
Klaus Elk

SQL Server
with C#

SQL Server

T-SQL ADO.net

DBUtil

Model

UI

Project Mon Tue Wed Thu Fri Sat Sun

Days[6]Days[3]Days[0] Days[2]Days[1] Days[5]Days[4]ProjectNameWeek

Days[6]Days[3]Days[0] Days[2]Days[1] Days[5]Days[4]ProjectNameWeek

[0]

[1]

locallist

[n]

...

UI-Table with Headers

SQL Server with C#

Klaus Elk

© 2018, by Klaus Elk

Information provided in this book is derived from many sources, standards, and analyses -
including subjective personal views. Any errors or omissions shall not imply any liability for
direct or indirect consequences arising from the use of this information. The author make no
warranty for the correctness or for the use of this information, and assume no liability for direct
or indirect damages of any kind arising from technical interpretation or technical explanations
in this book, for typographical or printing errors, or for any subsequent changes.

All rights reserved.

ISBN-13: 978-1720358671
ISBN-10: 1720358672

See also https://klauselk.com

Preface

In-between working with embedded systems, I have worked with PC-
software. Sometimes the applications were “real” products - sometimes
internal tools. Many applications had databases within them, and I learned
as I went along.

I have tried various frameworks and tools, “strange” languages like Modula-
2, and Object Oriented Databases, but it wasn’t until my most recent project
that it felt really good. So what went right?

I decided to write this book - to revisit the theory and code, to learn,
and hopefully to pass on some know-how. I have written about all the
subjects that became relevant in relation to the project - during design,
implementation or maintenance.

Einstein said: “Everything should be as simple as possible, but not simpler”.
You will see that I generally aim for simple solutions and simple tools.
There’s a beauty in not throwing every tool and every pattern in the book
into a solution.

The first part of the book introduces general database theory and SQL -
with SQL Server as the specific example. The second part is about the
related C# programming. ADO.net is used here “as is” without frameworks
on top - being a time-proven framework by itself. The two parts of the book
are bridged through a common sample - the project already mentioned.

Full source can be downloaded - see links on https://klauselk.com.

iii

iv

About The Author

Klaus Elk graduated as Master of Science in Electronics from the Danish
Technical University of Copenhagen in 1984, with a thesis on Digital
Signal Processing. He also holds a Bachelor degree in Marketing. For
30+ years he has worked in the private industry within the domains of
telecommunication, medical electronics and sound and vibration. He has
worked mainly with embedded systems, but also with PC software.

In a period of 10 years Klaus Elk - besides his R&D job - taught at the Dan-
ish Technical University. The subjects were Object Oriented Programming
(C++ and Java), and the Internet Protocol Stack. Today he is R&D Manager
in Instrumentation at Brüel & Kjær Sound & Vibration. Klaus is also the
author of “Embedded Software for the IoT” - editions 11 and 2.

Acknowledgements

A big “Thank You” goes to my colleagues. They were the first subjected
to the sample in this book: a time-registration system. Such a system is
never popular among developers, but they took it standing. In this book I
describe how the system was created in a way that bothered the developers
as little as possible, while giving the best possible data to management. It
even armored project-managers to explain why their projects was some
times lagging behind.

I also want to thank my manager - Lars Agerlin - for letting me publish
the sample code.

Klaus Elk

1First edition has the rather lengthy name: Embedded Software Development for the
Internet of Things

Contents

1 Introduction 1
1.1 What to expect from this book 1
1.2 Tools . 3
1.3 TimeReg Sample . 4

I SQL Server 7

2 Database Basics 9
2.1 Database Vocabulary . 9
2.2 CRUD and ACID . 13
2.3 OLTP versus OLAP . 14
2.4 Keys . 15

2.4.1 Management Studio and Keys 15
2.4.2 Composite Keys . 17
2.4.3 Natural and Surrogate Keys 17
2.4.4 Identity . 19

2.5 Normalization . 19
2.5.1 Case: Students Database 20
2.5.2 Script Table . 23
2.5.3 Anomalies . 24
2.5.4 Association Tables . 24
2.5.5 Students Database 3NF 25
2.5.6 Order System 3NF . 26

2.6 Joins . 27
2.7 Data Types and NULL . 32
2.8 Integrity and Constraints . 34

3 TimeReg Database 37
3.1 Introduction . 37
3.2 TimeReg Requirements . 37

v

vi CONTENTS

3.3 Logical Design . 38
3.4 Physical Design . 44
3.5 TimeReg Data sample . 46

4 SQL 47
4.1 Introduction to SQL . 47

4.1.1 Parameters . 48
4.1.2 SELECT . 48
4.1.3 INSERT, UPDATE and DELETE 50

4.2 Next Level SQL . 51
4.2.1 Identity . 51
4.2.2 Group By . 52

4.3 Learnings on CRUD . 55
4.4 Indexing . 55
4.5 Views . 60
4.6 Common Table Expressions 62
4.7 Stored Procedures . 65
4.8 Security and Connection Strings 65

II C# Programming 71

5 Overall Design 73
5.1 Database Frameworks . 73
5.2 Layers and State . 76
5.3 Class Diagram . 79

6 Model Layer 81
6.1 Initialization . 81
6.2 Data for the Main form . 85

7 Database Functions 89
7.1 Design . 89
7.2 ExecuteNonQuery . 90
7.3 ExecuteScalar . 93
7.4 ExecuteReader . 93
7.5 SqlDataAdapter . 97
7.6 Oracle Managed Data Access 99

8 Data Transfer Objects 101
8.1 CellData Class . 101

CONTENTS vii

8.2 Week Class . 103
8.3 Classic Class Concept . 105
8.4 A Dapper alternative . 105

9 UI Design 107
9.1 ListBox . 107
9.2 DataGridView . 109

9.2.1 Initialize Grid . 109
9.2.2 Update Grid . 111
9.2.3 Edit in Grid . 115
9.2.4 Submit to database . 117
9.2.5 Double Buffering . 118
9.2.6 Multiple uses of a single DataGridView 119

10 Using Excel 123
10.1 Exporting Data . 123
10.2 Importing Data . 126
10.3 Copy-Paste to and from Excel 128

viii CONTENTS

Chapter 1

Introduction

1.1 What to expect from this book

If you are planning to write a database-application and have little or no
experience beforehand, there are a many questions:

r What is an RDBMS - and how does it differ from a database?

r How do you pick the right one - and where does SQL Server fit in?

r They say SQL Server is of the OLTP type. What does that mean - and
what is the alternative?

r How do I create a database and its tables - and especially the rela-
tions?

r Understanding the above - how do I do it in a “good” design?

r What about the application? How is it layered?

r Where does ADO.net fit into all this?

r What about all the small tricks that makes it all work in the end?

r How do I get data into Excel - preferably without additional libraries?

r Show me the code!

1

2 CHAPTER 1. INTRODUCTION

Hopefully you will find that these questions, as well as many others,
are answered. There are many tools that will get you to a certain point,
but without a deeper understanding you begin to go in circles, making
modifications based on questionable assumptions. The aim of this book
is to provide this understanding. There are no exercises, however it is
possible to “code along”, using official Microsoft tools - see Section 1.2.

To help clarify the text, typesetting is as follows:

r Itemized lists are like this, while sequential lists are numbered -
starting with: ¬

r PascalCase is used for tables, columns etc. in the database.

r camelCase is used for C# variables and functions.

r Bold for keywords, the first time they occur locally.

r Small Caps for emphasized statements.

r Plain tables are used for database tables and other computed output.
A plain table has vertical as well as horizontal single-width separat-
ing lines all over. Contrary to this, authored tables do not have any
vertical lines, while they use bold headers and other formatting.

r Standard captions. Meaning that captions are under figures, but
above listings and tables.

r Chapters, sections and subsections are numbered.

r Code in boxes and inline like:
SELECT ProjectID FROM Projects WHERE Name = ’Vacation’

r SQL code is formatted “compact” to save space. Check out some of
the many free online formatters.

1.2. TOOLS 3

1.2 Tools

All code in the sample as well as all code-snippets and concepts described
in this book can be created with the help of two Microsoft Tools:

r Microsoft Visual Studio Community Edition
Microsoft Visual Studio is by far the most advanced IDE (Integrated
Development Environment) found today. Microsoft has a good posi-
tion in the corporate world, but also aims to become more relevant
to the “grassroots” and the Open Source community. Years ago Mi-
crosoft handed over the C# language to an independent organ, and
now we have the Community Edition of Visual Studio - free to use
for any single developer as well as certain minor organizations.

The Community Edition is surprisingly powerful and we really don’t
need more for this book. It even runs on Mac OSX. The only pro-
gramming language used in this book is C# - if not considering SQL
a programming language. With Visual Studio comes not only the C#
compiler and debugger, but also all the class libraries needed. Some
of the most relevant for databases are ADO.net and linq.

r Microsoft SQL Management Studio with SQL Server Express
As stated above, Microsoft has the corporate presence, but also to
a degree reaches out to the Open Source developers. SQL Server
now runs on some Linux distributions. It even - optionally - runs
on Docker. This is a “container” on Linux - which is kind of a
lightweight Virtual Machine without a guest/host OS.

SQL Server comes in many editions - from the Enterprise Edition,
over the Standard Edition to the LocalDB. There is also a Developer
Edition which essentially is the same as the Enterprise Edition. The
Standard and Enterprise SQL Servers are not free, but you can get
very far with the free Express edition.

I have not found any functionality in the big SQL Servers that I really
miss in the Express edition. The main difference is scale: The Express
edition “only” supports up to 10 GB databases and only utilizes
a single CPU1. This makes it a great choice for development: it is

1At the time of this writing: Max 4 cores, max 1410 MB pool buffer size and max 352
MB Column-store segment cache.

4 CHAPTER 1. INTRODUCTION

ready to port to SQL Server. It actually also makes it an interesting
candidate for minor real installations.

LocalDB deviates from the others by not being run as a separate
service. Instead it can be run directly as a part of an application.
Many users may run each their instance of this on the same PC. This
makes it behave more like a powerful version of MS Access.

Finally, Azure SQL is modeled very closely to SQL Server, and what
you learn in this book can also be applied to Azure SQL.

With the installation we get not just the server, but also the IDE
for SQL-development with the handy name Microsoft SQL Server
Management Studio. Even abbreviated to MSSMS this name is hard
to remember. The good thing is that once installed, you can just type
“SQL” after pressing the Windows Home button to find it. In this
book we will use the shorter form “Management Studio”.

A third tool - not from Microsoft, but highly recommended - is git. This
book is not about source-control. However, you should not work with
code without a source-control system. This is where C#-code and database-
scripts are stored and version-managed. Surely, any version-control system
will do, but these days “git is it”.

As a single developer you can download and use all the above tools for
free.

1.3 TimeReg Sample

Through the book we will use an existing application as a sample - bind-
ing together database theory, SQL and C# code. The sample is a time-
registration system called TimeReg.

The TimeReg sample is used extensively in the C# part of this book. It is a
good example because it uses terms that most developers are familiar with,
and thus do not require extra domain knowledge. We can focus on the real
database subjects.

Generally only managers like Time-Registration. This might be to control
the employees, but in reality it is more likely that it controls the quality of

1.3. TIMEREG SAMPLE 5

Figure 1.1: Resulting Main Screen

the management. A manager may say one day that project A has the highest
priority, and then the next day that project B has the highest priority. With
a Time-Registration system the truth will out. Here you see which task or
project got priority in the end. Thus it may also be a good tool for a project
manager or developer as he can say: “We did not put the planned effort
into this project, because we had to spend a lot of time on task X”. If you
calculate Velocity in a project, time-registration is also a help. Thus, in
some ways the burden of e.g. not meeting targets is now shared with the
management - as it should be. The good thing is that it also indicates to
management what they need to do: less of this and more of that.

Figure 1.1 shows the main screen in the implemented sample program. It
looks very simple, and indeed it is - especially if you only need to input
hours. The screen shown on the figure is what all users experience when
they need to type in hours. This main workflow is the one we look closest
into, but there are in fact a number of other screens and workflows. We
will examine some of these, but far from all.

If you want to download the sample database and/or the C#-code, please
go to https://klauselk.com to learn how.

6 CHAPTER 1. INTRODUCTION

Part I

SQL Server

7

Chapter 2

Database Basics

2.1 Database Vocabulary

There are several very different types of databases. Twenty years ago I
experimented with an Object-Oriented Database called “POET”. This
concept seemed like a good idea - after all, when we work with objects, it is
practical to store and retrieve them directly to/from the database without
any tedious mapping. However there was still the need for a mapping, as
the database only supported its own basic data-types, and only its own
collections. On top of this, it was not possible to analyze the data with
3’rd-party tools. Maybe these are the reasons that we don’t hear much
about Object-Oriented Databases today.

In this book we are dealing with Relational Databases - which means
table-based databases. There are many ways to construct a relational
database. Vendors give their implementation a more or less standardized
external interface - allowing us to use SQL - Structured Query Language.
The entire system - low-level implementation of tables etc. with SQL-
interface - is known as an RDBMS - Relational Database Management
System. Specifically in this book we are dealing almost exclusively with
Microsoft SQL Server.

As is often the case, the interface (SQL) is not completely standardized
- vendors need some space for marketing their particular version. Still,

9

10 CHAPTER 2. DATABASE BASICS

almost everything written in this book is also true for other RDBM’s like
Oracle and MySQL/MariaDB, although sometimes the syntax deviates
a little. In this book I follow the usual terms - using “RDBMS” for the
product that you get from e.g. Microsoft, and “database” for the thing you
create in it.

You probably already have an idea of what the main terms in databases
mean. There are, however, many misunderstandings and words with
multiple meanings. It is difficult to describe some terms without using the
others. For this reason I will briefly introduce the most important parts of
the SQL Server hierarchy in Table 2.1. This continues in Table 2.2 with the
most important database concepts. We will meet them all again.

The discussion on records & fields versus rows & columns can be a pain.
Early PC-databases used a mixture of the terms. “Records” and “Fields”
are often used in UI-software, and “Records” are also used at the file-level
in databases. In Excel we use “rows” and “columns”. No wonder most
of us use “row” and “record” for the same thing, and the same goes for
“column” and “field”. However, the standards and even Microsoft says:

A database-table consists of rows and columns.

Thus we will use “row” and “column” in this book. The term “Field” is
also sometimes used for a specific column and row intersection. Naturally
this will be referred to as a Cell.

2.1. DATABASE VOCABULARY 11

Table 2.1: The SQL Server hierarchy

Name Meaning
RDBMS Relational Database Management System - a table-based

system with SQL-interface.
Server This can mean the hardware or the SQL Server that runs

on it. In this book it is the latter.
Database In daily speak the database is often the same as the

server. More correctly, a single server hosts one or more
databases. In Connection Strings you refer to a Catalog.

Schema Used for grouping tables inside a database - like a
namespace in C#. It brings the additional ability to have
different security schemes inside the same database.
Generally you can get very far with the default “dbo”
schema.

Table This is the basic entity of a relational database. It is
always 2-dimensional. The full-name of a table on a
given server is < database > . < schema > . < table >

View A construction within the database that in many ways
looks as a table to the clients.

Row This is a row in a table. In an Employees table, one row is
one Employee. Sometimes called a “Record”.

Column This is a column in a table. In an Employees table it
might be the Salary Number. Sometimes called a
“Field”.

Cell A specific cell in a table. Sometimes called a “Field”.

12 CHAPTER 2. DATABASE BASICS

Table 2.2: Important database concepts

Name Meaning
OLTP On-Line Transaction Processing. As opposed to OLAP.
OLAP On-Line Analytical Processing.
CRUD Create, Retrieve, Update and Delete are the main

functions of a database.
ACID Atomicity, Consistency, Isolation & Durability.

Main features of a good RDBMS.
Private Key One or more columns that together defines a unique row

in the given table
Foreign Key One or more columns that together points to a unique

row in (typically) another table
Normal
Form

This is a categorization of how correct the database is
structured. From non-normalized we step through 1’st
Normal Form - 1NF - over 2NF, 3NF, 4NF and 5NF.
Usually we don’t go past 3NF because it becomes
impractical.

Index An internal lookup table that speeds up the performance
of the database. SQL Server creates a few indexes on e.g.
Private Keys.

Connection
String

A string used in your code to get access to the server and
database. It can be a pain to get right, although Visual
Studio has a good wizard for this.

SQL Structured Query Language.
This is the “Programming Language” of the database.
SQL can be kept in the client code, from where it is sent
to the database to be executed, or it can stay inside the
database as Stored Procedures.

T-SQL Transaction SQL. This is Microsoft’s extended SQL - with
variables and flow-control.

Constraints Rules that the database will enforce for you.
Helps keep the data(base) healthy.

Join Joining foreign and private keys at run-time and
selecting relevant columns from the resulting “extended
table” is the real power of relational databases.

Transaction A good database does all or nothing (if an error occurs
midway through an operation).

Anomaly A poorly designed database can cause anomalies when
updating, inserting or deleting.

2.2. CRUD AND ACID 13

2.2 CRUD and ACID

You can always count on the programming world to come up with catchy
acronyms.

CRUD refers to Create-Retrieve-Update-Delete

This summarizes the main operations on a running database. Note that
these terms are all related to data operations on existing tables - see Table
2.3. In SQL there is a CREATE command for creating tables. This is not
related to the “Create” in CRUD. See Table 2.3 for an explanation. If you
are interested in REST-protocols, you will find similar CRUD actions in
these.

Table 2.3: CRUD

CRUD SQL Meaning

Create INSERT
Insert new row(s) in a database table. It is pos-
sible - but not typical - to insert more than one
row per SQL-statement.

Retrieve SELECT

Fetch any number of rows based on various cri-
teria, grouped, sorted etc. This is the most com-
plex command. This is where we use JOIN. To
most people a query is what is implemented by
a SELECT.

Update UPDATE
Update selected columns. As with SELECT it is
possible to work on many rows at a time, .

Delete DELETE
Delete any number of rows based on given crite-
ria.

In order to understand some basic database concepts in this chapter we
need to use the SELECT before we dig further into it in Chapter 4.

ACID refers to Atomic-Consistent-Isolated-Durable.

Whereas CRUD refers to the functions you use as a programmer or database-
administrator, ACID refers to the implementation and quality of the
RDBMS itself1. If we were to design a such a system, we would need

1And to a degree also to your implementation

14 CHAPTER 2. DATABASE BASICS

to understand these things to the bottom.

Table 2.4: ACID

ACID Meaning

Atomic

The greek word “atom” means “indivisible”. This is
implemented by a “Transaction”, which is a series
of actions that are either all done - or rolled back if
something fails along the way.

Consistent

As programmers, or database-administrators, we
are given some of the responsibility for keeping
data consistent. This is done by “Constraints”,
“Triggers” and “Cascades” - terms we will meet
later.

Isolated
This is really low-level. The RDBMS may split
the SQL-command in parts to run in parallel. The
order of these must not affect the result.

Durable
Once data is stored in the database they must stay -
also if there is a power break-down.

2.3 OLTP versus OLAP

SQL Server is often described as an advanced OLTP system. OLTP means
On-Line Transaction Processing and is often mentioned as the opposite
of OLAP - On-Line Analytical Processing. In both cases “On-Line” is
mostly a marketing term saying that answers are fast. The point is whether
the system is Transactional or Analytical. This relates not only to the
design of your database, but also to the design of the entire RDBMS2.
OLTP-systems are used in e.g. web-stores and other POS - Point Of Sales -
applications, as well as in production and administration. Data-mining
and data-warehouse systems on the other hand, are typically of the OLAP-
type.

You could say that OLTP is designed for many users doing many small
writes, whereas OLAP is designed for fewer users doing many large reads.
When you are writing to a database, it is very important to protect the

2OLAP databases sometimes are not even relational and thus not RDBMS’es

2.4. KEYS 15

system against something failing “midair” which could lead to inconsistent
data - hence the focus on transactions in OLTP. This is not so relevant in
OLAP, where the focus is on fast and efficient reads on more static data.
Writing may not take place at all.

You can also say that OLTP is for daily business - executing the current
strategy, while OLAP is for analyzing historical data and thus helps cre-
ate tomorrows strategy. A company may use traditional OLTP in sales
& production. Later data is copied to an OLAP system where it is not
normalized (we will get back to this shortly). Here it is analyzed for more
strategic purposes.

Traditional RDBMS’es like SQL Server, Oracle and MySQL are all of the
OLTP kind.

2.4 Keys

When a database is in First Normal Form (1NF) or higher, each row is
unique as we shall see when we discuss Normalization. The Private Key
in a table is the single thing needed to define & find a unique row. When
the private keys from table A are used in table B they are said to be
Foreign Keys in table B. This is because they refer back to table A. The
private/foreign key Relationship is the main vehicle of Joins.

2.4.1 Management Studio and Keys

Figure 2.1 is generated with the help of Management Studio’s diagram
function, on a web-shop database called “Shop”. This is called an Enti-
ty-Relation (ER) diagram, simply because tables are entities and the keys
provide the relations. Here the names of the columns are written horizon-
tally - more practical for text. I have given the auto-generated diagram a
little help by moving the endpoints of all private/foreign key relationships
to the relevant column-names. Each relationship has a (yellow) key at the
private key end, and an “infinity symbol” (∞) at the foreign key end. This
signifies a one-to-many (1:n) relation - in other words that a specific key
value can occur only once as a private key, but many times as a foreign key.

16 CHAPTER 2. DATABASE BASICS

Figure 2.1: Keys and relationships in Shop

In the Shop system one ProductID belongs to a single Product in Products,
but may appear in many rows in OrderItems, since many people may buy
the same product.

It is relatively easy to tell Management Studio that a column is to be a
private key. In Table-Design, you right-click the relevant column-name
and click on “Set Primary Key”. This can also be written in a script.

There are several ways to appoint a foreign key via the IDE. One way is to
expand the table in the Object Explorer, then right-click on “Keys” and
select “New Foreign Key”. Figure 2.2 shows how the “Foreign Key Relation-
ships” dialog appears when adding a foreign key to OrderItems. The dialog
starts out with a new relationship called FK_OrderItems_OrderItems - a
self-referencing relation.3 Now “Tables and Columns Specific” is expanded,
the ellipsis (...) box is clicked, and the dialog on top is shown. Finally some
sensible stuff appears: the ability to select table and column for the private
and foreign key. Phew!

3Note the asterisk - this is a relation “to be”. You cannot cancel out of this dialog!
Instead delete this relation, then press “Close”.

2.4. KEYS 17

Figure 2.2: Adding a Foreign Key

Figure 2.1 as well as Figure 2.2 both show that I have chosen to use the
same name - ProductID - for the private and foreign keys at both ends
of the relationship. This is a good habit - albeit not a must, which is also
practical when you realize that e.g. a ManagerID in a table of departments
is actually the same as the EmployeeID in a table of employees.

2.4.2 Composite Keys

Sometimes a key is defined as the composite of several columns. Imagine
a database in a TV-factory. Each TV is registered here. We cannot simply
use the serial-number of the TV as key, since serial-numbers normally
are only unique for a given type-number or name. In this case we will
define the private key to be the composite of Type-Number/Name and
Serial-Number. If the factory manufactures TV’s for several Vendors, the
key would need to also include a VendorID or similar.

2.4.3 Natural and Surrogate Keys

The TV-factory example is a good case for the use of Natural Keys - Busi-
ness Domain integers and strings.

Mostly I try to avoid the use of natural keys. Examples are phone-numbers,

18 CHAPTER 2. DATABASE BASICS

network-names, License-Plates, Salary-Numbers etc. These are unique -
but they still might change. Surely people change phone-numbers, but they
also change their name (e.g. when marrying) and thus get a new network-
name. If a person is hired as e.g. a student-help, and then later hired “for
real” it may change the salary-number. I prefer to have a “behind-the-
scenes” innocent running-number - totally detached from the real world.
This is a Surrogate Key.

Using a surrogate key, I keep all other attributes as plain columns, and can
change them as needed. A minor downside to the use of a surrogate key is
that when it is used as foreign key in another table, you need to make the
join to have any use of it, whereas a natural key might carry information
by itself.

An example is a table of departments containing a manager as a foreign
key, referencing the manager in the Employees table. If the managers
network-name is the (natural) key, you may recognize this when looking
at the Departments table. On the other hand, if you only see an integer
ID, you need to join data with the Employees table, in order to learn more.
Often that join is needed anyway, in order to get to other columns.

In Figure 2.1 I have used keys that are post-fixed “ID” when they are
surrogates. I consider OrderNo a natural key since it will be used on the
invoice. This may create gaps in the order numbers if customers bail out
before completing the order. If the taxman4 starts wondering about these
gaps, it is an indication that I should have used a surrogate OrderID and
that OrderNo should be a non-key column, incremented only for orders
that made it all the way through the web-shop.

