methods.

First we create a Windows application and add four buttons, a text box, and a list box control. We change the text and names of the text box,
. In the Enter Share text box we will enter a number to represent the share of total items. For

and our final form looks like

example, add five values in the share box: 10, 20, 30, 40, 50. The total is 150. The percentage of the share with value 10 is 10/150.

Figure 3.43. A pie chart-drawing application

=10i %]

semocia | o

D Chan Fill Chart

adds variables. You may notice the structuresliceData, which has two public variables:share and cir. The share variable
represents the share of a slice, and clr is its color.

Listing 3.38 The sliceData Structure

/I User-defined variables
private Rectangle rect =

new Rectangle(250, 150, 200, 200);
public ArrayList sliceList = new ArrayList();
struct sliceData
{

public int share;

public Color clr;

h

private Color curClr = Color.Black;

int shareTotal = 0;

The Select Color button allows us to select the color for a share. A shows, we use ColorDialog to select a color.

Listing 3.39 Selecting a color

private void ColorBtn_Click(object sender, System.EventArgs e)
{
ColorDialog clrDIg = new ColorDialog();
if (clrDlg.ShowDialog() == DialogResult.OK)
{
curClr = cIrDlg.Color;
}
}

The Add Slice button adds the data to an array to be added to the list for calculation. A shows, all data is added to an array. This
code also adds the entered data to the ListBox control.

Listing 3.40 Adding pie chart data

private void buttonl_Click(object sender, System.EventArgs €)
{

int slice = Convert.Tolnt32(textBox1.Text);

shareTotal += slice;

sliceData dt;

dt.clr = curClr;

dt.share = slice;

sliceList.Add(dt);

listBox1.ltems.Add(

"Share:"+slice.ToString()+" ," + curClr.ToString());

}

The Draw Chart and Fill Chart button clicks are used to draw the outer boundary and fill the chart, respectively. These buttons call the
DrawPieChart method with a Boolean variable, as shown irListing 3.41].

Listing 3.41 The Draw Pie and Fill Pie button click handlers

private void DrawPie_Click(object sender, System.EventArgs e)

{
DrawPieChart(false);

}
private void FillChart_Click(object sender, System.EventArgs e)

{
DrawPieChart(true);

}

The DrawPieChart method actually draws the pie chart, as shown i . Depending on which button—Fill Chart or Draw Chart—was
clicked, we call FillPie or DrawPie, respectively. We also read eachsliceData variable of the array and calculate the percentage of a share in
the entire chart, represented by an angle.

Listing 3.42 The brawPieChart method

private void DrawPieChart(bool fiMode)

{

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

Rectangle rect = new Rectangle(250, 150, 200, 200);
float angle = 0O;

float sweep = 0;

foreach(sliceData dt in sliceList)

{

sweep = 360f * dt.share / shareTotal;

if(fiMode)

g.FillPie(new SolidBrush(dt.clr), rect, angle, sweep);
else

g.DrawPie(new Pen(dt.clr), rect, angle, sweep);
angle += sweep;

}

g.Dispose();

}

Let's see this application jn a e add shares 10, 20, 30, 40, and 50 with different colors. The Draw Chart button click draws a pie chart,

action
with the output shown in .

Figure 3.44. The Draw Chart button click in action

. Pie Chart Application IQI‘EI

P s

Share:10 Color [Fed]
Share: 20 Color [Lime]
Share: 30 Color [Dlive]
Share:40 Color [4=255, R=235, G=255, B=12
Share:50 Color [Bhee]

Drawe Chat

Fill Chat

The Fill Chart button fills the chart, with the output shown i.

Figure 3.45. The Fill Chart button click in action

" pie Chart Application

=10] x|

AddSice |

Shate 10 Colot [Fed]
Share:20 Color [Lime]
Share:30 Color [Olive)

Share:50 Color [Blue]

Sharec40 Color [A=255, R=255, G=295, B=12

Diawe Chost l

Fill Chart

Team LiB |

Team LiB |

SUMMARY

In this chapter we have seen that the Graphics object plays a major role in drawing and represents a canvas to draw graphics curves,
shapes, and images.

We started this chapter by discussing the Graphics class properties. Then we discussed variousGraphics class methods, which are divided
into three categories: draw, fill, and miscellaneous. We saw how to use the draw methods to draw lines, rectangles, ellipses, curves, images,
paths, and other graphics objects. We also discussed differences between the draw and fill methods and how to use the fill methods to fill
rectangles, ellipses, curves, and graphics paths. We then discussed miscellaneous methods, covering the Clear, MeasureString, Fromimage,

FromHdc, and FromHwnd methods.

This chapter also presented a couple of real-world applications, showing how to write an application to draw line and pie charts. We also used
various methods and properties of the Graphics class to write a PaintBrush-like application, GDI+Painter. Using this application, you can draw
lines, rectangles, and ellipses and save the resulting image as a bitmap file.

Having completed this chapter, you should have a good understanding of the Graphics class, its methods and properties, and how to use
those methods and properties to write real-world applications.

] brushes are two of the most frequently used objects in the graphics world. In this chapter we discussed pens and brushes briefly.
Chapter 4 is dedicated to pens and brushes. You will learn how to create different kinds of pens and brushes to write interactive graphics
applications. At the end of we will add different pen and brush options to GDI+Painter, making it more interactive.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 4. Working with Brushes and Pens

Brushes and Pens are the two most frequently used objects in graphics applications. Pens are used to draw the outlines of graphics objects
such as lines and curves; brushes are used to fill the graphic objects' interior areas (e.g., filling a rectangle or an ellipse). In this chapter we
will discuss how to create and use various types of brushes and pens.

We begin by discussing brushes, brush types, their methods and properties, and how to create and use them in GDI+.

GDI+ provides the Pen and Pens classes to represent pens. In this chapter we will discuss how to create different kinds of pens using thePen
class and its properties, and how to use the Pen class methods. We will also discuss how to add line caps, dash caps, line dash styles, and

line cap styles. In . and Q we will discuss the transformation of pens and brushes.

The SystemPens and SystemBrushes classes represent the system pens and brushes, respectively. I we will discuss how to use
these classes to work with system pens and brushes.

At the end of this chapter we will add color, pen, and brush options to the GDI+Painter application that we created

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

4.1 Understanding and Using Brushes

In the .NET Framework library, brush-related functionality is defined in two namespaces: System.Drawing and System.Drawing.Drawing2D.
The System.Drawing namespace defines general brush-related classes and functionality, and theSystem.Drawing.Drawing2D namespace
defines advanced 2D brush-related functionality. For example, the Brush, SolidBrush, TextureBrush, and Brushes classes are defined in the
System.Drawing namespace; and theHatchBrush and GradientBrush classes are defined in theSystem.Drawing.Drawing2D namespace.

Before using brushes, obviously you must include the corresponding namespace to your application. Alternatively, you can use the
namespace as a prefix to the class; for example, System.Drawing.Brush represents the Brush class if you do not wish to include the

System.Drawing namespace in your application.

The code snippet in creates a redSolidBrush object and uses it to draw a rectangle. This code is written on a form's paint event
handler. The first line gets the Graphics object of the form, and the second line creates a brush using th&olidBrush class, which later is used
to fill a rectangle. The last line disposes of the SolidBrush object.

Listing 4.1 Creating a solid brush

Graphics g = e.Graphics;

SolidBrush redBrush = new SolidBrush(Color.Red);
Rectangle rect = new Rectangle(150, 80, 200, 140);
g.FillRectangle(redBrush, rect);
redBrush.Dispose();

4.1.1 The Brush Class

In the .NET Framework library, the Brush class is an abstract base class, which means you cannot create an instance of it without using its
‘

derived classes. All usable classes are inherited from the abstract Brush class. Figure 4.1 shows all the Brush-derived classes that can be
used in your GDI+ applications.

Figure 4.1. Classes inherited from the Brush class

System.Drawing.Brush

—# System.Drawing.Drawing2D.HatchBrush

—M Svatem.Drawing.Drawing2D.LinearGradientBrush

—# System.Drawing.Drawing2D. PathGradientBrush

k

Syatem.Drawing.SoclidBrush

——# System.Drawing.TextureBrush

Applications generally call fill methods of the appropriate Graphics class, which in turn use brushes to fill GDI+ objects (such as an ellipse, an
arc, or a polygon) with a certain kind of brush. GDI+ provides four different kinds of brushes: solid, hatch, texture, and gradient.
shows the brush types and their classes.

Figure 4.2. Brush types and their classes

GDl+Brush Types

Class Mame

Solid Brush 44— SolidBrush

Hatch Brush 44— HatchBrush

Texture Brush M—— TextureBrush

Gradient Brush M— LinearGradientBrush

— PathGradiencBrush

4.1.2 The Brushes Class

The Brushes class is a sealed class (it cannot be inherited) Brushes provides more than 140 static members (properties), and each of these
members represents a brush with a particular color (including all the standard colors). For instance, the Brushes.Pink, Brushes.Red, and
Brushes.Green members represent Brush objects with the colors pink, red, and green, respectively.

4.1.3 Solid Brushes

Asolid brush is a brush that fills an area with a single solid color. We create &olidBrush object by calling its constructor and passing aColor
structure as the only parameter. The Color structure represents a color. It has a static property for every possible color. For exampl&olor.Red
represents the color red. The code snippet in creates three SolidBrush objects with three different colors: red, green, and blue.

Listing 4.2 Creating a SolidBrush object

SolidBrush redBrush = new SolidBrush(Color.Red);
SolidBrush greenBrush = new SolidBrush(Color.Green);
SolidBrush blueBrush = new SolidBrush(Color.Blue);

SolidBrush has only one property of interest:Color, which represents the color of the brush.

uses red, green, and blue solid brushes and fills an ellipse, a pie, and a rectangle using thEillEllipse, FillPie, and FillRectangle
methods of the Graphics class, respectively.

Listing 4.3 Using the SolidBrush class

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{

Graphics g = e.Graphics;
/I Create three SolidBrush objects
/I using the colors red, green, and blue
SolidBrush redBrush = new SolidBrush(Color.Red);
SolidBrush greenBrush = new SolidBrush(Color.Green);
SolidBrush blueBrush = new SolidBrush(Color.Blue);
/I Fill ellipse using red brush
g.FillEllipse(redBrush, 20, 40, 100, 120);
/I Fill rectangle using blue brush
Rectangle rect = new Rectangle(150, 80, 200, 140);
g.FillRectangle(blueBrush, rect);
/I Fill pie using green brush
g.FillPie(greenBrush,
40, 20, 200, 40, 0.0f, 60.0f);
/I Dispose of objects
redBrush.Dispose();
greenBrush.Dispose();
blueBrush.Dispose();
}

The output of draws an ellipse, a rectangle, and a pie, a shows.

Figure 4.3. Graphics objects filled by SolidBrush

=l 3 |

4.1.4 Hatch Brushes

Hatch brushes are brushes with a hatch style, a foreground color, and a background coloHatches are a combination of rectangle lines and
the area between the lines. The foreground color defines the color of lines; the background color defines the color between lines.

The HatchBrush class constructor takesHatchStyle as its first parameter andColor as the second parameter. Second and thirdColor
parameters represent the foreground and background colors. The following code snippet shows the constructor signatures:

Note

The HatchBrush class is defined in theSystem.Drawing.Drawing2D namespace. An application needs to provide a
reference to System.Drawing.Drawing2D before using this class. Alternatively, an application can refer to theHatchBrush

class as System.Drawing.Drawing2D.HatchBrush.

public HatchBrush(HatchStyle, Color);
public HatchBrush(HatchStyle, Color, Color);

The following code creates a hatch brush with a dashed-vertical hatch style, blue background, and red foreground:

HatchBrush hBrushl = new HatchBrush
(HatchStyle.DashedVertical, Color.Blue, Color.Red);

We can use this hatch brush to fill graphics objects such as rectangles or ellipses. For example, the following code line fills an ellipse using
hBrushi:

g.FillEllipse(hBrush1, 20, 40, 100, 120);

HatchBrush has three properties: BackgroundColor, Foreground-Color, and HatchStyle. BackgroundColor returns the color of spaces between
the hatch lines, and ForegroundColor represents the color of the hatch lines.

HatchStyle returns the hatch brush style of typeHatchStyle enumeration, whose members are described in.
Let's create a Windows application that looks like . The combo box will list some of the available hatch styles. ThePick... buttons let

you select background and foreground colors of the hatch brush, and the Apply Style button creates a hatch brush based on the selection
and uses it to draw a rectangle.

Figure 4.4. A sample hatch brush application

B Hatch Brushes

First we add one HatchStyle-type and two Color-type class-level variables that represent the current selected hatch style, foreground, and
background color of a hatch brush, respectively. These variables are defined as follows:

Table 4.1. HatchStyle members

Member

Description

BackwardDiagonal

A pattern of lines on a diagonal from upper right to lower left.

Cross

Horizontal and vertical lines that cross.

DarkDownwardDiagonal

Diagonal lines that slant to the right from top points to bottom points, are spaced 50 percent closer together
than in ForwardDiagonal, and are twice the width ofForwardDiagonal lines.

DarkHorizontal Horizontal lines that are spaced 50 percent closer together than in Horizontal and are twice the width of
Horizontal lines.

DarkUpwardDiagonal Diagonal lines that slant to the left from top points to bottom points, are spaced 50 percent closer together
than BackwardDiagonal, and are twice the width ofBackwardDiagonal lines.

DarkVertical Vertical lines that are spaced 50 percent closer together thariVertical and are twice the width ofVertical lines.

DashedDownwardDiagonal

Dashed diagonal lines that slant to the right from top points to bottom points.

DashedHorizontal Dashed horizontal lines.

DashedUpwardDiagonal Dashed diagonal lines that slant to the left from top points to bottom points.

DashedVertical Dashed vertical lines.

DiagonalBrick A hatch with the appearance of layered bricks that slant to the left from top points to bottom points.

DiagonalCross

Forward diagonal and backward diagonal lines that cross.

Divot A hatch with the appearance of divots.
DottedDiamond Forward diagonal and backward diagonal lines, each of which is composed of dots that cross.
DottedGrid Horizontal and vertical lines, each of which is composed of dots that cross.

ForwardDiagonal

A pattern of lines on a diagonal from upper left to lower right.

Horizontal

A pattern of horizontal lines.

HorizontalBrick

A hatch with the appearance of horizontally layered bricks.

LargeCheckerBoard A hatch with the appearance of a checker-board with squares that are twice the size @mallCheckerBoard.
LargeConfetti A hatch with the appearance of confetti that is composed of larger pieces tharBmallConfetti.
LargeGrid Horizontal and vertical lines that cross and are spaced 50 percent farther apart than i€ross.

LightDownwardDiagonal

Diagonal lines that slant to the right from top points to bottom points.

LightHorizontal Horizontal lines that are spaced 50 percent closer together tharHorizontal lines.

LightUpwardDiagonal Diagonal lines that slant to the left from top points to bottom points and are spaced 50 percent closer together
than BackwardDiagonal lines.

LightVertical Vertical lines that are spaced 50 percent closer together tharVertical lines.

Max Hatch style SolidDiamond.

Min Hatch style Horizontal.

Member Description

NarrowHorizontal Horizontal lines that are spaced 75 percent closer together than Horizontal lines (or 25 percent closer
together than LightHorizontal lines).

NarrowVertical Vertical lines that are spaced 75 percent closer together than Vertical lines (or 25 percent closer together
than LightVertical lines).

OutlinedDiamond Forward diagonal and backward diagonal lines that cross.

PercentXX Percent hatch. The "XX" number after "Percent" represents the ratio of foreground color to background color
as XX:100. The values of XX are 05, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, and 90.

Plaid A hatch with the appearance of a plaid material.

Shingle A hatch with the appearance of diagonally layered shingles that slant to the right from top points to bottom
points.

SmallCheckerBoard A hatch with the appearance of a checkerboard.

SmallConfetti A hatch with the appearance of confetti.

SmallGrid Horizontal and vertical lines that cross and are spaced 50 percent closer together thagross lines.

SolidDiamond A hatch with the appearance of a checkerboard placed diagonally.

Sphere A hatch with the appearance of spheres laid adjacent to one another.

Trellis A hatch with the appearance of a trellis.

Vertical A pattern of vertical lines.

Wave Horizontal lines that are composed of tildes.

Weave A hatch with the appearance of a woven material.

WideDownwardDiagonal Diagonal lines that slant to the right from top points to bottom points, have the same spacing as in

ForwardDiagonal, and are triple the width ofForwardDiagonal lines.

WideUpwardDiagonal Diagonal lines that slant to the left from top points to bottom points, have the same spacing as in
BackwardDiagonal, and are triple the width ofBackwardDiagonal lines.

ZigZag Horizontal lines that are composed of zigzags.

private HatchStyle style = new HatchStyle();
private Color forClr = Color.Blue;
private Color backClr = Color.Red;

On the form's load event handler (see , we fill the combo box with different hatch styles and set the background color properties of
our two text boxes to the current colors.

Listing 4.4 The form's load event handler

private void Form1_Load(object sender,
System.EventArgs €)

{
/I Fill combo box with hatch styles

FillHatchStyles();

/I Set foreground and background colors
/I of text boxes

textBox1.BackColor = forClr;
textBox2.BackColor = backClr;

The Fill[HatchStyles method adds different styles to the combo box (se). We have added only a few styles; many more are
available (see ‘).

Listing 4.5 The FillHatchStyles method

private void FillHatchStyles()
{
/I Add hatch styles
comboBox1.ltems.Add(
HatchStyle.BackwardDiagonal. ToString());
comboBox1.ltems.Add(
HatchStyle.Cross.ToString());
comboBox1.ltems.Add(
HatchStyle.DashedVertical.ToString());
comboBox1.ltems.Add(
HatchStyle.DiagonalCross.ToString());
comboBox1.ltems.Add(
HatchStyle.HorizontalBrick.ToString());
comboBox1.ltems.Add(
HatchStyle.LightDownwardDiagonal. ToString());
comboBox1.ltems.Add(
HatchStyle.LightUpwardDiagonal. ToString());
comboBox1.Text =
HatchStyle.BackwardDiagonal. ToString();
}

The Pick... buttons in our combo box (se) call the ColorDialog method and save the selected foreground and background colors,
respectively. These methods also set the background color of the respective text boxes, as shows.

Listing 4.6 The Pick... button click event handler

private void ForeColorBtn_Click(object sender,
System.EventArgs €)

/I Use ColorDialog to select a color
ColorDialog clrDlg = new ColorDialog();
if (clrDlg.ShowDialog() == DialogResult.OK)
{

/I Save color as foreground color,

/I and fill text box with this color

forClr = clrDIg.Color;

textBox1.BackColor = forClr;

}
}

private void BackColorBtn_Click(object sender,
System.EventArgs €)

The last step is to apply the selected styles and colors, crea
Apply Style button click event handler, which is shown i

/I Use ColorDialog to select a color
ColorDialog clrDlg = new ColorDialog();

if (cIrDlg.ShowDialog() == DialogResult.OK)

{
/I Save color as background color,
/I and fill text box with this color
backClIr = clrDlg.Color;
textBox2.BackColor = backClr;

}

hatch brush, and use this brush to draw a rectangle. This is all done on the

. As you can see from this listing, first we create aHatchStyle object based

on the user selection in the combo box. Then we create a HatchBrush object using the hatch style, background, and foreground colors. After

that we simply fill a rectangle with the hatch brush.

Listing 4.7 The Apply Style button click event handler

private void ApplyBtn_Click(object sender,

System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Read current style from combo box
string str = comboBox1.Text;

/I Find out the style and set it as the
/I current style

switch(str)

{

case "BackwardDiagonal':

style = HatchStyle.BackwardDiagonal;

break;

case "DashedVertical":
style = HatchStyle.DashedVertical;
break;

case "Cross"
style = HatchStyle.Cross;
break;

case "DiagonalCross":
style = HatchStyle.DiagonalCross;
break;

case "HorizontalBrick":
style = HatchStyle.HorizontalBrick;
break;

case "LightDownwardDiagonal":

style = HatchStyle.LightDownwardDiagonal,

break;
case "LightUpwardDiagonal™:

style = HatchStyle.LightUpwardDiagonal;

break;
default:
break;
}
/I Create a hatch brush with selected
/I hatch style and colors

HatchBrush brush =
new HatchBrush(style, forClr, backClr);
/I Fill rectangle
g.FillRectangle(brush, 50, 100, 200, 200);
/I Dispose of objects
brush.Dispose();
g.Dispose();
}

If you compile and run the application and then click the Apply Style button, the default rectangle looks Iike.

Figure 4.5. The default hatch style rectangle

™ Hatch Brushes). =10] x|
Select Style: |BackwardDiagonsl |

Apply Style

Let's select LightDownwardDiagonal for the hatch style, change the foreground and background colors, and click thé\pply Style button. Now

the output looks like Eigure 4.4.

Figure 4.6. The LightDownwardDiagonal style with different colors

i_?‘_-'Hatch Brushes =10 x|

Let's change the hatch style and colors one more time. This time we pick DiagonalCross as our hatch style. Now the output looks Iik

Figure 4.7. The DiagonalCross style

[™ Hatch Brushes =101 =]

Apply Style

4.1.5 Texture Brushes

Texture brushes allow us to use an image as a brush and fill GDI+ objects with the brush. Texture brushes are useful when you need to fill a

graphics object with images in a pattern such as tile. In this section we will discuss how to create and use texture brushes in GDI+.

In the .NET Framework library, the TextureBrush class represents a texture brush. describes the properties of theTextureBrush
class.

Let's create an application using texture brus reate a Windows application. We also add a context menu to the form, along with five
context menu items. The final form looks like Figure 4.9

Figure 4.8. The texture brush application

& Texture Brush

Table 4.2. TextureBrush properties

Property Description
Image Returns the Image object associated with aTextureBrush object.
Transform Represents a Matrix object that defines a local geometric transformation for the image.
WrapMode Represents a WrapMode enumeration that indicates the wrap mode for a texture brush.
Note

The WrapMode enumeration represents the wrap mode for a texture brush. It has five membersClamp, Tile, TileFlipX,
TileFlipY, and TileFlipXY. These members are described later, i .

Now we add a class-level variable of TextureBrush type to the application:

private TextureBrush txtrBrush = null;

The next step is to create a texture brush from an image and fill a rectangle with that brush. We create an Image object on the form's load
event handler from the file smallRoses.gif, which is used to create aTextureBrush object. On the form's paint event handler, we call the
FillRectangle method to fill the rectangle with the texture.. shows the form's load and paint event handler. Note that our rectangle is
the ClientRectangle of the form.

Listing 4.8 Creating a texture brush and filling a rectangle

private void Form1_Load(object sender,
System.EventArgs €)

{
/I Create an image from a file
Image img = new Bitmap("smallRoses.gif");
/I Create a texture brush from an image
txtrBrush = new TextureBrush(img);
img.Dispose();

}

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

{
Graphics g = e.Graphics;
/' Fill a rectangle with a texture brush
g.FillRectangle(txtrBrush, ClientRectangle);
}

Note

See for details on thelmage class.

Now we can add event handlers for the context menu items as shown in . As you can see from this code, we simply set the
WrapMode property of the texture brush.

Listing 4.9 TextureBrush's context menu event handlers

private void Clamp_Click(object sender,
System.EventArgs €)

txtrBrush.WrapMode = WrapMode.Clamp;

this.Invalidate();

}

private void Tile_Click(object sender,
System.EventArgs e)

{
txtrBrush.WrapMode = WrapMode.Tile;

this.Invalidate();

}

private void TileFlipX_Click(object sender,
System.EventArgs e)

{
txtrBrush.WrapMode = WrapMode.TileFlipX;

this.Invalidate();

}

private void TileFlipY_Click(object sender,
System.EventArgs e)

{
txtrBrush.WrapMode = WrapMode.TileFlipY;

this.Invalidate();

}

private void TileFlipXY_Click(object sender,
System.EventArgs e)

{
txtrBrush.WrapMode = WrapMode.TileFlipXY;

this.Invalidate();

}

Finally, we need to load the context menu on the right mouse click event handler. As shows, we simply set the ContextMenu
property of the form.

Listing 4.10 The right mouse button click event handler

private void Form1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{
if(e.Button == MouseButtons.Right)
{
this.ContextMenu = contextMenul;
}
}

Now let's run the application. shows default (tiled) output from the program. The entire client rectangle is filled with the texture.

Figure 4.9. Using texture brushes

Texture Brush

If we right-click on the form and select the Clamp menu item, we get.

Figure 4.10. Clamping a texture

® Texture Brush 1 oy [=] 1|

Now let's select the TileFlipY option, which generates. You can try other options on your own!

Figure 4.11. The TileFlipY texture option

x|

[® Texture Brush

|

T

Linear gradient brushes allow you to blend two colors together, generating an indefinite range of shades. Thalend class defines a custom

4.1.6 Gradient Brushes

falloff for the gradient.

Note

discusses the Blend class and alpha blending in more detail.

In a gradient, we begin with a starting color and shift to an ending color, with gradual blending in the space between them. In addition to the
starting and ending colors, we can specify the direction of the gradient. For example, starts with green in the left bottom corner
and ends with red in the top right corner. (You may not notice these colors exactly in a black-and-white image.)

Figure 4.12. A color gradient

Ending Color

Gradient

Starting Color—

You can also specify a range for pattern repetition, For example, you can specify that the gradient will occur from point (0, 0) to point (20, 20)
and after that will repeat the same pattern, as in .

Figure 4.13. A gradient pattern with pattern repetition

Starting EthI ~ Ending Color

Gradient Range

4.1.6.1 Linear Gradient Brushes

The LinearGradientBrush class has eight forms of overloaded constructors. Each constructor takes a starting point, an ending point, and two
gradient colors. The orientation and linear gradient mode are optional.

The following code snippet creates a linear gradient brush using the colors red and green:

Rectangle rectl = new Rectangle(20, 20, 50, 50);
LinearGradientBrush IgBrush = new LinearGradientBrush
(rectl, Color.Red, Color.Green, LinearGradientMode.Horizontal);

Here the mode parameter is represented by the LinearGradientMode enumeration, which specifies the direction of a linear gradient. The
members of the LinearGradientMode enumeration are described in| ‘.

Now let's look at the properties and methods of the LinearGradient-Brush class, which are defined i and @ respectively.

Note

hapters 9 and@ discuss blending and transformation, respectively, in more detail.

4.1.6.2 Linear Gradient Brushes Example

Now let's create an application that uses linear gradient brushes. We create a Windows application, add three label controls, a combo box,
two text boxes, four buttons, and two check boxes. We also change the Text property and other properties of these controls. The final form

igure 4.14.

looks like

Figure 4.14. Our linear gradient brush application

=
=
=
]
)
=
=
g
L=}
e
)
e
=]
r]
=
|

i §

|comboBox]

- Linear Gradent Mode:

LR R T

The combo box will list the linear gradient modes. The Pick... buttons allow the user to pick starting and ending colors for the gradient

process. The Other Rectangle check box uses a rectangle to specify the range of the gradient. We will discuss theGamma Correction and

Properties options later in this section.

Table 4.3. LinearGradientMode members

Member

Description

BackwardDiagonal

Specifies a gradient from upper right to lower left.

ForwardDiagonal

Specifies a gradient from upper left to lower right.

Horizontal Specifies a gradient from left to right.
Vertical Specifies a gradient from top to bottom.
Table 4.4. LinearGradientBrush properties
Property Description
Blend Represents the Blend object that specifies gradient position and factors.
GammacCorrection Represents gamma correction. If it is enabled, the value istrue; if not, it isfalse.

InterpolationColors

Represents a ColorBlend object that defines a multicolor gradient.

LinearColors

Represents the starting and ending colors of a gradient.

Rectangle Returns a rectangle that defines the starting and ending points of a gradient.

Transform Represents a Matrix object that defines the transformation.

WrapMode Represents a WrapMode enumeration that indicates the wrap mode.

Table 4.5. LinearGradientBrush methods

Method Description

MultiplyTransform Multiplies aMatrix object that represents the transformation.

ResetTransform Resets the Transform property to identity.

RotateTransform Rotates the transformation.

ScaleTransform Scales the transformation.

SetSigmaBellShape Creates a gradient falloff based on a bell-shaped curve.

TranslateTransform Translates the transformation by the specified dimensions.

Next we add some class-level variables as follows:

private LinearGradientBrush IgBrush = null;
private LinearGradientMode mode =

new LinearGradientMode();
private Color startColor = Color.Red,;
private Color endColor = Color.Green;

After defining the variables, we add the code from on the form's load event handler. As the code shows, we add all gradient
modes on the AddGradientMode method. We also set the default background color of text boxes.

Listing 4.11 Adding available linear gradient modes

private void Form1_Load(object sender,
System.EventArgs e)
{
AddGradientMode();
textBox1.BackColor = startColor;
textBox2.BackColor = endColor;
}
private void AddGradientMode()
{
/I Adds linear gradient mode styles to the
/I combo box
comboBox1.ltems.Add(
LinearGradientMode.BackwardDiagonal);
comboBox1.ltems.Add(
LinearGradientMode.ForwardDiagonal);
comboBox1.ltems.Add(LinearGradientMode.Horizontal);
comboBox1.ltems.Add(LinearGradientMode.Vertical);
comboBox1.Text =
LinearGradientMode.BackwardDiagonal. ToString();

Next we add code for the Pick... buttons, which allow the user to provide color selections for the starting and ending colors. We also set the
color of relative text boxes, as shown in .

Listing 4.12 The Pick... button click event handler

private void StartCIrBtn_Click(object sender,
System.EventArgs e)

/I Use ColorDialog to select a color
ColorDialog clrDlg = new ColorDialog();
if (clrDlg.ShowDialog() == DialogResult.OK)
{
/I Save color as foreground color,
/I and fill text box with this color
startColor = clIrDlg.Color;
textBox1.BackColor = startColor;
}
}

private void EndClIrBtn_Click(object sender,
System.EventArgs e)

{

/I Use ColorDialog to select a color
ColorDialog clrDIg = new ColorDialog();
if (cIrDIg.ShowDialog() == DialogResult.OK)
{
/I Save color as background color,
/I and fill text box with this color
endColor = clrDlg.Color;
textBox2.BackColor = endColor;

}

The last step is to write code for the Apply Settings button. This button reads various settings, including the selected gradient mode in the
combo box, the starting and ending colors, another rectangle, and gamma correction. As shows, the code creates a linear
gradient brush using a rectangle, two colors, and the gradient mode selection. After creating the brush, it calls the FillRectangle method.

Listing 4.13 The Apply Settings button click event handler

private void ApplyBtn_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Read current style from combo box
string str = comboBox1.Text;
/I Find out the mode and set it as the
/I current mode
switch(str)
{
case "BackwardDiagonal":
mode = LinearGradientMode.BackwardDiagonal;
break;
case "ForwardDiagonal":
mode = LinearGradientMode.ForwardDiagonal;
break;
case "Horizontal":
mode = LinearGradientMode.Horizontal;
break;
case "Vertical":
mode = LinearGradientMode.Vertical;
break;
default:
break;
}
/I Create rectangle
Rectangle rect = new Rectangle(50, 140, 200, 220);

/I Create linear gradient brush and set mode
if(checkBox1.Checked)
{
Rectangle rectl = new Rectangle(20, 20, 50, 50);
IgBrush = new LinearGradientBrush
(rectl, startColor, endColor, mode);
}
else

{

IgBrush = new LinearGradientBrush
(rect, startColor, endColor, mode);
}
/I Gamma correction check box is checked
if(checkBox1.Checked)
{
IgBrush.GammacCaorrection = true;

}

/I Fill rectangle
g.FillRectangle(lgBrush, rect);
/I Dispose of objects
if(IlgBrush != null)
IgBrush.Dispose();
g.Dispose();
}

When you run the application, the result looks like .

Figure 4.15. The default linear gradient brush output

% Linear Gradient Brush . =10| x|

Lineas Gradient Mode: B ackwardDiagonal | I Other Rectangle

SWE'I"IH’D:IHI'. Pick.. r Gamma Comection

Ending Color:

- Pick... Apply Settings Properbes

To jenerate a different output, let's change the linear gradient mode to Vertical. We'll also change the colors, with the results shown i

Figure 4.16. The vertical linear gradient mode

™ inear Gradient Brush

Linear Gracierd Mode: [Horizortal | I Othes Rectangle
Siating Colar e [T Gamma Cosrechion
Ending Color: - Pick . Apply Setlings Propesties

Let's change the colors and gradient mode again, this time selecting the Other Rectangle check box, This option sets a range of the
gradient. If the output is out of range, the gradient repeats itself. The new output looks like .

Figure 4.17. Using arectangle in a linear gradient brush

@™ Linear Gradient Brush

Linear Gradient Mode: [orwardDiagonal ~| ¥ Other Rectange
Stasting Color = ™ Gamma Conection
Ending Color - Pick... Apply Setings Propaities

Gamma Correction

Gamma correction is a process that controls the brightness of images and graphics objects. Some graphics objects that are
not properly corrected after color processing can look too dark or bleached out. Gamma correction helps correct this problem
by managing the ratio of red, green, and blue components.

You can also use the LinearGradientBrush class properties and methods to change brush properties programmatically creates a
linear gradient brush from two points (starting point and ending point), and sets the LinearColors and GammacCaorrection properties. The
correction provides more uniform intensity in the gradient. We write this code on the Properties button click event handler.

Listing 4.14 Using the LinearColors and GammacCorrection properties of LinearGradientBrush

private void button1_Click(object sender,
System.EventArgs e)

{
Graphics g = this.CreateGraphics();
/I Create points
Point ptl = new Point(40, 30);
Point pt2 = new Point(80, 100);
Color [] InColors = {Color.Black, Color.Red};
/I Create a linear gradient brush
LinearGradientBrush IgBrush = new LinearGradientBrush

(pt1, pt2, Color.Red, Color.Green);

/I Set linear colors and gamma correction
IgBrush.LinearColors = InColors;
IgBrush.GammacCorrection = true;
/I Draw rectangle
g.FillRectangle(lgBrush, 50, 140, 200, 200);
/I Dispose of objects
lgBrush.Dispose();
g.Dispose();

}

shows the output from the Properties button click.

Figure 4.18. Using LinearGradientBrush properties

¥ Linear Gradient Brush

Linear Gradient Mode:

Starting Color:

Ending Color

F_

|FeswardDiagonal

Pick...

- Pick...

*| ¥ Other Rectangle

¥ Gamma Comection

Apply Setlings Propeities

4.1.6.3 Path Gradient Brushes

A graphics path is a collection of lines and curves. In GDI+, the PathGradientBrush object fills a graphics paths with a gradient. Like
LinearGradientBrush, PathGradientBrush is a combination of two colors, but instead of starting with one color and ending with another,
PathGradientBrush starts from the center of a graphics path and ends at the outside boundary of the path. In between, you can apply blend

factors, positions, and style effects using the PathGradientBrush class members.

describes the properties of thePathGradientBrush class.

describes the members of theWrapMode enumeration.

Like LinearGradientBrush, PathGradientBrush has five transformation methods: Multiply Transform, ResetTransform, RotateTransform,

ScaleTransform, and TranslateTransform.

This class also has the methods SetBlendTriangularShape and SetSigmaBellShape. SetBlendTriangularShape creates a gradient with a
center color and a linear falloff to one surrounding color. SetSigmaBellShape creates a gradient falloff between the center color and the first

surrounding color according to a bell-shaped curve.

We will discuss PathGradientBrush, its properties, and its methods in more detail irbhapter d (Eection Qé).

Table 4.6. PathGradientBrush properties

Property

Description

Blend

A Blend object specifies the positions and factors that define a custom falloff point for a gradient. ThBlend property
takes a Blend object.

CenterColor

The center color of the path gradient.

CenterPoint

The center point of the path gradient.

FocusScales

The focus point for the gradient falloff.

InterpolationColors

A ColorBlend object defines a multicolor linear gradient, and this property can be used to set &olorBlend object for the
brush.

Rectangle

Represents a bounding rectangle for the brush. Outside of this boundary, the brush pattern repeats itself.

SurroundColors

Defines an array of colors for an array of points in the path.

Transform Specifies a transformation matrix.
WrapMode Defines how a texture or gradient is tiled when it is larger than the area being filled, using &/rapMode enumeration.
Table 4.7. wrapMode members
Member Description
Clamp Clamps the texture or gradient to the object boundary.
Tile Tiles the gradient or texture.
TileFlipX Reverses the texture or gradient horizontally and then tiles it.
TileFlipXY Reverses the texture or gradient horizontally and vertically and then tiles it.
TileFlipY Reverses the texture or gradient vertically and then tiles it.

Team LiB |

Team LiB |

4.2 Using Pens in GDI+

Pens are another key object in GDI+. As mentioned earlier, pens are used to draw lines and curves and the outlines of graphics shapes. A
pen draws lines and curves with a specified width and style. The Pen object provides members to set the width and style of a pen. Pens can
have various kinds of dashed lines and line fill styles. Actually, the process of drawing a line creates a region in the shape of a widened line,
and that region is filled with a brush. The dashed lines of pens are represented by dash styles. The fill styles of lines can be solids or
textures depending on the brush used to create a Pen object.

In this section we will discuss how to create and use pens in GDI+; the Pen and Pens classes; and how to create dash styles, cap styles, and
line styles for pens.

4.2.1 Creating Pens

The Pen class represents a pen in GDI+. Using thePen class constructor, an application can create aPen object from aBrush or Color object
with a specified width for the pen.

creates pens usingBrush and Color objects with and without a specified width.

Listing 4.15 Using the Pen class constructor to create Pen objects

private void menultem2_Click(object sender,
System.EventArgs e)

/I Create a Graphics object and set it clear
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a solid brush and a hatch brush
SolidBrush blueBrush =
new SolidBrush(Color.Blue);
HatchBrush hatchBrush =
new HatchBrush(HatchStyle.DashedVertical,
Color.Black, Color.Green);
/I Create a pen from a solid brush with
/I width 3
Pen pnl = new Pen(blueBrush, 3);
/I Create a pen from a hatch brush
Pen pn2 = new Pen(hatchBrush, 8);
/I Create a pen from a Color structure
Pen pn3 = new Pen(Color.Red);
/I Draw a line, ellipse, and rectangle
g.DrawLine(pnil,
new Point(10, 40), new Point(10, 90));
g.DrawEllipse(pn2, 20, 50, 100, 100);

g.DrawRectangle(pn3, 40, 90, 100, 100);
/I Dispose of objects
pnl.Dispose();
pn2.Dispose();
pn3.Dispose();
blueBrush.Dispose();
hatchBrush.Dispose();
g.Dispose();
}

shows the output from .

Figure 4.19. Creating and using pens

MForm1 =10 x|

The Pens class has static properties for all standard colors, which return appropriately coloredPen objects. The following code snippet creates
three Pen objects using thePens class.

Pen pnl = Pens.Red;
Pen pn2 = Pens.Blue;
Pen pn3 = Pens.Green;

4.2.2 ren Class Properties and Methods

The Pen class provides properties to set brush, color, and width programmatically after &en object is created. describes the
properties of the Pen class.

describes the methods of the Pen class.

4.2.3 Pen Types

A pen can draw solid lines, filled lines, texture, and even gradient lines—all depending on the brush you use to create the pen. For example, if
you use a texture brush to create a pen and then use this pen to create lines, the lines will be texture lines.

The only way to set a pen's type is to create a brush and use that brush to create the pen. The PenType property of the Pen class represents
the type of the pen's lines. This property is represented by the PenType enumeration.

Note

The PenType property is a read-only property.

able 4.1 describes the members of thePenType enumeration.

4.2.4 Pens Example

Now let's create a sample application. In we create three pens from three different brushes: a solid brush, a texture brush, and a
linear gradient brush. After that we create three pens from these brushes, and then we read the type of each pen and display the types in a
message box.

Table 4.8. pen class properties

Property Description
Alignment Alignment for a pen—a type ofPenAlignment enumeration, which is defined in[Table 4.1
Brush Brush object attached with a pen. Setting theColor property after Brush will replace the color of the current

brush with the specified color.

Color Color of a pen. Setting theBrush property after Color will update the color of a pen to the color of the brush.

CompoundArray Specifies values of a compound pen, which draws compound lines made up of parallel lines and spaces.

CustomEndCap, A line drawn by a pen can have custom starting and ending caps. The CustomEndCap and

CustomsStartCap, DashCap CustomsStartCap properties represent the ending and starting caps, respectively, of lines drawn by a pen.

DashCap is used for dashed lines.

DashOffset The distance from the start of a line to the beginning of a dash pattern.
DashPattern An array of custom dashes and spaces.
DashStyle The style used for dashed lines.

EndCap, StartCap

Ending and starting cap of a line.

LineJoin The join style for the ends of two consecutive lines.
MiterLimit Limit of the thickness of the join on a mitered corner.
PenType The style of lines of a pen. This property is represented by thé®enType enumeration.
Transform The geometric transformation of a pen.
Width The width of a pen.
Table 4.9. pen class methods

Property Description
Clone Creates an exact copy of a pen.
Multiply Transform Multiplies the transformation matrix of a pen byMatrix.
ResetTransform Resets the geometric transformation matrix of a pen to identity.
RotateTransform Rotates the local geometric transformation by the specified angle.
ScaleTransform Scales the local geometric transformation by the specified factors.
SetLineCap Sets the values that determine the style of cap used to end lines drawn by a pen.

TranslateTransform

Translates the local geometric transformation by the specified dimensions.

Table 4.10. PenType members

Member Description
HatchFill A hatch fill
LinearGradient A linear gradient fill
PathGradient A path gradient fill
SolidColor A solid fill
TextureFill A bitmap texture fill

Listing 4.16 Getting pen types

private void GetPenTypes_Click(object sender,
System.EventArgs €)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create three different types of brushes
Image img = new Bitmap('roses.jpg");
SolidBrush redBrush = new SolidBrush(Color.Red);
TextureBrush txtrBrush =
new TextureBrush(img);
LinearGradientBrush IgBrush =
new LinearGradientBrush(
new Rectangle(10, 10, 10, 10),
Color.Red, Color.Black, 45.0f);
/I Create pens from brushes
Pen pnl = new Pen(redBrush, 4);
Pen pn2 = new Pen(txtrBrush, 20);
Pen pn3 = new Pen(lgBrush, 20);
/I Drawing objects
g.DrawEllipse(pnl, 100, 100, 50, 50);
g.DrawRectangle(pn2, 80, 80, 100, 100);
g.DrawEllipse(pn3, 30, 30, 200, 200);

/I Get pen types

string str = "Penl Type: "+
pnl.PenType.ToString() + "\n";

str += "Pen2 Type: "+
pn2.PenType.ToString() + "\n";

str += "Pen3 Type: "+
pn3.PenType.ToString();

MessageBox.Show(str);

/I Dispose of objects
pnl.Dispose();
pn2.Dispose();
pn3.Dispose();
redBrush.Dispose();
txtrBrush.Dispose();

IgBrush.Dispose();
img.Dispose();
g.Dispose();

}

shows the output from .

Figure 4.20. Displaying pen types

!fﬂr:ll'll

Penl Type: SokdColor
Penz Type: TextureFil
Pen3 Type: LinearGradiant

4.2.5 Pen Alignment

The alignment of a pen represents its position respective to a line. The PenAlignment enumeration specifies the alignment of a pen—meaning

the center point of the pen width relative to the line. [Table 4.11] describes the members of thePenAlignment enumeration.

a_combo hox, three labels, two

Figure 4.21

To see alignment in action, let's create a sample application. We create a Windows application, and add
buttons, and a numeric up-down control. We change the control properties, and the final form looks like |

Figure 4.21. Our pen alignment application

™ pen Alignment and Pen Types E.HI:“

e

P L
-

Table 4.11. PenAlignment members

Description

Member

The pen is centered.

Center

The pen is inside the line.

Inset

The pen is left of the line.

Left

The pen is outside of the line.

Outset

The pen is right of the line.

Right

The Pen Alignment combo box lists the alignments of a pen.Pen Width represents the width of the pen, andPen Color lets you pick the
color of the pen. The Pen Color button click event handler simply sets the color of the pen and stores the selected color in &olor type

variable at the class level, as shown in Listing 4.17.

Listing 4.17 The Pen Color button click event handler

private Color penColor = Color.Red;

private void ColorBtn_Click(object sender,

System.EventArgs e)

/I Use ColorDialog to select a color

ColorDialog clrDIg = new ColorDialog();

if (cIrDIg.ShowDialog()

{

DialogResult.OK)

/I Save color as background color,

/I and fill text box with this color
penColor = clrDIg.Color;
ColorBtn.BackColor = penColor;

}
}

(on the form's load event handler) loads all alignments to the combo box.

Listing 4.18 Adding pen alighments to the combo box

private void Form1_Load(object sender,
System.EventArgs €)

{
AddPenAlignments();
}
private void AddPenAlignments()
{

/I Add pen alignment
comboBox1.ltems.Add(PenAlignment.Center);
comboBox1.Text =

PenAlignment.Center.ToString();
comboBox1.ltems.Add(PenAlignment.Inset);
comboBox1.ltems.Add(PenAlignment.Left);
comboBox1.ltems.Add(PenAlignment.Outset);
comboBox1.ltems.Add(PenAlignment.Right);

}

Finally, in we write code for theDraw Graphics button click event handler. We set theWidth and Color properties of the pen after
reading values from the form's controls. Then we look for the current alignment set by the user in the combo box and set the Alignment
property of the pen. In the end, we use this pen to draw a rectangle. We also fill one more rectangle with a linear gradient brush.

Listing 4.19 Creating a pen with alignment

private void DrawBtn_Click(object sender,
System.EventArgs €)

/I Create a Graphics object and set it clear
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a solid brush and a hatch brush
Pen pnl = new Pen(Color.Blue, 3);
pnl.Width = (float)numericUpDown1.Value;
pnl.Color = ColorBtn.BackColor;
/I Find out current pen alignment
string str = comboBox1.Text;
switch(str)
{
case "Center":
pnl.Alignment = PenAlignment.Center;
break;
case "Inset":
pnl.Alignment = PenAlignment.Inset;
break;

case "Left":
pnl.Alignment = PenAlignment.Left;
break;
case "Outset":
pnl.Alignment = PenAlignment.Outset;
break;
case "Right":
pnl.Alignment = PenAlignment.Right;
break;
default:
break;
}
/I Create a pen from a hatch brush
/I Draw a rectangle
g.DrawRectangle(pnl, 80, 150, 150, 150);
/I Create a brush
LinearGradientBrush brush =
new LinearGradientBrush(
new Rectangle(10, 10, 20, 20), Color.Blue,
Color.Green, 45.0f);
g.FillRectangle(brush, 90, 160, 130, 130);
/I Dispose of objects
pnl.Dispose();
g.Dispose();
}

shows the output from . The pen width is 10 and alignment is center.

Figure 4.22. Drawing with center pen alighment

L ® pen alignment and Pen Types Sample
Pen Abgnment: Ili.entﬂ EI

Per \Width: M= pencobr B

Diraw Graphecs I

If we set the alignment as inset, we get .

Figure 4.23. Drawing with inset pen alignment

Hpen alignment and Pen Types Sample = 10| x|
Pen Alignment: [Inset =]

Pen Width 10 Pen Color]

Drawe Graphics

4.2.6 LineCap, DashCap, and DashStyle

Pens offer more options than what we heﬁ far. A line's caps are the starting and ending points of the line. For example, you may
Fi

have seen lines with arrows and circles. Figure 4.24 shows some lines with their cap and dash styles.

Figure 4.24. Line cap and dash styles

Start Cap End Cap
\, /
a* L]
™ » H&‘E‘Cap Style
- -* —

Dash Style

Using Pen properties and methods, you can draw lines with cap and dash styles. Here we will discuss line cap and line dash styles only
briefly (for more details, see .

Note

We can divide line caps into two types: anchor and nonanchor. The width of an anchor cap is bigger than the width of the
line; the width of a nonanchor cap is the same as the width of the line.

The LineCap property of the Pen class represents the cap style used at the beginning and ending of lines drawn by the pen. You can
determine the current cap style of a line by calling the GetLineCap method, which returns aLineCap enumeration. You can also apply a line
cap style using the SetLineCap method. This method takes an argument of LineCap enumeration type.[Table 4.12 describes the members of
the LineCap enumeration.

The SetLineCap method takes the line cap style for the beginning, ending, and dash cap of the line. The first and second parameters of
SetLineCap are of type LineCap. The third parameter is of typeDashCap enumeration.

Table 4.12. LineCap members

Member Description
AnchorMask A mask used to check whether a line cap is an anchor cap
ArrowAnchor An arrow-shaped anchor cap
Custom A custom line cap
DiamondAnchor A diamond anchor cap
Flat A flat line cap
NoAnchor No anchor
Round A round line cap
RoundAnchor A round anchor cap
Square A square line cap
SquareAnchor A square anchor cap

Triangle A triangular line cap

Table 4.13. bashCap members

Member Description
Flat A square cap that squares off both ends of each dash
Round A circular cap
Triangle A triangular cap

The DashCap enumeration specifies the type of graphics shape used on both ends of each dash in a dashed linglable 4.13 describes the
members of the DashCap enumeration.

The DashStyle enumeration specifies the style of a dashed line drawn by the perlable 4.14 describes the members of theDashStyle
enumeration.

Table 4.14. DashStyle members

Member Description
Custom A user-defined custom dash style
Dash A line consisting of dashes
DashDot A line consisting of a repeating dash-dot pattern
DashDotDot A line consisting of a repeating dash-dot-dot pattern of
Dot A line consisting of dots
Solid A solid line

shows how to use various styles and properties of thePen class to draw different kinds of dashed lines with different kinds of
starting and ending caps. We use the DashStyle, SetLineCap, StartCap, and EndCap members of the Pen class to set the line dash style, line
cap style, start cap style, and end cap style, respectively.

Listing 4.20 Using the Pen class to draw dashed lines

private void menultem4_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create three pens

Pen redPen = new Pen(Color.Red, 6);

Pen bluePen = new Pen(Color.Blue, 7);

Pen greenPen = new Pen(Color.Green, 7);
redPen.Width = 8;

/I Set line styles

redPen.DashStyle = DashStyle.Dash;
redPen.SetLineCap(LineCap.DiamondAnchor,
LineCap.ArrowAnchor, DashCap.Flat);
greenPen.DashStyle = DashStyle.DashDotDot;

}

greenPen.StartCap = LineCap.Triangle;
greenPen.EndCap = LineCap.Triangle;
greenPen.DashCap = DashCap.Triangle;
greenPen.DashStyle = DashStyle.Dot;
greenPen.DashOffset = 3.4f;
bluePen.StartCap = LineCap.DiamondAnchor;
bluePen.EndCap = LineCap.DiamondAnchor;
greenPen.SetLineCap(LineCap.RoundAnchor,
LineCap.Square, DashCap.Round);
/I Draw lines
g.DrawLine(redPen, new Point(20, 50),
new Point(150, 50));
g.DrawLine(greenPen, new Point(30, 80),
new Point(200, 80));
g.DrawLine(bluePen, new Point(30, 120),
new Point(250, 120));
/I Release resources. If you don't release
/I using Dispose, the GC (garbage collector)
/I takes care of it for you.
redPen.Dispose();
greenPen.Dispose();
g.Dispose();

shows the output from .

Figure 4.25. Drawing dashed lines with different cap styles

Z:Z;‘ Farml

Pen Samples

$uu mm = =)

———————————1

=10] %]

4.2.7 Drawing Other Graphics Shapes by Applying Cap and Dashed Line Styles

In the previous section we saw how to draw lines using cap and dash styles. But these styles are not limited to lines only. You can draw other
graphics shapes, such as rectangles, ellipses, and curves, using the line cap and dash styles.

As in the previous section, here we will create a pen, set its line cap and line dash styles, and use it—but this time, drawing graphics shapes,

rather than simple lines.

isting 4.21] creates several pens and uses them to draw an arc, Béz

DrawRectangle, and DrawEllipse methods of the Graphics class (see

er curve,

hapter

ectangle, and ellipse with the help of thérawArc, DrawBezier,
for details).

Listing 4.21 Using different pens to draw various graphics objects

private void menultem6_Click(object sender,
System.EventArgs e)

{
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
Pen redPen = new Pen(
new SolidBrush(Color.Red), 4);
Pen bluePen = new Pen(
new SolidBrush(Color.Blue), 5);
Pen blackPen = new Pen(
new SolidBrush(Color.Black), 3);
/I Set line styles
redPen.DashStyle = DashStyle.Dash;
redPen.SetLineCap(LineCap.DiamondAnchor,

LineCap.ArrowAnchor, DashCap.Flat);
bluePen.DashStyle = DashStyle.DashDotDot;
bluePen.StartCap = LineCap.Triangle;
bluePen.EndCap = LineCap.Triangle;
bluePen.DashCap = DashCap.Triangle;
blackPen.DashStyle = DashStyle.Dot;
blackPen.DashOffset = 3.4f;
blackPen.SetLineCap(LineCap.RoundAnchor,

LineCap.Square, DashCap.Round);

/I Draw objects
g.DrawArc(redPen, 10.0F, 10.0F, 50,

100, 45.0F, 90.0F);
g.DrawRectangle(bluePen, 60, 80, 140, 50);
g.DrawBezier(blackPen, 20.0F, 30.0F,

100.0F, 200.0F, 40.0F, 400.0F,

100.0F, 200.0F);
g.DrawEllipse(redPen, 50, 50, 200, 100);

/I Dispose of objects
redPen.Dispose();
bluePen.Dispose();
blackPen.Dispose();
g.Dispose();

}

shows the output of . All of the elements drawn have line cap and dash styles.

Figure 4.26. Graphics shapes with cap and dash styles

= Forml

[rean L | rreviovs [exr o]

Team LiB |

4.3 Transformation with Pens

Transformation is the process of changing graphics objects from one state to another. Rotation, scaling, reflection, translation, and shearing
are examples of transformation.

The Pen class provides methods for transformation and rotation. TheRotateTransform method rotates a transformation by an angle. This
method takes a rotation angle of type float. The second argument, MatrixOrder, is an optional parameter that provides an order for matrix
transformation operations. The MatrixOrder enumeration defines the matrix order, which has two membersAppend and Prepend. The matrix
order is the order in which a matrix is multiplied with other matrices.

The difference between Append and Prepend is the order of the operation. For example, if two operations are participating in a process, the
second operation will be performed after the first when the matrix order is Append; when the order is Prepend, the second operation will be
performed before the first.

The MultiplyTransform method multiplies a transformation matrix by a pen. Its first argument is dMatrix object, and the optional second
argument is the matrix order of type MatrixOrder enumeration.

Note

The Matrix class is discussed in more detail i .

The TranslateTransform method of the Pen class translates a transformation by the specified dimension. This method takes twdloat type
values for translation in x and y, and an optional third parameter of typeMatrixOrder.

uses the ScaleTransform and Rotate Transform methods to apply rotation on pens and rectangles.

Listing 4.22 Applying transformation on pens

private void menultem5_Click(object sender,
System.EventArgs €)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a Pen object

Pen bluePen = new Pen(Color.Blue, 10);

Pen redPen = new Pen(Color.Red, 5);

/I Apply rotate and scale transformations
bluePen.ScaleTransform(3, 1);
g.DrawEllipse(bluePen, 20, 20, 100, 50);
g.DrawRectangle(redPen, 20, 120, 100, 50);
bluePen.RotateTransform(90, MatrixOrder.Append);

redPen.ScaleTransform(4, 2, MatrixOrder.Append);
g.DrawEllipse(bluePen, 220, 20, 100, 50);
g.DrawRectangle(redPen, 220, 120, 100, 50);
/I Dispose of objects
redPen.Dispose();
bluePen.Dispose();
g.Dispose();
}

shows the output from . The first ellipse and rectangle are drawn normally. The second ellipse and rectangle are

drawn after rotation and scaling have been applied to their pens.

Figure 4.27. Rotation and scaling

discusses rotation, scaling, and other transformation methods in more detail.

Note

You need to reference the System.Drawing.Drawing2D namespace in order to run the code in the listings of this section
because the Matrix class and the MatrixOrder enumeration are defined in this namespace.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

4.4 Transformation with Brushes

The TextureBrush, LinearGradientBrush, and PathGradientBrush classes also provide transformation methods. Brush transformation is not

used very often, but it may be useful in some cases, as the following example will show.

A transformation on a TextureBrush object is a transformation of the image used as the texture TextureBrush provides the methods
Table 4.1;).

MultiplyTransform, ResetTransform, RotateTransform, ScaleTransform, and TranslateTransform (see|

The TextureBrush class also provides aTransform property, which can be used to apply a transformation on a texture brush.

Table 4.15. TextureBrush methods

Method Description

Multiply Transform Multiplies the Matrix object that represents the local geometric transformation of a texture brush by the specified

Matrix object in the specified order.

ResetTransform Resets the Transform property of a texture to identity.

RotateTransform Rotates the local geometric transformation of a texture brush by the specified amount.

ScaleTransform Scales the local geometric transformation of a texture brush by the specified amount.

TranslateTransform Translates the local geometric transformation of a texture brush by the specified dimensions in the specified order.

uses the Translate, MultiplyTransform, ScaleTransform, and Rotate Transform methods of the Pen class to apply rotation on pens,
and draws a line and rectangles.

Listing 4.23 Transformation in texture brushes

private void TextureBrush_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

/I Create a TextureBrush object

TextureBrush txtrBrush = new TextureBrush(
new Bitmap("smallRoses.gif"));

/I Create a transformation matrix

Matrix M = new Matrix();

/I Rotate the texture image by 90 degrees

txtrBrush.RotateTransform(90,
MatrixOrder.Prepend);

/I Translate

M.Translate(50, 0);

/I Multiply the transformation matrix

/I of txtrBrush by translateMatrix

txtrBrush.Multiply Transform(M);

/I Scale operation

txtrBrush.ScaleTransform(2, 1,
MatrixOrder.Prepend);

/I Fill a rectangle with texture brush

g.FillRectangle(txtrBrush, 240, 0, 200, 200);

/I Reset transformation

txtrBrush.ResetTransform();

/I Fill rectangle after resetting transformation

g.FillRectangle(txtrBrush, 0, 0, 200, 200);

/I Dispose of objects

txtrBrush.Dispose();

g.Dispose();

}

shows the output from , with the original image on the left and the transformed image on the right.

Figure 4.28. Transformation in TextureBrush

ol

Brush Trarsformation

Ul

A transformation on a linear gradient brush is a transformation of the colors of the brush. The LinearGradientBrush class provides all common
transformation methods and Transform properties. shows how to use transformation in linear gradient brushes.

Listing 4.24 Transformation in linear gradient brushes

private void LinearGradientBrush_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a LinearGradientBrush object
Rectangle rect = new Rectangle(20, 20, 200, 100);
LinearGradientBrush IgBrush =

new LinearGradientBrush(

rect, Color.Red, Color.Green, 0.0f, true);
Point[] ptsArray = {new Point(20, 50),

new Point(200,50), new Point(20, 100)};
Matrix M = new Matrix(rect, ptsArray);
/I Multiply transformation
IgBrush.Multiply Transform(M, MatrixOrder.Prepend);
/I Rotate transformation
IgBrush.RotateTransform(45.0f, MatrixOrder.Prepend);
/I Scale transformation
IgBrush.ScaleTransform(2, 1, MatrixOrder.Prepend);
/I Draw a rectangle after transformation
g.FillRectangle(lgBrush, 0, 0, 200, 100);
/I Reset transformation
IgBrush.ResetTransform();
/I Draw a rectangle after reset transformation
g.FillRectangle(lgBrush, 220, 0, 200, 100);
/I Dispose of objects
lgBrush.Dispose();
g.Dispose();

}

shows the output from . The second rectangle results from various transformation operations, and the first rectangle is

a result of a call to ResetTransform.

Figure 4.29. Transformation in linear gradient brushes

Brush Transformation

PathGradientBrush provides similar mechanisms to transform path gradient brushes. A shows, we create aPathGradientBrush
object and set its CenterColor and SurroundColors properties. Then we create aMatrix object and call its methods to apply various

transformation operations, such as translation, rotation, scaling, and shearing, and we apply the Matrix object to the PathGradientBrush object
by calling its MultiplyTransform method.

Listing 4.25 Transformation in path gradient brushes

private void PathGradientBrush_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a GraphicsPath object
GraphicsPath path = new GraphicsPath();
/I Create a rectangle and add it to path
Rectangle rect = new Rectangle(20, 20, 200, 200);
path.AddRectangle(rect);
/I Create a path gradient brush
PathGradientBrush pgBrush =
new PathGradientBrush(path.PathPoints);

/I Set its center and surrounding colors
pgBrush.CenterColor = Color.Green;
pgBrush.SurroundColors = new Color[] {Color.Blue};
/I Create matrix
Matrix M = new Matrix();
/I Translate
M.Translate(20.0f, 10.0f, MatrixOrder.Prepend);
/I Rotate
M.Rotate(10.0f, MatrixOrder.Prepend);
/I Scale
M.Scale(2, 1, MatrixOrder.Prepend);
/I Shear
M.Shear(.05f, 0.03f, MatrixOrder.Prepend);
/I Apply matrix to the brush
pgBrush.Multiply Transform(M);
/I Use brush after transformation
/I to fill a rectangle
g.FillRectangle(pgBrush, 20, 100, 400, 400);
/I Dispose of objects
pgBrush.Dispose();
g.Dispose();

}

shows the output from. The original rectangle started at point (10, 10) with height and width 200 each, but after

various transformation methods have been applied, the output rectangle is totally different.

Figure 4.30. Transformation in path gradient brushes

Wrom -I0/x]

Brush Transformation

Team LiB |

4.5 System Pens and System Brushes

System pens and system brushes are pens and brushes that are used to create system colors. In this section we will discuss how to create
and use system pens and brushes.

There are two ways to create system pens and brushes. First, you can create pens and brushes using the SystemColors class. SystemColors
represents the system colors in GDI+, providing static properties for system colors, such as ActiveBorder and ControlText. The second way to
create system pens and brushes uses the SystemPens and SystemBrushes classes.

For performance reasons, it is a good idea to use the SystemPens and SystemBrushes classes rather than creating pens and brushes by
using the SystemColors class.

4.5.1 System Pens

The SystemPens class represents a pen created with the system colors. This class has a static property for each system color that represents
the system pen with that particular color. [Table 4.14 lists the properties of the SystemPens class.

The SystemPens class also provides a method—FromSystemColor—that creates aPen object from aColor structure. To create a system pen,
we pass a SystemColors object. The following code shows how to use theFromSystemColor method:

Table 4.16. SystemPens properties

Property Description
ActiveCaptionText Pen with active window's title bar color
Control Pen with control color
ControlDark Pen with the shadow color of a 3D element.
ControlDarkDark Pen with the dark shadow color of a 3D element.
ControlLight Pen with the light color of a 3D element.
ControlLightLight Pen with the highlight color of a 3D element.
ControlText Pen with the control text color
GrayText Pen with disabled color
Highlight Pen with highlighting
HighlightText Pen with highlighted text color
InactiveCaptionText Pen with inactive title bar color

Property

Description

InfoText

Pen with the color of the text of a ToolTip

MenuText

Pen with the color of a menu's text

WindowFrame

Pen with the color of a window frame

WindowText

Pen with the color of the text in the client area of a window

Pen pn = SystemPens.FromSystemColor(

SystemColors.HotTrack);

4.5.2 System Brushes

The SystemBrushes class represents aBrush object using the system colors. All properties ofSystemBrushes are static read-only properties.
| able 4.17

] describes these properties.

Table 4.17. systemBrushes properties

Property Description
ActiveBorder Brush object with the color of the active window's border
ActiveCaption Brush object with the background color of the active window's title bar
ActiveCaptionText Brush object with the color of the text in the active window's title bar
AppWorkspace Brush object with the color of the application workspace

Control

Brush object with the face color of a 3D element

ControlDark

Brush object with the shadow color of a 3D element

ControlDarkDark Brush object with the dark shadow color of a 3D element
ControlLight Brush object with the light color of a 3D element
ControlLightLight Brush object with the highlight color of a 3D element
ControlText Brush object with the color of text in a 3D element

Desktop Brush object with the color of the desktop

Highlight Brush object with the color of the background of selected items

HighlightText

Brush object with the color of the text of selected items

HotTrack

Brush object with the color used to designate a hot-tracked item

InactiveBorder

Brush object with the color of an inactive window's border

Property Description

InactiveCaption Brush object with the color of the background of an inactive window's title bar
Info Brush object with the color of the background of a ToolTip
Menu Brush object with the color of a menu's background
ScrollBar Brush object with the color of the background of a scroll bar
Window Brush object with the color of the background in the client area of a window
WindowText Brush object with the color of the text in the client area of a window

Note

The MSDN documentation states that the SystemBrushes properties return aSolidBrush object, but that statement is not
quite accurate. These properties return a Brush object that must be cast to aSolidBrush object. If you run the code without

casting them, the compiler throws an error.

The SystemBrushes class also provides aFromSystemColor method, which creates aBrush object from a specified system color. The
following code shows how to use the FromSystemColor method:

SolidBrush brush =
(SolidBrush)SystemBrushes.FromSystemColor
(SystemColors.ActiveCaption);

Disposing of System Pens and Brushes

You cannot dispose of system pens and brushes. If you try to dispose of them, GDI+ generates an error because these

objects belong to the system.

uses SystemBrushes and SystemPens objects to draw two lines and a rectangle.

Listing 4.26 Using the SystemBrushes and SystemPens classes

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

Graphics g = e.Graphics;
/I Create a pen using SystemPens

Pen pn = SystemPens.FromSystemColor(
SystemColors.HotTrack);

/I Create a brush using SystemBrushes

SolidBrush brush =
(SolidBrush)SystemBrushes.FromSystemColor
(SystemColors.ActiveCaption);

/I Draw lines and rectangles

g.DrawLine(pn, 20, 20, 20, 100);

g.DrawLine(pn, 20, 20, 100, 20);

g.FillRectangle(brush, 30, 30, 50, 50);

/I YOU CAN'T DISPOSE OF SYSTEM PENS AND

/I BRUSHES. IF YOU TRY, GDI+ WILL GENERATE

/I AN ERROR.

/lpn.Dispose();

/Ibrush.Dispose();

}

shows the output from

Figure 4.31. Using system pens and system brushes

sysbem Pens and Brushes .ngﬂ

4.6 A Real-World Example: Adding Colors, Pens, and Brushes to the
GDI+Painter Application

In we created the GDI+Painter application, which allows us to draw simple objects, such as a line, a rectangle, and an ellipse. In
this section we will extend the functionality of GDI+Painter by adding support for brushes and pens. After completing this section, you will be
able to select a pen color and its width, color transparency, and brush color.

shows the modified version of GDI+Painter without any objects..

Figure 4.32. GDI+Painter with pen and brush support

=10i x|

Transparency is a component of the color in GDI+. In the .NET Framework library, theColor structure represents a color. It has four
components: alpha (A), red (R), green (G), and blue (B). The alpha component of the Color structure represents the transparency of a color.
The alpha component values vary from 0 to 255, where 0 is fully transparent and 255 is fully opaque. To create a transparent brush or pen,
we creat sing the alpha value a color to create a pen or a brush. We will discuss colors and alpha transparency in more
detail in Chapter § (ARGB is the focus offSection 5.2).

The following code snippet shows how to create a col

Color clr = Color.FromArgb(Convert.Tolnt16
(TransCounter.Value.ToString()),
PenBtn.BackColor.R,

PenBtn.BackColor.G, PenBtn.BackColor.B);

or with transparency. We use the same method to add transparency to our application.

In our modified version of GDI+Painter, the width selector numeric up-down control allows you to select the width of the pen. A pen is used
when we draw the outlines of graphics shapes. A brush is used when we draw filled graphics shapes.

The Pen color and Brush color buttons launchColorDi;

aIO?f which lets us select a color and set the color of the button itself, which later is used

by the program when creating a Pen or Brush object. |

Listing 4.27 shows the code for these two button click event handlers. This code also

sets the background color of the respective buttons to set the current selected color of our brush and pen.

Listing 4.27 Selecting pen and brush

private void PenSettings_Click(object sender,
System.EventArgs e)
{
ColorDialog colorDlg = new ColorDialog();
colorDlg.ShowDialog();
PenBtn.BackColor = colorDlg.Color;
}
private void BrushSettings_Click(object sender,
System.EventArgs e)
{
ColorDialog colorDlg = new ColorDialog();
colorDlg.ShowDialog();
BrushBtn.BackColor = colorDlg.Color;

When we draw a graphics shape, we set the color, wi
changes in our revised version of GDI+Painter are on

colors

dth, and transparency of the pen and brush according to the selection. The last two
the mouse-up event handler and the form's paint event handler, respectively.

The modified mouse-up event handler is shown in . In it, we use the color buttons to create our current pen and brush from the

selected colors.

Listing 4.28 The mouse-up event handler

private void Form1_MouseUp(object sender,
System.Windows.Forms.MouseEventArgs e)

/I Set the pen's color

curPen.Color = Color.FromArgb(Convert.Tolnt16(
TransCounter.Value.ToString()),
PenBtn.BackColor.R, PenBtn.BackColor.G,
PenBtn.BackColor.B);

/I Set the pen's width

curPen.Width = (float)PenWidthCounter.Value;

/I Set the brush's color

curBrush.Color = Color.FromArgb(Convert. Tolnt16(

TransCounter.Value.ToString()),

BrushBtn.BackColor.R, BrushBtn.BackColor.G,
BrushBtn.BackColor.B);

diffX = x - curX;
diffY =y - curY;
switch (drawlindex)
{
case 1:
{
/I Draw a line
curGraphics.DrawLine(curPen,
curX, curY, X, y);
break;
}
case 2:
{
/I Draw an ellipse
curGraphics.DrawEllipse(curPen,
curX, curY, diffx, diffY);
break;
}
case 3:
{
/I Draw a rectangle
curGraphics.DrawRectangle(curPen,
curX, curY, diffx, diffY);
break;
}
case 4:
{
/I Fill rectangle
curGraphics.FillRectangle(curBrush,
curX, curY, diffx, diffY);
break;
}
case 5:
{
/I Fill ellipse
curGraphics.FillEllipse(curBrush,
curX, curY, diffx, diffY);

break;
}
}
/I Refresh
RefreshFormBackground();
/I Set dragMode to false
dragMode = false;

}

The same procedure is applied to the form's paint event handler, shown in . This code sets the Color and Width properties of our
pen and the Color property of our brush according to the current values.

Listing 4.29 The form’'s paint event handler

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Set current pen's color

curPen.Color = Color.FromArgb(
Convert.Tolnt16(
TransCounter.Value.ToString()),
PenBtn.BackColor.R,
PenBtn.BackColor.G,
PenBtn.BackColor.B);

/I Set pen's width

curPen.Width = (float)PenWidthCounter.Value;

/I Set current brush's color

curBrush.Color = Color.FromArgb(
Convert.Tolnt16(
TransCounter.Value.ToString()),
BrushBtn.BackColor.R,
BrushBtn.BackColor.G,
BrushBtn.BackColor.B);

Graphics g = e.Graphics;
/I'If dragMode is true, draw selected
/I graphics shape
if (dragMode)
{
switch (drawlindex)
{
case 1:
{
g.DrawLine(curPen, curX, curY, X, y);
break;
}
case 2:
{
g.DrawEllipse(curPen,
curX, curY, diffX, diffY);
break;
}
case 3:
{
g.DrawRectangle(curPen,
curX, curY, diffX, diffY);
break;
}
case 4:
{
g.FillRectangle(curBrush,
curX, curY, diffX, diffY);
break;
}
case 5:
{
g.FillEllipse(curBrush,
curX, curY, diffX, diffY);
break;
}
}
}

If you run the revised GDI+Painter application, you can set the colors of the brush and the pen, the pen's width, and the transparency of both
the pen and the brush. shows lines, rectangles, and ellipses drawn with different sizes and transparency.

Figure 4.33. GDI+Painter in action

s [4P ainker

N [o[c]m|@] reven & [sevemeoe

4.6.1 Improvements in GDI+Painter

You can improve the functionality of the GDI+Painter application (or your own applications) even more: As we have discussed in our
examples, you can add a brush selection feature. You can allow users to select a brush type, style, and other properties. If users pick a
gradient brush, they can select colors. You can also allow users to select cap and line styles. For solid brushes, users should be able to pick a
color; for texture brushes, they should be able to pick an image; and for hatch and gradient brushes, they should be able to pick styles,
background, foreground, and other color properties. You can even add transformation and other options—all of which we've discussed in this
chapter.

On the basis of this example, you can write your own graphics tool library with support for many more options than the standard Windows
PaintBrush application!

rean L] rreviovs [o]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

SUMMARY

In this chapter we learned how to work with pens and brushes by using classes from the GDI+ .NET Framework class library. The chapter
began by showing how to represent various kinds of brushes in GDI+. We learned the classes for the different brushes and how to use their
properties and methods.

After covering brushes, the discussion moved on to pens and how to represent them using GDI+ classes. We learned pen-related classes
and their properties and methods, and how to add various styles to pens, such as cap, line, and dash styles. We also discussed system pens
and brushes, and how to use GDI+ classes to represent and use system pens and brushes.

At the end of the chapter we added options for pens and brushes to the GDI+Painter application. You should now have a pretty good idea of
how to use pens and brushes in your own applications.

After pens and brushes, the next most frequently used graphics objects are text, fonts, and colors. We will discuss these m

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 5. Colors, Fonts, and Text

Three types of objects that are used to build graphics-intensive applications are colors, fonts, and text. In this chapter you will learn about the
representation of colors, fonts, and text in the .NET Framework class library. We will cover the following topics:

® Basics of colors, fonts, and text and how they are represented in Windows

o Namespaces, classes, and other objects provided by the .NET Framework library to work with colors, fonts, and text
® System fonts, colors, brushes, and pens

® Color conversions and translations

o System and private font collections

® Formatting text using hinting, tab stops, and other methods

® Setting the quality and performance of text rendering

o Writing a simple text editor application

® Text transformation operations such as scaling, rotation, and translation

® Advanced typography

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

5.1 Accessing the craphics Object

There are several ways an application can use the code from this chapter. It can execute code using the OnPaint method or Form_Paint

event, or it can use code with a button or menu click event handler. If an application executes code with Form_Paint or OnPaint, you will need

to include the following line at the beginning of the method.

Graphics g = e.Graphics;

If an application executes code from a b

utton or m

CreateGraphics or another method (see

hapter

enu click event handler or elsewhere, you will need to create a Graphics object using
for details) and call theDispose method to dispose of objects when you're finished with

them. The following code shippet gives an example:

Graphics g = this.CreateGraphics();

/I YOUR CODE HERE

/I Dispose of GDI+ objects
g.Dispose();

Note

To test code from this chapter, we will create a Windows application with code written on the menu item click event handlers.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

5.2 Working with Colors

In this section we will examine color representation in GDI+ and how to use color-related functionality in real-world applications.

In GDI+, a color is represented by a 32-bit structure made up of four components: alpha (A), red (R), green (G), and blue (B), referred to as
ARGB mode. Components' values range from 0 to 255. Thealpha component (the first 8 bits) of the color represents transparency, which
determines how a color is blended with the background. An alpha value of 0 represents a fully transparent color, and a value of 255
represents a fully opaque color; intermediate values produce results between these extremes. Real-world examples of alpha use include
drawing translucent graphics shapes and images. discusses the alpha component in more detail (se).

5.2.1 Color Spaces

It's hard for human beings—as perceptual entities—to describe and represent colors. Color spaces provide a common frame of reference
that helps represent colors. A color space contains components called color channels. For example, RGB space is a three-dimensional
space with red, green, and blue color channels. To limit our discussion, we will cover the RGB (red-green-blue), HSV (hue-saturation-value),
and HLS (hue-lightness-saturation) color spaces.

The RGB color space is the most commonly used namespace in computer programming because it closely matches the structure of most
display hardware—which commonly includes separate red, green, and blue subpixel structures. It can be thought of as a cube in which length
indicates the intensity of red, width indicates the intensity of green, and height indicates the intensity of blue. The corner indicated by (0, 0, 0)
is black, and the opposite corner (255, 255, 255) is white. Every other color available is represented somewhere between those corners.

The HSV, sometimes called HSB (hue-saturation-brightness), andHLS color spaces can be thought of as single and double cones. Thehue
component represents the position on the cone as an angular measurement. The 0-, 120-, and 240-degree values of hue represent the
colors red, green, and blue, respectively.

The saturation component describes the color intensity. A saturation value of 0 means gray (colorless), and the maximum value of
saturation indicates pure color and brightness for the values specified by the hue and value components.

The value, orbrightness, component represents the brightness of the color. A value of 0 indicates the color black (no brightness), and a
maximum value indicates that the color is brightest (closest to white).

The Color structure provided by the .NET Framework library is based on the RGB color space. | we will discuss how to use it in
our applications.

5.2.2 The color Structure

The Color structure represents ARGB colors in GDI+. This class has a static member property for almost every possible color. For example,
Color.Black and Color.Red represent the colors black and red, respectively. Besides these static properties, this structure includes read-only
properties—A, R, G, and B—that represent the alpha, red, green, and blue components, respectively.

The IsEmpty property checks whether aColor structure has been initialized (if not, there is no color). TheKnownColor enumeration contains
more than 300 colors, and each color is represented by its name. For example, Blue and Black members represent the colors blue and black,
respectively. KnownColor also defines color combinations, such asLimeGreen and LightBlue. You can also find system colors such as
ActiveBorder, ActiveCaption, Control, ControlText, Highlight, and InactiveBorder, using the IsSystemColor enumeration. The Name property
represents the name of the color, which is a read-only property. The Transparent property is a static property that represents a transparent
color.

The Color structure also provides some methods. TheFromArgh method creates a color from the four ARGB components. This method has
different overloaded forms with which an application can create a Color object from an alpha value only; from an alpha value with &olor
object only; from three values (red, green, and blue); and from all four values (alpha, red, green, and blue).

The FromKnownColor and FromName methods create a Color object from a predefined color or from the name of a predefined color,
respectively. The FromKnownColor method takes only one argument, of KnownColor enumeration. The FromName method takes one
argument of string type as the color name. All members defined in the KnownColor enumeration are valid names for this method.

Note

All three "from" methods (FromArgh, FromKnownColor, and FromName) are static.

The ToArgb and ToKnownColor methods convert an ARGB or KnownColor value, respectively, to aColor structure.

illustrates different ways to create Color objects and use them in an application to draw various graphics objects, including a filled
ellipse with a red brush, a filled rectangle with a blue brush, and a line with a green pen. The application first creates four Color objects via the
FromArgb, FromName, FromKnownColor, and Empty methods. The FromArgb method creates a translucent pure redColor object, using
parameters 120, 255, 0, and 0. The FromName method creates a Color object from the string "Blue". TheFromKnownColor method creates a
color object from the known color Green.

Listing 5.1 Using the methods and properties of the Color structure

private void ColorStructMenu_Click(object sender,
System.EventArgs e)

/I Create Graphics object

Graphics g = this.CreateGraphics();

/I Create Color object from ARGB

Color redColor = Color.FromArgb(120, 255, 0, 0);

/I Create Color object form color name

Color blueColor = Color.FromName("Blue");

/I Create Color object from known color

Color greenColor =
Color.FromKnownColor(KnownColor.Green);

/I Create empty color

Color tstColor = Color.Empty;

/I See if a color is empty

if(tstColor.IsEmpty)

{
tstColor = Color.DarkGoldenrod;

}
/I Create brushes and pens from colors
SolidBrush redBrush = new SolidBrush(redColor);
SolidBrush blueBrush = new SolidBrush(blueColor);
SolidBrush greenBrush = new SolidBrush(greenColor);
Pen greenPen = new Pen(greenBrush, 4);
/I Draw GDI+ objects
g.FillEllipse(redBrush, 10, 10, 50, 50);
g.FillRectangle(blueBrush, 60, 10, 50, 50);
g.DrawLine(greenPen, 20, 60, 200, 60);
/I Check property values
MessageBox.Show("Color Name :"+ blueColor.Name +
", A:"+blueColor.A.ToString() +
", R:"+blueColor.R.ToString() +
", B:"+blueColor.B.ToString() +
", G:"+blueColor.G.ToString());
/I Dispose of GDI+ objects
redBrush.Dispose();
blueBrush.Dispose();
greenBrush.Dispose();
greenPen.Dispose();
g.Dispose();
}

shows the output from .

Figure 5.1. Creating colors using different methods

=10] %]

X]

Color Mame :Blue, A:255, R:0, B:255, G:0

I oK

The GetBrightness, GetHue, and GetSaturation methods return a color's brightness, hue, and saturation component values, respectively.

isting 5.4 reads the hue, saturation, and brightness components of a color and displays their values on the form by using tHerawString
method.

