

Kotlin for Android Developers
Learn Kotlin in an easy way while developing an Android
App

Antonio Leiva

This book is for sale at http://leanpub.com/kotlin-for-android-developers

This version was published on 2015-10-22

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2015 Antonio Leiva

http://leanpub.com/kotlin-for-android-developers
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Antonio Leiva by spreading the word about this book on Twitter!

The suggested hashtag for this book is #kotlinandroiddev.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#kotlinandroiddev

http://twitter.com
https://twitter.com/search?q=%23kotlinandroiddev
https://twitter.com/search?q=%23kotlinandroiddev

This book is dedicated to all the loyal readers of antonioleiva.com, who made me believe that writing
about Android development was a powerful tool to help others learn about it. I felt this book as a
necessary step forward.

I also want to do a special mention to Gautier Mechling for helping me so much by reviewing this
book. It’s thanks to him that this pages are not full of typos and mistakes.

And, of course, this is specially dedicated to you. With your support and your help this book is
growing, and I hope it will become a reference. So any claim or suggestion you think it will improve
the quality of this book will be welcomed. Feel free to write anytime to contact@antonioleiva.com.

http://antonioleiva.com
http://twitter.com/Nilhcem
mailto:contact@antonioleiva.com

Contents

I. About this book . 1

II. Is this book for you? . 2

III. About the author . 3

1 Introduction . 4
1.1 What is Kotlin? . 4
1.2 What do we get with Kotlin? . 5

2 Getting ready . 9
2.1 Android Studio . 9
2.2 Install Kotlin plugins . 10

3 Creating a new project . 11
3.1 Create the project in Android Studio . 11
3.2 Configure Gradle . 11
3.3 Convert MainActivity to Kotlin code . 13
3.4 Test that everything works . 13

4 Classes and functions . 15
4.1 How to declare a class . 15
4.2 Class inheritance . 15
4.3 Functions . 16
4.4 Constructor and functions parameters . 16

5 Writing your first class . 19
5.1 Creating the layout . 19
5.2 The Recycler Adapter . 20

6 Variables and properties . 22
6.1 Basic types . 22
6.2 Variables . 23
6.3 Properties . 24

7 Anko and Extension Functions . 26

CONTENTS

7.1 What is Anko? . 26
7.2 Start using Anko . 26
7.3 Extension functions . 26

8 Retrieving data from API . 28
8.1 Performing the request . 28
8.2 Moving request out of the main thread . 29

9 Data Classes . 30
9.1 Extra functions . 30
9.2 Copying a data class . 30
9.3 Mapping an object into variables . 31

10 Parsing data . 32
10.1 Converting json to data classes . 32
10.2 Shaping the domain layer . 33
10.3 Drawing the data in the UI . 35

11 Operator overloading . 37
11.1 Operators tables . 37
11.2 The example . 38
11.3 Operators in extension functions . 39

12 Making the forecast list clickable . 40

13 Lambdas . 45
13.1 Simplifying setOnClickListener() . 45
13.2 Click listener for ForecastListAdapter . 46
13.3 Extending the language . 47

14 Visibility Modifiers . 49
14.1 Modifiers . 49
14.2 Constructors . 50
14.3 Refactoring the code . 50

15 Kotlin Android Extensions . 52
15.1 How to use Kotlin Android Extensions . 52
15.2 Refactoring our code . 53

16 Application Singleton and Delegated Properties . 56
16.1 Application Singleton . 56
16.2 Delegated Properties . 57
16.3 Standard Delegates . 58
16.4 How to create a custom delegate . 61
16.5 Reimplementing App Singleton . 62

CONTENTS

17 Creating an SQLiteOpenHelper . 63
17.1 ManagedSqliteOpenHelper . 63
17.2 Tables definition . 64
17.3 Implementing SqliteOpenHelper . 65
17.4 Dependency injection . 67

18 Collections and functional operations . 69
18.1 Aggregate operations . 70
18.2 Filtering operations . 72
18.3 Mapping operations . 74
18.4 Elements operations . 75
18.5 Generation operations . 77
18.6 Ordering operations . 78

19 Saving and requesting data from database . 80
19.1 Creating database model classes . 80
19.2 Writing and requesting data . 81

20 Null safety in Kotlin . 88
20.1 How Null types work . 88
20.2 Nullity and Java libraries . 90

21 Creating the business logic to data access . 92

22. Flow control and ranges . 97
22.1 If Expression . 97
22.2 When expression . 98
22.3 For loops . 99
22.4 While and do/while loops . 100
22.5 Ranges . 100

23 Creating a Detail Activity . 102
23.1 Preparing the request . 102
23.2 Providing a new activity . 104
23.3 Start an activity: reified functions . 108

24 Interfaces and Delegation . 110
24.1 Interfaces . 110
24.2 Delegation . 111
24.3 Implementing an example in our App . 112

25 Generics . 118
25.1 Basics . 118
25.2 Variance . 119
25.3 Generics examples . 121

CONTENTS

26 Settings Screen . 124
26.1 Creating the settings activity . 124
26.2 Accessing Shared Preferences . 125
26.3 Generic preference delegate . 128

27 Testing your App . 131
27.1 Unit testing . 131
27.2 Instrumentation tests . 134

28 Extra concepts . 138
28.1 Nested classes . 138
28.2 Enum classes . 138
28.3 Sealed classes . 139
28.4 Exceptions . 140

29 Conclusion . 142

I. About this book
In this book, I’ll be creating an Android app from ground using Kotlin as the main language. The
idea is to learn the language by example, instead of following a typical structure. I’ll be stopping to
explain the most interesting concepts and ideas about Kotlin, comparing it with Java 7. This way,
you can see what the differences are and which parts of the language will help you speed up your
work.

This book is not meant to be a language reference, but a tool for Android developers to learn Kotlin
and be able to continue with their own projects by themselves. I’ll be solving many of the typical
problems we have to face in our daily lives by making use of the language expressiveness and some
other really interesting tools and libraries.

The book is very practical, so it is recommended to follow the examples and the code in front of a
computer and try everything it’s suggested. You could, however, take a first read to get a broad idea
and then dive into practice.

As you could read in previous pages (and probably the site were you downloaded), this is a lean
publication. This means that the book is written and progresses with you. I’ll continually write new
content and review the existing based on your comments and your suggestions. In the end, it will
also be your book. I want this book to be the perfect tool for Android developers, and as such, all
the help and ideas will be welcomed.

Thanks for becoming part of this exciting project.

II. Is this book for you?
This book is written to be useful for Android developers who are interested in learning Kotlin
language.

This book is for you if you are in some of the following situations:

• You have a basic knowledge about Android Development and the Android SDK.
• You want to learn how to develop Android apps using Kotlin by following an example.
• You need a guide on how to solve many of the typical situations an Android developer finds
everyday, using a cleaner and more expressive language.

On the other hand, this book may not be for you. This is what you won’t find in it:

• This is not a Kotlin Bible. I’ll explain all the basics of the language, and even more complex
ideas when they come out during the process just when we need them. So you will learn by
example and not the other way round.

• I will not explain how to develop an Android app. You won’t need a deep knowledge of the
platform, but you will need some basics, such as some knowledge of Android Studio, Gradle
Java programming and Android SDK. You may even learn some new Android things in the
process!

• This is not a guide to learn functional programming. Of course, I’ll explain what you need, as
Java 7 is not functional at all, but I won’t dive deep in functional topics.

III. About the author
Antonio Leiva is anAndroid Engineer who spends time learning about newways to explodeAndroid
potential and then writes about it. He writes a blog at antonioleiva.com¹ about many different topics
related to Android development.

Antonio started as a consultant in CRM technologies, but after some time, looking for his real
passion, he discovered the Android world. After getting some experience on such an awesome
platform, he started a new adventure at a mobile company, where he led several projects for
important Spanish companies.

He now works as an Android Engineer at Plex², where he also plays an important role in the design
and UX of the Android applications.

You can find Antonio on Twitter as @lime_cl³

¹http://antonioleiva.com
²http://plex.tv
³https://twitter.com/lime_cl

http://antonioleiva.com
http://plex.tv
https://twitter.com/lime_cl
http://antonioleiva.com
http://plex.tv
https://twitter.com/lime_cl

1 Introduction
You’ve decided that Java 7 is obsolete and you deserve a more modern language. Nice choice! As you
may know, even with Java 8 out there, which includes many of the improvements we would expect
from a modern language, we Android developers are still obliged to use Java 7. This is part because
of legal issues. But even without this limitation, if new Android devices today started shipping a
virtual machine able to understand Java 8, we could’t start using it until current Android devices
are so obsolete that almost nobody uses them. So I’m afraid we won’t see this moment soon.

But not everything is lost. Thanks to the use of the Java Virtual Machine (JVM), we could write
Android apps using any language that can be compiled to generate a bytecode the JVM is able to
understand.

As you can imagine, there are a lot of options out there, such as Groovy, Scala, Clojure and, of course,
Kotlin. In practice, only some of them can be considered real alternatives.

There are pros and cons on any of these languages, and I suggest you to take a look to some of them
if you are not really sure which language you should use.

1.1 What is Kotlin?

Kotlin, as described before, is a JVM based language developed by JetBrains⁴, known for the creation
of IntelliJ IDEA, a powerful IDE for Java development. Android Studio, the official Android IDE, is
based on IntelliJ, as a plugin of the platform.

Kotlin was created with Java developers in mind, and with IntelliJ as its main development IDE.
And these are two very interesting characteristics for Android developers:

• Kotlin is very intuitive and easy to learn for Java developers. Most parts of the language
are very similar to what we already know, and the differences in basic concepts can be learnt
in no time.

• We have total integration with our daily IDE for free. Android Studio is perfectly capable
to understand, compile and run Kotlin code. And the support for this language comes from
the company who develops the IDE, so we Android developers are first-class citizens.

But this is only related to how the language integrates with our tools. What are the advantages of
the language when compared to Java 7?

⁴https://www.jetbrains.com/

https://www.jetbrains.com/
https://www.jetbrains.com/

1 Introduction 5

• It’s more expressive: this is one of its most important qualities. You can write more with
much less code.

• It’s safer: Kotlin is null safe, which means that we deal with possible null situations in compile
time, to prevent execution time exceptions. We need to explicitly specify if an object can be
null, and then check its nullity before using it. You will save a lot of time debugging null
pointer exception and fixing nullity bugs.

• It’s functional: Kotlin is basically an object oriented language. However, as many other
modern languages, it uses many concepts from functional programming, such as lambda
expressions, to resolve some problems in a much easier way. One of its most awesome features
is the way it deals with collections.

• It makes use of extension functions: This means we can extend any class with new features
even if we don’t have access to the code of the class.

• It’s highly interoperable: You can continue using all the libraries and code written in Java,
because the interoperability between both languages is excellent. It’s even possible that both
languages coexist in the same project.

1.2 What do we get with Kotlin?

Without diving too deep in Kotlin language (we’ll learn about it in next chapters), these are some
interesting features we miss in Java:

Expresiveness

With Kotlin, it’s much easier to avoid boilerplate because most typical situations are covered by
default in the language. For instance, in Java, if we want to create a typical data class, we’ll need to
write (or at least generate) this code:

1 public class Artist {

2 private long id;

3 private String name;

4 private String url;

5 private String mbid;

6

7 public long getId() {

8 return id;

9 }

10

11 public void setId(long id) {

12 this.id = id;

13 }

14

1 Introduction 6

15 public String getName() {

16 return name;

17 }

18

19 public void setName(String name) {

20 this.name = name;

21 }

22

23 public String getUrl() {

24 return url;

25 }

26

27 public void setUrl(String url) {

28 this.url = url;

29 }

30

31 public String getMbid() {

32 return mbid;

33 }

34

35 public void setMbid(String mbid) {

36 this.mbid = mbid;

37 }

38

39 @Override public String toString() {

40 return "Artist{" +

41 "id=" + id +

42 ", name='" + name + '\'' +

43 ", url='" + url + '\'' +

44 ", mbid='" + mbid + '\'' +

45 '}';

46 }

47 }

With Kotlin, you just need to make use of a data class:

1 data class Artist(

2 var id: Long,

3 var name: String,

4 var url: String,

5 var mbid: String)

1 Introduction 7

This data class auto-generates all the fields and property accessors, as well as some useful methods
such as toString().

Null Safety

When we develop using Java, most of our code is defensive. We need to check continuously if
something is null before using it if we don’t want to find unexpected NullPointerException. Kotlin,
as many other modern languages, is null safe because we need to explicitly specify if an object can
be null by using the safe call operator (written ?).

We can do things like this:

1 // This won't compile. Artist can't be null

2 var notNullArtist: Artist = null

3

4 // Artist can be null

5 var artist: Artist? = null

6

7 // Won't compile, artist could be null and we need to deal with that

8 artist.print()

9

10 // Will print only if artist != null

11 artist?.print()

12

13 // Smart cast. We don't need to use safe call operator if we previously

14 // checked nullity

15 if (artist != null) {

16 artist.print()

17 }

18

19 // Only use it when we are sure it's not null. Will throw an exception otherwise.

20 artist!!.print()

21

22 // Use Elvis operator to give an alternative in case the object is null

23 val name = artist?.name ?: "empty"

Extension functions

We can add new functions to any class. It’s a much more readable substitute to the typical utility
classes we all have in our projects. We could, for instance, add a new method to fragments to show
a toast:

1 Introduction 8

1 fun Fragment.toast(message: CharSequence, duration: Int = Toast.LENGTH_SHORT) {

2 Toast.makeText(getActivity(), message, duration).show()

3 }

We can now do:

1 fragment.toast("Hello world!")

Functional support (Lambdas)

What if instead of having to write the creation of a new listener every time we need to declare what
a click should do, we could just define what we want to do? We can indeed. This (and many more
interesting things) is what we get thanks to lambda usage:

1 view.setOnClickListener { toast("Hello world!") }

This is only a small selection of what Kotlin can do to simplify your code. Now that you know some
of the many interesting features of the language, you may decide this is not for you. If you continue,
we’ll start with the practice right away in the next chapter.

2 Getting ready
Now that you know some little examples of what you may do with Kotlin, I’m sure you want to start
to put it into practice as soon as possible. Don’t worry, these first chapters will help you configure
your development environment so that you can start writing some code immediately.

2.1 Android Studio

First thing you need is to have Android Studio installed. As you may know, Android Studio is the
official Android IDE, which was publicly presented in 2013 as a preview and finally released in 2014.

Android Studio is implemented as a plugin over IntelliJ IDEA⁵, a Java IDE created by Jetbrains⁶, the
company which is also behind Kotlin. So, as you can see, everything is tightly connected.

The adoption of Android Studio was an important change for Android developers. First, because
we left behind the buggy Eclipse and moved to a software specifically designed for Java developers,
which gives us a perfect interaction with the language.We enjoy awesome features such as a fast and
impressively smart code completion, or really powerful analyzing and refactor tools among others.

And second, Gradle⁷ became the official build system for Android, which meant a whole bunch of
new possibilities related to version building and deploy. Two of the most interesting functions are
build systems and flavours, which let you create infinite versions of the app (or even different apps)
really easily while using the same code base.

If you are still using Eclipse, I’m afraid you need to switch to Android Studio if you want to practice
many of the parts included in this book. The Kotlin team is creating a plugin for Eclipse, but it will
be always far behind from the one in Android Studio, and the integration won’t be so perfect. You
will also discover what you are missing really soon as you start using it.

I’m not covering the use of Android Studio or Gradle because this is not the focus of the book, but
if you haven’t used these tools before, don’t panic. I’m sure you’ll be able to follow the book and
learn the basics in the meanwhile.

Download Android Studio from the official page⁸ if you don’t have it already.

⁵https://www.jetbrains.com/idea
⁶https://www.jetbrains.com
⁷https://gradle.org/
⁸https://developer.android.com/sdk/index.html

https://www.jetbrains.com/idea
https://www.jetbrains.com
https://gradle.org/
https://developer.android.com/sdk/index.html
https://www.jetbrains.com/idea
https://www.jetbrains.com
https://gradle.org/
https://developer.android.com/sdk/index.html

2 Getting ready 10

2.2 Install Kotlin plugins

The IDE by itself is not able to understand Kotlin. As I mentioned in the previous section, it was
designed to work with Java. But the Kotlin team has created a powerful set of plugins which will
make our lives easier. Go to the plugins section inside Android Studio Preferences, and install these
two plugins:

• Kotlin: This is the basic plugin. It will let you use Android Studio to write and interact with
Kotlin code. It’s updated every time a new version of the language is released, so that we can
make use of the new features and find alternatives and warnings of deprecations. This is the
only plugin you need to write Android apps using Kotlin. But we’ll be using another one.

• Kotlin Android Extensions: the Kotlin team has also released another interesting plugin for
Android developers. These Android Extensions will let you automatically inject all the views
in an XML into an activity, for instance, without the need of using findViewById(). You will
get an attribute casted into the proper view type right away. You will need to install this plugin
to use this interesting feature. We’ll talk deeper about it in next chapters.

Now our environment is ready to understand the language, compile it and execute it just as
seamlessly as if we were using Java.

3 Creating a new project
If you are already used to Android Studio and Gradle, this chapter will be quite easy. I don’t want to
give many details nor screens, because UI changes from time to time and these lines won’t be useful
anymore.

Our app is consisting on a simple weather app, such as the one used in Google’s Beginners Course
in Udacity⁹. We’ll be probably paying attention to different things, but the idea of the app will be
the same, because it includes many of the things you will find in a typical app. If your Android level
is low I recommend this course, it’s really easy to follow.

3.1 Create the project in Android Studio

First of all, open Android Studio and choose Create new Project. It will ask for a name, you can call
it whatever you want: WeatherApp for instance. Then you need to set a Company Domain. As you
are not releasing the app, this field is not very important either, but if you have your own domain,
you can use that one. Also choose a location for the project, wherever you want to save it.

In next step, you’ll be asked about the minimum API version. We’ll select API 15, because one of the
libraries we’ll be using needs API 15 as minimum. You’ll be targeting most Android users anyway.
Don’t choose any other platform rather than Phone and Tablet for now.

Finally, we are required to choose an activity template to start with. We can choose Add no Activity

and start from scratch (that would be the best idea when starting a Kotlin project), but we’ll rather
choose Blank Activity because I’ll show you later an interesting feature in the Kotlin plugin.

Don’t worry much about the name of the activities, layouts, etc. that you will find in next screen.
We’ll change them later if we need to. Press Finish and let Android Studio do its work.

3.2 Configure Gradle

The Kotlin plugin includes a tool which does the Gradle configuration for us. But I prefer to keep
control of what I’m writing in my Gradle files, otherwise they can get messy rather easily. Anyway,
it’s a good idea to know how things work before using the automatic tools, so we’ll be doing it
manually this time.

First, you need to modify the parent build.gradle so that it looks like this:

⁹https://www.udacity.com/course/android-development-for-beginners--ud837

https://www.udacity.com/course/android-development-for-beginners--ud837
https://www.udacity.com/course/android-development-for-beginners--ud837
https://www.udacity.com/course/android-development-for-beginners--ud837

3 Creating a new project 12

1 buildscript {

2 ext.support_version = '23.0.1'

3 ext.kotlin_version = '0.13.1514'

4 ext.anko_version = '0.7'

5 repositories {

6 jcenter()

7 }

8 dependencies {

9 classpath 'com.android.tools.build:gradle:1.2.3'

10 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

11 }

12 }

13

14 allprojects {

15 repositories {

16 jcenter()

17 }

18 }

As you can see, we are creating a variable which saves current Kotlin version. Check which version
is available when you’re reading these lines, because there’s probably a new version. We need that
version number in several places, for instance in the new dependency you need to add for the Kotlin
plugin. You’ll need it again in the module build.gradle, where we’ll specify that this module uses
the Kotlin plugin.

We’ll do the same for the support library, as well as Anko library. This way, it’s easier to modify all
the versions in a row, as well as adding new libraries that use the same version without having to
change the version everywhere.

We’ll add the dependencies to Kotlin library, Anko library and the Kotlin Android Extensions
plugin.

1 apply plugin: 'com.android.application'

2 apply plugin: 'kotlin-android'

3

4 android {

5 ...

6 }

7

8 dependencies {

9 compile "com.android.support:appcompat-v7:$support_version"

10 compile "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"

11 compile "org.jetbrains.anko:anko-sdk15:$anko_version"

3 Creating a new project 13

12 compile "org.jetbrains.anko:anko-support-v4:$anko_version"

13 }

14

15 buildscript {

16 repositories {

17 jcenter()

18 }

19 dependencies {

20 classpath "org.jetbrains.kotlin:kotlin-android-extensions:$kotlin_version"

21 }

22 }

Anko library needs a couple of dependencies. The first one refers to the minimum supported SDK.
It’s important not to be higher than the minimum SDK defined in your build.gradle. sdk19, sdk21
and sdk23 are also available. The second one adds extra features to the support-v4 library, which
we are implicitly using when importing appcompat-v7.

3.3 Convert MainActivity to Kotlin code

An interesting feature the Kotlin plugin includes is the ability to convert from Java to Kotlin code.
As any automated process, it won’t be perfectly optimised, but it will help a lot in your first days
until you start getting used to Kotlin language.

