

Programming Kotlin

Familiarize yourself with all of Kotlin’s features with this in-
depth guide

Stephen Samuel
Stefan Bocutiu

BIRMINGHAM - MUMBAI

Programming Kotlin

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1130117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78712-636-7

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Stephen Samuel
Stefan Bocutiu

Copy Editor

Safis Editing

Reviewers

Antonios Chalkiopoulos
Alexander Hanschke

Project Coordinator

Vaidehi Sawant

Commissioning Editor

Aaron Lazar

Proofreader

Safis Editing

Acquisition Editor

Kirk D'costa
Sonali Vernekar

Indexer

 Tejal Daruwale Soni

Content Development Editor

Nikhil Borkar

Graphics

Abhinash Sahu

Technical Editor

Subhalaxmi Nadar

Production Coordinator

Shraddha Falebhai

About the Authors
Stephen Samuel is an accomplished developer with over 17 years of experience. He has
worked with Java throughout his career, and in the past 5 years has focused on Scala. He
has a passion for concurrency and Big Data technologies. Having spent the last few years in
investment banking, he is currently working with Kotlin on a major Big Data ingestment
project. Stephen is also active in the open source community, being the author of several
high profile Scala and Kotlin libraries.

I would like to thank my wife for being patient with all the days and nights spent on the
computer, developing. I would also like to thank Stefan for kindly agreeing to co-author
this book with me.

Stefan Bocutiu is a Big Data consultant with over 13 years of experience in software
development. He enjoys coding in Scala, C#, and has a passion for stream processing
technologies. With the team at DataMountaineer--a consultancy company offering delivery
of solutions for streaming/ fast data platforms - he focuses on providing scalable, unified,
real-time data pipelines allowing reactive decision making, analytics, and Hadoop
integration.

Stefan is passionate about motorsports, and while his racing skills are not good enough to
allow him to compete, he tries to attend as many MotoGP races as possible. When he is not
coding, he can be found at the climbing wall or at the gym. Occasionally, hiking and
scrambling trips are on his calendar, and during the winter season, skiing trips are a must
for him.

About the Reviewers
Antonios Chalkiopoulos is a distributed systems specialist, engineering Big Data systems
in the past 5 years on Media, Betting, Retail, Investment Banks, and FinTech companies in
London. He is the author of Programming MapReduce with Scalding, one of the first books
presenting how Scala can be used for Big Data solutions, and an open source contributor to
a number of projects.

He is the founder of LANDOOP, a company that specializes in Fast Data and Big Data
solutions and provides numerous tools and capabilities around Apache Kafka and real-time
streaming systems.

Alexander Hanschke is a co-founder and CTO at techdev Solutions GmbH, a software
company based in Berlin. He graduated from University of Mannheim and has worked in
the financial sector, building Java enterprise applications for 8 years.

At his company, these days Alex is working on web applications written in Java and Kotlin.
He frequently talks at user groups and conferences and is writing about Kotlin-related
topics.

You can find him on Twitter at @alexhanschke.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn. You can also review for us on a regular basis by joining our reviewers' club. If
you're interested in joining, or would like to learn more about the benefits we offer,
please contact us: customerreviews@packtpub.com.

Table of Contents
Preface 1

Chapter 1: Getting Started with Kotlin 7

Using the command line to compile and run Kotlin code 8
Kotlin runtime 10
The REPL 10
Kotlin for scripting 11
Kotlin with Gradle 12
Kotlin with Maven 15
IntelliJ and Kotlin 18
Eclipse and Kotlin 22
Mixing Kotlin and Java in a project 24
Summary 29

Chapter 2: Kotlin Basics 30

Vals and vars 30
Type inference 31
Basic types 32

Numbers 32
Booleans 33
Chars 34
Strings 34
Arrays 34

Comments 35
Packages 36
Imports 36

Wildcard imports 36
Import renaming 37

String templates 37
Ranges 38
Loops 39
Exception handling 40
Instantiating classes 41
Referential equality and structural equality 42
This expression 43

Scope 43

[ii]

Visibility modifiers 43
Private 44
Protected 44
Internal 45

Control flow as expressions 45
Null syntax 46

Smart casts 47
Explicit casting 48

When expression 49
When (value) 49

When without argument 51
Function Return 52

Type hierarchy 53
Summary 54

Chapter 3: Object-Oriented Programming in Kotlin 55

Classes 56
Access levels 60
Nested classes 60
Data classes 63
Enum classes 63
Static methods and companion objects 64

Interfaces 69
Inheritance 73
Visibility modifiers 76
Abstract classes 78
Interface or abstract class 79
Polymorphism 79
Overriding rules 85
Inheritance versus composition 87
Class delegation 89
Sealed classes 91
Summary 92

Chapter 4: Functions in Kotlin 93

Defining functions 93
Single expression functions 94
Member functions 95
Local functions 95
Top-level functions 98

[iii]

Named parameters 99
Default parameters 100
Extension functions 103

Extension function precedence 105
Extension functions on nulls 106
Member extension functions 106
Overriding member extension functions 107
Companion object extensions 109
Multiple return values 110
Infix functions 111

Operators 113
Operator overloading 114
Basic operators 115
In/contains 116
Get/set 117

Invoke 117
Comparison 118
Assignment 119
Java interop 120

Function literals 120
Tail recursive functions 121
Varargs 123

Spread operator 124
Standard library functions 124

Apply 125
Let 126
With 126
Run 126
Lazy 127
Use 127
Repeat 128
Require/assert/check 128

Generic functions 129
Pure functions 130
Java from Kotlin 131

Getters and setters 131
Single abstract methods 132
Escaping Kotlin identifiers 133
Java void methods 133

[iv]

Kotlin from Java 134
Top-level functions 134
Default parameters 135
Object and static methods 135
Erasure naming 136
Checked exceptions 136

Summary 137

Chapter 5: Higher Order Functions and Functional Programming 138

Higher order functions 138
Returning a function 140
Function assignment 141

Closures 142
Anonymous functions 143
Function references 144

Top-level function references 144
Member and extension function references 144
Bound references 145

Function-literal receivers 146
Functions in the JVM 147

Bytecode 148
Function composition 149
Inline functions 151

Noinline 155
Currying and partial application 156

Currying in action 157
Adding currying support 158

Memoization 159
Implementing memoization 161

Type alias 162
Either 164

Fold 164
Projection 165
Further projection functions 167

Custom DSLs 169
Infix functions as keywords 170
Using function receivers in a DSL 173

Validation and error accumulation 174
Summary 177

[v]

Chapter 6: Properties 178

Why use properties? 178
Syntax and variations 181
Visibility 183
Late initialization 184
Delegated properties 185
Lazy initializations 191
Lateinit versus lazy 196
Observables 197
A non-null property delegate 198
Properties or methods? 198
Summary 200

Chapter 7: Null Safety, Reflection, and Annotations 201

Nullable types 202
Smart cast 203
Safe null access 203

Force operator 205
Elvis operator 206
Safe casting 207
Optionals 207

Creating and returning an Optional 208
Using an Optional 209

Reflection 209
KClass 210
Instantiation using reflection 211

Constructors 213
Instantiation with callBy 214

Objects and companions 216
Useful KClass properties 217
Reflective functions and properties 218

Invoking a function reflectively 220
Declared and undeclared 220

Annotations 221
Annotation parameters 222

Standard annotations 223
@JvmName 223
@JvmStatic 224
@Throws 225

[vi]

@JvmOverloads 226
Runtime annotation discovery 227
Summary 228

Chapter 8: Generics 229

Parameterised functions 229
Parameterized types 231
Bounded polymorphism 232

Upper bounds 232
Multiple bounds 233

Type variance 234
Invariance 234
Covariance 235
Covariant return 237
Contravariance 237
Variance overview 240

Nothing type 241
Type projection 242
Type erasure 244
Type reification 248
Recursive type bounds 250
Algebraic data types 253
Summary 258

Chapter 9: Data Classes 259

Automatic creation of getters and setters 261
The copy method 262
toString out of the box 267
hashCode and equals methods generated for you 268
Destructed declarations 271
Destructing types 272
Data class definition rules 273
Limitations 276
Summary 276

Chapter 10: Collections 277

Class hierarchy 277
Arrays 285
Lists 294
Maps 299
Sets 302

[vii]

Read-only views 305
Indexed access 305
Sequences 306
Summary 311

Chapter 11: Testing in Kotlin 312

Getting started 312
Choosing a spec 313
Matchers 316

String matchers 317
Collection matchers 317
Floating point matchers 318

Expecting exceptions 319
Combining matchers 319
Custom matchers 320

Inspectors 322
Interceptors 324

The test case interceptor 324
The spec interceptor 325

Project config 326
Property testing 327

Specifying a generator 328
A custom generator 328

Table-driven testing 329
Testing non-deterministic code 330

Tags, conditions, and config 332
Config 332
Conditions 333
Tags 333

One instance 334
Resources 335

Summary 335

Chapter 12: Microservices with Kotlin 336

Definition 337
Drawbacks 340
Why microservices? 341
Lagom 342
Defining services 352
Implementing a Lagom service 355
Summary 359

[viii]

Chapter 13: Concurrency 361

Threads 361
Blocking 363

Creating a thread 363
Stopping a thread 364
Thread interrupts 366
CPU-bound versus I/O-bound 367

Deadlocks and livelocks 368
Dining philosophers problem 369

Executors 370
Race conditions 371

Monitors 373
Locks 375

Read-write locks 376
Semaphores 377

The bounded buffer problem 377
Concurrent collections 380

ConcurrentHashMap 381
A blocking queue 381

Atomic variables 382
CountDownLatch 383
Cyclic Barrier 385
Non-blocking I/O and asynchronous programming 387
Futures 388

Summary 390

Index 391

Preface
Kotlin is typically associated with Android development, and most discussion about it
revolves gravitates around that. But the language has much more to offer and is ideal for
modern server side developers. While any Android developer will find useful snippets in
this book, the book is targeting Java and Scala developers primarily. The book will start
with a introduction to Kotlin and explain how you set up your environment before moving
on to the basic concepts. Once the basics are out of the way, the focus will shift towards
more advanced concepts, and don't be surprised if you see a few bytecode listings. Once
you have completed the book you should have all the knowledge required to start using
Kotlin for your next project.

What this book covers
Chapter 1, Getting Started with Kotlin, covers how to install Kotlin, the Jetbrains Intellij
IDEA, and the Gradle build system. Once the setup of the tool chain is complete, the
chapter shows how to write your first Kotlin program.

Chapter 2, Kotlin Basics, dives head first into the basics of Kotlin, including the basic types,
basic syntax, and program control flow structures such as if statements, for loops, and
while loops. The chapter concludes with Kotlin-specific additions such as when expressions
and type inference.

Chapter 3, Object-Oriented Code in Kotlin, focuses on the object-orientated aspects of the
language. It introduces classes, interfaces, objects and the relationship between them,
subtypes, and polymorphism.

Chapter 4, Functions in Kotlin, shows that functions, also known as procedures or methods,
are the basic building blocks of any language. This chapter covers the syntax for functions,
including the Kotlin enhancements such as named parameters, default parameters, and
function literals.

Chapter 5, Higher Order Functions and Functional Programming, focuses on the functional
programming side of Kotlin, including closures--also known as lambdas--and function
references. It further covers functional programming techniques such as partial application,
function composition, and error accumulation.

Preface

[2]

Chapter 6, Properties, explains that properties work hand in hand with object-orientated
programming to expose values on a class or object. This chapter covers how properties
work, how the user can best make use of them, and also how they are represented in the
bytecode.

Chapter 7, Null Safety, Reflection, and Annotations, explains that null safety is one of the main
features that Kotlin provides, and the first part of this chapter covers in depth the whys and
hows of null safety in Kotlin. The second part of the chapter introduces reflection--run time
introspection of code--and how it can be used for meta programming with annotations.

Chapter 8, Generics, explains that generics, or parameterized types, are a key component of
any advanced type system, and the type system in Kotlin is substantially more advanced
than that available in Java. This chapter covers variance, the type system including the
Nothing type, and algebraic data types.

Chapter 9, Data Classes, shows that immutability and boiler-plate free domain classes are a
current hot topic, due to the way they facilitate more robust code and simplify concurrent
programming. Kotlin has many features focused on this area, which it calls data classes.

Chapter 10, Collections, explains that collections are one of the most commonly used aspects
of any standard library, and Java collections are no different. This chapter describes the
enhancements that Kotlin has made to the JDK collections, including functional operations
such as map, fold, and filter.

Chapter 11, Testing in Kotlin, explains that one of the gateways into any new language is
using it as a language for writing test code. This chapter shows how the exciting test
framework KotlinTest can be used to write expressive, human-readable tests, with much
more power than the standard jUnit tests allow.

Chapter 12, Microservices in Kotlin, shows that microservices have come to dominate server-
side architecture in recent years, and Kotlin is an excellent choice for writing such services.
This chapter introduces the Lagom microservice framework and shows how it can be used
to great effect with Kotlin.

Chapter 13, Concurrency, explains that as multi-core aware programs are becoming more
and more important in server-side platforms, This chapter is focused on a solid introduction
to concurrent programming techniques that are vital in modern development, including
threads, concurrency primitives, and futures.

Preface

[3]

What you need for this book
This book requires a computer running MacOS, Linux, or Windows, capable of running the
latest versions of Java. It is recommended that the machine has enough memory to run a
recent version of Jetbrains' Intellij IDEA.

Who this book is for
This book is aimed those who have little or no Kotlin experience and wish to learn the
language quickly. The focus of the book is on server-side development in Kotlin and would
be best suited to a developer who is currently a server-side developer or who wishes to
learn. No prior knowledge of functional or object-orientated programming is required, but
knowledge of some other programming language is recommended.

Some chapters contain brief sections comparing Java implementations to their Kotlin
cousins, but these pages can be skipped by those who have no prior Java knowledge.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "When
using a data class, you get a copy method out of the box."

A block of code is set as follows:

 public class Sensor {
 private final String id;
 private final double value;
 public Sensor(String id, double value) {
 this.id = id;
 this.value = value;
 }

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 public class Sensor {
 private final String id;
 private final double value;
 public Sensor(String id, double value) {

Preface

[4]

 this.id = id;
 this.value = value;
 }

Any command-line input or output is written as follows:

$ sdk install gradle 3.0

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In IntelliJ, choose
Code | Generate."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /P r o g r a m m i n g - K o t l i n . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/Programming-Kotlin
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /P r o g r a m m i n g K o t l i n _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a ,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ProgrammingKotlin_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Getting Started with Kotlin

It is time to write code. In this chapter, we will go over and write the typical entry code for
every language: the famous Hello World! In order to do that, we will need to set up the
initial environment required to develop software with Kotlin. We will provide a few
examples using the compiler from the command line, and then we will move towards the
typical way of programming using the IDEs and build tools available.

Kotlin is a JVM language, and so the compiler will emit Java bytecode. Because of this, of
course, Kotlin code can call Java code, and vice versa! Therefore, you need to have the Java
JDK installed on your machine. To be able to write code for Android, where the most recent
supported Java version is 6, the compiler needs to translate your code to bytecode that is
compatible at least with Java 6. For this book, however, all the code examples will be
run with Java JDK 8. If you are new to the JVM world, you can get the latest version from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

In this chapter you will learn how to:

Use the command line to compile and execute code written in Kotlin
Use the REPL and write Kotlin scripts
Create a gradle project with Kotlin enabled
Create a Maven project with Kotlin enabled
Use IntelliJ to create a Kotlin project
Use Eclipse IDE to create a Kotlin project
Mix Kotlin and Java code in the same project

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Getting Started with Kotlin

[8]

Using the command line to compile and run
Kotlin code
To write and execute code written in Kotlin, you will need its runtime and the compiler. At
the time of writing, version 1.1 milestone 4 is available (the stable release is 1.0.6). Every
runtime release comes with its own compiler version. To get your hands on it, navigate to h
t t p s ://g i t h u b . c o m /J e t B r a i n s /k o t l i n /r e l e a s e s /t a g /v 1. 1- M 04, scroll to the bottom of
the page, and download and unpack the ZIP archive kotlin-compiler-1.1-M04.zip to
a known location on your machine. The output folder will contain a subfolder bin with all
the scripts required to compile and run Kotlin on Windows, Linux, or OS X. Now you need
to make sure the bin folder location is part of your system PATH in order to call the
kotlinc without having to specify the full path.

If your machine runs Linux or OS X, there is an even easier way to install the compiler by
using sdkman. All you need to do is execute the following commands in a terminal:

$ curl -s https://get.sdkman.io | bash
$ bash
$ sdk install kotlin 1.1-M04

Alternatively, if you are using OS X and you have homebrew installed, you could run these
commands to achieve the same thing:

$ brew update

$ brew install kotlin@1.1-M04

Now that all of this is done, we can finally write our first Kotlin code. The application we
will be writing does nothing else but display the text Hello World! on the console. Start
by creating a new file named HelloWorld.kt and type the following:

 fun main(args: Array<String>) {
 println("Hello, World!")
 }

From the command line, invoke the compiler to produce the JAR assembly (include-
runtime is a flag for the compiler to produce a self-contained and runnable JAR by
including the Kotlin runtime into the resulting assembly):

kotlinc HelloWorld.kt -include-runtime -d HelloWorld.jar

Now you are ready to run your program by typing the following on your command line; it
is assumed your JAVA_HOME is set and added to the system path:

https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04
https://github.com/JetBrains/kotlin/releases/tag/v1.1-M04

Getting Started with Kotlin

[9]

$ java -jar HelloWorld.jar

The code is pretty straight forward. It defines the entry point function for your program,
and in the first and only line of code, it prints the text to the console.

If you have been working with the Java or Scala languages, you might raise an eyebrow
because you noticed the lack of the typical class that would normally define the standard
static main program entry point. How does it work then? Let's have a look at what
actually happens. First, let's just compile the preceding code by running the following
command. This will create a HelloWorld.class in the same folder:

$ kotlinc HelloWorld.kt

Now that we have the bytecode generated, let's look at it by using the javap tool available
with the JDK (please note that the file name contains a suffix Kt):

$ javap -c HelloWorldKt.class

Once the execution completes, you should see the following printed on your terminal:

 Compiled from "HelloWorld.kt"
 public final class HelloWorldKt {
 public static final void main(java.lang.String[]);
 Code:
 0: aload_0
 1: ldc #9 // String args
 3: invokestatic #15 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 6: ldc #17 // String Hello, World!
 8: astore_1
 9: nop
 10: getstatic #23 // Field
java/lang/System.out:Ljava/io/PrintStream;
 13: aload_1
 14: invokevirtual #29 // Method
java/io/PrintStream.println:(Ljava/lang/Object;)V
 17: return
 }

You don't have to be an expert in bytecode to understand what the compiler has actually
done for us. As you can see on the snippet, a class has been generated for us, and it contains
the program entry point with the instructions to print Hello World! to the console.

I would not expect you to work with the command line compiler on a daily basis; rather,
you should use the tools at hand to delegate this, as we will see shortly.

Getting Started with Kotlin

[10]

Kotlin runtime
When we compiled Hello World! and produced the JAR, we instructed the compiler to
bundle in the Kotlin runtime. Why is the runtime needed? Take a closer look at the
bytecode generated, if you haven't already. To be more specific, look at line 3. It invokes a
method to validate that the args variable is not null; thus, if you compile the code without
asking for the runtime to be bundled in and try to run it, you will get an exception.

$ kotlinc HelloWorld.kt -d HelloWorld.jar
$ java -jar HelloWorld.jar
Exception in thread "main" java.lang.NoClassDefFoundError:
kotlin/jvm/internal/Intrinsics at HelloWorldKt.main(HelloWorld.kt)
Caused by: java.lang.ClassNotFoundException:
kotlin.jvm.internal.Intrinsics

The runtime footprint is very small; with ~800 K one can't argue otherwise. Kotlin comes
with its own standard class library (Kotlin runtime), which is different from the Java
library. As a result, you need to merge it into the resulting JAR, or provide it in the
classpath:

$ java -cp $KOTLIN_HOME/lib/kotlin-runtime.jar:HelloWorld.jar HelloWorldKt

If you develop a library for the exclusive use of other Kotlin libraries or applications, then
you don't have to include the runtime. Alternatively there is a shorter path. This is done via
a flag passed to the Kotlin compiler:

$kotlinc -include-runtime HelloWorld.kt -d HelloWorld

The REPL
These days, most languages provide an interactive shell, and Kotlin is no exception. If you
want to quickly write some code that you won't use again, then the REPL is a good tool to
have. Some prefer to quickly test their methods, but you should always write unit tests
rather than using the REPL to validate that the output is correct.

You can start the REPL by adding dependencies to the classpath in order to make them
available within the instance. To give an example, we will use the Joda library to deal with
the date and time. First, we need to download the JAR. In a terminal window, use the
following commands:

$ wget
https://github.com/JodaOrg/joda-time/releases/download/v2.9.4/joda-time-2.9
.4-dist.tar.gz

Getting Started with Kotlin

[11]

$ tar xvf joda-time-2.9.4-dist.tar.gz

Now you are ready to start the REPL, attach the Joda library to its running instance, and
import and use the classes it provides:

$ kotlinc-jvm -cp joda-time-2.9.4/joda-time-2.9.4.jar
Welcome to Kotlin version 1.1-M04 (JRE 1.8.0_66-internal-b17)
Type :help for help, :quit for quit
>>> import org.joda.time.DateTime
>>> DateTime.now()
2016-08-25T22:53:41.017+01:00

Kotlin for scripting
Kotlin can also be run as a script. If bash or Perl is not for you, now you have an
alternative.

Say you want to delete all the files older than N given days. The following code example
does just that:

 import java.io.File
 val purgeTime = System.currentTimeMillis() - args[1].toLong() * 24 *
60 * 60 * 1000
 val folders = File(args[0]).listFiles { file -> file.isFile }
 folders ?.filter {
 file -> file.lastModified() < purgeTime }
 ?.forEach {
 file -> println("Deleting ${file.absolutePath}")
 file.delete()
 }

Create a file named delete.kts with the preceding content. Please note the predefined
variable args, which contains all the incoming parameters passed when it is invoked. You
might wonder what is the ? character doing there. If you are familiar with the C# language
and you know about nullable classes, you already have the answer. Even though you might
not have come across it, I am sure you have a good idea of what it does. The character is
called the safe call operator, and, as you will find out later in the book when the subject is
discussed in greater length, it avoids the dreadful NullPointerException error.

The script takes two arguments: the target folder, and then the number of days threshold.
For each file it finds in the target, it will check the last time it was modified; if it is less than
the computed purge time, it will delete it. The preceding script has left out error handling;
we leave this to the reader as an exercise.

Getting Started with Kotlin

[12]

Now the script is available, it can be invoked by running the following:

$ kotlinc -script delete.kts . 5

If you copy/create files in the current folder with a last modified timestamp older than five
days, it will remove them.

Kotlin with Gradle
If you are familiar with the build tool landscape, you might be in one of three camps:
Maven, Gradle, or SBT (more likely if you are a Scala dev). I am not going to go into the
details, but we will present the basics of Gradle, the modern open source polyglot build
automation system, and leave it up to the curious to find out more from http://gradle.org.
Before we continue, please make sure you have it installed and available in your classpath
in order to be accessible from the terminal. If you have SDKMAN, you can install it using
this command:

$ sdk install gradle 3.0

The build system comes with some baked-in templates, although limited, and in its latest
3.0 version Kotlin is not yet included. Hopefully, this shortfall will be dealt with sooner
rather than later. However, it takes very little to configure support for it. First, let's see how
you can interrogate for the available templates:

$ gradle help --task :init

You should see the following being printed out on the terminal:

Options
 --type Set type of build to create.
 Available values are:
 basic
 groovy-library
 java-library
 pom
 scala-library

Let's go and use the Java template and create our project structure by executing this bash
command:

$ gradle init --type java-library

http://gradle.org

Getting Started with Kotlin

[13]

This template will generate a bunch of files and folders; if you have been using Maven, you
will see that this structure is similar:

Project Folders layout

As it stands, the Gradle project is not ready for Kotlin. First, go ahead and delete
Library.java and LibraryTest.java, and create a new folder named kotlin, a sibling
of the java one. Then, using a text editor, open the build.gradle file. We need to add the
plugin enabling the Gradle system to compile Kotlin code for us, so at the top of your file
you have to add the following snippet:

 buildscript {
 ext.kotlin_version = '1.1-M04'

 repositories {
 maven { url "https://dl.bintray.com/kotlin/kotlin-dev" }
 mavenCentral()
 }
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-gradle-
plugin:$kotlin_version"
 }
 }

The preceding instructions tell Gradle to use the plugin for Kotlin, and set the dependency
maven repository. Since Kotlin 1.1 is only at milestone 4, there is a specific repository to
pick it from. See last entry in repositories. We are not done yet; we still need to enable
the plugin. The template generated will already have an applied plugin: java. Replace it
with the following:

 apply plugin: 'kotlin'
 apply plugin: 'application'
 mainClassName = 'com.programming.kotlin.chapter01.ProgramKt'

Getting Started with Kotlin

[14]

Now Kotlin plugin support is enabled; you may have noticed that we have also added the
application plugin, and set the class containing the program entry point. The reason for this
is to allow the program to run directly, as we will see shortly.

We are not quite done. We still need to link to the Kotlin standard library. Replace the
repositories and dependencies sections with the following:

 repositories {
 maven { url "https://dl.bintray.com/kotlin/kotlin-dev" }
 mavenCentral()
 }
 dependencies {
 compile "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
 testCompile 'io.kotlintest:kotlintest:1.3.3'
 }

Now let's create the file named HelloWorld.Kt. This time, we will set a namespace and
thus avoid having our class as part of the default one. If you are not yet familiar with the
term, don't worry; it will be covered in the next chapter.

From the terminal, run the following:

$ mkdir -p src/main/kotlin/com/programming/kotlin/chapter01
$ echo "" >> src/main/kotlin/com/programming/kotlin/chapter01/Program.kt
$ cat <<EOF >> src/main/kotlin/com/programming/kotlin/chapter01/Program.kt
package com.programming.kotlin.chapter01
fun main(args: Array<String>) {
 println("Hello World!")
}

We are now in a position to build and run the application:

$ gradle build
$ gradle run

Now we want to be able to run our program using java -jar [artefact]. Before we can
do that, we need to adapt the build.gradle. First, we need to create a manifest file and
set the main class; the JVM will look for the main function to start executing it:

 jar {
 manifest {
 attributes(
 'Main-Class': 'com.programming.kotlin.chapter01.ProgramKt'
)
 }
 from { configurations.compile.collect { it.isDirectory() ? it :
zipTree(it) } }

Getting Started with Kotlin

[15]

 }

Furthermore, we also embed into the JAR the dependency for kotlin-stdlib, as well as
kotlin-runtime. If we leave out these dependencies, we will need to add them to the
classpath when we run the application. Now you are ready to build and run the code.

Kotlin with Maven
If you still prefer to stick with good old Maven, there is no problem. There is a plugin for it
to support Kotlin as well. If you don't have Maven on your machine, you can follow the
instructions at https://maven.apache.org/install.html to get it installed on your local
machine.

Just as we did with Gradle, let's use the built-in templates to generate the project folder and
file structure. From the terminal, within a brand new folder, you will have to run the
following command:

$ mvn archetype:generate -DgroupId=com.programming.kotlin -
DartifactId=chapter01 -DarchetypeArtifactId=maven-archetype- quickstart -
DinteractiveMode=false

This will generate the pom.xml file and the src folder for Maven. But before we add the file
containing the kotlin code, we need to enable the plugin. Just as before, start by deleting
App.java and AppTest.java from src/main/java/com/programming/kotlin and
test/main/java/com/programming/kotlin/, and create the src/kotlin folder (the
subdirectory structure matches the namespace name):

$ mkdir -p src/main/kotlin/com/programming/kotlin/chapter01
$ mkdir -p src/test/kotlin/com/programming/kotlin/chapter01

In an editor of your choice, open up the generated pom.xml file and add the following:

 <pluginRepositories>
 <pluginRepository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>bintray-kotlin-kotlin-dev</id>
 <name>bintray</name>
 <url>http://dl.bintray.com/kotlin/kotlin-dev</url>
 </pluginRepository>
 </pluginRepositories>

 <repositories>

https://maven.apache.org/install.html

Getting Started with Kotlin

[16]

 <repository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>bintray-kotlin-kotlin-dev</id>
 <name>bintray</name>
 <url>http://dl.bintray.com/kotlin/kotlin-dev</url>
 </repository>
 </repositories>
 <properties>
 <kotlin.version>1.1-M04</kotlin.version>
 <kotlin.test.version>1.3.3</kotlin.test.version>
 </properties>
 <build>
 <sourceDirectory>${project.basedir}/src/main/kotlin</sourceDirecto
ry>
 <testSourceDirectory>${project.basedir}/src/test/kotlin</testSourc
eDirectory>
 <plugins>
 <plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>

 <executions>
 <execution>
 <id>compile</id>
 <phase>process-sources</phase>
 <goals> <goal>compile</goal> </goals>
 </execution>

 <execution>
 <id>test-compile</id>
 <phase>process-test-sources</phase>
 <goals> <goal>test-compile</goal> </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

All we have done so far is to enable the Kotlin plugin and make it run in the process-stages
phase to allow the mixing of Java code as well. There are cases when you might have part of
the source code written in good old Java. I am sure you also noticed the addition of source
directory tags, allowing for the kotlin files to be included in the build.

Getting Started with Kotlin

[17]

The only thing left to do now is to add the library dependencies for the Kotlin runtime as
well as the unit tests. We are not going to touch upon the testing framework until later in
the book. Replace the entire dependencies section with the following:

 <dependencies>
 <dependency>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib</artifactId>
 <version>${kotlin.version}</version>
 </dependency>
 <dependency>
 <groupId>io.kotlintest</groupId>
 <artifactId>kotlintest</artifactId>
 <version>${kotlin.test.version}</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

It is time now to add the Hello World! code; this step is similar to the one we took earlier
when we discussed Gradle:

$ echo "" >> src/main/kotlin/com/programming/kotlin/chapter01/Program.kt
$cat <<EOF >> src/main/kotlin/com/programming/kotlin/chapter01/Program.kt
 package com.programming.kotlin.chapter01
 fun main(args: Array<String>) {
 println("Hello World!")
 }

We are now in a position to compile and build the JAR file for the sample program:

$ mvn package
$ mvn exec:java -
Dexec.mainClass="com.programming.kotlin.chapter01.ProgramKt"

The last instruction should end up printing the Hello World! text to the console. Of
course we can run the program outside Maven by going back to executing Java, but we
need to add the Kotlin runtime to the classpath:

$java -cp $KOTLIN_HOME/lib/kotlin-runtime.jar:target/chapter01-1.0-
SNAPSHOT.jar "com.programming.kotlin.chapter01.ProgramKt"

If you want to avoid the Classpath dependency setup when you run the application, there
is an option to bundle all the dependencies in the resulted JAR and produce what is called a
fat jar. For that, however, another plugin needs to be added:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Getting Started with Kotlin

[18]

 <artifactId>maven-shade-plugin</artifactId>
 <version>2.4.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestRe
sourceTransformer">
<mainClass>com.programming.kotlin.chapter01.ProgramKt</mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
 </plugin>

We can execute the command to run our JAR without having to worry about setting the
classpath since this has been taken care of by the plugin:

$ java -jar target/chapter01-1.0-SNAPSHOT.jar

IntelliJ and Kotlin
Coding using Vim/nano is not everyone's first choice; working without the help of an IDE
with its code completion, intelli-sense, shortcuts for adding files, or refactoring code can
prove challenging the more complex the project is.

For a while now, in the JVM world, people's first choice when it comes to their integrated
development environment has been IntelliJ. The tool is made by the same company that
created Kotlin: JetBrains. Given the integration between the two of them, it would be my
first choice of IDE to use, but, as we will see in the next section it is not the only option.

IntelliJ comes in two versions: Ultimate and Community (free). For the code we will be
using in the course of this book, the free version is enough. If you don't have it already
installed, you can download it from https://www.jetbrains.com/idea/download.

From version 15.0, IntelliJ comes bundled with Kotlin, but if you have an older version you
can still get support for the language by installing the plugin. Just go to Settings|Plugins|
Install IntelliJ plugins and type Kotlin in the search.

https://www.jetbrains.com/idea/download

Getting Started with Kotlin

[19]

We are going to use the IDE to create a Gradle project with Kotlin enabled, just as we did in
the previous section. Once you have started IntelliJ, you will have to choose Create new
project. You will get a dialog window from which you should select Gradle from the left-
hand side section; check the Kotlin(Java) option from the right-hand side. As you can see
here:

Selecting a project type

You should already have the system variable JAVA_HOME set up for the tool to pick it up
automatically (see the Project SDK at the top of the screenshot). If this isn't the case, choose
the New button and navigate to where your Java JDK is. Once you have selected it, you are
ready to go to the next step by clicking on the Next button available on the bottom right-
hand side of the screen.

The next window presented to you is asking you to provide the Group Id and Artifact Id.
Let's go with com.programming.kotlin and chapter01 respectively. Once you have
completed the fields, you can move to the next step of the process where you tick the Use
auto-import flag as well as Create directories for empty directory roots automatically.
Now carry on to the next step, where you are asked where you wish to store the project on
your machine. Set the project location, expand More Settings, type chapter01 for the
Module name, and hit the Finish button.

Getting Started with Kotlin

[20]

IntelliJ will go on and create the project, and you should have the outcome shown in the
following screenshot:

Hello World! basic project

On the selected kotlin folder, right-click and choose the New | Package option, and type
com.programming.kotlin.chapter01:

Setting up the package name

Getting Started with Kotlin

[21]

Below the kotlin folder, you should see a new one appear, matching what was typed
earlier. Right click on that, choose New | Kotlin File/Class, and type Program.kt:

Creating Program.kt file

We are now ready to start typing our Hello World! Use the same code we created earlier
in the chapter. You should notice the Kotlin brand icon on the left-hand side of the file
editor. If you click on it, you will get the option to run the code, and if you look at the
bottom of your IntelliJ window you should see the text Hello World! printed out:

Hello World! program

Getting Started with Kotlin

[22]

Well done! You have written your first Kotlin program. It was easy and quick to set up the
project and code, and to run the program. If you prefer, you can have a Maven rather than a
Gradle project. When you choose New | Project, you have to select Maven from the left-
hand side and check Create from archetype while choosing org.jetbrains.kotlin:kotlin-
archetype-jvm from the list presented:

Maven project

Eclipse and Kotlin
There might be some of you who still prefer Eclipse IDE to IntelliJ; don't worry, you can still
develop Kotlin code without having to move away from it. At this point, I assume you
already have the tool installed. From the menu, navigate to Help | Eclipse Marketplace,
look for the Kotlin plugin, and install it (I am working with the latest distribution: Eclipse
Neon).

Once you have installed the plugin and restarted the IDE, you are ready to create your first
Kotlin project. From the menu, choose File | New | Project and you should see the
following dialog:

Getting Started with Kotlin

[23]

New Kotlin project

Click the Next button to move to the next step and, once you have chosen the source code
location, click the Finish button. This is not a Gradle or Maven project! You can choose one
of the two, but then you will have to manually modify the build.gradle or pom.xml, as
we did manually in the Kotlin with Gradle and Kotlin with Maven sections of this chapter.
Similar to the IntelliJ project, click on the src folder, choose New package, and name it
com.programming.kotlin.chapter01. To add our Program.kt, you will need to right-
click on the newly created package, select New | Other, and select Kotlin | Kotlin File
from the list. Once the file has been created, type the simple lines of code to print out the
text to the console. You should have the following result in your Eclipse IDE:

Hello World! with Eclipse

Getting Started with Kotlin

[24]

Now you are ready to run the code. From the menu select Run | Run. You should be able to
trigger the execution, and in the Console tab at the bottom of your IDE you should see the
Hello World! text printed out.

Mixing Kotlin and Java in a project
Using different languages within the same project is quite common; I came across projects
where a mix of Java and Scala files formed the code base. Could we do the same with
Kotlin? Absolutely. Let's work on the project created earlier, Kotlin with Gradle. You should
see the following directory structure in your IntelliJ (the standard template for a Java/Kotlin
project):

Project layout

You can place Java code within the java folder. Add a new package to the java folder with
the same name as the one present in the kotlin folder:
com.programming.kotlin.chapter01. Create a New | Java class named
CarManufacturer.java and use this code for the purpose of the exercise:

 public class CarManufacturer {
 private final String name;
 public CarManufacturer(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 }

What if you want to add a Java class under the kotlin subfolder? Let's create a Student
class similar to the previous one and provide a field name for simplicity:

 public class Student {

Getting Started with Kotlin

[25]

 private final String name;
 public Student(String name) {
 this.name = name;
 }
 public String getName() {
 return name;
 }
 }

In the main function, let's instantiate our classes:

 fun main(args: Array<String>) {
 println("Hellow World!")
 val student = Student("Alexandra Miller")
 println("Sudent name:${student.name}")
 val carManufacturer = CarManufacturer("Mercedes")
 println("Car manufacturer:${carManufacturer.name}")
 }

While the code compiles just fine, trying to run it will throw a runtime exception, saying
that it can't find the Student class. We need to let the Java compiler look for code under the
src/main/kotlin folder. In your gradle.build, add the following instruction:

 sourceSets {
 main.java.srcDirs += 'src/main/kotlin'
 }

Now we can compile and run the program:

$gradle jar
$ java -jar build/libs/chapter01-1.0-SNAPSHOT.jar

As your Kotlin code gets bigger, compilation will slow down since it will have to go and
recompile each file. There is a way to speed it up, though: by only compiling files changed
between builds. The easiest way to enable this is to create a file called gradle.properties
alongside build.gradle and add kotlin.incremental=true to it. While the first build
will not be incremental, the following ones will be, and you should see your compilation
time cut down quite a bit.

Maven is still, probably, the most used build system on the JVM. So let's see how we can
achieve our goal of mixing Kotlin and Java code in Maven. Starting with IntelliJ, choose
New | Project, pick Maven as the option, and look for kotlin-archetype-jvm from the list of
archetypes. We already covered this, so it should be a lot easier the second time around. We
now have a project.

Getting Started with Kotlin

[26]

From the project tree, you will notice that there is no java folder source code created. Go
ahead and create src/main/java, followed by the namespace folder
com.programming.kotlin (this will be a subfolder of the java one). You will notice that
right-clicking on the java folder won't give you the option to create a package. The project
is not yet configured to include Java code. But first, what makes Maven handle Kotlin code?
If you open the pom.xml file and go to the plugins section, you will notice the
kotlin plugin:

 <plugin>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-maven-plugin</artifactId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>test-compile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

To add Java code to the mix, we need to set a new plugin that will be able to compile good
old Java:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <executions>
 <execution>
 <id>default-compile</id>
 <phase>none</phase>
 </execution>
 <execution>
 <id>default-testCompile</id>
 <phase>none</phase>
 </execution>
 <execution>

Getting Started with Kotlin

[27]

 <id>java-compile</id>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>java-test-compile</id>
 <phase>test-compile</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

The Kotlin compiler has to run before the Java compiler to get it all working, so we will
need to amend the Kotlin plugin to do just that:

 <plugin>
 <artifactId>kotlin-maven-plugin</artifactId>
 <groupId>org.jetbrains.kotlin</groupId>
 <version>${kotlin.version}</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals>
 <goal>compile</goal>
 </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>${project.basedir}/src/main/kotlin</sourceDir>
 <sourceDir>${project.basedir}/src/main/java</sourceDir>
 </sourceDirs>
 </configuration>
 </execution>
 <execution>
 <id>test-compile</id>
 <goals>
 <goal>test-compile</goal>
 </goals>
 <configuration>
 <sourceDirs>
 <sourceDir>${project.basedir}/src/main/kotlin</sourceDir>
 <sourceDir>${project.basedir}/src/main/java</sourceDir>
 </sourceDirs>
 </configuration>
 </execution>

Getting Started with Kotlin

[28]

 </executions>
 </plugin>

To be able to produce the executable JAR for the code we are about to write, we need yet
another Maven plugin:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>3.0.2</version>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 <mainClass>com.programming.kotlin.HelloKt</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>

The preceding code will give you a JAR containing just your code; if you want to run it then
you need the extra dependencies to the classpath:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.6</version>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals> <goal>single</goal> </goals>
 <configuration>
 <archive>
 <manifest>
 <mainClass>com.programming.kotlin.HelloKt</mainClass>
 </manifest>
 </archive>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>
 </descriptorRefs>
 </configuration>
 </execution>
 </executions>
 </plugin>

Getting Started with Kotlin

[29]

Now we are in a position to add the classes from the previous example (the
CarManufacturer and Student classes) and change the main class to contain the
following:

 val student = Student("Jenny Wood")
 println("Student:${student.name}")
 val carManufacturer = CarManufacturer("Honda")
 println("Car manufacture:${carManufacturer.name}")

This is not ready yet. While compiling will go well, trying to execute the JAR will yield an
error at runtime about the Student class not being found. The Java compiler needs to know
about the Java code sitting under the kotlin folder. For that, we bring in another plugin:

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals><goal>add-source</goal></goals>
 <configuration>
 <sources>
 <source>${project.basedir}/src/main/kotlin</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>

Finally, we are in a position to compile and run the code. Executing the commands in a
terminal will end up printing three lines in the output:

$ mvn package
$ java -jar target/chapter01-maven-mix-1.0-SNAPSHOT-jar-with-
dependencies.jar

Summary
This chapter has showed you how you can set up your development environment with the
tools required to build and run Kotlin code. Now you are able to run and execute the
examples created in the rest of the book, as well as experiment with your own Kotlin code.

In the next chapter you will delve into the basic constructs you will use daily when you
code in Kotlin.

2
Kotlin Basics

It's time to discover the fundamental building blocks in Kotlin. For those coming from a
Java background, this chapter will highlight some of the key similarities and differences
between Kotlin and Java, and how Kotlin's language features compare to those in Java and
on the JVM. For those who are not Java programmers, these differences can be safely
skipped.

In this chapter we will cover the following topics:

Variables and values
Control flow and expressions
Type inference
Smart casting
Basic types and the Kotlin type hierarchy

Vals and vars
Kotlin has two keywords for declaring variables, val and var. The var is a mutable
variable, which is, a variable that can be changed to another value by reassigning it. This is
equivalent to declaring a variable in Java:

 val name = "kotlin"

In addition, the var can be initialized later:

 var name: String
 name = "kotlin"

Kotlin Basics

[31]

Variables defined with var can be reassigned, since they are mutable:

 var name = "kotlin"
 name = "more kotlin"

The keyword val is used to declare a read-only variable. This is equivalent to declaring a
final variable in Java. A val must be initialized when it is created, since it cannot be
changed later:

 val name = "kotlin"

A read only variable does not mean the instance itself is automatically immutable. The
instance may still allow its member variables to be changed via functions or properties, but
the variable itself cannot change its value or be reassigned to another value.

Type inference
Did you notice in the previous section that the type of the variable was not included when it
was initialized? This is different to Java where the type of the variable must always
accompany its declaration.

Even though Kotlin is a strongly typed language, we don't always need to declare types
explicitly. The compiler attempts to figure out the type of an expression from the
information included in the expression. A simple val is an easy case for the compiler
because the type is clear from the right-hand side. This mechanism is called type inference.
This reduces boilerplate whilst keeping the type safety we expect of a modern language.

Values and variables are not the only places where type inference can be used. It can also be
used in closures where the type of the parameter(s) can be inferred from the function
signature. It can also be used in single-line functions where the return value can be inferred
from the expression in the function, as this example shows:

fun plusOne(x: Int) = x + 1

Sometimes it is helpful to explicitly annotate the :

 val explicitType: Number = 12.3

Kotlin Basics

[32]

Basic types
One of the big changes in Kotlin from Java is that in Kotlin everything is an object. If you
come from a Java background, then you will already be aware that in Java there are special
primitive types which are treated differently from objects. They cannot be used as generic
types, do not support method/function calls, and cannot be assigned null. An example is the
primitive type boolean.

Java introduced wrapper objects to offer a work around in which primitive types are
wrapped in objects, so that java.lang.Boolean wraps a boolean in order to smooth over
the distinctions. Kotlin removes this necessity entirely from the language by promoting the
primitives to full objects.

Whenever possible, the Kotlin compiler will map basic types back to JVM primitives for
performance reasons. However, sometimes the values must be boxed, such as when the
type is nullable, or when it is used in generics. Boxing is the conversion from a primitive
type to a wrapper type that types place whenever an object is required but a primitive is
presented.

Two different values that are boxed might not use the same instance, so
referential equality is not guaranteed on boxed values.

Numbers
The built-in number types are as follows:

Type Width

Long 64

Int 32

Short 16

Byte 8

Double 64

Float 32

Kotlin Basics

[33]

To create a number literal, use one of the following forms:

 val int = 123
 val long = 123456L
 val double = 12.34
 val float = 12.34F
 val hexadecimal = 0xAB
 val binary = 0b01010101

You will notice that a long value requires the suffix L and a float, the suffix F. The
double is used as the default for floating point numbers, and int for integral numbers. The
hexadecimal and binary use the prefixes 0x and 0b respectively.

Kotlin does not support automatic widening of numbers, so conversion must be invoked
explicitly. Each number has a function that will convert the value to one of the other
number types. For example to convert from an integer to a long we can do the following.

 val int = 123
 val long = int.toLong()

Similarly, to convert a float to a double, we use the toDouble function.

 val float = 12.34F
 val double = float.toDouble()

The full set of functions for conversions between types is toByte(), toShort(), toInt(),
toLong(), toFloat(), toDouble(), toChar().

The usual bitwise operators – left shift, right shift, unsigned right shift, logical and, logical
or and exclusive logical or – are supported by Kotlin. Unlike Java, these are not built in
operators but named functions instead but can still be invoked like operators:

 val leftShift = 1 shl 2
 val rightShift = 1 shr 2
 val unsignedRightShift = 1 ushr 2

 val and = 1 and 0x00001111
 val or = 1 or0x00001111
 val xor = 1 xor0x00001111
 val inv = 1.inv()

Notice that inverse is not a binary operator, but a unary operator and so is invoked using
the dot syntax on a number.

Kotlin Basics

[34]

Booleans
Booleans are rather standard, and support the usual negation, conjunction, and disjunction
operations. Conjunction and disjunction are lazily evaluated, so if the left-hand side satisfies
the clause, then the right-hand side will not be evaluated:

 val x = 1
 val y = 2
 val z = 2

 val isTrue = x < y && x < z
 val alsoTrue = x == y || y == z

Chars
Chars represent a single character. Character literals use single quotes such as A or Z. Chars
also support escaping for the following characters: \t, \b, \n, \r, ', ", \\, and \$.

All unicode characters can be represented using the unicode number, for example, \u1234.

Note that the char type is not treated as a number, as used in Java.

Strings
Just as in Java, strings are immutable. String literals can be created using double quotes or
triple quotes. Double quotes create an escaped string. In an escaped string, special
characters, such as new line, must be escaped:

 val string = "string with \n new line"

Triple quotes create a raw string. In a raw string, no escaping is necessary, and all
characters can be included:

 val rawString = """
 raw string is super useful for strings that span many lines """

Strings also provide an iterator function which can be used in a for loop. This will be
described later in the For loop section.

Kotlin Basics

[35]

Arrays
In Kotlin, we can create an array by using the library function arrayOf():

 val array = arrayOf(1, 2, 3)

Alternatively, we can create an Array from an initial size and a function, which is used to
generate each element:

 val perfectSquares = Array(10, { k -> k * k })

Unlike Java, arrays are not treated as special by the language, and are regular collection
classes. Instances of arrays provide an iterator function and a size function, as well as a
get and a set function. The get and set functions are also available through bracket
syntax like many C-style languages:

 val element1 = array[0]
 val element2 = array[1]
 array[2] = 5

To avoid boxing types that will ultimately be represented as primitives in the JVM, Kotlin
provides alternative array classes that are specialized for each of the primitive types. This
allows performance-critical code to use arrays as efficiently as they would do in plain Java.
The provided classes are ByteArray, CharArray, ShortArray, IntArray, LongArray,
BooleanArray, FloatArray, and DoubleArray.

Comments
Comments in Kotlin will come as no surprise to most programmers as they are the same as
Java, Javascript, and C, among other languages. Block comments and line comments are
supported:

 // line comment

 /*
 A block comment
 can span many
 lines
 */

Kotlin Basics

[36]

Packages
Packages allow us to split code into namespaces. Any file may begin with a package
declaration:

 package com.packt.myproject
 class Foo
 fun bar(): String = "bar"

The package name is used to give us the fully qualified name (FQN) for a class, object,
interface, or function. In the preceding example, the class Foo has the fully qualified name
com.packt.myproject.Foo and the top level function bar has the fully qualified name of
com.packt.myproject.bar.

Imports
To enable classes, objects, interfaces, and functions to be used outside of the declared
package we must import the required class, object, interface, or function:

 import com.packt.myproject.Foo

Wildcard imports
If we have a bunch of imports from the same package, then to avoid specifying each import
individually we can import the entire package at once using the * operator:

 import com.packt.myproject.*

Wildcard imports are especially useful when a large number of helper functions or
constants are defined at the top level, and we wish to refer to those without using the
classname:

 package com.packt.myproject.constants

 val PI = 3.142
 val E = 2.178

 package com.packt.myproject
 import com.packt.myproject.constants.*
 fun add() = E + PI

Kotlin Basics

[37]

Notice how the add() function does not need to refer to E and PI using the FQN, but can
simply use them as if they were in scope. The wildcard import removes the repetition that
would otherwise be needed when importing numerous constants.

Import renaming
If two different packages each use the same name, then we can use the as keyword to alias
the name. This is especially useful when common names are used by multiple libraries,
such as java.io.Path and org.apache.hadoop.fs.Path:

 import com.packt.myproject.Foo
 import com.packt.otherproject.Foo as Foo2

 fun doubleFoo() {
 val foo1 = Foo()
 val foo2 = Foo2()
 }

String templates
Java developers will be familiar with the usage of string concatenation to mix expressions
with string literals:

 val name = "Sam"
 val concat = "hello " + name

String templates are a simple and effective way of embedding values, variables, or even
expressions inside a string without the need for pattern replacement or string
concatenation. Many languages now support this kind of feature, and Kotlin's designers
also opted to include it (you might see the technique referred to in the Kotlin context as
string interpolation).

String templates improve on the Java experience when using multiple variables in a single
literal, as it keeps the string short and more readable.

Usage is extremely straightforward. A value or variable can be embedded simply by
prefixing with a dollar ($) symbol:

 val name = "Sam"
 val str = "hello $name"

Kotlin Basics

[38]

Arbitrary expressions can be embedded by prefixing with a dollar ($) and wrapping in
braces {}:

 val name = "Sam"
 val str = "hello $name. Your name has ${name.length} characters"

Ranges
A range is defined as an interval that has a start value and an end value. Any types which
are comparable can be used to create a range, which is done using the .. operator:

 val aToZ = "a".."z"
 val oneToNine = 1..9

Once a range is created, the in operator can be used to test whether a given value is
included in the range. This is why the types must be comparable. For a value to be included
in a range, it must be greater than or equal to the start value and less than or equal to the
end value:

 val aToZ = "a".."z"
 val isTrue = "c" in aToZ
 val oneToNine = 1..9
 val isFalse = 11 in oneToNine

Integer ranges (ints, longs, and chars) also have the ability to be used in a for loop. See the
section on For loops for further details.

There are further library functions to create ranges not covered by the .. operator; for
example, downTo() will create a range counting down and rangeTo()will create a range
up to a value. Both of these functions are defined as extension functions on numerical types:

 val countingDown = 100.downTo(0)
 val rangeTo = 10.rangeTo(20)

Once a range is created, you can modify the range, returning a new range. To modify the
delta between each successive term in the range, we can use the step() function:

 val oneToFifty = 1..50
 val oddNumbers = oneToFifty.step(2)

Kotlin Basics

[39]

You cannot use a negative value here to create a decreasing range. Finally, ranges can be
reversed using the reversed() function. As the name implies, it returns a new range with
the start and end values switched, and the step value negated:

 val countingDownEvenNumbers = (2..100).step(2).reversed()

Loops
Kotlin supports the usual duo of loop constructs found in most languages – the while loop
and the for loop. The syntax for while loops in Kotlin will be familiar to most developers,
as it is exactly the same as most C-style languages:

 while (true) {
 println("This will print out for a long time!")
 }

The Kotlin for loop is used to iterate over any object that defines a function or extension
function with the name iterator. All collections provide this function:

 val list = listOf(1, 2, 3, 4)
 for (k in list) {
 println(k)
 }

 val set = setOf(1, 2, 3, 4)
 for (k in set) {
 println(k)
 }

Note the syntax using the keyword in. The in operator is always used with for loops. In
addition to collections, integral ranges are directly supported either inline or defined
outside:

 val oneToTen = 1..10
 for (k in oneToTen) {
 for (j in 1..5) {
 println(k * j)
 }
 }

Ranges are handled in a special way by the compiler, and are compiled
into index-based for loops that are supported directly on the JVM, thus
avoiding any performance penalty from creating iterator objects.

Kotlin Basics

[40]

Any object can be used inside a for loop provided that it implements a function called
iterator making this an extremely flexible construct. This function must return an
instance of an object that provides the following two functions:

operator fun hasNext(): Boolean
operator fun next(): T

The compiler doesn't insist on any particular interface, as long as the object returned has
those two functions present. For example, in the standard String class, Kotlin provides an
iterator extension function that adheres to the required contract and so strings can be
used in a for loop to iterate over the individual characters.

 val string = "print my characters"
 for (char in string) {
 println(char)
 }

Arrays have an extension function called indices, which can be used to iterate over the
index of an array.

 for (index in array.indices) {
 println("Element $index is ${array[index]}")
 }

The compiler also has special support for arrays, and will compile a loop
over an array to a normal index based for loop avoiding any performance
penalty just like for range loops.

Exception handling
Handling of exceptions is almost identical to the way Java handles exceptions with one key
difference in Kotlin all exceptions are unchecked.

As a reminder, checked exceptions are those that must be declared as part of the method
signature or handled inside the method. A typical example would be IOException, which
is thrown by many File functions, and so ends up being declared in many places
throughout the IO libraries.

Kotlin Basics

[41]

Unchecked exceptions are those that do not need to be added to method signatures. A
common example would be the all too familiar NullPointerException, which can be
thrown anywhere. If this was a checked exception, literally every function would need to
declare it!

In Kotlin, since all exceptions are unchecked, they never form part of function signatures.

The handling of an exception is identical to Java, with the use of try, catch, and finally
blocks. Code that you wish to handle safely can be wrapped in a try block. Zero or more
catch blocks can be added to handle different exceptions, and a finally block is always
executed regardless of whether an exception was generated or not. The finally block is
optional, but at least one catch or finally block must be present.

In this example, the read() function can throw an IOException, and so we may wish to
handle this potential exception in our code. In this case, we assume the input stream must
always be closed, regardless of whether the reading is successful or not, and so we wrap the
close() function in a finally block:

 fun readFile(path: Path): Unit {
 val input = Files.newInputStream(path)
 try {
 var byte = input.read()
 while (byte != -1) {
 println(byte)
 byte = input.read()
 }
 } catch (e: IOException) {
 println("Error reading from file. Error was ${e.message}")
 } finally {
 input.close()
 }
 }

Instantiating classes
Creating an instance of a class will be familiar to readers who have experience of object-
orientated programming. The syntax in many languages uses a new keyword followed by
the name of the class to be created. The new keyword indicates to the compiler that the
special constructor function should be invoked to initialize the new instance.

Kotlin Basics

[42]

Kotlin, however, removes this ceremony. It treats calling a constructor function the same as
a normal function, with the constructor function using the name of the class. This enables
Kotlin to drop the new keyword entirely. Arguments are passed in as normal:

 val file = File("/etc/nginx/nginx.conf")
 val date = BigDecimal(100)

Referential equality and structural equality
When working with a language that supports object-oriented programming, there are two
concepts of equality. The first is when two separate references point to the exact same
instance in memory. The second is when two objects are separate instances in memory but
have the same value. What same value means is specified by the developer of the class. For
example, for two square instances to be the same we might just require they have the same
length and width regardless of co-ordinate.

The former is called referential equality. To test whether two references point to the same
instance, we use the === operator (triple equals) or !== for negation:

 val a = File("/mobydick.doc")
 val b = File("/mobydick.doc")
 val sameRef = a === b

The value of the test a === b is false because, although a and b reference the same file on
disk, they are two distinct instances of the File object.

The latter is called structural equality. To test whether two objects have the same value, we
use the == operator or != for negation. These function calls are translated into the use of the
equals function that all classes must define. Note that this differs from how the ==
operator is used in Java – in Java the == operator is for referential equality and is usually
avoided.

 val a = File("/mobydick.doc")
 val b = File("/mobydick.doc")
 val structural = a == b

Note that, in the double equals check, the value was true. This is because the File object
defines equality to be the value of the path. It is up to the creator of a class to determine
what structural equality means for that class.

Kotlin Basics

[43]

The == operator is null safe. That is, we don't need to worry if we are
testing a null instance as the compiler will add the null check for us.

This expression
When inside a class or function, we often want to refer to the enclosing instance. For
example, an instance may want to invoke a method passing itself as an argument. To do
this, we use the keyword this:

 class Person(name: String) {
 fun printMe() = println(this)
 }

In Kotlin terminology, the reference referred to by the this keyword is called the current
receiver. This is because it was the instance that received the invocation of the function. For
example, if we have a string and invoke length, the string instance is the receiver.

In members of a class, this refers to the class instance. In extension functions, this refers
to the instance that the extension function was applied to.

Scope
In nested scopes, we may wish to refer to an outer instance. To do that, we must qualify the
usage of this, and we do that using labels. The label we use is typically the name of the
outer class, but there are more complicated rules for functions and closures discussed in
Chapter 5, Higher Order Functions and Functional Programming.

 class Building(val address: String) {
 inner class Reception(telephone: String) {
 fun printAddress() = println(this@Building.address)
 }
 }

Note the print function needed to qualify access to the Building outer instance. This is
because this inside the printAddress() function would have referred to the closest
containing class, which in this case is Reception. Do not worry about the inner keyword-
that will be covered in Chapter 3, Object Oriented Programming in Kotlin.

Kotlin Basics

[44]

Visibility modifiers
Usually not all functions or classes are designed to be part of your public API. Therefore, it
is desirable to mark some parts of your code as internal and not accessible outside of the
class or package. The keywords that are used to specify this are called visibility modifiers.

There are four visibility modifiers: Public, internal, protected, and private. If no modifier is
given, then the default is used, which is public. This means they are fully visible to any code
that wishes to use them.

Java developers will know that this contrasts to the Java default, which has
package-level visibility.

Private
Any top-level function, class, or interface that is defined as private can only be accessed
from the same file.

Inside a class, interface, or object, any private function or property is only visible to other
members of the same class, interface, or object:

 class Person {
 private fun age(): Int = 21
 }

Here, the function age() would only be invokable by other functions in the Person class.

Protected
Top-level functions, classes, interfaces, and objects cannot be declared as protected. Any
functions or properties declared as protected inside a class or interface are visible only to
members of that class or interface, as well as subclasses.

Kotlin Basics

[45]

Internal
Internal deals with the concept of a module. A module is defined as a Maven or Gradle
module or an IntelliJ module. Any code that is marked as internal is visible from other
classes and functions inside the same module. Effectively, internal acts as public to a
module, rather than public to the universe:

 internal class Person {
 fun age(): Int = 21
 }

Control flow as expressions
An expression is a statement that evaluates to a value. The following expression evaluates
to true:

 "hello".startsWith("h")

A statement, on the other hand, has no resulting value returned. The following is a
statement because it assigns a value to a variable, but does not evaluate to anything itself:

 val a = 1

In Java, the common control flow blocks, such as if...else and try..catch, are
statements. They do not evaluate to a value, so it is common in Java, when using these, to
assign the results to a variable initialized outside the block:

 public boolean isZero(int x) {
 boolean isZero;
 if (x == 0)
 isZero = true;
 else
 isZero = false;
 return isZero;
 }

In Kotlin, the if...else and try..catch control flow blocks are expressions. This means
the result can be directly assigned to a value, returned from a function, or passed as an
argument to another function.

Kotlin Basics

[46]

This small, yet powerful, feature allows boilerplate to be reduced, code made more
readable, and the use of mutable variables avoided. The typical use case of declaring a
variable outside of an if statement to then initialize it inside either branch can be avoided
completely:

 val date = Date()
 val today = if (date.year == 2016) true else false

 fun isZero(x: Int): Boolean {
 return if (x == 0) true else false
 }

A similar technique can be used for try..catch blocks, which is as follows:

 val success = try {
 readFile()
 true
 } catch (e: IOException) {
 false
 }

In that example, the success variable will contain the result of the try block only if it
completes successfully; otherwise the catch clause return value will be used, in this case
false.

Expressions need not be single lines. They can be blocks, of course, and in those cases the
last line must be an expression, and that expression is the value that the block evaluates to.

When using if as an expression, you must include the else clause.
Otherwise the compiler will not know what to do if the if did not
evaluate to true. If you do not include the else clause, the compiler will
display a compile time error.

Null syntax
Tony Hoare, the inventor of the quicksort algorithm, who introduced the concept of the null
reference in 1965 called it his “billion dollar mistake”. Unfortunately, we have to live with
null references as they are present in the JVM, but Kotlin introduces some functionality to
make it easier to avoid some common mistakes.

Kotlin requires that a variable that can assigned to null be declared with a ?:

 var str: String? = null

Kotlin Basics

[47]

If this is not done, the code will not compile. This next example would result in a compile
time error:

 var str: String = null

Kotlin has much more than this to help in the fight against null pointer exceptions, and
there is a full discussion of nulls and null safety in Chapter 7, Null Safety, Reflection, and
Annotations.

Type checking and Casting: If a reference to an instance is declared as some general type A,
but we want to test if we have a more specific type B, then Kotlin provides the is operator.
This is equivalent to the instanceof operator in Java:

 fun isString(any: Any): Boolean {
 return if (any is String) true else false
 }

If the target type is invalid (a string was trying to be cast to a File), then a
ClassCastException will be thrown at runtime.

Smart casts
If after type checking we want to refer to the variable as an instance of B, then the reference
must be cast. In Java, this must be done explicitly, which results in duplication:

 public void printStringLength(Object obj) {
 if (obj instanceof String) {
 String str = (String) obj
 System.out.print(str.length())
 }
 }

The Kotlin compiler is more intelligent, and will remember type checks for us, implicitly
casting the reference to the more specific type. This is referred to as a smart cast:

 fun printStringLength(any: Any) {
 if (any is String) {
 println(any.length)
 }
 }

The compiler knows that we can only be inside the code block if the variable was indeed an
instance of string, and so the cast is performed for us, allowing us to access methods
defined on the string instance.

Kotlin Basics

[48]

Which variables can be used in a smart cast is restricted to those that the compiler can
guarantee do not change between the time when the variable is checked and the time when
it is used. This means that var fields and local vars that have been closed over and mutated
(used in an anonymous function that assigns a new value) cannot be used in smart casts.

Smart casts even work on the right hand side of lazily evaluated Boolean operations if the
left-hand side is a type check:

 fun isEmptyString(any: Any): Boolean {
 return any is String && any.length == 0
 }

The compiler knows that in this && expression the right-hand side will not be evaluated
unless the left-hand side was true, so the variable must be a string. The compiler, therefore,
smart casts for us and allows us to access the length property on the right-hand side.

Similarly, in a || expression, we can test that a reference is not of a particular type on the
left hand side, and if it is it not, then on the right-hand side it must be that type, so the
compiler can smart cast the right-hand side:

 fun isNotStringOrEmpty(any: Any): Boolean {
 return any !is String || any.length == 0
 }

In this example, the function tests that we either don't have a string, or, if we do, then it
must be empty.

Explicit casting
To cast a reference to a type explicitly, we use the as operator. Just as in Java, this operation
will throw a ClassCastException if the cast cannot be performed legally:

 fun length(any: Any): Int {
 val string = any as String
 return string.length
 }

The null value cannot be cast to a type that is not defined as nullable. So the previous
example would have thrown an exception if the value was null. To cast to a value that can
be null, we simply declare the required type as nullable, as we would for a reference:

 val string: String? = any as String

Kotlin Basics

[49]

Remember that if a cast fails, then a ClassCastException will be thrown. If we want to
avoid the exception, and instead have a null value if the cast fails, then we can use the safe
cast operator as?. This operator will return the casted value if the target type is compatible,
otherwise it will return null. In the next example, string would be a successful cast, but
file would be null:

 val any = "/home/users"
 val string: String? = any as String
 val file: File? = any as File

When expression
The classic switch statement has been supported in many languages, including C, C++, and
Java, but is rather restrictive. At the same time, the functional programming concept of
pattern matching has become more mainstream. Kotlin blends the two, and offers when, a
more powerful alternative to switch while not going quite as far as full pattern matching.

There are two forms of when. The first is similar to switch, accepting an argument, and
with a series of conditions, each of which is checked in turn against the value. The second is
without an argument and used as a replacement for a series of if...else conditions.

When (value)
The simplest example of when is matching against different constants, which will be
familiar as the typical usage of switch in a language like Java:

 fun whatNumber(x: Int) {
 when (x) {
 0 -> println("x is zero")
 1 -> println("x is 1")
 else -> println("X is neither 0 or 1")
 }
 }

Note that when must be exhaustive, and so the compile enforces that the final branch is an
else.

If the compiler can infer that all possible conditions have been satisfied,
then the else can be omitted. This is common with sealed classes or enums-
more on those in future chapters.

Kotlin Basics

[50]

Similar to if...else and try..catch, when can be used as an expression, and so the
result of the evaluated branch is the result that is returned. In this example, the when
expression is assigned to the valisZero before being returned:

 fun isMinOrMax(x: Int): Boolean {
 val isZero = when (x) {
 Int.MIN_VALUE -> true
 Int.MAX_VALUE -> true
 else -> false
 }
 return isZero
 }

Furthermore, constants can be combined together if the branch code is the same. To do this,
we simply use a comma to separate constants:

 fun isZeroOrOne(x: Int): Boolean {
 return when (x) {
 0, 1 -> true
 else -> false
 }
 }

Note that, in this example, the 0 and 1 clauses were combined together and the return value
was directly returned instead of being assigned to an intermediate variable.

We are not just restricted to matching on constants in each condition. We can use any
function that returns the same type as the type being matched on. The function is invoked,
and if the result matches the value, then that branch is evaluated:

 fun isAbs(x: Int): Boolean {
 return when (x) {
 Math.abs(x) -> true
 else -> false
 }
 }

In the example, the Math.abs function is invoked, and if the result is the same as the input
value, then the value was already absolute, so true is returned. Otherwise, the result of
Math.abs must have been different, and so the value was not absolute and false is
returned.

Ranges are also supported. We can use the in operator to verify whether the value is
included in the range, and if so, the condition is evaluated to true:

 fun isSingleDigit(x: Int): Boolean {

Kotlin Basics

[51]

 return when (x) {
 in -9..9 -> true
 else -> false
 }
 }

Note that if the value is contained in the interval (-9, 9), then it must be a single digit, and so
true is returned, otherwise false is returned.

Along a similar line, we can use in to verify whether the value is contained in a collection:

 fun isDieNumber(x: Int): Boolean {
 return when (x) {
 in listOf(1, 2, 3, 4, 5, 6) -> true
 else -> false
 }
 }

Finally, when can also use smart casts. As discussed previously, smart casts allow the
compiler to verify the runtime type of a variable, and expose it:

 fun startsWithFoo(any: Any): Boolean {
 return when (any) {
 is String -> any.startsWith("Foo")
 else -> false
 }
 }

In the previous example, the parameter is declared with a type of Any, so that there is no
restriction on what type can be passed as an argument (analogous to Java's object type).
Inside the when expression, we check if the type is a string, and if it is, we can then access
functions declared on the string, such as the startsWith function.

There is no restriction on combining these different conditions types. You can happily mix
smart casts, in, arbitrary functions, and constants, all in the same when expression.

When without argument
The second form of when is used without an argument, and is a drop-in replacement for
if...else clauses. This can sometimes result in clearer code, especially if many of the
conditions are simple comparisons. The following example shows two ways of writing the
same code: The first with traditional if...else blocks, and the second using when:

 fun whenWithoutArgs(x: Int, y: Int) {
 when {

Kotlin Basics

[52]

 x < y -> println("x is less than y")
 x > y -> println("X is greater than y")
 else -> println("X must equal y")
 }
 }

Function Return
To return a value from a function, we use the return keyword with the value or expression
we want to return:

 fun addTwoNumbers(a: Int, b: Int): Int {
 return a + b
 }

Note that we specified the return value of the function. By default, return returns from the
nearest enclosing function or anonymous function. So, in a nested function, this will return
from the innermost function only:

 fun largestNumber(a: Int, b: Int, c: Int): Int {
 fun largest(a: Int, b: Int): Int {
 if (a > b) return a
 else return b
 }
 return largest(largest(a, b), largest(b, c))
 }

In this somewhat contrived example, the nested function largest returns only from itself.
If the innermost function is an anonymous function, then that still counts for return
purposes:

 fun printLessThanTwo() {
 val list = listOf(1, 2, 3, 4)
 list.forEach(fun(x) {
 if (x < 2) println(x)
 else return
 })
 println("This line will still execute")
 }

If we need to return a value from a closure, then we need to qualify the return with a label,
otherwise the return would be for the outer function. A label is just a string that ends with
an @:

 fun printUntilStop() {
 val list = listOf("a", "b", "stop", "c")

Kotlin Basics

[53]

 list.forEach stop@ {
 if (it == "stop") return@stop
 else println(it)
 }
 }

We don't need to specify the label, in which case an implicit label can be used. Implicit
labels are the name of the function that accepted the closure. If a label is defined, then the
implicit label is not generated:

 fun printUntilStop() {
 val list = listOf("a", "b", "stop", "c")
 list.forEach {
 if (it == "stop") return@forEach
 else println(it)
 }
 }

Type hierarchy
In Kotlin, the uppermost type is called Any. This is analogous to Java's object type. The Any
type defines the well-known toString, hashCode, and equals methods. It also defines the
extension methods apply, let, and to, among others. These methods will be described in
more detail in Chapter 5, Higher Order Functions and Functional Programming.

The Unit type is the equivalent of void in Java. Having a Unit type is common in a
functional programming language, and the distinction between void and Unit is subtle.
Void is not a type, but a special edge case that is used to indicate to the compiler that a
function returns no value. Unit is a proper type, with a singleton instance, also referred to as
Unit or (). When a function is defined as a returning Unit, then it will return the singleton
unit instance.

This results in greater soundness of the type system as now all functions can be defined as
having a return value, even if it's just the Unit type, and functions that have no arguments
can be defined as accepting the Unit type.