Note that such an incrementing number can be a problem for an applica-
tion. If multiple instances of the application simultaneously - on behalf
of several users - try to read a number, add one and use the new number
at the same time5, it may give cause to race issues. The database on the
other hand typically has a way to increment numbers atomically - the “A”
in ACID - as we shall see in Subsection 2.4.4. So - if possible - leave this to
the database.

In the TimeReg-sample, we shall see that it is practical to create a project

4Thanks to the Beatles for this term - makes more sense than “IRS-employee”
5This is known as Read-Modify-Write

2.5. NORMALIZATION 19

without an official Project Number, as this might come later from another
source. If - and when - this becomes available, it is written in the relevant
non-key column.

2.4.4 Identity

Most RDBM’s - including SQL Server - have support for an Identity col-
umn. This is very practical for use as surrogate keys. By definition these
can stand alone - they are not part of a composite key. In SQL Server
identity-based values are initialized with a Seed - initial value - as well
as an increment value. By default both are 1, so that the rows in the
identity-column are numbered 1,2,3,4 etc. Whenever a row is deleted, a
gap remains. For this reason the application software cannot assume that
e.g. the latest given ID can be used as an indication of the number of rows.
Identity-based keys are used a lot in this book, as we will clearly see in the
various T-SQL scripts.

If a new database is created as a clone by restoring a backup of another
base, and then deleting the contents, the Identity will continue where
it “left off”. The following line will reset the key - in this case on the
“Main” table in the TimeReg base that we will see later. Do not do this on a
non-empty base!

DBCC CHECKIDENT (’[TimeReg].[dbo].[Main]’, RESEED,0);

2.5 Normalization

Edward Codd, the inventor of the relational database, described the process
of Normalization. He described a number of Normal Forms - starting with
1’st Normal Form (1NF), stepping up to Fifth Normal Form (5NF) - with
each step including the rules of the previous, plus more. Later “Boyce-
Codd” Normal Form was introduced between 3NF and 4NF. Normally 3NF
is enough to avoid problems, and going further can cause performance
problems. A popular summary of the first three normal forms goes like
this:

20 CHAPTER 2. DATABASE BASICS

Every non-key column in a table should depend on the key, the whole
key, and nothing but the key, so help me Codd.

In Table 2.5 the above sentence is split into phrases. Each describes the
relevant Normalization rules.

Table 2.5: Normalization

NF Phrase Description
1NF The Key There is a unique primary key, based on the

least number of columns needed.
Each cell is “atomic”, meaning that it contains
a single value - e.g. not a list of values.
Finally, repeating columns like e.g. Student1,
Student2, Student3...are not allowed.

2NF The Whole
Key

1NF is obeyed and all non-key columns
depend fully on the entire key.

3NF Nothing
but the Key

2NF is obeyed and all non-keys depend only
on the key

2.5.1 Case: Students Database

Let us try a simple and classic case. We will discuss Normalization and try
out some T-SQL in Management Studio. Table 2.6 is a single-table database
of Students. Single-table databases are often referred to as flat databases.
If you keep your data in Excel, this is a flat “database”. When this is moved
to a real database there is a risk that the structure stays the same.

The Students database and table can be created via the GUI in Management
Studio, but once the database is created 6, you might want to add the table
by typing the T-SQL in Listing 2.1 in a “New Query” window, followed by
F5 for execution.

Note that the GO keyword is used like a “batch” termination. If variables
are used, they go out of scope after GO. If GO is followed by an integer,
the batch is repeated this number of times. This makes no sense here, but
may be used with INSERT to quickly generate a lot of dummy data.

6The creation of the database can also be scripted

2.5. NORMALIZATION 21

Listing 2.1: Create Table
1 CREATE TABLE dbo.Students
2 (
3 StudentNo int NOT NULL,
4 FirstName nvarchar(50) NOT NULL,
5 LastName nvarchar(50) NOT NULL,
6 Class nvarchar(50) NOT NULL,
7)
8 GO

Listing 2.2: Delete Table
1 DROP TABLE dbo.Students
2 GO

If you don’t like the result of the “CREATE TABLE” it is easy to delete it.
If you type and execute the script in Listing 2.2 in another query window,
it is easy to go back and forth between the windows and experiment.

Table 2.6 is not even 1NF since the “Classes” clearly may contain a list of
values as is the case with Peter - student 401.

Table 2.6: Students database - non-normalized

StudentNo FirstName LastName Classes
401 Peter Anderson Basic Math, Adv. Physics
402 John Grey History
403 Joan Cooper Basic Math
404 Annie Dawson Adv. Physics

We could fix the problem by introducing more columns - like “Class 1”,
“Class 2” etc. However, this is another violation of 1NF. Instead we can
have one row per student per class - as in Table 2.7. Now we have no lists
in any column, and we have no repeating columns. This is a classic Excel
solution. It is also 1NF.

22 CHAPTER 2. DATABASE BASICS

Table 2.7: Students database - 1NF

StudentNo FirstName LastName Class
401 Peter Anderson Basic Math
401 Peter Anderson Adv. Physics
402 John Grey History
403 Joan Cooper Basic Math
404 Annie Dawson Adv. Physics

Should we now decide that it is a good idea - with the existing data - to
make StudentNo a private key in Management Studio, we get the following
error when trying to save the design change with F5:

’Students’ table - Unable to create index ’PK_Students’. The CREATE UNIQUE
INDEX statement terminated because a duplicate key was found for the object
name ’dbo.Students’ and the index name ’PK_Students’. The duplicate key
value is (401). Could not create constraint or index. See previous errors. The
statement has been terminated.

Now that’s what I call a great error-message. We do not have a private
key in StudentNo as it must be unique. However, if you try to define a
composite private key in the Students table, based on StudentNo and Class,
you actually get away with it. This supports that the Students table can be
said to be 1NF - as ugly as it is. It does not qualify as 2NF, as the rule “all
non-key columns depend on the entire key” is not obeyed. The name of
the student depends on the StudentNo, but not on the Class.

The composite key can be created in the GUI by using “Set Primary Key”
on both column names before executing (F5). Alternatively the composite
key can be created in T-SQL - this time ALTER’ing the existing table as in
Listing 2.3.

Listing 2.3: Alter Table
1 ALTER TABLE Students
2 ADD CONSTRAINT PK_Students PRIMARY KEY CLUSTERED
3 (
4 StudentNo, Class
5)
6 GO

When a primary key is based on a single column, the text “PRIMARY

2.5. NORMALIZATION 23

KEY” can be a modifier on the line with the relevant column in the Create
Table script. If the Key is composite you can do something similar by
writing PRIMARY KEY (Key1, Key2). In either case, the “CONSTRAINT” way
to specify it also works.

2.5.2 Script Table

Management Studio allows you to right-click the table (and actually the
whole database) and select “Script Table As...”. Thus it is possible to
perform something in the UI first, and then study the T-SQL afterwards.
This is how Listing 2.4 was created.

Listing 2.4: Result of Script Table
1 USE [Students]
2 GO
3
4 /****** Object: Table [dbo].[Students] **/
5 SET ANSI_NULLS ON
6 GO
7
8 SET QUOTED_IDENTIFIER ON
9 GO

10
11 CREATE TABLE [dbo].[Students](
12 StudentNo int NOT NULL,
13 FirstName nvarchar(50) NOT NULL,
14 LastName nvarchar(50) NOT NULL,
15 Class nvarchar(50) NOT NULL,
16 CONSTRAINT [PK_students] PRIMARY KEY CLUSTERED
17 (
18 [StudentNo] ASC,
19 [Class] ASC
20)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
21 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
22 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
23) ON [PRIMARY]
24
25 GO

There is a lot to note in the output:

r The first line is “[USE Students]”. It defines the scope - the name
of the database, which incidentally is also called “Students”. It is
advisable to use that in input as well, to avoid messing with the
wrong database.

24 CHAPTER 2. DATABASE BASICS

r The script is based on a “CREATE TABLE”. It is also possible to have
it generated as an “ALTER TABLE” script.

r The output is filled with “[]” brackets. These are delimiters that are
needed if a name contains a space, a reserved symbol or a keyword.
They are optional in the input if none of these symbols are used.

r The lines starting with “SET”, as well as the assignments in the
“WITH” part, contain a number of defaults. We see e.g. that if a row
is being updated, SQL Server will lock access to it from other users.
This is one way to handle the “Atomic” requirement in ACID. Lock-
ing strategies are an important part of database implementations,
however, we can go very far with the defaults.

r “ON [PRIMARY]” is not related to the primary key, but to a low-level
default file specification. We do not need to specify this in our scripts.

2.5.3 Anomalies

If we decide to avoid abbreviations and change “Adv. Physics” to “Ad-
vanced Physics”, we will need to update in several places. This is an
Update Anomaly. Also, should John Grey decide to quit, we have no
traces of the class in History anymore. This is a Delete Anomaly. Finally,
if we want to introduce the class “Religion” we have to wait for a student
taking this class before we can introduce it. This is an Insert Anomaly.

In my experience, programmers are very much aware of the Update
Anomaly. Programmers hate repeated text-strings. We long to define
them “constant” in one way or another. This instinct also helps a little with
the other anomalies.

2.5.4 Association Tables

There are situations where the programmer’s normal thinking is no help.
We tend to work with collections, and collections of collections. That is
not how databases are designed. Take the Shop system from Figure 2.1.
A programmer with no database experience would think that an Order
has many OrderItems. 1NF tells us that we cannot have OrderItem1,

2.5. NORMALIZATION 25

OrderItem2 etc as columns in Orders table. The programmers first instinct
is to have a reference to an OrderList - another table. Unfortunately, this
would mean that each different row in Orders should have its own table
with OrderItems - dynamically created as orders are created. That is
exactly how programs work with collections, but it is not how databases
are organized.

Instead the relation is turned upside down, and we have one big table of
OrderItems referring back to the Orders table. And to the Products table.
This way of handling m:n relations is called an Association Table. An
association table has rows with foreign keys only - no private keys. Non-
key columns as our Quantity may occur. Note that sometimes association
tables are called Junction Tables.

2.5.5 Students Database 3NF

The use of an association table is also the solution to our Students case.
Instead of a single table we now have three - see Tables 2.8, 2.9 and 2.10.
StudentNo and ClassID are now private keys in respectively the first and
the second of these tables, while they are both foreign keys in the third.

Table 2.8: Students database - 3NF - Students Table

StudentNo FirstName LastName
401 Peter Anderson
402 John Grey
403 Joan Cooper
404 Annie Dawson

Table 2.9: Students database - 3NF - Class Table

ClassID Class
1 Basic Math
2 Advanced Math
3 Basic Physics
4 Advanced Physics
5 History

26 CHAPTER 2. DATABASE BASICS

Table 2.10: Students database - 3NF - Associations

StudentNo ClassID
401 1
401 4
402 5
403 1
404 4

2.5.6 Order System 3NF

Returning to the Order system from Figure 2.1, we see that it satisfies 1NF
- except maybe for the Customer Address. The (street) Address column
is probably made up by several strings like street-name, street-number
etc. When is an Address a list of values and when is it atomic? The jury
is still out on this one. We have already taken ZIP and Country-code out
as separate columns. Should street-no and floor-no and maybe apartment
number also be columns of their own? Clearly the street address can be
broken down, but this process requires us to foresee all sorts of addressing
schemes. Is it really worth it? Probably not. If we accept the (street)
Address as being “atomic”, 1NF is satisfied.

The Order system also satisfies 2NF as all non-key columns depend on
the (whole) key in all tables. Is 3NF also satisfied? Yes, in all tables the
non-key columns depend on “nothing but the key”.

I once used a database-interface to “Altium”, which is a Computer-Aided-
Design program. The interface supplies Altium with a list of electronic
components. This table can contain hundred-thousands of rows. For each
row there is the expected “Component Type”, “Unit”, “Value” and other
columns, but there are also columns like Manufacturer1, Manufacturer2
etc. This violates 1NF. The most annoying consequence was that we were
limited on the number of Manufacturers (and similar attributes). Probably
Altium had chosen this layout to make life easy for all those that imported
from - or continued to use - Excel. It is easy to use a flat Excel sheet - at
the cost of flexibility.

2.6. JOINS 27

2.6 Joins

One of the most important database-concepts is the Join. Here we “align”
the private keys from one table with their specific foreign key counterparts
from another table - generating a new wider, temporary table. There are a
number of different ways to do this:

A B A B

SELECT.....
FROM A
(INNER) JOIN B
ON A.Key = B.Key

SELECT.....
FROM A
LEFT JOIN B
ON A.Key = B.Key

Figure 2.3: Most important Joins

r Join.
In SQL, the simple JOIN is the same as the INNER JOIN. This is
what we see in Figure 2.3 on the left side. The resulting temporary
table created by the join consists of only elements where there are
matching keys in the two tables. As there may be several foreign key
instances for the same primary key, the new table can have several
rows with this private key - one for each of these instances. On
the other hand, there will be no rows where a key exists only as a
private key or only as a foreign key. The latter case sounds wrong
- how can there be a foreign key without a corresponding private
key? There may have been no constraint declared (we will get to
this). In fact the two key-columns in the two tables may have been
created totally independent of each other - not as keys - until we just
decided to write the SQL JOIN statement where we treat the columns
as private/foreign keys.

28 CHAPTER 2. DATABASE BASICS

r Left Join
This is sometimes known as a LEFT OUTER JOIN. The SQL LEFT
JOIN is seen in the right side (sorry) of Figure 2.3. In this case all
rows from table A appear in the resulting temporary table. Where
matching keys are found in table B, the rows are extended with data
from here. These rows are thus identical to the rows in the (INNER)
JOIN. The new stuff here is that we also see the rows in table A that
have no matches in table B. The “missing columns” are filled with
NULL’s.

r Right Join
This works the same way as a left join - but now with the full B table
and the matches from A. Personally I never use a right join - I simply
reference the tables in the opposite order and use the left join.

r Full Join
This is also known as a FULL Outer JOIN and is not shown in the
figure. This includes all rows from both tables - matched when
possible with common keys, and with NULL’s in the rest of the
columns.

In order to demonstrate joins we will reuse the Shop system - now with
data. These data were simply written into tables 2.11 through 2.14, using
Management Studio’s “Edit Top 200 Rows”. In real life they are written
with an application.

Table 2.11: Orders

OrderNo CustomerID OrderDate ShippingDate
1 1 2018-01-03 2018-01-06
2 1 2018-02-02 2018-02-04
3 2 2018-03-03 2018-03-06
4 4 2018-04-03 2018-04-05

2.6. JOINS 29

Table 2.12: Products

ProductID Name Price
1 Round Table oak 1999
2 Round Table mahogany 2299
3 Square Table white 1699
4 Chair black 599
5 Chair white 599
6 Chair red 599
7 Wall-Lamp 350
8 Ceiling-Lamp 299

Table 2.13: Order-Items is an Association Table

OrderNo ProductID Quantity
1 2 2
1 3 1
2 4 4
2 3 1
2 1 1
3 5 2
4 2 1

Table 2.14: Customers

CustomerID FirstName LastName Email Address ZIP Countrycode
1 John Drake jd@gmail.com Savsvinget 7 2230 DK
2 Niels Petersen nielsp@hotmail.com Kobbervejen 8a 2700 DK
3 Pia Hansen ph@hansen.dk Roskildevej 55 3400 DK
4 Linda Jones ljones@gmail.com Smørhult 9 4790 SE
5 Carl Nielsen cn@hotmail.com Violinvej 22 5600 DK

30 CHAPTER 2. DATABASE BASICS

Now for the join. The following T-SQL queries may be written in Manage-
ment Studio’s Query Editor. You may need to start all the following T-SQL
scripts with the following to set the right scope:

USE Shop

Go

Oftentimes examples start with “SELECT *”. The star is an easy way to
get data from all columns in the table. The names used in the output
corresponds to the table column names. It is however not a good habit
to use the star in real applications. Table-changes may lead to columns
appearing in another order.

Another reason for specifically naming columns, instead of using the star,
is to limit the output - as in Listing 2.5. The join effectively generates a new
temporary table with all columns from all the joined tables. This means
that the key columns are shown in all their occurrences - as private keys
and as foreign keys. Normally you only want to see a single instance, or
maybe none if they are surrogate keys. The resulting table here is so wide,
that not only are the keys not shown - the table is also scaled down to
fit the page. Finally, the “AS”in the SELECT renames the output column
headers - in this case to shorter names.

Listing 2.5: Joins
1 SELECT Orders.OrderNo AS No, OrderDate, ShippingDate,
2 Quantity AS Qty, FirstName AS First, LastName AS Last,
3 Email, Address, ZIP, CountryCode AS Ctry, Name, Price
4 FROM Orders
5 JOIN OrderItems ON
6 OrderItems.OrderNo = Orders.OrderNo
7 JOIN Customers ON
8 Orders.CustomerID = Customers.CustomerID
9 JOIN Products ON

10 Products.ProductID = OrderItems.ProductID

Table 2.15: Joined Tables.

No OrderDate ShippingDate Qty First Last Email Address ZIP Ctry Name Price
1 2018-01-03 2018-01-06 2 John Drake jd@gmail.com Savsvinget 7 2230 DK Round Table mahogany 2299
1 2018-01-03 2018-01-06 1 John Drake jd@gmail.com Savsvinget 7 2230 DK Square Table white 1699
2 2018-02-02 2018-02-04 4 John Drake jd@gmail.com Savsvinget 7 2230 DK Chair black 599
2 2018-02-02 2018-02-04 1 John Drake jd@gmail.com Savsvinget 7 2230 DK Square Table white 1699
2 2018-02-02 2018-02-04 1 John Drake jd@gmail.com Savsvinget 7 2230 DK Round Table oak 1999
3 2018-03-03 2018-03-06 2 Niels Petersen nielsp@hotmail.com Kobbervejen 8a 2700 DK Chair white 599
4 2018-04-03 2018-04-05 1 Linda Jones ljones@gmail.com Smørhult 9 4790 SE Round Table mahogany 2299

2.6. JOINS 31

Note how the output from the join looks very much like an Excel solution
in a flat table would look from the start. In other words: we start with a
flat table, which we normalize into several tables. Then we join them back
to a flat table. The main advantage in the well-normalized database is that
it is much easier to maintain - no anomalies.

When doing an (INNER) JOIN we get the Intersection of the tables - only
the rows where keys match in all the joined tables. To demonstrate the
difference between (INNER) JOIN and LEFT JOIN we need to start with a
table that is not fully “used” by the other tables. The Products table is a
good example. First an (INNER) JOIN is performed again. Note the use of
“SELECT *” and how this results in column names as in the original tables,
and that the keys appear both as primary and as foreign keys. Then the
same query is done - except this time with a LEFT JOIN.

Listing 2.6: Inner Join
1 SELECT *
2 FROM Products
3 JOIN OrderItems ON
4 Products.ProductID = OrderItems.ProductID

Table 2.16: Inner Join of Products and OrderItems

ProductID Name Price OrderNo ProductID Quantity
2 Round Table mahogany 2299 1 2 2
3 Square Table white 1699 1 3 1
4 Chair black 599 2 4 4
3 Square Table white 1699 2 3 1
1 Round Table oak 1999 2 1 1
5 Chair white 599 3 5 2
2 Round Table mahogany 2299 4 2 1

Listing 2.7: Left Join
1 SELECT *
2 FROM Products
3 LEFT JOIN OrderItems ON
4 Products.ProductID = OrderItems.ProductID

Table 2.17: Left Join of Products and OrderItems

ProductID Name Price OrderNo ProductID Quantity
1 Round Table oak 1999 2 1 1
2 Round Table mahogany 2299 1 2 2
2 Round Table mahogany 2299 4 2 1
3 Square Table white 1699 1 3 1
3 Square Table white 1699 2 3 1
4 Chair black 599 2 4 4
5 Chair white 599 3 5 2
6 Chair red 599 NULL NULL NULL
7 Wall-Lamp 350 NULL NULL NULL
8 Ceiling-Lamp 299 NULL NULL NULL

32 CHAPTER 2. DATABASE BASICS

As described earlier - when doing an INNER JOIN we get the intersection
- the rows where keys match in all the joined tables. In the original tables
there were no NULL values. Thus there are no NULL values in the (inner)
joined table. With the LEFT JOIN we get all rows from the Products (left)
table, with matching rows from OrderItems (right) table. Since there are
Products that are not sold, the corresponding rows now contain NULL
values for the OrderItem columns.

We also see that the rows that are common to both outputs are not in the
same order. SQL guarantees nothing about row order - unless you specify
it. We will see this in Chapter 4.

2.7 Data Types and NULL

Table 2.18 shows the most common data-types used in T-SQL. There are
four types of strings - with and without unicode, and with fixed or dynamic
spacing. The reason for the strange ’n’ in e.g. “nchar” is that it originally
meant “National” chars. The real type corresponds to a classic float in
C-type languages, whereas the T-SQL “float” (without a size-specifier)
corresponds to a C-type double.

Later we shall see that the TimeReg sample uses the datetime format a lot.
That might not come as a surprise, however datetime takes up 8 bytes for
every timestamp, where 3 is enough for storing a relevant date without
time. When I designed the physical layer (we will get back to this in Section
3.4) it was not clear whether a need to compare timestamps on the same
date would arise, so I went for the safe solution. This has influenced the
C# code as well, and thus a clean-up is probably not going to happen.

We know zero-values like the empty string and the value 0 for an integer.
These are legal values specific for the type. This is different from NULL,
which is “missing” or “unknown” value - much like a null-pointer in OOP.
NULL is necessary in the following scenarios:

r An outer JOIN as we saw earlier in Table 2.17. In this case we extend
existing rows with columns from another table. In e.g. the LEFT
JOIN we will have rows in the left table without matching values
in the right table - but we want to show something anyway. NULL

2.7. DATA TYPES AND NULL 33

makes sense. It is however possible to specify default values to use -
in the SQL join statement.

r INSERT SQL statements may be performed with values for only
some of the columns. What to do with the rest? If the table was
created with default values for the relevant columns, these are used.
Otherwise NULL is used.

Table 2.18: T-SQL Selected data types

T-SQL .Net Meaning
bigint Int64 8 Bytes Signed Integer.
int Int32 4 Bytes Signed Integer.
bit Boolean True/False.
real Single 4 Bytes classic C “float”.
float Double 8 Bytes classic C “double”.
date - 3 Bytes. Year 1-9999.

datetime DateTime
8 Bytes. Year 1753-9999 & fractions of
seconds.

datetime2 DateTime
6-8 Bytes. Year 1-9999 & fractions of sec-
onds.

char(n) Byte Array
n bytes fixed storage. Note that by default
strings are padded with spaces.

varchar(n) Byte Array
Used bytes (max n) + 2 dynamic storage.
May use less space than char, but slower
to address.

nchar(n) String
2*n bytes fixed storage - padded with
spaces.

nvarchar(n) String
2*(used bytes) +2 dynamic storage. May
use less space than nchar, but slower to
address.

Handling NULL values can be problematic. It makes life a little easier if
default values are defined for all columns. These are used in INSERTS, but
not in the outer join scenario. Sometimes the null-coalescing C# operator
“??” comes in handy. It tests a variable for null. It can be used together
with types that are made “nullable” by postfixing with “?”. See Listing 2.8.

34 CHAPTER 2. DATABASE BASICS

Listing 2.8: Nullable data types
1 int? x = null; // x may be NULL or an int
2
3 // Set y equal to x if not NULL − else use 0
4 int y = x ?? 0;

Note that the types in SQL Server are listed in Management Studio under
the Catalog in the path: Programmability-Types-System Data Types.

2.8 Integrity and Constraints

The RDBMS will check that private keys are unique. This is called Entity
Integrity. When natural candidates for keys are not used as such, it may
be wise to explicitly introduce a UNIQUE Constraint. This can specify
that e.g. a Salary-Number must be unique.

It is also important to assure that a specific row with a given private key
cannot be deleted as long as there is a foreign key in another table relating
to it. Similarly, you should not be allowed to create a foreign key without
a matching private key. This is called Referential Integrity. Modern
RDBM’s enforce this through constraints. If a constraint is not created,
you are responsible for this enforcement in your client code. As there can
be more clients to the same database, each client needs to do this check.
Surely a constraint in the database is preferred.

The RDBMS can handle an unlawful delete in two ways: Either it does
not perform the delete, but returns an error. Or it deletes the row with
the private key, and also all rows that relates to it via a foreign key. This
is known as a Cascade, and is something you setup in the “Foreign Key
Relationships” dialog from Figure 2.2.

If the RDBMS is designed correct, it has taken ACID into consideration.
The “C” in ACID is “consistency”, and while the basic tables may be
consistent on their own, it is your responsibility to assure consistency
between tables, preferably using the above concepts. On top of this there is
also consistency requirements on the application level. This we will come
back to when we get to C#.

2.8. INTEGRITY AND CONSTRAINTS 35

As stated, we sometimes want to enforce uniqueness on one or more
columns that are not part of a key.