Listing 5.2 Getting brightness, hue, and saturation of a color

private void HSBMenu_Click(object sender,
System.EventArgs €)

/I Create a Graphics object

Graphics g = this.CreateGraphics();

/I Create a color

Color clr = Color.FromArgb(255, 200, 0, 100);

/I Get hue, saturation, and brightness components

float h = clr.GetHue();

float s = clr.GetSaturation();

float v = clr.GetBrightness();

string str = "Hue: "+ h.ToString() + "\n" +
"Saturation: "+ s.ToString() + "\n" +
"Brightness: "+ v.ToString();

/I Display data

g.DrawString(str, new Font("verdana“, 12),

Brushes.Blue, 50, 50);
/I Dispose of object

g.Dispose();
}
shows the output from . The values of hue, saturation, and brightness in this particular color are 330, 1, and 0.3921569,
respectively.

Figure 5.2. Getting brightness, hue, and saturation components of a color

Color Properties

Hue: 330

Saturation: 1
Brightness: 0.3921569

5.2.3 System Colors

The SystemColors class represents the Windows system colors; it provides 26 read-only properties, each of which returns &olor object.
lists the properties of the SystemColors class.

The following code snippet uses the SystemColors class to set colors of a few Windows controls. In this code we set the background colors of
a text box, a radio button, and a button to inactive border, active caption, and control dark system colors, respectively.

textBox1.BackColor = SystemColors.InactiveBorder;
radioButton1.BackColor = SystemColors.ActiveCaption;
button1.BackColor = SystemColors.ControlDarkDark;

If you're wondering whether you can create a brush or a pen from the SystemColors class to fill and draw shapes, curves, and text, the
answer is, absolutely. The following code snippet uses SystemColors to create SolidBrush and Pen objects. This code creates a solid brush
and a pen from active caption system and highlight text system colors, respectively.

Table 5.1. systemColors properties

Property Description
ActiveBorder Active window border color
ActiveCaption Active window title bar background color
ActiveCaptionText Active window title bar text color
AppWorkspace Multiple-document interface (MDI) workspace background color
Control Control background color
ControlDark 3D control shadow color
ControlDarkDark 3D control dark shadow color
ControlLight 3D control highlight color
ControlLightLight 3D control light highlight color
ControlText Text color of controls
Desktop Windows desktop color
GrayText Disabled text color
Highlight Highlighted text background color
HighlightText Highlighted text color
HotTrack Hot track color
InactiveBorder Inactive window border color
InactiveCaption Inactive window caption bar color
InactiveCaptionText Inactive window caption bar text color
Info ToolTip background color
InfoText ToolTip text color
Menu Menu background color
MenuText Menu text color

Property Description

ScrollBar Background color of scroll bars
Window Background color of window
WindowFrame Thin window frame color
WindowText Window text color

SolidBrush brush =
new SolidBrush(SystemColors.ActiveCaption);
Pen pn = new Pen(SystemColors.HighlightText);

For performance reasons, GDI+ provides SystemPens and SystemBrushes classes, which should be used instead of creating a brush or pen
from the SystemColors class. For example, the following method is advisable for creating system brushes and pens. This code snippet
creates a solid brush and a pen from active caption and highlight text system colors, respectively.

SolidBrush brushl =
(SolidBrush)SystemBrushes.FromSystemColor
(SystemColors.ActiveCaption);

Pen pnl = SystemPens.FromSystemColor
(SystemColors.HighlightText);

uses the SystemBrushes and SystemPens classes to create a SolidBrush object and threePen objects, which are used later to
draw and fill graphics objects. The solid brush is created from the active caption system color, and the three pens are created from highlight
text, control light light, and control dark system colors, respectively. Later the brush and pens are used to draw two lines, a rectangle, and an
ellipse.

Listing 5.3 Using SystemPens and SystemBrushes

private void SystemColorsMenu_Click(object sender,
System.EventArgs €)

/I Create a Graphics object

Graphics g = this.CreateGraphics();

/I Create brushes and pens

SolidBrush brush1 =
(SolidBrush)SystemBrushes.FromSystemColor
(SystemColors.ActiveCaption);

Pen pnl = SystemPens.FromSystemColor
(SystemColors.HighlightText);

Pen pn2 = SystemPens.FromSystemColor
(SystemColors.ControlLightLight);

Pen pn3 = SystemPens.FromSystemColor
(SystemColors.ControlDarkDark);

/I Draw and fill graphics objects

g.DrawLine(pni, 10, 10, 10, 200);

g.FillRectangle(brushi, 60, 60, 100, 100);

g.DrawEllipse(pn3, 20, 20, 170, 170);

g.DrawLine(pn2, 10, 10, 200, 10);

/I Dispose of object

g.Dispose();
}

shows the output from . System colors were used to draw two lines, an ellipse, and a rectangle.

Figure 5.3. Using system colors to draw graphics objects

~ioix]

Color Proparties

Note

When you create pens using SystemPens, you cannot modify the width or other properties of the pen. The code will
compile but will throw an unhandled exception when executed. If you create a pen using SystemColors, however, you can
modify its width like this:

Pen pn = new Pen(SystemColors.HighlightText);

Pn.Width = 4;

5.2.4 The colorconverter and colorTranslator Classes

The ColorConverter class is used to convert colors from one data type to another. This class is inherited from th&ypeConverter class, which
defines the functionality for conversion of types and accessing values and properties of types. The TypeConverter class serves as a base
class for many conversion classes, and ColorConverter and FontConverter are two of them. We will discussFontConverter in more detail later
in this chapter. Some of the common methods of the TypeConverter class (which are available in theColorConverter class) are described in

[ae 54

Table 5.2. Common TypeConverter methods

Method Description

CanConvertFrom Takes a type as a parameter and returns true if the converter can convert an object to the type of the
converter; otherwise returns false.

CanConvertTo Takes a type as a parameter and returns true if the converter can convert an object to a given type;
otherwise returns false.

ConvertFrom Converts an object to the type of the converter and returns the converted object.

ConvertTo Converts a specified object to a new type and returns the object.

GetStandardValues Returns a collection of standard values (collection type) for the data type for which this type converter is
designed.

GetStandardValuesSupported Identifies whether this object supports a standard set of values.

uses the ColorConverter class methods to convert colors. We store a color in a string and call th€onvertFromString method, which
returns the Color object. Later we will use theColor objects to create two brushes that we will use to fill a rectangle and an ellipse.

Listing 5.4 Using the ColorConverter class to convert colors

private void ColorConvert_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
string str = "#FFOOFF";
ColorConverter clrConverter = new ColorConverter();
Color clrl =
(Color)clrConverter.ConvertFromString(str);

/I Use colors
SolidBrush clr2 = new SolidBrush(clr1);
SolidBrush clr3 = new SolidBrush(clr1);
/I Draw GDI+ objects
g.FillEllipse(clr2, 10, 10, 50, 50);
g.FillRectangle(clr3, 60, 10, 50, 50);
/I Dispose of objects
clr2.Dispose();
clr3.Dispose();
g.Dispose();

}

shows the output from .

Figure 5.4. Converting colors

ETTTEEE _iml xi

Color Properties

The ColorTranslator class provides methods to translate colors to and from HTML, OLE, and Win32 color values. These methods are useful

when you're using legacy color stry es that pre-date the .NET Framework. For example, you may have legacy code that gives the HTML
color representation of a color. describes the methods of the ColorTranslator class. All of the methods are static.

uses the ColorTranslator class to translate colors from Win32 and HTML colors. Later these colors will be used to create brushes.

Listing 5.5 Translating colors

private void ColorTranslator_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();

/I Translate colors

Color win32Color =
ColorTranslator.FromWin32(0xFF0033);

Color htmiColor =
ColorTranslator.FromHtmI("#00AAFF");

/I Use colors

SolidBrush clrl = new SolidBrush(win32Color);

SolidBrush clr2 = new SolidBrush(htmlColor);

/I Draw GDI+ objects

g.FillEllipse(clr1, 10, 10, 50, 50);

g.FillRectangle(clr2, 60, 10, 50, 50);

/| Dispose of objects

clrl.Dispose();

clr2.Dispose();

g.Dispose();

Table 5.3. ColorTranslator methods

Method Description
FromHtml Translates from an HTML color representation to aColor structure.
FromOle Translates from an OLE color value to aColor structure.
FromWin32 Translates from a Windows color value to aColor structure.

ToHtml Translates from aColor structure to an HTML color representation.
ToOle Translates from aColor structure to an OLE color.
ToWin32 Translates from aColor structure to a Windows color.

In a manner similar to the "from" methods just discussed, you can translate a Color structure into Win32, HTML, and OLE values using the
ToWin32, ToHtml, and ToOle methods, respectively.

Note

You can also transform colors using transformation methods. Some of the transformation methods are for scaling,
translating, rotating, and shearing. We cover this functionality in .

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

5.3 Working with Fonts

In this section we will concentrate on fonts. The discussion starts with a description of the types of fonts in the Windows operating system,
followed by a little background material on fonts. After these basic concepts are covered, the discussion turns to how fonts are handled in
GDI+ and .NET.

5.3.1 Font Types in Windows

Windows supports two types of fonts: GDI fonts and device fonts. Device fonts are native to output devices such as a monitor or a printerGDI
fonts are stored in files on your system—normally in théVindows\Fonts directory. Each font has its own file. For example, Arial, Arial Black,
Arial Bold, Arial Italic, Arial Black Italic, Arial Bold Italic, Arial Narrow, Arial Narrow Bold Italic, and Arial Narrow ltalic are different fonts in the
Arial font family, and each one has its own file (see .

Figure 5.5. Fonts available in Windows

@0 O WINNT \Fomnts o] x|
= Edt Yiew Favorites Tooks Help |-
“Eack v < - (2] Qsearch “Lroldes F Ee E &) [
Address || CAWINNT Fonts | G

Fonk Mame Filename S2e | Modified -
ﬂ Arizl ARIAL.TTF 267K 1207/1999 40—
ﬂ-lﬁrld HAack ARIBLE.TT= 115K 120711999 420K
1] Arial Hack 1talkc ARBLI___,TTF 85K 1042471997 i<
@] Anel sald ARIALED,TTF 276Kk 121711999 10X
0] Aviel Bold 1t alic ARIALEL.TTF 217K 12471999 4:00
O] Ariel Raic ARIALLTTF 196K 12471999 410
.F!‘._'}_] Aricl Marrow ARTALM.TTF 122K 5/28/1598 2:3¢
L@] Arial Marrow Eold AR TALMNE.TTF 136K 5/28/1998 i % __ﬂ
U L A wonn Plalul Pl A TAL LASTF TEF & Selas =S a5 el e S
q] _lrl

[T T =SS N 8

=l LGSy o I

GDI fonts can be further divided into four major categories: raster, stroke, TrueType, and OpenType. The raster and stroke fonts are the
oldest way to display text (they pre-date Windows 3.1!). Raster fonts (also known as bitmap fonts) store each character in pixel format. Each
raster font is designed for a specific aspect ratio and character size, which are generally not scalable to other sizes. The main advantage of
raster fonts is high performance because rendering a raster font usually just requires copying it to video memory. Raster fonts support
boldface, italics, underlining, and strikethrough formatting.

Stroke fonts (also known as vector fonts) are defined as a series of lines and dots—in much the same way that characters are drawn with a
pen plotter. Stroke fonts are thus quite scalable (they can be increased or decreased to any size), and they can be used with output devices
of any resolution. Examples of stroke fonts include Modern, Roman, and Script. Like raster fonts, stroke fonts support boldface, italics,
underlining, and strikethrough formatting.

Next we come to TrueType fonts, which were developed by Apple and Microsoft and are supported by many manufacturers. TrueType fonts
are also called outline fonts because the individual characters are defined by filled outlines of straight lines and curves. Altering the
coordinates that define the outlines provides great scalability. The original 13 TrueType fonts were

1. Courier New

2. Courier New Bold

3. Courier New ltalic

4. Courier New Bold ltalic
5. Times New Roman

6. Times New Roman Bold
7. Times New Roman ltalic

8. Times New Roman Bold Italic

9. Arial
10. Arial Bold
11. Arial Italic

12. Arial Bold ltalic
13. Symbol

Adobe and Microsoft announced yet another format in 1997, called OpenType. It is a combination of TrueType and the Type 1 outline format
of Adobe's page-description language. Windows 2000 installs 82 fonts, including TrueType fonts, OpenType fonts, and other types. T}
@eType fonts are represented by a "T" icon, and OpenType fonts are represented by an "O" icon in Windows Explorer, as shown in‘Fi;urel

Figure 5.6. Font icons represent font types

@0 '\ WINNT Fonls
File Edt Wiew Favorites Tools Help n
“Eak » < - L] fﬁiﬁa'[h 4 Folders d N .ﬂj ap| .:'ﬂ

.._l-_l____l RIS W _I My -

MOONCSS If_j LW IP) L Gnts

Bl [i

Font Mame Filzname Size | Mocified -
] Letter Gothic M1 Boid Obl... Lchi JbiF 45K 161996 R41
1] Letter Gothic MT Oaliqus Lo bF 48K 7/16/1996 241
] Lucida Console LUCON.TTF 13K 12/7/1599 4:0C
6] Lucida Sars Uncade L_10646.TTF 37K 12471999 4:00
/] Microsoft Sans Ser Regular MICROSS,TTF 254K Sp42001 12:05 L
Al Modemn MCDERN.FON 9K 124711999 4:0C
E‘_ Monotvpe Corava MTCORSVA.TTF IS4k 9f25/1998 10:
] WS Outlook QIUTLOOK. TTF 10K 17851958 4126 |
A]MS Sans Serf £,10,12,14,... SSERIFE.FON G4 127/1999 100 _
iﬁ‘[-u-.i— T R R T S I——u IS PR .ii

1 fentis) selected 7

The file extension of both TrueType and OpenType fonts is .ttf. If you double-click on the Verdana OpenType font file, it displays the

information shown in Eigure 5.7.

Verdana (OpenType)

Dore

Figure 5.7. An OpenType font

Verdana (OpenType)

CpenType Fort, Digitally Signed, TrueType Outlines

Typeface name: Verdana
File size: 137 KB
Version: Version 2.22

Typefacs avd data @ 1955 Micrasoft Corporation, All Richts Resared

abcdefghijklmnoparstuvwxyz

ABCDEFGHIIKLMNOPQRSTUVWXYZ
123456789.:,:(:*17")

The Arial Black Italic TrueType font file, on the other hand, looks like .

Figure 5.8. A TrueType font

i x|
Dorwe Pl |

Arial Black Italic (TrueType)

Typeface mame: Arial Black, |
File size: €2 KB

Versicn: Version 1,00

Digmized data copyright (C) 1996 The Monotype Corporaticn, &l rights resarved. arisk® 2 a
trademark of The Morobype Corporation which may be registered in certain jurisdictions.
abcdefghijkimnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

123456789.:,;(:*12") -

In 1998, Microsoft announced a new display technology called ClearType. ClearType increases the readability and smoothness of text on
existing LCDs (liquid crystal displays), such as laptop screens, flat-screen monitors, and Pocket PC screens. In normal displays, a pixel has
only two states: on and off. ClearType technology adds additional information to a pixel besides the on and off states. With ClearType, the
words on the display device look almost as sharp and clear as those on the printed page.

Note

To learn more about Microsoft's ClearType technology, visit l\ttp://WWW.microsoft.com/typoqraphy/cleartype/default.htn{.

5.3.1.1 Attributes or Styles

In typography, the combination of a typeface name (sometimes referred to as a face name) and goint size (sometimes referred to as the
em size) represents a font. A typeface name is a combination of a font family and the font style (also referred to as font attributes). Each
typeface belongs to a font family such as Times New Roman, Arial, or Courier. The Courier family, for example, includes the typefaces
Courier New, Courier New Bold, and Courier New ltalic.

Generally, when we talk about a fon eferring to more than just one component. A typical font is a combination of three components:
font family, font style, and font size. _Fiﬁure 5.3 shows the components of a typical font.

http://www.microsoft.com/typography/cleartype/default.htm

Figure 5.9. Font components

A Typical Font

Typeface Name

Font Fﬂmi'}l' Font Size
(Em Size)

Font Style

A complete example of a font is "Times New Roman, size 10, Bold|ltalic". Here the font family is Times New Roman, the size is 10-point, and
the style is both bold and italic.

5.3.1.2 Font Height and Line Spacing

The size of a font is expressed in points, where a pointis usually 1/72 (0.013888) inch. The measurement of the size of a font is a little
confusing because characters have different heights. If all alphabetic characters had the same height, it would be easier to calculate the size

of a font. For example, consider the characters b and g. Technically they have the same height (or size), but they are situated in different
locations along a straight line. In other words, the character's size may

related to the line spacing. We will discuss line spacing in more detail in

ame as the point size, also called em size. The font size is

QLD !
Section 5.3.4,

5.3.2 Fonts in .NET

Before we use fonts and draw text, let's see what classes GDI+ provides related to text and fonts, and how to use them.

Typography Namespaces

In the .NET framework library, two namespaces define the font-related functionality: System.Drawing and
System.Drawing.Text. The System.Drawing namespace contains general typography functionality, andSystem.Drawing.Text

contains advanced typography functionality. Before using any of the typograpfy-related classes in your application, you must
include the appropriate namespace. We will discuss advanced typography in Section 5.4.

The Font class provides functionality for fonts, including methods and properties to define functionalities such as font style, size, name, and
conversions. Before we discuss the Font class, we will introduce theFontStyle enumeration and theFontFamily class, which we will use to
create Font objects.

5.3.3 The Fontstyle Enumeration

The FontStyle enumeration defines the common styles of a font. The members of~ontStyle are described in .

5.3.4 The FontFamily Class

The FontFamily class provides methods and properties to work with font families describes the properties of theFontFamily class.

Table 5.4. FontStyle members

Member Description
Bold Bold text
Italic Italic text
Regular Normal text
Strikeout Text with a line through the middle
Underline Underlined text

Table 5.5. FontFamily properties

Property Description
Families Returns an array of all the font families associated with the current graphics context.
GenericMonospace Returns a monospace font family.
GenericSansSerif Returns a sans serif font family.
GenericSerif Returns a serif font family.
Name Returns the name of a font family.

Note

The GetFamilies method of the FontCollection class returns all families, as we will discuss i.

describes the methods of the FontFamily class.
introduces some new terms, includingbase line, ascent, and descent. Let's see what they mean. shows a typical font in

Windows. As you can see, although the letters b and g are the same size, their starting points and ending points (top and bottom locations)
are different. The total height of a font—including ascent, descept, and extra space—is called the line spacing. Ascent is the height above
the base line, and descent is the height below the base line. As shows, two characters may have different positions along the
base line. For some fonts, the extra value is 0, but for others it is not.

Figure 5.10. Font metrics

F
] b Ascent
Base Line Line Spacing
Descent
I E]{ITE ¥

Table 5.6. FontFamily methods

Method

Description

GetCellAscent

Returns the cell ascent, in font design units, of a font family.

GetCellDescent

Returns the cell descent, in font design units, of a font family.

GetEmHeight Returns the height, in font design units, of the em square for the specified style.

GetFamilies Returns an array that contains all font families available for a graphics object. This method takes an argument of
Graphics type.

GetlLineSpacing Returns the amount of space between two consecutive lines of text for a font family.

GetName Returns the name, in the specified language, of a font family.

IsStyleAvailable

Before applying a style to a font, you may want to know whether the font family in question supports that style. This
method returns true if a font style is available. For example, the following code snippet checks whether or not the Arial
font family supports italics:

FontFamily ff = new FontFamily("Arial");
if(ff.IsStyleAvailable(FontStyle.Italic))
/I do something

For some fonts, line spacing is the sum of ascent and descent. creates a new font; uses get methods to get the values of line
spacing, ascent, and descent; and calculates the extra space by subtracting ascent and descent from the line space. The following list
identifies the get methods of a FontFamily object:

® GetCellAscent returns the cell ascent, in font design units.

® GetCellDescent returns the cell descent, in font design units.

® GetEmHeight returns the em height, in font design units.

® GetlineSpacing returns the line spacing for a font family.

In addition to these get methods, the Font class provides GetHeight, which returns the height of aFont object.

As shows, we use GetlLineSpacing, GetLineAscent, GetLineDescent, and GetEmHeight to get line spacing, ascent, descent, and
font height, respectively, and then we display the output in a message box.

Listing 5.6 Getting line spacing, ascent, descent, and font height

private void Properties_Click(object sender,
System.EventArgs €)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
/I Create a Font object

Font fnt = new Font("Verdana", 10);

/I Get height

float InSpace = fnt.GetHeight(g);

/I Get line spacing

int cellSpace =
fnt.FontFamily.GetLineSpacing(fnt.Style);

/I Get cell ascent

int cellAscent =
fnt.FontFamily.GetCellAscent(fnt.Style);

/I Get cell descent

int cellDescent =
fnt.FontFamily.GetCellDescent(fnt.Style);

/I Get font height

int emHeight =
fnt.FontFamily.GetEmHeight(fnt.Style);

/] Get free space

float free = cellSpace - (cellAscent + cellDescent);

/I Display values

string str = "Cell Height:" + InSpace.ToString() +
", Line Spacing: "+cellSpace.ToString() +
", Ascent:"+ cellAscent.ToString() +
", Descent:"+ cellDescent. ToString() +
", Free:"+free.ToString() +
", EM Height:"+ emHeight. ToString() ;

MessageBox.Show(str. ToString());

/I Dispose of objects

fnt.Dispose();

g.Dispose();

}

shows the output from. We get cell height, line spacing, ascent, descent, free (extra) space, and em height.

Figure 5.11. Getting line spacing, ascent, descent, free (extra) space, and height of a font

I x|

Cell Height: 16. 20443, Line Spacing: 2489, Ascent: 2059, Descent 430, Free:0, EM Height: 2048

[

5.3.5 The Graphicsunit Enumeration

You can define the unit of measure of a font when you construct a Font object. The Font class constructor takes an argument of type
GraphicsUnit enumeration, which specifies the unit of measure of a font. The default unit of measure for fonts is the point (1/72 inch). You can
get the current unit of a font by using the Unit property of the Font class. The following code snippet returns the current unit of the font:

Font fnt = new Font("Verdana", 10);
MessageBox.Show(fnt.Unit. ToString());

The members of the GraphicsUnit enumeration are described in.

Table 5.7. GraphicsUnit members

Member Unit of Measure
Display 1/75 inch
Document 1/300 inch
Inch 1inch
Millimeter 1 millimeter
Pixel 1 pixel
Point 1/72 inch
World The world unit (we'll discuss world coordinates in)

5.3.6 The Font Class

The Font class combines a font and methods and properties to define functionalities such as font style, size, name, and conversion
describes the properties of the Font class.

The following code creates a Font object of font family Arial with size 16 and uses the~ont class properties to find out the details of theFont
object.

Font arialFont = new Font("Arial", 16,
FontStyle.Bold|FontStyle.Underline|FontStyle.ltalic);
MessageBox.Show("Font Properties = Name:"+arialFont.Name
+" Size:"+arialFont.Size. ToString()

+" Style:"+ arialFont.Style. ToString()

+" Default Unit:"+ arialFont.Unit. ToString()

+" Size in Points:"+ arialFont.SizelnPoints.ToString());

The Font class provides three static methods: FromHdc, FromHfont, and FromLogFont. These methods create aFont object from a window
handle to a device context, a window handle, and a GDI LOGFONT structure, respectively. The GetHeight method returns the height of aFont
object. The ToHfont and ToLogFont methods convert aFont object to a window handler and a GDILOGFONT structure, respectively.

Table 5.8. Font properties

Property Description
Bold Returns true if the font is bold.
FontFamily Every font belongs to a font family. This property returns thé=ontFamily object associated with aFont object.
GdiCharSet Returns a string containing all characters.
GdiVerticalFont Returns true if a font is derived from a GDI vertical font; otherwise returngalse.
Height Returns the height of a font.
Italic Returns true if a font is italic.
Name Returns the face name of a font.
Size Returns the em size of a font in font design units.
SizelnPoints Returns the size, in points, of a font.
Strikeout Returns true if a font specifies a horizontal line through the font.
Style Returns style information for a font, which is a type ofFontStyle enumeration.
Underline Returns true if a font is underlined.
Unit Returns the unit of measure for a font.

In the following example, you must import the GDI library by adding the following code at the beginning of your class before using any GDI
fonts, because we will be using GetStockObject:

[System.Runtime.InteropServices.DllimportAttribute("gdi32.dIl")]
private static extern IntPtr GetStockObject(int fnObj);

creates a font from a GDI handle and draws a string on the form. ThEromHfont method creates aFont object from a GDI handle.

Listing 5.7 Using the FromHfont method

private void FromHfontMenu_Click(object sender,
System.EventArgs €)

/I Create the Graphics object
Graphics g = this.CreateGraphics();

/I Create a brush

SolidBrush brush = new SolidBrush(Color.Red);

/I Get a handle

IntPtr hFont = GetStockObject(0);
/I Create a font from the handle

Font hfontFont =
/I Draw text

Font.FromHfont(hFont);

g.DrawString("GDI HFONT", hfontFont,

brush, 20, 20);

/I Dispose of objects

brush.Dispose();
hfontFont.Dispose();
g.Dispose();

}

shows the output from .

Figure 5.12. Using the FromHFont method

™ Farml =10| x|

Forts Text Font

GDIHFONT

5.3.7 Constructing a rFont Object

A Font object belongs to the FontFamily class, so before we construct aFont object, we need to construct aFontFamily object. The following
code snippet creates two FontFamily objects, belonging to the Verdana and Arial font families, respectively.

/I Create font families
FontFamily verdanaFamily = new FontFamily("Verdana");
FontFamily arialFamily = new FontFamily("Arial");

The Font class provides more than a dozen overloaded constructors, which allow an application to construct Bont object in different ways,
either from string names of a font family and size or from a FontFamily object with font style and optionalGraphicsUnit values.

The simplest way to create a Font object is to pass the font family name as the first argument and the point size as the second argument of the
Font constructor. The following code snippet creates a Times New Roman 12-point font:

Font tnwFont = new Font("Times New Roman", 12);

The following code snippet creates three fonts in different styles belonging to the Verdana, Tahoma, and Arial font families, respectively:

/I Create font families

FontFamily verdanaFamily = new FontFamily("Verdana");

FontFamily arialFamily = new FontFamily("Arial");

/I Construct Font objects

Font verdanaFont = new Font(verdanaFamily, 14,
FontStyle.Regular, GraphicsUnit.Pixel);

Font tahomaFont = new Font(new FontFamily("Tahoma"), 10,
FontStyle.Bold|FontStyle.ltalic, GraphicsUnit.Pixel);

Font arialFont = new Font(arialFamily, 16, FontStyle.Bold,
GraphicsUnit.Point);

Font tnwFont = new Font("Times New Roman"”, 12);

Note

As the code example here shows, you can use the FontStyle and GraphicsUnit enumerations to define the style and units of
a font, respectively.

If you don't want to create and use a FontFamily object in constructing a font, you can pass the font family name and size directly when you
create a new Font object. The following code snippet creates three fonts from the Verdana, Arial, and Tahoma font families, respectively, with
different sizes and styles:

/I Construct Font objects

Font verdanaFont = new Font("Verdana", 12);

Font arialFont = new Font(arialFamily, 10);

Font tahomaFont = new Font("Arial", 14,
FontStyle.Underline|FontStyle.Italic);

Tean L] rrevious [ecr]

Team LiB |

5.4 Working with Text and Strings

As we discussed in , the DrawString method of the Graphics class can be used to draw text on a graphics surface. TheDrawString
method takes a string, font, brush, and starting point.

creates three different fonts and draws text on a form using thédrawString method. Each DrawString method uses a different color
and font to draw the string.

Listing 5.8 Drawing text on a graphics surface

private void DrawText_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
/I Create font families
FontFamily verdanaFamily = new FontFamily("Verdana");
FontFamily arialFamily = new FontFamily("Arial");
/I Construct Font objects
Font verdanaFont = new Font("Verdana", 10);
Font arialFont =
new Font(arialFamily, 16, FontStyle.Bold);
Font tahomaFont = new Font("Tahoma", 24,
FontStyle.Underline|FontStyle.Italic);
/I Create Brush and other objects
PointF pointF = new PointF(30, 10);
SolidBrush solidBrush =
new SolidBrush(Color.FromArgb(255, 0, 0, 255));
/I Draw text using DrawString
g.DrawString("Drawing Text", verdanaFont,
new SolidBrush(Color.Red), new PointF(20,20));
g.DrawString("Drawing Text", arialFont,
new SolidBrush(Color.Blue), new PointF(20, 50));
g.DrawString("Drawing Text", tahomaFont,
new SolidBrush(Color.Green), new PointF(20, 80));
/I Dispose of objects
solidBrush.Dispose();
g.Dispose();
}

shows the output from. The first text is 10-point Verdana; the second, 14-point Arial Bold; and the third, 24-point
Tahoma ltalic.

Figure 5.13. Fonts with different styles and sizes

=101%

Forts Text Font

Drawing Text

Drawing Text
Drawing Text

Note

See bhagter ;4 (Eection 3.2.1.d) for more overloaded forms of theDrawString method.

5.4.1 Drawing Formatted Text

The DrawString method can also be used to draw formatted text. To format text, the .NET Framework library provides theStringFormat class,
which can be passed as a parameter of the DrawString methods. The StringFormat class provides members to set alignment, line spacing,
digit substitution, trimming, and tab stops. These classes are defined in the System.Drawing namespace.

5.4.1.1 Alignment and Trimming

The Alignment and Trimming properties of the StringFormat class are used to set and get alignment and trimming of text. TheAlignment
property takes a value of type StringAlignment enumeration, and the Trimming property takes a value of typeStringTrimming enumeration.

The LineAlignment property represents the line alignment of text, which also takes a value of typeStringAlignment enumeration.

The StringAlignment enumeration specifies the alignment of a text string. describes the members of the StringAlignment
enumeration.

The StringTrimming enumeration specifies how to trim characters from a string that does not completely fit into a layout shapg.able 5.10
describes the members of the StringTrimming enumeration.

uses Alignment and Trimming properties to align and trim text strings and draws the text to a form. We use tw8tringFormat objects:
strFormatl and strFormat2. For strFormatl, we set the alignment to Center, line alignment to Center, and trimming to EllipsisCharacter. For
strFormat2, we set the alignment to Far, string alignment to Near, and trimming to Character. Then we usestrFormatl and strFormat2 as

parameters of the DrawString method to apply a string format to the text.

Table 5.9. stringAlignment members

Member Description
Center Text is aligned in the center of a rectangle.
Far Text is aligned as far as possible from the origin position of a rectangle.
Near Text is aligned as close as possible to the origin position of a rectangle.
Table 5.10. StringTrimming members
Member Description
Character Text is trimmed to the nearest character.

EllipsisCharacter

Text is trimmed to the nearest character, and an ellipsis is inserted at the end of a trimmed line.

EllipsisPath The center is removed from trimmed lines and replaced by an ellipsis.

Ellipsisword Text is trimmed to the nearest word, and an ellipsis is inserted at the end of a trimmed line.
None No trimming.

Word Text is trimmed to the nearest word.

Listing 5.9 Using the Trimming and Alignment properties of StringFormat

private void menultem11_Click(object sender,
System.EventArgs €)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

string text = "Testing GDI+ Text and Font" +

" functionality for alignment and trimming.";
/I Create font families

FontFamily arialFamily = new FontFamily("Arial");

/I Construct Font objects
Font verdanaFont =

new Font("Verdana", 10, FontStyle.Bold);
Font arialFont = new Font(arialFamily, 16);
/I Create rectangles
Rectangle rectl = new Rectangle(10, 10, 100, 150);
Rectangle rect2 = new Rectangle(10, 165, 150, 100);
/I Construct string format and alignment
StringFormat strFormatl = new StringFormat();
StringFormat strFormat2 = new StringFormat();
/I Set alignment, line alignment, and trimming

/I properties of string format
strFormatl.Alignment = StringAlignment.Center;
strFormatl.LineAlignment = StringAlignment.Center;
strFormatl.Trimming =
StringTrimming.EllipsisCharacter;
strFormat2.Alignment = StringAlignment.Far;
strFormat2.LineAlignment = StringAlignment.Near;
strFormat2.Trimming = StringTrimming.Character;
/I Draw GDI+ objects
g.FillEllipse(new SolidBrush(Color.Blue), rectl);
g.DrawRectangle(new Pen(Color.Black), rect2);
g.DrawString(text, verdanaFont,
new SolidBrush(Color.White) , rectl, strFormatl);
g.DrawString(text, arialFont,
new SolidBrush(Color.Red), rect2, strFormat2);
/I Dispose of objects
arialFont.Dispose();
arialFont.Dispose();
verdanaFont.Dispose();
arialFamily.Dispose();
g.Dispose();
}

shows the output from . Text inside the rectangle is trimmed to fit.

Figure 5.14. Alignment and trimming options

=10] x|

Testing
GDI+ Text

and Font
functionalit

y for
alignment
ond
Testing GDI+
Text and Font
functionality

for alignment

5.4.2 Using Tab Stops

Along with the properties discussed in the preceding section, the StringFormat class provides some methods. TheGetTabStops and
SetTabStops methods can be used to get and set tab stops, respectively. Each of these methods takes two argumentsfirstTabOffset and
tabStops. The first parameter, firstTabOffset, is afloat value that represents the number of spaces between the beginning of a line of text and
the first tab stop. The second parameter, tabStops, is an array of float values that represents the number of spaces between tabs.

An application can use the SetTabStops method to generate tabular output on a graphics surface. For exampl uses SetTabStops
to generate a tabular data report. In this example we create a StringFormat object and set its tab stops using theSetTabStops method, and
then we call the DrawString method.

In we create a table that lists the grades of a student in tabular format. The table has four columns: ID, Math, Physics, and
Chemistry. These columns list the grades obtained by a student. As the listing shows, we create a StringFormat object and set the tab stops
using the SetTabStops method.

Listing 5.10 Using tab stops to draw tabular data on a graphics surface

private void menultem12_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Some text data
string text = "ID\tMath\tPhysics\tChemistry \n";
text = text +

\t \t
text = text + "1002\t76\t89\t92\n";
text = text + "1003\t53\t98\t90\n";
text = text + "1008\t99\t78\t65\n";
/I Create a font

=3

\n";

Font verdanaFont =
new Font("Verdana", 10, FontStyle.Bold);
Font tahomaFont =
new Font("Tahoma", 16);
/I Create brushes
SolidBrush blackBrush = new SolidBrush(Color.Black);
SolidBrush redBrush = new SolidBrush(Color.Red);
/I Create a rectangle
Rectangle rect = new Rectangle(10, 50, 350, 250);
/I Create a StringFormat object
StringFormat strFormat = new StringFormat();
/I Set tab stops of string format
strFormat.SetTabStops(5, new float]]
{80, 100, 80, 80});
/I Draw string
g.DrawString("Student Grades Table",
tahomaFont,
blackBrush, new Rectangle
(10, 10, 300, 100));
g.DrawString("=============",
tahomaFont, blackBrush,

new Rectangle(10, 23, 300, 100));
/I Draw string with tab stops
g.DrawString(text, verdanaFont,
redBrush, rect, strFormat);
/I Dispose of GDI+ objects
tahomaFont.Dispose();
redBrush.Dispose();
blackBrush.Dispose();
g.Dispose();
}

shows the output from . It's easy to present text data in a tabular form by simply using theStringFormat class and its

properties.

Figure 5.15. Drawing tabbed text on a form

5.4.3 The rFormatFlags Property

The FormatFlags property is useful when an application needs to draw text s
FormatFlags takes a value of the StringFormatFlags enumeration. [Table 5.1

Note

student Grades Table

1D Math Physics Chemistry
1002 T ag9 92

1003 53 o8 o0

1008 59 8 B

rings in different layouts—such as drawing vertical text.
| describes the members of the StringFormatFlags enumeration.

An application can apply more than one StringFormatFlags member by using bitwise combinations.

As shows, our sample code draws two strings. One string is drawn from right to left, and the other is vertical. UsingormatFlags is
pretty simple. An application creates a StringFormat object, sets its FormatFlags property, and then uses theStringFormat object in the
DrawString method. Note that an application can use more than one instance of~rormatFlags for the same StringFormat object.

Table 5.11. StringFormatFlags members

Member

Description

DirectionRightToLeft

Draws text right to left in a given rectangle using the DrawString method.

DirectionVertical

Draws vertical text in a given rectangle using the DrawString method. The default alignment is left (use the
Alignment property to change the text alignment).

DisplayFormatControl

Causes control characters such as the paragraph mark to be shown in the output with a representative glyph
(e.g., T).

FitBlackBox

Specifies that no part of any glyph will overhang the bounding rectangle.

LineLimit

Specifies that only complete lines will be laid out in the formatting rectangle.

MeasureTrailingSpaces

By default, the boundary rectangle returned by the MeasureString method excludes any space at the end of each
line. Set this flag to include that space in the measurement.

NoClip

By default, clipping is on, which means that any text outside of the formatting rectangle is not displayed. NoClip
disables clipping.

NoFontFallback

By default, if the specified font is not found, an alternative font will be used. NoFontFallback disables that option
and displays an open square for the missing character(s).

NoWrap

By default, wrapping is on.NoWrap disables wrapping.

Listing 5.11 Using FormatFlags to format string text

private void menultem16_Click(object sender,

System.EventArgs €)

/I Create a Graphics object
Graphics g = this.CreateGraphics();

/I Create a rectangle

Rectangle rect = new Rectangle(50, 50, 350, 250);

/I Create two StringFormat objects

StringFormat strFormatl = new StringFormat();

StringFormat strFormat2 = new StringFormat();

/I Set format flags of StringFormat objects

/I with direction right to left

strFormatl.FormatFlags =
StringFormatFlags.DirectionRightToLeft;

/I Set direction vertical

strFormat2.FormatFlags =
StringFormatFlags.DirectionVertical;

/I Set alignment

strFormat2.Alignment = StringAlignment.Far;

/I Draw rectangle

g.DrawRectangle(new Pen(Color.Blue), rect);

string str =

"Horizontal Text: This is horizontal "
+ "text inside a rectangle”;

/I Draw strings
g.DrawString(str,

new Font("Verdana", 10, FontStyle.Bold),

new SolidBrush(Color.Green),
rect, strFormatl);
g.DrawString("Vertical: Text String",
new Font("Arial", 14),
new SolidBrush(Color.Red),
rect, strFormat2);
/I Dispose of GDI+ objects
g.Dispose();
}

shows the output from . One text string is drawn from right to left (aligned right) in the drawing rectangle, and the other

text string is drawn vertically on the left-hand side. An application can even use Alignment, Trimming, and other properties to align and trim
text.

Figure 5.16. Using FormatFlags to draw vertical and right-to-left text

Wom ~oix]

Forts Tedt Font

Horizontal Text: This is horizontal text
inside a rectangle

CENVEYN

1S May :

-

Bull

Note

Using the Alignment property will remove the effect ofStringFormatFlags.DirectionRightToLeft;.

5.4.4 Setting Digital Substitution

The SetDigitSubstitution method can be used to substitute digits in a string on the basis of a_ user's local areaSetDigitSubstitution takes a
parameter of the StringDigitSubstitute enumeration, the members of which are described inTable 5.12.

Table 5.12. stringDigitSubstitute members

Member Description
National Provides substitution digits based on the national language of the user's locale.
None Disables substitutions.
Traditional Provides substitution digits based on user's native script or language.
User Provides a user-defined substitution.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

5.5 Rendering Text with Quality and Performance

In bhagter ﬂ (bection 3.1]) | said that we would discuss some of theGraphics class members in later chapters. Here we will discuss the
TextRenderingHint property of the Graphics class.

Note

The TextRenderingHint enumeration is defined in theSystem.Drawing.Text namespace.

The TextRenderingHint property of the Graphics class defines the quality of text rendered on graphics surfaces. The quality also affects
drawing performance. For best performance, select low-quality rendering. Better quality will produce slower rendering. For LCD displays,
ClearType text provides the best quality.

The TextRenderingHint property takes a value of typeTextRenderingHint enumeration. The members of the TextRenderingHint enumeration
are described in [Table 5.13.

uses the TextRenderingHint property to draw text with different options. This code draws four different text strings using different
text rendering hint options.

Listing 5.12 Using TextRenderingHint to set the quality of text

private void menultem17_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

SolidBrush redBrush = new SolidBrush(Color.Red);

Font verdanal6 = new Font("Verdana", 16);

string textl = "Text with SingleBitPerPixel";

string text2 = "Text with ClearTypeGridFit";

string text3 = "Text with AntiAliasing";

string text4 = "Text with SystemDefault";

/I Set TextRenderingHint property of surface

/I to single bit per pixel

g.TextRenderingHint =
TextRenderingHint.SingleBitPerPixel;

/I Draw string

g.DrawString(textl, verdanal6, redBrush,
new PointF(10, 10));

/I Set TextRenderingHint property of surface

/I to ClearType grid fit

g.TextRenderingHint =
TextRenderingHint.ClearTypeGridFit;

/I Draw string

g.DrawString(text2, verdanal6, redBrush,
new PointF(10, 60));

/I Set TextRenderingHint property of surface

/ to AntiAlias

g.TextRenderingHint = TextRenderingHint.AntiAlias;

/I Draw string

g.DrawString(text3, verdanal6, redBrush,
new PointF(10, 100));

/I Set TextRenderingHint property of surface

/I to SystemDefault

g.TextRenderingHint =
TextRenderingHint.SystemDefault;

/I Draw string

g.DrawString(text4, verdanal6, redBrush,
new PointF(10, 150));

/I Dispose of objects

redBrush.Dispose();

g.Dispose();
}
Table 5.13. TextRenderingHint members
Member Description

AntiAlias Characters are rendered by anti-aliasing without hinting.AntiAlias offers good quality, but slow performance.

AntiAliasGridFit Characters are anti-aliased with hinting. AntiAliasGridFit offers good quality and high performance.

ClearTypeGridFit Characters are drawn by a ClearType bitmap with hinting. This is the highest-quality setting, with slow
performance. It takes advantage of ClearType font features, if available.

SingleBitPerPixel Characters are drawn with each glyph's bitmap. Hinting is not used.

SingleBitPerPixelGridFit Characters are drawn with each glyph's bitmap. Hinting is used to improve character appearance on stems and
curvature.

SystemDefault Characters are drawn with each glyph's bitmap, with the system's default rendering hint.

shows the output from . Different TextRenderingHint options result in text with higher or lower quality. (How clearly this

shows up will vary on different displays—and it may be hard to see in print.)

Figure 5.17. Using different TextRenderingHint settings to draw text

& Foim
Fords Ted Forl

Text with SingleBitPerPixel

[rean L | rreviovs [exr o]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

5.6 Advanced Typography

Besides the text functionality defined in the System.Drawing namespace, the .NET Framework class library defines more advanced
typography functionality in the System.Drawing.Text namespace. As usual, before using any of theSystem.Drawing.Text classes or other
objects, you need to add a namespace reference to the project.

The System.Drawing.Text namespace provides three font collection classes:FontCollection, InstalledFontCollection, and
PrivateFontCollection. The FontCollection class works as a base class for the other two classes and provides a property-amilies) that returns
an array containing a list of all font families in the collection.

The InstalledFontCollection class represents all the fonts installed on the system. TheFamilies property returns a collection of all font families
available on the system.

Note

Before using any of the System.Drawing.Text namespace classes, an application must add a reference to the namespace
with the "using" directive:

using System.Drawing.Text;

Alternatively, you can qualify a class using the namespace as a prefix.

5.6.1 Getting All Installed Fonts on a System

As stated in the previous section, the InstalledFontCollection class represents all available font families on a system. The~amilies property
returns an array of FontFamily type.

returns all available fonts on a system. To test this application, add a combo box to a form and write this code on the form-load
event handler or a button or menu click event handler. using System.Drawing.Text Before executing this code, an application must add the

following line:

using System.Drawing.Text

Listing 5.13 Using InstalledFontCollection to get all installed fonts on a system

/I Create InstalledFontCollection object
InstalledFontCollection

sysFontCollection = new InstalledFontCollection();
/I Get the array of FontFamily objects
FontFamily[] fontFamilies = sysFontCollection.Families;
/I Read all font familes and add to the combo box
for(inti = 0; i < fontFamilies.Length; ++i)
{

comboBox1.ltems.Add(fontFamilies[i]. Name);

}

5.6.2 Private Font Collection

The PrivateFontCollection class is used to create a private collection of fonts, for use only by your application. A private collection may include
the fonts available on a system, as well as fonts that are not installed on the system. Such a collection is useful when you want to use
third-party fonts. The AddFontFile method is used to add a font file to the collection. TheAddMemoryFont method reads fonts from system
memory and adds them to the collection. The IsStyleAvailable method, which takes aFontStyle enumeration value, indicates whether a style
is available.

Normally all system fonts are installed in your Windows\Fonts directory. On our test machine, all fonts are installed in the directory
C:\WinNT\Fonts. You can also browse and add fonts from other locations to a private font collection by passing the full path of the font file in the
AddFontFile method. For example, the following code snippet adds four fonts to a private font collection.

/I Create a private font collection
PrivateFontCollection pfc =

new PrivateFontCollection();
/I Add font files to the private font collection
pfc.AddFontFile("tekhead.ttf");
pfc.AddFontFile("DELUSION.TTF");
pfc.AddFontFile("HEMIHEAD.TTF");
pfc.AddFontFile("C:\WINNT\\Fonts\\Verdana.ttf");

In thii_mdm&a_d_d_mmuﬁlto the private font collection. Verdana is available on all machines. The other three fonts can be downloaded
from pttp://www.fontfreak.cong (click Enter on site's home page to access naviagation area).

You can even add styles to an existing font. In we add four fonts to the private font collection with theAddFontFile method. Then
we see if these font families have different styles. If not, we add new styles to the font families and draw text using the new fonts. In the end,
we print out the font name on the form.

Listing 5.14 Using the PrivateFontCollection class

private void menultem2_Click(object sender,
System.EventArgs €)

Graphics g = this.CreateGraphics();
PointF pointF = new PointF(10, 20);
string fontName;
/I Create a private font collection
PrivateFontCollection pfc =
new PrivateFontCollection();
/I Add font files to the private font collection

http://www.fontfreak.com/default.htm

pfc.AddFontFile("tekhead.ttf");
pfc.AddFontFile("DELUSION.TTF");
pfc.AddFontFile("HEMIHEAD.TTF");
/I MAKE SURE YOU HAVE THE Verdana.ttf FILE IN THE SPECIFIED
/I FOLDER, OR CHANGE THE FOLDER LOCATION
pfc.AddFontFile("C:\WINNT\\Fonts\\Verdana.ttf");

/I Return all font families from the collection
FontFamily[] fontFamilies = pfc.Families;
/I Get font families one by one,
/I add new styles, and draw
/I text using DrawString
for(int j = 0; j < fontFamilies.Length; ++j)
{

/I Get the font family name

fontName = fontFamilies[j].Name;

if(fontFamilies[j].IsStyleAvailable(
FontStyle.ltalic) &&
fontFamilies]j].IsStyleAvailable(
FontStyle.Bold) &&
fontFamilies]j].IsStyleAvailable(
FontStyle.Underline) &&
fontFamilies]j].IsStyleAvailable(
FontStyle.Strikeout))
{
/I Create a font from the font name
Font newFont = new Font(fontName,
20, FontStyle.ltalic | FontStyle.Bold
|FontStyle.Underline, GraphicsUnit.Pixel);
/I Draw string using the current font
g.DrawString(fontName, newFont,
new SolidBrush(Color.Red), pointF);
/I Set location
pointF.Y += newFont.Height;
}
}

/I Dispose of object
g.Dispose();

Note

You may need to change the directory path in to match your machine.

ws application and insert the sample code on the form-paint, a button click, or a menu click event handler,
shows the ouput of the application. All the available fonts in the private font collection are listed.

To test , create a Windo
and run the application.

Figure 5.18. Using a private font collection

ETY rrevious [ecr]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

5.7 A Simple Text Editor

Now let's see how to write a simple text editor in just a few minutes, using the functionality we have discussed in this chapter so far.

First we create a Windows application and add some controls to the form. As shows, we add two label controls and set theifText
properties to Available Fonts and Size, respectively. Then we add a combo box, &umericUpDown control, and two button controls with the
Text properties set to Color and Apply, respectively. We will use the combo box control to display all installed fonts, théeNumericUpDown
control to set the size of text, and the Color button to set the text color. We also add aRichTextBox control to the form and size it

appropriately.

Figure 5.19. A simple text editor application

™ GDI+ Editor - A Semple Text Editor

Fie Ect Foemal

Avallabe Fonts Size

EO o= e

This is a simple text editor. We're testing font collection functional

Now we add the following line to our application:

using System.Drawing.Text;

We also add two private variables of types Color and int, respectively, as follows:

private Color textColor;
private int textSize;

Finally, we double-click on the form and insert the code from on the form-load event handler, thereby setting theNumericUpDown
control's Value property to 10 and adding all installed fonts to the combo box control.

Listing 5.15 The form-load event handler

private void Form1_Load(object sender,
System.EventArgs e)

numericUpDown1.Value = 10;
/I Create InstalledFontCollection object
InstalledFontCollection
sysFontCollection =
new InstalledFontCollection();
/I Get the array of FontFamily objects
FontFamily[] fontFamilies =
sysFontCollection.Families;
/I Read all font familes and
/l add to the combo box
foreach (FontFamily ff in fontFamilies)
{
comboBox1.ltems.Add(ff.Name);
}

comboBox1.Text = fontFamilies[0].Name;

}

The Color button click event handler simply callsColorDialog, which allows the user to pick the text color (se).

Listing 5.16 Getting color from ColorDialog

private void buttonl_Click(object sender,
System.EventArgs e)

/I Create a color dialog and let
/I the user select a color.
/I Save the selected color.
ColorDialog colorDlg = new ColorDialog();
if(colorDlg.ShowDialog() == DialogResult.OK)
{

textColor = colorDlg.Color;

}

The Apply button reads the selected font name from the combo box and the size from thé\umericUpDown control. Then it creates aFon
object using the font family name and size. Finally, we set the ForeColor and Font properties of the RichTextBox control (see).

Listing 5.17 Setting the font and foreground color of RichTextBox

private void button2_Click(object sender,
System.EventArgs e)

/I Get size of text from

/I the numeric up-down control

textSize = (int)numericUpDown1.Value;

/I Get current font name from the list

string selFont = comboBox1.Text;

/I Create new font from the current selection
Font textFont = new Font(selFont, textSize);
/I Set color and font of rich-text box
richTextBox1.ForeColor = textColor;
richTextBox1.Font = textFont;

By extending this simple application and the RichTextBox features, you can develop a complete text editor with features that include open
and save, find, change font styles, and so on. We'll leave this to you as an exercise!

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

5.8 Transforming Text

Transformation is a process of moving objects from one place to another by applying a series of operations such as scaling, rotation, and
translation. In this section we will see how to transform text using the Graphics object.

Transformation using Graphics class methods and properties is pretty simple. TheGraphics class provides the methods ScaleTransform,
RotateTransform, TranslateTransform and others.

Note

See for detailed information about transformations and how to use various transformation techniques.

Let's look at a simple yet useful example of text transformation. First we draw some text on a form using the code in .

Listing 5.18 Drawing text on a form

Graphics g = e.Graphics;

string str = "Colors, fonts, and text are common elements "+
"of graphics programming. In this chapter, you learned " +

" about the colors, fonts, and text representations in the "+
".NET Framework class library. You learned how to create "+
"these elements and use them in GDI+.";

g.DrawsString(str, new Font("Verdana", 10),

new SolidBrush(Color.Blue), new Rectangle(50,20,200,300));

shows the output of . The text is drawn normally.

Figure 5.20. Drawing text on a form

® Text Transformation Sample

Colors, fonts, and text are
common elements of
graphics programming. In
this chapter, you learmed
about the colors, fonts, and
text representations in

tha NFT Framawnrk rlacs

mr = stEmm P P T ERTTTWE I WYY WemmarE

library. You learmed how to
create these elements and
[use them in GDI+,

Now let's scale the text using the ScaleTransform method by writing the following line before theDrawString method call. Scaling changes the
text size by application of a scaling factor. For example, the following code line doubles the size of text. This code must be added before the
DrawString method call:

g.ScaleTransform(2, 1);

Now our text on the form looks like . It is scaled to twice the regular size.

Figure 5.21. Using ScaleTransform to scale text

|j_ Text Transformation Sample

Colors, fonts, and
common lements
graphics programr
this chapter, vou I«
about the colors, T
text representatior
the .NET Framewo
librarv. You learne:
create these elems
use them in GDI4.

Now let's rotate the text, which we can do by calling the RotateTransform method, which takes a rotation angle. We rotate the text 45 degrees
by adding the following line before the DrawString method call:

g.RotateTransform(45.0f,
System.Drawing.Drawing2D.MatrixOrder.Prepend);

Now the text on the form looks like . It is rotated from its previous position.

Figure 5.22. Using RotateTransform to rotate text

_ﬁ; Text Transformation Sample H=]1E3 |

.-.rb-':!} q‘:t_‘
‘31'-!.:5 Zo D
N P
o d:-r.'} % T e
] -]
N T, e P

Finally, let's call TranslateTransform, which takes two values related to thex- and y-axes. We add the following line afterRotateTransform:

g.TranslateTransform(-20, -70);

and our final form looks Iike. The text has been moved (or "translated") from its previous position.

Figure 5.23. Using TranslateTransform to translate text

i -
,i Text Transiormation Sample

Tean L] rrevious [ecr]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

SUMMARY

We started this chapter by discussing the basics of colors, fonts, and text-related functionality and classes defined in the .NET Framework. In
the colors section, we covered how to use the Color class and its members, including system colors. We also discussed color spaces, and
how to translate colors from one to another.

In the fonts section, we discussed how to use the Font class and related classes to create various types of fonts with different sizes and
colors. We also discussed how to control the font families, including system and private font collections, and use them in our application.

The text section covered some uses of fonts and strings. We discussed how to format text, including aligning, tab stops, trimming, and
hinting. We also discussed how to improve the quality and speed of text rendering by using various settings. Then we created a text editor
illustrating how to use color-, font-, and text-related functionality in a real-world application.

At the end of the chapter we discussed some text transformation techniques, including scaling, rotation, and translation of text from one
position to another.

mentioned rect‘ regions only briefly, but regions and rectangles play a major role in application development and
nhater q

rendering performance. In | we will discuss rectangles and regions in detail.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 6. Rectangles and Regions

In previous chapters we discussed rectangles and how to draw and fill them using the draw and fill methods of the Graphics class. In this

chapter we will discuss additional functionality of rectangles and regions.

We will cover the following key topics:

.NET Framework objects that work with rectangles and regions and their members
Graphics class members that work with rectangles and regions

Writing applications using objects

The Rectangle structure and its members

The Region class and its members

Invalidating and clipping regions

Examples of real-world applications using regions and rectangles

A rectangle has three properties: starting point, height, and width. shows these properties where the starting point is the top left.

Figure 6.1. A rectangle

Starting Point (x, v

Height

k

F

.
L

Width

Suppose you wanted to draw a rectangle from point (1, 2) with height 7 and width 6. The final rectangle would look like .

Figure 6.2. A rectangle with starting point (1, 2), height 7, and width 6

The filled rectangle occupies the entire area within the range of its height and width.

[rean L | rreviovs [exr o]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

6.1 The Rectangle Structur

In we discussed theRectangle a

e

nd Rectan

discuss the functionality that we missed in

hapter

gleF structures, and how to use their properties and methods. In this chapter we will
. To refresh your memory, let's take a quick look at theRectangle structure.

A Rectangle object stores the top left corner and height and width of a rectangular region. In this section we will see how to create and use the

Rectangle structure.

6.1.1 Constructing a rectangle Object

There are several ways to create a Rectangle object. For example, you can create aRectangle object from four integer values representing
the starting point and size of the rectangle, or from Point and Size structures. creates Rectangle objects from Size, Point, and direct
values. As this code shows, a Rectangle constructor can take aPoint and aSize object or, alternatively, the starting point (as separate

variables x andy), width, and height.

Listing 6.1 Constructing Rectangle objects

int x = 20;
inty = 30;
int height = 30;
int width = 30;

/I Create a starting point

Point pt = new Point(10, 10);

Il Create a size

Size sz = new Size(60, 40);

/I Create a rectangle from a point

/I and a size

Rectangle rectl = new Rectangle(pt, sz);
Rectangle rect2 =

new Rectangle(x, y, width, height);

6.1.2 Constructing a rectangler Object

You can also create a RectangleF object in several ways: from four floating point numbers with the starting and ending points and height and

width of the rectangle, or from a point and a size. RectangleF is a mirror of Rectangle, including properties and methods. The only difference
i c]

is that RectangleF takes floating point values. For example, instead ofSize and Point, RectangleF uses SizeF and PointF. Listing 6.4 creates

RectangleF objects in two different ways.

Listing 6.2 Constructing RectangleF objects

/I Create a starting point

PointF pt = new PointF(30.8f, 20.7f);

Il Create a size

SizeF sz = new SizeF(60.0f, 40.0f);

/I Create a rectangle from a point and

Il a size

RectangleF rectl = new RectangleF(pt, sz);
/I Create a rectangle from floating points
RectangleF rect2 =

new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);

6.1.3 Rrectangle Properties and Methods

The Rectangle structure provides properties that includeBottom, Top, Left, Right, Height, Width, ISsEmpty, Location, Size, X, and Y.
creates two rectangles (rectl and rect2), reads these properties, and displays their values in a message box.

Listing 6.3 Using the the Rectangle structure properties

private void PropertiesMenu_Click(object sender,
System.EventArgs e)

/I Create a point
PointF pt = new PointF(30.8f, 20.7f);
/I Create a size
SizeF sz = new SizeF(60.0f, 40.0f);
/I Create a rectangle from a point and
I a size
RectangleF rectl = new RectangleF(pt, sz);
/I Create a rectangle from floating points
RectangleF rect2 =
new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);
/I If rectangle is empty,
/I set its Location, Width, and Height
/I properties
if (rectl.IsEmpty)
{
rectl.Location = pt;
rectl.Width = sz.Width;
rectl.Height = sz.Height;
}
/I Read properties and display
string str =
"Location:"+ rectl.Location.ToString();
str += "X:"+rectl.X.ToString() + "\n";
str +="Y:"+ rectl.Y.ToString() + "\n";
str += "Left:"+ rectl.Left. ToString() + "\n";
str += "Right:"+ rectl.Right. ToString() + "\n";
str += "Top:"+ rectl.Top.ToString() + "\n";
str += "Bottom:"+ rectl.Bottom.ToString();
MessageBox.Show(str);

}

As we discussed in , the Rectangle structure provides methods that includeRound, Truncate, Inflate, Ceiling, Intersect, and Union.

® The Round method converts aRectangleF object to aRectangle object by rounding off the values ofRectangleF to the nearest
integer.

® The Truncate method converts aRectangleF object to aRectangle object by truncating the values ofRectangleF.

® The Inflate method creates a rectangle inflated by the specified amount.

® The Ceiling method converts aRectangleF object to aRectangle object by rounding to the next higher integer values.
® The Intersect method replaces a rectangle by its intersection with a supplied rectangle.

® The Union method gets a rectangle that contains the union of two rectangles.

shows how to use the Round, Truncate, Inflate, Ceiling, Intersect, and Union methods.

Listing 6.4 Using the Rectangle structure methods

private void MethodsMenu_Click(object sender,
System.EventArgs €)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
/I Create a point and a size
PointF pt = new PointF(30.8f, 20.7f);
SizeF sz = new SizeF(60.0f, 40.0f);
/I Create two rectangles
RectangleF rectl = new RectangleF(pt, sz);
RectangleF rect2 =
new RectangleF(40.2f, 40.6f, 100.5f, 100.0f);
/I Ceiling a rectangle
Rectangle rect3 = Rectangle.Ceiling(rectl);
/I Truncate a rectangle
Rectangle rect4 = Rectangle.Truncate(rectl);
/I Round a rectangle
Rectangle rect5 = Rectangle.Round(rect2);
/I Draw rectangles
g.DrawRectangle(Pens.Black, rect3);
g.FillRectangle(Brushes.Red, rect5);
/Il Intersect a rectangle
Rectangle isectRect =
Rectangle.Intersect(rect3, rect5);
/' Fill rectangle
g.FillRectangle(
new SolidBrush(Color.Blue), isectRect);
/I Inflate a rectangle
Size inflateSize = new Size(0, 40);
isectRect.Inflate(inflateSize);
/I Draw rectangle
g.DrawRectangle(Pens.Blue, isectRect);
/I Empty rectangle and set its properties
rect4 = Rectangle.Empty;

rect4.Location = new Point(50, 50);
rect4.X = 30;
rect4.Y = 40;
/I Union rectangles
Rectangle unionRect =
Rectangle.Union(rect4, rect5);

/I Draw rectangle
g.DrawRectangle(Pens.Green, unionRect);
/I Displose of objects
g.Dispose();

}

shows the output of .

Figure 6.3. Using Rectangle methods

™ Forml ;lEIEI

6.1.3.1 The contains Method and Hit Test

The Contains method is used to determine whether a rectangle or point is inside the current rectangle. If a point is inside the current
rectangle, the Contains method returns true; otherwise it returns false. One of the common uses of Contains is to find out if a mouse button
was clicked inside a rectangle.

6.1.3.2 Hit Test Example

To see proper use of the Contains method, let's create a Windows application and draw a rectangle on the form. Whether the user clicks

inside or outside of the rectangle, we will have the application generate an appropriate message.

First we define a class-level Rectangle variable as follows:

Rectangle bigRect = new Rectangle(50, 50, 100, 100);

Then we use the form's paint event handler because we want to render graphics whenever the form needs to refresh. The form's paint event
handler code looks like this:

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
SolidBrush brush = new SolidBrush(Color.Green);
e.Graphics.FillRectangle(brush, bigRect);
brush.Dispose();

}

Our last step is to determine whether the user clicked inside the rectangle. We track the user's mouse-down event and write code for the left
mouse button click event handler. The MouseEventArgs enumeration provides members to find out which mouse button is clicked. The
MouseButtons enumeration has members that includeLeft, Middle, None, Right, Xbutton1, and Xbutton2, which represent the mouse buttons.

We check | if the mouse button clicked was the left button, then create a rectangle, and (if the mouse button was clicked) generate a
message. Listing 6.9 shows the code for this process.

Listing 6.5 Determining whether a mouse was clicked inside a rectangle

private void Form1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{

if(e.Button == MouseButtons.Left)
{
if (bigRect.Contains(new Point(e.X, e.Y)))
MessageBox.Show("Clicked inside rectangle");
else
MessageBox.Show("Clicked outside rectangle");
}
}

When you run the application and click on the rectangle, the output looks like .

Figure 6.4. Hit test using the Contains method

[Arorm1 (=17
s -

Chched insade rectangls

The Contains method also allows us to find out whether a rectangle fits inside another rectangle checks whether smallRect is within

bigRect.

Listing 6.6 Checking if one rectangle is within another

Point pt = new Point(0, 0);

Size sz = new Size(200, 200);

Rectangle bigRect = new Rectangle(pt, sz);

Rectangle smallRect = new Rectangle(30, 20, 100, 100);

if (bigRect.Contains(smallRect))
MessageBox.Show("Rectangle "+smallRect. ToString()
+" is inside Rectangle "+ bigRect.ToString());

Team LiB |

Team LiB |

6.2 The Region Class

Aregion describes the interior of a closed graphics shape, or form. A form has two areas: a nonclient area and a client area. Theonclient
area (which does not allow for user-drawn graphics objects) includes the title bar—and, depending on the application, horizontal and vertical
scroll bars. This area cannot be used to draw graphics objects. The client area is used to draw controls and graphics objects.

In the .NET Framework library, the Region class object represents a region. If you have ever developed a complex .NET graphics application
that requires a lot of rendering, you may have used this object a lot.

6.2.1 Constructing a region Object

The Region class provides five overloaded forms. Using these forms, you can construct egion object from aRectangle, RectangleF,
GraphicsPath, or RegionData object, or with no parameters. The following code snippet createsRegion objects in different ways using different
arguments.

/I Create two rectangles
Rectangle rectl =

new Rectangle(20, 20, 60, 80);
RectangleF rect2 =

new RectangleF(100, 20, 60, 100);
/I Create a graphics path
GraphicsPath path = new GraphicsPath();
/I Add a rectangle to the graphics path
path.AddRectangle(rectl);
/I Create a region from rectl
Region rectRgnl = new Region(rectl);
/I Create a region from rect2
Region rectRgn2 = new Region(rect2);
/I Create a region from GraphicsPath
Region pathRgn = new Region(path);

The Region class has no properties. After constructing a region, an application can use theGraphics class's FillRegion method to fill the region.

describes the methods of the Region class briefly. They are discussed in detail irbection 6.2.d through EZQI

6.2.2 The complement, Exclude, and union Methods

We saw the Region class methods in . Now let's use these methods in our applications.

The Complement method updates the portion of aRegion object (specified by a rectangle or a region) that does not intersect the specified
region. It takes an argument of type Rectangle, RectangleF, GraphicsPath, or Region and updates the region. creates twoRegion
objects and draws rectangles with different pens. The Complement method updates only the portion of the first region that falls within the
second region.

Listing 6.7 Using the Complement method of the Region class

/I Create Graphics object

Graphics g = this.CreateGraphics();

/I Create two rectangles

Rectangle rectl = new Rectangle(20, 20, 60, 80);
Rectangle rect2 = new Rectangle(50, 30, 60, 80);
/I Create two regions

Region rgnl = new Region(rectl);

Region rgn2 = new Region(rect2);

/I Draw rectangles
g.DrawRectangle(Pens.Green, rectl);
g.DrawRectangle(Pens.Black, rect2);

/I Complement can take Rectangle, RectangleF,
/I Region, or GraphicsPath as an argument
rgnl.Complement(rgn2);

/I rgnl.Complement(rect2);
g.FillRegion(Brushes.Blue, rgnl);

/I Dispose of object

g.Dispose();

shows the output from . Our code updates a portion ofgnl that doesn't intersect withrgn2. It is useful when you need to

update only a specific part of a region. For example, suppose you're writing a shooting game application and your program updates the
targets only after gunfire. In this scenario you need to update only the target region, not the entire form.

Figure 6.5. Complementing regions

L'EFnrrn'l Mi=] E3
Rectangle ReclangleF Region Clpping

Table 6.1. Region methods

Method Description
Clone Creates an exact copy of a region.
Complement Updates a region to the portion of a rectangle that does not intersect with the region.
Exclude Updates a region to the portion of its interior that does not intersect with a rectangle.
FromHrgn Creates a new Region object from a handle to the specified existing GDI region.
GetBounds Returns a RectangleF structure that represents a rectangle that bounds a region.
GetHrgn Returns a window handle for a region.
GetRegionData Returns a RegionData object for a region.RegionData contains information describing a region.
GetRegionScans Returns an array of RectangleF structures that approximate a region.
Intersect Updates a region to the intersection of itself with another region.
ISEmpty Returns true if a region is empty; otherwise returnsfalse.
IsInfinite Returns true if a region has an infinite interior; otherwise returnsfalse.
IsVisible Returns true if the specified rectangle is contained within a region.
MakeEmpty Marks a region as empty.
Makelnfinite Marks a region as infinite.
Transform Applies the transformation matrix to the region.
Translate Offsets the coordinates of a region by the specified amount.
Union Updates a region to the union of itself and the given graphics path.
Xor Updates a region to the union minus the intersection of itself with the given graphics path.

The Exclude method updates the part of a region that does not interact with the specified region or recta
an argument of type Rectangle, RectangleF, GraphicsPath, or Region and updates the region.
draws rectangles with different pens, then calls Exclude.

Listing 6.8 Using the Exclude method of the Region class

Rectangle rectl = new Rectangle(20, 20, 60, 80);
Rectangle rect2 = new Rectangle(50, 30, 60, 80);
Region rgnl = new Region(rectl);

Region rgn2 = new Region(rect2);
g.DrawRectangle(Pens.Green, rectl);
g.DrawRectangle(Pens.Black, rect2);

ingle. Lik€omplement, Exclude takes
creates two Region objects and

rgnl.Exclude(rgn2);
g.FillRegion(Brushes.Blue, rgnl);

shows the output from . Only the excluded part of the region is updated.

Figure 6.6. Excluding regions

8 Forml _ O] x|
Rectangle RectangleF Regon Chpping

From the code of , replacing the line

rgnl.Exclude(rgn2);

with

rgnl.Union(rgn2);

produces , which updates the union of both regions (or rectangles). LikeExclude and Complement, the Union method can take
Rectangle, RectangleF, GraphicsPath, or Region as an argument.

Figure 6.7. Applying union on regions

6.2.3 The xor and intersect Methods

The Xor method updates the union of both regions (or rectangles) except the intersection area of the rectangle itself. Replacingxclude with

Figure 6.8. Using the xor method of the Region class

Hwtungia RectangleF Region Clpping

Listing 6.9 Using the Xor method of the Region class

/I Create Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create rectangles

Rectangle rectl = new Rectangle(20, 20, 60, 80);
Rectangle rect2 = new Rectangle(50, 30, 60, 80);
/I Create regions

Region rgnl = new Region(rectl);

Region rgn2 = new Region(rect2);

/I Draw rectangles
g.DrawRectangle(Pens.Green, rectl);
g.DrawRectangle(Pens.Black, rect2);

/I Xor two regions

rgnl.Xor(rgn2);

/I Fill the region after Xoring
g.FillRegion(Brushes.Blue, rgnl);

/I Dispose of object

g.Dispose();

The Intersect method is the reverse of Xor. It updates only the intersection region of two regions or rectangles. For example, if you replace line

rgnl.Xor(rgn2);

with the following code:

rgnl.Intersect(rgn2);

the new output will look like .

Figure 6.9. Using the Intersect method of the Region class

W Foiml M=

Rectangle RectangleF Region Clipping

6.2.4 cetBounds and Other Methods

The IsEmpty method takes a Graphics object as an argument and returnstrue if a region is empty. Otherwise it returnsfalse. IsInfinite returns
true if a region is infinite (otherwise it returnsfalse), and it takes aGraphics object as the only argument.

The MakeEmpty and Makelnfinite methods make a region empty or infinite, respectively. An infinite region completely covers the area of a
control.

The GetBounds method returns the bounds of a region. This method also takes aGraphics object as an argument.

The code in uses these methods. It makesrgn2 infinite and fills it with a red pen, which fills the entire form with red.

Listing 6.10 Using GetBounds and other methods of the Region class

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create rectangles and regions

Rectangle rectl =
new Rectangle(20, 20, 60, 80);
Rectangle rect2 =
new Rectangle(50, 30, 60, 80);
Region rgnl = new Region(rectl);
Region rgn2 = new Region(rect2);
/I If region is not empty, empty it
if (! rgnl.IsEmpty(g))
rgnl.MakeEmpty();
/I If region is not infinite, make it infinite

if (! rgn2.IsInfinite(g))
rgn2.Makelnfinite();
/I Get bounds of the infinite region
RectangleF rect = rgn2.GetBounds(g);
/I Display
MessageBox.Show(rect. ToString());
/I 'Fill the region
g.FillRegion(Brushes.Red, rgn2);
/I Dispose of object
g.Dispose();

An infinite region's starting coordinates are negative numbers, and its height and width are large positive numbers, as shows.
Using FillRegion on an infinite region fills the entire form.

Figure 6.10. Bounds of an infinite region

B X

{imnsh | 94304, Vol 1 94 304, Widthe 8388608, Height =8382608)

6.3 Regions and Clipping

As we discussed in , the Graphics class provides methods to clip regions. Using these methods, an application can restrict where
graphics objects are drawn. One major use of clipping regions is to repaint only part of a control. In some cases painting an entire form is
costly in terms of time and memory resources. Clipping plays a vital role by painting only the desired area. The Graphics class provides the
SetClip, ResetClip, IntersectClip, ExcludeClip, and TranslateClip methods to use in clipping operations.

ExcludeClip excludes the area specified by an argument of typeRectangle or aRegion and updates the clipping region fills a
rectangle, excluding one small rectangle and a region.

Listing 6.11 Using ExcludecClip to clip regions

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create rectangles

Rectangle rectl = new Rectangle(20, 20, 60, 80);
Rectangle rect2 = new Rectangle(100, 100, 30, 40);
/I Create a region

Region rgnl = new Region(rect2);

/I Exclude clip

g.ExcludeClip(rectl);

g.ExcludeClip(rgnl);

/I Fill rectangle

g.FillRectangle(Brushes.Red, 0, 0, 200, 200);

/I Dispose of object

g.Dispose();

shows output from . The small rectangle and small region are not updated.

Figure 6.11. ExcludeClip output

Foiml !E E

Rectangle RectangleF Regon Clipping

SetClip sets the clipping region of aGraphics object. This method has many overloaded forms and takes parameters of typdRectangle,
RectangleF, Region, GraphicsPath, and Graphics with or without theCombineMode enumeration. The CombineMode enumeration defines
how different clipping regions can be combined (see).

The ResetClip method resets the clipping region to infinity. uses the SetClip, ResetClip, and IntersectClip methods.

Listing 6.12 Using the setClip, ResetClip, and IntersectClip methods

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create rectangles and regions

Rectangle rectl = new Rectangle(20, 20, 200, 200);
Rectangle rect2 = new Rectangle(100, 100, 200, 200);
Region rgnl = new Region(rectl);

Region rgn2 = new Region(rect2);

/I Call SetClip

g.SetClip(rgnl, CombineMode.Exclude);

/I Call IntersectClip

g.IntersectClip(rgn2);

/I Fill rectangle

g.FillRectangle(Brushes.Red, 0, 0, 300, 300);
/I Call ResetClip

g.ResetClip();

/I Draw rectangles
g.DrawRectangle(Pens.Green, rectl);
g.DrawRectangle(Pens.Yellow, rect2);

/I Dispose of object

g.Dispose();

Table 6.2. CombineMode members

Member Description
Complement The existing region is replaced by the result of the existing region being removed from the new region.
Exclude The existing region is replaced by the result of the new region being removed from the existing region.
Intersect Two clipping regions are combined, and the result is their intersection.
Replace One clipping region replaces the other.
Union Two clipping regions are combined, and the result is their union.
Xor Two clipping regions are combined, and the result is their union minus their intersection.

Note

The CombineMode enumeration is defined in theSystem.Drawing.Drawing2D namespace.

shows the output from .

Figure 6.12. Using clip methods

[Mromi =lolxi

Rectangle RectangieF Region Clpping

TranslateClip translates the clipping region as specified. uses the TranslateClip method to translate a region by 20 and 30 points.

Listing 6.13 Using TranslateClip to translate a region

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a RectangleF rectangle
RectangleF rectl =

new RectangleF(20.0f, 20.0f, 200.0f, 200.0f);
/I Create a region

Region rgnl = new Region(rectl);

/I Call SetClip

g.SetClip(rgnl, CombineMode.Exclude);
float h = 20.0f;

float w = 30.0f;

/I Call TranslateClip with h and w
g.TranslateClip(h, w);

/1 Fill rectangle

g.FillRectangle(Brushes.Green, 20, 20, 300, 300);

shows the output from

Rectangle RectangleF Region Clpping

Team LiB |

Figure 6.13. Using TranslateClip

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

6.4 Clipping Regions Example

uses Xor to clip regions.

Listing 6.14 Using the Xor method

Pen pen = new Pen(Color.Red, 5);

SolidBrush brush = new SolidBrush(Color.Red);
Rectangle rectl = new Rectangle(50, 0, 50, 150);
Rectangle rect2 = new Rectangle(0, 50, 150, 50);
Region region = new Region(rectl);
region.Xor(rect2);

g.FillRegion(brush, region);

shows the output from .

Figure 6.14. Result of the xor method

B Clipping Regions Sample

Now if we replace Xor with Union:

region.Union(rect2);

the new output looks like .

Figure 6.15. Result of the union method

8 Clipping Regions Sample

Now let's replace Union with Exclude:

region.Exclude(rect2);

The output looks like .

Figure 6.16. Result of the Exclude method

Y Chpping Regions Sample

Operation [%

If we use the Intersect method:

region.Intersect(rect2);

the output looks like .

Figure 6.17. Result of the Intersect method

¥ Clipping Regions Sample

BTy rrevious []

BTy rrevious [ecr]

6.5 Regions, Nonrectangular Forms, and Controls

When we're writing Windows applications with drawing functionality, it becomes important to understand the roles of regions, client areas, and
nonclient areas. This section will describe an exciting and wonderful use of regions.

shows a typical rectangular form. As you can see, the title bar area usually contains the title of the form, as well as minimize,
maximize, and close buttons. This is the nonclient area; the rest of the form is the client area. Graphics objects can be drawn only in the client
area. The combination of both client and nonclient areas is the default region of a form.

Figure 6.18. Client and nonclient areas of a form

- Nonclent Area Client Area |

Play Audic Play Video

What exactly is a region? A region is a collection of pixels that represents part of a control. GDI+ is responsible only for drawing the region
associated with a window (a form or control). The default region of a window includes both client and nonclient areas, so GDI+ draws the
entire window.

However, you can force the operating system to display only part of a window. This is where regions are useful.

6.5.1 The Application

This section will show you the importance of regions and how you can use them in real-world applications.

Have you ever thought about writing nonrectangular forms or controls? How about writing circular, triangular, or polygonal forms, buttons,

labels, or text boxes? Our example is a Windows application in which the user can select the shape of the form. The user will have options to
change the default rectangular form to a circular, triangular, or polygonal form. You will also learn how to create nonrectangular controls such
as buttons.

How can we write nonrectangular forms and controls? GDI+ draws only the regions associated with a form or a control. But setting a
nonrectangularﬂ_uld do the trick. This is what we will do in our application. One of the nonrectangular forms of the final application
igure 6.19

might look like

6.5.2

In Windows Forms, every control, including a form, is derived from the Control class. The Region property of the control c

region of

through |

]. As you can see, this technique can be used to build cool-looking Windows applications.

Figure 6.19. A nonrectangular form and controls

Coding

control. If you set the Region property of a control, only the area covered by that region will be visible to the use
p.5.2.6 describe the steps involved in writing code for nonrectangular shapes.

6.5.2.1 Step 1: Create the Application

ass represents

ection 6.5.2.

the

We create a Windows application, put three controls on the form, and change the Text properties of the buttons. We also add a context menu

and four

menu items, as shows. In addition, we add menu and button click event handlers.

Figure 6.20. The nonrectangular forms application

| o

Animation

6.5.2.2 Step 2: Add the shape Class

Now we add a class to the project. Our class name is Shape, as shows. We add two methods to this class:GetPolyRegion and
GetRectRegion. Both of these methods return aRegion object. The GetPolyRegion method takes an array of Point objects as its only
.ar?ument. We create a graphics path from the points by calling AddPolygon. After that we create a region from the path and return it. See

Ehapters andH for more about theGraphicsPath class. Similarly, we create a region from a rectangle in th&etRectRegion method.

Listing 6.15 The shape class

/I The Shape class contains the functionality
/I of shaped controls
public class Shape
{
public Shape()
{
}
public Region GetPolyRegion(Point[] pts)
{
/I Create a graphics path
GraphicsPath path =
new GraphicsPath(FillMode.Alternate);
path.AddPolygon(pts);
/I Create a Region object from the path
/I and set it as the form's region
Region rgn = new Region(path);
return rgn;

}
public Region GetRectRegion(Rectangle rct)

/I Create a graphics path
GraphicsPath path =
new GraphicsPath(FillMode.Alternate);
path.AddEllipse(rct);
/I Create a Region object from the path
/I and set it as the form's region
Region rgn = new Region(path);
return rgn;

6.5.2.3 Step 3: Load the Context Menu

Now we load the context menu on the right mouse click of the form. In , we set the ContextMenu property of the form as the
context menu control.

Listing 6.16 The mouse-down click event handler

private void Form1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{
if(e.Button == MouseButtons.Right)
{
this.ContextMenu = this.contextMenu1,;
}
}

6.5.2.4 Step 4: Call the shape Class Methods

Now we call GetRectRegion and GetPolyRegion from the context menu click event handlers to get the region for a rectangle or a polygon.
After getting a Region object corresponding to a rectangle or a polygon, we just need to set theRegion property of the form.‘ shows

the code for the context menu click event handlers.

Listing 6.17 Menu item click event handlers

private void CircleMenu_Click(object sender,
System.EventArgs e)

/I Create a rectangle
Rectangle rect =

new Rectangle(50, 0, 300, 300);
/I Create a Shape object and call
/Il the GetRectRegion method
Shape shp = new Shape();

this.Region = shp.GetRectRegion(rect);
this.BackColor = Color.BurlyWood;

private void RectMenu_Click(object sender,
System.EventArgs e)

/I A Points array for a rectangle

/I Same points as the original form

Point[] pts =

{
new Point(0, 0),
new Point(0, originalSize.Height),
new Point(originalSize.Width, originalSize.Height),
new Point(originalSize.Width, 0)

h

/I Create a Shape object and call

/I the GetPolyRegion method

Shape shp = new Shape();

this.Region = shp.GetPolyRegion(pts);

/I Set background color

this.BackColor = Color.DarkGoldenrod;

private void TriangleMenu_Click(object sender,
System.EventArgs e)

/I Add three lines to the path representing
/I three sides of a triangle
Point[] pts =
{
new Point(50, 0),
new Point(0,300),
new Point(300, 300),
new Point(50, 0)
h
this.BackColor = Color.CornflowerBlue;
/I Create a Shape object and call
/I the GetPolyRegion method
Shape shp = new Shape();
this.Region = shp.GetPolyRegion(pts);
}

The code in for the Close menu item simply closes the form.