Where Kotlin differs from Java most notably is the addition of a bottom type, Nothing,
which is a type that has no instances. Similar to how Any is a superclass of all types,
Nothing is the subclass of all types. For those who are new to the concept of a bottom type,
it might seem strange to have such a type, but it has several use cases.

Kotlin Basics

[54]

Firstly, Nothing can be used to inform the compiler that a function never completes
normally; for example, it might loop forever, or always throw an exception. Another
example is empty immutable collections. An empty list of Nothing could be assigned to a
reference excepting a list of strings, and because the list is immutable, there is no danger of
a string being added to such a list. Therefore, these empty values can be cached and reused.
This is actually the basis of the implementation of the standard library functions
emptyList(), emptySet(), and so on.

Summary
Kotlin has introduced many improvements over Java while at the same time keeping many
of the features that made Java one of the most popular languages over the past two decades.
After reading this chapter, you should feel comfortable delving into Kotlin programming
and exploring some of the productivity enhancements Kotlin has to offer.

3
Object-Oriented Programming

in Kotlin
Kotlin is an object-oriented programming (OOP) language with support for higher-order
functions and lambdas. If you don't know what lambdas are, don't worry, there is a full
chapter dedicated to them. If you have been using a functional language already, you will
find functional language-like constructs supported in Kotlin.

Over time, software complexity has increased, and the OOP abstraction has allowed us to
model the problem we have to solve in terms of objects. You can view each object as a
minicomputer on its own: it has a state and can perform actions. An object through its
available actions exhibits some sort of behavior; therefore, there is a clear analogy between
objects/entities and real life.

The first characteristic of an object-oriented abstraction has been pinned down by Alan Key,
one of the creators of the first successful OOP language: Smalltalk. In his book The Early
History Of Smalltalk, he makes the following points:

Everything is an object: An object is nothing but a block of memory allocated
and configured according to a design/definition. From the problem space you
have to solve, you take all the logical entities and translate them into objects in
your program.
Objects communicate by sending and receiving messages (in terms of objects):
Your program will be a set of objects performing different actions as a result of
calling methods that each one expose.
Objects have their own memory (in terms of objects): This should be read as,
You can create an object by composing other objects.
Every object is an instance of a class (which must be an object): Think of a class
as a blueprint specifying what the type can do.

Object-Oriented Programming in Kotlin

[56]

The class holds the shared behavior for its instances (in the form of objects in a
program list): This means all the objects of a particular type can receive the same
messages; in other words, they expose the same methods.

Kotlin provides full support for the points above but also supports fully the three pillars of
any modern OOP language: encapsulation, inheritance, and polymorphism. Encapsulation
means that a group of related fields and methods are treated as an object. Inheritance
describes the capability of creating a new class from an existing one. Polymorphism means
you can use different classes interchangeably despite the fact that each one implements its
methods differently. Through the content of this chapter, we will get into a bit more detail
about how language constructs support this.

The OOP abstraction is meant to help us alleviate the problems encountered with large code
bases. This makes it easier for us to understand, maintain, and evolve code bases and keep
them bug-free by providing us with the following:

Simplicity: Program objects model the real world, thus reducing complexity and
streamlining the program structure
Modularity: Each object's internal workings are decoupled from other parts of
the system
Modifiability: Changes inside an object do not affect any other part of a program
if you have done your design right
Extensibility: An object's requirements change quite often, and you can quickly
respond to them by adding new objects or modifying existing ones
Reusability: The objects can be used in other programs

In this chapter you will learn:

How to define and use classes and interfaces
When to choose interfaces over abstract classes
When to choose inheritance over composition

Classes
Classes are the main building blocks of any object-oriented programming language. The
concept of a class was first studied by Aristotle. He was the first one to come up with the
concept of a class of fishes and a class of birds. All objects, despite being unique, are part of
a class and share common behavior.

Object-Oriented Programming in Kotlin

[57]

A class enables you to create your own type by grouping together methods and variable of
other types. Think of a class as a blueprint; it describes the data and the behavior of a type.

Classes are declared by using the class keyword, as shown in the following example:

 class Deposit {
 }

Compared to Java, you can define multiple classes within the same source file. The class
keyword can be preceded by the access level. If it is not specified, it will default to public;
this means anyone can create objects of this class. The name of the class follows the
keyword and the curly braces contain the class body where the behavior and data are
defined: fields, properties, and methods.

The class construct supports the first characteristic of an OOP language: encapsulation. The
idea behind it is that you want to keep each class discreet and self-contained. This allows
you to change its implementation without affecting any part of the code that uses it, as long
as it continues to meet the terms of its contract.

So far, I have used the terms class and object interchangeably. As we move forward, we will
make a clear distinction between the two. An object is a runtime instance of a class
definition. In order to create an instance of a class, you need to call the constructor. In the
preceding example, the class Deposit gets an empty constructor generated by the compiler
automatically. But if you want to provide a constructor, you would need to write the
following:

 class Person constructor(val firstName: String, val lastName: String,
val age: Int?) {}

 fun main(args: Array<String>) {
 val person1 = Person("Alex", "Smith", 29)
 val person2 = Person("Jane", "Smith", null)
 println("${person1.firstName},${person1.lastName} is ${person1.age}
years old")
 println("${person2.firstName},${person2.lastName} is
${person2.age?.toString() ?: "?"} years old")
 }

If you have been a Java developer for years, you will most likely have noticed the lack of the
new keyword. In Java, to create a new instance of a given class, you always use new
MyClass. This is not the case in Kotlin though; you don't need to use it. If you do, you will
actually get a compilation error since it is not a recognized keyword.

Object-Oriented Programming in Kotlin

[58]

For a Scala developer, the preceding code would look very familiar, though you would
probably ask why you have to use the constructor keyword. Doesn't the compiler know it is
in the context of a constructor? The answer is that you don't, unless you specify access
modifiers or annotations. The preceding constructor is called the primary constructor. I
guess your next question will be, How can this primary constructor contain code; after all
you want to validate that the incoming parameters are valid? The answer lies with the init
block. To have any code run as part of your primary constructor, you would have to do this:

 class Person (val firstName: String, val lastName: String, val age:
Int?){
 init{
 require(firstName.trim().length > 0) { "Invalid firstName
argument." }
 require(lastName.trim().length > 0) { "Invalid lastName argument."
}
 if (age != null) {
 require(age >= 0 && age < 150) { "Invalid age argument." }
 }
 }
 }

Now the validation code will run as part of your primary constructor. The require method
will throw IllegalArgumentException with the message you have provided if the
expression given evaluates to False.

I am sure some of you would question how does it work with all the three arguments. Are
they created as public fields of the class? The answer is, no. There are properties. If you are
accustomed to the .NET world, you will immediately know what it is all about. There is a
chapter later in the book where we will discuss in detail how properties work.

How does one create a new instance of Person and grab the values of all the three fields
when using the class from Java code? This is done through the getter functions that any Java
developer is accustomed to:

 Person p = new Person("Jack", "Miller", 21);
 System.out.println(String.format("%s, %s is %d age old",
p.getFirstName(), p.getLastName(), p.getAge()));

The third parameter of the constructor is a nullable integer; it would be good to have the
option of not having to actually type null when instantiating an instance for which we don't
have the age. Kotlin is a modern language that supports default value for a method
parameter, but on this occasion let's just say it doesn't. So we want to have a
second constructor for which we only pass the first and last name:

 constructor(firstName: String, lastName: String) : this(firstName,

Object-Oriented Programming in Kotlin

[59]

lastName, null)

For any secondary constructor you need to call the primary constructor via this, and pass
all the parameters required. Now you can create a new Person object like this:

 val person2 = Person("Jane", "Smith")

If you don't want to have your constructor accessed directly, you should mark it private,
protected, or internal. A typical singleton design consists of providing a private constructor
and then having the getInstance() method give you that one instance of that class at
runtime. When defining abstract classes you should flag your constructor visibility as
protected; this way it can only be called by the derived classes. We will see this shortly as
we cover inheritance. Given your module logic, you could expose classes whose instances
can and should only be created within your module:

 class Database internal constructor(connection:Connection) {
 }

Prefixing your constructor arguments with val or var is not a must; if you don't want the
getter (or setter if you use var) to be generated, you can always do the following:

 class Person2(firstName: String, lastName: String, howOld: Int?) {
 private val name: String
 private val age: Int?

 init {
 this.name = "$firstName,$lastName"
 this.age = howOld
 }

 fun getName(): String = this.name

 fun getAge(): Int? = this.age
 }

Try creating a new instance of this class and then use the dot operator to prompt intelli-
sense to display the available methods on your object. Unlike the first example, the three
parameters are not translated into fields; the pop-up window will display two methods,
named getName and getAge.

Object-Oriented Programming in Kotlin

[60]

Access levels
All types and type members have accessibility levels, which constrains where they can be
used. As mentioned earlier, not providing one would default to public. Kotlin comes with
three different access levels, which are as follows:

Internal: This means you can create a new instance of your class from anywhere
within your module
Private: This is more restrictive than the previous one because your class is only
visible in the scope of the file defining it
Protected: You can use this accessibility level only for subclasses; it is not
available for the file-level type of declaration

The internal access level is the equivalent of private for classes when it comes to
encapsulation, only this time it is at the module level. You could make it module-visible
only if the code isn't accessed from outside the scope of the module. This reduces the API
you exposed and makes it easier to understand. Furthermore, if a change is required in your
module, you can assume that modifying the contract would only break the internal API of
the assembly.

Nested classes
Working with Java, you may have come across the concept of creating a class within the
body of another class, in other words, creating nested classes. You could do the same in
Kotlin, and here is how you can do it:

 class OuterClassName {

 class NestedClassName {

 }
 }

You could, of course, provide the access level to the nested class. If you set it to private, you
will be able to create an object of NestedClassName only from within the scope of
OuterClassName. To allow for a code block within your module to be able to create an
instance of the inner class, you will have to make use of the internal keyword. If you decide
to set the access level as protected, any class that derives from OuterClassName would be
able to create those instances. If the term deriving is not something you know about, don't
worry; later in this chapter, we are going to address inheritance and it will all be clear.

Object-Oriented Programming in Kotlin

[61]

In Java, nested classes come in two flavors: static and non-static. Nested classes declared
using the static keyword are called static nested classes, whereas nested classes that are
declared non-static are called inner classes. A nested class is considered a member of its
enclosing class:

 class Outer {
 static class StaticNested {}
 class Inner {}
 }

There is a subtle difference between static and inner nested classes. The latter have access to
the enclosing class members even if they are declared private, whereas the static nested
classes can access the public members only. Furthermore, to create an instance of the inner
class, you will first need an instance of an Outer class.

Kotlin, just like Java, supports the same construct. To create the equivalent of a static nested
class, you could use this:

 class BasicGraph(val name: String) {
 class Line(val x1: Int, val y1: Int, val x2: Int, val y2: Int) {
 fun draw(): Unit {
 println("Drawing Line from ($x1:$y1) to ($x2, $y2)")
 }
 }
 fun draw(): Unit {
 println("Drawing the graph $name")
 }
 }

 val line = BasicGraph.Line(1, 0, -2, 0)
 line.draw()

The example is pretty straightforward and shows you how it works. To allow the Line class
to access a private member of the outer class BasicGraph, all you need to do is make the
Line class inner; just prefix the class with the inner keyword:

 class BasicGraphWithInner(graphName: String) {
 private val name: String

 init {
 name = graphName
 }

 inner class InnerLine(val x1: Int, val y1: Int, val x2: Int, val y2:
Int) {
 fun draw(): Unit {
 println("Drawing Line from ($x1:$y1) to ($x2, $y2) for graph

Object-Oriented Programming in Kotlin

[62]

$name ")
 }
 }

 fun draw(): Unit {
 println("Drawing the graph $name")
 }
 }

Kotlin comes with a more powerful this expression than you may be accustomed with.
You can refer the outer scope to this by using the label construct this@label. Here is an
example:

 class A {
 private val somefield: Int = 1
 inner class B {
 private val somefield: Int = 1
 fun foo(s: String) {
 println("Field <somefield> from B" + this.somefield)
 println("Field <somefield> from B" + this@B.somefield)
 println("Field <somefield> from A" + this@A.somefield)
 }
 }
 }

In this case, both the outer and the inner classes contain a field sharing the same name; this
expression helps with disambiguation.

Working on a UI code base, you will get into a situation where, for a control (listbox, button,
and so on), you will have to provide an event handler for different events they raise. The
most common example is the click event of a button on your screen. Typically, you will
want to react to it and perform some action. The UI framework will expect you to provide
an instance of a class; from this listener class, you will most likely want to access some state
in the outer class scope. Therefore, you will end up providing an anonymous inner class, as
in the following example where we count the number of clicks on a button:

 class Controller {
 private var clicks:Int=0
 fun enableHook() {
 button.addMouseListener(object : MouseAdapter() {
 override fun mouseClicked(e: MouseEvent) {clicks++}
 })
 }
 }

Object-Oriented Programming in Kotlin

[63]

We assume there is a reference to a UI button and we attach the enableHook callback for its
mouse events. Every time the button is clicked, it will increase the field clicks. All we have
defined here in fact is an inner class, an anonymous one.

Data classes
It happens quite often we need to define classes for the sole purpose of holding data. If you
have been coding in Scala, I'm sure case classes will come to your mind. Kotlin provides a
similar concept, but the term is known as data classes. We will talk a bit more about this
type of class in detail in a later chapter, but for now you can define such a class like this:

 data class Customer(val id:Int, val name:String, var address:String)

The compiler does a lot for us when we define a data class, but we will leave these details
for later.

Enum classes
Enumeration is a specific type of class; a variable of a given enum type is limited to a set of
predefined constants: the ones that have been defined by the type. To define an
enumeration, you could use the enum class keywords, as in the following example where
we create a type for all the days in a week:

 enum class Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY}

Enumeration, like all classes, can take a constructor parameter. We can define an enum class
to represent the planets in our solar system, and for each planet we retain the total mass and
radius:

 public enum class Planet(val mass: Double, val radius: Double) {
 MERCURY(3.303e+23, 2.4397e6), VENUS(4.869e+24, 6.0518e6),
EARTH(5.976e+24, 6.37814e6), MARS(6.421e+23, 3.3972e6), JUPITER(1.9e+27,
7.1492e7), SATURN(5.688e+26, 6.0268e7), URANUS(8.686e+25, 2.5559e7),
NEPTUNE(1.024e+26, 2.4746e7);
 }

I made the two parameters val to have them exposed as properties. All enumeration
instances come with two properties predefined. One is name of type String and the second
one is ordinal of type int. The former returns the name of the instance, and the latter gives
you the position in the enumeration's type declaration.

Object-Oriented Programming in Kotlin

[64]

Similar to Java, Kotlin provides you with helper methods to work with enumeration classes.
To retrieve an enum value based on the name, you will need to use this:

 Planet.valueOf("JUPITER")

To get all the values defined, you will need to write this:

 Planet.values()

Just like any class, enumeration types can inherit an interface and implement it
anonymously for each enum value. Here is an example of how you could achieve this:

 interface Printable {
 fun print(): Unit
 }

 public enum class Word : Printable {
 HELLO {
 override fun print() {
 println("Word is HELLO")
 }
 },
 BYE {
 override fun print() {
 println("Word is BYE")
 }
 }
 }

 val w= Word.HELLO
 w.print()

Static methods and companion objects
Unlike Java, Kotlin doesn't support static methods for a class. Most readers will know that
static methods do not belong to the object instance but rather to the type itself. In Kotlin, it
is advisable to define methods at the package level to achieve the functionality of static
methods. Let's define a new Kotlin file and name it Static. Within this file, we will place
the code for a function that will return the first character of the input string (if the input is
empty, an exception will be raised), which is as follows:

 fun showFirstCharacter(input:String):Char{
 if(input.isEmpty()) throw IllegalArgumentException()
 return input.first()
 }

Object-Oriented Programming in Kotlin

[65]

Then, in your code, you can simply call showFirstCharacter("Kotlin is cool!").
The compiler is here to do some of the work for you. Using javap, we can take a look at the
byte code generated. Just run javap -c StaticKt.class to get the code produced by the
compiler:

Compiled from "Static.kt"
public final class com.programming.kotlin.chapter03.StaticKt {
 public static final char showFirstCharacter(java.lang.String);
 Code:
 0: aload_0
 1: ldc #9 //String input
 3: invokestatic #15 //Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang
/Object;Ljava/lang/String;)V
 ...
 40: aload_0
 41: checkcast #17 //class java/lang/CharSequence
 44: invokestatic #35 //Method
kotlin/text/StringsKt.first:(Ljava/lang/CharSequence;)C
 47: ireturn
}

As you can see from the printout, the compiler has actually generated a class for us and has
marked it as final; it can't be inherited, as you already know. Within this class, the compiler
has added the function we defined. Let’s call this method from the program entry point and
again using the utility javap we can look at what the bytecode looks like:

fun main(args: Array<String>) {
 println("First lettter:" + showFirstCharacter("Kotlin is cool"))
}
Compiled from "Program.kt"
public final class com.programming.kotlin.chapter03.ProgramKt {
 public static final void main(java.lang.String[]);
 Code:
 0: aload_0
 ...
 18: ldc #29 //String Kotlin is cool
 20: invokestatic #35 //Method
com/programming/kotlin/chapter03/StaticKt.showFirstCharacter:(Ljav
a/lang/String;)C
}

Most of the bytecode has been left out for the sake of simplicity, but at line 20 you can see
there is a call to our method; in particular, the call is made via the invokestatic routine.

Object-Oriented Programming in Kotlin

[66]

We can't talk about static methods and not bring singletons into the discussion. A singleton
is a design pattern that limits the instantiation of a given class to one instance. Once created,
it will live throughout the span of your program. Kotlin borrows the approach found in
Scala. Here is how you can define a singleton in Kotlin:

 object Singleton{
 private var count = 0
 fun doSomething():Unit {
 println("Calling a doSomething (${++count} call/-s in total)")
 }
 }

From any function, you can now call Singleton.doSomething, and each time, you will
see the counter increasing. If you were to look at the bytecode produced, you will find out
the compiler is doing some of the work for us once again:

public final class com.programming.kotlin.chapter03.Singleton {
 public static final com.programming.kotlin.chapter03.Singleton INSTANCE;
 public final void doSomething();
 Code:
 0: new #10 // class java/lang/StringBuilder
 43: return
 ...
 static {};
 Code:
 0: new #2 //class
com/programming/kotlin/chapter03/Singleton
 3: invokespecial #61 //Method "<init>":()V
 6: return
}

I have left out the code produced for our doSomething method since it is not the focus of
this topic. The compiler once again has created a class and marked it final. Furthermore, it
has introduced a member called INSTANCE and has marked it static. The interesting part is
at the end of the listing where you see the static{}; entry. This is the class initializer, and
it is called only once, JVM will make sure this happens, before:

An instance of the class is created
A static method of the class is invoked
A static field of the class is assigned
A non-constant static field is used
An assert statement lexically nested within the class is executed for a top-level
class

Object-Oriented Programming in Kotlin

[67]

In this case, the code is called before the first call to doSomething because we access the
static member INSTANCE (see the following getstatic bytecode routine). If we were to call
this method twice, we would get the following bytecode:

public static final void main(java.lang.String[]);
 Code:
 0: aload_0
 1: ldc #9 // String args
 3: invokestatic #15 //Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang
/Object;Ljava/lang/String;)V
 6: getstatic #21 //Field
com/programming/kotlin/chapter03/Singleton.INSTANCE:Lcom/programmi
ng/kotlin/chapter03/Singleton;
 9: invokevirtual #25 //Method
com/programming/kotlin/chapter03/Singleton.doSomething:()V
 12: getstatic #21 //Field
com/programming/kotlin/chapter03/Singleton.INSTANCE:Lcom/programmi
ng/kotlin/chapter03/Singleton;
 15: invokevirtual #25 //Method
com/programming/kotlin/chapter03/Singleton.doSomething:()V
 18: return

You can see that in both occasions doSomething is called as a virtual method. The reason is
you can create a singleton that inherits from a given class, as in the example here:

 open class SingletonParent(var x:Int){
 fun something():Unit{
 println("X=$x")
 }
 }
 object SingletonDerive:SingletonParent(10){}

There is a way to call a static method as you would do in Java. To achieve this, you will
have to place your object within a class and mark it as a companion object. This concept of a
companion object will be familiar to someone with at least entry-level knowledge of Scala.
The following example uses the factory design pattern to construct an instance of Student:

 interface StudentFactory {
 fun create(name: String): Student
 }
 class Student private constructor(val name: String) {
 companion object : StudentFactory {
 override fun create(name: String): Student {
 return Student(name)
 }
 }

Object-Oriented Programming in Kotlin

[68]

 }

As you can see, the constructor for the Student type has been marked private. Thus, it
can't be invoked from anywhere apart from inside the Student class or the companion
object. The companion class has full visibility for all the methods and members of
Student.

From the code, you will need to call Student.create("Jack Wallace") to create a new
instance of Student. If you look in the build output, you will notice there are two classes
generated for Student: one is Student.class and the other is
Student$Companion.class. Let's see how the call to Student.create gets translated
into bytecode:

public final class com.programming.kotlin.chapter03.ProgramKt {
 public static final void main(java.lang.String[]);
 Code:
 0: aload_0
 1: ldc #9 //String args
 3: invokestatic #15 //Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang
/Object;Ljava/lang/String;)V
 6: getstatic #21 // Field
com/programming/kotlin/chapter03/Student.Companion:Lcom/programmin
g/kotlin/chapter03/Student$Companion;
 9: ldc #23 //String Jack Wallace
 11: invokevirtual #29 //Method
com/programming/kotlin/chapter03/Student$Companion.create:(Ljava/l
ang/String;)Lcom/programming/kotlin/chapter03/Student;
 14: pop
 15: return
}

At line 6, you will notice there is a call for a static member getstatic. As you can probably
imagine, there is a static field added to the Student class of the type Student.Companion:

public final class com.programming.kotlin.chapter03.Student {
 public static final com.programming.kotlin.chapter03.Student$Companion
Companion;
 public final java.lang.String getName();
 static {};
 Code:
 0: new #39 //class
com/programming/kotlin/chapter03/Student$Companion
 3: dup
 4: aconst_null
 5: invokespecial #42 //Method

Object-Oriented Programming in Kotlin

[69]

com/programming/kotlin/chapter03/Student$Companion."<init>":(Lkotl
in/jvm/internal/DefaultConstructorMarker;)V
 8: putstatic #44 //Field
Companion:Lcom/programming/kotlin/chapter03/Student$Companion;
 11: return

public
com.programming.kotlin.chapter03.Student(java.lang.String,kotlin.jvm.intern
al.DefaultConstructorMarker);
 Code:
 0: aload_0
 1: aload_1
 2: invokespecial #24 //Method "<init>":(Ljava/lang/String;)V
 5: return

This code snippet proves the assumption is correct. You can see the Companion member
being added to our class. And yet again, the class gets class initializer code generated to
create an instance of our companion class. Student.create is shorthand for writing code
such as Student.Companion.create(). If you were trying to create an instance of
Student.Companion (that is, val c = Sudent.Companion), you would get a
compilation error. A companion object follows all the inheritance rules.

Interfaces
An interface is nothing more than a contract; it contains definitions for a set of related
functionalities. The implementer of the interface has to adhere to the interface the contract
and implement the required methods. Just like Java 8, a Kotlin interface contains the
declarations of abstract methods as well as method implementations. Unlike abstract
classes, an interface cannot contain state; however, it can contain properties. For the Scala
developer reading this book, you will find this similar to the Scala traits:

 interface Document {
 val version: Long
 val size: Long

 val name: String
 get() = "NoName"

 fun save(input: InputStream)
 fun load(stream: OutputStream)
 fun getDescription(): String {
 return "Document $name has $size byte(-s)"}
 }

Object-Oriented Programming in Kotlin

[70]

This interface defines three properties and three methods; the name property and the
getDescription methods provide the default implementation. How would you use the
interface from a Java class? Let's see by implementing this interface:

 public class MyDocument implements Document {

 public long getVersion() {
 return 0;
 }

 public long getSize() {
 return 0;
 }

 public void save(@NotNull InputStream input) {
 }

 public void load(@NotNull OutputStream stream) {
 }

 public String getName() {
 return null;
 }

 public String getDescription() {
 return null;
 }
 }

You can see the properties have been translated into getters. Despite providing default
implementations for getDescription along with the name, you still have to implement
them. This is not the case when implementing the interface in a Kotlin class:

 class DocumentImpl : Document {
 override val size: Long
 get() = 0

 override fun load(stream: OutputStream) {
 }

 override fun save(input: InputStream) {
 }
 override val version: Long
 get() = 0
 }

Object-Oriented Programming in Kotlin

[71]

Let's delve into the generated code and see what actually happens behind the scenes with
the code for those two methods implemented at the interface level:

$ javap -c
build\classes\main\com\programming\kotlin\chapter03\DocumentImpl.class
Compiled from "KDocumentImpl.kt"
public final class com.programming.kotlin.chapter03.KDocumentImpl
implements com.programming.kotlin.chapter03.Document {
 public long getSize();
 Code:
 0: lconst_0
 1: lreturn
public void load(java.io.OutputStream);
 Code:
 0: aload_1
 1: ldc #15 //String stream
 3: invokestatic #21 //Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 6: return
public void save(java.io.InputStream);
 Code:
 0: aload_1
 1: ldc #26 //String input
 3: invokestatic #21 //Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 6: return
public long getVersion();
 Code:
 0: lconst_0
 1: lreturn
public com.programming.kotlin.chapter03.KDocumentImpl();
 Code:
 0: aload_0
 1: invokespecial #32 //Method java/lang/Object."<init>":()V
 4: return
public java.lang.String getName();
 Code:
 0: aload_0
 1: invokestatic #39 //Method
com/programming/kotlin/chapter03/Document$DefaultImpls.getName:(Lcom/
programming/kotlin/chapter03/Document;)Ljava/lang/String;
 4: areturn
public java.lang.String getDescription();
 Code:
 0: aload_0
 1: invokestatic #43 //Method

Object-Oriented Programming in Kotlin

[72]

com/programming/kotlin/chapter03/Document$DefaultImpls.getDescription
:(Lcom/programming/kotlin/chapter03/Document;)Ljava/lang/String;
 4: areturn
}

You may have already spotted the calls to the DefaultImpls class in the code of
getDescription and getName. If you look into the classes produced by the compiler
(build/main/com/ programming/kotlin/chapter03), you will notice a file
named Document$DocumentImpls.class. What is this class all about, I hear you ask? You
haven't written such a class. We can find out what it contains by again turning to javap:

public final class com.programming.kotlin.chapter03.Document$DefaultImpls {
 public static java.lang.String
getName(com.programming.kotlin.chapter03.Document);
 Code:
 0: ldc #9 //String NoName
 2: areturn
public static java.lang.String
getDescription(com.programming.kotlin.chapter03.Document);
 Code:
 0: new #14 //class java/lang/StringBuilder
 3: dup
 4: invokespecial #18 //Method
java/lang/StringBuilder."<init>":()V
 7: ldc #20 //String Document
 9: invokevirtual #24 //Method
java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder
;
 12: aload_0
 13: invokeinterface #29, 1 //InterfaceMethod
com/programming/kotlin/chapter03/Document.getName:()Ljava/lang/String ;
 40: invokevirtual #43 //Method
java/lang/StringBuilder.toString:()Ljava/lang/String;
 43: areturn
}

From the preceding code snippet (I left out some of the code for simplicity), you can clearly
see the compiler has created a class for us containing two static methods that match the
ones we have implemented in the interface.

Object-Oriented Programming in Kotlin

[73]

While the code for getName is very simple, after all, we just return a string value, the one
for getDescription is a bit more complex. The code makes use of StringBuilder to
create the string for description purposes. The interesting part is how it goes back to
getSize and getName. If you look at line 12, aload_0 pushes the Document parameter
(the method getDescription takes one parameter) to the stack. The next line makes the
call by using invokeinterface to call a method defined by a Java interface. Discussing the
details of the Java bytecode goes beyond the scope of this book. You can find quite a few
details, if you are interested to know more, with a quick search on the Web.

Inheritance
Inheritance is fundamental to object-oriented programming. It allows us to create new
classes that reuse, extend, and/or modify the behavior of the preexisting ones. The
preexisting class is called the super (or base or parent) class, and the brand new class we are
creating is called the derived class. There is a restriction on how many super classes we can
inherit from; on a JVM, you can only have one base class. But you can inherit from multiple
interfaces. Inheritance is transitive. If class C is derived from class B and that class B is
derived from a given class A, then class C is a derived class of A.

A derived class will implicitly get all the parent classes (and the parent's parent class, if that
is the case) fields, properties, and methods. The importance of inheritance lies in the ability
to reuse code that has already been written and therefore avoid the scenario where we
would have to reimplement the behavior exposed by the parent class. A derived class can
add fields, properties, or new methods, thus extending the functionality available through
the parent. We would say that class B, the derived one, specializes class A, the parent. A
simpler example is to think of the animal kingdom chart. At the top, we have animal,
followed by vertebrates and invertebrates; the former is further split into fish, reptile,
mammals, and so on. If we take the yellow-fin tuna species, we can look at it as a
specialized type of fish.

Object-Oriented Programming in Kotlin

[74]

The next illustration shows a simple class hierarchy. Let's say you write a system to deal
with payments. You will have a class called Payment that holds an amount and a
CardPayment class to take such payments:

Simple inheritance

You must have noticed the presence of another entity called Any in the preceding
screenshot. Every time you construct an entity that doesn't take any parent, it will
automatically get this class as its parent. You will probably think Any is the Object class,
the super/parent class of any class defined in Java. However, this is not the case. If you pay
attention to the methods defined by the class Any you will notice it is a subset of those
found for on the Java Object class. So how does Kotlin deal with Java object references?
When the compiler sees such an object, it will translate it into Any and then it will make use
of the extension methods to complete the method set.

Let's implement the preceding code and see how we actually define in Kotlin inheritance:

 enum class CardType {
 VISA, MASTERCARD, AMEX
 }

 open class Payment(val amount: BigDecimal)
 class CardPayment(amount: BigDecimal, val number: String, val
expiryDate: DateTime, val type: CardType) : Payment(amount)

We have created our classes based on the spec we just saw. CardType is an enumeration
type, as hinted in the definition. The definition of Payment has introduced a new keyword,
called open. Through this keyword, you are basically saying the class can be inherited from.
The designers of Kotlin have decided the default behavior is to have the classes sealed for
inheritance. If you have programmed in Java, you will have come across the final
keyword, which does exactly the opposite of open. In Java, any class which hasn't been
marked as final can be derived from. The definition of CardPayment marks the
inheritance via a semicolon. The : Payment translates into: “CardPayment which extends
from Payment“. This is different to Java where you would use the extends keyword. Any
developers with C++ or C# background will be very familiar with the construct.

Object-Oriented Programming in Kotlin

[75]

In the preceding code, our CardPayment class has a primary constructor. Therefore, the
parent one has to be called on the spot, hence Payment(amount). But what if our new class
doesn't define a primary constructor? Let's extend our class hierarchy to add a new type,
named ChequePayment:

 class ChequePayment : Payment {
 constructor(amount: BigDecimal, name: String, bankId: String) :
super(amount) {
 this.name = name
 this.bankId = bankId
 }
 var name: String
 get() = this.name
 var bankId: String
 get() = this.bankId
 }

Since we have chosen to avoid the primary constructor, the definition of a secondary
constructor has to call the parent one. This call needs to be the first thing our constructor
does. Hence, the body of our constructor is preceded by super(args1,args2...). This is
different from Java, where we would have moved this call as the first line in our constructor
body.

In this example we inherit from one class only – as we said already we can't inherit from
more than one class. However, we can inherit from multiple interfaces at the same time.
Let's take a simple example of an amphibious car: it is a boat as well as a car. If you were to
model this, we would consider having two interfaces: Drivable and Sailable. And we
would have our amphibious car extend both of them:

 interface Drivable {
 fun drive()
 }
 interface Sailable {
 fun saill()
 }
 class AmphibiousCar(val name: String) : Drivable, Sailable {
 override fun drive() {
 println("Driving...")
 }
 override fun saill() {
 println("Sailling...")
 }
 }

Object-Oriented Programming in Kotlin

[76]

Remember our class automatically derives from Any; it is as if we had written class
AmphibiousCar(val name:String):Any, Drivable, Sailable. When we inherit an
interface, we have to provide an implementation for all its methods and properties or we
have to make the class abstract. We will talk shortly about abstract classes. There is no
restriction on how many interfaces you can inherit from and the order in which you want to
specify them. Unlike Java, if you inherit from a class and one or more interfaces, you don't
need to list the class as the first entry in the list of parents:

 interface IPersistable {
 fun save(stream: InputStream)
 }

 interface IPrintable {
 fun print()
 }

 abstract class Document(val title: String)

 class TextDocument(title: String) : IPersistable, Document(title),
IPrintable {
 override fun save(stream: InputStream) {
 println("Saving to input stream")
 }

 override fun print() {
 println("Document name:$title")
 }
 }

Visibility modifiers
When you define your class, the contained methods, properties, or fields can have various
visibility levels. In Kotlin, there are four possible values:

Public: This can be accessed from anywhere
Internal: This can only be accessed from the module code
Protected: This can only be accessed from the class defining it and any derived
classes
Private: This can only be accessed from the scope of the class defining it

Object-Oriented Programming in Kotlin

[77]

If the parent class specifies that a given field is open for being redefined (overwritten), the
derived class will be able to modify the visibility level. Here is an example:

 open class Container {
 protected open val fieldA: String = "Some value"
 }
 class DerivedContainer : Container() {
 public override val fieldA: String = "Something else"
 }

Now in the main class, you can create a new DerivedContainer instance and print out the
value of fieldA. Yes, this field is now public to any code:

 val derivedContainer = DerivedContainer()
 println("DerivedContainer.fieldA:${derivedContainer.fieldA}")
 /*val container:Container =
derivedContainerprintln("fieldA:${container.fieldA}")*/

I commented out the code where we use derivedContainer as if it was an instance of
DerivedContainer. If that is the case, trying to compile the commented code will yield an
error because fieldA is not accessible.

Redefining the field doesn't mean it will replace the existing one when it comes to object
allocation. Remember, a derived class inherits all the parent class fields. It takes just a little
bit of code to prove this:

 derivedContainer.javaClass.superclass.getDeclaredFields().forEach {
 field->
 field.setAccessible(true)
 println("Field:${field.name},${Modifier.toString(field.modifiers)} ,
Value=${field.get(derivedContainer)}")
 }
 derivedContainer.javaClass.getDeclaredFields().forEach {
 field->
 field.setAccessible(true)
 println("Field:${field.name},${Modifier.toString(field.modifiers)} ,
Value=${field.get(derivedContainer)}")
 }

Run the preceding code and it will print fieldA twice in the output; the first entry will
come from the parent class and will be “Some Value”, and the latter will come from the
derived class and will read “Something else”.

Object-Oriented Programming in Kotlin

[78]

A typical use case would be to widen the access for a given field, method, and/or property.
But you should be careful about using this since it might break the Liskov substitution
principle. Following this principle, if a program is using a base class, then the reference to
the base class can be replaced with a derived class without affecting the functionality of the
program.

Abstract classes
Adding the abstract keyword in front of the class definition will mark the class as
abstract. An abstract class is a partially defined class; properties and methods that have no
implementation must be implemented in a derived class, unless the derived class is meant
to be an abstract class as well. Here is how you would define an abstract class in Kotlin:

 abstract class A {
 abstract fun doSomething()
 }

Unlike interfaces, you have to mark the function abstract if you don't provide a body
definition.

You cannot create an instance of an abstract class. The role of such a class is to provide a
common set of methods that multiple derived classes share. The best example of such a case
is the InputStream class. This will be very familiar to a developer who has already worked
with Java. The JDK documentation says: “This abstract class is the superclass of all classes
representing an input stream of bytes. Applications that need to define a subclass of
InputStream must always provide a method that returns the next byte of input”. If you
look at the java.io package, you will find a few implementations for it:
AudioInputStream, ByteArrayInputStream, FileInputStream, and many more. You
could also provide an implementation of it.

You can inherit a class A with a function flagged as opened for being redefined (overridable,
as we will see shortly) and marked it abstract in the derived class. This way the derived
class will become abstract. Any class that inherits from the derived class will need to
provide an implementation, and it won't be able to access the implementation defined in
class A:

 open class AParent protected constructor() {
 open fun someMethod(): Int = Random().nextInt()
 }
 abstract class DDerived : AParent() {
 abstract override fun someMethod(): Int
 }

Object-Oriented Programming in Kotlin

[79]

 class AlwaysOne : DDerived() {
 override fun someMethod(): Int {
 return 1
 }
 }

The example is pretty straightforward. We have a parent class that defines someMethod,
returning a random integer. A DDerived class inherits this class (please note we have to
invoke the empty constructor on the parent class) and marks the method abstract. Then, our
AlwaysOne class will have to provide a function body for our method that always returns 1.

Interface or abstract class
There is always a debate over using either an interface or an abstract class. Here are a few
rules to follow when deciding which way to go:

Is-a versus Can-Do: Any type can inherit from one parent class only and multiple
interfaces. If for the derived class B you can't say B Is-an A (A is the base type),
don't use an interface but rather an interface. Interfaces imply a Can-Do
relationship. If the Can-do functionality is applicable to different object types, go
with an interface implementation. For example, for both FileOutputStream and
ByteOutputpuStream (and any of the other sibling implementations available),
you can say they have an Is-a relationship with java.io.OutputStream. Hence
you will see that OutputStream is an abstract class providing common
implementations to all objects that represent a writable stream. However,
Autocloseable, which represents an object holding a resource that can be
released when the close method is invoked, provides a Can-do functionality
and thus it makes sense to have it as an interface.
Promote code reuse: I am sure you will agree it is easier to inherit a class rather
than an interface, where you have to provide an implementation for all the
methods defined. A parent class can provide a lot of common functionality; thus,
the derived class has to only redefine or implement a small subset of the methods
defined.
Versioning: If you work with an interface and you add a new member to it, you
force all the derived classes to change their code by adding the new
implementation. The source code has to be changed and recompiled. The same is
not applicable for an abstract class. You can add your new method and make use
of it, and the user's source code doesn't even need to be recompiled.

Object-Oriented Programming in Kotlin

[80]

Polymorphism
After encapsulation and inheritance, polymorphism is seen as the third pillar of object-
oriented programming. It decouples the “what” from “how” at the type level. One of the
advantages that polymorphism offers is improved code organization and readability;
furthermore, it allows you to extend your programs at any point later, when new features
are required to be implemented.

The word polymorphism originates from the Greek language: polys (πολύς), meaning
many or much and morphē (μορφή), meaning form or shape. There are multiple forms of
polymorphism, but in this chapter, we are going to talk about the one known as late-
binding (or dynamic binding or runtime binding).

The power of polymorphism comes at runtime when objects of a derived class are treated as
objects of the base class. This can happen for a method parameter or when it comes to
storing a group of common elements in a collection or array. The peculiar thing here is that
the object's declared type will not be identical with the actual runtime type when the code is
executed. This sounds like there is some magic happening under the hood. All of this is
happening through the use of virtual methods. Base classes may define and implement
virtual methods, and derived classes can override them, thus providing their own
implementation. This way, two distinct types behave differently when the same method is
called. When the virtual method is called as your program is executed, the JVM looks up
the runtime type of the instance and works out which method it should actually invoke.
Later in the chapter, we will dedicate some space to discuss in a bit more detail how this is
implemented under the bonnet.

Virtual methods unify how we work with a group of related types. Imagine you are
working on the next big drawing application and it must support the rendering of a variety
of different shapes on the screen. The program has to keep track of all the shapes the user
will create and react to their input: changing the location on the screen, changing their
properties (border color, size, or background color; you name it!), and so on. When you
compile the code, you can't know in advance all the types of shapes you will support; the
last thing you want to do is handle each one individually. This is where polymorphism
steps in to help you. You want to treat all your graphical instances as a shape. The image
reacting to the user clicking on the canvas and your code need to work out whether the
mouse location is within the boundaries of one of the shapes drawn. What you should
avoid is walking through all the shapes, and for each one calling a different method to do
the hit check: calling isWithinCircle for a circle shape, checkIsHit for a rhombus
shape, and so on.

Object-Oriented Programming in Kotlin

[81]

Let's have a look at how you could implement this using a textbook approach. First, we will
define a Shape class. This needs to be an abstract class and you shouldn't be able to create
an instance of it. After all, how could it be drawn on the screen when it hasn't been
specialized? Let's look at the code:

 abstract class Shape protected constructor() {
 var XLocation: Int
 get() = this.XLocation
 set(value: Int) {
 this.XLocation = value
 }

 var YLocation: Int
 get() = this.XLocation
 set(value: Int) {
 this.XLocation = value
 }
 var Width: Double
 get() = this.Width
 set(value: Double) {
 this.Width = value
 }
 var Height: Double
 get() = this.Height
 set(value: Double) {
 this.Height = value
 }
 abstract fun isHit(x: Int, y: Int): Boolean
 }

With this in place, we are going to implement two shapes: an ellipsis and a rectangle. A
question for you: Does it make sense to implement a square type? Think about this. For
now, let's implement the two shapes we just discussed:

 class Ellipsis : Shape() {
 override fun isHit(x: Int, y: Int): Boolean {
 val xRadius = Width.toDouble / 2
 val yRadius = Height.toDouble / 2
 val centerX = XLocation + xRadius
 val centerY = YLocation + yRadius
 if (xRadius == 0.0 || yRadius == 0.0)
 return false
 val normalizedX = centerX - XLocation
 val normalizedY = centerY - YLocation
 return (normalizedX * normalizedX) / (xRadius * xRadius) +
(normalizedY * normalizedY) / (yRadius * yRadius) <= 1.0
 }

Object-Oriented Programming in Kotlin

[82]

 }

 class Rectangle : Shape() {
 override fun isHit(x: Int, y: Int): Boolean {
 return x >= XLocation && x <= (XLocation + Width) && y >=
YLocation && y <= (YLocation + Height)
 }
 }

We consider that the top-left corner of the canvas is at point (0,0). Given these types, we will
create a few instances of them and see how polymorphism works. We will create two
ellipses and one rectangle. We will then store their instances in a collection, and then for a
given point, we will work out whether it is within any of the given shapes:

 fun main(args: Array<String>) {
 val e1 = Ellipsis()
 e1.Height = 10
 e1.Width = 12
 val e2 = Ellipsis()
 e2.XLocation = 100
 e2.YLocation = 96
 e1.Height = 21
 e1.Width = 19
 val r1 = Rectangle()
 r1.XLocation = 49
 r1.YLocation = 45
 r1.Width = 10
 r1.Height = 10
 val shapes = listOf<Shape>(e1, e2, r1)
 val selected:Shape? = shapes.firstOrNull {shape -> shape.isHit(50,
52)}
 if(selected == null){
 println("There is no shape at point(50,52)")
 }
 else{
 println("A shape of type ${selected.javaClass.simpleName} has been
selected.")
 }
 }

Running the code will print out an instance of a rectangle on the console at the given point.
Using javap, look at the generated bytecode; the code should look similar to this (leaving
out most of it for the sake of simplicity):

169: invokevirtual #69 // Method
com/programming/kotlin/chapter03/Shape.isHit:(II)Z

Object-Oriented Programming in Kotlin

[83]

So, at the bytecode level, there is a method named invokevirtual to call a virtual
function. It is because of this the code in Rectangle or Ellipsis gets invoked. But how
does it know how and when to invoke it? Didn't I call the method on a Shape class?

Dynamic method resolution is handled via the vtable (that is, virtual table) mechanism.
The actual approach might depend on the JVM implementation, but they will share the
same logical implementation.

When any object instance is created, its memory allocation lives on the heap. The actual size
of the memory being allocated is slightly bigger than the sum of all the allocated fields,
including all the base classes, all the way to the Any class. The runtime footprint will get an
extra space added at the top of the memory block to hold a reference to the type descriptor
information. For each class type you define, there will be an object allocated at runtime. This
entry has been added as the first entry to always guarantee the location, thus avoiding the
need to compute it at runtime. This type descriptor holds the list of methods defined along
with other information related to it. This list starts with the top class in the hierarchy and
goes all the way to the actual type whose instance it belongs to. The order is deterministic;
again, another example of optimization. This is known as the vtable structure and is
nothing more than an array with each element pointing out (referencing) the actual native
code implementation that will be executed. During the program execution, the JIT-er (the
just-in time compiler) is responsible for translating the bytecode produced by your compiler
into native/assembly code. If a derived class decides to override a virtual method, its vtable
entry will point out to the new implementation rather than the last class in the hierarchy
providing it.

Let's imagine we have a class A defining fieldA; it automatically derives from the Any
class. Then, we derive it and add an extra field to the new class B. Once we do this, we
name it fieldB:

vtable class hierarchy

Object-Oriented Programming in Kotlin

[84]

You can see from the preceding diagram that class A defines a method called execute,
which the derived class overrides. Alongside this, B also overrides the toString method
defined by Any. This is a very simple example; however, it shapes how the runtime
memory allocation will look. Creating an instance of B at runtime should have the
following memory footprint:

VTable structure

Your variable of type B is nothing but a reference to the memory block on the heap. Because
the type information sits at the beginning of the block (as already discussed) with two
indirections (or pointer dereferencing), the runtime can address it easily and quickly. The
diagram is only referencing the vtable entries for the type metadata, for simplicity. I have
highlighted the methods based on the class providing the implementation. The first two are
defined and implemented by Any, and the next two are defined and implemented in the
derived class B.

If you look at the bytecode generated when invoking the execute method via a reference of
A, you will notice the presence of a special keyword: invokevirtual. This way, the
runtime can execute its predefined procedure to discover which code it has to run. All
this has been described earlier.

From what we just discussed, we can work out that a call to invokevirtual carries some
runtime costs. The runtime has to first get the type metadata. From there, it identifies the
vtable and then jumps to the beginning of the instruction set representing the assembly
code for the method to be invoked. This is in contrast to a normal invokestatic routine,
where executing such a method doesn't have to go through at least two levels of indirection.
Invokestatic is the bytecode routine for calling a method non-virtually.

Object-Oriented Programming in Kotlin

[85]

Any methods defined by an interface are virtual methods. When such a method is invoked
for a derived class it gets special treatment . There is a specific method at the bytecode level
to handle this:invokeinterface. Why can't it just be a simple invokevirtual? Well,
such a call needs more involvement than just following the simple process of calling a
virtual method. Every invokeinterface receiver is considered a simple object reference.
Unlike invokevirtual, an assumption can't be made about the vtable's location. While a
call to invokevirtual can be fulfilled by performing two or three levels of indirection to
resolve the method, a call at the interface level needs to first check whether the class
actually implements the interface and, if so, where these methods are recorded in the
implementing class. There is no simple way to guarantee the methods order in the vtable
for two different classes implementing the same interface. Therefore, at runtime, an
assembly code routine has to walk through the list of all the implemented interfaces looking
for the target. Once the interface is found, because of the itable (or interface method table),
which is a list of methods whose entries' structure is always the same for each class
implementing the interface, the runtime can proceed with invoking the method as a virtual
function. There is a reason for this: we can have a class A that has implemented an interface
X and a class B that is derived from A; this class B can override one of the methods declared
at the interface level.

As you can see, virtual method calls are expensive. There are quite a few optimizations a
JVM implementation would need to employ to short-circuit the call, but these details go
beyond the scope of the current book. I will let you do your own research if your curiosity is
at that level. However, this is not information you need to know. The rule of thumb is to
avoid building a complex class hierarchy with many levels since that would hurt your
program performance because of the reasons presented earlier.

Overriding rules
You decided your new class has to redefine one of the methods inherited from one of the
parent classes. This is known as overriding; I have already used it in the previous chapter. If
you have already programmed in Java, you will find Kotlin a more explicit language. In
Java, every method is virtual by default; therefore, each method can be overridden by any
derived class. In Kotlin, you would have to tag the function as being opened to redefine it.
To do so, you need to add the open keyword as a prefix to the method definition, and when
you redefine the method, you specifically have to mark it using the override keyword:

 abstract class SingleEngineAirplane protected constructor() {
 abstract fun fly()
 }

 class CesnaAirplane : SingleEngineAirplane() {

Object-Oriented Programming in Kotlin

[86]

 override fun fly() {
 println("Flying a cesna")
 }
 }

You can always disallow any derived classes from overriding the function by adding the
final keyword in front of the method. Using the previous example, we don't want any of
the Cesna models to redefine the method:

 class CesnaAirplane : SingleEngineAirplane() {
 final override fun fly() {
 println("Flying a cesna")
 }
 }

You are not limited to functions only. Since Kotlin borrows the concept of properties from
C#, you can also mark properties as virtual:

 open class Base {
 open val property1: String
 get() = "Base::value"
 }
 class Derived1 : Base() {
 override val property1: String
 get() = "Derived::value"
 }
 class Derived2(override val property1: String) : Base() {}

You can override a val property with var if your coding logic requires this, but the
reverse is not possible:

 open class BaseB(open val propertyFoo: String) {
 }

 class DerivedB : BaseB("") {
 private var _propFoo: String = ""
 override var propertyFoo: String
 get() = _propFoo
 set(value) {
 _propFoo = value
 }
 }

 fun main(args: Array<String>) {
 val baseB = BaseB("BaseB:value")
 val derivedB= DerivedB()
 derivedB.propertyFoo = "on the spot value"
 println("BaseB:${baseB.propertyFoo}")

Object-Oriented Programming in Kotlin

[87]

 println("DerivedB:${derivedB.propertyFoo}")
 }

There are scenarios where you need to derive from one class and at least one interface and
both define and implement a method with the same name and parameters. In such cases,
the inheritance rule forces you to override the method. If you create a new instance of your
object and call the method that is common to the immediate parent classes, which one
should the compiler link to? Therefore, you need to remove ambiguity and provide the
implementation; it could use any or both the parent classes' implementation. Imagine you
have a class hierarchy for dealing with different image formats and you want to unify them
with a third-party hierarchy. Since both class hierarchies come with a definition of the save
function, you would need to override them:

 open class Image {
 open fun save(output: OutputStream) {
 println("Some logic to save an image")
 }
 }
 interface VendorImage {
 fun save(output: OutputStream) {
 println("Vendor saving an image")
 }
 }
 class PNGImage : Image(), VendorImage {
 override fun save(output: OutputStream) {
 super<VendorImage>.save(output)
 super<Image>.save(output)
 }
 }

 fun main(args: Array<String>) {
 val pngImage = PNGImage()
 val os = ByteArrayOutputStream()
 pngImage.save(os)
 }

The overriding is not enforced if the VendorImage interface would have not provided an
implementation. Referencing the parent implementation is done via super<PARENT>, as
you might have already noticed in the implementation earlier.

Inheritance versus composition
One of the compelling features of an OOPs language is code reuse. Once a class has been
created and tested, it should represent a block of code/functionality ready to be used.

Object-Oriented Programming in Kotlin

[88]

The simplest way to make use of an already defined class is to just create an instance of it,
but you can also place an object of that class inside a new class. The new class can bundle in
any number of other object types to create the functionality required. This concept of
building up a brand new class by reusing existing ones is called association. This term is
referred to as a has-a relationship. Imagine you have a class called Desktop to represent a
typical PC; a desktop has a hard disk, motherboard, and so on. We have already used this
concept in the previous code examples.

Aggregation example

Association comes in two flavors. This detail is most of the time overlooked. The first type
of composition is called aggregation. An aggregation represents a relationship between two
or more objects in which each object has its own life cycle, and there the notion of
ownership is not applicable. Basically, the objects part of the relationship can be created and
destroyed independently. Take the earlier example of Desktop. The computer can stop
working through no fault of the hard drive. While the desktop can be thrown away, you can
take the hard drive and put it in a different PC and it will still carry on working.

Composition is the next type of association. It is a specialized type of aggregation. In this
case, once the container object is destroyed, the contained objects will cease to exist as well.
In the case of composition, the container will be responsible for creating the object instances.
You can think of composition in terms of “part of”:

Composition example

Object-Oriented Programming in Kotlin

[89]

Through composition, you can have a great deal of flexibility. Usually, your class member
objects are private; a good encapsulation design would require you to do this. Since these
objects are not accessible by the client of your class, you have the liberty of changing them,
either by adding or removing them, without impacting the client code at all. You can even
change the runtime types to provide different runtime behaviors if the requirements
demand it. For example, the runtime instance for hard disks can be either a typical hard
drive or the new standard: a solid state drive.

Typically, inheritance gets so much focus since it is so important in object-oriented
programming, and a new developer uses it everywhere. This can result in awkward and
over-complicated class hierarchies. You should first consider composition when you are
about to create a new class, and only if applicable should you make use of inheritance.

Another term used frequently in the OOP world is is-a. This concept is based entirely on
inheritance. We have already seen inheritance; it comes in two shapes: class or interface.
Furthermore, it is unidirectional (a bicycle is a vehicle but a vehicle is not a bicycle; it could
be a car, for example).

Of course, there are scenarios where mixing association (whatever form it takes) and
inheritance is required. Imagine you build a class hierarchy for vehicles. You start with a
Vehicle interface, and to provide a Bicycle type you will inherit the interface and will add,
via composition, two references to the Wheel class as seen below:

Mixing inheritance and association

Class delegation
You might have already heard about the delegation pattern or at least used it without even
knowing it had a name. It allows a type to forward one or more of its methods call to a
different type. Therefore, you need two types to achieve this: the delegate and the delegator.

Object-Oriented Programming in Kotlin

[90]

This could easily sound like a proxy pattern, but it isn't. A proxy pattern is meant to
provide a placeholder for an instance to get full control while accessing it. Let's say you are
writing a UI framework and you start where your abstraction is UIElement. Each of the
components define a getHeight and getWidth.

Class delegation via association

Below you see the UML translated into Kotlin. We defined the UIElement interface with
both Panel and Rectangle classes inheriting from:

 interface UIElement {
 fun getHeight(): Int
 fun getWidth(): Int
 }
 class Rectangle(val x1: Int, val x2: Int, val y1: Int, val y2: Int) :
UIElement {
 override fun getHeight() = y2 - y1
 override fun getWidth() = x2 - x1
 }
 class Panel(val rectangle: Rectangle) : UIElement by rectangle

 val panel = Panel(Rectangle(10,100,30,100))
 println("Panel height:"+panel.getHeight())
 println("Panel witdh:" + panel.getWidth())

You have probably noticed the by keyword in the Panel class definition. It's basically a hint
for the compiler to do the work for you: forwarding the calls for the methods exposed by
the interface UIElement to the underlying Rectangle object.

Through this pattern, you replace inheritance with composition. You should always favor
composition over inheritance for the sake of simplicity, reducing type coupling, and
flexibility. Using this approach, you can chose and swap the type you put in the delegate
position based on various requirements.

Object-Oriented Programming in Kotlin

[91]

Sealed classes
A sealed class in Kotlin is an abstract class, which can be extended by subclasses defined as
nested classes within the sealed class itself. In a way, this is a rather more powerful
enumeration option. Just like Enum, a sealed class hierarchy contains a fixed set of possible
choices. However, unlike Enum, where each option is represented by one instance, the
derived classes of a sealed class can have many instances. Sealed classes are ideal for
defining algebraic data types. Imagine you want to model a binary tree structure; you
would do the following:

 sealed class IntBinaryTree {
 class EmptyNode : IntBinaryTree()
 class IntBinaryTreeNode(val left: IntBinaryTree, val value: Int, val
right: IntBinaryTree) : IntBinaryTree()
 }

 …

 val tree = IntBinaryTree.IntBinaryTreeNode(
 IntBinaryTree.IntBinaryTreeNode(
 IntBinaryTree.EmptyNode(),
 1,
 IntBinaryTree.EmptyNode()),
 10,
 IntBinaryTree.EmptyNode())

Ideally, you won't hardcode the container value to be an integer, but make it generic in
order to hold any type. But since we haven't introduced generics yet, we keep things a little
bit simpler. In the preceding snippet, you may have noticed the presence of the sealed
keyword. Trying to define a derived class outside the IntBinaryTree class scope will yield
a compilation error.

The benefits of using such a class hierarchy come into play when you use them in a when
expression. The compiler is able to infer a statement and cover all the possible cases;
therefore, the check is exhaustive. For a Scala developer, this will sound familiar to pattern
matching. Imagine we want to expose the elements of a tree to a list; for this, you would do
the following:

 fun toCollection(tree: IntBinaryTree): Collection<Int> = when (tree) {
 is IntBinaryTree.EmptyNode -> emptyList<Int>()
 is IntBinaryTree.IntBinaryTreeNode -> toCollection(tree.left) +
tree.value + toCollection(tree.right)
 }

Object-Oriented Programming in Kotlin

[92]

If you leave one of the derived classes out of the when expression, you will get a compiler
error: Error:(12, 5) Kotlin: 'when' expression must be exhaustive, add
necessary 'is EmptyNode' branch or 'else' branch instead.

Summary
For a Java developer wanting to migrate to Kotlin, this chapter ended up reviewing well-
known concepts. Regardless whether you have programmed in an OOP language before or
not, you now know the key concepts of this software design approach, and you can write
code that is object-orientated, using the new features available in Kotlin, and make it more
structured and readable. I cannot over-emphasize how important it is to favor composition
over inheritance. There is no standard recipe for getting it right. Your goal should always be
to keep things simple, and you should do the same when building a class hierarchy.

In the next chapter you will get an in-depth view on functions in Kotlin. You will see how
the language has borrowed from C# extension methods – special methods allowing you to
add new functionality to existing classes.

4
Functions in Kotlin

In the previous chapters, we introduced the basics of Kotlin and how to write procedural
and object-oriented code. The emphasis in this chapter will be on functions; how to take the
first steps into functional programming; and the features that Kotlin supports, which makes
programming with functions easier.

In this chapter, we will cover the following topics:

Functions and function literals
Extension functions
Named parameters and default parameters
Operator overloading
Recursion and tail recursion

Defining functions
Functions are defined using the fun keyword with optional parameters and a return value.
The parameter list must always be present, even if no parameters are defined. For example,
this function has no parameters and it returns a String value:

 fun hello() : String = "hello world"

Each parameter is in the form name: type. The following function accepts two parameters
of the type String and also returns a String value:

 fun hello(name: String, location: String): String =
 "hello to you $name at $location"

Functions in Kotlin

[94]

If a function does not return any meaningful value, then it is defined to return Unit. As
discussed in Chapter 2, Kotlin Basics, Unit is analogous to the Java and C void types. By
using a class that is part of a type hierarchy-rather than a special type, such as void-the type
system in Kotlin can be made more regular. Every function must return a value, and this
value could be Unit.

Functions returning Unit can omit the return type for procedure-style syntax if the
developer wishes so. The following two function declarations are equivalent:

 fun print1(str: String): Unit {
 println(str)
 }

 fun print2(str: String) {
 println(str)
 }

Single expression functions
Usually, a function must declare its return type; an exception exists only for functions that
consist of a single expression. These are often referred to as one line or single line
functions. Such functions can use a shortened syntax that omits the braces and uses the =
symbol before the expression rather than the return keyword:

 fun square(k: Int) = k * k

Notice how the function does not need to declare the return value of Int. This is inferred by
the compiler. The rationale behind this feature is that very short functions are easy to read,
and the return value is a bit of extra noise that doesn't add much to the overall process.
However, you can always include the return value if you think it makes things clearer:

 fun square2(k: Int): Int = k * k

Single expression functions can always be written in regular style if desired. For example,
the following two functions are identical and compiled to the same bytecode:

 fun concat1(a: String, b: String) = a + b
 fun concat2(a: String, b: String): String {
 return a + b
 }

Functions in Kotlin

[95]

The compiler enforces the rule that only a single expression function can
omit the return type.

Member functions
The first type of functions is called member functions. These functions are defined inside a
class, object, or interface. A member function is invoked using the name of the containing
class or object instance with a dot, followed by the function name and the arguments in
parentheses. For example, to invoke a function called take on an instance of a string, we
do the following:

 val string = "hello"
 val length = string.take(5)

Member functions can refer to themselves and they don't need the instance name to do this.
This is because function invocations operate on the current instance, and they are referred
to as the following:

 object Rectangle {

 fun printArea(width: Int, height: Int): Unit {
 val area = calculateArea(width, height)
 println("The area is $area")
 }

 fun calculateArea(width: Int, height: Int): Int {
 return width * height
 }
 }

This code snippet shows two functions that calculate the area of a rectangle and output it to
the console. The printArea function takes two parameters of width and height and uses
the calculateArea function to do the math. The first function then outputs the result of
the other function.

You will also notice that the calculateArea function uses return, as the value it
computes is intended to be used by other functions. The printArea function does not have
any meaningful value to return, so we define its return value as Unit.

Functions in Kotlin

[96]

Local functions
The idea behind functions is very simple: split up a large program into smaller chunks that
can be reasoned more easily and allow the reuse of the code to avoid repetition. This second
point is known as the DRY principle: Don't Repeat Yourself. The more the number of times
you write the same code, the more the chances you create of a bug creeping in.

When this principle is taken to its logical conclusion, you would have created a program
that consists of many small functions, each doing a single thing; this is similar to the Unix
principle of small programs, where each program does a single job.

The same principle applies to the code inside a function. Typically, in say Java, a large
function or method might be broken down by calling several support functions declared in
either the same class or a helper class that contains static methods.

Kotlin allows us to take this a step further by supporting functions declared inside other
functions. These are called local or nested functions. Functions can even be nested multiple
times.

The earlier example of printing areas can be written in the following style:

 fun printArea(width: Int, height: Int): Unit {
 fun calculateArea(width: Int, height: Int): Int = width * height
 val area = calculateArea(width, height)
 println("The area is $area")
 }

As you can see, the calculateArea function is now inside printArea and thus not
accessible to the code outside. This is useful when we want to hide functions that are just
used as implementation details of a larger function. We could also achieve a similar effect
by defining a member function as private. So do local functions have any other advantages?
Yes, they do! Local functions can access the parameters and variables defined in the outer
scope:

 fun printArea2(width: Int, height: Int): Unit {
 fun calculateArea(): Int = width * height
 val area = calculateArea()
 println("The area is $area")
 }

Notice that we've removed the parameters from the calculateArea function, and now it
directly uses the parameters defined in the enclosing scope. This makes the nested function
more readable and saves repeating the parameter definitions, which is very useful for
functions with many parameters.

Functions in Kotlin

[97]

Let's work through an example of a function that could be broken down using local
functions:

 fun fizzbuzz(start: Int, end: Int): Unit {
 for (k in start..end) {
 if (k % 3 == 0 && k % 5 == 0)
 println("Fizz Buzz")
 else if (k % 3 == 0)
 println("Fizz")
 else if (k % 5 == 0)
 println("Buzz")
 else
 println(k)
 }
 }

This is the well-known Fizz Buzz problem. The requirement asks you to print out the
integers from the start to the end value. However, if the integer is a multiple of 3, you
should print Fizz. If it is a multiple of 5, you should print Buzz. If it is a multiple of 3 and
5, then print Fizz Buzz together.

The first solution is short and readable, but it duplicates some code. The modulo checks are
coded twice, which doubles the potential for a bug. Clearly, this example is extremely
simple, so the chances of a typo are minimal; however, it serves to demonstrate the issue for
larger problems.

We can declare a local function for each of the modulo checks, so that we only have to code
it once. This brings us to the next iteration of our solution:

 fun fizzbuzz2(start: Int, end: Int): Unit {

 fun isFizz(k: Int): Boolean = k % 3 == 0
 fun isBuzz(k: Int): Boolean = k % 5 == 0

 for (k in start..end) {
 if (isFizz(k) && isBuzz(k))
 println("Fizz Buzz")
 else if (isFizz(k))
 println("Fizz")
 else if (isBuzz(k))
 println("Buzz")
 else
 println(k)
 }
 }

Here, our if...else branches now invoke the nested functions isFizz and isBuzz.

Functions in Kotlin

[98]

However, it is still a bit verbose to pass k to the function each time. Is there a way we can
avoid this? Turns out, the answer is yes! We can define local functions not just directly
inside other functions, but also in for loops, while loops, and other blocks:

 fun fizzbuzz3(start: Int, end: Int): Unit {
 for (k in start..end) {

 fun isFizz(): Boolean = k % 3 == 0
 fun isBuzz(): Boolean = k % 5 == 0

 if (isFizz() && isBuzz())
 println("Fizz Buzz")
 else if (isFizz())
 println("Fizz")
 else if (isBuzz())
 println("Buzz")
 else
 println(k)
 }
 }

In this third iteration of our function, we have moved the function definitions inside the
for loop. So now, we can omit the parameter declarations and access k directly.

Finally, we could take advantage of the when statement introduced in Chapter 2, Kotlin
Basics, to remove some of the noise of the if…else keywords:

 fun fizzbuzz4(start: Int, end: Int): Unit {
 for (k in start..end) {

 fun isFizz(): Boolean = k % 3 == 0
 fun isBuzz(): Boolean = k % 5 == 0
 when {
 isFizz() && isBuzz() -> println("Fizz Buzz")
 isFizz() -> println("Fizz")
 isBuzz() -> println("Buzz")
 else -> println(k)
 }
 }
 }

This gives us our final solution, which avoids repetition of code and is more readable than
the initial iteration.

Functions in Kotlin

[99]

Top-level functions
In addition to member functions and local functions, Kotlin also supports declaring top-
level functions. These are functions that exist outside of any class, object, or interface and
are defined directly inside a file. The name top-level comes from the fact that functions are
not nested inside any structure and so they are at the top of the hierarchy of classes and
functions.

Top-level functions are especially useful for defining helper or utility functions. It does not
necessarily make sense to group them with other functions or create them when the
contained object adds no value. In Java, these kinds of functions exist as static functions
inside helper classes. An example would be the functions of collections in the Java standard
library.

However, some functions are so standalone that it makes little sense to take the trouble of
creating a containing object. A good example would be require. This is a Kotlin standard
library function that is used to ensure that parameters when invoked satisfy the invariant
conditions. For example, if a parameter should always be greater than 10, we can write the
following:

 fun foo(k: Int) {
 require(k > 10, { "k should be greater than 10" })
 }

This function and its siblings, namely check, error, and requireNotNull, could be
placed inside an object called Assertions (or some name that means the same). But this adds
no value, and by using top-level functions, we could define these functions directly in a file
called assertions.kt.

Named parameters
Named parameters allow us to be explicit about naming arguments when passed to a
function. This has the benefit that for functions with many parameters, explicit naming
makes the intent of each argument clear. This makes the call site more readable.

In the following example, we check to see whether the first string contains a substring of the
second:

 val string = "a kindness of ravens"
 string.regionMatches(14, "Red Ravens", 4, 6, true)

Functions in Kotlin

[100]

To use named parameters, we put the parameter name before the argument value. Here is
the function call again, this time with named parameters:

 string.regionMatches(thisOffset = 14, other = "Red Ravens",
otherOffset = 4, length = 6, ignoreCase = true)

This second example is more readable at the cost of being more verbose, but it is now clear
what each of the parameters is meant for. The final Boolean, which you might have
guessed was case sensitivity, is now obvious. If you don't have named parameters, you
must check the documentation or source code.

Another benefit is that for functions with multiple parameters of the same type, it makes
errors less likely as the values can be associated with the name. In the next example, you
will see how the function accepts multiple Boolean parameters. And without named
parameters, it is easy to swap arguments erroneously:

 fun deleteFiles(filePattern: String, recursive: Boolean, ignoreCase:
Boolean, deleteDirectories: Boolean): Unit

Compare the two different styles of calling this function:

 deleteFiles("*.jpg", true, true, false)
 deleteFiles("*.jpg", recursive = true, ignoreCase = true,
deleteDirectories = false)

Did you notice that the first parameter is not named, even when the others are? When
calling a function, not all parameters need to be named. The rule is simple: once a
parameter has been named, all the following parameters must be named too.

Named parameters also allow the parameter order to be changed to suit the caller. For
example, the following two examples are equivalent:

 val string = "a kindness of ravens"
 string.endsWith(suffix = "ravens", ignoreCase = true)
 string.endsWith(ignoreCase = true, suffix = "ravens")

Why this is useful will be demonstrated in the next section on default parameters. Changing
the order of parameters allows us to selectively choose which default parameters to
override.

Named parameters can only be used on Kotlin-defined functions and not
on Java-defined functions. This is because the Java code when compiled
into bytecode does not always preserve the parameter names.

Functions in Kotlin

[101]

Default parameters
Sometimes, it is convenient to provide default values for parameters in a function. Let's say
we want to create a thread pool. The parameter to set the number of threads could default
to the number of CPU cores. This would be a sensible default, but the user might still want
to use something different.

The way to achieve this in languages without default parameters is to offer overloaded
versions of the same function:

 fun createThreadPool(): ExecutorService {
 val threadCount = Runtime.getRuntime().availableProcessors()
 return createThreadPool(threadCount)
 }

 fun createThreadPool(threadCount: Int): ExecutorService {
 return Executors.newFixedThreadPool(threadCount)
 }

Here, the user can now choose which version to invoke. However, sometimes the number of
parameters means that we end up with many overloaded variations of the same function,
resulting in needless boilerplate. For example, the Java standard library BigDecimal has
the following functions:

 public BigDecimal divide(BigDecimal divisor)

 public BigDecimal divide(BigDecimal divisor, RoundingMode
roundingMode)
 public BigDecimal divide(BigDecimal divisor, int scale, RoundingMode
roundingMode)

There are many other variations. Each function just delegates to the next one with a sensible
default.

In Kotlin, a function can define one or more of its parameters to have default values, which
are used if the arguments are not specified. This allows a single function to be defined for
several use cases, thereby avoiding the need for multiple overloaded variants.

Here is the divide function again, but this time, by using default parameters, we can
reduce the definition to a single function:

 fun divide(divisor: BigDecimal, scale: Int = 0, roundingMode:
RoundingMode = RoundingMode.UNNECESSARY): BigDecimal

Functions in Kotlin

[102]

When invoking this function, we can omit some or all of the parameters, but once a
parameter is omitted, all the following parameters must be omitted as well. For instance, we
could invoke this function in the following ways:

 divide(BigDecimal(12.34))
 divide(BigDecimal(12.34), 8)
 divide(BigDecimal(12.34), 8, RoundingMode.HALF_DOWN)

But the following would not be legal:

 divide(BigDecimal(12.34), RoundingMode.HALF_DOWN)

However, to solve this problem, we can mix named parameters and default parameters:

 divide(BigDecimal(12.34), roundingMode = RoundingMode.HALF_DOWN)

In general, using named parameters in combination with default parameters is very
powerful. It allows us to provide one function, and users can selectively override the
defaults they wish.

When overriding a function that declares default parameters, we must
keep the same function signature.