I will go a little ahead of myself and use an association table called “MyPro-
jects”, that is created as part of the TimeReg project as an example. In this
table we have rows that contain two foreign keys - one is ID for Employees
and the other for Projects. Any employee can work on any project - but it
only makes sense to have one row for any relevant combination. We want
the database to enforce this constraint.

This is a little hard to find in Management Studio - and not very logical,
since you end up with something in the object tree under keys and indexes
- not under constraints. Lets walk through it:

¬ Right click on the table where you want the constraint.

­ Select Design in the popup-menu.

® Right click left to the table in the Designer - where you also select
and see keys.

¯ In the popup-menu select “Indexes/keys...”.

° A dialog appears - see Figure 2.4. In this dialog, change the Type
from “Index” to “Unique Key”. Although it is called “Unique Key” it
is not what we normally call a key.

± You may also change the name - “Unique_MyProjects” is used in the
figure.

² Click on the field next to Columns and an ellipsis (...) appears. Click
on this and now the “Index Columns” dialog appears.

³ Now select the columns that together must be unique.

´ OK, Close and Save.

To see the consequence of the above, we can ask Management Studio to
“Script the table”. The resulting T-SQL is found in Listing 2.9. Aside from
the long list of defaults given, the syntax is not hard to understand. Note
that the foreign key constraints are not shown here.

36 CHAPTER 2. DATABASE BASICS

Figure 2.4: Setup a Unique Constraint

Listing 2.9: Create Table with Constraint
1 CREATE TABLE [dbo].[MyProjects](
2 [EmployeeID] [int] NOT NULL,
3 [ProjectID] [int] NOT NULL,
4 CONSTRAINT [Unique_MyProjects] UNIQUE NONCLUSTERED
5 (
6 [EmployeeID] ASC,
7 [ProjectID] ASC
8)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
9 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,

10 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
11) ON [PRIMARY]

The last type of integrity is Domain Integrity where SQL Server is config-
ured to CHECK that values in a column are e.g. within a specified range.
This is pretty much like parameter checking in a program.

The whole CHECK stuff can be quite confusing. You might actually see
text like WITH CHECK CHECK.

CHECK enables a constraint while NOCHECK disables a constraint that
would otherwise automatically be applied.

“WITH CHECK” is used when a constraint is added, to tell SQL Server
that existing values must also abide to the CHECK. If this fails, you get an
error and must sort out the problem and try again. “WITH NOCHECK”
means that the constraint only applies for new values.

Chapter 3

TimeReg Database

3.1 Introduction

I have tried to make TimeReg not only for top management. Project
managers can analyze time-consumption on sub-projects, and developers
can manage their vacation etc. You may download the sample, complete
with a small sample database, and use it while you read the book. Or you
may simply read the text and continue.

3.2 TimeReg Requirements

Basically the requirement for the TimeReg application was something like:

The daily reporting of hours on projects must be simple, as this is the most
common operation. This could e.g. be in a week-based form - pretty much like
the time-table school-children has. Somehow it would be nice if not just hours
is noted, but also a free-text comment. Users should only see whatever projects
they have previously selected as relevant - “My Projects”- not other peoples
projects. All users must be able to create simple reports directly in the program.
It must be easy to save these in an Excel-friendly format. Only managers are
allowed to see other employees sickness and vacation. A project-manager should
be able to easily see accumulated numbers on sub-parts of a project. We want to

37

38 CHAPTER 3. TIMEREG DATABASE

be able to break down the work on a project into the individuals or departments
that delivered the work. The program should be able to automatically transfer
hours on customer-specific projects to another, Oracle-based, database from
where billing is already done (not included in the sample).

Figure 3.1 shows a Power-Point version of the main view requirements,
created for a review within the management team. It may not be the best
way to demonstrate a user-interface, but the point is that is was easy to
create. Compare this to Figure 1.1, which shows the resulting program,
and you will find that the simple Powerpoint does a pretty neat job.

The User View

My Projects Monday 10 Tuesday 11 Wednesday 12 Thursday 13 Friday 14

Bilbo 3.5 5

Gandalf 2

Boromir 2 8.2

Sick

Vacation

SUM 5.5 7.0 8.2

• MyProjects are originally chosen from a drop down box (Special Form)

– Any employee can choose any existing project

– Once entered a project stays in the employees list....

– ...Until taken out. No data lost in database.

– Sick & Vacation are generally always there (Use 8hrs/day on these)

• Hours are entered in the cells – typically not more accurate than 0.5 hrs – not a req.

• Right-Click on cell to enter comment. Change background if comment exists.

NextPrev

WeekNo

Submit

Right Click to edit comments
(Change background color)

Options via Menu

Figure 3.1: Powerpoint Requirement Spec for main view

3.3 Logical Design

Databases are designed top-down. There is a High-Level design in which
the main entities (tables) are found and relations are defined, based on
the business model. Then there is a low-level design where data-types,
indexes, constraints and views etc are found. All these things we will get
back to in Chapter 4. These two levels are often called respectively Logical
Design and Physical Design. Coming from the world of hardware and
embedded software, I find the term “Physical Design” confusing, but it is
commonly used. So let’s get on with the logical design of TimeReg:

3.3. LOGICAL DESIGN 39

Look at the requirements. Try all nouns as candidates for entities
(tables). Then all attributes for these as columns in the table. The
individual items then become the rows.

The following nouns are found in the requirements for the sample: Time-
Registration, Employees, Projects, Sub-part of project, Departments, Com-
ments, Hours, Weeks, Users, Vacation, Sickness, Reports, Managers, Oper-
ation, Numbers, Individual, Work. Let’s take them one-by-one:

r Time-Registration
This is the overall purpose and thus is not a table, but the entire
system.

r Employees
This is a good candidate for a table. This table must contain all
relevant information that pertains to the specific Employee - e.g.
“Netname”, Salary-Number (Employee Number) and Department
(see below). I decided to use an Identity surrogate key called Em-
ployeeID in order to be independent of people changing names etc. I
might have used the Salary-Number, however, I suspected that there
might be people without such - e.g. consultants or students.

r Department
This is an interesting case. As stated above, Department is chosen as
an attribute of (column in) the Employees table. This is definitely
in the gray-zone. If there is a Department without Employees we
cannot see it. In fact, we cannot simply insert a new Department -
we need to add an Employee within the Department to get it into the
database. This is the Insert Anomaly. What is wrong? Department
is a non-key column. According to 2NF these columns must depend
on what the primary key identifies. Does the Department depend on
the Employee? No - at least not in a database-technical sense.

It would be correct to have a foreign key in the Employees table, with
a relation to a private key in a Departments table. That would make
it a key-column instead of a non-key column. We would satisfy 2NF,
and with a Departments table we would be able to insert departments
before staffing them - no Insertion Anomaly. In this case it makes
little sense - should such an empty department exist, there would be
no Hours to register anyway, and we don’t care. So for the sake of

40 CHAPTER 3. TIMEREG DATABASE

simplicity - and performance - Department became an attribute in
Employees.

Later in the TimeReg project I needed a drop-down list of Depart-
ments in order to allow managers to filter on the work sourced by
their own department. Lacking a Departments table, I did not have
such list. This is the only time a had to resort to the DISTINCT SQL
keyword, that traverses a table and gives a list of all unique values in
a given column. In a larger system, this would not be performance
optimal.

r Projects
Another good candidate for a table. Projects have attributes that
become columns - like their number in various external systems
and a name. A surrogate Identity key - ProjectID - is introduced.
This allows projects to be created independent of various formal
number-systems. These may be assigned later, or not at all. This
allows a department-manager to have tasks that are not really official
projects - like tool-support. As the system became more formalized,
a ManagerID was later introduced along with specific access rights.

r Sub-Parts of Projects
Project managers like to see statistics for sub-parts of a project. I
decided that a project could be a child of another project - but only
one level. No grand-parents. To handle this, a “Parent” column is
introduced. This holds the ProjectID of the parent project. ProjectID
is an Identity and thus normally 1 or greater. If this is less than
1 the Project is a parent. I decided to use 0 for “Normal” parent
projects and -1 for special projects that only are included in visible
exports when these are performed by managers. These projects are
typically Vacation and Holidays. This self-referencing later made
queries much more complex than otherwise necessary - as we shall
see.

r My Projects
This is another interesting case. Since every employee might work
on a multitude of projects, we would need to introduce an unknown
amount of ProjectID columns in the Employee table if this is where
we store the projects for a given Employee. This would break 1NF.
The exact same problem arises if we want to store all relevant Em-
ployeeID’s for each Project in the Projects table. The problem is that
we do not have a 1:n relation, but an m:n relation. The solution to

3.3. LOGICAL DESIGN 41

this problem is an association (or junction) table - MyProjects. This
table only holds two columns: a foreign key with a ProjectID and a
ditto with EmployeeID. There may be many rows with the same of
either of the foreign keys, but only one with a given pair - a good
case for a Constraint, as described previously. In this case we only
have two columns, but association tables can have more.

r Operation
This relates to the manual input of Time-Data and is no candidate
for a table.

r Report
This might sound like a candidate for a table, but as this is the
output of calculations (typically sums) it should not be a table in our
database, but the result of one or more SQL operations on data in
the database. The TimeReg database is Transactional - by far the
most common action performed, is typing in new Hours. If this was
a rare thing, while reports were done all the time, we would say that
it was Analytic. In such a case calculated data might actually go into
tables for performance reasons - saving a lot of JOIN’s in the SELECT
statements. That would involve the use of Triggers for updating the
sums when new data is entered - something that we don’t need in
this design.1 This relates to the OLTP versus OLAP discussion.

r Users
This is the same as Employees and Individuals. The term “Develop-
ers” was also used as this was an R&D Department.

r Managers
This might seem to be a new table, but managers are also employees.
In this case I decided to have a binary column in the Employees table
called SuperUser, as I (correctly) suspected that certain employees
in HR or Finance might be given the same rights as managers.

r Hours
This is yet a candidate for a table. In the end I decided that Hours
was the name of the most important attribute. Instead I called the
table Main. The reason for this name is that this table becomes “the
mother of all tables”, being the only table that has many daily inserts.
Like with Projects and Employees, a surrogate private key is used -
“MainID”. Main has foreign keys for EmployeeID and ProjectID.

1Reconsider your design if triggers are needed.

42 CHAPTER 3. TIMEREG DATABASE

r Accumulated Numbers
As described above this is generated on the fly as part of a Report.

r Comment
The comments clearly follow the hours into the Main table as a
column of its own.

r Week
Here is a good example of a requirement that relates to the way data
are shown on the user interface rather than to the database itself.
However, Hours are registered on specific dates. We do need Date as
a column in the Main (Hours) table.

r Form
Relates to the user interface.

Figure 3.2 shows how the initial table layout was drawn in Power-Point. It
just goes to show that you can get far by simple means.

Figure 3.3 shows the same tables in a diagram recently created by Manage-
ment Studio. Note the added relationship from Projects to Employees. This
is created by the later added ManagerID which is a foreign key matching
the private key EmployeeID in the Employees table. Other new columns
in the Projects table are GroupTag and Category. These are both used
to organize the projects in various ways, in order for statistics to be more
usable. The Category column is used by the Project Managers, while the
GroupTag is used by top management. Finally, we have InOracle which
contains the date of an export into an official Oracle system - or NULL if
not exported.

3.3. LOGICAL DESIGN 43

Backend Database in MS SQL-Server - Tables
MainEntry* EmployeeID** Date ProjectID** Hours Comment InOracle

1 2 2014-11-10 1 3.5 SC Meeting prep 2015-1-1

2 2 2014-11-10 2 2.0 Prod Stop 2015-1-1

3 2 2014-11-11 1 5.0 DSP Meeting 2015-1-1

4 2 2014-11-11 3 2.0 Design Review Null

5 2 2014-11-12 3 8.2 Coding FTDI-driver Null

Project
ID*

Name Num
ber

Parent Closed PSONum Category

1 Bilbo 0 0 NPI

2 Gandalf 0 0 NPI

3 Boromir 003.
..

0 1 675498 PSO

4 Bilbo-
DSP

1 0 NPI

5 Vacation 0 -1 0 OUT

Emplo
yee
ID*

Net
name

Employee Name Employee
Number

Department

1 KELK Klaus Elk 25419 7533

2 TDC Tom Dan Cornelius 25987 7534

3 LEGO Leif Godtfolk 23654 7537

4 DANISCO Dan Iscosen 24985 7538

Employee
ID**

ProjectID**

1 1

1 2

* = Key (Autonum)
** = Foreign Key

Main

Projects

MyProjects

Employees

Figure 3.2: Powerpoint Design of initial tables

Figure 3.3: Main tables today

44 CHAPTER 3. TIMEREG DATABASE

3.4 Physical Design

The details of the design is for now simply described by the following
script, generated by SQL Server. Microsofts use the “/*..*/” comments,
while I use “- -”. A number of “GO” statements etc. are removed to save
space.

Many of the constructs are explained in the next chapter. You may want
to skip the script now and go back to it when the various concepts are
described.

Listing 3.1: Result of Script Database
1 /****** Object: Table [dbo].[Employees] */
2 CREATE TABLE [dbo].[Employees](
3 −− Indentity Primary Key counting 1,2,3,4...
4 −− Note that SQL Server has NOT written ’PRIMARY’ here,
5 −− but instead uses the CONSTRAINT below
6 [EmployeeID] [int] IDENTITY(1,1) NOT NULL,
7 [Netname] [nvarchar](25) NOT NULL,
8 [FullName] [nvarchar](50) NOT NULL,
9 [SuperUser] [bit] NOT NULL,

10 −− Salary Number if such exists − else 0
11 [Number] [int] NOT NULL,
12 −− Department must be a number
13 [Department] [int] NOT NULL,
14 CONSTRAINT [PK_Employees] PRIMARY KEY CLUSTERED
15 (
16 [EmployeeID] ASC
17)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
18 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
19 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
20) ON [PRIMARY]
21
22 /****** Object: Table [dbo].[Main] */
23 CREATE TABLE [dbo].[Main](
24 −− Yet an Identity Primary Key
25 [MainID] [int] IDENTITY(1,1) NOT NULL,
26 [EmployeeID] [int] NOT NULL,
27 [Date] [datetime] NOT NULL,
28 [ProjectID] [int] NOT NULL,
29 [Hours] [real] NOT NULL,
30 [Comment] [nvarchar](200) NULL,
31 [InOracle] [datetime] NULL,
32 CONSTRAINT [PK_Main] PRIMARY KEY CLUSTERED
33 (
34 [MainID] ASC
35)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
36 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
37 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY],
38 CONSTRAINT [No_Dupl] UNIQUE NONCLUSTERED
39 (
40 [ProjectID] ASC,

3.4. PHYSICAL DESIGN 45

41 [EmployeeID] ASC,
42 [Date] ASC
43)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
44 IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
45 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
46) ON [PRIMARY]
47
48 /****** Object: Table [dbo].[MyProjects] */
49 CREATE TABLE [dbo].[MyProjects](
50 [EmployeeID] [int] NOT NULL,
51 [ProjectID] [int] NOT NULL
52) ON [PRIMARY]
53
54 /****** Object: Table [dbo].[Projects] */
55 CREATE TABLE [dbo].[Projects](
56 [ProjectID] [int] IDENTITY(1,1) NOT NULL,
57 [Name] [nvarchar](50) NOT NULL,
58 [Parent] [int] NOT NULL,
59 [ProjectNo] [nvarchar](50) NULL,
60 [Closed] [bit] NOT NULL,
61 [PSONumber] [int] NOT NULL,
62 [Category] [nvarchar](10) NOT NULL,
63 [ManagerID] [int] NULL,
64 [Grouptag] [varchar](50) NOT NULL,
65 CONSTRAINT [PK_Projects] PRIMARY KEY CLUSTERED
66 (
67 [ProjectID] ASC
68)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, I
69 GNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON,
70 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
71) ON [PRIMARY]
72
73 ALTER TABLE [dbo].[Employees] ADD CONSTRAINT
74 [DF_Employees_Number] DEFAULT ((0)) FOR [Number]
75 ALTER TABLE [dbo].[Employees] ADD CONSTRAINT
76 [DF_Employees_Department] DEFAULT ((0)) FOR [Department]
77 ALTER TABLE [dbo].[Projects] ADD CONSTRAINT
78 [DF_Projects_Closed] DEFAULT ((0)) FOR [Closed]
79 ALTER TABLE [dbo].[Projects] ADD CONSTRAINT
80 [DF_Projects_PSONumber] DEFAULT ((0)) FOR [PSONumber]
81 ALTER TABLE [dbo].[Projects] ADD CONSTRAINT
82 [DF_Projects_Category] DEFAULT (N’NON’) FOR [Category]
83 ALTER TABLE [dbo].[Projects] ADD DEFAULT (’’) FOR [Grouptag]
84
85 −− Here comes the constraints based on the foreign keys
86 ALTER TABLE [dbo].[Main] WITH CHECK ADD CONSTRAINT
87 [FK_Main_Employees] FOREIGN KEY([EmployeeID])
88 REFERENCES [dbo].[Employees] ([EmployeeID])
89
90 ALTER TABLE [dbo].[Main] CHECK CONSTRAINT [FK_Main_Employees]
91 ALTER TABLE [dbo].[Main] WITH CHECK ADD CONSTRAINT
92 [FK_Main_Projects] FOREIGN KEY([ProjectID])
93 REFERENCES [dbo].[Projects] ([ProjectID])
94
95 ALTER TABLE [dbo].[Main] CHECK CONSTRAINT [FK_Main_Projects]
96
97 ALTER TABLE [dbo].[MyProjects] WITH NOCHECK ADD CONSTRAINT

46 CHAPTER 3. TIMEREG DATABASE

98 [FK_MyProjects_Employees] FOREIGN KEY([EmployeeID])
99 REFERENCES [dbo].[Employees] ([EmployeeID])

100 NOT FOR REPLICATION
101
102 ALTER TABLE [dbo].[MyProjects] NOCHECK CONSTRAINT
103 [FK_MyProjects_Employees]
104
105 −− Note the CASCADE statements
106 ALTER TABLE [dbo].[MyProjects] WITH CHECK ADD CONSTRAINT
107 [FK_MyProjects_Projects] FOREIGN KEY([ProjectID])
108 REFERENCES [dbo].[Projects] ([ProjectID])
109 ON DELETE CASCADE
110
111 ALTER TABLE [dbo].[MyProjects] CHECK CONSTRAINT
112 [FK_MyProjects_Projects]
113
114 ALTER TABLE [dbo].[Projects] WITH CHECK ADD CONSTRAINT
115 [FK_Projects_Employees] FOREIGN KEY([ManagerID])
116 REFERENCES [dbo].[Employees] ([EmployeeID])
117 ON UPDATE SET NULL
118 ON DELETE SET NULL
119
120 ALTER TABLE [dbo].[Projects] CHECK CONSTRAINT
121 [FK_Projects_Employees]

3.5 TimeReg Data sample

For use in SQL experiments, screen dumps etc. we need neutral project
data. A part of the design is that we have projects that may have child-
projects. Data can be accumulated on the parent when presenting to
management, whereas they can be used inside the project on a more de-
tailed level. In B&K Denmark we use these children for sub-teams like
FPGA, Embedded Software etc. while another country use the children for
various phases in a project.

In the sample for this book the parent projects are named after the planets
in our solar-system. The children of the planets are named after their
moons - although far from all moons are included. In the Projects table
there is a “Parent” column2. This contains the ProjectID of the parent
project. For the parent projects, the value in this column is 0. Projects
such as “Vacation” and “Sickness” are special since some privacy may be
needed. For these the Parent is -1. In Chapter 4 a SELECT is done that
shows the projects in Table 4.2.

2A more consistent name would have been “ParentID”

Chapter 4

SQL

4.1 Introduction to SQL

Typically when people talk about SQL-statements they mean queries like
the SELECT that we have already seen in some examples when discussing
JOIN. SELECT together with UPDATE, DELETE and INSERT constitutes
the “Data Manipulation Language”. We have seen them bundled together
as CRUD in Chapter 2. We have also seen some commands used for creat-
ing and deleting tables and databases - like CREATE, ALTER and DROP.
This is the “Data Definition Language”. These two groups of commands
are the most important in this book, but altogether there are four groups -
as shown in Table 4.1.

Table 4.1: T-SQL Language Groups

Term Meaning Examples
DML Data Manipulation

Language
SELECT, UPDATE, DELETE,
INSERT

DDL Data Definition
Language

ALTER, CREATE, DROP

DCL Data Control Language GRANT, REVOKE
TCL Transactional Control

Language
COMMIT, ROLLBACK

47

48 CHAPTER 4. SQL

You can find a lot of details on SQL and T-SQL on the internet. One of the
best places is “w3schools.com”. This shows all the generic SQL commands
as well as specific T-SQL for SQL Server. In this text we will walk through
some samples, to get a general understanding.

4.1.1 Parameters

The samples are taken from the database-interface layer that we will dig
further into in Chapter 7. Here all SQL-statements are built as C# strings.
I have removed the C# string stuff in the following listings to focus on
the T-SQL. However, I have kept the “parameters”. These are variable
names that start with a “@”. We shall see later that these parameters are
not substituted in the C#-string before it is handed to SQL server. Instead
the parameters are handed over separately in a Command object. This
improves security - especially when strings originate directly from the user.
In such a case, a bandit could supply a full nasty SQL statement instead of
just a name or similar - the so-called SQL-injection. This is not possible
with parameters. It is important to show this syntax to get used to using
parameters. As a bonus it also makes it clearer which part of the SQL that
is input from the application. Note that it is perfectly legal to use names
for parameters that are identical to the relevant column-names.

Another name for the use of parameters is Binding. Whenever SQL Server
receives an SQL-statement it is “compiled” into an Execution Plan. This
is cached, and if SQL Server later runs into the same SQL Statement, it
will reuse the execution plan. Thus performance is boosted. However, the
textual SQL statement must be exactly the same, whereas parameters may
differ without triggering a new execution plan. Naturally, parameters are
typically where changes are likely found, so binding, or using parameters,
can greatly enhance performance. We will get back to execution plans
when we discuss Indexes.

4.1.2 SELECT

Listing 4.1 is a simple SELECT that should return exactly one row from
“Projects”, and only the “Name” column from this. The limiting factor is
the WHERE clause which filters the answer and only gives us rows that

4.1. INTRODUCTION TO SQL 49

match the expression. WHERE can - and typically should - also be used in
UPDATE and DELETE.

Listing 4.1: Simple Select
1 SELECT Name
2 FROM Projects
3 WHERE ProjectID = @ProjectID

There should never be more than one row in the result of this query as
we are filtering with a private key. We expect more than zero rows as we
are using a key from an earlier result. But what if the project has been
deleted? Wouldn’t that mean that 0 rows are returned? Yes, but in this
application, projects are normally not deleted - only closed for further
entries. Otherwise hours would get “lost”.

As stated, projects are not deleted, but nevertheless there are not that
many of them. So, instead of querying for individual pieces of information
on single projects like in Listing 4.1, it makes mores sense to fill a C#
dictionary for general lookup when the application is initialized. The
T-SQL for this is shown in Listing 4.2. This time all projects are needed -
so no WHERE clause.

Listing 4.2: Select with Joins
1 SELECT P1.ProjectID, P1.Name, P1.Parent,
2 P2.Name As ParentName, E.FullName
3 FROM Projects AS P1
4 LEFT JOIN Projects AS P2
5 ON P1.Parent = P2.ProjectID
6 LEFT JOIN Employees AS E
7 ON P1.ManagerID = E.EmployeeID

Now we have two left joins, “extending” the rows of the Projects table.
First it is extended with itself. This is because Projects can have “Parent
Projects” (but not grandparents). To find these, we join on ProjectID - the
private key - and Parent - technically a “foreign key”. Finally we join with
the Employees table. The Projects table only contain the foreign key to
the EmployeeID, and to get the managers name, we need to join with the
Employees table.

Table 4.2 shows a sample output when running the SQL from Listing 4.2.

50 CHAPTER 4. SQL

Table 4.2: Projects with Parents

ProjectID Name Parent ParentName FullName
1 Vacation -1 NULL NULL
2 Sickness -1 NULL NULL
3 Venus 0 NULL Klaus Elk
4 Mercury 0 NULL Klaus Elk
5 Earth 0 NULL Klaus Elk
6 Mars 0 NULL Klaus Elk
7 Jupiter 0 NULL Peter Nielsen
8 Saturn 0 NULL Klaus Elk
9 Uranus 0 NULL Klaus Elk
10 Neptune 0 NULL Klaus Elk
11 Phobos 6 Mars Klaus Elk
12 Deimos 6 Mars Klaus Elk
13 Moon 5 Earth Klaus Elk
14 Titan 8 Saturn Klaus Elk
15 Enceladus 8 Saturn Klaus Elk
16 Io 7 Jupiter Peter Nielsen
17 Europe 7 Jupiter Peter Nielsen

4.1.3 INSERT, UPDATE and DELETE

Listing 4.3 shows a typical INSERT. In TimeReg rows are inserted one per
SQL-command only. It is possible to do an insert with several rows at the
same time. However, the code is more clean when only single rows are
inserted - possibly inside a loop. The downside is that this causes more
trips to the database. The upside is that we will reuse an execution plan.