Listing 6.18 The Close menu click event handler

private void CloseMenu_Click(object sender,
System.EventArgs e)

{
this.Close();

}

6.5.2.5 Step 5: Display Nonrectangular Shapes

Using similar methods, you can set the Region property of controls such asButton or TextBox to display nonrectangular shapes. If you don't

want to use the Shape class, you can directly set theRegion property of a control._Listin; 6.1g sets the Region properties of three buttons. We
write this code on the form's load event handler.

Listing 6.19 Setting the Region properties of buttons

originalSize = this.Size;
/I Create a Region object from the path
GraphicsPath pathl =

new GraphicsPath(FillMode.Alternate);
pathl.AddEllipse(new Rectangle(30, 30,
AudioBtn.Width -60, AudioBtn.Height-60));
AudioBtn.Region = new Region(pathl);

GraphicsPath path2 =

new GraphicsPath(FillMode.Alternate);
path2.AddEllipse(new Rectangle(30, 30,
VideoBtn.Width -60, VideoBtn.Height-60));
VideoBtn.Region = new Region(path2);

GraphicsPath path3 =

new GraphicsPath(FillMode.Alternate);
path3.AddEllipse(new Rectangle(20, 20,
VideoBtn.Width -40, VideoBtn.Height-40));
AnimationBtn.Region = new Region(path3);

6.5.2.6 Step 6: Build and Run

The last step is to run the application and right-click on the form. shows the result of selecting theCircle menu option.

Figure 6.21. A circular form

I O

Armmation

shows the result of selecting theTriangle menu option.

Figure 6.22. A triangular form

Using this technique, you can build Windows forms and controls of virtually any shape.

ETY rreviovs [o]

SUMMARY

In this chapter we discussed some common uses of rectangles and regions. You learned several ways to create Rectangle and RectangleF
objects, and how to use the Round, Truncate, Union, Inflate, Ceiling, and Intersect methods in your applications. After that you saw an
example of a hit test. Then we discussed the Region class and its members, and how to useComplement, Union, Exclude, Xor, and other
methods of the Region class. We also saw a sample of clipping regions. At the end of this chapter we saw an interesting sample application

that uses regions to create nonrectangular forms and controls.

Imaging is a vital part of graphics. GDI+ provides rich imaging functionality. We will cover this functionality i

Chapter 7. Working with Images

In viewing and manipulating images, GDI+ provides significant improvements over its predecessor, GDI. In this chapter we will discuss the

Team LiB |

following topics:

As we said earlier, the graphics-related functionality in the .NET Framework class library is defined in the System.Drawing namespace and its

helper namespaces. The imaging functionality is divided into two categories by separation into two namespaces. Basic imaging functionality is

defined in the System.Drawing namespace; advanced imaging functionality is defined in theSystem.Drawing.Imaging namespace. This
_

Basic imaging-related classes defined in the .NET Framework library

The difference between raster and vector images
The Image class, its properties, and its methods
Writing an image viewer application

Opening and viewing images

Retrieving image properties

Creating thumbnails

Rotating and flipping images

Zooming in and out on images

Saving and skewing images

Changing the resolution and scaling of images
Playing animated images

The Bitmap class, its properties, and its methods
Using the Icon class to work with icons

Drawing transparent images

Using the PictureBox control to draw images

chapter covers the former; Chapter § will focus on the latter.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

7.1 Raster and Vector Images

The graphics world divides images into two types: raster and vector.

Araster image (also called bitmap) is a collection of one or more pixels. Each pixel of the image can be controlled individually, which means
that each pixel of the image can have a different color or shade. In a raster image that contains a line and a rectangle, the line and rectangle
are each a sequence of pixels. Raster images require higher resolutions and anti-aliasing for a smooth appearance and are best suited for

photographs and images with shading.

Avector image is a collection of one or more vectors. Mathematically, azector is a combination of a magnitude and a direction, which can be
used to represent the relationships between points, lines, curves, and filled areas. In vector images, a vector is the entity to be controlled.
Each vector can have a separate color or shade. So a vector image with a line and a rectangle is a set of vectors in which each vector has
different properties, such as color or shade. Vector graphics are mathematically described and appear smooth at any size or resolution, and

they are often used by mechanical and architectural engineers.

nsformin

Vector images can be transformed from one state to another without any loss of data. Tr,
loss or reduce the quality of images. For example, in the zoomed raster image shown in

iqure 7.

raster images, however, may cause data
, the outer boundary of the image is blurry.

Figure 7.1. A zoomed raster image

In the zoomed vector image of , however, the outer boundary of the image is sharper.

Figure 7.2. A zoomed vector image

7.1.1 Raster Image Formats

A bitmap is usually stored in an array of bits that specify the color of each pixel in a rectangular array of pixels. The bitmap's height and width
are measured in pixels. The number of bits per pixel specifies the number of colors that can be assigned to that pixel, according to the
equation

where
N¢ = the number of colors that each pixel can display

Bp = the number of bits per pixel

For example, if Bp = 8, thenN¢ = 28 = 256 colors. IfBp = 24, thenN¢ = 224 =16,777,216 colors. shows the number of bits and
number of possible colors that can be assigned to a pixel.

Bitmaps with 1 bit per pixel are called monochrome images. Monochrome images generally store two colors: black and white.

7.1.2 Graphics File Formats

There are many bitmap image formats, including the following:

® pvp
® GF

® JpEG
® E£XIF
® pNG

® TIFF

7.1.2.1 BMP

BMP is a standard Windows format to store device-independent and application-independent bitmap images. The number of bits per pixel (1,

4, 8, 16, 24, 32, or 64) for a given BMP file is specified in a file header. BMP files with 24 bits per pixel are common.

Table 7.1. Number of bits and possible number of colors per pixel

Bits Colors
! 21 =2
2 22 =4
4 24 =16
8 28 =256
16 216 = 65,536
24 224 =16,777,216

7.1.2.2 GIF

Graphics Interchange Format (GIF) is a common format for images that appear on Web pages. GIF uses Lempel-Ziv-Welch (LZW)
compression to minimize file size. No information is lost in the compression process; a decompressed image is exactly the same as the
original. GIF files can use a maximum of 8 bits per pixel, so they are limited to 256 colors.

7.1.2.3 JPEG

Joint Photographic Experts Group (JPEG) is another popular format used on Web pages. JPEG can store 24 bits per pixel, so it is capable
of displaying more than 16 million colors. Some information is lost during JPEG conversion, but it usually doesn't affect the perceived quality
of the image. JPEG is not a file format; it is a compression scheme. JPEG File Interchange Format (JFIF) is a file format commonly used for
storing and transferring images that have been compressed according to the JPEG scheme.

7.1.2.4 EXIF

Exchangeable Image File (EXIF) is a file format used by digital cameras. It was originally developed by the Japan Electronic Industry
Development Association. The EXIF file contains an image compressed according to the JPEG specification.

7.1.2.5 PNG

Portable Network Graphics (PNG) format provides the advantages of the GIF format but supports greater color depth. PNG files can store
colors with 8, 24, 32, or 48 bits per pixel, and grayscales with 1, 2, 4, 8, or 16 bits per pixel. PNG also supports alpha channel, so it's a
suitable format for storing images that support a high number of colors with transparency.

7.1.2.6 TIFF

Tag Image File Format (TIFF or TIF) can store images with arbitrary color depth, using a variety of compression algorithms. The TIFF format
can be extended as needed by the approval and addition of new tags. This format is used by engineers when they need to add information in
the image itself.

Almost all image file formats can also store metadata related to the image, such as scanner manufacturer, host computer, type of
compression, orientation, samples per pixel, and so on.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

7.2 Working with Images

Before we wr

ite any imaging code, let's explore the .NET Framework library and see what kind of imaging support it offers. The Bitmap class

provides functionality to work with raster images, and the Metafile class provides functionality to work with vector images. Both classes are
inherited from the Image class. In this chapter we will discuss thelmage and Bitmap classes and their members. TheMetafile class will be

discussed in .

We'll start this discussion with the Image class, which is defined in theSystem.Drawing namespace. Understanding this class is important

because we will be using its members in our samples throughout this chapter and the next.

The Image ¢

described in

ass is an abstract base class for theBitmap, Metafile, and Icon classes. Some common Image class properties (all read-only) are
Fable 7.4

pixel format

The Pixel Format

The pixel format (also known as color depth) defines the number of bits within each pixel. The format also defines the order
of color components within a single pixel of data. In the .NET Framework library, the PixelFormat enumeration represents the

Besides the properties discussed in , the Image class provides methods, which are described i .

7.2.1 An Image Viewer Application

Now we will write an application that will use some of the properties and methods of the Image class. You will learn how to open, view,

manipulate, and save images. The application is a simple image viewer.

Table 7.2. Image class properties

Property

Description

Flags

Gets or sets attribute flags for an image.

FrameDimensionsList

Returns an array of GUIDs that represent the dimensions of frames within an image.

Height, Width

Returns the height and width of an image.

HorizontalResolution

Returns the horizontal resolution, in pixels per inch, of an image.

Palette

Gets or sets the color palette used for an image.

PhysicalDimension

Returns the width and height of an image.

PixelFormat

Returns the pixel format for an image.

PropertyldList

Returns an array of the property IDs stored in an image.

Propertyltems

Returns an array of Propertyltem objects for an image.

RawFormat

Returns the format of an image.

Size

Returns the width and height of an image.

VerticalResolution

Returns the vertical resolution, in pixels per inch, of an image.

To begin:

1. Use Visual Studio .NET to create a Windows application project called ImageViewer.

Add a MainMenu control and some menu items to the form.

Change the text of the menu items to File, Open File, Save File, and Exit, and the name of these menu items toFileMenu,

OpenFileMenu, SaveFileMenu, and ExitMenu, respectively. The final form looks likefigure 7.3.

Figure 7.3. A simple image viewer application

4. Write menu click event handlers for the OpenFileMenu, SaveFileMenu, and ExitMenu items by simply double-clicking on them.

The OpenFileMenu click event handler will allow us to browse and select one image and display it, th&aveFileMenu click event handler will
save the image as a new file name, and the ExitMenu click event handler will simply close the application.

Before we write code for these menu event handlers, let's see how to create an Image object from a file and how to display it using the
Drawlmage method of the Graphics class.

Table 7.3. Image class methods

Method

Description

FromFile, FromHbitmap,
FromStream

Creates an Image object from a file, a window handle, and a stream, respectively.

GetBounds

Returns the bounding rectangle for an image.

GetEncoderParameterList

Returns parameters supported by an image encoder.

GetFrameCount

Returns the total number of frames available in an image. Some images include multiple frames. Each
frame is a separate layer with different properties. For example, an animated GIF can have multiple frames
with different text and other properties.

GetPixelFormatSize

Returns the color depth.

GetPropertyltem

Returns the property item.

GetThumbnaillmage

Returns the thumbnail for an image.

IsAlphaPixelFormat

Returns true if the pixel format for animage object contains alpha information.

IsCanonicalPixelFormat

Returns true if the pixel format is canonical. This is a reserved format.

IsExtendedPixelFormat

Returns true if the pixel format is extended. This is a reserved format.

RemovePropertyltem

Removes the property item.

RotateFlip Rotates and/or flips an image.
Save Saves an image in a specified format.
SaveAdd Takes one parameter of type EncoderParameters that defines parameters required by the image encoder

that is used by the saveadd operation.

SelectActiveFrame

Selects a frame specified by the dimension and index. The first parameter of this method is the frame
dimension, which can be used to identify an image by its time, resolution, or page number. The second
parameter is the frame index of the active frame. Calling this method causes all changes made to the
previous frame to be discarded.

SetPropertyltem

Sets the value of a property item.

7.2.2 Creating an image Object

The Image class provides three static methods to create anlmage object: FromFile, FromHbitmap, and FromStream.

1. FromkFile creates an Image object from a file.

2. FromHbitmap creates an Image object from a window handle to a bitmap.

3. FromsStream creates an Image object from a stream of bytes (in a file or a database).

For example, in the following line, FromFile constructs an Image object. Here curFileName is a string variable that holds the file name:

Image curlmage = Image.FromFile(curFileName);

We will see how to create Image objects from streams and bitmaps in later chapters.

7.2.3 Drawing an Image

After creating an Image object, you'll want to view the image. GDI+ and Windows Forms offer many ways to view images. You can use &orm,
PictureBox, or Button control as a container to view images. In most of our samples, we will draw an image on a graphics surface (a form).

Tip

You can also use a picture box to view images. The PictureBox control is easy to use, but using a form as a viewer
provides more control and flexibility. For instance, use a PictureBox control when you do not need to manipulate or resize
images. If you need to manipulate images using operations such as zooming in and zooming out, scaling, and skewing, use
a Form object as the container because it is easy to change the size ofForm. Later in this chapter you will see how to use a
picture box to draw images.

As we saw in , the Drawlmage method of the Graphics class is used to draw an image. It has 30 overloaded forms. The simplest
form of Drawlmage takes an Image object and the starting point where it will be drawn. You can also specify the area of a rectangle in which
the image will be drawn. GraphicsUnit and ImageAttributes are optional parameters, which we will discuss later in this chapter.

The following code snippet creates an Image object from a file, and draws the image using theDrawlmage method. The starting point of the
image is (10, 10). You can put this code on the form's paint event handler.

Graphics g = e.Graphics;
Image curlmage = Image.FromFile(curFileName);
g.Drawlmage(curimage, 10, 10);

The following code will fit an image into a rectangle that starts at point (10, 10) and has a width of 100 and a height of 100.

Graphics g = e.Graphics;

Image curlmage = Image.FromFile(curFileName);
Rectangle rect = new Rectangle(20, 20, 100, 100);
g.Drawlmage(curlmage, rect);

If you want to fill the entire form with an image, you can use the ClientRectangle property of the form as the default rectangle.

Graphics g = e.Graphics;

Image curlmage = Image.FromFile(curFileName);
g.Drawlmage(curimage, this.ClientRectangle);

Before we write code for the menu items event handler, we define string and Image type variables in the application scope. Add the following
at the beginning of the class:

/I User-defined variables
private string curFileName = null;
private Image curlmage = null;

shows the code for theOpenFileMenu click event handler. We useOpenFileDialog to browse images and save the file name in the
string variable after the user selects a file. Thus we create an Image object from the selected file by usingimage.FromFile. We also call
Invalidate, which forces the form to repaint and call the paint event handler, where we will be viewing the image.

Listing 7.1 The openFileMenu click event handler

private void OpenFileMenu_Click(object sender,
System.EventArgs e)

/I Create OpenFileDialog
OpenFileDialog opnDIg = new OpenFileDialog();
/I Set a filter for images
opnDlg.Filter =
"All Image files|*.bmp;*.gif;*.jpg;*.ico;"+
"*.emf;,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+
"*.ico)|*.bmp;*.gif;*.jpg;*.ico|"+
"Meta Files(*.emf;*.wmf;*.png)|*.emf;*.wmf;*.png";
opnDlg.Title = "ImageViewer: Open Image File";
opnDlg.ShowHelp = true;
/1'f OK, selected
if(opnDlg.ShowDialog() == DialogResult.OK)
{
/I Read current selected file name
curFileName = opnDlg.FileName;
/I Create the Image object using
/I Image.FromFile
try
{
curlmage = Image.FromFile(curFileName);
}

catch(Exception exp)

{

MessageBox.Show(exp.Message);

}

/I Repaint the form, which forces the paint
Il event handler

Invalidate();

Now we write the Graphics.Drawlmage method on the form's paint event handler. You can write a paint event handler from th@roperties

window of the form by double-clicking on the paint event available in the events list. Eistin; 7.4 shows our code, which simply calls
Drawlmage, using the default rectangle coordinates asAutoScrollPosition, and the image's width and height.

Listing 7.2 The paint event handler of the form

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

Graphics g = e.Graphics;
if(curlmage != null)
{
/I Draw image using the Drawlmage method
g.Drawlmage(curimage,
AutoScrollPosition. X,
AutoScrollPosition.Y,
curlmage.Width,
curlmage.Height);

Now we're view images. Compile and run the application, use the Open File menu item to select an image file, and the program will
view it. In Figure 7.4, we open a file called031.jpg.

Figure 7.4. Browsing a file

=

Imageviewer: Dpen age File _ﬂ_‘:

Look inc [y Debug o O o

M Nelwork P

Fie name: 031,109
Files of type | A Image fles

L L«
{

Clicking the Open button brings up the file for viewing, as shown i.

Figure 7.5. Viewing an image

Z_.--]|'|'|-J-|'._1!_' Yiewer

7.2.4 Saving Images

Now we move to the Save File menu item. It allows you to save images in different file formats.

The Image class provides the Save method, which is used to save images to a specified format. TheSave method takes a file name (asstring
type) or a stream (a Stream object), and a specified format of typelmageFormat class. describes the properties of thelmageFormat

class.

Note

The Emf and Wmf properties in thelmageFormat enumeration do not save a real metafile, but save the bitmap as one

metafile record. It will still be a bitmap.

Table 7.4. ImageFormat properties

Property Description
Bmp Specifies BMP format.
Emf Specifies EMF (Enhanced Metafile Format). We will discuss this format i
Exif Specifies EXIF format.
Gif Specifies GIF format.
Guid Specifies a GUID structure that represents thelmageFormat object.
Icon Specifies Windows icon format.
Jpeg Specifies JPEG format.
MemoryBmp Specifies memory bitmap format.
Png Specifies PNG format.
Tiff Specifies TIFF format.
Wmf Specifies WMF (Windows Metafile Format). We will discuss this format i

Now we add code for the SaveFileMenu click event handler, as shown i. We use SaveFileDialog, which lets us specify the file
name and saves an image using the format specified in the dialog. We read the extension of the file name entered by the user, and on that
basis we pass the ImageFormat property in the Save method.

Note

The ImageFormat enumeration is defined in theSystem.Drawing.Imaging namespace. Don't forget to add a reference to this

namespace in your application.

Listing 7.3 Using the save method to save images

private void SaveFileMenu_Click(object sender,
System.EventArgs e)

/I lf image is created

if(curlmage == null)

return;

/I Call SaveFileDialog

SaveFileDialog saveDlg = new SaveFileDialog();
saveDIg.Title = "Save Image As";
saveDIg.OverwritePrompt = true;
saveDIg.CheckPathExists = true;

saveDlg.Filter =

"Bitmap File(*.bmp)|*.bmp|" +
"Gif File(*.gif)|*.gif|" +
"JPEG File(*.jpg)[*jpg|" +
"PNG File(*.png)|*.png" ;
saveDlg.ShowHelp = true;
/I If selected, save
if(saveDlg.ShowDialog() == DialogResult.OK)
{
/I Get the user-selected file name
string fileName = saveDlg.FileName;
/I Get the extension
string strRilExtn =
fileName.Remove(0, fileName.Length - 3);
/I Save file
switch(strFilExtn)
{
case "bmp":
curlmage.Save(fileName, ImageFormat.Bmp);
break;
case "jpg":
curlmage.Save(fileName, ImageFormat.Jpeg);
break;
case "gif":
curlmage.Save(fileName, ImageFormat.Gif);
break;
case "tif":
curlmage.Save(fileName, ImageFormat.Tiff);
break;
case "png":
curlmage.Save(fileName, ImageFormat.Png);
break;
default:
break;

Now we write code for the ExitMenu click event handler. This menu simply closes the application. Hence we call thd=orm.Close method on

this event handler, as shown in Listing 7.4.

Listing 7.4 The ExitMenu click event handler

private void ExitMenu_Click(object sender,
System.EventArgs e)

this.Close();

7.2.5 Retrieving image Properties

listed the Image class properties. Now we will read and display the properties of an image. We add @roperties menu item to the

main menu and write the code in as this menu click event handler. We read the size, format, resolution, and pixel format of an
image.

Listing 7.5 Getting image properties

private void PropertiesMenu_Click(object sender,
System.EventArgs e)

if(curimage != null)
{
/I Viewing image properties
string imageProperties = "Size:"+ curimage.Size;
imageProperties +="\n RawFormat:"+
curlmage.RawFormat.ToString();
imageProperties +="\n Vertical Resolution:"
+ curlmage.VerticalResolution.ToString();
imageProperties +=",\n Horizontal Resolution:"
+ curlmage.HorizontalResolution. ToString();
imageProperties +="\n PixelFormat:"+
curlmage.PixelFormat.ToString();
MessageBox.Show(imageProperties);

}

shows the properties of an image.

Figure 7.6. Reading the properties of an image

B x|

Sz {Width=415, Haight=303},
RawFormat:[ImageFormat: bath3cas-0728-11d3-9dTb-0000f8 1 of 32a],
Yertical Resolution: 150,

Horizont al Pesohition: 150,
PicelFormat :Format 24bppRob

Team LiB |

7.3 Manipulating Images

In the previous section we covered how to read, view, and save images. In this section we will manipulate images and cover the following
topics:

L4 Creating image thumbnails
o Rotating

® Flipping and zooming in and out (magnifying and demagnifying) images

7.3.1 Creating a Thumbnail of an Image

Athumbnail is a small representation of an image. Thelmage class provides a method calledGetThumbnaillmage, which is used to create a
thumbnail. This method's first two parameters are the width and height of the thumbnail image. The third parameter is
Image.GetThumbnaillmageAbort, which is not used in GDI+ version 1.0 but must be passed in for compatibility. The fourth parameter must be
of type IntPtr.Zero. This parameter is not used in the current version. If both the width and height parameters are 0, GDI+ will return the
embedded thumbnail if there is one in the image; otherwise a system-defined size is used. For most JPEG images from digital cameras, it is
better to pass both zeros in for both parameters to get the embedded thumbnail.

To test the thumbnail code, we add a menu named Options to the MainMenu control, as well as aCreate Thumbnail menu item. We add
Create Thumbnail as a submenu item or on a button click event handler, shows. We create anlmage.GetThumbnaillmageAbort
parameter, and then we call GetThumbnaillmage with one-fourth the width and height of the original size, followed by thédrawlmage method.

Listing 7.6 Creating and drawing a thumbnail image

private void ThumbnailMenu_Click(object sender,
System.EventArgs e)

if(curlmage != null)
{
/I Callback
Image.GetThumbnaillmageAbort tnCallBack =
new Image.GetThumbnaillmageAbort(tnCallbackMethod);
/I Get the thumbnail image
Image thumbNaillmage = curimage.GetThumbnaillmage
(100, 100, tnCallBack, IntPtr.Zero);
/I Create a Graphics object
Graphics tmpg = this.CreateGraphics();
tmpg.Clear(this.BackColor);
/I Draw thumbnail image
tmpg.Drawlmage(thumbNaillmage, 40, 20);

/I Dispose of Graphics object
tmpg.Dispose();

}
/I Must be called, but not used
public bool tnCallbackMethod()

{
return false;

}

Now we run the application and open Neel01.jpg. If we click theCreate Thumbnail menu item, the new thumbnail image looks Iike.

Figure 7.7. A thumbnail image

7.3.2 Rotating and Flipping Images

Rotating and flipping are common operations in many imaging programs. Rotation rotates an image at an angle that is a multiple of 90.
Flipping reflects an image on an axis.

The RotateFlip method allows us to rotate and flip images. The value ofRotateFlip is of type RotateFlipType enumeration, which defines the
direction of rotation and flipping. The members of the RotateFlipType enumeration (listed inl able 7.9) are easy to understand.

To rotate and/or flip an image, call RotateFlip and pass in any of the values in. The following code snippets show different rotation
and flip options.

L4 Rotating 90 degrees:
curlmage.RotateFlip(RotateFlipType.Rotate90FlipNone);
@® Rotating 180 degrees:
curlmage.RotateFlip(RotateFlipType.Rotate180FlipNone);
® Rotating 270 degrees:

curlmage.RotateFlip(RotateFlipType.Rotate270FlipNone);

L4 Flipping on the x-axis only, with no rotation:

curlmage.RotateFlip(RotateFlipType.RotateNoneFlipX);

® Flipping on the y-axis only, with no rotation:
curlmage.RotateFlip(RotateFlipType.RotateNoneFlipY);

® Flipping on the x- and y-axes, with no rotation:
curlmage.RotateFlip(RotateFlipType.RotateNoneFlipXY);

° Rotating 180 degrees and flipping on the x-axis:

curlmage.RotateFlip(RotateFlipType.Rotate 180FlipX);

7.3.3 Adding Rotate and Flip Options to the Image Viewer

Now let's add rotate and flip options to the ImageViewer application.

We add four E.m_mgnus_mne Options menu—Rotate, Flip, Fit, and Zoom. We will cover theRotate and Flip options in this section, andFit
and Zoom in[Sections 7.3.4 and[7.3.5, respectively.

Table 7.5. RotateFlipType members

Member Description
Rotate180FlipNone 180-degree rotation without flipping
Rotate180FlipX 180-degree rotation with a horizontal flip
Rotate180FlipXY 180-degree rotation with horizontal and vertical flips
Rotate180FlipY 180-degree rotation with a vertical flip
Rotate270FlipNone 270-degree rotation without flipping
Rotate270FlipX 270-degree rotation with a horizontal flip
Rotate270FlipXY 270-degree rotation with horizontal and vertical flips
Rotate270FlipY 270-degree rotation with a vertical flip
Rotate90FlipNone 90-degree rotation without flipping
Rotate90FlipX 90-degree rotation with a horizontal flip
Rotate90FlipXY 90-degree rotation with horizontal and vertical flips
Rotate90FlipY 90-degree rotation with a vertical flip
RotateNoneFlipNone No rotation and no flipping
RotateNoneFlipX No rotation, with a horizontal flip
RotateNoneFlipXY No rotation, with horizontal and vertical flips
RotateNoneFlipY No rotation, with a vertical flip

We add three items to the Rotate submenu: 90, 180, and 270 (see. These items rotate an image 90, 180, and 270 degrees,
respectively. You can add as many items as you want. You can even allow users to enter an arbitrary angle.

Figure 7.8. Rotate menu items

Now we add three items to the Flip submenu: FlipX, FlipY, and FlipXY (see. These items flip an image about thex-, y-, and
xy-axes, respectively. You can add more items if you wish.

Figure 7.9. Flip menu items

Within our program we give the menu items meaningful names. For example, the 90, 180, and 270 menu items are represented by
Rotate90Menu, Rotate180Menu, and Rotate270Menu, respectively. And we useFlipXMenu, FlipYMenu, and FlipXYMenu to represent the
FlipX, FlipY, and FlipXY menu items, respectively.

The next step is to write code for the menu item event handlers. To add them, we simply double-click on the menu items. The code for the
Rotate menu items is given inListing 7.4. We check whether thelmage object has been created and then callRotateFlip with the appropriate

value. We also call Invalidate to redraw the image with the new settings.

Listing 7.7 Rotate menu item event handlers

/I Rotate 90 degrees
private void Rotate90Menu_Click(object sender,
System.EventArgs e)

if(curlmage != null)
{
curlmage.RotateFlip(
RotateFlipType.Rotate90FlipNone);
Invalidate();

}

/I Rotate 180 degrees

private void Rotate180Menu_Click(object sender,
System.EventArgs e)

if(curlmage != null)
{
curlmage.RotateFlip(
RotateFlipType.Rotate180FlipNone);
Invalidate();

}

/I Rotate 270 degrees

private void Rotate270Menu_Click(object sender,
System.EventArgs e)

if(curlmage != null)

{

curlmage.RotateFlip(
RotateFlipType.Rotate270FlipNone);
Invalidate();

}
}

Now let's run and test the application. We open an image, and it looks like .

Figure 7.10. An image with default settings

5 (=

Selecting Rotate | 90 generates the image shown in.
Figure 7.11. The image of Figure 7.10, rotated 90 degrees

Selecting Rotate | 180 generates the image shown in.
Figure 7.12. The imageof Figure 7.1d, rotated 180 degrees

L Image Yiewer = | B8] =

Selecting Rotate | 270 generates the image shown in.

Figure 7.13. The image of , rotated 270 degrees

PEWER

We also add code for the Flip menu item click event handlers, as shown i. We simply call RotateFlip with an appropriate value.

Listing 7.8 Flip menu item event handlers

/I'Flip X
private void FlipXMenu_Click(object sender,
System.EventArgs e)

if(curimage != null)
{
curlmage.RotateFlip(
RotateFlipType.RotateNoneFlipX);
Invalidate();

}
II'Flip Y

private void FlipYMenu_Click(object sender,
System.EventArgs e)

if(curimage != null)
{
curlmage.RotateFlip(
RotateFlipType.RotateNoneFlipY);
Invalidate();

}

/I Flip X and Y both

private void FlipXYMenu_Click(object sender,
System.EventArgs e)

if(curlmage != null)
{
curlmage.RotateFlip(
RotateFlipType.RotateNoneFlipXY);
Invalidate();

}

Now if we flip the image shown in , we can see the difference. TheFlipX option generates the image shown in.
Figure 7.14. The image of Figure 7.1Q, flipped in the x-direction

mage Yiewer

The FlipY option generates the image shown in.
Figure 7.15. The image of , flipped in the y-direction

 Imaqge Yiewer ;IEIEI

The FlipXY option generates the image shown in.
Figure 7.16. The image of , flipped in both the x-and the y-directions

:_.:..-illh:lljl" Yiewer

7.3.4 Fitting Images

An application that manipulates images often needs to fit them within the height and/or width of a drawing surface. A fit-width option sets the
width of an image to the width of the surface (a form or a control), and a fit-height option sets the height of an image to the height of the

surface. The fit-all option sets both the height and the width of an image to the height and width of the surface.

Let's add fit options to our ImageViewer application. We add four menu items to the Fit submenu: Fit
All, which will fit the height, width, original size of the image, and both height and width, respectively (segigure 7.1%).

Height, Fi

Figure 7.17. Fit menu items

To implement the fit options, we need to add Rectangle and Size variables at the application level, as follows:

private Rectangle curRect;

private Size originalSize = new Size(0,0);

We will use curRect to store the current rectangle of the image andoriginalSize for the original size of the image.

Now we need to modify the OpenFileMenu click event handler. The new code is given i . We activate autoscrolling by setting the
AutoScroll and AutoScrollMinSize properties of the form totrue. We create a rectangle from the current size of the image. We also save the

current size of the image by setting the Width and Height properties of originalSize.

Listing 7.9 Modified Open File menu click event handler

private void OpenFileMenu_Click(object sender,

System.EventArgs e)

/I Create OpenFileDialog

Nidth, Fit Original, and Fit

OpenFileDialog opnDlg = new OpenFileDialog();
/I Set a filter for images
opnDlg.Filter =
"All Image files|*.bmp;*.gif;*.jpg;*.ico;"+
"* emf;,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+
"*.ico)|*.bmp;*.gif;*.jpg;*.ico|"+
"Meta Files(*.emf;*.wmf;*.png)|*.emf;*.wmf;*.png";
opnDlg.Title = "ImageViewer: Open Image File";
opnDlg.ShowHelp = true;
II'lf OK, selected
if(opnDlg.ShowDialog() == DialogResult.OK)
{
/I Read current selected file name
curFileName = opnDlg.FileName;
/I Create the Image object using
/I Image.FromFile

try
{
curlmage = Image.FromFile(curFileName);
}
catch(Exception exp)
{
MessageBox.Show(exp.Message);
}

/I Activate scrolling
this.AutoScroll = true;
this.AutoScrollMinSize = new Size
((int)(curimage.Width),
(int)(curlmage.Height));
/I Repaint the form, which forces the paint
/I event handler
this.Invalidate();
}
/I Create current rectangle
curRect = new Rectangle(0, 0,
curlmage.Width, curimage.Height);
/I Save original size of the image
originalSize.Width = curlmage.Width;
originalSize.Height = curimage.Height;

}

The paint event handler must also be modified. The new code is given in . We use the curRect rectangle to view the image.

Listing 7.10 Modified paint event handler

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

Graphics g = e.Graphics;
if(curlmage != null)
{
/I Draw image using the Drawlmage method
g.Drawlmage(curimage, new Rectangle
(this.AutoScrollPosition. X,
this.AutoScrollPosition.Y,
(int)(curRect.Width),

(int)(curRect.Height)));

}

The last step is to add event handler code for the Fit Height, Fit Width, Fit Original, and Fit All menu options, as shown in. For
the Fit Width option, we set the width of the current rectangle to the width of the form; for theFit Height option, we set the height of the
current rectangle to the height of the form; for the Fit All option, we set both the height and width of the current rectangle to the height and
width of the form; and for Fit Original, we set the current rectangle's height and width to the height and width of the original file saved as
originalSize.

Listing 7.11 Fit menu item event handlers

private void FitWidthMenu_Click(object sender,
System.EventArgs e)

if(curlmage != null)

{
curRect.Width = this.Width;
Invalidate();

private void FitHeightMenu_Click(object sender,
System.EventArgs e)

if(curlmage != null)

{
curRect.Height = this.Height;
Invalidate();

private void FitOriginalMenu_Click(object sender,
System.EventArgs e)

{
if(curlmage != null)
{
curRect.Height = originalSize.Height;
curRect.Width = originalSize.Width;
Invalidate();
}
}

private void FitAllMenu_Click(object sender,
System.EventArgs e)

{
if(curlmage != null)
{
curRect.Height = this.Height;
curRect.Width = this.Width;
Invalidate();
}
}

Now we compile and run the application, and we view an image. The original image looks like .

Figure 7.18. An image in ImageViewer

=10} x|

File Oplions

C# Corner

V5.NET, C#, VB.NET, ASP.NET

The Fit Width option generates the image shown in.
Figure 7.19. The image of after Fit Width

™ Image Yiewer = 10| x|

CH#H Corner

WE . NET, C¥, VB.NET, ASPFP.NE

The Fit Height option generates the image shown in.
Figure 7.20. The image of Figure 7.1§ after Fit Height

=10 x|

File Options

Aspect Ratio

To see an image correctly, you may want to maintain its aspect ratio (the ratio of height to width). To do so, you need to
modify the code so that when you select Fit Width or Fit Height, the width and the height are changed according to the
original ratio.

The Fit Original option generates the image shown in.
Figure 7.21. The image of Figure 7.1§ after Fit Original

Prenoge viewer _ioixI

Fla Options

C# Corner

V5.NET, C#, VB.NET, ASP.NET

The Fit All option generates the image shown in.
Figure 7.22. The image of Figure 7.18 after Fit All

=T

File Options

7.3.5 Zooming In and Out

Before we finish our ImageViewer application, let's add one more option: zooming.

Adding zoom-in and zoom-out features requires only one operation: multiplying the height and width of the image by a zoom factor. The
zoom factor is the ratio of the current size of the image to the desired new size of the image. For example, suppose that we want to zoom in
an image by 200 percent. We must multiply the current size of the image by 200 percent, or 2 (200/100 = 2 times). If we want to zoom out an
image by 25 percent, we need to multiply the size of the image by 25 percent, or 0.25 (25/100 = 0.25 times).

Now let's add the zoom features to our application. As is typically done, we add five items to the Zoom submenu: 25, 50, 100, 200, and 500
(see Eigure 7.23). In our code we useZoom25, Zoom50, Zoom100, Zoom200, and Zoom500, respectively, to represent these menu items, and

we add the appropriate menu item click event handlers by double-clicking on the menu items.

Figure 7.23. Zoom menu items

Now we add a double variable that represents the zoom factor. The default zoom factor is 1.0. We add the following line to the class at the
application level:

private double curZoom = 1.0;

Next we modify the OpenFileMenu click event handler slightly. We change theAutoScrollMinSize property as follows:

this.AutoScrollIMinSize = new Size
((int)(curlmage.Width * curZoom),
(int)(curlmage.Height * curZoom));

We multiply the image height and width by the zoom factor to represent an image with an appropriate zoom setting.

The next step is to modify the paint event handler. Here we need_to multiply the height and width of the image by the zoom factor. The new
Drawlmage method, shown here, calls the paint event handler 01:

/I Draw image using the Drawlmage method

g.Drawlmage(curlmage, new Rectangle
(this.AutoScrollPosition. X,
this.AutoScrollPosition.Y,
(int)(curRect.Width * curZoom),
(int)(curRect.Height * curZoom)));

The last step is to add Zoom menu item click event handlers and calculate the zoom facto shows the code for theZoom menu
item click event handlers. We calculate the zoom factor by dividing the zoom value by 100. We also call the Invalidate method to repaint the
image with the new zoom setting.

Listing 7.12 Zoom menu item event handlers

private void Zoom25_Click(object sender,
System.EventArgs e)

{
if(curimage != null)
{
curZoom = (double)25/100;
Invalidate();
}
}

private void Zoom50_Click(object sender,
System.EventArgs e)

{
if(curimage != null)
{
curZoom = (double)50/100;
Invalidate();
}
}

private void Zoom100_Click(object sender,
System.EventArgs e)

{
if(curimage != null)
{
curZoom = (double)100/100;
Invalidate();

}
private void Zoom200_Click(object sender,
System.EventArgs e)

{
if(curimage !'= null)
{
curZoom = (double)200/100;
Invalidate();
}
}

private void Zoom500_Click(object sender,
System.EventArgs e)

{
if(curimage '= null)
{
curZoom = (double)500/100;
Invalidate();
}
}

Using the method just described, we can zoom an image in and out to any percentage. Let's run the application and open an image. Our
original image looks like Figure 7.24.

Figure 7.24. An image in ImageViewer

.'__Elma.ge Yiewer

NET Waichex

C# Comer Weekly Newsleter

The Zoom | 25 option generates the image shown in.
Figure 7.25. The image of Figure 7.24 with 25 percent zoom

M Image Viewer
Fie Opbons

The Zoom | 50 option generates the image shown in.

Figure 7.26. The image of with 50 percent zoom

™ Image Viewer

T s f Amariete

The Zoom | 200 option generates the image shown in.
Figure 7.27. The image of Figure 7.24 with 200 percent zoom

® Image Viewe:

NET Waich

C# Corner Weekly New

The Zoom | 500 option generates the image shown in.
Figure 7.28. The image of Figure 7.24 with 500 percent zoom

mage Yiewer

Fie Oplions

Congratulations! You have successfully written an image viewer application that can be used for various purposes. Now we will discuss some
additional imaging options.

Team LiB |

7.4 Playing Animations in GDI+

So far we have been dealing with static image formats, such as BMP. Each of these formats holds image data for a single picture. Other
formats—such as GIF, AVI (Audio Video Interleaved), and MPEG (Moving Picture Experts Group)—contain image data that, when played
back in quick succession, gives the illusion of movement. These images are called animated images, GIF is one of the common formats

used for animated images. An animated image is a series of images, also called frames (e.g., see Eigure 7.29).

Figure 7.29. An animated image with three frames

You can create animated images by using graphics tools such as Macromedia Fireworks or CoreIDRAW, but GDI+ doesn't support the
creation of animated images. When you create animated images, you must specify the order of frames and the time interval between them.

The GDI+ library provides the ImageAnimator class to deal with animated file formats using time-based frames. At this time, GDI+ supports
only multiframe GIFs and TIFFs. ImageAnimator has four static methods: Animate, CanAnimate, StopAnimate, and UpdateFrames.

1. The Animate method displays a framed image as an animation. This method takes parameters of typelmage and EventHandler.
Image is the image you want to animate. The event is triggered when the currently displayed frame is changed.

2. The CanAnimate method returns true when an image has timebased frames.
3. The StopAnimate method terminates an animation. It takes parameters of typelmage and EventHandler.
4. The UpdateFrames method will move to the next frame and render it the next time the image is drawn.

Now let's write an application that will play animated images. We create a Windows application and add a MainMenu control and two button
controls to the form. We also add two menu items: Open File and Exit. We change the text and names of the menu items and button controls
as shown in figure 7.30.

Figure 7.30. An image animation example

|_E Image Ammation 5ample

We add two variables of type Image and string as follows:

private Image curlmage = null;
private string curFileName = null;

The Open File menu item allows us to browse images, and theExit menu item closes the form. gives the code for the click event
handlers for these two menu items.

Listing 7.13 The Open File and Exit menu item click event handlers

private Image curlmage;

private void OpenFileMenu_Click(object sender,
System.EventArgs e)

/I Create OpenFileDialog

OpenFileDialog opnDIg = new OpenFileDialog();

opnDlg.Filter = "Animated Gifs|*.qgif;";

/1'lf OK, selected

if(opnDlg.ShowDialog() == DialogResult.OK)

{
/I Read current selected file name
curFileName = opnDlg.FileName;

}

private void ExitMenu_Click(object sender,
System.EventArgs e)

this.Close();

Now we rename the two buttons Start Animation and Stop Animation, respectively, and write click event handlers by double-clicking on
them. The code for the StartAnimationBtn event handler is given in .- We create anImage object by calling Fromimage, which takes

an image file as its only argument. Then we use the CanAnimate method to check if the image can be animated. If it can, we callAnimate,
which plays the animation.

Listing 7.14 The startAnimationBtn click event handler

private void StartAnimationBtn_Click(object sender,
System.EventArgs e)
{
curlmage = Image.FromFile(curFileName);
if(ImageAnimator.CanAnimate(curimage))
{
ImageAnimator.Animate(curlmage,
new EventHandler(this.OnFrameChanged));
}
else
MessageBox.Show("Image doesn't have frames");

On the StopAnimationBtn click event handler, we check whether there is annmage object, and we callStopAnimate to stop the animation as
_

shown in

Listing 7.15 The StopAnimationBtn click event handler

private void StopAnimationBtn_Click(object sender,
System.EventArgs e)
{

if(curimage != null)

{

ImageAnimator.StopAnimate(curlmage,
new EventHandler(this.OnFrameChanged));

}

Now we add OnPaint and OnFrameChanged methods to the application. The code for these methods is given i . In the OnPaint
method, we call the UpdateFrames method of ImageAnimator and then callDrawlmage to draw the image. In the OnFrameChanged method,
we repaint the form by calling Invalidate.

Listing 7.16 The onPaint and OnFrameChanged methods

protected override void OnPaint(PaintEventArgs e)

{
if(curimage != null)
{
ImageAnimator.UpdateFrames();
e.Graphics.Drawlmage(curlmage, new Point(0, 0));
}
}
private void OnFrameChanged(object o, EventArgs €)
{
this.Invalidate();
}

Now compile and run the application. You can browse animated images on your system or download the files from online and select a file.
The Start Animation button will start playing the animation. TheStop Animation button will stop the animation.

shows the first frame of the animation sample provided with this book (download code from online).

Figure 7.31. The first frame of an animated image

L™ Image Animation Sample

|?5Taitmmmg1_| Stop Animation

shows the second frame of the sample.

Figure 7.32. The second frame of an animated image

E Image Animation Sample H=E
File

[rean L | rreviovs [ecr o]

Team LiB |

7.5 Working with Bitmaps

Abitmap stores data for an image and its attributes in pixel format. TheBitmap class, which is inherited from thelmage class, encapsulates a
graphics bitmap in GDI+. Because the Bitmap class is inherited from the Image class, it offers all the methods and properties that we
discussed in the previous section. The Bitmap class defines additional functionality. In this section we will learn about the members of the
Bitmap class and how to use them.

7.5.1 Creating a Bitmap Object

The Bitmap class provides about a dozen overloaded forms of the constructors. You can create @&itmap object from a bitmap file, or from
Image, Stream, string, or Type objects. When you create aBitmap object, you can also specify the size of the bitmap, the resolution of the
Graphics object, and the pixel format of the bitmap.

The code snippet in creates Bitmap objects from anImage and file name with or without the size of theBitmap included.

Listing 7.17 Creating Bitmap objects from different sources

/I Creating an Image object

Image curlmage = Image.FromFile("myfile.gif");
/I Creating a Bitmap object from a file name
Bitmap curBitmapl = new Bitmap("myfile.gif");
/I Creating a Bitmap object from an Image object
Bitmap curBitmap2 = new Bitmap(curlmage);

/I Creating a Bitmap object with size and image
Bitmap curBitmap3 =

new Bitmap(curlmage, new Size(200, 100));

/I Creating a Bitmap object with no images
Bitmap curBitmap4 = new Bitmap(200, 100);

Besides the constructor, the Bitmap class provides two static methods—FromHicon and FromResource—which can be used to create a
Bitmap object from a window handle to an icon and from a Windows resource es file), respectively.

7.5.2 Viewing a Bitmap

Viewing a bitmap using the Bitmap class is similar to viewing an image. After constructing aBitmap object, you just pass it as a parameter to
Drawlmage. The following code snippet creates aBitmap object from a file and views the bitmap by calling thédrawlmage method of a
Graphics object associated with a form. You can write this code on a menu or a button click event handler.

Graphics g = this.CreateGraphics();
Bitmap bitmap = new Bitmap("myfile.jpg");
g.Drawlmage(bitmap, 20, 20);
g.Dispose();

7.5.3 The Bitmap Class Methods and Properties

The Bitmap class doesn't define any properties beyond those defined in themage class. However, Bitmap does provide additional methods.
Among them are FromHicon, FromResource, GetHbitmap, GetHicon, GetPixel, LockBits, MakeTransparent, SetPixel, SetResolution, and
UnlockBits.

The FromHicon and FromResource methods create aBitmap object from a window handle to an icon and from a Windows resource,
respectively. The GetHbitmap and GetHicon methods create a WindowsHBITMAP structure and a window handle to an icon.

The GetPixel and SetPixel methods get and set the color of the specified pixel of an image. These methods are useful when an application

needs to blur images, change the color of specific pixels, change the contrast of pixels, and so on. You can blur an image by reducing the
color depth of pixels. We will use GetPixel and SetPixel in examples in this chapter and the next.

The following line of code returns the color of a pixel at positions x = 10 andy = 10:

Color curColor = curBitmap.GetPixel(10, 10);

The following code snippet uses SetPixel to change all pixels between point (50, 50) and point (60, 60) to red:

for (inti=50; i< 60; i++)

{
for (intj = 50; j < 60; j++)
{
curBitmap.SetPixel(i, j, Color.Red);
}
}

SetResolution sets the resolution of a bitmap. This method takes two parameters of typefloat, which represent the horizontal resolution and
vertical resolution in dots per inch.

MakeTransparent makes the default color transparent to a bitmap. This method takes either no arguments or a single argument of typ€olor:

Color curColor = curBitmap.GetPixel(10, 10);
curBitmap.MakeTransparent();

or

curBitmap.MakeTransparent(curColor);

To test the methods and properties of Bitmap, we create a Windows application and addOpen File and Exit menu items as in the previous

examples. Then we add controls for a group box, text boxes, a button, a check box, and some labels. The final form looks like Figure 7.33.
We can set the resolution and transparency of the bitmap from here.

Figure 7.33. A bitmap example

':f_':_:::::.::::::5:.:_:_:_:::_':.::::::::.: Ekm,,mpm_
i S T, 1. | : Horz Resolution (OPD) - -

We add the following application-level variables to the application:

/I Variables

private Bitmap curBitmap;
private float imgHeight;
private float imgWidth;
private string curFileName;

As usual, we browse images on the Open File menu item click event handler and close the form on i u item click event handler.
We also create a Bitmap object from the selected file and store the height and width of the image, a:lListin 7.14 shows.

Listing 7.18 The Open File and Exit menu item event handlers

private void OpenBmpMenu_Click(object sender,
System.EventArgs e)

OpenFileDialog openDlg = new OpenFileDialog();
openDlg.Filter =
"All Bitmap files|*.bmp;*.gif;*.jpg;";
string filter = openDlg.Filter;
openDlg.Title = "Open Bitmap File";
openDlg.ShowHelp = true;
if(openDIg.ShowDialog() == DialogResult.OK)
{
curFileName = openDlg.FileName;
curBitmap = new Bitmap(curFileName);
imgHeight = curBitmap.Height;
imgWidth = curBitmap.Width;
}
Invalidate();
}
private void ExitMenu_Click(object sender,
System.EventArgs e)

this.Close();
}

Now we write code on the paint event handler to view the bitmap (see .

Listing 7.19 The paint event handler

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

Graphics g = e.Graphics;
if(curBitmap != null)

{

g.Drawlmage(curBitmap,
AutoScrollPosition.X, AutoScrollPosition.Y,
imgWidth, imgHeight);

}

The code for the Apply Settings button click event handler is given i . It reads values for horizontal and vertical resolution from
two text boxes and sets values for a bitmap using the SetResolution method. It also uses the MakeTransparent and SetPixel methods.

Listing 7.20 The Apply Settings button click event handler

private void ApplyBtn_Click(object sender,
System.EventArgs e)

{
if(curBitmap == null)
return;
float hDpi = 90;
float vDpi = 90;

/I Create dpi settings
if(textBox1.Text. ToString() !="")

hDpi = Convert.Tolnt32(textBox1.Text);
if(textBox1.Text. ToString() !="")

vDpi = Convert.ToInt32(textBox2.Text);
curBitmap.SetResolution(hDpi, vDpi);
I/I'lf Transparent check box is checked
if(checkBox1.Checked)
{
Color curColor =
curBitmap.GetPixel(10, 10);
curBitmap.MakeTransparent();
}
/I Set pixel colors to red
for (inti=50; i< 60; i++)
{
for (int j = 50; j < 60; j++)
{
curBitmap.SetPixel(i, j, Color.Red);
}

}
/I Redraw

Invalidate();

}

If we run the application and click the Apply Settings button (see, a small red rectangle appears, showing that the color of that
part of the image has been changed to red.

Figure 7.34. Changing the pixel colors of a bitmap

The LockBits and UnlockBits methods are used to lock and unlock a bitmap into system memoryLockBits takes three parameters—of type
Rectangle, ImageLockMode enumeration, and PixelFormat enumeration—and returns an object of type BitmapData. The rectangle is the
portion of the bitmap that will be locked in system memory.

ImageLockMode provides the access level on the data. Its members includeReadOnly, ReadWrite, UserInputBuffer, and WriteOnly. The
PixelFormat enumeration defines the format of color data for each pixel.

Note

We will discuss these methods and enumerations in more detail i

Team LiB |

7.6 Working with Icons

The Icon class represents a Windowsicon, which is a small transparent bitmap. Just like theBitmap class, this class is inherited from the

Image class.

An application can create an Icon object from a stream, string, icon, icon file, or type by using thdcon class constructors with the size of the

icon as an optional parameter. The Icon class provides four read-only properties—Handle, Height, Size, and Width—which return a window

handle to the icon, height, size, and width of an icon, respectively.

creates an Icon object from an icon file and sets the icon of a form using the=orm class's Icon property.

Listing 7.21 Creating an icon and setting a form's Icon property

private void Form1_Load(object sender,
System.EventArgs e)

/I Create an icon

Icon curlcon = new Icon("mouse.ico");
/I Set form's icon

this.lcon = curlcon;

/I Get icon properties

float h = curlcon.Height;

float w = curlcon.Height;

Size sz = curlcon.Size;

The FromHandle method of the Icon class creates anlcon object from a window handle to an icon
object to a stream, and the ToBitmap method converts an Icon object to aBitmap object.

object using ToBitmap and draws the bitmap usingDrawImage.

Listing 7.22 Creating a bitmap from an icon and displaying it

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

/I Create an icon

Icon curlcon = new Icon("mouse.ico");
/I Create a bitmap from an icon
Bitmap bmp = curlcon.ToBitmap();

/I Draw bitmap

Graphics g = e.Graphics;
g.Clear(this.BackColor);
g.Drawlmage(bmp, 10, 10);
g.Dispose();

ICON). The Save method saves an Icon
creates aBitmap object from anlcon

shows the output from and .

Figure 7.35. Viewing icons

I_ Form

Sometimes you will need to convert aBitmap object into an Icon object. The following code snippet shows how to do this:

Icon curlcon;
curlcon = Icon.FromHandle(bmp.GetHicon());

B [ereviovs [lnexr)

BTy rrevious [ecr]

7.7 Skewing Images

So far, we have seen that we can draw various images on graphics surfaces by using Drawlmage. We have also seen how to implement
rotate, flip, fit-height, fit-width, and zoom features. An imaging application may need to provide even more features, including scaling,
skewing, and high-performance rendering. Using GDI+, we can do all of this very easily. We will discuss some of these issues in this chapter
and some of them in

The Drawlmage method has about two dozen overloaded forms—one of which lets us provide the destination points for an image. The
original image will be drawn after its coordinates are mapped to the destination points—a process called skewing. We will see an example in
a moment. First let's examine the necessary form of Drawlmage.

To translate an image from its original coordinates to the mapped coordinates, an application needs to create an array of new coordinates and
call Drawlmage, passing this array as the second parameter. For example, the following code snippet creates an array of points and passes it

to the Drawlmage method.

Point[] pts =

{
new Point(X0, Y0),
new Point(X1, Y1),
new Point(X2, Y2)

h

g.Drawlmage(curlmage, pts);

Now let's create a Windows application and add a MainMenu control with an Open File menu item. Let's also add a button to the form. Our
final form will look like .

Figure 7.36. A skewing application

S
O

[IORT TR LT B TR T e T
e D e W T e e e T
E R T I T R
mow wmEE W om e owm ow
R

[T BT R T
R

mE T R R ¥ E 0w
ara B . s W E T W omE W
el w oma www
LS e i R e e
Eiwemi e wew. T mrw.w
e TR Y

Now we add the following variables to the application:

private Bitmap curBitmap = null;
private bool skewlmage = false;
Point[] pts =
{

new Point(150, 20),

new Point(20, 50),

new Point(150, 300)
h

The complete code is given in . The Open File menu item click event handler opens an image and creates aBitmap object from the
selected file. The paint event handler views the image. If skewlmage is true, the paint event handler calls theDrawlmage method with an array
of points. The Skew Image button click event handler simply setsskewlmage to true.

Listing 7.23 Skew Image button click event handler

private void OpenFileMenu_Click(object sender,
System.EventArgs e)

{
OpenFileDialog openDlg = new OpenFileDialog();
openDlg.Filter =
"All Bitmap files|*.bmp;*.gif;*.jpg;";
string filter = openDlg.Filter;
openDIg.Title = "Open Bitmap File";
openDlg.ShowHelp = true;
if(openDIg.ShowDialog() == DialogResult.OK)
{
curBitmap = new Bitmap(openDIg.FileName);
}
Invalidate();
}

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

/I Create a Graphics object
Graphics g = e.Graphics;
g.Clear(this.BackColor);
if(curBitmap != null)
{

if(skewlmage)

{

g.Drawlmage(curBitmap, pts);

}

else

g.Drawlmage(curBitmap, 0, 0);

}

/I Dispose of object
g.Dispose();

private void SkewlmageBtn_Click(object sender,
System.EventArgs e)

skewlmage = true;
Invalidate();

}

If you run the application and open an image, the normal view looks like .

Figure 7.37. Normal view of an image

If you click Skew Image, the new output looks Iike.

Figure 7.38. Skewed image

L

Team LiB |

Team LiB |

7.8 Drawing Transparent Graphics Objects

Sometimes we need to draw objects on top of images—and these objects may need to be transparent. As we discussed earlier, color in GDI+
has four components: alpha, red, green, and blue. The value of each component varies from 0 to 255. The alpha component represents the
transparency in GDI+ color. Zero represents a fully transparent color; 255, a fully opaque color.

An application must create transparent pens and brushes to draw transparent graphics objects. An application can use the Color.FromArgb
method to specify the ratio of all four components in a color. For example, the following code snippet creates a fully opaque green pen and
brush.

Pen solidPen =

new Pen(Color.FromArgh(255, 0, 255, 0), 10);
SolidBrush solidColorBrush =

new SolidBrush(Color.FromArgh(255, 0, 255, 0));

The following code snippet creates semitransparent colors and brushes.

Pen transPen =

new Pen(Color.FromArgh(128, 0, 255, 0), 10);
SolidBrush semiTransBrush =

new SolidBrush(Color.FromArgh(60, 0, 255, 0));

views an image and draws lines and a rectangle with different transparencies.

Listing 7.24 Drawing transparent graphics objects

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

Graphics g = e.Graphics;
/I Create an image from a file
Image curlmage = Image.FromFile("myphoto.jpg");
/I Draw image
g.Drawlmage(curimage, 0, O,

curlmage.Width, curimage.Height);
/I Create pens with different opacity
Pen opgPen =

new Pen(Color.FromArgb(255, 0, 255, 0), 10);
Pen transPen =

new Pen(Color.FromArgb(128, 0, 255, 0), 10);
Pen totTransPen =

new Pen(Color.FromArgb(40, 0, 255, 0), 10);
/I Draw Graphics object using transparent pens
g.DrawLine(opgPen, 10, 10, 200, 10);
g.DrawLine(transPen, 10, 30, 200, 30);

g.DrawLine(totTransPen, 10, 50, 200, 50);
SolidBrush semiTransBrush =
new SolidBrush(Color.FromArgb(60, 0, 255, 0));
g.FillRectangle(semiTransBrush, 20, 100, 200, 100);
}

shows the output from

Figure 7.39. Drawing transparent graphics objects

= |

F‘T‘—:m i

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

7.9 Viewing Multiple Images

Sometimes we need to draw multiple images on the same spot, one on top of the other. In the previous section we discussed how to draw
transparent graphics objects on top of images. In this section we will discuss how to draw images (transparent or opaque) on top of other
images.

Drawing transparent images is different from drawing transparent graphics objects such as lines, rectangles, or ellipses. To draw transparent
graphics objects, we simply create a transparent color and use this color when we create a pen or a brush.

Drawing transparent images is controlled by the color matrix (represented by the ColorMatrix class), which defines the transparency of the
image. Acolor matrix is applied to an image when we call Drawlmage. The Drawlmage method takes an argument of type ImageAttributes.
The SetColorMatrix method of ImageAttributes sets a color matrix to the ImageAttributes type. PassingImageAttributes to Drawlmage applies
the color matrix to the image. Chapter § discusses this process in more detail.

As usual, we create a Windows application. In this application we will draw a large image, and a small image on top of the large image. To
make this application more interesting, we add a transparency control to the application so that we can adjust the transparency of the top

Figure 7.4q

image. The final form looks like

Figure 7.40. Drawing multiple images

CRCRC R TR R

Now let's add a TrackBar control to the form. We set the Maximum and Minimum properties of TrackBar to 10 and 0, respectively. Then we
write a TrackBar control scroll event so that when we scroll the track bar, it can manage the transparency of the image.

Note

We have defined a float type variable in the class as follows:float tpVal = 1.0f;

Now we convert the TrackBar value to a floating value so that we can use it in theColorMatrix class to set the color of the image, a
shows. The ColorMatrix class constructor takes an array, which contains the values of matrix items. Thdtem property of this class represents
a cell of the matrix and can be used to get and set cell values. Besides the Item property, the ColorMatrix class provides 25 MatrixXY
properties, which represent items of the matrix at row (x + 1) and column (y + 1). MatrixXY properties can be used to get and set an item's

value. See hhapter 1Q (Bection 10.7.7)) for more details.

Listing 7.25 The TrackBar scroll event handler

private void trackBarl_Scroll(object sender,
System.EventArgs e)
{
tpVal = (float)trackBarl.Value/10;
this.Invalidate();

}

We will now view both images on the form's paint event, as shows. We create anImage object and view the first image. Then we
create a ColorMatrix object with transparency and set it with thelmageAttribute property. Later we attach thelmageAttribute property to the
second image when we draw it using the Drawlmage method.

Listing 7.26 Viewing multiple images on the form-load event

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

/I Create an Image object (first image) from a file
curlmage = Image.FromFile("roses.jpg");
/I Draw first image
e.Graphics.Drawlmage(curlmage,
AutoScrollPosition.X, AutoScrollPosition.Y,
curlmage.Width, curimage.Height);
/I Create an array of ColorMatrix points
float[][] ptsArray =
{
new float[] {1, 0, 0, 0, 0},
new float[] {0, 1, 0, 0, 0},
new float[] {0, 0, 1, O, O},
new float[] {0, O, O, tpVal, 0},
new float[] {0, O, 0, O, 1}

h
/I Create a ColorMatrix object
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
/I Create image attributes
ImageAttributes imgAttributes = new ImageAttributes();
/I Set color matrix
imgAttributes.SetColorMatrix(clrMatrix,
ColorMatrixFlag.Default,
ColorAdjustType.Bitmap);
/I Create second Image object from a file
Image smalllmage = Image.FromFile("smallRoses.gif");
/I Draw second image with image attributes
e.Graphics.Drawlmage(smallimage,
new Rectangle(100, 100, 100, 100),
0, 0, smalllmage.Width, smalllmage.Height,
GraphicsUnit.Pixel, imgAttributes);
}

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

7.10 Using a Picture Box to View Images

So far in our sample applications, we have used a form as the drawing surface for images. You can also use a PictureBox control to view
images. Picture boxes are easy to use, and this control optimizes the rendering process with a built-in double buffering feature. A picture box
is recommended for viewing (but not manipulating) images when you know the exact size of the image.

The PictureBox class is defined in theSystem.Windows.Forms namespace. The Image property, which takes animage object, sets the image
to the picture box that you want to display. You can also set the position and clipping, using the SizeMode property. SizeMode, which is of
type PictureBoxSizeMode enumeration, specifies how an image is positioned within a picture box. The members of thePictureBoxSizeMode
enumeration are defined in .

To view an image in a PictureBox control, we simply create anilmage object using any of thelmage class methods and set the
PictureBox.Image property to that image.

views an image in a picture box. To test this code, create a Windows application, add RictureBox control to the form by dragging it
from the toolbox, and add code to the form-load event handler.

Listing 7.27 Viewing an image in a picture box

Image curlmage = Image.FromFile("roses.jpg");
pictureBox1.Image = curimage;
pictureBox1.SizeMode = PictureBoxSizeMode.Stretchimage;

shows the output from .

Figure 7.41. Viewing an image in a picture box

By
Table 7.6. PictureBoxSizeMode members
Member Description
AutoSize The picture box is automatically set to the same size as the image.
Centerlmage The image is displayed in the center of the picture box.
Normal The image is placed in the upper left corner of the picture box and clipped if it is larger than the control.
Stretchimage The image is stretched or shrunk to fit the size of the picture box.

BTy rrevious [ecr]

7.11 Saving Images with Different Sizes

Sometimes we need to save an image with a different size than it originally had. As we discussed earlier, the Save method of the Image class
is used to save images. This method also allows us to specify the size of a saved image.

To make our program even more interesting, we will determine the size of the saved image at runtime. Create a Windows application and add
two text boxes, two tables, and a button control to the form. The text box e used to specify the height and width of the saved image, and

Fiqure 7.4].

First we specify an Image private variable:

I

private Image curlmage;

Then we create and view the image at the form's paint event handler, as shown in .

Listing 7.28 Viewing an image

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)
{
curlmage = Image.FromFile("roses.jpg");
e.Graphics.Drawlmage(curimage,
AutoScrollPosition.X, AutoScrollPosition.Y,
curlmage.Width, curimage.Height);

On the Save Image button click, we ask the user to specify a file name and we call th&ave method of the Image class, which saves an image
in the given format. As ‘ shows, we also read the size of the new image fromtextBox1 and textBox2 and specify the size when we
create a new Bitmap object from the existing image.

Listing 7.29 Saving an image with the given size

private void SavelmageBtn_Click(object sender,
System.EventArgs e)
{
if(curlmage == null)
return;
int height = Convert.ToInt16(textBox1.Text);
int width = Convert.ToInt16(textBox2.Text);
SaveFileDialog saveDlg = new SaveFileDialog();
saveDIg.Title = "Save Image As";
saveDIg.OverwritePrompt = true;
saveDIg.CheckPathExists = true;
saveDlg.Filter =
"Bitmap File(*.bmp)|*.bmp|Gif File(*.gif)|*.gif| " +
"JPEG File(*.jpg)l*.jpg";
saveDIg.ShowHelp = true;
if(saveDlg.ShowDialog() == DialogResult.OK)
{
string fileName = saveDIg.FileName;
string extn =
fileName.Substring(fileName.Length - 3, 3);
Bitmap newlmage = new Bitmap(curimage,
new Size(width, height));
if(extn.Equals("bmp"))
newlmage.Save(fileName,ImageFormat.Bmp);
else if(extn.Equals("gif"))
newlmage.Save(fileName,ImageFormat.Gif);
else if(extn.Equals("jpg"))
newlmage.Save(fileName,ImageFormat.Jpeg);

}

Now we save an image with a width of 200 and a height of 200. The results are shown in .

Figure 7.43. New image, with width of 200 and height of 200

™ g esizing Images Sample =10} x|

New'Width MNew Height

|200 |200

[Team Lie] [erevious [nexr o]

Team LiB |

SUMMARY

GDI+ provides a significant improvement in imaging over GDI. In this chapter we discussed the basic imaging capabilities of GDI+, as defined
in the System.Drawing namespace. We focused mainly on thelmage and Bitmap classes, and by now you should understand how to use the
.NET Framework to work with images. We saw how to open, view, save, and manipulate images. We also saw some interesting functionality,
including creating thumbnail images, rotating and flipping, zooming in and out, skewing and stretching, and animation.

In addition, we covered some advanced imaging features, including drawing transparent images and setting bitmap resolution and color.
Throughout this chapter, we developed a real-world application that you can use in your programming career.

the focus of Chapter §. Some of the topics yet to be discussed are bitmaps, metafiles, color maps, encoding and decoding images, and
details of the color matrix.

Team LiB |

Imaging functionaliti doesn't end here. Advanced imaging functionality, which is defined in the System.Drawing.Imaging namespace, will be

Team LiB |

Chapter 8. Advanced Imaging

In we discussed the imaging functionality defined in theSystem.Drawing namespace. This chapter will cover the advanced imaging
functionality defined in the System.Drawing.Imaging namespace. We will explore how to implement this functionality in our applications. The

topics will include

® Understanding LockBits and UnlockBits

® \Working with metafiles and metafile enhancements

® Working with the color matrix, color map, and color palette
® Using the Encoder and EncoderCollection classes

® An overview of tagged data in TIFF files

L4 Converting metafiles

Team LiB |

Team LiB |

8.1 Rendering Partial Bitmaps

In we saw that theBitmap class provides the LockBits and UnlockBits methods, but we didn't get to use them.LockBits and
UnlockBits lock and unlock bitmap pixels in system memory. Each call td_ockBits should be followed by a call toUnlockBits.

Why might you want to lock bitmap pixels? Rendering (painting) bitmaps and images is a resource-consuming operation, and it is one of the
most frequently performed graphics operations. Suppose you want to change the color or intensity level of a bitmap. You could always loop
though the bitmap pixel by pixel and use SetPixel to modify its properties, but that is a huge time- and resource-consuming operation.

Note

The code used in this chapter uses classes defined in the System.Drawing.Imaging namespace, so be sure to add a
reference to this namespace in your applications.

A better option would be to use LockBits and UnlockBits. These methods allow you to control any part of the bitmap by specifying a range of
pixels, eliminating the need to loop through each pixel of the bitmap.

To use this option, first call LockBits, which returns the BitmapData object. BitmapData specifies the attributes of a bitmap. Before we examine
the members of the BitmapData class, let's take a look at theLockBits and UnlockBits methods. The LockBits method is defined as follows:

public BitmapData LockBits(Rectangle rect,
ImageLockMode flags, PixelFormat format);

LockBits takes three parameters of typeRectangle, ImageLockMode enumeration, and PixelFormat enumeration, and it returns an object of
type BitmapData. The rectangle defines the portion of the bitmap to be locked in system memory.

UnlockBits takes a single parameter of typeBitmapData, which was returned byLockBits. This method is defined as follows:

public void UnlockBits(BitmapData bitmapdata);

The ImageLockMode enumeration used inLockBits provides the access level to the data. describes the members of
ImageLockMode.

The pixel format defines the number of bits of memory associated with one pixel of data, as well as the order of the color components within a
single pixel. Generally the number of bits per pixel is directly proportional to the quality of the image because the pixel can store more colors.

Table 8.1. ImageLockMode members

Member Description
ReadOnly The locked portion of the bitmap is for reading only.
ReadWrite The locked portion of the bitmap is for reading or writing.
UserInputBuffer The buffer used for reading or writing pixel data is allocated by the user.
WriteOnly The locked portion of the bitmap is for writing only.

The PixelFormat enumeration represents the pixel, which is_useful when you need to change the format of a bitmap or a portion of it. The
members of the PixelFormat enumeration are described in.

8.1.1 Drawing Grayscale or Other Color Images

To demonstrate the use of LockBits and UnlockBits, we will change the pixels of a bitmap using theGetPixel and SetPixel methods. As we
discussed in , an application can use GetPixel and SetPixel to get and set the colors of each pixel of a bitmap. To set a bitmap color
to grayscale or other colors, an application reads the current color using GetPixel, calculates the grayscale value, and callsSetPixel to apply
the new color.

In the following code snippet we read the color of a pixel; calculate the grayscale value by applying a formula to the red, green, and blue
components; and call SetPixel to set the pixel's new grayscale color.

Color curColor = curBitmap.GetPixel(i, j);
int ret = (curColor.R + curColor.G + curColor.B) / 3;
curBitmap.SetPixel(i, j, Color.FromArgb(ret, ret, ret));

draws an image with its original color settings and later redraws it in grayscale. Th&Vidth and Height properties of the Bitmap class
are used to loop through each pixel of the bitmap, and SetPixel is used to set the pixel's color to grayscale.

Table 8.2. PixelFormat members

Member

Description

Alpha

The pixel data contains alpha values that are not premultiplied.

DontCare

No pixel format is specified.

Formatlbpplindexed

1 bit per pixel, using indexed color. The color table therefore has two colors in it.

Format4bppIndexed

4 hits per pixel, using indexed color.

Format8bpplindexed

8 bits per pixel, using indexed color.

Format16bppArgb1555 16 bits per pixel, giving 32,768 colors; 5 bits each are used for red, green, and blue, and 1 bit is used for alpha.

Format16bppGrayScale 16 bits per pixel, giving 65,536 shades of gray.

Format16bppRgb555 16 bits per pixel; 5 bits each are used for red, green, and blue. The last bit is not used.

Format16bppRgh565 16 bits per pixel; 5 bits are used for red, 6 bits for green, and 5 bits for blue.

Format24bppRgb 24 bits per pixel; 8 bits each are used for red, green, and blue.

Format32bppArgh 32 bits per pixel; 8 bits each are used for alpha, red, green, and blue. This is the default GDI+ color combination.

Format32bppPArgb 32 bits per pixel; 8 bits each are used for alpha, red, green, and blue. The red, green, and blue components are
premultiplied according to the alpha component.

Format32bppRgb 32 bits per pixel; 8 bits each are used for red, green, and blue. The last 8 bits are not used.

Format48bppRgb 48 bits per pixel; 16 bits each are used for red, green, and blue.

Format64bppArgb 64 bits per pixel; 16 bits each are used for alpha, red, green, and blue.

Format64bppPArgb 64 bits per pixel; 16 bits each are used for alpha, red, green, and blue. The red, green, and blue components are
premultiplied according to the alpha component.

Gdi GDiI colors.

Indexed Color-indexed values, which are an index to colors in the system color table, as opposed to individual color values.

Max The maximum value for this enumeration.

PAlpha The format contains premultiplied alpha values.

Undefined The format is undefined.

Listing 8.1 Using setPixel to change the color scale of a bitmap

/I Create a Graphics object from a button
/I or menu click event handler
Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);
/I Create a Bitmap object

Bitmap curBitmap = new Bitmap("roses.jpg");
/I Draw bitmap in its original color
g.Drawlmage(curBitmap, 0, 0, curBitmap.Width,

curBitmap.Height);

/I Set each pixel to grayscale using GetPixel
/I and SetPixel
for (inti = 0; i < curBitmap.Width; i++)
{
for (int j = 0; j < curBitmap.Height; j++)
{
Color curColor = curBitmap.GetPixel(i, j);
int ret = (curColor.R + curColor.G + curColor.B) / 3;
curBitmap.SetPixel(i, j,
Color.FromArgb(ret, ret, ret));

}

/I Draw bitmap again with gray settings

g.Drawlmage(curBitmap, 0, 0, curBitmap.Width,
curBitmap.Height);

/I Dispose of object

g.Dispose();

8.1.2 Using Bitmapbata to Change Pixel Format

In the previous section we discussed how to set the pixel format of a bitmap by reading pixels one by one. You can also set the pixel format
by using the BitmapData class and its members.

The BitmapData object specifies the attributes of a bitmap, including size, pixel format, starting address of the pixel data in memory, and
length of each scan line (stride). These properties are described in. All of the properties have both get and set types.

Now let's set the color of pixels in a bitmap by using LockBits and UnlockBits. This approach is faster than using theSetPixel method.

uses LockBits and UnlockBits to set a bitmap pixel format. First we create anmage object from a file, followed by &Bitmap object from the
Image object. Then we callLockBits, which returns aBitmapData object. Next we callPixelFormat to set the pixel format. You can use any of
the PixelFormat enumeration values. Finally, we callUnlockBits to unlock the locked bits. Notice that thelockedRect rectangle in the LockBits
method is the size of the bitmap.

Listing 8.2 Using LockBits and UnlockBits to set the grayscale of a bitmap

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

Image img = Image.FromFile("roses.jpg");
Bitmap curlmage =
new Rectangle(0,0,curlmage.Width,curlmage.Height);
Rectangle lockedRect =
new Rectangle(0, 0, curlmage.Width, curimage.Height);
BitmapData bmpData = curlmage.LockBits(lockedRect,
ImageLockMode.ReadWrite,
PixelFormat.Format24bppRgb);
/I Set the format of BitmapData pixels
bmpData.PixelFormat = PixelFormat.Max;
/I Unlock the locked bits
curlmage.UnlockBits(bmpData);
/I Draw image with new pixel format
e.Graphics.Drawlmage(curimage, 0, O,

curlmage.Width, curimage.Height);

}
Table 8.3. BitmapData properties
Property Description
Height Represents the pixel height.
PixelFormat Represents the format of the pixels using thePixelFormat enumeration.
Scan0 Represents the address of the first pixel data in the bitmap.
Stride Represents stride (also called scan width).
Width Represents the pixel width.

shows the output from . The entire bitmap is grayscale.

Figure 8.1. Using BitmapData to set grayscale

_:__': Farml

If a bitmap is huge and we want to change the format of only a few pixels, LockBits and UnlockBits really help. Using these methods, we can
lock and render only the part of a bitmap we want to work on instead of rendering the entire bitmap. Suppose we want to change the pixel
format of only the section of the bitmap starting at point (50, 50) and ending at point (200, 200). We simply change the rectangle passed to
LockBits.

locks only that portion of the image specified by a rectangle.

Listing 8.3 Changing the pixel format of a partial bitmap

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs €)

Image img = Image.FromFile("roses.jpg");

Bitmap curlmage =
new Bitmap(img, new Size(img.Width, img.Height));

/I Call LockBits, which returns a BitmapData object

Rectangle lockedRect = new Rectangle(50,50,200,200);

/* Rectangle lockedRect =
new Rectangle(0,0,curimage.Width,curlmage.Height);
*

BitmapData bmpData = curlmage.LockBits(lockedRect,
ImageLockMode.ReadWrite,
PixelFormat.Format24bppRgb);

/I Set the format of BitmapData pixels

bmpData.PixelFormat = PixelFormat.Max;

/I'Unlock the locked bits

curlmage.UnlockBits(bmpData);

/I Draw image with new pixel format

e.Graphics.Drawlmage(curimage, 0, O,
curlmage.Width, curimage.Height);

}

shows the output from. You may not see any difference between this illustration an, but if you run the sample

code yourself, you will notice that the color of only a small rectangle in the image is changed.

Figure 8.2. Changing the pixel format of a partial bitmap

GetPixel/SetPixel VEISUS LockBits/UnlockBits

Comparing the two samples used in and Q shows that the LockBits/UnlockBits method is significantly faster than
the GetPixel/SetPixel method. To draw the same image, theGetPixel/SetPixel method takes about 150 milliseconds, and the

LockBits/UnlockBits method takes about 50 milliseconds.

B [ereviovs [lnexr)

Team LiB |

8.2 Working with Metafiles

Metafiles contain information about how an image was created—including lists of graphics operations—rather than storing the image in pixel
format. Graphics operations in a metafile are stored as records, which can be controlled (recorded and played back) individually.

The Metafile class provides functionality to work with different metafile formats including Windows Metafile Format (WMF), Enhanced Metafile
Format (EMF), and an extension to Enhanced Metafile Format (EMF+). The Metafile class provides about 40 overloaded forms of its
constructor.

Loading and viewing a metafile is similar to viewing a bitmap. An application can load a metafile from a stream, string, or IntPtr instance with
different formats and locations. The simplest way to load and view a metafile is to pass the file name in the Metafile constructor and call
Drawlmage.

GDI+ and Metafiles

Even though GDI+ is capable of reading both WMF and EMF files, it creates only EMF files. EMF files that contain GDI+
records are called EMF+ files.

The Metafile class is derived from thelmage class and has no methods and properties besides those inherited from thémage class.

Let's create an application to test metafile functionality. We will create a Windows application and add a MainMenu control to the form. Then
we'll add a menu item to MainMenu to test the code in this and subsequent sections.

As shows, first we create aGraphics object usingthis.CreateGraphics. Then we create aMetafile object from a file and use
Drawlmage to view it.

Listing 8.4 Viewing a metafile

private void ViewFile_Click(object sender,
System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a Metafile object from a file name
Metafile curMetafile = new Metafile("mtfile.wmf");
/I Draw metafile using Drawlmage
g.Drawlmage(curMetafile, 0, 0) ;

/I Dispose of object

g.Dispose();

shows the output from .

Figure 8.3. Viewing a metafile

™ Form1 _[O][x

Metafle EMF

_
C

8.2.1 wmetafile Class Method

As mentioned already, the Metafile class provides a long list of overloaded constructors. It also provides three methodsGetHenhmetafile,
GetMetafileHeader, and PlayRecord.

GetHenhmetafile returns a window handle to a metafile. GetMetafileheader, which has five overloaded forms, returns a metafile header in the
form of a MetafileHeader object. PlayRecord plays (reads and displays) an extended metafile.

8.2.2 Creating Metafiles Programmatically

The Metafile object can create a metafile programmatically. Three simple steps are required to create a metafile:

1. Creating a Metafile object with a file name

2. Using Fromimage to create aGraphics object from the Metafile object

3. Adding graphics lines and shapes

Now let's create a metafile programmatically. In we use GetHdc to get the handle to a device context (HDC), and we use this
handle to create a metafile called newFile.wmf. After creating the metafile, we use theFillRectangle, FillEllipse, and DrawString methods to add
a rectangle, an ellipse, and a string, respectively. Calling these methods adds records describing the respective objects to the metafile.
Finally, we release the objects.

Listing 8.5 Creating a metafile

private void CreateMetaFile_Click(object sender,
System.EventArgs e)

Metafile curMetafile = null;
/I Create a Graphics object
Graphics g = this.CreateGraphics();
/I Get HDC
IntPtr hdc = g.GetHdc();
/I Create a rectangle
Rectangle rect = new Rectangle(0, 0, 200, 200);
/I Use HDC to create a metafile with a name
try
{
curMetafile =
new Metafile("newFile.wmf", hdc);
}
catch(Exception exp)
{
MessageBox.Show(exp.Message);
g.ReleaseHdc(hdc);
g.Dispose();
return;
}
/I Create a Graphics object from the Metafile object
Graphics g1 = Graphics.Fromimage(curMetafile);
/I Set smoothing mode
gl.SmoothingMode = SmoothingMode.HighQuality;
/I Fill a rectangle on the Metafile object
gl.FillRectangle(Brushes.Green, rect);
rect.Y += 110;
/I Draw an ellipse on the Metafile object
LinearGradientBrush IgBrush =
new LinearGradientBrush(
rect, Color.Red, Color.Blue, 45.0f);
gl.FillEllipse(lgBrush, rect);
/I Draw text on the Metafile object
rect.Y += 110;
gl.DrawsString("MetaFile Sample",
new Font("Verdana", 20),
IgBrush, 200, 200,
StringFormat.GenericTypographic);
/I Release objects
g.ReleaseHdc(hdc);
gl.Dispose();
g.Dispose();

Running the code in will create a new metafile in your application's folder shows the image described by the metafile.

Figure 8.4. A metafile created programmatically

Prom T EER|

Metafiblz EMF

MetaFile Sample

As mentioned earlier, after creating a metafile, you can view it as you would any other image, using the Drawlmage method of the Graphics
class.

Tip

Using the same approach, you can easily create a metafile editor similar to GDI+Painter, in which you can draw graphics
objects and save them as metafiles. You can even change the GDI+Painter application code to do so.