Default parameters can also be used in constructors to avoid the need for multiple
secondary constructors. The following example shows multiple constructors:

 class Student(val name: String, val registered: Boolean, credits: Int)
{
 constructor(name: String) : this(name, false, 0)
 constructor(name: String, registered: Boolean) : this(name,
registered, 0)
 }

These constructors can be rewritten as the following:

 class Student2(val name: String, val registered: Boolean = false,
credits: Int = 0)

Functions in Kotlin

[103]

Extension functions
Quite often, you come across a situation where a type that you don't have control over will
benefit from an extra function. Maybe you've always wished String had a reverse()
function or perhaps list had a drop function that would return a copy of list with the
first k elements removed.

An object-orientated approach would be to extend the type, thereby creating a subtype that
adds the required new functions:

 abstract class DroppableList<E> : ArrayList<E>() {
 fun drop(k: Int): List<E> {
 val resultSize = size - k
 when {
 resultSize <= 0 -> return emptyList<E>()
 else -> {
 val list = ArrayList<E>(resultSize)
 for (index in k..size - 1) {
 list.add(this[index])
 }
 return list
 }
 }
 }
 }

But this isn't always possible. A class may be defined as final, so you cannot extend it. It
may also be the case that you may not control when instances are created, so you can't
substitute your subtype for the existing type.

A typical solution in this case is to create a function in a separate class that accepts the
instance as another argument. In Java, for example, it is quite common to see classes that
consist entirely of helper functions for other instances. A good example of this is the
java.util.Collections class. It contains dozens of static functions that offer the
functionality for working with collections:

 fun <E> drop(k: Int, list: List<E>): List<E> {
 val resultSize = list.size - k
 when {
 resultSize <= 0 -> return emptyList<E>()
 else -> {
 val newList = ArrayList<E>(resultSize)
 for (index in k..list.size - 1) {
 newList.add(list[index])
 }
 return newList

Functions in Kotlin

[104]

 }
 }
 }

The issue with this solution is two-fold. Firstly, we cannot use code completion in the IDE to
see which function is available. This is because we write the function name first. Secondly, if
we have many of these functions and we want to compose them, we end up with code that
isn't particularly readable. For example, refer to the following:

 reverse(take(3, drop(2, list)))

Wouldn't it be nice if we could access this function directly on the list instance so it could
give us code that would compose like the following:

 list.drop(2).take(3).reverse()

Extension functions allow us to achieve exactly this without having to create a new subtype,
modify the original type, or wrap the class.

An extension function is declared by defining a top-level function as normal, but with the
intended type prefixed before the function name. The type of the instance that the function
will be used on is called the receiver type. The receiver type is said to be extended with the
extension function. Here is our previous drop function again; this time, it is implemented
as an extension function:

 fun <E> List<E>.drop(k: Int): List<E> {
 val resultSize = size - k
 when {
 resultSize <= 0 -> return emptyList<E>()
 else -> {
 val list = ArrayList<E>(resultSize)
 for (index in k..size - 1) {
 list.add(this[index])
 }
 return list
 }
 }
 }

Notice the use of the this keyword inside the function body. This is used to reference the
receiver instance, that is, the object that the function was invoked on. Whenever we are
inside an extension function, the this keyword always refers to the receiver instance, and
the instances in the outer scope need to be qualified.

Functions in Kotlin

[105]

To use an extension function, we import it, as we would any other top-level function, using
the name of the function and the package it lives in:

 import com.packt.chapter4.drop
 val list = listOf(1,2,3)
 val droppedList = list.drop2(2)

Extension function precedence
Extension functions cannot override functions declared in a class or interface. If an
extension function is defined with the exact same signature (the same name, parameters
type and order, and return type), then the compiler will never invoke it.

During compilation, when the compiler finds a function invocation, it will first look for a
match in the member functions defined in the instance type as well as any member
functions defined in superclasses and interfaces. If a match is found, then that member
function is the one that is bound.

Only if no matching member functions are found, the compiler will consider any extension
imports in the scope. Consider the following definitions:

 class Submarine {
 fun fire(): Unit {
 println("Firing torpedoes")
 }

 fun submerge(): Unit {
 println("Submerging")
 }
 }

 fun Submarine.fire(): Unit {
 println("Fire on board!")
 }

 fun Submarine.submerge(depth: Int): Unit {
 println("Submerging to a depth of $depth fathoms")
 }

Here we have a type, Submarine, with two functions: fire() and submerge(). We also
defined extension functions on Submarine with the same names. If we were to invoke these
functions, we would use the following code:

 val sub = Submarine()
 sub.fire()

Functions in Kotlin

[106]

 sub.submerge()

The output would be FiringTorpedoes and Submerging. The compiler will bind to the
fire() function defined in the submarine class. In this example, the extension function
can never be called as there is no way to disambiguate it from the function in the class
proper.

However, the submerge() function has different function signatures, so the compiler is
able to bind to either depending on the number of parameters used:

 val sub = Submarine()
 sub.submerge()
 sub.submerge(10)

This would output Submerging and Submerging to a depth of 10 fathoms.

Extension functions on nulls
Kotlin even supports extension functions on null values. In those situations, the this
reference will contain the null value, and so Any function that doesn't safely handle null
references would throw a null pointer exception.

This functionality is how the equals function can be overloaded to provide safe usage to
even null values:

 fun Any?.safeEquals(other: Any?): Boolean {
 if (this == null && other == null) return true
 if (this == null) return false
 return this.equals(other)
 }

Member extension functions
Extension functions are usually declared at the top level, but we can define them inside
classes as members. This may be used if we want to limit the scope of an extension:

 class Mappings {
 private val map = hashMapOf<Int, String>()
 private fun String.stringAdd(): Unit {
 map.put(hashCode(), this)
 }

 fun add(str: String): Unit = str.stringAdd()

Functions in Kotlin

[107]

 }

In this example, we have defined an extension function that adds a string to hashmap. The
second function just invokes this extension function. This round about way of adding to
hashmap indicates how receivers work in member extension functions.

The hash code function is defined on Any, and so it exists on the Mappings class and
String through inheritance. When hashCode is invoked in the extension function, there
are two possible functions in scope that could be used. The first function in the Mappings
instance is called the dispatch receiver. The second function on the instance of string is
called the extension receiver.

When we have this kind of name shadowing, the compiler defaults to the extension
receiver. So in the previous example, the hash code used will be the hash code of the string
instance. To use the dispatch receiver, we must use a qualified this:

 class Mappings {
 private val map = hashMapOf<Int, String>()

 private fun String.stringAdd(): Unit {
 map.put(this@Mappings.hashCode(), this)
 }
 fun add(str: String): Unit = str.stringAdd()
 }

In this second example, the hashCode function will be invoked on the Mappings instance.

Overriding member extension functions
Member extension functions can be declared as open if you wish to allow them to be
overridden in subclasses. In this case, the dispatcher receiver type will be virtual, that is, it
will be the runtime instance. The extension receiver will always be resolved statically,
however:

 open class Element(val name: String) {

 open fun Particle.react(name: String): Unit {
 println("$name is reacting with a particle")
 }

 open fun Electron.react(name: String): Unit {
 println("$name is reacting with an electron to make an isotope")
 }

Functions in Kotlin

[108]

 fun react(particle: Particle): Unit {
 particle.react(name)
 }
 }

 class NobleGas(name: String) : Element(name) {
 override fun Particle.react(name: String): Unit {
 println("$name is noble, it doesn't react with particles")
 }

 override fun Electron.react(name: String): Unit {
 println("$name is noble, it doesn't react with electrons")
 }

 fun react(particle: Electron): Unit {
 particle.react(name)
 }
 }
 fun main(args: Array<String>) {
 val selenium = Element("Selenium")
 selenium.react(Particle())
 selenium.react(Electron())
 val neon = NobleGas("Neon")
 neon.react(Particle())
 neon.react(Electron())
 }

The preceding code snippet outputs the following:

 Selenium is reacting with a particle
 Selenium is reacting with a particle
 Neon is noble, and it doesn't react with particles
 Neon is noble, and it doesn't react with electrons

This example shows how receivers work in overridden extension functions. We define two
pairs of classes. The first pair comprises of Element and NobleGas, which extends
Element. The second pair comprises of Particle and its subtype Electron.

In both these classes, we define two extension functions. The first functions are defined on
Particle and the second on Electron.

Functions in Kotlin

[109]

We can see from the output that it doesn't matter which type of Particle/Electron we
pass to the react function defined on Element. It will always invoke the extension function
defined on Particle. This is because the receiver type is statically determined. This is the
type that is determined by compile type and not by the runtime type. The react entry
function was defined to accept a particle, so this is the type that was used to bind the
extension function.

In NobleGas, we defined an extra function that accepts the subtype so the compiler can
pick the function that is a more specific match. This kind of static dispatch is the same as in
Java for static methods.

Companion object extensions
Extension functions can also be added to companion objects. They would then be invoked
on the companion object rather than on instances of the class.

One example of where this might be useful is this: adding factory functions to a type. For
example, we might wish to add a function to integers to return a different random value
upon each invocation:

 fun Int.Companion.random(): Int {
 val random = Random()
 return random.nextInt()
 }

Then we can invoke the extension function as normal, without needing the companion
keyword:

 val int = Int.random()

This isn't as useful as regular extension functions. This is because we can always create a
new object and put the function in there or create a top-level function. But it can be
desirable to associate a function with some other type's namespace. As in the preceding
example, a random() function invoked on the Int type is more intuitive than the same
function on a class with a name like IntFactory or RandomInts.

Functions in Kotlin

[110]

Multiple return values
Let's say we wanted to calculate both the positive and negative square roots of an integer.
We could approach this problem by writing two different functions:

 fun positiveRoot(k: Int): Double {
 require(k >= 0)
 return Math.sqrt(k.toDouble())
 }

 fun negativeRoot(k: Int): Double {
 require(k >= 0)
 return -Math.sqrt(k.toDouble())
 }

Another approach might be to return an array so we only have to invoke one function:

 fun roots(k: Int): Array<Double> {
 require(k >= 0)
 val root = Math.sqrt(k.toDouble())
 return arrayOf(root, -root)
 }

However, we do not know from the return type whether the positive root or negative root is
at position 0. We will have to hope the documentation is correct; if not, inspect the source
code. We could improve this further by using a class with two properties that wrap the
return values:

 class Roots(pos: Double, neg: Double)

 fun roots2(k: Int): Roots {
 require(k >= 0)
 val root = Math.sqrt(k.toDouble())
 return Roots(root, -root)
 }

This has the advantage of having named fields so we could be sure which is the positive
root and which is the negative root. An alternative to a custom class is using the Kotlin
standard library Pair type. This type simply wraps two values, which are accessed via the
first and second fields:

 fun roots3(k: Int): Pair<Double, Double> {
 require(k >= 0)
 val root = Math.sqrt(k.toDouble())
 return Pair(root, -root)

Functions in Kotlin

[111]

 }

This is most often used when it is clear what each value means. For example, a function that
returned a currency code and an amount would not necessarily need to have a custom class,
as it would be obvious which was which. Furthermore, if the function were a local function,
you might feel that creating a custom class would be unnecessary boilerplate for something
that will not be visible outside of the member function. As always, the most appropriate
choice will depend on the situation.

There exists a three-value version of Pair, which is appropriately named
Triple.

We can improve this further by using destructuring declarations on the caller site.
Destructuring declarations allow the values to be extracted into separate variables
automatically:

 val (pos, neg) = roots3(16)

Notice that the variables are contained in a parenthesis block; the first value will be
assigned to the positive root, and the second value will be assigned to the negative root.
This syntactic sugar works with any object that implements a special component interface.
The built in Pair type, and all data classes, automatically implement this interface. There
will be more on this mechanism in the chapter on data classes.

Infix functions
Infix notation is the notation where an operator or function is placed between the operands
or arguments. An example in Kotlin is the to function, which is used to create a Pair
instance:

 val pair = "London" to "UK"

In Kotlin, member functions can be defined as an infix; this allows them to be used in the
same style. Since an infix function is placed between two arguments, all infix functions
must operate on two parameters. The first parameter is the instance that the function is
invoked on. The second parameter is an explicit parameter to the function.

Functions in Kotlin

[112]

To define your own infix function, use the infix keyword before the fun keyword,
remembering that infix functions have only one explicit parameter:

 infix fun concat(other:String): String {
 return this + other
 }

For instance, we may want to model a bank account class, which would contain balance. In
this class, we would most likely want some kind of function that adds to the customer's
balance:

 class Account {
 var balance = 0.0

 fun add(amount: Double): Unit {
 this.balance = balance + amount
 }
 }

To use this, we could invoke it using the regular dot syntax:

 val account = Account()
 account.add(100.00)

However, we could use this as an infix function if we wish to add the infix keyword to
the function definition:

 class InfixAccount {
 var balance = 0.0

 infix fun add(amount: Double): Unit {
 this.balance = balance + amount
 }
 }

Then we could invoke it like an operator in infix style:

 val account2 = InfixAccount()
 account2 add 100.00

In this example, there is not much difference between the readability of either style.
Therefore, one would likely settle on the standard dot notation. But there are occasions
when infix functions can be a benefit.

Functions in Kotlin

[113]

An example of such a case is for short-named, frequently used functions, such as the to
function that exists in the Kotlin standard library. The to function is an extension function
on all types (defined on Any). It is used to create an instance of Pair. If you recall from the
section on Extension functions, a Pair type is a simple wrapper for two values.

As useful as the Pair type is, when instantiated directly, it can add noise to the two values.
Compare the following equivalent pieces of code and see what you think is more readable:

 val pair1 = Pair("london", "paris")
 val pair2 = "london" to "paris"

The second is less verbose, and in many cases, more readable. This particular function is
very useful when creating map literals. Again, compare the following two styles:

 val map1 = mapOf(Pair("London", "UK"), Pair("Bucharest", "Romania"))
 val map2 = mapOf("London" to "UK", "Bucharest" to "Romania")

Other good examples of infix functions include bitwise operations (see Basic Types in
Chapter 2, Kotlin Basics) and custom DSLs.

One custom DSL that benefits from infix operations is in the KotlinTest testing framework.
This framework uses infix functions so that assertions in tests can be written in a natural
language way. For example, refer to the following:

 myList should contain(x)
 myString should startWith("foo")

KotlinTest and the testing DSL will be covered in depth in Chapter 11, Testing in Kotlin.

Operators
Operators are functions that use a symbolic name. In Kotlin, many built-in operators are
actually function calls. For example, array access is a real function:

 val array = arrayOf(1, 2, 3)
 val element = array[0]

In this example, the [0] operation is translated into a call to the function get(index:
Int) defined on the Array class.

Many operators are predefined in Kotlin, just like they are in most other languages, and
most operators tend to be combined with the infix style. This is immediately familiar in the
guise of binary operators on numbers.

Functions in Kotlin

[114]

Although Kotlin treats operations on basic types as functions, they are
compiled to the appropriate byte code operations to avoid function
overhead and ensure maximum performance.

Often operators are preferred over real names if the operators are already familiar to the
users. In fields such as mathematics or physics, where operators are routinely used, it
would be natural to also use operations in code where appropriate. For example, the case of
matrices, using the + character for matrix addition, feels more natural than using the word
add or plus. It is also easier to read when the parentheses are omitted:

 val m1: Matrix =
 val m2: Matrix =
 val m3 = m1 + m2

Operator overloading
The ability to define functions that use operators is called operator overloading.

In general, programming languages lie somewhere between the scale of allowing no
operator overloading right through to allowing almost any characters to be used. In Java,
the set of operator functions is fixed by the language, and developers are unable to add
their own. So Java sits at the far left side of this scale. Scala, on the other hand, is far more
permissive and allows you to have virtually any combination; so, it sits on the opposite side
of the scale.

What is better depends on your point of view. Allowing no operator overloading means
developers would not be able to abuse operators to create obtuse function names. On the
other hand, allowing many kinds of operators to be used would mean that powerful DSLs
could be created for specific problems.

Kotlin's designers opted to sit somewhere in the middle and allow operator overloading in
a fixed and controlled manner. There is a fixed list of operators that can be used as
functions, but any arbitrary combinations are forbidden. To create such a function, the
function must be prefixed with the operator keyword and defined using the English
equivalent name of the operator.

All operators have a predefined English equivalent name that is used for overloading the
operator. The compiler simply rewrites the usage of the operator to the invocations of the
function.

Functions in Kotlin

[115]

Operators can only be defined as member functions or extension
functions.

Using the earlier example of matrix addition, which we claimed would benefit from
operator overloading, can be defined in the following way:

 class Matrix(val a: Int, val b: Int, val c: Int, val d: Int) {
 operator fun plus(matrix: Matrix): Matrix {
 return Matrix(a + matrix.a, b + matrix.b, c + matrix.c, d +
matrix.d)
 }
 }

This is a simple case that only allows two x matrices.

We defined a function called plus; this will implement matrix addition. Notice how this
function is marked with the operator keyword before the fun keyword. Also, as mentioned
in the previous chapter, the parameters must be marked with val to be used inside member
functions.

Given such a class, we could execute code in the following way:

 val m1 = Matrix(1, 2, 3, 4)
 val m2 = Matrix(5, 6, 7, 8)
 val m3 = m1 + m2

The preceding code is compiled into the following equivalent code:

 val m1 = Matrix(1, 2, 3, 4)
 val m2 = Matrix(5, 6, 7, 8)
 val m3 = m1.plus(m2)

Although this is a limited example, it demonstrates how easy it is to use operator
overloading.

The function can also be invoked in regular dot style if required, but it uses the actual
function name rather than the operator symbol. Although this doesn't seem to make much
sense in this example, there are times when it might be useful.

Operator functions are not limited to acting on the same type as the class they are defined
in. For example, we could have defined a List class to which we could add elements using
the + operator and removing elements using the - operator.

Functions in Kotlin

[116]

Basic operators
The list of basic operators and their English equivalent function names are given in this
table:

Operation Function name

a + b a.plus(b)

A – b a.minus(b)

A * b a.times(b)

A / b a.div(b)

A & b a.mod(b)

a..b a.rangeTo(b)

+a a.unaryPlus()

-a a.unaryMinus()

!a a.not()

Kotlin has support for some other types of operators in addition to what's presented in the
preceding table.

In/contains
The keyword in, which you are already familiar with from for loops or collection checking,
can also be overloaded for use in your own classes. The mapped name is contains. The
following example shows the code using both the styles:

 val ints = arrayOf(1,2,3,4)

 val a = 3 in ints
 val b = ints.contains(3)

 val c = 5 !in ints
 val d = ints.contains(5)

Functions in Kotlin

[117]

Get/set
Familiar bracket access on arrays is mapped to functions called get and set. The number of
arguments is arbitrary and are passed to the get and set functions in order. This is how
bracket access works for classes such as list and collection:

 private val list = listOf(1, 2, 3, 4)
 val head = list[0]

The next example uses get and set with more than one position argument:

 enum class Piece {
 Empty, Pawn, Bishop, Knight, Rook, Queen, King
 }

 class ChessBoard() {
 private val board = Array<Piece>(64, { Piece.Empty })
 operator fun get(rank: Int, file: Int): Piece = board[file * 8 +
rank]

 operator fun set(rank: Int, file: Int, value: Piece): Unit {
 board[file * 8 + rank] = value
 }
 }

Here we defined a class containing the pieces of a chess board. The board is defined as an
array with 64 elements, and each element is empty to start with. We can get or set the
piece at a given position using two coordinates, representing the rank and file of the chess
board:

 val board = ChessBoard()
 board[0, 4] = Piece.Queen
 println(board[0, 4])

Invoke
Parentheses can also be used as operators by naming your function invoke. In this case, we
just invoke the function directly on the instance. This makes a class itself look like a
function:

 class RandomLongs(seed: Long) {
 private val random = Random(seed)
 operator fun invoke(): Long = random.nextLong()
 }

Functions in Kotlin

[118]

In this example, we wrapped a Random with a custom seed and then allowed the user to
invoke the class directly to provide the following usage:

 fun newSeed(): Long = /// some secure seed
 val random = RandomLongs(newSeed())
 val longs = listOf(random(), random(), random())

There are no restrictions on the number of invoke functions, so you can overload them by
the type and number of parameters:

 object Min {
 operator fun invoke(a: Int, b: Int): Int = if (a <= b) a else b
 operator fun invoke(a: Int, b: Int, c: Int): Int = invoke(invoke(a,
b), c)
 operator fun invoke(a: Int, b: Int, c: Int, d: Int): Int =
invoke(invoke(a, b), invoke(c, d))

 operator fun invoke(a: Long, b: Long): Long = if (a <= b) a else b
 operator fun invoke(a: Long, b: Long, c: Long): Long =
invoke(invoke(a, b), c)
 operator fun invoke(a: Long, b: Long, c: Long, d: Long): Long =
invoke(invoke(a, b), invoke(c, d))
 }

In this example, we've made multiple overloaded versions of min, and Kotlin will call any
of these versions that match the given arguments, which could be invoked as follows:

 min(1, 2, 3)
 min(1L, 2L)

Comparison
The less-than, greater-than, less than equals, and greater than equals operators are all
overloadable. All four of these operators require just a single function between them, called
compareTo. This function must return an Int and must be consistent with the Comparator
interface in Java. So, to indicate a is less than b, you must return a negative integer. When b
is greater than a, you must return a positive integer. And for equality, return 0:

 class BingoNumber(val name: String, val age: Int) {
 operator fun compareTo(other: BingoNumber): Int {
 return when {
 age < other.age -> -1
 age > other.age -> 1
 else -> 0
 }

Functions in Kotlin

[119]

 }
 }

Here we have defined BingoNumber, which is the number of a ball and the nickname a
bingo caller shouts out for. Using the compareTo function, we can now compare bingo
numbers using the <, >, <=, and >= operations:

 val a = BingoNumber("Key to the Door", 21)
 val b = BingoNumber("Jump and Jive", 35)
 println(a < b) // true
 println(b > a) // false

Assignment
For mutable variables, Kotlin supports overloading shorthand assignment operators, such
as +=. You can use the standard operations in assignments as well. For example, the
following definition works for both:

 class Counter(val k: Int) {
 operator fun plus(j: Int): Counter = Counter(k + j)
 }
 var counter = Counter(1)
 counter = counter + 3
 counter += 2

However, if you wish to allow assignment operations and not basic operations, you can do
so using the following code:

 class Counter(var k: Int) {
 operator fun plusAssign(j: Int): Unit {
 k += j
 }
 }

 var counter = Counter(1)
 counter += 2

In this case, the function should return Unit.

You cannot define both types of operations. For example, you can define
either plus or plusAssign, but not both. The former can always be used
for both assignments and non-assignments, but the latter can only be used
for an assignment.

Functions in Kotlin

[120]

The method equivalent names are given in the following table:

Operation Function name

a += b a.plusAssign(b)

a -= b a.minusAssign(b)

a *= b a.timesAssign(b)

a /= b a.divAssign(b)

a %= b a.modAssign(b)

You may have noticed this is the same as for basic operations, just with assign added to the
end of the name.

Java interop
Java does not support operator overloading at all, so there is no equivalent in Java of the
Kotlin operator keyword. In order to work around this, Kotlin allows any Java method that
has the correct signature to be used as an operator.

For example, take this Java method signature defined on a class called Matrix, which
matches the name required for the + operator:

 public Matrix plus(Matrix other) { }

Then this could be invoked in Kotlin as follows:

 val matrix3 = matrix1 + matrix2

Function literals
Just like we define string literals, hello, or double literals (12.34), we can also define
function literals. To do so, we simply enclose the code in braces:

 { println("I am a function literal") }

Function literals can be assigned to a variable just like other literals:

 val printHello = { println("hello") }
 printHello()

Functions in Kotlin

[121]

Notice in this example that once a function literal is defined, we can invoke it later using
parentheses, like we do for a regular function. Of course, once defined, we can invoke the
function multiple times.

Function literals can also accept parameters. For this, we write the parameters, along with
types, before a thin arrow; this denotes the function body:

 val printMessage = { message: String -> println(message) }
 printMessage("hello")
 printMessage("world")

As you can see, we pass in the parameter when invoking like a regular function. When a
function literal is used in a place where the compiler can figure out the parameter type, we
can omit the types:

 { message -> println(message) }

In fact, Kotlin has a neater trick. If there is only a single parameter and the type can be
inferred, then the compiler will allow us to omit the parameter completely. In this case, it
makes the implicit variable it available:

 { println(it) }

The use of function literals is primary as higher order functions. We will see this in the next
chapter. They are also used in single abstract methods, which are covered later in this
chapter.

Tail recursive functions
Recursion is a powerful functional programming tool that most programmers have come
across before. A recursive function is one that, when certain conditions are held, invokes
itself. An idiomatic example of a recursive function is often the Fibonacci sequence, which
in English is defined as follows: the next value is the sum of the previous two values. In
code, we can define Fibonacci as follows:

 fun fib(k: Int): Int = when (k) {
 0 -> 1
 1 -> 1
 else -> fib(k - 1) + fib(k - 2)
 }

Notice that for 0 and 1, we define the base case, which does not use recursion. However, for
higher values, the function itself is called with the previous two values of k, and so on.

Functions in Kotlin

[122]

This is very succinct code, but it isn't the most efficient. Each time the fib function is
invoked from within itself, the runtime must keep the existing stack frame so that the
execution could continue once it returns. We can demonstrate this with the following
pseudo code:

 invoke fib with k:
 If k == 0 then return 1
 If k == 1 then return 1
 Let temp1 = invoke fib with k-1
 Let temp2 = invoke fib with k -2
 return temp1 + temp2

As you can see, after the recursive calls are completed, we add them together. So the
compiler must keep this stack frame alive to store the variables temp1 and temp2. If fib is
invoked with a large number, then the number of recursive calls required before we get to
the base cases would imply that we'd run out of stack space, leading to the famous stack
overflow error.

This particular function could be improved by remembering the values of
fib(k-1) instead of recalculating it each time. However, it demonstrates
how recursion in general is problematic if the call depth is unbounded.

If an invocation of a recursive function is the last operation in a particular function and the
result of the call is simply to return the value, then the system would not need to keep the
previous stack frame in play. Since it does not need other variables for further operations, it
could simply return the value from the recursive call. This technique is called tail recursion,
and it allows us to write efficient recursive algorithms that would otherwise result in stack
overflow errors.

To inform Kotlin that our function is expected to be a tail recursive function, we use the
tailrec keyword when defining the function. Then the compiler will ensure that each use
of recursion in the function is the last operation. If not, then a compile time error will occur.

Consider a function for calculating factorials in a recursive manner. Note that the factorial
of 0 is defined as 1:

 fun fact(k: Int): Int {
 if (k == 0) return 1
 else return k * fact(k - 1)
 }

Functions in Kotlin

[123]

The last operation is not the recursive call because the result from the recursive call is
multiplied before it is returned. However, if we rewrite the function to carry the result with
it, then we could return directly from the recursive call:

 fun fact(k: Int): Int {
 fun factTail(m: Int, n: Int): Int {
 if (m == 0) return n
 else return factTail(m - 1, m * n)
 }
 return factTail(k, 1)
 }

The inner factTail function is now tail recursive, so we can mark it as such and the
compiler will confirm the following for us:

 fun fact(k: Int): Int {
 tailrec fun factTail(m: Int, n: Int): Int {
 if (m == 0) return n
 else return factTail(m - 1, m * n)
 }
 return factTail(k, 1)
 }

Varargs
Kotlin allows functions to be defined such that they would accept a variable number of
arguments. Hence this feature is called varargs. Varargs allow users to pass in a comma-
separated list of arguments, which the compiler will automatically wrap into an array. Java
developers will already be familiar with the feature, which in Java looks like the following:

 public void println(String.. args) { }

The Kotlin equivalent is to use the vararg keyword before the parameter name:

 fun multiprint(vararg strings: String): Unit {
 for (string in strings)
 println(string)
 }

This would be invoked in the following way:

 multiprint("a", "b", "c")

Functions in Kotlin

[124]

Functions can have regular parameters, and at most one parameter marked as vararg:

 fun multiprint(prefix: String, vararg strings: String): Unit {
 println(prefix)
 for (string in strings)
 println(string)
 }

The vararg parameter is usually the last parameter, but it does not always have to be. If
there are other parameters after vararg, then arguments must be passed in using named
parameters:

 fun multiprint(prefix: String, vararg strings: String, suffix: String):
Unit {
 println(prefix)
 for (string in strings)
 println(string)
 println(suffix)
 }

The vararg parameter would be invoked using the following named parameter as a suffix:

 multiprint("Start", "a", "b", "c", suffix = "End")

Spread operator
If a function is defined to accept a variable number of arguments using vararg, but you
already have an array, then how do you pass it in? The answer lies in using the so-called
spread operator *, which unwraps the elements of the array and passes them in as
individual arguments.

Let's say we have an array of strings that we want to pass to the multiprint function we
defined earlier. Then using the spread operator, the code will look like the following:

 val strings = arrayOf("a", "b", "c", "d", "e")
 multiprint("Start", *strings, suffix = "End")

Notice that we apply the spread operator before the variable name.

In current versions of Kotlin, the spread operator only works on Array
types. This restriction will be lifted in future releases.

Functions in Kotlin

[125]

Standard library functions
Kotlin provides a standard library that is meant to augment, not replace, the standard Java
library. There are many functions that adapt Java types and methods and allow them to be
used as idiomatic Kotlin. In this chapter, we will cover some of the lower level functions
that have far reaching use.

Apply
Apply is a Kotlin standard library extension function declared on Any, so it could be
invoked on instances of all types. Apply accepts a lambda that is invoked with the receiver
being the instance where apply was called on. Apply then returns the original instance.

It's primary use is to make the code that needs to initialize an instance more readable by
allowing functions and properties to be called directly inside the function before returning
the value itself. Refer to the following code:

 val task = Runnable { println("Running") }
 Thread(task).apply { setDaemon(true) }.start()

Here we created a task, an instance of Runnable, and then created a new Thread instance
to run this task. Inside the closure, we configure the thread instance to be a daemon thread.

Notice that the closure code is operating on the thread instance directly. The instance that
apply was called on is the receiver for the closure. Further note that we can call start() on
the return value because the original instance is always returned from apply, regardless of
what the closure itself returns.

An alternative version of this code without apply looks as follows:

 val task = Runnable { println("Running") }
 val thread = Thread(task)
 thread.setDaemon(true)
 thread.start()

Functions in Kotlin

[126]

Let
Let is a Kotlin standard library extension function that is similar in vein to apply. The key
difference is that it returns the value of the closure itself. It is useful when you wish to
execute some code on an object before returning some different value and you don't need to
keep a reference to the original:

 val outputPath = Paths.get("/user/home").run {
 val path = it.resolve("output")
 path.toFile().createNewFile()
 path
 }

Notice that it refers to the instance we invoked run on, the user's home folder. The
advantage of writing code this way is that we don't need to assign the original path to an
intermediate variable.

With
With is a top-level function designed for cases when you want to call multiple functions on
an object and don't wish to repeat the receiver each time. The function with accepts a
receiver and a closure to operate on such a receiver:

 val g2: Graphics2D = ...

 g2.stroke = BasicStroke(10F)
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON)g2.setRenderingHint(RenderingHints.KEY_DI
THERING, RenderingHints.VALUE_DITHER_ENABLE)
 g2.background = Color.BLACK

 with(g2) {
 stroke = BasicStroke(10F)
 setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON)
setRenderingHint(RenderingHints.KEY_DITHERING,
RenderingHints.VALUE_DITHER_ENABLE)
 background = Color.BLACK
 }

In this example, the first set of invocations operate on the g2 reference directly. In the
second set, the receiver is set to g2, so functions can be invoked on it directly.

Functions in Kotlin

[127]

Run
Run is an extension function that combines the use cases of with and let. This means a
closure is passed to run, which has the instance as the receiver. The return value of the
closure is used as the return value of run itself:

 val outputPath = Paths.get("/user/home").run {
 val path = resolve("output")
 path.toFile().createNewFile()
 path
 }

The key difference between let and run is that with run, the receiver is the instance,
whereas in let, the argument to the closure is the instance.

Lazy
Lazy is another useful function that wraps an expensive function call to be invoked when
first required:

 fun readStringFromDatabase(): String = ... // expensive operation
 val lazyString = lazy { readStringFromDatabase() }

The first time we require the result, we can access the value on the lazy reference. Only then
will the wrapped function actually be invoked:

 val string = lazyString.value

This is a common pattern seen in many languages and frameworks. The advantage of using
this built-in function over rolling your own is that synchronization is taken care of for you.
That is, if the value is requested twice, Kotlin will safely handle any race conditions by only
executing the underlying function once.

Use
Use is similar to the try-with-resources statement that exists in Java 7. Use is defined as an
extension on an instance of closeable and accepts a function literal that operates on this
closeable. Use will safely invoke the function, closing down the resource after the function
has completed whether an exception was raised or not:

 val input = Files.newInputStream(Paths.get("input.txt"))
 val byte = input.use({ input.read() })

Functions in Kotlin

[128]

Essentially, use is a more concise way of handling resources in simple cases, without
needing the try/catch/finally block.

Repeat
As the name implies, repeat accepts a function literal and an integer k. The function literal
will be invoked k number of times. This is a very simple function to avoid needing a for
block for simple operations:

 repeat(10, { println("Hello") })

Require/assert/check
Kotlin provides a triad of functions to enable us to add a limited amount of formal
specifications to our program. A formal specification is an assertion that should always hold
true or false at the location when the assertion is executed. These are also referred to as
contracts or design by contract:

Require throws an exception and it is used to ensure that arguments match the
input conditions
Assert throws an AssertionException exception and it is used to ensure that
our internal state is consistent
Check throws an IllegalStateException exception and it is also used for
internal state consistency

These functions are all very similar. The key difference is in the type of exception that is
raised. Assert can be disabled at runtime, but require and check cannot be disabled. Refer
to the following example:

 fun neverEmpty(str: String) {
 require(str.length > 0, { "String should not be empty" })
 println(str)
 }

In this example, we always ensure we have not passed an empty String. The function literal
that is passed as a message to the functions is lazily evaluated; it won't be invoked if the
condition holds true.

Functions in Kotlin

[129]

Generic functions
Have you ever written a function for one type and then you had to write it again for
another type? Perhaps you wrote a function that worked for strings and then had to write
the same function again for integers.

To avoid such a case, functions can be generic in the types they use. This allows a function
to be written that can work with any type, rather than a specific type only. To do this, we
define the type parameters in the function signature:

 fun <T> printRepeated(t: T, k: Int): Unit {
 for (x in 0..k) {
 println(t)
 }
 }

In this example, we print the t element k number of times. You might be thinking that we
could have defined this function using Any and it would still work, since println is
defined to accept Any itself. That's correct! However, what you can't do with Any is ensure
that multiple parameters are of the same type and that return values are the same as the
input type. Let's say we want a function that returns a random element from three input
instances:

 fun <T> choose(t1: T, t2: T, t3: T): T {
 return when (Random().nextInt(3)) {
 0 -> t1
 1 -> t2
 else -> t3
 }
 }

Now when we call this function, the compiler will enforce that the three elements are all of
the same type. It doesn't matter which type, as long as they are all the same. In addition, the
return value will be the same. So the following code all works with the r variable correctly
being inferred as an integer:

 val r = choose(5, 7, 9)

If we don't have generic functions, then our options would be to write a separate function
for each different type we want to use or write a function that returns Any. The drawback
to using Any here would be that the output type would have to be Any as well; therefore,
the caller would have to resort to casting to get back to the original type.

Functions in Kotlin

[130]

Functions are not restricted to a single generic type, and they can also define the upper
bounds on their type parameters. We will look at generics in more detail in Chapter 10,
Collections.

Pure functions
In functional programming, the concept of a pure function is one that holds the following
two properties:

The function should always return the same output for the same input
The function should not create any side effects

The first property means that when a function is invoked, the value returned should always
be the same whenever the same input is used. A simple example is abs. The absolute value
of an integer is always the same for the same input. A pure function can depend only on the
input, but it does not have to necessarily use all the input types.

The second property is that a function should not cause any observable changes outside the
function. So the function cannot depend on any external mutable state, change variables
that exist outside the function, or write I/O.

If a function is said to be pure, then the function can be replaced at the call site with the
result of the expression. Going back to the absolute function, any code that depends on
abs(-4) can be replaced with 4 and the program will not change its meaning.

Consider the following function calls:

 val x = impure(5) + impure(5)
 val y = 2 * impure(5)

It might be tempting to think these two are the same; after all, x + x is the same as 2 * x.
However, the implementation of the function is as follows:

 val counter = AtomicInteger(1)
 fun impure(k: Int): Int {
 return counter.incrementAndGet() + k
 }

We can see that the function mutates a global state, so each invocation is different. This is a
contrived example, but it indicates the difference between pure and impure.

Functions in Kotlin

[131]

The advantages of pure functions are several. The results of the functions can be cached,
which is advantageous for slow functions. Pure functions can be easily parallelized since
they don't write anything to a shared state. They can be tested in isolation since they
depend on nothing but their input instances. The previous example would be hard to Unit
test.

We'll cover pure functions and how they can help with testing in Chapter 10, Collections.

Java from Kotlin
One of the main selling points for Kotlin over other alternative JVM languages is the
importance placed upon a high degree of interoperability between Kotlin and Java. Most
Java code can be called without any special support, and some special cases are described
here.

Getters and setters
The JavaBean convention in Java states that mutable fields have a getter and a setter, and
immutable fields just have a getter. A getter is just a no-arg method named get followed by
the name of the field. A setter is a single argument method named set followed by the name
of the field, where the argument is the value you want to set the field to:

 public class Named {
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
 }

This pattern is standard across most of Java. In Kotlin, methods defined in this way can be
accessed using property-style syntax:

 val named = Named()
 println("My name is " + named.name)
 named.name = "new name"

Functions in Kotlin

[132]

Of course, the method names can be accessed as functions and that too normally if you
wish.

If a Java field has a setter but not a getter, then this special syntax will not
be available.

Single abstract methods
A common pattern in Java is interfaces that define a single method. You can see these all
over the Java standard library, such as Runnable, Callable, Closeable, Comparator,
and so on. They are often used in places where a single function would have been used had
Java supported functions earlier. The name single abstract method, or SAMs, has been
adopted to describe them.

Since they are so ubiquitous, Kotlin has support for converting a function literal directly
into a SAM. If the conversion is unambiguous, you can simply pass the function literal
where a SAM is expected:

 val threadPool = Executors.newFixedThreadPool(4)
 threadPool.submit {
 println("I don't have a lot of work to do")
 }

In this example, the thread pool executor is defined to accept an instance of the type
Runnable. So, the compiler will convert the function literal into an instance of Runnable,
with the literal used as the implementation of the method run. The compiled code would be
equivalent to the following snippet:

 threadPool.submit(object : Runnable {
 override fun run() {
 println("I don't have a lot of work to do")
 }
 })

This special support only works for interfaces and not abstract classes,
even if the abstract class only has a single method.

Functions in Kotlin

[133]

What happens if the receiver defines an overload and it is ambiguous which SAM type to
promote the function literal to? In this case, you can give the compiler a nudge by letting it
know which type you intended:

 threadPool.submit(Runnable {
 println("I don't have a lot of work to do")
 })

Notice that this is very similar to the first example, except that we have simply prefixed the
function literal with the name of the SAM type we want to use.

Kotlin will not perform this conversion on SAMs that are defined in Kotlin
itself. This is because in Kotlin, you can define your function to accept
another function, making this kind of pattern redundant.

Escaping Kotlin identifiers
Some Kotlin keywords are valid identifiers in Java, for example, object, in, and when. If
you need to call a Java library method or field with one of these names, you can still do so
by wrapping the name with backticks.

For example, consider that a Java library defines the following class and method:

 public class Date {
 public void when(str:String) { }
 }

If this happens, then it can be invoked like this:

 date.`when`("2016")
 Checked exceptions

As discussed previously, Kotlin does not have checked exceptions. So Java methods that
have checked exceptions are treated in the same way as methods that do not.

For example, the method createNewFile is defined on file:

 public boolean createNewFile() throws IOException

In Java, this means we would need a try…catch…finally block. In Kotlin, we do not.

Functions in Kotlin

[134]

Java void methods
We know by now that void in Java is analogous to Unit in Kotlin. Any void Java method is
treated as a Unit returning function.

Kotlin from Java
Just as Java can be used seamlessly in Kotlin, Kotlin can just as easily be used from your
Java programs.

Top-level functions
The JVM does not support top-level functions. Therefore, to make them work with Java, the
Kotlin compiler creates a Java class with the name of the package. The functions are then
defined as Java methods on this class, which must be instantiated before use.

For example, consider the following top-level function:

 package com.packt.chapter4
 fun cube(n: Int): Int = n * n * n

If this is given, the Kotlin compiler will generate a class called
com.packt.chapter4.Chapter4 with functions as static members. To use this from Java,
we would access this function as we would access any other static method:

 import com.packt.chapter4.Chapter4;
 Chapter4.cube(3);

We can even change the name of the class the compiler creates by using an annotation:

 @file:JvmName("MathUtils")
 package com.packt.chapter4
 fun cube(n: Int): Int = n * n * n

Top-level functions would cause the compiler to generate the methods in a class called
com.pact.chapter4.MathUtils instead. Even better, we can tell the compiler to combine
all the top-level functions from several Kotlin files with the same Java class. This uses
another annotation:

 @file:JvmMultifileClass

This is useful when top-level functions are spread in a package, but for use in Java, you
want a simple, unified entry code.

Functions in Kotlin

[135]

Default parameters
JVM has no support for default parameters. Therefore, when a function is defined with
defaults, the compiler must create a single function without the default parameters.
However, we can instruct the compiler to create multiple overloads of the function for each
default parameter. Then Java users can see the several functions and choose which one is
most appropriate.

Consider we have the following function definition with defaults:

 @JvmOverloads fun join(array: Array<String>, prefix: String = "",
separator: String = "", suffix: String = "")

If we have this, the annotation @JvmOverloads will cause the compiler to generate the
following variants:

 public String join(String[] array) {
 return join(array, "");
 }

 public String join(String[] array, String prefix) {
 return join(array, prefix, "");
 }

 public String join(String[] array, String prefix, String separator) {
 return join(array, prefix, separator, "");
 }

 public String join(String[] array, String prefix, String separator,
String suffix) {
 //actual implementation
 }

Overloads will only be created for default parameters, dropping all the parameters to the
right, and so on. This clever trick works for constructors and static methods.

Object and static methods
Named objects and companion objects are generated on a JVM as singleton instances of a
particular class. For example, if you define an object called Foo, then the Kotlin compiler
will create a class called Foo. Foo will contain a static field called INSTANCE, which will
contain the only instance of Foo:

 object Console {
 fun clear() : Unit { }

Functions in Kotlin

[136]

 }

This Kotlin method can be called from Java as follows:

 Console.INSTANCE.clear()

However, you can also inform the Kotlin compiler to generate this function as a Java static
method. To do this, we mark the function with the annotation @JvmStatic:

 object Console {
 @JvmStatic fun clear() : Unit { }
 }

Now this method can be called from Java using INSTANCE as before, but also directly from
the class:

 Console.clear()

Erasure naming
JVM does not support generics in byte code. This means when you have a type such as list,
which is generic, then List<String> and List<Int> are both compiled into the same
underlying representation. This becomes an issue when there is a clash between function
signatures after compilation.

For example, consider the following function declarations are given:

 fun println(array: Array<String>): Unit {}
 fun println(array: Array<Long>) : Unit {}

They will both result in the same signature.

Kotlin is able to differentiate between the two functions, so if we definitely want to use the
same name, we can. We just need to indicate to the compiler what names it should use
when compiling. We do this using the @JvmName annotation:

 @JvmName("printlnStrings")
 fun println(array: Array<String>): Unit {}
 @JvmName("printlnLongs")
 fun println(array: Array<Long>) : Unit {}

These functions are accessible in Kotlin as before, with the original names. In Java, you
would use the names passed to the annotation.

Functions in Kotlin

[137]

Checked exceptions
In Java, we can only catch checked exceptions if they are declared on the method, even if
the method body throws that exception. Therefore, if we have a function that will be used
from Java and we want to allow people to catch an exception, we must inform the compiler
to add the exception to the method signature.

We can do this using the @Throws annotation:

 @Throws(IOException::class)
 fun createDirectory(file: File) {
 if (file.exists())
 throw IOException("Directory already exists")
 file.createNewFile()
 }

In this example, the createDirectory function can now be used in a
try…catch…finally block from Java:

 try {
 Chapter4.createDirectory(new File("mobydick.txt"));
 } catch (IOException e) {
 // handle exception here
 }

Summary
Functions are the cornerstone of any modern language, and the full range of features Kotlin
provides allows developers to be more expressive yet write less code. As we will see in the
next chapter, functions are the key to unlocking powerful idioms known as higher ordered
functions.

5
Higher Order Functions and

Functional Programming
In the previous chapter, we introduced Kotlin's support for functions and the various
features we can use while writing functions. In this chapter, we continue on that theme by
discussing higher order functions and how we can use them to write cleaner and more
expressive code.

In this chapter, we will cover:

Higher order functions and closures
Anonymous functions
Function references
Functional programming idioms
Custom DSLs

Higher order functions
A higher order function is simply a function that either accepts another function as a
parameter, returns a function as its return value, or both.

Let's consider the first example:

 fun foo(str: String, fn: (String) -> String): Unit {
 val applied = fn(str)
 println(applied)
 }

Higher Order Functions and Functional Programming

[139]

Here, we have defined a function foo with two parameters. The first is a string, and the
second is a function from string to string. When we say from string to string, we mean the
function accepts a string input and returns another string as the output. Also note the
syntax used to define the function parameter. The input types are wrapped in parentheses
and the output type is separated by a thin arrow.

To invoke this function, we can pass in a function literal (recall that function literals were
introduced in Chapter 4, Functions in Kotlin):

 foo("hello", { it.reversed() })

As you can see, the string we pass in is hello. This value is then passed as the input to the
next function, which returns the reversed value. This is then printed out, so the result of this
invocation would be to output olleh. Remember that a function literal that only has one
argument can use it as a shortcut to avoid naming the argument explicitly.

At this stage you may wonder why this is useful. After all, we could have written code like
the following:

 fun foo2(str: String) {
 val reversed = str.reversed()
 println(reversed)
 }

The result of this code would be the same. However, the advantages of first-order functions
are clear when we want to write a function that can work for many scenarios. Let's consider
an example of filtering elements from a list into odd and even elements. The imperative
approach might be something like the following:

 val ints = listOf(1, 2, 3, 4, 5, 6)

 val evens = mutableListOf<Int>()
 val odds = mutableListOf<Int>()
 for (k in ints) {
 if (k % 2 == 0)
 evens.add(k)
 else
 odds.add(k)
 }

Each value is added to another list as we iterate through, applying modulo operators to
separate the values.

Higher Order Functions and Functional Programming

[140]

However, we can use higher order functions instead, as follows:

 val ints = listOf(1, 2, 3, 4, 5, 6)
 val odds = ints.filter { it % 2 == 1 }
 val evens = ints.filter { it % 2 == 0 }

This kind of code has the rare property of being both quicker to write and easier to read. It
also has the added benefit that the evens and odds results are immutable as they have been
constructed for us.

Collections and the higher order functions available on them are covered
in full in Chapter 10, Collections.

Returning a function
Let's now return to the definition of a higher order function. Remember that we said a
function that returns another function is also considered a valid higher order function:

 fun bar(): (String) -> String = { str -> str.reversed() }

In this example, invoking bar() will return a function from string to string. In this case,
that particular string will be reversed. To return a function, we use an equals after the
return type, and wrap the function in braces. Technically this is a one-line function, where
the single expression after the equals is the function body.

We can invoke it as follows:

 val reversi = bar()
 reversi("hello")
 reversi("world")

Here, we assign the function bar to a variable called reversi, before invoking it with two
different values.

The usefulness of this technique can be seen when we have a function that accepts other
values and then returns a function that uses the inputs to the original function. Lets return
to the filter example from earlier and define a function for creating a modulo-based filter:

 fun modulo(k: Int): (Int) -> Boolean = { it % k == 0 }

Higher Order Functions and Functional Programming

[141]

Note that the input value k is used in the returned function. This can now be combined with
the higher order filter function available on the list class:

 val ints = listOf(1, 2, 3, 4, 5, 6)
 val odd = ints.filter(modulo(1))
 val evens = ints.filter(modulo(2))
 val mod3 = ints.filter(modulo(3))

We don't use braces here because, if we did, that would define another
function, which would invoke the modulo function, giving us a function of
a function.

Function assignment
Functions can also be assigned to variables to make it easier for them to be passed around:

 val isEven: (Int) -> Boolean = modulo(2)

 listOf(1, 2, 3, 4).filter(isEven)
 listOf(5, 6, 7, 8).filter(isEven)

Here, using the modulo function defined earlier, we assign an instance of that function to a
variable. In this example, the type has been explicitly added so that it is clear to the reader
what the type being returned is, but this can usually be omitted. This same function
instance is then used twice.

We can also assign function literals to variables. In those cases, we need to help the
compiler with the parameter types in either of the following ways:

 val isEven : (Int) -> Boolean = { it % 2 == 0 }

The following is another option:

 val isEven = { k : Int -> k % 2 == 0 }

This can be useful if you need to set up a non-trivial or time-consuming function for use
multiple times.

Languages that support higher order functions and function assignment are said to support
first class functions.

Higher Order Functions and Functional Programming

[142]

Closures
In functional programming, a closure is a function that has access to variables and
parameters defined in outer scopes. It is said that they “close over” these variables, hence
the name closure.

Let's consider an example where we wish to load names from a database and filter them to
only include those that match some search criteria. We will use our old friend, the filter
method:

 class Student(val firstName: String, val lastName: String)

 fun loadStudents(): List = ...
 // load from database

 fun students(nameToMatch: String): List<Student> {
 return loadStudents().filter {
 it.lastName == nameToMatch
 }
 }

Note that the function literal passed to the filter method uses the parameter to the outer
function. This parameter is defined in an outer scope to the function, so the function is
closing over the parameter.

Closures can access local variables as well:

 val counter = AtomicInteger(0)
 val cores = Runtime.getRuntime().availableProcessors()
 val threadPool = Executors.newFixedThreadPool(cores)

 threadPool.submit {
 println("I am task number ${counter.incrementAndGet()}")
 }

In this example, we submit a number of tasks to a thread pool. As you can see, each task has
access to a shared counter (using AtomicInteger for thread safety).

Higher Order Functions and Functional Programming

[143]

Closures can also mutate variables they have closed over:

 var containsNegative = false

 val ints = listOf(0, 1, 2, 3, 4, 5)
 ints.forEach {
 if (it < 0)
 containsNegative = true
 }

Very simply, this code closes over a local variable, containsNegative, setting it to true if
a negative value is found in a list. In the real world, you'd use a built-in function for this
rather than this function, but it indicates how vars can be updated from inside a function
literal.

Anonymous functions
Often when using higher order functions we invoke them using function literals, especially
if the function is short:

 listOf(1, 2, 3).filter { it > 1 }

As you can see, there is no reason to define the passed function anywhere else. When using
literals like this, we are unable to specify the return value. This is usually not a problem as
the Kotlin compiler will infer the return type for us.

However, sometimes we may wish to be explicit about the return type. In those cases, we
can use what is called an anonymous function. This is a function that looks similar to a
normal function definition, except the name is omitted:

 fun(a: String, b: String): String = a + b

This can be used in the following manner:

 val ints = listOf(1, 2, 3)
 val evens = ints.filter(fun(k: Int) = k % 2 == 0)

If the parameter type can also be inferred, then that can be omitted as well:

 val evens = ints.filter(fun(k) = k % 2 == 0)

Higher Order Functions and Functional Programming

[144]

Function references
So far in this chapter, we have already seen how to pass functions as parameters. The ways
we have done this so far are either by creating a function literal, or by using a function that
returns another function.

Top-level function references
But what if we have a top-level function and we want to use that? We can wrap the function
in another function, of course:

 fun isEven(k: Int): Boolean = k % 2 == 0

 val ints = listOf(1, 2, 3, 4, 5)
 ints.filter { isEven(it) }

The alternative is to use what is called a function reference. Using the same definition for
isEven, we can write it as follows:

 val ints = listOf(1, 2, 3, 4, 5)
 ints.filter(::isEven)

Note that the :: syntax is used before the function name.

Member and extension function references
Function references can be used for extension and member functions by prefixing them
with the name of the class. Let's define an extension function on integers called isOdd, as
follows:

 fun Int.isOdd(): Boolean = this % 1 == 0

We could use this inside a function literal as normal:

 val ints = listOf(1, 2, 3, 4, 5)
 ints.filter { it.isOdd() }

Higher Order Functions and Functional Programming

[145]

We can also use a reference to it instead:

 val ints = listOf(1, 2, 3, 4, 5)
 ints.filter(Int::isOdd)

A function reference to a member or extension function has an extra
parameter-the instance or receiver that the function is invoked on.

Function references might seem just another way of doing basically the same thing, but
consider a case where a function accepts multiple parameters:

 fun foo(a: Double, b: Double, f: (Double, Double) -> Double) = f(a, b)

Here, foo will invoke the function parameter with the inputs a and b. To invoke this, we
can, of course, pass in a function literal:

 foo(1.0, 2.0, { a, b -> Math.pow(a, b) })

Math.pow is a member function, and since we know it accepts two doubles and returns
another double, we can use a function reference. This will have a matching function
signature, and so reduces boilerplate:

 foo(1.0, 2.0, Math::pow)

Bound references
In Kotlin 1.1, we are able to have function references that are bound to a particular instance.
This means that we can place an expression before the :: operator. The reference is then
tied to that particular instance, meaning that, unlike unbound references, the arity of the
returned function does not increase.

Compare the following two examples. The first uses unbound references:

 fun String.equalsIgnoreCase(other: String) = this.toLowerCase() ==
other.toLowerCase()

 listOf("foo", "moo", "boo").filter {
 (String::equalsIgnoreCase)("bar", it)
 }

Higher Order Functions and Functional Programming

[146]

We have a simple function for case insensitive equality, but when we make a function
reference to it, it has the signature (String, String) -> Boolean. The first argument is
the receiver. This means we can't simply pass in the reference to the filter function on the
list, but instead have to wrap it again in another function literal.

Let's try again, this time using a bound reference:

 fun String.equalsIgnoreCase(other: String) = this.toLowerCase() ==
other.toLowerCase()

 listOf("foo", "baz", "BAR").filter("bar"::equalsIgnoreCase)

Using the same definition for equalsIgnoreCase, we can create a bound reference on the
receiver, bar. This results in a function with the signature (String) -> Boolean. This
reference has the correct shape to be passed in directly to the filter function.

Function-literal receivers
Recall from the previous chapter on functions that the receiver of a function is the instance
that corresponds to the this keyword when inside the function body. In Kotlin, function
parameters can be defined to accept a receiver when they are invoked. We do that using the
following syntax:

 fun foo(fn: String.() -> Boolean): Unit

Then, when we invoke the function fn in the foo function body, we are required to invoke
it on an instance of string, as you can see if we complete the implementation of foo:

 fun foo(fn: String.() -> Boolean): Unit {
 "string".fn()
 }

This feature also works with anonymous functions:

 val substring = fun String.(substr: String): Boolean =
 this.contains(substr)
 "hello".substring("ello")

Higher Order Functions and Functional Programming

[147]

You might prefer the anonymous function syntax if you wish to assign a function to a
variable, as earlier. This is because a receiver cannot be specified with a function literal.

Function receivers are useful when writing custom DSLs. We'll cover this in detail in a later
section.

Functions in the JVM
Prior to version 8 of the Java Virtual Machine (JVM), first class functions were not
supported. Since Kotlin targets Java 6 for compatibility with Android devices, how are
functions handled by the compiler?

It turns out that all functions in Kotlin are compiled into instances of classes called
Function0, Function1, Function2, and so on. The number in the class name represents
the number of inputs. If you look at the type inside an IDE, you will be able to see which
class the function is being compiled into. For example, a function with the signature
(Int)->Boolean would show the type as Function1<Int, Boolean>. Each of the
function classes also has an invoke member function that is used to apply the body of the
function.

Here is the definition of Function0 from the Kotlin source code, which accepts no input
parameters:

 /** A function that takes 0 arguments. */
 public interface Function0<out R> : Function<R> {
 /** Invokes the function. */
 public operator fun invoke(): R
 }

Here is the definition of Function1, which accepts a single input parameter:

 /** A function that takes 1 argument. */
 public interface Function1<in P1, out R> : Function<R> {
 /** Invokes the function with the specified argument. */
 public operator fun invoke(p1: P1): R
 }

All instances have a return type, and the return type is the rightmost type parameter. The
other definitions of FunctionN follow logically from this.

Higher Order Functions and Functional Programming

[148]

Bytecode
As an example of the output that the Kotlin compiler will emit, we can view the bytecode
generated for a simple function invocation. Let's use the integer filter functions from earlier.

Look at the following simple function:

 val isEven: (Int) -> Boolean = { it % 2 == 0 }

This simple function will result in the following bytecode:

final class com.packt.chapter5._5_x_inlineKt$test$isEven$1 extends
kotlin.jvm.internal.Lambda implements
kotlin.jvm.functions.Function1<java.lang.Integer, java.lang.Boolean> {
public static final com.packt.chapter5._5_x_inlineKt$test$isEven$1
INSTANCE;
 public java.lang.Object invoke(java.lang.Object);
 Code:
 0: aload_0
 1: aload_1
 2: checkcast #11 // class java/lang/Number
 5: invokevirtual #15 // Method
java/lang/Number.intValue:()I
 8: invokevirtual #18 // Method invoke:(I)Z
 11: invokestatic #24 // Method
java/lang/Boolean.valueOf:(Z)Ljava/lang/Boolean;
 14: areturn
public final boolean invoke(int);
 Code:
 0: iload_1
 1: iconst_2
 2: irem
 3: ifne 10
 6: iconst_1
 7: goto 11
 10: iconst_0
 11: ireturn
com.packt.chapter5._5_x_inlineKt$test$isEven$1();
 Code:
 0: aload_0
 1: iconst_1
 2: invokespecial #33 // Method
kotlin/jvm/internal/Lambda."<init>":(I)V
 5: return
static {};
 Code:
 0: new #2 // class
com/packt/chapter5/_5_x_inlineKt$test$isEven$1

Higher Order Functions and Functional Programming

[149]

 3: dup
 4: invokespecial #53 // Method "<init>":()V
 7: putstatic #55 // Field
INSTANCE:Lcom/packt/chapter5/_5_x_inlineKt$test$isEven$1;
 10: return
}

You can see in the first line that this class extends
kotlin.jvm.functions.Function1<java.lang.Integer, java.lang.Boolean>.

This matches the function type we defined. You'll also notice that there is an invoke
function, which contains the logic of the function, namely iconst_2 and irem, which are
performing the modulo(2) operation.

The rest of the bytecode is concerned with allowing the function to be invoked as a static
method. Since functions have no state other than their inputs, they can be modeled as a
singleton instance via a static method.

Closures are implemented by increasing the arity of the function to accept
extra parameters, which are the closed-over variables. The compiler inserts
this automatically.

Function composition
We have seen how we can extract a function value from an existing top-level or extension
function. The logical next step would be functionality that allows us to combine multiple
functions together in a concise way: function composition.

Unlike many other languages, Kotlin does not have any built-in support for function
composition. However, it is very easy to add our own using the facilities we have seen so
far for manipulation of functions.

Higher Order Functions and Functional Programming

[150]

We can start by defining a compose function that would accept two input functions,
returning a new function that will invoke them in turn when applied. Of course, the output
type from the first function must match up with the input type of the second:

 fun <A, B, C> compose(fn1: (A) -> B, fn2: (B) -> C): (A) -> C = { a ->
 val b = fn1(a)
 val c = fn2(b)
 c
 }

This example has been written in a fairly verbose way, assigning each step to its own
variable, but this is so that it is clear to the reader what is going on. The returned function is
the composed step of A to C, achieved by invoking A to B, then B to C.

We can call this function easily, as follows:

 val f = String::length
 val g = Any::hashCode
 val fog = compose(f, g)

Here, we have derived two function references, the first to get the length of a string, and the
second to get the hash of that length. Once combined together, we can invoke fog by
applying a string:

 fog("what is the hash of my length?")

This isn't function composition in the mathematical sense, which applies
the right function first and then the left function to the result. Instead, we
are applying the functions in a left to right order.

Recall that all the functions are compiled into instances of the built-in FunctionN classes.
We can take advantage of this knowledge to create extension functions on these classes.
Let's rework a function composition to use infix syntax along with an appropriate
operator to make composition even easier to use.

Since we know that infix functions can only be defined as member functions or extension
functions, we need to change compose to be defined as an extension function on the
appropriate FunctionN instance:

 infix fun <P1, R, R2> Function1<P1, R>.compose(fn: (R) -> R2): (P1) ->
R2 = {
 fn(this(it))
 }

Higher Order Functions and Functional Programming

[151]

This allows us to invoke code similar to the following:

 val f = String::length
 val g = Any::hashCode
 val fog = f compose g

Now, let's update this to use an operator. At this stage, it is nothing more complicated than
replacing the name with the operator-mapped name, and adding the operator keyword:

 operator infix fun <P1, R, R2> Function1<P1, R>.times(fn: (R) -> R2):
(P1) -> R2 = {
 fn(this(it))
 }

This can be invoked as expected:

 val f = String::length
 val g = Any::hashCode
 val fog = f * g

This is not much different from languages that have built-in support for this.

Inline functions
As we have seen from earlier sections, functions are instances of objects, and, of course,
each instance requires an allocation in the heap. There are also method invocations required
when invoking the function. Overall, using functions introduces an overhead.

Kotlin allows us to avoid this overhead by use of the inline keyword. This keyword
indicates to the compiler that the function marked as inline, as well as function parameters,
should be expanded and generated inline at the call site, hence the name.

What does this mean exactly? Let's consider a function that handles resources in a safe
manner: that is, the resource will always be closed correctly, even if the code throws an
exception:

 fun <T : AutoCloseable, U> withResource(resource: T, fn: (T) -> U): U {
 try {
 return fn(resource)
 } finally {
 resource.close()
 }
 }

Higher Order Functions and Functional Programming

[152]

As you can see, we are just wrapping the application of the function argument in a
try...finally block. It's a very simple function, and acts simply to remove some
boilerplate whenever we want to use a closeable resource. We can use it as follows:

 fun characterCount(filename: String): Int {
 val input = Files.newInputStream(Paths.get(filename))
 return withResource(input) {
 input.buffered().reader().readText().length
 }
 }

This function opens a file, reads in the text, and counts the number of characters. It uses
withResource to ensure that the input stream is correctly closed if some exception was
thrown.

When this code is compiled, we end up with the creation of the function argument as an
instance. If code like this was being executed many times in a loop, those allocations would
add up. Let's look at the bytecode generated by the compiler for the characterCount
function:

0: aload_0
1: ldc #37 // String filename
3: invokestatic #15 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Object;L
java/lang/String;)V
6: aload_0
7: iconst_0
8: anewarray #39 // class java/lang/String
11: invokestatic #45 // Method
java/nio/file/Paths.get:(Ljava/lang/String;[Ljava/lang/String;)Ljava/nio/fi
le/Path;
14: iconst_0
15: anewarray #47 // class java/nio/file/OpenOption
18: invokestatic #53 // Method
java/nio/file/Files.newInputStream:(Ljava/nio/file/Path;[Ljava/nio/file/Ope
nOption;)Ljava/io/InputStream;
21: astore_1
22: aload_1
23: checkcast #25 // class java/lang/AutoCloseable
26: new #55 // class
com/packt/chapter5/_5_x_inlineKt$first$1
29: dup
30: aload_1
31: invokespecial #59 // Method
com/packt/chapter5/_5_x_inlineKt$first$1."<init>":(Ljava/io/InputStream;)V
34: checkcast #19 // class
kotlin/jvm/functions/Function1

Higher Order Functions and Functional Programming

[153]

37: invokestatic #61 // Method
withResource:(Ljava/lang/AutoCloseable;Lkotlin/jvm/functions/Function1;)Lja
va/lang/Object;
40: checkcast #63 // class java/lang/Number
43: invokevirtual #67 // Method
java/lang/Number.intValue:()I
46: ireturn

For those unfamiliar with bytecode output, the key part we are interested in here is at 26.
You can see that a new instance of the function literal is being created before being passed
into the withResource function at 37. The class that contains the code of the function literal
is called com/packt/chapter5/_5_x_inlineKt$first$1.

If we were to mark the withResource function as inline, then the Kotlin compiler would
not generate this as an invocation on a new instance, but instead would generate the code at
the call site.

Firstly, we annotate the function with the keyword:

 inline fun <T : AutoCloseable, U> withResource(resource: T, fn: (T) ->
U): U {
 try {
 return fn(resource)
 } finally {
 resource.close()
 }
 }

The compiler would translate an invocation of characterCount into the following:

 fun characterCountExpanded(filename: String): Int {
 val input = Files.newInputStream(Paths.get(filename))
 try {
 return input.buffered().reader().readText().length
 } finally {
 input.close()
 }
 }

This is the original intent before we introduced the helper function. Now the output of the
bytecode for characterCount has changed significantly:

0: aload_0
1: ldc #48 // String filename
3: invokestatic #15 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Object;L
java/lang/String;)V

Higher Order Functions and Functional Programming

[154]

6: aload_0
7: iconst_0
8: anewarray #50 // class java/lang/String
11: invokestatic #56 // Method
java/nio/file/Paths.get:(Ljava/lang/String;[Ljava/lang/String;)Ljava/nio/fi
le/Path;
14: iconst_0
15: anewarray #58 // class java/nio/file/OpenOption
18: invokestatic #64 // Method
java/nio/file/Files.newInputStream:(Ljava/nio/file/Path;[Ljava/nio/file/Ope
nOption;)Ljava/io/InputStream;
21: astore_1
22: nop
23: nop
24: aload_1
25: checkcast #31 // class java/lang/AutoCloseable
28: checkcast #66 // class java/io/InputStream
31: astore_2
32: aload_1
33: invokevirtual #70 // Method
java/io/InputStream.read:()I
36: istore 4
38: aload_1
39: checkcast #31 // class java/lang/AutoCloseable
42: invokeinterface #35, 1 // InterfaceMethod
java/lang/AutoCloseable.close:()V
47: iload 4
49: goto 66
52: astore 4
54: aload_1
55: checkcast #31 // class java/lang/AutoCloseable
58: invokeinterface #35, 1 // InterfaceMethod
java/lang/AutoCloseable.close:()V
63: aload 4
65: athrow
66: ireturn

The bytecode has expanded because the code that was previously generated inside the file
called com/packt/chapter5/_5_x_inlineKt$first$1 is now generated inline. In fact,
the additional class does not exist at all, and you can see from the preceding bytecode that
we are no longer allocating an instance of an object.

Higher Order Functions and Functional Programming

[155]

The use of this feature must be carefully weighed. The amount of code generated can
increase, but if that means avoiding many allocations in a tight loop then the payoff may be
worthwhile, especially on slower devices such as mobiles.

If the compiler believes that inlining will not result in much improvement,
it will emit a warning. This warning can be disabled if required.

Noinline
Sometimes you may wish to only inline some functions. This is because a function marked
as inline cannot be assigned to a variable inlined, we use the noinline annotation.

For example, let's change our withResource example to accept two functions. The first
function will be applied as before, but the second will be applied after the resource has been
closed:

 inline fun <T : AutoCloseable, U, V> withResource(resource: T, before:
(T) -> U, noinline after: (U) -> V): V {
 val u = try {
 before(resource)
 } finally {
 resource.close()
 }
 return after(u)
 }

In the case of an exception, the second function will not be called.

Let's say, for whatever reason, that we didn't want the second function to be inlined. By
adding the noinline annotation, the function will be wrapped in a FunctionN instance as
normal. The first function, however, is not affected, and is still inlined.

Let's invoke this function using an updated character count that now returns the size in
kilobytes:

 fun characterCountInKilobytes(filename: String): Int {
 val input = Files.newInputStream(Paths.get(filename))
 return withResource(input, {
input.buffered().reader().readText().length }, { it * 1024 })
 }
 fun characterCountInKilobytesExpanded(filename: String): Int {
 val input = Files.newInputStream(Paths.get(filename))

Higher Order Functions and Functional Programming

[156]

 val size = try {
 input.buffered().reader().readText().length
 } finally {
 input.close()
 }
 val fn: (Int) -> Int = { it * 1024 }
 return fn(size)
 }

Since inlining can have major performance benefits, many of the standard library functions
are defined with the inline annotation.

Currying and partial application
A common technique in functional programming is the concept of currying. Currying is the
process of transforming a function that accepts multiple parameters into a series of
functions, each of which accept a single function. Take the following definition of foo:

 fun foo(a: String, b: Int) : Boolean

The curried form would look like the following:

 fun foo(a: String): (Int) -> Boolean

Note that the curried foo returns a second function, which in turn, when invoked with an
Int, would return the Boolean as before. Currying is a useful technique for allowing
functions with multiple parameters to work with other functions that only accept single
arguments.

Currying is related to the idea of partial application. Partial application is the process by
which some, but not all, of the parameters of a function are specified in advance, returning a
new function that accepts the missing parameters. The parameters that have been given are
said to be fixed. In other words, partial application produces a specialized function from a
more generic function.

Take the following function:

 fun foo(a: Int, b: Boolean, c: Double): Long

In this instance, an example of partial application might be to apply the Int and Double,
returning a new function of the form (Boolean) -> Long.

Higher Order Functions and Functional Programming

[157]

Partial application is useful for at least two reasons. Firstly, when some parameters are
available in the current scope, but not every scope, we can partially apply those values, and
then just pass a function of lower arity. This avoids the need to pass down all the
parameters, as well as the function. Secondly, similar to currying, we can use partial
application to reduce the arity of a function in order to match a lower arity input type of
another function.

Currying in action
Let's show an example of the second case. Say we had a function that performed some logic,
called compute. The compute() function accepts a logging function, which it can use to
output progress:

 fun compute(logger: (String) -> Unit): Unit

The logging function just accepts a string and does something with it. The compute
function doesn't really care; it will just invoke it. Now let's assume we have a logging
framework that provides the following logging function:

 fun log(level: Level, appender: Appendable, msg: String): Unit

This might be invoked in a way similar to the following:

 log(Level.Warn, System.out, "Starting execution")

Clearly, the log function signature isn't compatible with the function accepted by the
compute() method. But if we could partially apply it to create a function of the form
(String) -> Unit, then it would work.

We can do this manually by wrapping in a function literal:

 fun compute {
 msg -> log(Level.Warn, Appender.Console, msg)
 }

This works just fine. But wouldn't it be nice if we could do this automatically, especially if
we were dealing with many parameters?

Unfortunately, Kotlin doesn't support partial application or currying out of the box. But the
language is powerful, and provides enough features that we can create support ourselves.