There are no private keys in the relevant table - MyProjects. It is an
association - or junction - table with pairs of foreign keys. As stated earlier,
it is created with a constraint - assuring that there is max 1 row with a
given ProjectID and EmployeeID. Thus, this action might cause an error -
an exception in C#.

Listing 4.4 shows the corresponding DELETE. Note that again we see the
WHERE clause. In this case it is very important. Without the WHERE, the
statement will delete all rows.

4.2. NEXT LEVEL SQL 51

Listing 4.3: Simple Insert
1 INSERT INTO MyProjects (ProjectID, EmployeeID)
2 VALUES (@ProjectID, @EmployeeID)

Listing 4.4: Simple Delete
1 DELETE FROM MyProjects
2 WHERE ProjectID = @ProjectID
3 AND EmployeeID = @EmployeeID

Listing 4.5 shows an update of an existing row. Again we see the very
important WHERE clause.

Listing 4.5: Simple Update
1 UPDATE Projects
2 SET Name = @Name, ProjectNo = @ProjectNo , PSONumber = @PSONumber ,
3 Category = @Category , Grouptag = @Grouptag
4 WHERE ProjectID = @ProjectID

A good trick when doing DELETE’s and UPDATE’s, is to start by creating a
similar SELECT to test the WHERE part. When this returns all the relevant
rows - and only these - you can substitute the SELECT with the relevant
command. Still you might want to test on a non-production version as
well.

4.2 Next Level SQL

In the following we will look at some more advanced T-SQL.

4.2.1 Identity

When discussing keys in Chapter 2, I recommended the use of surrogate
keys - especially the “Identity” running-number generated by SQL Server.
Often, when a row has been inserted and such a key created, you want to
know it in your code. One reason is that it might be needed right away as
a foreign key in another table. You could query for it, but this means yet a
visit to the database and without the key that you need it becomes a “Catch
22”. Much more efficient to get the key right away. This is demonstrated
in Listing 4.6.

52 CHAPTER 4. SQL

Listing 4.6: Insert with new Identity
1 INSERT INTO Main (EmployeeID, Date, ProjectID, Hours, Comment)
2 OUTPUT INSERTED.MainID
3 VALUES (@EmployeeID, @Date, @ProjectID, @Hours, @Comment)

4.2.2 Group By

A report is needed that per employee states the projects that this person
has worked on with monthly sums. The solution is found in Listing 4.7. By
using the T-SQL “SUM” command, a new virtual column is created - here
conveniently named “Total”. The ROUND-function rounds the number
to an integer. The YEAR and MONTH - together with the “GROUP BY”
- organizes the sums into “amortized” values - sums per month per year.
There is no guarantee that all this comes out in the right order. This is why
there is also an ORDER BY.

All this may look a little complex, but it is actually not so difficult to write.
However, you get incredibly much value for the few lines of code. The
speed with which SQL Server travels through all these data and sends back
aggregated numbers is amazing.

Listing 4.7: Amortized Sums
1 SELECT Employees.FullName, Employees.Department, projects.ProjectID,
2 YEAR(main.Date) AS Year, MONTH(main.Date) AS Month,
3 ROUND(SUM(main.Hours),0) as Total
4 FROM PROJECTS projects
5 INNER JOIN Main main
6 ON main.ProjectID = projects.ProjectID
7 INNER JOIN Employees
8 ON main.EmployeeID = Employees.EmployeeID
9 WHERE main.Date >= @FromDate AND main.Date <= @ToDate

10 GROUP BY Employees.FullName, Employees.Department, projects.ProjectID,
11 Year(main.Date), Month(main.Date)
12 ORDER BY Employees.FullName, projects.ProjectID,
13 Year(main.Date), Month(main.Date)

Note that Listing 4.7 only joins with the Employees table - not with the
Projects table. Thus the result contains names of people but only ID’s of
Projects. When Project info is needed in the application, ProjectID is used
as a key into the Projects Dictionary. See the resulting output in Table
4.3 which contains 3 months for two employees. Note how the output is
grouped and sorted. “John Hansen” comes before “Klaus Elk” because

4.2. NEXT LEVEL SQL 53

Employees are sorted by their full name, whereas Projects are sorted by
their “ProjectID”.

Looking at the output, it is also clear that grouping on Department really
makes no sense as this follows the Employee. However, if this is removed
from the GROUP BY we get the following error-message: “Column ’Employ-
ees.Department’ is invalid in the select list because it is not contained in either
an aggregate function or the GROUP BY clause.” Based on this, a simple
solution is to include Department in the GROUP BY as shown.

Also note that the “Month” column skips months where the Total is 0. This
can cause problems in a program looping through data.

54 CHAPTER 4. SQL

Table 4.3: Orders

FullName Department ProjectID Year Month Total
John Hansen 75 1 2018 2 24
John Hansen 75 1 2018 3 16
John Hansen 75 2 2018 3 40
John Hansen 75 4 2018 1 16
John Hansen 75 4 2018 2 40
John Hansen 75 4 2018 3 54
John Hansen 75 9 2018 1 52
John Hansen 75 9 2018 2 48
John Hansen 75 9 2018 3 40
John Hansen 75 10 2018 1 40
John Hansen 75 11 2018 1 56
John Hansen 75 11 2018 2 40
John Hansen 75 15 2018 1 12
John Hansen 75 15 2018 2 8
John Hansen 75 15 2018 3 10
Klaus Elk 75 1 2018 2 40
Klaus Elk 75 1 2018 3 32
Klaus Elk 75 2 2018 1 16
Klaus Elk 75 6 2018 1 48
Klaus Elk 75 6 2018 2 5
Klaus Elk 75 6 2018 3 35
Klaus Elk 75 7 2018 1 44
Klaus Elk 75 7 2018 2 35
Klaus Elk 75 7 2018 3 24
Klaus Elk 75 8 2018 1 6
Klaus Elk 75 8 2018 2 16
Klaus Elk 75 8 2018 3 18
Klaus Elk 75 11 2018 1 30
Klaus Elk 75 11 2018 2 26
Klaus Elk 75 11 2018 3 32
Klaus Elk 75 15 2018 1 40
Klaus Elk 75 15 2018 2 37
Klaus Elk 75 15 2018 3 22

4.3. LEARNINGS ON CRUD 55

4.3 Learnings on CRUD

From the few examples we can deduce a number of rules of thumb:

r SELECT statements can become quite complex, especially when
reports with aggregated numbers are needed. This is in line with
the discussion on OLTP versus OLAP. This database is not tailored
specifically towards historical analysis, so when this is needed, things
become more complex.

r DELETE, UPDATE and INSERT typically are rather simple. This is
what the OLTP system excels in.

r Where a SELECT may return thousands of rows, the DELETE, UP-
DATE and INSERT typically only operate on a single row. Once in
a while you may need to do some maintenance - in our sample it
could be to move hours from one project to another. In such a case
UPDATE is typically used on several rows. The same could happen
with DELETE, but rarely with INSERT.

r The WHERE clause must not be forgotten in DELETE and UPDATE -
without this all existing rows are affected.

r Use OUTPUT Inserted.<ColumnName> to get an updated Identity value.

4.4 Indexing

Indexes are generally extra tables created for faster searches. As stated
earlier: SQL Server does an OK job on indexes right out of the box. Basically
it simply creates indexes for the private keys. This makes sense as these
are used in joins. When you create a unique constraint - as we have seen
earlier - it also creates an index for the relevant columns. That’s it. In many
scenarios that’s fine.

A table can have many indexes, but only one can be Clustered. A clustered
index organizes the actual table according to the column(s) selected for the
index. The logical consequence is that all other indexes are non-clustered.

56 CHAPTER 4. SQL

It is possible to overdo indexing. Small tables are faster without index. Any
change in a table (UPDATE, INSERT or DELETE) requires an update of the
relevant indexes. SQL Server makes best use of its indexes and lookups
when many rows are addressed by the same SQL-statement. Thus indexes
really shine when it comes to large tables, mainly used in SELECT. When
deciding which columns to index, a good place to start is to look at the
WHERE statements in your queries. Columns used in comparisons here
are good candidates.

For the TimeReg application I want the daily INSERT’s and UPDATE’s for
the developers to be fast, in order not to demotivate them. On the other
hand - managers with their queries can wait. These queries are more rare,
and more rewarding. The conclusion seems to be: no extra indexes.

However, all employee updates start with the SELECT of the current week.
This is data for a given Employee and for a specific range of dates (a week)1,
so would it make sense to create an index based on these?

Let us test Management Studio’s very nice display of the Execution Plan.
As described earlier, when SQL Server receives a new query it “compiles”
it into an Execution Plan.

When a query is visible you can press CTRL-M or select “Query” in the
main menu, then “Include Actual Execution Plan”. Then press F5 to run
the query.

Now a third output tab appears after “Results” and “Messages”, named
“Execution Plan”. This is shown in Figure 4.1. Let’s take a look at the query
in the top window.

The query starts with CHECKPOINT and DROPCLEANBUFFERS. Together these as-
sure that the query starts from a clean sheet with nothing clever in memory
from the previous run - e.g. “compiled” SQL statements. After these com-
mands we see:

SET STATISTICS TIME ON and
SET STATISTICS IO ON.

1Whether the BETWEEN command is used for a range, or two comparisons, makes no
difference.

4.4. INDEXING 57

After the query these are set to OFF to minimize the output in the Messages
window for the start of next round:

DBCC execution completed. If DBCC printed error messages,

contact your system administrator.

SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 0 ms.

(17 row(s) affected)

Table ’Projects’. Scan count 0, logical reads 34, physical reads 2,

read-ahead reads 0, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table ’Worktable’. Scan count 0, logical reads 0, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table ’Main’. Scan count 1, logical reads 855, physical reads 3,

read-ahead reads 851, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

(1 row(s) affected)

SQL Server Execution Times:

CPU time = 31 ms, elapsed time = 210 ms.

Figure 4.1: Execution Plan without Index

58 CHAPTER 4. SQL

We see that the query uses 31 ms of CPU-time. This deviates from one
run to another but stays in this area. The Worktable mentioned here is
a temporary object created by SQL Server. For this exercise we focus on
the “Main” table. The logical reads are reads from memory cache, while
physical reads are from disc. If we look at the Execution Plan we get all
kinds of advanced information by hovering the mouse over the relevant
part of the execution. We see that 81% of the time is spent on a clustered
Index Scan. A scan means going through the whole table.

We also see a (green) text: “Missing Index (Impact 94.6543)”. This means
that we may save 95% of the execution time with the right index. If we
right-click and select “Missing Index Details” we get a new query window
- see Listing 4.8.

Listing 4.8: Index Suggestion
1 /*
2 Missing Index Details from MyWeek.sql
3 The Query Processor estimates that implementing the
4 following index could improve the query cost by 94.6543%.
5 */
6
7 /*
8 USE [TimeReg]
9 GO

10 CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
11 ON [dbo].[Main] ([EmployeeID],[Date])
12 INCLUDE ([MainID],[ProjectID],[Hours],[Comment],[InOracle])
13 GO
14 */

Lines 10-12 in the Listing is an instruction to build an index on EmployeeID
and Date - just as expected. We uncomment the code and replace “[<Name
of Missing Index, sysname,>]” with “[IX_Employee_Date]”, and press F5.

The top window is the same query, but the new bottom window is now
seen in Figure 4.2. The Index Scan has become an Index Seek in our
non-clustered IX_Employee_Date. This is now 10% - and thus not the
bottleneck anymore. The other index seek that was 2% before is now 54
%. Naturally the absolute timing of the latter seek is unchanged, it’s just a
larger proportion of the total.

4.4. INDEXING 59

Figure 4.2: Execution Plan with Index

The “Messages” window now says:

DBCC execution completed. If DBCC printed error messages, contact your system

administrator.

SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 0 ms.

(17 row(s) affected)

Table ’Projects’. Scan count 0, logical reads 34, physical reads 2,

read-ahead reads 0, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table ’Worktable’. Scan count 0, logical reads 0, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

Table ’Main’. Scan count 1, logical reads 3, physical reads 3,

read-ahead reads 0, lob logical reads 0, lob physical reads 0,

lob read-ahead reads 0.

(1 row(s) affected)

SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 338 ms.

CPU time is now 0 ms (rounded). The I/O explains why.

Relatively this index was a big success. Whether it makes sense to go for
32 ms is another thing. Network delays can easily be much longer.

60 CHAPTER 4. SQL

4.5 Views

A database-manager can choose to only make certain columns of a table
accessible for (some) users, by creating a View of the table with only the
selected columns - and even rename some or all. Programmers work on
the table via the view, and may think of it as just another table. This is one
way to use views, where the purpose is limited access or better naming
without disturbing backward compatibility.

Another reason for creating views is to simplify the client programs. Ad-
vanced joins can be written as part of SQL-code embedded in your program.
Alternatively a view can be created in the database environment. This
makes all client programs simpler, as they just need to refer to the view in
the same way as to a table. In reality the view is dynamically generated
when data is requested.

If a view is based on a single table, it is possible to insert, update and
delete rows, as if it really is a table, and the underlying, real table will
be updated correctly. If however, the view is dynamically created from a
join, you cannot simply write to the view and have the underlying tables
updated. This requires the use of something called “Instead of” Triggers
that is beyond the scope of this book.

After having run TimeReg for some time with a growing user-base and
new requirements in small doses, we were faced with a completely new
requirement: Forecasts. In addition to registering hours, managers would
estimate man-months per man per month per project.

The Forecasts table was created in Management Studio, using the Designer.
Using “Script Table as...” now gives us Listing 4.9.

Listing 4.9: Forecast Table
1 CREATE TABLE [dbo].[Forecasts](
2 [TaskID] [int] IDENTITY(1,1) NOT NULL,
3 [ProjectID] [int] NOT NULL,
4 [EmployeeID] [int] NOT NULL,
5 [TaskDescr] [varchar](200) NOT NULL,
6 [CalMonth] [int] NOT NULL,
7 [Effort] [real] NOT NULL,
8 PRIMARY KEY CLUSTERED
9 (

10 [TaskID] ASC
11)...

4.5. VIEWS 61

We recognize the use of an integer surrogate key - here named “TaskID”.
EmployeeID and ProjectID are well-known by now, and “TaskDescr” is a
textual description of the job to do. “Effort” is the number of months a
developer is estimated to put in a task in the given month. Thus it should
be a number between 0 and 1, but could be more if we start thinking in
competence pools - like e.g. “DSP Developers”.

Instead of the high-resolution time-stamps an integer is used. This is called
“CalMonth” and is created like: Year*100+Month, so that February 2018
becomes 201802. Table 4.4 shows the first 10 lines of forecasts in this
system2.

Table 4.4: Forecast - first 10 lines

TaskID ProjID EmplID TaskDescr CalMonth Effort
6 275 18 Basic Linux 201612 1
19 275 215 Basic Linux 201612 1
32 275 5 Basic Linux 201612 1
63 73 121 FPGA Design 201610 1
64 73 121 FPGA Design 201611 0.7
65 73 121 FPGA Impl 201612 0.7
66 73 121 FPGA Impl 201701 0.7
67 73 121 FPGA Impl 201702 1
68 73 121 FPGA Test 201703 1
69 73 121 FPGA Test 201704 1

After the forecasts were created we wanted to show them in Power BI. The
custom date-format was not compatible with this tool. In order to give
Power BI the ability to read time-stamps “normally”, a View was created.
This is also done in Management Studio, by right-clicking on “Views”.
You get to a dialog where you can pick tables and columns in these. This
gives you some SQL that you can edit. It is not difficult to write the script
directly. The final script is seen in Listing 4.10.

Finally Table 4.5 shows the first 10 lines of a SELECT * on this view3. It
is easy to see the effect of the view. Please note that it is not possible to
write to this view to get data into the Forecast table. This is not relevant

2Headernames shortened to save space
3Headernames shortened to save space

62 CHAPTER 4. SQL

Listing 4.10: Forecast View
1 CREATE VIEW [dbo].[ForecastDates] AS
2 SELECT TaskID, ProjectID, EmployeeID, TaskDescr, Effort,
3 DATEFROMPARTS((CalMonth/100),(CALMONTH%100),1) AS TheDate
4 FROM dbo.Forecasts
5 GO

Table 4.5: Forecast - first 10 lines

TaskID ProjID EmplID TaskDescr Effort TheDate
6 275 18 Basic Linux 1 2016-12-01
19 275 215 Basic Linux 1 2016-12-01
32 275 5 Basic Linux 1 2016-12-01
63 73 121 FPGA Design 1 2016-10-01
64 73 121 FPGA Design 0.7 2016-11-01
65 73 121 FPGA Impl 0.7 2016-12-01
66 73 121 FPGA Impl 0.7 2017-01-01
67 73 121 FPGA Impl 1 2017-02-01
68 73 121 FPGA Test 1 2017-03-01
69 73 121 FPGA Test 1 2017-04-01

for Power BI anyway. Naturally the view may need to be joined with the
Employees and Projects tables.

4.6 Common Table Expressions

It is possible to put queries into queries. This is called Subqueries. You
can also go one step further - to Common Table Expressions. This name
is often just shortened to CTE. A CTE can do whatever a subquery can do,
but on top of this it can be recursive. Many believe that CTE’s are more
readable than subqueries. Thus we skip subqueries here.

In the first part of the CTE, a temporary named table is created - much
like a view. This part starts with “WITH” and the name to use for the
temporary table - “CTE” is often used. In the second part of the CTE, the
temporary table can be used one or more times - like any other table.

As stated earlier, TimeReg projects can be children of other projects. In the

4.6. COMMON TABLE EXPRESSIONS 63

“Reports” part of TimeReg we needed hours from child projects aggregated
on the parent - together with hours booked directly on the parent. Listing
4.11 shows the CTE for this (with fixed dates).

Listing 4.11: Common Table Expression
1 WITH CTE AS (
2 SELECT Year(main.Date) AS Year, Month(main.Date)
3 AS Month, projects.ProjectID, projects.Parent, main.Hours,
4 CASE WHEN projects.Parent > 0 THEN projects.Parent
5 ELSE projects.ProjectID
6 END SuperProj
7 FROM Projects projects
8 INNER JOIN Main main
9 ON main.ProjectID = projects.ProjectID

10 WHERE main.Date < ’2018−4−1’ AND main.Date >= ’2018−1−1’
11)
12 SELECT SuperProj, Year, Month, ROUND(SUM(Hours),0) AS Total
13 FROM CTE
14 GROUP BY SuperProj, Year, Month
15 ORDER BY SuperProj, Year, Month

In the first part a “SuperProj” column is created in the temporary table.
This is the ProjectID of the parent project if such exists. If not, the project
is a parent itself.

The first part now continues joining the actual project with the Main table
to get the Hours. Thus we get all the hours per actual project, but pass
them on to the second part together with the SuperProj.

The second part of the CTE starts in line 12. It is responsible for aggrega-
tion and grouping/ordering according to the SuperProj, Year and Month.
When comparing this to the solution in Subsection 4.2.2, we see that the
CTE also gives us fewer columns to worry about when grouping.

The output when executing the code in Listing 4.11 is seen in Table 4.6.

Please note that there are missing entries. E.g. SuperProj 5 has no line for
Month 3. SQL Server might have written a Total of 0 - but it doesn’t. This
can be a nasty surprise to a programmer using these data to fill out arrays
or writing in monthly columns.

64 CHAPTER 4. SQL

Table 4.6: CTE with SuperProj aggregated hours

SuperProj Year Month Total
1 2018 1 24
1 2018 2 104
1 2018 3 104
2 2018 1 16
2 2018 2 40
2 2018 3 40
4 2018 1 16
4 2018 2 40
4 2018 3 54
5 2018 1 32
5 2018 2 60
6 2018 1 134
6 2018 2 71
6 2018 3 67
7 2018 1 124
7 2018 2 55
7 2018 3 98
8 2018 1 106
8 2018 2 61
8 2018 3 80
9 2018 1 52
9 2018 2 48
9 2018 3 40
10 2018 1 40

4.7. STORED PROCEDURES 65

4.7 Stored Procedures

A stored procedure is basically a query where the SQL-text is not part of
the client program, but instead is stored in SQL Server, together with the
database and Views etc. We see later how ADO.net attaches the SQL-text,
and parameters to this, as separate objects in the SqlCommand. When
using a stored procedure, we still attach the parameters, but instead of
attaching the SQL text, we name the stored procedure to use.

Performance-wise this is a little bit faster, since the query already is “com-
piled” into an Execution Plan. If several clients are to use the same
database, we can put SQL into stored procedures, and thus don’t need to
write the same code several times. It may also be a good way to split the
work in a team.

There are however, syntactical differences, and it is yet a thing to learn.
This book is about SQL Server and C# and we will not go into stored
procedures.

4.8 Security and Connection Strings

For many years the way to setup a connection to a database has involved a
Connection String. Probably because this is more language independent
than e.g. a structure. Here is an example:

private static string TestLocalConnectionStr =

"Data Source=localhost\\sqlexpress;Initial Catalog=TimeReg;

Integrated Security=True";

This string contains three “Value-Pairs” - separated by “;”:

r Data Source = XXX
The Data Source is the server to connect to. In the example a server
named “sqlexpress” on “localhost” (this PC) is used. This is the
default name for an SQL Express installation.

r Initial Catalog = YYY

66 CHAPTER 4. SQL

The Catalog is the name of the database on the server selected above.
In the example it is called “TimeReg”.

r Integrated Security = ZZZ
When the “Integrated Security” parameter is set to “True”, the con-
nection uses Windows Authentication. Thus, if the user has read
and write access rights on the given Server+Catalog, he or she can
use any of the CRUD commands. If the Integrated Security is set to
False, the string must contain another way to authenticate. Integrated
Security is generally considered to be the safest choice.

The above three parameters are a “minimal set” - there are many others.

As stated, the use of a connection string is the traditional way, but it is actu-
ally possible to work with structures, using SqlConnectionStringBuilder.
With this we can get/set value-pairs with a classic “member” syntax like
in lines 3+4 in Listing 4.12. Alternatively we can use indexers - as in lines
6+7.

Listing 4.12: SqlConnectionStringBuilder
1 SqlConnectionStringBuilder builder =
2 new SqlConnectionStringBuilder(GetConnectionString());
3 builder.Password = "CrispyChip";
4 builder.AsynchronousProcessing = true;
5
6 builder["Connect Timeout"] = 2000;
7 builder["Trusted_Connection"] = true;

In the connection-string we use integrated security. Alternatively we might
write User ID=TimeRegUser; Password=myPassword. This is e.g. used with SQL
Server Authentication.

Figures 4.3 and 4.4 shows how a user is created using Management Studio.

¬ In the Object Explorer there is a “Security” node on the same level
as the Catalogs. As the figure shows, there is also a “Security” node
under the Catalog. Click to expand the tree below this.

­ Right click on “Logins” sub-node and select “New Login ...” to get to
the dialog in the figure. Note that the default choice here is Windows
authentication, which is the same as Integrated Security. If we want

4.8. SECURITY AND CONNECTION STRINGS 67

this, we can simply type or paste the User Name 4 in here, or open
the search dialog to find this user. We could also select a group of
users from an organization’s “Active Directory”. With Integrated
Security we do not need to come up with passwords, as we use the
users normal passwords. In Figure 4.3 “SQL Server authentication”
is selected.

® This step is only valid when using SQL Server authentication. In the
“General” page, create the user with a relevant password. Here the
name is “TimeRegUser” - also shown in Figure 4.3. This allows the
user access to the RDBMS - but there is no connection to any specific
Catalogs - yet.

¯ This step is the same for SQL Server authentication and Integrated
Security. We now have a legal user that may login to the server.
But the server alone is not interesting. In the “User Mapping” page,
select the relevant Catalog (“TimeReg”), and assign the relevant roles.
Figure 4.4 shows check-marks for db_datareader and db_datawriter.
Click on the ellipsis (...) button in the Default Schema column to
open a dialog, where relevant schemas can be browsed. Select the
relevant one - in this case the default “dbo”.

° The SQL Server authenticated user “TimeRegReader” may now be
created in a similar fashion - but only with db_datareader. This is
handy for allowing a wider access with 3’rd party tools for pure
analysis.

± After the above, the new user is also found under the relevant Cata-
log’s “Security/Users”.

If SQL Server authentication is used, anyone can log into the database as
long as they provide the right username and password in the connection
string. The obvious downside is that the string is written in clear text. This
makes it visible for anyone who has access to the source code (problematic)
or uses e.g. ILDASM on the “executable” (worse) or uses WireShark on
key points in the network (also bad).