8.2.3 Enhanced Metafiles

Using enhanced metafiles, you can add personalized data to a metafile as defined in the MSDN documentation:

The enhanced Windows metafile (EMF) format contains a comment mechanism for embedding data within the
metafile. This comment mechanism is used to embed GDI+ records within an EMF file. Applications that cannot read
or recognize the comment data skip the comment records and render the records they do understand. If the EMF+ file
is played back by GDI+, then the GDI+ records are used to render the metafile; otherwise, the GDI records (if present)
are used.

There are three types of EMFs: EMF only, EMF+ dual, and EMF+ only. The EmfType enumeration is used to find out the type of EMF
programmatically. This enumeration provides three members: EmfOnly, EmfPlusDual, and EmfPlusOnly. The EmfOnly and EmfPlusDual
types of records can be played by both GDI and GDI+; EmfPlusOnly types of records can be played only by GDI+.

You can use the Metafile object constructors to specify the type of EMF you want to create. The following code creates an EMF+ dual metafile:

Metafile curMetafile =
new Metafile(hdc, EmfType.EmfPlusDual,
"emfPlusDual.emf");

8.2.4 How Metafiles Work

The EnumerateMetafile method can be used to read and play back records of a metafile one by one. Each record is sent to
Graphics.EnumerateMetafileProc, which is used to read the data for a record. This method has many overloaded forms.

Graphics.EnumerateMetafileProc takes five parameters and is defined as follows:

public delegate bool Graphics.EnumerateMetafileProc(
EmfPlusRecordType recordType,
int flags,
int dataSize,
IntPtr data,
PlayRecordCallback callbackData

);

GDI/GDI+ Record

Each metafile record describes a command that is capable of drawing, filling, or changing the graphics state of a surface. For
example, clearing a graphics object, drawing a rectangle, filling an ellipse, creating a graphics container, and ending a
graphics container are all examples of records. After creating a metafile programmatically, if you call DrawRectangle, one
record will be added to the metafile. When you play back the metafile, GDI+ reads the record (DrawRectangle) and draws a
rectangle.

The EmfPlusRecordType enumeration defines the available metafile record types.

Whereas recordType is of type EmfPlusRecordType enumeration and specifies the type of metafile, theflags parameter is a set of flags that
specify attributes of the record. The dataSize parameter represents the number of bytes in the record data, anddata is an array of bytes that
contains the record data. The callbackData parameter is aPlayRecordCallback delegate supplied by the .NET Framework to play a record of
metafile data.

reads records from a metafile and displays data for these records individually. In th&EnumMetaCB callback, we check whether the
record type is FillEllipse, FillRects, DrawEllipse, or DrawRects and display the corresponding data.

Listing 8.6 Reading metafile records

private void EnumerateMetaFile_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a Metafile object from a file
Metafile curMetafile = new Metafile("mtfile.wmf");
/I Set EnumerateMetafileProc property
Graphics.EnumerateMetafileProc enumMetaCB =
new Graphics.EnumerateMetafileProc(EnumMetaCB);
/I Enumerate metafile
g.EnumerateMetafile(curMetafile,
new Point(0, 0), enumMetaCB);
/I Dispose of objects
curMetafile.Dispose();
g.Dispose();
}
private bool EnumMetaCB(EmfPlusRecordType recordType,
int flags, int dataSize,
IntPtr data, PlayRecordCallback callbackData)

string str ="";

/I Play only EmfPlusRecordType.FillEllipse records

if (recordType == EmfPlusRecordType.FillEllipse
|| recordType == EmfPlusRecordType.FillRects
|| recordType == EmfPlusRecordType.DrawEllipse
|| recordType == EmfPlusRecordType.DrawRects)

str = "Record type:"+ recordType.ToString()+
", Flags:"+ flags.ToString()+
" DataSize:"+ dataSize.ToString()+
", Data:"+data.ToString() ;
MessageBox.Show(str);
}
return true;

}

shows the output from . Our program displays the record type, flag, data size, and data. The record in this example

contains only FillRectangle methods. If more records are used to create a metafile, you will see messages for the various record types.

Figure 8.5. Reading metafile records

Record type FilRects, Flags: 43152, DataSize:16, Data 1014200

8.2.5 Reading a Metafile Header

A metafile header contains attributes such as type, size, and version of a metafile. It is represented by the MetafileHeader class.

GetMetafileHeader returns a metafile header and has many overloaded methods.

The MetafileHeader class has the eight methods listed in.

Table 8.4. MetafileHeader methods

Method Description
IsDisplay Returns true if a metafile is device-dependent.
ISEmf Returns true if a metafile is in the Windows EMF format.
ISEmfOrEmfPlus Returns true if a metafile is in the Windows EMF or EMF+ format.
ISEmfPlus Returns true if a metafile is in the Windows EMF+ format.

ISEmfPlusDual

Returns true if a metafile is in the dual EMF format, which supports both the enhanced and the enhanced plus format.

ISEmfPlusOnly

Returns true if a metafile supports only the Windows EMF+ format.

IsWmf

Returns true if a metafile is in the Windows WMF format.

IsWmfPlaceable

Returns true if a metafile is in the Windows placeable WMF format.

Properties of the MetafileHeader class represent various attributes of metafiles, including size, version, and type, a shows. All of
these properties are read-only.

Reading metafile attributes is simple: Create a Metafile object, get its header attributes usingGetMetafileHeader, and display the value of

these attributes in a message box. reads metafile header attributes, including type, bounds, size, and version.

Listing 8.7 Reading metafile header attributes

private void MetafileHeaderInfo_Click(object sender,
System.EventArgs e)

/I Create a Metafile object
Metafile curMetafile = new Metafile("mtfile.wmf");
/I Get metafile header

MetafileHeader header = curMetafile.GetMetafileHeader();
/I Read metafile header attributes

string mfAttributes = ",

mfAttributes += "Type :"+ header.Type.ToString();
mfAttributes += ", Bounds:"+ header.Bounds.ToString();
mfAttributes +=", Size:"+ header.MetafileSize.ToString();
mfAttributes +=", Version:"+ header.Version.ToString();
/I Display message box
MessageBox.Show(mfAttributes);

/I Dispose of object

curMetafile.Dispose();

}
Table 8.5. MetafileHeader properties
Property Description
Bounds Gets the bounds of a metafile in the form of a rectangle.
DpiX Gets the horizontal resolution, in dots per inch, of a metafile in the form of a rectangle.
DpiY Gets the vertical resolution, in dots per inch, of a metafile in the form of a rectangle.
EmfPlusHeaderSize Gets the size, in bytes, of an enhanced metafile plus header file.
LogicalDpiX Gets the logical horizontal resolution, in dots per inch, of a metafile.
LogicalDpiY Gets the logical vertical resolution, in dots per inch, of a metafile.
MetafileSize Gets the size, in bytes, of a metafile.
Type Gets the type of a metafile.
Version Gets the version number of a metafile.
WmfHeader Gets the WMF header of a metafile.

shows the output from .

Figure 8.6. Reading metafile header attributes

Type (EmiPlusDual, Bounds: (=5 =20 Widh=251 Hesght=236), Size: 380, Version:-£08169383

Tean L] rrevious [ecr]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

8.3 Color Mapping Using Color Objects

The System.Drawing.Imaging namespace provides three color objects that can be used to apply color mappings to images. These three
objects are ColorMap, ColorMatrix, and ColorPalette. In this section we will discuss the use and importance of these objects.

8.3.1 The Color Remap Table

Acolor remap table is used to convert the existing colors of an image to new colors by applying a color mapping to them. TheColorMap class
represents a color remap table. It defines the mapping between existing colors and the new colors to which they will be converted. When the
map is applied to an image, any pixel of the old color is converted to the new color.

The ColorMap class has only two properties—NewColor and OldColor—both of type Color. OldColor represents an existing color, and
NewColor represents the new color to which the existing color will be converted.

A color map is applied to an image through the ImageAttributes parameter of Drawlmage. The ImageAttributes class provides the
SetRemapTable method, which is used to apply aColorMap object array to the image attributes.

Note

Each ColorMap object maps a single color. To map multiple colors, you must create multipléolorMap objects.

To see ColorMap in action, we create a Windows application and add &lainMenu control to the form. We also add three menu items to the
main menu and use their menu item click event handlers to test our code.

gives code for the ColorMap menu click event handler. As usual, we createéGraphics and Image objects. We will map the red,
yellow, and blue colors to green, navy, and aqua, respectively. We create three ColorMap objects and aColorMap array from these objects,
and we set their OldColor and NewColor properties to the desired colors. Then we create animageAttributes object and apply theColorMap
array to it by calling the SetRemapTable method. After that the ImageAttributes object is used as a parameter ofDrawlmage.

Listing 8.8 Applying the color remap table

private void ColorMap_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);
/I Create an Image object
Image image = new Bitmap("Sample.bmp");
/I Create ImageAttributes
ImageAttributes imageAttributes =
new ImageAttributes();
/I Create three ColorMap objects
ColorMap colorMapl = new ColorMap();
ColorMap colorMap2 = new ColorMap();
ColorMap colorMap3 = new ColorMap();
/I Set the ColorMap objects' properties
colorMapl.0ldColor = Color.Red;
colorMapl1.NewColor = Color.Green;
colorMap2.0ldColor = Color.Yellow;
colorMap2.NewColor = Color.Navy;
colorMap3.0ldColor = Color.Blue;
colorMap3.NewColor = Color.Aqua;
/I Create an array of ColorMap objects
/I because SetRemapTable takes an array
ColorMap[] remapTable =
{
colorMap1,
colorMap2,
colorMap3
h
imageAttributes.SetRemapTable(remapTable,
ColorAdjustType.Bitmap);
/I Draw image
g.Drawlmage(image, 10, 10, image.Width, image.Height);
/I Draw image with color map
g.Drawimage(
image,
new Rectangle(150, 10, image.Width, image.Height),
0, 0, image.Width, image.Height,
GraphicsUnit.Pixel,
imageAttributes);
/I Dispose of objects
image.Dispose();
g.Dispose();
}

shows the output from . The original image is on the left; the image on the right shows remapped colors. On your system

you will notice that the red, yellow, and blue colors are converted to green, navy, and aqua.

Figure 8.7. Applying a color remap table

Si[=] E3

8.3.2 The Color Matrix

The ColorMatrix class defines a 5x5 matrix that contains coordinates for the ARGB (alpha, red, green, and blue) space (from 0,0 to 4,4). The
Item property of this class represents a cell of the matrix and can be used to get and set cell values. Besides theem property, the ColorMatrix
class provides 25 MatrixXY properties, which represent items of the matrix at thexth row and yth column. The MatrixXY properties can be
used to get and set item values.

You can use an array of points to initialize a ColorMatrix object, or you can assign values directly to theColorMatrix properties. The following
code snippet creates an array of points that is used as an argument to the ColorMatrix constructor, and then sets the values ofMatrix34 and
Matrix11.

float[][] ptsArray ={

new float[] {1, O, O, O, 0},

new float[] {0, 1, O, O, 0},

new float[] {0, O, 1, O, 0},

new float[] {0, O, O, 0.5f, 0},

new float[] {0, O, O, O, 1}};
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
if(clrMatrix.Matrix34 <= 0.5) /3" row, 41 col
{

clrMatrix.Matrix34 = 0.8f;

clrMatrix.Matrix11 = 0.3f; /18t row, 1%t col
}

The SetColorMatrix method of the ImageAttributes class uses a color matrix. We will see how to use a color matrix in your applications in the
sample applications that follow. discusses ColorMatrix in more detail.

8.3.3 The Color Palette

A color palette defines an array of colors that make up a color palette. The colors in the palette are limited to 32-bit ARGB colors (8 bits each
for the alpha, red, green, and blue components). The color palette can be used to increase the color intensity without increasing the number
of colors used. This process creates a halftone, and it offers increased contrast at a cost of decreased resolution.

The ColorPalette class defines an array of colors that make up a color palette. This class has only two propertie€Entries and Flags. The
Entries property returns an array of colors, and theFlags property represents how the color information is interpreted lists valid
values for the Flags property.

Table 8.6. ColorPalette.Flags values

Value Description
0x00000001 The color values in the array contain alpha information.
0x00000002 The colors in the array are grayscale values.
0x00000004 The colors in the array are halftone values.

Team LiB |

Team LiB |

8.4 Image Attributes and the imageattributes Class

Images represented by the Image class and its inherited classes can also store attributes. ThelmageAttributes class represents the attributes
of an image. Drawlmage can take a parameter of typelmageAttributes, which represents how the colors are applied to an image when it is
rendered. The ImageAttributes class has no properties, but it provides many useful methods. Let's take a look at the methods provided by the
ImageAttributes class.

8.4.1 The setwrapmode Method

Sometimes we need to fill a graphics shape with a texture that's smaller or larger than the graphics shape. The wrap mode—represented by
the WrapMode enumeration—specifies how a texture is tiled when it is larger or smaller than the area being filled. The members of the
WrapMode enumeration are described in ‘.

SetWrapMode is used to set the wrap mode of a texture or gradient. This method takes three parameters: a wrap mode\{/rapMode), a color
(Color), and a clamp (Boolean). The last two parameters are optional. If the clamp value isue, the texture will be clamped to the image
boundary; otherwise there is no clamping.

uses this method. First we create animageAttributes object and set the wrap mode usingSetWrapMode. Then we create anlmage
object using FromFile, followed by a call toDrawlmage with an argument of the ImageAttributes object. Drawlmage draws an image on the
form, rendered using the colors defined by ImageAttributes.

Table 8.7. wrapMode members

Member Description
Clamp Clamps the texture or gradient to the object boundary.
Tile Tiles the gradient or texture.
TileFlipX Reverses the texture or gradient horizontally and then tiles it.
TileFlipXY Reverses the texture or gradient horizontally and vertically and then tiles it.
TileFlipY Reverses the texture or gradient vertically and then tiles it.

Listing 8.9 Using the setwrapMode method of ImageAttributes

private void SetWrapMode_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);
/I Create ImageAttributes object
ImageAttributes ImgAttr = new ImageAttributes();
/I Set wrap mode to tile
ImgAttr.SetWrapMode(WrapMode.Tile);
/I Create an image
Image curlmage = Image.FromFile("dnWatcher.gif");
/I Draw image
Rectangle rect = new Rectangle(0, 0, 400, 400);
g.Drawlmage(curlmage, rect, 0, 0, 400, 400,
GraphicsUnit.Pixel, ImgAttr);

/I Dispose of object
g.Dispose();

}

shows the output from . If the image is smaller than the surface, images are wrapped.

Figure 8.8. Wrapping images

NET Waich NET Waich

C# Comer Weekly NewsleHher C# Comer Weekly MNewsle

NET Wa | NET

C# Comer Weekly Newsleher C# Comer Weekly Mewsle

NET Wais NET ¥

C# Comer Weekly HewsleHer C# Comer Weekly Newsle

Note

The WrapMode enumeration is defined in theSystem.Drawing.Drawing2D namespace. Don't forget to add the namespace
reference to the project.

8.4.2 The setcamma Method

The SetGamma method sets the gamma value, which represents the brightness of a graphics shape, for all graphics objects, including
images, brushes, and pens. Gamma values range from 0.1 to 5.0 (normally 0.1 to 2.2), with 0.1 being the brightest and 5.0 the darkest.

This method takes a floating type parameter as gamma value and a second optional parameter of the ColorAdjustType enumeration type.
Using the ColorAdjustType enumeration from the lmaging namespace, you can even specify which GDI+ objects use this color adjustment.
For example, if you want to apply gamma values on text only, you can do so using ColorAdjustType.Text, which is described in[fable 8.4. The
following code snippet sets the gamma value of ImageAttributes.

ImageAttributes ImgAttr = new ImageAttributes();
imageAttr.SetGamma(2.0f, ColorAdjustType.Default);

Now you can use this ImageAttributes object as a parameter of theDrawlmage method.

8.4.3 The setcolormatrix Method

A color matrix represents how colors are represented in anlmage object. As we saw i , the ColorMatrix object represents a
color matrix. SetColorMatrix applies a color matrix to an image. This method takes a parameter of theColorMatrix class, with two optional
parameters of ColorMatrixFlag and ColorAdjustType enumerations.

Table 8.8. ColorAdjustType members

Member Description
Any Reserved
Bitmap For Bitmap objects only
Brush For Brush objects only
Count The number of types specified (used internally by GDI+)
Default For all objects that do no have their own color adjustment information
Pen For Pen objects only
Text For text only

Often we don't want all graphics objects to be affected by a color adjustment. Suppose we have some graphics shapes, an image, and some
text, and we want only the image to be affected by the color adjustment specified by the SetColorMatrix method. The ColorAdjustType
enumeration allows us to specify which graphics objects use the color adjustment information. [Fable 8.3 describes the members of the
ColorAdjustType enumeration.

ColorMatrixFlag specifies the types of images and colors that will be affected by the color adjustment settings. Th€olorMatrixFlag
enumeration has three members: AltGrays, Default, and SkipGrays. AltGrays is not available for use except by the .NET Framework
internally, so basically ColorMatrixFlag provides the option of affecting gray colors or not. TheDefault value means that all colors will be
affected; SkipGrays means that gray shades will not be affected. (You may want to skip some of the gray shades that are used when you're
smoothing images.)

In we create ColorMatrix and ImageAttributes objects. Then we callSetColorMatrix to add a color matrix to
ImageAttributes.ImageAttributes.SetColorMatrix takes ColorMatrix as its first argument.

Listing 8.10 Drawing semitransparent images

private void SetColorMatrix_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
Rectangle rect = new Rectangle(20, 20, 200, 100);
Bitmap bitmap = new Bitmap("MyPhoto.jpg");
/I Create an array of matrix points
float[][] ptsArray =
{
new float[] {1, 0, 0, 0, 0},
new float[] {0, 1, 0, O, O},
new float[] {0, 0, 1, O, O},
new float[] {0, 0, 0, 0.5f, 0},
new float[] {0, O, 0, 0, 1}
h
/I Create a color matrix
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
/I Set ColorMatrix properties
if(clrMatrix.Matrix34 <= 0.5)
{
clrMatrix.Matrix34 = 0.8f;
clrMatrix.Matrix11 = 0.3f;
}
/I Create image attributes
ImageAttributes imgAttributes = new ImageAttributes();
/I Set color matrix
imgAttributes.SetColorMatrix(clrMatrix,
ColorMatrixFlag.Default,
ColorAdjustType.Bitmap);
g.FillRectangle(Brushes.Red, rect);
rect.Y += 120;
g.FillEllipse(Brushes.Black, rect);
/I Draw image
g.Drawlmage(bitmap,
new Rectangle(0, 0, bitmap.Width, bitmap.Height),
0, 0, bitmap.Width, bitmap.Height,
GraphicsUnit.Pixel, imgAttributes);
/I Dispose of object
g.Dispose();
}

shows the output from . A rectangle and a circle are drawn, and then an image with lower color resolution, as specified

by ImageAttributes.

Figure 8.9. Drawing semitransparent images

8.4.4 The setNoop and setcolorkey Methods

The SetNoOp method sets the NoOp correction value for Graphics objects. When NoOp is set, no adjustments to the color will be made during
the rendering process.

SetColorKey sets the low and high color values for graphics objects and shapes. The&SetColorKey method takes a parameter of type
ColorAdjustType enumeration (see that specifies the type of the graphics objects and shapes to be affected bysetColorKey.

applies gamma effect and sets color key values using theSetColorKey method.

Listing 8.11 Applying SetGamma and SetColorKey

private void SetNoOp_Click(object sender,
System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create two colors

Color ICIr = Color.FromArgh(245,0,0);

Color uClr = Color.FromArgh(255,0,0);

/I Create ImageAttributes object

ImageAttributes ImgAttr = new ImageAttributes();

/I Set color key

ImgAttr.SetColorKey(IClr, uClr,
ColorAdjustType.Default);

/I Set gamma

ImgAttr.SetGamma(2.0f, ColorAdjustType.Default);

/I Set NoOp

/I ImgAttr.SetNoOp(ColorAdjustType.Default);

/I Create an Image object

Image curlmage = Image.FromFile("dnWatcher.gif");

/I Draw image

Rectangle rect = new Rectangle(0, 0, 400, 400);

g.Drawlmage(curlmage, rect, 0, 0, 400, 400,
GraphicsUnit.Pixel, ImgAttr);

/I Dispose of object

g.Dispose();

}

shows the output from .

Figure 8.10. Applying SetGamma and SetColorKey

Now if we uncomment the following line in :

/limgAttr.SetNoOp(ColorAdjustType.Default);

the output will look like . Using SetNoOp cancels all image attribute effects.

Figure 8.11. Using the setNoOp method

Form1 = [=] 3

Imagestinbutes

NET Wailches

C# Comer Weekly Newsletter

8.4.5 The setTthreshold Method

The SetThreshold method sets the transparency range (threshold) for a specified category. This method takes one parameter representing a
threshold value ranging between 0.0 and 1.0, and an optional second parameter of type ColorAdjustType. The value of the threshold
specifies a cutoff point for each component of color. For example, suppose that the threshold is set to 0.8 and the value of the red component
is 240. Because the value of the red component (240) is greater than 0.8, the red component will be changed to 255 (full intensity).

imageAittr.SetThreshold(0.8f, ColorAdjustType.Default);

8.4.6 The setBrushRemapTable Method

We have already discussed how the SetRemapTable method sets a remap table to the specifiedColorMap object. The OldColor and
NewColor properties of ColorMap represent old and new colors, respectively.SetBrushRemapTable converts only the colors of brushes. The
ColorMap class also provides bothOldColor and NewColor properties.

creates aColorMap object, sets its OldColor and NewColor properties, and then callsSetBrushRemapTable with the ColorMap
object.

Listing 8.12 Using SetBrushRemapTable

private void SetBrushRemapTable_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

ColorMap[] clrMapTable = new ColorMap[1];

clrMapTable[0] = new ColorMap();

clrMapTable[0].OldColor = Color.Red:;;

clrMapTable[0].NewColor = Color.Green;

ImageAttributes ImgAttr = new ImageAttributes();

ImgAttr.SetBrushRemapTable(clrMapTable);

Image curlmage = Image.FromFile("Sample.bmp");

g.Drawlmage(curimage, 0, 0);

Rectangle rect = new Rectangle(0, 0, 400, 400);

g.Drawlmage(curimage, rect, 0, 0, 400, 400,
GraphicsUnit.Pixel, ImgAttr);

/I Dispose of object

g.Dispose();

8.4.7 The Clear Methods

The ImageAttributes class provides a "clear" method for almost every set method we have discussed in this section. The clear methods take
either no parameter or an optional parameter of ColorAdjustType enumeration. These clear methods are listed in.

Table 8.9. The clear methods of ImageAttributes

Method Description
ClearBrushRemapTable Clears color remap table for brush.
ClearColorKey Clears color key values for the graphics objects specified by th€olorAdjustType enumeration.
ClearColorMatrix Clears color adjust matrix to all zeros.
ClearGamma Clears gamma effect for the graphics objects specified by theColorAdjustType enumeration.
ClearNoOp Clears NoOp setting for all graphics objects.
ClearOutputChannel Clears output channel selection for graphics objects specified by the&olorAdjustType enumeration.

ClearOutputChannelColorProfile Clears output channel selection and color profile file for graphics objects specified by the
ColorAdjustType enumeration.

ClearRemapTable Clears color remap table for graphics objects specified by theColorAdjustType enumeration.

ClearThreshold Clears threshold value for graphics objects specified by theColorAdjustType enumeration.

Suppose that we wanted to clear the color key values for all graphics objects. We would use th€learColorKey method as follows:

imageAttr.ClearColorKey(ColorAdjustType.Default);

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

8.5 Encoder Parameters and Image Formats

In we discussed how the Save method of the Image class can be used to save images in different formats. This is what our code in

Ehapter 7 looked like to save an image as a TIFF file:

curlmage.Save(fileName, ImageFormat.Tiff);

In fact, the Save method does much more than just save an image in different formats. An overloadedave method can take an argument of
type EncoderParameters, which represents an encoder. Anencoder is responsible for converting a file from one format to another, and a
decoder reverses it. The encoder is responsible for saving an image to a format defined by codec parameters.

Two forms of the Save method with EncoderParameters are

public void Save(Stream, ImageCodeclInfo, EncoderParameters);
public void Save(string, ImageCodecInfo, EncoderParameters);

Another method is SaveAdd. This method adds information to anlmage object. EncoderParameters determines how the new information is
incorporated into the existing image.

The SaveAdd method has two overloaded forms. The first form adds a frame to the file or stream specified in a previous call to ti&ave
method. This method can be used to save selected frames from a multiple-frame image to another multiple-frame image.

public void SaveAdd(EncoderParameters);

The second form, which takes two parameters (Image and EncoderParameters) adds a frame to the file or stream specified in a previous call
to the Save method.

public void SaveAdd(Image, EncoderParameters);

8.5.1 The Encoder, EncoderCollection, and Image Relationship

SDN, it is a little difficult to understand how encoder and
, which shows how the different elements relate to each other.

Unfortunately, mostly because of inadequate documentation and samples in |\

| ENCOQer | | EnCoder

| }

‘ EncoderParameter . Encoder

|

EncoderParameter. Encoder

EncoderParameters
Image.Save (ImageCodelnfo, Image.Savehdd (Image,
EncoderParameters) EncaoderParameters)

As you can see, the Save method of the Image class consumes EncoderParameters, which is a collection of typeEncoderParameter. An
EncoderParameter object represents an encoder. We use theEncoder property to attach an Encoder object to the EncoderParameter object.

8.5.2 The Encoder and EncoderParameter Classes

An Encoder object encapsulates a globally unique identifier (GUID) that identifies the category of an image encoder parameter represented by
EncoderParameter. This Encoder object is attached to an EncoderParameter object through itsEncoder property.

An Encoder object is created by use of theEncoder class constructor, which takes one parameter of typeGuid.

The Encoder class provides one property,Guid, and a set of static fields, which represent the encoder properties. TheGuid property of the
Encoder class returns a GUID attached to an encoder.[Table 8.1(describes the fields.

EncoderParameter represents an arr_af of values that is used to pass values to an image encoder. TheEncoderParameter constructor takes

an argument of Encoder object type.[lable 8.11 describes the properties of theEncoderParameter class.

The EncoderParameters class represents an array of EncoderParameter objects. You will have to create anEncoderParameters object
because the Save and SaveAdd methods take a parameter of typeEncoderParameters.

Suppose that you want to save a JPEG file to a TIFF file with 24-bit compression. In we first create anEncoderParameters object.
Then we create an array of ImageCodeclInfo objects, which provide members to retrieve information about installed image codecs, including
the codec name, MIME type, format, version, and signature. The properties of the ImageCodecInfo class are listed in. All of these
properties have both get and set types.

Table 8.10. Encoder fields

Field Description
ChrominanceTable Specifies chrominance table as the parameter category.
ColorDepth Specifies color depth as the parameter category.
Compression Specifies compression as the parameter category.
LuminanceTable Specifies luminance table as the parameter category.
Quality Specifies quality as the parameter category.
RenderMethod Specifies rendering method as the parameter category.
SaveFlag Specifies save flag as the parameter category.
ScanMethod Specifies scan method as the parameter category.
Transformation Specifies transformation as the parameter category.
Version Specifies version as the parameter category.

Table 8.11. EncoderParameter properties

Property Description
Encoder Represents an encoder associated with this encoder parameter. Both get and set types.
NumberOfValues Returns the number of elements in the array of values stored in an encoder parameter.
Type Returns the type of an encoder parameter.
ValueType Returns the data type of the values stored in an encoder parameter.

GDI+ provides several built-in image encoders and decoders. The ImageCodeclInfo class provides two static methods: GetimageEncoders
and GetlmageDecoders, which return the built-in GDI+ image encoders and decoders in an array ofmageCodeclInfo objects.

MIME Types

MIME stands for "Multipurpose Internet Mail Extensions." It is a standard way of classifying file types on the Internet. By
specifying a MIME type, applications can easily identify the type of file and can extract more information and attributes about a
file. Here are some useful links to Web resources that provide information about MIME types:

http://www.mhonarc.orq/~ehood/M|ME/MIME.html

lmp://msdn.microsoft.com/library/defauIt.asp?urI=/workshop/networkinq/moniker/overview/appendix a.asd

l‘tp://ftp.isi.edu/in-notes/iana/assiqnments/media-tvpes/media—tvpesj

http://www.mhonarc.org/~ehood/MIME/MIME.html
http://www.msdn.microsoft.com/library/default.asp@url=_2Fworkshop_2Fnetworking_2Fmoniker_2Foverview_2Fappendix_a.asp
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types/default.htm
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types/default.htm

Table 8.12. ImageCodecinfo properties

Property Description
Clsid Returns the Guid structure that contains a GUID identifying a specific codec.
CodecName Returns a string containing the name of the codec.
DIIName Returns a string containing the path name of the codec's DLL. If there is no DLL, returnsull.

FilenameExtension Returns a string containing the file name extension(s) used by the codec. The extensions are separated by semicolons.

Flags Returns a 32-bit combination of flags from thelmageCodecFlags enumeration.

FormatDescription Returns a string describing the codec's file format.

FormatlD Returns a Guid structure containing a GUID that identifies the codec's format.
MimeType Returns a string containing the codec's Multipurpose Internet Mail Extensions (MIME) type.
SignatureMasks Returns a two-dimensional array of bytes that can be used as a filter.

SignaturePatterns Returns a two-dimensional array of bytes representing the signature of the codec.

Version Returns the version number of the codec.

In , after creating anEncoderParameters object, we use theEncoder and EncoderParameter objects to create three encoder
parameters. These encoder parameters are responsible for changing image color depth, compression, and transformation. We use the
Encoder class and set its ColorDepth property. Later theEncoder object is used as an argument toEncoderParameter, which subsequently is
added to EncoderParameters. Then we also set the Transformation and Compression properties to CompressionLZW and
TransformRotation180, respectively.

When we are done adding EncoderParameter objects to EncoderParameters, we call the Save method of Bitmap with the EncoderParameters
object. Our sample saves the bitmap to a TIFF file with 24 color depth, and LZW compression.

Listing 8.13 Saving an image with encoder properties

private void button1_Click(object sender,
System.EventArgs e)

ImageCodeclInfo imgCodecInfo = null;
Encoder encoder = null;
EncoderParameter encoderParam = null;
EncoderParameters encoderParams =

new EncoderParameters(3);
/I Create a Bitmap object from a file
Bitmap curBitmap = new Bitmap(“roses.jpg");
/I Define mimeType
string mimeType = "imagel/tiff";
ImageCodecInfo[] encoders;
encoders = ImageCodecInfo.GetimageEncoders();
for(inti = 0; i < encoders.Length; ++i)
{

if(encoders[i].MimeType == mimeType)

imgCodeclInfo = encodersi];

}

/I Set color depth to 24 pixels

encoder = Encoder.ColorDepth;

encoderParam = new EncoderParameter(encoder, 24L);

encoderParams.Param[0] = encoderParam;

/I Set compression mode to LZW

encoder = Encoder.Compression;

encoderParam = new EncoderParameter(encoder,
(long)EncoderValue.CompressionLZW);

encoderParams.Param[1] = encoderParam;

/I Set transformation to 180 degrees

encoder = Encoder.Transformation;

encoderParam = new EncoderParameter(encoder,
(long)EncoderValue.TransformRotate180);

encoderParams.Param[2] = encoderParam;

/I Save file as a TIFF file

curBitmap.Save("newfFile.tif", imgCodeclinfo,
encoderParams);

/I Dispose of object

curBitmap.Dispose();

8.5.3 Retrieving Information from Digital Images or Tagged Data of TIFF Files

The Propertyltems property of the Image class returns an array of Propertyltem objects, which describe the attributes of an image. Each
instance of Propertyltem has four properties—d, Len, Type, and Value—which represent the identifier, length, type, and value of the property,
respectively.

One common use of Propertyltem is to read the tagged data of TIFF files or the information from the JPEG images taken from a digital

camera. Listing 8.14 opens a JPEG file and uses thelmage.Propertyltems property to get an array of Propertyltem objects. After that we make

a loop and read all property item IDs and values.

You can add this code to a button or a menu click event handler. Don't forget to add a reference to the System.Drawing.Imaging namespace.

Listing 8.14 Retrieving information from digital images

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
Image curlmage = Image.FromFile("DSCF0105.JPG");
/I Return an array of property items using
/I Image's Propertyltems property
Propertyltem [] imgProperties = curlmage.Propertyltems;
/I Total items
string str = imgProperties.Length.ToString();
MessageBox.Show("Properties "+str);
/I Read items and display in a message box
for (int i=0; i< imgProperties.Length; i++)
{
str = string.Empty;
str = "Id :"+imgProperties[i].Id. ToString();

str +=" Value:"
+BitConverter. ToString(imgProperties][i]. Value);
MessageBox.Show(str);

}

/I Dispose of object

g.Dispose();

8.5.4 Converting a Bitmap to Other Formats

Saving a bitmap as a PNG file or any another format is simple if we use ImageCodecinfo settings. We create an ImageCodecInfo object with
MIME type image/png and use it as the second argument to theSave method of the Bitmap class. converts Shapes.bmp to

Shape0.png.

Listing 8.15 Converting from JPEG to PNG

private void ConvertToPNG_Click(object sender,
System.EventArgs e)

ImageCodeclnfo imgCodecinfo = null;

/I Create a bitmap from a file

Bitmap curBitmap = new Bitmap("Shapes.bmp");
int j;

/I Set MIME type. This defines the format of

/I the new file.

string mimeType = "image/png";
ImageCodeclinfo[] encoders;

/I Get GDI+ built-in image encoders

encoders = ImageCodecInfo.GetimageEncoders();

/I Compare with our MIME type and copy it to
/I ImageCodecinfo
for(j = 0; j < encoders.Length; ++j)
{
if(encoders[jl.MimeType == mimeType)
imgCodeclinfo = encoderslj];
}
/I Save as PNG file
curBitmap.Save("Shape0.png",
imgCodeclnfo, null);
/I Dispose of object
curBitmap.Dispose();

}

WiII save Shapes.bmp to Shape0.png. You can save a file to other formats by changing the MIME type.

Team LiB |

Team LiB |

SUMMARY

This chapter covered more advanced imaging concepts. We discussed the System.Drawing.Imaging namespace classes, their members, and
how to use them. At the beginning of the chapter you learned how to set grayscale images using SetPixel, LockBits, and UnlockBits. In the
same section we discussed how to set the color of a bitmap.

In the section covering the Metafile class and related functionality, you learned the metafile types supported by GDI+, how to create new
metafiles, and how to read and enumerate existing metafiles. We also saw how to read metafile header information.

The Graphics class provides methods to set the attributes of images. We covered how to set the colors and other attributes of images using
the color map table, color matrix, and color palette. In this section we saw some real-world applications, such as drawing transparent images,
wrapping images, and setting gamma values of images.

This chapter also discussed how to use the Encoder, EncoderParameter, EncoderParameters, and ImageCodecinfo classes and their
members to encode images. We discussed some real-world scenarios in which you may want to change the color depth and compression of
images. We also learned how to read tagged data from TIFF files and how to convert among different image formats.

WiII concentrate on the System.Drawing.Drawing2D namespace.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Chapter 9. Advanced 2D Graphics

In andEwe learned how to use advanced imaging functions of the Image, Bitmap, and other classes defined in the
System.Drawing and System.Drawing.Imaging namespaces. In this chapter we will discuss advanced two-dimensional GDI+ programming.
The .NET Framework library defines this functionality in a separate namespace: System.Drawing.Drawing2D. Among the advanced 2D
techniques we will discuss are blending, matrices, graphics paths, and gradient brushes.

Note

Before using any class discussed in this chapter, an application should reference the System.Drawing.Drawing2D
namespace by adding the following line:

using System.Drawing.Drawing2D

Apart from blending, gradient brushes, graphics containers, graphics paths, and matrix-related classes, the System.Drawing.Drawing2D
namespace provides many enumerations. Some of the enumerations we have discussed in previous chapters; the rest will be covered in this
chapter.

lists the classes provided by System.Drawing.Drawing2D. Several of these classes were mentioned in previous chapters. We will
discuss them here in more detail.

Table 9.1. System.Drawing.Drawing2D classes

Class Description

AdjustableArrowCap An adjustable, arrow-shaped line cap.

Blend A blend pattern used by linear gradient brushes.
ColorBlend An array of colors and positions in a multicolor gradient.
CustomLineCap A custom user-defined line cap.

GraphicsContainer The internal data of a graphics container. The BeginContainer and EndContainer methods are used to save the
state of a Graphics object.

GraphicsPath A graphics path, which contains a series of connected lines and curves.

GraphicsPathlterator A graphics path can have many subpaths. This class provides a way to iterate through them.

GraphicsState Graphics object state, which is returned by theBeginContainer method.

Class

Description

HatchBrush

A hatch brush. Discussed in

LinearGradientBrush

Linear gradient brush. Discussed in

Matrix A 3x3 affine matrix that represents a geometric transformation.
PathData Contains the graphical data of a graphics path.
PathGradientBrush A brush that fills a graphics path with a gradient.

RegionData Data of a region.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

9.1 Line Caps and Line Styles

In previous chapters we saw how to draw lines and curves using Draw-Line, DrawCurve, and related methods of theGraphics class. In these
cases we drew only solid lines and curves. Lines and curves can also have styles. For example, you can draw a dotted line with circular caps.

A line has three parts: the line body, starting cap, and ending cap. The line starts with a starting cap s with anending cap. The part
that connects these two caps is the line body. The caps and body of a line can have different stylesfigure 9.1 shows two lines with different
starting and ending cap and body styles.

Figure 9.1. Lines with different starting cap, ending cap, and dash styles

h E § S . +

Starting Cap Line Dash Style Ending Cap

The ends of a line can have different caps. shows some of the available line cap styles.

A line body can have its own style, called the dash style. shows four different dash styles.

Figure 9.2. Line dash style

B X N X X ¥ K ¥ K =N E & &N X =N XK § K N |
R BN RN RN BN _EN _EE _EJE _EBEXE SN _ BN _E& _EE K.

L NN NEE FEE FEE NEN EEE NEE EEN NEN NN

Each line dash style can also have its own cap style, which is called aline dash cap. shows three different line dash caps.

Figure 9.3. Line dash caps

Table 9.2. Line cap styles

Style Description

Triangle

AnchorMask (or flat or square)

ArrowAnchor

DiamondAnchor

Round

RoundAnchor

SquareAnchor

fiil

9.1.1 Line Caps and Styles Specified by the pen Class

The Pen object specifies the line caps and line styles being used to draw lines. To create a line with caps and styles, we createP&n object, set
its line cap and line style properties (or methods) and use the Pen object to draw the lines.

lists the members of the Pen class that can be used to set line caps and line styles.

9.1.2 Adding Line Caps and Styles

There is no direct way to apply line caps and line styles to a line. We must go through the Pen object. As we covered in previous chapters, to
draw a line we must have a Pen object specifying the color and width of the pen used when we call th®rawLine method of the Graphics class.
The Pen object also provides members for attaching line caps and line styles to a pen. After we attach line caps and styles to a pen, we use
this pen to draw lines.

In we create aPen object with a specified color and width. Then we set the line caps using th&tartCap and EndCap properties of
the Pen class, followed by theDashStyle and DashOffset properties. After that we callDrawLine and dispose of the objects.

Table 9.3. pen Class members for setting line caps and styles

Member Description

StartCap Property that gets or sets the cap style used at the beginning of the line. Takes d.ineCap enumeration member.

EndCap Property that gets or sets the cap style used at the end of the line. Takes dineCap enumeration member.

CustomStartCap Property that gets or sets a custom cap to use at the beginning of the line. Takes aCustomLineCap object.

CustomEndCap Property that gets or sets a custom cap to use at the ending of the line. Takes aCustomLineCap object.

DashCap Property that gets or sets the cap style used at the end of the dashes that make up a dashed line. Takes a DashCap
enumeration, which has only three members: Flat, Round, and Triangle.

DashOffset Property that gets and sets the dash offset—that is, the distance from the start of a line to the beginning of a dash patterr].

DashPattern Property that specifies the length of each dash and space in a dash pattern. Takes an array of floating values. The first
element of this array sets the length of a dash, the second element sets the length of a space, the third element sets the
length of a dash, and so on.

DashStyle Dash lines can have their own styles. This property gets and sets dash line styles, which are represented by the
DashStyle enumeration. The DashStyle enumeration has six members—Custom, Dash, DashDot, DashDotDot, Dot, and
Solid—that represent lines consisting of a custom pattern, dashes, a dash-dot repeating pattern, a dash-dot-dot
repeating pattern, dots, and a solid line, respectively.

SetLineCap Method that sets the values of all three parts (the starting line cap, ending line cap, and dash style) of a line.

Listing 9.1 Setting line caps and line styles

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a pen

Pen blackPen = new Pen(Color.Black, 10);
/I Set the line caps and line styles
blackPen.StartCap = LineCap.Triangle;

blackPen.EndCap =
blackPen.DashStyle

LineCap.Triangle;
= DashStyle.Dash;

blackPen.DashOffset = 40;

g.DrawLine(blackPe
/I Dispose of objects
blackPen.Dispose();
g.Dispose();

n, 20, 10, 200, 10);

We will cover line caps and styles in more detail in through .

9.1.3 Getting and Setting Line Caps and Styles

In the previous sections we discussed the LineCap, DashStyle, and DashCap enumerations, which represent the line cap, line dash style, and

dash cap, respectively. Now we will write an application and use these enumerations.

We create a Windows application and a MainMenu control with three menu items on the form. We call these menu itemssetCapStyle,
LineDashStyle, and LineDashCap, respectively, and write menu click event handlers by double-clicking on them. On th&etCapStyle menu
item click event handler, we will read different line caps and generate output using these line caps; on the LineDashStyle menu item click
event handler, we will generate lines with different dash styles; and on the LineDashCap menu item click event handler, we will generate
output with different line dash caps.

The GetCapStyle menu item click event handler is shown i . We create a pen and set the starting and ending caps using the
StartCap and EndCap properties of the Pen object, and then we draw a line.

Listing 9.2 Getting line caps

private void GetCapStyles_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a pen
Pen blackPen = new Pen(Color.Black, 10);
/I Set line styles
blackPen.StartCap = LineCap.Triangle;
blackPen.EndCap = LineCap.Triangle;
g.DrawLine(blackPen, 20, 10, 200, 10);
blackPen.StartCap = LineCap.Square;
blackPen.EndCap = LineCap.AnchorMask;
g.DrawLine(blackPen, 20, 30, 200, 30);
blackPen.StartCap = LineCap.ArrowAnchor;
blackPen.EndCap = LineCap.ArrowAnchor;
g.DrawLine(blackPen, 20, 50, 200, 50);
blackPen.StartCap = LineCap.DiamondAnchor;
blackPen.EndCap = LineCap.DiamondAnchor;
g.DrawLine(blackPen, 20, 70, 200, 70);
blackPen.StartCap = LineCap.Flat;
blackPen.EndCap = LineCap.Flat;
g.DrawLine(blackPen, 20, 90, 200, 90);
blackPen.StartCap = LineCap.Round;
blackPen.EndCap = LineCap.Round;
g.DrawLine(blackPen, 20, 110, 200, 110);
blackPen.StartCap = LineCap.RoundAnchor;
blackPen.EndCap = LineCap.RoundAnchor;
g.DrawLine(blackPen, 20, 130, 200, 130);
blackPen.StartCap = LineCap.Square;
blackPen.EndCap = LineCap.Square;
g.DrawLine(blackPen, 20, 150, 200, 150);
blackPen.StartCap = LineCap.SquareAnchor;
blackPen.EndCap = LineCap.SquareAnchor;
g.DrawLine(blackPen, 20, 170, 200, 170);
blackPen.StartCap = LineCap.Flat;
blackPen.EndCap = LineCap.Flat;
g.DrawLine(blackPen, 20, 190, 200, 190);
/I Dispose of objects
blackPen.Dispose();
g.Dispose();

}

The output of looks like , in which the lines have different caps.

Figure 9.4. Reading line caps

E® Drawing Lines and Curves wit - 0] x|

Lines and Curves

e
—
S —— 5
—
I
—
fo— """]
I
[e——
I

The LineDashStyle menu item click event handler code is given i. We create a pen and set the dash style and dash offset values
using the DashStyle and DashOffset properties of the Pen object, and then we draw lines.

Listing 9.3 Getting line dash styles

private void LineDashStyle_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a pen

Pen blackPen = new Pen(Color.Black, 6);
/I Set line styles

blackPen.DashStyle = DashStyle.Dash;
blackPen.DashOffset = 40;
blackPen.DashCap = DashCap.Triangle;
g.DrawLine(blackPen, 20, 10, 500, 10);
blackPen.DashStyle = DashStyle.DashDot;
g.DrawLine(blackPen, 20, 30, 500, 30);
blackPen.DashStyle = DashStyle.DashDotDot;
g.DrawLine(blackPen, 20, 50, 500, 50);
blackPen.DashStyle = DashStyle.Dot;
g.DrawLine(blackPen, 20, 70, 500, 70);
blackPen.DashStyle = DashStyle.Solid;
g.DrawLine(blackPen, 20, 70, 500, 70);

/I Dispose of objects

blackPen.Dispose();

g.Dispose();

}

shows the output from . The lines have different dash styles.

Figure 9.5. Reading line dash styles

:!._ Diawing Linos and Curves with Stylos M= E I

Lines and Curves

b e e e e s s e s s s
o b e b o R W

The GetCapStyle menu item click event handler code is given i. We create a pen and set the dash cap styles using th®ashCap
property of the Pen object.

Listing 9.4 Getting dash caps

private void LineDashCap_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a pen
Pen blackPen = new Pen(Color.Black, 10);
/I Set DashCap styles
blackPen.DashStyle = DashStyle.DashDotDot;
blackPen.DashPattern = new float[]{10};
blackPen.DashCap = DashCap.Triangle;
g.DrawLine(blackPen, 20, 10, 500, 10);
blackPen.DashCap = DashCap.Flat;
g.DrawLine(blackPen, 20, 30, 500, 30);
blackPen.DashCap = DashCap.Round,;
g.DrawLine(blackPen, 20, 50, 500, 50);
/I Dispose of objects
blackPen.Dispose();
g.Dispose();

}

shows the output from . The lines have different dash caps: triangular, flat, and round, respectively.

Figure 9.6. Getting line dash caps

t!ﬂmwing Linez and Cuives wilh Styles

9.1.4 Drawing Other Objects with Line Caps and Styles

So far we have applied line caps and line styles only to lines, but these effects can also be applied to other objects, including curves,
rectangles, and ellipses. However, some of these objects impose limitations. For example, rectangles, ellipses, and closed curves do not
have starting and ending caps, so the StartCap and EndCap properties of a pen will not affect them.

Let's add one more menu item to MainMenu, called OtherObjects. The code for its menu item click event handler is given i. We
create three pens with different colors and widths; set their line cap, dash style, and dash cap properties; and draw a rectangle, an ellipse,
and a curve.

Listing 9.5 Drawing other objects using line caps, dash styles, and dash caps

private void OtherObjects_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create pen objects

Pen blackPen = new Pen(Color.Black, 5);

Pen bluePen = new Pen(Color.Blue, 8);

Pen redPen = new Pen(Color.Red, 4);

/I Set DashCap styles

blackPen.StartCap = LineCap.DiamondAnchor;
blackPen.EndCap = LineCap.SquareAnchor;
blackPen.DashStyle = DashStyle.DashDotDot;
blackPen.DashPattern = new float[]{10};
blackPen.DashCap = DashCap.Triangle;

/I Set blue pen dash style and dash cap
bluePen.DashStyle = DashStyle.DashDotDot;
bluePen.DashCap = DashCap.Round;

/I Set red pen line cap and line dash styles
redPen.StartCap = LineCap.Round;
redPen.EndCap = LineCap.DiamondAnchor;
redPen.DashCap = DashCap.Triangle;
redPen.DashStyle = DashStyle.DashDot;
redPen.DashOffset = 3.4f;

/I Draw a rectangle
g.DrawRectangle(blackPen, 20, 20, 200, 100);
/I Draw an ellipse

g.DrawEllipse(bluePen, 20, 150, 200, 100);

/I Draw a curve

PointF ptl = new PointF(90.0F, 40.0F);
PointF pt2 = new PointF(130.0F, 80.0F);

PointF pt3 = new PointF(200.0F, 100.0F);
PointF pt4 = new PointF(220.0F, 120.0F);
PointF pt5 = new PointF(250.0F, 250.0F);
PointF[] ptsArray =
{
ptl, pt2, pt3, pt4, pt5
h
g.DrawCurve(redPen, ptsArray);
/I Dispose of objects
blackPen.Dispose();
g.Dispose();
}

shows the output from . Each graphics object—rectangle, ellipse, and curve—has a different style.

Figure 9.7. A rectangle, an ellipse, and a curve with different line styles

:i:“ Drawing Lines and Curves with Siyles H=]E

=l

Lires and Curves

9.1.5 Customizing Line Caps
Sometimes we need to use custom caps. shows a line with customized caps of different sizes.

Figure 9.8. A line with custom caps

h

The CustomLineCap and AdjustableArrowCap classes provide functionality to draw custom line caps.CustomLineCap allows us to define
custom caps, which can be attached to a pen—then an application can use the pen to draw graphics objects.

The CustomLineCap class constructor takes two parameters of typeGraphicsPath. The first parameter defines thefill path, which identifies the
fill for the custom cap. The second parameter defines the stroke path, which defines the outline of the custom cap. The fill path and stroke
path parameters cannot be used at the same time.

To create a CustomLineCap object, first we create aGraphicsPath object and add items to the path such as a line, ellipse, or rectangle using
any of the add methods. Then we pass the GraphicsPath object as an argument to CustomLineCap. The following code snippet shows how to
create a CustomLineCap object:

GraphicsPath pathl = new GraphicsPath();
/I Add items to GraphicsPath
CustomLineCap capl = new CustomLineCap(null, pathl);

Once we have a CustomLineCap object, we can set theCustomStartCap and CustomEndCap properties of the pen to apply custom line caps.
We will see a full working example of custom line caps in a moment.

describes the properties of theCustomLineCap class.

9.1.5.1 Line Joins

Aline join defines how lines and curves are joined in a graphics path. Thé.ineJoin enumeration represents a line join. Its members are

described in .

We can set the line join of a pen using its LineJoin property. To see the line joins, we create a Windows application and add a group box, four

radio buttons, and a button to the form. The final form looks like fFigure 9.9.

Figure 9.9. The line join test application

=i =]

'.rHI-'-Jrrrﬂ) L It:l
I T e —————
LG e g]

Table 9.4. CustomLineCap properties

Property Description

BaseCap The base line cap.LineCap enumeration type.

Baselnset The distance between the cap and the line.

StrokeJoin How lines and curves in the path that will be stroked are joined.ineJoin enumeration type.

WidthScale Width scale of custom line cap. A WidthScale value of 2 means that the cap will be double the pen size that is drawing the

line cap.
Table 9.5. LineJoin members
Member Description
Bevel Beveled join with a diagonal corner.
Miter Mitered join with a sharp corner or a clipped corner.
MiterClipped Mitered join with a sharp corner or a beveled corner.
Round Circular join with a smooth, circular arc between the lines.

When we select different line join types and hit the Apply LineJoin button, the application draws lines with different joins.

The code for the Apply LineJoin button click event handler andDrawJoinedLines method is given in . As the listing shows, the
Apply LineJoin button click event handler calls theDrawJoinedLines method with aLineJoin value determined by the current selection.

Listing 9.6 The Apply LineJoin button click event handler

private void ApplyJoin_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/' Line join type
if(BevelRadBtn.Checked)

{

DrawJoinedLines(g, LineJoin.Bevel);

}
if(MiterRadBtn.Checked)

DrawJoinedLines(g, LineJoin.Miter);
}
if(MiterClippedRadBtn.Checked)
{

DrawJoinedLines(g, LineJoin.MiterClipped);
}
if(RoundRadBtn.Checked)
{

DrawJoinedLines(g, LineJoin.Round);
}
/I Dispose of object
g.Dispose();

private void DrawJoinedLines(Graphics g,
LineJoin joinType)

/I Set smoothing mode
g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create a pen with width 20
Pen redPen = new Pen(Color.Red, 20);
/I Set line join
redPen.LineJoin = joinType;
/I Create an array of points
Point[] pts =
{
new Point(150, 20),
new Point(50, 20),
new Point(80, 60),
new Point(50, 150),
new Point(150, 150)
h
/I Create a rectangle using lines
Point[] ptsl =
{
new Point(200, 20),
new Point(300, 20),
new Point(300, 120),
new Point(200, 120),
new Point(200, 20)
h
/I Draw lines
g.DrawLines(redPen, pts);
g.DrawLines(redPen, ptsl);
/I Dispose of object
redPen.Dispose();

}

Now if we run the code, the Bevel line join output looks Iike.

Figure 9.10. The Bevel line join effect

‘ (v Bavel

" Miter

" Miter Clipped
|

The Miter line join output looks Iike.

Figure 9.11. The Miter line join effect

~ Line Join
" Bevel
+ Miter
" Miter Cippad
" Round

The Round line join output looks Iike.

Figure 9.12. The Round line join effect

™ Farm1 = O] %]
[~ Line Join
 Bevel

" Miter

Uy
+ Round

9.1.5.2 Stroke Caps

We have already seen how to use the StartCap and EndCap properties of aPen object to set the starting and ending caps of lines. We have

also seen how

To understand

to use the StartCustomCap and EndCustomCap properties to set customized starting and ending caps.

caps better, take a look at . The rectangle A is a line cap. The starting cap is triangular, and the ending cap is round.

Figure 9.13. Customized starting and ending caps

Starting Cap

— Ending Cap

The GetStrokeCaps and SetStrokeCaps methods of the CustomLineCap class can also be used to get and set the starting and ending caps

of a custom cay
points of lines.

p. The SetStrokeCaps method takes two arguments of typeLineCap enumeration and sets the caps for the starting and ending
creates custom line caps and sets them using theSetStrokeCaps method. After creating custom line caps, we

create a pen and set its CustomStartCap and CustomEndCap properties, which use the pen to draw a line.

Listing 9.7 Using SetStrokeCaps

private void SetStrokeCapsMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a p

ath for custom line cap. This

/I path will have two lines from points
/1 (-3, -3) to (0, 0) and (0, 0) to (3, -3).
Point[] points =

{

new Poaint(-3, -3),

new Point(0, 0),

new Point(3, -3)
h
GraphicsPath path = new GraphicsPath();
path.AddLines(points);
/I Create a custom line cap from the path
CustomLineCap cap =

new CustomLineCap(null, path);
/I Set the starting and ending caps of the custom cap
cap.SetStrokeCaps(LineCap.Round, LineCap.Triangle);
/I Create a Pen object and set its starting and ending
Il caps
Pen redPen = new Pen(Color.Red, 15);
redPen.CustomStartCap = cap;
redPen.CustomEndCap = cap;
redPen.DashStyle = DashStyle.DashDotDot;
/I Draw the line
g.DrawLine(redPen,

new Point(100, 100),

new Point(400, 100));
/I Dispose of object
g.Dispose();

}

shows the output from .

Figure 9.14. Setting customized starting and ending caps

Eﬁﬂrawing Linez and Curves with Styles
Lines and Curves

9.1.5.3 Adjustable Arrow Caps

Adjustable arrow caps allow you to set the size of the cap's base cap, height, width, and joins. The AdjustableArrowCap class, which is
inherited from the CustomLineCap class, represents an adjustable arrow-shaped line cap.

The AdjustableArrowCap class constructor takes three parameters: the width of the arrow as a floating value, the height of the arrow as a
floating value, and a Boolean value (optional) that, if true, indicates that the arrow cap is filled.

The following code snippet creates an AdjustableArrowCap object:

float w = 2;

float h = 5;

bool fill = false;

AdjustableArrowCap myArrow =
new AdjustableArrowCap(w, h, fill);

Besides having CustomLineCap methods and properties, AdjustableArrowCap provides four properties: Filled, Height, Width, and MiddleInset.
The Height and Width properties represent the height and the width, respectively, of an arrow cap. TheFilled property indicates whether an
arrow cap is filled. The Middlelnset property represents the distance between the outline of the arrow cap and the fill.

Now let's add an AdjustableArrowCap option to our application. We add one menu item to the form, along with a menu item click event

handler, as shown in Listing 9.4. We create twoAdjustableArrowCap objects and set theirBaseCap, Baselnset, StrokeJoin, and WidthScale
properties. Then we create a black Pen object with a width of 15 and set theCustomStartCap and CustomEndCap properties of the pen as
AdjustableArrowCap objects. Finally, we use this pen to draw a line witbrawLine.

Listing 9.8 Using adjustable arrow caps

private void AdjustableRowCapMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create two AdjustableArrowCap objects
AdjustableArrowCap capl =

new AdjustableArrowCap(1, 1, false);
AdjustableArrowCap cap2 =

new AdjustableArrowCap(2, 1);
/I Set cap properties
capl.BaseCap = LineCap.Round;
capl.Baselnset = 5;
capl.StrokeJoin = LineJoin.Bevel;
cap2.WidthScale = 3;
cap2.BaseCap = LineCap.Square;
cap2.Height = 1;
/I Create a pen
Pen blackPen = new Pen(Color.Black, 15);
/I Set CustomStartCap and CustomEndCap properties
blackPen.CustomStartCap = capl;
blackPen.CustomEndCap = cap2;
/I Draw line
g.DrawLine(blackPen, 20, 50, 200, 50);
/I Dispose of objects
blackPen.Dispose();
g.Dispose();

}

shows the output from. The end caps have different sizes.

Figure 9.15. Adjustable arrow caps

£ brawing Lines and Curves with Style =10| x|
Lines and Curves

Team LiB |

Team LiB |

9.2 Understanding and Using Graphics Paths

In we briefly discussed how to create a graphics path, add graphics items to the path, and draw and fill graphics paths usirigliPath
and DrawPath.

A graphics path is a set of connected lines, curves, and other simple graphics objects, including rectangles, ellipses, and text. A path works
as a single graphics object, so an effect applied to the graphics path will be applied to all the components of the path. For example, if a
graphics path contains a line, a rectangle, and an ellipse and we draw the path using a red pen, all three components (line, rectangle, and
ellipse) of the graphics path will be drawn with the red pen.

To create and use a graphics path, we create a GraphicsPath object and add its components by using add methods. For example, you can
use the AddLine, AddRectangle, and AddEllipse methods to add a line, a rectangle, and an ellipse, respectively, to the graphics path. After
adding components to a path, you can use DrawPath or FillPath to draw and fill it.

By default, all graphics shapes of a path are connected to one another and treated as a single entity with a collection of points and point
types. But by using StartFigure and CloseFigure, an application can draw more than one image.

9.2.1 Creating a craphicspath Object

The GraphicsPath class represents a graphics path in the .NET Framework library. It provides six overloaded constructors, which take as
arguments a fill mode, array of points, and array of bytes (an array of PathPointTypes enumerations that defines the type of each
corresponding point in the point array) to construct a GraphicsPath object. The following code snippet uses different overloaded constructors
to create GraphicsPath objects.

GraphicsPath pathl = new GraphicsPath();
GraphicsPath path2 = new GraphicsPath(FillMode.Winding);
GraphicsPath path3 =

new GraphicsPath(pts, PathPointTypes, FillMode.Alternate);

In this function, pts represents an array of Point structures, andtypes represents an array of bytes, which takes thePathPointType
enumeration types, defined as follows:

byte[] types = {
(byte)PathPointType.Start,
(byte)PathPointType.Line,
(byte)PathPointType.DashMode };

The GraphicsPath object includes an array of points and an array of types. Point types that make up shapes include starting points, ending
points, and Bézier curve points. The PathPointType enumeration defines the type of a point in a graphics path. The members of the
PathPointType enumeration are described in.

Using Graphicspath’'s Add Methods

You can create a GraphicsPath object from an array of points withPathPointType values, but | recommend that you use the
methods of GraphicsPath to add various objects, instead of usingPathPointType.

Now let's create a simple graphics path. gives the code for a simple graphics path with a line, a rectangle, and an ellipse. To test
this code, create a Windows application, add a reference to the System.Drawing.Advanced2D namespace, and add the code on the form's
load, or a button, or a menu item click event handler. The code creates a graphics path using GraphicsPath; adds two lines, a rectangle, and
an ellipse using AddLine, AddRectangle, and AddEllipse, respectively; and draws the path using a red pen.

Listing 9.9 Creating a simple graphics path

private void Sample_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a graphics path

GraphicsPath path = new GraphicsPath();

/I Add two lines, a rectangle, and

/I an ellipse

path.AddLine(20, 20, 200, 20);
path.AddLine(20, 20, 20, 200);
path.AddRectangle(new Rectangle(30, 30, 100, 100));
path.AddEllipse(new Rectangle(50, 50, 60, 60));
/I Draw path

Pen redPen = new Pen(Color.Red, 2);
g.DrawPath(redPen, path);

/I Dispose of objects

redPen.Dispose();

g.Dispose();

Table 9.6. PathPointType members

Member Description
Bezier Default Bézier curve.
Bezier3 Cubic Bézier curve. There is no practical difference betweenBezier and Bezier3.
CloseSubpath Ending point of a subpath.
DashMode Dashed segment.
Line Line segment.
PathMarker Path marker, which allows easy traversal of a path by marking the points.
PathTypeMask Mask point, which allows us to show or hide points.
Start Starting point of a graphics path.

shows the output from : two lines, a rectangle, and an ellipse.

Figure 9.16. A simple graphics path

You can also fill a path with FillPath. If you replace theDrawPath line in with:

g.FillPath(new SolidBrush(Color.Black), path);

the code will generate a new figure that looks like .

Figure 9.17. A filled graphics path

Note

In a graphics path, all lines and curves are connected, even though you don't connect them explicitly. Objects like
rectangles and circles may not be connected (unless you connect them explicitly) but they are still part of the path.

9.2.2 Shaped Forms and Graphics Paths

Graphics paths are very useful when you need to create shaped (nonrectangular) forms and contri ing g graphics path, you can also
write a form with a text-based shape. For example, you can write a form application that looks like Figure 9.1§, which includes a text string,
two ellipses, and two rectangles.

Figure 9.18. A shaped form

Ciose? Right Click!

Writing applications with shaped forms is easy if we use graphics paths. First we create a GraphicsPath object and add components (such as

rectangles, ellipses, or text) to the path. Then we create a Region object from the graphics path and set it as the form'&kegion property. For
example, . adds text, two rectangles, and two ellipses to a graphics path, creates zRe?ion object from this graphics path, and sets it

as the Region property of the form. The output of this code will generate a form that looks likgigure 9.14.

Listing 9.10 Using graphics paths to create shaped forms

GraphicsPath path = new GraphicsPath(FillMode.Alternate);
path.AddString("Close? Right Click!",

new FontFamily("Verdana"),

(int)FontStyle.Bold, 50, new Point(0, 0),

StringFormat.GenericDefault);
path.AddRectangle(new Rectangle(20, 70, 100, 100));
path.AddEllipse(new Rectangle(140, 70, 100, 100));
path.AddEllipse(new Rectangle(260, 70, 100, 100));
path.AddRectangle(new Rectangle(380, 70, 100, 100));
Region rgn = new Region(path);
this.Region = rgn;

To test this code, create a Windows application and add this code to the form's load event handler.

9.2.3 craphicsPath Properties and Methods

Let's examine the properties and methods of the GraphicsPath class before we start using them. describes the properties.

The following code snippet reads some of the GraphicsPath properties:

/I Getting GraphicsPath properties
FillMode fMode = path.FillMode;
PathData data = path.PathData;
PointF [] pts = path.PathPoints;
byte [] ptsTypes = path.PathTypes;
int count = path.PointCount;

The GraphicsPath class provides more than a dozen add methods to add graphics objects to a path. Among these methods ar&ddArc,
AddBezier, AddBeziers, AddCloseCurve, AddCurve, AddEllipse, AddLine, AddLines, AddPath, AddPie, AddPolygon, AddRectangle,
AddRectangles, and AddString. These methods are used to add an arc, a Bézier, a set of Béziers, a closed curve, a curve, an ellipse, a line,
a set of lines, a path, a pie, a palygon, a rectangle, a set of rectangles, and a string, respectively. Other methods, which don't belong to the
add category, are described in .

Table 9.7. GraphicsPath properties

Property Description

FillMode Represents the fill mode of a graphics path, which determines how the interior of a graphics path is filled. This property is a
FillMode enumeration type and has two values:Alternate and Winding.

PathData Returns a PathData object containing path data for a graphics path. The path data of a graphics path is composed of arrays
of points and types. The Points property of PathData returns an array of points, and theTypes property returns an array of
types of points.

PathPoints Represents all points in a path.

PathTypes Represents types of the corresponding points in thePathPoints array.

PointCount Represents the total number of items inPathPoints.

Alternate and Winding Modes

As defined in the MSDN documentation, the alternate mode specifies that areas are filled according to the even-odd parity
rule. According to this rule, you can determine whether a test point is inside or outside a closed curve as follows: Draw a line
from the test point to a point that is distant from the curve. If that line crosses the curve an odd number of times, the test point
is inside the curve; otherwise the test point is outside the curve.

The winding mode specifies that areas are filled according to the nonzero winding rule, which says that you can determine
whether a test point is inside or outside a closed curve as follows: Draw a line from a test point to a point that is distant from
the curve. Count the number of times the curve crosses the test line from left to right, and the number of times the curve
crosses the test line from right to left. If those two numbers are the same, the test point is outside the curve; otherwise the test
point is inside the curve.

9.2.4 Subpaths

A graphics path can contain many subpaths. Having subpaths provides better control over individual paths. An application can break a
graphics path into subpaths by using the StartFigure method. It can close open subpaths by using theCloseFigure or CloseAllFigures
methods. StartFigure starts a new subpath of a path, andCloseFigure closes the opened subpath. CloseAllFigures closes all subpaths of a
graphics path.

uses the StartFigure method to create three subpaths, and theCloseFigure and CloseAllFigures methods to close open figures.
The first path contains an arc and a line, the second path contains two lines and a curve, and the third path contains two lines.

Table 9.8. Some GraphicsPath methods

Method Description

ClearMarkers Clears all markers from a path if any were set withPathPointType.PathMarker.

CloseAllFigures Closes all open figures in a path.

CloseFigure Closes the current figure.

Flatten Approximates each curve in a path with a sequence of connected line segments.

GetLastPoint Returns the last point in thePathPoints array.

Reset Removes all points and types from a path and sets the fill mode td\lternative.

Reverse Reverses the order of points in the PathPoints array of a path.

SetMarkers Sets a marker on a path.

StartFigure Starts a new figure.

Transform Transforms a path by applying a matirix on the path.

Warp Applies a warp transformation.

Widen Replaces a path with curves that enclose the area that is filled when the path is drawn by the specified pen.

Listing 9.11 Creating graphics subpaths

private void SubPathMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a GraphicsPath object
GraphicsPath path = new GraphicsPath();
/I Create an array of points
Point[] pts =
{

new Point(40, 80),

new Point(50, 70),

new Point(70, 90),

new Point(100, 120),

new Point(80, 120)
h
/I Start first figure and add an
/I 'arc and a line
path.StartFigure();
path.AddArc(250, 80, 100, 50, 30, -180);
path.AddLine(180, 220, 320, 80);
/I Close first figure
path.CloseFigure();
/I Start second figure, add two lines
/I and a curve, and close all figures
path.StartFigure();

path.AddLine(50, 20, 5, 90);
path.AddLine(50, 150, 150, 180);
path.AddCurve(pts, 5);
path.CloseAllFigures();
/I Create third figure and don't close
it
path.StartFigure();
path.AddLine(200, 230, 250, 200);
path.AddLine(200, 230, 250, 270);
/I Draw path
g.DrawPath(new Pen(Color.FromArgb(255, 255, 0, 0), 2)
, path);

/I path.Reverse();
/I path.Reset();
/I Dispose of object
g.Dispose();

}

shows the output from . There are three unconnected subpaths.

Figure 9.19. Three subpaths

The Reverse method can be used to reverse the order of points in a path, and theReset method to remove (empty) all points from a path. The
following code snippet shows how to use these two methods:

path.Reverse();
path.Reset();

9.2.5 The Graphics Path Iterator

As mentioned earlier, a graphics path is a set of graphics subpaths. We can determine the number of subpaths and the related data of a
subpath by using the GraphicsPathlterator class. This class allows us to iterate through all the subpaths of a graphics path.

The Count and SubpathCount properties of GraphicsPathlterator return the total number of points and the number of subpaths in a graphics
path, respectively. The CopyData method can be used to copy the points of a path and their types. It returns the number of points, which is
also the number of types copied.

The HasCurves method returns true if a path has curves in it; otherwise it returnsalse. The NextMarker method moves the iterator to the next
marker in the path. The NextPathType method returns the starting and ending indices of the next group of data points that all have the same

type.

The NextSubpath method returns the starting index, ending index, and a Boolean value ofrue if the subpath is closed (alse if the subpath is
open), and moves to the next subpath. The Rewind method resets the iterator to the beginning of the path.

creates and draws a graphics path and usesGraphicsPathlterator to find and show the data for all subpaths.

Listing 9.12 Iterating through subpaths

private void GraphicsPathlterator_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

/I Get the Graphics object
Graphics g = e.Graphics;
/I Create a rectangle
Rectangle rect = new Rectangle(50, 50, 100, 50);
/I Create a graphics path
GraphicsPath path = new GraphicsPath();
PointF[] ptsArray =
{
new PointF(20, 20),
new PointF(60, 12),
new PointF(100, 20)
h
/I Add a curve, a rectangle, an ellipse, and a line
path.AddCurve(ptsArray);
path.AddRectangle(rect);
rect.Y += 60;
path.AddEllipse(rect);
path.AddLine(120, 50, 220, 100);
/I Draw path
g.DrawPath(Pens.Blue, path);
/I Create a graphics path iterator
GraphicsPathlterator pathlterator =
new GraphicsPathlterator(path);
/I Display total points and subpaths

}

string str = "Total points ="
+ pathlterator.Count. ToString();
str +=", Sub paths ="
+ pathlterator.SubpathCount. ToString();
MessageBox.Show(str);
/I Rewind
pathlterator.Rewind();
/I Read all subpaths and their properties
for(int i=0; i<pathlterator.SubpathCount; i++)
{
int strtldx, endldx;
bool bClosedCurve;
pathlterator.NextSubpath(out strtldx,
out endldx, out bClosedCurve);
str = "Start Index =" + strtldx.ToString()
+", End Index =" + endldx.ToString()
+ ", IsClosed =" + bClosedCurve.ToString();
MessageBox.Show(str);

Team LiB |

Team LiB |

9.3 Graphics Containers

Suppose that you have a surface with 100 different graphics objects (text, shapes, and images), and you want to anti-alias just one object,
perhaps for performance reasons. Without graphics containers, you would have to create a Graphics object and set the SmoothingMode

property to AntiAlias—which would set anti-aliasing for everything drawn on the object. How do you set the smoothing mode of only one
particular object on a surface? That's where containers come in.

The Graphics class provides methods and properties to define the attributes of graphics objects. For example, you can set the rendering
quality of text using the TextRenderingHint property. The smoothing mode represents the quality of the graphics objects, the compositing
quality represents the quality of composite images, the compositing mode represents whether pixels from a source image overwrite or are
combined with background pixels, and the interpolation mode represents how intermediate values between two endpoints are calculated.
These attributes are set with the SmoothingMode, CompositingMode, CompositingQuality, and InterpolationMode properties—which are
applicable for an entire Graphics object. For example, if you set theSmoothingMode property of aGraphics object to AntiAlias, all graphics
objects attached to that Graphics object will be anti-aliased.

A graphics container is a temporary graphics object that acts as a canvas for graphics shapes, allowing an application to set a container
property separately from the main Graphics object. An application can apply properties to aGraphics object within a container, and these
properties won't be available outside of that container. Thus we can selectively apply properties to Graphics objects.

In , for example, aGraphics object includes three graphics containers, each with different properties. These properties are not
available outside of their containers. All graphics objects inside a container may be affected by the container property. It's also possible to
have nested containers.

Figure 9.20. Nested containers

Graphics Surface (Object)

CompositingQuality = CompositingQuality. nghQuallty,
SmoothingMode = SmoothingMode.HighSpeed;

Graphics Container A

SmoothingMode =
SmoothingMode.AntiAlias;

Graphics Container B

SmoothingMode =
SmoothingMode.HighQuality

L
] 'i"" = 'I_!.l"l o r]

Graphics containers do not inherit their parent's settings. In, for example, theGraphics object is a container whose compositing
quality is set to high, and whose smoothing mode is set to high-speed. The graphics containers won't have high-speed and high-quality
rendering unless we set them within the container itself. The smoothing mode of graphics container A is set to anti-aliasing; that of graphics
container B is set to high quality. Graphics container C is a nested container within graphics container A, with interpolation mode set to high.

Before we discuss graphics containers in more detail, let's take a look at graphics states.

9.3.1 Understanding Graphics States

During the life cycle of a Graphics object, the object maintains a list of graphics states. These graphics states fall into various categories
depending on the operations being applied to the Graphics object. For example, setting the compositing quality of aGraphics object changes
the object's state.

Graphics states can be divided into three categories:
1. Quality settings
2. Transformations
3. Clipping region

The first state of the Graphics object involves the quality of shapes and images. This state changes when you set the quality of &raphics
object using the SmoothingMode, TextRenderingHint, CompositingMode, CompositingQuality, and InterpolationMode properties of the
Graphics class.

Transformation is another state that a Graphics object maintains. Transformation is the process of changing graphics objects from one state
to another by rotation, scaling, reflection, translation, and shearing.

The Graphics object maintains two transformation states: world and page. Thevorld transformation defines the conversion of world
coordinates to page coordinates. World coordinates are coordinates that you define in your program, ancpage coordinates are coordinates
that GDI+ uses to expose the object coordinates. The page transformation defines the conversion of page coordinates to device
coordinates. Device coordinates determine how a graphics object will be displayed on a particular display device.

The Graphics class provides the ScaleTransform, RotateTransform, and TranslateTransform methods, as well as theTransform property, to
support transformations.

Note

discusses transformations and transformation-related classes, methods, and properties in greater detail.

The world unit (by default) is always defined as a pixel. For example, in the following code snippet a rectangle will be drawn starting at 0
pixels from the left edge and 0 pixels from the top edge, with width and height of 100 and 50 pixels, respectively.

Graphics g = this.CreateGraphics();
g.DrawRectangle(Pens.Green, 0, 0, 100, 50);

Page coordinates may be different from world coordinates, depending on the page unit and page scaling of the Graphics object. For example,
if the page unit is an inch, the page coordinates will start at point (0, 0), but the width and height of the rectangle will be 100 inches and 50
inches, respectively.

Table 9.9. GraphicsUnit members

Member Description
Display 1/75 inch as the unit of measure.
Document The document unit (1/300 inch) as the unit of measure.
Inch An inch as the unit of measure.
Millimeter A millimeter as the unit of measure.
Pixel A pixel as the unit of measure.
Point A printer's point (1/72 inch) as the unit of measure.
World The world unit as the unit of measure.

The PageScale and PageUnit properties define a page transformation. ThePageUnit property defines the unit of measure used for page
coordinates, and the PageScale property defines the scaling between world and page units for &Graphics object. The PageUnit property takes
a value of type GraphicsUnit enumeration, which is defined in .

draws three ellipses with the same size but differentPageUnit values: Pixel, Millimeter, and Point.

Listing 9.13 Setting page transformation

private void TransformUnits_Click(object sender,
System.EventArgs e)

/I Create a Graphics object and set its

/I background as form's background
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Draw an ellipse with default units
g.DrawEllipse(Pens.Red, 0, 0, 100, 50);
/I Draw an ellipse with page unit as pixel
g.PageUnit = GraphicsUnit.Pixel;
g.DrawEllipse(Pens.Red, 0, 0, 100, 50);
/I Draw an ellipse with page unit as millimeter
g.PageUnit = GraphicsUnit.Millimeter;
g.DrawEllipse(Pens.Blue, 0, 0, 100, 50);
/I Draw an ellipse with page unit as point
g.PageUnit = GraphicsUnit.Point;
g.DrawEllipse(Pens.Green, 0, 0, 100, 50);
/I Dispose of object

g.Dispose();

}

shows the output from . Although the parameters toDrawEllipse are the same, we get results of different sizes

because of the different PageUnit settings.

Figure 9.21. Drawing with different PageUnit values

™ Foim1 M= E3
Graphecs State

The third state of the Graphics object is the clipping region. AGraphics object maintains a clipping region that applies to all items drawn by that
object. You can set the clipping region by calling the SetClip method. It has six overloaded forms, which vary in using &raphics object,
graphics path, region, rectangle, or handle to a GDI region as the first parameter. The second parameter in all six forms is CombineMode,
which has six values: Complement, Exclude, Intersect, Replace, Union, and Xor. The Clip property of the Graphics object specifies aRegion
object that limits the portion of a Graphics object that is currently available for drawing. TheClipBounds property returns aRectangleF

structure that represents a bounding rectangle for the clipping region of a Graphics object.

Note

discussed clipping regions and theCombineMode enumeration in detail.

9.3.2 Saving and Restoring Graphics States

The GraphicsState class represents the state of aGraphics object. This class does not have any useful properties or methods, but it is used

by the Save and Restore methods of the Graphics object. A call to theSave method saves a GraphicsState object as an information block on
the stack and returns it. When this object is passed to the Restore method, the information block is removed from the stack and the graphics
state is restored to the saved state.

You can make multiple calls to Save (even nested), and each time a new state will be saved and a nevraphicState object will be returned.
When you call Restore, the block will be freed on the basis of theGraphicsState object you pass as a parameter.

Now let's see how this works in our next example. We create a Windows application, add a MainMenu control and its items, and write click
event handlers for these items. creates and saves graphics states using theSave method, then restores them one by one. The
first saved state stores page units and a rotation transformation; the second state stores a translation transformation. We save the first
graphics state as gs1. Then we call theTranslateTransform method, which translates and transforms the graphics object. We save the new
graphics state as gs2. Now we callResetTransform, which removes all the transformation effects. Then we draw an ellipse. We restore the
graphics states by calling GraphicsState.Restore methods for bothgs1 and gs2, and we fill a rectangle and draw an ellipse, respectively.

Listing 9.14 Saving and restoring graphics states

private void SaveRestoreMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object and set its
/I background as the form's background
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Page transformation
g.PageUnit = GraphicsUnit.Pixel;
/I World transformation
g.RotateTransform(45, MatrixOrder.Append);
/I Save first graphics state
GraphicsState gs1 = g.Save();
/I One more transformation
g.TranslateTransform(0, 110);
/I Save graphics state again
GraphicsState gs2 = g.Save();
/I Undo all transformation effects by resetting
/I the transformation
g.ResetTransform();
/I Draw a simple ellipse with no transformation
g.DrawEllipse(Pens.Red, 100, 0, 100, 50);
/I Restore first graphics state, which means
/I that the new item should rotate 45 degrees
g.Restore(gsl);
g.FillRectangle(Brushes.Blue, 100, 0, 100, 50);
/I Restore second graphics state
g.Restore(gs2);
g.DrawEllipse(Pens.Green, 100, 50, 100, 50);
/I Dispose of Graphics object
g.Dispose();

}

shows the output from . The first ellipse has no transformation effects, but the rectangle and ellipse below do have

transformation effects.

Figure 9.22. Saving and restoring graphics states

™ Foim1 [_ |0 x|
Graphics State

9.3.3 Working with Graphics Containers

Graphics containers were introduced earlier in this chapter. Now let's see how to create and use them in our applications.

9.3.3.1 Creating a Graphics Container

The BeginContainer method of the Graphics class creates a container. EachBeginContainer method is paired with an EndContainer method.
You can also create nested containers. The following code snippet creates two containers:

GraphicsContainer gContrainerl = g.BeginContainer();
/I Do something here

GraphicsContainer gContrainer2 = g.BeginContainer();
/I Do something here

g.EndContainer(gContrainer2);
g.EndContainer(gContrainerl);

9.3.3.2 Using Graphics Containers to Draw Text

As mentioned earlier, graphics containers are temporary canvases. Let's see how to set the quality of different text for different containers.
creates two containers, and each has different properties. The first container sets theTextRenderingHint property to AntiAlias and

the TextContrast property to 4. The second container sets TextRenderingHint to AntiAliasGridFit and TextContrast to 12. After creating Font
and SolidBrush objects, we set the TextRenderingHint property of the Graphics object, and then we callDrawString. Finally, we call
EndContainer to terminate the container scope.