So we are using it in our MainActivity.java class. Open the file and select Code -> Convert Java

File to Kotlin File.

3.4 Test that everything works

We’re going to add some code to test Kotlin Android Extensions are working. I’m not explaining
much about it yet, but I want to be sure this is working for you. It’s probably the trickiest part in
this configuration.

First, go to activity_main.xml and set an id for the TextView:

1 <TextView

2 android:id="@+id/message"

3 android:text="@string/hello_world"

4 android:layout_width="wrap_content"

5 android:layout_height="wrap_content"/>

Now, add the synthetic import to the activity (don’t worry if you don’t understand much about it
yet):

3 Creating a new project 14

1 import kotlinx.android.synthetic.activity_main.*

At onCreate, you can now get access to that TextView directly:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4 message.text = "Hello Kotlin!"

5 }

Thanks to Kotlin interoperability with Java, we can use setters and getters methods from Java
libraries as a property in Kotlin. We’ll talk about properties later, but just notice that we can use
message.text instead of message.setText for free. The compiler will convert it to the regular Java
code, so there’s no performance overhead when using it.

Now run the app and see everything it’s working fine. Check that the message TextView is showing
the new content. If you have any doubts or want to review some code, take a look at Kotlin for
Android Developers repository¹⁰. I’ll be adding a new commit for every chapter, when the chapter
implies changes in code, so be sure to review it to check all the changes.

Next chapters will cover some of the new things you are seeing in the converted MainActivity.
Once you understand the slight differences between Java and Kotlin, you’ll be able to create new
code by yourself much easier.

¹⁰https://github.com/antoniolg/Kotlin-for-Android-Developers

https://github.com/antoniolg/Kotlin-for-Android-Developers
https://github.com/antoniolg/Kotlin-for-Android-Developers
https://github.com/antoniolg/Kotlin-for-Android-Developers

4 Classes and functions
Classes in Kotlin follow a really simple structure. However, there are some slight differences from
Java that you will want to know before we continue. You can use try.kotlinlang.org¹¹ to test this and
some other simple examples without the need of a real project and deploy to a device.

4.1 How to declare a class

If you want to declare a class, you just need to use the keyword class:

1 class MainActivity {

2

3 }

Classes have a unique default constructor. We’ll see in future lessons that we can create extra
constructors for some edgy situations, but keep in mind that most of the times you’ll only need
a constructor. You write its parameters just after the name. Brackets are not needed in a class if it
doesn’t have any content:

1 class Person(name: String, surname: String)

Where’s the body of the constructor then? You can declare an init block:

1 class Person(name: String, surname: String) {

2 init {

3 ...

4 }

5 }

4.2 Class inheritance

By default a class always extends from Any (similar to Java Object), but we can extend any other
class. Classes are closed by default (final), so we can only extend a class if it’s explicitly declared as
open or abstract:

¹¹http://try.kotlinlang.org/

http://try.kotlinlang.org/
http://try.kotlinlang.org/

4 Classes and functions 16

1 open class Animal(name: String)

2 class Person(name: String, surname: String) : Animal(name)

Note that when using the 1-constructor nomenclature, we need to specify the parameters we’re
using for the parent constructor. That’s the substitution to super() call in Java.

4.3 Functions

Functions (our methods in Java) are declared just using the fun keyword:

1 fun onCreate(savedInstanceState: Bundle?) {

2 }

It you don’t specify a return value, it will return Unit, similar to void in Java, though this is really
an object. You can, of course, specify any type for the return value:

1 fun add(x: Int, y: Int) : Int {

2 return x + y

3 }

Tip: Semi-colons are not necessary
As you can see in the previous example, I’m not using semi-colons at the end of the
sentences. While you can use them, semi-colons are not necessary and it’s a good practice
not to use them. When you get used, you’ll find that it saves you a lot of time.

However, if the result can be calculated using a single expression, you can get rid of brackets and
use an equal:

1 fun add(x: Int, y: Int) : Int = x + y

4.4 Constructor and functions parameters

Parameters in Kotlin are a bit different from Java. As you can see, we first write the name of the
parameter and then its type.

4 Classes and functions 17

1 fun add(x: Int, y: Int) : Int {

2 return x + y

3 }

An extremely useful thing about parameters is that we can make them optional by specifying a
default value. Here it is an example of a function you could create in an activity which uses a toast
to show a message:

1 fun toast(message: String, length: Int = Toast.LENGTH_SHORT) {

2 Toast.makeText(this, message, length).show()

3 }

As you can see, the second parameter (length) specifies a default value. This means you can specify
the second value or not, which avoids the need of overloading the function:

1 toast("Hello")

2 toast("Hello", Toast.LENGTH_LONG)

This would be equivalent to the next code in Java:

1 void toast(String message){

2 toast(message, Toast.LENGTH_SHORT);

3 }

4

5 void toast(String message, int length){

6 Toast.makeText(this, message, length).show();

7 }

And this can be as complex as you want. Check this other example:

1 fun niceToast(message: String,

2 tag: String = javaClass<MainActivity>().getSimpleName(),

3 length: Int = Toast.LENGTH_SHORT) {

4 Toast.makeText(this, "[$className] $message", length).show()

5 }

I’ve added a third parameter that includes a tag which defaults to the class name. The amount of
overloads we’d need in Java grows exponentially. You can now make these calls:

4 Classes and functions 18

1 toast("Hello")

2 toast("Hello", "MyTag")

3 toast("Hello", "MyTag", Toast.LENGTH_SHORT)

And there is even another option, because you can use named arguments, which means you can
write the name of the argument preceding the value to specify which one you want:

1 toast(message = "Hello", length = Toast.LENGTH_SHORT)

Tip: String templates
You can use template expressions directly in your strings. This will help you write complex
strings based on fixed and variable parts in a really simple way. In the previous example, I
used "[$className] $message".

As you can see, anytime you want to add an expression, you need to use the $ symbol. If
the expression is a bit more complex, you’ll need to add a couple of brackets: "Your name

is ${user.name}".

5 Writing your first class
We already have our MainActivity.kt class. What we want is to show a list with the forecast for
the next days on it, so you’re going to need some changes to the current layout.

5.1 Creating the layout

You’ll be using a RecyclerView, so you need to add a dependency to the build.gradle:

1 dependencies {

2 compile fileTree(dir: 'libs', include: ['*.jar'])

3 compile "com.android.support:appcompat-v7:$support_version"

4 compile "com.android.support:recyclerview-v7:$support_version"

5 ...

6 }

Now, for the activity_main.xml :

1 <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:layout_width="match_parent"

3 android:layout_height="match_parent">

4

5 <android.support.v7.widget.RecyclerView

6 android:id="@+id/forecast_list"

7 android:layout_width="match_parent"

8 android:layout_height="match_parent"/>

9

10 </FrameLayout>

In MainActivity.kt, remove the line we added to test everything worked (it will be showing an
error now). For now, we are still using the good old findViewById():

1 val forecastList = findViewById(R.id.forecast_list) as RecyclerView

2 forecastList.layoutManager = LinearLayoutManager(this)

5 Writing your first class 20

As you can see, we define the variable and cast it to RecyclerView. It’s a bit different from Java, and
we’ll see those differences in the next chapter. A LayoutManager is also specified, using the property
naming instead of the setter. A list will be enough for this layout.

Object instantiation
Object instantiation is a bit different from Java. As you can see, we omit the
“new” word. The constructor call is still there, but we save four precious characters.
LinearLayoutManager(this) creates an instance of the object.

5.2 The Recycler Adapter

We need an adapter for the recycler too. I talked about RecyclerView in my blog¹² some time ago,
so it may help you if your are not used to it.

For the view, I’ll just use a TextView for now, and a simple list of texts that we’ll create manually
for now. Create a new Kotlin file called ForecastListAdapter.kt, and add this code:

1 public class ForecastListAdapter(val items: List<String>) :

2 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

3

4 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

5 ForecastListAdapter.ViewHolder? {

6 return ViewHolder(TextView(parent.context))

7 }

8

9 override fun onBindViewHolder(holder: ForecastListAdapter.ViewHolder,

10 position: Int) {

11 holder.textView.text = items.get(position)

12 }

13

14 override fun getItemCount(): Int = items.size()

15

16 class ViewHolder(val textView: TextView) : RecyclerView.ViewHolder(textView)

17 }

Again, we can access to the context and the text as properties. You can keep doing it as usual (using
getters and setter), but you’ll get a warning from the compiler. This chick can be disabled if you
prefer to keep using the Java way. Once you get used to properties you will love it anyway, and it
saves some amount of extra characters.

Back to the MainActivity, now just create the list of strings and then assign the adapter:

¹²http://antonioleiva.com/recyclerview/

http://antonioleiva.com/recyclerview/
http://antonioleiva.com/recyclerview/

5 Writing your first class 21

1 private val items = listOf(

2 "Mon 6/23 - Sunny - 31/17",

3 "Tue 6/24 - Foggy - 21/8",

4 "Wed 6/25 - Cloudy - 22/17",

5 "Thurs 6/26 - Rainy - 18/11",

6 "Fri 6/27 - Foggy - 21/10",

7 "Sat 6/28 - TRAPPED IN WEATHERSTATION - 23/18",

8 "Sun 6/29 - Sunny - 20/7"

9)

10

11 override fun onCreate(savedInstanceState: Bundle?) {

12 ...

13 val forecastList = findViewById(R.id.forecast_list) as RecyclerView

14 forecastList.layoutManager = LinearLayoutManager(this)

15 forecastList.adapter = ForecastListAdapter(items)

16 }

List creation
Tough I’ll come back later to talk about collections, I just want to explain for now that you
can create constant lists (what we will see as immutable soon) by using the helper function
listOf. It receives a vararg of items of any type and infers the type of the result.

There are many other alternative functions, such as setOf, arrayListOf or hashSetOf

among others.

I also organised packages a little bit.

There were many new things in such a small amount of code, so I’ll be covering it now. We can’t
continue until we get some basics about basic types, variables and properties.

6 Variables and properties
In Kotlin, everything is an object. We don’t find primitive types as the ones we can use in Java.
That’s really helpful, because we have an homogeneous way to deal with all the available types.

6.1 Basic types

Of course, basic types such as integers, floats, characters or booleans still exist, but they all act as
an object. Most of the names and the way they work are very similar in Java, but there are some
differences you might take into account:

• There are no automatic conversions among numbers. For instance, you cannot assign an Int

to a Double variable. An explicit conversion must be done, using one of the many functions
available:

1 val i: Int = 7

2 val d: Double = i.toDouble()

• Characters (Char) cannot directly be treated as numbers. We can, however, convert them to a
number when we need it:

1 val c: Char = 'c'

2 val i: Int = c.toInt()

• Bitwise arithmetical operations are a bit different. In Android, we use bitwise or quite often
for flags, so I’ll stick to “and” and “or “ as an example:

1 // Java

2 int bitwiseOr = FLAG1 | FLAG2;

3 int bitwiseAnd = FLAG1 & FLAG2;

6 Variables and properties 23

1 // Kotlin

2 val bitwiseOr = FLAG1 or FLAG2

3 val bitwiseAnd = FLAG1 and FLAG2

There are many other bitwise operations, such as shl, shs, ushr, xor or inv. When needed,
you can take a look at the official Kotlin reference¹³.

• Literals can give information about its type. It’s not always necessary, but a common practice
in Kotlin is to omit the type of the variables (we’ll see it soon), so we can specify it to let the
compiler infer the type from the literal:

1 val i = 12 // An Int

2 val iHex = 0x0f // An Int from hexadecimal literal

3 val l = 3L // A Long

4 val d = 3.5 // A Double

5 val f = 3.5F // A Float

• A String can be accessed as an array and can be iterated:

1 val s = "Example"

2 val c = s[2] // This is the Char 'a'

1 // Iterate over String

2 val s = "Example"

3 for (c in s) {

4 print(c)

5 }

6.2 Variables

Variables in Kotlin can be easily defined as mutable (var) or immutable (val). The idea is very similar
to using final in Java variables. But immutability is a very important concept in Kotlin (and many
other modern languages).

¹³http://kotlinlang.org/docs/reference/basic-types.html#operations

http://kotlinlang.org/docs/reference/basic-types.html#operations
http://kotlinlang.org/docs/reference/basic-types.html#operations

6 Variables and properties 24

An immutable object is an object whose state cannot change after instantiation. If you need a
modified version of the object, a new object needs to be created. This makes programming much
more robust and predictable. In Java, most objects are mutable, which means that any part of the
code which has access to the object can modify it, affecting the rest of the application.

Immutable objects are also thread-safe by definition. As they can’t change, no special access control
must be defined, because all threads will always get the same object.

So the way we think about coding changes a bit in Kotlin, if we want to make use of immutability.
The key concept: just use val as much as possible. There will be situations (specially in Android,
where we don’t directly use the constructor of many classes) where it won’t be possible, but it will
most of the time.

Another thing mentioned before is that we usually don’t need to specify the object type, it will be
inferred from the assignation, which makes the code cleaner and faster to modify. We already have
some examples in the previous section.

1 val s = "Example" // A String

2 val i = 23 // An Int

3 val actionBar = supportActionBar // An ActionBar in an Activity context

However, the type needs to be specified if a more generic type must be used:

1 val a: Any = 23

2 val c: Context = activity

6.3 Properties

Properties are the fields in Java, but much more powerful. Properties will do the work of a field plus
a getter plus a setter. Let’s see an example to compare the difference. This is the necessary code in
Java:

1 public class Person {

2

3 private String name;

4

5 public String getName() {

6 return name;

7 }

8

9 public void setName(String name) {

10 this.name = name;

6 Variables and properties 25

11 }

12 }

13

14 ...

15

16 Person person = new Person();

17 person.setName("name");

18 String name = person.getName();

In Kotlin, only a property is required:

1 public class Person {

2

3 var name: String = ""

4

5 }

6

7 ...

8

9 val person = Person()

10 person.name = "name"

11 val name = person.name

If nothing is specified, the property uses the default getter and setter. It can, of course, be modified
to run whatever custom code you need, without having to modify the existing code:

1 public class Person {

2

3 var name: String = ""

4 get() = $name.toUpperCase()

5 set(value) {

6 $name = "Name: $value"

7 }

8

9 }

If the property needs access to its own value in custom getter and setter (as in this case), it requires
the creation of a backing field. It can be accessed by using the $ symbol, and will be generated
automatically by the compiler if it finds that it’s being used. Take into account that if we used the
property directly, we would be using the setter and getter, and not doing a direct assignation. The
backing field can only be used inside the class where the property is declared.

As mentioned in some previous chapters, latest versions of Kotlin, when operating with Java code,
allow to use the property syntax where a getter and a setter are defined in Java. The compiler will
use the original getters and setters, so there are no performance penalties when using the properties.

7 Anko and Extension Functions
7.1 What is Anko?

Anko¹⁴ is a powerful library developed by JetBrains. Its main purpose is the generation of UI layouts
by using code instead of XML. This is an interesting feature I recommend you to take a look, but
I won’t be using it in this project. For me (probably due to years of experience writing UIs) using
XML is much easier, but you could like this approach.

But on the other hand, Anko includes a lot of extremely helpful functions and properties that will
avoid lots of boilerplate. I’ll tell you when we are using something from Anko, but you’ll quickly see
which kind of things this library will help with. Though Anko is really helpful, I recommend you to
understand what it is doing behind the scenes. You always can navigate to Anko source code using
ctrl + click or cmd + click, and learn a lot of Kotlin from it.

7.2 Start using Anko

Before going any further, let’s use Anko to simplify some code. As you will see, anytime you use
something from Anko, it will include an import with the name of the property or function to the
file. This is because Anko is based on extension functions to work. We’ll see right after what an
extension function is and how to write it.

In MainActivity:onCreate, an extension function can be used to simplify how to find the Recy-

clerView:

1 val forecastList: RecyclerView = find(R.id.forecast_list)

For now we don’t have more usages, but Anko can help as simplify, among others, the instantiation
of intents, the navigation between activities, creation of fragments, database access… We’ll see lots
of interesting usages of the library throughout the book.

7.3 Extension functions

An extension function is a function that adds a new behaviour to a class, even if we don’t have
access to the source code of that class. It’s a way to extend classes which lack some useful functions.
In Java, this is usually implemented in utility classes which include a set of static methods. The

¹⁴https://github.com/JetBrains/anko

https://github.com/JetBrains/anko
https://github.com/JetBrains/anko

7 Anko and Extension Functions 27

advantage when using extension functions in Kotlin is that we don’t need to pass the object as an
argument. The extension function acts as if it was part of the class, and we can implement it using
this and all the public methods.

For instance, we can create a toast function which doesn’t ask for the context in any Context class
(and its children):

1 fun Context.toast(message: CharSequence, duration: Int = Toast.LENGTH_SHORT) {

2 Toast.makeText(this, message, duration).show()

3 }

Now you could just use, inside an activity for instance:

1 toast("Hello world!")

2 toast("Hello world!", Toast.LENGTH_LONG)

Of course, Anko already includes its own toast, very similar to this. It has functions for both
CharSequence and resources, and different functions for short and long toasts:

1 toast("Hello world!")

2 longToast(R.id.hello_world)

The extension functions can also be properties. So you can create extension properties too. It’s very
similar. In this example, we can see how we could generate a property from getters and setters.
Kotlin already provides this for us, but it’s a good exercise to understand the idea behind extension
properties:

1 public var TextView.text: CharSequence

2 get() = getText()

3 set(v) = setText(v)

Extension functions don’t really modify the original class, but the function is added as a static import
where it is used. Extension functions can be declared in any file, so a common practice is to create
files which include a set of related functions.

And this is the magic behind Anko. From now own, you can create your own magic too.

8 Retrieving data from API
8.1 Performing the request

Nowwewant some real data for the forecast, which will be used to populate the RecyclerView. We’ll
be using OpenWeatherMap¹⁵ API to retrieve data, and some regular Java classes for the request. As
Kotlin interoperability is extremely powerful, you could use any library you want, such as Retrofit¹⁶,
for the server requests. But I don’t want to add another third party libraries to the project, so I’ll
keep it simple.

Besides, as you will see, Kotlin adds some extension functions that will make requests much easier.
First, we’re going to create a new Request class:

1 public class Request(val url: String) {

2

3 public fun run() {

4 val forecastJsonStr = URL(url).readText()

5 Log.d(javaClass.simpleName, forecastJsonStr)

6 }

7

8 }

It simply receives an url, and saves the result in a String. As you can see, we’re using readText,
which is an extension function from the Kotlin library. This method is not recommended for huge
responses, but it will be good enough in our case.

If you compare this code with the one you’d need in Java, you will see we’ve saved a huge amount of
overhead just using the standard library. An HttpURLConnection, a BufferedReader and an iteration
over the result would have been necessary to get the same effect, apart from managing the status of
the connection and the reader. Obviously, that’s what the function is doing behind the scenes, but
we have it for free.

You need to add the Internet permission to the AndroidManifest.xml:

1 <uses-permission android:name="android.permission.INTERNET" />

¹⁵http://openweathermap.org/
¹⁶https://github.com/square/retrofit

http://openweathermap.org/
https://github.com/square/retrofit
http://openweathermap.org/
https://github.com/square/retrofit

8 Retrieving data from API 29

8.2 Moving request out of the main thread

As you may know, HTTP requests cannot be done in main thread, it will throw an exception
because blocking the ui thread is a really bad practice. The common solution in Android is to use an
AsyncTask. But these classes are ugly and it’s difficult to make them work properly in all situations.
AsyncTasks are dangerous if not used carefully, because by the time it reaches postExecute the
activity could have been destroyed, and the task will crash.

Anko provides a really easyDSL to deal with asynchrony, whichwill fit most of your needs. Basically
you have an async function that will execute its code in another thread, and will give the chance of
returning main thread using uiThread. So we could do something like this:

1 async {

2 Request(url).run()

3 uiThread { longToast("Request performed") }

4 }

The good part about uiThread is that it’s implemented differently depending on the class it uses.
If we call it from an Activity, the uiThread code won’t be executed if activity.isFinishing()
returns true, and it won’t crash in that situation.

You also can use your own executor:

1 val executor = Executors.newScheduledThreadPool(4)

2 async(executor) {

3 // Some task

4 }

async returns a java Future, in case you want to work with futures. And if you need it to return a
future with a result, you can use asyncResult.

Really simple, right? And much more readable than AsyncTasks. For now, I’m just sending a static
url to the request, to test that we receive the content properly and that we are able to draw it in
the activity. I will cover the json parsing and conversion to app data classes soon, but before we
continue, you will learn what a data class is.

Check the code to review the url used for the request and some new package organisation I did.
You can run the app and check that you can see the json in the log and the toast when the request
finishes.

9 Data Classes
Data classes are a powerful kind of classes which avoid the boilerplate we need in Java to create
POJO, or classes which are only based on their state, but are very simple in the operations they do.
Defining a new data class is very easy:

1 data class Forecast(val date: Date, val temperature: Float, val details: String)

9.1 Extra functions

With a data class, we get a handful of interesting functions for free, apart from the properties we
already talked about, which prevents us from writing getters and setters:

• equals(): it compares the properties of both objects to ensure they are identical.
• hashCode(): we get a hash code for free, also calculated from the values of the properties.
• copy(): you can copy an object, modifying the properties you need.We’ll see an example later.
• A set of numbered functions that are useful to map an object into variables. It will also be
explained soon.