Listing 4.13 was created by applying Microsofts .net-tool ILDASM on
TimeReg.exe, then selecting “DBUtil” - the database layer - and then

4This is given as < Domain/Workgroup > \ < UserName >

68 CHAPTER 4. SQL

Figure 4.3: Setup of a SQL Server user with password

clicking on the constructor - “ctor”. Note that the password is easily found
to be “TimeIsOnMySide”.

It is possible to get around the clear-text problem by using encrypted
values from e.g. web.config (ASP.net) or app.config (Windows Forms) files.
This is however outside the scope of this book.

Listing 4.13: ILDasm on TimeReg
1 void .cctor() cil managed
2 {
3 // Code size 87 (0x57)
4 .maxstack 1
5 IL_0000: ldstr "Data Source=localhost\\sqlexpress;Initial Catalog=T"
6 + "imeReg;Persist Security Info=False;User ID=TimeRegUser;Password=TimeI"
7 + "sOnMySide"
8

4.8. SECURITY AND CONNECTION STRINGS 69

Figure 4.4: Assign access rights to TimeReg Catalog

70 CHAPTER 4. SQL

Part II

C# Programming

71

Chapter 5

Overall Design

5.1 Database Frameworks

Between the Object-Oriented world and the Relational Database world
there are some inherent clashes:

Object orientation favors information hiding and encapsulation.
Databases are all about exposing data.

As described in subsection 2.5.4 there are also very different ways to handle
containment - collections versus relations. Finally, the data-types in the
database and the Object Oriented Programming-language are typically not
the same. On top of all this, SQL may not be the programmers favorite
language. These are some of the reasons why various frameworks may
seem appealing.

Is there a way to use a database without losing focus on the application at
hand? Figure 5.1 shows the major choices of frameworks for developing
database applications with Visual Studio. The frameworks are the grey
boxes between the C# application and ADO.net. Thus ADO.net is the
foundation for all the frameworks, but it can also be used directly from
application code. ADO.net directly interfaces to SQL Server and via older
technologies such as ODBC and OLE DB to Excel, XML, Sharepoint and
other SQL-databases.

73

74 CHAPTER 5. OVERALL DESIGN

C# Application

Datasets
TableAdapter

LINQ
To SQL

Entity
Framework

ADO.net
Oracle Managed

Data Access

Custom Custom

SQL-Server OLE DB ODBC Oracle Database

SQL Oracle

Figure 5.1: Various Database Frameworks

The figure also includes Oracle Managed Data Access, since this is created
in such a way that it looks pretty much like ADO.net. In this way you can
use Oracle through one of the frameworks and ADO.net, or you can use
it more directly via Oracles pendant to ADO.net - Oracle Managed Data
Access. We will look more closely into this in Section 7.6.

As mentioned in Subsection 2.5.6, I once developed a database for main-
taining components for an Altium CAD system. The database was created
in Management Studio and imported into Visual Studio, which generated a
number of TableAdapters for Datasets - the leftmost framework in Figure
5.1. The outcome is shown in Figure 5.2 (low quality).

It really was a quick way to get started, but soon became very frustrating.
There is a saying: “crossing the river to get water”. That was how it felt.
Every little change was buried deep in a dialog - or maybe even had to
be written into the generated code. Even when a solution to a problem
was found earlier, I had a hard time finding it again whenever I wanted to
reuse it. It was not fun, and I decided that I would not get into this again.
As we will see later, in Section 7.5, ADO.net actually has its own powerful
“adapter” named SqlDataAdapter, working with a so-called DataSet. This
is easy overlooked in all the noise about frameworks and especially the
TableAdapters due to the naming similarity.

5.1. DATABASE FRAMEWORKS 75

Figure 5.2: Component Database TableAdapters

Even though “Entity Framework” is now recommended by Microsoft, and
probably better than the TableAdapters, it is not known for its speed and
easy customization.

With Microsoft new fancy stuff quickly can become old “legacy” stuff.
This seems to have happened with “Linq-To-SQL” which was very hot
for a few years. Whenever this happens you are probably better off with
custom standard-based code than with some abandoned wizardry. I do use
Linq, but only for the extension-classes that makes it easier to work with
collections using “lampda” expressions.

In reality ADO.net is a very nice framework by itself. Microsoft refers to
it as Middleware. Contrary to the many frameworks on top of ADO.net,
it has been present and useful since .net version 1.0. To a large degree
it existed even before .net. ADO originally meant ActiveX Data Objects.
ActiveX is the technology generation before .net - also known as COM.
Some of the basic concepts have survived all the way. Twenty years ago I
worked with the old ADO. Even then it had “Connection” and “Command”
objects etc.

I recommend a custom “tailored” interface based on ADO.net, following a
few simple patterns. These patterns are used with TimeReg. They were
directly reusable when making a similar interface to Oracle.

We will go into details with the custom interface library/layer in this book.
The patterns basically originate from various application notes and a few

76 CHAPTER 5. OVERALL DESIGN

personal inventions. Thus, the layer is on one hand tailored to the specific
purpose, but on the other hand based on patterns that are easily reused.
Extending the database with new tables and queries is now a routine
exercise.

5.2 Layers and State

One of the major challenges in program-design is to create the right number
of layers. With too few layers the code gets messy. With too many layers you
go through a lot of motions that mostly only generate heat. It sometimes
feels as if the more layers you put in - the more advanced and fancy is the
design. Of course that’s not the case.

There are many different patterns - Model-View-Control, Model-View-
Presenter, Model-View-Model etc. TimeReg is a small one-man project,
and I decided that for the UI-part I would simply “go with the flow” and
create simple forms the way Visual Studio facilitates them. This means
one class per dialog/screen. I used a simple and classic Windows Forms-
based approach. I did make a fully functional version on WPF - Windows
Presentation Foundation - but I felt that I lost control and dropped it. You
may prefer WPF, and you will still be able to use 99% of the patterns in
this book.

The major downside of this simple design is that there is no easy way
to do automated testing. Some of the patterns mentioned above allows
test-scripts to “fake it” as real users - bypassing only a thin UI-layer. In
this project all tests were manual - performed on a local SQL Express
installation. Regular backups from the production server were restored
onto this server for tests.

A completely different alternative to Forms and WPF is to create a Web-
based solution based on ASP - Active Server Pages. This is closer to WPF
with its “code behind”. You can also say that it’s just another way of
Model-View-Control. I have not tried an ASP-version of TimeReg - yet.

With the application being so database-centric, it was clear that a layer was
needed that would handle - and isolate - all the database-interactions. As
previously described, this was not to be a standard Microsoft framework. I

5.2. LAYERS AND STATE 77

ended with one “library” for interfacing with SQL Server called “DBUtil”,
and another one for the Oracle export. As this book is about SQL Server,
we will focus on the first, and show a sample from the latter.

The UI-layer has classes that are instantiated with the given dialog, and
left for garbage-collection when the dialog is closed. Thus they only carry
transient state. The same goes for the DBUtil layer, which mainly serves
as a function library. It is used for fetching or storing data in the database,
but in-between these calls it does not keep state. The DBUtil-layer does
have a number of classes that are instantiated and passed to the caller of
the static functions. This is also transient state. This layer gets assistance
from ADO.net - handling connection-state and even pooling connections
to improve performance.

Why all this talk about state?

It is always beneficial to have a clear idea about where which state
is kept. If several layers keep overlapping state, there is a huge risk
that they are going to disagree at sometime.

This leads to all kinds of strange behaviors. Better to keep specific state
only one place. In our case the main keeper of state is obviously the
database itself - keeping state permanently, even if power is cycled. This
is also known as Persistent State. Finally, there is also state outside the
database for the duration of the client application. This is called Applica-
tion State.

Clearly, application state must be preserved somewhere: the identity of
the current user, the chosen holiday-scheme and whatever settings the
user may have. This is kept in the Model Layer. This Model layer is
implemented as a Singleton class. A singleton is a class that always is
instantiated exactly once. The singleton pattern is practical because it is
almost as easy to use from any other class as static functions. You do not
need to “carry a data-reference around” - you simple invoke the singleton
when needed. The main reason for the “Model” name is that it contains
the most complex parts of the Business Model. Table 5.1 is an overview
of the layers used in TimeReg - from top to bottom.

78 CHAPTER 5. OVERALL DESIGN

Table 5.1: Layers in TimeReg Application - Top-Down

Layer State Function
UI Transient

Dialog
Handle the Look & feel, logic, menus and
events for each form.

Model Application User settings and cached collections
DBUtil Transient Helper classes for static functions

interface between database and Collections.
ADO.net Connection ADO implements Connection Pooling and

generally keeps state for connections.
Database Persistent Stores data from all users - always.

The most important rule when designing and implementing layers is:

Any layer must not “know” anything about any layers above it.

The database is completely ignorant of the layers above and surely ADO.net
knows nothing about our code. This is one of the advantages of using a
3’rd party library. I believe that the rule also applies for the other layers.
There is also a secondary rule that says:

In a truly layered design each layer knows only about the layer di-
rectly beneath it.

This rule is hard to live up to, and sure enough: in our sample application
the top UI layer knows the model layer and it knows DBUtil. If this was
to be avoided, we would need a lot of functions in the model layer that
more or less copied data between the layer above and beneath. It did not
make sense in this scenario. Incidentally - this also applies for the TCP/IP
stack where the upper layers know about more than just the layer directly
beneath it.

5.3. CLASS DIAGRAM 79

5.3 Class Diagram

Figure 5.3 is an early powerpoint-drawn UML-diagram of the full TimeReg
application. Later a “Forecast” form was added. This is what we will work
with in the next chapters. Chapter 6 is all about the Model. The following
two chapters are dedicated to the DBUtil layer - reflecting the subject for
this book. Finally Chapter 9 covers the forms - focusing on the database
interface.

Figure 5.3: UML Diagram - from Powerpoint

80 CHAPTER 5. OVERALL DESIGN

Chapter 6

Model Layer

6.1 Initialization

To make life really simple for users, there is no login to the system. When
the application is started, the “netname” is read and if the user is found
in the database he is “in”. If not, he is offered the chance to switch to the
right database.

TimeReg started in the danish HQ of Brüel & Kjær. Other departments
joined in. There was no real advantage in having all in the same database
(catalog) - so each division got their own base. However, it would not be
practical to have different versions of the application.

Each country has their own holiday-calender overlaid onto the weekly
time-table. As some departments span several countries, the relevant
database and the relevant holidays do not always follow each other.

As stated earlier, the Model layer is where application-state is kept, but
where to keep the users choice of database? It does not make sense to have
this in the database. Therefore the choices of database and holiday-scheme
are kept in the registry. Listing 6.1 shows how the country-code for the
users chosen holiday scheme is read from and written to the database.
Note how the GetValue method is called with default “DK”.

81

82 CHAPTER 6. MODEL LAYER

Listing 6.1: Registry access
1 private string regKeyName =
2 "Software\\Bruel and Kjaer\\TimeReg\\Settings\\";
3 private string regHolidays = "Holidays";
4
5 public string Holidays
6 {
7 get
8 {
9 RegistryKey regKey = Registry.CurrentUser.

10 CreateSubKey(regKeyName);
11 string holidays = regKey.GetValue(
12 regHolidays, "DK").ToString();
13 return holidays;
14 }
15
16 set
17 {
18 RegistryKey regKey = Registry.CurrentUser.
19 CreateSubKey(regKeyName);
20 regKey.SetValue(regHolidays, value);
21 }
22 }

Listing 6.2 shows how simple it is to re-initialize the choice of database
(catalog) and holidays when the user decides a change - which typically
only is done initially and if a new PC is used.

Listing 6.2: Switch base and holidays
1 me = System.Environment.UserName.ToLower();
2 //.....
3 public void connect()
4 {
5 string db = (DebugDB) ? "Debug" : Catalog;
6 if (!DBUtil.connect(db))
7 myID = 0;
8 else
9 myID = DBUtil.getEmployeeInfo(me, out superUser, out myFullName);

10
11 if (Holidays.Equals("DK"))
12 setupDKHolidays();
13 else if (Holidays.Equals("UK"))
14 setupUKHolidays();
15 else if (Holidays.Equals("US"))
16 setupUSHolidays();
17 else if (Holidays.Equals("DE"))
18 setupDEHolidays();
19
20 setAccessRights(DBUtil.getAccessRights());
21
22 Dirty = false;
23 }

6.1. INITIALIZATION 83

The database choice may be overridden by the DebugDB flag which allows
the use of a local test database. The code shows my C-heritage: I could have
used a switch instead of the if-ladder. Also there is no default choice here -
should an error occur there will simply be no holidays in the calendar.

Based on the netname - “me” - the users ID, name and superuser status
are read.

Listing 6.3 shows the 2018 part of the UK holiday list. At the time when
this was coded, it made sense to keep this in the application code as a
Dictionary. However, the consequence is that updates to the holiday list
requires the application to be updated. It might be more maintenance-
friendly to keep the holiday list in the database, where changes can be made
easily. The counter-argument is that since holiday-scheme and selected
database do not always follow each other, the holiday list would need to
be maintained in all databases. So why not in the common application
instead?

Listing 6.3: Switch base and holidays
1 private void setupUKHolidays()
2 {
3 holidayDict.Add(new DateTime(2018, 1, 1), "New Years Day");
4 holidayDict.Add(new DateTime(2018, 3, 30), "Good Friday");
5 holidayDict.Add(new DateTime(2018, 4, 2), "Easter Monday");
6 holidayDict.Add(new DateTime(2018, 5, 7), "Early May BH");
7 holidayDict.Add(new DateTime(2018, 5, 28), "Spring BH");
8 holidayDict.Add(new DateTime(2018, 8, 27), "Summer BH");
9 holidayDict.Add(new DateTime(2018, 12, 25),"Christmas Day");

10 holidayDict.Add(new DateTime(2018, 12, 26),"Boxing Day");
11 }

Listing 6.4 shows how ISO week numbers are found from the given Monday.
United states and Europe do not have the same week-numbers, and C# is
not so international in this particular point.

Listing 6.4: Week Number in ISO
1 private int curWeekno()
2 {
3 System.Globalization.Calendar cal =
4 System.Globalization.CultureInfo.InvariantCulture.Calendar;
5 // Add 3 days !! − to get the right answer...
6 return cal.GetWeekOfYear(m_monday.AddDays(3),
7 System.Globalization.CalendarWeekRule.
8 FirstFourDayWeek, DayOfWeek.Monday);
9 }

84 CHAPTER 6. MODEL LAYER

Listing 6.5 is something very recently created. More formal requirements
came up as TimeReg was used by more departments. Now, only a few
people should be able to do this, and a few others that. This started as hard-
coded exceptions for specific users, but clearly needed to be maintained in
the database as new people might be assigned roles every now and then,
while others might leave. On the other hand, it would only be a few people,
and only a few checks in the corners of the application. Performance could
never become an issue.

Listing 6.5: Simple Access control
1 public bool iMayDoThis(string role)
2 {
3 string myRoles;
4 if (m_rolesDict != null && m_rolesDict.TryGetValue(me, out myRoles))
5 {
6 myRoles = myRoles.ToLower();
7 if (myRoles.Contains(role.ToLower()))
8 return true;
9 }

10
11 return false;
12 }

For this reason, and maybe also as a small rebellion, I decided to make a
table that wasn’t even 1NF - see Table 6.1. The first column is the users
netname, and the second column is a space-separated list of roles. This
makes it extremely simple to maintain directly in Management Studio -
saving the time to code an edit-page in TimeReg, while the right to edit
the rights now follow the maintainer of the base. The table is initially read
more or less directly into a dictionary. Whenever the user is e.g. to be
presented with a menu-item, the function IMayDoThis returns a boolean
that correspondingly enables or grays-out the menu-item.

Table 6.1: Non-Normalized Access Rights table

Netname Roles
jnielsen Export Projects
kelk GroupTag ImportUsers AliasSuper DebugDB Projects EditOracle Export
ajones GroupTag AliasSuper Projects
ajensen Export
plarsen Projects Export

6.2. DATA FOR THE MAIN FORM 85

6.2 Data for the Main form

The Model deserves its name from the way data from the database is
modeled in order to be presented to the user. In most cases, UI Lists
and DataGrids can use functions from DBUtil almost as is - they don’t
need a pitstop in the Model layer. There are however exceptions. This is
demonstrated in Figure 6.1. To service the main form, a locallist is created.
This is a shadow structure that contains whatever is needed to provide
input to the form - and to get updates back into the database.

Project Mon Tue Wed Thu Fri Sat Sun

MainID
EmployeeID
Date
ProjectID
ParentID
Hours
Comment
Changed
InOracle

Days[6]Days[3]Days[0] Days[2]Days[1] Days[5]Days[4]ProjectNameWeek

Days[6]Days[3]Days[0] Days[2]Days[1] Days[5]Days[4]ProjectNameWeek

[0]

[1]

locallist

[n]

...

UI-Table with Headers

Figure 6.1: Model for main view

Locallist is a list (also usable as array) of object instances of the Week class.
Each Week instance contains a ProjectName and an internal Array called
Days, with 7 CellData objects. Each CellData instance contains a row from
the Main-Table in the database - joined with Projects and Employees. The
basic part is created in DBUtil and we will get back to this in Chapter 8.

The MainID and other keys are needed when updated data needs to be
written back into the database. Cells that are empty before the user starts
editing will have a MainID = -1. This means that we will need to INSERT
data for these. When MainID is >0 we need to UPDATE existing rows.

“Hours” is bolded in Figure 6.1 to signify that this is what is used in the

86 CHAPTER 6. MODEL LAYER

cells of the visible UI-table, while “Comment” is in italics because the user
will see it as a datatip and may choose to edit via a right-click. “Changed”
is the only attribute which does not originate from the database. It is a
dirty flag for the individual cell, telling us whether the user has changed
anything.

Handling localList is the most complex process in the basic application1.
It is divided into the following steps:

¬ Find the Monday of the week to use. This comes from the UserView -
the main UI class.

­ Retrieve data from the database’s Main table for the given user and
week - joined with the relevant project-information. See Listing 6.6.
The finer details are done in DBUtil which we deal with in Chapter
7.

® Each row in this joined table now becomes a cell in the “shadow”
for a UI table. This is the “localList” described above. It is shown in
Figure 6.1.

¯ The above only contains projects that already have at least one entry
for the selected week. Now add the projects that the user has selected
as MyProjects - but not already in the list. These will have all “empty”
cells. This takes place in “addMyProjectsList()” - see Listing 6.7. Note
the innocent call to “Sort” at the end of the function. This is only
possible because the Interface IComparable is used in the DBUtil
transit-classes.

° The user updates the UI-table and the localList. This is described in
Chapter 9.

± If the user decides to submit the data, all updates, inserts and deletes
are handled. This is seen in Listing 6.8

1Together with Forecasts which we only touch on briefly.

6.2. DATA FOR THE MAIN FORM 87

Listing 6.6: Get data for a given Week
1 public List<DBUtil.Week> selectWeekOf(DateTime monday, out int weekno)
2 {
3 m_monday = monday;
4 weekno = curWeekno();
5 localList = DBUtil.createListFromDB(m_monday, myID);
6 addMyProjectsList();
7 Dirty = false;
8 return localList;
9 }

Listing 6.7: Adding MyProjects
1 public void addMyProjectsList()
2 {
3 DateTime day;
4 DBUtil.Week projectWeek = null;
5 // We now have a localList with data corresponding
6 // to existing projects for this user
7 // Now we need to merge in a lot of blanks for the favorites
8 // Get the ordered list of project that this user wants to see
9 //− also if no data yet

10 List<DBUtil.ProjTupple> myprojects = DBUtil.myProjects(myID);
11
12 foreach (DBUtil.ProjTupple myproject in myprojects)
13 {
14 day = m_monday;
15 // Create a weekfull of readonly and "empty" data
16 // Add if not already there.
17 projectWeek = new DBUtil.Week(myproject.Name);
18 // 7 new days of references to CellData
19 for (int weekday = 0; weekday < 7; weekday++)
20 {
21 projectWeek[weekday] = new DBUtil.CellData(
22 day.AddDays(weekday),
23 myID, myproject.ProjectID, myproject.ParentID);
24 }
25
26 if (localList.IndexOf(projectWeek) == −1)
27 localList.Add(projectWeek);
28 }
29
30 // Now we have got all the stuff in the list
31 // and we only need the final step
32 localList.Sort();
33 }

88 CHAPTER 6. MODEL LAYER

Listing 6.8: Update the database
1 public void updateDatabase()
2 {
3 // Loop through the rows − each is a project
4 foreach (DBUtil.Week projectWeek in localList)
5 {
6 // Loop through the weekdays of the given project
7 for (int weekday = 0; weekday < 7; weekday++)
8 {
9 if (projectWeek[weekday].Changed)

10 {
11 if (projectWeek[weekday].MainID == −1)
12 {
13 // This is a cell without a database row
14 // We will not make a new entry with 0.0!
15 // and yes − you can compare to 0.0F
16 if (projectWeek[weekday].Hours != 0.0F)
17 // We need to update the localList mainID;
18 //if the user makes a new change in the same cell
19 // it must be an update next time
20 projectWeek[weekday].MainID =
21 DBUtil.insertNewMainRow(
22 projectWeek[weekday].EmployeeID,
23 projectWeek[weekday].Date,
24 projectWeek[weekday].ProjectID,
25 projectWeek[weekday].Hours,
26 projectWeek[weekday].Comment);
27 }
28 else
29 {
30 // This is an existing database row
31 if (projectWeek[weekday].Hours != 0.0F)
32 DBUtil.updateExistingMainRow(
33 projectWeek[weekday].MainID,
34 projectWeek[weekday].Hours,
35 projectWeek[weekday].Comment);
36 else
37 // Inserting a "0" hours now leads
38 // to a deleted entry
39 DBUtil.deleteMainRow(
40 projectWeek[weekday].MainID);
41 }
42 }
43 }
44 }
45 Dirty = false;
46 }

Chapter 7

Database Functions

7.1 Design

The database layer is implemented in a class named DBUtil. It is a single
C#-source file that has two main parts. The first part is the nested data-
heavy classes that are used to communicate with the upper C# classes.
The term “nested” means that they are classes within a class - in this case
DBUtil. I use the term “data-heavy” to describe that they are essentially
data-carrying and data-exposing classes that are used in the interface to
the database. These are also called DTO’s - Data Transfer Objects.

The use of public properties with the relevant read/write capabilities make
these classes well suited for use in the UI-layer, where they very directly
can interface to various lists and particularly DataGridView.

The second part is the actual queries to the database - using the above
classes. All these directly database-interfacing functions are static - which
is probably not what you would expect. Static functions are super-easy to
call, but being static means that you cannot do multithreading. There are
no local variables per instance. However, they are called synchronously
directly from the forms - so they are executed serially. This is a pretty
simplistic approach. You may be thinking: “What about worker threads?”
or “Why not use async/await?” Microsoft suggests the use of async meth-
ods when dealing with databases. However, as stated earlier, I agree with

89

90 CHAPTER 7. DATABASE FUNCTIONS

Einstein: “Keep it as simple as possible - but not simpler”.

There are two reasons why this works:

r The way the workflow is in the application, the user really hasn’t
got much to do but wait for the database to answer. What is fastest:
Waiting synchronously or asynchronously? The asynchronous meth-
ods use a lot of energy on setting up and tearing down, while the
synchronous methods simply wait. Anyway, the simple queries are
pretty fast. Only when we get to the reports does the user sometimes
experience a short wait - and again what else is there to do? In the re-
ports the hourglass is turned on before the query and off afterwards,
so the user is informed.

r The functions are static but they work on the previously described
nested data-heavy classes which are not static, but are instantiated
into objects. These objects do have overlapping lifetimes without
problems.

7.2 ExecuteNonQuery

Sometimes a query is any of the CRUD functions: INSERT, SELECT, UP-
DATE, DELETE - and sometimes the word is taken more literally - meaning
“question” - as opposed to “command” - and then only means the SELECT.
When it comes to the naming of ADO.net functions, Microsoft has chosen
the latter view. The ExecuteNonQuery is thus used for INSERT, UPDATE
and DELETE where there is no data returned.

One of the simplest functions in TimeReg is “insertIntoMyProjects” which
inserts a pair of foreign surrogate keys into the association/junction table
MyProjects. This is found in Listing 7.1. We will examine this, as it has
several generally usable patterns.

Lines 3 and 4 show the SQL text-string. This we already saw in Listing 4.3
in Chapter 4. Note that it is possible to add several VALUES pairs, using a
comma in-between. This is however, typically not practical in normal code
looping through objects.