Listing 9.15 Using different graphics containers to draw text

private void DrawTextMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object and set its
/I background as the form's background
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create font and brushes
Font tnrFont = new Font("Times New Roman", 40,
FontStyle.Bold, GraphicsUnit.Pixel);
SolidBrush blueBrush = new SolidBrush(Color.Blue);
g.TextRenderingHint = TextRenderingHint.SystemDefault;
/ First container boundary starts here
GraphicsContainer gContrainerl = g.BeginContainer();
/I Gamma correction value O - 12. Default is 4.
g.TextContrast = 4,
g.TextRenderingHint = TextRenderingHint.AntiAlias;
g.DrawString("Text String", tnrFont, blueBrush,
new PointF(10, 20));
/I Second container boundary starts here
GraphicsContainer gContrainer2 = g.BeginContainer();
g.TextContrast = 12;
g.TextRenderingHint =
TextRenderingHint.AntiAliasGridFit;
g.DrawString("Text String", tnrFont, blueBrush,
new PointF(10, 50));
/I Second container boundary finishes here
g.EndContainer(gContrainer2);
/' First container boundary finishes here
g.EndContainer(gContrainerl);
/I Draw string outside of the container
g.DrawString("Text String", tnrFont, blueBrush,
new PointF(10, 80));
/I Dispose of Graphics object
blueBrush.Dispose();
g.Dispose();

Note

The TextRenderingHint enumeration is defined in theSystem.Drawing.Text namespace. Don't forget to add this namespace
reference.

shows the output from . Notice the quality difference in the text.

Figure 9.23. Using graphics containers to draw text

=10l

Containers

Text String
Text String
Text String

9.3.3.3 Using Graphics Containers to Draw Shapes

In the previous section we saw how we can use containers to draw text with different rendering quality and performance. We can draw other
shapes using SmoothingMode, CompositingQuality, and other properties.

uses the AntiAlias, GammacCorrected, and HighSpeed options to draw rectangles and ellipses. We create a container by calling
BeginContainer, set the smoothing mode to anti-aliasing, and set the compositing quality and gamma correction of theGraphics object. Then
we draw an ellipse and a rectangle. After that we create a second graphics container by making another call to BeginContainer and set the
smoothing mode and compositing quality to high speed, and then we draw a new ellipse and rectangle. Finally, we make two calls to the
EndContainer method to close the containers.

Listing 9.16 Using graphics containers to draw shapes

private void DrawShapesMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object and set its

/I background as the form's background

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create pens

Pen redPen = new Pen(Color.Red, 20);

Pen bluePen = new Pen(Color.Blue, 10);

Il Create first graphics container

GraphicsContainer gContainerl = g.BeginContainer();

/I Set its properties
g.SmoothingMode = SmoothingMode.AntiAlias;
g.CompositingQuality =
CompositingQuality.GammacCaorrected;

/I Draw graphics objects
g.DrawEllipse(redPen, 10, 10, 100, 50);
g.DrawRectangle(bluePen, 210, 0, 100, 100);
/I Create second graphics container
GraphicsContainer gContainer2 = g.BeginContainer();
/I Set its properties
g.SmoothingMode = SmoothingMode.HighSpeed;
g.CompositingQuality = CompositingQuality.HighSpeed;
/I Draw graphics objects
g.DrawEllipse(redPen, 10, 150, 100, 50);
g.DrawRectangle(bluePen, 210, 150, 100, 100);
/I Destroy containers
g.EndContainer(gContainer2);
g.EndContainer(gContainerl);
/I Dispose of objects
redPen.Dispose();
bluePen.Dispose();
g.Dispose();

}

shows the output from The first ellipse and rectangle are smoother than the second set.

Figure 9.24. Using graphics containers to draw shapes

Form1 M=] E3
Graphics Contamers

Graphics containers are also useful when you need to render large images either with high quality or at high speed. For example, if you have

two large images and only one is quality-sensitive, you can create two graphics containers and set high quality for the first container and high
speed for the second.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

9.4 Reading Metadata of Images

If you have ever worked with mechanical and engineering drawings or digital images, you are probably aware of metadata. Metadata is
information about the image, that's not part of the image itself. When an engineer draws an image, metadata is often added, such as the
following information: last updated, updated by, date, place, and names. A photograph might include metadata such as image title,
manufacturer, and model.

In the .NET Framework library, the Propertyltem object is used as a placeholder for metadata. ThePropertyltem class provides four properties:
Id, Len, Type, and Value. All of these properties have both read and write access.

The Id property is a tag, which identifies the metadata itemTable 9.1(describes Id tag values.

The Value property is an array of values whose format is determined by theType property. The Len property represents the length of the array
of values in bytes. The Type property represents the data type of values stored in the arrayflable 9.11| describes the format of the Type

property values.

Table 9.10. id values

Hexadecimal Value Description
0x0320 Image title
0x010F Equipment manufacturer
0x0110 Equipment model
0x9003 ExifDTOriginal
0x829A EXIF exposure time
0x5090 Luminance table
0x5091 Chrominance table

Table 9.11. Format of Type property values

Numeric Value Description
1 A Byte object
2 An array of Byte objects encoded as ASCII
3 A 16-bit integer
4 A 32-bitinteger
5 An array of two Byte objects that represent a rational number
6 Not used
7 Undefined
8 Not used
9 SLong
10 SRational

An Image object may contain more than onePropertyltem object. The Propertyltems property of the Image class represents an array of

Propertyltem objects corresponding to an image. The PropertyldList property of the Image class returns an array of property IDs stored in an
image object. uses the Propertyltems property of the Image class and reads all property items of an image.

Listing 9.17 Reading the metadata of a bitmap

private void Form1_Load(object sender,
System.EventArgs e)

/I Create an image from a file
Graphics g = this.CreateGraphics();
Image curlmage = Image.FromFile("roses.jpg");
Rectangle rect = new Rectangle(20, 20, 100, 100);
g.Drawlmage(curimage, rect);
/I Create an array of Propertyltem objects and read
/I items using Propertyltems
Propertyltem[] propltems = curlmage.Propertyltems;
/I Create values of Propertyltem members
foreach (Propertyltem propltem in propltems)
{
System.Text.ASCIIEncoding encoder =
new System.Text.ASCIIEncoding();
string str = "ID ="+propltem.ld.ToString("x");
str +=", Type ="+ propltem.Type.ToString();
str +=", Length = "+ propltem.Len.ToString();
str +=", Value ="
+ encoder.GetString(propltem.Value);
MessageBox.Show(str);
}
/I Dispose of object
g.Dispose();

shows the output from .

Figure 9.25. Reading the metadata of a bitmap

1D =500, Type =3, Length = 128, Value =

Team LiB |

9.5 Blending Explained

If you have experience working with graphics, you may have heard some terms related to blending. Blending, alpha blending, and color
blending are a few of these. In general,blending refers to mixing or combining two colors: a source color and a background color. The
resulting blended color is used to draw graphics shapes, lines, and curves.

In this chapter blending is divided into three categories: color blending, alpha blending, and mixed blending. Color blending, which produces
what are known as color gradients, involves drawing and filling graphics shapes, lines, and curves starting with a color at one end and
finishing with another color at the other end. shows a good example of color blending.

Figure 9.26. Color blending examples

| Blending S ample
Blendng Color Blending

Color Blending

Alpha blending is used to draw and fill transparent shapes, lines, and curves. Pens and brushes are used to create alpha blending. First we
create a pen or brush using the alpha component value as the color of a brush or pen, and then we use that brush or pen to fill and draw
fgiff I?fs and curves. Semitransparent or translucent graphics shapes, lines, and curves are examples of alpha blending. For example,
Eigure 9.2 contains three lines with opaque and semitransparent colors, and a string with semitransparent color on top of an image—a
perfect example of alpha blending.

Figure 9.27. Transparent graphics shapes in an image using alpha blending

Note

Images in this book are not colored, so you may not see the exact effects described in the text. To see the exact effects, run
the sample code.

Mixed blending is probably a new conce] eaders. You won't find it mentioned in the MSDN documentation. Mixed blending is a
combination of color and alpha blending. Eigure 9.24 shows an example. If you run the sample code, you will see that the output consists of
not only a transparent image, but also a color blending sample.

Figure 9.28. Mixed blending effects

(M lending Sample 10| x|
Blending Color Blending Alpha Blending

9.5.1 Color Blending

Gradient brushes play a major role in color blending. LinearGradientBrush and PathGradientBrush both represent brush objects with color
blending.

As we discussed in , a linear gradient brush is a brush with two colors: a starting color and an ending color. A path gradient brush is
used to fill graphics paths. Instead of starting a color from one end, the path gradient brush starts a color from the center of the path and ends
with the second color at the outer boundary of the path.

Ablend pattern is a combination of two colors (a starting color and an ending color) defined by factors and positions. ThBlend class
represents a blend pattern in the .NET Framework. It provides two properties: Factors and Positions. The Factors property specifies the
percentage of the starting color and the ending color to be used at the corresponding position. The Positions property specifies the
percentages of distance for each gradation of color along the gradient line. The values of Factors and Positions must be between 0 and 1,
where 0 represents the starting position and 1 represents the ending position. For example, 0.4f specifies that a point is 40 percent of the total
distance from the starting point.

After creating a Blend object, you can attach it to a linear gradient brush by setting thélend property of the LinearGradientBrush object. In
we create aBlend object and itsFactors and Positions properties, and then we set theBlend property of the LinearGradientBrush
object. We can use this brush to fill graphics shapes.

Listing 9.18 Creating a Blend object and setting its Factors and Positions properties

LinearGradientBrush brBrush = new LinearGradientBrush(
new Point(0, 0), new Point(50, 20),
Color.Blue, Color.Red);

Blend blend = new Blend();

float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};

float[] posArray = {0.0f, 0.2f, 0.6f, 1.0f};

blend.Factors = factArray;

blend.Positions = posArray;

brBrush.Blend = blend;

The ColorBlend class defines arrays of colors and positions used for interpolating color blending in a multicolor gradient. Theositions property,

an array of floating points (values vary between 0.0 and 1.0), represents the positions of the colors along a gradient line; and the Colors
property, an array of Color objects, represents the color to use at corresponding positions. Each position defined irPositions has a
corresponding color in the Colors array. Hence if six positions are defined in thePositions array, the Colors array will have sixColor objects.

To use a ColorBlend object, create the object and set itsPositions and Colors properties, as shown in . The InterpolationColors
property of the LinearGradientBrush and PathGradientBrush classes uses the ColorBlend object.

Listing 9.19 Creating a ColorBlend object and setting its Colors and Positions properties

LinearGradientBrush brBrush = new LinearGradientBrush(
new Point(0, 0), new Point(50, 20),
Color.Blue, Color.Red);

Il Create color and points arrays

Colorf] clrArray =

{

Color.Red, Color.Blue, Color.Green,
Color.Pink, Color.Yellow,
Color.DarkTurquoise

h

float[] posArray =

{

0.0f, 0.2f, 0.4f,
0.6f, 0.8f, 1.0f

h

/I Create a ColorBlend object and set its Colors and

/I Positions properties

ColorBlend colorBlend = new ColorBlend();

colorBlend.Colors = clrArray;

colorBlend.Positions = posArray;
brBrush.InterpolationColors = colorBlend;

9.5.2 Blending Using LinearGradientBrush Objects

The LinearGradientBrush object represents a linear gradient brush, which lets us specify the starting and ending colors, and the starting and
ending points, of the gradient pattern.

Note

See for more detail on brushes and pens.

The linear gradient brushes work differently from solid and hatch brushes. For solid and hatch brushes, an application creates a brush and
uses the brush to fill graphics shapes; the brush pattern applies to the entire shape. For linear gradient brushes, an application creates a
linear gradient brush with a rectangle. The rectangle passed in the constructor of the LinearGradientBrush object defines the boundaries of a
gradient pattern. For example, creates a linear gradient brush with starting point (0, 0), ending point (50, 50), starting color red,

and ending color green. Then the code fills a rectangle starting at point (0, 0) and ending at point (200, 50):

Listing 9.20 Creating a LinearGradientBrush object

LinearGradientBrush rgBrush =

new LinearGradientBrush

(
new RectangleF(0, 0, 50, 50),
Color.Red, Color.Green,
LinearGradientMode.Horizontal

);

g.FillRectangle(rgBrush, 0, 0, 200, 50);

shows the output from. After point (50, 50) the gradient pattern repeats itself.

Figure 9.29. Using linear gradient brushes

™ Blending Sample M=l E3

Blending Color Blending Alpha Blending

Now let's create one more linear gradient brush using code from . The brush's range is greater, and the rectangle starts at point
(50, 50), with height and width 200 and 50, respectively.

Listing 9.21 Setting a brush's rectangle

LinearGradientBrush rgBrush =

new LinearGradientBrush

(
new RectangleF(0, 0, 200, 200),
Color.Red, Color.Green,
LinearGradientMode.Horizontal

);

g.FillRectangle(rgBrush, 50, 50, 200, 50);

As the output of shows (see , the pattern repeats after it crosses point (200, 200).

Figure 9.30. Using a rectangle in the linear gradient brush

[;5 Blending S ample
Blending Coloe Blending Alpha Blending

The LinearGradientBrush class also provides two methods—SetBlendTriangularShape and SetSigmaBellShape—which can be used to set
gradient properties. SetBlendTriangularShape creates a gradient with a center color and a linear falloff color. This method takes two

parameters—representing focus and scale—both floating point values that vary from 0 to 1. The focus parameter is optional.
shows the SetBlendTriangularShape method being used.

Listing 9.22 Using the SetBlendTriangularShape method

private void SetBlendTriangularShapeMenu_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect = new Rectangle(20, 20, 100, 50);
/I Create a linear gradient brush
LinearGradientBrush rgBrush =

new LinearGradientBrush(

rect, Color.Red, Color.Green,

0.0f, true);
/I Fill rectangle
g.FillRectangle(rgBrush, rect);
rect.Y = 90;
/I Set blend triangular shape
rgBrush.SetBlendTriangularShape(0.5f, 1.0f);
/I Fill rectangle again
g.FillRectangle(rgBrush, rect);
/I Dispose of object
g.Dispose();

}

shows the output from. The first image starts with red and ends with green; the second image has green as the

center, and red as both the starting and the ending edge color.

Figure 9.31. Using the SetBlendTriangularShape method

Y Blending 5 ample HFT E |
Blendng Color Blendng Alpha Blending

The SetSigmaBellShape method creates a gradient falloff based on a bell-shaped curve. Much likeSetBlendTriangularShape, this method
takes two parameters—representing focus and scale (the focus parameter is optional)—whose values vary from 0 to 1.Listing 9.23 shows the
SetSigmaBellShape method being used.

Listing 9.23 Using the SetSigmaBellShape method

private void SetSigmaBellShapeMenu_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect = new Rectangle(20, 20, 100, 50);
/I Create a linear gradient brush
LinearGradientBrush rgBrush =

new LinearGradientBrush(

rect, Color.Red, Color.Green,

0.0f, true);
/I Fill rectangle
g.FillRectangle(rgBrush, rect);
rect.Y = 90;
/I Set signma bell shape
rgBrush.SetSigmaBellShape(0.5f, 1.0f);
/I Fill rectangle again
g.FillRectangle(rgBrush, rect);
/I Dispose of object
g.Dispose();

}

shows the output from . The first image starts with red and ends with green. After the sigma bell shape is set, the

image's center is green, and its starting and ending edges are red.

Figure 9.32. Using the setSigmaBellShape method

(™ Blending S ample

Blending Color Blending Alpha Blending

Now let's compare the effects of SetSigmaBellShape and SetBlendTriangularShape. draws three rectangles: one using the
LinearGradient brush with no effects, one usingSetSigmaBellShape, and one usingSetBlendTriangularShape.

Listing 9.24 Comparing the effects of SetBlendTriangularShape and SetSigmaBellShape

private void CompBlendTSigmaBell_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect = new Rectangle(0, 0, 40, 20);
/I Create a linear gradient brush
LinearGradientBrush rgBrush =

new LinearGradientBrush(

rect, Color.Black, Color.Blue,

0.0f, true);
/I Fill rectangle
g.FillRectangle(rgBrush,

new Rectangle(10, 10, 300, 100));
/I Set sigma bell shape
rgBrush.SetSigmaBellShape(0.5f, 1.0f);
/I Fill rectangle again
g.FillRectangle(rgBrush,

new Rectangle(10, 120, 300, 100));
/I Set blend triangular shape
rgBrush.SetBlendTriangularShape(0.5f, 1.0f);
/I Fill rectangle again
g.FillRectangle(rgBrush,

new Rectangle(10, 240, 300, 100));
/I Dispose of object
g.Dispose();

}

shows the output from . The first image is the original image, the second image is a sigma bell shape, and the third

image is a blend triangular shape. SetBlendTriangularShape produces a glassy effect in the center of the color, andSetSigmaBellShape
produces a faded effect.

Figure 9.33. Comparing the effects of SetBlendTriangularShape and SetSigmaBellShape

I;g Blending S ample Hi=1E3

Blending Color Blending Alpha Blending

The first parameter of SetBlendTriangularShape and SetSigmaBellShape represents the center of the gradient (color), which varies between
0.0f and 1.0f, where 0.0f is the starting point and1.0f is the ending point of the gradient.

Now let's change the center of the gradient by modifying the two relevant lines of as follows:

rgBrush.SetSigmaBellShape(0.8f, 1.0f);
rgBrush.SetBlendTriangularShape(0.2f, 1.0f);

The new output looks like . The center of the gradient in the second and third images is visibly different.

Figure 9.34. Setting the center of a gradient

E Blending 5ample ==

Blending Colos Blending Alpha Blending

9.5.3 Adding Multicolor Support to Gradients

So far in this section, we have been using only two colors (the default supported by LinearGradientBrush). What if we want to use more than
two colors? No problem!

The LinearGradientBrush class provides properties that are useful for blending. Two of these properties araterpolationColors and Blend. The
Blend property is represented by theBlend object, andInterpolationColors is represented by the ColorBlend object. To apply multicolor
gradients, simply create Blend and ColorBlend objects, attach these objects to aLinearGradientBrush object, and use the brush to fill shapes.

creates aColorBlend object, sets its Colors and Positions properties, and sets the InterpolationColors property of the brush.

Listing 9.25 Using the interpolationColors property of LinearGradientBrush

private void InterpolationColorsMenu_Click
(object sender, System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a LinearGradientBrush object
LinearGradientBrush brBrush =
new LinearGradientBrush(
new Point(0, 0), new Point(50, 20),
Color.Blue, Color.Red);
Rectangle rect =
new Rectangle(20, 20, 200, 100);
/I Create color and points arrays
Color[] clrArray =
{
Color.Red, Color.Blue, Color.Green,
Color.Pink, Color.Yellow,
Color.DarkTurquoise
h
float[] posArray =
{
0.0f, 0.2f, 0.4f,
0.6f, 0.8f, 1.0f
h
/I Create a ColorBlend object and
/I set its Colors and Positions properties
ColorBlend colorBlend = new ColorBlend();
colorBlend.Colors = cIrArray;
colorBlend.Positions = posArray;

/I Set InterpolationColors property
brBrush.InterpolationColors = colorBlend;
/I Draw shapes
g.FillRectangle(brBrush, rect);
rect.Y = 150;
rect.Width = 100;
rect.Height = 100;
g.FillEllipse(brBrush, rect);
/I Dispose of object
g.Dispose();

}

shows the output from . The gradient has multiple colors.

Figure 9.35. A multicolor gradient

M Blending Sample

Blendng Color Blending Alpha Blending

/i

The Blend property of LinearGradientBrush allows you to attach aBlend object to the brush, which represents the positions and factors of the
blend. . creates aBlend object and sets itsFactors and Positions properties, as well as theBlend property of the brush.

Listing 9.26 Using the Blend property of LinearGradientBrush

private void BlendPropMenu_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a linear gradient brush
LinearGradientBrush brBrush =
new LinearGradientBrush(
new Poaint(0, 0), new Point(50, 20),
Color.Blue, Color.Red);
/I Create a Blend object
Blend blend = new Blend();
float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};
float[] posArray = {0.0f, 0.2f, 0.6f, 1.0f};
/I Set Blend's Factors and Positions properties
blend.Factors = factArray;
blend.Positions = posArray;
/I Set Blend property of the brush
brBrush.Blend = blend,;
/I Fill a rectangle and an ellipse
g.FillRectangle(brBrush, 10, 20, 200, 100);
g.FillEllipse(brBrush, 10, 150, 120, 120);
/I Dispose of object
g.Dispose();
}

shows the output from . The blend's position and colors are controlled by thé=actors property.

Figure 9.36. Using blending in a linear gradient brush

ending 5ample

EF Color Blending Alpha Blending

9.5.4 Using Gamma Correction in Linear Gradient Brushes

We use gamma correction when we want to display a drawing accurately on a computer screen. Gamma correction controls the overall
brightness of an image. Images that are not properly corrected may look either too dark or bleached out. By setting the gamma correction, we
tell GDI+ to change the brightness and set the best ratios of red to green to blue.

The GammacCaorrection property, a Boolean type, is used to apply gamma correction on a linear gradient brush. This property can beue
(enabled) or false (disabled). Brushes with gamma correction have more uniform intensity than brushes with no gamma correction.

draws two rectangles. The first has no gamma correction; the second does have gamma correction. If you run this code, you will
notice that the second rectangle has a more uniform gradation.

Listing 9.27 Applying gamma correction on linear gradient brushes

private void GammacCorrectionMenu_Click(
object sender, System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect =
new Rectangle(20, 20, 100, 50);
/I Create a linear gradient brush
LinearGradientBrush rgBrush =
new LinearGradientBrush(
rect, Color.Red, Color.Green,
0.0f, true);
/I Fill rectangle
g.FillRectangle(rgBrush, rect);
rect.Y = 90;
/I Set gamma correction of the brush
rgBrush.GammacCaorrection = true;
/I Fill rectangle
g.FillRectangle(rgBrush, rect);
/I Dispose of object
g.Dispose();

9.5.5 Blending Using PrathGradientBrush Objects

As we discussed in hhapter z‘ (bection 4.1.6|), the PathGradientBrush object is used to fill a graphics path with a gradient. We can specify the
center and boundary colors of a path.

The CenterColor and SurroundColors properties are used to specify the center and boundary color uses the CenterColor and
SurroundColors properties; it sets the center color of the path to red and the surrounding color to green.

Listing 9.28 Blending using PathGradientBrush

private void PathGBBIlend_Click(object sender,
System.EventArgs e)

}

If you run the code from , you will see that the focus is the c

boundary of the ellipse. The center is red, and the border is green (see

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create Blend object
Blend blend = new Blend();
/I Create point and position arrays
float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};
float[] posArray = {0.0f, 0.2f, 0.6f, 1.0f};
/I Set Factors and Positions properties of Blend
blend.Factors = factArray;
blend.Positions = posArray;
/I Set smoothing mode of Graphics object
g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create path and add a rectangle
GraphicsPath path = new GraphicsPath();
Rectangle rect = new Rectangle(10, 20, 200, 200);
path.AddRectangle(rect);
/I Create path gradient brush
PathGradientBrush rgBrush =

new PathGradientBrush(path);
/I Set Blend and FocusScales properties
rgBrush.Blend = blend;
rgBrush.FocusScales = new PointF(0.6f, 0.2f);
Color[] colors = {Color.Green};
/I Set CenterColor and SurroundColors properties
rgBrush.CenterColor = Color.Red;
rgBrush.SurroundColors = colors;
g.FillEllipse(rgBrush, rect);
/I Dispose of object
g.Dispose();

enter of th

igure 9.37).

ellipse, and there is scattering in a faded color toward the

Figure 9.37. Blending using PathGradientBrush

™ Blending Sample

Blending Color Blending Alpha Blending

The FocusScales property changes the focus point for the gradient falloff. The following code snippet sets thé-ocusScales property:

rgBrush.FocusScales = new PointF(0.6f, 0.2f);

After FocusScales is set, the color of the ellipse changes from the center of the ellipse to a rectangle shows the new output.

Figure 9.38. Setting the focus scale

= Blending S ample

“Blending Color Blending Alpha Blending

We can even specify multiple surrounding colors. For example, we can create a ifferent colors and use them for the
SurroundColors property of the brush. To do so, we replace the following line oListing 9.29:

Color[] colors = {Color.Green};

with the following code snippet:

Color[] colors =

{Color.Green, Color.Blue,
Color.Red, Color.Yellow},
rgBrush.SurroundColors = colors;

If you add this code to the application, you will see a totally different output. As shows, the new ellipse has four different boundary
colors.

Figure 9.39. Blending multiple colors

__.‘ Blending S ample

Blending Cobos Blending Alpha Blending

Like LinearGradientBrush, the PathGradientBrush class provides Blend and InterpolationColors properties. shows the
InterpolationColors property in use.

Listing 9.29 Using the InterpolationColors property of PathGradientBrush

private void PathGBInterPol_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create color and points arrays
Color[] clrArray =
{Color.Red, Color.Blue, Color.Green,

Color.Pink, Color.Yellow,

Color.DarkTurquoise};
float[] posArray =

{0.0f, 0.2f, 0.4f, 0.6f, 0.8f, 1.0f};

/I Create a ColorBlend object and set its Colors and
/I Positions properties
ColorBlend colorBlend = new ColorBlend();
colorBlend.Colors = clrArray;
colorBlend.Positions = posArray;
/I Set smoothing mode of Graphics object
g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create a graphics path and add a rectangle
GraphicsPath path = new GraphicsPath();
Rectangle rect = new Rectangle(10, 20, 200, 200);
path.AddRectangle(rect);
/I Create a path gradient brush
PathGradientBrush rgBrush =

new PathGradientBrush(path);
/I Set interpolation colors and focus scales
rgBrush.InterpolationColors = colorBlend,;
rgBrush.FocusScales = new PointF(0.6f, 0.2f);
Color[] colors = {Color.Green};
/I Set center and surrounding colors

rgBrush.CenterColor = Color.Red;
rgBrush.SurroundColors = colors;
/I Draw ellipse
g.FillEllipse(rgBrush, rect);
/I Dispose of object
g.Dispose();

}

shows the output from .

Figure 9.40. Using the InterpolationColors property of PathGradientBrush

Blending Sample

Blending Color Blending Alpha Blending

You can even apply blending on a path gradient brush using the Blend property. creates aBlend object and sets theBlend
property of the brush.

Listing 9.30 Using the Blend property of PathGradientBrush

private void PathGBBlend_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create Blend object

Blend blend = new Blend();

/I Create point and position arrays

float[] factArray = {0.0f, 0.3f, 0.5f, 1.0f};

float[] posArray = {0.0f, 0.2f, 0.6f, 1.0f};

/I Set Factors and Positions properties of Blend
blend.Factors = factArray;

blend.Positions = posArray;

/I Set smoothing mode of Graphics object
g.SmoothingMode = SmoothingMode.AntiAlias;

/I Create path and add a rectangle
GraphicsPath path = new GraphicsPath();
Rectangle rect = new Rectangle(10, 20, 200, 200);
path.AddRectangle(rect);
/I Create path gradient brush
PathGradientBrush rgBrush =

new PathGradientBrush(path);
/I Set Blend and FocusScales properties
rgBrush.Blend = blend;
rgBrush.FocusScales = new PointF(0.6f, 0.2f);
Color[] colors =
{

Color.Green, Color.Blue,

Color.Red, Color.Yellow
h
/I Set CenterColor and SurroundColors
rgBrush.CenterColor = Color.Red;
rgBrush.SurroundColors = colors;
g.FillEllipse(rgBrush, rect);
/I Dispose of object
g.Dispose();

}

shows the output from Blending is done with four different colors.

Figure 9.41. Multicolor blending using PathGradientBrush

Just as with LinearGradientBrush, you can use the SetBlendTriangularShape and SetSigmaBellShape methods with PathGradientBrush.

Team LiB |

Team LiB |

9.6 Alpha Blending

In GDI+, every color is a combination of ARGB components; each of the alpha, red, green, and blue components is represented by 8 bits.
The alpha component in a color structure represents the transparency of the color, which varies from 0 to 255. The value 0 represents full
transparency, and 255 represents full opacity.

The final color of an ARGB color structure is calculated by the following formula:
Final Color = (Source Color x alpha / 255) +
[Background Color x (255 — alpha) / 255]

This formula is applied on each component of the source color and background color.

In alpha blending, an application creates a color with an alpha component and uses this color to create a pen or a brush. This pen or brush is
used to draw and fill graphics shapes, and it calculates the final color. Alpha blending may sound unfamiliar, but programmatically it is simply
a method of setting the alpha component (transparency) of a color, and using it to fill and draw graphics shapes.

9.6.1 Brushes, Pens, and Alpha Blending

The process of alpha blending involves three simple steps. First an application creates a color with transparency (the alpha component). The
following line creates a Color object with alpha component value 40:

Color clr = Color.FromArgb(40, 255, 255, 255);

The second step is to create a brush or pen using that color. The following lines create a transparent pen and a brush:

Pen transPen = new Pen(clr, 10);
SolidBrush semiTransBrush = new SolidBrush(clr);

Finally, the application uses the transparent brush or pen to fill and draw graphics shapes, lines, and curves. The following code uses the Pen
and Brush objects we created in the previous steps to draw a line and to draw and fill a rectangle:

g.DrawLine(transPen, 10, 30, 200, 30);
g.FillRectangle(semiTransBrush, rect);

uses this approach to draw lines, a rectangle, an ellipse, and text objects with varying transparency. You can add this code to a
menu item or a button click event handler.

Listing 9.31 Using alpha blending to draw non-opaque or semi-opaque graphics shapes

private void AlphaBPensBrushes_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create pens with semitransparent colors
Rectangle rect =
new Rectangle(220, 30, 100, 50);
Pen transPen =
new Pen(Color.FromArgb(128, 255, 255, 255), 10);
Pen totTransPen =
new Pen(Color.FromArgb(40, 0, 255, 0), 10);
/I Draw line, rectangle, ellipse, and string using
/I semitransparent colored pens
g.DrawLine(transPen, 10, 30, 200, 30);
g.DrawLine(totTransPen, 10, 50, 200, 50);
g.FillRectangle(new SolidBrush(
Color.FromArgb(40, 0, 0, 255)), rect);
rect.Y += 60;
g.FillEllipse(new SolidBrush(
Color.FromArgb(20, 255, 255, 0)), rect);
SolidBrush semiTransBrush =
new SolidBrush(Color.FromArgb(90, 0, 50, 255));
g.DrawString("Some Photo \nDate: 04/09/2001",
new Font("Verdana", 14), semiTransBrush,
new RectangleF(20, 100, 300, 100));
/I Dispose of object
g.Dispose();
}

shows the output from . The lines, rectangle, ellipse, and text on this form are semitransparent.

Figure 9.42. Drawing semitransparent graphics shapes

(2™ Blending Sample

Blendng Color Blending Alpha Blending

9.6.2 Alpha Blending and Images

We often see a semitransparent date and place name on a photo. You can draw transparent graphics shapes on images using the same
method: Create a graphics shape using semi- or non-opague colors, and then draw on the image.

draws graphics shapes on an image. First we create animage object and callDrawlmage to draw an imaie. Then we create

transparent pens and brushes and call fill and draw methods to draw graphics shapes. You can add the code inListing 9.3 to any menu item
or button click event handler.

Listing 9.32 Drawing semitransparent graphics shapes on an image

private void AlphaBlmages_Click(object sender,
System.EventArgs e)

{
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Draw an image
Image curimage =
Image.FromFile("Neel3.jpg");
g.Drawlmage(curimage, 0, O,
curlmage.Width, curimage.Height);
/I Create pens and a rectangle
Rectangle rect =
new Rectangle(220, 30, 100, 50);
Pen opgPen =
new Pen(Color.FromArgb(255, 0, 255, 0), 10);
Pen transPen =
new Pen(Color.FromArgb(128, 255, 255, 255), 10);
Pen totTransPen =
new Pen(Color.FromArgb(40, 0, 255, 0), 10);
/I Draw lines, rectangle, ellipse, and string
g.DrawLine(opgPen, 10, 10, 200, 10);
g.DrawLine(transPen, 10, 30, 200, 30);
g.DrawLine(totTransPen, 10, 50, 200, 50);
g.FillRectangle(new SolidBrush(
Color.FromArgb(140, 0, 0, 255)), rect);
rect.Y += 60;
g.FillEllipse(new SolidBrush(
Color.FromArgb(150, 255, 255, 255)), rect);
SolidBrush semiTransBrush =
new SolidBrush(Color.FromArgb(90, 255, 255, 50));
g.DrawString("Some Photo \nDate: 04/09/2001",
new Font("Verdana", 14), semiTransBrush,
new RectangleF(20, 100, 300, 100));
/I Dispose of object
g.Dispose();
}

shows the output from . Lines, text, a rectangle, and an ellipse are drawn on top of the image, but you can see through

them because these shapes are semitransparent.

Figure 9.43. Drawing semitransparent shapes on an image

t!_li'lun ding Sample - ID!EI
Blending Color Blending Alpha Blending
e = |

T 0 00]

9.6.3 Compositing Mode and Blending

As mentioned earlier, blending is a process of combining two colors: a source color and a background color. The compositing mode specifies
how source colors are combined with background colors.

The CompositingMode property of the Graphics class represents the compositing mode of a graphics surface, which applies to all graphics
shapes for that surface. The CompositingMode enumeration has two members:SourceCopy and SourceOver. SourceCopy specifies that
when a color is rendered, it overwrites the background color, and SourceOver specifies that when a color is rendered, it is blended with the
background color using the alpha component.

The following code snippet shows how to set the CompositingMode property of a Graphics object.

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

g.CompositingMode = CompositingMode.SourceCopy;
g.CompositingMode = CompositingMode.SourceOver;
/I Dispose of object

g.Dispose();

CompositingMode may be helpful in scenarios where you need to draw overlapped images. Suppose you draw one rectangle and one ellipse,
and an area of the ellipse overlaps a small area of the rectangle. You may or may not want to show the overlapped area of the rectangle. The
compositing mode provides you the option of doing either.

Instead of applying CompositingMode to all of the graphics, you can apply it to selected shapes. One way to do this is to create a temporary
Graphics object (a new surface), draw all the shapes you need and apply the compositing mode on this object. You can also create graphics
containers and apply the necessary settings to each graphics container.

The quality of compositing is inversely proportional to the rendering speed: The higher the quality, the slower the rendering. The
CompositingQuality property of the Graphics object represents the quality of a compaosition process, which takes a value of type
CompositingQuality enumeration. The CompositingQuality enumeration is defined in[Table 9.12.

draws two sets of shapes. Each set has a rectangle and an ellipse. First we create &itmap object, and then we create a
temporary Graphics object using the Fromimage method by passing theBitmap object. We set the CompositingMode property of this Graphics
object to SourceOver, which means that the color rendered overwrites the background color. Then we draw a rectangle and an ellipse.

Table 9.12. CompositingQuality members

Member Description
AssumeLinear Assume linear values. Better than the default quality.
Default Default quality.

GammacCorrected Gamma correction is used.
HighQuality High quality, low speed.
HighSpeed High speed, low quality.
Invalid Invalid quality.

Listing 9.33 Using CompositingMode to draw graphics shapes

private void AlphaBCompGammacCorr_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create two rectangles
Rectangle rectl =
new Rectangle(20, 20, 100, 100);
Rectangle rect2 =
new Rectangle(200, 20, 100, 100);
/I Create two SolidBrush objects
SolidBrush redBrush =
new SolidBrush(Color.FromArgb(150, 255, 0, 0));
SolidBrush greenBrush =
new SolidBrush(Color.FromArgb(180, 0, 255, 0));
/I Create a Bitmap object
Bitmap tempBmp = new Bitmap(200, 150);
/I Create a Graphics object
Graphics tempGraphics =

Graphics.Fromlmage(tempBmp);
/I Set compositing mode and compositing
/I quality of Graphics object
tempGraphics.CompositingMode =
CompositingMode.SourceOver;
tempGraphics.CompositingQuality =
CompositingQuality.GammacCaorrected;
/I Fill rectangle
tempGraphics.FillRectangle(redBrush, rectl);
rectl.X += 30;
rectl.Y += 30;
1l Fill ellipse
tempGraphics.FillEllipse(greenBrush, rectl);
g.CompositingQuality =
CompositingQuality.GammacCaorrected;
/I Draw image
g.Drawlmage(tempBmp, 0, 0);
/I Fill rectangle
g.FillRectangle(Brushes.Red, rect2);
rect2.X += 30;
rect2.Y += 30;
11 Fill ellipse
g.FillEllipse(Brushes.Green, rect2);
/I Dispose of objects
greenBrush.Dispose();
redBrush.Dispose();
tempBmp.Dispose();
g.Dispose();
}

shows the output from . You can clearly see that an ellipse copies over the color of a rectangle.

Figure 9.44. Using CompositingMode.SourceOver

nding Sample

Blendng Color Blending Alpha Blending

Now we change the value of CompositingMode to SourceCopy by using the following code snippet:

tempGraphics.CompositingMode =
CompositingMode.SourceCopy;

shows the new output. The color of the rectangle and the color of ellipse do not overlap now, but the color of the rectangle is gone
and that area is overridden by the ellipse.

Figure 9.45. Blending with CompositingMode.SourceCopy

[Blending Sample

Blending Color Blending Alpha Blending

9.6.4 Mixed Blending

Mixed blending is a combination of both alpha blending and color blending. It is useful when you need to draw transparent and blended
graphics shapes—for example, drawing a transparent image with transparent shapes using a blended linear gradient brush.

shows how to mix these two types of blending. Using thenterpolationColors property, we create aLinearGradientBrush object and
set its Colors and Positions properties to specify the blending colors and positions. After that we create 8itmap object and apply a color matrix
using SetColorMatrix. Then we draw a rectangle and an ellipse, and we calDrawimage.

Listing 9.34 Mixed blending example

private void MixedBlending_Click(object sender,
System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a LinearGradientBrush object
LinearGradientBrush brBrush =

new LinearGradientBrush(

new Point(0, 0), new Paint(50, 20),

Color.Blue, Color.Red);
Rectangle rect =
new Rectangle(20, 20, 200, 100);
/I Create color and points arrays
Colorf] clrArray =
{
Color.Red, Color.Blue, Color.Green,
Color.Pink, Color.Yellow,
Color.DarkTurquoise
h
float[] posArray =
{
0.0f, 0.2f, 0.4f,
0.6f, 0.8f, 1.0f
h
/I Create a ColorBlend object and
/I set its Colors and Positions properties
ColorBlend colorBlend = new ColorBlend();
colorBlend.Colors = cIrArray;
colorBlend.Positions = posArray;
/I Set InterpolationColors property
brBrush.InterpolationColors = colorBlend;
/I Create a Bitmap object from a file
Bitmap bitmap = new Bitmap("MyPhoto.jpg");
/I Create a points array
float[][] ptsArray =
{
new float[] {1, 0, O, O, O},
new float[] {0, 1, 0, O, O},
new float[] {0, 0, 1, 0, O},
new float[] {0, 0, 0, 0.5f, 0},
new float[] {0, 0, 0, 0, 1}
h
/I Create a ColorMatrix object using pts array
ColorMatrix clrMatrix =
new ColorMatrix(ptsArray);
/I Create an ImageAttributes object
ImageAttributes imgAttributes =
new ImageAttributes();
/I Set color matrix of ImageAttributes
imgAttributes.SetColorMatrix(clrMatrix,
ColorMatrixFlag.Default,
ColorAdjustType.Bitmap);
/I Fill rectangle
g.FillRectangle(brBrush, rect);
rect.Y += 120;
/I Fill ellipse
g.FillEllipse(brBrush, rect);
/I Draw image using ImageAttributes
g.Drawlmage(bitmap,
new Rectangle(0, O,
bitmap.Width, bitmap.Height),
0, 0, bitmap.Width, bitmap.Height,
GraphicsUnit.Pixel, imgAttributes);
/I Dispose of objects
brBrush.Dispose();
bitmap.Dispose();
g.Dispose();

}

shows the output from The rectangle and ellipse are blended (multicolor) and translucent (alpha-blended).

Team LiB |

Figure 9.46. A mixed blending example

f__:_..._:Hll': nding Sample AE]E’

Team LiB |

9.7 Miscellaneous Advanced 2D Topics

So far in this chapter, we have covered line caps and line styles, graphics paths, graphics containers, graphics container states, color
blending and alpha blending, and the use of linear and path gradient brushes. The System.Drawing.Advanced2D namespace contains topics
that don't fall into any of these categories. In this section we will cover a few of these topics:

® Region data
® The SmoothingMode enumeration

® The PixelOffsetMode enumeration

9.7.1 Region Data

Sometimes we need to get and set a region's data or create a Region object from an array of bytes. A region's data is an array of bytes that
specify the region. The RegionData class can be used to read or write the array. This class has only one propertyData, which returns an array
of bytes that describe the region.

uses RegionData to read the data of a region.

Listing 9.35 Using RegionData to read the data of a region

/I Create a rectangle
Rectangle rect = new Rectangle(20, 20, 200, 200);
Region rgn = new Region(rect);
/I Create a RegionData object
RegionData rgnData = rgn.GetRegionData();
/I Get data
byte[] btArry = rgnData.Data;
MessageBox.Show("Number of bytes :"
+ rgnData.Data.Length.ToString()

9.7.2 The smoothingMode and pixeloffsetMode ENnumMerations

SmoothingMode and PixelOffsetMode are two enumerations defined in theDrawing.Drawing2D namespace. In this section we will take a quick
look at these enumerations.

9.7.2.1 The SmoothingMode Enumeration

The smoothing mode specifies the rendering quality of graphics drawn on

a surface. The SmoothingMode property is used to get and set the

smoothing mode of a graphics surface, and it takes a value of SmoothingMode enumeration.

SmoothingMode defines anti-aliasing for lines, curves, and im
for text. SmoothingMode has six members, which are defined i

ages. This property does not affect text; thelextRenderingHint property is used
Hable 9.1

To see SmoothingMode in action, let's draw a few graphics shapes draws a rectangle, an ellipse, and a line. The line that sets the

smoothing mode of the Graphics object is commented out.

Table 9.13. smoothingMode members

Member Description
AntiAlias Anti-aliased rendering.
Default No anti-aliasing (the default mode).
HighQuality High-quality, low-speed rendering.
HighSpeed High-speed, low-quality rendering.
Invalid Invalid mode. Raises exception.
None Specifies no anti-aliasing.

Listing 9.36 Drawing with the default smoothing mode

private void GeneralMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create three pens

Pen redPen = new Pen(Color.Red, 6);

Pen bluePen = new Pen(Color.Blue, 10);
Pen blackPen = new Pen(Color.Black, 5);

/I Set smoothing mode

/I g.SmoothingMode = SmoothingMode.AntiAlias;
/I Draw a rectangle, an ellipse, and a line
g.DrawRectangle(bluePen, 10, 20, 100, 50);
g.DrawEllipse(redPen, 10, 150, 100, 50);
g.DrawLine(blackPen, 150, 100, 250, 220);
/I Dispose of objects

redPen.Dispose();

bluePen.Dispose();

blackPen.Dispose();

g.Dispose();

}

shows the output from . The outer edges of the shapes are not smooth.

Figure 9.47. Drawing with SmoothingMode set t0 Default

=10l x|

Now let's uncomment the SmoothingMode line in and run the program again:

g.SmoothingMode = SmoothingMode.AntiAlias;

shows the new output. The shapes have smooth outer edges and look better overall.

Figure 9.48. Drawing with SmoothingMode Set to AntiAlias

™ Form1 =10] =|

9.7.2.2 The PixelOffsetMode Enumeration

PixelOffsetMode determines how pixels are offset during rendering. By offsetting pixels during rendering, we can improve rendering quality,
but at the expense of speed. The PixelOffsetMode property of the Graphics class, with the help ofSmoothingMode, is used to draw enhanced
anti-aliasing images. The PixelOffsetMode enumeration is defined in[Table 9.14.

The PixelOffsetMode property helps when we want to enhance anti-aliased graphics. Here's how to set this property:

g.SmoothingMode = SmoothingMode.AntiAlias;
g.PixelOffsetMode = PixelOffsetMode.HighQuality;

Table 9.14. PixelOffsetMode members

Member Description
Default The default mode.
Half Pixels are offset by —0.5 units, both horizontally and vertically, for high-speed anti-aliasing.
HighQuality High-quality, low-speed rendering.
HighSpeed High-speed, low-quality rendering.
Invalid Invalid mode.
None No pixel offset.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

SUMMARY

The System.Drawing.Drawing2D namespace defines advanced functionality to work with 2D graphics objects. In this chapter we discussed
the functionality defined in this namespace. We started the chapter by discussing the line caps and line styles. We saw sample code that set
the line cap, line dash style, and line dash caps.

Next we covered graphics paths and graphics containers. We saw the usefulness of graphics paths and containers, and their advantages
over nongraphics paths and containers. We also discussed graphics container states.

In the blending section of this chapter, we learned about color blending, alpha blending, and mixed blending. We discussed how to use linear
gradient and path gradient brushes to draw blended objects. We saw how to use colors to draw alpha-blended graphics objects.

We also discussed other topics and classes defined in the System.Drawing.Advanced2D namespace, including metadata of images, how to

set gamma correction, region data, and drawing quality.

will focus on transformations, presenting the basics of transformations, matrices, and matrix operations, and how to apply
transformation in practice.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 10. Transformation

In we delved into advanced 2D graphics programming. In this chapter we will explore GDI+ transformations. Aransformation is a
process that changes graphics objects from one state to another. Rotation, scaling, reflection, translation, and shearing are some examples
of transformation. Transformations can be applied not only to graphics shapes, curves, and images, but even to image colors.

In this chapter we will cover the following topics:

® The basics of transformation, including coordinate systems and matrices

® Giobal, local, and composite transformations

® Transformation functionality provided by the Graphics class

® Transformation concepts such as shearing, rotation, scaling, and translation

® The Matrix and ColorMatrix classes, and their role in transformation

® Matrix operations in image processing, including rotation, translation, shearing, and scaling
® Color transformation and recoloring

® Text transformation

® Composite transformations and the matrix order

Any drawing process involves a source and a destination. The source of a drawing is the application that created it, and the destination is a
display or printer device. For example, the process of drawing a simple rectangle starts with a command telling GDI+ to draw on the screen,
followed by GDI+ iterating through multiple steps before it finally renders a rectangle on the screen. |n the same way, transformation involves
some steps before it actually renders the transformed object on a device. These steps are shown in ‘, which shows that GDI+ is
responsible for converting world coordinates to page coordinates and device coordinates before it can render a transformed object.

Figure 10.1. Steps in the transformation process

Application > > Device

World Page Device
Coordinates Coordinates Coordinates

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

10.1 Coordinate Systems

Before we discuss transformations, we need to understand coordinate systems. GDI+ defines three types of coordinate spaces: world, page,
and device. When we ask GDI+ to draw a line from point A (x1, y1) to point B (x2, y2), these points are in the world coordinate system.

Before GDI+ draws a graphics shape on a surface, the shape goes through a few transformation stages (conversions). The first stage
converts world coordinates to page coordinates. Page coordinates may or may not be the same as world coordinates, depending on the
transformation. The process of converting world coordinates to page coordinates is called world transformation.

The second stage converts page coordinates to device coordinates. Device coordinates represent how a graphics shape will be displayed on
device sych as a monitor or printer. The process of converting page coordinates to device coordinates is called page transformation.
Figure 10.4 shows the stages of conversion from world coordinates to device coordinates.

Figure 10.2. Transformation stages

World Page
Transformation Transformation
Alx1,y1) “| Alp1,q1) Alc1dl)
B(x2,y2) B(p2,q2) Blc2d2)
World Coordinates Page Coordinates Device Coordinates

In GDI+, the default origin of all three coordinate systems is point (0, 0), which is at the upper left corner of the client area. When we draw a
line from point A (0, 0) to point B (120, 80), the line starts 0 pixels from the upper left corner in the x-direction and 0 pixels from the upper left
corner in the y-direction, and it will end 120 pixels over in thex-direction and 80 pixels down in they-direction. The line from point A (0, 0) to
point B (120, 80) is shown in .

Figure 10.3. Drawing a line from point (0, 0) to point (120, 80)

E

H GODI+ Coordinate System

100

200

Drawing this line programmatically is very simple. We must have a Graphics object associated with a surface (a form or a control). We can
get a Graphics object in several ways. One way is to accept the implicit object provided by a form's paint event handler; another is to use the

CreateGraphics method. Once we have aGraphics object, we call its draw and fill methods to draw and fill graphics objects.isting 10.1] draws

a line from starting point A (0, 0) to ending point B (120, 80). You can add this code to a form's paint event handler.

Listing 10.1 Drawing a line from point (0, 0) to point (120, 80)

Graphics g = e.Graphics;
Point A = new Point(0, 0);
Point B = new Point(120, 80);
g.DrawLine(Pens.Black, A, B);

shows the output from. All three coordinate systems (world, page, and device) draw a line starting from point (0, 0) in

the upper left corner of the client area to point (120, 80).

Now let's change to the page coordinate system. We draw a line from point A (0, 0) to point B (120, 80), but this time our origin is point (50,
40) instead of the upper left corner. We shift the page coordinates from point (0, 0) to point (50, 40). The TranslateTransform method of the
Graphics class does this for us. We will discuss this method in more detail in the discussion that follows. For now, let's try the code
-

Listing 10.2 Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40)

Graphics g = e.Graphics;
g.TranslateTransform(50, 40);
Point A = new Point(0, 0);
Point B = new Point(120, 80);
g.DrawLine(Pens.Black, A, B);

shows the output from. The page coordinate system now starts at point (50, 40), so the line starts at point (0, 0) and

ends at point (120, 80). The world coordinates in this case are still (0, 0) and (120, 80), but the page and device coordinates are (50, 40) and
(170, 120). The device coordinates in this case are the same as the page coordinates because the page unit is in the pixel (default) format.

Figure 10.4. Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40)

8 GDI+ Coordinate System =101 x|

100 200

100

200

Y

What is the difference between page and device coordinates? Device coordinates determine what we actually see on the screen. They can
be represented in many formats, including pixels, millimeters, and inches. If the device coordinates are in pixel format, the page coordinates
and device coordinates will be the same (this is typically true for monitors, but not for printers).

The PageUnit property of the Graphics class is of type GraphicsUnit enumeration. In we set the PageUnit property to inches. Now
graphics objects will be measured in inches, so we need to pass inches instead of pixels. If we draw a line from point (0, 0) to point (2, 1), the
line ends 2 inches from the left side and 1 inch from the top of the client area in the page coordinate system. In this case the starting and
ending points are (0, 0) and (2, 1) in both world and page coordinates, but the device coordinate system converts them to inches. Hence the
starting and ending points in the device coordinate system are (0, 0) and (192, 96), assuming a resolution of 96 dots per inch.

Listing 10.3 Setting the device coordinate system to inches

g.PageUnit = GraphicsUnit.Inch;
g.DrawLine(Pens.Black, 0, 0, 2, 1);

shows the output from. The default width of the pen is 1 page unit, which in this case gives us a pen 1 inch wide.

Figure 10.5. Drawing with the Graphicsunit.Inch option

™ GDI+ Coordinate System _|Of x|

Now let's create a new pen with a different width. creates a pen that's 1 pixel wide (it does so by dividing the number of pixels we
want—in this case 1—by the page resolution, which is given by DpiX). We draw the line again, this time specifying a red color.

Listing 10.4 Using the GraphicsUnit.Inch option with a pixel width

Pen redPen = new Pen(Color.Red, 1/g.DpiX);
g.PageUnit = GraphicsUnit.Inch;
g.DrawLine(Pens.Black, 0, 0, 2, 1);

shows the output from .

Figure 10.6. Drawing with the GraphicsUnit.Inch option and a pixel width

(™ GDI+ Coordinate System E=1E3

We can also combine the use of page and device coordinates. In we transform page coordinates to 1 inch from the left and 0.5
inch from the top of the upper left corner of the client area. Our new page coordinate system has starting and ending points of (1, 0.5) and (3,
1.5), but the device coordinate system converts them to pixels. Hence the starting and ending points in device coordinates are (96, 48) and
(288, 144), assuming a resolution of 96 dots per inch.

Listing 10.5 Combining page and device coordinates

Pen redPen = new Pen(Color.Red, 1/g.DpiX);
g.TranslateTransform(1, 0.5f);

g.PageUnit = GraphicsUnit.Inch;
g.DrawLine(redPen, 0, 0, 2, 1);

shows the output from .

Figure 10.7. Combining page and device coordinates

™ GDI+ Coordinate System

Team LiB |

Team LiB |

10.2 Transformation Types

There are many types of transformations.

Translation is a transformation of thexy plane that moves a graphics object toward or away from the origin of the surface in the- or
y-direction. For example, moving an object from point A1, y1) to point B (x2, y2) is a translation operation in which an object is being moved
(y2 —y1) points in they-direction.

Rotation moves an object around a fixed angle around the center of the plane.

In the reflection transformation, an object moves to a position in the opposite direction from an axis, along a line perpendicular to the axis.
The resulting object is the same distance from the axis as the original point, but in the opposite direction.

Simple transformations, including rotation, scaling, and reflection are called linear transformations. A linear transformation followed by
translation is called an affine transformation.

The shearing transformation skews objects based on a shear factor. In the sample applications discussed throughout this chapter, will see
how to use these transformations in GDI+.

So far we've looked at only simple transformations. Now let's discuss some more complex transformation-related functionality defined in the
.NET Framework library.

What Can You Transform?

You have just seen the basics of transforming lines. We can also transform graphics objects such as points, curves, shapes,
images, text, colors, and textures, as well as colors and images used in pens and brushes.

Team LiB

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

10.3 The watrix Class and Transformation

Matrices play a vital role in the transformation process. A matrix is a multidimensional array of values in which each item in the array
represents one value of the transformation operation, as we will see in the examples later in this chapter.

In GDI+, the Matrix class represents a 3x2 matrix that containsx, y, andw values in the first, second, and third columns, respectively.

Note

Before using the Matrix class in your applications, you need to add a reference to theSystem.Drawing.Drawing2D
namespace.

We can create a Matrix object by using its overloaded constructors, which take an array of points (hold the matrix items) as arguments. The
following code snippet creates three Matrix objects from different overloaded constructors. The firstMatrix object has no values for its items.
The second and third objects have integer and floating point values, respectively, for the first six items of the matrix.

Matrix M1 = new Matrix();
Matrix M2 = new Matrix(2, 1, 3, 1, 0, 4);
Matrix M3 =

new Matrix(0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f);

Table 10.1. matrix properties

Property Description
Elements Returns an array containing matrix elements.
Isldentity Returns true if the matrix is an identity matrix; otherwise returnsfalse.
IsInvertible Returns true if a matrix is invertible; otherwise returnsfalse.
OffsetX Returns the x translation value of a matrix.
OffsetY Returns the y translation value of a matrix.

The Matrix class provides properties for accessing and setting its member valuegqlable 10.1] describes these properties.

The Matrix class provides methods to invert, rotate, scale, and transform matrices. Thelnvert method is used to reverse a matrix if it is
invertible. This method takes no parameters.

Note

The Transform property of the Graphics class is used to apply a transformation in the form of aMatrix object. We wi
this property in more detail in Eection 10.4.

Il discuss

uses the Invert method to invert a matrix. We create aMatrix object and read its original values. Then we call thenvert method and

read the new values.

Listing 10.6 Inverting a matrix

private void InvertMenu_Click(object sender,
System.EventArgs e)

string str = "Original values: ";
/I Create a Matrix object
Matrix X = new Matrix(2, 1, 3, 1, 0, 4);
/I Write its values
for(int i=0; i<X.Elements.Length; i++)
{
str += X.Elements[i]. ToString();
str+=","
}
str +="\n";
str +="Inverted values: ";
/I Invert matrix
X.Invert();
float[] pts = X.Elements;
/I Read inverted matrix
for(int i=0; i<pts.Length; i++)
{
str += pts|i]. ToString();
str+=","
}
/I Display result
MessageBox.Show(str);

The Multiply method multiplies a new matrix against an existing matrix and stores the result in the first matrixMultiply takes two arguments.

The first is the new matrix by which you want to multiply the existing matrix, and the second is an optional MatrixOrder argu
the order of multiplication.

The MatrixOrder enumeration has two values:Append and Prepend. Append specifies that the new operation is applied afte

ment that indicates

the preceding

operation; Prepend specifies that the new operation is applied before the preceding operation during cumulative operationg
multiplies two matrices. We create two Matrix objects and use theMultiply method to multiply the second matrix by the first.
display the resultant matrix.

Listing 10.7 Multiplying two matrices

Then we read and

private void MultiplyMenu_Click(object sender,
System.EventArgs e)

{
string str = null;
/I Create two Matrix objects
Matrix X =
new Matrix(2.0f, 1.0f, 3.0f, 1.0f, 0.0f, 4.0f);
Matrix Y =
new Matrix(0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f);
/I Multiply two matrices
X.Multiply(Y, MatrixOrder.Append);
/I Read the resultant matrix
for(int i=0; i<X.Elements.Length; i++)
{
str += X.Elements[i]. ToString();
str+=","
}
/I Display result
MessageBox.Show(str);
}

The Reset method resets a matrix to the identity matrix (se for an example of an identity matrix). If we call theReset method and
then apply a matrix to transform an object, the result will be the original object.

The Rotate and RotateAt methods are used to rotate a matrix. TheRotate method rotates a matrix at a specified angle. This method takes two

arguments: a floating point value specifying the angle, and (optionally) the matrix order. The RotateAt method is useful when you need to

change the center of the rotation. Its first parameter is the angle; the second parameter (of type float) specifies the center of rotation. The third

(optional) parameter is the matrix order.

simply creates aGraphics object using the CreateGraphics method and calls DrawLine and FillRectangle to draw a line and fill a

rectangle, respectively.

Listing 10.8 Drawing a line and filling a rectangle

private void Rotate_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Draw a line
g.DrawLine(new Pen(Color.Green, 3),
new Point(120, 50),
new Point(200, 50));
/I Fill a rectangle
g.FillRectangle(Brushes.Blue,
200, 100, 100, 60);
/I Dispose of object
g.Dispose();
}

shows the output from .

Figure 10.8. Drawing a line and filling a rectangle

Mati; Operstions Matnx Class

Now let's rotate our graphics objects, using the Matrix object. In we create aMatrix object, call itsRotate method to rotate the
matrix 45 degrees, and apply the Matrix object to the Graphics object by setting itsTransform property.

Listing 10.9 Rotating graphics objects

private void Rotate_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a Matrix object
Matrix X = new Matrix();
/I Rotate by 45 degrees
X.Rotate(45, MatrixOrder.Append);
/I Apply Matrix object to the Graphics object
/I (i.e., to all the graphics items
/I drawn on the Graphics object)
g.Transform = X;
/I Draw a line
g.DrawLine(new Pen(Color.Green, 3),
new Point(120, 50),
new Point(200, 50));
/I Fill a rectangle
g.FillRectangle(Brushes.Blue,
200, 100, 100, 60);
/I Dispose of object
g.Dispose();

}

shows the new output. Both objects (line and rectangle) have been rotated 45 degrees.

Now let's replace Rotate with RotateAt, as inListing 10.1d.

Figure 10.9. Rotating graphics objects

™ Form

Matr: Operations Matri Class

S [=] k3

Listing 10.10 Using the RotateAt method

private void RotateAtMenu_Click(object sender,

System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a Matrix object

Matrix X = new Matrix();

/I Create a point

PointF pt = new PointF(180.0f, 50.0f);

/I Rotate by 45 degrees

X.RotateAt(45, pt, MatrixOrder.Append);

/I Apply the Matrix object to the Graphics object

/I (i.e., to all the graphics items

/I drawn on the Graphics object)

g.Transform = X;

/I Draw a line

g.DrawLine(new Pen(Color.Green, 3),
new Point(120, 50),
new Point(200, 50));

/' Fill a rectangle

g.FillRectangle(Brushes.Blue,
200, 100, 100, 60);

/I Dispose of object

g.Dispose();

}

This new code generates .

Figure 10.10. Using the RotateAt method

™ Form1 H=1E
Matree Operabions Madrie Class

If we call the Reset method in after RotateAt and before g.Transform, like this:

X.RotateAt(45, pt, MatrixOrder.Append);

/I Reset the matrix

X.Reset();

/I Apply the Matrix object to the Graphics object
/I (i.e., to all the graphics items

/I drawn on the Graphics object)

g.Transform = X;

the revised code generates , which is the same a. There is no rotation because the Reset method resets the

transformation.

Figure 10.11. Resetting a transformation

™ Form1 E[=] E3
Matr: Opesabons Matnx Class

The Scale method scales a matrix in thex- and y-directions. This method takes two floating values (scale factors), for thex- and y-axes,

respectively. InListing 10.1] we draw a rectangle with a width of 20 and a height of 30. Then we create Matrix object and scale it by calling its
Scale method with arguments 3 and 4 in thex- and y-directions, respectively.

Listing 10.11 Scaling graphics objects

private void Scale_Click(object sender,
System.EventArgs e)

/I Create Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Draw a filled rectangle with
/I width 20 and height 30
g.FillRectangle(Brushes.Blue,
20, 20, 20, 30);
/I Create Matrix object
Matrix X = new Matrix();
/I Apply 3X scaling

X.Scale(3, 4, MatrixOrder.Append);
/I Apply transformation on the form
g.Transform = X;
/I Draw a filled rectangle with
/l width 20 and height 30
g.FillRectangle(Brushes.Blue,
20, 20, 20, 30);
/I Dispose of object
g.Dispose();
}

shows the output fromListing 10.11. The first rectangle is the original rectangle; the second rectangle is the scaled rectangle, in

which the x position (and width) is scaled by 3, and they position (and height) is scaled by 4.

Figure 10.12. Scaling a rectangle

10l x

Matria Operations Mabrix Class

The Shear method provides a shearin? transformation and takes two floating point arguments, which represent the horizontal and vertical

shear factors, respectively. In Listing 10.19 we draw a filled rectangle with a hatch brush. Then we call th&hear method to shear the matrix by
2 in the vertical direction, and we use Transform to apply the Matrix object.

Listing 10.12 Shearing graphics objects

private void Shear_Click(object sender,
System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

/I Create a brush

HatchBrush hBrush = new HatchBrush
(HatchStyle.DarkVertical,

}

Color.Green, Color.Yellow);
/I Fill a rectangle
g.FillRectangle(hBrush,
100, 50, 100, 60);
/I Create a Matrix object
Matrix X = new Matrix();
/I Shear
X.Shear(2, 1);
/I Apply transformation
g.Transform = X;
I Fill rectangle
g.FillRectangle(hBrush,
10, 100, 100, 60);
/I Dispose of objects
hBrush.Dispose();
g.Dispose();

shows the output fromListing 10.14. The first rectangle in this figure is the original; the second is sheared.

Figure 10.13. Shearing a rectangle

The Translate method translates objects by the specified value. This method takes two floating point arguments, which represent the& andy

offsets. For example,

isting 10.19 translates the original rectangle by 100 pixels each in thex- and y-directions.

Listing 10.13 Translating graphics objects

private void Translate_Click(object sender,
System.EventArgs e)

/I Create a Graphics obhect
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Draw a filled rectangle
g.FillRectangle(Brushes.Blue,
50, 50, 100, 60);
/I Create a Matrix object
Matrix X = new Matrix();
/I Translate by 100 in the x direction
/I 'and 100 in the y direction
X.Translate(100, 100);
/I Apply transformation
g.Transform = X;
/I Draw a filled rectangle after
/I translation
g.FillRectangle(Brushes.Blue,
50, 50, 100, 60);
/I Dispose of object
g.Dispose();
}

Here we draw two rectangles with a width of 100 and a height of 60. Both rectangles start at (50, 50), but the code generates .
Even though the rectangles were drawn with the same size and location, the second rectangle after translation is now located 100 points
away in the x- and y-directions from the first rectangle.

Figure 10.14. Translating a rectangle

™ Form1 = [=] E3
Matix Operations Matnx Clazs

BTy rrevious [ecr]

10.4 The craphics Class and Transformation

In we saw that theGraphics class provides some transformation-related members. Before we move to other transformation-related
classes, let's review the transformation functionality defined in the Graphics class, as described in[Table 10.2. We will see how to use these
members in the examples throughout this chapter.

The Transform property of the Graphics class represents the world transformation of aGraphics object. It is applied to all items of the object.
For example, if you have a rectangle, an ellipse, and a line and set the Transform property of the Graphics object, it will be applied to all three
items. The Transform property is aMatrix object. The following code snippet creates aMatrix object and sets the Transform property:

Table 10.2. Transformation-related members defined in the Graphics class

Member Description

MultiplyTransform Method that multiplies the world transformation of a Graphics object and aMatrix object. The Matrix object specifies
the transformation action (scaling, rotation, or translation).

ResetTransform Method that resets the world transformation matrix of aGraphics object to the identity matrix.
RotateTransform Method that applies a specified rotation to the transformation matrix of aGraphics object.
ScaleTransform Method that applies a specified scaling operation to the transformation matrix of a Graphics object by prepending it

to the object's transformation matrix.

Transform Property that represents the world transformation for aGraphics object. Both get and set.

TransformPoints Method that transforms an array of points from one coordinate space to another using the current world and page
transformations of a Graphics object.

TranslateClip Method that translates the clipping region of a Graphics object by specified amounts in the horizontal and vertical
directions.

TranslateTransform Method that prepends the specified translation to the transformation matrix of aGraphics object.

Matrix X = new Matrix();
X.Scale(2, 2, MatrixOrder.Append);
g.Transform = X;

The transformation methods provided by the Graphics class are MultiplyTransform, ResetTransform, Rotate Transform, ScaleTransform,
TransformPoints, TranslateClip, and TranslateTransform. The MultiplyTransform method multiplies a transformation matrix by the world
transformation coordinates of a Graphics object. It takes an argument ofMatrix type. The second argument, which specifies the order of
multiplication operation, is optional. The following code snippet creates a Matrix object with the Translate transformation. The
MultiplyTransform method multiplies the Matrix object by the world coordinates of theGraphics object, translating all graphics items drawn by

the Graphics object.

Matrix X = new Matrix();
X. Translate(200.0F, 100.0F);

g.MultiplyTransform(X, MatrixOrder.Append);

RotateTransform rotates the world transform by a specified angle. This method takes a floating point argument, which represents the rotation
angle, and an optional second argument of MatrixOrder. The following code snippet rotates the world transformation of theGraphics object by
45 degrees:

g.RotateTransform(45.0F, MatrixOrder.Append);

The ScaleTransform method scales the world transformation in the specifiedx- and y-directions. The first and second arguments of this
method are x- and y-direction scaling factors, and the third optional argument isMatrixOrder. The following code snippet scales the world
transformation by 2 in the x-direction and by 3 in they-direction:

g.ScaleTransform(2.0F, 3.0F, MatrixOrder.Append);

The TranslateClip method translates the clipping region in the horizontal and vertical directions. The first argument of this method represents
the translation in the x-direction, and the second argument represents the translation in they-direction:

e.Graphics.TranslateClip(20.0f, 10.0f);

The TranslateTransform method translates the world transformation by the specifiedx- and y-values and takes an optional third argument of
MatrixOrder:

g.TranslateTransform(100.0F, 0.0F, MatrixOrder.Append);

We will use all of these methods in our examples.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

10.5 Global, Local, and Composite Transformations

Transformations can be divided into two categories based on their scope: global and local. In addition, there are composite transformations. A
global transformation is applicable to all items of aGraphics object. The Transform property of the Graphics class is used to set global

transformations.

A composite transformation is a sequence of transformations. For example, scaling followed by translation and rotation is a composite
translation. The MultiplyTransform, RotateTransform, ScaleTransform, and TranslateTransform methods are used to generate composite
transformations.

isting 10.14 draws two ellipses and a rectangle, then callsScaleTransform, TranslateTransform, and RotateTransform (a composite
transformation). The items are drawn again after the composite transformation.

Listing 10.14 Applying a composite transformation

private void GlobalTransformation_Click(object sender,
System.EventArgs €)

/I Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

/I Create a blue pen with width of 2

Pen bluePen = new Pen(Color.Blue, 2);

Point pt1 = new Point(10, 10);

Point pt2 = new Point(20, 20);

Color [] InColors = {Color.Black, Color.Red};

Rectangle rectl = new Rectangle(10, 10, 15, 15);

/I Create two linear gradient brushes

LinearGradientBrush IgBrushl = new LinearGradientBrush
(rectl, Color.Blue, Color.Green,
LinearGradientMode.BackwardDiagonal);

LinearGradientBrush IgBrush = new LinearGradientBrush
(ptl, pt2, Color.Red, Color.Green);

/I Set linear colors

lgBrush.LinearColors = InColors;

/I Set gamma correction

lgBrush.GammacCaorrection = true;

/I Fill and draw rectangle and ellipses

g.FillRectangle(lgBrush, 150, 0, 50, 100);

g.DrawEllipse(bluePen, 0, 0, 100, 50);

g.FillEllipse(lgBrush1, 300, 0, 100, 100);

/I Apply scale transformation

g.ScaleTransform(1, 0.5f);

/I Apply translate transformation

g.TranslateTransform(50, 0, MatrixOrder.Append);

/I Apply rotate transformation

g.RotateTransform(30.0f, MatrixOrder.Append);

[l Fill ellipse

g.FillEllipse(lgBrushi, 300, 0, 100, 100);
/I Rotate again
g.RotateTransform(15.0f, MatrixOrder.Append);
/I Fill rectangle
g.FillRectangle(lgBrush, 150, 0, 50, 100);
/I Rotate again
g.RotateTransform(15.0f, MatrixOrder.Append);
/I Draw ellipse
g.DrawEllipse(bluePen, 0, 0, 100, 50);
/I Dispose of objects
IgBrush1.Dispose();
IgBrush.Dispose();
bluePen.Dispose();
g.Dispose();
}

shows the output fromListing 10.14.

Figure 10.15. Composite transformation

0% Form1

Tranzformation Types

1 e
* -

o=

Alocal transformation is applicable to only a specific item of aGraphics object. The best example of local

ransformation is transforming a

graphics path. The Translate method of the GraphicsPath class translates only the items of a graphics path.|
path. We create a Matrix object and apply rotate and translate transformations to it.

Listing 10.15 Translating graphics path items

private void LocalTransformation_Click(object sender,
System.EventArgs e)

translates a graphics

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a GraphicsPath object
GraphicsPath path = new GraphicsPath();
/I Add an ellipse and a line to the
/I graphics path
path.AddEllipse(50, 50, 100, 150);
path.AddLine(20, 20, 200, 20);
/I Create a blue pen with a width of 2
Pen bluePen = new Pen(Color.Blue, 2);
/I Create a Matrix object
Matrix X = new Matrix();
/I Rotate 30 degrees
X.Rotate(30);
/I Translate with 50 offset in x direction
X.Translate(50.0f, 0);
/I Apply transformation on the path
path.Transform(X);
/I Draw a rectangle, a line, and the path
g.DrawRectangle(Pens.Green, 200, 50, 100, 100);
g.DrawLine(Pens.Green, 30, 20, 200, 20);
g.DrawPath(bluePen, path);
/I Dispose of objects
bluePen.Dispose();
path.Dispose();
g.Dispose();

}

shows the output fromListing 10.15. The transformation affects only graphics path items (the ellipse and the blue [dark] line).

Figure 10.16. Local transformation

.- Forml

BTy rrevious [ecr]

Team LiB |

10.6 Image Transformation

Image transformation is exactly the same as any other transformation process. In this section we will see how to rotate, scale, translate,

reflect, and shear images. We will create a Matrix object, set the transformation process by calling its methods, set theMatrix object as the

Transform property or the transformation methods of theGraphics object, and callDrawimage.

Rotating images is similar to rotating other graphics. Listing 10.14 rotates an image. We create aGraphics object using the CreateGraphics
method. Then we create a Bitmap object from a file and call theDrawlmage method, which draws the image on the form. After that we create a

Matrix object, call its Rotate method, rotate the image by 30 degrees, and apply the resulting matrix to the surface using th&ransform property.

Finally, we draw the image again using Drawlmage.

Listing 10.16 Rotating images

private void RotationMenu_Click(object sender,

}

System.EventArgs e)

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
Bitmap curBitmap = new Bitmap(@"roses.jpg");
g.Drawlmage(curBitmap, 0, 0, 200, 200);
/I Create a Matrix object, call its Rotate method,
/I and set it as Graphics.Transform
Matrix X = new Matrix();
X.Rotate(30);
g.Transform = X;
/I Draw image
g.Drawlmage(curBitmap,
new Rectangle(205, 0, 200, 200),
0, 0, curBitmap.Width,
curBitmap.Height,
GraphicsUnit.Pixel) ;
/I Dispose of objects
curBitmap.Dispose();
g.Dispose();

shows the output fromListing 10.16. The first image is the original; the second image is rotated.

™ Form1
Image Transformation

Figure 10.17. Rotating images

M= E3

.
Sy S | L

Now let's apply other transformations. Replacing the Rotate method in Listing 10.16 with the following line scales the image:

X.Scale(2, 1, MatrixOrder.Append);

The scaled image is shown in .

Figure 10.18. Scaling images

Replacing the Rotate method in Listing 10.14 with the following line translates the image with 100 offset in thex- and y-directions:

X.Translate(100, 100);

The new output is shown in .

Figure 10.19. Translating images

:[! Form1 = E
Image Transformation

Replacing the Rotate method in Listing 10.14 with the following line shears the image:

X.Shear(2, 1);

The new output is shown in .

Figure 10.20. Shearing images

T T 11

You have probably noticed that image transformation is really no different from the transformation of other graphics objects. We recommend
that you download the source code samples from online to see the detailed code listings.

[rean L | rreviovs [exr o]

Team LiB |

10.7 Color Transformation and the Color Matrix

So far we have seen the transformation of graphics shapes from one state to another, but have you ever thought about transforming colors?
Why would you want to transform an image's colors? Suppose you wanted to provide grayscale effects, or needed to adjust the contrast,
brightness, or even "redness" of an image. For example, images retrieved from video and still cameras often need correction. In these cases,
a color matrix is very useful.

As we discussed in earlier chapters, the color of each pixel of a GDI+ image or bitmap is represented by a 32-bit number, of which 8 bits each
are used for the red, green, blue, and alpha components. Each of the four components is a number from 0 to 255. For red, green, and blue, 0
represents no intensity and 255 represents full intensity. For the alpha component, 0 represents transparent and 255 represents fully opaque.
A color vector includes four items: A, R, G, and B. The minimum values for this vector are (0, 0, 0, 0), and the maximum values are (255, 255,
255, 255).

GDI+ allows the use of values between 0 and 1, where 0 represents the minimum intensity and 1 the maximum intensity. These values are
used in a color matrix to represent the intensity and opacity of color components. For example, the color vector with minimum values is (0, 0,
0, 0), and the color vector with maximum values is (1, 1, 1, 1).

In a color transformation we can apply a color matrix on a color vector by multiplying a 4x4 matrix. However, a 4x4 matrix supports only linear
transformations such as rotation and scaling. To perform nonlinear transformations such as translation, we must use a 5x5 matrix. The
element of the fifth row and the fifth column of the matrix must be 1, and all of the other entries in the five columns must be 0.

The elements of the matrix are identified according to a zero-based index. The first element of the matrix is M[0][0], and the last element is
M[4][4]. A 5x5 identity matrix is shown in . In this matrix the elements M[0][0], M[1][1], M[2][2], and M[3][3] represent the red, blue,
green, and alpha factors, respectively. The element M[4][4] means nothing, and it must always be 1.

Figure 10.21. An identity matrix

1 0 0 0 O
0O 1 0 0 0
0 0 1 0 0
0O 0 010
0 0 0 0 1

Now if we want to double the intensity of the red component of a color, we simply set M[0][0] equal to 2. For example, the matrix shown in
doubles the intensity of the red component, decreases the intensity of the green component by half, triples the intensity of the

blue component, and decreases the opacity of the color by half (making it semitransparent).

Figure 10.22. A matrix whose components have different intensities

2 0 0 0 0
0 05 0 0 O

0 0 3 0 0
0O 0 0050
o 0 0 0 1

In the matrix shown in Eigure Itiplied the intensity values. We can also add intensity values by using other matrix elements. For
example, the matrix shown in Eigure 10.23 will double the intensity of the red component and add 0.2 to each of the red, green, and blue

component intensities.

Figure 10.23. A color matrix with multiplication and addition

2 0 0 0 0
0 1 0 0 0O
o 0 1 0 0
o 0 0 1 0
020202 0 1

10.7.1 The colormatrix Class

In this section we will discuss the ColorMatrix class. As you might guess from its name, this class defines a matrix of colors. In the preceding
sections we discussed the Matrix class. The ColorMatrix class is not very different from theMatrix class. Whereas the Matrix class is used in
general transformation to transform graphics shapes and images, the ColorMatrix class is specifically designed to transform colors. Before we
see practical use of the color transformation, we will discuss the ColorMatrix class, its properties, and its methods.

The ColorMatrix class constructor takes an array that contains the values of matrix items. Thdtem property of this class represents a cell of
the matrix and can be used to get and set cell values. Besides the Item property, the ColorMatrix class provides 25MatrixXY properties, which
represent items of the matrix at row (x + 1) and column (y + 1). MatrixXY properties can be used to get and set an item's value.

isting 10.17 creates aColorMatrix object with item (4, 4) set to 0.5 (half opacity). Then it sets the values of item (3, 4) to 0.8 and item (1, 1) to
0.3.

Listing 10.17 Creating a ColorMatrix object

float[][] ptsArray ={
new float[] {1, 0, 0, O, O},
new float[] {0, 1, 0, O, 0},
new float[] {0, 0, 1, O, O},
new float[] {0, 0, 0, 0.5f, 0},
new float[] {0, 0, 0, O, 1}};
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
if(cIrMatrix.Matrix34 <= 0.5)
{
clrMatrix.Matrix34 = 0.8f;
clrMatrix.Matrix11 = 0.3f;

}

will describe how to apply color matrices to the transformation of colors.
[Tean Lig [« ereviovs [nexr o |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

10.8 Matrix Operations in Image Processing

Recoloring, the process of changing image colors, is a good example of color transformation. Recoloring includes changing colors, intensity,
contrast, and brightness of an image. It can all be done via the ImageAttributes class and its methods.

The color matrix can be applied to an image via the SetColorMatrix method of the ImageAttributes class. The ImageAttributes object is used
as a parameter when we call Drawlmage.

10.8.1 Translating Colors

Translating colors increases or decreases color intensities by a set amount (not by multiplying them). Each color component (red, green, and
blue) has 255 different intensity levels ranging from 0 to 255. For example, assume that the current intensity level for the red component of a
color is 100. Changing its intensity level to 150 would imply translating by 50.

In a color matrix representation, the intensity vari fo 1. The last row's first four elements represent the translation of red, green, blue,
and alpha components of a color, as shown in Figure 10.23. Hence, adding a value to these elements will transform a color. For example, the
t1, t2, t3, and t4 values in the following color matrix represent the red, green, blue, and alpha component translations, respectively:

Color Matrix = {
{1, 0, 0, 0, 0},
{0, 1, 0, 0, 0},
{0, 0, 1, 0,0},
{0, 0, 0, 1,0},
{t1, t2, t3, t4, 1}};

uses a ColorMatrix object to translate colors. We change the current intensity of the red component to 0.90. First we create a
Graphics object using the CreateGraphics method, and we create aBitmap object from a file. Next we create an array ofColorMatrix elements
and create a ColorMatrix object from this array. Then we create annmageAttributes object and set the color matrix usingSetColorMatrix, which
takes the ColorMatrix object as its first parameter. After all that, we draw two images. The first image has no effects; the second image shows
the result of our color matrix transformation. Finally, we dispose of the objects.

Listing 10.18 Using ColorMatrix to translate colors

private void TranslationMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a Bitmap object

Bitmap curBitmap = new Bitmap("roses.jpg");

/I Color matrix elements
float[][] ptsArray =
{
new float[] {1, 0, 0, 0, 0},
new float[] {0, 1, 0, 0, 0},
new float[] {0, O, 1, 0, 0},
new float[] {0, O, 0, 1, 0},
new float[] {.90f, .Of, .0f, .0f, 1}
h
/I Create a ColorMatrix object
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
/I Create image attributes
ImageAttributes imgAttribs = new ImageAttributes();
/I Set color matrix
imgAttribs.SetColorMatrix(clrMatrix,
ColorMatrixFlag.Default,
ColorAdjustType.Default);
/I Draw image with no effects
g.Drawlmage(curBitmap, 0, 0, 200, 200);
/I Draw image with image attributes
g.Drawlmage(curBitmap,
new Rectangle(205, 0, 200, 200),
0, 0, curBitmap.Width, curBitmap.Height,
GraphicsUnit.Pixel, imgAttribs) ;
/I Dispose of objects
curBitmap.Dispose();
g.Dispose();
}

shows the output fromListing 10.1§. The original image is on the left; on the right we have the results of our color translation. If
you change the values of other components (red, blue, and alpha) in the last row of the color matrix, you'll see different results.

Figure 10.24. Translating colors

8 Formi

10.8.2 Scaling Colors

Scaling color involves multiplying a color component value by a scaling factor. For example, the t1, t2, t3, and t4 values in the following color
matrix represent the red, green, blue, and alpha components, respectively. If we change the value of M[2][2] to 0.5, the transformation
operation will multiply the green component by 0.5, cutting its intensity by half.