9.2 Copying a data class

If we use immutability, as talked some chapters ago, we’ll find that if we want to change the state of
an object, a new instance of the class is required, with one or more of its properties modified. This
task can be rather repetitive and far from clean. However, data classes include the copy() method,
which will make the process really easy and intuitive.

For instance, if we need to modify the temperature of a Forecast, we can just do:

1 val f1 = Forecast(Date(), 27.5f, "Shiny day")

2 val f2 = f1.copy(temperature = 30f)

This way, we copy the first forecast and modify only the temperature property and without
changing the state of the original object.

9 Data Classes 31

Be careful with immutability when using Java classes
If you decide to work with immutability, be aware that Java classes weren’t designed with
this in mind, and there are still some situations where you will be able to modify the state.
In the previous example, you could still access the Date object and change its value. The
easy (and unsafe) option is to remember the rules of not modifying the state of any object,
but copying it when necessary.

Another option is to wrap these classes. You could create an ImmutableDate class which
wraps a Date and doesn’t allow to modify its state. It’s up to you to decide which solution
you take. In this book, I won’t be very strict with immutability (as it’s not its main goal),
so I won’t be creating wrappers for every potentially dangerous classes.

9.3 Mapping an object into variables

This process is known asmulti-declaration and consists of mapping each property inside an object
into a variable. That’s the reason why the componentX functions are automatically created. An
example with the previous Forecast class:

1 val f1 = Forecast(Date(), 27.5f, "Shiny day")

2 val (date, temperature, details) = f1

This multi-declaration is compiled down to the following code:

1 val date = f1.component1()

2 val temperature = f1.component2()

3 val details = f1.component3()

The logic behind this feature is really powerful, and can help simplify the code in many situations.
For instance, Map class has some extension functions implemented that allow to recover its keys and
values in an iteration:

1 for ((key, value) in map) {

2 Log.d("map", "key:$key, value:$value")

3 }

10 Parsing data
10.1 Converting json to data classes

Now that we know how to create data classes, we are ready to start parsing data. In the data package,
create a new file called ResponseClasses.kt. If you open the url we used in chapter 8, you can see
the structure of the json file. It basically consists of an object which contains a city, and a list of
forecast predictions. The city has an id, a name, its coordinates and the country it belongs to. Each
forecast comes with a good set of information such as the date, different temperatures, and a weather
object with the description and an id for an icon, for instance.

In our current UI we’re not going to use many of this data. However, we’ll parse everything into
classes, in case it’s of some use in the future. These are the data classes we need:

1 data class ForecastResult(val city: City, val list: List<Forecast>)

2

3 data class City(val id: Long, val name: String, val coord: Coordinates,

4 val country: String, val population: Int)

5

6 data class Coordinates(val lon: Float, val lat: Float)

7

8 data class Forecast(val dt: Long, val temp: Temperature, val pressure: Float,

9 val humidity: Int, val weather: List<Weather>,

10 val speed: Float, val deg: Int, val clouds: Int,

11 val rain: Float)

12

13 data class Temperature(val day: Float, val min: Float, val max: Float,

14 val night: Float, val eve: Float, val morn: Float)

15

16 data class Weather(val id: Long, val main: String, val description: String,

17 val icon: String)

As we are using Gson to parse the json to our classes, the properties must have the same name
as the ones in the json, or specify a serialised name. A good practice explained in most software
architectures is to use different models for the different layers in our app to decouple them from
each other. So I prefer to simplify the declaration of these classes, because I’ll convert them before
being used in the rest of the app. The names of the properties here are exactly the same as the names
in the json response.

10 Parsing data 33

Now, the Request class needs some modifications in order to return the parsed result. It will also
receive only the zipcode of the city instead of the full url, so that it becomes more readable. For now,
the static url will belong to a companion object. Maybe we need to extract it later if we create more
requests against another endpoint of the API. I I> ### Companion objects I> I> Kotlin allows us to
declare objects to define static behaviours. In Kotlin, we can’t create static properties or functions,
but we need to rely on objects. However, these objects make some well known patterns such as
Singleton very easy to implement. We’ll talk about it in the future. I> I>If we need some static
properties, constants or functions in a class, we can use a companion object. This object will be
shared between all instances of the class, the same as a static field or method would do.

Check the resulting code:

1 public class ForecastRequest(val zipcode: String) {

2

3 companion object {

4 private val URL = "http://api.openweathermap.org/data/2.5/" +

5 "forecast/daily?mode=json&units=metric&cnt=7&q="

6 }

7

8 public fun execute(): ForecastResult {

9 val forecastJsonStr = URL(URL + zipcode).readText()

10 return Gson().fromJson(forecastJsonStr, ForecastResult::class.java)

11 }

12 }

Remember you need to add Gson library to the build.gradle dependencies:

1 compile "com.google.code.gson:gson:<version>"

10.2 Shaping the domain layer

Now we’ll create a new package representing the domain layer. This layer will basically implement
a set of Commands in charge of performing the tasks in the app.

First, a definition of a Command is required:

1 public interface Command<T> {

2 fun execute(): T

3 }

These commands will execute an operation and return an object of the class specified in its generic
type. It’s interesting to know that every function in Kotlin returns a value. By default, if nothing

10 Parsing data 34

is specified, it will return an object of the Unit class. So if we want our Command to return nothing,
we can specify Unit as its type.

Interfaces in Kotlin are more powerful than Java (prior to version 8), because they can contain code.
But for now, we don’t need more than what we could do in a Java interface. Future chapters will
talk about the differences deeper.

The first command needs to request the forecast to the API and convert it to domain classes. The
definition of the domain classes is this:

1 data class ForecastList(val city: String, val country: String,

2 val dailyForecast:List<Forecast>)

3

4 data class Forecast(val date: String, val description: String, val high: Int,

5 val low: Int)

These classes will probably need to be reviewed in the future, when more features are added. But
the data they keep is enough for now.

Classes need to be mapped from the data to the domain model, so the next task will be to create a
DataMapper:

1 public class ForecastDataMapper {

2

3 public fun convertFromDataModel(forecast: ForecastResult): ForecastList {

4 return ForecastList(forecast.city.name, forecast.city.country,

5 convertForecastListToDomain(forecast.list))

6 }

7

8 private fun convertForecastListToDomain(list: List<Forecast>):

9 List<ModelForecast> {

10 return list map { convertForecastItemToDomain(it) }

11 }

12

13 private fun convertForecastItemToDomain(forecast: Forecast): ModelForecast {

14 return ModelForecast(convertDate(forecast.dt),

15 forecast.weather[0].description, forecast.temp.max.toInt(),

16 forecast.temp.min.toInt())

17 }

18

19 private fun convertDate(date: Long): String {

20 val df = DateFormat.getDateInstance(DateFormat.MEDIUM,

21 Locale.getDefault())

22 return df.format(date * 1000)

10 Parsing data 35

23 }

24 }

As we are using two classes with the same name, we can give a specific name to one of them so that
we don’t need to write the complete package:

1 import com.antonioleiva.weatherapp.domain.model.Forecast as ModelForecast

Another interesting thing about this code is the way to convert the forecast list from the data to the
domain model:

1 return list map { convertForecastItemToDomain(it) }

In a single line, we can loop over the collection and return a new list with the converted items.
Kotlin provides a good set of functional operations over lists, which apply an operation for all the
items in a list and transform them in any way. This is one of the most powerful features in Kotlin
for developers used to Java 7. We’ll take a look at all the different transformations very soon. It’s
important to know they exist, because it will be much easier to find places where these functions
can save a lot of time and boilerplate.

And now, everything is prepared to write the command:

1 public class RequestForecastCommand(val zipCode: String) :

2 Command<ForecastList> {

3 override fun execute(): ForecastList {

4 val forecastRequest = ForecastRequest(zipCode)

5 return ForecastDataMapper().convertFromDataModel(

6 forecastRequest.execute())

7 }

8 }

10.3 Drawing the data in the UI

The MainActivity code changes a little, because now we have real data to fill the adapter. The
asynchronous call needs to be rewritten:

10 Parsing data 36

1 async {

2 val result = RequestForecastCommand("94043").execute()

3 uiThread {

4 forecastList.adapter = ForecastListAdapter(result)

5 }

6 }

The adapter needs some modifications too:

1 public class ForecastListAdapter(val weekForecast: ForecastList) :

2 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

3

4 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

5 ViewHolder? {

6 return ViewHolder(TextView(parent.getContext()))

7 }

8

9 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

10 with(weekForecast.dailyForecast[position]) {

11 holder.textView.text = "$date - $description - $high/$low"

12 }

13 }

14

15 override fun getItemCount(): Int = weekForecast.dailyForecast.size()

16

17 class ViewHolder(val textView: TextView) : RecyclerView.ViewHolder(textView)

18 }

with function
with is a useful function included in the standard Kotlin library. It basically receives an
object and an extension function as parameters, and makes the object execute the function.
This means that all the code we define inside the brackets acts as an extension function of
the object we specify in the first parameter, and we can use all the public functions and
properties, as well as this. Really helpful to simplify code when we do several operations
over the same object.

There’s a lot of new code in this chapter, so feel free to check it out on the repository.

11 Operator overloading
Kotlin has a fixed number of symbolic operators we can easily use on any class. The way is to create
a function with a reserved name that will be mapped to the symbol. Overloading these operators
will increment code readability and simplicity.

11.1 Operators tables

Here you can see a set of tables that include an operator and its corresponding function. A function
with that name must be implemented to enable the possibility of using the operator in a specific
class.

Unary operations

+a a.plus()
-a a.minus()
!a a.not()
a++ a.inc()
a– a.dec()

Binary operations

a + b a.plus(b)
a - b a.minus(b)
a * b a.times(b)
a / b a.div(b)
a % b a.mod(b)
a..b a.rangeTo(b)
a in b b.contains(a)
a !in b !b.contains(a)
a += b a.plusAssign(b)
a -= b a.minusAssign(b)
a *= b a.timesAssign(b)
a /= b a.divAssign(b)
a %= b a.modAssign(b)

Array-like operations

11 Operator overloading 38

a[i] a.get(i)
a[i, j] a.get(i, j)
a[i_1, …, i_n] a.get(i_1, …, i_n)
a[i] = b a.set(i, b)
a[i, j] = b a.set(i, j, b)
a[i_1, …, i_n] = b a.set(i_1, …, i_n, b)

Equals operation

a == b a?.equals(b) ?: b.identityEquals(null)
a != b !(a?.equals(b) ?: b.identityEquals(null))

The equals operations are a bit different, because they use a more complex translation in order to
make a proper equals checking, and because they expect an exact function specification, and not
just a specific name. The function must be implemented exactly like this:

1 fun equals(other: Any?): Boolean

Function invocation

a(i) a.invoke(i)
a(i, j) a.invoke(i, j)
a(i_1, …, i_n) a.invoke(i_1, …, i_n)

11.2 The example

As you can imagine, Kotlin lists have the array-like operations implemented, so we can access to list
items the same way we’d do if it was an array in Java. But it goes beyond: in mutable lists, the item
can also be set directly in a very simple way:

1 val x = myList[2]

2 myList[2] = 4

If you remember, we have a data class called ForecastList, which basically consists of a list with
some extra info. It’d be interesting to access its items directly instead of having to request its internal
list to get an item. On a totally unrelated note, I’m also going to implement a size() function, which
will simplify the current adapter a little more:

11 Operator overloading 39

1 data class ForecastList(val city: String, val country: String,

2 val dailyForecast: List<Forecast>) {

3 public fun get(position: Int): Forecast = dailyForecast[position]

4 public fun size(): Int = dailyForecast.size()

5 }

It makes our onBindViewHolder a bit simpler:

1 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

2 with(weekForecast[position]) {

3 holder.textView.text = "$date - $description - $high/$low"

4 }

5 }

As well as the getItemCount() function:

1 override fun getItemCount(): Int = weekForecast.size()

11.3 Operators in extension functions

We don’t need to stick to our own classes, but we could even extend existing classes using extension
functions to provide new operations to third party libraries. For instance, we could access to
ViewGroup views the same way we do with lists:

1 public fun ViewGroup.get(position: Int): View

2 = getChildAt(position)

Now it’s really simple to get a view from a ViewGroup by its position:

1 val container: ViewGroup = find(R.id.container)

2 val view = container[2]

Changes can be reviewed at chapter-11 branch, at Kotlin for Android Developers repository¹⁷.

¹⁷https://github.com/antoniolg/Kotlin-for-Android-Developers

https://github.com/antoniolg/Kotlin-for-Android-Developers
https://github.com/antoniolg/Kotlin-for-Android-Developers

12 Making the forecast list clickable
The current layout of the items needs some work to be ready for a real app. The first thing is to
create a proper XML that can fit our basic needs. We want to show an icon, date, description and
high and low temperatures. So let’s create a layout called item_forecast.xml:

1 <?xml version="1.0" encoding="utf-8"?>

2 <LinearLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 xmlns:tools="http://schemas.android.com/tools"

5 android:layout_width="match_parent"

6 android:layout_height="match_parent"

7 android:padding="@dimen/spacing_xlarge"

8 android:background="?attr/selectableItemBackground"

9 android:gravity="center_vertical"

10 android:orientation="horizontal">

11

12 <ImageView

13 android:id="@+id/icon"

14 android:layout_width="48dp"

15 android:layout_height="48dp"

16 tools:src="@mipmap/ic_launcher"/>

17

18 <LinearLayout

19 android:layout_width="0dp"

20 android:layout_height="wrap_content"

21 android:layout_weight="1"

22 android:layout_marginLeft="@dimen/spacing_xlarge"

23 android:layout_marginRight="@dimen/spacing_xlarge"

24 android:orientation="vertical">

25

26 <TextView

27 android:id="@+id/date"

28 android:layout_width="match_parent"

29 android:layout_height="wrap_content"

30 android:textAppearance="@style/TextAppearance.AppCompat.Medium"

31 tools:text="May 14, 2015"/>

32

33 <TextView

12 Making the forecast list clickable 41

34 android:id="@+id/description"

35 android:layout_width="match_parent"

36 android:layout_height="wrap_content"

37 android:textAppearance="@style/TextAppearance.AppCompat.Caption"

38 tools:text="Light Rain"/>

39

40 </LinearLayout>

41

42 <LinearLayout

43 android:layout_width="wrap_content"

44 android:layout_height="wrap_content"

45 android:gravity="center_horizontal"

46 android:orientation="vertical">

47

48 <TextView

49 android:id="@+id/maxTemperature"

50 android:layout_width="wrap_content"

51 android:layout_height="wrap_content"

52 android:textAppearance="@style/TextAppearance.AppCompat.Medium"

53 tools:text="30"/>

54

55 <TextView

56 android:id="@+id/minTemperature"

57 android:layout_width="wrap_content"

58 android:layout_height="wrap_content"

59 android:textAppearance="@style/TextAppearance.AppCompat.Caption"

60 tools:text="15"/>

61

62 </LinearLayout>

63

64 </LinearLayout>

The domain model and data mapper must deal with the complete icon url, so that we are able to
load it:

1 data class Forecast(val date: String, val description: String,

2 val high: Int, val low: Int, val iconUrl: String)

In ForecastDataMapper:

12 Making the forecast list clickable 42

1 private fun convertForecastItemToDomain(forecast: Forecast): model.Forecast {

2 return model.Forecast(convertDate(forecast.dt),

3 forecast.weather[0].description, forecast.temp.max.toInt(),

4 forecast.temp.min.toInt(), generateIconUrl(forecast.weather[0].icon))

5 }

6

7 private fun generateIconUrl(iconCode: String): String

8 = "http://openweathermap.org/img/w/$iconCode.png"

The icon code we got from the first request is used to compose the complete url for the icon image.
The simplest way to load an image is to make use of an image loader library. Picasso¹⁸ is a really
good option. It must be added to build.gradle dependencies:

1 compile "com.squareup.picasso:picasso:<version>"

The adapter needs a big rework too. A click listener will be necessary, so let’s define it:

1 public interface OnItemClickListener {

2 fun invoke(forecast: Forecast)

3 }

If you remember from the last lesson, the invokemethod can be omitted when called. So let’s use it
as a way of simplification. The listener can be called in two ways:

1 itemClick.invoke(forecast)

2 itemClick(forecast)

The ViewHolder now will be responsible of binding the forecast to the new view:

1 class ViewHolder(view: View, val itemClick: OnItemClickListener) :

2 RecyclerView.ViewHolder(view) {

3

4 private val iconView: ImageView

5 private val dateView: TextView

6 private val descriptionView: TextView

7 private val maxTemperatureView: TextView

8 private val minTemperatureView: TextView

9

10 init {

¹⁸http://square.github.io/picasso/

http://square.github.io/picasso/
http://square.github.io/picasso/

12 Making the forecast list clickable 43

11 iconView = view.find(R.id.icon)

12 dateView = view.find(R.id.date)

13 descriptionView = view.find(R.id.description)

14 maxTemperatureView = view.find(R.id.maxTemperature)

15 minTemperatureView = view.find(R.id.minTemperature)

16 }

17

18 fun bindForecast(forecast: Forecast) {

19 with(forecast) {

20 Picasso.with(itemView.ctx).load(iconUrl).into(iconView)

21 dateView.text = date

22 descriptionView.text = description

23 maxTemperatureView.text = "${high.toString()}"

24 minTemperatureView.text = "${low.toString()}"

25 itemView.onClick { itemClick(forecast) }

26 }

27 }

28 }

The constructor of the adapter now receives the itemClick. The methods for creation and binding
are simpler:

1 public class ForecastListAdapter(val weekForecast: ForecastList,

2 val itemClick: ForecastListAdapter.OnItemClickListener) :

3 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

4

5 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

6 ViewHolder? {

7 val view = parent.ctx.layoutInflater.inflate(R.layout.item_forecast,

8 parent, false)

9 return ViewHolder(view, itemClick)

10 }

11

12 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

13 holder.bindForecast(weekForecast[position])

14 }

15 ...

16 }

If you use this code, parent.ctx won’t compile. Anko provides a lot of extension functions to make
Android coding simpler. It, for instance, includes a ctx property for activities and fragments, among
others, which returns the context, but it lacks of the same property for views. So we are going to
create a new file called ViewExtensions.kt inside ui.utils, and add this extension property:

12 Making the forecast list clickable 44

1 public val View.ctx: Context

2 get() = context

From now on, any view can make use of it. It is not necessary at all, but I think it gives some
consistency if we are planning to use ctx in the other classes.

Finally, the MainActivity call to setAdapter results into this:

1 forecastList.adapter = ForecastListAdapter(result,

2 object : ForecastListAdapter.OnItemClickListener{

3 override fun invoke(forecast: Forecast) {

4 toast(forecast.date)

5 }

6 })

As you can see, to create an anonymous class, we create an object that implements the interface
we created. Not very nice, right? That’s because we are not making use of the powers of functional
programming, but you’ll learn how to convert this code into something much simpler in the next
chapter.

Try the new changes from the repository. The UI starts looking sexy!

13 Lambdas
A lambda expression is a simple way to define an anonymous function. Lambdas are very useful
because they prevent us from having to write the specification of the function in an abstract class or
interface, and then the implementation of the class. In Kotlin, we can use a function as a parameter
in another function.