Higher Order Functions and Functional Programming

[158]

Adding currying support
We'll show how easy it is to add support for currying by using the same logging example
from earlier. The first step is to define extension functions on FunctionN, which will return
the curried functions:

 fun <P1, P2, R> Function2<P1, P2, R>.curried(): (P1) -> (P2) -> R = {
 p1 -> {
 p2 -> this(p1, p2)
 }
 }

 fun <P1, P2, P3, R> Function3<P1, P2, P3, R>.curried(): (P1) -> (P2)
-> (P3) -> R = {
 p1 -> {
 p2 -> {
 p3 -> this(p1, p2, p3)
 }
 }
 }

Only support for Function2 and Function3 has been shown here. To add support for
Function4 and so on, it is a trivial case of copying and adding the other parameters.
Function1 doesn't need a curry function as it's already in its curried form.

You'll notice in the implementation that we simply return nested functions. Each time a
function is applied, it returns another function with the arity reduced by one, and the
parameter captured as a closure.

Now, given our earlier definition of a logging function:

 fun logger(level: Level, appender: Appendable, msg: String)

We can curry this, and then partially apply it by invoking it for the first two values:

 val logger = ::logger.curried()(Level.SEVERE)(System.out)
 logger("my message")

Higher Order Functions and Functional Programming

[159]

Note that we need to first get a function reference using :: before invoking the curried()
function. Then we simply apply it twice. The verbose form would look like the following:

 val logger3: (Level) -> (Appendable) -> (String) -> Unit =
::logger.curried()
 val logger2: (Appendable) -> (String) -> Unit = logger3(Level.SEVERE)
 val logger1: (String) -> Unit = logger2(System.out)
 logger1("my message")

In the preceding example, the types have been explicitly added to make it clear to the
reader the shape of the function at each step. As each parameter is applied, you can see that
the arity of the returned function is reducing by one.

Memoization
Memoization is a technique for speeding up function calls by caching and reusing the
output instead of recomputing for a given set of inputs. This technique offers a trade-off
between memory and speed. The typical applications are for computationally expensive
functions or for recursive functions, which branch out calling the recursive function many
times with the same values, such as Fibonacci.

Let's use the latter to explore the effects of memoization. Fibonacci itself can be
implemented recursively in the following manner:

 fun fib(k: Int): Long = when (k) {
 0 -> 1
 1 -> 1
 else -> fib(k - 1) + fib(k - 2)
 }

Note that when we invoke fib(k), we need to invoke fib(k-1) and fib(k-2). However,
fib(k-1) will itself invoke fib(k-2) and fib(k-3), and so on. The result is that we are
making many duplicated calls with the same value. For example, for fib(5) we invoke
fib(1) five separate times.

Higher Order Functions and Functional Programming

[160]

This diagram shows how the number of branches increases with each level of Fibonacci, yet
most of the invocations are for the same input value.

This explosion in recursive branches ends up slowing down the computation, as well as
overflowing the stack for higher values. Here are some relative timings for invoking
Fibonacci for various values:

fib(5) 1 ms

fib(10) 1 ms

fib(15) 1 ms

fib(20) 1 ms

fib(25) 2 ms

fib(30) 5 ms

fib(35) 54 ms

fib(40) 667 ms

fib(45) 6349 ms

fib(50) 69102 ms

Higher Order Functions and Functional Programming

[161]

As you can see, a basic Fibonacci is exponential in time complexity. Wouldn't it make sense
if we could cache the results of fib for any particular value and reuse it each time it was
called? It certainly would, and we can implement a simple cache ourselves using a map:

 val map = mutableMapOf<Int, Long>()
 fun memfib(k: Int): Long {
 return map.getOrPut(k) {
 when (k) {
 0 -> 1
 1 -> 1
 else -> memfib(k - 1) + memfib(k - 2)
 }
 }
 }

Now, running the timings again gives us much improved results. In fact, the difference is so
marked, fib(k) completes almost instantly for values of k up to many thousands
(although we soon overflow even a Long).

Implementing memoization
The next question would be can we make this process automatic for any function? The
answer is yes, we can, but only for functions that are not recursive. We can introduce a
general purpose memoization function that uses the input values as keys in a cache to look
up the stored result:

 fun <A, R> memoize(fn: (A) -> R): (A) -> R {
 val map = ConcurrentHashMap<A, R>()
 return { a ->
 map.getOrPut(a) {
 fn(a)
 }
 }
 }

To use this memoize function, we simply pass in the original function, and we receive back
a wrapper function. This wrapper function will check the map for the result before
computing it, if it hasn't yet been computed. We use a ConcurrentHashMap so that the
memoized function is usable from multiple threads.

Higher Order Functions and Functional Programming

[162]

Say that we had an expensive operation, say, doing a long running query in a database,
which we will call query. We can wrap this query function using the memoize function:

 val memquery = memoize(::query)

To improve further, we can define memoize as an extension function on Function1,
allowing us to invoke it using dot syntax:

 fun <A, R> Function1<A, R>.memoized(): (A) -> R {
 val map = ConcurrentHashMap<A, R>()
 return {
 a -> map.getOrPut(a) {
 this.invoke(a)
 }
 }
 }

val memquery = ::query.memoized()

We could add similar memoized functions on the other FunctionN classes if we wished.

Type alias
Kotlin 1.1 has introduced a new feature for referring to verbose types called type aliases. As
the name suggests, a type alias allow us to declare a new type that is simply an alias of an
existing type. We do this using the typealias keyword:

 typealias Cache = HashMap<String, Boolean>

They are especially useful as a replacement for complex type signatures. Compare the
following and see which you think is more readable:

 fun process(exchange: Exchange<HttpRequest, HttpResponse>):
Exchange<HttpRequest, HttpResponse>

Or:

 typealias HttpExchange = Exchange<HttpRequest, HttpResponse>
 fun process2(exchange: HttpExchange): HttpExchange

Higher Order Functions and Functional Programming

[163]

A typealias carries no runtime overhead or benefit. The alias is simply replaced by the
compiler. This means that new types are not created or allocated, so we suffer no
performance penalty. It also means that two aliases that have the same right-hand side, can
be used interchangeably. For example, these three definitions all reference a string:

 typealias String1 = String
 typealias String2 = String
 fun printString(str: String1): Unit = println(str)

 val a: String2 = "I am a String"
 printString(a)

As you can see, we define the function to accept a String1, which is an alias of String. So
we are able to pass in a String2, which is also a String.

This has the drawback that we cannot use type aliases to increase type safety on parameters
of the same type. For example, consider a method called volume:

 fun volume(width: Int, length: Int, height: Int): Int

If we change this to use type aliases for each of the dimensions, they can still be used
interchangeably:

 typealias Width = Int
 typealias Length = Int
 typealias Height = Int
 fun volume(width: Width, length: Length, height: Height): Int

We are able to invoke this function in any of the following erroneous ways:

 val width: Width = 2
 val length: Length = 3
 val height: Height = 4

 volume(width, length, height)
 volume(height, width, length)
 volume(width, width, width)

At the time of writing, type aliases must be declared at the top level.

Higher Order Functions and Functional Programming

[164]

Either
In most functional programming languages, there is a type called Either (or a synonym).
The Either type is used to represent a value that can have two possible types. It is common
to see Either used to represent a success value or a failure value, although that doesn't
have to be the case.

Although Kotlin doesn't come with an Either as part of the standard library, it's very easy
to add one.

Let's start by defining a sealed abstract class with two implementations for each of the two
possible types that Either will represent:

 sealed class Either<out L, out R>

 class Left<out L>(value: L) : Either<L, Nothing>()
 class Right<out R>(value: R) : Either<Nothing, R>()

It is usual to call the two implementations Left and Right. By convention, when Either
class is representing success or failure, the Right class is used for the success type.

Fold
The first function we'll add to Either is the fold operation. This will accept two functions.
The first will be applied if the Either is an instance of the Left type, and the second will
apply if the Either is the Right type. The return value from whichever function is applied
will be returned:

 sealed class Either<out L, out R> {
 fun <T> fold(lfn: (L) -> T, rfn: (R) -> T): T = when (this) {
 is Left -> lfn(this.value)
 is Right -> rfn(this.value)
 }
 }

Let's see how it can be used. Firstly, let's create some basic classes that we will use for the
rest of the examples in this section:

 class User(val name: String, val admin: Boolean)
 object ServiceAccount
 class Address(val town: String, val postcode: String)

Higher Order Functions and Functional Programming

[165]

Then let's say we had a function that retrieved the current user, and another function that
returns their addresses for a particular user:

 fun getCurrentUser(): Either<ServiceAccount, User> = ...
 fun getUserAddresses(user: User): List<Address> = ...

Note that the getCurrentUser function returns an Either, which contains two types of
user. One is a regular user, and the other is a special ServiceAccount. We can then use
that Either to get the addresses for the user:

 val addresses = getCurrentUser().fold({ emptyList<Address>() }, {
getUserAddresses(it) })

As you can see, we handle the lookup depending on the type we were given. In this case,
the service account doesn't have any addresses, so we just return an empty list.

Projection
It is common to see functionality on an Either that allows us to map, filter, get the value,
and so on. These functions are defined so that they apply to one of the types only, and are
no-ops in the other case. The usual name for this is a left or right projection.

The user will decide whether they are interested in the left or right cases, and, by invoking a
function, will receive a projection that contains the value they are interested in, or no value
if the type they want is not the type the Either contains.

The way we will choose to implement this is to create two projection subclasses: A
ValueProjection, and an EmptyProjection. The ValueProjection will implement the
functions, and the EmptyProjection will implement no-ops. The Either class will then
contain functions to get a projection for whichever side was requested.

Let's start by creating an abstract Projection class, which will define the functions we are
interested in and be the supertype for both the implementing classes:

 sealed class Projection<out T> {
 abstract fun <U> map(fn: (T) -> U): Projection<U>
 abstract fun getOrElse(or: () -> T): T
 }

Higher Order Functions and Functional Programming

[166]

We're going to start with two functions for now: map, which will transform the value if the
projection is one we are interested in, and getOrElse, which will return the value or apply
a default function. The next step is to implement this for both the classes:

 class ValueProjection<out T>(val value: T) : Projection<T>() {
 override fun <U> map(fn: (T) -> U): Projection<U> =
ValueProjection(fn(value))
 override fun getOrElse(or: () -> T): T = value
 }

 class EmptyProjection<out T> : Projection<T>() {
 override fun <U> map(fn: (T) -> U): Projection<U> =
EmptyProjection<U>()
 override fun getOrElse(or: () -> T): T = or()
 }

 fun <T> Projection<T>.getOrElse(or: () -> T): T = when (this) {
 is EmptyProjection -> or()
 is ValueProjection -> this.value
 }

Note that the EmptyProjection just returns another instance of EmptyProjection
without mapping anything. The ValueProjection actually performs the mapping.

getOrElse is implemented as an extension function on Projection itself
because the function signature requires that T is an output in the or
function. This breaks co-variance unless we use an extension function.
Variance is covered in a later chapter.

The final step is to update our Either class to return these projections when asked for:

 sealed class Either<out L, out R> {

 fun <T> fold(lfn: (L) -> T, rfn: (R) -> T): T = when (this) {
 is Left -> lfn(this.value)
 is Right -> rfn(this.value)
 }

 fun leftProjection(): Projection<L> = when (this) {
 is Left -> ValueProjection(this.value)
 is Right -> EmptyProjection<L>()
 }

 fun rightProjection(): Projection<R> = when (this) {
 is Left -> EmptyProjection<R>()
 is Right -> ValueProjection(this.value)
 }

Higher Order Functions and Functional Programming

[167]

 }

Now, we can use this as follows:

 val postcodes = getCurrentUser().rightProjection()
 .map { getUserAddresses(it) }
 .map { addresses.map { it.postcode } }
 .getOrElse { emptyList() }

This is a similar method to the earlier example, but note how we can continue to map over
the results, and then apply a default at the end. If the Either returned was not a Right
value, then the maps would have no effect.

Further projection functions
We'll continue by adding more projection functions, namely, exists, filter, toList, and
orNull.

The exists will accept a function, and if the projection has a value, it will apply the
function and return the Boolean result. If the projection is empty then it will return false:

 abstract fun exists(fn: (T) -> Boolean): Boolean

As the name suggests, filter will perform a filter operation on the projection. A value
projection will apply the function and an empty projection will be returned if the filter
function returns false:

 abstract fun filter(fn: (T) -> Boolean): Projection<T>

The toList function will return a list of the values, or an empty list if the projection is
empty:

 abstract fun toList(): List<T>

Finally, orNull will return the value or null if the projection is empty:

 abstract fun orNull(): T?

We'll round off our Either type with some more functions that allow us to inspect the
type. So our final design for a basic Either type looks like the following:

 sealed class Either<out L, out R> {
 fun <T> fold(lfn: (L) -> T, rfn: (R) -> T): T = when (this) {
 is Left -> lfn(this.value)
 is Right -> rfn(this.value)

Higher Order Functions and Functional Programming

[168]

 }

 fun leftProjection(): Projection<L> = when (this) {
 is Left -> ValueProjection(this.value)
 is Right -> EmptyProjection<L>()
 }

 fun isLeft() = when (this) {
 is Left -> true
 is Right -> false
 }

 fun rightProjection(): Projection<R> = when (this) {
 is Left -> EmptyProjection<R>()
 is Right -> ValueProjection(this.value)
 }

 fun isRight() = when (this) {
 is Left -> false
 is Right -> true
 }

 }

With the following two subtypes implementing either case:

 class Left<out L>(val value: L) : Either<L, Nothing>()
 class Right<out R>(val value: R) : Either<Nothing, R>()

And the required extension functions:

 fun <T> Projection<T>.getOrElse(or: () -> T): T = when (this) {
 is EmptyProjection -> or()
 is ValueProjection -> this.value
 }

 sealed class Projection<out T> {
 abstract fun <U> map(fn: (T) -> U): Projection<U>
 abstract fun exists(fn: (T) -> Boolean): Boolean
 abstract fun filter(fn: (T) -> Boolean): Projection<T>
 abstract fun toList(): List<T>
 abstract fun orNull(): T?
 }

 class EmptyProjection<out T> : Projection<T>() {
 override fun <U> map(fn: (T) -> U): Projection<U> =
EmptyProjection<U>()

Higher Order Functions and Functional Programming

[169]

 override fun exists(fn: (T) -> Boolean): Boolean = false
 override fun filter(fn: (T) -> Boolean): Projection<T> = this
 override fun toList(): List<T> = emptyList()
 override fun orNull(): T? = null
 }

 class ValueProjection<out T>(val value: T) : Projection<T>() {
 override fun <U> map(fn: (T) -> U): Projection<U> =
ValueProjection(fn(value))
 override fun exists(fn: (T) -> Boolean): Boolean = fn(value)
 override fun filter(fn: (T) -> Boolean): Projection<T> = when
(fn(value)) {
 true -> this
 false -> EmptyProjection()
 }

 override fun toList(): List<T> = listOf(value)
 override fun orNull(): T? = value
 }

Now we can execute code like the following:

 val service: ServiceAccount? =
getCurrentUser().leftProjection().orNull()
 val usersWithMultipleAddresses = getCurrentUser().rightProjection()
 .filter { getUserAddresses(it).size > 1 }
 val isAdmin = getCurrentUser().rightProjection().exists { it.admin }

Custom DSLs
A domain-specific language, or DSL, is a language that is specialized for one particular area.
For example, online issue trackers, such as Jira, often come with a “little language” for
querying, designed to make it easier to perform advanced searches. In programming, we
most often see DSLs in the form of an API that has been tailored to make usage of the API
easier.

Since Kotlin provides many features around the use of functions-named parameters, default
parameters, operator overloading, and infix functions, to name a few-it makes Kotlin a
powerful tool for creating your own custom DSL.

Higher Order Functions and Functional Programming

[170]

In this section, we will create a custom DSL used for assertions. This kind of functionality is
often used in testing or behavior-driven development. In fact, we will devote a whole
chapter to testing later in this book using the advanced KotlinTest library.

Infix functions as keywords
A simple assertion would be that a value is equal to another value. We could do this by
having some kind of equal function:

 fun equals(first: Any, second: Any): Unit {
 if (first != second)
 throw RuntimeException("$first was not equal to $second")
 }

We could then use this function as follows:

 equals("foobar", "foobaz")

This is fine, but not very domain-specific. The next step might be to make this an infix
function:

 infix fun Any.equals(other: Any): Unit {
 if (first != second)
 throw RuntimeException("$first was not equal to $second")
 }

Note that this now becomes an extension function to allow the infix operator. We can use
it as follows:

 "foobar" equals "foobaz"

This is a little better. Perhaps we can rename the function to make it clearer to the reader
what it is supposed to do:

 fun Any.shouldEqual(other: Any): Unit {
 if (this != other)
 throw RuntimeException("$this was not equal to $other")
 }

So now our assertion would read like this:

 "foobar" shouldEqual "foobaz"

Higher Order Functions and Functional Programming

[171]

We can now build other assertions for cases that aren't straight equality. For example, we
may wish to assert that a collection contains a particular element:

 listOfNames.contains("george") shouldEqual true

But wouldn't it be nicer if we could have the assertion take care of the boilerplate so we
could write something a little more readable? Ideally, we would be able to write the
following:

 listOfNames shouldContain "george"

We can do this by creating another keyword in the form of an extension function:

 infix fun <E> Collection<E>.shouldContain(element: E): Unit {
 if (!this.contains(element))
 throw RuntimeException("Collection did not contain $element")
 }

Note that this will work for any collection type. It also has the added benefit that the
compiler will check that the element type is the same as the collection type, so we wouldn't
be able to compile code like the following:

 listOfNames shouldContain 10.0

Let's take this further by adding functionality to allow us to combine assertions. The initial
aim is to be able to write code similar to the following:

 listOfNames shouldContain "george" or listOfNames should beEmpty()

We know we're going to need an infix function or, which combines two assertions. It will
have to be an extension or member function so we can use the infix modifier. The natural
first thought is to define or on Unit:

 infix fun Unit.or(other: Unit): Unit

However, since our assertions throw an exception, the left-hand side could have already
thrown an exception before or is invoked, meaning we can't catch it. In which case, we need
to invoke the assertions after they have been combined. At the same time, can we avoid
duplicating the repeated left-hand side?

Let's introduce some type, Matcher, which will capture the assertion and allow for
disjunction (or) and conjunction (and):

 interface Matcher<T> {
 fun test(lhs: T): Unit
 }

Higher Order Functions and Functional Programming

[172]

The idea here is that somehow we're going to create matches using keywords, and those
matchers are going to be invoked to run the tests.

Firstly, we will need an implementation of Matcher for both contains and empty:

 fun <T> contain(rhs: T) = object : Matcher<Collection<T>> {
 override fun test(lhs: Collection<T>): Unit {
 if (!lhs.contains(rhs))
 throw RuntimeException("Collection did not contain $rhs")
 }
 }

 fun <T> beEmpty() = object : Matcher<Collection<T>> {
 override fun test(lhs: Collection<T>) {
 if (lhs.isNotEmpty())
 throw RuntimeException("Collection should be empty")
 }
 }

Now we need some way of invoking these on a receiver. Let's introduce a function called
should that will do this for us:

 infix fun <T> T.should(matcher: Matcher<T>) {
 matcher.test(this)
 }

As you can see, the should function is just an enabler for the matchers. So now our earlier
example can be rewritten like this:

 listOfNames should contain("george")

Now it's time to add the or function to combine matchers. As we mentioned earlier, this
needs to be an extension function, so we'll add it to the Matcher interface:

 interface Matcher<T> {

 fun test(lhs: T): Unit

 infix fun or(other: Matcher<T>): Matcher<T> = object : Matcher<T> {
 override fun test(lhs: T) {
 try {
 this@Matcher.test(lhs)
 } catch (e: RuntimeException) {
 other.test(lhs)
 }
 }
 }
 }

Higher Order Functions and Functional Programming

[173]

Note that we only require one of the matchers to be successful for or to be semantically
correct, so any exception thrown by the first matcher must be caught to give the second
matcher a chance to run. Conversely, if the first matcher is successful, there's no need to
invoke the second at all.

Putting all this together allows us to create a syntax that fulfils our original goal:

 listOfNames should (contain("george") or beEmpty())

Let's take advantage of Kotlin's function receivers to allow us to write a function that we
can use to make many assertions at once:

 listOfNames should {
 contain("george")
 beEmpty()
 }

Using function receivers in a DSL
Function receivers can be used in a powerful way when writing DSLs. They allow us to
introduce methods that can be used in function literals, but their use is restricted to the
appropriate “section”.

For example, let's introduce some matchers that only work on collections, and allow several
of them to be applied at the same time. The idea is to allow syntax like the following:

 listOfNames should {
 contain("george")
 contain("harry")
 notContain("francois")
 haveSizeLessThan(4)
 }

The assertions contain, notContain, and haveSizeLessThan are going to be defined on
a class, which will be the receiver of the function literal block. This will allow those
functions to be invoked without needing a prefix:

 class CollectionMatchers<T>(val collection: Collection<T>) {

 fun contain(rhs: T): Unit {
 if (!collection.contains(rhs))
 throw RuntimeException("Collection did not contain $rhs")
 }

 fun notContain(rhs: T): Unit {

Higher Order Functions and Functional Programming

[174]

 if (collection.contains(rhs))
 throw RuntimeException("Collection should not contain $rhs")
 }

 fun haveSizeLessThan(size: Int): Unit {
 if (collection.size >= size)
 throw RuntimeException("Collection should have size less than
$size")
 }
 }

Now that we have defined our assertions in the class called CollectionMatchers, we
need to have a function that will use this as the receiver for a block of code. Let's make
another should function to do this:

 infix fun <T> Collection<T>.should(fn: CollectionMatchers<T>.() ->
Unit) {
 val matchers = CollectionMatchers(this)
 matchers.fn()
 }

As you can see, it is marked infix again. The key part, though, is that the function has the
receiver set. Inside the function body, we create an instance of CollectionMatchers and
then invoke the supplied function on it. The end result is that the desired syntax is now
supported. Because the contains, notContains and haveSizeLessThan functions are
member functions of the CollectionMatchers class, we cannot invoke those functions in
the wrong place.

Validation and error accumulation
To round up our introduction to functional programming, we'll cover another common
pattern, that of error accumulation. This is also sometimes simply referred to as validation.

The idea is that we have a series of functions that individually error check a value. They can
return some kind of success value if the input is good, and some kind of error value if the
input is bad. These individual functions are then combined, retaining all the errors (if any).
Finally, we can interrogate the accumulation to get the errors.

Higher Order Functions and Functional Programming

[175]

Let's start by modeling the good and bad values that we can use. We'll call these Valid and
Invalid, respectively. They will both extend from a superclass called Validation:

 sealed class Validation
 object Valid : Validation()
 class Invalid(val errors: List<String>) : Validation()

Note that the Invalid case contains a list of errors in the form of strings, and each
successive error will be added to this. This is called error accumulation. The Valid
implementation is just an object as it carries no state.

Our example will be checking that a Student instance is valid. Here is the Student class:

 class Student(val name: String, val studentNumber: String, val email:
String)

We're going to need some functions that check if the name, studentNumber, and email
parameters are valid:

 fun isValidName(name: String): Validation {
 return if (name.trim().length > 2)
 Valid
 else
 Invalid("Name $name is too short")
 }

 fun isValidStudentNumber(studentNumber: String): Validation {
 return if (studentNumber.all { Character.isDigit(it) })
 Valid)
 else
 Invalid("Student number must be only digits: $studentNumber")
 }

 fun isValidEmailAddress(email: String): Validation {
 return if (email.contains("@"))
 Valid
 else
 Invalid("Email must contain an '@' symbol")
 }

Each of these functions is straightforward. The key point is that they are returning an
instance of Validation: either Valid or Invalid, depending on the result of the error
check. Of course, the email check is extremely basic, but this example is about error
accumulation, not writing a production-ready email check.

Higher Order Functions and Functional Programming

[176]

We'll add a helper method to invalid's companion object so we can create an instance from a
single string value, just to avoid some boilerplate:

 class Invalid(val errors: List<String>) : Validation<Nothing>() {
 companion object {
 operator fun invoke(error: String) = Invalid(listOf(error))
 }
 }

Now we need some way of accumulating the values and errors together. It would be nice if
we could do this via some operator to keep the code readable, so let's overload the use of
plus:

 sealed class Validation {
 abstract infix operator fun plus(other: Validation): Validation
 }

Each of the subclasses of Validation will need to implement this:

 class Invalid(val errors: List<String>) : Validation() {

 override fun plus(other: Validation): Validation = when (other) {
 is Invalid -> Invalid(this.errors + other.errors)
 is Valid -> this
 }
 }
 object Valid : Validation() {
 override fun plus(other: Validation): Validation = when (other) {
 is Invalid -> other
 is Valid -> this
 }
 }

Now we are able to combine instances of Validation together:

 val validation = isValidName(student.name) +
isValidStudentNumber(student.studentNumber) +
isValidEmailAddress(student.email)

Finally, we want to be able to do something useful with the errors. Of course, we could just
access them directly as a field, but let's add a helper function to allow us to get a value, or
apply some default.

Higher Order Functions and Functional Programming

[177]

The function will have the following signature:

 abstract fun <T> getOrElse(t: T, or: (List<String>) -> T): T

This will be implemented in each of the subclasses as the following:

 class Invalid(val errors: List<String>) : Validation() {
 override fun <T> getOrElse(t: T, or: (List<String>) -> T): T =
or(errors)
 }

 object Valid : Validation() {
 override fun <T> getOrElse(t: T, or: (List<String>) -> T): T = t
 }

Now our use of the results of the validation step can be something like the following:

 fun validateStudent(student: Student): Student {

 val validation = isValidName(student.name) +
isValidStudentNumber(student.studentNumber) +
isValidEmailAddress(student.email)
 return validation.getOrElse(student, {
 throw RuntimeException("Error creating student. The errors are $it")
}
)
 }

There are many variations of this method. A common variation is to
accumulate values along with errors, and then to use those values in a
transform function to return the constructed final object.

Summary
During this chapter we discussed more advanced use cases of functions, especially higher
order functions that underpin the collections library in most modern languages – Kotlin
being no exception. We saw how the many features Kotlin provides around functions can
be leveraged to write custom DSLs. Finally, we introduced common idioms in the
functional programming space – eithers and validation.

In the next chapter, we'll discuss the complement of functions – properties – which are used
to retrieve and update values in objects.

6
Properties

We touched upon properties briefly in Chapter 3, Object Oriented Programming in Kotlin. In
this chapter, we will take a detailed look at them. You will learn about

General properties
Visibility
Lazy and late initialized
Delegated properties
When to use properties instead of methods

Furthermore, we will see how to use a Kotlin property from Java and we'll take a peek at
the bytecode produced to understand what the compiler does. If you are familiar with C#,
the information presented here will be familiar, after all the concept of properties was
brought in from the .NET world.

Why use properties?
Properties are nothing more than syntactic sugar that allows your source code to call a
method using a simplified syntax. Kotlin comes with support for simple properties and
delegated properties (we will see later in the chapter what they are).

How many times have you written a class containing state information, a state that can be
either retrieved or changed? Usually, state information comes in the form of fields. Here is a
typical class defining two fields:

 class Student {
 private val name:String;
 private val age:Int;
 }

Properties

[179]

Writing such a class in Java is quite repetitive (luckily IntelliJ is quite powerful when it
comes to code generation and refactoring). You normally provide two methods for each
field: a getter and a setter. The code will look similar to this:

 public class Student {
 private String name;
 private intage;
 public Student(String name, intage){
 this.name= name;
 this.age= age;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name= name;
 }
 public int getAge() {
 return age;
 }
 public void setAge(intage) {
 this.age= age;
 }
 }

Now let's see how we can write the preceding code in Kotlin:

 class Student(name: String, age: Int) {
 public var Name = ""
 set(value) {
 field = value
 }

 public var Age = 20
 set(value) {
 field = value
 }

 init {
 Name = name
 Age = age
 }
 }

Properties

[180]

Pretty neat, I would say! Note the init block has to be defined after the property
definitions. This is a limitation, and hopefully it will be addressed at some point in the
future. If you don't write the init block after the properties definitions, you will get a
compilation error. Here is how you could use the preceding class:

 val student = Student("Jamie Fox", 20)
 print("${student.Name} is ${student.Age} years old")
 student.Age+=1
 print("${student.Name} is ${student.Age} years old")

This looks easy, but let's see what actually happens under the hood. We turn again to the
javap utility to get the bytecode produced. Running the command line, will get you
something similar to the following:

public final class com.programming.kotlin.chapter06.Student {
 public final java.lang.String getName();
 Code:
 0: aload_0
 1: getfield #11 // Field Name:Ljava/lang/String;
 4: areturn

 public final void setName(java.lang.String);
 Code:
 ...
 6: aload_0
 7: aload_1
 8: putfield #11 // Field Name:Ljava/lang/String;
 11: return

 ...
 public com.programming.kotlin.chapter06.Student(java.lang.String, int);
 Code:
 ...
 24: invokevirtual #42 // Method setName:(Ljava/lang/String;)V
 27: aload_0
 28: iload_2
 29: invokevirtual #44 // Method setAge:(I)V
 32: return
}

Properties

[181]

For simplicity, I have left out part of the code. The code snippet makes it quite clear what
the compiler did. It generated the get and the set methods as well as the backing field for
both name and age. Noticed the usage of the field keyword inside the set block? It is an
alias for the backing field generated for us. If you use the Kotlin code from Java, you will
end up with the typical pattern of calling get*** and set***:

 Student student = new Student("Alex Wood", 20);
 System.out.println("Student " + student.getName() + " is " +
student.getAge() + " years old");
 student.setAge(student.getAge() + 1);

We can make full use of the compiler capabilities when it comes to simple properties. If we
define the Student constructor parameters as val, we let the compiler do all the work for
us since it will generate the getter but not a setter. Typically, in the case of Student, you will
want to provide a custom setter because you want to enforce some validation. Setting
the age lower than 1 should throw an exception for example. But for the purpose of this
exercise, we left that out:

 class Student(var name: String, var age: Int)

If you look at the bytecode generated, you will notice it is almost the same. The difference is
in the constructor body, where, instead of calling invokevirtual #** (set***), it will
just use putfield to set the backing field value.

Syntax and variations
The syntax for declaring a property is as follows:

 var/val<propertyName>:<PropertyType>[=<property_initializer>]
 [<getter>]
 [<setter>]

Both the initializer and the setter parts are optional. Furthermore, the property type can also
be left out since the compiler can infer it, thus saving you keystrokes. However, for code
clarity, it is advisable to add the property type.

If you define a read-only property by using the val keyword, you only have the getter and
no setter. Imagine you have to define a class hierarchy for a drawing application. You
would want a property for the area. Following is a typical implementation for such
property when it comes to a Rectangle class:

 interface Shape {
 val Area: Double

Properties

[182]

 get;
 }

 class Rectangle(val width: Double, val height: Double) : Shape {
 override val Area: Double
 get() = width * height

 val isSquare: Boolean = width == height
 }

The rectangle class implements the Shape interface and therefore has to define the Area
property. Apart from that, it adds a new property to check if the rectangle is actually a
square. You might believe we get a backing field for the Area property, however, it turns
out we don't. This is what the bytecode reveals:

public final class com.programming.kotlin.chapter06.Rectangle implements
com.programming.kotlin.chapter06.Shape {
 public double getArea();
 Code:
 0: aload_0
 1: getfield #12 // Field width:D
 4: aload_0
 5: getfield #15 // Field height:D
 8: dmul
 9: dreturn
public final booleanisSquare();
 Code:
 0: aload_0
 1: getfield #12 // Field width:D
 4: aload_0
 5: getfield #15 // Field height:D
 16: iconst_0
 17: ireturn
public final double getWidth();
 Code:
 0: aload_0
 1: getfield #12 // Field width:D
 4: dreturn
public final double getHeight();
 Code:
 0: aload_0
 1: getfield #15 // Field height:D
 4: dreturn
publiccom.programming.kotlin.chapter06.Rectangle(double, double);
 Code:
 6: putfield #12 // Field width:D
 11: putfield #15 // Field height:D
 14: return

Properties

[183]

}

Sometimes, your property getter code is not as simple as returning the backing field. In
such a case, you will need to provide the backing field yourself. You should follow best
practices and avoid having complex logic in your getter. Imagine we have a class that
provides a set of keywords. We want to lazily initialize the field only on its first usage.
When we talk about delegated properties, we will see a different approach when we write
idiomatic Kotlin code. Here is how you will implement the keywords cache for now:

 class Lookup {
 private var _keywords: HashSet<String>? = null

 val keywords: Iterable<String>
 get() {
 if (_keywords == null) {
 _keywords = HashSet<String>()
 }
 return _keywords ?: throw RuntimeException("Invalid keywords")
 }
 }

Visibility
The visibility access rules we have discussed for fields apply to properties as well.
Therefore, you can have private, protected, or public (default) properties. Furthermore, the
setter can have different, more restrictive visibility than the getter (the getter code is
generated for you automatically in the following case):

 class WithPrivateSetter(property: Int) {
 var SomeProperty: Int = 0
 private set(value) {
 field = value
 }

 init {
 SomeProperty = property
 }
 }

 val withPrivateSetter = WithPrivateSetter(10)
 println("withPrivateSetter:${withPrivateSetter.SomeProperty}")

Properties

[184]

There are scenarios when properties are subject to class inheritance. If this happens,
typically protected visibility, at least for the setter, is more appropriate:

 open class WithInheritance {
 open var isAvailable: Boolean = false
 get() = field
 protected set(value) {
 field = value
 }
 }

 class WithInheritanceDerived(isAvailable: Boolean) : WithInheritance()
{
 override var isAvailable: Boolean = isAvailable
 get() {
 //do something before returning the value
 return super.isAvailable
 }
 set(value) {
 //do something else before setting the value
 println("WithInhertianceDerived.isAvailable")
 field = value
 }

 fun doSomething() {
 isAvailable = false
 }
 }

 val withInheritance = WithInheritanceDerived(true)
 withInheritance.doSomething()
 println("withInheritance:${withInheritance.isAvailable}")

To adhere to the encapsulation rule, you the property isAvailable has been marked as
open for overrides, but the setter has been made private.

Late initialization
Any non-null property has to be initialized in the constructor. What if you want to inject the
property value via a dependency injection and you don't want to check for null every time
you access it? Or, maybe you simply set the property value in one of the methods exposed
by your type. Kotlin comes with support for delayed initialization. All you have to do is use
the lateinit keyword:

 class Container {

Properties

[185]

 lateinit var delayedInitProperty: DelayedInstance

 fun initProperty(instance: DelayedInstance): Unit {
 this.delayedInitProperty = instance
 }
 }

 class DelayedInstance (val number:Int)
 ...
 val container= Container()
 container.initProperty(DelayedInstance(10))
 println("with delayed
initialization:Number=${container.delayedInitProperty.number}")

There are a few restrictions when using delayed properties. Firstly, the property type
cannot be a primitive type. Secondly, your property cannot make use of custom getter or
setter code. And last but not least, accessing your property before it has been initialized will
end up in kotlin.UninitializedPropertyAccessException.

There is no magic happening under the hood when you use lateinit. Let's take a peek at
the bytecode generated for the Container class:

public final class com.programming.kotlin.chapter06.Container {
 public com.programming.kotlin.chapter06.DelayedInstance
delayedInitProperty;
 public final com.programming.kotlin.chapter06.DelayedInstance
getDelayedInitProperty();
 Code:
 0: aload_0
 1: getfield #11 // Field
delayedInitProperty:Lcom/programming/kotlin/chapter06/DelayedInstance ;
 4: dup
 5: ifnonnull 13
 8: ldc #12 // String delayedInitProperty
 10: invokestatic #18 // Method
kotlin/jvm/internal/Intrinsics.throwUninitializedPropertyAccessExcept
ion:(Ljava/lang/String;)V
 13: areturn

Most of the code has been left out for simplicity. While the setter code is similar to the one
generated for the Student class discussed earlier, the getter's instruction set is slightly
different. The change is contained in line 10 where it will throw the exception if the field is
set to null.

Properties

[186]

Delegated properties
Kotlin enhances the concept of properties to promote code reuse and make the developer
coding task easier. There are many repetitive code snippets you and I could write. Ideally,
we should have the following functionality out-of-the-box:

A property value should be computed lazily on its first ever access.1.

Notify the listeners of a change to one of the values of properties. Have you ever2.
coded in C#? If yes, I am sure the INotifyPropertyChange interface will come
to mind.
Use a map to store your fields rather than a materialized field.3.

Well, good news! Kotlin's delegate properties support all of these. We deal quite often with
types for which we need an identifier:

 interface WithId {
 val id: String
 }

 data class WithIdImpl(override val id: String) : WithId

 class Record(id: String) : WithId by Record.identifier(id) {
 companion object Record {
 fun identifier(identifier: String) = WithIdImpl(identifier)
 }
 }
 ...
 val record = Record("111")
 println(record.id)

We have seen in the chapter on object-oriented programming you can delegate methods.
The same concept is applicable to properties as well. The syntax is similar:
val/var<property name>:<Type> by <expression>. The expression that follows the
by keyword is the actual delegate. In the preceding example, we provided a read-only
property. The caller doesn't even know about WithIdImpl.

The delegates don't need to implement an interface. We could avoid inheritance and rely
exclusively on composition. Imagine you are collecting data from a sensor device. Each
measure produced will carry a timestamp of when the event was created. You will want to
have a property that provides support for the timestamp while enforcing some validation.
For simplicity, the validation part has been left out:

 class TimestampValueDelegate {

Properties

[187]

 private var timestamp = 0L
 operator fun getValue(ref: Any?, property: KProperty<*>): Long {
 return timestamp;
 }

 operator fun setValue(ref: Any?, property: KProperty<*>, value: Long)
{
 timestamp = value
 }
 }

 class Measure {
 var writeTimestamp: Long by TimestampValueDelegate()
 }

 val measure = Measure()
 measure.writeTimestamp = System.currentTimeMillis()
 println("Current measure taken at:${measure.writeTimestamp}")

You might find the preceding code a bit unusual at the beginning. Probably, you are
wondering what are those first two parameters for each method in
TimestampValueDelegate methods. The ref parameter represents the instance on which
you are accessing the property; in our case, it is an instance of Measure, variable measure.
The second function parameter represents a property, such as a named val or var
declaration. You can obtain the property information by using the :: operator; in the
preceding example, all you have to do is use Measure::writeTimestamp. If you are
offering support to a read and write property, then you need to provide both get and set
methods, just like we have done for TimestampValueDelegate. If your property is a read-
only one, a val, then you only have to provide the getValue method. Both of these
functions need to be prefixed by the operator keyword.

What is the magic that glues all of this together? A look at the generated bytecode will
unveil the mechanism used. Let's use javap once again to get our hands on the code
generated by the compiler:

public final class com.programming.kotlin.chapter06.Measure {
 public final long getWriteTimestamp();
 Code:
 0: aload_0
 1: getfield #11 // Field
writeTimestamp$delegate:Lcom/programming/kotlin/chapter06/TimestampValueDel
egate;
 4: aload_0
 5: getstatic #15 // Field
$$delegatedProperties:[Lkotlin/reflect/KProperty;
 8: iconst_0

Properties

[188]

 9: aaload
 10: invokevirtual #21 // Method
com/programming/kotlin/chapter06/TimestampValueDelegate.getValue:(Lja
va/lang/Object;Lkotlin/reflect/KProperty;)J
 13: lreturn
public final void setWriteTimestamp(long);
 Code:
 0: aload_0
 1: getfield #11 // Field
writeTimestamp$delegate:Lcom/programming/kotlin/chapter06/TimestampValueDel
egate;
 4: aload_0
 5: getstatic #15 // Field
$$delegatedProperties:[Lkotlin/reflect/KProperty;
 8: iconst_0
 9: aaload
 10: lload_1
 11: invokevirtual #29 // Method
com/programming/kotlin/chapter06/TimestampValueDelegate.setValue:(Lja
va/lang/Object;Lkotlin/reflect/KProperty;J)V
 14: return
public com.programming.kotlin.chapter06.Measure();
 Code:
 0: aload_0
 1: invokespecial #35 // Method
java/lang/Object."<init>":()V
 4: aload_0
 5: new #17 // class
com/programming/kotlin/chapter06/TimestampValueDelegate
 8: dup
 9: invokespecial #36 // Method
com/programming/kotlin/chapter06/TimestampValueDelegate."<init>":()V
 12: putfield #11 // Field
writeTimestamp$delegate:Lcom/programming/kotlin/chapter06/TimestampValueDel
egate;
 15: return
static {};
 Code:
 0: iconst_1
 1: anewarray #51 // class kotlin/reflect/KProperty
 4: dup
 5: iconst_0
 6: new #53 // class
kotlin/jvm/internal/MutablePropertyReference1Impl
 9: dup
 10: ldc #2 // class
com/programming/kotlin/chapter06/Measure
 12: invokestatic #59 // Method

Properties

[189]

kotlin/jvm/internal/Reflection.getOrCreateKotlinClass:(Ljava/lang/Class;)Lk
otlin/reflect/KClass;
 15: ldc #60 // String writeTimestamp
 17: ldc #62 // String getWriteTimestamp()J
 19: invokespecial #65 // Method
kotlin/jvm/internal/MutablePropertyReference1Impl."<init>":(Lkotlin/
reflect/KDeclarationContainer;Ljava/lang/String;Ljava/lang/String;)V
 22: invokestatic #69 // Method
kotlin/jvm/internal/Reflection.mutableProperty1:(Lkotlin/jvm/internal
/MutablePropertyReference1;)Lkotlin/reflect/KMutableProperty1;
 25: checkcast #51 // class
kotlin/reflect/KProperty
 28: aastore
 29: putstatic #15 // Field
$$delegatedProperties:[Lkotlin/reflect/KProperty;
 32: return
}

This is quite a bit of bytecode, but it is worth going over. We start with the last part of the
code snippet . You notice the compiler has created a static constructor for us, which is
responsible for initializing a static field named $$delegatedProperties: an array of
KProperty (see the entry static {}). Line 1 is where this array is created and at line 29 it
is stored into the static field $$delegatedProperties. Starting at line 6, it creates a
MutablePropertyReference1Impl instance; it is a mutable implementation since we
defined our field using var) and stores it as the first element of the array field (see line 5).

Moving on to the constructor-generated code, we can see there is a field of type
TimestampValueDelegate created automatically (see line 12). Keep in mind we delegate
the property to the TimestampValueDelegate class, hence the presence of this field.

Both the getTimestamp and setTimestamp methods are quite similar, therefore we will
only discuss getTimestamp. At line 10, it's invoking the getValue method exposed by
TimestampValueDelegate, passing the Measure object reference and the KProperty
value obtained from the static field $$delegatedProperties (see line 5).

As you can see, there is no real magic used when using delegated properties; the compiler
generates the boiler code for us.

There are cases when your type exposes a lot of fields and they might not always be
initialized and used. Hence, you might be better off not having a backing field for each type
to reduce the memory footprint. You would want to store the values of each property in a
map, thus taking a small performance hit with a lookup. The next code example shows how
you could write something like this:

 class MapDelegate {

Properties

[190]

 private val map = mutableMapOf<String, Any?>()
 operator fun <T> getValue(ref: Any?, property: KProperty<*>): T {
 return map[property.name] as T
 }
 operator fun <T> setValue(ref: Any?, property: KProperty<*>, value:
T?) {
 map.put(property.name, value)
 }
 }

 data class SomeData(val char: Char)

 class PropsByMap() {
 private val mapDelegate = MapDelegate()
 var p1: Int by mapDelegate

 val p2: SomeData by mapDelegate

 init {
 mapDelegate.setValue(this, PropsByMap::p2, SomeData('K'))
 mapDelegate.setValue(this, PropsByMap::p1, 0)
 }
 }

 ...

 val propsByMap = PropsByMap()
 println("Props with map: p1=${propsByMap.p1}")
 println("Props with map: p2=${propsByMap.p2}")
 propsByMap.p1 = 100
 println("Props with map: p1=${propsByMap.p1}")

If you run the code, you should see 0, SomeData(char=K), and 100.

Fortunately, we don't have to write code as in the preceding example since support for
map-backed properties comes built in with Kotlin. If we have a class with read-only
properties, we could write the following:

 class Player(val map: Map<String, Any?>) {
 val name: String by map
 val age: Int by map
 val height: Double by map
 }

 val player = Player(mapOf("name" to "Alex Jones", "age" to 28,
"height" to 1.82))
 println("Player ${player.name} is ${player.age} ages old and is
${player.height} cm tall")

Properties

[191]

If the class design requires a read and write property, we would need to make use of a
mutable map class as opposed to the previous example where we used an immutable map.

 class Player(val map: MutableMap<String, Any?>) {
 var name: String by map
 var age: Int by map
 var height: Double by map
 }

The Kotlin library comes with an interface to help you with the methods signature required
for delegated properties. If you deal with a read-only property, all you have to do is derive
from the ReadOnlyProperty interface. There is a similar interface to support delegates for
read and write properties; it is called the ReadWriteProperty interface. It is not required
for you to make use of this interface; its presence in the framework will help you get the
method signature right, rather than anything else:

 data class TrivialProperty(private val const: Int) :
ReadOnlyProperty<Trivial, Int> {
 override fun getValue(thisRef: Trivial, property: KProperty<*>): Int
{
 return const;
 }
 }

 class Trivial {
 val flag: Int by TrivialProperty(999)
 }
 ...
 val trivial = Trivial()
 println("Trivial flag is :${trivial.flag}")

While this code doesn't do much other than return a value, and you should never use it like
this, it does show the interface being used.

Lazy initializations
There are cases when you want to delay the creation of an instance of your object until its
first usage. This technique is known as lazy initialization or lazy instantiation. The main
purpose of lazy initialization is to boost performance and reduce your memory footprint. If
instantiating an instance of your type carries a large computational cost and the program
might end up not actually using it, you would want to delay or even avoid wasting CPU
cycles. Imagine you are working on software for a health insurer.

Properties

[192]

For a customer, you will have a list of claims made. To get this list, you will need to go to
the database and load the information. This is quite an expensive process and, if the user
does not actually care about the information, it would be a waste of CPU cycles and
memory. It is only when the user decides to list the claims that you will go and initialize the
claims collection.

Of course, you can write your own code to handle initialization, but this work has been
done for you by the makers of Kotlin. Initially, a lazy implementation could look trivial;
after all, you just have to check whether the value has been set already. Right? But then,
when you bring concurrency into the equation, the code for initializing your property is run
simultaneously by different threads; you can see that the complexity is slightly different. I
am sure the first implementation that comes to everyone's mind is to use a synchronization
block to achieve this. While it is easy and fast to code, it will hurt your throughput. There
are other ways to improve the code and avoid locking.

Concurrency is not for everyone; therefore, I recommend that you use the implementation
provided rather than implement your own. Kotlin offers various implementations to suit all
your needs.

To make use of the lazy initialized delegated property all you have to do is write by lazy
and provide the logic for creating your instance. The rest is taken care of:

 class WithLazyProperty {
 val foo: Int by lazy {
 println("Initializing foo")
 2
 }
 }
 ...

 val withLazyProperty= WithLazyProperty()
 val total= withLazyProperty.foo + withLazyProperty.foo
 println("Lazy property total:$total")

If you run the preceding code, you should see the number 4 being printed out on the
console, but the text Initializing foo appears only once, even though you call the
property twice.

The lazy function takes a lambda, the code responsible for creating the instance, and
returns you an instance of Lazy<T>. The definition of the Lazy interface looks like this:

 public interface Lazy<out T> {
 public val value: T
 public fun isInitialized(): Boolean
 }

Properties

[193]

The framework provides you with three different lazy function definitions. They should
cover any possible use cases. In the previous code example, we ended up using the
following:

 fun <T> lazy(initializer: () -> T): Lazy<T> =
SynchronizedLazyImpl(initializer)

From the return class name, you can infer what it does. Without looking at the
implementation, we know the initialization block will be run within a synchronized code
block:

 private object UNINITIALIZED_VALUE

 private class SynchronizedLazyImpl<out T>(initializer: () -> T, lock:
Any? = null) : Lazy<T>, Serializable {
 private var initializer: (() -> T)? = initializer
 @Volatile private var _value: Any? = UNINITIALIZED_VALUE
 private val lock = lock ?: this

 override val value: T
 get() {
 val _v1 = _value
 if (_v1 !== UNINITIALIZED_VALUE) {
 @Suppress("UNCHECKED_CAST")
 return _v1 as T
 }

 return synchronized(lock) {
 val _v2 = _value
 if (_v2 !== UNINITIALIZED_VALUE) {
 @Suppress("UNCHECKED_CAST") (_v2 as T)
 }
 else {
 val typedValue = initializer!!()
 _value = typedValue
 initializer = null
 typedValue
 }
 }
 }

Properties

[194]

The class holds onto your lambda and uses a lock field to get synchronization support
while initializing the value field. To improve the speed of your getter, the implementation
sets an initial default value to the value field. This way, it can short-circuit the return
without having to obtain the lock, thereby improving performance. You can supply your
own instance for the lock if you want some more control. We can take the previous example
and use the second overload of lazy:

 fun <T> lazy(lock: Any?, initializer: () -> T): Lazy<T> =
SynchronizedLazyImpl(initializer, lock)
 class WithLazyPropertyWithLocking{
 val lockingField = Any()

 val foo: Int by lazy(lockingField, {
 println("Initializing foo");
 2
 })
 }

The third and last overload of the lazy function gives you more control over what type of
lazy implementation is created. Thus, this overloaded version is a factory method:

 fun <T> lazy(mode: LazyThreadSafetyMode, initializer: () -> T):
Lazy<T>

LazyThreadSafteyMode can take one of the following values (the description comes from
the source code):

SYNCHRONIZED: This means locks are used to ensure that only a single thread1.
can initialize the [Lazy] instance.
PUBLICATION: This means the initializer function can be called several times2.
on concurrent access to uninitialized [Lazy] instance value, but only first
returned value will be used as the value of [Lazy] instance.
NONE: This means no locks are used to synchronize the access to the [Lazy]3.
instance value; if the instance is accessed from multiple threads, its behavior is
undefined. This mode should be used only when high performance is crucial and
it is guaranteed that the [Lazy] instance will never be initialized from more than
one thread.

If you use the Synchronized mode, you basically end up with the same implementation
we saw earlier. If you choose Publication, then the following Lazy<T> implementation is
created for you:

 private class SafePublicationLazyImpl<out T>(initializer: () -> T) :
Lazy<T>, Serializable {

Properties

[195]

 private var initializer: (() -> T)? = initializer
 @Volatile private var _value: Any? = UNINITIALIZED_VALUE
 // this final field is required to enable safe publication of
constructed instance
 private val final: Any = UNINITIALIZED_VALUE

 override val value: T
 get() {
 if (_value === UNINITIALIZED_VALUE) {
 val initializerValue = initializer
 // if we see null in initializer here, it means that the value is
already set by another thread
 if (initializerValue != null) {
 val newValue = initializerValue()
 if (valueUpdater.compareAndSet(this, UNINITIALIZED_VALUE,
newValue)) {
 initializer = null
 }
 }
 }
 @Suppress("UNCHECKED_CAST")
 return _value as T
 }
 …
 companion object {
 private val valueUpdater =
java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater(
 SafePublicationLazyImpl::class.java,
 Any::class.java,
 "_value")
 }
 }

To ensure only the first call of the initializer is used, the implementation has to make use of
valueUpdater to set the new value automatically; under the hood, it uses the compare and
swap hardware instruction.

Finally, if you choose NONE for the synchronization mode, you will end up with an instance
of UnsafeLazyImpl. This will yield the best throughput, but it needs to be used
appropriately:

 internal class UnsafeLazyImpl<out T>(initializer: () -> T) : Lazy<T>,
Serializable {
 private var initializer: (() -> T)? = initializer
 private var _value: Any? = UNINITIALIZED_VALUE

 override val value: T

Properties

[196]

 get() {
 if (_value === UNINITIALIZED_VALUE) {
 _value = initializer!!()
 initializer = null
 }
 @Suppress("UNCHECKED_CAST")
 return _value as T
 }

As per the documentation, you should make sure the initialization happens on one thread,
or for as long as it produces an instance with the same state and that state is immutable.
You can have more than one thread calling the initialization block. The last value written
will be kept, but the previous one will be left for the garbage collector.

The Kotlin standard library provides a lazy implementation for scenarios when the value is
already known. All you have to do is call lazyOf(Your_Value)0.

Normally, you won't use this. There is no point in wrapping a known value into a lazy
container. However, you might have a class hierarchy defining a field or a method
as Lazy<T>. In this case, you can use the preceding construct to return the instance of
Lazy<T> with the value already initialized.

Lateinit versus lazy
At first, lateinit var and by lazy {...} sound quite similar. However, there are
significant differences between the two of them:

The lazy {...} delegate can only be used for val properties; lateinit can1.
only be used for var properties.
A lateinit var property can't be compiled into a final field, hence you can't2.
achieve immutability.
A lateinit var property has a backing field to store the value, whereas lazy3.
{...} creates a delegate object that acts as a container for the value once created
and provides a getter for the property. If you need the backing field to be present
in the class, you will have to use lateinit.
The lateinit property cannot be used for nullable properties or Java primitive4.
types. This is a restriction imposed by the usage of null for uninitialized values.

Properties

[197]

The lateinit var property is more flexible when it comes to where it can be5.
initialized. You can set it up anywhere the object is visible from. For lazy{}, it
defines the only initializer for the property, which can be altered only by
overriding. The instantiation is thus known in advance, unlike a lateinit var
property, where if you use a dependency injection, for example, it can end up
providing different instances of derived classes.

Observables
What if you want to know when the delegated property is changed? You might need to
react to the change and call some other code. The Delegates object comes with the
following construct to allow you to achieve exactly that:

 fun <T> observable(initialValue: T, crossinline onChange: (property:
KProperty<*>, oldValue: T, newValue: T) -> Unit):
 ReadWriteProperty<Any?, T>

We will see this at work with the following simple example. Every time the value property
is changed, the onValueChanged() method is called and we print out the new value:

 class WithObservableProp {
 var value: Int by Delegates.observable(0) { p, oldNew, newVal ->
onValueChanged()
 }

 private fun onValueChanged() {
 println("value has changed:$value")
 }
 }
 val onChange = WithObservableProp()
 onChange.value = 10
 onChange.value = -20

There is another observable implementation offered out of the box, one that allows us to
reject the new value if the context enforces it:

 class OnlyPositiveValues {
 var value: Int by Delegates.vetoable(0) { p, oldNew, newVal -> newVal
>= 0 }
 }
 val positiveVal= OnlyPositiveValues ()
 positiveVal.value = 100
 println("positiveVal value is ${positiveVal.value}")

Properties

[198]

 positiveVal.value = -100
 println("positiveVal value is ${positiveVal.value}")

 positiveVal.value = 111
 println("positiveVal value is ${positiveVal.value}")

If you run the preceding code, you will see that the value 100 will never be accepted; thus, it
will print the value 100 twice.

A non-null property delegate
The Kotlin framework is quite rich; it provides support for a delegated property for non-
null values. All you have to do is use Delegates.nonNull, like in this simple example:

 class NonNullProp {
 var value: String by Delegates.notNull<String>()
 }

 val nonNull = NonNullProp()
 nonNull.value = "Kotlin rocks"
 println("Non null value is: ${nonNull.value}")

 //this will not compile
 nonNull.value = null

Trying to access the property value before it has been initialized would lead to an
IllegalStateException being raised. Furthermore, if you try to set a null to it, you will
get a compilation error.

Properties or methods?
Properties are very similar to methods; you end up with a getter/setter method under the
hood as you have already seen. However, methods and properties have different usage
patterns. You should view properties as fields on steroids. While they look like fields, the
syntax for a property looks like we deal with a field; properties provide the flexibility of
methods.

Properties

[199]

A class method represents an action, while a property represents data. Properties should be
used like a field and not like an action or behavior. When you want to design your type and
define one or more properties, follow these guidelines to decide whether it is suitable to do
so:

Avoid having complex code in the getter code body. A caller expects a fast return.1.
Definitely, do not connect to a database or do a rest call from the property's getter
code base.
Getting a property should not cause any side-effects; avoid even throwing2.
exceptions from the getter's code.
Mark your setter as private/protected if you don't want the caller to change the3.
value, that is, you want to preserve your encapsulation. Remember, if the
property type is a reference type, the caller can still change its state via the public
methods/properties it might expose.
Make sure your properties can be set in any possible order, even if that means4.
leaving your object in a temporally invalid state.
If a setter needs to throw an exception, make sure you retain the previous5.
property value.

There are scenarios when you should be using a method over a property. While we can't
cover all possible cases here, here are a few situations when you should use methods rather
than properties:

If the code is considerably slower than the process of setting a field, then use a1.
method. Think about scenarios where setting the value of a property involves a
network connection or even accessing the file system. In these cases, you should
definitely provide methods rather than properties.
If calling the property code yields different outcomes each time, you should use a2.
method. Say you are returning the current time; you should create a method for it
rather than providing a property.
If you want to convert your type to a different one, then make use of a method. A3.
clear example is toString(). Any declaration where you see the pattern
to*** should be a method rather than a property.
If the result is a copy of the internal state of your object, it shouldn't be a property4.
but a method. A typical example will be the clone method defined by the Java
Object class.

Properties

[200]

Summary
You can say goodbye to having to write or generate getters and setters for your fields.
Traditional techniques of encapsulation have relied exclusively on separate methods, but
now properties allow you to access the object's state with field-like syntax while preserving
encapsulation. You now know what properties are for and how they are used and can write
better Kotlin idiomatic code.

In the next chapter, Null Safety, you will learn how Kotlin's new language features are
working together to eliminate the null pointer exception. Furthermore you will see how
Java null code integrates with these features.

7
Null Safety, Reflection, and

Annotations

 The dreaded null pointer exception is a familiar sight to anyone who has been a Java
developer for any length of time. It is caused by a failure to handle null references correctly.
Avoiding these errors has been the subject of many different ideas in many different
programming languages. In this chapter, we'll review Kotlin's approach to null safety.
Speaking at QCon, a conference organized by the developer blogging site InfoQ, Tony
Hoare, the creator of the null pointer, said this:

“I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At
that time, I was designing the first comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the compiler. But I couldn't
resist the temptation to put in a null reference, simply because it was so easy to implement.
This has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years.”

There are several different approaches to solving this so-called billion dollar mistake.

In C, it was common for code that referenced a null pointer to simply crash. Java improved
on this by having a NullPointerException that would not crash the JVM, but could be
handled by a try/catch block; however, the burden was on the programming to remember
to catch it. Groovy and C# introduced features designed to allow the compiler to catch
potential nullable code and protect the developer. In Scala and Haskell and other Functional
programming languages, there are the Maybe and Option monads.

Null Safety, Reflection, and Annotations

[202]

Kotlin has null safety at the heart of its type system. That is, null safety is not represented
by using a monadic null container, nor by forcing the programmer to catch exceptions, but
instead support has been added directly into the type system and compiler.

The following features will be familiar to some readers, as languages such as groovy and C#
have similar features already.

In this chapter, we will cover:

Nullable and non-nullable types
Null safe operators
Reflection and runtime code inspection
Annotations

Nullable types
Kotlin's type system is advanced enough that it can track the difference between nullable
types and non-nullable types. When we define a variable in Kotlin, as we have been doing
so far, we cannot assign a null to it. This code, for instance, would not compile:

 val name: String = null // does not compile

Assigning null to a var will not compile either:

 var name: String = "harry"
 name = null // does not compile

To inform the Kotlin compiler that we will allow a variable to contain a null, we must suffix
the type with a ?:

 val name: String? = null
 var name: String? = "harry"
 name = null

Both the preceding snippets will now compile.

Similarly, we can return nullable and non-nullable types from a function, use them as
function parameters, and so on:

 fun name1(): String = ...

 fun name2(): String? = ...

Null Safety, Reflection, and Annotations

[203]

The name1 function cannot return a null reference. The name2 function may or may not. If
we were to write some code that used the result of name1 then it is guaranteed that a null
pointer exception will not be thrown. But if we were to try and write code that accessed the
result of name2 then no such guarantees can be made, so the compiler would not accept the
code without extra handling.

Smart cast
We have just seen how nullable types are declared. So how do we use a nullable-type when
we have one? The first option is to use smart casts. Briefly introduced in Chapter 2, Kotlin
Basics, smart casts are a Kotlin feature whereby the compiler tracks conditions inside an if
expression. As long as we perform a check that the variable is not null, then the compiler
will allow us to access the variable as if it was declared as a non-nullable type:

 fun getName(): String? = ...
 val name = getName()
 if (name != null) {
 println(name.length)
 }

Note that we are able to invoke the length function on the name value inside the if
expression. This is because the compiler has verified that we cannot be inside that block
unless the name references a non-null value.

A null smart cast only works when the variable is either a member val
without a backing field, a local val, or a local var that is not mutated
between the check and the usage. Otherwise, the variable might be non-
null when it's checked and then changed to null before we use it, thus
throwing an exception. The compiler will enforce this restriction.

Safe null access
Smart casts are a very nice feature, and offer a readable way to do branching when dealing
with nulls. However, when we have chained operations, and each step may produce a null,
the code quickly becomes unreadable.

Null Safety, Reflection, and Annotations

[204]

Consider the following snippet:

 class Person(name: String, val address: Address?)
 class Address(name: String, postcode: String, val city: City?)
 class City(name: String, val country: Country?)
 class Country(val name: String)

 fun getCountryName(person: Person?): String? {
 var countryName: String? = null
 if (person != null) {
 val address = person.address
 if (address != null) {
 val city = address.city
 if (city != null) {
 val country = city.country
 if (country != null) {
 countryName = country.name
 }
 }
 }
 }
 return countryName
 }

Look at the levels of nested if-not-null checks required! It's easy to imagine even more levels
of nesting required in some scenarios. So can we do better?

With Kotlin we can. The alternative to smart casts is to use the safe null access operator.
This is similar to the normal dot syntax for functions and properties, but uses ?. When using
this operator, the compiler will automatically insert the null check for us to ensure that we
don't access a null accidentally. So the previous example can be re-written as the following:

 fun getCountryNameSafe(person: Person?): String? {
 return person?.address?.city?.country?.name
 }

The difference is striking. If we examine the bytecode generated for this function, we can
see that the compiler is indeed inserting the null checks:

public static final java.lang.String getCountryNameSafe(Person);
 Code:
 0: aload_0
 1: dup
 2: ifnull 32
 5: invokevirtual #15 // Method Person.getAddress:()LAddress;
 8: dup
 9: ifnull 32

Null Safety, Reflection, and Annotations

[205]

 12: invokevirtual #21 // Method Address.getCity:()LCity;
 15: dup
 16: ifnull 32
 19: invokevirtual #27 // Method City.getCountry:()LCountry;
 22: dup
 23: ifnull 32
 26: invokevirtual #33 // Method
Country.getName:()Ljava/lang/String;
 29: goto 34
 32: pop
 33: aconst_null
 34: areturn

The key instructions here are 2, 9, 16, and 23, which show the compiler performing a null
check and if-null jumping to instruction 32, before adding a null to the stack to be returned.

Force operator
Sometimes we might decide that we want to dispense with the compiler's checks and force
a nullable type into a non-nullable type. This is useful in situations were we are dealing
with Java code, which we know is never null, and we need to use a variable with a function
that only accepts non-nullable values. To do this, we can use the !! operator:

 val nullableName: String? = "george"
 val name: String = nullableName!!

In the preceding example, you can see that the name has been declared as a non-nullable
type, and so the !! is used to perform the conversion. We can do this for any expression
that returns a nullable type. For example, in the following snippet the function returns a
nullable type, but we have forced the compiler to allow us to treat it as a non-nullable type:

 fun nullableAddress(): Address? = ...
 val postcode: String = nullableAddress()!!.postcode

Null Safety, Reflection, and Annotations

[206]

We can see that the !! operator is reverting to unsafe code if we check the bytecode:

public static final void forceFunction();
 Code:
 0: invokestatic #62 // Method
nullableAddress:()LAddress;
 3: dup
 4: ifnonnull 10
 7: invokestatic #67 // Method
kotlin/jvm/internal/Intrinsics.throwNpe:()V
 10: invokevirtual #70 // Method
Address.getPostcode:()Ljava/lang/String;
 13: astore_0
 14: return

At instruction 7, a null pointer exception will be thrown if the variable was null.

Elvis operator
One of the most common scenarios when we have a nullable type is to use the value if it is
not null, and a default if otherwise. For example, in Java we might usually write code like
this:

 String postcode = null
 if (address == null) {
 postcode = "No Postcode"
 }
 else {
 if (address.getPostcode() == null) {
 postcode = "No Postcode"
 }
 else {
 postcode = address.getPostcode()
 }
 }

What Kotlin offers us as a replacement is the so-called Elvis operator ?:. Supposedly, if you
turn your head sideways the operator looks like Elvis' hairstyle, but perhaps it would have
been better with a different name. The usage of this is very similar to the ternary if
statement in Java.

Null Safety, Reflection, and Annotations

[207]

This infix operator can be placed in between a nullable expression and an expression to use
if the nullable expression is indeed null. So the general usage resembles the following:

 val nullableName: String? = ...
 val name: String = nullableName ?: "default_name"

The right-hand side is an expression, so anything can be placed there that evaluates the
value, such as a when expression or a function call. The operations can be chained too.

Another common method is to use the safe null access operator to chain nullable
expressions together, before using the Elvis operator to return a default:

 val nullableAddress: Address? = null
 val postcode: String = nullableAddress?.postcode ?: "default_postcode"

Safe casting
Recall that, in Chapter 2, Kotlin Basics, we introduced the as operator for casting a variable.
If we want to safely cast to a type, or null if the cast would fail, then we can use the safe cast
operator as?.

In the following example, we will cast a parameter that we know is a String, but the
compiler doesn't know it is a String as we declared it as an Any:

 val location: Any = "London"
 val safeString: String? = location as? String
 val safeInt: Int? = location as? Int

Optionals
Throughout the previous sections, we have discussed Kotlin's approach to null safety. But
this is not the only approach. Languages such as Haskell have provided an alternative for
many years. In Haskell's case, this is called the Maybe type. In Scala there is something
similar called the Option type, and in the most recent version of Java (at the time of
writing, Java 8) there is Optional.

Null Safety, Reflection, and Annotations

[208]

All of these types-Maybe, Option, Optional-aim to do the same thing. That is, they use a
type to indicate that a function or expression may or may not return a value.

In Functional programming. they are most often an algebraic data type with two values-one
that represents a value and one that represents the lack of a value. In Haskell they are called
Just and Nothing. In Scala they are called Some and None. In Java only a single type is
used.

For the rest of this section, we will focus on the Java Optional. Remember, though, that this
will not be available to you if you are not compiling on Java 8 or later.

Creating and returning an Optional
We can wrap a value in an Optional by simply calling the static method of:

 val optionalName: Optional<String> = Optional.of("william")

If we wish to create an Optional for an empty value, then we can use the static method
empty:

 val empty: Optional<String> = Optional.empty()

If we wish to create an Optional that contains a value that may or may not be null, then we
can use ofNullable. Usually, there is only one instance of empty that exists, since it is
immutable and has no state.

So, if we had a function that could return null, we would define it to return String?. When
using Optionals, we would define it to return an Optional<String>:

 fun lookupAddress(postcode: String): String?
 fun lookupAddress(postcode: String): Optional<String>

Those previous two snippets represent the same thing-that the lookupAddress function
can possibly return no value for a given input.

Null Safety, Reflection, and Annotations

[209]

Using an Optional
Optionals are very similar to Kotlin's null operators in terms of the operations they allow.
When using Optionals, ultimately we need to extract the value from the Optional. To do
this, we can use get or orElse. The former retrieves the value or throws an exception-this is
the Optional equivalent of the force operator. The latter accepts a parameter that is used as a
default if the Optional represents no value. See the following code:

 fun lookupAddress(postcode: String): Optional<String> = ...

 val address = lookupAddress("AB1 1BC").orElse("1600 Pennsylvania
Avenue")

In the preceding code, if the lookupAddress function has no address for the given
postcode, the default value is used. This is the Optional equivalent of the ?: operator.

Optionals also support map and flatMap operations to transform the contained value. The
map operation accepts a function that will return a new Optional with the result of the
function. If the Optional is empty, then the function will not be invoked.

The flatMap operation is similar, but will flatten nested optionals returned by the mapping
function. Let's imagine another function that returns Optional<Int>:

 fun lookupHousePrice(address: String): Optional<Int> = ...

Now we can chain this with lookupAddress to find the house price if the address exists.
If the house price itself doesn't exist-say the house is not in the database-then flatMap will
not return an Optional<Optional<Int>>, but will flatten the nested Optionals so the
return type is Optional<Int>:

 val price =
lookupAddress("AB11BC").flatMap(::lookupHousePrice).orElse(0)

Since after the flatMap we have an Optional<Int>, we can call orElse to return a
default integer.

Reflection
Reflection is the name given to inspecting code at runtime instead of compile time. It can be
used to create instances of classes, look up functions and invoke them, inspect annotations,
find fields, and discover parameters and generics, all without knowing those details at
compile time.

Null Safety, Reflection, and Annotations

[210]

For example, we might want to persist types into a database, but we don't know, or don't
want to have to know, in advance which types will be persisted. Reflection could be used to
look up the fields of each type, creating the appropriate SQL code for each type.

Another example would be if we had a plugin system in our code, and at runtime we
wanted to create instances of the plugin based on config or system properties. We could use
reflection to instantiate classes based on the fully qualified name passed in.

For the rest of this chapter, we will cover the various reflection classes and functions that
Kotlin has made available in its reflection package.

The Kotlin reflection classes are not part of the kotlin-stdlib library, but
are instead part of an additional dependency called kotlin-reflect. This is
to keep overall package sizes down for users of Android and other
memory-restricted platforms.

KClass
KClass is the central type used in Kotlin reflection. Each type has a KClass instance at
runtime that contains details of the functions, properties, annotations, and so on for that
type. To get an instance of a KClass for any type, we use the special ::class syntax on an
instance of that type:

 val name = "George"
 val kclass: KClass<String> = name::class

Note that a KClass instance is parameterized by the type it represents. We can also get a
reference to a KClass for a type by using the same syntax on the type itself:

 val kclass2: KClass<String> = String::class

For each class loader there is only one KClass for any given type. So in the same class
loader, invoking ::class on any particular instance would return the same KClass as
would be returned when invoking it on any other instance of that type, or the type itself:

 val kclass1: KClass<String> = "harry"::class
 val kclass2: KClass<String> = "victoria"::class
 val kclass3: KClass<String> = String::class

Null Safety, Reflection, and Annotations

[211]

In the preceding example, all three kclass variables reference the same instance.

Aside from retrieving a handle to a KClass via instances and types, we can also get one
from the fully qualified name of a class. To do this, we must first get a reference to the Java
reflection API's equivalent of the KClass, which is called simply Class. Then we access the
property labeled kotlin, as the following example shows:

 val kclass = Class.forName("com.packt.MyClass").kotlin

The Class.forName static method is the Java reflection API's way of retrieving a handle to
an instance of Class. In fact, many of the functions in KClass are named/inspired by the
methods available on Class, but are updated to support the advanced features of Kotlin.