Color Matrix = {
{t1, 0, 0, 0, O},
{0, 12, 0, 0, O},
{0, 0, 3, 0, 0},
{0, 0, 0, t4, O},
{0,0,0,0, 1}};

isting 10.19 uses the ColorMatrix object to scale image colors.

Listing 10.19 Scaling colors

private void ScalingMenu_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a Bitmap object
Bitmap curBitmap = new Bitmap("roses.jpg");
/I Color matrix elements
float[][] ptsArray =
{
new float[] {1, 0, O, 0O, 0},
new float[] {0, 0.8f, 0, 0, O},
new float[] {0, 0, 0.5f, 0, O},
new float[] {0, 0, 0, 0.5f, O},
new float[] {0, O, 0, O, 1}
h
/I Create a ColorMatrix object
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
/I Create image attributes
ImageAttributes imgAttribs = new ImageAttributes();
/I Set color matrix
imgAttribs.SetColorMatrix(clrMatrix,
ColorMatrixFlag.Default,
ColorAdjustType.Default);
/I Draw image with no effects
g.Drawlmage(curBitmap, 0, 0, 200, 200);
/I Draw image with image attributes
g.Drawlmage(curBitmap,
new Rectangle(205, 0, 200, 200),
0, 0, curBitmap.Width, curBitmap.Height,
GraphicsUnit.Pixel, imgAttribs) ;

/I Dispose of objects
curBitmap.Dispose();
g.Dispose();

}

shows the output from . The original image is on the left; on the right is the image after color scaling. If you change

the values of t1, t2, t3, and t4, you will see different results.

Figure 10.25. Scaling colors

™ Form1

10.8.3 Shearing Colors

Earlier in this chapter we discussed image shearing. It can be thought of as anchoring one corner of a rectangular region and stretching the
opposite corner horizontally, vertically, or in both directions. Shearing colors is the same process, but here the object is the color instead of
the image.

Color shearing increases or decreases a color component by an amount proportional to another color component. For example, consider the
transformation in which the red component is increased by one half the value of the blue component. Under such a transformation, the color
(0.2, 0.5, 1) would become (0.7, 0.5, 1). The new red component is 0.2 + (0.5)(1) = 0.7. The following color matrix is used to shear image
colors.

float[][] ptsArray = {

new float] {1, 0, O, O, 0},

new float] {0, 1, O, O, 0},

new float[] {.50f, 0, 1, 0, 0},

new float[] {0, 0, O, 1, 0},

new float[] {0, 0, 0, 0, 1}};

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

If we substitute this color matrix into Listing 10.19, the output will look Iike.

Figure 10.26. Shearing colors

10.8.4 Rotating Colors

As explained earlier, color in GDI+ has four components: red, green, blue, and alpha. Rotating all four components in a four-dimensional

space is hard to visualize. However, such rotation can be visualized in a three-dimensional space. To do this, we drop the alpha component
from the color structure and assume that there are only three colors—red, green, and blue—as shown in . The three colors—red,

green, and blue—are perpendicular to each other, so the angle between any two primary colors is 90 degrees.
Figure 10.27. RGB rotation space
4 Blue

® (0,0.1)

" Y
90° | 90°

(0,1,0)

Red
Green

Suppose that the red, green, and blue colors are represented by points (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. If we rotate a color with a

green component of 1, and red and blue components of 0 each, by 90 degrees, the new color will have a red component of 1, and green and
blue components of 0 each. If we rotate the color less than 90 degrees, the new color will be located somewhere between green and red.

shows how to initialize a color matrix to perform rotations about each of the three components: red, green, and blue.

Figure 10.28. RGB initialization

Green Blue Red

A Red

E-| Green
maﬁ ging 0 0 l!,‘.l '_1 i N i) ﬂq -—-m. 0 —sin@ O EIIH
—sinfl coshh O 0 0 0 cosbsing O O Q 1 0 0 0
o o 1 0 0 0 -gingcossé O 0 gind O cosé 0 O
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0o 0 0 0 1 0o o 0o o 1 0 o 0 0 1

rotates the colors by 45 degrees from the red component.

Listing 10.20 Rotating colors

private void RotationMenu_Click(object sender,
System.EventArgs e)

float degrees = 45.0f;
double r = degrees*System.Math.P1/180;
/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a Bitmap object from a file
Bitmap curBitmap = new Bitmap("roses.jpg");
/I Color matrix elements
float[][] ptsArray =
{
new float[] {(float)System.Math.Cos(r),
(float)System.Math.Sin(r),
0, 0,0},

new float[] {(float)-System.Math.Sin(r),
(float)-System.Math.Cos(r),
0, 0,0},
new float[] {.50f, 0, 1, 0, O},
new float[] {0, 0, O, 1,0},
new float[] {0, 0, 0, O, 1}
h
/I Create a ColorMatrix object
ColorMatrix clrMatrix = new ColorMatrix(ptsArray);
/I Create image attributes
ImageAttributes imgAttribs = new ImageAttributes();
/I Set ColorMatrix to ImageAttributes
imgAttribs.SetColorMatrix(clrMatrix,
ColorMatrixFlag.Default,
ColorAdjustType.Default);
/I Draw image with no effects
g.Drawlmage(curBitmap, 0, 0, 200, 200);
/I Draw image with image attributes
g.Drawlmage(curBitmap,
new Rectangle(205, 0, 200, 200),
0, 0, curBitmap.Width, curBitmap.Height,
GraphicsUnit.Pixel, imgAttribs) ;
/I Dispose of objects
curBitmap.Dispose();
g.Dispose();
}

slows the output fromListing 10.2d. On the left is the original image; on the right is the image after color rotation.

Figure 10.29. Rotating colors

=] A |

[rean L | rreviovs [ecr o]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

10.9 Text Transformation

In we discussed how to use theScaleTransform, RotateTransform, and TranslateTransform methods to transform text. We can also
use a transformation matrix to transform text.

We create a Matrix object with the transformation properties and apply it to the surface using th@ransform property of the Graphics object.
isting 10.2] creates aMatrix object and sets it as theTransform property. We then callDrawString, which draws the text on the form. To test
this code, add the code to a form's paint event handler.

Listing 10.21 Text transformation example

Graphics g = e.Graphics;

string str =

"Colors, fonts, and text are common" +

" elements of graphics programming." +
"In this chapter, you learned " +

" about the colors, fonts, and text" +

" representations in the "+

".NET Framework class library. "+

"You learned how to create "+

"these elements and use them in GDI+.";
/I Create a Matrix object

Matrix M = new Matrix(1, 0, 0.5f, 1, 0, 0);
g.RotateTransform(45.0f,
System.Drawing.Drawing2D.MatrixOrder.Prepend);
g.TranslateTransform(-20, -70);
g.Transform = M;

g.DrawString(str,

new Font("Verdana", 10),

new SolidBrush(Color.Blue),

new Rectangle(50,20,200,300));

shows the outcome of .

Figure 10.30. Using the transformation matrix to transform text

I"'-_I Forml ;IEIE{

Conts, Tonis and el e
TOUNTN N Bl ens of
Of ADTINS DT OOL 200000, WD
o TREnieT e et
oY e cohors, Tonks and
ACYREAL LT A TR

e BAET Taneuots e
Worary . Mouiearnednow
Ienia IMate SEamenks ani
aEe W GO .

We can apply shearing and other effects by changing the values of Matrix. For example, if we changeMatrix as follows:

Matrix M = new Matrix(1, 0.5f, 0, 1, 0, 0);

the new code will generate .

Figure 10.31. Using the transformation matrix to shear text

=10] x|

We can reverse the text just by changing the value of the Matrix object as follows:

Matrix M = new Matrix(1, 1, 1, -1, 0, 0);

with the results shown in .

Figure 10.32. Using the transformation matrix to reverse text

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

10.10 The Significance of Transformation Order

The Matrix object can store a single transformation or a sequence of transformations. As we learned i , a sequence of
transformations is called a composite transformation, which is a result of multiplying the matrices of the individual transformations.

In a composite transformation, the order of the individual transformations is very important. Matrix operations are not cumulative. For
example, the result of a Graphics ; Rotate ; Translate ; Scale ; Graphics operation will be different from the result of a

Graphics '_:" Scale '_:" Rotate '_:" Translate '_:" Graphics operation. The main reason that order is significant is that
transformations like rotation and scaling are done with respect to the origin of the coordinate system. The result of scaling an object that is
centered at the origin is different from the result of scaling an object that has been moved away from the origin. Similarly, the result of rotating
an object that is centered at the origin is different from the result of rotating an object that has been moved away from the origin.

The MatrixOrder enumeration, which is an argument to the transformation methods, represents the transformation order. It has two values:
Append and Prepend.

Let's write an application to see how transformation order works. We create a Windows application and add a MainMenu control and three
menu items to the form. The MatrixOrder class is defined in the System.Drawing.Drawing2D namespace, so we also add a reference to this
namespace.

isting 10.29 draws a rectangle before and after applying a Scale ; Rotate ; Translate transformation sequence.

Listing 10.22 Scale =3 Rotate = Translate transformation order

private void First_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect =
new Rectangle(20, 20, 100, 100);
/I Create a solid brush
SolidBrush brush =
new SolidBrush(Color.Red);
/I Fill rectangle
g.FillRectangle(brush, rect);
/I Scale
g.ScaleTransform(1.75f, 0.5f);
/I Rotate
g.RotateTransform(45.0f, MatrixOrder.Append);
/I Translate
g.TranslateTransform(150.0f, 50.0f,
MatrixOrder.Append);
/I Fill rectangle again
g.FillRectangle(brush, rect);
/I Dispose of objects

brush.Dispose();
g.Dispose();
}

shows the output fromListing 10.24. The original rectangle is in the upper left; on the lower right is the rectangle after composite

transformation.

Figure 10.33. Scale =3 Rotate = Translate composite transformation

=] E3

Transfomation Order

Now let's change the order of transformation to Translate ; Rotate ; Scale with Append, as shown inListing 10.23.

Listing 10.23 Translate =3 Rotate =% Scale transformation order with Append

private void Second_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect =

new Rectangle(20, 20, 100, 100);
Il Create a solid brush
SolidBrush brush =

new SolidBrush(Color.Red);

/I Fill rectangle

g.FillRectangle(brush, rect);

/I Translate

g.TranslateTransform(100.0f, 50.0f,
MatrixOrder.Append);

/I Scale

g.ScaleTransform(1.75f, 0.5f);

/I Rotate

g.RotateTransform(45.0f,
MatrixOrder.Append);

/I Fill rectangle again

g.FillRectangle(brush, rect);

/I Dispose of objects

brush.Dispose();

g.Dispose();

}

shows the output fromListing 10.23. The original rectangle is in the same place, but the transformed rectangle has moved.

Figure 10.34. Translate =+ Rotate = Scale composite transformation with Append

IS [=] 3

L__E_mel
Transhomation Onder

Now let's keep the code from and change only the matrix transformation order fromAppend to Prepend, as shown in

10.24.

Listing 10.24 Translate =3 Rotate =% Scale transformation order with Prepend

private void Third_Click(object sender,
System.EventArgs e)

/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create a rectangle
Rectangle rect =
new Rectangle(20, 20, 100, 100);
/I Create a solid brush
SolidBrush brush =
new SolidBrush(Color.Red);
/I Fill rectangle
g.FillRectangle(brush, rect);
/I Translate
g.TranslateTransform(100.0f, 50.0f,
MatrixOrder.Prepend);
/I Rotate
g.RotateTransform(45.0f,
MatrixOrder.Prepend);
/I Scale
g.ScaleTransform(1.75f, 0.5f);
/I Fill rectangle again
g.FillRectangle(brush, rect);
/I Dispose of objects
brush.Dispose();
g.Dispose();
}

The new output is shown in . The matrix order affects the result.

Figure 10.35. Translate =+ Rotate = Scale composite transformation with Prepend

m] Forml = E3

Transfomation Order

[Team Lie] [erevious [nexro]

Team LiB |

SUMMARY

In this chapter we first discussed the basics of transformation, coordinate systems, the role of coordinate systems in the transformation
process, and transformation functionality. We learned

® owto distinguish among global, local, and composite transformations
® How to use the Graphics class transformations in applications

® How to translate, scale, shear, and rotate graphics objects

Matrices play a vital role in transformation. We can customize the transformation process and its variables by creating and applying a
transformation matrix. This chapter showed

® Liow to use the Matrix and ColorMatrix classes, and their role in transformation
® How to use the matrix operations for image processing, including translation, scaling, shearing, and rotation
® owto use recoloring and color transformation to manipulate the colors of graphics objects

® owto perform color transformations

Transformations can be applied not only to graphics images and objects, but also to text strings. Drawing vertical or skewed text is one
example of text transformation. This chapter explained how to transform text.

Printing also plays an important part in GDI+. In you will learn various components of the System.Drawing.Printing namespace and
how to use them.

Team LiB |

Team LiB |

Chapter 11. Printing

Sooner or later you will need to print out application data. Perhaps you have created documents or test data and now you want to see them
on paper. You may be drawing something and want to print it out. Printing data from a database and printing images are other possibilities.
With the .NET Framework you will find it easy to create applications that talk your printer's language. This chapter covers printing functionality
in the .NET Framework. The aim is to give you the knowledge to handle basic (and some not so basic) printing needs.

We'll begin with a brief history of printing, followed by an introduction to the printing classes available in .NET. Toward the end of the chapter
we will delve deep into printing functionality. After reading this chapter, you should have a good idea of printing functionality defined in the
.NET Framework, and how to implement this functionality in your applications. Here are some of the topics we will discuss in this chapter:

® A prief history of printing in Microsoft Windows

® The printing process (i.e., how printing works)

L4 Printing in Microsoft .NET

® The System.Drawing.Printing namespace and its classes
L4 Getting and setting page and printer settings

® The basic framework of printing-enabled applications

® owto print text, images, and graphics objects

® How to use various print dialogs and their classes

® Writing your own custom printing and page setup dialogs
® Printing multipage documents

L4 Understanding the print controller and its related classes

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

11.1 A Brief History of Printing with Microsoft Windows

If you are running Microsoft Windows today, you can more or less print to any available printer, from a $100 bargain-basement inkjet to a
$1,000 Tektronix color printer. This versatility is possible only because of software standardization.

When Microsoft DOS was the standard PC desktop operating system, every application had to supply its own printing software or printer
drivers. If you bought a piece of software from Company X, you had to hope that it supported your printer. Thus, often you had to check which
printers your new software supported and buy one of those. Either that, or wait until Company X supported your printer, which, more often
than not, never happened.

Companies tended to produce printer drivers for only a select few of the popular printers on the market, such as the HP LaserJet. Even
worse, you might have a printer driver for your laser printer when using a drawing package, but if you wanted to use a word processor from a
different company, it would not be surprising to find that your printer was not supported!

11.1.1 Hewlett-Packard Chooses Standards

During this time, companies like Hewlett-Packard were driving the printer business and introducing standards that could only make things
better. At this point HP had been in the printer business a long time and had introduced many different types of printers and plotters. It had
already introduced a standard language (Hewlett-Packard Graphics Language, or HPGL) for drawing graphics on a plotter, which allowed the
user to issue draw commands like, "Draw a line from point A to point B."

Hewlett-Packard introduced the LaserJet series of laser printers, which became extremely successful because of their high quality and low
cost. These printers were driven by a language called PCL (Printer Control Language). (Even today, printers manufactured by HP and
several other companies support PCL.) Even if you don't have the exact printer driver you need, if your printer supports PCL you can at least
get some output from it.

Moreover, Hewlett-Packard used PCL with all its printers, so if you wrote an application to communicate with the HP LaserJet Series I, you
could be pretty certain that the code would work with later printers in the range. Although HP is not the only printer manufacturer, it can
certainly be credited with jump-starting the market.

While companies like Hewlett-Packard were making printing easier, the software problems still existed. If you did not have an appropriate
printer driver for your application, you would not get anything out of your printer.

When a Printer Has No Driver

Be aware, though, that even today, if you rush out and buy the latest and greatest printer, you may get home and find that the
printer has not come supplied with a printer driver—or the version of Windows you have may not support that particular
printer. So what do you do?

In most cases you can just choose a driver from an earlier model in the same line. For instance you could use an HP
LaserJet Il driver to drive an HP LaserJet 4 printer. This works because Hewlett-Packard uses PCL to control it sprinters, so
even though the LaserJet Il may use an older version of PCL, the LaserJet 4 still supports it. The message here is that when
you're buying your next printer, make sure the operating system you intend to use supports it!

With the release of Microsoft Windows in its various forms, the printing crisis was more or less over. Windows provided a standard graphical
user interface, or GUI, and anything that you could draw on-screen could be printed out. Microsoft provided Windows drivers for the most
common printers. Over time, as new versions of Windows came out, more and more printers were supported. Now all that the programmers
had to do was write code for Windows, and they could use that same code to talk to any printer that Windows supported.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

11.2 Overview of the Printing Process

Before we write our first printing application, it's important to understand how printing works in Windows and what role GDI+ plays in the

process.

GDI+ is an application jbrary that allows applications to interact with display devices such as monitors, printers, and scanners through
the device drivers. illustrates the role of GDI+ in the drawing process. The application passes data to GDI+. GDI+ is responsible
for converting the data into graphics format (pixels) with the help of display drivers and sending it to the display driver, which displays the data
on a device such as a monitor.

Figure 11.1. A simple drawing process

L Data Display
Application GDI+ Device Monitor
Driver

The printing process, which is very similar to the drawing process, is shown in figure 11 . The application sends data to GDI+, which
communicates with a printer driver that sends data to the printer.

Figure 11.2. A simple printing process

Data '
Application GDI+ 7/ E::ﬂ:fr’ % Printer

11.2.1 How is Drawing Different from Printing?

The drawing process involves a surface, which is the container for graphics shapes. In Windows applications, dorm works as a drawing
surface. In previous chapters we used the Graphics object associated with a form to access the surface associated with a form.

There are several ways to get the Graphics object associated with a form. The simplest way is to use the form's paint event handler and

PaintEventArgs.Graphics property, which returns theGraphics object for the form to which this paint event handler belongs. Another way is to
use the CreateGraphics method. uses PaintEventArgs.Graphics to get the Graphics object associated with a form. Once you have

the drawing surface (Graphics object), you can use draw and fill methods.

Listing 11.1 Drawing graphics shapes

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
Graphics g = e.Graphics;
SolidBrush redBrush =
new SolidBrush(Color.Red);
Rectangle rect =
new Rectangle(150, 80, 200, 140);
g.FillPie(greenBrush, 40, 20, 200,
40, 0.0f, 60.0f);
g.FillRectangle(blueBrush, rect);

}

The printing process is somewhat different from the drawing process. In a printing process, a printer works as a drawing surface. In a drawing
process, we already have a form as a drawing surface. To print something on a printer, however, we need the printer object. The basic steps
of a printing process are

Step 1. Specify the printer you want to use.
Step 2. Retrieve the printer's surface, which is a Graphics object.

Step 3. Call the draw and fill methods of the Graphics object.

In Eections 11.2d and Ill.Zd we will discuss the printing process in more detail.

11.2.2 Conceptual Flow of the Printing Process

Before we discuss the atic flow of a printing process, let's look at the conceptual flow. Every printing process involves five basic
steps, as illustrated in Ei;ure 11.3

Figure 11.3. Conceptual flow of the printing process

Step 1: Specity a printer.
v

Step 2: Set printer properties,

v

Step 3: Get the printer surface.

.

Step 4: Draw graphics shapes,
lines, curves, text, and images.

v

{ Step 5: Print.

Step 1. Specify a printer. In this step we select a printer to be used in the printing process. You may want to select a printer from
multiple printers available to your application.

Step 2. Set the printer properties. In this step we can set properties such as color, paper tray, paper size, and print quality. This
step is optional; if we do not set printer properties, the process uses default settings.

Step 3. Get the printer surface. Unlike the drawing surface (a form), which is available on the form's paint event handler, the
printer surface is available only through the print-page event handler. As such, this step requires creating a print-page event
handler. One parameter of the event handler is of type PrintPageEventArgs, whose Graphics member represents the printer
surface associated with this print-page event handler. In ‘ we will see how to implement the print-page event handler
programmatically.

Step 4. Draw graphics shapes, lines, curves, text, and images. Once we have the printer surface, everything works in much
the same way as the drawing process. We can call draw and fill methods to draw lines, curves, shapes, text, and images.

Step 5. Print. After we call the draw and fill methods of theGraphics object associated with a printer, the final step is to print the
objects.

11.2.3 Programmatic Flow of the Printing Process

The previous section dealt with the conceptual flow of the printing process. In this section we will examine the programmatic flow.

is a flowchart displaying the four programmatic steps of the printing process.

Figure 11.4. A flowchart of the printing process

Crealte PrintDocument object and specify the printer:
PrintDocument pd = new PrintDocument();
pd.PrinterSettings.PrinterName =
printerName;

v

, Set printer and page properties using the
following objects:

PrinterSettings
PageSettings

v

e,

Sel print-page events handler:
pd.PrintPage += new
PrintPageEventHandler (pd_PrintPage)

Step 1. Create

Step 2. Set the printer and page properties. We set the PrinterSettings and PageSettings objects for this optional step. If we
don't set these properties, the default settings of the printer will be used. We will cover PrinterSettings and PageSettings in more

detail later.

Step 3. Set the print-page event handler. The print-page event handler js responsible for printing. We create a print-page event
ng the PrintDocument.PrintPage member. Process A (seefigure 11.9) is called from the print-page event handler,

handler by setti
as illustrated in

Print document:
pd.print ();

a PrintDocument object and specify the printer.This printer will be used as a surface.

igure 11.4.

Figure 11.5. Process A

Get the graphics surface for a printer:
Graphics g = PrintPageEventArgs.Graphics;

v

Sel the following Print PageEventArgs properlies:
MarginBounds, PageBounds, and PageSettings

v

Draw lines, curves, shapes, texl, and images using the
draw and fill methods of the Graphics object.

|
¥
Step 4. Print the document. Finally, we call the PrintDocument.Print method, which sends printing objects to the printer.

Process A, which is shown in , describes how and what to send to the printer. This process is defined as the print-page event
handler:

public void pd_PrintPage(object sender,
PrintPageEventArgs ev)

The second parameter, PrintPageEventArgs, provides access to the printer surface through itsGraphics member. As shows, first
we get the Graphics object from PrintPageEventArgs.

The next step is to set the page and paper setting using the MarginBounds, PageBounds, and PageSettings members of the
PrintPageEventArgs enumeration. We will discuss these properties in more detail later.

The final step of this process is to call draw and fill methods of the Graphics object as we used to do in the drawing process. We will see a

working example of this process in Section 11.3.

11.2.4 The system.Drawing.Printing Namespace

In the .NET Framework, printing functionality is defined in the System.Drawing.Printing namespace, which resides in theSystem.Drawing.dll
assembly. The reference to this assembly is automatically added to an application when we create a new project using Visual Studio .NET.
To use the printing-related classes, we can simply add the following line to the application:

using System.Drawing.Printing;

Alternatively, we can use the System.Drawing.Printing namespace by adding it to the classes directly.

Note

Before you use any printer-related classes in your application, a printer must be installed on your machine.

Team LiB |

Team LiB |

11.3 Your First Printing Application

We just saw how the printing process works in the .NET Framework. Now let's talk about how to write your first simple printing application. In
this application we will send the text "Hello Printer!" to the printer from a Windows application. To create this application, follow the simple

steps described here.

Using Visual Studio .NET, create a Windows application project named HelloPrinterSamp, as shown in .

Figure 11.6. Creating a Windows application

NowPoict g

Pioject Types: Templates- Bl =
0 Visual Basic Projects —— I
(3 Visual CH Projects wd G
(3 Visual Co+ Projects Windows| Class Libealy Windows
(] Setup and Deployment Projects Appication Control Libeany
- Othes Projects —
(3 Visusl Shudio Sohutions Lf% @ Eﬂ
=
ASPMET ASPMET Web Control
WebAp.. 'WebSenice Librany =l

}nmfumﬁummmammmrm

Hanme: |HetoPrintess amp
Location: IF:‘-.En-uk:".EDIt"-.FI eveeves\D plCh] S\Codes ;1 Browze... I
™ Add to Solution {* Cloze Sohtion
Picgect wall be created at F:5\Books\G DI +\Reviews\DplAChi ACode\HalloPrintarS amp.
Fore (1] 4 Cancal Helo

After we create the project, we add the following line to it:

using System.Drawing.Printing;

Then we add controls for a label, a combo box, and a button to the form. We change the Text and Name properties of the form and these

controls. (See the online source code for more details.) The final form should look like ‘.

Figure 11.7. Your first printing application

™ My First Printing Application

m L !

When you run this application, the combo box will display the available printers on your machine. You can select any printer from this list, and

when you click the Hello Printer button, it will print “"Hello Printer!" on your printer.

We load the available printers on the form's load event handler. The PrinterSettings.Instal
a machine. PrinterSettings.InstalledPrinters.Count returns the total number of printers. In|
machine, read them, and add them to the printer list combo box.

Listing 11.2 Getting all installed printers

private void Form1_Load(object sender,
System.EventArgs e)
{
/I See if any printers are installed
if(PrinterSettings.InstalledPrinters.Count <= 0)
{
MessageBox.Show("Printer not found!");
return;
}
/I Get all available printers and add them to the
/I combo box
foreach(String printer in
PrinterSettings.InstalledPrinters)
{
printersList.ltems.Add(printer.ToString());
}
}

ledPrinters property returns the installed printers on

|isting 11.4 we check if printers are installed on the

The next step is to add code to the Hello Printer button click event handler (se). This code is responsible for printing. We create

a PrintDocument object and set the PrintDocument.PrinterSettings. PrinterName property

to the printer selected from the printer list combo

box. Then we add a print-page event handler and call the PrintDocument.Print method, which prints the document.

Listing 11.3 The Hello Printer button click event handler

private void HelloPrinterBtn_Click(object sender,

System.EventArgs e)
{
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Set PrinterName as the selected printer
[l'in the printers list
pd.PrinterSettings.PrinterName =
printersList.Selectedltem.ToString();
/I Add PrintPage event handler
pd.PrintPage +=
new PrintPageEventHandler(pd_PrintPage);
/I Print the document
pd.Print();
}

The last step is to add the print-page event handler code (see . This code is responsible for creating aGraphics object for the
printer. It calls the DrawString method, which is responsible for drawing text. First we create araphics object from
PrintPageEventArgs.Graphics. Then we createFont and SolidBrush objects and callDrawString to draw some text on the printer. The
DrawString method takes a string that represents the text to be drawn; the font; a brush; and a layout rectangle that represents the starting
point, width, and height of a rectangle for the text.

Note
See for more detail on theDrawString method. And for more about solid brushes and fonts, se and H
respectively.

Listing 11.4 The print-page event handler

/I The PrintPage event handler
public void pd_PrintPage(object sender,
PrintPageEventArgs ev)
{
/I Get the Graphics object
Graphics g = ev.Graphics;
/I Create a font Arial with size 16
Font font = new Font("Arial", 16);
/I Create a solid brush with black color
SolidBrush brush =
new SolidBrush(Color.Black);
/I Draw "Hello Printer!"
g.DrawsString("Hello Printer!",
font, brush,
new Rectangle(20, 20, 200, 100));
}

Now you can run the application, select a printer from the list, and click the Hello Printer button. You should see "Hello Printer!" on your
printed page.

Team LiB |

11.4 Printer Settings

Before writing our next printing application, let's examine printer settings. Printer settings specify the properties of a print process, such as
the paper size, print quality, number of copies, number of pages, and so on. In this section we will first discuss how to access and set printer
settings using the PrinterSettings class properties. Then we will write an application that allows us to read and set printer settings

programmatically.

11.4.1 The Pprintersettings Class

The PrinterSettings object is the gateway to reading and setting printer settings.PrinterSettings specifies how a document will be printed
during a print process.

After creating a PrinterSettings object instance, we usually use thePrintDocument.PrinterSettings or PageSettings.PrinterSettings property to
access the PrinterSettings objects corresponding to the PrintDocument and PageSettings objects, respectively. We will discuss these in more
detail in a moment.

The following code snippet creates a PrinterSettings object:

PrinterSettings prs = new PrinterSettings();

The PrinterSettings class provides the following 22 properties:CanDuplex, Collate, Copies, DefaultPageSettings, Duplex, FromPage,
InstalledPrinters, IsDefaultPrinter, IsPlotter, IsValid, LandscapeAngle, MaximumCopies, MaximumPage, MinimumPage, PaperSizes,
PaperSources, PrinterName, PrinterResolutions, PrintRange, PrintToFile, SupportsColor, and ToPage. In the sections that follow, we will
discuss each of these properties in turn.

11.4.1.1 The InstalledPrinters Property

The InstalledPrinters static property returns the names of all available printers on a machine, including printers available on the network. This
property returns all the printer names in a PrinterSettings.StringCollection object.

iterates through all the available printers on a machine.

Listing 11.5 Getting all installed printers on a machine

foreach(String printer in
PrinterSettings.InstalledPrinters)

{

string str = printer.ToString();
}

11.4.1.2 The paperSizes Property

The PaperSizes property returns the paper sizes supported by a printer. It returns all the paper sizes inRrinterSettings.PaperSizeCollection
object.

iterates through all the available paper sizes.

Listing 11.6 Reading all available paper sizes

PrinterSettings prs = new PrinterSettings();
foreach(PaperSize ps in prs.PaperSizes)

{
string str = ps.ToString();

}

11.4.1.3 The PrinterResolutions Property

The PrinterResolutions property returns all the resolutions supported by a printer. It returns all the printer resolutions in a
PrinterSettings.PrinterResolutionCollection object that contains PrinterResolution objects.

reads the printer resolutions and adds them to aListBox control. Here YourPrinterName is the name of the printer you want to
use. If you do not set a printer name, the default printer will be used.

Listing 11.7 Getting printer resolution

PrinterSettings ps = new PrinterSettings();

/I Set the printer name

ps.PrinterName = YourPrinterName;
foreach(PrinterResolution pr in ps.PrinterResolutions)

{
listBox2.ltems.Add(pr.ToString());

}

The PrinterResolution class, which represents the resolution of a printer, is used by thePrinterResolutions and PrinterResolution properties of
PrinterSettings to get and set printer resolutions. Using these two properties, we can get all the printer resolutions available on a printer. We
can also use it to set the printing resolution for a page.

The PrinterResolution class has three properties: Kind, X, and Y. The Kind property is used to determine whether the printer resolution is the
PrinterResolutionKind enumeration type orCustom. If it'sCustom, the X and Y properties are used to determine the printer resolution in the
horizontal and vertical directions, respectively, in dots per inch. If the Kind property is not Custom, the value of X and Y each is 1.

11.4.1.4 The canDuplex and Duplex Properties

The CanDuplex property is used to determine whether a printer can print on both sides of a page. If so, we can set thBuplex property to true
to print on both sides of a page.

determines whether your printer can print on both sides of a page. If your program respondsue, you have a very good printer.

Listing 11.8 Using the canDuplex property

PrinterSettings ps = new PrinterSettings();
MessageBox.Show("Supports Duplex?");
MessageBox.Show("Answer = " + ps.CanDuplex.ToString());

The Duplex enumeration specifies the printer's duplex settings, which are used byrinterSettings. The members of the Duplex enumeration are
described in[Table 11.1].

11.4.1.5 The Collate Property

The Collate property (both get and set) is used only if we choose to print more than one copy of a document. If the value @llate is true, an
entire copy of the document will be printed before the next copy is printed. If the value is false, all copies of page 1 will be printed, then all
copies of page 2, and so on.

The code snippet that follows sets the Collate property of PrinterSettings to true:

PrinterSettings ps = new PrinterSettings();
ps.Collate=true;

11.4.1.6 The Copies Property

The Copies property (both get and set) allows us to enter the number of copies of a document that we want to print. Not all printers support
this feature (in which case this setting will be ignored). The MaximumCopies property, which is described infSection 11.4.1.9, tells us how

many copies the printer can print.

Table 11.1. buplex members

Member Description

Default Default duplex setting

Member Description

Horizontal Double-sided, horizontal printing
Simplex Single-sided printing
Vertical Double-sided, vertical printing

Duplex Printing: A Problem

Duplex printing (the ability to print on both sides of a page) is a feature usually found on higher-end laser and inkjet printers. It
is generally found only on more expensive printers because either the printer needs to be able to print on both sides of a
sheet, or it must have an internal mechanism to turn the page over and print on the other side.

Let's assume you have a low-end printer and need to print on both sides of the page. To do this, you would need to create a
custom software solution. Let's also assume that your application is printing a 100-page text document. Because the
document consists of text alone, this is not too difficult to achieve. You would simply read from a text stream and keep track of
whether you have the space to print the next line. If not, you would tell the printer to go to another page. In this scenario you
would end up with 100 single-sided pages.

So how do you get double-sided printing? In the tradition of good programming, you cheat, of course! The solution to this
problem is to track the page number, and on the first pass print only odd-numbered pages (1, 3, 5, and so on). Once you have
done this, display a dialog box that tells you to take all the sheets of paper just printed and reload them into the printer so they
will be fed into the printer upside down. Now you can print the even-numbered pages (2, 4, 6, and so on). Voila! The user gets
duplex printing functionality from a cheap printer.

The following code sets the Copies property of PrinterSettings:

PrinterSettings ps = new PrinterSettings();
/l We want 10 copies of our document
ps.Copies=10;

11.4.1.7 The IsPlotter Property

The IsPlotter property tells us if the printer we're using is actually a plotter that can accept plotter commands.

The following code snippet indicates whether the printer is a plotter:

PrinterSettings ps = new PrinterSettings();
MessageBox.Show(ps.IsPlotter. ToString());

11.4.1.8 The PrinterName and IsVvalid Properties

If we print without setting the PrinterName property, our printout will be sent to the default printer. ThePrinterName property allows us to
specify a printer to use. The IsValid property tells us whether thePrinterName value we have selected represents a valid printer on our system.

checks if the printer is valid.

Listing 11.9 Using the Isvalid property

PrinterSettings ps = new PrinterSettings();
ps.PrinterName=("Invalid Printer Name");
MessageBox.Show("ls this a valid printer name?");
MessageBox.Show(ps.IsValid. ToString());

11.4.1.9 The MaximumCopies Property

The MaximumCopies property determines how many copies the printer can print. Some printers do not allow us to print more than one copy
at a time.

isting 11.1q reads the maximum number of copies that a printer can print.

Listing 11.10 Reading the maximum number of copies

PrinterSettings ps = new PrinterSettings();
MessageBox.Show("Maximum number of copies: ");
MessageBox.Show(ps.MaximumCopies);

11.4.1.10 The SupportsColor Property

The SupportsColor property tells us whether the current printer supports printing in color. It will returtrue if the printer supports color printing
and false otherwise.

isting 11.17 reads the value of the SupportsColor property to find out whether a printer supports colors.

Listing 11.11 Using the SupportsColor property

PrinterSettings ps = new PrinterSettings();
MessageBox.Show("Does this printer support color:");
MessageBox.Show(ps.SupportsColor.ToString());

11.4.1.11 Other PrinterSettings Properties

Besides the properties discussed already, the PrinterSettings class provides the additional properties listed ifable 11.3. We will discuss
these properties in detail in our examples.

11.4.2 The papersize Class

Most printers can use papers of more than one size (height and width). The PaperSize class is used to read and set the paper size used by a
printer.

The PaperSize class represents the size of paper used in printing. This class is used byrinterSettings through its PaperSizes property to get
and set the paper sizes for the printer.

Table 11.2. Other PrinterSettings properties

Property Description

DefaultPageSettings Returns the default page settings.

FromPage Returns the page number of the first page to print. Both get and set.
IsDefaultPrinter Returns true if the current printer is the default printer.
LandscapeAngle Returns the angle, in degrees, by which the portrait orientation is rotated to produce the landscape orientation. Valid

rotation values are 90 and 270 degrees. If landscape is not supported, the only valid rotation value is 0 degrees.

MaximumPage Returns the maximum value of FromPage or ToPage that can be selected in a print dialog. Both get and set.
MinimumPage Returns the minimum value of FromPage or ToPage that can be selected in a print dialog. Both get and set.
PrintRange Returns the page numbers that the user has specified to be printed. Both get and set.

PrintToFile Returns a value indicating whether the printing output is sent to a file instead of a port. Both get and set.
ToPage Returns the page number of the last page to print. Both get and set.

The PaperSize class has four properties: Height, Kind, PaperName, and Width. Height, Width, and PaperName have both get and set access.
The Height and Width properties are used to get and set the paper's height and width, respectively, in hundredths of an inch. Th@aperName
property is used to get and set the name of the type of paper, but it can be used only when the Kind property is set to Custom. The Kind
property returns the type of paper.

We can construct custom paper sizes using the PaperSize class. Listing 11.14 reads the PaperSize properties.

Listing 11.12 Reading PaperSize properties

PrinterSettings ps = new PrinterSettings();
Console.WriteLine("Paper Sizes");
foreach(PaperSize psize in ps.PaperSizes)

{
string strl = psize.Kind.ToString();

string str2 = psize.PaperName.ToString();
string str3 = psize.Height. ToString();
string str4 = psize.Width.ToString();

}

11.4.3 The PaperSource Class

The PaperSource class specifies the paper tray from which the printer retrieves the paper for the current printing task. This class is used by
PrinterSettings through its PaperSources property to get and set the paper source trays that are available on the printer. Th®aperSize class
has two properties: Kind and SourceName. The Kind property returns an enumerated value for the paper source, andSourceName returns the
name of the paper source as a string.

isting 11.13 reads all the paper sources and displays them in a message box.

Listing 11.13 Reading paper sources

PrinterSettings ps = new PrinterSettings();
foreach(PaperSource p in ps.PaperSources)

{

MessageBox.Show(p.SourceName);

}

11.4.4 The printerResolutionkind Enumeration

The PrinterResolutionKind enumeration specifies a printer resolution, as described iflable 11.3. This enumeration is used by the
PrinterResolution, PrinterSettings, and PageSettings classes.

11.4.5 printersettings Collection Classes

Besides the PrinterSettings class, the System.Drawing.Printing namespace provides three PrinterSettings collection classes. These collection
classes provide members to count total items in a collection, and to add items to and remove items from a collection. These classes are

1. PrinterSettings.PaperSizeCollection. A printer may support different kinds of papers, including papers of different sizes. This
class returns a collection including all paper sizes supported by the printer. PaperSizeCollection contains PaperSizes objects.

PrinterSettings.PaperSourceCollection. A printer may support different paper sources (trays). This class represents a

collection of paper sources (trays) provided by a printer. PaperSourceCollection is available via thePaperSources property and
contains PaperSource objects.

3. PrinterSettings.PrinterResolutionCollection. A printer may support different resolutions. This class represents a collection
of resolutions supported by a printer. PrinterResolutionCollection is accessible via the PrinterResolutions property and contains
PrinterResolution objects.

Table 11.3. PrinterResolutionKind members

Member Description
Custom Custom resolution
Draft Draft-quality resolution
High High resolution
Low Low resolution
Medium Medium resolution

All of these collection classes provide Count and Item properties. The Count property returns the total number of items in a collection, and the
Item property returns the item at the specified index. We will use these classes in our samples.

11.4.6 A Printer Settings Example

On the basis of the preceding discussion of printer settings, and of printerrelated classes and their members, let's write an application using
these classes. In this application we will display available printers, the resolutions they support, available paper sizes, and other printer
properties. This application will also allow us to set printer properties.

First we create a Windows application and add a combo box, two list boxes, three buttons, six check boxes, and two text boxes to the form.
The final form looks like . Then we add a reference to theSystem.Drawing.Printing namespace.

Figure 11.8. The printer settings form

™ Printer Settings

Avallable Prinkers

Gel Paper Size

Next we write code. The Available Printers combo box displays all available installed printers on the machine in theListBox control. We load
all installed printers on the form's load event. As Listin; 11.12 shows, we use the InstalledPrinters static property of PrinterSettings, which
returns all installed printer names. We check if the installed printers count is more than 0 and add the installed printers to the combo box.

Listing 11.14 Reading all available printers

private void Form1_Load(object sender,
System.EventArgs e)
{
/I See if any printers are installed
if(PrinterSettings.InstalledPrinters.Count <= 0)
{
MessageBox.Show("Printer not found!");
return;
}
/I Get all the available printers and add them to the
/I combo box
foreach(String printer in
PrinterSettings.InstalledPrinters)
{
PrintersList.ltems.Add(printer.ToString());
}
}

The Get Printer Resolution button returns resolutions supported by a printer selected inListBox1. The PrinterResolutions property of
PrinterSettings returns the printer resolutions supported by the printer.Listin; 11.13 reads all available resolutions for the selected printer in

ListBox1 and adds them to ListBox2.

Listing 11.15 Reading printer resolutions

private void button2_Click(object sender,
System.EventArgs e)

{

/I'lf no printer is selected

if(PrintersList. Text == string.Empty)
{
MessageBox.Show("Select a printer from the list");
return;
}
/I Get the current selected printer from the
/I list of printers
string str = PrintersList.Selectedltem.ToString();
/I Create a PrinterSettings object
PrinterSettings ps = new PrinterSettings();
/I Set the current printer
ps.PrinterName = str;
/I Read all printer resolutions and add
/I them to the list box
foreach(PrinterResolution pr
in ps.PrinterResolutions)
{
ResolutionsList.ltems.Add(pr.ToString());
}
}

The Get Paper Size button returns the available paper sizes. Again we use thé>aperSizes property of PrinterSettings, which returns all
available paper sizes. Listing 11.1€ reads all available paper sizes and adds them to the list box.

Listing 11.16 Reading paper sizes

private void button3_Click(object sender,
System.EventArgs €)
{
/I'lf no printer is selected
if(PrintersList. Text == string.Empty)
{
MessageBox.Show("Select a printer from the list");
return;
}
/I Create printer settings
PrinterSettings prs = new PrinterSettings();
/I Get the current selected printer from the
/I list of printers
string str = PrintersList.Selectedltem.ToString();
prs.PrinterName = str;
/I Read paper sizes and add them to the list box
foreach(PaperSize ps in prs.PaperSizes)
{
PaperSizesList.ltems.Add(ps.ToString());
}
}

The Get Printer Properties button gets the printer properties and sets the check boxes and text box controls according to the values
returned. The Get Printer Properties button click event handler code is given in Lising 11.17. We read many printer properties that were
discussed earlier in this chapter.

Listing 11.17 Reading printer properties

private void GetProperties_Click(object sender,
System.EventArgs €)
{

/I'lf no printer is selected

if(PrintersList. Text == string.Empty)

{
MessageBox.Show("Select a printer from the list");
return;

}

PrinterSettings ps = new PrinterSettings();

string str = PrintersList.Selectedltem.ToString();

ps.PrinterName = str;

/I Check if the printer is valid

if(!ps.IsValid)

{
MessageBox.Show("Not a valid printer");
return;

}

/I Set printer name and copies

textBox1.Text = ps.PrinterName.ToString();

textBox2.Text = ps.Copies.ToString();

/I If printer is the default printer
if (ps.IsDefaultPrinter == true)
IsDefPrinterChkBox.Checked = true;
else
IsDefPrinterChkBox.Checked = false;
/'l printer is a plotter
if (ps.IsPlotter)
IsPlotterChkBox.Checked = true;
else
IsPlotterChkBox.Checked = false;
/I Duplex printing possible?
if (ps.CanDuplex)
CanDuplexChkBox.Checked = true;
else
CanDuplexChkBox.Checked = false;
/I Collate?
if (ps.Collate)
CollateChkBox.Checked = true;
else
CollateChkBox.Checked = false;
/I Printer valid?
if (ps.IsValid)
IsValidChkBox.Checked = true;
else
IsValidChkBox.Checked = false;
/I Color printer?
if (ps.SupportsColor)
SuppColorsChkBox.Checked = true;
else
SuppColorsChkBox.Checked = false;

Now let's run the application. By default, the Available Printers combo box displays all available printers. Select a printer from the list, and

d by the s

click the Get Printer Resolution button, which displays the printer resolutions support

Size and Get Printer Properties buttons. The final output of the application is shown in

iqure 11.9.

lected printer. Also click on th&et Paper

Figure 11.9. Reading printer properties

B Printer Celhinns

Y=600]
¥=1200 ¥=1200]

We will be using manyPrinterSettings class members throughout this chapter.

ETY rrevious [ecr]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

11.5 The printbocument and print Events

So far we have seen how to print simple text and how to read and set printer settings. In the previous sections we saw that in a printing

application, we create a

PrintDocument object, set its printer name, set the printpage event handler, and then call thérint method.

PrintDocument offers more than this. In this section we will covePrintDocument members and print events.

The PrintDocument class is used to tell the printing system how printing will take placeflable 11.4 describes the properties of the

PrintDocument class.

Besides the properties described in !'able 11.1 PrintDocument also provides printing-related methods that invoke print events. These

methods are described in [Table 11.5

Table 11.4. pPrintDocument properties

Property Description
DefaultPageSettings Represents the page settings using aPageSettings object.
DocumentName Returns the name of the document to be displayed in a print status dialog box or printer queue while printing the

document.

PrintController

Returns the print controller that guides the printing process.

PrinterSettings Returns the printer settings represented by aPrinterSettings object.
Table 11.5. Printbocument methods
Method Description

OnBeginPrint

Raises the BeginPrint event, which is called after the Print method and before the first page of the document is

printed.
OnEndPrint Raises the EndPrint event, which is called when the last page of the document has been printed.
OnPrintPage Raises the PrintPage event, which is called before a page prints.
OnQueryPageSettings Raises the QueryPageSettings event, which is called immediately before each PrintPage event.
Print Starts the document's printing process.

All of these methods allow derived classes to handle the event without attaching a delegate. This is the preferred technique for handling the

event in a derived class.

We will discuss these methods and their events, and how to handle them, in our examples.

11.5.1 Understanding print Events

During the printing process, the printing system fires events according to the stage of a printing process. The three common events are
BeginPrint, PrintPage, and EndPrint. As their names indicate, theBeginPrint event occurs when thePrint method is called, and the EndPrint
event occurs when the last page of the document has been printed. The PrintPage event occurs for each page being printed (as i
when the Print method is called and after the BeginPrint event has occurred.

Figure 11.10. Print events

Print Method

.

BeginPrint Event

Is end of the page? PrintPage Event

EndPage Event

shows a flowchart for the print events during a printing process. Th&eginPrint event is raised after the Print method is called.
Then the printing process checks if there are any pages. If there are, the PrintPage event occurs, which is responsible for the actual printing,
and the control goes back to check if there are more pages to print. When all pages are done printing, the EndPage event is fired.

The PrintEventArgs class provides data forBeginPrint and EndPrint events. This class is inherited from CancelEventArgs, which implements a
single property called Cancel, that indicates if an event should be canceled (in the current .NET Framework releaseRrintEventArgs is reserved
for future use).

The BeginPrint event occurs when thePrint method is called and before the first page prints. BeginPrint takes aPrintEventArgs object as an
argument. This event is the best place to initialize resources. The PrintEventHandler method, which is used to handle the event code, is
called whenever the BeginPrint event occurs.

The PrintPage event occurs when thePrint method is called and before a page prints. When we create aPrintPageEventHandler delegate, we
identify a method that handles the PrintPage event. The event handler is called whenever the PrintPage event occurs.

The code snippet that follows creates a PrintPageEventHandler delegate, where pd_PrintPage is an event handler:

PrintDocument pd = new PrintDocument();
pd.PrintPage +=
new PrintPageEventHandler(pd_PrintPage);

PrintPageEventHandler takes a PrintPageEventArgs object as its second argument, which has the six properties described iffable 11.6.

The following code snippet shows how to get the Graphics object from PrintPageEventArgs:

public void pd_PrintPage(object sender,
PrintPageEventArgs ev)

{

/I Get the Graphics object attached to
/I PrintPageEventArgs

Graphics g = ev.Graphics;

/I Use g now

}

The EndPrint event occurs when the last page of the document has been printed. It takes &@rintEventArgs object as an argument. This is the
best place to free your resources. The PrintEventHandler method is called whenever the EndPrint event occurs and is used to handle the
event code.

Now let's write an application that shows how to use these events. We create a Windows application and add a a combo tton to
the form. We set ComboBox.Name to printersList and the text of the button toPrintEvents Start. The final form looks like Figure 11.11]

Figure 11.11. The print events application

Table 11.6. PrintPageEventArgs properties

Property Description

Cancel Indicates whether the print job should be canceled. Both get and set.

Graphics Returns the Graphics object.

Property Description

HasMorePages Indicates whether an additional page should be printed. Used in multipage documents before the Print method is called.
Both get and set.

MarginBounds Returns the portion of the page inside the margins.

PageBounds Returns the total area of the page.

PageSettings Returns page settings for the current page.

Next we add a reference to the System.Drawing.Printing namespace as follows:

using System.Drawing.Printing;

Then we add code on the form's load event handler that adds all installed printers to the combo box (see .

Listing 11.18 Loading all installed printers

private void Form1_Load(object sender,
System.EventArgs €)
{
/I See if any printers are installed
if(PrinterSettings.InstalledPrinters.Count <= 0)
{
MessageBox.Show("Printer not found!");
return;
}
/I Get all available printers and add them to the
/I combo box
foreach(String printer in
PrinterSettings.InstalledPrinters)
{
printersList.ltems.Add(printer.ToString());
}
}

Now we write code for the button click event handler. Listing 11.19 creates all three print event handlers, attaches them to &rintDocument
object, and calls PrintDocument's print methods.

Listing 11.19 Attaching BeginPrint, EndPrint, and PagePrint event handlers

private void PrintEvents_Click(object sender,
System.EventArgs e)

{
/I Get the selected printer
string printerName =
printersList.Selectedltem.ToString();
/I Create a PrintDocument object and set the
/I current printer
PrintDocument pd = new PrintDocument();
pd.PrinterSettings.PrinterName = printerName;

/I BeginPrint event
pd.BeginPrint +=

new PrintEventHandler(BgnPrntEventHandler);
/I PrintPage event
pd.PrintPage +=

new PrintPageEventHandler(PrntPgEventHandler);
/I EndPrint event
pd.EndPrint +=

new PrintEventHandler(EndPrntEventHandler);
/I Print the document
pd.Print();

As stated earlier, the BeginPrint event handler can be used to initialize resources before printing starts, and theEndPrint event handler can be
used to free allocated resources. shows all three print event handlers. ThePrintPage event handler uses the properties for
PrintPageEventArgs and calls DrawRectangle and FillRectangle to print the rectangles. This example simply shows how to call these events.
You can use the PrintPage event handler to draw anything you want to print, as we have seen in previous examples.

Listing 11.20 The BeginPrint, EndPrint, and PagePrint event handlers

public void BgnPrntEventHandler(object sender,
PrintEventArgs peaArgs)

{
/I Create a brush and a pen
redBrush = new SolidBrush(Color.Red);
bluePen = new Pen(Color.Blue, 3);

}

public void EndPrntEventHandler(object sender,
PrintEventArgs peaArgs)

{
/I Release brush and pen objects
redBrush.Dispose();
bluePen.Dispose();

}

public void PrntPgEventHandler(object sender,
PrintPageEventArgs ppeArgs)

{
/I Create PrinterSettings object
PrinterSettings ps = new PrinterSettings();
/I Get Graphics object
Graphics g = ppeArgs.Graphics;
/I Create PageSettings object
PageSettings pgSettings = new PageSettings(ps);
/I Set page margins
ppeArgs.PageSettings.Margins.Left = 50;
ppeArgs.PageSettings.Margins.Right = 100;
ppeArgs.PageSettings.Margins.Top = 50;
ppeArgs.PageSettings.Margins.Bottom = 100;
/I Create two rectangles
Rectangle rectl = new Rectangle(20, 20, 50, 50);
Rectangle rect2 =

new Rectangle(100, 100, 50, 100);

/I Draw and fill rectangles
g.DrawRectangle(bluePen, rectl);

g.FillRectangle(redBrush, rect2);
}

As this discussion has shown, the print event can be handy when you need to initialize or free resources.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

11.6 Printing Text

ms from the program itself. How about reading a text file and printing it from our program?

So far we have printed simple text and i
Do you remember the GDI+ editor fromﬂCha ter §? We can make the editor open a text file and add print functionality to print the text file. In

this section we will read a text file and print it.

As usual, we create a Windows application and add a reference to the System.Drawing.Printing namespace. We then add a text box and four
buttons to the form. We also change the Name and Text properties of the button controls. The final form looks likefFigure 11.13. As you might

guess, the Browse Text File button allows us to browse for text files.

Figure 11.12. The form with text file printing options

E!Fnrm'l

I comboBoxl

&

Brovese Text File

Print Events Print Texkt File

The code for the Browse Text File button is given

inListing 11.21. This button allows you to browse a file and adds the selected file name to

the text box. Clicking the Print Text File button prints the selected text file. We use anOpenFileDialog object to open a text file and set

textBox1.Text as the selected file name. The functi

Note

ionality of thePrint Text and Print Events buttons is obvious.

C# Corner's FAQ (Ijttg:llwww.c—shargcorner.com/fag.asd) includes a long list of .NET how-tos and frequently asked

questions and contains the code for these simple functionalities.

Listing 11.21 The Browse Text File button click event handler

private void BrowseBtn_Click(object sender,
System.EventArgs e)

{
/I Create an OpenFileDialog object
OpenFileDialog fdlg = new OpenFileDialog();
/I Set its properties
fdlg.Title = "C# Corner Open File Dialog" ;
fdlg.InitialDirectory = @"c:\" ;
fdlg.Filter =
"Text files (*.txt)[*.txt|All files (*.%)[*.*" ;
fdlg.Filterindex = 2 ;
fdlg.RestoreDirectory = true ;
/I Show dialog and set the selected file name
/I as the text of the text box
if(fdlg.ShowDialog() == DialogResult.OK)
{

textBox1.Text = fdlg.FileName ;

}

}

Now let's add code for the Print Text File button click. First we add two private variables to the application as follows:

private Font verdanalOFont;
private StreamReader reader;

Then we proceed as shown in Listing 11.24. The code is pretty simple. First we make sure that the user has selected a file name. Then we
create a StreamReader object and read the file by passing the file name as the only argument. Next we create a font with font family Verdana

and size 10 (see [Chapter § for more on fonts). After that we create &rintDocument object, add aPrintPage event handler, and call thePrint

method. The rest is done by the PrintPage event handler.

Note

The StreamReader class is defined in theSystem.|O namespace.

Listing 11.22 The Print Text File button click event handler

http://www.c-sharpcorner.com/faq.asp

private void PrintTextFile_Click(object sender,
System.EventArgs €)
{
/I Get the file name
string filename = textBox1.Text. ToString();
/I Check if it's not empty
if(filename.Equals(string.Empty))
{
MessageBox.Show("Enter a valid file name");
textBox1.Focus();
return;
}
/I Create a StreamReader object
reader = new StreamReader(filename);
/I Create a Verdana font with size 10
verdanalOFont = new Font("Verdana", 10);
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add PrintPage event handler
pd.PrintPage += new PrintPageEventHandler
(this.PrintTextFileHandler);
/I Call Print method
pd.Print();
/I Close the reader
if(reader != null)
reader.Close();

}

The code for the PrintPage event handler PrintTextFileHandler is given inListing 11.23. Here we read one line at a time from the text file,
using the StreamReader.ReadLine method, and call DrawString, which prints each line until we reach the end of the file. To give the text a
defined size, we use the verdanalOFont.GetHeight method.

Note

See and H for details about the DrawString method and fonts, respectively.

Listing 11.23 Adding a print-page event handler

private void PrintTextFileHandler(object sender,
PrintPageEventArgs ppeArgs)
{
/I Get the Graphics object
Graphics g = ppeArgs.Graphics;
float linesPerPage = 0;
float yPos = 0;
int count = 0;
/I Read margins from PrintPageEventArgs
float leftMargin = ppeArgs.MarginBounds.Left;

float topMargin = ppeArgs.MarginBounds.Top;
string line = null;
/I Calculate the lines per page on the basis of
/I the height of the page and the height of
/I the font
linesPerPage = ppeArgs.MarginBounds.Height /
verdanalOFont.GetHeight(g);
/I Now read lines one by one, using StreamReader
while(count < linesPerPage &&
((line = reader.ReadLine()) != null))
{
/I Calculate the starting position
yPos = topMargin + (count *
verdanalOFont.GetHeight(g));
/I Draw text
g.DrawsString(line, verdanalOFont, Brushes.Black,
leftMargin, yPos, new StringFormat());
/I Move to next line
count++;
}
/'If PrintPageEventArgs has more pages
/I to print

if(line = null)
ppeArgs.HasMorePages = true;
else

ppeArgs.HasMorePages = false;

You should be able to add code for thePrint Text and Print Events buttons yourself. Their functionality should be obvious.

Now run the application, browse a text file, and hit thé’rint Text File button, and you should be all set.

Note

Using the same method, you can easily add printing functionality to the GDI+ editor. You can add a menu item called Print

to the editor that will print an opened text file.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

11.7 Printing Graphics

We just saw how to print text files. Now let's talk about how to print images and graphics items such as lines, rectangles, and ellipses. You
probably have a pretty good idea how printing works. It's all in the magic of the Graphics object available throughPrintPageEventArgs. Once
we have a printer's Graphics object, we call draw and fill methods to print graphics items. In this section we will create an application that
shows how to print simple graphics objects, including lines, curves, rectangles, and images.

Agajn, we create a Windows application and add a main menu to the form. We add four menu items to the main menu. The final form looks
like Eigure 11.13. As you might guess, theDraw Items and View Image menu items will draw graphics objects and show an image,
respectively. The Print Image and Print Graphics Items menu items will print the image and the graphics items, respectively.

Figure 11.13. A graphics-printing application

The next step is to add a reference to the System.Drawing.Printing namespace.

11.7.1 Printing Graphics Items

Let's write code for the menu items. We'll do the Draw Items first, as inListing 11.24. This menu item draws two lines, a rectangle, and an
ellipse. First we create a Graphics object using the Form.CreateGraphics method and call the DrawLine, DrawRectangle, and FillEllipse
methods. See [Chapter J for more on these methods.

Listing 11.24 Drawing graphics items

private void Drawltems_Click(object sender,
System.EventArgs e)

{
/] Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Draw graphics items
g.DrawLine(Pens.Blue, 10, 10, 10, 100);
g.DrawLine(Pens.Blue, 10, 10, 100, 10);
g.DrawRectangle(Pens.Yellow, 20, 20, 200, 200);
g.FillEllipse(Brushes.Gray, 40, 40, 100, 100);
/I Dispose of object
g.Dispose();

}

shows the output from .

Figure 11.14. Drawing simple graphics items

Now let's write code for Print Graphics Items. We want to print the output shown i . We create aPrintDocument object, add a
PrintPage event handler, and call thePrint method. The PrintPage event handler draws the graphics items.

isting 11.24 contains two methods. The PrintGraphicsltems_Click method is a menu click event handler that creates @rintDocument object,
sets its PrintPage event, and calls the Print method. The second method, PrintGraphicsltemsHandler, simply calls the draw and fill methods of
PrintPageEventArgs.Graphics.

Listing 11.25 Printing graphics items

private void PrintGraphicsltems_Click(object sender,
System.EventArgs e)

{
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add PrintPage event handler
pd.PrintPage += new PrintPageEventHandler

(this.PrintGraphicsltemsHandler);

/I Print
pd.Print();

}

private void PrintGraphicsltemsHandler(object sender,
PrintPageEventArgs ppeArgs)

{
/I Create a printer Graphics object
Graphics g = ppeArgs.Graphics;
/I Draw graphics items
g.DrawLine(Pens.Blue, 10, 10, 10, 100);
g.DrawLine(Pens.Blue, 10, 10, 100, 10);
g.DrawRectangle(Pens.Yellow, 20, 20, 200, 200);
g.FillEllipse(Brushes.Gray, 40, 40, 100, 100);

}

If you run the application and click on Print Graphics Items, the printer will generate output that looks Iik.

11.7.2 Printing Images

If you did not skip and H then you already know how theDrawlmage method of the Graphics object is used to draw images.
Similarly, the Drawlmage method of PrintPageEventArgs.Graphics prints an image to the printer, which then prints that image onto paper.

Before we add code for the View Image menu item, we need to add two application scope variables as follows:

private Image curlmage = null;
private string curFileName = null;

View Image lets us browse for an image and then draws it on the form. A shows, we create aGraphics object using
Form.CreateGraphics. Then we use OpenFileDialog to browse files on the system. Once a file has been selected, we create thémage object
by using Image.FromFile, which takes the file name as its only parameter. Finally, we uséDrawlmage to draw the image.

Listing 11.26 Viewing an image

private void Viewlmage_Click(object sender,
System.EventArgs €)

{
/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Call OpenFileDialog, which allows us to browse

/I images

OpenFileDialog openDlg = new OpenFileDialog();

openDlg.Filter =
"All Image files|*.bmp;*.qgif;*.jpg;*.ico;"+
"*.emf,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+
"* ico)|*.bmp;*.gif;*.jpg;*.ico|"+
"Meta Files(*.emf;*.wmf)|*.emf;*.wmf";
string filter = openDlg.Filter;
/I Set InitialDirectory, Title, and ShowHelp
/I properties
openDlg.InitialDirectory =
Environment.CurrentDirectory;
openDIg.Title = "Open Image File";
openDlg.ShowHelp = true;
/I'If OpenFileDialog is OK
if(openDlg.ShowDialog() == DialogResult.OK)
{
/I Get the file name
curFileName = openDlg.FileName;
/I Create an Image object from file name
curlmage = Image.FromFile(curFileName);
}
if(curlmage != null)
{
/I Draw image using the Drawlmage method
g.Drawlmage(curlmage, AutoScrollPosition.X,
AutoScrollPosition.Y,
curlmage.Width, curlmage.Height);
}
/I Dispose of object
g.Dispose();
}

Now we run the application and select an image.

shows the output.

Figure 11.15. Viewing an image

| r : l__ ll_l“

R TR
SR

Note

See andE for more on viewing and manipulating images.

Now let's write a Print Image menu item click handler. This option prints an image that we're currently viewing on the form. As in the previous
example, we create a PrintDocument object, add aPrintPage event handler, and call thePrint method. This time, however, instead of using the
DrawRectangle and DrawLine methods, we use the Drawlmage method, which draws the image.

As Listing 11.274 shows, our code creates aPrintDocument object, sets the PrintPage event of PrintDocument and the PrintPage event handler,
and calls PrintDocument.Print. The PrintPage event handler calls Drawlmage.

Listing 11.27 Printing an image

private void Printimage_Click(object sender,
System.EventArgs e)

{
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add the PrintPage event handler
pd.PrintPage += new PrintPageEventHandler

(this.PrintimageHandler);

/I Print
pd.Print();

private void PrintimageHandler(object sender,
PrintPageEventArgs ppeArgs)
{
/I Get the Graphics object from
/I PrintPageEventArgs
Graphics g = ppeArgs.Graphics;
/I'If Graphics object exists
if(curimage != null)
{
/I Draw image using the Drawlmage method
g.Drawlmage(curimage, 0, O,
curlmage.Width, curlmage.Height);
}
}

If we run the application, open and view a file, and click thErint Image menu item, we get a printout that looks Iik.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

11.8 Print Dialogs

In the beginning of this chapter we said that all printing functionality is defined in the System.Drawing.Printing namespace. That statement is
not entirely true. Actually, a few printing-related classes are defined in the System.Windows.Forms namespace. These classes are

® printDialog
® PrintPreviewDialog
® printPreviewControl

® pygeSetupDialog

These classes are also available as Windows Forms controls in
the toolbox. The toolbox with the three print dialogs is shown in

dio .NET; we can add them to a form by dragging the control from

Figure 11.16. Print dialogs in the Visual Studio .NET toolbox

T colba

Data |

Components
Windows Forms -

&7 FontDislog
¥ ColoiDialog
| T3 PrintDialog
5 PrintPreviewDialog

[d, PrintPreviewControl |
© EnoFrovider

|3 PrintDocument

Clipboard Ring hd
General |

‘% Server Explorer ﬂ‘ Toolbox

However, adding and using these controls programmatically is even easier than using the toolbox, as we will soon see. Before you learn how
to use them, let's explore their functionality.

11.8.1 The PrintDialog Control

The PrintDialog class represents the PrintDialog control in the .NET Framework library. This class represents a standard Windows printer
dialog, which allows the user to select a printer and choose which portions of the document to print. [Table 11. ﬂ describes the PrintDialog
class properties. By default, all of these properties are false when aPrintDialog object is created, and all the properties have both get and set

options.

Besides the properties defined in [Table 11.7, PrintDialog has one method called Reset. This method resets all options, the last selected
printer, and the page settings to their default values.

isting 11.29 creates aPrintDialog object, sets its properties, calls ShowDialog, and prints the document.

Listing 11.28 Creating and using the PrintDialog control

PrintDialog printDIlg = new PrintDialog();
PrintDocument printDoc = new PrintDocument();

printDoc.DocumentName = "Print Document";

printDlg.Document = printDoc;
printDIg.AllowSelection = true;
printDIlg.AllowSomePages = true;

/I Call ShowDialog

if (printDlg.ShowDialog() == DialogResult.OK)

printDoc.Print();

Table 11.7. printDialog properties

Property

Description

AllowSelection

Indicates whether the From... To... Page option button is enabled.

AllowSomePages

Indicates whether the Pages option button is enabled.

Document Identifies the PrintDocument object used to obtain printer settings.
PrinterSettings Identifies the printer settings that the dialog box modifies.
PrintToFile Indicates whether the Print to file check box is checked.
ShowHelp Indicates whether the Help button is displayed.

ShowNetwork Indicates whether the Network button is displayed.

11.8.2 The pagesetupbialog Control

The PageSetupDialog class represents the PageSetupDialog control in the .NET Framework library. This class represents a standard

Windows page setup dialog that allows users to manipulate page settin‘g margins and paper orientation. Users can also set a
H-able 11.9

PageSettings object through PageSetupDialog's PageSettings property. |

describes the properties of thePageSetupDialog class. All

of these properties have both get and set options.

As with PrintDialog, the PageSetupDialog class has aReset method that resets all the default values for the dialog.

isting 11.29 creates aPageSetupDialog object, sets its properties, calls ShowDialog, and prints the document.

Table 11.8. PageSetupDialog properties

Property Description

AllowMargins Indicates whether the margins section of the dialog box is enabled. By default, true when a PageSetupDialog object is
created.

AllowOrientation Indicates whether the orientation section of the dialog box (landscape versus portrait) is enabled. By default, true when a
PageSetupDialog object is created.

AllowPaper Indicates whether the paper section of the dialog box (paper size and paper source) is enabled. By default, true when a
PageSetupDialog object is created.

AllowPrinter Indicates whether the Printer button is enabled. By default,true when aPageSetupDialog object is created.

Document Identifies the PrintDocument object from which to get page settings. By default,null when aPageSetupDialog object is
created.

MinMargins Indicates the minimum margins the user is allowed to select, in hundredths of an inch. By default, null when a
PageSetupDialog object is created.

PageSettings Identifies the page settings to modify. By default,null when aPageSetupDialog object is created.

PrinterSettings Identifies the printer settings that the dialog box will modify when the user clicks the Printer button. By default,null when
a PageSetupDialog object is created.

ShowHelp Indicates whether the Help button is visible. By default,false when aPageSetupDialog object is created.

ShowNetwork Indicates whether the Network button is visible. By default,true when aPageSetupDialog object is created.

Listing 11.29 Creating and using the PageSetupDialog control

setupDlg = new PageSetupDialog();

printDlg = new PrintDialog();

printboc = new PrintDocument();
printboc.DocumentName = "Print Document";

/I PageSetupDialog settings
setupDlg.Document = printDoc;
setupDlg.AllowMargins = false;
setupDlg.AllowOrientation = false;
setupDlg.AllowPaper = false;
setupDlg.AllowPrinter = false;

setupDlg.Reset();

if (setupDlg.ShowDialog() == DialogResult.OK)

{

printDoc.DefaultPageSettings =
setupDlg.PageSettings;

printDoc.PrinterSettings =
setupDIg.PrinterSettings;

}

11.8.3 The printPreviewbialog Control

The PrintPreviewDialog class represents the PrintPreviewDialog control in the .NET Framework library. This class represents a standard
Windows print preview dialog, which allows users to preview capabilities before printing. The PrintPreviewDialog class is inherited from the
Form class, which means that this dialog contains all the functionality defined ifform, Control, and other base classes.

In addition to the properties pro
are provided by many controls.

ided by the base classes, this class has its own properties. Many of these properties are very common and
able 11.9 describes a few importantPrintPreviewDialog class properties. All of these properties have both get
and set options.

isting 11.3(creates aPrintPreviewDialog object, sets its properties, calls ShowDialog, and prints the document.

Listing 11.30 Creating and using the PrintPreviewDialog control

/I Create a PrintPreviewDialog object
PrintPreviewDialog previewDIg =
new PrintPreviewDialog();
/I Create a PrintDocument object
PrintDocument printDoc =
new PrintDocument();
/I Set Document property
previewDIg.Document = printDoc;
previewDIg.WindowState =
FormWindowState.Normal;
/I Show dialog
previewDIlg.ShowDialog();

Table 11.9. Some PrintPreviewDialog properties

Property Description
Document Identifies the document shown in preview.
HelpButton Indicates whether a help button should be displayed in the caption box of the form. The default value ifalse.
KeyPreview Indicates whether the form will receive key events before the event is passed to the control that has focus. The default

value is false.

ShowlInTaskbar Indicates whether the form is displayed in the Windows taskbar. The default value igrue.

TransparencyKey |dentifies the color that will represent transparent areas of the form.

UseAntiAlias Indicates whether printing uses the anti-aliasing features of the operating system.

WindowState Identifies the form's window state.

11.8.4 Print Dialogs in Action

Now let's create a Windows application. In this application you will see how to use the print dialogs in your Windows applications.

We create a Windows application and add a MainMenu control to the form. We also add four menu items and a separator to theMainMenu
control. The final form looks like Eigure 11.17.

Figure 11.17. The print dialog application

W e R
B B e e R [A
W e e
momE R LEG R TR Al el
wobp e e e T e e
R ST R R TR R A
altebiatinhia b tut e burtay ol i
B e R TS e S R
T e (g
aw e alie e
W Tl B e e B e T W T
W E R R T e
aen e al e e e
e e W Rt A A
a5 e A P
T T Tl S SR S R e
T g (e
e e e
W R B e B T e
R L L Ll e R e o
T R Tl F TP rae TR e A
o mEamm m e e e e]
LR T SR S e et e S
TN TN e e dd | B

B BT TR e B T
e e kR

CR TR T B R

As usual, our first step is to add some private variables to the project, as follows:

/I Variables

private Image curlmage = null;

private string curFileName = null;

private PrintPreviewDialog previewDlg = null;
private PageSetupDialog setupDlg = null;
private PrintDocument printDoc = null;
private PrintDialog printDIg = null;

We also add the following namespaces to the project:
using System.Drawing.Printing;

using System.Drawing.Imaging;

using System.Drawing.Drawing2D;

using System.Drawing.Text;

On our form's load event, we initialize these dialogs. We also create a PrintPage event handler and add it to thePrintDocument object, as

shown in ‘.

Listing 11.31 Initializing print dialogs

private void Form1_Load(object sender,
System.EventArgs e)

{
/I Create print preview dialog
/I and other dialogs
previewDIg = new PrintPreviewDialog();
setupDlg = new PageSetupDialog();
printDlg = new PrintDialog();
printDoc = new PrintDocument();
/I Set document name
printDoc.DocumentName = "Print Document";
/I PrintPreviewDialog settings
previewDIg.Document = printDoc;
/I PageSetupDialog settings
setupDlg.Document = printDoc;
/I PrintDialog settings
printDlg.Document = printDoc;
printDlg.AllowSelection = true;
printDlg.AllowSomePages = true;
/I Create a PrintPage event handler
printDoc.PrintPage +=

new PrintPageEventHandler(this.pd_Print);

}

Now we add the PrintPage event handler, which callsDrawGraphicsltems as shown inListing 11.33. We pass PrintPageEventArgs.Graphics

as the only parameter to DrawGraphicsltems.

Listing 11.32 The PrintPage event handler

private void pd_Print(object sender,

PrintPageEventArgs ppeArgs)

{
DrawGraphicsltems(ppeArgs.Graphics);

}

The DrawGraphicsltems method draws an image and text on the printer or the form, depending on theGraphics object. If we pass
Form.Graphics, the DrawGraphicsltems method will draw graphics objects on the form, but if we passPrintPageEventArgs.Graphics, this
method will send drawings to the printer.

The code for the DrawGraphicsltems method is given inListing 11.33. This method also sets the smoothing mode and text qualities via the
SmoothingMode and TextRenderingHint properties. After that it calls Drawlmage and DrawText.

Listing 11.33 The DrawGraphicsitems method

private void DrawGraphicsltems(Graphics gObj)
{
/I Set text and image quality
gObj.SmoothingMode =
SmoothingMode.AntiAlias;
gObj.TextRenderingHint =
TextRenderingHint.AntiAlias;
if(curlmage != null)
{
/I Draw image using the Drawlmage method
gObj.Drawlmage(curimage,
AutoScrollPosition. X,
AutoScrollPosition.Y,
curlmage.Width, curlmage.Height);
}
/I Draw a string
gObj.DrawString("Printing Dialogs Test",
new Font("Verdana", 14),
new SolidBrush(Color.Blue), 0, 0);

There's just one more thing to do before we write the menu item event handlers. We call DrawGraphicsltems from the form's paint event
handler, as [istin; 11.34 shows. Adding this code will display the drawing on the form.

Listing 11.34 The form's paint event handler

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{

DrawGraphicsltems(e.Graphics);

}

Now we can write code for the menu items. The Open File menu item just lets us browse images and creates arimage object by calling the

Image.FromFile method, asListing 11.34 shows.

Listing 11.35 The Open File menu handler

private void OpenFile_Click(object sender,
System.EventArgs e)
{
/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create open file dialog
OpenFileDialog openDlg = new OpenFileDialog();
/I Set filter as images
openDlg.Filter =
"All Image files|*.bmp;*.gif;*.jpg;*.ico;"+
"*.emf,*.wmf|Bitmap Files(*.bmp;*.gif;*.jpg;"+
“*.ico)[*.bmp;*.gif;*.jpg;*.ico|"+
"Meta Files(*.emf;*.wmf)[*.emf;*.wmf";
string filter = openDlIg.Filter;
/I Set title and initial directory
openDlg.InitialDirectory =
Environment.CurrentDirectory;
openDIg.Title = "Open Image File";
openDlg.ShowHelp = true;
/I Show dialog
if(openDlg.ShowDialog() == DialogResult.OK)
{
/I Get the file name and create
/I Image object from file
curFileName = openDlg.FileName;
curlmage = Image.FromFile(curFileName);
}
/I Paint the form, which
/I forces a call to the paint event
Invalidate();

}

The code for PrintPreviewDialog, PageSetupDialog, and PrintDialog is given inListing 11.34. We show PrintDialog and call its
PrintDocument.Print method if the user selectsOK on the print dialog. We setPageSetupDialog page and printer settings when the user
selects OK on the page setup dialog. For the print preview dialog, we set th&JseAntiAlias property and callShowDialog.

Listing 11.36 Print dialogs

private void PrintDialog_Click(object sender,
System.EventArgs e)

{
if (printDIg.ShowDialog() == DialogResult.OK)
printDoc.Print();

}

private void PageSetupDialog_Click(object sender,
System.EventArgs e)

{
if (setupDlg.ShowDialog() == DialogResult.OK)

printDoc.DefaultPageSettings =
setupDlg.PageSettings;
printDoc.PrinterSettings =
setupDlg.PrinterSettings;
}
}
private void PrintPreview_Click(object sender,
System.EventArgs e)
{
previewDIg.UseAntiAlias = true;
previewDIg.WindowState =
FormWindowState.Normal;
previewDIg.ShowDialog();

}

Now when we run the application and browse an image using the Open File menu item, the form looks Iike.

Figure 11.18. Viewing an image and text

Pt Dinlog
Printing Dlalﬂ% Test

[rl\

b

-

If we click on Print Preview, our program will display the print preview dialog, as shown i.

Figure 11.19. The print preview dialog

inlk (LR T H

As stated earlier, the page setup dialog allows us to set the page properties, including size, soyrces, orientation, and margins. Clicking on
Print Setup on the dialog menu brings up the page setup dialog, which is shown i .

Figure 11.20. The page setup dialog

Fage Setup

-~ Oriertation—— + Marging [nches)
= Portrait et |1 Right [1*

Colgndscape | | Tog [1* | Botom [1©
[ok | Concel | priner. |

Clicking on Print Dialog calls up the standard print dialog, shown i .

Figure 11.21. The print dialog

We can use these dialogs as we would in any other Windows applications.

ETY rreviovs [o]

Team LiB |

11.9 Customizing Page Settings

We have already discussed PageSetupDialog, which allows us to adjust page settings. This is all taken care of by the dialog internally. But
what if we need a custom page setup dialog? Sometimes we won't want to use the default dialogs provided by Windows. For example,
suppose we want to change the text of the dialog or don't want the user to have page selection or anything else that is not available on the
default Windows dialogs.

The System.Drawing.Printing namespace also defines functionality to manage page settings programmatically.

11.9.1 The PageSettings Class

Page settings are the properties of a page that are being used when a page is printed, including color, page margins, paper size, page
bounds, and page resolution.

The PageSettings class represents page settings in the .NET Framework library. This class provides members to specify page settings. It is
used by the PrintDocument.DefaultPageSettings property to specify the page settings of aPrintDocument object.[Table 11.1d describes the
properties of the PageSettings class.

Besides the properties described in , the PageSettings class provides three methods:Clone, CopyToHdevmode, and
SetHdevmode. The Clone method simply creates a copy of the PageSettings object. CopyToHdevmode copies relevant information from the
PageSettings object to the specified DEVMODE structure, and SetHdevmode copies relevant information to thePageSettings object from the
specified DEVMODE structure. The DEVMODE structure is used by Win32 programmers.

11.9.2 Page Margins

The Margins class represents a page margin in the .NET Framework library. It allows you to get the current page margin settings and set new
margin settings. This class has four properties—Left, Right, Top, and Bottom—uwhich represent the left, right, top, and bottom margins,
respectively, in hundredths of an inch. This class is used by the Margins property of the PageSettings class. We will use this class and its
members in our examples.

Table 11.10. pageSettings properties

Property Description

Bounds Returns the size of the page.

Color Indicates whether the page should be printed in color. Both get and set. The default is determined by the printer.

Property Description
Landscape Indicates whether the page is printed in landscape or portrait orientation. Both get and set. The default is determined by
the printer.
Margins Identifies the page margins. Both get and set.
PaperSize Identifies the paper size. Both get and set.
PaperSource Identifies the paper source (a printer tray). Both get and set.

PrinterResolution

Identifies the printer resolution for the page. Both get and set.

PrinterSettings

Identifies the printer settings associated with the page. Both get and set.

11.9.3 Creating a Custom Paper Size

As mentioned earlier, the PaperSize class specifies the size and type of paper. You can create your own custom paper sizes. For example,

creates a custom paper size with a height of 200 and a width of 100.

Listing 11.37 Creating a custom paper size

/I Create a custom paper size and add it to the list
PaperSize customPaperSize = new PaperSize();
customPaperSize.PaperName = "Custom Size",
customPaperSize.Height = 200;
customPaperSize.Width = 100;

11.9.4 The paperkind Enumeration

The PaperKind enumeration, as we saw earlier, is used by the<ind property to specify standard paper sizes. This enumeration has over 100
members. Among them are A2, A3, A3Extra, A3ExtraTransverse, A3Rotated, A3Transverse, A4, A5, A6, Custom, DCEnvelope, Executive,
InviteEnvelope, ItalyEnvelope, JapanesePostcard, Ledger, Legal, LegalExtra, Letter, LetterExtra, LetterSmall, Standard10x11 (10x14, 10x17,
12x11, 15x11, 9x11), Statement, and Tabloid.

11.9.5 The Papersourcekind Enumeration

The PaperSourceKind enumeration represents standard paper sources|Table 11.1] describes the members of thePaperSourceKind

enumeration.

Table 11.11. PaperSourceKind members

Member Description
AutomaticFeed Automatically fed paper
Cassette A paper cassette
Custom A printer-specific paper source
Envelope An envelope
FormSource The printer's default input bin
LargeCapacity The printer's large-capacity bin
LargeFormat Large-format paper
Lower The lower bin of a printer
Manual Manually fed paper
ManualFeed Manually fed envelope
Middle The middle bin of a printer
SmallFormat Small-format paper
TractorFeed A tractor feed
Upper The upper bin of a printer

11.9.6 Page Settings in Action

Now let's create an application that will allow us to get and set page settings. In this application we will create a custom dialog.