13.1 Simplifying setOnClickListener()

I will explain how this works using a typical example in Android: the View.setOnClickListener()
method. If we want to implement a click listener behaviour in Java, we first need to write the
OnClickListener interface:

1 public interface OnClickListener {

2 void onClick(View v);

3 }

And then we write an anonymous class that implements this interface:

1 view.setOnClickListener(new OnClickListener() {

2 @Override

3 public void onClick(View v) {

4 Toast.makeText(v.getContext(), "Click", Toast.LENGTH_SHORT).show();

5 }

6 });

This would be the transformation of the code into Kotlin (using Anko toast function):

1 view.setOnClickListener(object : OnClickListener {

2 override fun onClick(v: View) {

3 toast("Click")

4 }

5 })

Luckily, Kotlin allows some optimisations over Java libraries, and any function that receives an
interface with a single function can be substituted by the function. It will work as if we had defined
setOnclickListener() like this:

13 Lambdas 46

1 fun setOnClickListener(listener: (View) -> Unit)

A lambda expression is defined by the parameters of the function to the left of the arrow (surrounded
by parentheses), and the return value to the right. In this case, we get a View and return Unit

(nothing). So with this in mind, we can simplify the previous code a little:

1 view.setOnClickListener({ view -> toast("Click")})

Nice difference! While defining a function, we must use brackets and specify the parameters values
to the left of the arrow and the code the function will execute to the right. We can even get rid of
the left part if the parameters are not being used:

1 view.setOnClickListener({ toast("Click") })

If the function is the last one in the parameters of the function, we canmove it out of the parentheses:

1 view.setOnClickListener() { toast("Click") }

And, finally, if the function is the only parameter, we can get rid of the parentheses:

1 view.setOnClickListener { toast("Click") }

More than five times smaller than the original code in Java, and much easier to understand what is
doing. Really impressive. Anko gives us a simplified (basically in name) version, which consists of
an extension function implemented the way I showed you before. I’ll be using that one throughout
the project:

1 view.onClick { toast("Click") }

13.2 Click listener for ForecastListAdapter

In the previous chapter, I wrote the click listener in the hard way on purpose to have a good context
to develop this one. But now it’s time to put what you learnt into practice. We are removing the
listener interface from the ForecastListAdapter and using a lambda instead:

1 public class ForecastListAdapter(val weekForecast: ForecastList,

2 val itemClick: (Forecast) -> Unit)

The function will receive a forecast and return nothing. The same change can be done to the
ViewHolder:

13 Lambdas 47

1 class ViewHolder(view: View, val itemClick: (Forecast) -> Unit)

The rest of the code remains untouched. Just a last modification to MainActivity:

1 val adapter = ForecastListAdapter(result, { forecast -> toast(forecast.date) })

2 forecastList.adapter = adapter

I could take the function out of the parentheses, as it is the last one in the list of parameters, but it
doesn’t feel very natural in a constructor, so I prefer to keep it inside in this case. For the record, the
alternative would be:

1 val adapter = ForecastListAdapter(result) { forecast -> toast(forecast.date) }

We can simplify the last line even more. In functions that only need one parameter, we can make
use of the it reference, which prevents us from defining the left part of the function specifically. So
we can do:

1 val adapter = ForecastListAdapter(result, { toast(it.date) })

13.3 Extending the language

Thanks to these transformations, we can create our own builders and code blocks. We’ve already
been using some interesting functions such as with. A simpler implementation would be:

1 inline fun <T> with(t: T, body: T.() -> Unit) { t.body() }

This function gets an object of type T and a function that will be used as an extension function. The
implementation just takes the object and lets it execute the function. As the second parameter of the
function is another function, it can be brought out of the parentheses, so we can create a block of
code where we can use this and the public properties and functions of the object directly:

13 Lambdas 48

1 with(forecast) {

2 Picasso.with(itemView.ctx).load(iconUrl).into(iconView)

3 dateView.text = date

4 descriptionView.text = description

5 maxTemperatureView.text = "${high.toString()}"

6 minTemperatureView.text = "${low.toString()}"

7 itemView.onClick { itemClick(forecast) }

8 }

Inline functions
Inline functions are a bit different from regular functions. An inline function will be
substituted by its code during compilation, instead of really calling to a function. It will
reduce memory allocations and runtime overhead in some situations. For instance, if we
have a function as an argument, a regular function will internally create an object that
contains that function. On the other hand, inline functions will substitute the code of the
function in the place where its called, so it wonÂ´t require an internal object for that.

Another example: we could create blocks of code that are only executed if the version is Lollipop or
newer:

1 inline fun supportsLollipop(code: () -> Unit) {

2 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

3 code()

4 }

5 }

It just checks the version and executes the code if it meets the requirements. Now we could do:

1 supportsLollipop {

2 window.setStatusBarColor(Color.BLACK)

3 }

For instance, Anko is also based on this idea to implement the DSL for Android layouts. You can
also check an example from Kotlin reference, where a DSL to write HTML¹⁹ from code is created.

¹⁹http://kotlinlang.org/docs/reference/type-safe-builders.html

http://kotlinlang.org/docs/reference/type-safe-builders.html
http://kotlinlang.org/docs/reference/type-safe-builders.html

14 Visibility Modifiers
Until now, I’ve been using visibility modifiers the same way I’d do in Java. But these modifiers are
a bit different in Kotlin. Inside the same module, we will always probably want to use the default
internal modifier, and leave publicmodifier for libraries or classes that need to be visible from other
modules.

But here it is the long explanation. How do the different visibility modifiers work in Kotlin?

14.1 Modifiers

private

The private modifier is the most restrictive we can use. It implies it will only be visible in its own
file. So if we declare a class as private, we won’t be able to use it outside the file where it was
defined.

On the other hand, if we use private inside a class, the access is restricted to that class. Even the
classes that extend it won’t be able to use it.

So first level classes, objects, interfaces… (known as package members) declared as private are only
visible inside the file where they are declared, while everything defined inside a class or interface
will only be visible by that class or interface.

protected

This modifier only applies to members inside a class or an interface. A package member cannot be
protected. Inside a member, it works the same way as in Java: it can be used by the member itself
and the members that extend it (for instance, a class and its subclasses).

internal

An internal member is visible inside the whole module if it’s a package member. If it’s a member
inside another scope, it depends on the visibility of the scope. For instance, if we write a private
class, the access to an internal function will be limited to the visibility of the class.

We can use internal classes from any other class in the same module, but not from another module.

14 Visibility Modifiers 50

What is a module?
According to Jetbrains definition, a module is a discrete unit of functionality which you
can compile, run, test and debug independently. It basically refers to the Android Studio
modules we can create to divide our project into different blocks. In Eclipse, these modules
would refer to the projects inside a workspace.

public

As you may guess, this is the less restrictive modifier. It’s the default modifier, and the member
declared as public is visible anywhere, obviously restricted by its scope. A public member defined
in a private class won’t be visible outside the scope where the class is visible.

14.2 Constructors

By default, all constructors are public, which means they can be used from any scope where their
class is visible. But we can make a constructor private using this specific syntax:

1 class C private constructor(a: Int) { ... }

14.3 Refactoring the code

If you take a look at the code, you will see we are using a lot of unnecessary public modifiers
because it’s the default modifier so we don’t need to specify it . We are getting rid of them in this
refactor.

There are many other details we could change. For instance, in RequestForecastCommand, the
property we create from the zipCode constructor parameter could be private.

1 class RequestForecastCommand(private val zipCode: String)

The thing is that as we are making use of immutable properties everywhere, the zipCode value can
only be requested, but not modified. So it is not a big deal to leave it as public, and the code looks
cleaner. If, when writing a class, you feel that something shouldn’t be visible by any means, feel free
to make it private.

Besides, in Kotlin we don’t need to specify the return type of a function if it can be computed by the
compiler. An example of how we can get rid of the returning types:

14 Visibility Modifiers 51

1 data class ForecastList(...) {

2 fun get(position: Int) = dailyForecast[position]

3 fun size() = dailyForecast.size()

4 }

The typical situations where we can get rid of the return type are when we assign the value to a
function or a property using equals (=) instead of writing a code block.

The rest of the modifications are quite straightforward, so you can check them in the repository.

15 Kotlin Android Extensions
Another interesting plugin the Kotlin team has developed to make Android development easier is
called Kotlin Android Extensions. Currently it only includes a view binder. The plugin automatically
creates a set of properties that give direct access to all the views in the XML. This way we don’t need
to explicitly find all the views in the layout before starting using them.

The name of the properties are taken from the ids of the views, so we must be careful when choosing
those names because they will be an important part of our classes. The type of these properties is
also taken from the XML, so there is no need to do any extra castings.

The good part about Kotlin Android Extensions is that it doesn’t add any extra libraries to our code.
It just consists of a plugin that generates the code it needs to work only when it’s required, just by
using the standard Kotlin library.

How does it works under the hood? The plugin substitutes any property call into a function that
requests the view, and a caching function that prevents from having to find the view every time a
property is called. Be aware that this caching mechanism only works if the receiver is an Activity
or a Fragment. If it’s used in an extension function, the caching will be skipped, because it could be
used in an activity the plugin is not able to modify, so it won’t be able to add the caching function.

15.1 How to use Kotlin Android Extensions

If you remember, the project is already prepared to use Kotlin Android Extensions. When we were
creating the project, we already added the dependency in the build.gradle:

1 buildscript {

2 repositories {

3 jcenter()

4 }

5 dependencies {

6 classpath "org.jetbrains.kotlin:kotlin-android-extensions:$kotlin_version"

7 }

8 }

The only thing required by the plugin is the addition of a special “synthetic” import in the class
which will make use of this feature. We have a couple of ways to use it:

15 Kotlin Android Extensions 53

Android Extensions for Activities or Fragments

This is the most typical way to use it. The views can be accessed as if they were properties of the
activity or fragment. The name of the properties are the ids of the views in the XML.

The import we need to use will start with kotlin.android.synthetic plus the name of the XML
we want to bind to the activity:

1 import kotlinx.android.synthetic.activity_main.*

From that moment, we can access the views after setContentView is called. New Android Studio
versions are adding nested layouts to default activity templates, by using include tag. It’s important
to know that we’ll need to add a synthetic import for any XML we use:

1 import kotlinx.android.synthetic.activity_main.*

2 import kotlinx.android.synthetic.content_main.*

Android Extensions for Views

The previous usage is rather restrictive, because we have many other situations where we could
need to access the views inside an XML. For example, a custom view or an adapter. For these cases,
there is an alternative which will bind the views of the XML to another view. The only difference is
the required import:

1 import kotlinx.android.synthetic.view_item.view.*

If we were in an adapter, for instance, we could now access the properties from the inflated views:

1 view.textView.text = "Hello"

15.2 Refactoring our code

Now it’s time to change our code so that we can start making use of Kotlin Android Extensions. The
modifications are fairly simple.

Let’s start with MainActivity. We are currently only using a forecastList view, which is in fact
a RecyclerView. But we can simplify the code a little bit. First, add the synthetic import for the
activity_main XML:

15 Kotlin Android Extensions 54

1 import kotlinx.android.synthetic.activity_main.*

As said before, we use the id to access the views, so I’m changing the id of the RecyclerView so that
it doesn’t use underscores, but a more appropriate name for a Kotlin variable. The XML results into
this:

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <android.support.v7.widget.RecyclerView

7 android:id="@+id/forecastList"

8 android:layout_width="match_parent"

9 android:layout_height="match_parent"/>

10

11 </FrameLayout>

And now we can just get rid of the find line:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4

5 forecastList.layoutManager = LinearLayoutManager(this)

6 ...

7 }

The simplification was minimal. But the ForecastListAdapter can also benefit from the use of this
plugin. Here, we can use themechanism to bind the properties into a view, which will help us remove
all the find code inside the ViewHolder.

First, add the synthetic import for item_forecast:

1 import kotlinx.android.synthetic.item_forecast.view.*

And now we can use the properties in itemView property inside the ViewHolder. In fact you can use
those properties over any view, but it will obviously crash if the view doesn’t contain the requested
sub-views.

We don’t need the properties for the views anymore, we now have a more direct access:

15 Kotlin Android Extensions 55

1 class ViewHolder(view: View, val itemClick: (Forecast) -> Unit) :

2 RecyclerView.ViewHolder(view) {

3

4 fun bindForecast(forecast: Forecast) {

5 with(forecast) {

6 Picasso.with(itemView.ctx).load(iconUrl).into(itemView.icon)

7 itemView.date.text = date

8 itemView.description.text = description

9 itemView.maxTemperature.text = "${high.toString()}��"

10 itemView.minTemperature.text = "${low.toString()}��"

11 itemView.onClick { itemClick(forecast) }

12 }

13 }

14 }

The Kotlin Android Extensions plugin helps us reduce some more boilerplate and simplify the way
we access our views. Check the latest changes at the repository.

16 Application Singleton and
Delegated Properties
We are going to implement a database soon and, if we want to keep our code simple and our app in
separated modules (instead of everything added to our activity), we’ll need to have an easier access
to the application context.

16.1 Application Singleton

The simplest way is to just create a singleton the way we’d do in Java:

1 class App : Application() {

2

3 companion object {

4 private var instance: Application? = null

5 fun instance() = instance!!

6 }

7

8 override fun onCreate() {

9 super.onCreate()

10 instance = this

11 }

12 }

Remember you need to add this App class to the AndroidManifest.xml in order to be used as the
application instance:

1 <application

2 android:allowBackup="true"

3 android:icon="@mipmap/ic_launcher"

4 android:label="@string/app_name"

5 android:theme="@style/AppTheme"

6 android:name=".ui.App">

7 ...

8 </application>

16 Application Singleton and Delegated Properties 57

The problem with Android is that we don’t have control over many class constructors. For instance,
we cannot initialise a non-nullable property, because its value needs to be defined in the constructor.
So we need a nullable variable and then a function that returns a non-nullable value. We know we
always have an App instance, and that nothing under our control can be done before application
onCreate, so we are safe by assuming instance() function will always be able to return a non-
nullable App instance.

But this solution seems a bit unnatural. We need to define a property (which already has a getter
and a setter) and then a function to return that property. Do we have another way to get a similar
result? Yeah, we can delegate the value of a property to another class. This is commonly know as
delegated properties.

16.2 Delegated Properties

There are some kind of common behaviours we may need in a property that would be interesting to
be reused, such as lazy values or observable properties. Instead of having to declare the same code
over and over again, Kotlin provides a way to delegate the code a property needs to another class.
This is know as a delegated property.

When we use get or set from a property, the get and set of the delegated property are called.

The structure of a property delegate is:

1 class Delegate<T> {

2 fun get(thisRef: Any?, property: PropertyMetadata): T {

3 return ...

4 }

5

6 fun set(thisRef: Any?, property: PropertyMetadata, value: T) {

7 ...

8 }

9 }

The T is the type of the property that is delegating its behaviour. The get function receives a reference
to the class and the metadata of the property. The set function also receives the value that is being
assigned. If the property is immutable (val), it will only require the get function.

This is how the property delegate is assigned:

1 class Example {

2 var p: String by Delegate()

3 }

It uses by reserved word to specify the delegation.

16 Application Singleton and Delegated Properties 58

16.3 Standard Delegates

There exists a set of standard delegates included in the Kotlin standard library. These are the most
common situations where a delegate is really useful, but we could also create our own.

Lazy

It takes a lambda that is executed the first time get is called, so the initialisation of the property is
delayed up to that moment. Subsequent calls will return the same value. This is very interesting for
things that are not always necessary and/or require some other parts to be ready before this one is
used. We can save memory and skip the initialisation until the property is required.

1 class App : Application() {

2 val database: SQLiteOpenHelper by lazy {

3 MyDatabaseHelper(getApplicationContext())

4 }

5

6 override fun onCreate() {

7 super.onCreate()

8 val db = database.getWritableDatabase()

9 }

10 }

In this example, the database is not really initialised until it’s called first time in onCreate. At that
moment, we are sure the application context exists and is ready to be used. The lazy operation is
thread safe.

You can also use lazy(LazyThreadSafetyMode.NONE) { ... } if you’re not worried about multi-
thread and want to get some extra performance.

Observable

This delegate will help us detect changes on any property we need to observe. It will execute the
lambda expression we specify, every time the set function is called. So after the new value is
assigned, we receive the delegated property, the old value and the new one.

16 Application Singleton and Delegated Properties 59

1 class ViewModel(val db: MyDatabase) {

2

3 var myProperty by Delegates.observable("") {

4 d, old, new ->

5 db.saveChanges(this, new)

6 }

7

8 }

This example represents some kind of ViewModel class which is aware of myProperty changes, and
saves them to the database every time a new value is assigned

Vetoable

This is a special kind of observable that lets you decide whether the value must be saved or not. It
can be used to check some conditions before saving a value.

1 var positiveNumber = Delegates.vetoable(0) {

2 d, old, new ->

3 new >= 0

4 }

The previous delegate will only allow the new value to be saved if it’s a positive number. Inside
lambdas, the latest line represents the return value. You don’t need to use the return word (it won’t
compile indeed).

Not Null

Sometimes we need something else to initialise a property, but we don’t have the necessary state
available in the constructor, or we even are not able to do anything in constructors. This second case
happens all the time in Android, in activities, fragments, services, broadcast receivers… However, a
non abstract property needs a value before the constructor finishes executing. We cannot just wait
until we want, in order to assign a value to the property. We have at least a couple of options.

The first one is to use a nullable type and set it to null, until we have the real value. But we then need
to check everywhere in the code whether the property is null or not. If we are sure this property is
not going to be null at any moment before using it, this may make us write some unnecessary code.

The second option is to use a Not-Null delegate. It will internally save a nullable variable and assign
the real value when it is set to the property. If the value is requested before it is assigned, it will
throw an exception.

This could be helpful in the App singleton example:

16 Application Singleton and Delegated Properties 60

1 class App : Application() {

2

3 companion object {

4 var instance: App by Delegates.notNull()

5 }

6

7 override fun onCreate() {

8 super.onCreate()

9 instance = this

10 }

11 }

Values from a map

Another way to delegate the values of a property is to get them from a map, using the name of
the property as the key of the map. This delegate let us do really powerful things, because we can
easily create an instance of an object from a dynamic map. If we import kotlin.properties.get,
we can get an immutable map from the constructor and assign the values to val properties. If we
want modifiable map and properties, we also need to import kotlin.properties.set. The class will
require a MutableMap as constructor parameter instead.

Imagine a configuration class we load from a Json, and assign those key and values to a map. We
could just create an instance of a class by passing this map to the constructor:

1 import kotlin.properties.get

2

3 class Configuration(map: Map<String, Any?>) {

4 val width: Int by map

5 val height: Int by map

6 val dp: Int by map

7 val deviceName: String by map

8 }

As a reference, here it is how we could create the necessary map for this class:

1 val conf = Configuration(mapOf(

2 "width" to 1080,

3 "height" to 720,

4 "dp" to 240,

5 "deviceName" to "mydevice"

6))

16 Application Singleton and Delegated Properties 61

16.4 How to create a custom delegate

Let’s say we want, for instance, to create a Not-Null delegate that can be only assigned once. Second
time it’s assigned, it will throw an exception.

Kotlin library provides a couple of interfaces our delegates must implement: ReadOnlyProperty and
ReadWriteProperty. The one that should be used depends on whether the delegate property is val
or var.

The first thing we can do is to create a class that extends ReadWriteProperty:

1 private class NotNullSingleValueVar<T: Any>() : ReadWriteProperty<Any?, T> {

2

3 override fun get(thisRef: Any?, desc: PropertyMetadata): T {

4 throw UnsupportedOperationException()

5 }

6

7 public override fun set(thisRef: Any?, desc: PropertyMetadata, value: T) {

8

9 }

10 }

This delegate can work over any non-nullable type (<T:Any>). It will receive a reference of an object
of any type, and use T as the type of the getter and the setter. Now we need to implement the
methods.

• The getter will return a value if it’s assigned, otherwise it will throw an exception.
• The setter will assign the value if it is still null, otherwise it will throw an exception.

1 private class NotNullSingleValueVar<T : Any>() : ReadWriteProperty<Any?, T> {

2 private var value: T? = null

3

4 public override fun get(thisRef: Any?, desc: PropertyMetadata): T {

5 return value ?: throw IllegalStateException("${desc.name} " +

6 "not initialized")

7 }

8

9 public override fun set(thisRef: Any?, desc: PropertyMetadata, value: T) {

10 this.value = if (this.value == null) value

11 else throw IllegalStateException("${desc.name} already initialized")

12 }

13 }

Now you can create an object with a function that provides your new delegates:

16 Application Singleton and Delegated Properties 62

1 object DelegatesExt {

2 fun notNullSingleValue<T : Any>():

3 ReadWriteProperty<Any?, T> = NotNullSingleValueVar()

4 }

16.5 Reimplementing App Singleton

Delegates can help us in this situation. We know that our singleton is not going to be null, but we
can’t use the constructor to assign the property. So we can make use of a Not-Null delegate:

1 class App : Application() {

2

3 companion object {

4 var instance: App by Delegates.notNull()

5 }

6

7 override fun onCreate() {

8 super.onCreate()

9 instance = this

10 }

11 }

The problem with this solution is that we could change the value of this instance from anywhere
in the App, because a var property is required if we want to use Delegates.notNull(). But we can
protect it a little more, by using the delegate we created just before. That way, we can only change
its value the first time:

1 companion object {

2 var instance: App by DelegatesExt.notNullSingleValue()

3 }

Though, in this case, the initial way of doing a singleton is probably the most simple option, I wanted
to show you how to create a custom property delegate and use it in your code.

17 Creating an SQLiteOpenHelper
As youmay know, Android uses SQLite as database management system. SQLite is a database which
goes embedded into the App, and it’s really lightweight. That’s why it is a good option for mobile
Apps.

However, the API to work with databases in Android is quite raw. You’ll see you need to write many
SQL sentences and parse your objects into ContentValues or from Cursors. Thankfully, by using a
mix of Kotlin and Anko, we are simplifying this task a lot.

Of course, there are many libraries to work with databases in Android, and all of them work with
Kotlin thanks to its interoperability. But it’s possible you don’t want to use them anymore after
reading this and next chapters.

17.1 ManagedSqliteOpenHelper

Anko provides a powerful SqliteOpenHelper which simplifies things a lot. When we use a regular
SqliteOpenHelper, we need to call getReadableDatabase() or getWritableDatabase(), and then
we can perform our queries over the object we get. After that, we shouldn’t forget calling close().
With a ManagedSqliteOpenHelper we just do:

1 forecastDbHelper.use {

2 ...

3 }

Inside the function we can use the SqliteDatabase. How it works? It’s really interesting reading
the implementation of Anko functions, you can learn a lot of Kotlin from it:

1 public fun <T> use(f: SQLiteDatabase.() -> T): T {

2 try {

3 return openDatabase().f()

4 } finally {

5 closeDatabase()

6 }

7 }

First, use receives a function that will be used as an extension function by SQLiteDatabase. This
means we can use this inside the brackets, and we’ll be referring to the SQLiteDatabase object.
This extension function can return a value, so we could do something like this:

17 Creating an SQLiteOpenHelper 64

1 val result = forecastDbHelper.use {

2 val queriedObject = ...