7.2. EXECUTENONQUERY 91

Listing 7.1: Insert into MyProjects
1 public static void insertIntoMyProjects(int ProjectID, int EmployeeID)
2 {
3 string sql = "INSERT INTO MyProjects (ProjectID, EmployeeID) "+
4 "VALUES (@ProjectID, @EmployeeID)";
5
6 using (conn = new SqlConnection(LocalConnectionStr))
7 {
8 try
9 {

10 conn.Open();
11 if (conn.State == ConnectionState.Closed)
12 return;
13 }
14 catch (SqlException)
15 {
16 System.Windows.Forms.MessageBox.Show
17 ("Exception opening SQL Server using:\n\r" +
18 LocalPublicConnectionStr);
19 return;
20 }
21
22 using (SqlCommand cmd = new SqlCommand(sql, conn))
23 {
24 cmd.Parameters.AddWithValue("@ProjectID", ProjectID);
25 cmd.Parameters.AddWithValue("@EmployeeID", EmployeeID);
26
27 try
28 {
29 cmd.ExecuteNonQuery();
30 }
31 catch (SqlException e)
32 {
33 System.Windows.Forms.MessageBox.Show
34 (e.ToString() + "\n\rStacktrace:\n\r" + e.StackTrace,
35 "Could not INSERT data into MyProjects");
36 }
37 }
38 }
39 }

92 CHAPTER 7. DATABASE FUNCTIONS

In line 6 an SqlConnection object is created. The tricky thing here is the
actual connection-string, which we covered in Section 4.8

The using keyword is a clever standard C# construct, assuring that the
object created goes out of scope at the closing “}” brace, and thus leaves
us without worries about garbage collection. In the case of the SqlConnec-
tion object it is more complex, as ADO.net gives us Connection Pooling
underneath it all.

In other words - it may look as if we for every (non-)query open a connec-
tion to the database, and then close it again. In reality ADO.net manages a
pool of open connections for us. Nice.

In line 22 an SqlCommand object is created - here named “cmd”. This
uses the above sql string and the connection object. Again we see the use
of “using”. Thus we don’t need to worry about cleaning up after using the
SqlCommand-object.

In lines 24 and 25, the two function input parameters - ProjectID and
EmployeeID - are used to create two SqlParameters, which are inserted
into an SqlParameterCollection in the newly created SqlCommand object.
This is very compact code.

In line 29 the function ExecuteNonQuery is called on the SqlCommandOb-
ject.

All the SqlXXX objects/classes are part of ADO.net.

The only thing left to say is that we also use try-catch to feed errors back
to the user.

As stated, the ExecuteNonQuery is almost identical to this INSERT when
it comes to DELETE and UPDATE. The only real difference is in the initial
SQL string.

7.3. EXECUTESCALAR 93

7.3 ExecuteScalar

You might remember from Subsection 4.2.1 that we have an INSERT where
we want the “Identity” private key which is incremented by SQL Server.
We really need something like the above “ExecuteNonQuery” - but with a
single output value. Knowing that a single value is also called a scalar, it
is not a big surprise that we need ExecuteScalar. The pattern for handling
this is almost the same as the ExecuteNonQuery. Listing 7.2 shows the few
differences (apart from the fact that we now have five parameters instead
of two).

Listing 7.2: Insert into Main
1 public static int insertNewMainRow(int employeeID, DateTime date,
2 int projectID, float hours, string comment)
3 {
4 string sql =
5 "INSERT INTO Main "+
6 " (EmployeeID, Date, ProjectID, Hours, Comment) "+
7 "OUTPUT INSERTED.MainID "+
8 "VALUES (@EmployeeID, @Date, @ProjectID, @Hours, @Comment)";
9

10 // Code removed
11 ID = (int)cmd.ExecuteScalar();
12 // Code removed
13 return ID;
14 }

7.4 ExecuteReader

Now for the SELECT. This may return lots of data, so we need some kind
of inner loop where we can offload the individual rows of the result.

Listing 7.3 is a lot more complex than the DBUtil-code we have seen so-
far. It is also more algorithmic complex than most functions in this layer.
The reason is that the Layers are not quite kept here. Some Business
Domain logic that clearly belongs in the Model layer is “sneaked into” the
database-interface.

Basically the reason is that this is where the code has first contact with
every single row in an inner loop. It was tempting to do a little extra work
here to get data better organized from start. It would be more clean to have

94 CHAPTER 7. DATABASE FUNCTIONS

these parts in the Model layer. But really not simpler. Making your own
custom database-layer gives you this kind of freedom. This is also the main
reason why it is shown here - it is a part of the story about adapting data
from database to Business Model. It is used in function “selectWeekOf” in
the Model layer - see Listing 6.6.

Getting back to the database agenda, we recognize at first glance, the
overall structure: First the SQL, then “using” with SqlConnection as well
as with SqlCommand.

Note the “ORDER BY ProjectID” in the SQL. This assures that we receive
all data from a given project before data from other projects - essential for
line 62.

The new part of the pattern - relating to SELECT - is the new inner-loop,
where each round in the loop gives us a new row from the result of the
SELECT. This is based on the ExecuteReader in line 50. For the “comment”
parameter we need to make sure we don’t try to read something with a
NULL value.

The inner loop could be improved. We get the individual columns by
their index in the original SQL SELECT. Instead of this manual indexing,
it is possible to use the function GetOrdinal(< ColumnName >) on the
SqlDataReader object. This uses extra CPU-cycles, but on the other hand
is much more maintenance-friendly. We will meet this later.

The really new stuff is the use of the data-classes - or Data Transfer Objects
- that we will dig into later in this chapter. Normally a single data class is
used, but in this complex function we use two - CellData and Week. The
general pattern in the functions based on SELECT and ExecuteReader is
that data is inserted into the data-object by use of its Constructor. This
allows all properties to be set in one call. This is what we see here with
CellData in lines 79-83. The containment hierarchy of all these objects is
described in Chapter 6 and shown back in Figure 6.1.

The last thing to notice is the innocent call to Sort in line 107. This is only
possible when the class is based on the C#-Interface IComparable as we
shall see in Section 8.2.

7.4. EXECUTEREADER 95

Listing 7.3: Create List from database
1 public static List<Week> createListFromDB(
2 DateTime firstday, int employeeID)
3 {
4 string sql = "SELECT M.MainID, M.Date, M.ProjectID, M.Hours, "+
5 " M.Comment, M.InOracle, P.Parent, P.Name " +
6 "FROM Main AS M, Projects AS P " +
7 "WHERE M.EmployeeID = @EmployeeID " +
8 " AND P.ProjectID = M.ProjectID " +
9 " AND Date >= @Firstday AND Date <= @Lastday " +

10 "ORDER BY M.ProjectID, M.Date";
11
12 List<Week> mainList = new List<Week>();
13
14 using (conn = new SqlConnection(LocalConnectionStr))
15 {
16 try
17 {
18 conn.Open();
19 if (conn.State == ConnectionState.Closed)
20 return mainList;
21 }
22 catch (SqlException)
23 {
24 System.Windows.Forms.MessageBox.Show(
25 "Exception opening SQL Server using:\n\r" +
26 LocalPublicConnectionStr);
27 return mainList;
28 }
29
30 using (SqlCommand cmd = new SqlCommand(sql, conn))
31 {
32 cmd.Parameters.AddWithValue("@EmployeeID", employeeID);
33 cmd.Parameters.AddWithValue("@Firstday", firstday);
34 cmd.Parameters.AddWithValue("@Lastday", firstday.AddDays(6));
35
36 Week projectWeek = null;
37
38 int mainID = 0;
39 DateTime date;
40 int projectID = 0;
41 int oldProjectID = 0;
42 float hours = 0;
43 string comment = null;
44 int parentID = 0;
45 string name = null;
46 bool inOracle = false;
47
48 try
49 {
50 SqlDataReader rdr = cmd.ExecuteReader();
51 while (rdr.Read())
52 {
53 mainID = rdr.GetInt32(0);
54 date = rdr.GetDateTime(1);
55 projectID = rdr.GetInt32(2);
56 hours = rdr.GetFloat(3);

96 CHAPTER 7. DATABASE FUNCTIONS

57 comment = (rdr.IsDBNull(4)) ? "" : rdr.GetString(4);
58 inOracle = (!rdr.IsDBNull(5));
59 parentID = rdr.GetInt32(6);
60 name = rdr.GetString(7);
61
62 if (oldProjectID != projectID)
63 {
64 // At this point we are for sure starting
65 // a new week (not necessarily with data
66 // from monday though
67 oldProjectID = projectID;
68 projectWeek = new Week(name);
69 // 7 new days of references to CellData
70
71 // Create a Project Row for a full week
72 // with the given data
73 DateTime day = firstday;
74
75 // Create a weekfull of readonly
76 // and "empty" data for now
77 for (int weekday = 0; weekday < 7; weekday++)
78 {
79 projectWeek[weekday] = new CellData(
80 day.AddDays(weekday),
81 employeeID,
82 projectID,
83 parentID);
84 }
85 // Add the entry
86 mainList.Add(projectWeek);
87 }
88
89 int dayInx = date.DayOfWeek − firstday.DayOfWeek;
90 if (dayInx == −1) // Watch out for sundays!
91 dayInx = 6;
92 projectWeek[dayInx].MainID = mainID;
93 projectWeek[dayInx].Hours = hours;
94 projectWeek[dayInx].Comment = comment;
95 projectWeek[dayInx].InOracle = inOracle;
96 }
97 rdr.Close();
98 }
99 catch (Exception e)

100 {
101 System.Windows.Forms.MessageBox.Show(e.ToString() +
102 "\n\rStacktrace:\n\r" + e.StackTrace,
103 "Could not read from Main");
104 }
105
106 // Sort according to projects and their parents
107 mainList.Sort();
108 return mainList;
109 }
110 }
111 }

7.5. SQLDATAADAPTER 97

7.5 SqlDataAdapter

As described earlier I have in another project used the TableAdapter
framework. I rejected this because all the surrounding wizardry obscured
what was happening and changes were hard to track. However, it is
possible to work with adapters in a more classic coding style. ADO.net
can be used with the same “intro” pattern that we saw in the previous
section, but instead of an inner-loop with a reader, ADO.net can fill an
untyped DataSet or a subcomponent of this - a DataTable. To do this it
uses SqlDataAdapter. With the Fill command, the SELECT is run and the
DataTable is filled with the result.

This DataTable can be bound to a UI-element and changes can even be
fed back to the database in the right mixture of DELETE, UPDATE and
INSERT. This is extremely code-effective - especially if you are working
on a single flat table. If the DataTable is filled from several tables using
JOIN´s, update becomes more complex, and requires assistance from you.

For the TimeReg project I did not go down this path. Instead I tried the
SqlDataAdapter in a simple scenario. Listing 7.4 shows a simple query that
finds the project name for a given ProjectID - the private key in Projects. In
this case we expect exactly one row, but that doesn’t change the principle.

In line 43 the name is returned. Note how, this time, the name of the col-
umn is used as index. This line also needs a “ToString()” as the DataTable
knows nothing about types.

In the end the code in Listing 7.4 was not really used. Even with adapters
this is a lot of work to get a project name - and then something similar
must be coded if the parent-name is needed etc. It would mean a lot of
trips to the database. Instead I decided to maintain a Projects Dictionary
in the DBUtil utility layer for all these simple lookups. It would have been
more correct to keep it in the Model layer. Linq is formidable for searches
in this.

The SqlDataAdapter and its friends, the DataSet and the DataTable, are
more performance hungry than the SqlDataReader. This should not be
a surprise. The reader only allows for reading from one end to another,
while the adapter-components supports updates back to the database and
other advanced features.

98 CHAPTER 7. DATABASE FUNCTIONS

Listing 7.4: Using SqlDataAdapter in a limited way
1 public static string projectName(int projectID)
2 {
3 string sql = "SELECT Name FROM Projects "+
4 "WHERE ProjectID = @ProjectID";
5
6 using (conn = new SqlConnection(LocalConnectionStr))
7 {
8 try
9 {

10 conn.Open();
11 if (conn.State == ConnectionState.Closed)
12 return "";
13 }
14 catch (SqlException)
15 {
16 System.Windows.Forms.MessageBox.Show
17 ("Exception opening SQL Server using:\n\r"
18 + LocalPublicConnectionStr);
19 return "";
20 }
21
22 using (SqlCommand cmd = new SqlCommand(sql, conn))
23 {
24 cmd.Parameters.AddWithValue("@ProjectID", projectID);
25 SqlDataAdapter adapter = new SqlDataAdapter();
26 adapter.SelectCommand = cmd;
27
28 DataTable projtable = new DataTable();
29 try
30 {
31 adapter.Fill(projtable);
32 }
33 catch (Exception e)
34 {
35 System.Windows.Forms.MessageBox.Show
36 (e.ToString() + "\n\rStacktrace:\n\r" +
37 e.StackTrace, "Could not fill Table from Projects");
38 return "";
39 }
40
41 if (projtable.Rows.Count == 1)
42 {
43 return projtable.Rows[0]["Name"].ToString();
44 }
45 else if (projtable.Rows.Count > 1)
46 {
47 System.Windows.Forms.MessageBox.Show
48 ("Database Integrity Problem "
49 + "− more projects with same ProjectID");
50 return "";
51 }
52 else
53 return "";
54 }}} // saving space...

7.6. ORACLE MANAGED DATA ACCESS 99

7.6 Oracle Managed Data Access

I have stated many times that Oracle Managed Data Access is modeled
after ADO.net. This means that coding against Oracle is not much different
from coding against SQL Server - at least when the previously shown
patterns are used.

Listing 7.5 is a proof of this statement. It is a simple query, SELECT’ing
the interesting columns of all projects in the relevant Oracle table. The fact
that this table - apps.comp_projects - actually is a View, changes nothing.
The SQL statement in lines 3 and 4 is exactly the same as it would be in
SQL Server. This is because it is a SELECT - an INSERT e.g. looks a little
bit different from the ones we have seen.

In line 7 we see the usual “using” - creating a Connection object, with the
help of a defined connection-string. In lines 26-28 we open a Command
object on the Connection object. Again this is “packed within a using
statement”. In line 33 we ExecuteReader on the command object. In
line 34 we loop on this reader, accessing strings and DateTime objects
by indexes that originates from the position in the SQL text. In between,
exceptions are handled - should they arise.

The above description completely matches that of a similar use of Exe-
cuteReader in ADO.net. Looking at the code the only difference is that
instead of the ADO objects we now use objects from Oracle’s Managed-
DataAccess namespace.

100 CHAPTER 7. DATABASE FUNCTIONS

Listing 7.5: Oracle Managed Data Access
1 public static List<ProjInfo> getOracleProjects()
2 {
3 string SQL = "SELECT PROJECT_NAME, PROJECT_NUMBER, "+
4 "START_DATE, END_DATE FROM apps.comp_projects";
5 List<ProjInfo> result = new List<ProjInfo>();
6
7 using (conn = new Oracle.ManagedDataAccess.Client.
8 OracleConnection(connString))
9 {

10 try
11 {
12 conn.Open();
13 if (conn.State == System.Data.ConnectionState.Closed)
14 return result;
15 }
16 catch (Oracle.ManagedDataAccess.Client.OracleException exc)
17 {
18 System.Windows.Forms.MessageBox.Show(
19 "Exception opening Oracle−server: " +
20 exc.Message + "\r\nInner Exc:" +
21 exc.InnerException + "Stack:\r\n" +
22 exc.StackTrace);
23 return result;
24 }
25
26 using (Oracle.ManagedDataAccess.Client.OracleCommand
27 cmd = new
28 Oracle.ManagedDataAccess.Client.OracleCommand(SQL,conn))
29 {
30 try
31 {
32 Oracle.ManagedDataAccess.Client.
33 OracleDataReader rdr = cmd.ExecuteReader();
34 while (rdr.Read())
35 result.Add(new ProjInfo(
36 rdr.GetOracleString(0).ToString(), // name
37 rdr.GetOracleString(1).ToString(), // number
38 (rdr.IsDBNull(2)) ? new DateTime(1990,1,1) :
39 rdr.GetOracleDate(2).Value, // Start_date
40 (rdr.IsDBNull(3)) ? new DateTime(2200,1,1) :
41 rdr.GetOracleDate(3).Value)); // End_date
42 }
43 catch (Oracle.ManagedDataAccess.Client.OracleException exc)
44 {
45 System.Windows.Forms.MessageBox.Show(exc.ToString() +
46 "\n\rStacktrace:\n\r" + exc.StackTrace);
47 return result;
48 }
49
50 return result;
51 }
52 }
53 }

Chapter 8

Data Transfer Objects

8.1 CellData Class

It is time to look at the data-classes or Data Transfer Objects. We start with
CellData which represents all data to and from the database that end up
in a single cell in the main view in TimeReg. This is later used by Week
which is a class that represents a week of data from a given Project.

CellData is shown in Listing 8.1. The first thing we note is the member
variables in lines 3-9, and how they have different access modifiers. Some
are even readonly. This does not sound very productive. The point is that
they are readonly - once created. This means that they are initialized in
the constructor and from hereon cannot be changed. The ones that are
protected may be changed by the the class itself. This is done in properties.
Note that it is possible to create properties directly without underlying
member variables. This is the case for “Changed” and “InOracle”.

You might argue that instead of all the above we could simply just have
public member-variables. After all - this class is for moving data in and out
of a database. No encapsulation here. However, we want to use CellData
with databinding to UI-classes - and they look for properties - not member-
variables. When you allow a UI-object to mess with your data, it makes
sense to only allow it to write where it needs to.

101

102 CHAPTER 8. DATA TRANSFER OBJECTS

The constructor is created so that it is easy to use on dummy-data - Cells
that are ready for data from the user. Thus it always sets the MainID - the
private key for the row - to -1. If the constructor is used on data fetched
from the database, the MainID must be set explicitly afterwards. The same
applies for “Changed” and “InOracle”.

Listing 8.1: CellData - one project on one day
1 public class CellData
2 {
3 protected int m_mainID;
4 readonly int m_employeeID;
5 readonly int m_parentID;
6 readonly DateTime m_date;
7 readonly int m_projectID;
8 protected float m_hours;
9 protected string m_comment;

10
11 public CellData(DateTime date, int employeeID,
12 int projectID, int parentID)
13 {
14 m_date = date;
15 m_employeeID = employeeID;
16 m_projectID = projectID;
17 m_parentID = parentID;
18 m_mainID = −1;
19 m_hours = 0;
20 m_comment = "";
21
22 Changed = false;
23 InOracle = false;
24 }
25
26 public int MainID { get { return m_mainID; }
27 set { m_mainID = value; } }
28 public int EmployeeID { get { return m_employeeID; } }
29 public DateTime Date { get { return m_date; } }
30 public int ProjectID { get { return m_projectID; } }
31 public int ParentID { get { return m_parentID; } }
32 public float Hours { get { return m_hours; }
33 set { m_hours = value; } }
34 public string Comment { get { return m_comment; }
35 set { m_comment = value; } }
36 public bool Changed { get; set; }
37 public bool InOracle { get; set; }
38 }

8.2. WEEK CLASS 103

8.2 Week Class

The Week class is a very simple data class. It is shown in Listing 8.2. It
contains a CellData object for each day of the week, and a string with the
project-name - common to all the cells. It is however imperative that it can
be used in sorted lists - as seen in Section 7.4. C# sorts for you if you define
the single function of IComparable: CompareTo. This function always
takes as input an object of the same class as being called - here called
“other”. In this case it calls a static function that hierarchically compares
two projects - first by their parents, then by themselves. This is generally
used.

If you want to use an object in a Dictionary, CompareTo is not enough. You
also need a function called GetHashCode. This should return something
as unique as possible. Since ProjectID is a private key, it is as unique as
it can be. So GetHashCode is overridden. This means that this method
will be used instead of the default implementation which cannot always
be trusted.

The last handy function in the comparing-domain is Equals. This is also
overridden.

Together these three functions allow the application programmer to write
some neat code. It is good practice to implement them - at least when you
plan to use Collections. You cannot always foresee when C# decides to
call the two methods that are overridden here.

Actually, all three implementations have a small flaw. Two Week objects
could contain the same project - but for different dates. The way TimeReg
works, these Week objects are only in a common list when they belong to
the same calendar week. Still, it is an error waiting to happen.

Another interesting thing in Listing 8.2 is the declaration in lines 41-52.
With this code, a Week-based object can reference the embedded CellData
objects directly as array-elements of the Week-based object:

float hours = projectWeek[0].Hours;

The above code gives us the hours spent Monday on the specific project.

104 CHAPTER 8. DATA TRANSFER OBJECTS

Listing 8.2: Week with IComparable interface
1 public class Week : IComparable<Week>
2 {
3 private CellData[] Days = new CellData[7];
4 private string projectName;
5
6 public string ProjectName { get { return projectName; }
7 set { projectName = value; } }
8
9 public Week(string projectName)

10 {
11 this.projectName = projectName;
12 }
13
14 private Week()
15 {
16 }
17
18 public int CompareTo(Week other)
19 {
20 if (other == null) return 1;
21
22 return DBUtil.CompareTwo(this[0].ProjectID,
23 this[0].ParentID, other[0].ProjectID, other[0].ParentID);
24 }
25
26 public override bool Equals(object obj)
27 {
28 if (obj == null || obj.GetType() != GetType())
29 return false;
30
31 Week otherweek = obj as Week;
32
33 return (otherweek[0].ProjectID == this[0].ProjectID &&
34 otherweek[0].Date == this[0].Date);
35 }
36
37 public override int GetHashCode()
38 {
39 return this[0].ProjectID;
40 }
41 public CellData this[int index]
42 {
43 get
44 {
45 return Days[index];
46 }
47
48 set
49 {
50 Days[index] = value;
51 }
52 }
53 }

8.3. CLASSIC CLASS CONCEPT 105

8.3 Classic Class Concept

The DBUtil layer presented so far is made up of static “worker” functions
for doing the actual SQL-commands, and nested classes, instantiated into
objects, holding and transporting the data. The nice thing about this
concept is that a given nested data-class can be reused by several worker-
functions. This is indeed used.

As described in Section 4.5, Forecasts were introduced in the TimeReg
application after a year or so. Just for the fun of it, I decided that this time
I would use a more classic object-oriented approach: Now SQL-commands
would take place from within instantiated classes (not static), and these
classes would also do all the data-mapping.

Listing all the code would take up too much space, but you are welcome to
download the code and have a look.

Naturally this also works. There is a tendency towards these classes be-
coming more “model-heavy”. Probably because they each are their own
“Data Transfer Object” so to speak. The fact that this data part is is inside
the class instead of outside - possibly shared with other classes - allows for
more specific handling. This is the whole idea of object orientation, and is
absolutely not a problem.

8.4 A Dapper alternative

As stated earlier, it is easy to get caught up in Microsoft’s “Legacy Land”.
Maintenance is one reason to avoid today’s flavor of framework. Another
reason is that frameworks tend to be too helpful, which makes them huge
and complex, and thus difficult to customize.

This has left an open field for minor ORM - Object Relational Mapping -
tools. One such tool that shows promise is Dapper. “Dapper” is an adjec-
tive that e.g. in old Hollywood movies was used about a man. Synonyms
are “dashing”, “neat” and “well groomed”. Dapper is invented by the
developers at StackOverflow - a fantastic site for all us developers. If you
know StackOverflow, you also know that it works fast and efficient. The

106 CHAPTER 8. DATA TRANSFER OBJECTS

Listing 8.3: Dapper Query
1 // The connection has been opened like we have seen before
2 var queryRes = conn.query<Project>("SELECT ProjectID, Name, ProjectNo
3 FROM dbo.Projects WHERE ProjectID = @ProjectID",
4 new{ @ProjectID = 1012 });

basic concept in Dapper is that you write data-classes - pretty much like
the ones in this chapter. Dapper takes the role of an ADO SqlConnection
class by extending its IDbConnection interface with e.g. a Query method.
This new method takes your data-class as a template. Thus, instead of writ-
ing specific functions like I have shown earlier, it is possible to write much
more condensed code like Listing 8.3 - where “conn” is an SqlConnection:

It is even possible to escape the templated class and instead use “dynamic”
objects. This can be handy for simple “hipshot” test-scripts, but most will
probably prefer the typed approach.

Dapper basically only supports SELECT, but there are 3’rd party exten-
sions supporting DELETE, UPDATE and INSERT. Obviously this brings us
close to the aforementioned maintenance-nightmare, but there is a certain
beauty in the “Dapper” approach.

Chapter 9

UI Design

9.1 ListBox

Databinding is the concept of linking a DataSource such as a database to
a UI-element - e.g. a List or a DataGrid. It can be one way - reading data
into the UI-element - or it may be both ways, which also means writing
stuff back to the base. You can always find sample-applications that work
both ways, however in real-life it is rarely the case - nor optimal. Typically
a lot of data is read, while only a few items are written back - and often
these few items need some kind of translation or validation first.