We start by creating a new Windows application in VS.NET. We add some controls to the form, with the result shown in . The
Available Printers combo box displays all available printers. TheSize and Source combo boxes display paper sizes and sources,
respectively. The Paper Orientation section indicates whether paper is oriented in landscape mode or portrait mode. Théaper Margins text
boxes obviously represent left, right, top, and bottom margins. The Bounds property is represented by theBounds (Rectangle) text box. The
Color Printing check box indicates whether the printer supports color printing. TheSet Properties button allows us to enter new values in the
controls.

Figure 11.22. The custom page settings dialog

R TS
| SR SR i
[p | B
- PR N R N T e o Rl W PRl R] R T R R T T o L S S S S R) :r
|ttt ssadi SO e e |
T -Paper Orientation—— | PoperMorgins (Inlnches)
| portrar oof | Lef sofightie el |
Pl ilandecape niikc | tTeps [Loomowome i L
- DR - seeopeties [0 canm [iii1iiE

The form's load event (see Listing 11.39), loads all the required PageSettings-related settings using theLoadPrinters, LoadPaperSizes,
LoadPaperSources, and ReadOtherSettings methods.

Listing 11.38 The form's load event handler

private void Form1_Load(object sender,
System.EventArgs e)

{
/I Load all available printers
LoadPrinters();
/I Load paper sizes
LoadPaperSizes();
/I Load paper sources
LoadPaperSources();
/I Load other settings
ReadOtherSettings();

The LoadPrinters, LoadPaperSizes, LoadPaperSources, and ReadOtherSettings methods are used to load printers, paper sizes, paper
sources, and other properties, respectively. The LoadPrinters method is given inListing 11.39. We simply read the InstalledPrinters property of
PrinterSettings and add printers to the printersList combo box.

Listing 11.39 Loading printers

private void LoadPrinters()
{
/I Load all available printers
foreach(String printer in
PrinterSettings.InstalledPrinters)
{
printersList.ltems.Add(printer.ToString());
}
printersList.Select(0, 1);
}

The LoadPaperSizes method (seeListing 11.40), loads all available paper sizes to the combo box. We read thePaperSizes property of
PrinterSettings and add the paper type to the combo box. Then we create a custom paper size and add this to the combo box as well. This
example will give you an idea of how to create your own custom paper sizes.

Listing 11.40 Loading paper sizes

private void LoadPaperSizes()
{
PaperSizeCombo.DisplayMember = "PaperName";
PrinterSettings settings = new PrinterSettings();
/I Get all paper sizes and add them to the combo box list
foreach(PaperSize size in settings.PaperSizes)
{
PaperSizeCombo.ltems.Add(size.Kind.ToString());
/I You can even read the paper name and all PaperSize
/I properties by uncommenting these two lines:
/I PaperSizeCombo.ltems.Add
/I (size.PaperName.ToString());
/I PaperSizeCombo.ltems.Add(size.ToString());
}
/I Create a custom paper size and add it to the list
PaperSize customPaperSize =
new PaperSize("Custom Size", 50, 100);
/I ' You can also change properties
customPaperSize.PaperName = "New Custom Size";
customPaperSize.Height = 200;
customPaperSize.Width = 100;
/I Don't assign the Kind property. It's read-only.
/I customPaperSize.Kind = PaperKind.A4;
/I Add custom size
PaperSizeCombo.ltems.Add(customPaperSize);

}

The LoadPaperSources method (see . reads all available paper sources and adds them to thePaperSourceCombo combo box.
We use the PaperSources property of PrinterSettings to read the paper sources.

Listing 11.41 Loading paper sources

private void LoadPaperSources()
{
PrinterSettings settings = new PrinterSettings();
PaperSourceCombo.DisplayMember="SourceName";
/I Add all paper sources to the combo box
foreach(PaperSource source in settings.PaperSources)
{
PaperSourceCombo.ltems.Add(source.ToString());
/I You can even add Kind and SourceName
/I by uncommenting the following two lines:
/I PaperSourceCombo.ltems.Add
/I (source.Kind.ToString());
/I PaperSourceCombo.ltems.Add
/I (source.SourceName.ToString());

}

The last method, ReadOtherSettings, reads other properties of a printer, such as whether it supports color, margins, and bound4.isting 11.44
shows the ReadOtherSettings method.

Listing 11.42 Loading other properties of a printer

private void ReadOtherSettings()
{
/I Set other default properties
PrinterSettings settings = new PrinterSettings();
PageSettings pgSettings =
settings.DefaultPageSettings;
/I Color printing
if(pgSettings.Color)
ColorPrintingBox.Checked = true;
else
ColorPrintingBox.Checked = false;
/I Page margins
leftMarginBox.Text =
pgSettings.Bounds.Left. ToString();
rightMarginBox.Text =
pgSettings.Bounds.Right.ToString();
topMarginBox.Text =
pgSettings.Bounds.Top.ToString();
bottomMarginBox.Text =
pgSettings.Bounds.Bottom.ToString();
/I Landscape or portrait
if(pgSettings.Landscape)
landscapeButton.Checked = true;
else
portraitButton.Checked = true;
/I Bounds
boundsTextBox.Text =
pgSettings.Bounds.ToString();

Note

Remember that you need to add a reference to the System.Drawing.Printing namespace to your application whenever you
use classes from this namespace.

Now if we run the application, its form looks like . Each of the Windows controls displays its intended property.

Figure 11.23. The PageSetupbialog sample in action

—TrArl

Available Printers: | RUSENTS\HP Laser Jat 2100 Serias PCL ll

PaperSource Tray 1 KindsLUpper] j

—Paper Orientation— Paper Margins (In Inches)

e o e]
" Landscape Top: [Bottom:

Bounds (Rectanglel: [{y=0, Y0, Width=E50, Height=1 100}

Lot Set Properties Cancel

Finally, we want to save settings through the Set Properties button click and write code for &Cancel button. On the Set Properties button
click, we set the properties using PrinterSettings. Make sure a printer is available in theAvailable Printers combo box. The Cancel button

simply closes the dialog.

The code for the Set Properties and Cancel button click event handlers is given inListing 11.49, in which we set the page settings, color, and
landscape properties of a page.

Listing 11.43 Saving paper settings

private void SetPropertiesBtn_Click(object sender,
System.EventArgs e)
{
/I Set other default properties
PrinterSettings settings = new PrinterSettings();
PageSettings pgSettings =
settings.DefaultPageSettings;
/I Color printing?
if (ColorPrintingBox.Checked)
pgSettings.Color = true;
else
pgSettings.Color = false;

/I Landscape or portrait?
if(landscapeButton.Checked)
pgSettings.Landscape = true;
else
pgSettings.Landscape = false;

private void CancelBtn_Click(object sender,
System.EventArgs €)

{

this.Close();

}

The preceding discussion should enable you to customize page settings in the way that you want, instead of using the standard page settings
dialog provided in the PageSettingsDialog class.

Note

Even though the printing functionality defined in the System.Drawing.Printing namespace allows developers to customize

the standard Windows dialogs, | recommend that you use the standard Windows dialogs unless you can't live without
customizing them.

11.9.7 Therrintrange ENnumMeration

The Prin
classes.

Range enu

meration is used to specify the part of a document to print. This enumeration is used by thérinterSettings and PrintDialog

able 11.1

describes the members of thePrintRange enumeration.

You can use the PrintRange property of the PrinterSettings object to set the print range. Here's an example of code that does this:

PrinterSettings.PrintRange = PrintRange.SomePages;

Table 11.12. printRange members

Member Description
AllPages All pages are printed.
Selection The selected pages are printed.
SomePages The pages between FromPage and ToPage are printed.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

11.10 Printing Multiple Pages

So far we have discussed printing only an image or a single-page file. Printing multipage files is another important part of printing functionality
that developers may need to implement when writing printer applications. Unfortunately, the .NET Framework does not keep track of page
numbers for you, but it provides enough support for you to keep track of the current page, the total number of pages, the last page, and a
particular page number. Basically, when printing a multipage document, you need to find out the total number of pages and print them from
first to last. You can also specify a particular page number. If you are using the default Windows printing dialog, then you don't have to worry
about it because you can specify the pages in the dialog, and the framework takes care of this for you.

To demonstrate how to do this, our next program produces a useful printout showing all the fonts installed on your computer. This program is
a useful tool for demonstrating the calculation of how many pages to print when you're using graphical commands to print.

We will use the PrintPreview facility to display the output in case you don't have access to a printer. In this example we need to track how
many fonts have been printed and how far down the page we are. If we're going to go over the end of the page, we drop out of the
pd_PrintPage event handler and setev.HasMorePages to true to indicate that we have another page to print.

To see this functionality in action, let's create a Windows application and add a menu with three menu items and aRichTextBox control to the

form. The final form is shown in ..

Figure 11.24. A form for printing multiple pages

,,":t*__-, Multiple Page Printing Hi=1E
ﬂ Type Hers _
. Display Forts]
1 Frirt I
Purt Praview '
il Type Here |

The Display Fonts menu displays available fonts on the machine. Before we add code to this menu, we add the following variables:

private int fontcount;

private int fontposition = 1,

private float ypos = 1;

private PrintPreviewDialog previewDlg = null;

The code for the Display Fonts menu click is given in. Here we read installed fonts on the system and display them in the rich
text box. We use InstalledFontCollection to read all installed fonts on a machine. Then we use thdnstalledFontCollection.Families property
and make a loop to read all the font families. We also check if these families support different styles, including regular, bold, italic, and
underline, and we add some text to the rich text box with the current font.

Note

See for details about fonts and font collections.

Listing 11.44 Displaying fonts

private void DisplayFonts_Click_1(object sender,
System.EventArgs e)
{
/I Create InstalledFontCollection object
InstalledFontCollection ifc =
new InstalledFontCollection();
/I Get font families
FontFamily[] ffs = ifc.Families;
Font f;
/I Make sure rich text box is empty
richTextBox1.Clear();
/I Read font families one by one,
/I set font to some text,
/I and add text to the text box
foreach(FontFamily ff in ffs)
{
if (ff.IsStyleAvailable(FontStyle.Regular))
f = new Font(ff. GetName(1),

12, FontStyle.Regular);

else if(ff.IsStyleAvailable(FontStyle.Bold))
f = new Font(ff. GetName(1),

12, FontStyle.Bold);

else if (ff.IsStyleAvailable(FontStyle.ltalic))
f = new Font(ff. GetName(1),

12, FontStyle.ltalic);

else
f = new Font(ff. GetName(1),

12, FontStyle.Underline);
richTextBox1.SelectionFont=f;
richTextBox1.AppendText(
ff.GetName(1)+"\r\n");
richTextBox1.SelectionFont=f;

richTextBox1.AppendText(
"abcdefghijkimnopgrstuvwxyz\r\n");
richTextBox1.SelectionFont=f;
richTextBox1.AppendText(
"ABCDEFGHIJKLMNOPQRSTUVWXYZ\r\n");
richTextBox1.AppendText(

\n\n");
}
}

The code for the Print Preview and Print menu items is given inListing 11.44. This code should look familiar to you. We simply create
PrintDocument and PrintPreviewDialog objects, set their properties, add a print-page event handler, and call thérint and Show methods.

Listing 11.45 The Print Preview and Print menu items

private void PrintPreviewMenuClick(object sender,
System.EventArgs e)

{
/I Create a PrintPreviewDialog object
previewDIg = new PrintPreviewDialog();
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add print-page event handler
pd.PrintPage +=

new PrintPageEventHandler(pd_PrintPage);

/I Set Document property of PrintPreviewDialog
previewDIg.Document = pd;
/I Display dialog
previewDIg.Show();

private void PrintMenuClick(object sender,
System.EventArgs e)

{
/I Create a PrintPreviewDialog object
previewDIg = new PrintPreviewDialog();
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add print-page event handler
pd.PrintPage +=

new PrintPageEventHandler(pd_PrintPage);

I Print
pd.Print();

}

The print-page event handler, pd_PrintPage, is given inListing 11.4€. We print fonts usingDrawString, and we set
PrintPageEventArgs.HasMorePages to true. To make sure the text fits, we increase theg/-position by 60 units.

Listing 11.46 The print-page event handler

public void pd_PrintPage(object sender,
PrintPageEventArgs ev)

{
ypos = 1;

float pageheight = ev.MarginBounds.Height;
/I Create a Graphics object
Graphics g = ev.Graphics;
/I Get installed fonts
InstalledFontCollection ifc =
new InstalledFontCollection();
/I Get font families
FontFamily[] ffs = ifc.Families;
/I Draw string on the paper
while(ypos+60 < pageheight &&
fontposition < ffs.GetLength(0))
{
/I Get the font name
Font f =
new Font(ffs[fontposition]. GetName(0),25);
/I Draw string
g.DrawsString(ffs[fontposition]. GetName(0), f,
new SolidBrush(Color.Black),1,ypos);
fontposition = fontposition+1;
ypos = ypos + 60;
}
if (fontposition < ffs.GetLength(0))
{
/I Has more pages??
ev.HasMorePages = true;
}
}

ha ye run the program, the Print menu prints multiple pages, and thePrint Preview menu shows the print preview on two pages (see

Figure 11.25)

Figure 11.25. Print preview of multiple pages

FHEE O E Y

[

Lucida Consol &

Lucida Sans Unicode
WO = a

Microzoll Sans Sent

=0 0000000
alating Linobype

As you can see, it's pretty easy to create multipage report generators. Now you can use the print options to print documents with multiple
pages.

11.10.1 The bocumentName Property

If you want to display the name of the document you're printing, you can use theDocumentName property of the PrintDocument object:

pd.DocumentName="A Test Document";

The new result is shown in .

Figure 11.26. Setting a document name

&5 HP LaserJet 5P/5MP PostScript

Printer Document View Help

Document Narme | Status [cvmer | Pages | size
(] Our Test Document Proting Administrator 1 30.6 KBf3

4 | i
|1 dacument(s) in queue Y

We have seen that using the DocumentPrintPreview class is fairly straightforward. In reality, all that's happening is that this control is passed
a graphics class representing each page in a printout.

B [ereviovs [lnexr)

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

11.11 Marginal Printing: A Caution

Although it's exciting to be able to draw graphics on a printout, keep in mind that printers have limits. Never try to print at the extreme edges
of the page because you cannot be sure that a printer will print in exactly the same place. You could have two printers of the same model and
manufacturer, and yet when you print you may notice they print in different places. Some printers are more accurate than others, but usually a
sheet of paper will move slightly as it moves through the printer. Laser printers tend to be able to print closer to the edges of the paper than

inkjet printers because of the mechanism that is used to transport the sheet of paper through the printer.

e a marginal-printing sample, let's create a Windows application. We add two buttons to the form. The final form is shown in
11.27.

Figure 11.27. Marginal-printing test application

Now we add code for the Normal Printing and Marginal Printing button click event handlers, as irListing 11.47. Each handler creates a
PrintDocument object, adds aPrintPage event handler, and calls thePrint method. The PrintPage event handlers forNormal Printing and

Marginal Printing are NormalPrinting and MarginPrinting, respectively.

Listing 11.47 The Normal Printing and Marginal Printing button event handlers

private void NormalBtn_Click(object sender,
System.EventArgs €)

{

/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add PrintPage event handler
pd.PrintPage +=
new PrintPageEventHandler(NormalPrinting);
/I Print
pd.Print();
}
private void MarginalBtn_Click(object sender,
System.EventArgs e)
{
/I Create a PrintDocument object
PrintDocument pd = new PrintDocument();
/I Add PrintPage event handler
pd.PrintPage +=
new PrintPageEventHandler(MarginPrinting);
/I Print
pd.Print();
}

Now let's look at the NormalPrinting handler (seeListing 11.4g). We start with the top location of the text as unit 1. Then we calculate the next
line's position using the height of the font and draw four lines with the values of the top, left, bottom, and right margins. In the end we draw a
rectangle with the default bounds of the page.

Listing 11.48 The NormalPrinting event handler

public void NormalPrinting(object sender,
PrintPageEventArgs ev)
{

/I Set the top position as 1

float ypos = 1;

/I Get the default left margin

float leftMargin = ev.MarginBounds.Left;

/I Create a font

Font font = new Font("Arial",16);

/I Get the font's height

float fontheight = font.GetHeight(ev.Graphics);

/I Draw four strings

ev.Graphics.DrawString("Top Margin ="
+ ev.MarginBounds.Top.ToString(),
font, Brushes.Black,
leftMargin, ypos);

ypos = ypos + fontheight;

ev.Graphics.DrawString("Bottom Margin ="
+ ev.MarginBounds.Bottom.ToString(),
font, Brushes.Black,
leftMargin, ypos);

ypos = ypos + fontheight;

ev.Graphics.DrawString ("Left Margin ="
+ ev.MarginBounds.Left. ToString(),
font, Brushes.Black,
leftMargin, ypos);

ypos = ypos + fontheight;

ev.Graphics.DrawString ("Right Margin ="
+ ev.MarginBounds.Right.ToString(),
font, Brushes.Black,

leftMargin, ypos);

ypos = ypos + fontheight;

/I Draw a rectangle with default margins

ev.Graphics.DrawRectangle(
new Pen(Color.Black),
ev.MarginBounds.X,
ev.MarginBounds.Y,
ev.MarginBounds.Width,
ev.MarginBounds.Height);

If we run the application, we will see text describing the four margin values printed outside the rectangle.

Next comes code for the MarginPrinting event handler (see[istinq 11.43). We use the default margin of the page as the top location for the
first text. Everything else is the same as in Listing 11.494.

Listing 11.49 The MarginPrinting event handler

public void MarginPrinting(object sender,
PrintPageEventArgs ev)
{
/I Set the top position as the default margin
float ypos = ev.MarginBounds.Top;
/I Get the default left margin
float leftMargin = ev.MarginBounds.Left;
/I Create a font
Font font = new Font("Arial",16);
/I Get the font's height
float fontheight = font.GetHeight(ev.Graphics);
/I Draw four strings
ev.Graphics.DrawString("Top Margin =" +
ev.MarginBounds.Top.ToString(),
font, Brushes.Black,
leftMargin, ypos);
ypos = ypos + fontheight;
ev.Graphics.DrawString("Bottom Margin =" +
ev.MarginBounds.Bottom.ToString(),
font, Brushes.Black,
leftMargin, ypos);
ypos = ypos + fontheight;
ev.Graphics.DrawString ("Left Margin =" +
ev.MarginBounds.Left.ToString(),
font, Brushes.Black,
leftMargin, ypos);
ypos = ypos + fontheight;
ev.Graphics.DrawString ("Right Margin
+ ev.MarginBounds.Right.ToString(),
font,Brushes.Black,
leftMargin, ypos);
ypos = ypos + fontheight;
/I Draw a rectangle with default margins
ev.Graphics.DrawRectangle(
new Pen(Color.Black),
ev.MarginBounds.X,
ev.MarginBounds.Y,
ev.MarginBounds.Width,

ev.MarginBounds.Height);

When we run this code, we will see text appearing inside the rectangle printed using the page margin values.

BTy rrevious [ecr]

11.12 Getting into the Details: Custom Controlling and the Print Controller

At this point you must feel like a printer master and have the confidence you need to write a printing application. We have covered almost
every aspect of printing in .NET, but guess what! There are still a few surprises hidden in System.Drawing.Printing. You will probably never
use the classes that we're going to discuss in this section, but it's not a bad idea to know about them.

So far in this chapter we've created a PrintDocument object, created aPrintPage event handler, and called thePrint method of
PrintDocument.PrintDocument took care of everything internally for us. Now we will see how to controlPrintDocument. For this, we need a
print controller, which controls how a PrintDocument object handles printing.

The PrintController class represents print controllers in the .NET Framework library. It's an abstract base class, so its functionality comes from
its three derived classes: PreviewPrintController, StandardPrintController, and PrintControllerWithStatusDialog. PrintController and its derived

classes are shown schematically in Figure 11.2§.

Figure 11.28. PrintController-derived classes

PrintController

— PreviewPrintController

—# StandardPrintController

— PrintControllerWithStatusDialeyg

Normally PrintController is used by PrintDocument. When PrintDocument starts printing by calling thePrint method, it invokes the print
controller's OnStartPrint, OnEndPrint, OnStartPage, and OnEndPage methods, which determine how a printer will print the document. Usually
the OnStartPrint method of PrintController is responsible for obtaining theGraphics object, which is later used by thePrintPage event handler.

The StandardPrintController class is used to send pages to the printer. We set thePrintController property of PrintDocument to
PrintController.StandardPrintController. PrintControllerWithStatusDialog adds a status dialog to the printing functionality. It shows the name of
the document currently being printed. To attach PrintControllerWithStatusDialog, we set PrintDocument's PrintController property to
PrintController.PrintControllerWithStatusDialog.

The PreviewPrintController class is used for generating previews of pages being printed. Besides the methods defined in thérintController
class, PreviewPrintController provides one property UseAntiAlias) and one method (GetPreviewPagelnfo). The UseAntiAlias property
indicates whether anti-aliasing will be used when the print preview is being displayed.

The GetPreviewPagelnfo method captures the pages of a document as a series of images and returns them as an array called
PreviewPagelnfo. The PreviewPagelnfo class provides print preview information for a single page. This class has two propertiedmage and
PhysicalSize. The Image property returns an Image object, which represents an image of the printed page, andPhysicalSize represents the
size of the printed page in hundredths of an inch.

Let's write a sample application. We create a Windows application, and we add a MainMenu control, an item, and aStatusBar control to the

form. Our final form looks like Figure 11.29.

Figure 11.29. Print controller test form

stabusBanl g

Before adding any code to this form, we create a MyPrintController class, which is inherited fromStandardPrintController. You can use the
PreviewPrintController or PrintControllerWithStatusDialog classes in the same way. The code for theMyPrintController class is given in
[11.5d. We override all four methods: OnStartPrint, OnStartPage, OnEndPrint, and OnEndPage. On these methods we notify the status bar
about the status of the printing process. This information could be useful for displaying page numbers or other print status information when
we're printing multipage documents.

Listing 11.50 The myPrintController class

/I Print controller class
class MyPrintController: StandardPrintController
{

private StatusBar statusBar;

private string str = string.Empty;

public MyPrintController(StatusBar sBar): base()

{
statusBar = sBar;

}

public override void OnStartPrint
(PrintDocument printDoc,
PrintEventArgs peArgs)

{
statusBar.Text = "OnStartPrint Called";
base.OnStartPrint(printDoc, peArgs);

}

public override Graphics OnStartPage
(PrintDocument printDoc,

PrintPageEventArgs ppea)

{
statusBar.Text = "OnStartPage Called";
return base.OnStartPage(printDoc, ppea);

}

public override void OnEndPage
(PrintDocument printDoc,
PrintPageEventArgs ppeArgs)

{
statusBar.Text = "OnEndPage Called";
base.OnEndPage(printDoc, ppeArgs);

}

public override void OnEndPrint
(PrintDocument printDoc,
PrintEventArgs peArgs)

{
statusBar.Text = "OnEndPrint Called";
statusBar.Text = str;
base.OnEndPrint(printDoc, peArgs);

}

}

To call the MyPrintController class, we need to set the PrintController property of PrintDocument to invoke MtPrintContro ler's overridden

methods. Let's write a menu click event handler and set the PrintDocument.PrintController property there. InListing 11.5] we create a
PrintDocument object, set its DocumentName and PrintController properties, enable the PrintPage event handler, and callPrint to print the
document.

Listing 11.51 Setting the PrintController property of PrintDocument

private void StandardPrintControllerMenu_Click(
object sender, System.EventArgs e)
{
PrintDocument printDoc = new PrintDocument();
printDoc.DocumentName =
"PrintController Document";
printDoc.PrintController =
new MyPrintController(statusBarl);
printDoc.PrintPage +=
new PrintPageEventHandler(PrintPageHandler);
printDoc.Print();
}

isting 11.59 gives the code for thePrintPage event handler, which just draws some text on the printer.

Listing 11.52 The printPage event handler

void PrintPageHandler(object obj,
PrintPageEventArgs ppeArgs)
{
Graphics g = ppeArgs.Graphics;
SolidBrush brush =
new SolidBrush(Color.Red);
Font verdana20Font =
new Font("Verdana", 20);

g.DrawString("Print Controller Test",
verdana20Font,
brush, 20, 20);

You can extend this functionality to write your own custom print controllers.

ETY rrevious [ecr]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

SUMMARY

Printing functionality in the .NET Framework library is defined in the System.Drawing.Printing namespace. In this chapter we discussed almost
every possible aspect of printing. We began by discussing the history of printing in Microsoft Windows. Then we discussed printing-related
functionality in the Microsoft .NET Framework.

After a basic introduction to printing in .NET, you learned the basic steps required to write a printing application and how printing differs from
on-screen drawing. You also learned how to print simple text; graphics objects such as lines, rectangles, and circles; images; text files; and
other documents.

The PrinterSettings class provides members to get and set printer settings. We discussed how to use this class and its members.

The .NET Framework library provides printing-related standard dialogs. You learned to use the PrintDialog, PrintPreviewDialog, and
PageSetupDialog classes to provide a familiar Windows look and feel in your applications.

Multipage printing can be a bit tricky. You learned how to write an application with multipage printing functionality.

At the end of this chapter we discussed how to write custom printing and page setup dialogs using PageSettings and related classes. We also
discussed the advanced custom print controller-related classes and how to use them in applications.

More Printing Samples

For more printing-related samples, C# Corner's section on printing (l/vww.c-sharpcorner.com/printinq.aspl) is a good resource.
There you will find many useful and handy sample code downloads, including printing a form and its contents, printing a data
grid, and much more.

Using GDI+ in Web applications is a requirement for Web developer will cover the use of GDI+ to draw on the Web.

Team LiB |

http://www.c-sharpcorner.com/printing.asp

Team LiB |

Chapter 12. Developing GDI+ Web Applications

In previous chapters we covered almost every aspect of drawing using Windows Forms. This chapter will introduce you to drawing on the
Web and show how GDI+ can be used to write powerful graphics Web applications. From a programmer's perspective, GDI+ treats both
Windows and Web applications in the same way.

This chapter covers the following topics:

® A quick introduction to ASP.NET

® Developing your first Web application using ASP.NET in Visual Studio .NET
® Understanding the process of drawing on the Web

o Creating Bitmap and Graphics objects

® Drawing simple rectangles and other graphics objects on Web Forms

® Drawing images on Web Forms

® Setting the alpha value and quality of graphics objects

L4 Using linear and path gradient brushes on the Web

® Drawing line charts

® Drawing and filling pie charts

If we want to draw a rectangle on the Web, we create a Graphics object and call itsDrawRectangle method. However, getting a Graphics
object for a Web page is different from getting one for a Windows Form, as we will discuss in greater detail later.

Another restriction in Web applications is the fact that a browser can display only images. If we wanted to draw a rectangle on a Web page,
the rectangle would first have to be drawn and converted into an image and then sent to the browser for display.

yraphics shapes in a Windows Forms application, we simply call the draw or fill method, and GDI+ draws the shape on the form, as

, shows.

Figure 12.1. Drawing in Windows Forms

e

Draw or Fill Method GDI+ Windows

Forms

Drawing in Web Forms involves one extra step. When you call a draw or fill method, GDI+ doesn't communicate directly with the Web Forms.
Instead, it allows us to save a graphics shape as an image. Later we send the image to the browser for display. This process is shown in

Faue 12]

Figure 12.2. Drawing in Web Forms

Draw or Fill Method

Image

Web Forms

After completing this chapter, you will be amazed by the power and flexibility of GDI+ and ASP.NET.

Team LiB |

12.1 Creating Your First ASP.NET Web Application

Discussing ASP.NET in depth is beyond the scope of this book. In this chapter we will take an "as needed" approach, discussing only the
technigues we will use in our applications. If you are looking for an introductory ASP.NET book, try Essential ASP.NET by Fritz Onion
(published by Addison-Wesley).

To understand ASP.NET and Visual Studio .NET integration, we will write a simple non-GDI+ Web application. In this application we will add
some controls to a Web page: a generic button, a text box, and an Image button. After adding these controls, we will write code in the button
click event handler that will read the contents of the text box as a file name and display the file in theImage button. Let's get started!

12.1.1 Creating a Web Application Project

Creating a new ASP.NET Web application using Visual Studio .NET is simple: First we create a new project by choosing File | New | Project
| Visual C# Projects and then selecting theASP.NET Web Application template. Asfigure 12.3 shows, we give our application the name
FirstWebApp. It resides in the GDIPlusGuide folder of localhost, which is the default Web server on our local machine.

Figure 12.3. The FirstwebApp project

Project Types: Templatss: i
] visusl Basic Projects
{3 Visual C# Projects Ej EI [E
] Visual o+ Projects Class Lbrary Windows
(1 Setup and Deployment Projects Control Library

() Prompt Projects
D &

#-[_] Other Projects
] ASP.NET Web Web Control

s || 548 b

] visual Studio Solutions

Service Library |
A project for creating an application with a Web user interface
Bame: | Frstwebdpp
Location: [htp:iflocalhost D IPhsGLide FirstwebApp =] mowse.. |
" add to Sohution {* Close Salution

Project will be created at http:[flocalhost/GDIPlusGuide FirstWebApp,

. I I Sk I ol | r [B B I

The Location box displays the default option of http://localhost and the application name. Herelocalhost represents the default IIS server
running on our local machine. The default virtual directory for localhost is C:\Inetpub\wwwroot.

Note

If you are using a remote server for your development, you'll need to provide your server name instead of localhost. You
can either create the project in the root of the server or create a new folder.

Clicking the OK button creates a new directory, FirstWebApp in the server's virtual directory. It also creates a new Web application and sends
us to the default WebForm1.aspx page (see.

Figure 12.4. The default webForm1.aspx page

% FirstWebApp - Microsoft Visual C# NET [design] - WebFormilasps 'ﬂl_gl__ﬂﬂ

e gt Wew Project [dd Debug Dgta Formst Table [rsert Frames Jook Window
Help

Page Class WebForm1.aspx |

i . i E AR ow w o . i . . wow o w B YT e iRk B PR P
...... iiiiiiiiiiiiiiiiii il | 23 Solution Firstwebagp (2) (1 pro
» = om e TEel DGR POU BTE WOning) ON & 1 oF YOLE PO, = = v o0 m e =] FirstWebApp
o s e n o o Obdecks will be arranged using absolta (e and yl L oL Lo _iﬂ Ref
Sl iidgt Sde o ®- G References
i e g et o L e o ey o ™ assemblylnfo.cs
e s Touse Mow kayout (o bo bottom, ashawerd 00 0, 100 FirstWebRpp. vedsto
< Lo peooaning docuers), change the pags o £ [0 1 %) Gobel, asax
| ey property o i O UVERMT B Pl anrcnst. - . T T T | e I H

B WebForml . aspo

E'rm”l' TR cl@c| &5 |
| Reaty | | | 4

From here we can edit our page's HTML. Tw, available: Design and HTML (see the bottom left corner of. We click
igure 12.9

the HTML button to edit the code, as shown i

Figure 12.5. The HTML view of webForm1.aspx

Page Class Wu‘ml.m*l ik X
| Client Objects & Events *| | (Mo Everes) = =[=

<k Page language="ci™ Codebehind="WebForml.aspx.cs" AutoEventWi=
LIDOCTYPE HTHL PUBLIC "=//W3C//DTD HTHL 4.0 Transicional//EN™ > T
<html>
LheEmds
<title>WebForml</ticles
<meca naone="GENERATOR™ Contenc="Nicrosoflc Visual Scudio 7.0™
<meca name="CODE LANGUAGE® Contenc="CH">
<meEta name="vs defaultClisntSeripe™ content="JavaScript”>
<meta nupe="veE targetichema" content="htop: //schemas.microso
</ head>
<body HS_POSITIONING=™GridLayout™> -
« | f
The HTML view shows us the HTML code of a page, its controls, and its control properties. The HTML editor also lets us edit the HTML
manually. (Although we can edit the code of a page manually in HTML view, we will not need to do that for the examples in this book.)

If we switch back to the design mode and right-click on the page, we see several options: View HTML Source, Build Style, View in
Browser, View Code, Synchronize Document Outline, and so on.

We can set the properties of a page by selecting Properties from the coptext menu (which we bring up with a right mouse-click). The
Properties menu opens the DOCUMENT Property Pages window (see . Three tabs are available in this windowGeneral, Color
and Margins, and Keywords. Most of the properties are self-explanatory. TheGeneral tab contains page title, background image, target
schema, character set, page layout, and client and server language properties.

Figure 12.6. An ASP.NET document's page properties

xq

General | Color and Margins | Keywords |

Page title: First ASP,NET Web Application|

Background image: Browse...

™ Monscrofing background

Target Schema: |Internet Explorer 5.0 i

Character Set: b

PageLayout: [GridLayout >| ¥ showgrd

Default scripting language

oK Concel | Al Help

The Page Layout property has two options:GridLayout and FlowLayout. We use GridLayout when we want to drop controls to the page
and reposition them. If we want to add text to the page, we must set the page layout to FlowLayout. After we set the Page Layout property to
FlowLayout, the editor works as a text editor.

12.1.2 Adding Web Controls to a Web Form

Visual Studio .NET provides a Web Forms control toolbox that's similar to the Windows control toolbox. We can open the toolbox by selecting
the View | Toolbox main menu item. TheWeb Forms category of the toolbox contains the server-side controls (controls available on the
server, for which all processing is done on the server). When a browser requests a control, ASP.NET converts the request into HTML and
sends it to the browser. The HTML category contains HTML controls. HTML controls are simple HTML tags with all processing done on the
client side. As a result, HTML controls are often faster than server-side controls.

Let's switch the page back to the Design and GridLayout mode and add a button, a text box, and aiimage control to the page by dragging
these controls from the Web Forms toolbox to WebFormZ1.aspx. We will use theView Image button to view an image. The ImageUrl property
of the View Image button represents the image that this control will view.

The page should now look like (after you position your controls). As the figure shows, we change the button's text to "View Image”
by right-clicking on the Properties menu item, which launches theProperties window.

Figure 12.7. The webForml.aspx design mode after the addition of Web Forms controls

View Image

12.1.3 Writing Code on the Button Click Event Handler

The last step of this tutorial is to add an event handler for the button click event, which will set the ImageUrl property of the Image button. This
is similar to adding a control event in a Windows Forms application. You can double-click on the button to add a button click event handler.

Double-clicking on the button adds a Button1_Click method to the WebForm1.aspx.cs class, which hosts code for the page controls and
events. Now we write a line of code that sets the ImageUrl property of the Image control as the text of the TextBox control. The button click

event handler code is given in ..

Listing 12.1 The button click event handler

private void Button1_Click(object sender,
System.EventArgs e)
{

Imagel.ImageUrl = TextBox1.Text;

}

Now compile and run the project. In the text box we type "http://www.c-sharpcorner.com/cslogo101.gif* (or any valid image URL) as the URL
name and click the View Image button. The output of the program looks Iike.

Figure 12.8. Viewing an image in anIimage control

/23 First ASP.NET Web Application - Microsoft Internet Explorer

Fle Edt View Favortes Took Help - E3
aBack + = - @)) 4} | Qsearch [EFavorites FPMeda ﬁ|%raﬂ“i
Address [€) hitp:/flocaiost /GDIPkusGuide FirstWebAppjWebForm1 .aspx v| @60 [k

|hltp:ma.nmr.r:-sharpcnme:.carrufcslu go101. gif View Image [

C# ASP.NET, VB.NET, XML SOAP

=
&] Dane | [& Localintranet y

Now that we have seen how to create a simple Web application using Visual Studio .NET and ASP.NET, in the next section we will move on
to GDI+ and show how to use GDI+ to write graphics Web applications.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

12.2 Your First Graphics Web Application

Now it's time to use GDI+ in Web applications. First we'll write some code, and then we'll discuss how GDI+ Web applications work.

In this application we will draw a few simple graphics objects, including lines and rectangles. First we create a Web Application using Visual
Studio .NET. After creating a Web application, we need to add a GDI+-related namespace to the project. We import namespaces as follows:

using System.Drawing;
using System.Drawing.Drawing2D;
using System.Drawing.Imaging;

Note

See to learn more about GDI+ namespaces and classes. If you use Visual Studio .NET to create your Web
application, the wizard will add System and System.Drawing namespace references automatically.

Now we add code to draw graphics objects. draws two lines and a rectangle. You can write the code on the page-load event
handler or on a button click event handler.

Listing 12.2 Drawing simple graphics objects on the Web

private void Page_Load(object sender,

System.EventArgs e)
{

/I Create pens and brushes

Pen redPen = new Pen(Color.Red, 3);
HatchBrush brush =

new HatchBrush(HatchStyle.Cross,

Color.Red, Color.Yellow);

/I Create a Bitmap object

Bitmap curBitmap = new Bitmap(200, 200);

/I Create a Graphics object from Bitmap
Graphics g = Graphics.Fromlmage(curBitmap);
/I Draw and fill rectangles

g.FillRectangle(brush, 50, 50, 100, 100);
g.DrawLine(Pens.WhiteSmoke, 10, 10, 180, 10);
g.DrawLine(Pens.White, 10, 10, 10, 180);
/I Save the Bitmap object and send response to the
/I browser

curBitmap.Save(Response.OutputStream,
ImageFormat.Jpeg);

/I Dispose of Graphics and Bitmap objects
curBitmap.Dispose();

g.Dispose();

}

We will di is code in more detail in the following section. If you are using a text editor to write your applications, you can write the code
given in Listing 12.3.

Listing 12.3 Using a text editor to draw simple graphics

<%@ Import Namespace="System" %>

<%@ Import Namespace="System.Drawing" %>

<%@ Import Namespace="System.Drawing.Drawing2D" %>
<%@ Import Namespace="System.Drawing.Imaging" %>

<script language="C#" runat="server">

void Page_Load(Object sender, EventArgs e)

{

Pen redPen = new Pen(Color.Red, 3);
HatchBrush brush = new HatchBrush(HatchStyle.Cross,
Color.Red, Color.Yellow);

Bitmap curBitmap = new Bitmap(200, 200);
Graphics g = Graphics.Fromlmage(curBitmap);
g.FillRectangle(brush, 50, 50, 100, 100);
g.DrawLine(Pens.WhiteSmoke, 10, 10, 180, 10);
g.DrawLine(Pens.White, 10, 10, 10, 180);
curBitmap.Save(Response.OutputStream,
ImageFormat.Jpeg);

g.Dispose();

}

</script>

Now when we run our application, the output generated by or should look Iike.

Figure 12.9. Drawing simple graphics objects on the Web

12.2.1 How Does It Work?

Let's break down the code shown in and . We begin by importing GDI+-related namespaces in the applicationSystem,
System.Drawing, System.Drawing.Drawing2D, and System.Drawing.Drawing.Imaging. If we were using Visual Studio .NET, we would simply
use the using directive followed by the namespace name.

Next we have a Page_Load event, which is executed when a Web page is loaded. We create a pen and brush using thBen and HatchBrush
classes.

Pen redPen = new Pen(Color.Red, 3);
HatchBrush brush = new HatchBrush(HatchStyle.Cross,
Color.Red, Color.Yellow);

One important limitation of Web applications is Web browser capability. A Web browser can display only certain objects. For example, all
graphics objects in a Web browser will be displayed as images. So before a Web browser can display graphics objects, we need to convert
them into images that can be displayed by the browser. Our next step, then, is to create a Bitmap object. The following line creates a 200x200
Bitmap object.

Bitmap curBitmap = new Bitmap(200, 200);

You already know that the Graphics object functions as a canvas and provides members to draw lines, shapes, and images. Now we need to
create a Graphics object from the bitmap:

Graphics g = Graphics.Fromlmage(curBitmap);

Once we have a Graphics object, we can draw shapes, lines, and images. In the following code we use thérawLine and FillRectangle
methods to draw lines and a filled rectangle:

g.FillRectangle(brush, 50, 50, 100, 100);
g.DrawLine(Pens.WhiteSmoke, 10, 10, 180, 10);
g.DrawLine(Pens.White, 10, 10, 10, 180);

If you don't know how draw and fill methods work, you may want to look again at .

We're almost done. So far we have created Bitmap and Graphics objects, and we have drawn lines and a rectangle. Because a Web browser
can display only images (not pixels), we need to convert the bitmap into an image. The Save method of the Bitmap object does the trick for
us. The following line is responsible for rendering a bitmap and sending it to the browser:

curBitmap.Save(Response.OutputStream,
ImageFormat.Jpeg);

Finally, we dispose of theBitmap and Graphics objects:

curBitmap.Dispose();

g.Dispose();

12.2.2 Understanding the save Method

The Bitmap class is inherited from the Image class, which defines theSave method. This method saves an image to the specifiedStream

object in the specified format. For example, in our code the Save method takes the following two arguments:Response.OutputStream and

ImageFormat:

curBitmap.Save(Response.OutputStream,
ImageFormat.Jpeg);

The Response property of the Page class returns the HttpResponse object associated with the page, which allows us to send HTTP response

data to the client and contains information about the response. The OutputStream property of HttpResponse enables binary output to the

outgoing HTTP content body. In other words, Page.Response.OutputStream sends the images to the browser in a compatible format. The

ter is of |

mageFormat enumeration type and specifies the format of the image.ImageFormat is discussed in more detail in

second parame
(see

able 7.4).

The Save method also allows us to save an image on a local physical hard drive. The following code saves the bitmap on th€:\\ drive.

curBitmap.Save("C:\\Templmg.gif",
ImageFormat.Jpeg);

Team LiB |

Team LiB |

12.3 Drawing Simple Graphics

As we discussed in the previous section, from the programming perspective, drawing on the Web is the same as drawing in Windows Forms,
except for a few small differences. Drawing on the Web is often called "drawing on the fly" (or "graphics on the fly"). The code in

draws various graphics objects, including lines, text, rectangles, and an ellipse. We create various pens, brushes, and a 300x300 bitmap.
Then we create a Graphics object from this bitmap by callingGraphics.Fromimage. Once we have aGraphics object, we can call its methods
to draw and fill graphics shapes.

After creating the Graphics object, we set its smoothing mode toAntiAlias, create font and size objects, and call theDrawString, DrawLine, and
DrawEllipse methods to draw text, lines, and an ellipse, respectively. At this point the bitmap we created contains these objects. The next step
is to call the Save method and send the image to the browser, which we do with theBitmap.Save method. Finally, we call theDispose method
to dispose of various objects.

Listing 12.4 Drawing graphics objects on the fly

/I Construct brush and pens
Pen redPen = new Pen(Color.Red, 3);
HatchBrush brush =

new HatchBrush(HatchStyle.Cross,
Color.Yellow, Color.Green);
Pen hatchPen = new Pen(brush, 2);
Pen bluePen = new Pen(Color.Blue, 3);
Bitmap curBitmap = new Bitmap(300, 200);
Graphics g = Graphics.Fromlmage(curBitmap);
g.SmoothingMode = SmoothingMode.AntiAlias;
string testString =

"Hello GDI+ On the Web";

Font verdanal4 = new Font("Verdana", 14);
Font tahomal8 = new Font("Tahoma", 18);
int nChars;

int nLines;
/I Call MeasureString to measure a string
SizeF sz = g.MeasureString(testString, verdanal4);
string stringDetails =

"Height: "+sz.Height. ToString()

+ ", Width: "+sz.Width.ToString();
g.DrawString(testString, verdanal4,
Brushes.Wheat, new PointF(40, 70));
g.DrawRectangle(new Pen(Color.Red, 2),
40.0F, 70.0F, sz.Width, sz.Height);

sz = g.MeasureString("Ellipse”, tahomals,
new SizeF(0.0F, 100.0F),

new StringFormat(),

out nChars, out nLines);

stringDetails =

"Height: "+sz.Height. ToString()

+ ", Width: "+sz.Width.ToString()

+", Lines: "+nLines.ToString()

+ ", Chars: "+nChars.ToString();

/I Draw lines

g.DrawLine(Pens.WhiteSmoke, 10, 20, 180, 20);
g.DrawLine(Pens.White, 20, 10, 20, 180);

/1 Fill ellipse

g.FillEllipse(brush, 120, 100, 100, 100);

/I Draw string

g.DrawString("Ellipse", tahomals,
Brushes.Beige, new PointF(40, 20));

/I Draw ellipse

g.DrawEllipse(new Pen(Color.Yellow, 3),

40, 20, sz.Width, sz.Height);

/I Send output to the browser and

/I dispose of objects
curBitmap.Save(this.Response.OutputStream,
ImageFormat.Jpeg);

g.Dispose();

For all practical purposes, could be a Windows Forms application. The only new code required creates @&itmap object and calls
its Save method to send output to the browser. We use theDrawString method to draw text, the DrawLine method to draw lines, and the
DrawRectangle method to draw rectangles—just as in any other GDI+ application.

shows the output from . The program draws lines, ellipses, and text.

Figure 12.10. Drawing various graphics objects

..ahttp:l_f'l_rlucali'lnst,f'EﬂlPhsﬁddefDrmm]ﬂhﬁiﬁ Form! ' =0} x|
Fde Edt View Favorites Tools Help -
4aBack » = - () (4] 4} | Qsearch [GjFavorkes Meda 8 | By 4§ ¥

Agddrass I"ﬂ Fitks: | o stk) GOIPUS Guide DrawGDIObis SamgWebForm] | sdpo ﬂ f&Gﬂ Lirgs

Clipse

Hello GDI+ On the Web

— &

12 | Done: | Bl I__ E Local intranst o

Note

For more on the Graphics class and its fill and draw methods, se

12.4 Drawing Images on the Web

The process of drawing images on the Web is slightly different from that of drawing images on Windows Forms. In Windows Forms we create
a Bitmap object and call theGraphics.Drawlmage method. Drawing on the Web requires aGraphics object. The Bitmap.Save method takes

care of the rest, as discussed earlier.

To test this, let's create a Web application using Visual Studio .NET and add the code given in on the page-load event. This code
views an image on the browser. First we create a Bitmap object from an image, then we create aGraphics object from the image, and then we

call the Save method of Bitmap.

Listing 12.5 Drawing images on the Web

/I Create a Bitmap object from a file

Bitmap curBitmap =

new Bitmap("d:\\white_salvia.jpg");
/I Create a Graphics object from Bitmap
Graphics g = Graphics.Fromlmage(curBitmap);
/I Send output to the browser
curBitmap.Save(this.Response.OutputStream,
ImageFormat.Jpeg);

/I Dispose of object

g.Dispose();

Notice that we didn't even need to call the Drawimage method. shows the output from .

Figure 12.11. Drawing an image

Ty _--:.....ﬁ.Ir =

LR,

| Ble Edk Wew Favortes Jook Hep q
GBack » = - @D (1) A Qoesch (alFavorkes GiMeds 3| B &b

=

12.4.1 Setting Image Quality

As we discussed in , the SmoothingMode and TextRenderingHint properties of the Graphics object can be used to set the quality of
images and text, respectively. GDI+ cannot draw text directly into a Web application. Like lines, curves, and other graphics shapes, text must
also be rendered as an image for display in the browser. All graphics lines, curves, shapes, text, and images are first converted to an image
and directed to a browser, so only the SmoothingMode property will be applicable. SmoothingMode has five members:AntiAlias, Default,
HighQuality, HighSpeed, and None. The following code snippet sets the smoothing mode of theGraphics object:

/I Set modes
g.SmoothingMode = SmoothingMode.AntiAlias;

12.4.2 Using LinearGradientBrush and PathGradientBrush

You can use linear and path gradient brushes in Web applications just as we did in bhagter 4 Listing 12.d uses LinearGradientBrush and
PathGradientBrush to fill a rectangle and a path. First we create a linear gradient brush and a graphics path, and we add two ellipses to the
graphics path.

Next we create a path gradient brush, which takes the path as its only parameter, and we set the CenterColor property of the path. Then we
create Bitmap and Graphics objects and call Graphics.FillPath and Graphics.FillRectangle, which fill a path and rectangle, respectively.

As in the previous examples, finally we call the Bitmap.Save method and dispose of the objects.

Listing 12.6 Using LinearGradientBrush and PathGradientBrush

private void Page_Load(object sender,
System.EventArgs e)
{
/I Create a linear gradient brush
LinearGradientBrush IgBrush =
new LinearGradientBrush(
new Rectangle(0, 0, 10, 10),
Color.Yellow, Color.Blue,
LinearGradientMode.ForwardDiagonal);
/I Create a path
GraphicsPath path = new GraphicsPath();

path.AddEllipse(50, 50, 150, 150);
path.AddEllipse(10, 10, 50, 50);
/I Create a path gradient brush
PathGradientBrush pgBrush =
new PathGradientBrush(path);
pgBrush.CenterColor = Color.Red;
/I Create Bitmap and Graphics objects
Bitmap curBitmap = new Bitmap(500, 300);
Graphics g = Graphics.Fromlmage(curBitmap);
g.SmoothingMode = SmoothingMode.AntiAlias;
g.FillPath(pgBrush, path);
g.FillRectangle(lgBrush, 250, 20, 100, 100);
curBitmap.Save(this.Response.OutputStream,
ImageFormat.Jpeg);
g.Dispose();
}

shows the output from.

Figure 12.12. Using LinearGradientBrush and PathGradientBrush

4 http:/ /localhost /GDIPusGuide /Line arPathGrac

File Edt Yew Favorites

Tools

Hedlp

=10] =i

d=Fack -~ =h - @ E’] ﬂ__ﬂngh iJFawntes @'Meﬁa j "i'l' J_:jf__—l_:}

Address | €] http: flocahost/GDIPhsGuide/UnearPathGradBrushSamp/WebForml aspx ¥ | @Go | Links

JE:_'IE.':'cne

@ Local intramet

X

| K

12.4.3 Drawing Transparent Graphics Objects

The alpha component of a sents its transparency. Alpha component values vary from 0 to 255, where 0 indicates fully transparent
and 255 indicates opaque. Listing 12.7] draws a rectangle, an ellipse, and text on top of an image.

Listing 12.7 Drawing semitransparent objects

/I Create Bitmap and Graphics objects
Bitmap curBitmap = new Bitmap(“c:\\flower13.jpg");
Graphics g = Graphics.Fromlmage(curBitmap);
g.SmoothingMode = SmoothingMode.AntiAlias;
/I Create brushes and pens with alpha values
Color redColor = Color.FromArgb(120, 0, 0, 255);
Pen alphaPen = new Pen(redColor, 10);
SolidBrush alphaBrush =

new SolidBrush(Color.FromArgb(90, 0, 255, 0));
/I Draw a rectangle, an ellipse, and text
g.DrawRectangle(alphaPen, 100, 100, 50, 100);
g.FillEllipse(alphaBrush, 50, 50, 100, 100);
g.DrawString("Alpha String”,

new Font("Tahoma", 30),

new SolidBrush(Color.FromArgb(150, 160, 0, 0)),

new PointF(20, 20));
curBitmap.Save(this.Response.OutputStream,

ImageFormat.Jpeg);
g.Dispose();

First we create Bitmap and Graphics objects and set the Graphics smoothing mode. Then we create a color with transparency using the
Color.FromArgb method, where transparency is the first parameter. Next, using the following code, we create a pen from this semitransparent
color, which gives us a semitransparent pen:

Color redColor = Color.FromArgb(120, 0, 0, 255);
Pen alphaPen = new Pen(redColor, 10);

We also create a semitransparent brush by passing a semitransparent color as a parameter to SolidBrush, as follows:

SolidBrush alphaBrush =
new SolidBrush(Color.FromArgb(90, 0, 255, 0));

Now to draw transparent shapes, we simply use the transparent brushes and pens. As shows, the graphics shapes are
semitransparent.

Figure 12.13. Drawing semitransparent objects

[eam L] rrevious [ecr]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

12.5 Drawing a Line Chart

Charts are useful for representing numeric data in a graphical way. There are several different types of charts, including pie, line, and bar
charts. In this section we will learn how to use GDI+ and ASP.NET to draw a line chart from data entered by a user.

Aline chart is a set of continuous lines. In the example presented in this section, we will read the size of the chart and data points and draw a
chart based on the points. Our discussion will focus first on the ChartComp component, and then on the client application.

12.5.1 The chartcomp Component

ChartComp is a class that defines the functionality to add points to the chart and draw the chart. The client application (discussed i
) is a Web application that calls the chart's members to add points to the chart and draw it.

The code for the ChartComp class is given in . The constructor of the class takes the type, color, size, and a page to which this
chart belongs. The overloaded InsertPoint method adds a point to the array of points, and theDrawChart method draws the points stored in the
array. DrawChart first draws a rectangle, and then it draws points toward the- and y-axes.

Listing 12.8 The ChartComp class

/I Chart component
class ChartComp
{
public Bitmap curBitmap;
public ArrayList ptsArrayList =
new ArrayList();
public float X0 =0, YO = 0;
public float chartX, chartY;
public Color chartColor = Color.Gray;
/I chartType: 1=Line, 2=Pie, 3=Bar.
/I For future use only.
public int chartType = 1;
private int Width, Height;
private Graphics g;
private Page curPage;
struct ptStructure
{
public float x;
public float y;
public Color clr;
}
/I ChartComp constructor
public ChartComp(int cType, Color cColor,
int cWidth, int cHeight, Page cPage)

{
Width = cWidth;
Height = cHeight;
chartX = cWidth;
chartY = cHeight;
curPage = cPage;
chartType = cType;
chartColor = cColor;
curBitmap = new Bitmap(Width, Height);
g = Graphics.Fromimage(curBitmap);
}
/I Destructor. Disposes of objects.
~ChartComp()
{
curBitmap.Dispose();
g.Dispose();
}
/I InsertPoint method. Adds a point
/ to the array.
public void InsertPoint(int xPos,
int yPos, Color clr)
{
ptStructure pt;
pt.x = xPos;
pty =yPos;
pt.clr =clr;
/I Add the point to the array
ptsArrayList.Add(pt);
}
public void InsertPoint(int position,
int xPos, int yPos, Color clr)
{
ptStructure pt;
pt.x = xPos;
pty = yPos;
pt.clr = clr;
/I Add the point to the array
ptsArrayList.Insert(position, pt);
}
/I Draw methods
public void DrawChart()
{
inti;
float x, y, x0, yO0;
curPage.Response.ContentType="image/jpeg";
g.SmoothingMode = SmoothingMode.HighQuality;
g.FillRectangle(new SolidBrush(chartColor),
0, 0, Width, Height);
int chwidth = Width-80;
int chHeight = Height-80;
g.DrawRectangle(Pens.Black,
40, 40, chwidth, chHeight);
g.DrawString("GDI+ Chart", new Font("arial",14),
Brushes.Black, Width/3, 10);
/I Draw x- and y-axis line, points, positions
for(i=0; i<=5; i++)
{
X = 40+(i*chWidth)/5;

y = chHeight+40;

string str = (X0 + (chartX*i/5)).ToString();
g.DrawString(str, new Font("Verdana",10),
Brushes.Blue, x-4, y+10);
g.DrawLine(Pens.Black, x, y+2, X, y-2);

}

for(i=0; i<=5; i++)
{

X = 40;

y = chHeight+40-(i*chHeight/5);
string str = (YO + (chartY*i/5)).ToString();
g.DrawString(str, new Font("Verdana",10),
Brushes.Blue, 5, y-6);
g.DrawLine(Pens.Black, x+2, y, x-2, y);
}
/I Transform coordinates so that point (0,0)
/'is in the lower left corner
g.RotateTransform(180);
g.TranslateTransform(-40, 40);
g.ScaleTransform(-1, 1);
g.TranslateTransform(0, -(Height));
/I Draw all points from the array
ptStructure prevPoint = new ptStructure();
foreach(ptStructure pt in ptsArrayList)
{
x0 = chWidth*(prevPoint.x-X0)/chartX;
y0 = chHeight*(prevPoint.y-Y0)/chartY;
x = chWidth*(pt.x-X0)/chartX;
y = chHeight*(pt.y-Y0)/chartY;
g.DrawLine(Pens.Black, x0, y0, X, y);
g.FillEllipse(new SolidBrush(pt.clr),
x0-5, y0-5, 10, 10);
g.FillEllipse(new SolidBrush(pt.clr),
x-5, y-5, 10, 10);
prevPoint = pt;
}
curBitmap.Save(curPage.Response.OutputStream,
ImageFormat.Jpeg);
}
}

12.5.2 The Client Application

The client application is a Web page that is used to get input from the user. The main form of the application is shown in . The
user can enter his/her chart size, and values for five points, including the color of each one.

Figure 12.14. Entering points on a chart

4 WebForm1 - Microsoft Internet Explorer

Fle Edt View Favorkes Took Help

$=Eack v =p v @@ﬁ|ﬁm [Favorites Efmedia @|%‘§E@“|

Address Iﬁfﬂpiﬁxmxmmmmuﬁummﬁml.ﬂ: J Peo |nks
|
GDI+ Chart Application: Data Entry Form

A Pos ¥ Pos Color Name
Chart Size: oo oo |aray
Point 1 Data: o o |Red
Point 2 Data: 100 o |Green
Point 3 Data: 150 100 |ellow
Paint 4 Data: 20 110 |Blue
Point 5 Data: B0 180 [Pink

Draw Chart |

=
&) Done | [T ¥ uocalinkranet 4
The Draw Chart button draws a line chart. Code for theDraw Chart button click is given in, where we create an object of type

ChartComp and call its InsertPoint and DrawChart methods. InsertPoint adds a point to the chart.DrawChart draws a line chart from the first
point to the last point entered by the user.

Listing 12.9 The Draw Chart button click event handler

private void Button1_Click(object sender,
System.EventArgs e)

{

/I Get the chart background color

Color cIr = Color.FromName(TextBox3.Text);

/I Create a ChartComp object

ChartComp chart =

new ChartComp(1, clr, 400, 300, this.Page);
chart.X0 = 0;

chart.YO=0;

chart.chartX = Convert.Tolnt16(TextBox1.Text);
chart.chartY = Convert.Tolnt16(TextBox2.Text);

/I Add points to the chart
chart.InsertPoint(Convert. Tolnt16(TextBox4.Text),
Convert.Tolnt16(TextBox5.Text),
Color.FromName(TextBox6.Text));
chart.InsertPoint(Convert. Tolnt16(TextBox7.Text),
Convert.Tolnt16(TextBox8.Text),

Color.FromName(TextBox9.Text));
chart.InsertPoint(Convert. Tolnt16(TextBox10.Text),
Convert.Tolnt16(TextBox11.Text),
Color.FromName(TextBox12.Text));
chart.InsertPoint(Convert. Tolnt16(TextBox13.Text),
Convert.Tolnt16(TextBox14.Text),
Color.FromName(TextBox15.Text));
chart.InsertPoint(Convert. Tolnt16(TextBox16.Text),
Convert.Tolnt16(TextBox17.Text),
Color.FromName(TextBox18.Text));
/I Draw chart
chart.DrawChart();

}

Now if you use the data entered i and click theDraw Chart button, the output will look Iike.

Figure 12.15. A line chart in ASP.NET

-§ http:/ /localhost /GDIPlusGuide /LineChartSamp,/WebForm1.aspx = Microsolt TS |=Ix|

hitp:jflocalhost/GDIPlsGuide/LineChartSar

$Back » = - @ (A A | Bisearch (adFavorkes Pmeda B | BN S =1 H »

i

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

12.6 Drawing a Pie Chart

Do you remember the pie chart application from bhagter ﬂ (see Eigure 3.43)? Now let's write a similar application using ASP.NET. We will
provide both fill and draw options.

ate a Web Forms application using Visual Studio .NET. We add some text and two buttons to the page. The final Web page looks like
. The Draw Chart button will draw a pie chart, and theFill Chart button will fill the chart with different colors.

Figure 12.16. A pie chart—drawing application in ASP.NET

-loix|
| =

— e o

#Batkv**@@ﬂl'ﬁm (adFavorites glfMeda (| *

Agdress |e_‘1 Hm:ymmmthmmeuFum.,—|_ @Go | Lnks

GDI+ Pie Chart Application

Diraw Char Fill Chart

=

Now we add some variables (see Listing 12.1d). Instead of reading values from the user, we use hard-coded values for thevalArray and
clrArray arrays. The valArray array stores the different portion values of a pie chart, andclrArray stores colors for these portions. If you wish,

you can modify the page and add some text boxes to allow users to provide these values at runtime.

Listing 12.10 User-defined variables

/I User-defined variables
public Bitmap curBitmap;

private Rectangle rect =

new Rectangle(250, 150, 200, 200);
public ArrayList sliceList = new ArrayList();
private Color curClIr = Color.Black;

int[] valArray = {50, 25, 75, 100, 50};
Color[] clrArray = {Color.Red, Color.Green,
Color.Yellow, Color.Pink, Color.Aqua};

int total = 0;

Now we add a method called DrawPieChart. It will both draw and fill the chart. The code for th®rawPieChart method is given inListing 12.11.
We simply read values from the portion and color arrays, and we create SolidBrush and Pen objects, depending on which button is clicked.
We create a Bitmap object and set the smoothing mode of the page toAntiAlias. We also initialize the values of theangle and sweep variables.

We also have a Boolean variable called flMode. IffIMode is true, the DrawPieChart method calls FillPie to fill the pie chart; otherwise it calls
DrawPie, which draws only the boundaries of the chart. In the end, we save the bitmap, send it to the browser, and dispose of the objects.

Listing 12.11 The brawPieChart method

private void DrawPieChart(bool fIMode)
{
/I Create Bitmap and Graphics objects
Bitmap curBitmap = new Bitmap(500, 300);
Graphics g = Graphics.Fromlmage(curBitmap);
g.SmoothingMode = SmoothingMode.AntiAlias;
float angle = 0;
float sweep = 0;
/l Total
for (int i=0; i<valArray.Length; i++)
{
total += valArray[i];
}
/I Read color and value from array
/I and calculate sweep
for (int i=0; i<valArray.Length; i++)
{
int val = valArray[i];
Color clr = clrArray[i];
sweep = 360f * val / total;
/1 1f fill mode, fill pie
if(fiIMode)
{
SolidBrush brush = new SolidBrush(clr);
g.FillPie(brush, 20.0F, 20.0F, 200,
200, angle, sweep);
}
else // If draw mode, draw pie
{
Pen pn = new Pen(clr, 2);
g.DrawPie(pn, 20.0F, 20.0F, 200,
200, angle, sweep);
}
angle += sweep;
}
/I Send output to the browser
curBitmap.Save(this.Response.OutputStream,

ImageFormat.Jpeg);
/I Dispose of objects
curBitmap.Dispose();
g.Dispose();

}

hart button click generates the output shown i and the Fill Chart button click fills in the chart, with output as shown

Fioure 12.1d

Figure 12.17. The Draw Chart button click in action

e s o] x|
Fl= Edt VYiew Favorites Tools Help n
aBack = = - @ (2] A} | Qsearch [EjFavorites FhMeda 8 | BN~ Sh = =] »
Address |£] hitp:/flocahostjGaPlusGuide PieChartSampWebForml aspx | @6 | Links

=

-
4

@‘:‘ Local 'm't'ranét

€] Done

Figure 12.18. The Fill Chart button click in action

2 htep:/ locathost/GdiPlusGuide/ PieChartSamp,/ WebForm1.asps =10] x|

File Edt View Favorbes Tools Help
w2 Back = = = ;ﬂ _';._] fal 1ﬁSl:cml:h (&]Favorkes ‘FfMedia 9 _-'_"'j*' 2y B j -
:| ' Go | Links

£ | http:[flocalhost | GdiPlusGuide [PieChart Samp/WebForm1 . aspx

Address

‘ iy

£ | Done] _ & Local intranet -

We call the DrawPieChart method from our Draw Chart and Fill Chart buttons with a single argument—false or true, respectively—as shown

inListing 12.14.

Listing 12.12 The Draw Chart and Fill Chart button click handlers

private void DrawChart_Click(object sender,
System.EventArgs €)

{

DrawPieChart(false);

}

private void FillChart_Click(object sender,
System.EventArgs e)

{

DrawPieChart(true);

}

Team LiB |

Team LiB |

SUMMARY

In this chapter we discussed how to use GDI+ drawing functionality in Web applications. We started by discussing the basic process of
drawing graphics shapes and images on the Web using ASP.NET and GDI+. After that we discussed the drawing process for Web
applications, and how it differs from the Windows drawing process.

Next we introduced ASP.NET and how to write a simple ASP.NET application using a text editor or Visual Studio .NET. Then we discussed
how to draw simple graphics objects such as lines, curves, rectangles, and images on the Web. After drawing simple graphics objects, you
learned how to set the quality and transparency of images.

At the end of the chapter we saw line chart and pie chart applications, as real-world examples of GDI+ on the Web.

Performance is a major factor that developers worry about when dealing with graphics. is dedicated to GDI+ performance. In it, we
will discuss how to optimize GDI+ applications for the best performance.

Team LiB |

Team LiB |

Chapter 13. GDI+ Best Practices and Performance
Techniques

It must be said that code optimization skill and knowledge of performance techniques are best acquired from the shared experiences of other
developers. With the ever expanding capabilities of Internet communication, the best resources are online forums, newsgroups, and sites
dedi i nmended resource for topics covered in this chapter (and indeed throughout this book) is the C# Corner
site (http://www.c-sharpcorner.co

Let's start with an introduction of the basic architecture of drawing (rendering or painting) within Windows Forms using GDI+. By the end of
this chapter, you will be armed with GDI+ tips and tricks that make a significant difference in the efficiency of many performance-oriented
graphics applications. Note, however, that these tips and tricks may not be applicable for Web applications.

Here are the topics that we will discuss in this chapter:

® Understanding the drawing and rendering process

® iow to write paint event handlers for Windows Forms and controls
o Disposing of graphics objects

® The OnPaintBackground method

® Drawing performance and the role of variables' scope and type

® Double buffering

® The SetStyle method

® Generic tips and tricks for quality and performance

Team LiB |

http://www.c-sharpcorner.com/default.htm

BTy rrevious [ecr]

13.1 Understanding the Rendering Process

In previous chapters of this book, you learned how to draw graphics shapes, curves, and images. In all of these cases, the Graphics object is
responsible for the drawing. When we're drawing graphics objects from within a menu or button click event handler, a call to the Invalidate
method becomes imperative. If we don't call this method, the form will not paint itself, but if we write the same code on a form's OnPaint or
paint event handler, there is no need to invalidate the form. In this section we will find out why that's so.

13.1.1 Understanding the Paint Event

Paint event functionality is defined in the System.Windows.Forms.Control class, which is the base class for Windows Forms controls such as
Label, ListBox, DataGrid, and TreeView. A paint event is fired when a control is redrawn. Thd=orm class itself is inherited from the Control

class. Eigure 13.] shows the Form class hierarchy.

Figure 13.1. The Form class hierarchy

System.Object

System.MarshalByRefObject

System.ComponentModel . Component

M System.Windows.,Forms.Control

L—F System.Windows.Forms.ScrollableControl

L—h System.Windows.Forms.ContainerControl

—p Svstem.Windows.Forms.Form

The PaintEventArgs class provides data for the paint event. It provides two read-only propertiesClipRectangle and Graphics.ClipRectangle
indicates the rectangle in which to paint, and the Graphics property indicates theGraphics object associated with the paint event of a particular
control (including the form itself). Always be careful when you're dealing with the paint event because it is unpredictable and called
automatically.

The Control class also provides OnPaint methods, which can be overridden in the derived classes to fire the paint event. The signature of the
OnPaint method is defined as follows:

protected virtual void OnPaint(PaintEventArgs e);

As this definition shows, OnPaint takes aPaintEventArgs object as its only argument. TheGraphics property of PaintEventArgs is used to get
the Graphics object associated with a control—including the form.

13.1.2 Adding a Paint Event Handler to a Form

Adding a paint event handler for any Control-derived class is pretty simple. We write an event handler that has two parameters, of typebject
and PaintEventArgs:

private void MyPaintEventHandler(object sender,
System.Windows.Forms.PaintEventArgs args)

{

}

We can give the event handler whatever name we want. After implementing this event handler, we use the parameter args (which is a
PaintEventArgs object) to get the Graphics object for the control. The following code delegates the event handler for théPaint event:

this.Paint +=
new System.Windows.Forms.PaintEventHandler
(this.MyPaintEventHandler);

The following code gives the paint event handler for a form:

private void MyPaintEventHandler(object sender,
System.Windows.Forms.PaintEventArgs args)

{

/I Write your code here

}

Now we can use the PaintEventArgs object to get the Graphics object associated with the form and use theGraphics object's methods and

roperties to draw and fill lines, curves, shapes, text, and images. Let's draw a rectangle, an ellipse, and some text on the form, as shown in
Listing 13.1].

Listing 13.1 Using the paint event handler to draw

private void MyPaintEventHandler(object sender,
System.Windows.Forms.PaintEventArgs args)
{
/I Drawing a rectangle
args.Graphics.DrawRectangle(
new Pen(Color.Blue, 3),
new Rectangle(10, 10, 50, 50));
/I Drawing an ellipse
args.Graphics.FillEllipse(
Brushes.Red,
new Rectangle(60, 60, 100, 100));

/I Drawing text
args.Graphics.DrawString(

"Text",

new Font("Verdana", 14),

new SolidBrush(Color.Green), 200, 200) ;

}

shows the output from . Now if the form is covered by another window and the focus returns to the form, the code on

the paint event handler will repaint the form.

Figure 13.2. Drawing on a form

il

Text

13.1.3 Adding a Paint Event Handler to Windows Controls

As mentioned earlier, the paint event handler can be added to any Windows control that is inherited from the Control class, such asButton,
ListBox, or DataGrid. In other words, each Windows control can have a paint event handler and &raphics object, which represents the control
as a drawing canvas. That means we can use a button or a list box as a drawing canvas.

Let's add DataGrid and Button controls to a form. We will use the button and the data grid as our drawing canvase adds the paint
event methods of our Buttonl and DataGrid1 controls.

Listing 13.2 Adding a paint event handler for Windows controls

/I Adding a button's Paint event handler
this.buttonl1.Paint +=
new System.Windows.Forms.PaintEventHandler

(this.TheButtonPaintEventHandler);
/I Adding a data grid's Paint event handler
this.dataGrid1.Paint +=
new System.Windows.Forms.PaintEventHandler
(this.TheDataGridPaintEventHandler);

gives the code for theButton and DataGrid paint event handlers. This code is useful when we need to draw graphics shapes on a
control itself. For example, a column of a data grid can be used to display images or graphics shapes. In our example we draw an ellipse on
these controls, instead of drawing on a form. The PaintEventArgs.Graphics object represents the Graphics object associated with a particular
control. Once you have the Graphics object of a control, you are free to call its draw and fill methods.

Listing 13.3 Drawing on Windows controls

private void TheButtonPaintEventHandler(object sender,
System.Windows.Forms.PaintEventArgs btnArgs)
{
btnArgs.Graphics.FillEllipse(
Brushes.Blue,
10, 10, 100, 100);
}
private void TheDataGridPaintEventHandler(object sender,
System.Windows.Forms.PaintEventArgs dtGridArgs)
{
dtGridArgs.Graphics.FillEllipse(
Brushes.Blue,
10, 10, 100, 100);
}

shows the output of . As you can see, a button or a data grid can function as a drawing canvas. The top left-hand

corner of a control is the (0, 0) coordinate of the canvas associated with that control.

Figure 13.3. Drawing on Windows controls

)

At this stage it is worth pointing out another big advantage that GDI+ has over GDI: the flexibility to have a Graphics object associated with a
control.

13.1.4 Overriding the onraint Method of a Form

We have already seen this in previous chapters. We can override the OnPaint method by defining it as follows:

protected override void OnPaint(PaintEventArgs args)
{
/I Add your drawing code here

}

Then we can use the Graphics property of PaintEventArgs to draw lines, shapes, text, and images. draws a few graphics shapes
and text on our form's OnPaint method. To test this code, create a Windows application and add the code to it.

Listing 13.4 Using OnPaint to draw

protected override void OnPaint(PaintEventArgs args)
{
/I Get the Graphics object from
/I PaintEventArgs
Graphics g = args.Graphics;
/I Draw rectangle
g.DrawRectangle(
new Pen(Color.Blue, 3),
new Rectangle(10, 10, 50, 50));
/1 Fill ellipse
g.FillEllipse(
Brushes.Red,
new Rectangle(60, 60, 100, 100));
/I Draw text
g.DrawString("Text",
new Font("Verdana", 14),
new SolidBrush(Color.Green),
200, 200) ;

13.1.5 Using Visual Studio .NET to Add the Paint Event Handler

If you are using Visual Studio .NET, the easiest way to add a paint event handler is to use the Properties windows of a form or control and
add a paint event handler. We have seen examples of this in previous chapters.

13.1.6 Disposing of Graphics Objects

It is usually good programming practice to dispose of objects when you're finished using them. But it may notalways be the best practice. A
Graphics object must always be disposed of if it was created via theCreateGraphics method or other "CreateFrom" methods. If we use a
Graphics object on a paint event or theOnPaint method from the PaintEventArgs.Graphics property, we do not have to dispose of it.

Note

Do not dispose of Graphics objects associated with Windows controls such asButton, ListBox, or DataGrid.

If you create objects such as pens and brushes, always dispose of them. Although it is acceptable practice to rely on the garbage collector,
doing so may often be at the expense of application performance. Garbage collection can be a costly affair because the garbage collector
checks the memory for objects that haven't been disposed of, and this process absorbs processor time. However, the Dispose method of an
object tells the garbage collector that the object is finished and ready to be disposed of. Calling the Dispose method eliminates the need to
have the garbage collector check memory, and thus saves processor time.

In Web pages, it is always good practice to dispose of objects as soon as they are done being used.

13.1.7 The onpaintBackground Method

The OnPaintBackground method paints the background of a control. This method is usually overridden in the derived classes to handle the
event without attaching a delegate. Calling the OnPaintBackground method calls OnPaintBackground of the base class automatically, so we
do not need to call it explicitly.

13.1.8 Scope and Type of Variables and Performance

One of the best programming practices is the efficient use of variables and their scope. Before adding a new variable to a program, think for a
second and ask yourself, "Do | really need this variable?" If you need a variable, do you really need it right now? The scope of variables and
use of complex calculations can easily degrade the performance of your applications. Using global scope for pens, brushes, paths, and other
objects may be useful instead of defining variables in the OnPaint or OnPaintBackground methods.

Let's look at a practical example: is written on a form's paint event handler, which creates pens and brushes, and draws
rectangles and polygons.

Listing 13.5 Variables defined in the form's paint event handler

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
/I Create brushes and pens
HatchBrush hatchBrush =
new HatchBrush(HatchStyle.HorizontalBrick,
Color.Red, Color.Blue);
Pen redPen = new Pen(Color.Red, 2);
Pen hatchPen = new Pen(hatchBrush, 4);
SolidBrush brush = new SolidBrush(Color.Green);
/I Create points for curve
PointF p1 = new PointF(40.0F, 50.0F);
PointF p2 = new PointF(60.0F, 70.0F);
PointF p3 = new PointF(80.0F, 34.0F);
PointF p4 = new PointF(120.0F, 180.0F);
PointF p5 = new PointF(200.0F, 150.0F);
PointF[] ptsArray ={ p1, p2, p3, p4, p5 };
float x = 5.0F, y = 5.0F;
float width =
this.ClientRectangle.Width - 100;
float height =
this.ClientRectangle.Height - 100;

Point pt1 = new Point(40, 30);
Point pt2 = new Point(80, 100);
Color [] InColors = {Color.Black, Color.Red};
LinearGradientBrush IgBrush =

new LinearGradientBrush

(pt1, pt2, Color.Red, Color.Green);
IgBrush.LinearColors = InColors;
IgBrush.GammacCaorrection = true;

/I Draw objects

e.Graphics.DrawPolygon(redPen, ptsArray);

e.Graphics.DrawRectangle(hatchPen,
X, Y, width, height);

e.Graphics.FillRectangle(lgBrush,
200, 200, 200, 200);

/I Dispose of objects

IgBrush.Dispose();

brush.Dispose();

hatchPen.Dispose();

redPen.Dispose();

hatchBrush.Dispose();

In this example we define many variables, all of local scope. Throughout the application, the redPen, hatchBrush, hatchPen, brush, and other
variables remain the same. Programmatically, it doesn't matter whether we define these variables locally or globally; the choice depends
entirely on the application. It may be better to have variables defined with a global scope. If you repaint the form frequently, defining these
variables globally may improve performance because time will not be wasted on re-creating the objects for each pass. On the other hand,
defining objects globally may consume more resources (memory).

It is also good to avoid lengthy calculations in frequently called routines. Here's an example: draws a line in a loop. As you can
see, int x andint y are defined inside the loop.

Listing 13.6 Defining variables inside a loop

for (inti=0; i< 10000; i++)

{

Pen bluePen = new Pen(Color.Blue);
int x = 100;

inty = 100;

g.DrawLine(bluePen, 0, 0, X, y);

}

We can easily replace the code in Listinq 13.d with Listinq 13.7|, which is more efficient. If a code statement does the same thing every time a
control reaches it inside a loop, it is a good idea to move that statement outside the loop to save processing cycles.

Listing 13.7 Defining variables outside a loop

Pen bluePen = new Pen(Color.Blue);

int x = 100;

inty = 100;

for (inti=0; i < 10000; i++)

{

g.DrawLine(bluePen, 0, 0, X, y);
}

Sometimes using a floating point data type instead of an integer may affect the quality of a drawing, even though floating point data is costly in
terms of resources.

A well-designed and well-coded application also plays a vital role in performance. For example, replacing multiple if statements with a single
case statement may improve performance.

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

13.2 Double Buffering and Flicker-Free Drawing

Do you remember the Web drawing method in ’? Drawing on the Web works differently from drawing in Windows Forms. On the
Web we have many limitations, one of which is no pixelwise drawing support in the Web browser. So our approach in[Chapter 14 was to
convert our graphics objects into a temporary bitmap image and view the image in a Web browser.

Double buffering is a similar concept. You may have seen one of the frequently asked guestions on GDI+ discussion forums: "How do we
create flicker-free drawings"? The double buffering technique is used to provide faster, smoother drawings by reducing flicker. In this
technique, all objects are drawn on an off-screen canvas with the help of a temporary image and a Graphics object. The image is then copied
to the control. If the drawing operation is small and includes drawing only simple objects such as rectangles or lines, there is no need for
double buffering (it may even degrade performance). If there are many calculations or drawn elements, performance and appearance may be
greatly improved through the use of double buffering.

To prove the point, let's write an example. gives the code for a drawing method that draws several lines.

Listing 13.8 The DrawLines method

private void DrawLines(Graphics g)
{
float width = ClientRectangle.Width;
float height = ClientRectangle.Height;
float partX = width / 1000;
float partY = height / 1000;
for (inti=0; i< 1000; i++)
{
g.DrawLine(Pens.Blue,
0, height - (partY * i),
partX * i, 0);
g.DrawLine(Pens.Green,
0,
height - (partY * i),
(width) - partX * i,
0);
g.DrawLine(Pens.Red, 0,
partY * i,
(width) - partX * i,
0);
}
}

To test our application, we will call it from a button click. The code for a button click event handler is given in .

Listing 13.9 Calling the brawLines method

/I Create a Graphics object for "this"
Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);
/I Draw lines
DrawLines(g);

/I Dispose of object
g.Dispose();

shows the output from .

Figure 13.4. Drawing lines in a loop

™ Form1

Now let's draw the same lines using a Bitmap object. We create a temporaryGraphics object from a temporary image and call its draw and fill
methods. Instead of calling DrawLine with respect to a form, we callDrawlmage, which draws the image generated by theDrawLine method.

Asisting 13.1d shows, we create aBitmap object in a buffer and send the entire buffer all at once usin@rawlmage. We add the code given in

isting 13.1(

| on the Bitmap Draw button click event handler.

Listing 13.10 Using double buffering to draw

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a Bitmap object with the size of the form
Bitmap curBitmap = new Bitmap(ClientRectangle.Width,
ClientRectangle.Height);

/I Create a temporary Graphics object from the bitmap

Graphics g1 = Graphics.Fromlmage(curBitmap);
/I Draw lines on the temporary Graphics object
DrawLines(gl);

/I Call Drawlmage of Graphics and draw bitmap
g.Drawlmage(curBitmap, 0, 0);

/I Dispose of objects

gl.Dispose();

curBitmap.Dispose();

g.Dispose();

Comparing the two methods given in Listings lS.é and h3.1d reveals a significant difference in drawing performance. I, drawing

begins as soon as we hit the Simple Draw button and continues until it is done. By contrast, when we hit theBitmap Draw button, drawing
doesn't start immediately. This method actually draws on an in-memory Bitmap object, and when all drawing is done, it displays the bitmap.

Team LiB |

13.3 Understanding the setstyle Method

Windows Forms and controls provide built-in support for double buffering, and the SetStyle method of the Control class plays a vital role in
this process. Before we discuss how to use SetStyle, let's take a look at this method and its members.

The SetStyle method is defined in System.Windows.Forms.Control, which sets the specified style of a control. This method takes two
arguments. The first argument is of type ControlStyle enumeration, and it represents the style of the control. The second argument istrue if we
want to apply the specified style, false otherwise. The members of the ControlStyle enumeration are described in[lable 13.1].