3 queriedObject

4 }

Remember that inside a function, the last line represents the returned value. As T doesn’t have any
restrictions, we can return any value. Even Unit if we don’t want to return anything.

By using a try-finally, the use function makes sure that the database is closed no matter the
extended function succeeds or crashes.

Besides, we have a lot of other really useful extension functions over SqliteDatabase that we’ll be
using later. But for now let’s define our tables and implement the SqliteOpenHelper.

17.2 Tables definition

The creation of a couple of objects that represent our tables will be helpful to avoid misspelling
table or column names and repetition. We need two tables: one will save the info of the city and
another one the forecast of a day. This second table will have a relationship field to the first one.

CityForecastTable first provides the name of the table and then the set of columns it needs: an id

(which will be the zipCode of the city), the name of the city and the country.

1 object CityForecastTable {

2 val NAME = "CityForecast"

3 val ID = "_id"

4 val CITY = "city"

5 val COUNTRY = "country"

6 }

DayForecast has some more info, so it will need the set of columns you can see below. The last
column, cityId, will keep the id of the CityForecast this forecast belongs to.

1 object DayForecastTable {

2 val NAME = "DayForecast"

3 val ID = "_id"

4 val DATE = "date"

5 val DESCRIPTION = "description"

6 val HIGH = "high"

7 val LOW = "low"

8 val ICON_URL = "iconUrl"

9 val CITY_ID = "cityId"

10 }

17 Creating an SQLiteOpenHelper 65

17.3 Implementing SqliteOpenHelper

Our SqliteOpenHelper will basically manage the creation and upgrade of our database, and will
provide the SqliteDatabase so that we can work with it. The queries will be extracted to another
class:

1 class ForecastDbHelper() : ManagedSQLiteOpenHelper(App.instance,

2 ForecastDbHelper.DB_NAME, null, ForecastDbHelper.DB_VERSION) {

3 ...

4 }

We are using the App.instance we created in the previous chapter, as well as a database name
and version. These values will be defined in the companion object, together with the helper single
instance:

1 companion object {

2 val DB_NAME = "forecast.db"

3 val DB_VERSION = 1

4 val instance: ForecastDbHelper by lazy { ForecastDbHelper() }

5 }

The instance property uses a lazy delegate, which means the object won’t be created until it’s
used. That way, if the database is never used, we don’t create unnecessary objects. The regular lazy
delegate is blocking to prevent the creation of several instances from different threads. This only
would happen if two threads try to access the instance at the same time, which is difficult but it
could happen depending on the type of App you are implementing. But lazy is thread safe.

In order to define the creation of the tables, we are required to provide an implementation of
onCreate function. When no libraries are used, the creation of the tables is done by writing a raw
CREATE TABLE query where we define all the columns and their types. However, Anko provides a
simple extension function which receives the name of the table and a set of Pair objects that identify
the name and the type of the column:

1 db.createTable(CityForecastTable.NAME, true,

2 Pair(CityForecastTable.ID, INTEGER + PRIMARY_KEY),

3 Pair(CityForecastTable.CITY, TEXT),

4 Pair(CityForecastTable.COUNTRY, TEXT))

• The first parameter is the name of the table.
• The second parameter, when set to true, will check if the table doesn’t exist before trying to
create it.

17 Creating an SQLiteOpenHelper 66

• The third parameter is a vararg of Pairs. The varargs also exist in Java, and it’s a way to pass
a variable number of arguments of the same type to a function. The function will receive an
array with the objects.

The types are from a special Anko class called SqlType, which can be mixed with SqlTypeModifiers,
such as PRIMARY_KEY. The + operation is overloaded the same way we saw in chapter 11. This plus
function will concatenate both values in a proper way returning a new special SqlType:

1 public fun SqlType.plus(m: SqlTypeModifier) : SqlType {

2 return SqlTypeImpl(name, if (modifier == null) m.toString()

3 else "$modifier $m")

4 }

As you can see, it can also concatenate several modifiers.

But returning to our code, we can do it better. The Kotlin Standard library includes a function called
to which, once more, shows the power of Kotlin to let us model our own language. It acts as an
extension function for the first object and receives another object as parameter, returning a Pair

object with them.

1 public fun <A, B> A.to(that: B): Pair<A, B> = Pair(this, that)

As functions with one parameter can be used inline, the result is quite clean:

1 val pair = object1 to object2

And this, applied to the creation of our tables:

1 db.createTable(CityForecastTable.NAME, true,

2 CityForecastTable.ID to INTEGER + PRIMARY_KEY,

3 CityForecastTable.CITY to TEXT,

4 CityForecastTable.COUNTRY to TEXT)

This is how the whole method looks:

17 Creating an SQLiteOpenHelper 67

1 override fun onCreate(db: SQLiteDatabase) {

2 db.createTable(CityForecastTable.NAME, true,

3 CityForecastTable.ID to INTEGER + PRIMARY_KEY,

4 CityForecastTable.CITY to TEXT,

5 CityForecastTable.COUNTRY to TEXT)

6

7 db.createTable(DayForecastTable.NAME, true,

8 DayForecastTable.ID to INTEGER + PRIMARY_KEY + AUTOINCREMENT,

9 DayForecastTable.DATE to INTEGER,

10 DayForecastTable.DESCRIPTION to TEXT,

11 DayForecastTable.HIGH to INTEGER,

12 DayForecastTable.LOW to INTEGER,

13 DayForecastTable.ICON_URL to TEXT,

14 DayForecastTable.CITY_ID to INTEGER)

15 }

We have a similar function to drop a table. onUpgrade will just delete the tables so that they are
recreated. We are using our database just as a cache, so it’s the easiest and safest way to be sure
the tables are recreated as expected. If we had important data to be kept, we’d need to improve
onUpgrade code by doing the corresponding migration depending on the database version.

1 override fun onUpgrade(db: SQLiteDatabase, oldVersion: Int, newVersion: Int) {

2 db.dropTable(CityForecastTable.NAME, true)

3 db.dropTable(DayForecastTable.NAME, true)

4 onCreate(db)

5 }

17.4 Dependency injection

Although I try not to add much complexity to the code regarding architectures, clean testable code
or good practices, I thought it’d be a good idea to show another way to simplify our code using
Kotlin. If you want to know a little more about topics like dependency inversion or injection, you
can check my set of articles about dependency injection in Android using Dagger²⁰. The first article
covers a simple explanation about these terms.

In a simple way, if we want to have classes that are independent of other classes, way more testable,
and write code easier to extend and maintain, we need to make use of dependency inversion.
Instead of instantiating the collaborators inside the class, we provide them (usually via constructor)
and instantiate them somewhere else. That way, we can substitute them by other objects that, for
instance, implement the same interface, or make use of mocks in tests.

²⁰http://antonioleiva.com/dependency-injection-android-dagger-part-1/

http://antonioleiva.com/dependency-injection-android-dagger-part-1/
http://antonioleiva.com/dependency-injection-android-dagger-part-1/

17 Creating an SQLiteOpenHelper 68

But now those dependencies must be provided from somewhere, so the dependency injection
consists of providing the collaborators required by the classes. The most common way of doing
that is by using a dependency injector. Dagger²¹ is probably the most used dependency injector in
Android. It’s, of course, a very good alternative when we need some complexity to provide those
dependencies.

But a simplest alternative is to make use of the default values in a constructor. We can provide the
dependency by assigning a default value to the constructor parameters, and then provide a different
instance if we need it in other situations. For example, in our ForecastDbHelperwe can provide the
context in a smarter way:

1 class ForecastDbHelper(ctx: Context = App.instance) :

2 ManagedSQLiteOpenHelper(ctx, ForecastDbHelper.DB_NAME, null,

3 ForecastDbHelper.DB_VERSION) {

4 ...

5 }

Now we have two ways to create this class:

1 val dbHelper1 = ForecastDbHelper() // It will use App.instance

2 val dbHelper2 = ForecastDbHelper(mockedContext) // For tests, for example

I’ll be using this mechanism here and there, so I didn’t want to continue without explaining the
reason. We already have the tables, so it’s time to start adding and requesting data from them. But
before that, I want to talk about collections and functional operations. Don’t forget checking the
repository to find the latest changes.

²¹http://square.github.io/dagger/

http://square.github.io/dagger/
http://square.github.io/dagger/

18 Collections and functional
operations
We’ve been using collections before in this project, but now it’s time to show how powerful they
are in combination with functional operations. The good part about functional programming is that
instead of explaining how we do things, we just say what we want to do. For instance, if we want
to filter a list, instead of creating a list, iterating over the original one and add the items to the new
if they satisfy a condition, we just use a filter function and specify which filter we want to use. That
way, we can say a lot more using less code.

Although we can just use Java collections, Kotlin provides a good set of native interfaces you will
want to use:

• Iterable: The parent class. Any classes that inherit from this interface represent a sequence of
elements we can iterate over.

• MutableIterable: Iterables that support removing items during iteration.
• Collection: This class represents a generic collection of elements. We get access to functions
that return the size of the collection, whether the collection is empty, contains an item or a
set of items. All the methods for this kind of collections are only to request data, because
collections are immutable.

• MutableCollection: a Collection that supports adding and removing elements. It provides
extra functions such as add, remove or clear among others.

• List: Probably the most used collection. It represents a generic ordered collection of elements.
As it’s ordered, we can request an item by its position, using the get function.

• MutableList: a List that supports adding and removing elements.
• Set: an unordered collection of elements that doesn’t support duplicate elements.
• MutableSet: a Set that supports adding and removing elements.
• Map: a collection of key-value pairs. The keys in a map are unique, which means we cannot
have two pairs with the same key in a map.

• MutableMap: a Map that supports adding and removing elements.

This is the set of functional operations we have available over the different collections. I want to
show you a little definition and an example. It is useful to know what the options are, because that
way it’s easier to identify where these functions can be used.

18 Collections and functional operations 70

18.1 Aggregate operations

any

Returns true if at least one element matches the given predicate.

1 val list = listOf(1, 2, 3, 4, 5, 6)

2 assertTrue(list any { it % 2 == 0 })

3 assertFalse(list any { it > 10 })

all

Returns true if all the elements match the given predicate.

1 assertTrue(list all { it < 10 })

2 assertFalse(list all { it % 2 == 0 })

count

Returns the number of elements matching the given predicate.

1 assertEquals(3, list count { it % 2 == 0 })

fold

Accumulates the value starting with an initial value and applying an operation from the first to the
last element in a collection.

1 assertEquals(25, list.fold(4) { total, next -> total + next })

foldRight

Same as fold, but it goes from the last element to first.

1 assertEquals(25, list.foldRight(4) { total, next -> total + next })

forEach

Performs the given operation to each element.

18 Collections and functional operations 71

1 list forEach { println(it) }

forEachIndexed

Same as forEach, though we also get the index of the element.

1 list forEachIndexed { index, value

2 -> println("position $index contains a $value") }

max

Returns the largest element or null if there are no elements.

1 assertEquals(6, list.max())

maxBy

Returns the first element yielding the largest value of the given function or null if there are no
elements.

1 // The element whose negative is greater

2 assertEquals(1, list.maxBy { -it })

min

Returns the smallest element or null if there are no elements.

1 assertEquals(1, list.min())

minBy

Returns the first element yielding the smallest value of the given function or null if there are no
elements.

1 // The element whose negative is smaller

2 assertEquals(6, list.minBy { -it })

none

Returns true if no elements match the given predicate.

18 Collections and functional operations 72

1 // No elements are divisible by 7

2 assertTrue(list none { it % 7 == 0 })

reduce

Same as fold, but it doesn’t use an initial value. It accumulates the value applying an operation from
the first to the last element in a collection.

1 assertEquals(21, list reduce { total, next -> total + next })

reduceRight

Same as reduce, but it goes from the last element to first.

1 assertEquals(21, list reduceRight { total, next -> total + next })

sumBy

Returns the sum of all values produced by the transform function from the elements in the collection.

1 assertEquals(3, list sumBy { it % 2 })

18.2 Filtering operations

drop

Returns a list containing all elements except first n elements.

1 assertEquals(listOf(5, 6), list drop(4))

dropWhile

Returns a list containing all elements except first elements that satisfy the given predicate.

1 assertEquals(listOf(3, 4, 5, 6), list dropWhile { it < 3 })

dropLastWhile

Returns a list containing all elements except last elements that satisfy the given predicate.

18 Collections and functional operations 73

1 assertEquals(listOf(1, 2, 3, 4), list dropLastWhile { it > 4 })

filter

Returns a list containing all elements matching the given predicate.

1 assertEquals(listOf(2, 4, 6), list filter { it % 2 == 0 })

filterNot

Returns a list containing all elements not matching the given predicate.

1 assertEquals(listOf(1, 3, 5), list filterNot { it % 2 == 0 })

filterNotNull

Returns a list containing all elements that are not null.

1 assertEquals(listOf(1, 2, 3, 4), listWithNull.filterNotNull())

slice

Returns a list containing elements at specified indices.

1 assertEquals(listOf(2, 4, 5), list.slice(listOf(1, 3, 4)))

take

Returns a list containing first n elements.

1 assertEquals(listOf(1, 2), list.take(2))

takeLast

Returns a list containing last n elements.

1 assertEquals(listOf(5, 6), list.takeLast(2))

takeWhile

Returns a list containing first elements satisfying the given predicate.

18 Collections and functional operations 74

1 assertEquals(listOf(1, 2), list takeWhile { it < 3 })

18.3 Mapping operations

flatMap

Iterates over the elements creating a new collection for each one, and finally flattens all the
collections into a unique list containing all the elements.

1 assertEquals(listOf(1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7), list flatMap { listOf(i\

2 t, it + 1) })

groupBy

Returns a map of the elements in original collection grouped by the result of given function

1 assertEquals(mapOf("odd" to listOf(1, 3, 5), "even" to listOf(2, 4, 6)),

2 list groupBy { if (it % 2 == 0) "even" else "odd" })

map

Returns a list containing the results of applying the given transform function to each element of the
original collection.

1 assertEquals(listOf(2, 4, 6, 8, 10, 12), list map { it * 2 })

mapIndexed

Returns a list containing the results of applying the given transform function to each element and
its index of the original collection.

1 assertEquals(listOf (0, 2, 6, 12, 20, 30), list mapIndexed { index, it

2 -> index * it })

mapNotNull

Returns a list containing the results of applying the given transform function to each non-null
element of the original collection.

18 Collections and functional operations 75

1 assertEquals(listOf(2, 4, 6, 8), listWithNull mapNotNull { it * 2 })

18.4 Elements operations

contains

Returns true if the element is found in the collection.

1 assertTrue(list.contains(2))

elementAt

Returns an element at the given index or throws an IndexOutOfBoundsException if the index is out
of bounds of this collection.

1 assertEquals(2, list.elementAt(1))

elementAtOrElse

Returns an element at the given index or the result of calling the default function if the index is out
of bounds of this collection.

1 assertEquals(20, list.elementAtOrElse(10, { 2 * it }))

elementAtOrNull

Returns an element at the given index or null if the index is out of bounds of this collection.

1 assertNull(list.elementAtOrNull(10))

first

Returns the first element matching the given predicate

1 assertEquals(2, list first { it % 2 == 0 })

firstOrNull

Returns the first element matching the given predicate, or null if no element was found.

18 Collections and functional operations 76

1 assertNull(list firstOrNull { it % 7 == 0 })

indexOf

Returns the first index of element, or -1 if the collection does not contain element.

1 assertEquals(3, list.indexOf(4))

indexOfFirst

Returns index of the first element matching the given predicate, or -1 if the collection does not
contain such element.

1 assertEquals(1, list.indexOfFirst { it % 2 == 0 })

indexOfLast

Returns index of the last elementmatching the given predicate, or -1 if the collection does not contain
such element.

1 assertEquals(5, list.indexOfLast { it % 2 == 0 })

last

Returns the last element matching the given predicate.

1 assertEquals(6, list last { it % 2 == 0 })

lastIndexOf

Returns last index of element, or -1 if the collection does not contain element.

1 val listRepeated = listOf(2, 2, 3, 4, 5, 5, 6)

2 assertEquals(5, listRepeated.lastIndexOf(5))

lastOrNull

Returns the last element matching the given predicate, or null if no such element was found.

18 Collections and functional operations 77

1 val list = listOf(1, 2, 3, 4, 5, 6)

2 assertNull(list lastOrNull { it % 7 == 0 })

single

Returns the single element matching the given predicate, or throws exception if there is no or more
than one matching element.

1 assertEquals(5, list single { it % 5 == 0 })

singleOrNull

Returns the single element matching the given predicate, or null if element was not found or more
than one element was found.

1 assertNull(list singleOrNull { it % 7 == 0 })

18.5 Generation operations

merge

Returns a list of values built from elements of both collections with same indexes using the provided
transform function. The list has the length of shortest collection.

1 val list = listOf(1, 2, 3, 4, 5, 6)

2 val listRepeated = listOf(2, 2, 3, 4, 5, 5, 6)

3 assertEquals(listOf(3, 4, 6, 8, 10, 11), list.merge(listRepeated) { it1, it2 ->

4 it1 + it2 })

partition

Splits original collection into pair of collections, where the first collection contains elements for
which the predicate returned true, while the second collection contains elements for which the
predicate returned false.

1 assertEquals(Pair(listOf(2, 4, 6), listOf(1, 3, 5)),

2 list partition { it % 2 == 0 })

plus

Returns a list containing all elements of the original collection and then all elements of the given
collection. Because of the name of the function, we can use the ‘+’ operator with it.

18 Collections and functional operations 78

1 assertEquals(listOf(1, 2, 3, 4, 5, 6, 7, 8), list + listOf(7, 8))

zip

Returns a list of pairs built from the elements of both collections with the same indexes. The list has
the length of the shortest collection.

1 assertEquals(listOf(Pair(1, 7), Pair(2, 8)), list.zip(listOf(7, 8)))

18.6 Ordering operations

reverse

Returns a list with elements in reversed order.

1 val unsortedList = listOf(3, 2, 7, 5)

2 assertEquals(listOf(5, 7, 2, 3), unsortedList.reverse())

sort

Returns a sorted list of all elements.

1 assertEquals(listOf(2, 3, 5, 7), unsortedList.sort())

sortBy

Returns a list of all elements, sorted by the specified comparator.

1 assertEquals(listOf(3, 7, 2, 5), unsortedList sortBy { it % 3 })

sortDescending

Returns a sorted list of all elements, in descending order.

1 assertEquals(listOf(7, 5, 3, 2), unsortedList.sortDescending())

sortDescendingBy

Returns a sorted list of all elements, in descending order by the results of the specified order function.

18 Collections and functional operations 79

1 assertEquals(listOf(2, 5, 7, 3), unsortedList sortDescendingBy { it % 3 })

19 Saving and requesting data from
database
A previous chapter covered the creation of a SQLiteOpenHelper, but now we need a way to use it to
persist our data into the database and recover it when necessary. Another class, called ForecastDb,
will make use of it.

19.1 Creating database model classes

But first, we are going to create the model classes for the database. Remember the map delegates we
saw? We are using them to map those fields directly to the database and viceversa.

Let’s take a look at the CityForecast class first:

1 class CityForecast(val map: MutableMap<String, Any?>,

2 val dailyForecast: List<DayForecast>) {

3 var _id: Long by map

4 var city: String by map

5 var country: String by map

6

7 constructor(id: Long, city: String, country: String,

8 dailyForecast: List<DayForecast>)

9 : this(HashMap(), dailyForecast) {

10 this._id = id

11 this.city = city

12 this.country = country

13 }

14 }

The default constructor is getting a map, presumably filled with the values of the properties, and a
dailyForecast. Thanks to the delegates, the values will be mapped to the corresponding properties
based on the name of the key. If we want to make the mapping work perfectly, the names of the
properties must be the same as the names of the columns in the database. We’ll see why later.

But then, a second constructor is necessary. This is because we’ll bemapping classes from the domain
to classes for the database, so instead of using a map, extracting the values from the properties will
be more convenient. We pass an empty map, but again, thanks to the delegate, when we set a value

19 Saving and requesting data from database 81

to a property, it automatically adds a new value to the map. That way, we’ll have our map ready to
be added to the database. After some useful code, you will see it works like magic.

Now we need a second class, the DayForecast, which corresponds to the second table. This one
will basically have one property per column, and will also use a secondary constructor. The only
difference is that we are not assigning an id, because it will be auto-generated by SQLite.

1 class DayForecast(var map: MutableMap<String, Any?>) {

2 var _id: Long by map

3 var date: Long by map

4 var description: String by map

5 var high: Int by map

6 var low: Int by map

7 var iconUrl: String by map

8 var cityId: Long by map

9

10 constructor(date: Long, description: String, high: Int, low: Int,

11 iconUrl: String, cityId: Long)

12 : this(HashMap()) {

13 this.date = date

14 this.description = description

15 this.high = high

16 this.low = low

17 this.iconUrl = iconUrl

18 this.cityId = cityId

19 }

20 }

These classes will help us map the data between objects and SQLite tables, in both directions.