Instantiation using reflection
As mentioned earlier, one of the most common uses of reflection is to create instances of
types without knowing those types at compile time. The simplest way of doing this is to use
the createInstance function on a KClass reference:

 class PositiveInteger(value: Int = 0)

 fun createInteger(kclass: KClass<PositiveInteger>): PositiveInteger {
 return kclass.createInstance()
 }

As you can see, our createInteger function uses the KClass parameter to create a new
instance of PositiveInteger. This contrived example isn't much use as you know the type in
advance, but the point of reflection is for those times when you don't.

The drawback with createInstance is that it will only work for classes with no
parameters, or where all parameters are optional. A parameter is considered optional if it
has a default value supplied.

Let's consider a typical use case of this kind of instantiation. In a data processing application
we may have an import step, which imports or ingests data from CSV files into our
database. Our application is going to ingest data from many different sources, and we want
to be able to add new ingesters at runtime without requiring a rebuild of the core code.

Null Safety, Reflection, and Annotations

[212]

We would start by defining some .config file, which contains a list of ingesters. Each
ingester would be referenced by its fully qualified name (FQN: the name of the class
prefixed with its package name). It might look like this:

 ingesters.props
 ingesters=com.packt.ingester.AmazonIngester,com.packt.ingester.Goo
gleIngester

In some Bootstrap class, we would load this property file, break apart the Strings to get the
ingester names, and then, using reflection, instantiate them. Once we have a reference to
each of the ingesters, we could invoke each of them in turn. This would require that they all
implement some common interface with an entry point function:

 interface Ingester {
 fun ingest(): Unit
 }

 val props = Properties()
 props.load(Files.newInputStream(Paths.get("/some/path/ingesters.pr
ops")))
 val classNames = (props.getProperty("ingesters") ?: "").split(',')

 val ingesters = classNames.map {
 Class.forName(it).kotlin.createInstance() as Ingester
 }

 ingesters.forEach { it.ingest() }

Note that we first defined the Ingester interface that each implementation of ingester would
extend. When we reflectively instantiate each ingester, we are required to cast to the type
that we know it is. This operation would throw an exception if a class in the config was not
actually of the type Ingester. Obviously, the compiler is unable to assert this for us based
on a string alone.

The benefit to this kind of approach is that, should we need to add another ingester, say a
com.packt.ingester.FacebookIngester implementation, then we don't need to touch
the core code of the application. We could deploy the new ingester in a separate JAR file,
adding that jar to the classpath and simply updating the config to include the new FQN.

This kind of technique is common for systems that rely on plugins where the developers of
the core system cannot possibly know in advance what implementations will exist when
their library is used.

Null Safety, Reflection, and Annotations

[213]

Remember that createInstance doesn't allow parameters. It might not seem very useful to
reflectively create instances without parameters, but in use cases like the previous example,
we can't possibly hope to support all variations of constructors that plugin authors would
want to use. So we might restrict them to no parameters, and require that they create
delegates as required.

Constructors
Sometimes we may want to inspect the available constructors on a type. Perhaps we need to
create a type that has a constructor that requires values. Or perhaps we want to determine
which fields are needed to create an instance of a type at runtime. Or, similarly, perhaps we
want to see if a class can be created from the parameters we have available.

We can return a list of all the constructors declared on a given type by using the
constructors property available on the KClass type. This property returns a list of
KFunction reflective instances, since constructors are themselves functions, just
functions defined in a special way:

 fun <T : Any> printConstructors(kclass: KClass<T>) {
 kclass.constructors.forEach {
 println(it.parameters)
 }
 }

The preceding example simply iterates over each constructor, printing out the parameters it
accepts. For example, look at the following defined class:

 class Kingdom(name: String, ruler: String, peaceful: Boolean) {
 constructor(name: String, ruler: String) : this(name, ruler, false)
 }

If we invoked printConstructors for this type:

 fun main(args: Array<String>) {
 printConstructors(Kingdom::class)
 }

Null Safety, Reflection, and Annotations

[214]

Then the output would be the following:

[parameter #0 name of fun <init>(kotlin.String, kotlin.String): Kingdom,
parameter #1 ruler of fun <init>(kotlin.String, kotlin.String): Kingdom]
[parameter #0 name of fun <init>(kotlin.String, kotlin.String,
kotlin.Boolean): Kingdom, parameter #1 ruler of fun <init>(kotlin.String,
kotlin.String, kotlin.Boolean): Kingdom, parameter #2 peaceful of fun
<init>(kotlin.String, kotlin.String, kotlin.Boolean): Kingdom]

Given a reference to a constructor, we can invoke it using the call and callBy functions
available. There are two versions. The first simply accepts a varargs list of parameters and
expects them to be in the order as declared by the constructor. The second accepts a map
of parameters and uses the parameter names to match them up:

 fun createKingdom(name: String, ruler: String, peaceful: Boolean):
Kingdom {
 val constructor = Kingdom::class.constructors.find {
 it.parameters.size == 3
 } ?: throw RuntimeException("No compatible constructor")
 return constructor.call(name, ruler, peaceful)
 }

In the earlier code, we used the first variant, which passes the arguments in order.

When reflectively creating instances, we must ensure the types are compatible. If, for
example, the first parameter expected a java.lang.String and we pass in a
java.math.BigDecimal, the JVM would throw a
java.lang.IllegalArgumentException.

Instantiation with callBy
The callBy variant, which uses a map, is useful if we wish to reflectively build the
appropriate arguments themselves. To build this map, we can use the information about
parameters that the constructors provided to us through the property named parameters.

This property returns a collection of KParameter instances-one for each parameter in the
constructor. These parameter reflection instances can be used to determine the name and
type of the parameter, and whether it is varargs, inline, or Optional.

Null Safety, Reflection, and Annotations

[215]

Let's show this by creating an instance of Plugin, a type we will define that can accept
either a JDBC connection, a properties instance, or a FileSystem. At compile time, we
won't know which of these parameters our constructor will need, so we will use reflection
to find out.

We will define the Plugin interface, as well as our mock implementation called
OraclePlugin:

 interface Plugin {
 fun configure(): Unit
 }

 class OraclePlugin(conn: Connection) {
 fun configure(): Unit = ... // run queries on the connection
 }

Note that the OracePlugin accepts a Connection instance. The real meat of this example
will be in the reflection code that creates these plugins:

 fun createPlugin(className: String): Plugin {
 val kclass = Class.forName(className).kotlin
 assert(kclass.constructors.size == 1, { "Only supply plugins with a
single constructor" })
 val constructor = kclass.constructors.first()

 assert(constructor.parameters.size == 1, { "Only supply plugins with
one parameter" })
 val parameter: KParameter = constructor.parameters.first()

 val map = when (parameter.type.jvmErasure) {
 java.sql.Connection::class -> {
 val conn =
DriverManager.getConnection("some_jdbc_connection_url")
 mapOf(parameter to conn)
 }
 java.util.Properties::class -> {
 val props = Properties()
 mapOf(parameter to props)
 }
 java.nio.file.FileSystem::class -> {
 val fs = FileSystems.getDefault()
 mapOf(parameter to fs)
 }
 else -> throw RuntimeException("Unsupported type")
 }

 return constructor.callBy(map) as Plugin

Null Safety, Reflection, and Annotations

[216]

 }

Firstly, we use Class.forName as before to get a reference to a KClass instance for the
className argument. Then, using this, we retrieve the first constructor and the first
parameter for that constructor. In this particular case, we are expecting our plugin
implementations to have only a single constructor with a single parameter, and we've
added assertions to that effect.

Next, we inspect the type that the KParameter represents. Depending on what that type is,
we build a map that contains a value for one of the three supported types: Connection,
Properties, and FileSystem.

Finally, that map is passed to callBy in order to instantiate an instance, with a cast to get us
to the required type.

Objects and companions
We can even get a reference to objects or companion objects through reflection. For
example, take the following definition of a class and a companion object:

 class Aircraft(name: String, manufacturer: String, capacity: Int) {
 companion object {
 fun boeing(name: String, capacity: Int) = Aircraft(name, "Boeing",
capacity)
 }
 }

Given this, we can retrieve a reference to the companion object using the appropriately
named companionObject property defined on the KClass type:

 val kclass = Aircraft::class
 val companionKClass = kclass.companionObject

From then on, we have another KClass instance, this one modeling the functions and
members of the companion object.

In fact, using the companionObjectInstance property, we can even get a handle to the
instance of the companion object. Then, we could invoke functions or access properties on
it directly if we cast to the appropriate type:

 val kclass = Aircraft::class
 val companion = kclass.companionObjectInstance as Aircraft.Companion
 companion.boeing("747", 999)

Null Safety, Reflection, and Annotations

[217]

Note that the type of the companion object we casted to is Aircraft.Companion as it was
an unnamed companion object.

Analogously, if we have a KClass that represents an object singleton, then we can use the
objectInstance property to retrieve the actual instance:

 object PizzaOven {
 fun cook(name: String): Pizza = Pizza(name)
 }

 val kclass = PizzaOven::class
 val oven: PizzaOven = kclass.objectInstance as PizzaOven

As you can see, the final oven variable is the instance of the PizzaOven object.

Useful KClass properties
A KClass fully describes a particular class including its type parameters, superclasses,
functions, constructors, annotations, and properties. Let's define a toy class:

 class Sandwich<F1, F2>()

Now we can inspect the KClass for this and find out the types of parameters it declares. We
do this using the typeParameters property available on the KClass instance:

 val types = Sandwich::class.typeParameters

From here, we can get the label of the type parameter, and the upper bounds, if any have
been defined (otherwise Any):

 types.forEach {
 println("Type ${it.name} has upper bound ${it.upperBounds}")
 }

In the case of Sandwich, this would output the following:

 Type F1 has upper bound [kotlin.Any?]
 Type F2 has upper bound [kotlin.Any?]

Null Safety, Reflection, and Annotations

[218]

Next, let's show the superclasses for a given type. Firstly, we need a type that has many
parents:

 class ManyParents : Serializable, Closeable, java.lang.AutoCloseable

Then, on the KClass of this, we access the property superclasses to get a list of the
superclasses and interfaces, but not the actual class itself:

 val superclasses = ManyParents::class.superclasses

If we were to output the preceding list, we would see the following:

 class java.io.Serializable
 class java.io.Closeable
 class java.lang.AutoCloseable

This, of course, is what we expect. But what about Any? Don't all classes extend from that?
So why isn't it listed? It is because superclasses only includes immediate parents; for that
we need the allSuperclasses property:

 val allSuperclasses = ManyParents::class.allSuperclasses

If outputted, this gives us the full list:

 class java.io.Serializable
 class kotlin.Any
 class java.io.Closeable
 class java.lang.AutoCloseable

Reflective functions and properties
Reflection doesn't stop with classes and objects. Most of the Kotlin system can be accessed,
and that includes functions and properties. Let's start with a class that contains some
member functions, an extension function for Double, and a couple of properties:

 class Rocket() {
 var lat: Double = 0
 var long: Double = 0

 fun explode() {
 println("Boom")
 }

 fun setCourse(lat: Double, long: Double) {
 require(lat.isValid())

Null Safety, Reflection, and Annotations

[219]

 require(long.isValid())
 this.lat = lat
 this.long = long
 }

 fun Double.isValid() = Math.abs(this) <= 180
 }

The extension function is used to check that the Double parameter is a valid latitude or
longitude whenever we invoke setCourse.

The next function is similar to the function for printing constructors from earlier, and prints
out the names of each function defined in this class. The appropriately named property
memberFunctions is used on KClass to get references to each function in the class. In the
reflection API, functions are represented by instances of KFunction:

 fun <T : Any> printFunctions(kclass: KClass<T>) {
 kclass.functions.forEach {
 println(it.name)
 }
 }

If we invoke this function, we'll get an output like the following:

 explode
 setCourse
 equals
 hashCode
 toString

As expected, this contains both the member functions we defined, as well as the functions
declared in Any: the ultimate supertype of all classes. Note, however, that the extension
function Double.isValid() does not appear in the list. In order to get a reference to a
KFunction for an extension function, we need to use another property named
memberExtensionFunctions.

There is a third property, simply named functions, which returns both non-extension and
extension functions in the same list. It is the same as combining the output of the previous
two properties. KFunction instances themselves have many useful functions and properties,
and are used to discover details such as whether the function is inline, an operator, infix, its
return type, parameter types, and so on.

Null Safety, Reflection, and Annotations

[220]

When it comes to properties, there are analogous properties named memberProperties
and memberExtensionProperties, which are used in the same way as for the functions.
In the reflection API, properties are represented by instances of KProperty.

Let's use those to find the properties we declared on the Rocket class:

 fun <T : Any> printProperties(kclass: KClass<T>) {
 kclass.memberProperties.forEach {
 println(it.name)
 }
 }

This function, when invoked, would output lat, long as we would expect.

Invoking a function reflectively
The real utility in reflective access to functions lies in the ability to invoke them. KFunction
defines a function named call that accepts a vararg list of parameters, and uses those to
invoke the function on an instance of the type that the function is declared on.

Given that the KFunction instance itself is not tied to any particular instance, we need to
also provide the receiver that the function should be invoked on. This is always the first
argument to call.

Using the Rocket example from earlier, we will invoke a function dynamically, without
reference to it at compile time:

 val function = kclass.functions.find { it.name == "explode" }
 val rocket = Rocket()
 function?.call(rocket)

Note that we look up all functions locating the one with the explode name. The explode
function doesn't actually declare any parameters itself, so the only argument to call is the
instance to use as the function receiver. In this case, that happens to be a freshly instantiated
rocket.

Declared and undeclared
At this point it is worth pointing out the difference between declared and undeclared
functions and properties. Each of the properties that can be used to get member functions,
member properties, constructors, and so on, come in declared and undeclared variants.

Null Safety, Reflection, and Annotations

[221]

The undeclared variants, which are the ones we've covered so far, include functions and
properties declared in the type referenced by the KClass, as well as parent classes and
interfaces.

The declared variants, which are named declaredMemberExtensionFunctions,
declaredMemberFunctions, and so on, only include functions and properties declared in
the type itself. Any functions and properties declared in parent classes or interfaces are not
returned by these functions.

Annotations
Annotations allow developers to add extra meaning to classes, interfaces, parameters, and
so on at compile time. They are a form of meta-programming in that respect. Annotations
can then be used by the compiler or by your own code via reflection at runtime. Depending
on the annotation value, the meaning of the program or data can change.

Annotations are present in Java as well as Kotlin, and so the most common annotations are
those that are provided as part of the Kotlin or Java standard libraries. Some annotations
you may be familiar with already are @SuppressWarnings and @tailrec.

To define your own annotation, simply prefix a class with the keyword annotation:

 annotation class Foo

This annotation can then be used in classes, functions, parameters, and so on. In fact,
annotations can pretty much be used anywhere, as the following table shows:

Target Example

Class @Foo class MyClass

Interface @Foo interface MyInterface

Object @Foo object MyObject

Parameter fun bar(@Foo param: Int): Int = param

Function @Foo fun foo(): Int = 0

Type Alias @Foo typealias MYC = MyClass

Property class PropertyClass { @Foo var name: String? = null}

Constructor class Bar @Foo constructor(name: String)

Expressions val str = @Foo "hello foo"

Null Safety, Reflection, and Annotations

[222]

Return Values fun expressionAnnotation(): Int { return (@Foo 123)}

Function Literals @Foo { it.size > 0 }

Note that annotations begin with an @ when they are used. Before they can be used,
however, we must specify the allowed targets using a meta-annotation named @Target.
For example, to allow an annotation only on a constructor, we could define it as follows:

 @Target(AnnotationTarget.CONSTRUCTOR)
 annotation class Woo

We can specify as many targets as we want for any particular annotation.

There are several other meta-annotations available for use when defining custom
annotations. These are described in the following table:

Annotation Name Usage

@Retention Determines how the annotation is stored in the resultant class files.
The options are:
• Source: The annotation is removed at compile time.
• Binary: The annotation is included in the class files, but is not visible
by reflection.
• Runtime: The annotation is stored in the class files and is visible by
reflection.

@Repeatable If present, then allows that annotation to be included more than once
in any particular target.

@MustBeDocumented If present, then the annotation is included when generating
documents via Dokka.

Annotation parameters
Annotations can, of course, have parameters as you have already seen with
@AnnotationTarget. Custom annotations can specify their own constructors with
whatever parameters they wish. To do this, we declare a constructor as we would for a
regular class by just listing the parameters after the class name. For example:

 annotation class Ipsum(val text: String)

Null Safety, Reflection, and Annotations

[223]

Annotation parameters must always be declared as val.

Then, when we use such an annotation, we simply pass in the value required:

 @Ipsum("Lorem") class Zoo

The types of parameters are limited to a certain subset. Allowed types are Int, Double,
Long, Float, Boolean, String, KClass, enum, and other annotations themselves. Arrays of
allowed types are also allowed. So, for example, we could have an array of Strings or an
array of annotations.

Standard annotations
The Kotlin standard library includes several annotations that affect the output of the
compiler. Some we have seen already and others are introduced here for the first time.

@JvmName
Due to erasure in the JVM, it is impossible to declare two functions with the same name and
the same erased signature. For example, the following declarations in Java would result in a
compile error:

 public void foo(list: List<String>)
 public void foo(list: List<Int>)

Erasure is caused by the fact that the JVM does not retain type parameters.
This means, among other examples, that variables of List<String> and
List<Int> both compile to List<Any>.

Null Safety, Reflection, and Annotations

[224]

The most commonly used solution to this problem is to name the methods differently. But
sometimes that isn't desirable. In Kotlin, we can retain the same names as long as we
provide alternative names for when they are compiled. To do this we annotate the functions
using @JvmName with a supplied alternative, as the following examples show:

 @JvmName("filterStrings")
 fun filter(list: List<String>): Unit

 @JvmName("filterInts")
 fun filter(list: List<Int>): Unit

At compile time the name supplied to the annotation will be used. We can see this by
inspecting the generated bytecode:

public static final void filterStrings(java.util.List<java.lang.String>);
 Code:
 [...]
public static final void filterInts(java.util.List<java.lang.Integer>);
 Code:
 [...]

When using these functions from Kotlin, we continue to use the original names. The
@JvmName annotation is invisible to Kotlin users. The compiler will do the necessary
translation for us, but when invoking these functions from Java we use the alternative
name.

@JvmStatic
The @JvmStatic annotation informs the compiler that you wish the function or property
annotated to have a Java static method generated in the compiled output. This annotation
can only be used on objects or companion objects.

By default an object or companion object is compiled into a class that has a single instance.
This instance is then stored in a static field named INSTANCE. To access functions on these
objects in Java, you are required to first resolve the singleton. For example:

 HasStaticFuncs.INSTANCE.foo();

However, the annotation will result in the function being a static method rather than an
instance method, so we can invoke it directly on the type:

 HasStaticFuncs.foo();

Null Safety, Reflection, and Annotations

[225]

@Throws
Since all exceptions in Kotlin are unchecked exceptions, there is no need to add a list of
possible exceptions to method signatures like there is in Java. However, we may wish to
inform Java users that our API throws exceptions in certain situations. We can do this using
the @Throws annotation, which is used to instruct the compiler to generate throw clauses
on generated methods.

For example, let's define a simple class in Kotlin that contains a function that can throw an
exception:

 class File(val path: String) {
 fun exists(): Boolean {
 if (!Paths.get(path).toFile().exists())
 throw FileNotFoundException("$path does not exist")
 return true
 }
 }

This can be called directly from Java in the following way:

 public void throwsExample() {
 boolean exists = new File("somefile.txt").exists();
 System.out.println("File exists");
 }

Note that the method signature does not include throws. This is perfectly compilable code
so far. However, should we decide that we want Java users to be informed that the
exists() function throws an exception, we can add this to the method signature in the
compiled class file:

 class File(val path: String) {
 @Throws(FileNotFoundException::class)
 fun exists(): Boolean {
 if (!Paths.get(path).toFile().exists())
 throw FileNotFoundException("$path does not exist")
 return true
 }
 }

As you can see, we've added the @Throws annotation. This annotation accepts an argument,
which is the exception classes we want to be included in the method signature. Now the
previous Java example would no longer compile, and must be updated to handle the
exception:

 public void throwsExample() throws FileNotFoundException {

Null Safety, Reflection, and Annotations

[226]

 boolean exists = new File("somefile.txt").exists();
 System.out.println("File exists");
 }

Finally, the difference can be seen in the generated bytecode to show that the Kotlin
compiler is definitely adding the exceptions to the method signature.

The first exists function has the following bytecode header:

 public final boolean exists();
 descriptor: ()Z
 flags: ACC_PUBLIC, ACC_FINAL

The second has the following bytecode header:

 public final boolean exists() throws java.io.FileNotFoundException;
 descriptor: ()Z
 flags: ACC_PUBLIC, ACC_FINAL

@JvmOverloads
@JvmOverloads has already been covered, but we'll recap it here with more
implementation detail. Given a function with default parameters, @JvmOverloads will
result in the compiler creating multiple, overloaded, methods for each default parameter.

For example, take the following function:

 fun foo(name: String = "Harry", location: String = "Cardiff"): Unit

The compiler will emit three methods in the compiled class file-one with no parameters that
will use both defaults, a second which will use the default for location, and a third which
uses no defaults. We can verify this by viewing the generated bytecode:

public static void foo$default(com.packt.SomeClass, java.lang.String,
java.lang.String, int, java.lang.Object);
descriptor:
(Lcom/packt/SomeClass;Ljava/lang/String;Ljava/lang/String;ILjava/lang
/Object;)V
flags: ACC_PUBLIC, ACC_STATIC, ACC_BRIDGE, ACC_SYNTHETIC
 Code:
 [...]
public final void foo(java.lang.String, java.lang.String);
 descriptor: (Ljava/lang/String;Ljava/lang/String;)V
 flags: ACC_PUBLIC, ACC_FINAL
 Code:
 [...]

Null Safety, Reflection, and Annotations

[227]

public void foo(java.lang.String);
 descriptor: (Ljava/lang/String;)V
 flags: ACC_PUBLIC
 Code:
 [...]
public void foo();
 Code:
 0: aload_0
 1: aconst_null
 2: aconst_null
 3: iconst_3
 4: aconst_null
 5: invokestatic #41
 8: return

This verifies that three overloaded versions of foo have been defined. The implementations
for all but the last variant have been omitted here as they run into the hundreds of
instructions. The general idea can be seen from the implementation of the final function.
Each version of foo delegates to a fourth foo$default function using nulls as arguments
where appropriate. This fourth foo function then checks each argument, replacing them
with the default values if they are null.

Runtime annotation discovery
Custom annotations are only useful if they can be discovered and used. The standard
annotations mostly exist for the benefit of the compiler, but custom annotations are
commonly used as runtime metadata.

To find the annotations declared on a class, function, or other construct, we can use the
annotation property available on KClass, KFunction, KParameter, and KProperty.
This property returns a collection that has an instance for each of the defined annotations.

For example, let's create an annotation called Description, which accepts a single
parameter of String. This String is used to add a description to a class, which might be used
to generate documentation in a web service:

 annotation class Description(val summary: String)

Then we'll use this to describe a class:

 @Description("This class creates Executor instances") class Executors

Null Safety, Reflection, and Annotations

[228]

Now, at runtime, we could look up this annotation and use the value:

 val desc = Executors::class.annotations.first() as Description
 val summary = desc.summary

Clearly, in this example we haven't added any defensive programming that would be
needed in the real world, such as programming that would check that the class actually
contains the annotations, or that it really is the correct type of annotation.

Remember that in order for custom annotations to be discoverable by
reflection, they must have a @Retention value of RUNTIME.

Summary
During this chapter we have seen how Kotlin handles null safety in a safe way, and how
reflection can be used to inspect code at runtime. Several useful Kotlin annotations have
been introduced and their effect on the compiler.

In the next chapter, we will begin a discussion on Kotlin's advanced type system and how
we can write generic code.

8
Generics

Generics, or generic programming, is a technique whereby functions can be written in
terms of types that are not specified when the function is written, and then later used for
many different types. Generics is the term used in Java and Kotlin, but other names, such as
parametric polymorphism and templates, are used in other languages for similar features.

In this chapter we will cover:

Type parameterization
Type bounds and recursive type bounds
Invariance, covariance and contravariance
Algebraic data types

Parameterised functions
Consider a function called random() that, when given some elements, returns one element
randomly. We don't need to know what the types of the elements are when we write this
function, as we will not be using the elements ourselves. We just need to be able to select
one to return. When we use a type in this way – abstracting over the type, we use the term
type parameter. So, our random function would have a single type parameter: the type of
the elements we are selecting from.

If we want to write a generic function, like the random() function just mentioned, we might
decide to start with something like this:

 fun random(one: Any, two: Any, three: Any): Any

Generics

[230]

This would work as we can pass in any instances we choose. However, no matter what
types we choose to pass in as arguments, our returned type would be inferred as Any. We'd
then be forced to cast back to the original type, and this is error prone, not to mention ugly.

We can do better with a type parameter that will fix the types and allow the compiler to
correctly infer the return value. To define a function with a type parameter, we use angle
bracket (<...>) syntax, giving the type parameter a name, before the function name.

 fun <T> random(one: T, two: T, three: T): T

In this definition, we have defined a single type parameter-T-which we then use for all three
parameters and the return type. We are informing the compiler that whatever type we fix T
to be, we will return that same type. This allows the compiler to correctly infer the return
type.

To invoke this function, we don't need to do anything other than pass in instances,
respecting the relationship between them:

 val randomGreeting: String = random("hello", "willkommen", "bonjour")

You can see the variable randomGreeting is annotated with String. This is just to show
that the return value is indeed a string. In reality this can be inferred as normal.

What did we mean by respecting the relationship between the types? Simply that each time
a particular type parameter is used, it must refer to the same type. In our example, we had a
single type parameter and it was set to String. Therefore, the function also returns a string.

Of course, in this example, we could have passed in any values we wanted, and it would
still have compiled. The inferred type would be the lowest common supertype. For
example, the following code compiles fine:

 val any: Any = random("a", 1, false)

This is because all types have the top level Any type, and so the compiler can infer T to be
Any and the constraints would still be satisfied.

However, for other examples, this may not work, for example, accepting a list of T and
another element T to add to the list. In that case, the list and element must be compatible.
We'll see a concrete example of this in the Bounded Polymorphism section when we talk about
upper bounds.

Generics

[231]

Functions can, of course, have more than one type parameter. We could write a function
that accepts two different types and puts them into a cache. The first element could be used
for a key, and the second for the value:

 fun <K, V>put(key: K, value: V): Unit

This kind of signature will be familiar to anyone who has used generics before in
collections.

Parameterized types
It is not just functions that can be parameterized types themselves can be parameterized as
well. Such types are sometimes referred to as container types because of the close association
with collections and the fact that they contain one or more type parameters.

To declare a parameterized type, we again use the angle bracket syntax, this time on the
right-hand side of the type name. For example, to declare a Sequence of an element T, we
would write the following:

 class Sequence<T>

Again, we can declare more than one type parameter:

 class Dictionary<K, V>

The most commonly used parameterized types are collections, and these
are covered in more detail in Chapter 10, Collections.

When a type has been declared with a type parameter, we must “fill in” that type when we
instantiate it by replacing the parameters with concrete or proper types. So, to create an
instance of our Sequence class for Boolean, we would write the following:

 val seq = Sequence<Boolean>()

For Dictionary, we could do something like the following:

 val dict = Dictionary<String, String>()

Note that there's no reason the different type parameters cannot actually refer to the same
concrete type. They don't have to, that's the point of allowing them to be different types, but
the choice is up to the user.

Generics

[232]

Bounded polymorphism
Functions that are generic for any type are useful, but somewhat limited. Often we will find
ourselves wanting to write functions that are generic for some types that share a common
characteristic. For instance, we might want to define a function to return the minimum of
two values, for any values that support some notion of comparability.

We'd start by writing a function that has a type parameter representing the types of the two
values being compared. But how can we compare these values, since they could be
instances of anything, including Any itself? Since Any has no comparison function, we
wouldn't have a way to compare the two values.

The solution is to restrict the types to those that support the functions we need to invoke;
this way, the compiler knows that no matter what the runtime type of the arguments is,
those functions must be available. Therefore, it allows us to invoke those functions. This is
called bounded polymorphism.

Upper bounds
Kotlin supports one such type of bound known as an upper bound. As the name implies,
an upper bound restricts the types to those that are subclasses of the bound. To use an
upper bound, we simply declare it alongside the type parameter:

 fun <T : Comparable<T>>min(first: T, second: T): T {
 val k = first.compareTo(second)
 return if (k <= 0) first else second
 }

Comparable is the standard library type that defines compareTo, which returns less than
zero if the first element is smaller, greater than zero if the second element is smaller, and
zero if they are equal. We defined our type parameter with the upper bound of
Comparable<T>, so any time this function is called, the value of T must extend from this
type:

 val a: Int = min(4, 5)
 val b: String = min("e", "c")

As you can see, we can invoke integers and strings, receiving the correct type back, since
both Int and String extend Comparable. However, if we tried this for a type such as
Pair, which doesn't, the compiler would emit an error.

Generics

[233]

Whenever a type parameter is used without an explicit upper bound, the
compiler will use Any as an implicit upper bound for us.

Also of interest is that we cannot necessarily invoke this function with two different types
as we could before for random. Recall that if we invoked random with arguments of
String, Int, and Boolean, the compiler could infer Any as that still satisfies the constraints
of the default upper bound.

However, if we were to invoke min with say a String and an Int, the upper bound of
String would be Comparable<String> and the upper bound of Int would be
Comparable<Int>. Because neither of those types are a supertype of the other (see the
discussion of variance in the next section) the only common supertype the compiler can
pick from is Any. Since Any does not implement Comparable, Any cannot be used as the
concrete type for the type parameter as it does not satisfy the declared bound. Therefore,
the compiler has no choice but to emit an error.

Multiple bounds
Sometimes we may wish to declare multiple upper bounds. For example, we may wish to
expand our min() function example to only work on values that are also serializable. To do
this, we move the upper bound declaration out of the type parameter and into a separate
where clause:

 fun <T>minSerializable(first: T, second: T): T
 where T : Comparable<T>,T : Serializable {
 val k = first.compareTo(second)
 return if (k <= 0) first else second
 }

Note that all the upper bounds are listed as separate clauses of the where statement and
form an upper bound union.

Now, if we were to have a type that only implemented one of the upper bounds, the
compiler would throw an error if we tried to use this in the minSerializable function:

 class Year(valvalue: Year) : Comparable<Year> {
 override fun compareTo(other: Year): Int =
 this.value.compareTo(other.value)
 }

Generics

[234]

The next line would fail to compile:

 val a = minSerializable(Year(1969), Year(2001))

But if we extend the type so that it also implements Serializable, then we can use it just
fine:

 class SerializableYear(valvalue: Int) : Comparable<SerializableYear>,
Serializable {
 override fun compareTo(other: SerializableYear): Int =
 this.value.compareTo(other.value)
}

 val b = minSerializable(SerializableYear(1969), SerializableYear(1802))

Classes can also define multiple upper bounds:

 class MultipleBoundedClass<T>where T : Comparable<T>, T : Serializable

Note that the syntax is similar, with the where clause written after the type parameter.

Type variance
Type variance refers to the techniques by which we can allow, or not allow, subtyping in
our parameterized types. If we consider a class Apple, which is a subtype of Fruit, then is
a Crate<Apple> a subtype of a Crate<Fruit>? The first instinct is to think 'of course',
since an Apple can be used where a Fruit is required, but generally speaking the answer is
no.

In fact, a Crate<Apple> can be a subtype of Crate<Fruit>, a supertype of it, or neither
depending on which type of variance is used.

Invariance
Firstly, let's discuss why a Crate<Apple> might not be a subtype of Crate<Fruit> by
default. Let's start by creating some classes:

 class Fruit
 class Apple : Fruit()
 class Orange : Fruit()

 class Crate<T>(val elements: MutableList<T>) {
 fun add(t: T) = elements.add(t)

Generics

[235]

 fun last(): T = elements.last()
 }

As you can see, Crate is just a wrapper around a MutableList. If a function was defined
that accepts a parameter of type Crate<Fruit>, the function may decide to add a new
element to our mutable crate:

 fun foo(crate: Crate<Fruit>): Unit {
 crate.add(Apple()) // does not compile
 }

This seems fine so far; we have a crate, and it contains fruit. Apple is a fruit, so why can't
we add it to the crate? The reason lies in code that could call this function, and what
happens after. Let's imagine we were able to write the following code:

 val oranges = Crate(mutableListOf(Orange(), Orange()))
 foo(oranges)
 val orange: Orange = oranges.last()

This seems fine on the surface, since the method is asking for a crate of fruit, and oranges
are fruit. Therefore, our crate of oranges should satisfy. However, by now the error in this
thinking is clear – foo only knows it has a crate of fruit, and thinks it can add an apple to
what is really a crate of oranges. Therefore, if this code was allowed, we'd have a runtime
ClassCastException when accessing the last element because it wouldn't actually be an
orange.

The simplest solution to this problem is the approach taken in Kotlin, which is to make type
parameters invariant by default. When type parameters are invariant, there is no subtype
relationship between the types. That is to say, a type M<T> is neither a subtype nor a
supertype of M<U>, regardless of the relationship between T and U. So to the complier a
Crate<Apple> and a Crate<Fruit> are as related as a Crate<Apple> and a
Crate<BigDecimal>.

Covariance
So we've looked at what it means to be invariant, but that comes with some problems. Let's
return to our crate example and imagine another function, which we'll call verify. This
function will check that if we have a crate of fruit, then that each fruit is safe to eat. If they
were not, we'd have to throw away all the fruit or risk some serious illness. Let's add that
function to the Fruit class:

 open class Fruit {
 fun isSafeToEat(): Boolean = ...

Generics

[236]

 }

Now, if we wanted to implement verify, we would define it in terms of a crate of fruit.
After all, we don't care what fruit is in the box, as long as it's safe to eat:

 fun isSafe(crate: Crate<Fruit>): Boolean = crate.elements.all{
 it.isSafeToEat()
 }

Now, we already know the following code won't compile:

 val oranges = Crate(mutableListOf(Orange(), Orange()))
 isSafe(oranges)

This time, however, there is no reason why it shouldn't compile. The logic is sound, we
simply want to invoke the isSafeToEat() function on each instance, which we know they
all have since that function is defined on the Fruit class itself.

The answer lies in changing what is known as the variance of the crate class. We want to
allow a crate of oranges when we are asked for a crate of fruit, but safely. This means we
want a crate of oranges to be considered a subtype of a crate of fruit. We already know that
this is unsafe when we mutate the crate by adding in a different subtype, such as an apple
or a pear. So is there a way to get this to work? The answer is yes and it's called covariance.

When defining a class, we can mark a type parameter as covariant, which means that the
class will maintain the subtyping relationship of the concrete type parameters. To do that,
we prefix the type parameter with the keyword out:

 class CovariantCrate<out T>(val elements: List<T>)

Remember that it was a mutation of the instance that caused us issues before. Therefore, in
order to allow covariance, the compiler insists that we do not allow an instance to be
modified. How can it enforce this? It does this by checking that a covariant type parameter
is never used as an input to a function. If it is not used as input, then an apple cannot be
used where only an orange was expected.

The opposite case is fine, however; we can still use T as the return value. This is because any
code that expects the crate to return a fruit is happy to have an apple, because an apple is a
fruit.

Therefore, our CovariantCrate cannot have T as an input parameter, and the add function
that was present on Create must be removed. The last function can remain, as that
function only uses T as the return type:

 class CovariantCrate<out T>(val elements: List<T>) {

Generics

[237]

 fun last(): T = elements.last()
 }

Now we can check for edible food, and the compiler is happy to accept a crate of oranges.

 val oranges = CovariantCrate(listOf(Orange(), Orange()))
 isSafe(oranges)

Covariance is incredibly powerful and used by many immutable collection types: Sets, lists,
maps, iterators, and collections all define type parameters as covariant, in addition to Pair,
Triple, Lazy, and many more.

Covariant return
The return type of a function can also be covariant. This is the default, and so, if a subtype
wishes to return a type that is more specific, it can do so. It simply needs to override the
definition:

 open class Animal
 class Sheep : Animal()
 class Frog : Animal()

 abstract class Farm {
 abstract fun get(): Animal
 }

 abstract class SheepFarm() : Farm() {
 abstract override fun get(): Sheep
 }

You can see we have a type hierarchy of animals, and our generic Farm just returns an
Animal. The more specific SheepFarm() wants to return a Sheep, and this is legal in
Kotlin. When the function is invoked, the type the compiler will infer for the return value
will depend on the type of the farm variable itself:

 val farm: Farm = SheepFarm()
 val animal1 = farm.get()

 val sheepFarm = SheepFarm()
 val animal2 = sheepFarm.get()

The animal1 variable is only of type Animal, whereas the animal2 variable is of type
Sheep.

Generics

[238]

Contravariance
The opposite of covariant is contravariant. When a type parameter is marked as
contravariant, then the relationship between the type parameters is reversed in the types
themselves. That is, String is a subtype of Any, but a Box<String> would be a supertype
of a Box<Any> if Box had its type parameter marked as contravariant.

To mark a type parameter as contravariant, we mark the type parameter with the keyword
in.

This might seem a little strange at first; why would we want to invert the relationship? As
usual, it's best seen through the lens of an example.

Imagine we had a class called EventStream that produced events of type T. Our
EventStream class also accepts a listener, which is invoked each time an event is
generated:

 interface Listener<T> {
 fun onNext(t: T): Unit
 }

 class EventStream<T>(val listener: Listener<T>) {
 fun start(): Unit = ...
 fun stop(): Unit = ...
 }

Now, if we created an EventStream of strings, we could pass in a stringlistener, like
so:

 val stringListener = object : Listener<String> {
 override fun onNext(t: String) = println(t)
 }
 val stringStream = EventStream<String>(stringListener)
 stringStream.start()

All seems good so far. Let's make another stream, this time for Date:

 val dateListener = object : Listener<Date> {
 override fun onNext(t: Date) = println(t)
 }
 val dateStream = EventStream<Date>(dateListener)
 stringStream.start()

Generics

[239]

Something should seem amiss here. We have written the exact same listener twice, just
varying the type parameters. Could we not instead just write a single logginglistener
and use that for any stream? After all, the only function we need to access is toString, and
that is defined on Any. String and Date are certainly subtypes of Any:

 val loggingListener = object : Listener<Any> {
 override fun onNext(t: Any) = println(t)
 }

If we tried that approach then the compiler would reject using this listener as an argument
to the EventStream. This is because, if the compiler is expecting a Listener<String>,
then it must receive either a listener of that type, or a listener of a subtype. This is just basic
object-orientated principles at play: A function can be invoked with a type or a subtype of
the required type.

This is where contravariance comes to the rescue. By marking the type parameter as
contravariant, then, for a given type M, M<T> is a subtype of M<U> if U is a subtype of T. In
our case, this means that a Listener<Any> is now considered a subtype of
Listener<String> because String is a subtype of Any, and we're able to use it as we
wanted.

Let's update the Listener and EventStream classes to be contravariant.:

 interface Listener<in T> {
 fun onNext(t: T): Unit
 }

 class EventStream<in T>(val listener: Listener<T>) {
 fun start(): Unit = TODO()
 fun stop(): Unit = TODO()
 }

Now we can use this for any type we want:

 EventStream<Double>(loggingListener).start()
 EventStream<BigDecimal>(loggingListener).start()

Recall that when we marked a type parameter as covariant the compiler then restricted the
use of the type parameter to return values only. In contrast, when using contravariance, we
can only use the type parameters as input parameters and not as return types. The reason is
essentially the inverse of the fruit and oranges problem we started this chapter with.

Generics

[240]

If we had a function that returned a T and we allowed that T to be contravariant, then a
particular instance may be expecting to receive values of Orange, but instead could be
given a Fruit. Trying to peel the orange would fail if the fruit was actually a Tomato.

We can demonstrate this through a quick example:

 interface Generator<in T> {
 fun generate(): T
 }

 class OrangePicker(val generator: Generator<Orange>) {

 fun pick() {
 val orange = generator.generate()
 peel(orange)
 }
 fun peel(orange: Orange): Unit = // peel the orange
 }

Our generator class is marked as contravariant and has the type parameter in the return
position. When we instantiate an OrangePicker, we pass in a generator. Say that we
invoked it like this, with a generic Fruit generator:

 val generator = object : Generator<Fruit> {
 override fun generate(): Fruit = Tomato() // random fruit
 }

 val picker = OrangePicker(generator)
 picker.pick()

Since generator is contravariant, a generator of fruit is considered a subtype of a
generator of oranges and so can be passed into the constructor. However, the pick
function only expects instances of Orange, and so we would end up with a runtime
exception. For this reason, contravariance is restricted to input positions only.

Variance overview
To make clear the different variances and the relationships between classes, the following
handy chart gives us a visualization. Recall that, if an Orange is a subtype of Fruit, then the
default invariant state is that a Crate of oranges has no relationship to a Crate of fruit. With
covariance, a Crate of oranges is a subtype of a Crate of fruit. And finally, with
contravariance, a Crate of oranges is a supertype of a Crate of fruit.

Generics

[241]

Nothing type
In Chapter 2, Kotlin Basics we briefly touched on the Kotlin type hierarchy. The notion of a
Nothing type was mentioned: A type that is the subtype of all other types, in a similar vein
to how Any is a superclass of all types. The idea of a Nothing type is nothing new (pun
intended) for those who have used a functional language, such as Scala. For those who are
new to the idea, we will cover why such a type is useful.

The first use case is to indicate that a function would never complete normally. What we
mean by normally is that it is not expected to return a value. It may intentionally perform
an infinite loop, only ending when the process or thread is killed, or it may only return by
throwing an exception. For example, the error function defined in the Kotlin standard
library has the following implementation:

 inline fun error(message: Any): Nothing = throw
IllegalStateException(message.toString())

The main use, however, is as a type parameter in variant types. If we have a covariant type,
and we want to create an instance that is compatible with all supertypes, we can use
Nothing as the type parameter. For example, look at the following type:

 class Box<out T>

The following instance would be compatible with this:

 Box<Nothing>()

Generics

[242]

It might seem useless to have a Box of Nothing, but it would serve perfectly well as an
empty Box. An empty box would contain no elements, so the fact the functions on it would
return the Nothing type is not a problem. If the empty box was also immutable, then we
would only need a single instance. This is how, for example, the empty list is defined in
Kotlin as a shared single object implementing List<Nothing>.

Nothing as a type is often used for this trick when we have a type that we might wish to
have an empty, or no-op, instance of. Say that we had some kind of Marshaller, which
was parameterized by the type of message it returns. Something like this:

 interface Marshaller<out T> {
 fun marshall(json: String): T?
 }

We could easily create a single no-op instance that could be used anywhere a Marshaller
was expected:

 object NoopMarshaller : Marshaller<Nothing> {
 override fun marshall(json: String) = null
 }

Finally, it was worth noting that there are no instances of Nothing. Nothing is defined as a
type, but it cannot ever be instantiated.

Type projection
In the Type variance section, we worked through examples of covariance and contravariance,
and how each of these restricts type parameters to be used as input types or return types
respectively. This is usually not an issue when we are defining our own interfaces and
classes as we can come up with the correct abstractions required.

But what about the case where someone else has defined a class to be invariant and you
require it to be used in a covariant or contravariant way? Kotlin addresses this by
introducing a powerful addition called type projections.

When using type parameters, there is a distinction between use site and declaration site
variance. Use site variance is the term used when the variance of type parameters is set by
the variable itself, as in Java. Declaration site variance is the term used when the type or
function determines the variance, as in Kotlin.

Generics

[243]

Type projections allow us to specify variance at the use site instead. Let's revisit our earlier
example of a mutable crate of fruit:

 class Crate<T>(val elements: MutableList<T>) {
 fun add(t: T) = elements.add(t)
 fun last(): T = elements.last()
 }

If you recall, the reason this crate was restrictive was because we could not pass a crate of
oranges to a function that required a crate of fruit. We worked around this by creating a
new class, CovariantCrate, which marked T as covariant, and removed the add function
because it used T as an input parameter type.

This was fine because we were the authors of the Crate class and so could adapt it to our
will. If, however, the class was coming from some library, we wouldn't be able to redefine
it. Our options are to create a new class and copy the elements, or to use a type projection.

A type projection allows us to restrict the functions available on a type so that it fulfills the
criteria necessary to be considered covariant or contravariant. If we could inform the
compiler that we have no desire to call add on the Crate type, then there is no reason why
we couldn't use it in a covariant way.

To do this, we use the out and in keywords when we define the function that is going to
accept the parameterized type. For example, to create a function that accepts a Crate
projected as covariant, we could define the following:

 fun isSafe(crate: Crate<out Fruit>): Boolean = crate.elements.all{
 it.isSafeToEat()
 }

This can now be invoked with our original invariant crate type:

 val oranges = Crate(mutableListOf(Orange(), Orange()))
 isSafe(oranges)

If you recall, the last line failed originally, before we knew about type projections.

The same trick works for contravariant projections too. If we use the event stream example
from earlier, we could have used an invariant listener by adapting the EventSteam class to
project the Listener type:

 interface Listener<T> {
 fun onNext(t: T): Unit
 }

 class EventStream<in T>(val listener: Listener<in T>) {

Generics

[244]

 fun start(): Unit = TODO()
 fun stop(): Unit = TODO()
 }

Note the in keyword added to the listener parameter in the constructor.

When using a type projection, the compiler restricts us to only invoking functions where the
type parameter is in the allowed position. So, if we project as covariant, we can only invoke
functions that return T (or don't use T at all), and if we project as contravariant, we can only
invoke functions that accept T (or again don't use T).

Type erasure
Kotlin is designed primarily as a language for the Java Virtual Machine (JVM), and when
the JVM was first designed, generics were not included as a feature. Over time it became
apparent that this was a major flaw of the language, and so in Java 1.5 (or Java SDK 5),
released in 2004, generics were added as a feature to the compiler.

However, because of a desire to stay backwards compatible with previous versions of Java,
the designers of Java decided that generics would be implemented using a technique called
erasure. Erasure is the name given to the process by which the compiler removes type
parameters during compilation.

In Java, a class defined as List<T> in the source code would be compiled simply as List,
or List<Object>, if you like. This poses problems, some of which have already been
introduced:

Functions with the same names and same erased parameters will clash. The fun
print(list: List<String>) and fun print(list: List<Int) will have
the same function signature after erasure.
At runtime, it is not possible to see what type parameters were used when
instantiating an object.
You cannot test whether an instance is of type T.
You cannot test whether an instance is of a parameterized type.
The class literal cannot be accessed for T.
The classes that use a type parameter have the type parameter replaced with an
object or the upper bound.

Generics

[245]

Since Kotlin targets the JVM, Kotlin is also restricted by these issues. We can see this from
looking at the bytecode when creating two functions, each accepting a different type of
List, but otherwise identical:

 fun printInts(list: Set<Int>): Unit {
 for (int in list) println(string)
 }

 fun printStrings(list: Set<String>): Unit {
 for (string in list) println(string)
 }

The bytecode generated for the first function is as follows:

0: aload_0
1: ldc #9 //String list
3: invokestatic #15
6: aload_0
7: invokeinterface #21, 1 //InterfaceMethod
java/util/Set.iterator:()Ljava/util/Iterator;
12: astore_2
13: aload_2
14: invokeinterface #27, 1 //InterfaceMethod
java/util/Iterator.hasNext:()Z
19: ifeq 46
22: aload_2
23: invokeinterface #31, 1 //InterfaceMethod
java/util/Iterator.next:()Ljava/lang/Object;
28: checkcast #33 //class java/lang/Number
31: invokevirtual #37 //Method
java/lang/Number.intValue:()I
34: istore_1
35: nop
36: getstatic #43 //Field
java/lang/System.out:Ljava/io/PrintStream;
39: iload_1
40: invokevirtual #49 //Method java/io/PrintStream.println:(I)V
43: goto 13
46: return

Here is the almost identical bytecode for the second function:

0: aload_0
1: ldc #9 //String list
3: invokestatic #15
6: aload_0
7: invokeinterface #21, 1 //InterfaceMethod
java/util/Set.iterator:()Ljava/util/Iterator;

Generics

[246]

12: astore_2
13: aload_2
14: invokeinterface #27, 1 //InterfaceMethod
java/util/Iterator.hasNext:()Z
19: ifeq 43
22: aload_2
23: invokeinterface #31, 1 //InterfaceMethod
java/util/Iterator.next:()Ljava/lang/Object;
28: checkcast #55 //class java/lang/String
31: astore_1
32: nop
33: getstatic #43 //Field
java/lang/System.out:Ljava/io/PrintStream;
36: aload_1
37: invokevirtual #58 //Method
java/io/PrintStream.println:(Ljava/lang/Object;)V
40: goto 13
43: return

Note that the opcodes emitted by the compiler are identical, except for instruction 28, which
is the cast operation. The compiler is inserting a cast from the runtime type of object down
to the compile time type. The only difference is the type in the cast, which is stored in the
constant pool and referenced by the number after the cast op.

The generated bytecode is equivalent to the following source code:

 fun printInts(list: Set<Any>): Unit {
 for (obj in list) {
 println(obj as Int)
 }
 }

 fun printStrings(list: Set<Any>): Unit {
 for (obj in list) {
 println(obj as String)
 }
 }

Functions are not the only issue. If we have a class that uses a type parameter in function
signatures, then that type parameter will be replaced with either java.lang.Object, or
the upper bound if the type parameter is bounded. Take the following function as an
example:

 fun <T : Comparable<T>>max(list: List<T>): T {
 var max = list.first()
 for (t in list) {
 if (t >max)

Generics

[247]

 max = t
 }
 return max
 }

When viewing the bytecode, you will notice that the function body must cast the elements
of the list:

0: aload_0
1: ldc #9 //String list
3: invokestatic #15 6: aload_0
7: invokestatic #68
10: checkcast #70 //class java/lang/Comparable
13: astore_1
14: aload_0
15: invokeinterface #73, 1 //InterfaceMethod
java/util/List.iterator:()Ljava/util/Iterator;
20: astore_3
21: aload_3
22: invokeinterface #27, 1 //InterfaceMethod
java/util/Iterator.hasNext:()Z
27: ifeq 56
30: aload_3
31: invokeinterface #31, 1 //InterfaceMethod
java/util/Iterator.next:()Ljava/lang/Object;
36: checkcast #70 //class java/lang/Comparable
39: astore_2
40: aload_2
41: aload_1
42: invokeinterface #77, 2
47: iconst_0
48: if_icmple 53
51: aload_2
52: astore_1
53: goto 21
56: aload_1
57: areturn

Generics

[248]

There are a couple of ways of working around some of these issues. Firstly, as covered in
the chapter on annotations, we can mark functions that have the same erased signature with
a different name when compiled. Remember that we do this by using the @JvmName
annotation.

The other approach is a limited form of reification.

Type reification
A reifiable type is the name given to a type when its type information can be inspected at
runtime. Examples of types that are considered reified are non-generic types, such as
String or BigDecimal. On the JVM, primitives such as boolean or double are also
considered to be reified.

A non-reifiable type is one that has suffered the effect of type erasure so that some, or all, of
its type information has been lost at runtime. Examples of this are parameterized types,
such as List<String> and List<Boolean>, which look the same at runtime.

We've seen how erasure removes types at runtime and the issues this can cause. Now we
will look at a way that we can work around some of those issues. Kotlin has introduced a
feature called type reification that enables type information to be kept at runtime for inline
functions.

To use this feature, we add the keyword reified before the type parameter, as shown in
the following snippet. Then we are able to perform operations on T:

 inline fun <reified T>runtimeType(): Unit {
 println("My type parameter is " + T::class.qualifiedName)
 }

Note how we are able to get the runtime type of T as a KClass. We can also use T for type
checking:

 inline fun <reified T>List<Any>.collect(): List<T> {
 return this.filter { it is T }.map { it as T }
 }

In that example, we filter out elements of a List, only returning those that match the type
parameter. We do this by checking each element to see if it is an instance of T. We could
only do this if we had access to the type parameter at runtime because it is impossible to
know in advance what elements the List might contain.

Generics

[249]

We could use it in the following way:

 val list = listOf("green", false, 100, "blue")
 val strings = list.collect<String>()

So how does Kotlin perform this trick? The answer lies in the fact that reified functions
must be defined as inline. In all places that the function is invoked, the body will be
copied into the call site. Since at the call site the compiler knows the type parameter used, it
is able to replace references to T with references to the proper type.

We can see this by examining the bytecode for a reified function. Let's define a shorter
example, so we have less bytecode to look through:

 inline fun <reified T>printT(any: Any): Unit {
 if (any is T)
 println("I am a tee: $any")
 }

This function simply checks that the input parameter is of type T and, if so, prints it out. We
will invoke it with the following code:

 printT<Int>(123)

The generated bytecode looks like the following:

0: aload_0
1: ldc #159 //String args
3: invokestatic #163
6: bipush 123
8: invokestatic #125 //Method
java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
11: astore_1
12: nop
13: aload_1
14: instanceof #122 //class java/lang/Integer
17: ifeq 48
20: new #8 //class java/lang/StringBuilder
23: dup
24: invokespecial #11 //Method java/lang/StringBuilder."<init>":()V
27: ldc #150 //String I am a tee:
29: invokevirtual #17
32: aload_1
33: invokevirtual #153
36: invokevirtual #40 //Method
java/lang/StringBuilder.toString:()Ljava/lang/String;
39: astore_2
40: nop
41: getstatic #46 //Field

Generics

[250]

java/lang/System.out:Ljava/io/PrintStream;
44: aload_2
45: invokevirtual #52 //Method
java/io/PrintStream.println:(Ljava/lang/Object;)V
48: return

Instruction 14 is the important point here. That is the line where the compiler has inserted a
check for the reified type parameter. #122 refers to java.lang.Integer in the constant
pool, which was the proper type we had used when invoking the function.

Recursive type bounds
Recursive type bounds has a catchy name and sounds rather complicated, but it is actually
intuitive once explained. It is an extension of bounded polymorphism, and describes a type
that includes one or more type parameters, where at least one of the type parameters uses
the type itself.

All will become clearer with an example. Let's say we are writing an API for accounts in a
financial system. We want to define an Account object, and we want to be able to sort all
types of account, but with the restriction that we only want to be able to sort accounts of the
same type. The first step is defining the interface for our accounts, and a couple of concrete
implementations:

 interface Account {
 val balance: BigDecimal
 }

 data class SavingsAccount(override val balance: BigDecimal,val
interestRate: BigDecimal) : Account, Comparable<SavingsAccount> {
 override fun compareTo(other: SavingsAccount): Int =
 balance.compareTo(other.balance)
 }

 data class TradingAccount(override val balance: BigDecimal, val
margin: Boolean) : Account, Comparable<TradingAccount> {
 override fun compareTo(other: TradingAccount): Int =
 balance.compareTo(other.balance)
 }

Generics

[251]

There is nothing new in the preceding code. Both implementations extend the Account
interface, and both extend Comparable so they can be used by the standard library sorting
functions. For instance, we can now compare a savings account to another, and similarly for
a tradings account:

 val savings1 = SavingsAccount(BigDecimal(105), BigDecimal(0.04))
 val savings2 = SavingsAccount(BigDecimal(396), BigDecimal(0.05))
 savings1.compareTo(savings2)

 val trading1 = TradingAccount(BigDecimal(211), true)
 val trading2 = TradingAccount(BigDecimal(853), false)
 trading1.compareTo(trading2)

Even better, the following would fail to compile:

 savings.compareTo(trading) compile error

This is what we want, in this case. Part of our original brief was to only allow sorting
between accounts of the same type.

Note that we are duplicating code in the compareTo functions. In fact, they are identical. As
they stand, they are fairly simple, so this isn't too much of a problem, but in a real system
they might stretch over many lines. Can we improve this by bringing the compareTo
function into the interface?

 interface Account2 : Comparable<Account2> {
 val balance: BigDecimal
 override fun compareTo(other: Account2): Int =
 balance.compareTo(other.balance)
 }

 class SavingsAccount2(override val balance: BigDecimal) : Account2

 class TradingAccount2(override val balance: BigDecimal) : Account2

However, the issue has now become that we can compare instance of Account2 to any
other instance. For example, the following code compiles fine:

 val savings = SavingsAccount2(BigDecimal(105), BigDecimal(0.04))
 val trading = TradingAccount2(BigDecimal(210), true)
 savings.compareTo(trading)

Generics

[252]

Now, this could cause issues if we don't want to be able to compare different types of
accounts. This is a side effect of the fact that we have defined Account to implement
Comparable<Account>. How can we share the implementation of compareTo, but at the
same time avoid comparing different types? We might consider introducing a type
parameter, and using that in the extends clause for Comparable:

 interface Account3<E> : Comparable<E> {
 val balance: BigDecimal
 override fun compareTo(other: E): Int =
 balance.compareTo(other.balance)
 }

 data class SavingsAccount3(override val balance: BigDecimal, val
interestRate: BigDecimal) : Account3<SavingsAccount3>
 data class TradingAccount3(override val balance: BigDecimal, val
margin: Boolean) : Account3<TradingAccount3>

At a glance, this looks perfect. Each concrete type will only be comparable with itself, and
the logic has been kept in the interface. However, there is an issue in that the compiler does
not recognize other.balance in the comparison code.

Since Account3 defines its type parameter with no bound, we could create an account that
uses String, Foo, or anything we liked. And since the property balance is not defined on
String or Foo, the compiler is right to throw an error when we try to access it.

So how can we keep the good progress and make this work? The answer is to introduce an
upper bound on the type parameter for Account so that when we create an instance of
Account the Comparable interface is passed our type as that contains the balance
property. We can do this by using what is known as a recursive type bound:

 interface Account4<E : Account4<E>> : Comparable<E> {
 val balance: BigDecimal
 override fun compareTo(other: E): Int =
 balance.compareTo(other.balance)
 }

 data class SavingsAccount4(override val balance: BigDecimal, val
interestRate: BigDecimal) : Account4<SavingsAccount4>

 data class TradingAccount4(override val balance: BigDecimal, val
margin: Boolean) : Account4<TradingAccount4>

Note how E is now declared as extending Account<E>. This gives us the shared
compareTo code, and allows accounts to only be compared with themselves:

 val savings1 = SavingsAccount4(BigDecimal(105), BigDecimal(0.04))

Generics

[253]

 val savings2 = SavingsAccount4(BigDecimal(396), BigDecimal(0.05))
 savings1.compareTo(savings2)

 val trading1 = TradingAccount4(BigDecimal(211), true)
 val trading2 = TradingAccount4(BigDecimal(853), false)
 trading1.compareTo(trading2)

And, as per our original design, we are back to having a compile error if we try the
following:

 savings.compareTo(trading) compile error

There is a final flaw, in that we cannot stop accounts being defined with a
type parameter of another account, for example, class BettingAccount
: Account<ShareAccount>. This is a restriction that Java also shares.

Algebraic data types
Algebraic data types is another of those functional programming concepts that sounds
complicated when you first stumble across it, but, after seeing an example or two, the
mystery disappears. The term itself refers to the fact that algebra is defined as a set of things
and the operations that are allowed to be performed on those things. For example, in
mathematics the + operator is defined on integers to return the sum, and thus is an
algebraic concept.

Therefore, an algebra for a type defines operations or functions on that type, hence the term
algebraic data type. In computing languages, the term is generally applied to a closed set of
composite types where those types implement the required functions. In Kotlin, we achieve
the closed property by using the keyword sealed, which restricts the allowed types to only
those defined in the same file.

Algebraic data types should not be confused with the similarly named
abstract data types. Despite sharing the same acronym, these are distinct
concepts.

Let's move on from these abstract descriptions to a concrete example; we will use the very
common example of a linked list. The general structure of a linked list is that each element
in the list is held in a node, and each node contains a link to the next node. A link to the
initial node allows us to navigate the entire list by iterating over the links.

Generics

[254]

We can start by defining a sealed class that will contain our operations. Note that sealed
cannot be used on an interface:

 sealed class List<out T>

Next, we will define two implementations. The first will represent a node that contains a
value, and the second will represent an empty node:

 class Node<T>(val value: T, val next: List<T>) : List<T>()
 object Empty : List<Nothing>()

A list can be thought of as a sequence of nodes that always terminate with an empty node.
Therefore, an empty list is nothing more than just the empty node itself. The data nodes
have two properties, one for the value they contain and one to point to the next element in
the list.

For example, a list of two elements would look like this:

Note that the empty node is actually defined as an object. This is because it has no state, and
so we don't need more than a single instance of it. Since we are using a single empty node,
we must fix the type parameter with Nothing for the reasons described in the section on
the Nothing type.

Let's begin to fill in the functions that a typical list would require. We can start with the
easiest: Is the list empty or not?

 sealed class List<out T> {
 fun isEmpty() = when (this) {
 is Node -> false
 is Empty -> true
 }
 }

Note that we are just type checking, and, depending on what type our list is, we know if the
list is empty or not. We don't even need to look at any of the properties.

Generics

[255]

This is also where the sealed keyword comes into play. When a class is sealed, the
compiler knows that all implementations must live in the same file, and so knows the full
set of concrete types. Therefore, when a sealed class is used in a when expression, the
compiler is able to emit an error if we do not cover all cases. If, for example, we had an
algebraic data type that consisted of six types, and we only covered five in the when
expression, we would need to either add the final type or add an else clause.

Next up is adding a size() function. We'll define this recursively, which, in the real world,
wouldn't be efficient, but we're demonstrating the concept of algebraic data types and not
efficiency:

 fun size(): Int= when (this) {
 is Node -> 1 + this.next.size()
 is Empty -> 0
 }

Similar to the isEmpty function, we type check, that if the node is empty we return zero.
Otherwise, we just add one to the size of the tail.

Many functions are similar in implementation. For example, the head function, which
returns the first element of the list, looks like this:

 fun head(): T = when (this) {
 is Node<T> -> this.value
 is Empty -> throw RuntimeException("Empty list")
 }

The empty node has no element, and so must throw an exception (or we could define the
function to be nullable). A data node would just return its value; notice the smart cast in
operation on the right-hand side to access the value property. Other data access functions
follow along the same lines.

An interesting function is append. When we append to a list, we are creating a new list,
with the element added to the end in a new node. To do this, we would define a function
which accepts an element T, and returns List<T>. However, the type parameter on List is
defined as covariant, which, if you recall, means we cannot use T as an input parameter.

In some other languages, the solution is to introduce a new type parameter, U, and then use
that as the return type of the new list. To do this, we would require that U is a supertype of
T so that all the existing elements are compatible with the new list. For example, if we had a
list of integers, we could append a double to then have a list of numbers.

Generics

[256]

Unfortunately, Kotlin doesn't support the functionality to say that U must be a supertype of
T. This would be an example of a lower bound, and only upper bounds are supported at the
time of writing. However, we can work around this in a couple of ways.

Firstly, we can allow T as in input parameter even though we told the compiler earlier that
it shouldn't allow it, by overriding the variance checks for this function:

 fun append(t: @UnsafeVariance T): List<T> = when (this) {
 is Node<T> -> Node(this.value, this.next.append(t))
 is Empty -> Node(t, Empty)
 }

Note the annotation, UnsafeVariance, which disables the compiler error. In this example,
we know this will be okay because our List implementation is immutable. As such, we
can't cause errors by adding invalid values to an existing list.

The other alternative is to declare append as an extension function, whereby the type
parameter is invariant:

 fun <T>List<T>.append(t: T): List<T> = when (this) {
 is Node<T> -> Node(this.value, this.next.append(t))
 is Empty -> Node(t, Empty)
 }

We can wrap up our example by making the concrete types private. There is no reason for
those to be exposed, and we can add a companion object method so that instances of List
can be created directly through the List type itself. The final listing looks like the
following:

 sealed class List<out T> {

 fun isEmpty() = when (this) {
 is Empty -> true
 is Node -> false
 }

 fun size(): Int= when (this) {
 is Empty -> 0
 is Node -> 1 + this.next.size()
 }

 fun tail(): List<T> = when (this) {
 is Node -> this.next
 is Empty -> this
 }

Generics

[257]

 fun head(): T = when (this) {
 is Node<T> ->this.value
 is Empty -> throw RuntimeException("Empty list")
 }

 operator fun get(pos: Int): T {
 require(pos>= 0, { "Position must be >=0" })
 return when (this) {
 is Node<T> -> if (pos == 0) head() else this.next.get(pos - 1)
 is Empty -> throw IndexOutOfBoundsException()
 }
 }

 fun append(t: @UnsafeVarianceT): List<T> = when (this) {
 is Node<T> -> Node(this.value, this.next.append(t))
 is Empty -> Node(t, Empty)
 }

 companion object {
 operator fun <T>invoke(vararg values: T): List<T> {
 var temp: List<T> = Empty
 for (value in values) {
 temp = temp.append(value)
 }
 return temp
 }
 }
 }

 private class Node<out T>(val value: T, val next: List<T>) : List<T>()
 private object Empty : List<Nothing>()

Examples of using this List are as follows:

 val list = List("this").append("is").append("my").append("list")

 println(list.size()) // prints 4
 println(list.head()) // prints "this"
 println(list[1]) // prints "is"
 println(list.drop(2).head()) // prints "my"

Algebraic data types are very common in functional programming, and can be used for all
manner of abstractions. Data structures, such as trees, in addition to monads, such as
Either, Try, and Option, are often implemented in this manner. In fact, any type that
lends itself to a union or product type is often conveniently implemented using this
approach.

Generics

[258]

Summary
This chapter has shown how the power of the advanced Kotlin type system can be used to
improve the robustness of our code, and increase re-usability of generic functions. The type
system is one of the biggest improvements over Java that Kotlin offers. In later chapters the
examples will use type parameterization in the real world, showing how useful it really can
be.

9
Data Classes

We came across the term data class in Chapter 3, Object Oriented Programming in Kotlin;
however, we didn't go into much detail of what it could bring to the table. This chapter will
cover the process of annotating classes, which will allow you to have boilerplate-free code.
We will dig deep to see what the compiler does for us behind the scenes when we use a
data class. In this chapter, you will learn:

What destructuring is and how data classes are automatically eligible for
destructuring operations
How you get copy, toString, hashCode, and equals methods implemented for you
Rules to obey when defining data classes
Limitations of data classes

Data classes are intended for types that are meant to be data containers and nothing more.
Code readability is important to me and most likely to anyone who reads this book. When
you open a source file, you would really want to be able to quickly grasp what the code
does. When it comes to a POJO (Plain Old Java Object), I am sure you would very much
like to avoid having to write the code for setters and getters if all they do is return a value.
Furthermore, the constructor's code body is bold in almost every case; it just takes the
incoming parameters and assigns them to the concerned fields after it performs any
validation that is required. This is where data classes could help you. If you have coded in
Scala, you will already be accustomed with the case class construct, and I am pretty sure the
idea of even having to press a shortcut key to let IntelliJ build your getter and setter might
be far from ideal.

A modern compiler should take the burden of boilerplate code away from you. Why Java
hasn't supported this until now is still an enigma. This can be achieved quite easily with the
addition of an annotation, which can be picked up by the compiler, thus not breaking any
existing code. The sad thing is that such a functionality is not even on the horizon. But
luckily, we have Kotlin!

Data Classes

[260]

Imagine we have the following class in Java to represent a blog entry:

 public class BlogEntryJ {
 private final String title;
 private final String description;
 private final DateTime publishTime;
 private final Boolean approved;
 private final DateTime lastUpdated;
 private final URI url;
 private final Integer comments;
 private final List<String> tags;
 private final String email;

 public BlogEntryJ(String title, String description, DateTime
publishTime, Boolean approved, DateTime lastUpdated, URI url, Integer
comments, List<String> tags, String email) {
 this.title = title;
 this.description = description;
 this.publishTime = publishTime;
 this.approved = approved;
 this.lastUpdated = lastUpdated;
 this.url = url;
 this.commentCount = commentCount;
 this.tags = tags;
 this.email = email;
 }

 public String getTitle() {
 return title;
 }

 public String getDescription() {
 return description;
 }
 }

Most of the getters have been left out for the sake of simplicity. In this example, all the fields
have been made read only. If you wish to have a mutable data structure, you would need to
add setters (you would have to return a copy of the tags field to maintain immutability;
otherwise, the caller would be able to add/remove items, thus breaking your encapsulation).
Let's discuss how you can achieve this, and more as you will see later, in Kotlin. For the
code in Kotlin, I have chosen to make some of the fields writable in order to discuss the
setters code as well. In the following code snippet, you will notice that a writable field is
marked as var, whereas a read-only field is marked as val. It would be nice if the compiler
would default to val, the Scala compiler already does this for the case classes:

 data class BlogEntry(var title: String, var description: String, val

Data Classes

[261]

publishTime: DateTime,val approved: Boolean?, val lastUpdated: DateTime,
val url: URI, val commentCount: Int?, val topTags: List<String>, val
email: String?)

 val blogEntry = BlogEntry("Data Classes are here", "Because Kotlin
rulz!", DateTime.now(), true, DateTime.now(),
URI("http://packt.com/blog/programming_kotlin/data_classes"), 0,
emptyList(), null)

There is no comparison between the two; the Kotlin approach is a lot cleaner since all of the
boilerplate code is removed.

You might think, for now, you just got a few keystrokes saved. But there is a lot more
happening behind the scenes, which I am sure you will end up appreciating. To see all of
the work the Kotlin compiler has actually done for us, we need to look at the bytecode
generated.

Automatic creation of getters and setters
For a given var declaration in the constructor, the compiler will create the getters and
setters automatically. Considering the title field, the compiler has actually created a
getTitle and setTitle method. This means interacting with Java would now translate to
calling these two methods:

public final java.lang.String getTitle();
 Code:
 0: aload_0
 1: getfield #11 // Field title:Ljava/lang/String;
 4: areturn
public final void setTitle(java.lang.String);
 Code:
 0: aload_1
 1: ldc #17 // String <set-?>
 3: invokestatic #23 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Object;L
java/lang/String;)V
 6: aload_0
 7: aload_1
 8: putfield #11 // Field title:Ljava/lang/String;
 11: return

Data Classes

[262]

The code is pretty straightforward. In the setter code body, see line 3, we have an implicit
check for null values via the standard library method, checkParameterIsNotNull. In
Kotlin, the type system distinguishes between references that can hold null values and
those that cannot. In the case of title, the type definition indicates it doesn't allow any null
value. In contrast to this, the email field allows null values, and this is reflected in the code
generated for it:

public final void setEmail(java.lang.String);
 Code:
 0: aload_0
 1: aload_1
 2: putfield #72 // Field email:Ljava/lang/String;
 5: return

As you can see, the implicit check for null is omitted in this case.

If you declare your field as val, the compiler will generate only the getter method for you.
This is the case with the lastUpdated field. I won't go through the bytecode generated for
it since it is similar to the one for the title field.