Listing 9.1: Very simple databinding
1 namespace TimeReg
2 {
3 internal partial class MyProjects : Form
4 {
5 private Model model;
6 private List<DBUtil.ProjTupple> myProjects = null;
7
8 public void updateMyProjects()
9 {

10 myProjects = DBUtil.myProjects(model.MyID);
11 lstMyProjs.DataSource = myProjects;
12 lstMyProjs.DisplayMember = "Name";
13 lstMyProjs.Refresh();
14 }

Sometimes databinding can be as simple as shown in Listing 9.1. In line

107

108 CHAPTER 9. UI DESIGN

10 the static function DBUtil.myProjects queries the database and fills a
local list with all the projects the user has registered as his. Each item in
this list is a ProjectTupple with all relevant information about the project.
In line 11 the list is handed to a UI ListBox - lstMyProjs - as DataSource.
This effectively fills the ListBox with the ProjectTupples. In line 12 the
ListBox DisplayMember is set to “Name”. This is how we tell the ListBox
that it shall display the field from ProjectTupple called “Name” in the UI.

This simple databinding is very powerful. Not only do we fill the list with
what we want to show the user, we also have all other relevant information
with us in the list. When the user later has selected a number of items in the
list, it is equally simple to delete these if the user chooses so. Still, as stated
earlier, the delete action does not happen directly via the databinding
in TimeReg. As Listing 9.2 shows, the event-handler loops through all
selected items, asking DBUtil.deleteFromMyProjects to delete the relevant
projectID’s from the table, based on the extra information carried in the
ProjTupple within each item.

Listing 9.2: Using hidden data
1 private void btnFromMyProjs_Click(object sender, EventArgs e)
2 {
3 foreach (DBUtil.ProjTupple item in lstMyProjs.SelectedItems)
4 DBUtil.deleteFromMyProjects(item.ProjectID, model.MyID);
5
6 updateMyProjects();
7 }

Listing 9.3 from the ReportsDlg.cs goes a little further.

Listing 9.3: Extending the List
1 // Make a list with all projects and a fake ALL in front
2 allProjs = DBUtil.getAllProjects();
3 allProjs.Insert(0, new DBUtil.ProjTupple(
4 0, "All", 0, "", false,"", 0,"ALL","","All"));
5 lstMyOnly.DataSource = allProjs;
6 lstMyOnly.ValueMember = "Name";
7 lstMyOnly.DisplayMember = "Name";
8 lstMyOnly.DropDownStyle = ComboBoxStyle.DropDownList;
9 lstMyOnly.MouseWheel += new MouseEventHandler(List_MouseWheel);

10 lstMyOnly.Enabled = false;
11
12 //Code skipped...
13 void List_MouseWheel(object sender, MouseEventArgs e)
14 {
15 ((HandledMouseEventArgs)e).Handled = true;
16 }

9.2. DATAGRIDVIEW 109

Here we change the style to DropDownList and attach the mouse-wheel
event. In this case to assure that we do not get the default mouse-scroll
in the list which can be very annoying. However, we also use the indirect
databinding to insert a “fake” project at the top of the local list before it is
attached as DataSource.

9.2 DataGridView

The dominating class used with databases is DataGridView. This is a very
clever - but also huge class. It has tons of members, functions and events.
In this section we will continue the ongoing sample from the previous
chapters. As you may remember, we built a “locallist” which is a local
shadow containing the data we need to show in the main view. The class
for this dialog is UserView.cs, and the DataGridView instance is simply
called “grid”. Thus event-handlers are by default named “grid_< event >”
by Visual Studio.

In the following subsections we will examine the most important functions
related to this grid.

9.2.1 Initialize Grid

The grid is declared in the Visual Studio Designer. Listing 9.4 shows the
auto-generated lines from the designer that are not related to positions,
anchoring etc. The main agenda is to make windows draw the grid decently
and not to allow users to delete or rearrange columns and rows.

After the designer-generated code, the final initialization is “setupGrid”
found in Listing 9.5. Here the headers are named, and disabling of user-
intervention continues by making all columns non-sortable. Columns for
Saturday and Sunday are grayed. Later we shall see that various holidays
are also grayed. Input of hours is, by the way, not disabled in weekends
and on holidays - except for sickness and vacation which does not make
sense here.

110 CHAPTER 9. UI DESIGN

Listing 9.4: Designer Initialization
1 this.grid.AllowUserToAddRows = false;
2 this.grid.AllowUserToDeleteRows = false;
3 this.grid.AllowUserToResizeRows = false;
4 this.grid.AutoSizeColumnsMode = System.Windows.Forms.
5 DataGridViewAutoSizeColumnsMode.Fill;
6 this.grid.AutoSizeRowsMode = System.Windows.Forms.
7 DataGridViewAutoSizeRowsMode.AllCells;
8 this.grid.ColumnHeadersHeightSizeMode = System.Windows.Forms.
9 DataGridViewColumnHeadersHeightSizeMode.AutoSize;

10 this.grid.MultiSelect = false;
11 this.grid.RowHeadersWidthSizeMode = System.Windows.Forms.
12 DataGridViewRowHeadersWidthSizeMode.AutoSizeToDisplayedHeaders;
13 this.grid.RowTemplate.Height = 24;
14 this.grid.Size = new System.Drawing.Size(1020, 400);
15 this.grid.TabIndex = 0;
16 this.grid.CellMouseClick += new System.Windows.Forms.
17 DataGridViewCellMouseEventHandler(this.grid_CellMouseClick);
18 this.grid.CellValueChanged += new System.Windows.Forms.
19 DataGridViewCellEventHandler(this.grid_CellValueChanged);
20 this.grid.EditingControlShowing += new System.Windows.Forms.
21 DataGridViewEditingControlShowingEventHandler(
22 this.grid_EditingControlShowing);

Listing 9.5: Coded Setup
1 private void setupGrid()
2 {
3 grid.ColumnCount = 8;
4 grid.Columns[0].Name = "Project";
5 grid.Columns[1].Name = "Monday";
6 grid.Columns[2].Name = "Tuesday";
7 grid.Columns[3].Name = "Wednesday";
8 grid.Columns[4].Name = "Thursday";
9 grid.Columns[5].Name = "Friday";

10 grid.Columns[6].Name = "Saturday";
11 grid.Columns[7].Name = "Sunday";
12
13 // Change the headers of weekends and Projects
14 grid.EnableHeadersVisualStyles = false;
15 grid.Columns["Project"].HeaderCell.Style.BackColor =
16 Color.LightGray;
17 grid.Columns["Saturday"].HeaderCell.Style.BackColor =
18 Color.LightGray;
19 grid.Columns["Sunday"].HeaderCell.Style.BackColor =
20 Color.LightGray;
21
22 foreach (DataGridViewColumn col in grid.Columns)
23 col.SortMode = DataGridViewColumnSortMode.NotSortable;
24
25 grid.ShowCellToolTips = true;
26 }

9.2. DATAGRIDVIEW 111

9.2.2 Update Grid

A very central function is updateGridFromTable - see Listing 9.6. This
function is called whenever we need new data from the database. Thus it
is called when the page is first shown (after initialization), but also when
the user moves to another week, or decides to cancel existing entries. It
is also called if the user has updated his list of projects or has switched
database. If the user is a superuser, he or she might “alias” as another user
to fill in missing data, in which case we also need updateGridFromTable.
This function takes as input the relevant Monday of the week to fetch, and
in line 12 calls the relevant function in the Model - selectWeekOf. This
fills the “locallist” from the database as we saw in Chapter 6.

The basic functionality of updateGridFromTable is not hard to follow, and
the comments help. There are however, some tricks that might need some
explanations:

In line 8 the class flag suspendCellValueChanged is set to true. The grid
is wired up to call an event-handler grid_CellValueChanged whenever
the user has updated a cell. It is however also called when a cell value is
programmatically changed. As we will see in Subsection 9.2.3, this event-
handler may cause changes to the contents of the same or other cells (sums)
- which fires the same event-handler again. The code is not re-entrant so this
could easily give some nasty effects - apart from wasting a lot of CPU cycles.
The event might also get triggered while our updateGridFromTable is run,
which also can give problems. Thus the flag suspendCellValueChanged is
introduced. It is set to true when entering either of these functions, and
set back to false when leaving. If the flag is already set when entering the
event-handler nothing is done. An alternative solution is to remove the
event-handler instead of setting the flag, and re-install it instead of clearing
the flag. It is also possible that Microsoft has a disable flag somewhere
that I haven’t found; once a problem is solved you don’t search so hard for
alternative solutions.

In lines 58 to 64 the grid’s autosize parameters are stored before they are
disabled, and in lines 130 and 131 they are set back to their original values.
This speeds up the update of the grid.

Notice the “Magic Numbers” for the index of various weekdays and loop-
counters based on these. Hard-coded numbers are normally considered

112 CHAPTER 9. UI DESIGN

bad design, but when it comes to such elementary things as the number of
days in a week etc, we can count on these not to change. In such cases I
find that numbers are easier to read than named constants.

The holiday-dictionary from the model is used. If a given date has a
matching holiday, the header gets a gray background and the name of the
holiday is used instead of the weekday.

Listing 9.6: updateGridFromTable
1 private void updateGridFromTable(DateTime monday)
2 {
3 // User must be verified
4 if (model.MyID == 0)
5 return;
6
7 // Avoid re−entrancy issues − set flag to "suspend" event
8 suspendCellValueChanged = true;
9

10 // Fill the local "shadow" via the model
11 int weekno;
12 localList = model.selectWeekOf(monday, out weekno);
13 lblWeekNo.Text = "Week: " + weekno.ToString() + " (EU/ISO)";
14
15 // Start a new week
16 grid.Rows.Clear();
17
18 int gridRowCount;
19
20 // Setup the headers − even if there are no data,
21 // we need to see the dates to navigate
22 // Use weekday−name in general − but holiday if it exists
23 grid.Columns[0].HeaderText = "Project";
24
25 DateTime day = monday;
26 for (int i = 0; i < 7; i++)
27 {
28 string name;
29 if (model.holidayDict.TryGetValue(day, out name))
30 {
31 // Use name of holiday and Paint grey
32 grid.Columns[i + 1].HeaderCell.Style.BackColor = holiday;
33 }
34 else
35 {
36 // Use weekday name and Paint normal − remembering weekends
37 if (i < 5)
38 grid.Columns[i + 1].HeaderCell.Style.BackColor = workday;
39 name = day.DayOfWeek.ToString();
40 }
41
42 grid.Columns[i + 1].HeaderText =
43 name + "\n" + day.ToShortDateString();
44 day = day.AddDays(1);
45 }

9.2. DATAGRIDVIEW 113

46
47 if (localList.Count() == 0)
48 {
49 grid.Columns[0].HeaderText = "No Data";
50 suspendCellValueChanged = false;
51 return;
52 }
53
54 Font bold = new Font(grid.DefaultCellStyle.Font.Name,
55 grid.DefaultCellStyle.Font.Size, FontStyle.Bold);
56
57 // Don’t AutoSize when updating the grid
58 DataGridViewAutoSizeColumnsMode AutoSizeColMode =
59 grid.AutoSizeColumnsMode;
60 DataGridViewAutoSizeRowsMode AutoSizeRowsMode =
61 grid.AutoSizeRowsMode;
62
63 grid.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.None;
64 grid.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.None;
65
66 // Loop through the rows − each is a project
67 foreach (DBUtil.Week projectWeek in localList)
68 {
69 if (projectWeek == null)
70 break;
71
72 string[] row = new string[8];
73 // Very first column is ProjectID −
74 // − should be the same for all cells − pick any one
75 int parentID = projectWeek[0].ParentID;
76
77 // First Column is Project Name
78 row[0] = projectWeek.ProjectName;
79
80 // Go through the weekdays − setting Hours
81 // Starting in Column 1 − leaving the Project Names in Column 0
82 for (int dayInx = 1; dayInx < 8; dayInx++)
83 {
84 float hours = projectWeek[dayInx−1].Hours;
85 row[dayInx] = (hours == 0.0) ? "" : hours.ToString();
86 }
87
88 // Now put it in the grid
89 grid.Rows.Add(row);
90 gridRowCount = grid.Rows.Count;
91
92 // Mark the parents bold
93 if (parentID <= 0)
94 grid.Rows[grid.RowCount−1].Cells[0].Style.Font = bold;
95
96 // Go through the weekdays − setting Tooltips to Comments
97 // And make read−only if value is transferred to Oracle
98 // .. or if the day is a non−working day
99 // and the project is absence

100 for (int dayInx = 1; dayInx < 8; dayInx++)
101 {
102 grid.Rows[gridRowCount−1].Cells[dayInx].ToolTipText =

114 CHAPTER 9. UI DESIGN

103 projectWeek[dayInx−1].Comment;
104 if (projectWeek[dayInx−1].InOracle ||
105 (projectWeek[dayInx−1].ParentID < 0 &&
106 grid.Columns[dayInx].HeaderCell.Style.BackColor
107 == holiday))
108 {
109 grid.Rows[gridRowCount−1].Cells[dayInx].ReadOnly =
110 true;
111 grid.Rows[gridRowCount−1].Cells[dayInx].Style.BackColor =
112 readOnly;
113 }
114 }
115 }
116
117 // Calculate AND create a sum row
118 grid.Rows.Add(calcSumRow(false));
119 grid.Rows[grid.RowCount−1].ReadOnly = true;
120 grid.Rows[grid.RowCount−1].DefaultCellStyle.BackColor =
121 Color.LightGray;
122 grid.Rows[grid.RowCount−1].DefaultCellStyle.SelectionBackColor =
123 Color.LightGray;
124 grid.Rows[grid.RowCount−1].DefaultCellStyle.SelectionForeColor =
125 Color.Black;
126
127 // Size first column according to the text in it
128 grid.Columns["Project"].AutoSizeMode =
129 DataGridViewAutoSizeColumnMode.DisplayedCells;
130 // Finally − enable autosize again
131 grid.AutoSizeRowsMode = AutoSizeRowsMode;
132 grid.AutoSizeColumnsMode = AutoSizeColMode;
133 // Select the first project, first day
134 grid.Rows[0].Cells["Monday"].Selected = true;
135 grid.Columns["Project"].ReadOnly = true;
136
137 // allow for the event again
138 suspendCellValueChanged = false;
139 }

9.2. DATAGRIDVIEW 115

9.2.3 Edit in Grid

There are several event-handlers for the grid. One handler looks for a right-
mouse click and allows the user to key in comments when this happens.
Another is used to filter out unwanted characters in the input from the
user, when actually editing. These and other handlers are not shown here
to save space - but can be downloaded with the rest.

However, the main event-handler is shown in Listing 9.7. The function
is named grid_CellValueChanged and is called whenever the user leaves
a cell within the grid after having edited it. The use of “suspendCellVal-
ueChanged” is explained in the previous subsection.

In line 9 and 10, the current cell’s row and column indexes are read. This
is much easier than performing a hit-test. In line 14, empty strings are
converted into the value 0. The model-layer will interpret a value changed
to 0 as an SQL DELETE in the function updateDatabase.

Since this grid is the only part of the application that is used by many
people on a daily basis, it must be easy to use. Hours are simply entered
as normal decimal numbers. However, in Denmark the official decimal
separator is “,”, but programmers often use “.” - and we also have people
stationed in other countries. To avoid people getting error-messages all the
time, the code must be forgiving and allow the user to use whatever he or
she likes.

After some time a user asked me, if he could enter time as hours:minutes.
So this was also introduced - again by adapting to the input, as seen in line
21.

In line 71 we bail out if nothing is really changed. Beginning in line 81
the hours are accumulated and written. All sums are re-calculated. For
performance reasons we might consider only updating the current column
and the total, but it really isn’t worth the risk of doing the sums in two
different ways.

In line 87 the Dirty flag is set. After this the Cancel and Submit buttons
are updated. Since the dirty flag is set, they will now be active and colored
(they might have been already before). Finally we clear the suspendCell-
ValueChanged flag.

116 CHAPTER 9. UI DESIGN

Listing 9.7: CellValueChanged
1 private void grid_CellValueChanged(object sender,
2 DataGridViewCellEventArgs e)
3 {
4 if (!suspendCellValueChanged && grid.CurrentCell != null)
5 {
6 suspendCellValueChanged = true;
7
8 float val;
9 int row = grid.CurrentCell.RowIndex;

10 int col = grid.CurrentCell.ColumnIndex;
11
12 // If user deletes entries and then
13 // moves with arrows we have a null value
14 if (grid.CurrentCell.Value == null ||
15 ((string)grid.CurrentCell.Value).Length == 0)
16 {
17 grid.CurrentCell.Value = "";
18 val = 0;
19 }
20
21 else if (grid.CurrentCell.Value.ToString().Contains(’:’))
22 {
23 // Treat as Hours:Minutes
24 string fullTxt = grid.CurrentCell.Value.ToString();
25 string[] tokens = fullTxt.Split(’:’);
26 if (tokens.Length != 2)
27 {
28 MessageBox.Show("When using ’:’ operator please supply"+
29 " <Hours>:<Minutes> and nothing else",
30 "Illegal Number−format");
31 grid.CurrentCell.Value =
32 localList[row][col − 1].Hours.ToString();
33 suspendCellValueChanged = false;
34 return;
35 }
36 int hours, minutes;
37 if (!int.TryParse(tokens[0], out hours) ||
38 !int.TryParse(tokens[1], out minutes) || minutes >= 60)
39 {
40 MessageBox.Show("When using ’:’ operator, hours and"+
41 " minutes must be integers\r\n" +
42 " − and minutes must be less than 60",
43 "Illegal Number−format");
44 grid.CurrentCell.Value =
45 localList[row][col − 1].Hours.ToString();
46 suspendCellValueChanged = false;
47 return;
48 }
49 val = (float)hours + (float)minutes / (float)60;
50 }
51
52 else
53 {
54 // Allow people to use , or . as they please
55 string invStr = grid.CurrentCell.Value.
56 ToString().Replace(’,’, ’.’);

9.2. DATAGRIDVIEW 117

57 if (!float.TryParse(invStr,NumberStyles.Any,
58 CultureInfo.InvariantCulture, out val))
59 {
60 MessageBox.Show("Cannot parse: "+
61 grid.CurrentCell.Value.ToString(),
62 "Illegal Number−format");
63 grid.CurrentCell.Value =
64 localList[row][col − 1].Hours.ToString();
65 suspendCellValueChanged = false;
66 return;
67 }
68 }
69 // If the user has fiddled around
70 //− and made no change in the end − bail out
71 if (Math.Abs(localList[row][col − 1].Hours − val) < 0.01)
72 {
73 suspendCellValueChanged = false;
74 return;
75 }
76
77 localList[row][col − 1].Hours = val;
78 localList[row][col − 1].Changed = true;
79 grid.CurrentCell.Style.BackColor = dirty;
80
81 string [] ssum = calcSumRow(true);
82
83 for (int colInx = 0; colInx < grid.ColumnCount; colInx++)
84 grid.Rows[grid.RowCount − 1].Cells[colInx].Value =
85 ssum[colInx];
86
87 model.Dirty = true;
88 updateButtons();
89 suspendCellValueChanged = false;
90 }
91 }

9.2.4 Submit to database

After all the hard work with the grid, the event-handler for the Submit
button becomes very simple - see Listing 9.8.

The model does the real work of traversing the grid and making the rele-
vant DELETE, UPDATE or INSERT statements. It also clears the dirty flag,
so that “updateButtons” works as it should, which is to make the buttons
inactive.

118 CHAPTER 9. UI DESIGN

Listing 9.8: Submit
1 private void btnSubmit_Click(object sender, EventArgs e)
2 {
3 // The localTable is already updated − send it to the database
4 model.updateDatabase();
5 // Give cells "unchanged background"
6 //− except the readonly which are the sums and those in oracle
7 foreach (DataGridViewRow row in grid.Rows)
8 if (!row.ReadOnly)
9 foreach (DataGridViewCell cell in row.Cells)

10 if (!cell.ReadOnly)
11 cell.Style.BackColor = Color.White;
12
13 updateButtons();
14 }

9.2.5 Double Buffering

The main view that we have spent so much time on, does not contain
a lot of data and is very fast. This is not the case for the Reports view
where Employees and Managers can get reports on e.g. hours spent on
projects - per developer. A DataGridView is also used here, but it can have
thousands of rows. It can save time when filling these rows to turn on
Double Buffering.

The code for this is somewhat on the low-level side and is shown in Listing
9.9

Listing 9.9: Double Buffering
1 if (!System.Windows.Forms.SystemInformation.TerminalServerSession)
2 {
3 Type dgvType = grid.GetType();
4 PropertyInfo pi = dgvType.GetProperty("DoubleBuffered",
5 BindingFlags.Instance | BindingFlags.NonPublic);
6 pi.SetValue(grid, true, null);
7 }

9.2. DATAGRIDVIEW 119

9.2.6 Multiple uses of a single DataGridView

Let’s take a closer look at the Report dialog. This is seen in Figure 9.1.

Figure 9.1: Reports Dialog

The Report dialog separates itself from other dialogs, by using a single
DataGridView in several different ways. This is not really difficult in itself,
but it is easy to get lost in the many “if-then-else” that updates this grid
according to various radio-buttons, drop-down-boxes etc. This problem is
solved by the use of the following easy pattern:

Listing 9.10: Radio Button Handler
1 private void rdBtnTotalPerProjPerEmp_CheckedChanged(
2 object sender, EventArgs e)
3 {
4 if (((RadioButton)sender).Checked)
5 {
6 lblCategories.Enabled = cmbCategories.Enabled = true;
7 reCalculate();
8 }
9 }

120 CHAPTER 9. UI DESIGN

r Each radio-button has a handler, that only does something when the
button is checked. Thus we do not care about all the buttons that
become unchecked. The handler is responsible for turning on other
UI-elements that are relevant for the specific scenario - and also for
turning off those that are not. Listing 9.10 is called when the user
asks to see a report on total hours per project per employee. In this
case we want to enable a dropdown list with “Categories”. This can
be used to filter on specific types of hours. Any handler ends by
calling reCalculate.

r The single reCalculate function collects all handler actions and
spreads them again. reCalculate is seen in Listing 9.11. This again
checks which radio-button is active, and calls the corresponding
“datagrid filler”. The extra check seems superfluous, but it simplifies
the code a lot, by allowing “reCalculate” to be called from anywhere
at anytime without any consideration to the current state.

r The relevant datagrid-filler function is called from reCalculate. List-
ing 9.12 shows updateTotalPerEmpsReport - corresponding to the
radiobutton handler.

r Various filter functions for date-range, categories etc. may be called.
They simply re-invoke the reCalculate function after setting the filter.

Listing 9.11: Recalculate from everywhere
1 private void reCalculate()
2 {
3 if (rdBtnTotPerProj.Checked)
4 updateTotalsReport();
5 else if (rdBtnTotalPerProjPerEmp.Checked)
6 updateTotalPerEmpsReport();
7 else if (rdBtnTasksForMe.Checked)
8 updatePersonalReport();
9 else if (rdBtnTotPerParentProjs.Checked)

10 updateTotalsOnParentReport();
11 else if (rdBtnDaysAccounted.Checked)
12 updateDaysAccountedFor();
13
14 chkMonths.Enabled = (rdBtnTotPerParentProjs.Checked ||
15 rdBtnTotPerProj.Checked || rdBtnTotalPerProjPerEmp.Checked);
16 }

9.2. DATAGRIDVIEW 121

Listing 9.12: Datagrid Filler
1 private void updateTotalPerEmpsReport()
2 {
3 Cursor saveCursor = this.Cursor;
4 this.Cursor = Cursors.WaitCursor;
5
6 projectReport = DBUtil.getProjectTotalsPerEmployee(
7 dtFrom.Value.Date, dtTo.Value.Date, model.SuperUser);
8
9 // Filter out everything but the relevant category

10 if (!cmbCategories.Text.ToLower().Equals("all"))
11 {
12 List<DBUtil.ProjectReport> reportTemp =
13 new List<DBUtil.ProjectReport>();
14 // Get cat. by reverse lookup − then filter locally
15 string key = model.Categories.FirstOrDefault
16 (x => x.Value.Equals(cmbCategories.Text)).Key;
17 reportTemp = projectReport.FindAll(x => x.Category.Equals(key));
18 projectReport = reportTemp;
19 }
20
21 grid.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.None;
22 grid.DataSource = projectReport;
23
24 grid.Columns["Employee"].Visible = true;
25 grid.Columns["Employee"].FillWeight = 30;
26 grid.Columns["Project"].Visible = true;
27 grid.Columns["Project"].FillWeight = 40;
28 grid.Columns["Manager"].Visible = true;
29 grid.Columns["Manager"].FillWeight = 20;
30 grid.Columns["ProjectNo"].Visible = true;
31 grid.Columns["ProjectNo"].FillWeight = 20;
32 grid.Columns["ProjectNo"].DefaultCellStyle.Alignment =
33 DataGridViewContentAlignment.MiddleRight;
34 grid.Columns["PSONumber"].Visible = true;
35 grid.Columns["PSONumber"].DefaultCellStyle.Alignment =
36 DataGridViewContentAlignment.MiddleRight;
37 grid.Columns["PSONumber"].FillWeight = 15;
38 grid.Columns["Parent"].Visible = false;
39 grid.Columns["Parent"].FillWeight = 15;
40 grid.Columns["Hours"].Visible = true;
41 grid.Columns["Hours"].DefaultCellStyle.Alignment =
42 DataGridViewContentAlignment.MiddleRight;
43 grid.Columns["Hours"].FillWeight = 15;
44 grid.Columns["ProjectID"].Visible = false;
45 grid.Columns["ParentID"].Visible = false;
46 grid.Columns["Department"].Visible = true;
47 grid.Columns["Department"].FillWeight = 15;
48 grid.Columns["Category"].Visible = true;
49 grid.Columns["Category"].FillWeight = 10;
50 grid.Columns["Grouptag"].Visible = true;
51 grid.Columns["Grouptag"].FillWeight = 15;
52
53 Cursor = saveCursor;
54 }

122 CHAPTER 9. UI DESIGN

Chapter 10

Using Excel

10.1 Exporting Data

When you work within Test & Measurement, you know that no matter how
many ways your application can show data, the user will always ask: “can
I get it in Excel?” Users want to calculate, filter, sort and sometimes pivot
their data in the well-known tool.