19.2 Writing and requesting data

The SqliteOpenHelper is just the tool, the channel between object oriented and SQL worlds. We’ll
use it in a new class, to request data already saved in the database, and to save fresh data. The
definition of the class will be using a ForecastDbHelper and a DataMapper that will convert classes
from database to domain models. I’m still using default values as an easy way of dependency
injection:

19 Saving and requesting data from database 82

1 class ForecastDb(

2 val forecastDbHelper: ForecastDbHelper = ForecastDbHelper.instance,

3 val dataMapper: DbDataMapper = DbDataMapper()) {

4 ...

5 }

Both functions will make use of the use() function we saw in the previous chapter. The value that
the lambda returns will be used as the result of our function. So let’s define a function that requests
a forecast based on a zip code and a date:

1 fun requestForecastByZipCode(zipCode: Long, date: Long) = forecastDbHelper.use {

2

3 }

Not much to explain here: we return the result of the use function as the result of our function.

Requesting a forecast

The first request that needs to be done is the daily forecast, because we need the list to create the
city object. Anko provides a simple request builder, so let’s take advantage of it:

1 val dailyRequest = "${DayForecastTable.CITY_ID} = ? " +

2 "AND ${DayForecastTable.DATE} >= ?"

3

4 val dailyForecast = select(DayForecastTable.NAME)

5 .whereSimple(dailyRequest, zipCode.toString(), date.toString())

6 .parseList { DayForecast(HashMap(it)) }

The first line, dailyRequest, is the where part of the query. This is the first parameter the
whereSimple function needs, and it’s very similar to what we’d do in a regular use of the helper.
There is another function called simply where, which takes some tags and values and match them.
I don’t like it very much because I think it adds more boilerplate, though it has the advantage of
parsing the values to the Strings we need. This is how it would look with it:

19 Saving and requesting data from database 83

1 val dailyRequest = "${DayForecastTable.CITY_ID} = {id}" +

2 "AND ${DayForecastTable.DATE} >= {date}"

3

4 val dailyForecast = select(DayForecastTable.NAME)

5 .where(dailyRequest, "id" to zipCode, "date" to date)

6 .parseList { DayForecast(HashMap(it)) }

You can choose your preferred one. The select function is simple, it just asks for the name of the
table. The parsemethods arewheremagic happens. In this case we are using the function parseList,
which assumes we are requesting a list of items. It uses a RowParser or MapRowParser to convert the
cursor into a list of object. The difference between both is that the RowParser relies on the order of
the columns, while the MapRowParser uses the name of the column as the key of the map.

These two overloads conflict between them, so we can’t directly use the simplification that prevents
from the need of creating an object explicitly. But nothing that can’t be solved with an extension
function. I’m creating a function that receives a lambda and returns a MapRowParser. The parser will
use that lambda to create the object:

1 fun <T : Any> SelectQueryBuilder.parseList(

2 parser: (Map<String, Any>) -> T): List<T> =

3 parseList(object : MapRowParser<T> {

4 override fun parseRow(columns: Map<String, Any>): T = parser(columns)

5 })

This function helps simplify the parseList request to:

1 parseList { DayForecast(HashMap(it)) }

The immutable map that the parser receives is converted into a mutable map (we need it to be
mutable in our database model) by using the corresponding constructor from the HashMap. That
HashMap is used by the constructor of DayForecast.

So, to understand what is happening behind the scenes, the request returns a Cursor. parseList
iterates over it and gets the rows from the Cursor until it reaches the last one. For each row, it
creates a map with the columns as keys and assigns the value to the corresponding key. The map is
then returned to the parser.

If there were no results for the request, parseList returns an empty list.

The next step is to request the city, in a similar way:

19 Saving and requesting data from database 84

1 val city = select(CityForecastTable.NAME)

2 .whereSimple("${CityForecastTable.ID} = ?", zipCode.toString())

3 .parseOpt { CityForecast(HashMap(it), dailyForecast) }

The difference here: we are using parseOpt instead. This function returns a nullable object. The result
can be null or a single object, depending on whether the request finds something in the database
or not. There is another function called parseSingle, which does essentially the same, but returns
a non-nullable object. So if it doesn’t find a register in the database, it throws an exception. In our
case, the first time we query a city it won’t be there, so using parseOpt is safer. I also created a handy
function to prevent the need of an object creation:

1 public fun <T : Any> SelectQueryBuilder.parseOpt(

2 parser: (Map<String, Any>) -> T): T? =

3 parseOpt(object : MapRowParser<T> {

4 override fun parseRow(columns: Map<String, Any>): T = parser(columns)

5 })

Finally, if the returned city is not null, we convert it to a domain object and return it, using the
dataMapper. Otherwise, we just return a null. As you may remember, the last line inside a lambda
represents what the lambda returns. So it will return an object of the type CityForecast?:

1 if (city != null) dataMapper.convertToDomain(city) else null

The DataMapper function is easy:

1 fun convertToDomain(forecast: CityForecast) = with(forecast) {

2 val daily = dailyForecast map { convertDayToDomain(it) }

3 ForecastList(_id, city, country, daily)

4 }

5

6 private fun convertDayToDomain(dayForecast: DayForecast) = with(dayForecast) {

7 Forecast(date, description, high, low, iconUrl)

8 }

So this is how the complete function looks like:

19 Saving and requesting data from database 85

1 fun requestForecastByZipCode(zipCode: Long, date: Long) = forecastDbHelper.use {

2

3 val dailyRequest = "${DayForecastTable.CITY_ID} = ? AND " +

4 "${DayForecastTable.DATE} >= ?"

5 val dailyForecast = select(DayForecastTable.NAME)

6 .whereSimple(dailyRequest, zipCode.toString(), date.toString())

7 .parseList { DayForecast(HashMap(it)) }

8

9 val city = select(CityForecastTable.NAME)

10 .whereSimple("${CityForecastTable.ID} = ?", zipCode.toString())

11 .parseOpt { CityForecast(HashMap(it), dailyForecast) }

12

13 if (city != null) dataMapper.convertToDomain(city) else null

14 }

Another interesting functionality from Anko I’m not showing here is that you can make use of a
classParser() instead of the MapRowParser we are using, which uses reflection to fill a class based
on the names of the columns. I prefer the other way because we don’t need reflection and have more
control over the transformations, but it can be of use for you at some time.

Saving a forecast

The saveForecast function just clears the data from the database so that we save fresh data, converts
the domain forecast model to database model, and inserts each daily forecast and the city forecast.
The structure is similar to the previous one: it returns the value from the use function from the
database helper. In this case we don’t need a result, so it’ll return Unit.

1 fun saveForecast(forecast: ForecastList) = forecastDbHelper.use {

2 ...

3 }

First, we clear both tables. Anko doesn’t provide any beautiful way to do it, but it doesn’t mean we
can’t. So we are creating an extension function for SQLiteDatabase that will execute the proper SQL
query for us:

1 fun SQLiteDatabase.clear(tableName: String) {

2 execSQL("delete from $tableName")

3 }

The function is applied to both tables:

19 Saving and requesting data from database 86

1 clear(CityForecastTable.NAME)

2 clear(DayForecastTable.NAME)

The next step is to convert the data, and use the result to execute the insert queries. At this point
you probably know I’m a fan of the with function:

1 with(dataMapper.convertFromDomain(forecast)) {

2 ...

3 }

The conversion from the domain model is straightforward too:

1 fun convertFromDomain(forecast: ForecastList) = with(forecast) {

2 val daily = dailyForecast map { convertDayFromDomain(id, it) }

3 CityForecast(id, city, country, daily)

4 }

5

6 private fun convertDayFromDomain(cityId: Long, forecast: Forecast) =

7 with(forecast) {

8 DayForecast(date, description, high, low, iconUrl, cityId)

9 }

Inside the block, we can use dailyForecast and map without the need of referring to a variable, just
like if we were inside the class. We are using another Anko function for the insertion, which asks
for a table name and a vararg of Pair<String, Any>. The function will convert the vararg to the
ContentValues object the Android SDK needs. So our task consists of transforming the map into a
vararg array. We are creating another extension function for MutableMap to do that:

1 public fun MutableMap<K, V?>.toVarargArray<K : Any?, V : Any>():

2 Array<out Pair<K, V>> = map({ Pair(it.key, it.value!!) }).toTypedArray()

It works over a MutableMap with nullable values (this was a condition from the map delegate), and
converts it to an Array with non-nullable values (select function requisite) of pairs. Don’t worry if
you don’t understand this function completely, I will be covering nullity really soon.

So, with this new function we can do:

1 insert(CityForecastTable.NAME, *map.toVarargArray())

It inserts a new row in the CityForecast table. the ‘*’ used before the result of toVarargArray

indicates that the array will be decomposed in a vararg parameter. This is done automatically in
Java, but we need to make it explicit in Kotlin.

And the same for each daily forecast:

19 Saving and requesting data from database 87

1 dailyForecast forEach { insert(DayForecastTable.NAME, *it.map.toVarargArray()) }

So, with the use of maps, we’ve been able to convert classes to database registers and viceversa in a
very simple way. Once we have these extension functions ready, we can use them for other projects,
so it’s a really well paid effort.

The complete code of this function:

1 fun saveForecast(forecast: ForecastList) = forecastDbHelper.use {

2

3 clear(CityForecastTable.NAME)

4 clear(DayForecastTable.NAME)

5

6 with(dataMapper.convertFromDomain(forecast)) {

7 insert(CityForecastTable.NAME, *map.toVarargArray())

8 dailyForecast forEach {

9 insert(DayForecastTable.NAME, *it.map.toVarargArray())

10 }

11 }

12 }

A lot of new code was involved in this chapter, so you can take a look at the repository to review it.

20 Null safety in Kotlin
Null safety is one of the most interesting features about Kotlin if you are currently working with
Java 7. But as you have seen during this book, it’s so implicit in the language we hardly had to worry
about it until the previous chapter.

Being considered the billion-dollar mistake by its own creator²², it’s true that we sometimes need to
define whether a variable contains a value or not. In Java, though annotations and IDEs are helping
a lot these days, we can still do something like:

1 Forecast forecast = null;

2 forecast.toString();

This code will perfectly compile (you may get a warning from the IDE), and when it runs, it will
obviously throw a NullPointerException. This is really unsafe, and as we can think we should be
able to have everything under control, as the code grows we’ll start losing track of the things that
could be null. So we end up with lots of NullPointerExceptions or lots of nullity checks (probably
a mix of both).

20.1 How Null types work

Most modern languages solve this issue in some way, and the Kotlin way is quite peculiar and
different from the rest of similar languages. But the golden rule is the same: if a variable can be null,
the compiler will force us deal with it in some way.

The way to specify that a variable can be null is by adding a question mark to the end of its type.
As everything is an object in Kotlin (even Java primitive types), everything can be null. So, of course,
we can have a nullable integer:

1 val a: Int? = null

You can’t work directly with a nullable type without doing some checks before. This code won’t
compile:

²²https://en.wikipedia.org/wiki/Tony_Hoare

https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare

20 Null safety in Kotlin 89

1 val a: Int? = null

2 a.toString()

The previous code could be null, and the compiler is aware of that, so until the nullity is checked,
you won’t be able to use it. Here it is when another feature of the Kotlin compiler comes into action:
the smart cast. If we check the nullity of an object, from that moment the object is automatically
casted to its non-nullabe type. Let’s see an example:

1 val a: Int? = null

2 ...

3 if (a != null) {

4 a.toString()

5 }

Inside the if, a becomes Int instead of Int?, so we can use it without checking nullity anymore.
The code outside the if context, of course, will have to deal with it. This only works if a variable is
immutable (val), because otherwise the value could’ve been changed from another thread and the
previous check would be false at that moment.

This can sound like a lot of work. Do we have to fill all our code with nullity checks? Of course
not. First, because most of the time you won’t need null objects. Null references are more unused
that one could think, you’ll realise when you start figuring out whether a variable should be null or
not. But Kotlin also has its own mechanisms to do this task easier. We can, for instance, simplify the
previous code to:

1 val a: Int? = null

2 ...

3 a?.toString()

Here we are using the safe call operator (?.). The previous line will only be executed if the variable
is not null. Otherwise, it will do nothing. And we can even provide an alternative for the null case
using the Elvis operator (?:):

1 val a: Int? = null

2 ...

3 val myString = a?.toString() ?: ""

Since throw and return are also expressions in Kotlin, they can be used in the right side of the Elvis
operator:

20 Null safety in Kotlin 90

1 val myString = a?.toString() ?: return false

1 val myString = a?.toString() ?: throw IllegalStateException()

When we are dealing with some Java libraries though, there can be situations when we know for
sure we are dealing with a non-nullable variable, but the type is nullable. We can force the compiler
to deal with nullable types skipping the restriction by using the !! operator:

1 val a: Int? = null

2 a!!.toString()

The previous code will compile, but will obviously crash. So we must make sure we only use it in
very specific situations. Most of the time we can choose alternative solutions. A code full of !! will
be a smell of something not being done properly.

20.2 Nullity and Java libraries

Ok, so the previous explanation works perfectly well with Kotlin code. But what happens with Java
libraries in general and Android SDK in particular? In Java, every object can be null by definition.
So we would have to deal with a lot potentially null variables which in real life are never null. So
our code could end up with hundreds of !! operators, which is not a good idea at all.

When you are dealing with the Android SDK, you’ll probably see that all the parameters are marked
with a single ‘!’ when any methods are used. For instance, something that gets an Object in Java
will be represented as Any! in Kotlin. This means that it’s up to the developer to decide whether that
variable should be null or not.

Luckily, latest versions of Android are starting using the @Nullable and @NonNullannotations to
identify the parameters that can be null or the functions that can return null. So when in doubt, we
can go to the source and check if there’s a chance to receive a null object there. My guess is that
in the future, the compiler will be able to read those annotations and force (or at least suggest) the
better approach.

As of today, a warning is shown when the code is marked with a Jetbrains @Nullable annotation
(it’s not the same as the one from Android annotations) and we use a non-nullable variable. The
opposite doesn’t happen with a @NotNull annotation.

So for example, if we create a test class in Java:

20 Null safety in Kotlin 91

1 import org.jetbrains.annotations.Nullable;

2

3 public class NullTest {

4

5 @Nullable

6 public Object getObject(){

7 return "";

8 }

9 }

And then we use it from Kotlin:

1 val test = NullTest()

2 val myObject: Any = test.getObject()

We’ll find that the compiler shows a warning in getObject function. But that’s the only check the
compiler is doing nowadays, and it doesn’t understand about Android annotations, so we’ll probably
have to wait some more time until this is dealt in a smarter way. However, with the help of the
annotated source code and some knowledge about the Android SDK, it’s really difficult to make a
mistake.

Said that, if we are for instance overriding onCreate for an Activity, it’s our decision to make the
savedInstanceState nullable or not:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 }

1 override fun onCreate(savedInstanceState: Bundle) {

2 }

Both ways will compile, but the second one is wrong, because an activity can perfectly receive a null
bundle. Just a little of care will be enough. And when in doubt, you can just use a nullable object
and deal with it properly. Remember, if you use !! it’s because you are sure that the object can’t be
null, so just declare it as non-nullable.

This flexibility is really necessary to work with Java libraries, and as the compiler evolves, we’ll
probably see better interaction (probably based on annotations), but for now this mechanism is
good and flexible enough.

21 Creating the business logic to data
access
After implementing the access to the server and a way to interact with the database, it’s time to put
things together. The logical steps would be:

1. Request the required data from the database
2. Check if there is data for the corresponding week
3. If the required data is found, it is returned to the UI to be rendered
4. Otherwise, the data is requested to the server
5. The result is saved in the database and returned to the UI to be rendered

But our commands shouldn’t need to deal with all this logic. The source of the data is an
implementation detail that could easily be changed, so adding some extra code that abstracts the
commands from the access to the data sounds like a good idea. In our implementation, it will iterate
over a list of sources until a proper result is found.

So let’s start by specifying the interface any data source that wants to be used by our provider should
implement:

1 interface ForecastDataSource {

2 fun requestForecastByZipCode(zipCode: Long, date: Long): ForecastList?

3 }

The provider will require a function that receives a zip code and a date, and it should return a weekly
forecast from that day.

1 class ForecastProvider(val sources: List<ForecastDataSource> =

2 ForecastProvider.SOURCES) {

3

4 companion object {

5 val DAY_IN_MILLIS = 1000 * 60 * 60 * 24

6 val SOURCES = listOf(ForecastDb(), ForecastServer())

7 }

8 ...

9 }

21 Creating the business logic to data access 93

The forecast provider receives a list of sources, that once again can be specified through the
constructor (for test purposes for instance), but I’m defaulting it to a SOURCES list defined in the
companion object. It will use a database source and a server source. The order is important, because
it will iterate over the sources, and the search will be stopped when any of the sources returns a
valid result. The logical order is to search first locally (in the database) and then through the API.

So the main method looks like this:

1 fun requestByZipCode(zipCode: Long, days: Int): ForecastList

2 = sources firstResult { requestSource(it, days, zipCode) }

It will get the first result that is not null. When searching through the list of functional operators
explained in chapter 18, I couldn’t find one that did exactly what I was looking for. So, as we have
access to Kotlin sources, I just copied first function and modified to behave as expected:

1 inline fun <T, R : Any> Iterable<T>.firstResult(predicate: (T) -> R?): R {

2 for (element in this) {

3 val result = predicate(element)

4 if (result != null) return result

5 }

6 throw NoSuchElementException("No element matching predicate was found.")

7 }

The function receives a predicate which gets an object from type T and returns a value of type R?.
This means that the predicate can return null, but our firstResult function can’t. That’s the reason
why it returns a value of type R.

How it works? It will iterate and execute the predicate over the elements in the Iterable collection.
When the result of the predicate is not null, this result will be returned.

If we wanted to include the case where all the sources can return null, we could have derived from
firstOrNull function instead. The difference would consist of returning null instead of throwing
an exception in the last line. But I’m not dealing with those details in this code.

In our example T = ForecastDataSource and R = ForecastList. But remember the function
specified in ForecastDataSource returned a ForecastList?, which equals R?, so everythingmatches
perfectly. The function requestSource just makes the previous function look more readable:

21 Creating the business logic to data access 94

1 fun requestSource(source: ForecastDataSource, days: Int, zipCode: Long):

2 ForecastList? {

3 val res = source.requestForecastByZipCode(zipCode, todayTimeSpan())

4 return if (res != null && res.size() >= days) res else null

5 }

The request is executed and only returns a value if the result is not null and the number of days
matches the parameter. Otherwise, the source doesn’t have enough up-to-date data to return a
successful result.

The function todayTimeSpan() calculates the time in milliseconds for the current day, eliminating
the “time” offset. Some of the sources (in our case the database) may need it. The server defaults to
today if we don’t send more information, so it won’t used there.

1 private fun todayTimeSpan() = System.currentTimeMillis() /

2 DAY_IN_MILLIS * DAY_IN_MILLIS

The complete code of this class would be:

1 class ForecastProvider(val sources: List<ForecastDataSource> =

2 ForecastProvider.SOURCES) {

3

4 companion object {

5 val DAY_IN_MILLIS = 1000 * 60 * 60 * 24;

6 val SOURCES = listOf(ForecastDb(), ForecastServer())

7 }

8

9 fun requestByZipCode(zipCode: Long, days: Int): ForecastList

10 = sources firstResult { requestSource(it, days, zipCode) }

11

12 private fun requestSource(source: RepositorySource, days: Int,

13 zipCode: Long): ForecastList? {

14 val res = source.requestForecastByZipCode(zipCode, todayTimeSpan())

15 return if (res != null && res.size() >= days) res else null

16 }

17

18 private fun todayTimeSpan() = System.currentTimeMillis() /

19 DAY_IN_MILLIS * DAY_IN_MILLIS

20 }

We already defined ForecastDb. It just now needs to implement ForecastDataSource:

21 Creating the business logic to data access 95

1 class ForecastDb(val forecastDbHelper: ForecastDbHelper =

2 ForecastDbHelper.instance, val dataMapper: DbDataMapper = DbDataMapper())

3 : ForecastDataSource {

4

5 override fun requestForecastByZipCode(zipCode: Long, date: Long) =

6 forecastDbHelper.use {

7 ...

8 }

9 ...

10 }

The ForecastServer is not implemented yet, but it’s really simple. It will make use of a ForecastDb
to save the response once it’s received from the server. That way, we can keep it cached into the
database for future requests.

1 class ForecastServer(val dataMapper: ServerDataMapper = ServerDataMapper(),

2 val forecastDb: ForecastDb = ForecastDb()) : ForecastDataSource {

3

4 override fun requestForecastByZipCode(zipCode: Long, date: Long):

5 ForecastList? {

6 val result = ForecastByZipCodeRequest(zipCode).execute()

7 val converted = dataMapper.convertToDomain(zipCode, result)

8 forecastDb.saveForecast(converted)

9 return forecastDb.requestForecastByZipCode(zipCode, date)

10 }

11

12 }

It also makes use of a data mapper, the first one we created, though I modified the name of some
methods to make it similar to the data mapper we used for the database model. You can take a look
at the provider to see the details.