The copy method
When using a data class, you get a copy method out of the box. This method allows you to
create a new instance of your type while cherry-picking the fields you want to change. For
example, you may decide that you want to get a new BlogEntry instance from an existing
instance of which you just want to change the title and description fields:

 blogEntry.copy(title = "Properties in Kotlin", description =
"Properties are awesome in Kotlin")

If you are familiar with Java, you will notice a similarity with the clone method. However,
the copy method is more powerful; it allows you to change any of the fields in your new
copied instance.

Data Classes

[263]

If you look at the parameter information of the copy method (CTRL+ P is the default
keyboard shortcut), you should see the following:

Copy method parameters

In the screenshot, you can see that each field is contained within [], thus marking it
optional. To make this work, the compiler generates two methods for us. Here is the byte-
level code snippet (once again, some of the code has been left out for clarity):

public final com.programming.kotlin.chapter09.BlogEntry
copy(java.lang.String, java.lang.String, org.joda.time.DateTime,
java.lang.Boolean, org.joda.time.DateTime, java.net.URI,
java.lang.Integer, java.util.List<java.lang.String>, java.lang.String);
 Code:
 0: aload_1
 1: ldc #76 // String title
 3: invokestatic #23 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 34: ldc #81 // String tags
 36: invokestatic #23 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 39: new #2 // class
com/programming/kotlin/chapter09/BlogEntry
 42: dup
 43: aload_1
 44: aload_2
 45: aload_3
 46: aload 4
 48: aload 5
 50: aload 6
 52: aload 7
 54: aload 8
 56: aload 9
 58: invokespecial #97 // Method
"<init>":(Ljava/lang/String;Ljava/lang/String;Lorg/joda/time/DateTime
;Ljava/lang/Boolean;Lorg/joda/time/DateTime;Ljava/net/URI;Ljava/lang/
Integer;Ljava/util/List;Ljava/lang/String;)V
 61: areturn

Data Classes

[264]

public static com.programming.kotlin.chapter09.BlogEntry
 copy$default(com.programming.kotlin.chapter09.BlogEntry,
java.lang.String, java.lang.String, org.joda.time.DateTime,
java.lang.Boolean, org.joda.time.DateTime, java.net.URI,
java.lang.Integer, java.util.List, java.lang.String, int,
java.lang.Object);
 Code:
 0: aload 11
 2: ifnull 15
 5: new #101 // class
java/lang/UnsupportedOperationException
 8: dup
 9: ldc #103 // String Super calls with default
arguments not supported in this target, function: copy
 11: invokespecial #105 // Method
java/lang/UnsupportedOperationException."<init>":(Ljava/lang/String;) V
 14: athrow
 15: aload_0
 16: iload 10
 18: iconst_1
 19: iand
 20: ifeq 28
 23: aload_0
 24: getfield #11 // Field
title:Ljava/lang/String;
 27: astore_1
 28: aload_1
 29: iload 10
 31: iconst_2
 32: iand
 33: ifeq 41
 36: aload_0
 37: getfield #27 // Field
description:Ljava/lang/String;
 40: astore_2
 41: aload_2
 42: iload 10
 44: iconst_4
 45: iand
 46: ifeq 54
 145: aload_0
 146: getfield #72 // Field
email:Ljava/lang/String;
 149: astore 9
 151: aload 9
 153: invokevirtual #107 // Method
copy:(Ljava/lang/String;Ljava/lang/String;Lorg/joda/time/DateTime;Lja
va/lang/Boolean;Lorg/joda/time/DateTime;Ljava/net/URI;Ljava/lang/Inte

Data Classes

[265]

ger;Ljava/util/List;Ljava/lang/String;)Lcom/programming/kotlin/chapte
r09/BlogEntry;
 156: areturn

The first method generated is an instance method; it takes a list of parameters that represent
all the fields declared for the data class. After all the parameters null checks, the code at line
58 calls the constructor for BlogEntry:58: invokespecial #97 // Method
"<init>":(Ljava/lang/.... The curious part is the presence of the second
method, copy$default; this method is static and takes an instance of BlogEntry as the
first parameter, followed by a parameter for each field that is defined. The interesting part
comes next. Let's consider the title field. You are not expected to know the bytecode at this
level, but you might work out what is happening. The key lies in these two lines: 18:
iconst_1 and 20: ifeq 28. Here's the code snippet for this:

15: aload_0
16: iload 10
18: iconst_1
19: iand
20: ifeq 28
23: aload_0
24: getfield #11 // Field title:Ljava/lang/String;
27: astore_1
28: aload_1

Let me translate what happens. If the parameter title is equal to a constant value, then it will
go and retrieve the value for the title from the instance; see line 24: getfield #11.
Otherwise, it uses the value passed to the copy method. You might wonder, like I did,
where are these constants coming from? The hint lies in iconst_1, iconst_2, and so on.
Let's look at the code generated when we call the copy function. This will help us answer
the question. Here is the Kotlin code used:

 fun main(args: Array<String>) {
 val blogEntry = BlogEntry("Data Classes are here","Because Kotlin
rulz!", DateTime.now(),true, DateTime.now(),
URI("http://packt.com/blog/programming_kotlin/data_classes"),0,
emptyList(),"")
 println(blogEntry)
 blogEntry.copy(title = "Properties in Kotlin",
 description = "Properties are awesome in Kotlin",
 approved = true,
 tags = listOf("tag1"))
 }

Data Classes

[266]

This is the bytecode generated for the last method call:

69: ldc #76 // String Properties in Kotlin
71: ldc #78 // String Properties are awesome in Kotlin
73: aconst_null
74: iconst_1
75: invokestatic #38 // Method
java/lang/Boolean.valueOf:(Z)Ljava/lang/Boolean;
78: aconst_null
79: aconst_null
80: aconst_null
81: ldc #80 // String tag1
83: invokestatic #84 // Method
kotlin/collections/CollectionsKt.listOf:(Ljava/lang/Object;)Ljava/util/List
;
86: aconst_null
87: sipush 372
90: aconst_null
91: invokestatic #88 // Method
com/programming/kotlin/chapter09/BlogEntry.copy$default:(Lcom/programming/k
otlin/chapter09/BlogEntry;Ljava/lang/String;Ljava/lang/String;Lorg/joda/tim
e/DateTime;Ljava/lang/Boolean;Lorg/joda/time/DateTime;Ljava/net/URI;Ljava/l
ang/Integer;Ljava/util/List;Ljava/lang/String;ILjava/lang/Object;)Lcom/prog
ramming/kotlin/chapter09/BlogEntry;

Starting at line 69, the code starts pushing the variables on the stack. It follows the order of
the properties defined in the data class. For example, we overwrite title and
description values and then we jump to the approve field. For all the non provided
values we get a null via the aconst_null bytecode routine. Although you call the copy
method on the object blogEntry, the bytecode actually calls the static copy$default method
and not the instance method as one would have expected.

Since a static method has been defined in the BlogEntry class, you would expect this
method to be available in the auto-completion dropdown. This is not the case, however.
This method doesn't even exist.

You might wonder whether you can achieve the same while calling the copy method from a
piece of Java code. Well, I will have to disappoint you. In this case, the call to the copy
method will end up calling the instance method and not the static one. This means you
won't get the benefit of overwriting a subset of the instance fields.

Data Classes

[267]

From within the Java source code, ask IntelliJ to display the parameter information. You
should get the following result:

Calling the copy method from Java

You will have to provide all the parameters when you call this function, and they must be
non-null. Here is how the code will look:

 blogEntry.copy("Properties in Kotlin","Properties are awesome in
Kotlin", blogEntry.getPublishTime(), blogEntry.getApproved(),
blogEntry.getLastUpdated(), blogEntry.getUrl(), blogEntry.getComments(),
blogEntry.getTags(), blogEntry.getEmail());

toString out of the box
When you define a new type, best practices dictate that you should provide an override for
the toString method. This method should return a string describing the instance. Let's
consider the BlogEntry class we defined at the beginning of this chapter. There is quite a
bit of typing you will have to do to implement this method. But why do it when you can get
it out of the box? Let the compiler do it for you. If you add or remove a new field, it will
automatically update the code for you. The likelihood of you leaving out the change to the
toString code body when a field is added/renamed/removed is quite high:

public java.lang.String toString();
 Code:
 0: new #122 // class java/lang/StringBuilder
 3: dup
 4: invokespecial #123 // Method
java/lang/StringBuilder."<init>":()V
 7: ldc #125 // String BlogEntry(title=
 9: invokevirtual #129 // Method
java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringB
uilder;
 12: aload_0
 13: getfield #11 // Field
title:Ljava/lang/String;
 16: invokevirtual #129 // Method
java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringB
uilder;
 108: aload_0
 109: getfield #72 // Field

Data Classes

[268]

email:Ljava/lang/String;
 112: invokevirtual #129 // Method
java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringB
uilder;
 115: ldc #150 // String)
 117: invokevirtual #129 // Method
java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringB
uilder;
 120: invokevirtual #152 // Method
java/lang/StringBuilder.toString:()Ljava/lang/String;
 123: areturn

The code is quite simple to understand. It creates a new instance of
the StringBuilder type, and for each field that is declared, it appends the text
FIELD=VALUE. At the end of the function, it will return the value accumulated.

hashCode and equals methods generated
for you
Every type is derived from Any, which comes with a hashCode method declaration. This is
the equivalent of a Java Object class hashCode method. This method is important when you
want to place your instances in collections, such as a map.

An object's hash code allows algorithms and data structures to place the instances in
buckets. Imagine you implement a phone book. You'll place any name that starts with A in
the A section, any name that starts with B in the B section, and so on. This simple approach
allows you to have faster lookups when searching for someone. This is how hash-based
collections, such as HashMap and HashSet, are implemented.

When implementing the method, you need to adhere to a contract:

When invoked on the same object more than once during the runtime, the1.
hashCode method must consistently return the same value, given the object was
not modified.
If for two objects the equals method returns true, then calling the hashCode2.
method on each of them should return the same integer value.
If two objects are not equal – that means the equals method returns false for the3.
pair-it is not a requirement to have each object hashCode method return distinct
values. However, producing a distinct integer for unequal objects could improve
the performance of hash-based collections.

Data Classes

[269]

The other method you would get out of the box is the equals method. This indicates
whether the other object is structurally equal to the current one.

Of course, IntelliJ can generate the two methods mentioned. Leaving aside the wizard
screen that asks you for the fields selection and which fields are non-null, why not have the
compiler handle all of that for you out of the box. Again, this is the boilerplate code that you
won't have to modify in most scenarios. Because the Kotlin-type system distinguishes
between null and non-null types, we don't need to be prompted with a selection of non-null
fields; the compiler has all of the information required.

Let's generate the methods for the Java class BlogEntryJ. In IntelliJ, choose
Code | Generate and pick the equals() and hashCode() methods. The Java code
generated for you would look something similar to this:

 @Override
 public boolean equals(Object o) {
 if (this == o)
 return true;
 if (o == null || getClass() != o.getClass())
 return false;

 BlogEntryJ that = (BlogEntryJ) o;
 if (!title.equals(that.title))
 return false;
 if (!description.equals(that.description))
 return false;
 if (!publishTime.equals(that.publishTime))
 return false;
 if (approved != null ? !approved.equals(that.approved) :
that.approved != null)
 return false;
 if (!lastUpdated.equals(that.lastUpdated))
 return false;
 if (!url.equals(that.url))
 return false;
 if (comments != null ? !comments.equals(that.comments) :
that.comments != null)
 return false;
 if (tags != null ? !tags.equals(that.tags) : that.tags != null)
 return false;
 return email != null ? email.equals(that.email) : that.email == null;
 }

 @Override
 public int hashCode() {
 int result = title.hashCode();
 result = 31 * result + description.hashCode();

Data Classes

[270]

 result = 31 * result + publishTime.hashCode();
 result = 31 * result + (approved != null ? approved.hashCode() : 0);
 result = 31 * result + lastUpdated.hashCode();
 result = 31 * result + url.hashCode();
 result = 31 * result + (comments != null ? comments.hashCode() : 0);
 result = 31 * result + (tags != null ? tags.hashCode() : 0);
 result = 31 * result + (email != null ? email.hashCode() : 0);
 return result;
 }

This is all good and very handy; however, in Kotlin's case, there are no clicks and no
selection. Most important of all, you don't have to regenerate the two methods every time
you change the type structure by either renaming the field or changing the type, or
adding/removing a field entirely.

For the bytecode hungry reader, here is a trimmed-down version of the code generated. We
will focus at the hashCode method only and will leave it up to you to go and look at equals
in your own time. You will see it does the same code as the Java code earlier. See line 16
where the 31 prime number is going to be multiplied with the hashCode of the title
retrieved at line 8. And then adds the hashCode value for the description field. This
temporarily value is then multiplied by 31 and gets the publishTime hashCode added.
And it goes like this until the email field. If a field is null, it will be left out; see, for
example, line 164 where it jumps at line 173 in case email holds a null value:

public int hashCode();
 Code:
 0: aload_0
 1: getfield #11 // Field title:Ljava/lang/String;
 4: dup
 5: ifnull 14
 8: invokevirtual #156 // Method
java/lang/Object.hashCode:()I
 11: goto 16
 14: pop
 15: iconst_0
 16: bipush 31
 18: imul
 19: aload_0
 20: getfield #27 // Field
description:Ljava/lang/String;
 159: aload_0
 160: getfield #72 // Field
email:Ljava/lang/String;
 163: dup
 164: ifnull 173
 167: invokevirtual #156 // Method

Data Classes

[271]

java/lang/Object.hashCode:()I
 170: goto 175
 173: pop
 174: iconst_0
 175: iadd
 176: ireturn

Destructed declarations
If you create an instance of BlogEntry and then get the autocompletion dialog and
navigate through the available methods, you will notice nine methods; these methods start
with a series of components: component1(), component2(),… component9(). Each of
these methods correspond to each of the fields defined by the type. Their return type will
therefore match their respective field type. Here is the snippet for component6(),
corresponding to the url field:

public final java.net.URI component6();
 Code:
 0: aload_0
 1: getfield #51 // Field url:Ljava/net/URI;
 4: areturn

The Scala developer reading this will most likely think of the Product class and pattern
matching. Kotlin is not as powerful when it comes to pattern matching, but still gives you a
flavor of it.

You might find it quite useful to break the object into a tuple of variables. Given the
preceding instance of blogEntry, we can actually write the following:

 val (title, description, publishTime,approved, lastUpdated, url,
comments, tags, email) = blogEntry

 println("Here are the values for each
 field in the entry:
 title=$title description=$description publishTime=$publishTime
 approved=$approved lastUpdated=$lastUpdated, url=$url
comments=$comments tags=$tags email=$email")

If you run this code, you will get a nice printout of each field value. But how does it work?
Yet again, the bytecode will provide the answer. Here is the code snippet for the first line in
the previous code example:

61: astore 11
63: aload 11

Data Classes

[272]

65: invokevirtual #66 // Method
com/programming/kotlin/chapter09/BlogEntry.component1:()Ljava/lang/St ring;
68: astore_2
69: aload 11
71: invokevirtual #69 // Method
com/programming/kotlin/chapter09/BlogEntry.component2:()Ljava/lang/St ring;
74: astore_3
117: aload 11
119: invokevirtual #93 // Method
com/programming/kotlin/chapter09/BlogEntry.component9:()Ljava/lang/St ring;
122: astore 10
124: aconst_null

All the compiler has done is translate that Kotlin code into calls to the componentN method.
This approach will not work from Java source code; after all, it is nothing more than syntax
sugar. Once again, the compiler does a lot of work for us.

Destructing types
With the data type, you get the destruction out of the box. But, can we achieve the same
thing without a data class? The answer is yes. All you have to do is provide the
componentN methods. The only requirement is to prefix each method definition with the
keyword operator. Let's say we have a class Vector3 that represents the coordinates in a
3D space. For the sake of an argument, we will not make this class a data class:

 class Vector3(val x:Double, val y:Double, val z:Double){
 operator fun component1()=x
 operator fun component2()=y
 operator funcomponent3()=z
 }

 for ((x,y,z) in listOf(Vector3(0.2,0.1,0.5), Vector3(-12.0, 3.145,
5.100))){
 println("Coordinates: x=$x, y=$y, z=$z")
 }

As you can see, for each member field, we created the equivalent componentN method.
Because of this, the compiler can apply the destruction during a for loop construct.

Data Classes

[273]

What if you are dealing with a library for which you don't control the source code, but you
would like to have the option of destructing the type? In this case too, you can provide
componentN through extension methods. Let's say you are working on an Internet of
Things app and you are using a library that gives you readings from your sensors. Here is
the Java-defined class for your Sensor data:

 public class Sensor {
 private final String id;
 private final double value;
 public Sensor(String id, double value) {
 this.id = id;this.value = value;
 }
 public String getId() {
 return id;
 }
 public double getValue() {
 return value;
 }
 }
 ...
 //Kotlin code
 operator fun Sensor.component1()= this.id
 operator fun Sensor.component2()=this.value

 for((sensorId, value) in listOf(Sensor("DS18B20", 29.2),
Sensor("DS18B21", 32.1))){
 println("Sensor $sensorId reading is $value degrees Celsius")
 }

If you run the code, you will get a nice text with the sensor reading. Pretty awesome! The
code is quite easy to understand. The Java type has two fields exposed via the get methods.
Using the Kotlin extension methods, we provide the equivalent componentN methods, thus
allowing the compiler to call them during a for loop block.

Data class definition rules
If any of the methods that were just presented are present in your class already, the
compiler won't overwrite them with its own version. You can, therefore, take full control if
the requirements are as such. When you define a data class, you need to follow the
following rules:

The primary constructor needs to have at least one parameter
All primary constructor parameters need to be marked as val or var

Data Classes

[274]

Data classes cannot be abstract, open, sealed, or inner
Data classes cannot extend other classes (but may implement interfaces)

Many Java frameworks require your class to provide a default parameter less constructor.
Imagine you are writing an e-mail application and you model the Email type like this (is
the way it is for the sake of simplicity):

data class Email(var to:String = "",
 var subject:String= "",
 var content:String= "")

The key to having the empty constructor option is to provide a default value for each
parameter. Once you have this, you'd be able to write Email email = new Email();
from Java.

If you look at the bytecode generated, you will notice three constructors were actually
created:

public com.programming.kotlin.chapter09.Email(java.lang.String,
java.lang.String, java.lang.String);
 Code:
 0: aload_1
 1: ldc #36 // String to
 3: invokestatic #23 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 6: aload_2
 7: ldc #37 // String subject
 9: invokestatic #23 // Method
kotlin/jvm/internal/Intrinsics.checkParameterIsNotNull:(Ljava/lang/Ob
ject;Ljava/lang/String;)V
 18: aload_0
 19: invokespecial #41 // Method
java/lang/Object."<init>":()V
 22: aload_0
 23: aload_1
 24: putfield #11 // Field to:Ljava/lang/String;
 34: putfield #32 // Field
content:Ljava/lang/String;
 37: return
public com.programming.kotlin.chapter09.Email(java.lang.String,
java.lang.String, java.lang.String, int,
kotlin.jvm.internal.DefaultConstructorMarker);
 Code:
 0: aload_0
 1: iload 4
 3: iconst_1

Data Classes

[275]

 4: iand
 5: ifeq 11
 8: ldc #44 // String
 10: astore_1
 11: aload_1
 12: iload 4
 14: iconst_2
 15: iand
 16: ifeq 22
 19: ldc #44 // String
 21: astore_2
 22: aload_2
 34: invokespecial #46 // Method
"<init>":(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V
 37: return
public com.programming.kotlin.chapter09.Email();
 Code:
 0: aload_0
 1: aconst_null
 2: aconst_null
 3: aconst_null
 7: invokespecial #52 // Method
"<init>":(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;ILkot
lin/jvm/internal/DefaultConstructorMarker;)V
 10: return

The logic behind this is similar to the copy method. If you provide a default value, the
empty constructor will store three nulls. Then, the second constructor listed will compare
with the stored nulls, and if it is the case, it will use the default value provided in the
method declaration (see line 19: ldc #44 // String).

The Kotlin standard library comes with two backed-in data classes, namely Pair and Triple:

 public data class Pair<out A, out B>(public val first: A,public val
second: B) : Serializable

Here is how you would use these classes:

 val countriesAndCaptial = listOf(Pair("UK", "London"), Pair("France",
"Paris"), Pair("Australia", "Canberra"))
 for ((country, capital) in countriesAndCaptial) {
 println("The capital of $country is $capital")
 }
 val colours = listOf(Triple("#ff0000", "rgb(255, 0, 0)", "hsl(0, 100%,
50%)"), Triple("#ff4000", "rgb(255, 64, 0)", "hsl(15, 100%, 50%)"))
 for((hex, rgb, hsl) in colours){
 println("hex=$hex; rgb=$rgb;hsl=$hsl")
 }

Data Classes

[276]

While they are present in the library, you should always favor building your own by
providing proper naming for the classes, thus making the code more readable.

Limitations
For now, you cannot inherit another class when defining a data class. To avoid delaying the
1.0 release, the makers of Kotlin have decided to have this restriction to avoid the problems
that would be caused by this. Imagine a data class, Derived, inherits from a data class, Base;
if this happens, then these questions need to be answered:

Should an instance of Base be equal to an instance of Derived if they have the1.
same values for all the shared fields?
What if I copy an instance of Derived through a reference of the type Base?2.

I am sure, in the future, all the limitations will be addressed and we would be able to write
code similar to this (the Scala developer would be familiar with the construct of Either):

 sealed abstract class Either<out L, out R> {
 data class Left<out L, out R>(val value: L) : Either<L, R>()
 data class Right<out L, out R>(val value: R) : Either<L, R>()
 }

Summary
Kotlin is quite powerful, and the data classes are just proving that. You have learned how
the language and the compiler work together to provide you with boilerplate-free
constructs. We get to extend our keyboard's lifetime while focusing more on the problem to
solve. You have also seen how destructing an object in a number of variables can prove to
be quite handy, promoting code that is a lot more readable.

In the next chapter, we will cover the Kotlin extensions to the Java collections library. It
introduces mutable versus immutable state, and why the latter can be useful. It shows the
Kotlin additions, which make using collections easier than Java.

10
Collections

Most of us developers write a lot of code which ends up processing a collection of items,
such as lists, maps, sets. Getting familiar with, and understanding the Kotlin standard
library for collections is key to any aspiring Kotlin developer. If you have been working
with Scala collections, you will find quite a few similarities. However, if your development
background is Java only, you will find a new and improved way of dealing with your
collections of objects, and will probably appreciate how easy it is to achieve a lot with very
little code.

This chapter covers the Kotlin standard library for collections, and you will learn how it
extends the Java collections library to make your daily coding a lot easier. It will present the
two flavors of collections: mutable and immutable. You will learn how this is achieved, and
how it works when interacting with Java code. The chapter will finish with an introduction
to the streaming API.

Class hierarchy
Like Scala, Kotlin distinguishes between mutable and immutable collections. A mutable
collection can be updated in place by adding, removing or replacing an element, and it will
be reflected in its state. On the other side, an immutable collection, while it provides the
same operations-addition, removal, or replacement-via the operator functions will end up
producing a brand-new collection, leaving the initial one untouched. You will see later in
this chapter how immutability is achieved through interface definition; at runtime, the
implementations relies on Java's mutable collections.

Unlike Scala, Kotlin's makers have decided to avoid having two separate namespaces for
each collection mode. You will find all the collections in the kotlin.collections
namespace.

Collections

[278]

In the following figure, you will see the Kotlin collections class diagram. All mutable types
can be easily identified since they carry the prefix Mutable. All of following types are
parameterized. One thing to notice, which is not described by the following diagram, is that
all read-only interfaces are covariant (Array is the only class in the diagram and the
parameter type T is the only invariant). Covariant is a term referring to the ability to change
the generic type argument from a class to one of its parents. This means that you can take a
List<String> and assign it to List<Any> because the Any class is a parent of String. In
Kotlin, you indicate covariant generic type parameters with the out keyword-interface
Iterable<out T>. Covariance has been talked about in a lot more detail in Chapter 8,
Generics. You can always revisit the chapter to refresh your knowledge.

Collections class hierarchy

At the top of the class hierarchy sits the Iterable interface. Its definition is simple, as you
can see in this code snippet:

 public interface Iterable<out T> {
 public abstract operator fun iterator(): Iterator<T>
 }

The Collection interface extends Iterable, and defines methods for determining the
presence of elements in the collection, as well as the collection size and the check for the
zero size container. You can think of this method as the query operators for a given
collection:

 public interface Collection<out E> : Iterable<E> {
 public val size: Int
 public fun isEmpty(): Boolean

Collections

[279]

 public operator fun contains(element: @UnsafeVariance E): Boolean
 override fun iterator(): Iterator<E>
 public fun containsAll(elements: Collection<@UnsafeVariance E>):
Boolean
 }

A sibling of Collection is the MutableIterable interface. All this does is redefine the
parent iterator() method to return a mutable iterator rather than an immutable one:

 public interface MutableIterable<out T> : Iterable<T> {
 override fun iterator(): MutableIterator<T>
 }

From the Collection class derives probably the most used type, List. A list is an ordered
collection of elements. Methods in this interface support read-only access to the collection.
The most noticeable function is get; it allows the retrieval of an element based on its
position index:

 public interface List<out E> : Collection<E> {
 //Query Operations
 override val size: Int
 override fun isEmpty(): Boolean
 override fun contains(element:
 override fun iterator(): Iterator<E>
 override fun containsAll(elements: Collection<@UnsafeVariance E>):
Boolean
 public operator fun get(index: Int): E
 public fun indexOf(element: @UnsafeVariance E): Int
 public fun lastIndexOf(element: @UnsafeVariance E): Int

 //List Iterators
 public fun listIterator(): ListIterator<E>
 public fun listIterator(index: Int): ListIterator<E>
 //View
 public fun subList(fromIndex: Int, toIndex: Int): List<E>
 }

The next interface deriving from Collection is Set. A set is an unordered collection of
elements that does not allow duplicates to be present. Functions in this interface support
read-only access to the set:

 public interface Set<out E> : Collection<E> {
 //Query Operations
 override val size: Int
 override fun isEmpty(): Boolean
 override fun contains(element: @UnsafeVariance E): Boolean
 override fun iterator(): Iterator<E>

Collections

[280]

 //Bulk Operations
 override fun containsAll(elements: Collection<@UnsafeVariance E>):
Boolean
 }

So far, we have seen only the types for read-only/immutable collections. The support for
collections allowing the addition or removal of elements comes via the
MutableCollection interface. The next code snippet presents all the methods defined by
this interface:

 public interface MutableCollection<E> : Collection<E>,
MutableIterable<E> {
 //Query Operations
 override fun iterator(): MutableIterator<E>

 //Modification Operations
 public fun add(element: E): Boolean
 public fun remove(element: E): Boolean

 //Bulk Modification Operations
 public fun addAll(elements: Collection<E>): Boolean
 public fun removeAll(elements: Collection<E>): Boolean
 public fun retainAll(elements: Collection<E>): Boolean
 public fun clear(): Unit
 }

The MutableCollection interface is specialized further by MutableList. This one
extends the the parent methods by adding new ones, allowing the replacement or retrieval
of an item based on its position order:

 public interface MutableList<E> : List<E>, MutableCollection<E> {
 //Modification Operations
 override fun add(element: E): Boolean
 override fun remove(element: E): Boolean

 //Bulk Modification Operations
 override fun addAll(elements: Collection<E>): Boolean
 public fun addAll(index: Int, elements: Collection<E>): Boolean
 override fun removeAll(elements: Collection<E>): Boolean
 override fun retainAll(elements: Collection<E>): Boolean
 override fun clear(): Unit

 //Positional Access Operations
 public operator fun set(index: Int, element: E): E
 public fun add(index: Int, element: E): Unit
 public fun removeAt(index: Int): E

Collections

[281]

 //List Iterators
 override fun listIterator(): MutableListIterator<E>
 override fun listIterator(index: Int): MutableListIterator<E>
 //View
 override fun subList(fromIndex: Int, toIndex: Int): MutableList<E>
 }

Similarly, we have the equivalent of a mutable set via the MutableSet interface:

 public interface MutableSet<E> : Set<E>, MutableCollection<E> {
 //Query Operations
 override fun iterator(): MutableIterator<E>

 //Modification Operations
 override fun add(element: E): Boolean
 override fun remove(element: E): Boolean

 //Bulk Modification Operations
 override fun addAll(elements: Collection<E>): Boolean
 override fun removeAll(elements: Collection<E>): Boolean
 override fun retainAll(elements: Collection<E>): Boolean
 override fun clear(): Unit
 }

You will notice both Map and MutableMap are not inheriting any of the previously
discussed interfaces. You might wonder how can we iterate over them. If you remember, in
Chapter 9, Data Classes, we discussed destructuring a map, and we mentioned the two
extension methods-iterator, component1, and component2. So, we can iterate over a map
thanks to the iterator extension method. A map is a collection that stores pairs of objects,
keys and values, and supports the efficient retrieval of the value corresponding to a given
key. The map keys are unique, and a map can store only one value for each key. Methods
defined in the Map interface provide the contract for a read-only collection:

 public interface Map<K, out V> {
 //Query Operations
 public val size: Int
 public fun isEmpty(): Boolean
 public fun containsKey(key: K): Boolean
 public fun containsValue(value: @UnsafeVariance V): Boolean
 public operator fun get(key: K): V?

 public fun getOrDefault(key: K, defaultValue: @UnsafeVariance V): V
{
 //See default implementation in JDK sources
 return null as V
 }

Collections

[282]

 //Views
 public val keys: Set<K>
 public val values: Collection<V>
 public val entries: Set<Map.Entry<K, V>>
 public interface Entry<out K, out V> {
 public val key: K
 public val value: V
 }
 }

In order to support mutability, the class hierarchy has been enriched with the
MutableMap type. In the following code, you will find its definition, and there you will see
the methods remove, put, putAll, or clear:

 public interface MutableMap<K, V> : Map<K, V> {
 //Modification Operations
 public fun put(key: K, value: V): V?
 public fun remove(key: K): V?
 //Bulk Modification Operations
 public fun putAll(from: Map<out K, V>): Unit
 public fun clear(): Unit

 //Views
 override val keys: MutableSet<K>
 override val values: MutableCollection<V>
 override val entries: MutableSet<MutableMap.MutableEntry<K, V>>
 public interface MutableEntry<K,V>: Map.Entry<K, V> {
 public fun setValue(newValue: V): V
 }
 }

Sitting on its own in the class diagram is the Array class. An array is just a container for
holding a fixed number of values of a given type. Its length is established at creation time
and can't change:

 public class Array<T> : Cloneable {
 public inline constructor(size: Int, init: (Int) ->T)
 public operator fun get(index: Int): T
 public operator fun set(index: Int, value: T): Unit
 public val size: Int
 public operator fun iterator(): Iterator<T>
 public override fun clone(): Array<T>
 }

Collections

[283]

On the bottom-right side of the class hierarchy diagram you can see the iterators group. An
iterator over a collection can be represented as a sequence of elements. Kotlin provides
support for both immutable and mutable iterators. Each collection type will, therefore,
return the corresponding iterator implementation. For example, a List will return an
implementation of Iterator, while MutableList will return an instance of
MutableIterator:

 public interface Iterator<out T> {
 public operator fun next(): T
 public operator fun hasNext(): Boolean
 }

 public interface MutableIterator<out T> : Iterator<T> {
 public fun remove(): Unit
 }

Typically, an Iterator is forward reading only. That means you can't go back to the
previously visited element. To support this functionality, the library contains the
ListIterator, thus the caller can go back and forth over the underlying collection. This
too comes in two flavors: immutable and mutable. The mutable version allows the addition,
removal, or replacement of items as you go over the underlying collection:

 public interface ListIterator<out T> : Iterator<T> {
 //Query Operations
 override fun next(): T
 override fun hasNext(): Boolean
 public fun hasPrevious(): Boolean
 public fun previous(): T
 public fun nextIndex(): Int
 public fun previousIndex(): Int
 }

 public interface MutableListIterator<T> : ListIterator<T>,
MutableIterator<T> {
 //Query Operations
 override fun next(): T
 override fun hasNext(): Boolean

 //Modification Operations
 override fun remove(): Unit
 public fun set(element: T): Unit
 public fun add(element: T): Unit
 }

Collections

[284]

The remaining group of interfaces are related to sequences (see the top right side of the
diagram). A sequence returns values through an iterator. All the sequence values are
evaluated lazily, and it could happen for such a sequence to never end thus being infinite.
Most of the sequences can be iterated multiple times, but there are some implementations
that constrain you to one iteration only; a flattening sequence is one of those exceptions. The
Sequence interface contains only one method:

 public interface Sequence<out T> {
 public operator fun iterator(): Iterator<T>
 }

All the collections presented earlier can be translated to a sequence via the asSequence
extension methods; iterables and arrays provide their own implementation as you will see
later.

One important thing to understand is that Kotlin does not provide its own implementation
for its collection types, but rather taps into the existing Java collections. If you were to
search the Kotlin source code for an implementation of the List interface, for example, you
would be wasting your time. There isn't any. The magic happens at compile time. Kotlin
deals with some of the Java collection classes in a special way: it maps the Java type to a
Kotlin type. This mapping is not extended into the runtime. The Java types remain
unchanged at runtime. The following is a table detailing the mapping between the Java
collection types and their Kotlin equivalent immutable and mutable types:

Java Type Kotlin Immutable Type Kotlin Mutable Type Platform Type

Iterator<T> Iterator<T> MutableIterator<T> (Mutable)Iterator<T>!

Iterable<T> Iterable<T> MutableIterable<T> (Mutable)Iterable<T>!

Collection<T> Collection<T> MutableCollection<T> (Mutable)Collection<T>!

Set<T> Set<T> MutableSet<T> (Mutable) Set<T>!

List<T> List<T> MutableList<T> (Mutable) List<T>!

ListIterator<T> ListIterator<T> MutableListIterator<T> (Mutable) ListIterator<T>!

Map<K, V> Map<K, V> MutableMap<K, V> (Mutable) Map<K, V>!

Kotlin is a null safe language by design. Because of Java interoperability, the Kotlin team
had to relax the type system a little bit. Therefore, the term of platform type was introduced.
A platform type is nothing but a type coming from the underlying JVM platform, and it will
get special treatment:

The Kotlin compiler will not enforce null safety for them; therefore, you can end
up with a NullPointerExcepiont for variables coming from Java.

Collections

[285]

You cannot name platform types in your Kotlin code, but you will see IntelliJ
displaying them with an exclamation mark at the end: String!,
ArrayList<Int!>!, and so on.
When storing a platform type, you would have to pick a Kotlin type. The
compiler will do that for you, but you can fine tune it. Say you have the following
Java code: String getName().You can write the following in Kotlin: val
name=getName (the IDE will display String! as the type) or val
name:String?= getName() or val name:String = getName().
Like the previous point, when you override a method defined in Java, you would
need to provide a Kotlin type. Let's say we have a method in Java defined as
void addFlag(String flag). If you were to override this method in Kotlin,
you would need to pick one of the two options: override fun
addFlag(flag:String):Unit or override fun addFlag(flag:String?).

This type mapping happening at compile type allows for the following code to compile and
run:

 fun <T> itWorks(list: List<T>): Unit {
 println("Java Class Type:${list.javaClass.canonicalName}")
 }

 val jlist = ArrayList<String>()
 jlist.add("sample")
 itWorks(jlist)
 itWorks(Collections.singletonList(1))

The code is declaring a method taking a Kotlin list parameter, and then it calls it twice,
providing two different parameters: java.util.ArrayList and
java.util.Collections.SingletonList. In the first case, the compiler has interpreted
the type as List<String>. If you hover the mouse over the singletonList, you will see
the hint as to the platform type, (Mutable)List<Int!>!.

Arrays
We have already addressed what an array is in the previous section: Class Hierarchy. Now
it is time to have a look at how you work with arrays in a bit more detail.

Declaring and initializing arrays can be done like this:

 val intArray = arrayOf(1, 2, 3, 4)
 println("Int array:${intArray.joinToString(",")}")
 println("Element at index 1 is:${intArray[1]}")

Collections

[286]

 val stringArray = kotlin.arrayOfNulls<String>(3)
 stringArray[0] = "a"
 stringArray[1] = "b"
 stringArray[2] = "c"
 //stringArrays[3]="d" --throws index out of bounds exception
 println("String array:${stringArray.joinToString(",")}")

 val studentArray = Array<Student>(2) { index ->
 when (index) {
 0 -> Student(1, "Alexandra", "Brook")
 1 -> Student(2, "James", "Smith")
 else ->throw IllegalArgumentException("Too many")
 }
 }
 println("Student array:${studentArray.joinToString(",")}")
 println("Student at index 0:${studentArray[0]}")

 val longArray = emptyArray<Long>()
 println("Long array:${longArray.joinToString(",")}")

Here you can see four ways of initializing your array collection. The first approach is to
make use of the arrayOf method to initialize an array of integers. The second method is to
use the arrayOfNulls to return an array of a given size where each element is set to null.
To retrieve an item of your array, you make use of the get operators: see
studentArray[0] as an example. The third initialization option makes use of the Array
class constructor; it provides the array size and the lambda function, allowing you to
construct each element. The last example shows how you can create an empty array in a
Kotlin-idiomatic way.

Arrays on the JVM get quite a special treatment, so a Kotlin array should end up being
translated to similar bytecode, otherwise the interoperability is broken. Looking at the
bytecode generated will provide us with the answers:

Compiled from "ArraysCollection.kt"
public final class com.programming.kotlin.chapter10.ArraysCollectionKt {
 public static final void arrays();
 Code:
 0: iconst_4
 1: anewarray #8 // class java/lang/Integer
 4: dup
 5: iconst_0
 6: iconst_1
 7: invokestatic #12 // Method
java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
 10: aastore
 35: checkcast #14 // class "[Ljava/lang/Object;"

Collections

[287]

 38: checkcast #16 // class "[Ljava/lang/Integer;"
 41: astore_0

The key lies with the anewarray instruction. The bytecode instruction definition reads:
anewarray <type>, where <type> is either the name of a class or interface, for example,
java/lang/String. The byte code routine allocates a new array for holding object
references. It pops an int off the stack representing the array size. Using this, it constructs
the new array to hold references for the type indicated by <type>:

anewarray #8 // class
com/programming/kotlin/chapter10/Student

The reference to the new array is pushed onto the stack via the astore_0 bytecode-level
instruction. The rather strange thing is that you can't see any trace of the actual class Array
and its constructor! You might rightfully ask yourself what is going on? More on this in a
moment.

The Kotlin standard library provides out-of-the-box support for primitive arrays:
intArrayOf, longArrayOf, charArrayOf, doubleArrayOf, and so on. For each one, you
will get an instance of their equivalent Kotlin class: IntArray, LongArray, CharArray,
DoubleArray, and so on. The important and interesting part is that none of these classes
derive from or are related to the Array type presented earlier. Let's look at an example of
constructing a primitive array of integers:

 val ints = intArrayOf(1,2,3, 4, 5, 6, 7, 8, 9, 10)
 println("Built in int array:${ints.joinToString(",")}")

This time, the type will be IntArray as opposed to Array<Int>, as defined previously.
Looking at the bytecode generated, we will see it has changed compared to the previous
example:

0: iconst_3
1: newarray int
3: dup
4: iconst_0
5: bipush 100
7: iastore
20: astore_0

The bytecode routine used for creating an array has changed. This time, the newarray
instruction is used. Unlike anewarray, this one is used to allocate single-dimension arrays
of primitive types: booleans, chars, floats, doubles, bytes, shorts, ints, or longs. This is an
optimization at the JVM level to avoid boxing and unboxing operations, and it has been
done in order to improve performance.

Collections

[288]

With this in place, you should make sure you always use ***ArrayOf when dealing with
primitive types instead of arrayOf. If you don't, your program will pay a performance cost
associated with boxing/unboxing operations.

The reason we don't see any trace of our Kotlin Array class in the generated bytecode is
because they are an alias for the Java type. This type mapping happens only at compile
time. For performance reasons, they compile straight to Java arrays. Please keep in mind
that a Java int[] maps to IntArray (this is valid for the other primitive types mentioned),
and String[] or T[] are mapped to Array<out String/T>.

The compiler gives arrays special treatment. When compiling to JVM bytecodes, it will
optimize the bytecode generated to avoid any overhead:

 val countries = arrayOf("UK", "Germany", "Italy")
 for (country in countries) {
 print("$country;")
 }

You would probably expect the for construct to make use of the iterator to move one by
one over the array. However, this is not the case; no iterator is used:

 val numbers = intArrayOf(10, 20, 30)
 for (i in numbers.indices) {
 numbers[i] *= 10
 }

The same principle is being applied while iterating with an index over the array.
Additionally, retrieving and setting the value is not making use of the actual get and set
methods available on the array. Once again, this was done to improve performance.

Another optimization the compiler employs happens when you have an if block like the
following:

 val index=Random().nextInt(10)
 if (index in numbers.indices) {
 numbers[index]=index
 }

In this case, the if statement behaves as if you had written it like this:

 if (index >=0 && index < numbers.size) {}

Collections

[289]

The power of the standard library comes through the richness of the API allowing us to
manipulate an array. In the Kotlin standard library under kotlin.collections there is a
class named ArraysKt. Within this, you will find a lot of helper functions (extension
methods), covering Array<T> and the primitive types arrays IntArray, FloatArray,
ByteArray, and so on. We will not go through each and every one, but will cover some of
them. You should go and study the rest of the methods on your own:

 println("First element in the IntArray:${ints.first()}")
 println("Last element in the IntArray:${ints.last()}")
 println("Take first 3 elements of the
IntArray:${ints.take(3).joinToString(",")}")
 println("Take last 3 elements of the
IntArray:${ints.takeLast(3).joinToString(",")}")
 println("Take elements smaller than 5 of the IntArray:${
 ints.takeWhile {
 it <5
 }
 .joinToString(",")
 }")
 println("Take every 3rd element in IntArray: ${ints.filterIndexed {
 index, element -> index % 3 == 0
 }
 .joinToString(",")}")

Let's go through each of the previously mentioned examples individually. The first() is
an extension method that does what it says on the tin. It returns the first element in the
collection. This is almost as if you were writing ints[0]. The reason I say almost is
because, in the case of an empty array, you will get a NoSuchElementException as
opposed to IndexOutOfBoundsException. Run the preceding code and you should see
the output containing the number 1.

The next example uses the method last() to retrieve, you guessed it (good method
naming is always important), the last element in the collection. This is a fast operation, since
it takes the array length, subtracts 1, and then uses the get operator to retrieve the element.

The take(n) extension method returns to the caller the first N elements of the target
collection. It applies to all operations that are returning a subset of the initial collection, but
the interesting part is that the return type is not an IntArray, but rather a List<Int>. You
can see in the following code snippet that the actual implementation relies on a Java
ArrayList implementation:

 public fun IntArray.take(n: Int): List<Int> {
 require(n >= 0) { "Requested element count $n is less than zero." }
 if (n == 0) return emptyList()
 if (n >= size) return toList()

Collections

[290]

 if (n == 1) return listOf(this[0])
 var count = 0
 val list = ArrayList<Int>(n)
 for (item in this) {
 if (count++ == n)
 break;
 list.add(item)
 }
 return list
 }

The next line of code does something similar: it takes three elements from the array, not
from the beginning, but from the end of the collection. Executing the code will end up
printing the number 8, 9, and 10 on the console.

There are scenarios where you might want to return elements from an array when they
fulfill a criteria/predicate. In the sample code provided earlier, the predicate is a function
that checks whether the element is smaller than five. The output for this line of code will
contain the numbers one to four.

Returning every nth element (every third element, in the example provided) couldn't have
been easier, since we can use the filterIndexed extension method. This method takes a
lambda function with two parameters, one being the current position in the array and the
second the actual element. The output for the code will print the numbers 1, 4, 7, and 10 to
the console.

My favorite extension methods are map and flatMap. These sound very familiar to any
Scala developer reading this book, but remember that Kotlin is not a functional language,
and, therefore, the notion of monads is not applicable. I am not going to expand on the
concept of monads since it goes beyond the purpose of this book into the realm of
functional programming. Instead, I will encourage you to go and read about the topic, even
if you are not even considering making the transition to a functional language.

The map function allows you to translate the underlying element type to a different one, if
you have such requirements. The simplest example is to translate the IntArray to a
collection of strings:

 val strings = ints.map { element ->"Item " + element.toString() }
 println("Transform each element IntArray into a
string:${strings.joinToString(",")}")

Collections

[291]

If you execute this code, you should see the following output: Transform each...: Item
1, Item 2, Item 3,..., Item 10. Let's see how this is implemented. The following
snippet contains the actual standard library code:

 public inline fun <R> IntArray.map(transform: (Int) ->R): List<R> {
 return mapTo(ArrayList<R>(size), transform)
 }

 public inline fun <R, C : MutableCollection<in R>>
IntArray.mapTo(destination: C, transform: (Int) ->R): C {
 for (item in this)
 destination.add(transform(item))
 return destination
 }

The same map extension method is defined for LongArrays, DoubleArrays, ByteArray,
and so on, as well as the Array<T> class. This way, you can work with the API collections
in a uniform manner despite the lack of any type relation. All the map method does is
forward the call to another extension method, mapTo, while passing a Java ArrayList as
the first argument and your lambda expression as the second argument. The mapTo method
iterates through the target collection and applies the transformation method to each
element. The result of each transformation is then added to the destination collection, in this
case, a Java ArrayList.

You might still wonder how the mapTo works when providing a Java ArrayList. After all,
the extension method requires the target collection to inherit from MutableCollection.
As discussed earlier, there is no magic to this. During compilation, the Java collection type
is aliased to a Kotlin collection. In this case, the compiler will treat the ArrayList reference
as a Kotlin MutableCollection instance. At runtime, therefore, you are still dealing with
the Java collection.

The extension method flatMap returns a merged list of all the collections returned by your
transformation lambda. In this case, it is expected that your lambda function return type is
an Iterable<T>. In other words, flatMap flattens the sequence of Iterable instances.
Here is an example where for each element of the array we will create three replicas:

 val charArray = charArrayOf('a', 'b', 'c')
 val tripleCharArray = charArray.flatMap { c ->charArrayOf(c, c,
c).asIterable() }
 println("Triple each element in the
charArray:${tripleCharArray.joinToString(",")}}")

Collections

[292]

The result is a list (yes, we change the container type) with the following character items:
a,a,a,b,b,b,c,c,c. The implementation is very similar to the map method presented
earlier; this is the source code taken from the Kotlin standard library:

 public inline fun <R> CharArray.flatMap(transform: (Char) ->
Iterable<R>): List<R> {
 return flatMapTo(ArrayList<R>(), transform)
 }

 public inline fun <R, C : MutableCollection<in R>>
CharArray.flatMapTo(destination: C, transform: (Char) -> Iterable<R>): C {
 for (element in this) {
 val list = transform(element)
 destination.addAll(list)
 }
 return destination
 }

The code iterates through the target array of chars invoking the transform() method. All
the items returned from it are added to the destination collection. You might have
noticed already, but the destination needs to derive from MutableCollection since it
needs to append elements.

The standard library API provides quite a few methods that allow you to convert an array
to a different collection type. These methods are extension methods covering all the array
type classes. Here are a few examples of how you would convert your array collection to a
different collection:

 val longs = longArrayOf(1, 2, 1, 2, 3, 4, 5)
 val hashSet: HashSet<Long> = longs.toHashSet()
 println("Java HashSet:${hashSet.joinToString(",")}")
 val sortedSet: SortedSet<Long> = longs.toSortedSet()
 println("Sorted
Set[${sortedSet.javaClass.canonicalName}]:${sortedSet.joinToString (",")}")
 val set: Set<Long> = longs.toSet()
 println("Set[${set.javaClass.canonicalName}]:${set.joinToString(",
")}")
 val mutableSet = longs.toMutableSet()
 mutableSet.add(10)
 println("MutableSet[${mutableSet.javaClass.canonicalName}]:${
mutableSet.joinToString(",")}")
 val list: List<Long> = longs.toList()
 println("List[${list.javaClass.canonicalName}]:${list.joinToString
(",")}")
 val mutableList: MutableList<Long> = longs.toMutableList()
 println("MutableList[${mutableList.javaClass.canonicalName}]:${
mutableList.joinToString}")

Collections

[293]

I don't usually use the in place variable type (that is, val set: Set<Long>), but if you are
a novice to Kotlin then I would recommend you to do it at the beginning. The code defines
a simple array of longs and converts it to different sets (a few variations of a set and list).
For each variable, apart from the Java HashSet, the actual collection type name is written to
the console. Here is what the code earlier ends up printing:

 Java HashSet:1,2,3,4,5
 Sorted Set[java.util.TreeSet]:1,2,3,4,5
 Set[java.util.LinkedHashSet]:1,2,3,4,5
 MutableSet[java.util.LinkedHashSet]:1,2,3,4,5,10
 List[java.util.ArrayList]:1,2,1,2,3,4,5
 MutableList[java.util.ArrayList]:1,2,1,2,3,4,5

Although you are dealing with Kotlin immutable types, the Java collection used under the
bonnet is mutable. So once again, the immutability in Kotlin is achieved via the interface
definition.

What do you think will happen if I cast my list to a Java ArrayList and then I add an
element? For example:

 val hackedList = (list as ArrayList<Long>)
 hackedList.add(100)
 println("List[${list.javaClass.canonicalName}]:${list.joinToString
(",")}")

It is not a trick question; the code earlier compiles and runs fine; after all, we are in the
JVM world. So, once we have our hands on the ArrayList instance, we can change its
elements, and this will be reflected automatically by our Kotlin list instance. Now why is
this dangerous? Look at the next Java method:

 public static void dangerous(Collection<Long> l) {
 l.add(1000L);
 }

Say you have such a library method, which you call from your Kotlin code
Arrays.dangerous(list). Because of the compile time type aliasing (we touched upon
this subject at the beginning of the chapter), no compiler error is raised. The problem is that
you are dealing with an immutable collection in your Kotlin code; however, once it has
been handed over to the Java code, that immutability is broken. Therefore, if you want to
preserve your collection state, you will have to provide a copy of your collection. For that,
use the .toList extension.

Collections

[294]

Dealing with collections is quite easy, thanks to the rich API provided by the standard
library. However, you will need to pay a bit more attention at the beginning before you get
familiar with it. For example, for the mutableSet, the code complete dialog will list you
two methods: plus and plusAssign. If you call any of the plus methods, the
source mutable set will actually remain unchanged. The return value is a new collection,
this time of the type Set<Long>, which is immutable. This is a little bit counterintuitive.
You can argue that plus for a mutable collection should reflect the change, but this is not
the case. To apply the change to the source collection, you have to use the plusAssign; this
time, the return type is Unit. The reason these plus methods behave like this is because the
extension method is defined for the Set type, which is immutable.

One last thing on arrays and we can move over to the next collection type. Do you
remember that Kotlin supports object destruction (you need to provide an iterator method
alongside componentN methods)? This still holds true for arrays. We saw at the start of the
chapter that the Array class defines an iterator method. The componentN methods are
provided as extension methods:

 public inline operator fun IntArray.component1(): Int {
 return get(0)
 }

For each array type (IntArray, CharArray, ..., Array<T>), you will find these methods.
The Kotlin team has decided to provide component1 to component5. This means that you
can deconstruct only the first five elements. There is always the option for you to write one
or more extra componentN, thus allowing a greater number of elements to be retrieved via
deconstruction:

 val integers = intArrayOf(1, 2, 3, 4, 5, 6)
 val (i1, i2, i3, i4, i5) = integers
 println("i1:$i1; i2:$i2;..;i5=$i5")

Executing this code will print you the first five elements of the integers array. What would
happen, though, if you deconstruct and your array length does not match the number of
elements used in the deconstruction? For example:

 val integers = intArrayOf(1, 2, 3)
 val (i1, i2, i3, i4, i5) = integers

In this case, you will end up with a java.lang.ArrayIndexOutOfBoundsException
being thrown. Therefore, always make sure you check the array length before you
deconstruct it.

Collections

[295]

Lists
Lists are ordered collections. With a list, you can insert an element at a very specific
location, as well as retrieve elements by the position in the collection. Kotlin provides a
couple of pre-built methods for constructing immutable and mutable lists. Remember,
immutability is achieved via interface. Here is how you would create lists in idiomatic
Kotlin:

 val intList: List<Int> = listOf
 println("Int
list[${intList.javaClass.canonicalName}]:${intList.joinToString(", ")}")

 val emptyList: List<String> = emptyList<String>()
 println("Empty
list[${emptyList.javaClass.canonicalName}]:${emptyList.joinToStrin
g(",")}")

 val nonNulls: List<String> = listOfNotNull<String>(null, "a", "b",
"c")
 println("Non-Null string
lists[${nonNulls.javaClass.canonicalName}]:${nonNulls.joinToString (",")}")

 val doubleList: ArrayList<Double> = arrayListOf(84.88, 100.25, 999.99)
 println("Double list:${doubleList.joinToString(",")}")

 val cartoonsList: MutableList<String> = mutableListOf("Tom&Jerry",
"Dexter's Laboratory", "Johnny Bravo", "Cow&Chicken")
 println("Cartoons list[${cartoonsList.javaClass.canonicalName}]:
${cartoonsList.joinToString(",")}")

 cartoonsList.addAll(arrayOf("Ed, Edd n Eddy","Courage the Cowardly
Dog"))
 println("Cartoons list[${cartoonsList.javaClass.canonicalName}]:
${cartoonsList.joinToString(",")}")

The first three lists (intList, emptyList, and nonNulls) are read-only instances, whereas
the last two are mutable. Apart from the ListOf array, all the other ones return a Kotlin
type. For all the Kotlin types, the code prints out the name of the actual class used at
runtime. The output for the preceding code is this:

 Int list[java.util.Arrays.ArrayList]:20,29,40,10
 Empty list[kotlin.collections.EmptyList]:
 Non-Null string lists[java.util.ArrayList]:a,b,c
 Double list:84.88,100.25,999.99
 Cartoons list[java.util.ArrayList]: Tom&Jerry,Dexter's
Laboratory,Johnny Bravo,Cow&Chicken

Collections

[296]

 Cartoons list[java.util.ArrayList]: Tom&Jerry,Dexter's
Laboratory,Johnny Bravo,Cow&Chicken,Ed, Edd n Eddy,Courage the Cowardly
Dog

It might come as a surprise to you that, despite working with immutable types, the actual
implementation is using a mutable collection: ArrayList. Even more interesting is that
listOf actually returns Arrays.ArrayList. This class is different to
java.util.ArrayList. The former, although it derives from the Collection class, can't
be changed by adding/removing items. Both the add and remove methods end up throwing
a UnsupportedOperationException. However, it is not a truly immutable collection
because you can still replace an item at a specific position within your collection. So the
Kotlin type system achieves immutability through interface definition, but nothing is
stopping you from doing the following:

 (intList as AbstractList<Int>).set(0, 999999)
 println("Int
list[${intList.javaClass.canonicalName}]:${intList.joinToString(", ")}")

 (nonNulls as java.util.ArrayList).addAll(arrayOf("x", "y"))
 println("countries
list[${nonNulls.javaClass.canonicalName}]:${nonNulls.joinToString(",")}")

 val hacked: List<Int>= listOfNotNull(0,1)
 CollectionsJ.dangerousCall(hacked)
 println("Hacked
list[${hacked.javaClass.canonicalName}]:${hacked.joinToString(",") }")

 //Java code
 public class CollectionsJ {

 public static void dangerousCall(Collection<Integer> l) {
 l.add(1000);
 }
 }

In the first example, the collection is converted to the Arrays.ArrayList parent class:
AbstractList; you can't cast to the Arrays.ArrayList since that class is marked private
in the JDK. Once we have changed the type, we can use the set method and simply replace
the first integer with a new one: 999999. In the second example, the variable is casted to the
the Java ArrayList and then uses the methods exposed to modify the collection. The last
example is the typical unforeseen problem. Working within the context of JVM, you are
bound to use third-party libraries. If you hand over your immutable Kotlin collection
reference to it, the immutability guarantee can't hold anymore. If your requirements are
such that you must not change your collection, you should pass a snapshot. Therefore, just
use hacked.toList and this problem goes away.

Collections

[297]

You have seen how to construct lists (remember you can also convert other collections to
lists via the .toList method), but now let's have a look at a few simple examples to
showcase some of the extension methods provided in the library:

 data class Planet(val name: String, val distance: Long)

 val planets = listOf(Planet("Mercury", 57910000), Planet("Venus",
108200000), Planet("Earth", 149600000), Planet("Mars", 227940000),
Planet("Jupiter", 778330000), Planet("Saturn", 1424600000),
Planet("Uranus", 2873550000), Planet("Neptune", 4501000000),
Planet("Pluto", 5945900000))

 println(planets.last()) //Pluto
 println(planets.first()) //Mercury
 println(planets.get(4)) //Jupiter
 println(planets.isEmpty()) //false
 println(planets.isNotEmpty()) //true

 println(planets.asReversed()) //"Pluto", "Neptune"
 println(planets.elementAtOrNull(10)) //Null

This code snippet defines the list of planets in our solar system and their distance from the
sun. Using this list as a target, you can see the basic methods in action. I will not go through
each one individually since their name provides more than enough description of what they
do.

Let's move on to slightly more complex operations on a list. Say you want to join one
collection with another one. The library provides support for such functionality via the
.zip method. In the following example, the planets list is joined to the array containing
each planet's diameter:

 planets.zip(arrayOf(4800, 12100, 12750, 6800, 142800, 120660, 51800,
49500, 3300))
 .forEach {
 val (planet, diameter) = it
 println("${planet.name}'s diameter is $diameter km")
 }

Run the code and it will print each planet's diameter. I bet you are asking yourself, what
happens if the two collections are of a different size? Let's say we omitted the diameter for
Pluto. In this case, the join operation will drop the planet Pluto.

Collections

[298]

The collection library has been inspired quite a bit by the Scala collection library, I would
say. It comes with support for foldLeft and foldRight, methods that should be quite
familiar to any Scala developer reading this. These methods are accumulators; they take an
initial value and iterate (from left to right or from right to left) the target collection, and then
execute the lambda function for each element, returning the new revised accumulator value.
Say we want to list the planets from the furthest to the closest to the sun. Here is one way to
achieve this via foldRight:

 val reversePlanetName = planets.foldRight(StringBuilder()) {
 planet, builder -> builder.append(planet.name)
 builder.append(";")
 }
 println(reversePlanetName) //Pluto, Neptune..Earth;Venus;Mercury

To showcase the foldLeft, let's move to a different domain problem. Say you have an
electronic cart and you want to calculate the price of all the items in a shopping cart. For
that, foldLeft could provide you with the means to calculate the total price:

 data class ShoppingItem(val id: String, val name: String, val price:
BigDecimal, val quantity: Int)

 val amount = listOf(ShoppingItem("1", "Intel i7-950 Quad-Core
Processor", BigDecimal("319.76"), 1), ShoppingItem("2", "Samsung 750 EVO
250 GB 2.5 inch SDD", BigDecimal("71.21"), 1))
 .foldRight(BigDecimal.ZERO) {
 item, total -> total + BigDecimal(item.quantity) * item.price
 }
 println(amount) //390.97

All the list types are getting the support for the map and flatMap extension methods. They
are the most expressive functions in the whole of the standard library API when it comes to
manipulating a collection:

 planets.map { it.distance } //List(57910000, ...,5945900000)

 val list = listOf(listOf(10, 20), listOf(14, 18), emptyList())
 val increment = { x: Int -> x + 1 }
 list.flatMap { it.map(increment) } //11,21,15,10

The first line in the example extracts another collection (a List<Long> to be precise) from
the planets collection. This new collection contains the distance from the sun for each of the
planets in our solar system. Pretty easy!

Collections

[299]

The second part of the example is a bit more evolved. It starts with a list of integers and
then it defines a lambda function to increase an integer parameter by one. The last line of
code applies the lambda to each element of each of the three lists and then flattens the
resulting collection. The list of lists of integers becomes a list of integers.

Object deconstruction applies to lists as well. As with arrays, you get out-of-the-box support
for deconstructing the first five elements of a list. The code is similar to the one used for
arrays:

 val chars = listOf('a', 'd', 'c', 'd', 'a')
 val (c1,c2,c3,c4,c5) = chars
 println("$c1$c2$c3$c4$c5")//adcda

I will conclude this section on lists by showing how you can convert a list to a different
collection type:

 val array: Array<Char> = chars.toTypedArray()
 val arrayBetter: CharArray = chars.toCharArray()
 val set: Set<Char> = chars.toSet() //[a,d,c]
 val charsMutable: MutableList<Char> = chars.toMutableList()

The sample provides two options for converting a list to an array. In the arrays section, you
learned about the difference between Array<T> and IntArray, DoubleArray, and so on,
and why it is better to use the primitive types implementation. The same logic applies for
this conversion as well. Therefore, it is better to use the to***Array when dealing with
primitive types.

Maps
A map collection, as the name implies, allows you to associated an object (key) to another
object (value). A map dictates that your collection can't contain duplicate keys, and each key
is mapped to at most one value. The interesting part about a map is that its interface
provides three collection views: the set of keys, the collection of all the values, and the set of
key-value mappings.

When using a map, you need to pay attention to the keys you are using. When adding an
item to the map, first thing it does is to locate which bucket it should go into. To do so, it
will use the hashCode method, and after that, depending on the implementation, it will use
the equals method. Therefore, your keys need to be immutable, otherwise the behavior of
the map can't be specified.

Collections

[300]

We know already that Kotlin provides support for immutable and mutable maps at the
interface level. This is reflected in the collection API since there are specific methods for
each flavor of map:

 data class Customer(val firstName: String, val lastName: String, val
id: Int)

 val carsMap: Map<String, String> = mapOf("a" to "aston martin", "b" to
"bmw", "m" to "mercedes", "f" to "ferrari")
 println("cars[${carsMap.javaClass.canonicalName}:$carsMap]")
 println("car maker starting with 'f':${carsMap.get("f")}") //Ferrari
 println("car maker starting with 'X':${carsMap.get("X")}") //null

 val states: MutableMap<String, String>= mutableMapOf("AL" to
"Alabama", "AK" to "Alaska", "AZ" to "Arizona")
 states += ("CA" to "California")
 println("States [${states.javaClass.canonicalName}:$states")
 println("States keys:${states.keys}")//AL, AK, AZ,CA
 println("States values:${states.values}")//Alabama, Alaska, Arizona,
California

 val customers: java.util.HashMap<Int, Customer> = hashMapOf(1 to
Customer("Dina", "Kreps", 1), 2 to Customer("Andy", "Smith", 2))

 val linkedHashMap: java.util.LinkedHashMap<String, String> =
linkedMapOf("red" to "#FF0000","azure" to "#F0FFFF","white" to "#FFFFFF")

 val sortedMap: java.util.SortedMap<Int, String> = sortedMapOf(4 to
"d", 1 to "a", 3 to "c", 2 to "b")
 println("Sorted
map[${sortedMap.javaClass.canonicalName}]:${sortedMap}")

First two constructs return you a Kotlin type, whereas the last three are returning Java util
map implementations. If you run the code, you will get the output for the Kotlin map types
and the Java class used as the implementation. In both scenarios, that class is
LinkedHashMap. I am sure most of you reading the lines know the difference between the
three types of map, but revisiting their definitions won't hurt anyone:

HashMap A table-based implementation for the map interface. While it allows
nulls as either key or values the class makes no guarantees on the items' order or
the fact it will remain constant over time. This implementation has constant-time
cost for the get and put methods, assuming the hash function distributes the
elements properly among the buckets. The class retains a load factor as a measure
of how full the map can be before its capacity is increased. When the number of
entries in the hash table exceeds the product of the load factor and the current
capacity, the map table is rehashed (that is, internal data structures are rebuilt) so

Collections

[301]

that the hash table has approximately twice the number of buckets.
LinkedHashMap: A combination of HashMap and linked-list implementation for
the map interface, with a predictable iteration order. This implementation differs
from HashMap in that it maintains a doubly-linked list running through all of its
entries. This linked list defines the iteration ordering, which is normally the order
in which the keys were inserted into the map. The insertion order is not changed
when a key is re-inserted into the map.
TreeMap: A map implementation based on a red-black tree implementation. The
map is sorted based on the default ordering of its keys, or by a comparator
provided at the map's creation time, depending on which constructor is used.
This implementation provides a guaranteed log(n) time cost for the
containsKey, get, put, and remove operations. A red-black tree is a special
case of a binary search tree, where each node has one color (red or black)
associated with it (in addition to its key and left and right children). The tree
structure is governed by the following rules: the root node is black; the
descendants of a red node are black; each leaf node is black, the number of black
nodes on the path from the root to the null child are the same.

Since this book does not focus on data structures, I think this is enough information on
these map implementations. You can always go and do a bit more research to familiarize
yourself with (or refresh your knowledge on) these implementations and the pros and cons
of using one over the other.

We already mentioned, for lists, that once you pass your reference to a Java library,
immutability is off the table. The same applies to any of the Kotlin map types. In the
following code, you can see a simple example of a Java function taking a map of string to
string. All it does is add a new entry (it can very easily remove one or clear the entire map).
When calling the code from Kotlin, you will see the IDE showing you the platform type
(Mutable)Map<String!,String!>, so always check what the calling code does:

 public static void dangerousCallMap(Map<String,String> map){
 map.put("newKey!", "newValue!");
 }

 CollectionsJ.dangerousCallMap(carsMap)
 println("Cars:$carsMap") //Cars:a=aston martin, b=bmw, m=mercedes,
f=ferrari, newKey!=newValue!

If you want to avoid changing your map collection, then you need to take a snapshot of
your map and hand it over to the Java method. While it is not the nicest code, it does the
job: carsMap.toList().toMap().

Collections

[302]

Now let's look at some of the extension methods available for the map type:

 customers.mapKeys { it.toString() } // "1" =
Customer("Dina","Kreps",1),
 customers.map { it.key * 10 to it.value.id } // 10= 1, 20 =2
 customers.mapValues { it.value.lastName } // 1=Kreps, 2="Smith
 customers.flatMap { (it.value.firstName + it.value.lastName).toSet()
}.toSet() //D, i, n, a, K, r, e, p, s, A, d, y, S, m, t, h]
 linkedHashMap.filterKeys { it.contains("r") } //red=#FF0000,
 states.filterNot { it.value.startsWith("C") } //AL=Alabama, AK=Alaska,
AZ=Arizona

The first example allows you to change the key type. While the it points to the entire
Map.Entry instance, this method won't change the values type. If your lambda function
ends up returning the same value more than once, you will lose elements; only the last
value is kept. Imagine if we returned a constant value from the function; then the resulting
map will have one item. The second example allows the caller to change both the keys and
the values type. The third example unlike the first example, you can return the same value
without affecting the collection size. You will just end up with a values collection where
some elements appear more than once. Remember, any flatMap function in the standard
library will return a List<T>. In the sample code earlier determines all the characters used
in the customers in names. The last two methods show how you can cherry pick the
elements of a map based on a filter. In both cases, you will end up with a new map instance
containing the items meeting your criteria.

Sets
A set is a collection that contains no duplicate items. This means you can't have i1 and i2
in the collection if i1==i2 (which translates to i1.equals(i2) == true). The same
reasoning applies for a null reference - you can't have more than one null item stored in
your set.

To create instances of sets, you can use any of the methods in the following code example:

 data class Book(val author: String, val title: String, val year: Int,
val isbn: String)

 val intSet: Set<Int> = setOf(1, 21, 21, 2, 6, 3, 2) //1,21,2,6,3
 println("Set of integers[${intSet.javaClass.canonicalName}]:$intSet")

 val hashSet: java.util.HashSet<Book> = hashSetOf(
 Book("Jules Verne", "Around the World in 80 Days Paperback", 2014,
"978-1503215153"),

Collections

[303]

 Book("George R.R. Martin", "Series: Game of Thrones: The Graphic
Novel (Book 1)", 2012, "978-0440423218"),
 Book("J.K. Rowling", "Harry Potter And The Goblet Of Fire (Book 4)
Hardcover", 2000, "978-0439139595"),
 Book("Jules Verne", "Around the World in 80 Days Paperback", 2014,
"978-1503215153")
) //Jules Verne, J.K. Rowling,George R.R. Martin
 println("Set of books:${hashSet}")

 val sortedIntegers: java.util.TreeSet<Int> = sortedSetOf(11, 0, 9, 11,
9, 8) //0,8,9,11
 println("Sorted set of integer:${sortedIntegers}")

 val charSet: java.util.LinkedHashSet<Char> = linkedSetOf('a', 'x',
'a', 'z', 'a') //a,x,z
 println("Set of characters:$charSet")

 val longSet: MutableSet<Long> = mutableSetOf(20161028141216,
20161029121211, 20161029121211) //20161028141216, 20161029121211
 println("Set of longs[${longMutableSet.javaClass.canonicalName}]
:$longSet")

You can see the result of each set in the comments. Only setOf and mutableSetOf
extensions are returning a Kotlin type; the other three methods used give you back a Java
type. If you run the code, you will see that the Kotlin immutable and mutable set
implementations are materialized by LinkedHashSet, which is, of course, mutable. To
understand the difference between the various implementations, let's see what the JDK says
on each one:

LinkedHashSet: The hash table and linked list implementation of the set
interface, with predictable iteration order. This implementation differs from
HashSet in that it maintains a doubly-linked list running through all of its
entries. This linked list defines the iteration ordering, which is the order in which
elements were inserted into the collection. The implementation spares its clients
from chaotic ordering provided by HashSet, without incurring the increased cost
associated with TreeSet.
HashSet: It implements the set interface, backed by a hash table (actually a
HashMap instance). It makes no guarantees as to the iteration order of the set; it
does not guarantee that the order will remain constant over time. This class offers
constant time performance for the basic operations (add, remove, contains, and
size), assuming the hash function disperses the elements properly among the
map buckets.

Collections

[304]

TreeSet: A set implementation based on a TreeMap. The elements are ordered
using their natural ordering, or by a comparator provided at set creation time,
depending on which constructor is used. This implementation provides
guaranteed log(n) time cost for the basic operations (add, remove, and contains).

Covering each method available on the set interface goes beyond the scope of this chapter.
However, we will showcase some of the methods available. You can always pick up the
documentation and learn about the entire set of methods exposed:

 println(intSet.contains(9999)) //false
 println(intSet.contains(1)) //true
 println(books.contains(Book("Jules Verne", "Around the World in 80
Days Paperback", 2014, "978-1503215153"))) //true
 println(intSet.first()) //1
 println(sortedIntegers.last()) // 11
 println(charSet.drop(2)) // z
 println(intSet.plus(10)) // 1,21,2,6,3,10
 println(intSet.minus(21)) // 1,2,6,3
 println(intSet.minus(-1)) // 1,21,2,6,3
 println(intSet.average()) // 6.6
 println(longSet.plus(11)) // 20161028141216, 20161029121211
 println(longSet) //20161028141216, 20161029121211

You can see the output in the comments. The methods' names should be descriptive enough
to give an impression of the actions they perform. One thing to notice is that the plus and
minus methods don't alter the collection. Those extension methods are defined at the
immutable Set interface, and, therefore, will end up generating a new immutable
collection.