There are libraries for exporting, but again I wanted something simple that
is easy to maintain. It can be difficult to write in the native Excel formats,
but CSV - Comma Separated Values - is a simple format that Excel can
import.

The most annoying thing - when using CSV - is that you cannot just double-
click on a file and sit back while Excel opens it. You are always asked about
the formatting. This is tedious if you are opening many files. However,
Excel has a well kept “secret”. If the first line in the csv-file contains
’sep=;’ and nothing else, it will silently accept ’;’ as column separator and
newline1 as row separator. The code for this is seen in line 18 in Listing
10.1.

1Actually CR+LF on Windows

123

124 CHAPTER 10. USING EXCEL

Another problem is to get Excel to show unicode characters as those extra
ones in the danish alphabet. The cure for this is found in line 16, where
the StreamWriter is asked to use unicode encoding.

Listing 10.1: Export to CSV for Excel
1 private void btnFileSave_Click(object sender, EventArgs e)
2 {
3 const string sep = ";";
4 const string stStr = "=\"";
5 const string endStr = "\"";
6
7 saveReportDlg.AddExtension = true;
8 saveReportDlg.Filter = "Comma Separated Values "+
9 "(*.csv)|*.csv|All files (*.*)|*.*";

10 if (saveReportDlg.ShowDialog() == DialogResult.OK)
11 {
12 fileName = saveReportDlg.FileName;
13 try
14 { // Unicode to support Danish chars!
15 using (System.IO.StreamWriter file = new
16 System.IO.StreamWriter(fileName,false,Encoding.Unicode))
17 {
18 file.WriteLine("sep=" + sep);
19 // Write a header
20 // Project−names go like ="2250" − with extra "
21 // around to assure that the 2250 stays text
22 if (rdBtnTotPerProj.Checked)
23 {
24 if (chkMonths.Checked)
25 exportAmmortizedTotals(
26 false,file,sep,stStr,endStr);
27 else
28 {
29 file.WriteLine("Grouptag"+sep+"Project"+sep+
30 "Manager"+sep+"ProjectNo"+sep+"PSONo"+sep+
31 "Category"+sep+"TopLevel"+sep+"Hours"+sep+
32 "Closed");
33 foreach (DBUtil.ProjectReport line
34 in projectReport)
35 file.WriteLine(
36 stStr+line.Grouptag+endStr+sep+
37 stStr+line.Project+endStr+sep+
38 stStr+line.Manager+endStr+sep+
39 stStr+line.ProjectNo+endStr+sep+
40 stStr+line.PSONumber+endStr+sep+
41 stStr+line.Category+endStr+sep+
42 stStr+((line.ParentID <= 0) ?
43 line.Project.ToString() :
44 line.Parent.ToString())+endStr+sep+
45 line.Hours.ToString()+sep+
46 DBUtil.projectsDict[
47 line.ProjectID].Closed);
48 }
49 }
50 // Code removed

10.1. EXPORTING DATA 125

The last little challenge is numbers that are to be interpreted as text. In our
case, project names are sometimes numbers, sometimes text. When these
get into Excel, the default is that text is left-aligned, whereas numbers
are right aligned. This looks terrible. The cure for this is to surround all
strings in the endangered columns with a few characters. If e.g. the project
name is 123456 we write:

="123456"

This is done with the help of the two constant strings declared in lines 4-5.

To save space, Listing 10.1 is not complete. The rest is just similar outputs
for other reports. The function call in line 25 leads to a related output, that
is slightly more complex as it handles “amortized” values - the same data
distributed per month. Figure 10.1 shows how such an exported output can
be turned into a stacked line-chart in Excel. This is very useful information
for management - showing how work is distributed over projects, but also
how there may be “seasons” in the total work. The projects are here named
P1 to P10 as the legend shows. The stack is the same projects from the
bottom. Thus we have P1 at the bottom and P10 at the top. Normally Excel
uses nice different colors - for this illustration patterns are used instead.

0

2000

4000

6000

8000

10000

12000

14000

16000

Project Hours per Month

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Figure 10.1: Time spent on projects - over time

126 CHAPTER 10. USING EXCEL

Returning to Listing 10.1, please note the frequent use of “projectsDict”
- the projects dictionary held in the DBUtil layer. This is needed because
the SQL behind the project-report only returns the ProjectID - not all the
attributes of a project. This is a flexible solution. As more administrators
came along, the need for additional columns in the Project Table grew.
With a relative low number of projects it makes sense to lookup whatever
attributes are needed in a given report, instead of constantly modifying
the lower level SQL and the Data Transfer Objects that holds data from it.

10.2 Importing Data

Another common task is importing from Excel. In the TimeReg project
an import-dialog was created - allowing selected users to feed a comma-
separated file into a DataGridView. If the view looks OK, the data is
submitted to the database.

In this case the file is a list of users, with each line looking like e.g.

njensen; Niels Jensen; 123456; 6012

The fields in the file are the given users netname, full name, salary number
and department.

This is an easy way to get departments or divisions on board. Someone in
the department generates an excel sheet with columns as described above,
I export to CSV and import into TimeReg.

The code is found in Listing 10.2. Most of the code is input validation -
not included here to save space, but can be downloaded. In line 3 we once
again define ’;’ as separator.

In line 14 the “iso-8859-1” encoding is used. This seems to be the preferred
encoding used by Excel. It is known as “Latin-1”, and is very popular in
the western world.

Note that the code allows for two modes: one for inserting new employees,
and one for updating existing ones. The latter is mainly to be used in orga-
nizational changes where many users move around between departments.

10.2. IMPORTING DATA 127

Listing 10.2: Import users from CSV-file
1 private void btnFileOpen_Click(object sender, EventArgs e)
2 {
3 char sep = ’;’;
4 char [] skip = {’ ’,’\t’};
5 int skipcount = 0;
6 int syntaxOKcount = 0;
7
8 ofDlg.AddExtension =true;
9 ofDlg.Filter = "CSV (*.csv)|*.csv|Text Files "+

10 "(*.txt)|*.txt|All files (*.*)|*.*";
11 if (ofDlg.ShowDialog() == DialogResult.OK)
12 {
13 using (StreamReader sr = new StreamReader(ofDlg.FileName,
14 System.Text.Encoding.GetEncoding("iso−8859−1")))
15 {
16 string line;
17 employees = new List<DBUtil.Employee>();
18
19 while (sr.Peek() >= 0)
20 {
21 line = sr.ReadLine();
22 string [] tokens = line.Split(sep);
23
24 if (tokens.Count() == 4)
25 {
26 // input and test code skipped
27 string netname = tokens[0].ToLower();
28 // All four tokens parsed and checked
29 // input and test code skipped
30 if ((!chkUpdate.Checked && curID == 0) ||
31 (chkUpdate.Checked && curID != 0))
32 employees.Add(new DBUtil.Employee(netname,
33 fullname, number, dept, false, −1));
34 else
35 skipcount++;
36 }
37 else
38 {
39 MessageBox.Show("Using separator: ’"+sep+
40 "’ I find "+ tokens.Count() +" tokens in: "+line,
41 "Wrong no of tokens − Expecting 4");
42 return;
43 }
44 }
45 }
46 grid.DataSource = employees;
47 grid.Refresh();
48 chkUpdate.Enabled = false; // Don’t allow user to change now!
49
50 MessageBox.Show(skipcount.ToString() + " out of "+
51 syntaxOKcount.ToString()+ " ignored", "Status");
52 }
53 }

128 CHAPTER 10. USING EXCEL

Listing 10.3: Submit Users
1 private void btnSubmit_Click(object sender, EventArgs e)
2 {
3 if (!chkUpdate.Checked)
4 foreach (DBUtil.Employee employee in employees)
5 DBUtil.insertNewEmployee(employee);
6 else
7 foreach (DBUtil.Employee employee in employees)
8 DBUtil.updateEmployee(employee);
9

10 // Don’t try again
11 btnSubmit.Enabled = false;
12 }

Listing 10.3 shows the simple code needed to submit the new or updated
users once the super-user has looked at the dialog and accepted it. Since
the DataGridView was filled from the “employees” list we use this list
directly. Thus the DataGridView is only written to by the program - never
read from.

10.3 Copy-Paste to and from Excel

There are plenty of scenarios where you don’t want to import or export
whole files from/to Excel. In TimeReg this is relevant when managers
create forecasts in the application. They may edit directly in TimeReg - or
they might prefer to copy existing data to Excel, edit here and copy back
to TimeReg.

The wiring-up of popup-menu events is shown in Listing 10.4. This ensures
that the user via the menu can activate the two functions “pasteCTRLV-
ToolStripMenuItem_Click” and “copyCTRLCToolStripMenuItem_Click”.
The user gets a reminder about the use of CTRL-V and CTRL-C as shortcuts,
as the text-strings for these are also shown in the popup-menu.

Listing 10.4: Setting up Events
1 deleteToolStripMenuItem.Click += deleteToolStripMenuItem_Click;
2 pasteCTRLVToolStripMenuItem.Click += pasteCTRLVToolStripMenuItem_Click;
3 pasteCTRLVToolStripMenuItem.ShortcutKeyDisplayString = "Ctrl+V";
4 copyCTRLCToolStripMenuItem.Click += copyCTRLCToolStripMenuItem_Click;
5 copyCTRLCToolStripMenuItem.ShortcutKeyDisplayString = "Ctrl+C";

10.3. COPY-PASTE TO AND FROM EXCEL 129

Interestingly, the two actions - copy and paste - take different routes. If
the user presses CTRL-C, there is no action handler for this in our code.
Thus it is the DataGridView’s built-in CTRL-C handler that performs the
relevant action. If the user activates the menu-item for the same thing,
the menu-action simply fakes a CTRL-C, and thus again leaves it to the
DataGridView handler. This is seen in Listing 10.5 line 17.

Listing 10.5: Event Handlers
1 private void grid_KeyDown(object sender, KeyEventArgs e)
2 {
3 if (e.Control && e.KeyCode == Keys.V)
4 {
5 if (Clipboard.ContainsText())
6 {
7 string oneStr = Clipboard.GetText();
8 pasteText(oneStr);
9 }

10
11 e.Handled = true;
12 }
13 }
14
15 void copyCTRLCToolStripMenuItem_Click(object sender, EventArgs e)
16 {
17 SendKeys.Send("^C");
18 }
19
20 void pasteCTRLVToolStripMenuItem_Click(object sender, EventArgs e)
21 {
22 if (Clipboard.ContainsText())
23 {
24 string oneStr = Clipboard.GetText();
25 pasteText(oneStr);
26 }
27 }

For paste it is the other way around. The CTRL-V keystroke is caught by
the code in Listing 10.5 - line 3. The clipboard content is used as parameter
into “pasteText”. Line 11 assures that the corresponding event-handler in
the grid is not called. If the corresponding menu-item handler is called
(line 20), it too fetches the text in the clipboard buffer and hands it over to
pasteText.

Finally, Listing 10.6 shows selected parts of the paste-handler. The text-
string from Excel is pretty much like the contents of a CSV-file. Instead of
comma-separation it uses tabs to separate rows (like many CSV files).

There are a couple of reasons why CTRL-C can be handled by the Data-

130 CHAPTER 10. USING EXCEL

GridView, while the paste requires more code than what fits into a page
here:

r You cannot mark non-existing cells for copy. In other words, the copy
always works on a square of existing cells. This is simple to handle
for the standard-code in the DataGridView. A paste however, may be
performed on e.g. the bottom line and create a need to add new lines
to have something to paste into.

r When we copy from the application, the DataGridView will supply
the visible contents of the cells. If these contain project-names and
employee-names (which the leftmost columns do), the text is copied
to Excel as is. This is what the user expects. However, when we paste
back into the DataGridView, we may need to change the text back
into a ProjectID and an EmployeeID. This is because these fields are
not usual text-fields, but drop-down boxes that allows managers -
per row - to select project and employee. Going further into this will
take us too far away from the copy-paste theme in this section.

10.3. COPY-PASTE TO AND FROM EXCEL 131

Listing 10.6: Paste handler
1 private void pasteText(string inputStr)
2 {
3 // Where do we start?
4 int row = grid.CurrentCell.RowIndex;
5 int firstCol = grid.CurrentCell.ColumnIndex;
6
7 // Columns are split with \t and rows with \r\n
8 string[] rowDelim = new string[] { "\r\n" };
9 string[] colDelim = new string[] { "\t" };

10
11 try
12 {
13 // Split up in lines first
14 string[] lines = inputStr.Split(rowDelim,
15 StringSplitOptions.RemoveEmptyEntries);
16
17
18 foreach (string line in lines)
19 {
20 // Every line starts at the same column as this is a "square−paste"
21 int col = firstCol;
22 // Now split up in columns
23 string[] fields = line.Split(colDelim, StringSplitOptions.None);
24
25 // !!!Skipped code for extending beyond right side or bottom!
26
27 // Now for the actual paste
28 foreach (string field in fields)
29 {
30 // !!!Skipped code for using the string−per−Excel−cell
31 col++;
32 }
33 row++;
34 }
35 btnSubmit.BackColor = dirty;
36 }
37 catch (InvalidOperationException e)
38 {
39 MessageBox.Show(
40 "Sorry − cannot interpret data from clipboard\r\n"
41 +e.Message, "Illegal Format");
42 }
43 }

132 CHAPTER 10. USING EXCEL

Index

?? operator, 33
[]-brackets, 24
1NF, 21, 40
2NF, 26, 39
3NF, 26

Access Rights, 84
ACID, 12, 13, 18, 24, 34
Active Directory, 67
ActiveX Data Objects, 75
AddMyProjectsList, 86
ADO.net, 3, 73, 78, 92
Aggregation, 52
ALTER TABLE, 22, 24
Altium, 26, 74
Amortization, 52
Analytic Database, 41
Analytical, 14
Anomaly, 12
Application State, 77
Array Indexing, 103
AS, 30
ASP, 76
Association Table, 24, 25, 41, 50, 90
Atom, 14
Atomic, 12, 13, 18, 24, 26
Automated Testing, 76
Autosize, 111
Await, 89
Azure SQL, 4

Backup, 19
bigint (T-SQL), 33
Binding (SQL), 48
bit (T-SQL), 33
Business Domain Logic, 93
Business Model, 77

Cascade, 14, 34
Catalog, 11, 66, 81

Category, 42
Cell, 11
CellData, 85, 94, 101
CellValueChanged, 111
char(n) (T-SQL), 33
CHECK, 36
CHECKIDENT, 19
CheckPoint, 56
Class Libraries, 3
Clone, 19
Clustered Index, 55
Codd, 19
Collection, 103
Collections, 24
Column, 10, 11
Comma Separated Values, 123
Command Object, 48
Comment, 42
COMMIT, 47
Common Table Expressions, 62
Community Edition of Visual Studio, 3
CompareTo, 103
Composite Key, 17, 22
Connection Pooling, 77, 92
Connection State, 77
Connection String, 12, 65, 92
Consistency, 34
Consistent, 12–14
Constraint, 12, 14, 23, 34, 50
Constructor, 94
Containment, 73
Copy-Paste Excel, 128
CPU-time, 58
Create, 12, 13
CREATE TABLE, 20, 23, 24, 44
CREATE UNIQUE INDEX, 22
CreateSubKey (Registry), 81
CRUD, 12, 13, 47, 90
CSV, 123
CurrentUser (Registry), 81

133

134 INDEX

Dapper, 105
Data Mining, 14
Data Source, 65
Data Transfer Object, 89
Data Transfer Objects, 101
Data Warehouse, 14
Data-Heavy Classes, 89
Database, 11
Database Concepts, 10
DataBinding, 107
DataGrid, 85
DataGridView, 89, 109, 128
DataSet, 74, 97
DataSource, 107, 108
DataTable, 97
Date, 42
date (T-SQL), 33
datetime (T-SQL), 33
datetime2 (T-SQL), 33
dbo Schema, 11, 67
DBUtil, 89
DCL, 47
DDL, 47
DELETE, 12, 13, 47, 50, 55, 90
Delete, 13
Delete Anomaly, 24
Departments, 39
Design Database, 35
Designer, 35
Designer (Visual Studio), 109
Dictionary, 49, 52, 83, 84, 97, 103, 112, 126
Dirty Flag, 86
DisplayMember, 108
DISTINCT, 40
DML, 47
Docker, 3
Domain Integrity, 36
Double Buffering, 118
DROP TABLE, 21
DropCleanBuffers, 56
Duplicate Key, 22
Durable, 12–14

Edit Top 200 Rows, 28
Edward Codd, 19
EmployeeID, 17, 41, 42
Employees, 39, 85
Encapsulation, 73
Entity Framework, 75
Entity Integrity, 34

Equals, 103
ER-Diagram, 15
Event-Handler, 128
Excel, 20, 21, 26, 31, 37, 73
Excel export, 123
Excel Import, 126
ExecuteNonQuery, 90, 92
ExecuteReader, 94
ExecuteReader (Oracle), 99
ExecuteScalar, 93
Execution Plan, 48, 50, 56
Expose Data, 73

Field, 10, 11
Fill Adapter, 97
Flat Database, 20
float (T-SQL), 33
Forecasts, 60, 105
Foreign Key, 12, 15, 16, 18, 25, 27, 30, 34,

35, 39, 41, 42, 49–51
Foreign Key Relationships Dialog, 16
Framework, 73
FULL JOIN, 28

Garbage Collection, 77
General Page, 67
GetHashCode, 103
GetOrdinal, 94
GetValue (Registry), 81
git, 4
GO, 20
GRANT, 47
GROUP BY, 52
GroupTag, 42

Historical Data, 15
Hit test, 115
Holiday, 81, 109
Hours, 41

IComparable, 86, 94, 103
IDbConnection, 106
Identity, 19, 40, 51, 93
if-ladder, 83
ILDASM, 67
IMayDoThis, 84
Incrementing Number, 19
Index, 12, 48, 55
Index Scan, 58
Index Seek, 58

INDEX 135

Indexes/Keys, 35
Infinity Symbol, 15
Information Hiding, 73
Initial Catalog, 65
INNER JOIN, 27, 32, 52
INSERT, 13, 33, 47, 50, 55, 90
Insert Anomaly, 24, 39
int (T-SQL), 33
Integrated Development Environment, 3
Integrated Security, 66
Intersection, 31, 32
ISO Encoding, 126
ISO Week Number, 83
Isolated, 12, 13
Isolation, 14

JOIN, 12, 13, 15, 18, 27, 30, 41, 47, 55
Junction Table, 25, 41, 50

Lampda Expression, 75
Layers, 76, 78
LEFT JOIN, 28, 31, 32, 49
Legacy Land, 105
Linq, 3, 97
Linq-To-SQL, 75
Linux, 3
ListBox, 107
LocalDB, 4
Locallist, 85
Locking, 24
Logical Design, 38
Logical Reads, 58
Login, 81
Logins Node, 66

Mac OSX, 3
Magic Numbers, 111
Main, 41
Main Table, 86
MainID, 41, 85, 102
Management Studio, 4, 15, 16, 84
Management Studio Diagram, 15
ManagerID, 17, 40, 42
MariaDB, 10
Messages Window, 56
Microsoft SQL Server Management Studio,

4
Microsoft Visual Studio, 3
Middleware, 75
Missing Columns, 28

Model Layer, 77, 81
Model-View-XXX, 76
MONTH, 52
Mouse-Wheel Event, 109
MS Access, 4
MSSMS, 4
MyProjects, 37, 40, 50, 86, 90
MySQL, 10

Namespace, 11
Natural Key, 17
nchar(n) (T-SQL), 33
Nested Class, 89
Netname, 81
NOCHECK, 36
Non-Clustered Index, 55
Non-Normalized, 84
Normal Form, 12, 19
Normalization, 15, 19, 20, 84
Nouns, 39
NULL, 28, 32, 33
Null, 32
Null-Coalescing operator, 33
nvarchar (T-SQL), 33

Object Explorer, 16
Object Oriented, 73
Object Oriented Database, 9
Object Relational Mapping, 105
ODBC, 73
OLAP, 12, 14, 41, 55
OLE DB, 73
OLTP, 12, 14, 41, 55
ON PRIMARY, 24
One-To-Many Relation, 15
Oracle, 10, 38
Oracle Managed Data Access, 74, 99
ORDER BY, 52
OrderItems, 16
ORM, 105
OUTER JOIN, 28, 32

Parameters (SQL), 48
Patterns, 76
Persistent State, 77
Physical Reads, 58
POET, 9
Point-Of-Sales, 14
Popup Menu, 128
POS, 14

136 INDEX

Power BI, 61
Private Key, 12, 15, 17, 22, 25, 27, 30, 34, 39,

41, 42, 49, 55, 97
ProductID, 16
ProjectID, 40, 41, 46
Projects, 40, 85
ProjectTupple, 108
Property, 101
Protected, 101

Query, 13
Query Editor, 30

Race, 18
RDBMS, 11, 14, 34, 67
real (T-SQL), 33
reCalculate, 120
Record, 10, 11
Referential Integrity, 34
Registry, 81
Relational Database Management System, 9
Relationship, 15
RESEED, 19
REST, 13
Restore, 19
Retrieve, 12, 13
REVOKE, 47
RIGHT JOIN, 28
ROLLBACK, 47
ROUND, 52
Row, 10, 11
Row Order, 32
Running Number, 18

Schema, 11
Script Table, 23
Security Node, 66
Seed, 19
SELECT, 13, 30, 41, 47, 48, 55, 106
SelectedItem, 108
selectWeekOf, 111
Server, 11
Set Statistics, 56
SetValue (Registry), 81
Sharepoint, 73
Shop, 15, 16
Singleton, 77
Solar System, 46
Sort, 53, 86, 94
Source Control, 4

SQL, 9, 12
SQL Express, 76
SQL Server Authentication, 66
SQL Server Enterprise, 3
SQL Server Express, 3
SQL Server Standard, 3
SQL-Injection, 48
SqlCommand, 92
SqlConnection, 92
SqlConnectionStringBuilder, 66
SqlDataAdapter, 74, 97
SqlParameter, 92
SqlParameterCollection, 92
StackOverflow, 105
Stored Procedures, 65
Strategy, 15
Subquery, 62
SUM, 52
SuperUser, 41
Surrogate Key, 18, 40, 51, 61, 90
suspendCellValueChanged, 115
System.Environment.UserName, 83
System.Globalization, 83

T-SQL, 12, 20, 22, 48
Table, 11
Table Design, 16
TableAdapter, 74, 97
TCL, 47
TCP/IP, 78
TimeReg, 37, 56
ToString, 97
Transaction, 12, 14
Transactional, 14
Transactional Database, 41
Transient State, 77
Trigger, 14, 41, 60
Truly Layered Design, 78
try-catch, 92

Unique Constraint, 35, 55
Uniqueness, 35
UPDATE, 12, 13, 47, 55, 90
Update, 13
Update Anomaly, 24
updateGridFromTable, 111
updateTotalPerEmpsReport, 120
URL, 11
USE, 30
Use, 30

INDEX 137

User Mapping, 67
Users, 41
UserView, 86
Using, 92

varchar(n) (T-SQL), 33
Velocity, 5
View, 11, 60
Views, 105
Visual Studio, 76

w3schools.com, 48
Week, 42, 85, 94, 101
WHERE, 49, 50, 52, 55, 56
Windows Authentication, 66
Windows Forms, 76
Windows Presentation Foundation, 76
WireShark, 67
WITH CHECK, 36
Wizard, 12
Worktable, 58
WPF, 76

XML, 73

YEAR, 52

138 INDEX

Klaus Elk published “Embedded Software for the IoT” in 2017. This is an overview of all
the major domains needed when creating embedded products. From CPU’s and Operating
Systems over Digital Signal Processing and Network Technologies to Encryption and
Industry 4.0. Available on Amazon as paperback and in Kindle format.