The overridden function makes the request to the server, converts the result to domain objects and
saves them into the database. It finally returns the values from the database, because we need the
row ids auto-generated by the insert query.

With these last steps, the provider is already implemented. Now we need to start using it. The
ForecastCommand no longer should interact directly with server requests, nor convert the data to
the domain model.

21 Creating the business logic to data access 96

1 class RequestForecastCommand(val zipCode: Long,

2 val forecastProvider: ForecastProvider = ForecastProvider()) :

3 Command<ForecastList> {

4

5 companion object {

6 val DAYS = 7

7 }

8

9 override fun execute(): ForecastList {

10 return forecastProvider.requestByZipCode(zipCode, DAYS)

11 }

12 }

The rest of code modifications consist of some renames and package organisation here and there.
Take a look at chapter-21 branch at Kotlin for Android Developers repository²³.

²³https://github.com/antoniolg/Kotlin-for-Android-Developers

https://github.com/antoniolg/Kotlin-for-Android-Developers
https://github.com/antoniolg/Kotlin-for-Android-Developers

22. Flow control and ranges
I’ve been using some conditional expressions in our code, but now it’s time to explain them more
deeply. Though we’ll usually use less mechanisms to control the flow of the code that we’d normally
use in a completely procedural programming language (some of them even practically disappear),
they are still useful. There are also new powerful ideas that will solve some particular problems
much easier.

22.1 If Expression

Almost everything in Kotlin is an expression, which means it returns a value. If conditions are not
an exception in this, so though we can use if as we are used to do it:

1 if (x > 0) {

2 toast("x is greater than 0")

3 } else if (x == 0) {

4 toast("x equals 0")

5 } else {

6 toast("x is smaller than 0")

7 }

We can also assign its result to a variable. We’ve used it like that several times in our code:

1 val res = if (x != null && x.size() >= days) x else null

This also implies we don’t need a ternary operation similar to the Java one, because we can solve it
easily with:

1 val z = if (condition) x else y

So the if expression always returns a value. If one of the branches returns Unit, the whole expression
will return Unit, which can be ignored, and it will work as a regular Java if condition in that case.

22. Flow control and ranges 98

22.2 When expression

When expressions are similar to switch/case in Java, but far more powerful. This expression will
try to match its argument against all possible branches until it finds one that is satisfied. It will
then apply the right side of the expression. The difference with a switch/case in Java is that the
argument can be literally anything, and the conditions for the branches too.

For the default option, we can add an else branch that will be executed if none of the previous
conditions is satisfied. The code executed when a condition is satisfied can be a block too:

1 when (x) {

2 1 -> print("x == 1")

3 2 -> print("x == 2")

4 else -> {

5 print("I'm a block")

6 print("x is neither 1 nor 2")

7 }

8 }

As it’s an expression, it can return a result too. Take into consideration that when used as an
expression, it must cover all the possible cases or implement the else branch. It won’t compile
otherwise:

1 val result = when (x) {

2 0, 1 -> "binary"

3 else -> "error"

4 }

As you can see, the condition can be a set of values separated with commas. But it can be many
more things. We could, for instance, check the type of the argument and take decisions based on
this:

1 when(view) {

2 is TextView -> view.setText("I'm a TextView")

3 is EditText -> toast("EditText value: ${view.getText()}")

4 is ViewGroup -> toast("Number of children: ${view.getChildCount()} ")

5 else -> view.visibility = View.GONE

6 }

The argument is automatically casted in the right part of the condition, so you don’t need to do any
explicit casting.

It’s possible to check whether the argument is inside a range (I’ll explain ranges later in this chapter),
or even inside a collection:

22. Flow control and ranges 99

1 val cost = when(x) {

2 in 1..10 -> "cheap"

3 in 10..100 -> "regular"

4 in 100..1000 -> "expensive"

5 in specialValues -> "special value!"

6 else -> "not rated"

7 }

Or you could even get rid of the argument and do any crazy check you may need. It could easily
substitute an if / else chain:

1 val res = when {

2 x in 1..10 -> "cheap"

3 s.contains("hello") -> "it's a welcome!"

4 v is ViewGroup -> "child count: ${v.getChildCount()}"

5 else -> ""

6 }

22.3 For loops

Though you won’t probably use them too much if you make use of functional operators in
collections, for loops can be useful in some situations, so they are still available. It works with
anything that provides an iterator:

1 for (item in collection) {

2 print(item)

3 }

If we want to get a more typical iteration over indices, we can also do it using ranges (there are
usually smarter solutions anyway):

1 for (index in 0..viewGroup.getChildCount() - 1) {

2 val view = viewGroup.getChildAt(index)

3 view.visibility = View.VISIBLE

4 }

When iterating over an array or a list, a set of indices can be requested to the object, so the previous
artifact is not necessary:

22. Flow control and ranges 100

1 for (i in array.indices)

2 print(array[i])

22.4 While and do/while loops

You can keep using while loops too, though it won’t be very common either. There are usually
simpler and more visual ways to resolve a problem. A couple of examples:

1 while (x > 0) {

2 x--

3 }

4

5 do {

6 val y = retrieveData()

7 } while (y != null) // y is visible here!

22.5 Ranges

It’s difficult to explain control flow without talking about ranges. But their scope is much wider.
Range expressions make use of an operator in the form of “..” that is defined implementing a
RangeTo function.

Ranges help simplify our code in many creative ways. For instance we can convert this:

1 if (i >= 0 && i <= 10)

2 println(i)

Into this:

1 if (i in 0..10)

2 println(i)

Range is defined by any type that can be compared, but for numerical types the compiler will
optimise it by converting it to simpler analogue code in Java, to avoid the extra overhead. The
numerical ranges can also be iterated, and the loops are optimised too by converting them to the
same bytecode a for with indices would use in Java:

22. Flow control and ranges 101

1 for (i in 0..10)

2 println(i)

Ranges are incremental by default, so something like:

1 for (i in 10..0)

2 println(i)

Would do nothing. You can, however, use the function downTo:

1 for (i in 10 downTo 0)

2 println(i)

What if you want to iterate over a double? You can do it too, though the default step is 1, which
means that a range like 1.0..2.0 will return only two values: 1.0 and 2.0. However, we can define
whatever step we want, so we could do:

1 for (i in 1.0..2.0 step 0.1) print("$i ")

That would print all the intermediate values with a 0.1 step: 1.0, 1.1, …, 1.9, 2.0. The step can be
used on any numerical value. Integers can make use of it too:

1 for (i in 1..4 step 2) println(i)

2

3 for (i in 4 downTo 1 step 2) println(i)

As mentioned before, there are really creative ways to use ranges. For instance, an easy way to get
the list of Views inside a ViewGroup would be:

1 val views = (0..viewGroup.getChildCount() - 1) map { viewGroup.getChildAt(it) }

The mix of ranges and functional operators prevents from having to use an explicit loop to iterate
over the collection, and the creation of an explicit list where we add the views. Everything is done
in a single line.

If you want to know more about how ranges are implemented and a lot more examples and useful
information, you can go to Kotlin reference²⁴.

²⁴http://kotlinlang.org/docs/reference/ranges.html

http://kotlinlang.org/docs/reference/ranges.html
http://kotlinlang.org/docs/reference/ranges.html

23 Creating a Detail Activity
When we click on an item from the home screen, we would expect to navigate to a detail activity
and see some extra info about the forecast for that day. We are currently showing a toast when an
item is clicked, but it’s time to change that.

23.1 Preparing the request

As we need to know which item we are going to show in the detail activity, logic tells we’ll need to
send the id of the forecast to the detail. So the domain model needs a new id property:

1 data class Forecast(val id: Long, val date: Long, val description: String,

2 val high: Int, val low: Int, val iconUrl: String)

The ForecastProvider also needs a new function, which returns the requested forecast by id. The
DetailActivitywill need it to recover the forecast based on the id it will receive. As all the requests
always iterate over the sources and return the first non-null result, we can extract that behaviour to
another function:

1 private fun requestToSources<T : Any>(f: (ForecastDataSource) -> T?): T

2 = sources firstResult { f(it) }

The function is generified using a non-nullable type. It will receive a function which uses a
ForecastDataSource to return an nullable object of the generic type, and will finally return a non-
nullable object. We can rewrite the previous request and write the new one this way:

1 fun requestByZipCode(zipCode: Long, days: Int): ForecastList = requestToSources {

2 val res = it.requestForecastByZipCode(zipCode, todayTimeSpan())

3 if (res != null && res.size() >= days) res else null

4 }

5

6 fun requestForecast(id: Long): Forecast = requestToSources {

7 it.requestDayForecast(id)

8 }

Now the data sources need to implement the new function:

23 Creating a Detail Activity 103

1 fun requestDayForecast(id: Long): Forecast?

The DbProvider will always have the required value already cached from previous requests, so we
can get it from there this way:

1 override fun requestDayForecast(id: Long): Forecast? = forecastDbHelper.use {

2 val forecast = select(DayForecastTable.NAME).byId(id).

3 parseOpt { DayForecast(HashMap(it)) }

4

5 if (forecast != null) dataMapper.convertDayToDomain(forecast) else null

6 }

The select query is very similar to the previous one. I created another utility function called byId,
because a request by id is so common that a function like that simplifies the process and is easier to
read. The implementation of the function is quite simple:

1 fun SelectQueryBuilder.byId(id: Long): SelectQueryBuilder

2 = whereSimple("_id = ?", id.toString())

It just makes use of the whereSimple function and implements the search over the _id field. This
function is quite generic, but as you can see, you could create as many extension functions as you
need based on the structure of your database, and hugely simplify the readability of your code. The
DbDataMapper has some slight changes not worth mentioning. You can check them in the repository.

On the other hand, the ForecastServer will never be used, because the info will be always cached
in the database. We could implement it to defend our code from strange situations, but we’re not
doing it in this case, so it will just throw an exception if it’s called:

1 override fun requestDayForecast(id: Long): Forecast?

2 = throw UnsupportedOperationException()

23 Creating a Detail Activity 104

try and throw are expressions
In Kotlin, almost everything is an expression, which means it returns a value. This is really
important for functional programming, and particularly useful when dealing with edge
cases with try-catch or when throwing exceptions. For instance, in the previous example
we can assign an exception to the result even if they are not of the same type, instead of
having to create a full block of code. This is very useful too when we want to throw an
exception in one of when branches:

1 val x = when(y) {

2 in 0..10 -> 1

3 in 11..20 -> 2

4 else -> throw Exception("Invalid")

5 }

The same happens with try-catch, we can assign a value depending on the result of the
try:

1 val x = try { doSomething() } catch { null }

The last thingwe need to be able to perform the request from the new activity is to create a command.
The code is really simple:

1 class RequestDayForecastCommand(

2 val id: Long,

3 val forecastProvider: ForecastProvider = ForecastProvider()) :

4 Command<Forecast> {

5

6 override fun execute() = forecastProvider.requestForecast(id)

7 }

The request returns a Forecast result that will be used by the activity to draw its UI.

23.2 Providing a new activity

We are now prepared to create the DetailActivity. Our detail activity will receive a couple of
parameters from the main one: the forecast id and the name of the city. The first one will be used to
request the data from the database, and the name of the city will fill the toolbar. So we first need a
couple of names to identify the parameters in the bundle:

23 Creating a Detail Activity 105

1 public class DetailActivity : AppCompatActivity() {

2

3 companion object {

4 val ID = "DetailActivity:id"

5 val CITY_NAME = "DetailActivity:cityName"

6 }

7 ...

8 }

In onCreate function, the first step is to set the content view. The UI will be really simple, but more
than enough for this app example:

1 <LinearLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 xmlns:tools="http://schemas.android.com/tools"

4 android:layout_width="match_parent"

5 android:layout_height="match_parent"

6 android:orientation="vertical"

7 android:paddingBottom="@dimen/activity_vertical_margin"

8 android:paddingLeft="@dimen/activity_horizontal_margin"

9 android:paddingRight="@dimen/activity_horizontal_margin"

10 android:paddingTop="@dimen/activity_vertical_margin">

11

12 <LinearLayout

13 android:layout_width="match_parent"

14 android:layout_height="wrap_content"

15 android:orientation="horizontal"

16 android:gravity="center_vertical"

17 tools:ignore="UseCompoundDrawables">

18

19 <ImageView

20 android:id="@+id/icon"

21 android:layout_width="64dp"

22 android:layout_height="64dp"

23 tools:src="@mipmap/ic_launcher"

24 tools:ignore="ContentDescription"/>

25

26 <TextView

27 android:id="@+id/weatherDescription"

28 android:layout_width="wrap_content"

29 android:layout_height="wrap_content"

30 android:layout_margin="@dimen/spacing_xlarge"

23 Creating a Detail Activity 106

31 android:textAppearance="@style/TextAppearance.AppCompat.Display1"

32 tools:text="Few clouds"/>

33

34 </LinearLayout>

35

36 <LinearLayout

37 android:layout_width="match_parent"

38 android:layout_height="wrap_content">

39

40 <TextView

41 android:id="@+id/maxTemperature"

42 android:layout_width="0dp"

43 android:layout_height="wrap_content"

44 android:layout_weight="1"

45 android:layout_margin="@dimen/spacing_xlarge"

46 android:gravity="center_horizontal"

47 android:textAppearance="@style/TextAppearance.AppCompat.Display3"

48 tools:text="30"/>

49

50 <TextView

51 android:id="@+id/minTemperature"

52 android:layout_width="0dp"

53 android:layout_height="wrap_content"

54 android:layout_weight="1"

55 android:layout_margin="@dimen/spacing_xlarge"

56 android:gravity="center_horizontal"

57 android:textAppearance="@style/TextAppearance.AppCompat.Display3"

58 tools:text="10"/>

59

60 </LinearLayout>

61

62 </LinearLayout>

Then assign it from onCreate code. Use the city name to fill the toolbar title. The methods for intent
and title are automatically mapped to a property:

1 setContentView(R.layout.activity_detail)

2 title = intent.getStringExtra(CITY_NAME)

The other part in onCreate implements the call to the command. It’s very similar to the call we
previously did:

23 Creating a Detail Activity 107

1 async {

2 val result = RequestDayForecastCommand(intent.getLongExtra(ID, -1)).execute()

3 uiThread { bindForecast(result) }

4 }

When the result is recovered from the database, the bindForecast function is called in the UI thread.
I’m using Kotlin Android Extensions plugin again in this activity, to get the properties from the XML
without using findViewById:

1 import kotlinx.android.synthetic.activity_detail.*

2

3 ...

4

5 private fun bindForecast(forecast: Forecast) = with(forecast) {

6 Picasso.with(ctx).load(iconUrl).into(icon)

7 supportActionBar.subtitle = date.toDateString(DateFormat.FULL)

8 weatherDescription.text = description

9 bindWeather(high to maxTemperature, low to minTemperature)

10 }

There are some interesting things here. For instance, I’m creating another extension function able
to convert a Long object into a visual date string. Remember we were using it in the adapter too, so
it’s a good moment to extract it into a function:

1 fun Long.toDateString(dateFormat: Int = DateFormat.MEDIUM): String {

2 val df = DateFormat.getDateInstance(dateFormat, Locale.getDefault())

3 return df.format(this)

4 }

It will get a date format (or use the default DateFormat.MEDIUM) and convert the Long into a String
that is understandable by the user.

Another interesting function is bindWeather. It will get a vararg of pairs of Int and TextView, and
assign a text and a text color to the TextViews based on the temperature.

23 Creating a Detail Activity 108

1 private fun bindWeather(vararg views: Pair<Int, TextView>) = views forEach {

2 it.second.text = "${it.first.toString()}��"

3 it.second.textColor = color(when (it.first) {

4 in -50..0 -> android.R.color.holo_red_dark

5 in 0..15 -> android.R.color.holo_orange_dark

6 else -> android.R.color.holo_green_dark

7 })

8 }

For each pair, it assigns the text that will show the temperature and a color based on the value of the
temperature: red for low temperatures, orange for medium ones and green for the rest. The values
are taken quite randomly, but it’s a good representation of what we can do with a when expression,
how clean and short the code becomes.

color is an extension function I miss from Anko, which simplifies the way to get a color from
resources, similar to the dimen one we’ve used in some other places. At the time of writing this
lines, current support library relies on the class ContextCompat to get a color in a compatible way
in all Android versions:

1 public fun Context.color(res: Int): Int = ContextCompat.getColor(this, res)

The AndroidManifest also needs to be aware that a new activity exists:

1 <activity

2 android:name=".ui.activities.DetailActivity"

3 android:parentActivityName=".ui.activities.MainActivity" >

4 <meta-data

5 android:name="android.support.PARENT_ACTIVITY"

6 android:value="com.antonioleiva.weatherapp.ui.activities.MainActivity" />

7 </activity>

23.3 Start an activity: reified functions

The last step consists of starting the detail activity from the main activity. We can rewrite the adapter
instantiation this way:

23 Creating a Detail Activity 109

1 val adapter = ForecastListAdapter(result) {

2 val intent = Intent(MainActivity@this, javaClass<DetailActivity>())

3 intent.putExtra(DetailActivity.ID, it.id)

4 intent.putExtra(DetailActivity.CITY_NAME, result.city)

5 startActivity(intent)

6 }

But this is too verbose. As usual, Anko provides a much simpler way to start an activity by using a
reified function:

1 val adapter = ForecastListAdapter(result) {

2 startActivity<DetailActivity>(DetailActivity.ID to it.id,

3 DetailActivity.CITY_NAME to result.city)

4 }

What’s the magic behind reified functions? As you may know, when we create a generic method
in Java, there is no way to get the class from the generic type. The typical workaround is passing
the class as a parameter. In Kotlin, an inline function can be reified, which means we can get and
use the class of the generic type inside the function. In this case, we can create the intent inside the
function, by calling T::class.javaClass. A simplified version of what Anko really does would be
the next (I’m only using String extras in this example):

1 public inline fun <reified T: Activity> Context.startActivity(

2 vararg params: Pair<String, String>) {

3

4 val intent = Intent(this, T::class.javaClass)

5 params forEach { intent.putExtra(it.first, it.second) }

6 startActivity(intent)

7 }

The real implementation is a bit more complex because it uses a long and boring when expression to
add the extras depending on the type, but it doesn’t add much useful knowledge to the concept.

Reified functions are, once more, a syntactic sugar that simplifies the code and improves its
comprehension. In this case, it creates an intent by getting the javaClass from the generic type,
iterates over params and adds them to the intent, and starts the activity using the intent. The reified
type is limited to be an Activity descendant.

The rest of little details are covered in the repository. We now have a very simple (but complete)
master-detail App implemented in Kotlin without using a single line of Java.

24 Interfaces and Delegation
24.1 Interfaces

Interfaces in Kotlin are more powerful than in Java 7. If you’ve worked with Java 8, similarities are
much closer to them. In Kotlin, we can use interfaces the way we are used in Java. Imagine we have
some animals, and some of them can fly. This is the interface we could have for flying animals:

1 interface FlyingAnimal {

2 fun fly()

3 }

Both birds and bats can fly by moving their wings. So let’s create a couple of classes for them:

1 class Bird : FlyingAnimal {

2 val wings: Wings = Wings()

3 override fun fly() = wings.move()

4 }

5

6 class Bat : FlyingAnimal {

7 val wings: Wings = Wings()

8 override fun fly() = wings.move()

9 }

When a couple of classes extend from an interface, it’s very typical they both share the same
implementation. However, Java 7 interfaces can only define the behaviour, but not implement it.

Kotlin interfaces, on the other hand, are able to implement functions. The only difference from a
class is that they are stateless, so the properties that need a backup field will need to be overridden
by the class. The class will be in charge of keeping the state of interface properties.

We can make the interface implement the fly function:

1 interface FlyingAnimal {

2 val wings: Wings

3 fun fly() = wings.move()

4 }

As mentioned, classes need to override the property:

24 Interfaces and Delegation 111

1 class Bird : FlyingAnimal {

2 override val wings: Wings = Wings()

3 }

4

5 class Bat : FlyingAnimal {

6 override val wings: Wings = Wings()

7 }

And now both birds and bats can fly:

1 val bird = Bird()

2 val bat = Bat()

3

4 bird.fly()

5 bat.fly()

24.2 Delegation

The delegation pattern²⁵ is a really useful pattern that can be used to extract responsibilities from a
class. The delegation pattern is supported natively by Kotlin, so it prevents from the need of calling
the delegate. The delegator just needs to specify which instance implements the interface.

In our previous example, we can specify how the animal flies through the constructor, instead of
implementing it. For instance, a flying animal that uses wings to fly can be specified this way:

1 interface CanFly {

2 fun fly()

3 }

4

5 class Bird(f: CanFly) : CanFly by f

We can indicate that a bird can fly by using the interface, but the way the bird uses to fly is defined
through a delegate that is defined in the constructor, so we can have different birds with different
flying methods. The way an animal with wings flies is defined in another class:

²⁵https://en.wikipedia.org/wiki/Delegation_pattern

https://en.wikipedia.org/wiki/Delegation_pattern
https://en.wikipedia.org/wiki/Delegation_pattern

24 Interfaces and Delegation 112

1 class AnimalWithWings : CanFly {

2 val wings: Wings = Wings()

3 override fun fly() = wings.move()

4 }

An animal with wings moves its wings to be able to fly. So now we can create a bird that flies using
wings:

1 val birdWithWings = Bird(AnimalWithWings())

2 birdWithWings.fly()

But now wings can be used with another animals that are not birds. If we assume that bats always
use wings, we could instantiate the object directly where we specify the delegation:

1 class Bat : CanFly by AnimalWithWings()

2 ...