We can't talk about a collection type without highlighting the two extensions: map and
flatMap. In the first sample, the code extracts an author-title pair from the set of books
while the second example gets all the characters used for all the book titles in the map:

 println(books.map{Pair(it.author,it.title)}) // Jules Verne- Around
the World in 80 Days Paperback,
 println(books
 .flatMap { it.title.asIterable() }
 .toSortedSet()
) //[, (,), 0, 1, 4, 8, :, A, B, D, F, G, H, N, O, P, S, T, W, a,
b, c, d, e, f, h, i, k, l, m, n, o, p, r, s, t, u, v, y]

As we have seen with the other collections, the standard library provides extension
methods to convert a set to another collection type. There are quite a few extension methods
to take that pain away from you, as shown in the following code:

 val longsList: List<Long> =longSet.toList()

Collections

[305]

 val longsMutableList = longSet.toMutableList()
 val donot= longSet.toLongArray()
 val rightArray = longSet.toTypedArray()

This code example has been purposefully chosen to reiterate the conversion to arrays. While
there are two options for primitive types, make sure you always pick the to***Array to
get the best performance out of it.

Read-only views
When working with Kotlin, you will come across the concept of a read-only view of a
mutable collection. You will probably wonder what is the difference between this and an
immutable collection. It is easier to understand using an example. In this case, let's create a
mutable list of strings. This applies to all the collections we have covered:

 val carManufacturers: MutableList<String> = mutableListOf("Masserati",
"Aston Martin","McLaren","Ferrari","Koenigsegg")
 val carsView: List<String> = carManufacturers

 carManufacturers.add("Lamborghini")
 println("Cars View:$carsView") //Cars View: Masserati, Aston Martin,
McLaren, Ferrari, Koenigsegg, Lamborghini

The code initializes a mutable list of car manufacturers and then provides a view on it via
the carsView variable. If, going forward, we only keep a reference to the latter variable, we
could actually consider the collection to be fully immutable, hence the read-only view term.
However, if that is not the case, any changes made to the underlying collection would be
reflected in the view automatically. The view is achieved by casting the collection to the
immutable interface List. Keep in mind that the actual runtime implementations are not
immutable.

Indexed access
Kotlin makes it easier to access the elements of a list or return the values for a key when it
comes to a map. There is no need for you to employ the Java-style syntax get(index) or
get(key), but you can simply use array-style indexing to retrieve your items:

 val capitals = listOf("London", "Tokyo", "Instambul", "Bucharest")
 capitals[2] //Tokyo
 //capitals[100] java.lang.ArrayIndexOutOfBoundException

 val countries = mapOf("BRA" to "Brazil", "ARG" to "Argentina", "ITA"

Collections

[306]

to "Italy")
 countries["BRA"] //Brazil
 countries["UK"] //null

While it saves you a few keystrokes, I find this construct a lot clearer to read. But nothing is
stopping you from falling back to the .get method.

The preceding syntax is only available in Kotlin, and the reason it works lies in the interface
declaration for List and Map. They were listed at the beginning of this chapter. There you
can find the following definition:

 //list
 public operator fun get(index: Int): E

 //map
 public operator fun get(key: K): V?

Since the methods have been declared as operators, we can use array like indexing as a
shortcut to typing .get.

Sequences
We defined what a sequence is and what it does at the start of this chapter. Sequences are
great for scenarios when the size of the collection is not known in advance. Think about
reading a table from a database, where you wouldn't know how many records you will get
back; or reading a local .csv file, where you don't know how many lines it contains. You can
think of a sequence as a list that goes on and on. A sequence is evaluated on a need-to-know
basis, and only to the point needed. Think of the Fibonacci series; there is no point in
constructing the collection in advance. How many items do you need to compute? The
caller determines that.

If you have worked with Scala or Java 8, you will see the sequences as the Kotlin equivalent
of Stream types. Since Kotlin supports Java 6 and it doesn't support a streaming library,
they had to come with their own version. To avoid the confusion with Java 8, the Kotlin
team has chosen this term. Unfortunately, the Kotlin library doesn't come with support for
parallel sequence processing.

Before going further with a few examples, here are several ways to create a sequence:

 val charSequence: Sequence<Char> =
charArrayOf('a','b','c').asSequence() //a,b,c
 println("Char
sequence:[${charSequence.javaClass.canonicalName}]:${charSequence.

Collections

[307]

joinToString(",")}")
 println("Char
sequence:[${charSequence.javaClass.name}]:${charSequence.joinToStr
ing(",")}")

 val longsSequence: Sequence<Long> = listOf(12000L, 11L, -
1999L).asSequence() // 1200,11,-1999
 println("Long
sequence:[${longsSequence.javaClass.canonicalName}]:${longsSequenc
e.joinToString(",")}")
 println("Long
sequence:[${longsSequence.javaClass.name}]:${longsSequence.joinToS
tring(",")}")

 val mapSequence: Sequence<Map.Entry<Int, String>> = mapOf(1 to "A", 2
to "B", 3 to "C").asSequence() //1=A,2=B,3=C
 println("Long
sequence:[${mapSequence.javaClass.canonicalName}]:${mapSequence.jo
inToString(",")}")
 println("Long
sequence:[${mapSequence.javaClass.name}]:${mapSequence.joinToStrin
g(",")}")

 val setSequence: Sequence<String> = setOf("Anna","Andrew", "Jack",
"Laura","Anna").asSequence()
 println("String
sequence:[${setSequence.javaClass.canonicalName}]:${setSequence.jo
inToString(",")}") //Anna, Andrew,Jack, Laura

 val intSeq = sequenceOf(1, 2, 3, 4, 5)
 println("Sequence of
integers[${intSeq.javaClass.canonicalName}]:$intSeq")

 val emptySeq: Sequence<Int> = emptySequence<Int>()
 println("Empty
sequence[${emptySeq.javaClass.canonicalName}]:$emptySeq")

 var nextItem = 0
 val sequence = generateSequence {
 nextItem += 1
 nextItem
 }
 // sequence.joinToString(",") -> don't! Out of memory will be
thrown
 println("Unbound int
sequence[${sequence.javaClass.canonicalName}]:${sequence.takeWhile {
 it <100
 }.joinToString(",")}") //1,2,3...99

Collections

[308]

 // println("Unbound int
sequence[${sequence.javaClass.canonicalName}]:${sequence.takeWhile {
 it < 100
 }.joinToString(",")}") //java.lang.IllegalStateException: This
sequence can be consumed only once.

 val secondSequence = generateSequence(100) { if ((it + 1) % 2 == 0) it
+ 1 else it + 2 }

 println("Unbound int
sequence[${secondSequence.javaClass.canonicalName}]:${secondSequen
ce.takeWhile {
 it <110
 }.toList()}") //100, 102, 104, 106, 108]

All the collection types we have seen so far can be converted to a sequence. The interesting
part is the output for the class name. Run the code and you will see the console output is
null when it comes to the class canonical name. However, when we print the name, you
will see
kotlin.collections.ArraysKt___ArraysKt$asSequence$$inlined$Sequence$9.W
hy is that? Looking at the source code will clear all of this. Here is what actually gets
executed when asSequence is called:

 public fun <T> Iterable<T>.asSequence(): Sequence<T> {
 return Sequence { this.iterator() } }

 public inline fun <T> Sequence(crossinline iterator: () ->
Iterator<T>): Sequence<T> = object : Sequence<T> {
 override fun iterator(): Iterator<T> = iterator()
 }

We have the Sequence interface, but we also have the Sequence extension method with
one parameter-a function returning an iterator. All types derived from Iterable, by
contrast, provide such a method: iterator(). Thus, the asSequence makes use of it. The
Sequence method creates an instance of an anonymous class inheriting from the Sequence
interface, and uses the iterator argument to return the iterator. There are special
extension methods for arrays, since they don't derive from Iterable. Because we are using
a CharArray, the following standard library code covers this type only, but there are
equivalent implementations for the other array types:

 public fun CharArray.asSequence(): Sequence<Char> {
 if (isEmpty()) return emptySequence()
 return Sequence {
 this.iterator()
 }
 }

Collections

[309]

To create a fixed-length sequence, you can always rely on the sequenceOf extension.
Because the method takes a variable length list of arguments, it uses the
Array<T>.asSequence code. For scenarios where your sequence's upper limit is not
known, you can use the generateSequence method. The first example returns all the
integer numbers smaller than 100. As you can see in the code snippet, not adding a limit,
will end up throwing an OutOfMemoryError if you want to build a string listing all the
numbers in the sequence. The joinToString method will create a StringBuffer and
keep appending the items to it; since there is no upper limit, eventually it will end up filling
the runtime heap space and the error will be thrown. The same outcome will happen if you
convert to a list or set. Therefore, avoid storing an unbounded sequence into a collection.
Leaving aside the details of the Java garbage collector and its various implementations, the
memory footprint for these genearateSequence methods is resumed to the parameter
type T you are returning. The last part of the code example generates a sequence using a
starting seed in order to return all the odd numbers from 100 to 110.

There is a fundamental difference between the two overloaded generateSequence
extension methods. Iterating a second time over the sequence variable will end up in an
exception: IllegalStateException. The reason for this lies with the code
implementation for generateSequence(nextFunction:()->T?):

 public fun <T : Any> generateSequence(nextFunction: () ->T?):
Sequence<T> {
 return GeneratorSequence(nextFunction, { nextFunction()
}).constrainOnce()
 }

 public fun <T> Sequence<T>.constrainOnce(): Sequence<T> {
 return if (this is ConstrainedOnceSequence<T>) this else
ConstrainedOnceSequence(this)
 }

 private class ConstrainedOnceSequence<T>(sequence: Sequence<T>) :
Sequence<T> {
 private val sequenceRef =
java.util.concurrent.atomic.AtomicReference(sequence)

 override fun iterator(): Iterator<T> {
 val sequence = sequenceRef.getAndSet(null) ?: throw
IllegalStateException("This sequence can be consumed only once.")
 return sequence.iterator()
 }
 }

Collections

[310]

In this case, as you can see in the preceding snippet, the standard library will hand you back
an instance of ConstrainedOnceSequence. Any attempt to get the iterator a second time
will yield the exception mentioned earlier. The API documentation is quite good, and will
let you know if the result is a sequence that can only be iterated once.

Let's see how we can use the API sequence to read a file. The next code example looks for a
resource file, and uses the Java I/O library to open and read it line by line until null is
returned:

 val stream =
Thread.currentThread().javaClass.getResourceAsStream("/afile.txt")
 val br = BufferedReader(InputStreamReader(stream))
 val fileContent = generateSequence { br.readLine() }.takeWhile { it !=
null }
 println("File content:${fileContent.joinToString(" ")}")

For simplicity, all the error handling code has been left out. The output for this code will
read: Kotlin is awesome!.

When talking about sequences, generating the Fibonacci series is almost a must, for some
reason. So, let's follow the pattern and see how you can write that in Kotlin:

 var prevNumber: Int = 0
 val fibonacci1 = generateSequence(1) {
 val tmp = prevNumber
 prevNumber = it
 it + tmp
 }
 println("Fibonacci sequence: ${fibonacci1.take(12).joinToString(",")}")

The Fibonacci series is driven by the following rule: that every number after the first two is
the sum of the two preceding ones: 1,1,2,3,5,8,13,21,34,55,89,144, and so on. In this first run
of implementing such a sequence, we keep a reference of the previous number. Run the
code and you should see the numbers mentioned earlier. This implementation, however, is
not ideal. Can we create the sequence without having to close on the prevNumber variable?
It turns out we can:

 val fibonacc2 = generateSequence(1 to 1) {
 it.second to it.first + it.second
 }.map { it.first }
 println("Fibonacci sequence: ${fibonacc2.take(12).joinToString(",")}")

This second attempt is slightly more complex. It will produce a sequence of pairs (integer-
integer) containing the current and next Fibonacci number, so 1-1, 1-2,2-3,3-5,5-8,8-13, and
so on. Then, via the mapping function, it selects the first item of each pair. The result
matches the previous one.

Collections

[311]

Summary
You have seen how to use the Kotlin collection API in great detail. You have learned how
the standard library provides you with the distinction between immutable and mutable
collection types, and how immutability is achieved at the interface level. You know now
that Kotlin doesn't add any new collection, but rather relies on the existing Java large-
collection library. Type aliasing done by the Kotlin compiler is not a mystery anymore. Now
you can go and use the arrays properly because you leaned to use the specific
implementations over the generic one when it comes to primitive types.

The Kotlin standard library provides you with the building blocks to express complex
computations via a few simple extension methods, hopefully giving you a different
perspective when it comes to choosing your next project language.

This chapter covers unit and integration testing using Kotlin using unit test frameworks.
Unit testing is often a gateway into a new language, and this is no different.

11
Testing in Kotlin

One of the first things developers often do when adopting or evaluating a new language is
that they roll it out gradually, starting with unit tests. The advantage of using this approach
is that since your tests are not going into production, any issues with the language or bugs
in the language library won't impact the real code. It gives the developers a chance to
evaluate whether the language is a good fit for their needs, without worrying about the
need to rewrite critical parts of their main code base if they decide to reject the new
language.

In this chapter, we will introduce a powerful Kotlin testing library known as KotlinTest.
This open source library is available on GitHub. By leveraging the powerful features of
Kotlin, it provides useful testing features beyond what the typical Java test frameworks,
such as JUnit or TestNG, currently offer.

Getting started
Writing your first test with KotlinTest is very straightforward. Firstly, the KotlinTest
dependency will need to be added to your build. The easiest way to do this if you are using
Gradle or Maven is to search Maven central for io.kotlintest– just visit h t t p ://s e a r c h .

m a v e n . o r g and grab the latest version. You will need to add this to your Gradle build using
the following:

 testCompile 'io.kotlintest:kotlintest:2.0.0'

Alternatively, for Maven, use the following code:

 <dependency>
 <groupId>io.kotlintest</groupId>
 <artifactId>kotlintest</artifactId>
 <version>2.0.0</version>

http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org
http://search.maven.org

Testing in Kotlin

[313]

 <scope>test</scope>
 </dependency>

Next, create the test source folder, usually src/test/kotlin, if it doesn't exist already. We
are going to write a unit test for the standard library String class. So create a file called
StringTest.kt. Inside this file, create a single class called StringTest, which should
extend FunSpec. The contents of the file should look something like the following:

 import io.kotlintest.specs.FunSpec
 class StringTest : FunSpec()

To write a unit test, we invoke a function called test, which takes two parameters. The first
is a description of the test, and the second is a function literal that contains the body of the
test. The description, or name, of the test will appear in the output so we know which tests
have failed and which have passed.

For our first test, we'll assert that the startsWith function defined on the String should
return true for valid prefixes. Each individual test is just placed inside an init {} block in
the body of the class:

 class StringTest : FunSpec() {
 init {
 test("String.startsWith should be true for a prefix") {
 "helloworld".startsWith("hello") shouldBe true
 }
 }
 }

Notice the use of shouldBe true. This is an infix function that accepts a value and
performs an equality check. If the values don't match, then the test will fail. KotlinTest
refers to functions such as these as assertions.

Choosing a spec
In the first test that we wrote, we extended a class called FunSpec, which is just one
example of what KotlinTest calls a spec. A spec, or style, is just the manner in which the tests
are laid out in the class files. There are several different specs available, and which one you
use is simply a matter of personal preference. The FunSpec class is the style most similar to
the old preannotation JUnit style, which readers from a Java background may be familiar
with.

Testing in Kotlin

[314]

The rest of this section will cover the various specs that are available for you to choose from.
The first alternative style to the FunSpec class is FlatSpec. This forces the user to use the
word should in the test names. This might appeal to developers who like uniformity in the
testing names:

 class MyTests : FlatSpec() {
 init {
 "String.length" should "return the length of the string" {
 "hello".length shouldBe 5
 "".length shouldBe 0
 }
 }
 }

Very similar to FlatSpec, we have WordSpec, which again uses the word should.
However, with WordSpec, instead of writing the test names on the same flat (flattened), you
nest them:

 class MyTests : WordSpec() {
 init {
 "String.length" should {
 "return the length of the string" {
 "hello".length shouldBe 5
 "".length shouldBe 0
 }
 }
 }
 }

The next style is ShouldSpec, which is almost the same as the FunSpec class. There is one
difference though, that is, the function name is should instead of test:

 class MyTests : ShouldSpec() {
 init {
 should("return the length of the string") {
 "hello".length shouldBe 5
 "".length shouldBe 0
 }
 }
 }

Testing in Kotlin

[315]

With ShouldSpec, the tests can actually be nested inside Strings if you wish to have
multiple tests share the same parent namespace. What we mean by parent namespace is
that these tests will be grouped together in a hierarchy inside the IDE:

 class MyShouldSpec : ShouldSpec() {
 init {
 "String.length" {
 should("return the length of the string") {
 "hello".length shouldBe 5
 }
 should("support empty strings") {
 "".length shouldBe 0
 }
 }
 }
 }

Moving on, we have BehaviorSpec. This is aimed at people who like to structure their
tests in the style of specifications often seen in behavior-driven development. The tests are
nested in three blocks, named given, when, and then. When combined, these blocks read
like a natural language sentence. In addition, when looking at a report of executed tests, the
behavior spec style can be read very nicely even by non-developers.

In Kotlin, when is a keyword, so we must stop using it with backticks. Alternatively, we can
use the title case equivalents, namely Given, When, and Then, which are also provided:

 class MyBehaviorSpec : BehaviorSpec() {
 init {
 given("a stack") {
 val stack = Stack<String>()
 `when`("an item is pushed") {
 stack.push("kotlin")
 then("the stack should not be empty") {
 stack.isEmpty() shouldBe true
 }
 }
 `when`("the stack is popped") {
 stack.pop()
 then("it should be empty") {
 stack.isEmpty() shouldBe false
 }
 }
 }
 }
 }

Testing in Kotlin

[316]

The next spec we will cover is called FeatureSpec, which is similar to BehaviorSpec. The
difference is that it uses the keywords feature and scenario:

 class MyFeatureSpec : FeatureSpec() {
 init {
 feature("a stack") {
 val stack = Stack<String>()
 scenario("should be non-empty when an item is pushed") {
 stack.push("kotlin")
 stack.isEmpty() shouldBe true
 }
 scenario("should be empty when the item is popped") {
 stack.pop()
 stack.isEmpty() shouldBe false
 }
 }
 }
 }

The final spec style is String. As the name implies, it simply uses Strings to group tests.
This style is the simplest of all:

 class MyStringSpec : StringSpec() {
 init {
 "strings.length should return size of string" {
 "hello".length shouldBe 5
 }
 }
 }

When you're not sure which spec to pick, go with StringSpec. This is recommended by
the KotlinTest authors.

Matchers
Matchers test for some property, indicated by the name of the matcher, beyond simple
equality. For example, a matcher may check whether a string is empty or whether an
integer is positive. In the getting started guide, we used the assertion shouldBe to check for
equality. In fact, the assertion shouldBe also accepts a matcher that provides for more
complicated assertions.

Testing in Kotlin

[317]

The idea behind the shouldBe naming convention is to lead to readable assertions, such as
thisString shouldBe empty(). To further this goal, there is an equivalent of shouldBe,
named should; with this, matchers such as thisString should startWith("foo") could
be read as natural language.

Many matchers are provided by KotlinTest out of the box, and each one checks for some
specific property or condition. In the rest of this section, we will cover some of the most
fundamental matchers.

String matchers
One of the most common set of matchers is undoubtedly the String matchers. This is not
surprising, given how fundamental String usage is throughout software development. This
following table lists the common string matchers:

Matcher example Description

"hello world" should startWith("he") Tests string prefixes

"hello" should include("ell") Tests substrings

"hello" should endWith("ello") Test string suffixes

"hello" should haveLength(5) Tests the length of a string

"hello" should match("he...") Tests the equality, using a regular
expression

Collection matchers
The next most useful set of matchers operate on collections, including lists, sets, maps, and
so on:

Matcher example Description

col should contain(element) Tests that a collection should contain the
given element.

col1 should haveSize(3) Tests the sizes of the collections.

list shouldBe sorted<Int>() Tests that the collections should be sorted.
This only works for lists that contain the
subclasses of Comparable.

Testing in Kotlin

[318]

col shouldBe singleElement(element) Tests that the collection has a single element
that is equal to the given element.

col should containsAll(1, 2, 3) Tests that the collection contains all the given
elements. The order of these elements does
not matter.

col should beEmpty() Tests whether the collection is empty or not.

map should haveKey(key) Tests whether the map contains mapping
from a key to any value.

map should haveValue(key) Tests whether the map contains the value for
at least one key.

map should contain(key, value) Tests that the map contains the exact
mapping of the key to the value.

Floating point matchers
A very useful matcher is the tolerance matcher, which is defined on doubles. When testing
the equality of doubles, one should not use simple equals. This is because of the imprecise
nature of storing some values, mainly repeating decimals in base 2 (just like one-third
cannot be exactly represented in base 10).

The safest and most correct way to do floating point comparison is to assert that the
difference between two numbers is below some value. The value chosen is the tolerance, and
it should be low enough to satisfy your criteria that the numbers are equal. KotlinTest has
built-in support for this:

 a shouldBe 1.0
 a shouldBe (1.0 plusOrMinus 0.001)

The first example can lead to errors if the result stored was not exactly 0.1. The second
example uses the tolerance factor of 0.001 and performs an absolute difference
comparison.

Testing in Kotlin

[319]

Expecting exceptions
Sometimes, we want to assert that a function will throw an exception, perhaps to test a
precondition we may have added. A naive approach to this would be to wrap the function
invocation in a try…catch block and throw an exception in the try part. Here is a function
that will throw an exception when invoked with a non-positive number:

 fun squareRoot(k: Int): Int {
 require(k >= 0)
 return Math.sqrt(k.toDouble()).toInt()
 }

Here is our initial approach to testing it:

 try {
 squareRoot(-1)
 throw RuntimeException("This test should not pass")
 } catch (e: Exception) {
 // noop
 }

However, as you may have probably guessed, KotlinTest can take care of this for us. It
provides the shouldThrow block, which will check that an exception was thrown, and if
not, will fail the test for us:

 shouldThrow<IllegalArgumentException> {
 squareRoot(-1)
 }

Note that shouldThrow will also fail the test if the wrong type of exception is thrown. Here,
we expect only IllegalArgumentException. So, for example, a generic
RuntimeException would cause the test to fail.

Combining matchers
Matchers can be combined together using the usual Boolean logical operators of conjunction
(and) and disjunction (or). We can do this using the infix functions that are named for those
operators:

 val thisString = "hello world"
 thisString should (haveLength(11) and include("llo wor"))

Testing in Kotlin

[320]

In the preceding example, both the matchers must pass or the test will fail. Notice the
parentheses around the matchers; also, we must use the should or shouldBe keywords
only once:

 val thisString = "hello world"
 thisString should (haveLength(11) or include("goodbye"))

In the second example, only one test must pass, just like we're used to seeing. Also, the
matchers are lazily evaluated; therefore, if the first matcher passes, the second will not be
invoked.

Custom matchers
You may have seen the usage of some of the many built-in matchers that KotlinTest
provides, but you don't need to stop there. KotlinTest also supports writing your own
matchers, and this is extremely straightforward.

Every matcher is just an instance of the Matcher interface:

 interface Matcher<T> {
 fun test(value: T): Result
 }

Each matcher must implement a single function test that would receive the value as a
parameter on the left-hand side of the shouldBe function. The values on the right-hand
side of the shouldBe function are just constructor parameters for the matcher passed in via
a function that is responsible for creating the matcher. The test function should return an
instance of Result, which just contains a Boolean flag for whether the test has passed or
not and a message to be outputted if it has not.

For demonstration purposes, we'll try to improve the experience of testing files. Let's say we
are writing a unit test and we want to test that a file exists and that the file is an image file.
For our example custom matcher, it is sufficient for us to assume that a file is an image if it
has a well-known image file extension. In the real world, you might wish to go further by
trying to load the file contents to confirm whether it is really an image.

The first step is to create a function that will return the matcher. The function will be what
the users would see on the right-hand side of shouldBe, so it is best if it has a name that
reads well:

 fun anImageFile() = object : Matcher<File> {
 override fun test(value: File): Result {
 }

Testing in Kotlin

[321]

Notice that the matcher has a type parameter, which is the type of value the matcher can be
used to verify. The shouldBe function is an extension function defined on this type
parameter, so the compiler will helpfully restrict the usage of matchers to only those types
that are valid. In other words, our file matcher here would only work on a file variable, and
so you would not be able to be use it on a String accidentally, for example.

The implementation of the custom matcher is simple. We just need to use the exists
function on the File object and also check the name:

 val anImageFile = object : Matcher<File> {
 private val suffixes = setOf("jpeg", "jpg", "png", "gif")
 override fun test(value: File): Result {
 val fileExists = value.exists()
 val hasImageSuffix = suffixes.any {
 value.name.toLowerCase().endsWith(it) }
 if (fileExists.not()) {
 return Result(false, "File $value should exist")
 }
 if (!hasImageSuffix) {
 return Result(false, "File $value should have a well known
 image suffix")
 }
 return Result(true, "Test passed")
 }
 }

Once the matcher is implemented, all that remains is that you use it. The function must be
imported into a scope, so it needs to be either a top-level function with an import or should
be placed in a supertype and inherited:

 class MatcherTest : FunSpec() {
 init {
 test("testing our file matcher") {
 val file = File("/home/packt/kotlin.jpg")
 file shouldBe anImageFile
 }
 }
 }

Notice how the assertion now reads as a grammatically correct statement. Although there is
no requirement to name your functions in such a way, it does mean it would make the test
easier to read for someone not familiar with the code.

Testing in Kotlin

[322]

By writing your matchers to the Matcher interface, they can automatically be used in
logical operators. Let's imagine we want to bring the exists functionality out in a separate
matcher and then introduce a matcher to test a specific file type:

 fun exist() = object : Matcher<File> {
 override fun test(value: File): Result {
 val fileExists = value.exists()
 return if (!fileExists) {
 return Result(false, "File $value should exist")
 } else {
 Result(true, "Test passed")
 }
 }
 }

Now add a matcher to test that the file has the given file extension:

 fun ofFileType(ext: String) = object : Matcher<File> {
 override fun test(value: File): Result {
 val isOfType = value.name.toLowerCase().endsWith(ext)
 return if (!isOfType) {
 Result(false, "File $value is not of type $ext")
 } else {
 Result(true, "Test passed")
 }
 }
 }

Then use these two matchers together using the normal and and/or operators:

 class MultipleMatcherTest : FunSpec() {
 init {
 test("testing our file matcher") {
 val dir = File("/home/packt/images")
 for (file in dir.listFiles()) {
 (file should exist()) and (file shouldBe
 ofFileType("jpeg"))
 }
 }
 }
 }

This shows how quickly you can add custom matchers to encapsulate your testing logic,
making it reusable across multiple test files.

Testing in Kotlin

[323]

Inspectors
KotlinTest inspectors are an easy way to test the contents of collections. Sometimes, you
may wish to assert that only some elements of a collection should pass an assertion. Other
times, you may want no elements to pass an assertion, just one, or two, and so on. Of
course, we can do this ourselves by just iterating over the collection and keeping track of
how many items have passed the assertions; however, inspectors do this for us.

Let's start with the usual case that we want all the elements of a collection to pass the
assertions. For this, first of all, we'll define a list that we'll work with throughout the rest of
the section:

 val kings = listOf("Stephen I", "Henry I", "Henry II", "Henry III",
 "William I", "William II")

Then, we'll assert that every king has a regal number that ends with the letter "I". Refer to
the following:

 class InspectorTests : StringSpec() {
 init {
 "all kings should have a regal number" {
 forAll(kings) {
 it should endWith("I")
 }
 }
 }
 }

This particular test could have also been achieved with the function All on the collections.
Other cases are not so easy without inspectors, and the next example will show this:

 class InspectorTests : StringSpec() {
 init {
 "only one king has the name Stephen" {
 forOne(kings) {
 it should startWith("Stephen")
 }
 }
 }
 }

Without an inspector, we will have to catch the exceptions and keep a count of how many
kings have passed the test. The inspector hides this piece of boilerplate for us. The next
inspector is quite interesting:

 class InspectorTests : StringSpec() {

Testing in Kotlin

[324]

 init {
 "some kings have regal number II" {
 forSome(kings) {
 it should endWith("II")
 }
 }
 }
 }

This is an example of the forSome inspector that asserts that at least one element, not all the
elements, has passed the test. So for n elements in a collection, the test will pass if between
1 and n-1 elements matched the assertion.

There are many different inspectors, but we'll show just one more:

 class InspectorTests : StringSpec() {
 init {
 "at least one King has the name Henry" {
 forAtLeastOne(kings) {
 it should startWith("Henry")
 }
 }
 }
 }

The forAtLeastOne inspector, as the name implies, simply checks that one element has
passed the test. It differs from the forSome inspector in that it allows all the elements to
pass.

Interceptors
When moving beyond the scope of standalone unit tests and into tests that require
resources, it is often the case that we would need to set up these resources before a test and
tear them down again later. For example, a database connection may need to be initialized
for use by a test and then closed properly once the test is finished. We can do this manually
in a test, but if we have a suite of tests, then this soon becomes laborious.

Wouldn't it be nicer if we could just define a function once and and then have it run before
and after each test or each suite of tests. This functionality exists in KotlinTest under the
name of interceptors. Each type of interceptor is defined to run before and after the code is
tested. Let's discuss the different types of interceptors.

Testing in Kotlin

[325]

The test case interceptor
The first type of interceptor is the test case interceptor. These are interceptors added directly
to test cases themselves, and they only apply to the test cases they were added to. A test
case interceptor receives two parameters. The first is the test case context. This contains
details of the test, such as the name of the test, which spec file it is located in, how many
invocations it should have, and so on. The second parameter is the test itself in the form of a
zero arity function. This function must be invoked by the interceptor or the test will be
skipped. This gives test interceptors the power to choose whether to run the test or not.

In the following example, we will define an interceptor that will output the time taken to
run a test:

 val myinterceptor: (TestCaseContext, () -> Unit) -> Unit = {
 context, test ->
 val start = System.currentTimeMillis()
 test()
 val end = System.currentTimeMillis()
 val duration = end - start
 println("This test took $duration millis")
 }

Notice how the test is invoked inside the interceptor. The next step is to add the interceptor
to any tests we want to be timed:

 "this test has an interceptor" {
 // test logic here
 }.config(interceptors = listOf(myinterceptor))
 "so does this test" {
 // test logic here
 }.config(interceptors = listOf(myinterceptor))

Notice that each test case accepts a list of interceptors. Although in this case we've only
used one, we can add an arbitrary number.

The spec interceptor
The next type of interceptor is the spec interceptor. It is used to intercept all the tests in a
single test class. The spec interceptor is very similar to the test case interceptor; the only
difference is that the test case context is replaced by spec context. Just like the earlier
interceptor, you must invoke the provided function; otherwise, the entire spec will be
skipped. So this gives you the ability to use custom logic to determine whether a spec will
run or not:

Testing in Kotlin

[326]

 val mySpecInterceptor: (Spec, () -> Unit) -> Unit = {
 spec, tests ->
 val start = System.currentTimeMillis()
 tests()
 val end = System.currentTimeMillis()
 val duration = end - start
 println("The spec took $duration millis")
 }

Here we have implemented our timing interceptor again, this time to time the entire spec.
To use this, override a property called specInterceptors providing a list of the
interceptors:

 override val specInterceptors: List<(Spec, () -> Unit) -> Unit> =
 listOf(mySpecInterceptor)

This is all very similar to the test case example.

Project config
Sometimes you may wish to execute some code before any tests are run at all or after all the
tests are completed (whether successful or not). This can be achieved through the use of the
ProjectConfig abstract class. To use this, simply create an object that will extend from
this abstract class and ensure it is on the class path. Then, KotlinTest will automatically find
it and invoke it:

 object MyProjectConfig : ProjectConfig() {
 var server: HttpServer? = null
 override fun beforeAll() {
 val addr = InetSocketAddress(8080)
 val server = HttpServer.create(addr, 0)
 server.executor = Executors.newCachedThreadPool()
 server.start()
 println("Server is listening on port 8080")
 }
 override fun afterAll() {
 server!!.stop(0)
 }
 }

In this case, we've made a ProjectConfig instance that creates an embedded HTTP server
so that all the tests can use this server without the need to create their own. After all the
tests are completed, the server will be shut down again.

Testing in Kotlin

[327]

We couldn't put this code into any particular spec (suite of tests) because we don't know the
order in which the specs will be executed. So how do we know which file will contain it?
Even if there was a deterministic order, there's nothing you could do to stop another spec
from being added, whichever one comes first in the ordering.

Property testing
An alternative method of testing that is popular in frameworks, such as QuickCheck in
Haskell and ScalaCheck in Scala, is the idea of property testing. Property testing is aimed
at testing a single property of a function at a time. For example, when concatenating two
strings together, the length property should always remain consistent as the sum of the
original two lengths. This is in contrast to the normal style of testing, which is example-
driven.

Note that a property in this case doesn't refer to the properties of objects,
as in fields or members. Instead, it refers to some invariant or predicate
that should be true.

Given that we are going to test that a property holds for multiple input values, it follows
that we would want to use as many different values as possible. For this reason, property-
based testing is often associated with the automatic generation of input values. In
KotlinTest, these values are provided through the aptly named generators.

To use a generator for property testing, we need to use an inspector-style call to which we
will pass another test function. This test function must have the parameter types specified
because the compiler will not be able to infer them. The same function must return a
Boolean, and the Boolean will indicate whether the property is held for the input values.
That is, we don't need to use matchers in property testing; the return value of the function
will itself indicate the correctness of the property.

In the following example, we will test the length of a concatenated string, as mentioned
earlier, as an example:

 "String.size" {
 forAll({ a: String, b: String ->
 (a + b).length == a.length + b.length
 })
 }

Testing in Kotlin

[328]

Notice that the parameters have type ascriptions. KotlinTest uses the parameter types to
work out which kind of generators to use for each input. Each input receives its own
instance of a generator even if the types are the same. We used forAll in this example, but
we could have used forNone instead, which is just the inverse.

When the test case is executed, the framework will rerun this test hundreds of times, each
time requesting new values from the generators. The input will not only be between a-z or
alphanumeric, but it could be any unicode value or values. This kind of generator is useful
for generating input that we might overlook when writing an example-based unit test.

The obvious benefit to this approach is that we can test many more combinations manually,
giving us greater confidence in the robustness of our code. The downside is that we don't
have control over specific values, so an edge case may slip through many times before it is
finally chosen as a random value.

Specifying a generator
As we've seen, property testing is often used to quickly test multiple input values.
However, sometimes the automatically provided generators may not be exactly what we
want. For example, if we're testing a square root function, we would not want to generate
negative numbers. So instead of allowing KotlinTest to pick a default generator, we just
provide one manually when writing the test:

 "squareRoot" {
 forAll(Gen.int(), { k ->
 val square = squareRoot(k)
 square * square == k
 })
 }

KotlinTest comes with many built-in generators, such as natural numbers, negative
integers, random files, and so on.

A custom generator
Sometimes, we want to specify our own input ranges or values completely and the built-in
generators are not sufficient enough; this is where custom generators come in handy.
KotlinTest has several ways to conveniently create a generator. For example, we can create a
generator that returns a random element from a collection each time it is invoked:

 val values = listOf("pick", "one", "of", "these")
 forAll(Gen.oneOf(values), { element ->

Testing in Kotlin

[329]

 // test logic
 })

Or, we can create a generator over a range of numbers and have the generator pick a
random number from that range:

 forAll(Gen.choose(1, 10000), { k ->
 // test logic
 })

Alternatively, if the built-in helpers are not sufficient, we can always create one ourselves
from scratch. All we need to do is extend the Generator<T> interface, with T being the
type returned, and implement the generate function. The generate function is invoked
each time the framework requires another number, so the results should not be cached. In
the next example, our custom generator returns a random even integer each time:

 fun evenInts() = object : Gen<Int> {
 override fun generate(): Int {
 while (true) {
 val next = Random.default.nextInt()
 if (next % 2 == 0)
 return next
 }
 }
 }

Once you get the integer, you can drop it at the right place:

 forAll(evenInts(), { k ->
 val square = squareRoot(k)
 square * square == k
 })

Table-driven testing
The idea behind table-driven tests is similar to property-based testing. The difference here is
that instead of generators providing random values, the set of input values is manually
specified. The way we do this is by declaring a table structure that can be hardcoded into
the test or loaded from a file.

Testing in Kotlin

[330]

The easiest approach is to simply hardcode the table, and this works fine if we have a small
range of input values or edge cases we want to test. For example, we may have a function
with three Boolean input values and want to test the combinations. The first step is to define
the table that contains the combinations we want to test:

 val table = table(
 headers("a", "b", "c"),
 row(true, true, true),
 row(true, false, true),
 row(true, false, false)
)

Notice that we use the headers and row helper functions. The header is important. It is not
used for the input but is used to label the values that will fail when a test does not pass. To
this table, we pass it as blocks, which will resemble the inspector functions once again:

 forAll(table) { a, b, c ->
 a shouldBe true
 if (b)
 c shouldBe true
 }

Note that in table-driven testing, a function does not need to return a
Boolean value. So unlike property-based testing, we should use regular
matchers.

As mentioned earlier, headers are used for error reporting. If a particular row fails, then the
output will be something like the following:

Test failed for (x, 9), (y, 12), (z, 18) with error 225 did not equal 324

There are row and header implementations that cover tuples up to 22 elements. If this isn't
enough, then the function under the test is probably too large and would benefit from being
split out.

Testing non-deterministic code
When testing non-deterministic code — such as futures, actors, or consistent data stores —
it is useful to be able to assert that at some point, a test is expected to pass, even if that test
had failed at first. A common way to achieve this is to use a countdown latch and adapt the
code under the test to release the latch once the code is completed:

 val latch = CountDownLatch(1)

Testing in Kotlin

[331]

 createFile("/home/davidcopperfield.txt", { latch.countDown() })
 latch.await(1, TimeUnit.MINUTES)
 // continue with test

In the preceding example, we are able to use a latch in the createFile function because it
accepts a listener that is invoked when the file is created.

Note that a countdown latch is a concurrency primitive that will block any
thread calling await on it, until it has been counted down the appropriate
number of times.

This trick doesn't work if we're not able to change the code under the test to be able to
accept some function, callback, or listener. Sometimes, we are forced to fall back to the most
naive approach, which is to make the thread sleep for a period of time:

 createFile("/home/davidcopperfield.txt")
 Thread.sleep(5000)
 // continue with test

This approach is problematic because the sleep timeout must be large enough so that we
don't wake up too early and fail the build. On the other hand, if an extremely large value is
picked, our test throughput drops right off as we wait for the sleep to expire, even though
we might be able to continue earlier.

What we really want is some way to have a test wait while a condition is false and then
finish the test as soon as it flips to true. KotlinTest performs this trick by introducing a neat
feature called Eventually, which was inspired by a similar functionality in ScalaTest.

To use eventually feature, we must first extend the Eventually interface which provide
the functionality:

 class EventuallyExample : WordSpec(), Eventually

Then, invoke the eventually function passing in a duration first and a function literal to
be executed second. The function will be executed repeatedly until either the duration is
expired or the function literal is completed successfully. Let's revisit the file create example;
it could be rewritten using eventually method like this:

 class FileCreateWithEventually : ShouldSpec(), Eventually {
 init {
 should("create file") {
 eventually(60.seconds) {
 createFile("/home/davidcopperfield.txt")
 }
 }

Testing in Kotlin

[332]

 }
 }

Note that since the function is evaluated multiple times, it shouldn't rely
on any state that has been changed by a prior run.

Tags, conditions, and config
In this section, we'll briefly cover the various configuration options that can be used to
control how tests are executed and which tests are executed.

Config
Each test case makes a config function available, which can be used to set specific
configurations for that test, such as threading, tags, and whether the test is enabled or not.
For example, we can change the number of times a test is executed:

 class ConfigExample : ShouldSpec(), Eventually {
 init {
 should("run multiple times") {
 // test logic
 }.config(invocations = 5)
 }
 }

We set the number of invocations to five. This is the number of times the same test will be
executed each time the unit tests phase is invoked. A complement to the number of
invocations is the number of threads those invocations will use. By default, this is one:

 should("run multiple times in multiple threads") {
 // test logic
 }.config(invocations = 20, threads = 4)

In this example, the test will run 20 times, but a thread pool of four threads will be used to
execute the tests. When using this option, we must of course make sure that the tests are
thread-safe.

The other useful option is to set a timeout so that a thread can be killed if it is taking too
long to complete. Each individual test can have their own configuration settings
independent of the others.

Testing in Kotlin

[333]

Conditions
Conditions are a simple way of enabling or disabling a test based on runtime evaluation.
The config block contains an enabled property, which is invoked before a test is executed in
order to access whether that test should be executed or skipped (not withstanding any
additional logic in an interceptor).

The simplest case is to just set the value to false:

 should("be disabled") {
 // test logic
 }.config(enabled = false)

The default, if omitted, is true. Generally speaking, the option to turn off a test completely
by hardcoding the value to false should be used sparingly. Perhaps you can restore a
green build while investigating why a test had failed.

We can extend this to use runtime lookup by defining a function instead of a hardcoded
value. In fact, anything that is an expression can be used. For instance, we may decide that
we only want to execute a test on a multicore system:

 fun isMultiCore(): Boolean =
 Runtime.getRuntime().availableProcessors() > 1
 should("only run on multicore machines") {
 // test logic
 }.config(enabled = isMultiCore())

Conditions can be written to support many use cases, such as limiting tests to certain
operating systems or machines with certain hardware requirements or running tests only at
a certain time of the day.

Tags
Similar to conditions, tags allow a way of grouping tests so they can be enabled or disabled
at runtime. Each test case can have its own tag or tags set (can be one or several); it can also
be left without a tag. At runtime, a system property can be set–which would determine
which tags are included or excluded–indicating that only tests that match the requirements
will be executed.

A tag is just an object that extends from the abstract class Tag. The name of the tag is then
taken as the class name without any package namespace. For example, we can tag a test
with a database and operating system requirement:

 object ElasticSearch : Tag()

Testing in Kotlin

[334]

 object Windows : Tag()
 should("this test is tagged") {
 // test logic
 }.config(tags = setOf(ElasticSearch, Windows))

If we were using Gradle, we could execute only these tests using the following command:

gradle test -DincludeTags=Windows,ElasticSearch

If we want to exclude any test that requires Windows, because we want to run a Linux
build job, then we could use the following command:

gradle test -DexcludeTags=Windows

If you set both the include and exclude properties, then only tags that match both the sets of
requirements will be run. If the runtime properties are omitted entirely, then all the tests
will be executed, which is the normal mode.

Because the simple name of the tag is used, if you define multiple tags
with the same name in different packages, they will appear as the same
tag to KotlinTest.

One instance
Sometimes, you may wish to have a fresh instance of a test class for each test that is
executed. Perhaps you have some initialization code outside of the init {} block and want
this to be reset for each test. An easy way to do this is to just have KotlinTest instantiate a
new instance of the class.

To do this, simply override the oneInstancePerTest property and set it to true:

 class OneInstanceOfTheseTests : ShouldSpec() {
 override val oneInstancePerTest = true
 init {
 // tests here
 }
 }

Testing in Kotlin

[335]

Resources
One final neat feature of KotlinTest is the ability to automatically close resources once all
the tests are completed. This is essentially a shortcut to writing an interceptor and closing
them yourself, and is useful if all you need to do is ensure that some handle is closed:

 class ResourceExample : StringSpec() {
 val input = autoClose(javaClass.getResourceAsStream("data.csv"))
 init {
 "your test case" {
 // use input stream here
 }
 }
 }

The usage is straightforward. Simply wrap the resource, such as the input stream in this
example, with the autoClose function. Regardless of the outcome of the tests, the resources
will be properly shut down.

Summary
This chapter focused on how Kotlin can be leveraged to write cleaner and more readable
tests. We saw the popular KotlinTest framework in action and how it can be extended to fit
your use cases. KotlinTest is continually being improved, so it is worth checking out the
readme files on the GitHub website for new features that have been added since the date of
its publication.

12
Microservices with Kotlin

Kotlin is not meant to be used only for Android development. There is a lot of back-end
code out there, all written in Java, and nothing should stop you adding Kotlin into the mix
whenever you have to add new functionality. Don't get locked into Java as your only option
when it comes to deciding on the JVM language to be used in your new project. When your
new microservices-oriented system gets the green light for you to start coding, why not
actually rely on Kotlin?

This chapter is not meant to be a deep dive into the realm of designing microservices, but
rather a brush up on the terminology. There is a lot of documentation written on the topic of
microservices and you might have already been exposed to the principles; however, I
encourage you to read Reactive Microservices Architecture: Design Principles for Distributed
Systems by Jonas Bonér. The book can be obtained for free in pdf format from O'Reilly, so
thank you to Jonas (h t t p s ://i n f o . l i g h t b e n d . c o m /C O L L - 20X X - R e a c t i v e - M i c r o s e r v i c e s -

A r c h i t e c t u r e - R E S - L P . h t m l) .

In this chapter you will learn:

What microservices architecture is
Why you would use such an approach and what are the drawbacks
Setting up a Lagom maven project to allow coding with Kotlin
Defining Lagom services
Running a Lagom dev cluster

https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html
https://info.lightbend.com/COLL-20XX-Reactive-Microservices-Architecture-RES-LP.html

Microservices with Kotlin

[337]

Definition
The way we design and build software has changed in the past few years. We are
developing software designed to run in the cloud and it is driven by fast-changing business
needs. If you are already familiar with this world, you will recognize some of the drivers
behind the approach we take these days:

There is a demand for reducing the costs while still improving performance
You have to continuously deliver new functionality to meet business growth, and
the turnaround needs to be fast
The software has to reach customers around the globe and cope with the high
demand it might produce while running at such a scale

To see a definition of what microservices are and how we arrived at such principles, let's do
an exercise. Imagine you had the amazing idea of Airbnb, and there wasn't anything like it
on the market. Now you are in the position to define a high-level view of your system
architecture. Taking a very simplistic approach, you might produce something similar to
this:

Monolithic system design

Microservices with Kotlin

[338]

I am sure you have identified the typical three-tier-level design:

UI layer
Domain/business layer
Storage layer

Initially this could easily prove to be the right solution, since you can package and deploy
the application as one. You can even run multiple instances of it once you have configured a
load balancer. It all sounds easy and right… at the beginning. But your idea is revolutionary
and your business grows exponentially. If you are curious, I suggest you do a quick search
on Airbnb customer-base growth. Seeing the impressive figures, you will understand that if
you achieve such success, you have to push out more and new functionality to cope with
the demand. As you do that, your lines of code count will grow considerably and with that
the complexity of your software. Before you know it, you will start to pay the cost. Fixing
bugs and adding functionality will prove to be more and more challenging. Your
development speed will suffer and, since you own the business, you won't be impressed;
and of course your revenue won't reach its maximum potential. Your deployment will also
take longer because your application will most likely take longer to start, and therefore your
continuous delivery will be affected considerably. Then think about reliability. You have all
your modules running under the same process. While it is certainly advantageous to some
degree, all it takes is a memory leak in one of the modules to bring your entire system
down. I do not need to tell you how annoying it is to see service unavailable if you are sitting
in the customer's position. One of the other big downsides of this monolithic approach is
refactoring. Having to upgrade or even replace a framework may prove to be quite a task;
most likely it will impact the whole application and it will require full testing as well.

This is where the new approach of microservices is helping. The idea is quite simple and
some people will argue microservices is just a buzzword for what is already known as
Service Oriented Architecture (SOA). The design principle for SOA is driven by these four
tenants:

Boundaries are explicit
Services are autonomous
Services share schema and contract, not class
Service compatibility is based on policy

In the next two paragraphs we will define the principles for microservices and you will
notice the real difference to SOA lies in the size and scope of your services.

To avoid pain down the road, you are supposed to split your application into many small
services, each one focusing on a specific functionality; the services will interact with each
other in order to provide all of the business requirements.

Microservices with Kotlin

[339]

There isn't a bog-standard definition for microservices; searching the Internet will give
various definitions of what they are and what they do. But all of them share some common
ground:

Can be developed in the language of choice and use the framework of choice
Communicate between themselves using a well-defined protocol and over an
established set of interfaces
Provide for one business scenario only
Can be independently versioned
Can be independently deployed and upgraded
Can be scaled out
Can hold a state, if required
Are resilient to failures
Report the current state, metrics, and diagnostics

Putting all the above together will give you an idea of what microservices are.

Now we have covered the definition of microservices, let's revisit our earlier high-level
diagram for an Airbnb-like system. The following is one approach for breaking down the
monolithic app into smaller pieces:

Microservices architecture

Microservices with Kotlin

[340]

You might have noticed the earlier database storage has been left out. There is a reason for
it. To ensure a loose coupling between your microservices, having a database schema per
service is the way to go. This way you can't have an application-wide data model and you
will end up duplicating data for sure. But there are a few reasons as to why you would
want to do something like this. They are a consequence of not having tightly coupled
components. This way, each service can work with their own database instance (to the
extreme) and it doesn't have to be of the same database type. You can have the customer
and host services working with a database such as MongoDB or RethinkDB, while the
payments service can rely on a MySQL database. Evolving a database schema will have no
impact on another service. This will add more complexity to the DevOps side by having to
maintain more than one database instance.

Many references about a microservices architecture will talk about having an RPC (remote
procedure call) as the means of communicating between services. RPCs are meant for inter
process communications. RPC enables applications to call functions remotely and they can
operates between processes on a single computer or on different computers on a network. A
typical approach is where each component has an exposed REST endpoint, which can be
called in order to trigger a set of actions. As your system grows in complexity, you will
easily end up with spaghetti-like data pipelines. If you are familiar with the Kafka
framework you will know the challenges LinkedIn faced and the reasons why it was built.
If this is not something you are familiar with, please have a quick read or listen to some of
the talks from Jay Kreps.

Drawbacks
No technology is perfect and using microservices has its drawbacks. As one would say,
there are no silver bullets.

We mentioned that microservices have their own database schema. Therefore, you can't
have transactional updates for your domain models like you usually do when dealing with
a monolithic application using one database. Your system will eventually end up being
consistent and that comes with its own bag of challenges.

Implementing a change that will end up touching more than one service has its own
complexity. In a monolithic application, these things are quite straightforward. All you have
to do is change the modules required and then deploy all of them in one go. But for a
distributed microservices system, where there are dependencies between services, you need
to plan the upgrade. You will end up deploying the service that all the other ones depend
upon first and then repeat this step until the last required service is upgraded. Luckily, such
changes are not very common. Usually the changes are self-contained to one service only.

Microservices with Kotlin

[341]

Since we are on the subject of deploying, let's expand a bit more on the drawbacks of a
system with a microservices architecture. Deploying a monolithic application is quite
simple since it involves distributing the build artefacts and, if high availability is a
requirement, then you would do that on a set of servers that have a load balancer in front of
them. Things are a lot different for a system consisting of many separate services. Some of
the well-known applications have different services in the hundreds, and each of the
services has multiple instances to ensure high availability. To configure, deploy, scale, or
monitor requires more deployment control and a higher level of automation. To achieve
this automation, you might go with a PaaS solution, or implement your own through the
combination of Docker and Kubernetes.

One other challenge for a microservices architecture comes when trying to test your
application. A monolithic app is easy to spin up, but for microservices things are slightly
different. In this case the tests need to launch the service and stub all its dependent services,
and, of course, that takes more effort from you, the developer.

These points should not disarm you and make you avoid a microservices architecture. The
benefits outweigh the challenges presented here. If the big names are doing it, they must
know a thing or two. Uber didn't used to have a microservices architecture, but has slowly
moved in that direction to cope with its business demands. So, plan well at the beginning to
ensure the architecture empowers your business to thrive as opposed to being a bottleneck
for its growth.

Why microservices?
While you might have been put off by the list of drawbacks presented earlier, you should
keep in mind that there are real benefits for taking this approach; and if it wasn't paying off,
people wouldn't do it.

One of the main benefits of a design like this is breaking down the complexity of a
monolithic application. It will end up providing a finite set of services allowing one to
achieve the same functionality while having code that is easier to understand, maintain, and
evolve.

You will find that with the microservices approach you are not restricted to a specific
technology and language. Because a service can be developed independently by one team,
its members get to decide on the tech stack that makes the most sense for the problem at
hand. How many times did you want to use a newer framework and/or language because it
adds value, but you have been stuck with a framework or language that is old because the
cost of change is so high that it is not justified?

Microservices with Kotlin

[342]

A microservices design supports continuous deployment. A microservice can be deployed
independently. As soon as changes have been tested, they can be shipped to production.
Because deployment is isolated, you can have many upgrades during the day without even
stopping your application.

To achieve throughput, each microservice can be scaled independently. Furthermore, the
server hosting your service can be configured based on the resources required. If your
service is memory hungry, you can have a machine with a lot more RAM than CPUs and
vice versa, thus optimizing your costs.

There are other reasons why you would design your system using microservices principles,
but it is for you to go and read more in-depth papers about the subject. At least, by now,
you should see the value added by the approach.

Lagom
Lagom is a new JVM framework from Lightbend for writing microservices. This is a new
open-source framework released at the beginning of 2016. At the time of writing this book,
version 1.2 is out. You can find the source code on GitHub h t t p s ://g i t h u b . c o m /l a g o m /l a

g o m . From there you can navigate to the framework website, which contains more details
and its documentation.

Lagom comes with support for four main features: Service API, Persistence API,
Development Environment, and Production Environment.

Through Service API you declare and implement the services to be consumed by the clients.
A service-locator component allows the services to be discovered. Furthermore, the API
allows for a synchronous request-response protocol as well as asynchronous streaming.

The Persistence API provides support for persisting your domain entities in your services.
Lagom takes care of the distribution of those persisted entities across a cluster of nodes,
enabling sharding and horizontal scaling with Cassandra database out-of-the-box. Nothing
is stopping you from plugging in your own required storage type. The term sharding, for
those who have never came across it before, is a way of partitioning the data for a database
over multiple machines. The reason for this is to spread the load and achieve linear scaling
in order to meet the performance requirements.

The Development Environment allows the running of all your services and the supporting
Lagom infrastructure through the use of one command. With Lagom, a developer can bring
up a new service or join an existing Lagom development team in just a few minutes.

https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom
https://github.com/lagom/lagom

Microservices with Kotlin

[343]

Lagom provides out-of-the-box support for Production Environment through Lightbend
ConductR, which allows the simple deployment, monitoring, and scaling of Lagom services
in a container environment.

Lagom has full support for two of the build tools available on the market: SBT and Maven.
Since SBT is not everyone's cup of tea, we will be focusing on Maven. The easiest way to get
started and learn about Lagom is to make use of the Maven archetype plugin to generate a
basic project. Once you grow accustomed to the layout and dependencies, you can create
the pom file yourself. Since there is no support for a Kotlin-based project yet, we will have to
start with a Java-based project and then amend the pom to enable Kotlin. It is expected that
you already have Apache Maven installed on your machine. If not, please follow the
instructions on the Apache Maven website to get it installed.

From your terminal window, type the following command:

mvn archetype:generate -DarchetypeGroupId=com.lightbend.lagom \ -
DarchetypeArtifactId=maven-archetype-lagom-java -DarchetypeVersion=1.2.0

This will prompt you to provide GroupId (com.programming.kotlin), ArtifactId
(chapter12), and version (left blank). Once you have run this, you should see the
following folder layout structure:

Modules layout

Microservices with Kotlin

[344]

Next we need to add the Maven plugin for the Kotlin compiler. Chapter 1, Getting started
with Kotlin, has already covered this, so let's go and modify the pom file accordingly.

For this project, Kotlin 1.1-M04 will be used. This is the latest release for version 1.1 at
the time this is written. If you attempt to use it with any of the 1.0.x versions, it won't work
since Java 8 support comes only with the 1.1 version. You might know by now that this
version comes with a bag of improvements and, most importantly, support for co-routines.
The C# developer in me misses this kind of functionality whenever I code for JVM. So, the
first thing you should do is add a new property in your pom file for the Kotlin version:

 <properties>
 ...
 <kotlin.version>1.1-M04</kotlin.version>
 <lagom.version>1.2.0</lagom.version>
 ...
 </properties>

The milestone builds are not stored in the default Maven repo, and we would need to add
them in order to get the dependencies resolved. The following needs to be added to the pom
file:

 <project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.programming.kotlin</groupId>
 <artifactId>chapter12</artifactId>
 <version>1.0-SNAPSHOT</version>

 <packaging>pom</packaging>

 <pluginRepositories>
 <pluginRepository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>bintray-kotlin-kotlin-dev</id>
 <name>bintray</name>
 <url>http://dl.bintray.com/kotlin/kotlin-dev</url>
 </pluginRepository>
 </pluginRepositories>

 <repositories>
 <repository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>bintray-kotlin-kotlin-dev</id>
 <name>bintray</name>

Microservices with Kotlin

[345]

 <url>http://dl.bintray.com/kotlin/kotlin-dev</url>
 </repository>
 </repositories>
 ...

Next, we need to enable the Kotlin compiler and allow the Java compiler to run after during
the Maven build. Hence, the following changes have been made to the pom file. Please
revisit Chapter 1, Getting started with Kotlin, for more details on why this is required.

 <build>
 <plugins>
 ...
 <plugin>
 <groupId>com.lightbend.lagom</groupId>
 <artifactId>lagom-maven-plugin</artifactId>
 <version>${lagom.version}</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 <compilerArgs>
 <arg>-parameters</arg>
 </compilerArgs>
 </configuration>
 <executions>
 ...
 </executions>
 </plugin>
 </plugins>
 ...

Don't worry about typing this in yourself. You will find it all in the source code
accompanying the book. Hopefully, soon we will see a Maven archetype template allowing
a Lagom project to support Kotlin.

So far, we can build the code and run the services. From the terminal, execute the following
to start all the services:

 mvn lagom:runAll

Microservices with Kotlin

[346]

This will compile the code, run the tests, and start all the services. We will cover each one in
a moment. To validate all of them is fine, and to run this you should type
localhost:9000/api/hello/World into your browser and you will see Hello,
World printed on the screen. There are two endpoints for /api/hello, as you will find out
later. To verify the HTTP POST works, fire off this curl command:

curl -H "Content-Type: application/json" -X POST -d '{"message":"Hi"}'
http://localhost:9000/api/hello/Gabriela

Since we enabled Kotlin, we might as well translate the code from Java to Kotlin. Let's start
with the hello-api project and the GreetingMessage class. First you need to create a
kotlin folder, a sibling of the Java one, which will contain the Kotlin source files. Next,
add the following package to the newly created folder:
com.programming.kotlin.chapter12.hello.api. Create a new Kotlin file and paste in
the following code, while commenting out the corresponding Java file:

 @JsonDeserialize data class GreetingMessage(val message: String)

Immutable classes are important for Lagom and there are a few places where they need to
be used:

Service request and response types
Persistent entity commands, events, and states
Publish and subscribe messages

If you are using Java and you want the boilerplate code handled, you would need to use
and set up the Immutables tool (h t t p ://i m m u t a b l e s . g i t h u b . i o /). But, luckily, Kotlin
does allow us to quickly create an immutable class with all the equals, hashCode and
toString generated for us out of the box. Remember, if an immutable class contains a
member which is a collection, this collection needs to be immutable if the class provides a
getter for it and otherwise the immutability guarantee is broken. As you know already,
Kotlin offers support for immutable collection in the standard library, so it's very easy to
provided a proper immutable class even if contains a collection.

Next, let's translate the HelloService.java to Kotlin:

 interface HelloService : Service {
 fun hello(id: String): ServiceCall<NotUsed, String>

 fun useGreeting(id: String): ServiceCall<GreetingMessage, Done>

 override fun descriptor(): Descriptor {
 val helloCall: (String) -> ServiceCall<NotUsed, String> = {
this.hello(it) }

http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/
http://immutables.github.io/

Microservices with Kotlin

[347]

 val helloGreetings: (String) -> ServiceCall<GreetingMessage, Done>
= { this.useGreeting(it) }

 return named("hello")
 .withCalls(
 pathCall("/api/hello/:id", helloCall),
 pathCall("/api/hello/:id", helloGreetings))
 .withAutoAcl(true)
 }
 }

Now let's move our focus to the hello-impl project and provide the Kotlin
implementation for HelloServiceImpl class (you need to comment out the Java
implementation generated for you):

 class HelloServiceImpl
 @Inject
 constructor(private val persistentEntityRegistry:
PersistentEntityRegistry) : HelloService {
 init {
 persistentEntityRegistry.register(HelloEntity::class.java)
 }

 override fun hello(id: String): ServiceCall<NotUsed, String> {
 return ServiceCall<NotUsed, String>{
 val ref =
persistentEntityRegistry.refFor(HelloEntity::class.java, id)
 ref.ask<String, Hello>(Hello(id, Optional.empty<String>()))
 }
 }

 override fun useGreeting(id: String): ServiceCall<GreetingMessage,
Done> {
 return ServiceCall<GreetingMessage, Done>{
 val ref =
persistentEntityRegistry.refFor(HelloEntity::class.java, id)
 ref.ask<Done, UseGreetingMessage>(UseGreetingMessage(it.message))
 }
 }
 }

If you are running mvn lagom:runAll in your terminal, you will see every code change is
picked automatically. The Maven Lagom plugin is responsible for watching file changes
and recompile your code automatically. With the preceding code changes, you will see that
there is now an error as it tries to launch the services again:

Error in custom provider, java.lang.IllegalArgumentException:

Microservices with Kotlin

[348]

Service.descriptor must be implemented as a default method
 at
com.lightbend.lagom.javadsl.server.ServiceGuiceSupport.bindServices(Service
GuiceSupport.java:33) ...
Caused by: java.lang.IllegalArgumentException: Service.descriptor must be
implemented as a default method at
com.lightbend.lagom.internal.api.ServiceReader$ServiceInvocationHandler.inv
oke(ServiceReader.scala:280)

The code where the exception is thrown first checks to see if the descriptor method has a
Java 8 interface default method, and if not, checks if it has been created with Scala (Lagom is
written in Scala and on top of the Akka framework). Unfortunately, the Java 8 interop
coming next to Kotlin is not yet perfect and it doesn't handle default interface methods.
There is no way to tell the compiler the descriptor method in the earlier code should be
compiled as a Java 8 default method. So, for the time being, we have to rely on Java to
define the service interface. Hence, if you uncomment the Java code for HelloService and
remove the Kotlin implementation, you will be able to get the environment up and running
again.

The api-impl project is next in line to have its code translated to Kotlin. Most of the code is
quite straight forward to change. It ends up reducing the number of lines of code quite a bit.
Below, you will see the listings of the new files for HelloCommand, HelloEvent,
HelloState:

 //HelloCommand.kt
 interface HelloCommand : Jsonable

 @JsonDeserialize data class UseGreetingMessage @JsonCreator
constructor(val message: String) : HelloCommand, CompressedJsonable,
PersistentEntity.ReplyType<Done>

 @JsonDeserialize data class Hello @JsonCreator constructor(val name:
String, val organization: Optional<String>) : HelloCommand,
PersistentEntity.ReplyType<String>

 //HelloEvent.kt
 interface HelloEvent : Jsonable

 @JsonDeserialize data class GreetingMessageChanged @JsonCreator
constructor(val message: String) : HelloEvent

 //HelloState.kt
 @JsonDeserialize data class GreetingMessage @JsonCreator
constructor(val message: String)

Microservices with Kotlin

[349]

The HelloEntity class is slightly more challenging to convert. The editor doesn't do a
great job when converting the Java code to Kotlin. It ends up producing code that doesn't
compile. Because it is trickier to convert from Java (the editor is misleading as it falsely
highlights errors), we are listing it next. At the time of writing these lines, Kotlin 1.1 hasn't
been released and the IDE is not fully compatible with the upcoming version. I am sure by
the time you read these lines it will all be sorted out.

 class HelloEntity : PersistentEntity<HelloCommand, HelloEvent,
HelloState>() {

 override fun initialBehavior(snapshotState: Optional<HelloState>):
PersistentEntity<HelloCommand, HelloEvent, HelloState>.Behavior {

 val b = newBehaviorBuilder(snapshotState.orElse(HelloState("Hello",
LocalDateTime.now().toString())))

 b.setCommandHandler(
 UseGreetingMessage::class.java,
 { cmd, ctx ->
 ctx.thenPersist(
 GreetingMessageChanged(cmd.message),
 { evt -> ctx.reply(Done.getInstance()) })
 }
)

 b.setEventHandler(GreetingMessageChanged::class.java,
 { evt -> HelloState(evt.message, LocalDateTime.now().toString())
}
)

 b.setReadOnlyCommandHandler(Hello::class.java,
 { cmd, ctx -> ctx.reply(state().message + ", " + cmd.name + "!")
}
)

 return b.build()
 }
 }

You should be able to handle the rest of the conversions yourself; you can always cross
check with the source code provided for this chapter.

Before moving on, fire the curl command mentioned earlier in the chapter to do a post on
the /api/hello. You will notice it will now throw an exception because it can't map the
JSON payload to the GreetingMessage class. This happens even despite of adding the json
annotations to the class. We need to handle the serialization and deserialization ourselves.

Microservices with Kotlin

[350]

First, we need to add the Jackson Kotlin (offers one of the best support for JSON for the
JVM) library module dependency to the hello-api project. We are using version 2.7.8
because this is the version Lagom uses for core Jackson library:

 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-kotlin</artifactId>
 <version>2.7.8</version>
 <exclusions>
 <exclusion>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-stdlib</artifactId>
 </exclusion>
 <exclusion>
 <groupId>org.jetbrains.kotlin</groupId>
 <artifactId>kotlin-reflect</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

The next step is to create an instance of the ObjectMapper via the singleton pattern:

 object Jackson{
 val mapper: ObjectMapper = {
 ObjectMapper().registerKotlinModule()
 }()
 }

To support the GreetingMessage class serialization, a class-inheriting
StrictMessageSerializer must be provided. The code is straight forward, as you can
see here:

 class GreetingMessageSerializer :
StrictMessageSerializer<GreetingMessage> {

 internal var serializer:
MessageSerializer.NegotiatedSerializer<GreetingMessage, ByteString> =
object : MessageSerializer.NegotiatedSerializer<GreetingMessage,
ByteString> {
 override fun protocol(): MessageProtocol {
 return MessageProtocol().withContentType("application/json")
 }

 @Throws(SerializationException::class)
 override fun serialize(messageEntity: GreetingMessage): ByteString
{
 return

Microservices with Kotlin

[351]

ByteString.fromArray(Jackson.mapper.writeValueAsBytes(messageEntity))
 }
 }

 internal var deserializer =
MessageSerializer.NegotiatedDeserializer<GreetingMessage, ByteString> {
 bytes ->
Jackson.mapper.readValue(bytes.iterator().asInputStream(),
GreetingMessage::class.java)
 }

 override fun serializerForRequest():
MessageSerializer.NegotiatedSerializer<GreetingMessage, ByteString> =
serializer

 @Throws(UnsupportedMediaType::class)
 override fun deserializer(protocol: MessageProtocol):
MessageSerializer.NegotiatedDeserializer<GreetingMessage, ByteString> =
deserializer
 @Throws(NotAcceptable::class)
 override fun serializerForResponse(acceptedMessageProtocols:
List<MessageProtocol>):
MessageSerializer.NegotiatedSerializer<GreetingMessage, ByteString> =
serializer
 }

To let the framework use this class, the HelloService descriptor code needs to be
amended to map the class to the serializer-deserializer. The documentation for Lagom
provides a detailed view on how you can provide your own custom serialization; if you
want to know more please read the documentation.

 @Override
 default Descriptor descriptor() {
 return named("hello").withCalls(
 namedCall("hi", this::sayHi),
 pathCall("/api/hello/:id", this::hello),
 pathCall("/api/hello/:id", this::useGreeting)
).withAutoAcl(true)
 .withMessageSerializer(GreetingMessage.class, new
GreetingMessageSerializer());
 }

Now we are in a position where we can say we have full support for a Lagom-based project
using Kotlin. You can re-launch the services via the maven command and check they are
running.

Microservices with Kotlin

[352]

Defining services
When writing your project, you should adhere to best practices and standards. A service
interface should always be placed in a *-api project. You can see the HelloService
interface follows the same rule. The requirement is for your service interface to extend the
Lagom service interface and provide a default implementation for the descriptor method.
The descriptor is responsible for mapping the service to the underlying transport protocol.

 public interface HelloService extends Service {
 ServiceCall<NotUsed, String> hello(String id);
 ServiceCall<GreetingMessage, Done> useGreeting(String id);

 @Override
 default Descriptor descriptor() {
 return named("hello").withCalls(
 pathCall("/api/hello/:id", this::hello),
 pathCall("/api/hello/:id", this::useGreeting)
).withAutoAcl(true);
 }
 }

This is quite a simple description of a service exposing two service calls: hello and
useGreeting. Both methods return an instance of a ServiceCall representing the handle
to the method call that can be invoked when consuming the service. The definition of the
ServiceCall is as follows:

 interface ServiceCall<Request, Response> {
 CompletionStage<Response> invoke(Request request);
 }

This interface definition is simple and, as you can see, it encapsulates the concept of the
request-response paradigm.

A service implementation should be agnostic to what transport protocol is used. In the code
generated, the protocol is HTTP; however, nothing is stopping you from changing that to
WebSockets or any other one that better suits your needs.

Each call to a service needs to carry an identifier. This identifier will map the call to the
appropriate method on the interface. These identifiers can take the form of static names or
paths (as we have seen in the code generated), but they can carry dynamic parameters that
are handed over to the service call methods.

Microservices with Kotlin

[353]

The simplest identifier is the one defined via namedCall method – as the naming suggests,
you label your service call. Let's extend HelloService to include such a call. The sayHi
method has been added to the interface, and this time the code is using namedCall instead
of pathCall:

 public interface HelloService extends Service {
 ServiceCall<NotUsed, String> sayHi();
 ...
 @Override
 default Descriptor descriptor() {
 return named("hello").withCalls(
 namedCall("hi", this::sayHi),
 ...
).withAutoAcl(true);
 }
 }

Now the HelloServiceImpl class needs to be updated to provide the implementation for
sayHi:

 override fun sayHi(): ServiceCall<NotUsed, String> =
ServiceCall<NotUsed, String>{
 completedFuture("Hi!")
 }

Once the has been recompiled, you should be able to paste the following URL:
http://localhost:9000/hi into your browser and see the text Hi! on the screen.