Table 13.1. ControlStyle members

Member Description

AllPaintinginWmPaint The WM_ERASEBKGND window message is sent to the message queue whenever a control needs to
redraw its background. This method tells Windows to ignore the message, reducing flicker. Both OnPaint
and OnPaintBackground are called from the window messageWM_PAINT.AllPaintinglnWmPaint should
be used only if UserPaint is set to true.

CacheText Applications can cache text using this option. The control keeps a copy of the text rather than getting it
from the handle each time it is needed. This style defaults to false.

ContainerControl The control is a container.

DoubleBuffer This method provides built-in support for double buffering. When it is set to true, drawing is performed in
a buffer and displayed only when complete. When using this option, you must also set the UserPaint and
AllPaintingInWmPaint bits to true.

EnableNotifyMessage If true, the OnNotifyMessage method is called for every message sent to the control'siVndProc method.

This style defaults to false.

FixedHeight The control has a fixed height.

FixedWidth The control has a fixed width.

Opaque The control is drawn opaque, and the background is not painted.

ResizeRedraw The control is redrawn when it is resized.

Selectable The control can receive focus.

StandardClick The control implements standard click behavior.

StandardDoubleClick The control implements standard double-click behavior. When using this option, you must also set

StandardClick to true.

SupportsTransparentBackColor The control accepts a Color object with alpha transparency for the background color. TheUserPaint bit
must be set to true, and the control must be derived from theControl class, like this:
this.SetStyle(ControlStyles.UserPaint, true);

UserMouse The control does its own mouse processing, and mouse events are not handled by the operating system.

UserPaint The control paints itself rather than having the operating system do it. This option applies to classes
derived from Control.

Let's apply the SetStyle method to achieve double buffering. Double buffering can be enabled programmatically with the following code:

/I Activates double buffering
this.SetStyle(ControlStyles.UserPaint, true);
this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);
this.SetStyle(ControlStyles.DoubleBuffer, true);

We can also control the redrawing of controls when a control is resized. Setting ControlStyle.ResizeRedraw to true, as in the code snippet
that follows, forces controls to be redrawn every time a control (or a form) is resized.

SetStyle(ControlStyles.ResizeRedraw, true);

Sometimes we will not want a control to be redrawn when it is resized. In this case we can seResizeRedraw to false.

Note

Many controls, such as PictureBox, are double-buffered automatically, which means we don't need to write any additional
code when viewing images in a PictureBox control.

Team LiB |

13.4 The Quality and Performance of Drawing

Drawing performance is inversely proportional to drawing quality. GDI+ provides several ways to set the quality of images and text. The
SmoothingMode and TextRenderingHint properties are used to set image and text quality, respectively. TheHighQuality and AntiAlias options
provide slow drawing performance and better quality; the HighSpeed and None options provide poor quality and fast performance. Before
using these options, we must decide if we really want to draw anti-aliased objects.

Sometimes anti-aliasing won't affect the quality of a drawing, and it is bad programming practice to use this processor-intensive feature when
it is not required. In other cases we might need to set anti-aliasing for just one object out of 50. In these cases it is better to set the anti-alias
option for that object only, instead of the entire canvas.

bections 13.4.]I throughl13.4.d describe some more tips and tricks that may help improve an application's performance.

13.4.1 Repaint Only the Required Area

Avoiding unwanted repainting is a good technique to increase painting performance. GDI+ provides many techniques for painting only
required objects. Using regions and clipping rectangles may help in some cases. If you need to draw a single object with anti-aliasing on, just
set anti-aliasing for that object instead of for the entire surface (form). Using regions is one of the best techniques for repainting only a
required area. For better performance, yo| now what area you need to redraw and invalidate only that area, thereby using regions
instead of repainting the entire form. See ‘Cha:ter é for details of how to invalidate and clip specific regions.

13.4.2 Use Graphics Paths

Graphics paths may be useful when we need to redraw certain graphics items. For example, suppose we have hundreds of graphics items,
including lines, rectangles, images, and text associated with a surface but we need to redraw only the rectangles. We can create a graphics
path with all rectangles and just redraw that path, instead of the entire surface.

Ne may also want to use graphics paths when drawing different shapes, depending on the complexity of the application. For example,
‘ uses draw methods to draw two lines, two rectangles, and an ellipse. We can write this code on a button or a menu click event handler.

Listing 13.11 Drawing simple graphics objects

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a black pen

Pen blackPen = new Pen(Color.Black, 2);
/I Draw objects

g.DrawLine(blackPen, 50, 50, 200, 50);
g.DrawLine(blackPen, 50, 50, 50, 200);

g.DrawRectangle(blackPen, 60, 60, 150, 150);
g.DrawRectangle(blackPen, 70, 70, 100, 100);
g.DrawEllipse(blackPen, 90, 90, 50, 50);

/I Dispose of objects

blackPen.Dispose();

g.Dispose();

draws the same graphics objects. The only difference is that this code uses a graphics path.

Listing 13.12 Using a graphics path to draw graphics objects

Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

/I Create a black pen

Pen blackPen = new Pen(Color.Black, 2);

/I Create a graphics path

GraphicsPath path = new GraphicsPath();
path.AddLine(50, 50, 200, 50);

path.AddLine(50, 50, 50, 200);
path.AddRectangle(new Rectangle(60, 60, 150, 150));
path.AddRectangle(new Rectangle(70, 70, 100, 100));
path.AddEllipse(90, 90, 50, 50);
g.DrawPath(blackPen, path);

/I Dispose of objects

blackPen.Dispose();

g.Dispose();

Both I_istinqs 13.1]I and IlS.ld generate the output shown i. There is no straightforward rule for when to use graphics paths. The
choice depends on the complexity of your application.

Figure 13.5. The same result from two different drawing methods

tﬂme'I Bl=E

| Nomdoawns | Oran s Graphcs Pt |

In the preceding example we saw how to replace multiple drawing statements with a single graphics path drawing statement. But graphics
paths have some limitations. For example, we can't draw each element (line, rectangle, or an ellipse) of a graphics path with a separate pen
or brush. We have to draw or fill them individually.

13.4.3 Select Methods Carefully

Drawing lines and drawing rectangles are probably the most common operations. If you are drawing more than one line or rectangle using th
same colors, you should use the DrawLine/DrawLines and DrawRectangle/DrawRectangles methods, respectively. For example,Listing 13.1

draws three rectangles using the same brush.

Listing 13.13 Using DrawRectangle to draw rectangles

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
Graphics g = e.Graphics;
/I Create a black pen
Pen blackPen = new Pen(Color.Black, 2);
/I Create a rectangle
float x = 5.0F, y = 5.0F;
float width = 100.0F;
float height = 200.0F;
Rectangle rect = new Rectangle(20,20, 80, 40);
/I Draw rectangles
g.DrawRectangle(blackPen, x, y, width, height);
g.DrawRectangle(blackPen, 60, 80, 140, 50);
g.DrawRectangle(blackPen, rect);
/I Dispose of object
blackPen.Dispose();

}

shows the output fromListing 13.13. Three rectangles have been drawn.

Figure 13.6. Using DrawRectangle to draw rectangles

mFurm'l =] E

You can replace the code in Listing 13.15 with Listing 13.14, which uses DrawRectangles to draw the same number of rectangles. Now we
use an array of rectangles.

Listing 13.14 Using DrawRectangles to draw rectangles

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
Graphics g = e.Graphics;
/I Create a black pen
Pen blackPen = new Pen(Color.Black, 2);
RectangleF[] rectArray =
{
new RectangleF(5.0F, 5.0F, 100.0F, 200.0F),
new RectangleF(20.0F, 20.0F, 80.0F, 40.0F),
new RectangleF(60.0F, 80.0F, 140.0F, 50.0F)
h
g.DrawRectangles(blackPen, rectArray);
/I Dispose of object
blackPen.Dispose();
}

If we run this code, the output looks exactly like .

13.4.4 Avoid Using Frequently Called Events

It is always good practice to write minimal code on events that are called frequently because that code will be executed whenever the event is
called. The Paint event is specifically designed for painting purposes and is called when redrawing is necessary. It is always advisable to
write your painting (or redrawing)-related code for this event only. Writing code for other events, such as mouse-move or keyboard events,
may cause serious problems or may not invalidate areas as necessary.

13.4.5 Use System Brushes and Pens

You can always create system pens and system brushes with system colors by using the SystemColors class, but for performance reasons it
is advisable to use SystemPens and SystemBrushes instead of SystemColors. For example, the following code createsSolidBrush and Pen
objects using SystemColors. The brush and pen have theActiveCaption and ControlDarkDark system colors, respectively.

SolidBrush brush =
(SolidBrush)SystemBrushes.FromSystemColor
(SystemColors.ActiveCaption);

Pen pn = SystemPens.FromSystemColor
(SystemColors.ControlDarkDark);

We can create the same brush and pen by using the static methods of SystemBrushes and SystemPens, as the following code snippet
illustrates:

SolidBrush brush =
(SolidBrush)SystemBrushes.ActiveCaption;
Pen pn = SystemPens.ControlDarkDark;

Never dispose of system pens and brushes. Any attempt to do so will result in an unhandled exception. For example, adding the following two
lines to the code will throw an exception:

pn.Dispose();
brush.Dispose();

isting 13.14 shows the complete code of a form's paint event handler.

Listing 13.15 Using system pens and brushes

private void Form1_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)
{
Graphics g = e.Graphics;
/I AVOID
/*SolidBrush brush =
(SolidBrush)SystemBrushes.FromSystemColor
(SystemColors.ActiveCaption);
Pen pn = SystemPens.FromSystemColor
(SystemColors.ControlDarkDark);
*/
SolidBrush brush =
(SolidBrush)SystemBrushes.ActiveCaption;
Pen pn = SystemPens.ControlDarkDark;
g.DrawLine(pn, 20, 20, 20, 100);
g.DrawLine(pn, 20, 20, 100, 20);
g.FillRectangle(brush, 30, 30, 50, 50);

/I DON'T

/I pn.Dispose();

/I brush.Dispose();
}

shows the output fromListing 13.15. The lines and rectangle are drawn with system colors.

Figure 13.7. Using system pens and brushes

™ Form1 _|Of x|

13.4.6 Avoid Automatic Scaling of Images

Automatic scaling could result in performance degradation. If possible, avoid automatic scaling. The Drawlmage method takes aBitmap

object and a rectangle with upper left corner position and specified width and height. If we pass only the upper left corner position, GDI+ may
scale the image, which decreases performance. For example, the code

e.Graphics.Drawlmage(image, 10, 10;

can be replaced with the following code:

e.Graphics.Drawlmage(image,
10, 10, image.Width,
image.Height);

Team LiB |

SUMMARY

Quality and performance are two basic requirements of all graphics applications. Although an increase in one demands a sacrifice in the
other, a good developer will employ good design and coding techniques to provide an optimal solution. In this chapter we discussed some
techniques that may be helpful in writing optimal solutions for graphics applications.

We learned about the paint event mechanism and different ways to fire the paint event automatically, as well as manually. We also discussed
double buffering, and how it can be achieved with or without the SetStyle method. In addition, we learned a few good programming
techniques and covered some topics that may help you implement some good, performance-oriented coding and design practices.

As a GDI developer, you may want to use some of the "cool" techniques of GDI that are not supported by GDI+. is dedicated to
GDI interoperability. In it, we will discuss how you can mix GDI and GDI+ to take advantage of interoperability.

Team LiB |

Team LiB |

Chapter 14. GDI Interoperability

Although GDI+ is a vastly improved API, a few features that are appreciated by GDI developers are not available in GDI+, such as raster
operations. However, all is not lost. GDI+ interoperability provides a way to interact with GDI in managed applications, which can be used
alongside GDI+ to provide the best of both worlds.

This chapter is written particularly for developers who want to use GDI in their managed applications. If you have no interest in GDI, feel free
to skip this chapter. It will always be here, should the GDI need arise!

To Learn More about COM and .NET Interoperability

If you know GDI and want to use it in managed applications, this chapter will give you an idea of how to do that. However,
COM interoperability is a broad topic. If you want to explore COM interoperability more, some good books are available on the
market. One such book is COM and .NET Interoperability by Andrew Troelsen (published by APress).

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

BTy rrevious [ecr]

14.1 Using GDI in the Managed Environment

One important feature of the .NET runtime is COM and Win32 interoperability. With runtime interoperability services, developers can use both
COM and Win32 libraries in managed applications. The classes related to these services are defined in the System.Runtime.InteropServices
namespace.

We can use COM libraries in managed applications by simply adding a reference to the COM library using the Add Reference option of
VS.NET or the Type Library Importer (Tlbimp.exe) .NET tool. Both of these options allow developers to convert a COM library to a .NET
assembly, which can then be treated as other .NET assemblies. The graphical user interface (GUI) functionality of Windows is defined in a
Win32 library called Gdi32.dIl. Using Win32 libraries in managed code is a little more difficult than using COM libraries. However, there is
nothing to worry about because the System.Runtime.InteropServices.DllimportAttribute class allows developers to use functionality defined in
unmanaged libraries such as Gdi32.dll.

14.1.1 The DllimportAttribute Class

The DllimportAttribute class allows developers to import Win32 SDK functionality into managed applications. TheDllimportAttribute constructor
is used to create a new instance of the DllimportAttribute class with the name of the DLL containing the method to import. For example, the
GDI functionality is defined in Gdi32.dll. So if we want to use GDI functions in our application, we need to import them usingpllimportAttribute.
The following code imports the Gdi32.dll library:

[System.Runtime.InteropServices.DllimportAttribute
("gdi32.dII")]

After adding this code, we're ready to use the functions defined in the Gdi32.dll library in our .NET application.

Now let's take a look at a simple program that uses the MoveFile function of Win32 defined in the KERNEL32.dll library. The code in
first imports the library and then calls theMoveFile function to move a file from one location to another.

Listing 14.1 Using the Win32 MoveFile function defined in KERNEL32.dll

[System.Runtime.InteropServices.DllimportAttribute
("KERNEL32.dlI")]

public static extern bool MoveFile

(String src, String dst);

private void Move_Click(object sender,
System.EventArgs e)
{
MoveFile("C:\\output.jpeg",
"f:\\NewOutput.jpeg");

As with KERNEL32.dll, we can im?ort other Win32 libraries to use them in .NET applications. TheDIllimportAttribute class provides six field

members, which are described in[Table 14.1.

The CallingConvention enumeration specifies the calling convention required to call methods implemented in unmanaged code. Its members

are defined in [Table 14.2.

The DllimportAttribute class has two properties: Typeld and Value. Typeld gets a unique identifier for an attribute when the attribute is
implemented in the derived class, and Value returns the name of the DLL with the entry point.

Table 14.1. pliimportAttribute field members

Method Description

CallingConvention Required to call methods implemented in unmanaged code; represented by theCallingConvention enumeration.

CharSet Controls name mangling and indicates how to marshalString arguments to the method.
EntryPoint Identifies the name or ordinal of the DLL entry point to be called.
ExactSpelling Indicates whether the name of the entry point in the unmanaged DLL should be modified to correspond to the CharSet

value specified in the CharSet field.

PreserveSig Specifies that the managed method signature should not be transformed into an unmanaged signature that returns an
HRESULT structure, and may have an additional argument put or retval) for the return value.

SetLastError Specifies that the callee will call the Win32 APISetLastError method before returning from the named method.

Table 14.2. callingConvention members

Member Description

Cdecl The caller cleans the stack. This property enables calling functions withvarargs.

FastCall For future use.

StdCall The callee cleans the stack. This is the default convention for calling unmanaged functions from managed code.

ThisCall The first parameter is the this pointer and is stored in the ECX register. Other parameters are pushed onto the stack. This
calling convention is used to call methods in classes exported from an unmanaged DLL.

Winapi Uses the default platform-calling convention. For example, on Windows it'sStdCall, and on Windows CE it'sCdecl.

14.1.2 Using the siteit Function

One of the most frequently asked questions on discussion forums and newsgroups related to GDI in managed code has to do with the use of
BitBIt. Is this because developers want to implement sprites and scrolling-type actions in their applications? If you want to use thBitBIt
function, you are probably aware of what it does. For the uninitiated, however, we should explain that this function performs a bit-block
transfer of the color data corresponding to a rectangle of pixels from one device context to another. It is defined as follows:

BOOL BitBIt(
HDC hdcDest, // handle to destination device context
int nXDest, // x-coordinate of destination upper left corner
int nYDest, // y-coordinate of destination upper left corner
int nWidth, // width of destination rectangle
int nHeight, // height of destination rectangle
HDC hdcSrc, // handle to source device context
int nXSrc, // x-coordinate of source upper left corner
int nYSrc, // y-coordinate of source upper left corner
DWORD dwRop // raster operation code

)i
More details of BitBlt are available in the GDI SDK documentation. Just type "BitBIt" in MSDN's index to find it.

First we need to import the BitBIt method and the Gdi32.dll library using the DllimportAttribute class.

[System.Runtime.InteropServices.DllimportAttribute
("Gdi32.dII")]
public static extern bool BitBIt(
IntPtr hdcDest,
int nXDest,
int nYDest,
int nWidth,
int nHeight,
IntPtr hdcSrc,
int nXSrc,
int nYSrc,
System.Int32 dwRop
)i

Now we just call BitBIt. The code in uses the BitBIt function. As the function definition shows, we need source and destination
device contexts. There is no concept of device context in managed code, but to maintain GDI interoperability, the Graphics class's GetHdc
method is used to create a device context for a Graphics object (a surface). GetHdc returns an IntPtr object.

In , first we create aGraphics object by usingCreateGraphics and we draw a few graphics items. From thisGraphics object we
create a Bitmap object, and we create one moreGraphics object as the destination surface by using thecromimage method of the Graphics
object. Next we call BitBIt with destination and source device contexts as parameters. Finally, we make sure to calReleaseHdc, which
releases device context resources. The Save method saves a physical copy of the image. We also call theDispose method of Graphics
objects.

Listing 14.2 Using the BitBIt function

private void Form1_Load(object sender,
System.EventArgs e)

Graphics g1 = this.CreateGraphics();
Graphics g2 = null;
try
{
g1.SmoothingMode =
SmoothingMode.AntiAlias;
gl.DrawLine(new Pen(Color.Black, 2),
10, 10, 150, 10);

gl.DrawLine(new Pen(Color.Black, 2),
10, 10, 10, 150);

gl.FillRectangle(Brushes.Blue,
30, 30, 70, 70);

gl.FillEllipse(new HatchBrush
(HatchStyle.DashedDownwardDiagonal,
Color.Red, Color.Green),

110, 110, 100, 100);

Bitmap curBitmap = new Bitmap(
this.ClientRectangle.Width,
this.ClientRectangle.Height, g1);

g2 = Graphics.Fromlmage(curBitmap);

IntPtr hdcl = g1.GetHdc();

IntPtr hdc2 = g2.GetHdc();

BitBlt(hdc2, 0, 0,
this.ClientRectangle.Width,
this.ClientRectangle.Height,
hdcl, 0, 0, 13369376);

gl.ReleaseHdc(hdcl);

g2.ReleaseHdc(hdc2);
curBitmap.Save("f:\\BitBltimg.jpg",
ImageFormat.Jpeg);
}
catch (Exception exp)
{
MessageBox.Show(exp.Message.ToString());
}
finally
{
g2.Dispose();
gl.Dispose();

14.1.3 Using GDI Print Functionality

We discussed .NET printing functionality in , but what about using GDI printing in managed code? One reason for using GDI may
be speed and familiarity with GDI or having more control over the printer.

Until now we have been selecting objects such as fonts and lines and then drawing on a page, which is then printed out. Keep in mind that all
the fonts you can use within the .NET environment have to be TrueType fonts. Before TrueType came along, there was something called
PCL (Printer Control Language), also known as bitmap fonts. So what's the difference?, you may ask. It's simple: A PCL or bitmap font is
made up of patterns of dots that represent each letter.

The problem is that a different PCL font was required for every size of letter needed, such as 12, 14, and so on. Different PCL fonts were
needed even for italic and bold versions! As you can imagine, it was necessary to have lots of PCL fonts to maintain the flexibility we take for
granted today.

TrueType fonts, on the other hand, are a lot more flexible. The reason is that the fonts are mathematical representations of each letter rather
than a pattern of dots. If | decide | need a Times New Roman font at size 20, the font is simply recalculated rather than just a different pattern
of dots being loaded.

What happens if your printer does not support the TrueType font you have selected? The only way to print it is to send what you want to print
to the printer as graphics, which can be time-consuming if you're creating large printouts.

The code in does a few new things. For one, it uses Win32 APIs to talk directly to the printer, which gives us the best possible
speed. Finally, it demonstrates the use of PCL5 commands to draw a box on the page.

Using the code in , you would be able to create detailed pages consisting of multiple fonts and graphics. The nice thing is that they
can all be created by just sending text to the printer rather than using graphics commands.

You may want to change the printer before you test this code. The following line of code specifies the printer:

PrintDirect.OpenPrinter("\\\192.168.1.101\\hpl",
ref [hPrinter,0);

Listing 14.3 Using GDI print functionality in a managed application

/I PrintDirect.cs

/I Shows how to write data directly to the

/I printer using Win32 APlIs.

/I This code sends Hewlett-Packard PCL5 codes
/I to the printer to print

/I out a rectangle in the middle of the page.

using System;
using System.Text;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
public struct DOCINFO
{
[MarshalAs(UnmanagedType.LPWStr)]
public string pDocName;
[MarshalAs(UnmanagedType.LPWStr)]
public string pOutputFile;
[MarshalAs(UnmanagedType.LPWStr)]
public string pDataType;

public class PrintDirect
{
[Dlllmport("winspool.drv",
CharSet=CharSet.Unicode,ExactSpelling=false,
CallingConvention=CallingConvention.StdCall)]
public static extern long OpenPrinter(string pPrinterName,
ref IntPtr phPrinter, int pDefault);

[Dlllmport("winspool.drv",
CharSet=CharSet.Unicode,ExactSpelling=false,
CallingConvention=CallingConvention.StdCall)]
public static extern long StartDocPrinter(IntPtr hPrinter,
int Level, ref DOCINFO pDoclinfo);

[Dlllmport("winspool.drv",
CharSet=CharSet.Unicode,ExactSpelling=true,
CallingConvention=CallingConvention.StdCall)]

public static extern long StartPagePrinter(
IntPtr hPrinter);

[Dllimport("winspool.drv",

CharSet=CharSet.Ansi, ExactSpelling=true,
CallingConvention=CallingConvention.StdCall)]
public static extern long WritePrinter(IntPtr hPrinter,

string data, int buf, ref int pcWritten);

[Dllimport("winspool.drv" ,
CharSet=CharSet.Unicode,ExactSpelling=true,
CallingConvention=CallingConvention.StdCall)]
public static extern long EndPagePrinter(IntPtr
hPrinter);

[Dllimport("winspool.drv" ,
CharSet=CharSet.Unicode, ExactSpelling=true,

CallingConvention=CallingConvention.StdCall)]

public static extern long EndDocPrinter(IntPtr hPrinter);

[Dllimport("winspool.drv",
CharSet=CharSet.Unicode,ExactSpelling=true,
CallingConvention=CallingConvention.StdCall)]
public static extern long ClosePrinter(IntPtr
hPrinter);

public class App
{
public static void Main()
{
System.IntPtr [hPrinter =
new System.IntPtr();
DOCINFO di = new DOCINFO();
int pcWritten=0;
string st1;

/I Text to print with a form-feed character
st1="This is an example of printing " +
"directly to a printer\f";
di.pDocName="my test document";
di.pDataType="RAW";

/I The "\x1b" means an ASCII escape character
st1="\x1b*c600a6bOP\f";
/I InPrinter contains the handle for the printer opened.
/I'If InPrinter is 0, then an error has occurred.
PrintDirect.OpenPrinter("\\\192.168.1.101\\hpl",

ref [hPrinter,0);
PrintDirect.StartDocPrinter(IhPrinter,1,ref di);
PrintDirect.StartPagePrinter(IhPrinter);

try

{
/I Moves the cursor 900 dots (3 inches at
/1 300 dpi) in from the left margin, and
/1 600 dots (2 inches at 300 dpi) down

/I from the top margin

st1="\x1b*p900x600Y";

PrintDirect.WritePrinter(IhPrinter,
stl, stl.Length, ref pcWritten);

/I Using the print model commands for rectangle
/I dimensions, "600a" specifies a rectangle
/I with a horizontal size, or width, of 600 dots,
/I and "6b" specifies a vertical
/I size, or height, of 6 dots. "OP" selects the
/I solid black rectangular area fill.
st1="\x1b*c600a6bOP";
PrintDirect.WritePrinter(IhPrinter,

stl, stl.Length, ref pcWritten);

/I Specifies a rectangle with width of
/I 6 dots, height of 600 dots, and a
/1 fill pattern of solid black
st1="\x1b*c6a600b0OP";
PrintDirect.WritePrinter(IhPrinter,
stl, stl.Length, ref pcWritten);

/I Moves the current cursor position to
/1 900 dots from the left margin and
/1 1200 dots down from the top margin
st1="\x1b*p900x1200Y";
PrintDirect.WritePrinter(IhPrinter,

stl, stl.Length, ref pcWritten);

/I Specifies a rectangle with a width
/I of 606 dots, a height of 6 dots, and a
/1 fill pattern of solid black
st1="\x1b*c606a6bOP";
PrintDirect.WritePrinter(IhPrinter,

stl, stl.Length, ref pcWritten);

/I Moves the current cursor position to 1500
/I dots in from the left margin and
/1 600 dots down from the top margin
st1="\x1b*p1500x600Y";
PrintDirect.WritePrinter(IhPrinter,

stl, stl.Length, ref pcWritten);

/I Specifies a rectangle with a width of 6 dots,
/I a height of 600 dots, and a
/1 fill pattern of solid black
st1="\x1b*c6a600b0OP";
PrintDirect.WritePrinter(IhPrinter,

stl, stl.Length, ref pcWritten);

/I Send a form-feed character to the printer
st1="\f";
PrintDirect.WritePrinter(IhPrinter,
stl, stl.Length, ref pcWritten);
}
catch (Exception e)

{

Console.WriteLine(e.Message);

PrintDirect.EndPagePrinter(IhPrinter);
PrintDirect.EndDocPrinter(IhPrinter);
PrintDirect.ClosePrinter(IhPrinter);

Using this code will enable us to drive a printer at its maximum output rate.

Team LiB |

14.2 Cautions for Using GDI in Managed Code

We just saw how we can take advantage of services provided by the .NET runtime, which include the flexibility of mixing GDI with GDI+ and
using GDI functionality in managed applications.

14.2.1 No GDI Calls between cetHdc and ReleaseHdc

GDI+ currently has no support for raster operations. When we use R2_XOR pen operations, we use theGraphics.GetHdc() method to get the
handle to the device context. During the operation when your application uses the HDC, the GDI+ should not draw anything on the Graphics
object until the Graphics.ReleaseHdc method is called. Every GetHdc call must be followed by a call toReleaseHdc on a Graphics object, as in
the following code snippet:

IntPtr hdcl = g1.GetHdc();
/I Do something with hdcl
gl.ReleaseHdc(hdcl);

g2 = Graphics.FromImage(curBitmap);
IntPtr hdcl = g1.GetHdc();
IntPtr hdc2 = g2.GetHdc();
BitBlt(hdc2, 0, 0,
this.ClientRectangle.Width,
this.ClientRectangle.Height,
hdc1, 0, 0, 13369376);
g2.DrawRectangle(Pens.Red, 40, 40, 200, 200);
gl.ReleaseHdc(hdcl);
g2.ReleaseHdc(hdc2);

If we make a GDI+ call after GetHdc, the system will throw an "object busy" exception. For example, in the preceding code snippet we make a
DrawRectangle call after GetHdc and before ReleaseHdc. As a result we will get an exception saying, "The object is currently in use
elsewhere."

14.2.2 Using GDI on a GDI+ Graphics Object Backed by a Bitmap

After a call to GetHdc, we can simply call aGraphics object from a bitmap that returns a newHBITMAP structure. This bitmap does not contain
the original image, but rather a sentinel pattern, which allows GDI+ to track changes to the bitmap. WhenReleaseHdc is called, changes are
copied back to the original image. This type of device context is not suitable for raster operations because the handle to device context is
considered write-only, and raster operations require it to be read-only. This approach may also degrade the performance because creating a
new bitmap and saving changes to the original bitmap operations may tie up all your resources.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

SUMMARY

With the help of .NET runtime interoperability services, we can use the functionality of the Win32 libraries in managed code. The
DllimportAttribute class is used to import a Win32 DLL into managed code. In this chapter we saw how to use this class to impoi&di32.dll
functions in managed code. We also saw how to use printing and BitBlt functions in managed code.

GDI+ can also be used to write simple and fun drawing applications. This is what we will discuss in . There you will see how GDI+
can be useful for writing fun applications.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

Chapter 15. Miscellaneous GDI+ Examples

In this chapter we will write some miscellaneous GDI+ samples that you may find useful when writing real-world applications. We will cover
the following topics:

® Designing interactive GUI applications

o Writing Windows applications using shaped forms

® Adding custom text in images

® Reading and writing images to and from databases

o Resizing the graphics of a form when the form is resized

® Creating owner-drawn ListBox and ComboBox controls

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

15.1 Designing Interactive GUI Applications

In this section we will see some of the Windows Forms control properties that are used in designing interactive Windows GUI applications.
Before writing our sample application, we will discuss some common properties of the Control class.

15.1.1 Understanding the control Class

The Control class provides the basic functionality and serves as the base class for Windows forms and controls. Although this class has many
properties and methods, we will concentrate on only a few of them.

The ForeColor and BackColor properties determine the foreground and background colors of controls, respectively. Both properties are of type
Color, and they implement get and set property options.

The Font property represents the font of the text displayed by a control. TheDefaultBackColor, DefaultFont, and DefaultForeColor static
properties of the Control class implement the get option only, and they return the default background color, font, and foreground color of a
control, respectively.

The Backgroundimage property allows us to both get and set the background image of a control. This property is of typémage. Images with
translucent or transparent colors are not supported by Windows Forms as background images.

15.1.2 The Application

Now let's write an application that will use all of the properties we just named.

First we create a Windows application and name it ButtonViewer. Then we add controls (for three buttons, one text box, and one panel) to the
form by dragging them from the Visual Studio .NET toolhox, After adding controls to the form, we reposition and resize them, and we change
their Text and Name properties. The final form looks like Eigure 15.1.

Figure 15.1. An interactive GUI application

R e R R I S S S

As shows, two of the buttons are namedBrowse and Close, respectively, and one button has no text. TheBrowse button allows
us to browse an image file, and the Close button closes the application. The TextBox control displays the file name selected by a click of the

Browse button. The third button (shown larger and without text iin;ure 15.1) displays the image selected by the Browse button.

Now let's change the background color, foreground color, styles, and fonts of these controls. To do so, we add code in the form's load event
handler, as shown in . As the code indicates, we set the control'sBackColor, ForeColor, FlatStyle, BorderStyle, and Font properties.

(See for details on fonts and colors.)

Listing 15.1 Setting a control's BackColor, ForeColor, and Font properties

private void Form2_Load(object sender, System.EventArgs e)
{

// Button 1

button1.ForeColor = Color.Yellow;

button1.BackColor = Color.Maroon;

buttonl.FlatStyle = FlatStyle.Flat;

button1.Font = new Font ("Verdana",

10, FontStyle.Bold);

/I Close and Browse buttons
btnClose.ForeColor = Color.Yellow;
btnClose.BackColor = Color.Black;
btnClose.FlatStyle = FlatStyle.Flat;
btnClose.Font = new Font ("Ariel",

10, FontStyle.ltalic);
btnBrowse.ForeColor = Color.White;
btnBrowse.BackColor = Color.Black;
btnBrowse.FlatStyle = FlatStyle.Flat;
btnBrowse.Font = new Font ("Ariel",

10, FontStyle.Bold);

/I Text box 1

textBox1.BorderStyle = BorderStyle.FixedSingle;
textBox1.BackColor = Color.Blue;
textBox1.ForeColor = Color.Yellow;
textBox1.Font = new Font("Tahoma", 10,
FontStyle.Strikeout|FontStyle.Bold|

FontStyle.ltalic);
/I Panel 1
panell.BorderStyle = BorderStyle.FixedSingle;
panell.BackColor = Color.Red;

}

The Close button click handler simply calls theForm.Close method, as shown in .

Listing 15.2 The Close button click event handler

private void btnClose_Click(object sender,
System.EventArgs e)

{
this.Close();

}

The Browse button click event handler (se) uses an OpenFileDialog control to browse for an image and sets the selected image
as the background image of the button. It also sets the file name as text of the text box control. Finally, it calls the Invalidate method to repaint
the form.

Listing 15.3 The Browse button click event handler

private void btnBrowse_Click(object sender,
System.EventArgs e)

{

OpenFileDialog fdlg = new OpenFileDialog();
fdlg.Title = "C# Corner Open File Dialog" ;
fdlg.InitialDirectory = @"c:\" ;

fdlg.Filter = "Image Files(*.BMP;*.JPG;*.GIF)|" +
"* BMP;*.JPG;*.GIF|All files (*.*)*.*";
fdlg.Filterindex = 2 ;

fdlg.RestoreDirectory = true ;
if(fdlg.ShowDialog() == DialogResult.OK)

{
buttonl.Backgroundimage =

Image.FromFile(fdlg.FileName) ;

textBox1.Text = fdlg.FileName;

}

Invalidate();

}

15.1.3 Drawing Transparent Controls

How can | draw transparent controls? This is one of the commonly asked questions on discussion forums.

Drawing transparent controls involves two steps. First we set a form's style to enable support for transparent controls. We do this by calling
the SetStyle method of the form, passingControlStyles.SupportTransparentBackColor as the first argument, and setting the second argument
(which in turn sets the SupportTransparentBackColor bit) to true. Next we set the control'sBackColor property to a transparent color. Either we
can use Color.Transparent, or we can create aColor object using an alpha component value less than 255 to provide custom

semitransparency. sets the background color of controls to transparent.

Listing 15.4 Setting the background color of controls to transparent

/* Code for transparent controls */

this.SetStyle(
ControlStyles.SupportsTransparentBackColor,
true);

buttonl.BackColor = Color.Transparent;
btnBrowse.BackColor = Color.Transparent;
btnClose.BackColor = Color.Transparent;
panell.BackColor = Color.FromArgh(70, 0, 0, 255);

The output of looks like .

Figure 15.2. Designing transparent controls

L™ ButtonViewer

PSRl s Kt El Faltn TH

Note

Not all controls support transparent color. For example, if you set the BackColor property of a text box toColor.Transparent,
you will get an exception.

Tean L] rrevious [ecr]

Team LiB |

15.2 Drawing Shaped Forms and Windows Controls

Normally, all Windows controls and forms are rectangular, but what if we want to draw them in nonrectangular shapes? We can do this by
setting the Region property. The Region property of a form or a control represents that window'segion, which is a collection of pixels within a
form or control where the operating system permits drawing; no portion of a form that lies outside of the window region is displayed. To draw
nonrectangular shapes, we trick the system into drawing only the region of a control.

Let's draw a circular form. We can use the GraphicsPath class to draw graphics paths. In this application we'll create a circular form and a
circular picture box, which will display an image. To test this application, we follow these simple steps:

We create a Windows application and add a button and a picture box to the form. Then we set the Text property of the button control to "Exit"
and write the following line on the button click event handler:

this.Close();

Next we add a reference to the System.Drawing.Drawing2D namespace so that we can use theGraphicsPath class:

using System.Drawing.Drawing2D;

On the form-load event handler, we create a Bitmap object from a file and load the bitmap in the picture box as shown in the following code
snippet.

Image bmp = Bitmap.FromFile("aphoto.jpg");
pictureBox1.Image = bmp;

The last step is to set the form and picture box as circular. We can modify the InitializeComponent method and add code as i at
the end of the method, or we can add the code on the form-load event handler. We just set the Region property of the form and picture box to
the region of our GraphicsPath object.

Listing 15.5 Setting a form and picture box control as circular

private void Form1_Load(object sender,
System.EventArgs e)

{

/I Create a rectangle

Rectangle rect = new Rectangle(0,0,100,100);
/I Create a graphics path

GraphicsPath path = new GraphicsPath();
/I Add an ellipse to the graphics path
path.AddEllipse(rect);

/I Set the Region property of the picture box
/I by creating a region from the path
pictureBox1.Region = new Region(path);

rect.Height += 200;

rect.Width += 200;

path.Reset();

path.AddEllipse(rect);

this.Region = new Region(path);

/I Create an image from a file and

/I set the picture box's Image property
Image bmp = Bitmap.FromFile("aphoto.jpg");
pictureBox1.Image = bmp;

}

When we build and run the application; the output will look like . Because we have eliminated the normal title bar controls, we must
implement an Exit button.

Figure 15.3. Drawing a circular form and Windows controls

N
==

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

15.3 Adding Copyright Information to a Drawn Image
With the popularity of digital cameras and the increase of digital archive Web sites that allow you to buy images, it's handy to be able to add a
copyright to your image. Not only that, you can also add text specifying the date and place of the photograph.

In this section we will create an application with support for the display of copyright information on displayed images. First we create
ows application and add a File | Open menu item, a button with text "Add Copyright," and a picture box. The final form looks IikIFi;urel
15.4.

Figure 15.4. A graphics copyright application

mﬁmnhi-_‘.s Copyright

After adding the controls, we add a reference to the System.Drawing.Imaging namespace to the application. Then we add a classmage
variable to the application as follows:

Image origlmage;

The File
given in

Open menu allows us to browse images and view a thumbnail of a specific image. The code for the menu click event handler is
. After reading the name of the image, we create animage object from the file name using thelmage.FromFile static
method. After creating one Image object, we create anotherlmage object using the GetThumbnaillmage method of the Image class.

GetThumbnaillmage returns a thumbnail image. After that we simply set thelmage property of PictureBox to display the image.

Listing 15.6 Browsing images

private void menultem2_Click(object sender,
System.EventArgs €)

{
/I Open file dialog

OpenFileDialog fileDlg = new OpenFileDialog();
fileDlg.InitialDirectory = "c:\\" ;
fileDlg.Filter="All files (*.*)|*.*";
fileDlg.Filterindex = 2 ;
fileDlg.RestoreDirectory = true ;
if(fileDlg.ShowDialog() == DialogResult.OK)
{
/I Create image from file
string fileName = fileDlg.FileName.ToString();
origimage = Image.FromFile(fileName);
/I Create thumbnail image
Image thumbNail =
origimage.GetThumbnaillmage(100, 100,
null, new IntPtr());
/I View image in picture box
pictureBox1.Image = thumbNail;
}
}

If we run the application and open a file using the Open menu item, the image will be displayed. The output looks Iik.

Figure 15.5. Thumbnail view of an image

Eﬁraphits Copyright _;IEIEI

Once the image has been loaded, we click the Add Copyright button and let the program do its work. Basically we need to create an image
on the fly, add text to the image using the DrawString method, and then save the image. To give the text a different shade, we need to change
the color of the pixels that draw the text. In other words, we must change the brightness of the pixels that represent the text to distinguish the
text pixels from the image pixels. We increase the values for the red, green, and blue component of the color by 25 to brighten the text pixe
We use the MeasureString method of the Graphics class to set the size and font of the text. (We discussedVieasureString in detail in

b

The maximum value for each of the red, green, and blue components of a color is 255. What happens if these values are already set to 255?
Do we still increase their value by 25? No. In that case we cheat and don't touch these pixels. In most cases this approach works because
there is always a pixel that is totally different in brightness. One additional thing we could do would be to analyze the image, determine
whether it's a dark or bright image, and adjust it accordingly.

To find out which pixels to change, we create a second bitmap that is the same size as the original image. We write "Add Copyright Info" on
this image and use it as the pattern for the main image.

We also want to use the largest font we can to create a big word across the image. Of course, the image can be any size, so we can predict

the font size. To do this we create a graphics class based on our pattern image and use the MeasureString method until we get a font that fits

the graphic, as in .

Listing 15.7 Adding the copyright text

while(foundfont==false)
{
Font fc = new Font("Georgia",
fntSize, System.Drawing.FontStyle.Bold);
sizeofstring = new SizeF(imgWidth,imgHeight);
sizeofstring =
g.MeasureString("Copyright GDI+ Inc.,"fc);
if (sizeofstring.Width<pattern.Width)
{
if (sizeofstring.Height<pattern.Height)
{
foundfont=true;
g.DrawString("Copyright GDI+ Inc.,",
fc, new SolidBrush(Color.Black),
1, 15);
}
}

else
fntSize = fntSize - 1;
}

The complete code for the Add Copyright button click event handler is given i. We read the image size and create aBitmap
object from the original size of the image. Then we create a Graphics object on the fly using thisBitmap object. Once the pattern bitmap has

been created, all we have to do is loop through all the pixels and if a pixel is black (which means that it's part of the word), we go to the main
image and increase its brightness, producing a glasslike effect.

Listing 15.8 Adding copyright to an image

private void buttonl_Click(object sender,
System.EventArgs e)
{
if(origlmage == null)
{
MessageBox.Show("Open a file");
return;
}
int imgWidth;
int imgHeight;
int fntSize=300;
int x,y;
int a,re,gr,bl,x1,y1,z1;
int size;
Bitmap pattern;
SizeF sizeofstring;
bool foundfont;
imgWidth = origimage.Width;
imgHeight = origlmage.Height;
size=imgWidth*imgHeight;
pattern = new Bitmap(imgWidth,imgHeight);

Bitmap temp = new Bitmap(origimage);
Graphics g = Graphics.Fromlmage(pattern);
Graphics tempg = Graphics.Fromlmage(origimage);
/I Find a font size that will fit in the bitmap
foundfont = false;
g.Clear(Color.White);
while(foundfont==false)
{
Font fc = new Font("Georgia",
fntSize, System.Drawing.FontStyle.Bold);
sizeofstring = new SizeF(imgWidth,imgHeight);
sizeofstring =
g.MeasureString("Add Copyright Info",fc);
if (sizeofstring.Width<pattern.Width)
{
if (sizeofstring.Height<pattern.Height)
{
foundfont=true;
g.DrawString("Add Copyright Info",
fc, new SolidBrush(Color.Black),
1, 15);
}
}

else
fntSize = fntSize - 1;
}
MessageBox.Show("Creating new graphic",
"GraphicsCopyright");
for(x=1;x<pattern.Width;x++)
{
for(y=1;y<pattern.Height;y++)//
{
if (pattern.GetPixel(x,y).ToArgb()
== Color.Black.ToArgh())
{
a=temp.GetPixel(x,y).A;
re=temp.GetPixel(x,y).R;
gr=temp.GetPixel(x,y).G;
bl=temp.GetPixel(x,y).B;

x1=re;

yl=gr;

z1=bhl;

if (bl+25<255)
bl=bl+25;

if (gr+25<255)
gr=gr+25;

if (re+25<255)
re=re+25;

if (x1-25>0)
x1=x1-25;

if (y1-25>0)
yl=y1-25;

if (z1-25>0)
z1=21-25;

tempg.DrawEllipse(new Pen(
new SolidBrush(Color.Black)),
X, y+1, 3, 3);
tempg.DrawEllipse(new Pen(
new SolidBrush(
Color.FromArgb(a,x1,y1,z1))),
X, Yy, 1, 1);
}
}
}
MessageBox.Show("Output file is output.jpeg",
"GraphicsCopyright");
tempg.Save();
origlmage.Save("output.jpeg",
ImageFormat.Jpeg);

}

Now we can run the application and browse images. When we click the Add Copyright button,
done adding text. The result creates what is commonly known as a watermark in the image (see

a message when the program is

.

Figure 15.6. An image after copyright has been added to it

15.4 Reading and Writing Images to and from a Stream or Database

Sometimes we need to read and write images to and from a stream or database. In this example we will build an application to show how to
do this for both streams and databases. We will use Microsoft Access for the database and ADO.NET to read and write data to the database.

Database Programming and ADO.NET

Ifyou are new to database programming and ADO.NET, you may want to look at the ADO.NET section of C# Corner
(lwww.c-sharpcorner.cony). Plenty of source code samples and tutorials are available for free. You also might want to check
out my book for ADO.NET beginners: A Programmer's Guide to ADO.NET in C# (published by APress).

First we need to create a database. We start by creating a new Access database called AppliedAdoNet.mdb and adding a table to the

database called "Users." The database table schema should look like . Microsoft Access stores binary large objects (BLOBS)
using the OLE object data type.

Figure 15.7. Users table schema

| Field Name [DataType |
¥ Autohhurmber
Llseridamme Tk
UserEmail Tk
UiserPhoto OLE Object
UserDesoriphion Mg
To make our application a little more interactive and user-friendly, let's create a Windows application and add a text box, three button
controls, and a PictureBox control. The final form looks Iike. As you can probably guess, theBrowse Image button allows users to

browse for bitmap files; the Save Image button saves the image to the database; and theRead Image button reads the first row of the
database table, saves binary data as a bitmap, and displays the image in the picture box.

Figure 15.8. Reading and writing images in a database form

- [rextBox1 * Brﬂl.'-rsalmlils [

{D'ITFI

http://www.c-sharpcorner.com/default.htm

Before we write code on button clicks, we need to define the following variables:

/I User-defined variables

private Image curlmage = null;

private string curFileName = null;

private string connectionString =
"Provider=Microsoft.Jet. OLEDB.4.0; " +
"Data Source=F:\\AppliedAdoNet.mdb" ;

private string savedimageName =
"F:\\ImageFromDb.BMP";

Do not forget to add references to the System.lO and System.Data.OleDb namespaces:

using System.lO;
using System.Data.OleDb;

The stream-related classes are defined in the System.|O namespace. We will use the OLE DB data provider, which is defined in the
System.Data.OleDb namespace, to work with our Access database.

The Browse Image button click code is given i . which simply browses bitmap files and saves the file name ircurFileName. We
can set a filter to access the file formats we want.

Listing 15.9 The Browse button click event handler

private void BrowseBtn_Click(object sender,
System.EventArgs e)
{
OpenFileDialog openDlg = new OpenFileDialog();
openDlg.Filter = "All Bitmap files|*.bmp";
string filter = openDlg.Filter;
openDIg.Title = "Open a Bitmap File";
if(openDlg.ShowDialog() == DialogResult.OK)
{
curFileName = openDIg.FileName;
textBox1.Text = curFileName;
}
}

The Save Image button code given inListing 15.10 creates aFileStream object from the bitmap file, opens a connection with the database,
adds a new data row, set its values, and saves the row back to the database.

Listing 15.10 The Save Image button click event handler

private void SavelmageBtn_Click(object sender,
System.EventArgs e)
{
/I Read a bitmap's contents in a stream
FileStream fs = new FileStream(curFileName,
FileMode.OpenOrCreate, FileAccess.Read);
byte[] rawData = new byte[fs.Length];
fs.Read(rawData, O,
System.Convert.Tolnt32(fs.Length));
fs.Close();

/I Construct a SQL string and a connection object
string sql = "SELECT * FROM Users";
OleDbConnection conn = new OleDbConnection();
conn.ConnectionString = connectionString;
/I Open the connection
if(conn.State != ConnectionState.Open)
conn.Open();
/I Create a data adapter and data set
OleDbDataAdapter adapter =
new OleDbDataAdapter(sql, conn);
OleDbCommandBuilder cmdBuilder =
new OleDbCommandBuilder(adapter);
DataSet ds = new DataSet("Users");
adapter.MissingSchemaAction =
MissingSchemaAction.AddWithKey;

/I Fill the data adapter
adapter.Fill(ds,"Users");

string userDes =

"Mahesh Chand is a founder of C# Corner ",
userDes +=

"Author: 1. A Programmer's Guide to ADO.NET;";
userDes +=", 2. Applied ADO.NET. ";

/I Create a new row
DataRow row = ds.Tables["Users"].NewRow();
row["UserName"] = "Mahesh Chand";
row["UserEmail"] = "mcb@mindcracker.com”;
row["UserDescription"] = userDes;
row["UserPhoto"] = rawData;
/I Add the row to the collection
ds.Tables["Users"].Rows.Add(row);
/I Save changes to the database
adapter.Update(ds, "Users");
/I Clean up connection
if(conn != null)
{

if(conn.State == ConnectionState.Open)

conn.Close();

/I Dispose of connection

conn.Dispose();
}

MessageBox.Show("Image Saved");

}

Once the data has been saved, the next step is to read data from the database table, save it as a bitmap again, and view the bitmap on the
form. We can view an image using the Graphics.Drawlmage method or using a picture box. Our example uses a picture box.

The code for reading binary data is shown in . We open a connection, create a data adapter, fill a data set, and get the first row
of the Users table. If you want to read all the images, you may want to modify your application or loop through all the rows. Once a row has
been read, we retrieve the data stored in the UserPhoto column in a stream and save it as a bitmap file. Later we view that bitmap file in a
picture box by setting its Image property to the file name.

Listing 15.11 Reading images from a database

private void ReadimageBtn_Click(object sender,
System.EventArgs e)
{
/I Construct a SQL string and a connection object
string sql = "SELECT * FROM Users";
OleDbConnection conn = new OleDbConnection();
conn.ConnectionString = connectionString;
/I Open the connection
if(conn.State != ConnectionState.Open)
conn.Open();
/I Create a data adapter and data set
OleDbDataAdapter adapter =
new OleDbDataAdapter(sql, conn);
OleDbCommandBuilder cmdBuilder =
new OleDbCommandBuilder(adapter);
DataSet ds = new DataSet("Users");
adapter.MissingSchemaAction =
MissingSchemaAction.AddWithKey;
/I Fill the data adapter
adapter.Fill(ds,"Users");

/I Get the first row of the table

DataRow row = ds.Tables["Users"].Rows|[0];
/I Read data in a stream

byte[] rawData = new byte[0];

rawData = (byte[])row["UserPhoto"];

int len = new int();

len = rawData.GetUpperBound(0);

/I Save rawData as a bitmap

FileStream fs = new FileStream

(savedimageName, FileMode.OpenOrCreate,
FileAccess.Write);

fs.Write(rawData, 0, len);

/I Close the stream

fs.Close();

/I View the image in a picture box

curlmage = Image.FromFile(savedimageName);

pictureBox1.Image = curimage;

/I Clean up connection

if(conn != null)

{
if(conn.State == ConnectionState.Open)

conn.Close();

/I Dispose of connection
conn.Dispose();

}

}

To see the program in action, we select the MyPhoto.bmp file by using theBrowse Image button, and we click theSave Image button. When

we open the database, we see that a new record has been added to the Us able, When we click on the Read Image button, a new
ImageFromDb.bmp file is added to the current folder. The output is shown ilj.

Figure 15.9. Displaying a bitmap after reading data from a database

™ Reading and Writing Images in a Database

IF:'I.HMG.W Browse Image

Save Image | Readlmege |

1 o i

!
] e T
T =

b O oarar s v

How to Resize Graphics When a Window Is Resized

The Control class provides a property calledClientRectangle that represents the client area of a control or form. Using this
property, we can measure the size of a control or a form, and set its position on the Paint event handler orOnPaint method.

Whenever a user resizes the form, OnPaint is called.

[Team Lic] [erevious [nexr o]

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

15.5 Creating Owner-Drawn List Controls

How to create owner-drawn controls is a frequent topic of discussion forums and newsgroups. In this section we will discuss how an
owner-drawn process works for Windows controls and how you can create your own controls.

15.5.1 The prawitem Event

The Drawltem event is raised by owner-drawn controls. This event passes an argument of typérawltemEventArgs, which contains data
related to the event. The user uses this data to paint a specific item of the control. The properties of the DrawltemEventArgs class are given in
Table 15.1.

Besides the properties listed in [Table 15.1], the DrawltemEventArgs class provides two useful methods:DrawBackground and
DrawFocusRectangle. The DrawBackground method draws the background of the item when we select an item in a control. The
DrawFocusRectangle method draws a focus rectangle around the text of an item selected in the control. These methods take no arguments.

15.5.2 The Measureltem Event

The Measureltem event is raised by owner-drawn controls when the size (width and height) of the items in a control is being determined. This
event passes an argument of type MeasureltemEventArgs,which contains data related to the event. This data is used by the user to paint a
specific item of the control. The MeasureltemEventArgs class properties are listed infable 15.2.

Table 15.1. DrawltemEventArgs properties

Property Description
BackColor Background color of the item that is being drawn.
Bounds Rectangle that represents the bounds of the item being drawn.
Font Font assigned to the item being drawn.
ForeColor Foreground color of the item being drawn.
Graphics Graphics object associated with the item being drawn.
Index Index value of the item being drawn.
State State of the item being drawn.

Table 15.2. MeasureltemEventArgs properties

Property Description
Graphics Graphics object associated with the event.
Index Index of the item participating in the measure-item event. Both get and set.
ItemHeight Height of the item. Both get and set.
ItemWidth Width of the item. Both get and set.

15.5.3 Owner-Drawn ListBox Controls

The ListBox class represents a list box control in Windows Forms. This class provides two events-Brawltem and Measureltem—that

participate in owner drawing processes.

Briefly, in owner-drawn controls the developer (not the framework) programmatically handles the process of creating controls. One example
of an owner-drawn control is a list box in which you can change the color, font, and size of the individual items.

Note

The DrawMode property of ListBox must be set to DrawMode.OwnerDrawVariable.

Let's create a Windows application using Visual Studio .NET and add a ListBox control by dragging it from the toolbox to the form. We start by

sting 15.19 on InitializeComponent after the ListBox code. This code sets theDrawMode property of

drawing a list box with different colors, background color, and size. Then we set the DrawMode to OwnerDrawVariable using the Properties
—

window. Finally, we add the code from |

ListBox and adds Drawltem and Measureltem event handlers.

Listing 15.12 Adding Drawltem and Measureltem event handlers

this.listBox1.DrawMode =

System.Windows.Forms.DrawMode.OwnerDrawVariable;

this.listBox1.Measureltem +=

new System.Windows.Forms.MeasureltemEventHandler(

this.ListBoxMeasureltem);
this.listBox1.Drawltem +=

new System.Windows.Forms.DrawltemEventHandler(

this.ListBoxDrawltem);

Next we define four arrays to store the text, size, foreground color, and background color, respectively, of aListBox item. We define the

following variables in the form class:

private string [] textArray = null;
private int [] sizeArray = null;

private Color [] colorArray = null;
private Color [] backColorArray = null;

The next step is to initialize these arrays as in Listing 15.13. Our code also binds the text array to theListBox control. You can add this code
on the form's constructor after InitializeComponent or on the form's load event handler.

Listing 15.13 Initializing arrays

textArray = new String[5]
{

"Black Item”, "Blue ltem",
"Red Item", "Green ltem",
"Yellow Item",

k

colorArray = new Color[5]

{

Color.Black, Color.Blue,
Color.Red, Color.Green,
Color.Yellow,

k

backColorArray = new Color[5]

{

Color.Gray, Color.LightCyan,
Color.LightPink, Color.Yellow,
Color.Black,

3

sizeArray = new int[5]

{
12, 14, 16, 18, 20

3

/I Bind text array to list box
listBox1.DataSource = textArray;

The final step is to write Drawltem and Measureltem event handlers. The code for these handlers is given irListing 15.14. We draw a focus
rectangle and background of items, and then we draw text using DrawString by passing the color, text, and size after reading from arrays. The
Measureltem event handler sets the height of the ListBox control items.

Note

See andE for more about theDrawString method.

Listing 15.14 The Drawltem and Measureltem event handlers

private void ListBoxDrawltem(object sender,
DrawltemEventArgs e)
{
e.DrawFocusRectangle();
e.DrawBackground();
/I Uncomment this code to set the background
/I color of items
/*
e.Graphics.FillRectangle(
new SolidBrush(backColorArray[e.Index]),
new Rectangle (e.Bounds.Left, e.Bounds.Top,
e.Bounds.Right, e.Bounds.Bottom));
*/
e.Graphics.DrawString(textArray[e.Index],
new Font(FontFamily.GenericSansSerif,
sizeArray[e.Index], FontStyle.Bold),
new SolidBrush(colorArray[e.Index]),
e.Bounds);

private void ListBoxMeasureltem(object sender,
MeasureltemEventArgs e)

{
e.ltemHeight= 24;

}

If we run the application, the output will look like .

Figure 15.10. An owner-drawn ListBox control

EE Dwner Draw ListBox

=1 E3

Black Item
Elue ltem

Green ltem

15.5.4 An Owner-Drawn Image Listeox Control

Sometimes we want to display images in a ListBox control. By applying the method described in the preceding section, we can easily create
an owner-drawn ListBox control with images in it. In the previous example we created an array of strings and use®rawString to draw them.
This time we create an array of Image objects and call theDrawlmage method. First we define an array oflmage objects as follows:

private Image [] imgArray = null;

Then we initialize the image array. We can create an Image object from a file by using thelmage.FromFile method. The following code snippet
initializes the image array:

imgArray = new Image[5]

{
Image.FromFile("Img1.jpg"),

i

Image.FromFile("Img2.jpg"),
Image.FromFile("Img3.jpg"),
Image.FromFile("Img4.jpg"),
Image.FromFile("Img5.jpg")

8

Next we calculate the sizes of the images and draw them using Drawlmage on the Drawltem event handler. We can also set the sizes of
items on the Measureltem event handler. Listing 15.14 shows how to draw images using the Drawlmage method.

Listing 15.15 Drawltem and Measureltem event handlers for an image ListBox control

private void ListBoxDrawltem(object sender,
DrawltemEventArgs e)
{
SizeF curlmgSize =
imgArray[e.Index].PhysicalDimension;
e.Graphics.Drawlmage(imgArray[e.Index],
e.Bounds.X+5,
(e.Bounds.Bottom + e.Bounds.Top) /2
- curlmgSize.Height/2);
}
private void ListBoxMeasureltem(object sender,
MeasureltemEventArgs e)
{
e.ltemHeight= 150;

}

The image listbox application looks like .

Figure 15.11. An owner-drawn ListBox control with images

¥ Qi

ol Prpg pmman y Les b

ADO.NET in C#

g e

Essential ASP.NET
weith Exsmples bn CI

More on Owner-Drawn Controls

Now that you have an idea how the owner drawing process works, you can create owner-drawn menus, combo boxes, and

qM&I}_J_mmmguﬂ_&MMﬁ)Comer and look at the Windows Forms section
(http://www.c-sharpcorner.com/WinForms.asg). There you will find hundreds of useful source code samples available for

download.

http://www.c-sharpcorner.com/WinForms.asp
file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

SUMMARY

GDI+ can be used to write fun applications. In this chapter we covered more practical uses of GDI+ for real-world Windows applications.
Topics discussed in this chapter included how to write interactive GUI rectangular and nonrectangular Windows applications, how to add
custom text to images, how to read and write images to and from a stream or database, and finally, how to create owner-drawn controls.

Team LiB |

Appendix A. Exception Handling in .NET

The handling of exceptions and errors is critical to the development of reliable and stable applications. You may have noticed that no
exception handling was included in the sample applications in this book. There are several reasons for this. First, omitting exception handling
code simply makes the source a lot easier to read. Second, you might encounter new objects that we haven't discussed yet. After you read
this appendix, you should implement error handling (also known as exception management) in your applications. Efficient exception
management allows developers to write reliable and robust code that helps anticipate exceptions and, in doing so, provides an opportunity to
present more informative and user-friendly error messages.

If you come from a C++ background, you are probably familiar with techniques such as C++ exception handling, structured exception
handling, and MFC exceptions. If you come from a Visual Basic background, you are probably familiar with the On Error statement. Before
.NET, every language implemented its own error handling. With .NET, all languages that create managed code share the same error handling
mechanism. All .NET-supported languages (C#, VC++.NET, VB.NET, VJ#) enjoy the same rich exception handling.

C++ developers will probably be familiar with the try...catch block, which provides structured exception handling. Suspect code is placed
within a try block, and when an exception occurs, the control is directed to thecatch block. We will discuss thetry...catch block in more detail in
the following sections.

Note

C++ and C# are case-sensitive languages; VB.NET is not, in the sense that no matter what is typed in, the editor
automatically corrects the capitalization. In C# and C++, the statement is try...catch; in VB.NET, it isTry...Catch.

Team LiB |

BTy rrevious [ecr]

A.1 Why Exception Handling?

If you've been writing software for very long, you probably already know why you want to handle exceptions. Have you ever seen a program
crash and display a weird message that doesn't make any sense? This is what happens when developers do not handle exceptions properly.
Let's look at a simple example. opens a file namedc:\abc.txt.

Listing A.1 Opening afile

using System;
using System.lO;

namespace ListingAlandA2

{

class Class1

{

static void Main(string[] args)

{
File.Open("c:\\abc.txt", FileMode.Open);

}
}
}

What if the file does not exist? We get the error message shown in . We are fortunate that CLR handles so much for us because
otherwise this error message could have been a lot worse.

Figure A.1. An error generated from

lUnbhand led Exception: Syzten.l0.FileNotFoundException: Cowuld not Find £i1le

errorlode . SEring st
"-tr:.nrn ‘path, FileMode node, Fileflccess access,
hufferSize, Boolean uzefzync, String mcgPath, Boolean hFr

'tr'n 10 . Filestrean. .ctoriString path. FileFode node. FileAooess access.

<File. Openistring path. Filefode mode)
] AL mp-Modulel .Raint? in DIxBooksApplied ADD.HETSChEYwCodes| rylateh
canpsModulel vbzline %
Fregss any Key to comtinue

Now let's make a small modification to our program. The new code is shown in . This time we use a simpletry...catch block to
handle the exception.

Listing A.2 A simple exception handling block

using System;
using System.lO;

namespace ListingAlandA2
{
class Classl
{
static void Main(string[] args)
{
try
{
File.Open("c:\\abc.txt", FileMode.Open);
}
catch (Exception exp)
{
Console.WriteLine(exp.Message);
}
}
}
}

shows the output from the modified program. Not only is the exception handled, but also the cause of the exception is reported.

Figure A.2. An exception-handled error message

Exception Ocurred zCould not find file “"c:wabc.txt"
Press any key to continue

Team LiB |

Team LiB |

A.2 Understanding the try..cach Block

If you come from a Visual Basic background, we recommend that you just forget about unstructured exception handling and learn this new
approach using the try...catch statement. After you finish reading this appendix, you'll find the structured approach much better!

A.2.1 The try..catch Statement

Using the try...catch statement is very straightforward. First we decide which code we want the error handler to monitor by placing that code
inside the try block. When an exception occurs in the encapsulated code, a control goes to theatch block that handles the exception. A simple
template for a try...catch block is shown in .

Listing A.3 A simple try...catch block

try
{

/I Place the code that may generate
/[an exception in this block

}

catch (exception type)

{

/I This code executes when the try block fails and

/I the filter on the catch statement is true.

/I Here you can write your own custom error message
/I or get the message description or other details

/I from the exception class.

A.2.2 The try..catch..finally Statement

The try...catch...finally statement is an extended version of thetry...catch statement. If an error occurs during execution of any of the code
inside the try section, the control moves to thecatch block when the filter condition istrue. The finally block always executes last, just before
the error handling block loses scope, regardless of whether an exception has occurred. The finally block is the perfect place to close files and
dispose of objects. A simple try...catch...finally statement is shown in .

Listing A.4 A simple try...catch.. finally statement

try

{
/I Place the code that may generate
/I an exception in this block

}

catch (exception type)

{
/I This code executes when the try block fails and
/I the filter on the catch statement is true.
/I Here you can write your own custom error message
Il or get the message description or other details
/I from the exception class.

}

finally

{
/I Release and dispose of objects and
/I other resources here

}

allocates resources at the beginning of the method and releases them inside thefinally block. Regardless of whether an exception
occurs, execution control will pass to the finally block and release the resources.

Listing A.5 Disposing of objects inside thefinally block

private void TestExpBtn_Click(object sender,
System.EventArgs e)
{
/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
/I Create pens and brushes
Pen redPen = new Pen(Color.Red, 1);
Pen bluePen = new Pen(Color.Blue, 2);
Pen greenPen = new Pen(Color.Green, 3);
SolidBrush greenBrush =
new SolidBrush(Color.Green);
/I Put whatever code you think may cause
/I the error within this block
try
{
/I Use the Point structure to draw lines
Point pt1 = new Point(30, 40);
Point pt2 = new Point(250, 60);
g.DrawLine(redPen, ptl, pt2);
/I Draw a rectangle
Rectangle rect =
new Rectangle(20,20, 80, 40);
g.DrawRectangle(bluePen, rect);
/I Create points for curve
PointF p1 = new PointF(40.0F, 50.0F);
PointF p2 = new PointF(60.0F, 70.0F);
PointF p3 = new PointF(80.0F, 34.0F);
PointF p4 = new PointF(120.0F, 180.0F);
PointF p5 = new PointF(200.0F, 150.0F);
PointF p6 = new PointF(350.0F, 250.0F);

PointF p7 = new PointF(200.0F, 200.0F);
PointF[] ptsArray =
{
p1, p2, p3, p4, p5, p6, p7
h
/I Draw Bézier curve
g.DrawBeziers(redPen, ptsArray);

}

catch(Exception exp)

{
string errMsg = "Message: " + exp.Message;
errMsg += "Source: "+ exp.Source.ToString();
errMsg += "TargetSite: "+ exp.TargetSite;
errMsg += "HelpLink: "
+ exp.HelpLink.ToString();
errMsg += "StackTrace: "
+ exp.StackTrace.ToString();
MessageBox.Show(errMsg);

}

finally

{
/I Release resources
/I Dispose of objects
redPen.Dispose();
bluePen.Dispose();
greenPen.Dispose();
greenBrush.Dispose();
g.Dispose();

A.2.3 Nested try..catch Statements

We can provide more specific error handling by nesting try...catch blocks. The only case in which we might not want to use nestedry...catch
blocks is when we want to catch different types of exceptions. For example, one block might catch memory-related exceptions; another,
1/O-related exceptions; and a third, general exceptions.

uses nested try...catch statements. In this code we create two images. The first image we draw only once, but the second image
we draw 15 times at different locations. The first try...catch statement covers the entire code with a general exception, and the second
try...catch statement is specific to the OutOfMemory exception. We can use as manytry...catch blocks as exceptions we want to catch. For
example, if our code performs I/0 operations, we may want to use the IOException class. We can also customize the default message to
match the error type.

Listing A.6 Nesting try...catch Statements

private void NestedMenu_Click(object sender,
System.EventArgs €)

{
/I Create Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);

try

/I Create an image from a file

Image curlmage = Image.FromFile("roses.jpg");

/I Draw the image

g.Drawlmage(curlmage, AutoScrollPosition.X,
AutoScrollPosition.Y,
curlmage.Width, curlmage.Height);

/I Create a second image from a file

Image smalllmage =
Image.FromFile("smallRoses.gif");

/I Draw the second image many times

int x1, y1, x2,y2, w, h;

x1 = x2 = AutoScrollPosition.X;
y1 = AutoScrollPosition.Y;

y2 = 300;
w = 20;
h = 20;

/I Make a loop to draw second image
/I on top of the first image
for(int i=0; i<=15; i++)
{
try
{
/I Draw from top left to bottom right

g.Drawlmage(smallimage,
new Rectangle(x1, y1, w, h),
0, 0, smalllmage.Width,
smalllmage.Height,
GraphicsUnit.Pixel);
/I Draw from top right to bottom left
g.Drawlmage(smallimage,
new Rectangle(x2, y2, w, h),
0, 0, smalllmage.Width,
smalllmage.Height,
GraphicsUnit.Pixel);
x1 += 20;
yl +=20;
X2 += 20;
y2 -=20;
}
catch (OutOfMemoryException memEXxp)
{
MessageBox.Show(memExp.Message);
}
}
}
catch(Exception exp)
{
MessageBox.Show(exp.Message);
}
finally
{
/I Dispose of objects
g.Dispose();
}
}

A.2.4 Multiple catch Statements with a Singletry Statement

The try...catch statement also allows us to use multiplecatch statements with a singletry statement, which helps when we're catching multiple
types of exceptions and customizing error messages to match the type of error.

is a modified version of that uses atry statement with twocatch statements.

Listing A.7 Using multiple catch statements with a single try statement

private void MultiCatchesMenu_Click(object sender,
System.EventArgs e)
{
/I Create a Graphics object
Graphics g = this.CreateGraphics();
g.Clear(this.BackColor);
try
{
/I Create an image from a file
Image curlmage = Image.FromFile("roses.jpg");
/I Draw image
g.Drawlmage(curimage, AutoScrollPosition.X,
AutoScrollPosition.Y,
curlmage.Width, curlmage.Height);
/I Create a second image from a file
Image smalllmage =
Image.FromFile("smallRoses.gif");
/I Draw the second image many times
int x1, y1, x2, y2, w, h;
x1 = x2 = AutoScrollPosition.X;
y1 = AutoScrollPosition.Y;
y2 = 300;
w = 20;
h = 20;
/l Make a loop to draw second image
/I on top of the first image
for(int i=0; i<=15; i++)
{
/I Draw from top left to bottom right
g.Drawlmage(smallimage,
new Rectangle(x1, y1, w, h),
0, 0, smalllmage.Width,
smallimage.Height,
GraphicsUnit.Pixel);
/I Draw from top right to bottom left
g.Drawlmage(smallimage,
new Rectangle(x2, y2, w, h),
0, 0, smalllmage.Width,
smalllmage.Height,
GraphicsUnit.Pixel);
x1 += 20;
yl += 20;

X2 += 20;
y2 -= 20;
}
}
catch (OutOfMemoryException memExp)
{
MessageBox.Show(memExp.Message);
}
catch(Exception exp)
{
MessageBox.Show(exp.Message);
}
finally
{
/I Dispose of objects
g.Dispose();
}
}

Team LiB |

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

A.3 Understanding Exception Classes

By now you have a basic idea of how to implement structured exception handling in your code. Now let's take a quick overview of
exception-related classes provided by the .NET Framework library.

A.3.1 The Exception Class: Mother of All Exceptions

The Exception class is the first class we will discuss. It caters to errors that occur during normal application execution. This is the base class
for all exception classes. In our previous samples, we have already seen how to use the Exception class. describes its properties.

uses the Exception class properties to display information about an exception.

Listing A.8 Using Exception properties

/I The error within this block

try

{

/I Suspect code here

}

catch(Exception exp)

{
string errMsg = "Message: " + exp.Message;
errMsg += "Source: "+ exp.Source.ToString();
errMsg += "TargetSite: "+ exp.TargetSite;
errMsg += "HelpLink: "
+ exp.HelpLink.ToString();
errMsg += "StackTrace: "
+ exp.StackTrace.ToString();
MessageBox.Show(errMsg);

}

finally

{
/I Release resources
/I Dispose of objects

}

A.3.2 Other Exception Classes

The .NET Framework class library defines a multitude of exception classes—each designed to handle a specific kind of exception. For
example, the IOException error is thrown when an I/O error occurs. All of the classes work in a similar way. If you want to handle I/O-related
errors, use IOException instead of Exception. This allows your code to respond to a more specific exception. Unlike ADO.NET and other
libraries, GDI+ doesn't have any specific exception handling classes.

Table A.1. Exception properties

Property Description
HelpLink Represents the link to the help file associated with an exception. Both get and set.
InnerException Returns the Exception instance that caused the current exception. Read-only.
Message Returns the error message that describes the current exception. Read-only.
Source Indicates the name of the application or object that causes the error. Both get and set.
StackTrace A string representation of the frames on the call stack at the time the exception occurred. Read-only.
TargetSite Returns the method that throws the exception. Read-only.

Some of the common exception handling classes are listed below. The SystemException class, which is derived from theException class, is
the base class for system (runtime)-generated errors. The following class hierarchy shows the SystemException-derived classes:

System.Object
System.Exception
System.SystemException
System.AppDomainUnloadedException
System.ArgumentException
System.ArithmeticException
System.ArrayTypeMismatchException
System.BadlmageFormatException
System.CannotUnloadAppDomainException
System.ComponentModel.Design.Serialization
.CodeDomSerializerException
System.ComponentModel.LicenseException
System.ComponentModel.WarningException
System.Configuration.ConfigurationException
System.Configuration.Install.InstallException
System.ContextMarshalException
System.Data.DataException
System.Data.DBConcurrencyException
System.Data.SqlClient.SglException
System.Data.SqlTypes.SqlTypeException
System.Drawing.Printing.InvalidPrinterException
System.EnterpriseServices.RegistrationException
System.EnterpriseServices.ServicedComponentException
System.ExecutionEngineException
System.FormatException
System.IndexOutOfRangeException
System.InvalidCastException
System.InvalidOperationException
System.InvalidProgramException

System.|O.InternalBufferOverflowException
System.|O.I0OException
System.Management.ManagementException
System.MemberAccessException
System.MulticastNotSupportedException
System.NotlmplementedException
System.NotSupportedException
System.NullReferenceException
System.OutOfMemoryException
System.RankException
System.Reflection.AmbiguousMatchException
System.Reflection.ReflectionTypeLoadException
System.Resources.MissingManifestResourceException
System.Runtime.InteropServices.ExternalException
System.Runtime.InteropServices
.InvalidComObjectException
System.Runtime.InteropServices
.InvalidOleVariantTypeException
System.Runtime.InteropServices
.MarshalDirectiveException
System.Runtime.InteropServices
.SafeArrayRankMismatchException
System.Runtime.InteropServices
.SafeArray TypeMismatchException
System.Runtime.Remoting.RemotingException
System.Runtime.Remoting.ServerException
System.Runtime.Serialization.SerializationException
System.Security.Cryptography.CryptographicException
System.Security.Policy.PolicyException
System.Security.SecurityException
System.Security.VerificationException
System.Security. XmlISyntaxException
System.ServiceProcess. TimeoutException
System.StackOverflowException
System.Threading.SynchronizationLockException
System.Threading.ThreadAbortException
System.Threading.ThreadInterruptedException
System.Threading.ThreadStateException
System.TypelnitializationException
System.TypeLoadException
System.TypeUnloadedException
System.UnauthorizedAccessException
System.Web.Services.Protocols.SoapException
System.Xml.Schema.XmlSchemaException
System.Xml.XmIException
System.Xml.XPath.XPathException
System.Xml.Xsl.XsltException

As we saw in the class hierarchy, the .NET Framework defines hundreds of exception classes—some of them specific to a particular
operation. For example, OutOfMemoryException is thrown when there is not enough memory to continue the execution of a program.

The System.ArithmeticException class represents arithmetic exceptions that occur in arithmetic, casting, or conversion operations. All of its
members are inherited from the Exception class. ArithmeticException has three derived classes: DivideByZeroException,
NotFiniteNumberException, and OverflowException.

DivideByZeroException occurs when code tries to divide an integral or decimal value by zeroNotFiniteNumberException occurs when a
floating point value is positive infinity, negative infinity, or not a number. OverflowException occurs when an arithmetic, casting, or conversion
operation in a checked context results in an overflow.

System.Data.DataException and its derived classes represent exceptions that occur when we're working with data (ADO.NET) components.
System.|OException represents an exception that is thrown when an 1/O error occurs.

System.StackOverflowException represents an exception that is thrown when the stack overflows because too many method calls have been
executed.

file:///C:/DOCUME~1/Geyslan/CONFIG~1/Temp/Addison%20Wesley%20-%20Graphics%20Programming%20with%20GDI+.chm/0321160770_19071533.html

Team LiB |

SUMMARY

This appendix provided a working introduction to structured exception and error handling in .NET. We discussed various exception-related
classes that are provided by the .NET Framework. We also discussed how error handling works in .NET and how to use try..catch blocks. In

addition, we discussed the Exception class and its members, as well as other exception-related classes.

Team LiB |

Brought to You by

Like the book? Buy it!

	(eBook) Addison Wesley - Graphics GDI+ Programming With C# 2003.pdf
	Main Page
	Table of content
	Copyright
	Praise for 'Graphics Programming with GDI+'
	Microsoft .NET Development Series
	Figures
	Tables
	Acknowledgments
	Introduction
	Who Is This Book For?
	Prerequisites
	What's in This Book That I Won't See in Other Books?
	Chapter Organization
	Example Source Code
	Exception and Error Handling in the Samples
	SUMMARY

	Chapter 1. GDI+: The Next-Generation Graphics Interface
	1.1 Understanding GDI+
	1.2 Exploring GDI+ Functionality
	1.3 GDI+ from a GDI Perspective
	1.4 GDI+ Namespaces and Classes in .NET
	Summary

	Chapter 2. Your First GDI+ Application
	2.1 Drawing Surfaces
	2.2 The Coordinate System
	2.3 Tutorial: Your First GDI+ Application
	2.4 Some Basic GDI+ Objects
	SUMMARY

	Chapter 3. The 'Graphics' Class
	3.1 'Graphics' Class Properties
	3.2 'Graphics' Class Methods
	3.3 The GDI+Painter Application
	3.4 Drawing a Pie Chart
	SUMMARY

	Chapter 4. Working with Brushes and Pens
	4.1 Understanding and Using Brushes
	4.2 Using Pens in GDI+
	4.3 Transformation with Pens
	4.4 Transformation with Brushes
	4.5 System Pens and System Brushes
	4.6 A Real-World Example: Adding Colors, Pens, and Brushes to the GDI+Painter Application
	SUMMARY

	Chapter 5. Colors, Fonts, and Text
	5.1 Accessing the 'Graphics' Object
	5.2 Working with Colors
	5.3 Working with Fonts
	5.4 Working with Text and Strings
	5.5 Rendering Text with Quality and Performance
	5.6 Advanced Typography
	5.7 A Simple Text Editor
	5.8 Transforming Text
	SUMMARY

	Chapter 6. Rectangles and Regions
	6.1 The 'Rectangle' Structure
	6.2 The 'Region' Class
	6.3 Regions and Clipping
	6.4 Clipping Regions Example
	6.5 Regions, Nonrectangular Forms, and Controls
	SUMMARY

	Chapter 7. Working with Images
	7.1 Raster and Vector Images
	7.2 Working with Images
	7.3 Manipulating Images
	7.4 Playing Animations in GDI+
	7.5 Working with Bitmaps
	7.6 Working with Icons
	7.7 Skewing Images
	7.8 Drawing Transparent Graphics Objects
	7.9 Viewing Multiple Images
	7.10 Using a Picture Box to View Images
	7.11 Saving Images with Different Sizes
	SUMMARY

	Chapter 8. Advanced Imaging
	8.1 Rendering Partial Bitmaps
	8.2 Working with Metafiles
	8.3 Color Mapping Using Color Objects
	8.4 Image Attributes and the 'ImageAttributes' Class
	8.5 Encoder Parameters and Image Formats
	SUMMARY

	Chapter 9. Advanced 2D Graphics
	9.1 Line Caps and Line Styles
	9.2 Understanding and Using Graphics Paths
	9.3 Graphics Containers
	9.4 Reading Metadata of Images
	9.5 Blending Explained
	9.6 Alpha Blending
	9.7 Miscellaneous Advanced 2D Topics
	SUMMARY

	Chapter 10. Transformation
	10.1 Coordinate Systems
	10.2 Transformation Types
	10.3 The 'Matrix' Class and Transformation
	10.4 The 'Graphics' Class and Transformation
	10.5 Global, Local, and Composite Transformations
	10.6 Image Transformation
	10.7 Color Transformation and the Color Matrix
	10.8 Matrix Operations in Image Processing
	10.9 Text Transformation
	10.10 The Significance of Transformation Order
	SUMMARY

	Chapter 11. Printing
	11.1 A Brief History of Printing with Microsoft Windows
	11.2 Overview of the Printing Process
	11.3 Your First Printing Application
	11.4 Printer Settings
	11.5 The 'PrintDocument' and 'Print' Events
	11.6 Printing Text
	11.7 Printing Graphics
	11.8 Print Dialogs
	11.9 Customizing Page Settings
	11.10 Printing Multiple Pages
	11.11 Marginal Printing: A Caution
	11.12 Getting into the Details: Custom Controlling and the Print Controller
	SUMMARY

	Chapter 12. Developing GDI+ Web Applications
	12.1 Creating Your First ASP.NET Web Application
	12.2 Your First Graphics Web Application
	12.3 Drawing Simple Graphics
	12.4 Drawing Images on the Web
	12.5 Drawing a Line Chart
	12.6 Drawing a Pie Chart
	SUMMARY

	Chapter 13. GDI+ Best Practices and Performance Techniques
	13.1 Understanding the Rendering Process
	13.2 Double Buffering and Flicker-Free Drawing
	13.3 Understanding the 'SetStyle' Method
	13.4 The Quality and Performance of Drawing
	SUMMARY

	Chapter 14. GDI Interoperability
	14.1 Using GDI in the Managed Environment
	14.2 Cautions for Using GDI in Managed Code
	SUMMARY

	Chapter 15. Miscellaneous GDI+ Examples
	15.1 Designing Interactive GUI Applications
	15.2 Drawing Shaped Forms and Windows Controls
	15.3 Adding Copyright Information to a Drawn Image
	15.4 Reading and Writing Images to and from a Stream or Database
	15.5 Creating Owner-Drawn List Controls
	SUMMARY

	Appendix A. Exception Handling in .NET
	A.1 Why Exception Handling?
	A.2 Understanding the 'try...catch' Block
	A.3 Understanding Exception Classes
	SUMMARY