The template project has used path-based identifiers – you can see that in the
HelloService code snippet preceding. This type of identifier uses a URI path and query
string to route calls, and can optionally provide parameters that can be extracted out. If you
have worked with a REST service, you will be familiar with the concept. Say you are
working on a health insurance system and you want to be able to return the customers for
an insurance policy. Your service definition will probably look like this:

 ServiceCall<NotUsed, PSequence<Customer>> getDependents(long
policyHolderId, int pageNo, int pageSize);

 default Descriptor descriptor() {
 return named("customers").withCalls(
 pathCall("/customer/:policyHolderId/dependencies?pageNo&pageSize",
this::getDependents)
);
 }

Microservices with Kotlin

[354]

Lagom framework will make sure your service method map to the appropriate REST
method types. Type http://localhost:9000 into your browser and you will get a list of
all the endpoints available:

GET \Q/hi\E Service: hello (http://0.0.0.0:57797)1.
GET \Q/api/hello/\E([^/]+) Service: hello (http://0.0.0.0:57797)2.
POST \Q/api/hello/\E([^/]+) Service: hello (http://0.0.0.0:57797)3.
GET \Q/stream\E Service: stream (http://0.0.0.0:58445)4.

You can see both POST and GET are supported for the /api/hello path. You might wonder
where is that defined. This is provided by Lagom framework itself. It will look at the
ServiceCall definition and if the incoming parameter is not set to NotUsed, then it will
map the service call to the POST request type.

There is one last type of call identifier supported by the framework. These are REST call
identifiers and they offer you finer-grained definition of your service call mappings to REST
calls. Imagine you have a service to provide Create, Read, Update, and Delete (CRUD) for
a customer base. Then your service interface will take the following shape:

 ServiceCall<Customer, NotUsed> addCustomer(long customerId);
 ServiceCall<NotUsed, Customer> getCustomer(long customerId);
 ServiceCall<NotUsed, NotUsed> deleteCustomer(long customerId);

 default Descriptor descriptor() {
 return named("orders")
 .withCalls(
 restCall(Method.POST, "/api/customer", this::addCustomer),
 restCall(Method.GET, "/api/customer/:customerId/",
this::getCustomer),
 restCall(Method.PUT, "/api/customer/:customerId",
this::updateCustomer)
 restCall(Method.DELETE, "/api/customer/:customerId",
this::deleteCustomer)
);
 }

Microservices with Kotlin

[355]

You might have noticed in the descriptor definition the presence of NotUsed class. This
type instructs the framework that the incoming request parameter or outgoing response
object is not used. If you look at the definition for deleting a customer, you will notice both
the request and the response are not used. All the examples of code presented so far use
what is known as strict messages. A message is considered to be strict if it can be mapped to
a JVM class. There is also another type of message, which is stream. Streaming functionality
is built on top of Akka Streams API. You will recognize a stream message when you see the
usage of the type Source type. The API is offering an intuitive way of describing data-
stream processing setups, and can execute them efficiently and with bounded resource
usage.

 ServiceCall<String, Source<String, ?>> gbpToUsd()
 ServiceCall<Source<String, ?>, Source<String, ?>> chatRoom()

The first entry describes a unidirectional stream, whereas the second one is a bidirectional
one. By default, Lagom uses WebSockets to provide the transport layer for the data streams
but you are free to hook in your own transport mechanism. We are not going into the
details of Lagom streaming support, but you are more than welcome to go and learn more
using the documentation provided with the framework.

Implementing a Lagom service
We have seen already how to define a service. The next natural step is to implement the
service interface, and this is materialized in the hello-impl project. The
HelloServiceImpl class is responsible for implementing your API interface. We have seen
this throughout the code snippets listed earlier. One important thing to notice is that all the
methods don't actually execute the call, but rather return a method handle via the instance
of ServiceCall. The reason behind this approach is to allows function composition in
order to achieve a processing pipeline where authentication, authorization, logging, and
exception handling can easily be added.

Let's move the focus back to ServiceCall class. From the definition presented already,
you can see it takes a request object and returns a CompletionStage<Response>. This
container is nothing but a promise the API makes. At some point in the future, the
Response will be computed and therefore will be available to be consumed. Through the
API methods, thenApply and thenComponse, you can morph the response type. This will,
of course, yield another promise. The CompletionStage type and its methods allow you to
build reactive applications that are fully asynchronous. The simple implementation for the
sayHi method introduced earlier, should make more sense now.

Microservices with Kotlin

[356]

Once your service is implemented, you need to register it with the framework in order to
make use of it. Lagom is built on top of the Play framework, which allows you to build
scalable web applications using Java or Scala. By default, the framework uses Guice as the
dependency injection framework and therefore Lagom relies on it as well. This is why the
HelloModule class exists and it inherits both AbstractModule (a Guice-specific class) and
ServiceGuiceSupport (Lagom-specific).

 class HelloModule : AbstractModule(), ServiceGuiceSupport {
 override fun configure() {
 bindServices(serviceBinding(HelloService::class.java,
HelloServiceImpl::class.java))
 }
 }

The bindServices method can take multiple ServiceBinding instances. However, in the
example we have provided only one. But this should not stop you providing as many
service bindings as you require. But, make sure you only call bindServices once,
otherwise you will end up with a Guice runtime-configuration error.

When you start working with Lagom, you will come across the terms Event Sourcing (ES)
and Command Query Responsibility Segregation (CQRS). Before defining what ES is, let's
see the basic traits of an event:

It represents a business action. Think about booking a flight; you would say, “the
seat on flight BA0193 was booked by Alex Smith.”
It carries some description information with it. Carrying on with the example
earlier, the you attach data to your event in the form of your personal
information, baggage allowance, flight dates, and so on.
It is an immutable, one-way messages. A publisher, in this case the booking
website, will broadcast the message and N number of subscribers will receive it.
It happened in the past. When you describe an event, you will always use the
past tense.

ES is an approach for persisting your application state by storing the history that
determines its current state. Caring on with the example of buying a flight ticket, the
booking system will track the number of completed bookings for the flights involved and
the remaining available seats. There are two options for tracking available seats: either start
with the total available and decrease this number until it reaches zero, or always sum the
existing bookings to see if it has reached the maximum number of seats available on the
aircraft.

Microservices with Kotlin

[357]

You might ask yourself what is the benefit of ES, other than building the audit trail for all
your data. If you are developing software for a financial institution, this is already an
important gain. However, there are other benefits as well:

Performance: Since the events are immutable, the write can make use of append-
only mode, thus making them faster to store. But you must pay attention using
this approach because you need to recreate the application state by walking
through all the records. That could be costly and is sometimes unacceptable,
however there are ways to overcome the drawbacks.
Simplicity: Storing events could save you the complexity of having to deal with
complex domain models.
Data replay-ability: You have your sequence of events and any bug, let's say
some aggregated value is wrong, can be fixed by walking through the data
stored and applying the new codebase.

Of course, ES comes with its own challenges. You need to make sure your system can cope
with multiple versions of a given message/event type. Then how would you handle
complex queries. Imagine a system like Airbnb, one question you might want to answer is:
What are all the bookings made for Rome for July 2015 with a price per night higher than
100 euros? This is where CQRS will come into play.

CQRS is a pattern that originated in the Domain Driven Design (DDD) pattern. DDD is an
approach for designing complex systems with ever-changing business rules; you analyse
the domain problem to produce a conceptual model, which becomes the basis of your
solution.

We will not go into the depths of DDD (it goes far beyond the scope of this chapter), but we
will define a few specific terms that you will come across while working with Lagom. While
defining your domain model, you will use the following terms:

Entities: Objects that can be described by an identity that will never change. Your
flight booking reference is one of these.
Value-objects: Not all your objects can be entities. For these objects, the value of
their attributes is important. For example, the flight booking system doesn't have
to provide a unique identifier for the customer's address.
Services: You can't model everything as an object. The payment system will most
likely rely on third-party payment processing. Most likely you will build a
stateless service, which is responsible for passing all the information required by
the third party to process the payment.

Microservices with Kotlin

[358]

In the DDD world, the term aggregate defines a cluster of entities and value objects
which form a consistency boundary within the system. The entities and value objects are
related to each other.

The access to the objects within an aggregate must go through an aggregate root.
This basically becomes the gatekeeper. Through the aggregates, DDD describes and
manages the set of type relationships part of a typical domain model.

Going back to the CQRS pattern, its goal is to allocate the responsibility for modifying and
querying your different object types. It ends up creating a write and a read model. Since
the objects have a single responsibility, either to modify or read data, it will make your code
a lot simpler and easier to maintain.

Now that we have the context covered, we can talk in more detail about persisting entities.
In the source code generated you get the HelloEntity class derived from
PersistentEntity, a base class providing never-changing identifier. Through this
identifier, any object can be accessed. Behind the scenes, the framework uses ES to persist
the entity. Of course, all state changes are recorded in the sequence they appeared by
appending them to an event log. A persistent entity is the equivalent of the aggregate root
we discussed earlier.

Interacting with a PersistentEntity comes in the form of a command message. These are
messages you send and they get processed one by one. A command message could result in
a state change, which is then recorded:

 b.setCommandHandler(UseGreetingMessage::class.java, {
 cmd, ctx -> ctx.thenPersist(GreetingMessageChanged(cmd.message), {
 evt -> ctx.reply(Done.getInstance()) })
 })

You should provide a command handler for each message type. In this case, we have only
one. Each command handler is responsible for returning a Persist instance, which
describes what event(s) to persist if there is such requirement. The code sample is
instructing the persistence for only one event; however, there is support for persisting more
than one event through thenPersistAll.

If the incoming message is not correct, you can reject it by using ctx.invalidCommand or
ctx.failedCommand. For example, if the GreetingMessage has an empty message field
you would want to reject the command.

Microservices with Kotlin

[359]

Not all the messages end up modifying the state. This is specific to query messages. In this
case, you will use setReadonlyCommandHandler to register your command handler:

 b.setReadOnlyCommandHandler(Hello::class.java,{
 cmd, ctx -> ctx.reply(state().message + ", " + cmd.name + "!") })

Once the event has been stored, the current entity store is updated by combining the current
state with the incoming event. You will use setEventHandler to register your handler,
which should return a new immutable state. PersistentEntity provides a state method
to get your latest entity's state. You should provide a state event handler for each command
message type. In the code example, there is only one message type and all it does is
retain the latest message and the time it was received:

 b.setEventHandler(GreetingMessageChanged::class.java, {
 evt -> HelloState(evt.message, LocalDateTime.now().toString())
 })

Normally, you would run a few instances of your service and each entity would be located
automatically to one of the nodes. If a node is going down, then those entities allocated to it
will be rerouted to another working node. One good thing is that a command producer
doesn't have to know about the actual location. The framework will take care of routing it to
the appropriate node. For optimization purposes, the framework will cache the entity and
its state if is used, and will release the resources after it hasn't been accessed for a given time
window. When an entity is loaded, it might replay all the events ever stored or use a
snapshot approach to get its latest state.

Summary
In this chapter, you have learned how a microservice architecture recommends building a
system as a collection of small and isolated services, where each service owns its own data
and can be independently scaled to provide resilience to failure. These services interact with
each other to form a cohesive system. This chapter was a quick introduction to Lagom,
which is the new framework for developing reactive microservices on the JVM. There is far
more to talk about when it comes to Lagom. It is a book on its own. Hopefully, this quick
introduction has given you the appetite to go and learn more about it. You have seen how
to enable Kotlin for the Lagom project, and now you can go on and utilize all the benefits of
Kotlin to more quickly develop your next distributed system.

Microservices with Kotlin

[360]

The last chapter of this book will be an introduction to concurrency. It will go over the
terminology and how concurrency common problems can be solved in Kotlin. You will get
to read about Akka and discover what it is and how it helps with concurrency and of course
how they integrate with Kotlin.

13
Concurrency

You've most likely heard of Moore's Law. In 1965, Gordon Moore noticed that the number
of transistors that could be fit on a circuit board per square inch had doubled every year
since their invention. Moore's Law was the name given to the belief that this would
continue, albeit every 18 months. So far, this has been remarkably correct. The upshot is that
computers are getting faster and smaller, and they use less power; one example is the
ubiquity of mobile phones.

However, nothing lasts forever. The exponential growth in the context of processing power
is already tailing off. If we are unable to continually make systems work faster by increasing
raw speed, we must look for an alternative.

One such alternative is to split programs into parts that could run concurrently and then
use multiple processors. Together, a collection of slower chips can perform as fast as one
faster chip as long as the programs are able to parallelize their code to take advantage. A
collection of chips on a single CPU is referred to as a multicore processor.

Structuring programs that allow them to be run concurrently requires new approaches and
techniques. Many of the ideas that underpin concurrency are not new and have been
around since the 1970s. What's new is that modern languages allow us to use these ideas
more easily than we can in lower level languages.

Concurrency is such a large subject that an entire book can be dedicated to it, so this chapter
focuses on a few key fundamentals. This chapter will cover the following topics:

Threading
Synchronization and monitors
Concurrency primitives
Asynchronous and non-blocking techniques

Concurrency

[362]

Threads
A thread is one of the most basic building blocks of concurrent code. It is a part of a
program that can execute threads concurrently to the rest of the code. Each thread can share
resources, such as memory and file handles. In a system that allows threading, each process
is divided into one or more threads. If the program was not written to use multiple threads
and run concurrently, then it is called a single thread process.

In a single CPU system, multiple threads are interleaved, with each thread receiving a small
amount of time called a quantum. This is called time slicing and happens so quickly that to
the user, it appears as if the threads are running in parallel. For example, one thread might
be updating a file while another is redrawing a window on the screen. To the user, they
appear in parallel but may only be running sequentially. It is the same principle that is
applied to running processes using the operating system scheduler.

When a thread expires, it's referred to as a time slice; when complete, the thread scheduler
switches the thread with another one. This is called a thread-context-switch and is
analogous to the context switch that the processes undergo. A thread context switch is more
lightweight than a full process switch. This is because threads share many resources, and
thus they have the data that needs to be saved and swapped out.

Concurrency is a general term that means two tasks are active and making
progress at the same time, whereas parallelism is a stricter term that
means two tasks are both executing at a particular instant. The two are
often used interchangeably, but true parallelism is the goal of concurrent
programming.

On a JVM, each Thread object has an associated state. A thread only has one state at a
particular time. These states are listed in the following table:

State Description

NEW The thread has been created but not yet started.

RUNNABLE A thread in this state is running from the point of view of the JVM. This
does not necessarily mean it is executing the programming, as it may be
waiting for a resource from the operating system, such as a time slice from
the processor.

BLOCKED A thread that is waiting to take ownership of a resource called monitor.

WAITING A thread that has entered a waiting state. In this state, the thread will not
be awakened until it has been notified by some other thread.

Concurrency

[363]

TIMED_WAITING This is the same as WAITING, except that the thread here will exit the
waiting state after a period of time has passed, if it has not already been
notified.

TERMINATED A thread that has exited.

Blocking
A thread that is running is consuming CPU resources. If a running thread is unable to make
progress, it means it is consuming resources that could ideally be allocated to another
thread that is ready to make meaningful use of the resource. An example would be a thread
that is reading data from a network. A wireless network could be as much as 1,000 to 10,000
times slower than reading from the RAM; therefore, the majority of the time, the thread will
simply be waiting for the network to deliver data.

In a naive threading implementation, the thread would keep looping, checking for the
presence of more bytes until the operation is completed or checking whether the thread has
expired its time slice. This is an example of busy-waiting, where although a thread is
technically busy (using CPU time), it is not doing anything useful.

In a JVM, we are able to indicate that a thread is currently unable to progress and thus take
it out of the set of threads that are eligible for scheduling. This is called blocking a thread.
The advantage now is that when a thread is blocked, the thread scheduler knows to skip it,
and so the thread won't waste CPU time busy-waiting.

Many I/O operations in the standard library perform the blocking operation, for example,
InputStream.read(), Thread.sleep(time), or ServerSocket.accept().

Creating a thread
Kotlin has an extension function to make the process of creating a thread very easy. This
top-level function, as part of the Kotlin standard library, is simply called thread. It accepts a
function literal to execute as well as several named parameters to control the setup of the
thread:

 thread(start = true, name = "mythread") {
 while (true) {
 println("Hello, I am running on a thread")
 }
 }

Concurrency

[364]

In the preceding example, we created a named thread that will begin executing
immediately. If we want to delay the execution of a thread until some time in the future, we
can store a handle in the thread instance and then call start:

 val t = thread(start = false, name = "mythread") {
 while (true) {
 println("Hello, I am running on a thread sometime later")
 }
 }
 t.start()

If you do not name a thread, it will have the default name supplied by the JVM.

Stopping a thread
A thread will naturally stop once the function literal is returned. To preemptively stop a
thread, we should not use the stop function available on the Thread class. This has been a
deprecated method for many years. Instead, we should use a condition that we could loop
on; alternatively, if your thread invokes blocking functions, use an interrupt and then allow
the function to return.

For the former, we declare a property, say a var named running, which we set to true.
Then, allow this variable to be mutated by whichever code needs to stop the thread. We
must ensure that the thread regularly checks the state of this variable; otherwise, the thread
might get into a state where it would never stop:

 class StoppableTask : Runnable {

 @Volatile var running = true

 override fun run() {
 thread {
 while (running) {
 println("Hello, I am running on a thread until I am stopped")
 }
 }
 }
 }

An important point to mention here is the use of the @Volatile
annotation on the state variable. This is crucial to ensuring that the state of
the variable is propagated between threads. Without the volatile
annotation, outside threads may set the variable to false; however, a
running thread may not see the change. This is part of the Java Memory

Concurrency

[365]

Model (JMM), which is out of the scope of this book. But if you are
interested, an Internet search for JMM will get you enough material to
have a good understanding.

If we have a thread that invokes blocking calls, then using a running variable alone will not
work as the thread may be blocked when we set running to false. Consider the following
example of a producer and consumer:

 class ProducerTask(val queue: BlockingQueue<Int>) {

 @Volatile var running = true
 private val random = Random()

 fun run() {
 while (running) {
 Thread.sleep(1000)
 queue.put(random.nextInt())
 }
 }
 }

 class ConsumerTask(val queue: BlockingQueue<Int>) {

 @Volatile var running = true

 fun run() {
 while (running) {
 val element = queue.take()
 println("I am processing element $element")
 }
 }
 }

The producer and consumer both share a queue. This queue is an instance of
BlockingQueue, which offers blocking functions for getting and putting values into the
queue — take() and put(), respectively. If there are no elements to take from the queue,
the thread will be blocked until one is available. Notice the thread sleep on the producer,
which is designed to slow the producer down. This is an example of slow-producer fast-
consumer.

To start the example, we create instances of the tasks and begin the execution of multiple
consumers and a single producer, each on their own thread:

 val queue = LinkedBlockingQueue<Int>()

 val consumerTasks = (1..6).map { ConsumerTask(queue) }

Concurrency

[366]

 val producerTask = ProducerTask(queue)

 val consumerThreads = consumerTasks.map { thread { it.run() } }
 val producerThread = thread { producerTask.run() }

 consumerTasks.forEach { it.running = false }
 producerTask.running = false

At some point in the future, we may decide to shut down the producer and the consumer.
We will do this using a control variable:

 consumerTasks.forEach { it.running = false }
 producerTask.running = false

Now let's imagine that one of our consumers was in the following state: it had called take,
but the queue was empty and now it is in the blocking state. Since the producer is now shut
down, it will never receive an item and so it will stay blocked. Because it stays blocked, it
will never check for the control variable and so our program will never exit normally.

Note that in this example, this problem only affects the consumer and not the producer
because the producer only ever blocks for a limited period of time and so will always wake
up to check the control variable.

Thread interrupts
To avoid these issues, we must perform an interrupt on the thread. An interrupt is a way of
forcing a thread that is currently blocked to wake up and continue. It literally interrupts the
thread. When this happens, the blocking function will throw an exception
InterruptedException, which must be handled. InterruptedException is your way
of knowing that the thread was interrupted.

Let's change our consumer to use interrupts:

 class InterruptableConsumerTask(val queue: BlockingQueue<Int>) :
Runnable {

 override fun run() {
 try {
 while (!Thread.interrupted()) {
 val element = queue.take()
 println("I am processing element $element")
 }
 } catch (e: InterruptedException) {
 // shutting down
 }

Concurrency

[367]

 }
 }

As you can see, the loop is now enclosed in a try...catch block; if caught, this allows the
run function to return normally, ending the thread. Notice that the infinite while loop has
become a while statement with a condition as well. The Thread.interrupted()
condition checks to see whether the thread has been interrupted since the last time the
function was invoked. This is required because if the thread was not currently blocked in
take(), when the interrupt had occurred, then no exception would be thrown and we
would not be able to exit. This is very important when using interrupts to handle both
cases.

To perform an interrupt, we call interrupt on an instance of Thread. Therefore, our
shutdown code needs to operate on the thread instances themselves and not the tasks:

 val queue = LinkedBlockingDeque<Int>()

 val consumerTasks = (1..6).map {
 InterruptableConsumerTask(queue)
 }
 val producerTask = ProducerTask(queue)

 val consumerThreads = consumerTasks.map {
 thread { it.run() }
 }
 val producerThread = thread { producerTask.run() }

 consumerThreads.forEach { it.interrupt() }
 producerTask.running = false

Notice that for the producer, we don't perform interrupt as the control variables work
fine.

CPU-bound versus I/O-bound
One common piece of terminology in the threading world is the concept of CPU-bound and
I/O-bound computations. This simply means that a particular task is dominated by either
the use of CPU or I/O, irrespective of whether it is a network, file, or whatever else. For
example, a CPU-bound computation is the one where you could calculate the digits of Pi.
An example of an I/O-bound computation is the one where you could download files from
the Internet and save them locally.

Concurrency

[368]

In the first example, we can make progress as fast as the CPU can process the math
operations. In the second example, we can only make progress as fast as the network can
supply us with bytes. The latter case would be much slower.

The concept is important when deciding how to split up executions into threads. Let's say
we had a thread pool of eight threads and we allocated this pool to both our CPU- and I/O-
bounded computations.

If this is the case, then it is possible we could have a situation where we could have all the
eight threads blocked on a slow network to deliver bytes while the the Pi calculation would
make no progress despite the CPU being idle.

A common solution to this is to have two thread pools. Have one for CPU-bound
operations, which might have its size limited to the number of CPU cores. And have
another pool for IO-bound operations, which would typically be larger since these threads
would often be in the blocked state, waiting on data.

Deadlocks and livelocks
When a thread cannot continue because it requires some resource that another thread has
ownership of, it blocks waiting for that resource. The thread that owns that resource in turn
requires something the first thread owns and so it blocks the initial one. Neither can make
progress, and this is called a deadlock.

If the resource is preemptable, then the operating system or virtual machine can take the
lock away from one of the threads and then another thread will be able to grab it; with this,
progress would be made eventually. This is not a deadlock. Also, the resources in question
must not be shareable, otherwise both threads could simply acquire the lock at the same
time, which would also not be a deadlock.

One way to avoid a deadlock is to ensure that threads request the ownership of a resource
in the same order. If we have threads t1 and t2 and they both require r1 and r2, then if they
always request lock(r1) followed by lock(r2), it is impossible to get into a situation where one
thread has r1 and another thread has r2. This is because the thread that gets the ownership
of r1 will block the other thread from requesting r2 until it itself has r1.

Concurrency

[369]

A livelock is a situation where threads are able to change their state but ultimately make no
progress. For example, if we had code to detect when a deadlock had occurred, one that
forced both the threads to release the locks, we could get into a situation where the threads
would continually re-request the locks in the same order as before, going back to the
deadlock state. Although the threads are moving between blocked and running and seem to
be doing something, they would ultimately not make any progress to complete their
computations.

It is important to consider deadlocks and livelocks when writing concurrent code to ensure
program correctness and performance. This is especially true since these kinds of bugs can
sometimes only appear when running on certain systems and under certain conditions, so it
might appear that the code is correct when what it really doing is harboring a subtle bug.

Dining philosophers problem
The dining philosophers problem is a classic in computer science. The problem was initially
stated by Edsger Dijkstra, famous for many contributions to software development. It is
often used to show how synchronization issues can result in a deadlock and that coming up
with a solution is not always simple.

The problem in its current form is stated like this. Imagine a table of five philosophers, each
sitting in front of a bowl of spaghetti. Placed between each philosopher is a fork, so each
one of them has access to two forks, one on either side of him or her. A philosopher can
think, eat, and move between these states at random. In order to eat, he or she must hold
both of their forks at the same time, but each fork can only be used by one philosopher at
any time. If a fork is not available — it is being held by another philosopher — then that
philosopher will wait until it is free, holding the other fork as soon as it becomes available.
It is assumed that the bowl would never empty and that the philosophers will always be
hungry.

To show that the obvious solution results in a deadlock, consider the following erroneous
solution:

Each philosopher should:

Think for a random period of time
Try to acquire the left fork, blocking until it is available
Try to acquire the right fork, blocking until it is available
Eat for a random period of time
Release both the forks
Repeat

Concurrency

[370]

This is erroneous because it is easy to get into a state where every philosopher has acquired
their left forks, which means no philosopher can then acquire their right fork (because every
right fork is another philosopher's left fork).

The problem can further be used as an example of a livelock. Imagine we enhance our first
solution with an extra rule: if the process of acquiring a fork is blocked for more than a
minute, all the forks should be dropped and the procedure should be restarted. Then no
deadlock is possible, as the system can always make progress (from being blocked back to
running). However, it is also possible that all the philosophers would acquire and drop the
forks at the same time, meaning they would continually move back to the blocking state.

Executors
Creating a thread manually is fine when we want a single thread to do some work, perhaps
a long-lived thread or a very simple one-off task that would run concurrently. However,
when we want to run many different tasks concurrently while sharing limited CPU time,
track the process of tasks in an easy way, or simply want to abstract how each task will run,
we can turn to ExecutorService; this is commonly called an executor as well. An executor
is part of the standard Java library.

An executor is a more generic interface with a single function run(). An
ExecutorService is a more fully featured interface and is usually the
abstraction used. It is common for people to use the term executor when
referring to either.

An ExecutorService is simply an object that executes submitted tasks while allowing us
to control the life cycle of the executor, that is, rejecting new tasks or interrupting already
running tasks. Executors also allow us to abstract the mechanism of allocating threads to
tasks. For example, we may have an executor with a fixed number of threads or an executor
that creates a new thread for each submitted task. Any task that is not currently executing
will be queued up internally in the executor.

Executors work with two main interfaces. The first, Runnable, is the most generic and used
interface when we just want to wrap some code to be able to run in an executor. The second,
Callable, adds a return value for when the task is completed. Since both of these are
single-abstract-method interfaces, we can just pass in a function literal in Kotlin.

Concurrency

[371]

The Java standard library comes with several built-in executors, created from helper
methods in Executors, that allow you to create custom executors very easily. The most
common executors used are Executors.newSingleThreadExecutor(), which creates an
executor that will process a single task at a time, and
Executors.newFixedThreadPool(n), which creates an executor with an internal pool of
threads running up to n tasks concurrently.

Let's see how to handle the life cycle of an executor:

 val executor = Executors.newFixedThreadPool(4)
 for (k in 1..10) {
 executor.submit {
 println("Processing element $k on thread
${Thread.currentThread()}")
 }
 }

In this example, we created a thread pool of four threads and then submitted ten tasks. Each
task should print out the ID of the thread it ran on. The static method
Thread.currentThread() just returns the thread that the code is currently executing on.
The output should look something like the following:

 Processing element 2 on thread Thread[pool-1-thread-2,5,main]
 Processing element 5 on thread Thread[pool-1-thread-2,5,main]
 Processing element 1 on thread Thread[pool-1-thread-1,5,main]
 Processing element 7 on thread Thread[pool-1-thread-1,5,main]
 Processing element 8 on thread Thread[pool-1-thread-1,5,main]
 Processing element 9 on thread Thread[pool-1-thread-1,5,main]
 Processing element 10 on thread Thread[pool-1-thread-1,5,main]
 Processing element 3 on thread Thread[pool-1-thread-3,5,main]
 Processing element 4 on thread Thread[pool-1-thread-4,5,main]
 Processing element 6 on thread Thread[pool-1-thread-2,5,main]

It wouldn't be in exactly the same order, as the output is non-deterministic; this shows how
the different tasks are being interleaved:

 executor.shutdown()
 executor.awaitTermination(1, TimeUnit.MINUTES)

Once we are finished with the example, we call shutdown() so that further tasks could be
rejected and then use await(), which would block the program until the executor has
finished executing all the tasks. If we want to cancel running tasks, then we could use the
shutdownNow() function on the executor, which will reject further tasks and interrupt
running tasks before they are returned.

Concurrency

[372]

Race conditions
A race condition is another type of concurrency bug that occurs when two or more threads
access shared data and try to change it at the same time. This means a situation where the
output of a piece of logic requires that interleaved code is run in a particular order — an
order that cannot be guaranteed.

A classic example is of a bank account, where one thread is crediting the account and
another is debiting the account. An account operation requires us to retrieve the value,
update it, and set it back, which means the ordering of these instructions can interleave
with each other.

For example, assume an account starts with $100. Then, we want to credit $50 and debit
$100. One possible ordering of the instructions can be something like this:

<credit thread> <account balance> <debit thread>

start value = 100

get current balance = 100

get current balance = 100

set new balance = 100 + 50

Updated = 150

set new balance = 100 – 100

Updated = 0

As you can see, our customer has lost their deposit! (They might not be as concerned if they
had lost the withdrawal.)

The actual ordering can differ each time we run it. This is because if each thread were
running on a separate processor, then the timings would never be exactly in sync. And if
the threads were running on the same core, then we could never be quite sure how far each
thread would get before a context switch is occurred.

One of the particular issues with race conditions is that by their very nature, they may not
be apparent immediately. That is to say they are non-deterministic. A machine used for
development will have different processing speeds than a server, and this, or the number of
concurrent users, may be enough to trigger a race condition that you don't see in
development.

Concurrency

[373]

Monitors
In a JVM, all instances have what is known as a monitor. A monitor can be thought of as a
special token, which only one thread is allowed to own at any particular moment. Any
thread can request the monitor for any instance, in which case they will either receive it or
block it until they make the request. Once a thread has ownership of a particular monitor, it
is said to hold the monitor.

To request the monitor, we use the synchronized function, which in Kotlin is a standard
library function rather than a built-in feature as in Java. This function accepts two
parameters: the first being the object whose monitor we wish to own and the second a
function literal, which will be executed once we are assigned the monitor. Refer to the
following code:

 val obj = Any()
 synchronized(obj) {
 println("I hold the monitor for $obj")
 }

If we examine the bytecode for this, we would see that the monitor is being acquired
(monitorenter) and released (monitorexit):

0: new
3: dup
4: invokespecial
7: astore_0
9: aload_0
10: monitorenter
13: getstatic
16: astore_2
17: aload_0
18: monitorexit
19: aload_2
20: goto
23: astore_2
24: aload_0
25: monitorexit
26: aload_2
27: athrow
28: pop
29: return

Any code that is executed when inside the monitor is guaranteed to complete (either
normally or by throwing an exception) before the monitor is released and before any other
thread takes ownership of that monitor. The code that we run when we hold a monitor is
referred to as a critical section.

Concurrency

[374]

When a thread reaches a synchronized call for a monitor that is already held by another
thread, it is placed in a set of waiting threads. Once the holding thread gives up the
monitor, one of the waiting threads is chosen. There is no guaranteed ordering as to which
the waiting thread will acquire the monitor, that is, the thread that arrives first does not
have any priority over the one that arrives at the end.

The main use of a synchronized block is to ensure only one thread can mutate shared
variables at the same time. If we were to revisit our bank account example and this time
update it to use synchronization on some common instance, we would see a difference in
the interleaving of the code:

<credit thread> <account balance> <debit thread>

start value = 100

request monitor for account

request monitor for account

monitor acquired

get current balance = 100

set new balance = 100 + 50

updated = 150

monitor released

monitor acquired

get current balance = 150

set new balance = 150 + 50

updated = 200

monitor released

To be clear, synchronization as a technique only works if the threads are requesting the
monitor for the same exact instance. Every instance of a class has its own monitor, so there
is no benefit of having two threads request the monitor of different instances of the same
class. This is a common cause of errors made by beginners.

Concurrency

[375]

Synchronization is somewhat of a blunt concurrency technique. This is because it is
typically used to synchronize over a relatively large set of instructions that are blocking
other threads for a long time. As we seek to achieve greater throughput in concurrent code,
we should try to minimize the amount of time we are in a critical section of code.

Locks
An alternative to synchronization is to use one of the lock implementations provided in the
java.util.concurrent.locks package. Typically, the implementation is
ReentrantLock. A reentrant lock is one that allows the current owner of the lock to request
the lock again without causing a deadlock. This simplifies code which uses recursion or
passes the lock to other functions.

Although locks and synchronization have very similar uses, in that they both restrict access
to a block of code, the lock interface is more powerful. For example, a lock allows us to
attempt to acquire ownership and then back off if it is not successful; however, a
synchronized call will only block.

In the following example, if we do not get the lock immediately, we continue. The return
value of the tryLock() function indicates whether the lock was acquired or not:

 val lock = ReentrantLock()
 if (lock.tryLock()) {
 println("I have the lock")
 lock.unlock()
 } else {
 println("I do not have the lock")
 }

Remember to always release a lock after using it. A lock can also block, but it allows you
to interrupt:

 val lock = ReentrantLock()
 try {
 lock.lockInterruptibly()
 println("I have the lock")
 lock.unlock()
 } catch (e: InterruptedException) {
 println("I was interrupted")
 }

Concurrency

[376]

Kotlin provides an extension function that allows us to use the lock and have it
automatically released:

 val lock = ReentrantLock()
 lock.withLock {
 println("I have the lock")
 }

Another advantage is that a lock allows us to enforce fair ordering, which ensures that no
particular thread will starve while waiting for the lock. This is done by allocating the lock to
the thread that has been waiting for the longest period of time, but this can have a
performance penalty, especially on highly contended locks.

Contention is the term given to how much demand there is for a lock or
monitor. A high amount of contention means many threads are competing
for the same lock at the same time.

Read-write locks
A more sophisticated type of lock provided by the standard library is ReadWriteLock. This
is a specialized lock aimed at problems involving groups of readers and writers. Imagine a
program that reads data from a file and sometimes updates that file. It is perfectly safe for
multiple threads to be reading from the file at once but only as long as no one is modifying
the file. In addition, only one writer should be writing at any time.

To accomplish this, the read-write lock has two locks: a read lock and a write lock. The read
lock can be requested by multiple threads. The write lock can only be held by a single
thread. If the read lock is being held, then the write lock cannot be acquired. Once the write
lock has been acquired, no other threads can acquire it or a read lock until the write lock has
been released.

The basic design of a read-write lock should also take into account whether a second reader
requesting a read lock should take preference over a waiting writer. To explain, imagine
that the first thread holds the read lock and the second thread then requests the write lock.
While the second thread is waiting for the first reader to finish, another reader could come
in and request the read lock. Should it be allocated then? It could be since having multiple
readers is fine, but what if this happens indefinitely? The writer will definitely starve then.

To avoid this, we can create the read-write lock in fair mode. Similar to the standard lock
implementation, when in fair mode, the writer who has been waiting for the longest period
of time will be allocated the writer lock. And if a reader has been waiting for the longest
period of time, then all the waiting readers are given the read lock at the same time.

Concurrency

[377]

Semaphores
The semaphore was again invented by our old friend Edsger Dijkstra. Although these days,
with higher level programming languages, the humble semaphore may not be used as
much as it was, it is still useful to understand how it works and why it is useful. This is
because semaphores are often used as the basis for higher level abstractions.

A semaphore is a mechanism to keep a count of the number of resources and allow the
counter to be changed in a thread-safe manner: either request resources or return them,
with the additional ability to optionally wait until the requested number of resources are
available. In the original design, the operation to request a resource was called p and the
operation to return a resource was called v. The letters come from the original Dutch terms,
Dijkstra being Dutch. In other languages, the terms are often called up and down or signal
and wait.

The Java standard library exposes a semaphore implementation in the
java.util.concurrent.Semaphore class. In Java terms, the count is called the number
of permits; p or up is called acquire and v or down is called release.

The advantage of a semaphore is not only that they can be safely used from multiple
threads at once without running into a race condition, but that any thread waiting on an
acquire operation will be blocked, avoiding the need to spin lock and waste CPU time.

A spin lock is a type of lock where a thread repeatedly tests a condition until it is true. Since
the thread is active, it is consuming CPU time without making process. This is an example
of the so-called busy-waiting process and is an inferior solution to correctly block a thread.

A special case of the semaphore is the so-called binary semaphore, which only contains a
single resource and so has the states 0 and 1 or unlocked and locked. These can be used to
implement a lock or restrict access to a resource to a single consumer at any moment.

The bounded buffer problem
The bounded buffer (or producer-consumer) problem is a classic in concurrency. The
problem to be solved is this: having a producer who would generate items to be put into a
fixed size buffer and a consumer who would read these items. The producer should not try
to generate items if the buffer is full, and the consumer should not try to read items if the
buffer is empty.

Concurrency

[378]

An initial naive attempt, without the use of concurrency primitives, may be something like
the following:

 val buffer = mutableListOf<Int>()
 val maxSize = 8

 (1..2).forEach {
 thread {
 val random = Random()
 while (true) {
 if (buffer.size < maxSize)
 buffer.plus(random.nextInt())
 }
 }
 }

 (1..2).forEach {
 thread {
 while (true) {
 if (buffer.size > 0) {
 val item = buffer.remove(0)
 println("Consumed item $item")
 }
 }
 }
 }

There is a shared buffer with two producers and two consumers each accessing it. The
producers and consumers respectively check whether there is space to produce an item or
an item to consume. They do this by just checking the size of the list. The problem with this
solution is that we are spin locking, waiting for an item each time. If the buffer is empty, the
consumer threads will continue to just check the condition, wasting CPU time.

So we need another implementation. Since we have a number of slots in the buffer, it seems
that semaphores are a good fit. This is due to their ability to hold a count. The idea behind
the next iteration is that we have two semaphores: one containing the number of empty
slots and another containing the number of filled slots. A producer will wait for an empty
slot before producing an item, after which it will increase the number of filled slots. The
consumer will wait for a filled slot before consuming an item; after this, it will increase the
number of empty slots:

 val emptyCount = Semaphore(8)
 val fillCount = Semaphore(0)
 val buffer = mutableSetOf<Int>()

 thread {

Concurrency

[379]

 val random = Random()
 while (true) {
 emptyCount.acquire()
 buffer.plus(random.nextInt())
 fillCount.release()
 }
 }

 thread {
 while (true) {
 fillCount.acquire()
 val item = buffer.remove(0)
 println("Consumed item $item")
 emptyCount.release()
 }
 }

This is certainly an improvement and avoids spin locking. However, since multiple threads
can still access the list concurrently, the list could be modified by different threads at the
same time. We can see this through a table of instructions showing one possible interleaving
of instructions:

<producer 1> <list> <producer 2>

size = 6

request empty slot

request empty slot

empty slot acquired

empty slot acquired

set slot 7 to “x”

size = 7

set slot 7 to “y”

size = 7

This is an issue because of the fact that multiple threads will be mutating the list internally
at the same time. Updating a list is not atomic and requires several instructions, which
themselves are subject to race conditions.

Concurrency

[380]

An operation is said to be atomic if it appears to the rest of the system as if
it is one single operation and any intermediate state is never visible
outside of the thread.

Therefore, the safe solution is to further limit access to the list to a single thread at a time,
and we can do this by introducing mutex:

 val emptyCount = Semaphore(8)
 val fillCount = Semaphore(0)
 val mutex = Semaphore(1)
 val buffer = mutableSetOf<Int>()

 thread {
 val random = Random()
 while (true) {
 emptyCount.acquire()
 mutex.acquire()
 buffer.plus(random.nextInt())
 mutex.release()
 fillCount.release()
 }
 }
 thread {
 while (true) {
 fillCount.acquire()
 mutex.acquire()
 val item = buffer.remove(0)
 mutex.release()
 println("Consumed item $item")
 emptyCount.release()
 }
 }

In the final iteration, we've added a mutex acquire and release around each mutation of the
buffer. This solution is now thread-safe.

Concurrent collections
As discovered in the section on race conditions, multiple threads accessing shared data can
result in an inconsistent state. As we further saw in the section on monitors and locking,
writing thread-safe code for updating collections can be tricky. Luckily, the Java standard
library has solved many of these problems for us. In Java 1.5 (or version 5) onward, the
standard library comes with a large number of concurrency primitives and concurrent
collections.

Concurrency

[381]

The following several sections will cover some of these primitives, with this chapter on
collections specifically and the next three on other non-collection primitives.

A concurrent collection is the term given to collections that are thread-safe and specifically
designed for use in multithreaded code. They are less performant than a normal collection
would be in a single thread environment, but more performant than wrapping normal
collections in synchronized blocks (which was the pre-Java 1.5 solution).

ConcurrentHashMap
The first such collection is java.util.concurrent.ConcurrentHashMap and is possibly
the most used of all the concurrent collections. As the name implies, this is an
implementation of the Map interface that is thread-safe. The issue with a normal map is that
two threads may both try to put an element into the map, one overwriting the other if their
keys both hash to the same value. The other, less obvious, issue is that if the map reaches
the capacity of putting the first thread, then it will perform a resize operation, which will
involve rehashing each element into a new bucket. While this is going on, the put operation
from the second thread can be lost.

A concurrent hash map avoids these issues. It maintains a set of locks, and each lock is used
to restrict access to a stripe of the map. This way, multiple updates can occur at the same
time safely, reducing the amount of code that has to be performed serially. Additionally, a
get() operation does not require a lock at all, and it will return the result of the latest
completed update.

A blocking queue
A blocking queue is another well-trodden collection. It is an extension of the
java.util.Queue interface to support thread-safe blocking operations. It defines an
operation called take(), which will block until the queue is non-empty, and put(), which
will block until there is capacity in the queue to accept the item. If multiple threads perform
the block action on the same operation, say three threads trying to take an item and one
becomes available, only one thread will succeed and the others will safely continue to block.

There are two implementations in the Java standard library. The first implementation
java.util.concurrent.ArrayListBlockingQueue is backed by an Array
implementation. The second java.util.concurrent.LinkedBlockingQueue is backed
by LinkedList. Each offers trade-offs of course, the latter being particularly useful as it
uses two locks internally, one for the head of the list and one for the tail.

Concurrency

[382]

Using a blocking queue would dramatically simplify our earlier, bounded buffer problem.
Let's rework that problem using LinkedBlockingQueue so we can see the difference:

 val buffer = LinkedBlockingQueue<Int>()

 thread {
 val random = Random()
 while (true) {
 buffer.put(random.nextInt())
 }
 }

 thread {
 while (true) {
 val item = buffer.take(0)
 println("Consumed item $item")
 }
 }

As you can see, all the concurrency-related complication has been taken away for us. We
can use the queue as if we were in a single threaded environment:

 13.7.x

Atomic variables
Quite often, we will find ourselves wanting a single value that we can atomically update
between threads. A collection seems overkill for that purpose and probably slower than a
special purpose primitive. he standard library provides such primitives in the
java.util.concurrent.atomic package.

There are different implementations for each basic type, plus one for object references. For
example, AtomicLong contains a Long counter and provides operations to retrieve the
current value or update the value in a thread safe manner. A typical use case is a counter
shared between threads, perhaps as an increasing ID generator:

 val counter = AtomicLong(0)
 (1..8).forEach {
 thread {
 while (true) {
 val id = counter.incrementAndGet()
 println("Creating item with id $id")
 }
 }
 }

Concurrency

[383]

If you are using JDK 1.8 or higher, they ship with a primitive called
LongAdder and DoubleAdder, which are even more efficient for
summing values, with the drawback of being eventually consistent.

The AtomicReference class is similar, but rather than a number, it allows any reference
type. It is useful for allowing multiple threads to share a single object and allow them all to
update the object safely. One such use case is lazy initialization between threads. The initial
value is null and then each thread can check for null, and if found, update to a proper value:

 val ref = AtomicReference<Connection>()
 (1..8).forEach {
 thread {
 ref.compareAndSet(null, openConnection())
 val conn = ref.get()
 }
 }

Now only one thread would call the openConnection() function. And it would occur
lazily the first time a thread is executed.

CountDownLatch
The CountDownLatch object is a very useful concurrency primitive that has existed in Java
since version 1.5 (or version 5, depending on which Java numbering scheme you prefer).
The basic idea of the latch is that it allows one or more threads to block until the latch is
released. You can imagine that the naming comes from the latch we see on a gate — once
the latch is opened, the sheep behind the gate can escape. So similarly, the threads are
queued up behind the gate, and once the latch is released, the threads are allowed to move
through.

A latch is initialized with a count, and the countDown() method can be used to decrement
the count. Once the count hits zero, any threads waiting on the latch are unblocked. A
thread can block the latch using the await method; in fact, any number of threads can block
the latch and they will all be released at the same time.

Any thread calling countDown is free to continue. Only threads calling
await are blocked. Also note that any thread can call countDown multiple
times, which is often the case when we have many tasks that are processed
by several threads in turn.

Concurrency

[384]

Latches have many uses. We briefly mentioned one in Chapter 11, Testing in Kotlin, when
we showed that latches are a useful tool for testing asynchronous functions. Recall that we
wanted to prevent assertions from being executed until the asynchronous code that they
depended on had finished executing.

Another canonical use of latches is to prevent some main thread from proceeding until
worker threads are utilized. Let's say we have an application that needs to download and
process multiple feeds before sending a notification via a queue. We want to multithread
the processing of the feeds, especially since they are CPU-bound and we happen to be
running on a multicore processor. The final notification should only be sent once all the
feeds are processed. We don't know in advance which feeds will complete first or in what
order. Since the order is unspecified we can't rely on the logic that the last feed started will
be the last feed to complete.

This is an example of the workpile pattern. The feeds to be processed can be imagined as a
pile of tasks and a thread can take a task from this pile. Just like if you had a to-do list and
each one was represented by a post-it note. You would pick up the top post and do
whatever needs to be done before moving on to the next one. This is how the workpile
pattern works.

We will model our tasks as a function called processFeed, which accepts a Feed object
that describes the feed to be processed. The implementation of this function is not important
for this example:

 fun processFeed(feed: Feed): Unit {
 println("Processing feed ${feed.name}")
 }

We will assume we are somehow given a list of feeds, perhaps we could read them from a
database. Each feed in turn will be submitted to an Executor. Our Executor will happen
to be a cached thread pool:

 val executor = Executors.newCachedThreadPool()

Finally, we'll need a function to send across the notification once all the feeds are
completed:

 fun sendNotification(): Unit {
 println("Sending notification")
 }

Concurrency

[385]

So far, we've multithreaded the processing of each feed. But how do we now make sure the
sendNotification function is only invoked once all the feeds are complete. The first
thought might be to use a counter and have each feed task update the counter as it finishes.
However, how do we wait for the counter? Again, naively, we could simply spin lock on
the counter until it hits the required number.

A better solution would be to block the thread until it is ready. This is where the countdown
latch comes into play. If we create a latch with the count set to the number of feeds and
have each task count it down before it finishes, we can then have the main thread wait on
the latch. Here is the full example:

 fun processFeed(feed: Feed): Unit {
 println("Processing feed ${feed.name}")
 }

 fun sendNotification(): Unit {
 println("Sending notification")
 }

 val feeds = listOf(
 Feed("Great Vegetable Store",
"http://www.greatvegstore.co.uk/items.xml"),
 Feed("Super Food Shop", "http://www.superfoodshop.com/products.csv")
)

 val latch = CountDownLatch(feeds.size)

 val executor = Executors.newCachedThreadPool()
 for (feed in feeds) {
 executor.submit {
 processFeed(feed)
 latch.countDown()
 }
 }

 latch.await()
 println("All feeds completed")
 sendNotification()

Now the main thread will block at the latch.await line and consume no more CPU time
until it is ready to proceed past the latch.

Concurrency

[386]

Cyclic Barrier
Another concurrency primitive along the lines of the countdown latch is CyclicBarrier,
which allows multiple threads to wait until they all reach the required point. The common
use for a barrier is when you have a set of threads that must perform some logic and then
wait until everyone is ready before moving on.

Let's imagine we are writing a system that copies a file at multiple places. We don't want to
start the next file until the first one has been successfully written out at all places. Each task
is running on a separate thread that writes out to a single location. An implementation for
this use case may decide to run multiple tasks on multiple threads, each task taking care of
one particular output location. Each task can then wait on the barrier so that the next file is
started only once they are all complete.

First, let's define a task that will repeatedly copy a file and then wait on a barrier:

 class CopyTask(val dir: Path, val paths: List<Path>, val barrier:
CyclicBarrier) : Runnable {

 override fun run() {
 for (path in paths) {
 val dest = dir.resolve(path)
 Files.copy(path, dest, StandardCopyOption.REPLACE_EXISTING)
 barrier.await()
 }
 }
 }

Next, set up an executor and submit the tasks for each of the output locations:

 fun copyUsingBarrier(inputFiles: List<Path>, outputDirectories:
List<Path>) {

 val executor = Executors.newFixedThreadPool(outputDirectories.size)
 val barrier = CyclicBarrier(outputDirectories.size)

 for (dir in outputDirectories) {
 executor.submit {
 CopyTask(dir, inputFiles, barrier)
 }
 }
 }

As you can see, one of the advantages of a barrier is that it can be reused. Each time it is
released, it is ready to be used again. We could also use a countdown latch here, but we'd
have to create a new one each time and then we have the issue of sharing the new instance.

Concurrency

[387]

Non-blocking I/O and asynchronous
programming
Throughout this chapter, we focused on threads as the main instrument of concurrency. As
crucial as they are, as the number of threads increases, the marginal benefit decreases. The
more threads exist, the more time is spent on context switching between them. Ideally, we
would want to be in a situation where we have one thread per CPU core, avoiding context
switching entirely. This is somewhat of an impossible goal, but we can reduce the number
of threads in use significantly.

Imagine a problem where we want to download ten feeds from a supplier's website. Once
these are downloaded, we want to write them out to our database. One solution would be
to create ten threads and have each thread read a single feed.

As each thread waits for more data to become available, it blocks. As the threads block or as
their time slice expires, the system will context switch between the threads. If we were to
scale out this system to a thousand feeds, that's a lot of switching, when the bulk of the time
will still be spent waiting on the network.

A better solution might be to have the I/O system inform us when the data is made
available, then we could allocate a thread to process that data. For us to be notified, we
must provide a function that the I/O system knows to run when ready, and that function or
block is commonly referred to as a callback. This is the idea behind non-blocking I/O. Java
introduced non-blocking I/O in the 1.4 edition of the JDK.

If you were to use non-blocking I/O to download all the feeds from our supplier, we would
have provided multiple callbacks. Since we have no idea about the order they will execute
— this would be determined by the order in which they finish downloading, and some may
be much larger than others — this kind of programming is referred to as asynchronous
programming.

Asynchronous programming doesn't only work on I/O. It may be the case that we have a
callback on a thread that runs once we finish a CPU-bound operation. For example,
calculate the Pi to one hundred thousand places and then run a completion callback.

While this technique is very powerful, it can also result in what is known as callback hell.
This is where we have multiple levels of nested callbacks, as each callback triggers a further
operation:

 fun persistOrder(order: Order, callback: (String) -> Unit): Unit = ...
 fun chargeCard(card: Card, callback: (Boolean) -> Unit): Unit = ...
 fun printInvoice(order: Order, callback: (Unit) -> Unit): Unit = ...

Concurrency

[388]

 persistOrder(order, {
 println("Order has been saved; charging card")
 chargeCard(order.card, { result ->
 if (result) {
 println("Order has been charged; printing invoice")
 printInvoice(order, {
 println("Invoice has been printed")
 })
 }
 })
 })

As you can see, this code has three levels of callbacks. In the extreme case, this could be in
dozens. While this is very efficient, as each further operation will only run once the
previous one is completed and won't block any resources while waiting, it does result in
somewhat unreadable code.

Futures
Imagine we want to submit tasks to an executor, but we want to know when they would be
complete. One way would be to pass some kind of variable into each task, which we could
interrogate to check on the status. However, this would require us to manage the volatility
of that variable, and potentially spin locking to check on it.

A better solution would be some kind of structure that would represent a computation that
hasn't yet completed. This structure would allow us to get the return value once it is
completed, queue up an operation to run on it once it was ready, or block until it is finished.
This kind of structure is called a future. The naming comes from the fact that it represents a
value that will be available sometime in the future. (Futures are sometimes called promises
in other languages, although in languages such as Scala, a promise and a future are
different but related structures.)

We'd need the support of ExecutorService to return a future when we submit a task. To
do this, we need to use the Callable interface rather than Runnable:

 val executor = Executors.newFixedThreadPool(4)

 val future: Future<Double> = executor.submit(Callable<Double> {
 Math.sqrt(15.64)
 })

The basic Future returned here offers functions to test whether it has been completed and
to get the value, blocking the calling thread until it is ready.

Concurrency

[389]

The real power, however, lies in the CompletableFuture abstraction. This enhanced
future supports asynchronous operations and so operates via callbacks rather than
explicitly blocking the thread. To create such a future, use the static methods defined on the
class, which optionally accept an executor:

 val executor = Executors.newFixedThreadPool(4)
 val future = CompletableFuture.supplyAsync(Supplier { Math.sqrt(15.64)
}, executor)

With this future, we can now attach a callback:

 future.thenApply {
 println("The square root has been calculated")
 }

Callbacks can be chained so that the results of one future could be fed into another future. If
we revisit the order-processing example from earlier, it can be rewritten as such:

 fun persistOrder(order: Order): String = TODO()
 fun chargeCard(card: Card): Boolean = TODO()
 fun printInvoice(order: Order): Unit = TODO()

 CompletableFuture.supplyAsync {
 persistOrder(order)
 }.thenApply { id ->
 println("Order has been saved; id is $id")
 chargeCard(order.card)
 }.thenApply { result ->
 if (result) {
 println("Order has been charged; printing invoice")
 printInvoice(order)
 }
 }

This is more readable and avoids the many nested levels of callbacks in the case of an
ordered series of callbacks. Futures can also be executed together with the results merged
back into a single future. Imagine we decided that we wanted to persist the order, charge
the card, and print the invoice simultaneously:

 fun persistOrder(order: Order): CompletableFuture<String> = TODO()
 fun chargeCard(card: Card): CompletableFuture<Boolean> = TODO()
 fun printInvoice(order: Order): CompletableFuture<Unit> = TODO()

 CompletableFuture.allOf(
 persistOrder(order),
 chargeCard(order.card),
 printInvoice(order)

Concurrency

[390]

).thenApply {
 println("Order is saved, charged and printed")
 }

The CompletableFuture has many more functions, such as accepting the first completed
value of multiple futures, mapping of results, and handling errors.

Summary
This chapter has focused on the core underpinnings of concurrency in the JVM and how to
use them effectively in Kotlin. Concurrency is a large subject, and this chapter should have
given a solid footing to anyone who is new to using concurrency. Those who already are
very familiar with concurrent code can see how Kotlin offers small but useful helper
functions in the concurrent package.

Index

A
abstract classes
 about 78
 versus interfaces 79
access levels
 internal 60
 private 60
 protected 60
algebraic data types 253, 254, 255, 256
annotation parameters 222
annotations
 about 221
 standard annotations 223
anonymous functions 143
apply function 125
arrays
 about 35, 278, 285
 working with 289, 291, 292, 294
assert function 128
assertions 99
assignment operator 119
asynchronous programming 387
atomic variables 382

B
basic operators 116
basic types
 about 32
 arrays 35
 Booleans 34
 chars 34
 number 32, 33
 strings 34
blocking queue
 about 381
 using 382

Booleans 34
bound references 145, 146
bounded buffer problem 377, 378
bounded polymorphism
 about 232
 upper bound 232
busy-waiting process 377

C
callback hell 387
chars 34
check function 128
class delegation 89
class hierarchy 277, 278, 283, 284, 285
classes
 about 56, 57, 58
 Enum classes 63
 instantiating 41, 42
 nested classes 60
closures 142, 143
collection matchers 317
command line
 used, for compiling Kotlin code 8
 used, for running Kotlin code 8
Command Query Responsibility Segregation

(CQRS) 356
comments 35
companion object extensions 109
companion objects 64
companions 216
comparison operator 118
compiler 239
composition
 versus inheritance 87, 88, 89
concurrency 361, 362
concurrent collections 380
ConcurrentHashMap 381

[392]

conditions 333
config function 332
constructors 213, 214
contains keyword 116
contention 376
contracts 128
contravariance 238, 239, 240
control flow
 using, as expressions 45, 46
copy method 262, 263
CountDownLatch object 383, 384, 385, 386
covariance 235, 236
covariant return 237
Create, Read, Update, and Delete (CRUD) 354
currying
 about 156
 support, adding for 158
 working 157
custom DSLs 169
custom matchers 320, 322

D
data class definition rules 273, 274
data classes 63
deadlocks
 about 368
 avoiding 368
declared functions 220
default parameters 101, 102
delegate properties 186
delegated properties 191
destructed declarations 271
destructing types 272
Domain Driven Design (DDD) 357
Don't Repeat Yourself (DRY) principle 96
DSL
 function receivers, using in 173

E
Eclipse Neon 22
Eclipse
 and Kotlin 22
Either type
 about 164
 fold operation 164, 165

 projection 165, 166
Elvis operator 206, 207
entities 357
Enum classes 63
equal method 269
erasure 223, 244
error accumulation 174, 175
Event Sourcing (ES)
 about 356
 data replay-ability 357
 performance 357
 simplicity 357
exception handling 40, 41
executors
 about 370
 creating 371
explicit casting 48, 49
expressions
 control flow, using as 45, 46
extension function precedence 105
extension function references 144
extension functions
 about 103, 104
 on null values 106
extension receiver 107

F
floating point matchers
 about 318
 exceptions, expecting 319
Force operator!! 205
fully qualified name (FQN) 36
function assignment 141
function composition 149, 150, 151
function literals 120
function receivers
 using, in DSL 173
function references
 about 144
 bound references 145, 146
 extension function references 144, 145
 member function references 144, 145
 top-level function references 144
function-literal receivers 146, 147
functions, in JVM

[393]

 about 147
 bytecode 148
functions
 defining 93, 94
 extension functions 103, 104
 generic functions 129
 infix functions 111
 invoking 117
 invoking, reflectively 220
 local functions 96
 member functions 95
 multiple return values 110
 noinline annotations 155
 pure functions 130
 returning 140, 141
 single expression functions 94
 standard library functions 125
 tail recursive functions 121, 122
 top-level functions 99
 value, returning from 52
future 388

G
generic functions 129
generics 229
get operator 117
getters
 creating, automatically 261, 262
Gradle
 Kotlin, using with 12, 13, 14
 reference 12

H
hashCode method 268
HashMap 300
HashSet 303
higher order functions 138, 139, 140

I
Immutables
 reference 346
imports
 about 36
 renaming 37
 wildcard imports 36

in keyword 116
indexed access 305
infix functions
 about 111
 using, as keywords 170, 171, 172
inheritance
 about 73, 74, 76
 versus composition 87, 88, 89
inline functions 151, 152
inspectors 323, 324
instantiation
 with callBy 214, 215
 with reflection 211, 212
IntelliJ
 about 18
 and Kotlin 18, 19, 21
 download link 18
interceptors
 about 324
 spec interceptor 325, 326
 test case interceptor 325
interfaces
 about 69
 defining 70
invariance 235

J
Java interop 120
Java Memory Model (JMM) 365
Java Virtual Machine (JVM) 147, 244
Java, from Kotlin
 getters 131
 Kotlin identifiers, escaping 133
 setters 131
 single abstract methods 132
Joda library 10
JVM
 reference 7

K
KClass properties 217, 218
Kotlin code
 compiling, command line used 8
Kotlin releases
 reference 8

[394]

Kotlin runtime 10
Kotlin, and Java
 mixing, in project 24, 25
Kotlin, from Java
 checked exceptions 137
 default parameters 135
 erasure naming 136
 objects 135
 static methods 135
 top-level functions 134
Kotlin-reflect 210
kotlin-stdlib 210
Kotlin
 about 7
 and Eclipse 22
 and IntelliJ 18, 19, 21
 using, for scripting 11, 12
 using, with Gradle 12, 14
 using, with Maven 15, 17
KotlinTest
 test, writing with 312

L
Lagom service
 implementing 357, 358, 359
Lagom
 about 342
 Development Environment 342
 features 342, 343
 Persistence API 342
 Production Environment 343
 reference 342
 Service API 342
late initialization 184
lateinit
 versus lazy 196
lazy function 127
lazy initializations 191, 192
lazy
 versus lateinit 196
let function 126
Lightblend ConductR 343
LinkedHashMap 301
LinkedHashSet 303
lists

 about 295
 working with 298, 299
livelocks 369
local functions 96
lock implementations 375, 376
locks
 read-write locks 376
loops 39

M
maps
 about 299, 300
 HashMap 300
 LinkedHashMap 301
 TreeMap 301
matchers
 about 316, 317
 collection matchers 317
 combining 320
 custom matchers 320, 322
 floating point matchers 318
 string matchers 317
Maven
 Kotlin, using with 15, 17
 reference 15
member extension functions 106, 107
 overriding 107
member function references 144
member functions 95
memoization
 about 159, 160
 implementing 161, 162
methods
 versus properties 199
microservices
 about 337, 338
 drawbacks 340
 need for 341
monitor 373

N
named parameters 99
nested classes 60
non-blocking I/O 387
non-null property delegate 198

[395]

non-reifiable type 248
nothing type 241, 242
null syntax 46
nullable types 202, 203
number literal
 creating 33
number type 32

O
object-oriented abstraction
 about 55
 extensibility 56
 modifiability 56
 modularity 56
 reusability 56
 simplicity 56
objects 216
observables 197
one line functions 94
operator overloading 114, 115
operators
 about 113
 assignment 119
 basic operators 116
 comparison 118
 get 117
 set 117
Optional
 about 207
 creating 208
 returning 208
 using 209
overriding rules 85

P
packages 36
parameterised functions 231
parameterized functions 229, 230
parameterized types 231
partial application 157
polymorphism 80, 82, 84, 85
project config 326
projection functions 167
properties
 about 178, 181

 versus methods 198, 199
property testing
 about 327
 generator, specifying 328
pure functions 130, 131

Q
quantum 362

R
race conditions 372
ranges 38, 39
read-only views 305
read-write lock 376
receiver type 104
recursive type bounds 250, 251, 252
red-black tree implementation 301
reentrant lock 375
referential equality 42
reflection
 about 209, 210
 KClass 210, 211
reflective functions 218
reifiable type 248
repeat function 128
REPL 10
require function 128
resources 335
RPC (remote procedure call) 340
run function 127
runtime annotation discovery 227, 228

S
safe casting 207
safe null access 203, 204
scopes 43
scripting
 Kotlin, using for 11, 12
sealed classes 91, 92
semaphores
 about 377
 advantage 377
sequences
 about 306
 creating 309, 310

[396]

Service Oriented Architecture (SOA) 338
services
 about 357
 defining 352, 353, 355
set operator 117
sets
 about 302
 HashSet 303
 LinkedHashSet 303
 TreeSet 304
setters
 creating, automatically 261, 262
single expression functions 94
single line functions 94
single thread process 362
smart cast 203
smart casts 47
spec interceptor 325, 326
spec
 selecting 313, 314, 315, 316
spread operator 124
standard annotations
 @JvmName 223, 224
 @JvmOverloads 226
 @JvmStatic 224
 @Throws 225
 about 223
standard library functions
 about 125
 apply 125
 lazy 127
 let 126
 repeat 128
 require/assert/check 128
 run 127
 use 127
 with 126
states, Thread object
 BLOCKED 362
 NEW 362
 RUNNABLE 362
 TERMINATED 363
 TIMED_WAITING 362
 WAITING 362
static methods 64

string matchers 317
string templates 37, 38
strings 34
structural equality 42
synchronization 374, 375
syntax 181

T
table-driven testing
 about 330
 non-deterministic code, testing 330
tags 333
tail recursion 122
tail recursive functions 121, 122
test case interceptor 325
test
 writing, with KotlinTest 312
this expression 43
thread interrupts 366
Thread object
 states 362
thread-context-switch 362
threads
 about 362
 blocking 363
 CPU bound, versus I/O bound 367, 368
 creating 363, 364
 stopping 364
time slicing 362
top-level function references 144
top-level functions 99
toString method 267
TreeMap 301
TreeSet 304
type alias 162, 163
type erasure
 about 244, 245
 bridge methods 248
type hierarchy 53, 54
type inference 31
type parameter 229
type projection 242, 243
type rectification 248, 249
type variance
 about 234

 contravariance 238, 239, 240
 covariance 235
 covariant return 237
 invariance 234

U
undeclared functions 221
upper bound
 about 232
 multiple upper bounds 233, 234
use function 127

V
val keyword 30, 31
validation 174, 175, 176, 177
value-objects 357
value
 returning, from function 52
var keyword 30, 31

varags 123
variance
 overview 240
variations 181
visibility access rules 183
visibility modifiers
 about 44, 76, 77
 internal 45, 76
 private 44, 76
 protected 44, 76
 public 76

W
when (value) expression 49, 50
when expression
 about 49
 without argument 51
wildcard imports 36
with function 126

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Kotlin
	Using the command line to compile and run Kotlin code
	Kotlin runtime
	The REPL
	Kotlin for scripting
	Kotlin with Gradle
	Kotlin with Maven
	IntelliJ and Kotlin
	Eclipse and Kotlin
	Mixing Kotlin and Java in a project
	Summary

	Chapter 2: Kotlin Basics
	Vals and vars
	Type inference
	Basic types
	Numbers
	Booleans
	Chars
	Strings
	Arrays

	Comments
	Packages
	Imports
	Wildcard imports
	Import renaming

	String templates
	Ranges
	Loops
	Exception handling
	Instantiating classes
	Referential equality and structural equality
	This expression
	Scope

	Visibility modifiers
	Private
	Protected
	Internal

	Control flow as expressions
	Null syntax
	Smart casts
	Explicit casting

	When expression
	When (value)
	When without argument

	Function Return

	Type hierarchy
	Summary

	Chapter 3: Object-Oriented Programming in Kotlin
	Classes
	Access levels
	Nested classes
	Data classes
	Enum classes
	Static methods and companion objects

	Interfaces
	Inheritance
	Visibility modifiers
	Abstract classes
	Interface or abstract class
	Polymorphism
	Overriding rules
	Inheritance versus composition
	Class delegation
	Sealed classes
	Summary

	Chapter 4: Functions in Kotlin
	Defining functions
	Single expression functions
	Member functions
	Local functions
	Top-level functions
	Named parameters
	Default parameters
	Extension functions
	Extension function precedence
	Extension functions on nulls
	Member extension functions
	Overriding member extension functions
	Companion object extensions
	Multiple return values
	Infix functions

	Operators
	Operator overloading
	Basic operators
	In/contains
	Get/set
	Invoke

	Comparison
	Assignment
	Java interop

	Function literals
	Tail recursive functions
	Varargs
	Spread operator

	Standard library functions
	Apply
	Let
	With
	Run
	Lazy
	Use
	Repeat
	Require/assert/check

	Generic functions
	Pure functions
	Java from Kotlin
	Getters and setters
	Single abstract methods
	Escaping Kotlin identifiers
	Java void methods

	Kotlin from Java
	Top-level functions
	Default parameters
	Object and static methods
	Erasure naming
	Checked exceptions

	Summary

	Chapter 5: Higher Order Functions and Functional Programming
	Higher order functions
	Returning a function
	Function assignment

	Closures
	Anonymous functions
	Function references
	Top-level function references
	Member and extension function references
	Bound references

	Function-literal receivers
	Functions in the JVM
	Bytecode

	Function composition
	Inline functions
	Noinline

	Currying and partial application
	Currying in action
	Adding currying support

	Memoization
	Implementing memoization

	Type alias
	Either
	Fold
	Projection
	Further projection functions

	Custom DSLs
	Infix functions as keywords
	Using function receivers in a DSL

	Validation and error accumulation
	Summary

	Chapter 6: Properties
	Why use properties?
	Syntax and variations
	Visibility
	Late initialization
	Delegated properties
	Lazy initializations
	Lateinit versus lazy
	Observables
	A non-null property delegate
	Properties or methods?
	Summary

	Chapter 7: Null Safety, Reflection, and Annotations
	Nullable types
	Smart cast
	Safe null access
	Force operator

	Elvis operator
	Safe casting
	Optionals
	Creating and returning an Optional
	Using an Optional

	Reflection
	KClass
	Instantiation using reflection

	Constructors
	Instantiation with callBy

	Objects and companions
	Useful KClass properties
	Reflective functions and properties
	Invoking a function reflectively
	Declared and undeclared

	Annotations
	Annotation parameters

	Standard annotations
	@JvmName
	@JvmStatic
	@Throws
	@JvmOverloads

	Runtime annotation discovery
	Summary

	Chapter 8: Generics
	Parameterised functions
	Parameterized types
	Bounded polymorphism
	Upper bounds
	Multiple bounds

	Type variance
	Invariance
	Covariance
	Covariant return
	Contravariance
	Variance overview

	Nothing type
	Type projection
	Type erasure
	Type reification
	Recursive type bounds
	Algebraic data types
	Summary

	Chapter 9: Data Classes
	Automatic creation of getters and setters
	The copy method
	toString out of the box
	hashCode and equals methods generated for you
	Destructed declarations
	Destructing types
	Data class definition rules
	Limitations
	Summary

	Chapter 10: Collections
	Class hierarchy
	Arrays
	Lists
	Maps
	Sets
	Read-only views
	Indexed access
	Sequences
	Summary

	Chapter 11: Testing in Kotlin
	Getting started
	Choosing a spec
	Matchers
	String matchers
	Collection matchers
	Floating point matchers
	Expecting exceptions

	Combining matchers
	Custom matchers

	Inspectors
	Interceptors
	The test case interceptor
	The spec interceptor

	Project config
	Property testing
	Specifying a generator
	A custom generator

	Table-driven testing
	Testing non-deterministic code

	Tags, conditions, and config
	Config
	Conditions
	Tags
	One instance

	Resources

	Summary

	Chapter 12: Microservices with Kotlin
	Definition
	Drawbacks
	Why microservices?
	Lagom
	Defining services
	Implementing a Lagom service
	Summary

	Chapter 13: Concurrency
	Threads
	Blocking
	Creating a thread
	Stopping a thread
	Thread interrupts
	CPU-bound versus I/O-bound

	Deadlocks and livelocks
	Dining philosophers problem

	Executors
	Race conditions
	Monitors
	Locks
	Read-write locks

	Semaphores
	The bounded buffer problem

	Concurrent collections
	ConcurrentHashMap
	A blocking queue

	Atomic variables
	CountDownLatch
	Cyclic Barrier
	Non-blocking I/O and asynchronous programming
	Futures

	Summary

	Index