3 val bat = Bat()

4 bat.fly()

24.3 Implementing an example in our App

Interfaces can be used to extract common code from classes which have some similar behaviour. For
instance, we can create an interface that deals with the toolbar of the app. Both MainActivity and
DetailActivity will share similar code that deals with the toolbar.

But first, some changes need to be made to the app to start using a toolbar included in the layout
instead of the standard ActionBar. The first thing will be extending a NoActionBar theme. That way,
the toolbar is not included automatically:

1 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">

2 <item name="colorPrimary">#ff212121</item>

3 <item name="colorPrimaryDark">@android:color/black</item>

4 </style>

We are using a light theme. Next, let’s create a toolbar layout that we can include later in some other
layouts:

24 Interfaces and Delegation 113

1 <android.support.v7.widget.Toolbar

2 xmlns:app="http://schemas.android.com/apk/res-auto"

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 android:id="@+id/toolbar"

5 android:layout_width="match_parent"

6 android:layout_height="?attr/actionBarSize"

7 android:background="?attr/colorPrimary"

8 app:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"

9 app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>

The toolbar specifies its background, a dark theme for itself and a light theme for the popups it
generates (the overflow menu for instance). We get then the same theme we already had: light
theme with dark Action Bar.

Next step will be modifying the MainActivity layout to include the toolbar:

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <android.support.v7.widget.RecyclerView

7 android:id="@+id/forecastList"

8 android:layout_width="match_parent"

9 android:layout_height="match_parent"

10 android:clipToPadding="false"

11 android:paddingTop="?attr/actionBarSize"/>

12

13 <include layout="@layout/toolbar"/>

14

15 </FrameLayout>

Now that the toolbar has been added to the layout, we can start using it. We are creating an interface
that will let us:

• Change the title
• Specify whether it shows the up navigation action or not
• Animate the toolbar when scrolling
• Assign the same menu to all activities and an event for the actions

So let’s define the ToolbarManager:

24 Interfaces and Delegation 114

1 interface ToolbarManager {

2 val toolbar: Toolbar

3 ...

4 }

It will need a toolbar property. Interfaces are stateless, so the property can be defined but no value
can be assigned. Classes that implement it will need to override the property.

On the other hand, we can implement stateless properties without the need of being overridden.
That is, properties that don’t need a backup field. An example would be a property which deals with
the toolbar title:

1 var toolbarTitle: String

2 get() = toolbar.title.toString()

3 set(value) {

4 toolbar.title = value

5 }

As the property just uses the toolbar, it doesn’t need to save any new state.

We’re now creating a new function that initialises the toolbar, by inflating a menu and setting a
listener:

1 fun initToolbar() {

2 toolbar.inflateMenu(R.menu.menu_main)

3 toolbar.setOnMenuItemClickListener {

4 when (it.itemId) {

5 R.id.action_settings -> App.instance.toast("Settings")

6 else -> App.instance.toast("Unknown option")

7 }

8 true

9 }

10 }

We can also add a function that enables the navigation icon in the toolbar, sets an arrow icon and a
listener that will be fired when the icon is pressed:

24 Interfaces and Delegation 115

1 fun enableHomeAsUp(up: () -> Unit) {

2 toolbar.navigationIcon = createUpDrawable()

3 toolbar.setNavigationOnClickListener { up() }

4 }

5

6 private fun createUpDrawable() = with (DrawerArrowDrawable(toolbar.ctx)) {

7 progress = 1f

8 this

9 }

The function receives the listener, creates the up drawable by using the [DrawerArrowDrawable]
(https://developer.android.com/reference/android/support/v7/graphics/drawable/DrawerArrowDrawable.html)
on its final state (when the arrow is already showing) and assigns the listener to the toolbar.

Finally, the interface will provide a function that allows the toolbar to be attached to a scroll, and
animates the toolbar depending on the direction of the scroll. The toolbar will be hidden while we
are scrolling down and shown again when scrolling up:

1 fun attachToScroll(recyclerView: RecyclerView) {

2 recyclerView.addOnScrollListener(object : RecyclerView.OnScrollListener() {

3 override fun onScrolled(recyclerView: RecyclerView?, dx: Int, dy: Int) {

4 if (dy > 0) toolbar.slideExit() else toolbar.slideEnter()

5 }

6 })

7 }

We’ll be creating a couple of extension functions which animate the views in and out of the screen.
They check if the animation hasn’t been previously performed. That way it prevents the view from
being animated every time the scroll varies:

1 fun View.slideExit() {

2 if (translationY == 0f) animate().translationY(-height.toFloat())

3 }

4

5 fun View.slideEnter() {

6 if (translationY < 0f) animate().translationY(0f)

7 }

After implementing the toolbar manager, it’s time to use it in the MainActivity. We first specify the
toolbar property. We can implement a lazy find so that the toolbar will be already inflated by the
first time we use it:

24 Interfaces and Delegation 116

1 override val toolbar by lazy { find<Toolbar>(R.id.toolbar) }

MainActivitywill just initialise the toolbar, attach to the RecyclerView scroll andmodify the toolbar
title:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4 initToolbar()

5

6 forecastList.layoutManager = LinearLayoutManager(this)

7 attachToScroll(forecastList)

8

9 async {

10 val result = RequestForecastCommand(94043).execute()

11 uiThread {

12 val adapter = ForecastListAdapter(result) {

13 startActivity<DetailActivity>(DetailActivity.ID to it.id,

14 DetailActivity.CITY_NAME to result.city)

15 }

16 forecastList.adapter = adapter

17 toolbarTitle = "${result.city} (${result.country})"

18 }

19 }

20 }

DetailActivity also needs some layout modifications:

1 <LinearLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 xmlns:tools="http://schemas.android.com/tools"

4 android:layout_width="match_parent"

5 android:layout_height="match_parent"

6 android:orientation="vertical">

7

8 <include layout="@layout/toolbar"/>

9

10 <LinearLayout

11 android:layout_width="match_parent"

12 android:layout_height="wrap_content"

13 android:orientation="horizontal"

14 android:gravity="center_vertical"

24 Interfaces and Delegation 117

15 android:paddingTop="@dimen/activity_vertical_margin"

16 android:paddingLeft="@dimen/activity_horizontal_margin"

17 android:paddingRight="@dimen/activity_horizontal_margin"

18 tools:ignore="UseCompoundDrawables">

19

20 </LinearLayout>

21

22 </LinearLayout>

The toolbar property is specified the same way. DetailActivity will initialise the toolbar too, set
the title and enable the up navigation icon:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.activity_detail)

4

5 initToolbar()

6 toolbarTitle = intent.getStringExtra(CITY_NAME)

7 enableHomeAsUp { onBackPressed() }

8 ...

9 }

Interfaces can help us extract common code from classes that share similar behaviours. It can be
used as an alternative way of composition that will keep our code better organised, and it will be
easier to reuse. Think where interfaces can help you write better code.

25 Generics
Generic programming consists of writing algorithms without the need of specifying the exact type
the code is going to use. That way, we can create functions or types that only differ in the set of
types they use, improving code reusability. These units of code are known as generics, and they exist
in many languages, including Java and Kotlin.

In Kotlin, generics are even more important, because the high presence of regular and extension
functions will increment the amount of times that generics are of some use for us. Though we’ve
been using generics blindly throughout the book, generics are usually one of the trickiest parts of
any language, so I’m trying to explain it in the simplest possible way so that main ideas are clear
enough.

25.1 Basics

For instance, we can create a class which specifies a generic type:

1 class TypedClass<T>(parameter: T) {

2 val value: T = parameter

3 }

This class now can be instantiated using any type, and the parameter will use the type in the
definition. We could do:

1 val t1 = TypedClass<String>("Hello World!")

2 val t2 = TypedClass<Int>(25)

But Kotlin is all about simplicity and boilerplate reduction, so if the compiler can infer the type of
the parameter, we don’t even need to specify it:

1 val t1 = TypedClass("Hello World!")

2 val t2 = TypedClass(25)

3 val t3 = TypedClass<String?>(null)

As the third object is receiving a null reference, the type still needs to be specified because it can’t
be inferred.

We can go beyond and, as in Java, reduce the types that can be used in a generic class by specifying
it in the definition. For instance, if we want to restrict previous class to non-nullable types, we just
need to do:

25 Generics 119

1 class TypedClass<T : Any>(parameter: T) {

2 val value: T = parameter

3 }

If you compile previous code, you will see that t3 now throws an error. Nullable types are not
allowed anymore. But restrictions can be obviously more strict. What if we want only classes that
extend Context? Easy:

1 class TypedClass<T : Context>(parameter: T) {

2 val value: T = parameter

3 }

4

5 val t1 = TypedClass(activity)

6 val t2 = TypedClass(context)

7 val t3 = TypedClass(service)

Now every class which extends Context can be used as the type of our class. The rest of types are
not allowed.

Of course, types are also allowed in functions. We can construct generic functions quite easily:

1 fun <T> typedFunction(item: T): List<T> {

2 ...

3 }

25.2 Variance

This is really one of the trickiest parts to understand. In Java, there is a problemwhen we use generic
types. Logic says that List<String> should be able to be casted to List<Object> because it’s less
restrictive. But take a look at this example:

1 List<String> strList = new ArrayList<>();

2 List<Object> objList = strList;

3 objList.add(5);

4 String str = objList.get(0);

If the Java compiler let us do this, we could add an Integer to an Object list, and this would obviously
crash at some point. That’s why wildcards were added to the language. Wildcards will increase
flexibility while limiting this problem.

If we add ‘? extends Object’ we are using covariance, which means that we can deal with any
object that uses a type that is more restrictive than Object, but we can only do get operations safely.
If we want to copy a collection of Strings into a collection of Objects, we should be allowed, right?

Then, if we have:

25 Generics 120

1 List<String> strList = ...;

2 List<Object> objList = ...;

3 objList.addAll(strList);

This is possible because the definition of addAll() in Collection interface is something like:

1 List<String>

2 interface Collection<E> ... {

3 void addAll(Collection<? extends E> items);

4 }

Otherwise, without the wildcard, we wouldn’t be allowed to use a String list with this method. The
opposite, of course, would fail. We can’t use addAll() to add a list of Objects to a list of Strings.
As we are only getting the items from the collection we use in that method, it’s a perfect example
of covariance.

On the other hand, we can find contravariance, which is just the opposite situation. Following with
the Collection example, if we want to add items to a Collection we are passing as parameter, we
could add objects with a more restrictive type into a more generic collection. For instance, we could
add Strings to an Object list:

1 void copyStrings(Collection<? super String> to, Collection<String> from) {

2 to.addAll(from);

3 }

The only restriction we have to add Strings to another collection is that the collection accepts
Objects that are Strings or parent classes.

But wildcards have their own limitations. Wildcards define use-site variance, which means we
need to declare it where we use it. This implies adding boilerplate every time we declare a more
generic variable.

Let’s see an example. Using a class similar to the one we had before:

1 class TypedClass<T> {

2 public T doSomething(){

3 ...

4 }

5 }

This code will not compile:

25 Generics 121

1 TypedClass<String> t1 = new TypedClass<>();

2 TypedClass<Object> t2 = t1;

Though it really doesn’t make sense, because we could still keep calling all the methods of the class,
and nothing would break. We need to specify that the type can have a more flexible definition.

1 TypedClass<String> t1 = new TypedClass<>();

2 TypedClass<? extends String> t2 = t1;

This makes things more difficult to understand, and adds some extra boilerplate.

On the other hand, Kotlin deals with it in an easier manner by using declaration-site variance.
This means that we specify that we can deal with less restrictive situations when defining the class
or interface, and then we can use it blindly everywhere.

So let’s see how it looks in Kotlin. Instead of long wildcards, Kotlin just uses out for covariance and
in for contravariance. In this case, as our class is producing objects that could be saved into less
restrictive variables, we’ll be using covariance. We can define this in the class declaration directly:

1 class TypedClass<out T>() {

2 fun doSomething(): T {

3 ...

4 }

5 }

And that’s all we need. Now, the same example that wouldn’t compile in Java is perfectly possible
in Kotlin:

1 val t1 = TypedClass<String>()

2 val t2: TypedClass<Any> = t1

If you were already used to these concepts, I’m sure you will easily be able to use in and out in
Kotlin. Otherwise, it just requires a little practice and some concepts understanding.

25.3 Generics examples

After the theory, let’s move to some practical functions that will make our lives easier. Instead of
reinventing the wheel, I’m using three functions that are included in Kotlin standard library. These
functions let us do awesome things with just a generic implementation. They can inspire you to
create your own functions.

let

let is a really simple function that can be called by any object. It receives a function that will receive
the object as a parameter, and returns the value that this function returns. It is really useful to deal
with nullable objects for instance. This is the definition:

25 Generics 122

1 inline fun <T, R> T.let(f: (T) -> R): R = f(this)

It uses two generic types: T and R. The first one is defined by the calling object, and it’s the type that
the function receives. The second one is the result of the function.

How can we use it? You may remember that, when we were retrieving data from a data source, the
result could be null. We then returned a result mapped to the domain model if it wasn’t null, or just
a null reference otherwise:

1 if (forecast != null) dataMapper.convertDayToDomain(forecast) else null

This is really ugly, we shouldn’t need to deal with nullable types that way. And in fact we don’t
need to if we use let:

1 forecast?.let { dataMapper.convertDayToDomain(it) }

let function will only be executed if forecast is not null thanks to ‘?.’ operator. It will return
null otherwise. Just what we were trying to achieve.

with

We’ve talked a lot about this function during the book. with receives an object, and a function that
will be executed as an extension function. This means we can use this inside the function to refer
to the object. It will also return an object defined in the last line of the function.

1 inline fun <T, R> with(receiver: T, f: T.() -> R): R = receiver.f()

Generics work the same way here: T stands for the receiver type, and R for the result. As you can
see, the function is defined as an extension function by using this declaration: f: T.() -> R. That’s
why we can then call receiver.f().

We have several examples throughout the app:

1 fun convertFromDomain(forecast: ForecastList) = with(forecast) {

2 val daily = dailyForecast map { convertDayFromDomain(id, it) }

3 CityForecast(id, city, country, daily)

4 }

apply

It may look very similar to with function, but the idea is a bit different. apply can be used to avoid
the creation of builders, because the object that calls the function can initialise itself the way it needs,
and the apply function will return the same object:

25 Generics 123

1 inline fun <T> T.apply(f: T.() -> Unit): T { f(); return this }

We only need one generic type here, because the object that calls the function is also the one it’s
returned. A nice simple example would be:

1 val textView = TextView(context).apply {

2 text = "Hello"

3 hint = "Hint"

4 textColor = android.R.color.white

5 }

It creates a TextView, modifies some properties, and assigns it to a variable. Everything in a simple,
readable and compact syntax. But let’s use it in our current code. In ToolbarManager, we were doing
this to create the navigation drawable:

1 private fun createUpDrawable() = with(DrawerArrowDrawable(toolbar.ctx)) {

2 progress = 1f

3 this

4 }

Using with and returning this is clearly something that can be done easier by using apply:

1 private fun createUpDrawable() = DrawerArrowDrawable(toolbar.ctx).apply {

2 progress = 1f

3 }

You can review some more little improvements in Kotlin for Android Developers repository.

26 Settings Screen
Until now, we’ve been using a default city to implement the App, but it’s time add the ability to
select a city. Our App needs a settings section where the user can change the city.

We are going to stick to the zip code to identify the city. A real App would probably need more
information, because a zip code by itself doesn’t identify a city in the whole world. But we at least
will show a city around the world that uses the zip code we are defining in settings. This will be a
good example to explain an interesting way to deal with preferences.

26.1 Creating the settings activity

A new activity will we opened when the settings option is selected in the overflow menu in the
toolbar. So first thing we need is a new SettingsActivity:

1 class SettingsActivity : AppCompatActivity() {

2

3 override fun onCreate(savedInstanceState: Bundle?) {

4 super.onCreate(savedInstanceState)

5 setContentView(R.layout.activity_settings)

6 setSupportActionBar(toolbar)

7 supportActionBar.setDisplayHomeAsUpEnabled(true)

8 }

9

10 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {

11 android.R.id.home -> { onBackPressed(); true }

12 else -> false

13 }

14 }

We’ll save the preference when the user gets out of the screen activity, so we’re going to deal with
the Up action the same way as the Back one, by redirecting the action to onBackPressed. By now,
let’s create the XML layout. A simple EditText will be enough for the preference:

26 Settings Screen 125

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <include layout="@layout/toolbar"/>

7

8 <LinearLayout

9 android:orientation="vertical"

10 android:layout_width="match_parent"

11 android:layout_height="match_parent"

12 android:layout_marginTop="?attr/actionBarSize"

13 android:padding="@dimen/spacing_xlarge">

14

15 <TextView

16 android:layout_width="wrap_content"

17 android:layout_height="wrap_content"

18 android:text="@string/city_zipcode"/>

19

20 <EditText

21 android:id="@+id/cityCode"

22 android:layout_width="match_parent"

23 android:layout_height="wrap_content"

24 android:hint="@string/city_zipcode"

25 android:inputType="number"/>

26

27 </LinearLayout>

28

29 </FrameLayout>

And then just declare the activity in the AndroidManifest.xml:

1 <activity

2 android:name=".ui.activities.SettingsActivity"

3 android:label="@string/settings"/>

26.2 Accessing Shared Preferences

You probably know what Android Shared Preferences²⁶ are. They consist of a set of keys and
values that can be easily saved and restored by using the Android framework. These preferences

²⁶http://developer.android.com/training/basics/data-storage/shared-preferences.html

http://developer.android.com/training/basics/data-storage/shared-preferences.html
http://developer.android.com/training/basics/data-storage/shared-preferences.html

26 Settings Screen 126

are integrated with some parts of the SDK to make some tasks easier. Besides, since Android 6.0
(Marshmallow), shared preferences can be automatically cloud-saved, so when a user restores the
App in a new device, these preferences are restored too.

Thanks to the use of property delegation, we can deal with preferences in a very easy way. We can
create a delegate that queries the preference when get is called and saves it when we call to set.

As we want to save the zip code, which is a long value, let’s create a delegate for Long properties. In
DelegatesExtensions.kt, implement a new LongPreference class:

1 class LongPreference(val context: Context, val name: String, val default: Long)

2 : ReadWriteProperty<Any?, Long> {

3

4 val prefs by lazy {

5 context.getSharedPreferences("default", Context.MODE_PRIVATE)

6 }

7

8 override fun get(thisRef: Any?, property: PropertyMetadata): Long {

9 return prefs.getLong(name, default)

10 }

11

12 override fun set(thisRef: Any?, property: PropertyMetadata, value: Long) {

13 prefs.edit().putLong(name, value).apply()

14 }

15 }

First, we create a lazy access to preferences. That way, if we don’t use the property, this delegate
will never request the SharedPreferences object.

When get is called, its implementation will use the preferences instance to retrieve a long property
with the name that was specified in the delegate declaration, and defaulting to the default value if
the property is not found. When a value is set, a preferences editor is requested and the value will
be saved using the name of the property.

We can then define the new delegate in the DelegatesExt object, so that it’s easier to access when
required:

1 object DelegatesExt {

2

3 fun longPreference(context: Context, name: String, default: Long) =

4 LongPreference(context, name, default)

5 }

In SettingsActivity, a property to deal with zip code preference can now be defined. I’m also
creating a couple of constants which keep the name and default value of the property. That way
they can be used in other sections of the App.

26 Settings Screen 127

1 companion object {

2 val ZIP_CODE = "zipCode"

3 val DEFAULT_ZIP = 94043L

4 }

5

6 var zipCode: Long by DelegatesExt.longPreference(this, ZIP_CODE, DEFAULT_ZIP)

Now it’s really easy to work with this preference. In onCreate, we get the value of the property and
assign it to the EditText:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 ...

3 cityCode.setText(zipCode.toString())

4 }

We can’t use the auto-generated property text because EditText returns an Editable in getText,
so the property is defaulted to that value. If we try to assign a String, the compiler will complain.
Using setText() will be enough.

Nowwe have everything we need to implement onBackPressed. Here, the new value of the property
is saved:

1 override fun onBackPressed() {

2 super.onBackPressed()

3 zipCode = cityCode.text.toString().toLong()

4 }

The MainActivity requires some little changes. First, it also needs a zipCode property.

1 val zipCode: Long by DelegatesExt.longPreference(this, SettingsActivity.ZIP_CODE,

2 SettingsActivity.DEFAULT_ZIP)

And then, I’m moving the forecast load to onResume so that every time the activity is resumed, it
refreshes the data, just in case the zip code changed. Of course, there are more efficient ways to
do this, by checking whether the zip code really changed before requesting the forecast again, for
instance. But I want to keep this example simple, and the requested info is already saved in a local
database, so this solution is not that bad:

26 Settings Screen 128

1 override fun onResume() {

2 super.onResume()

3 loadForecast()

4 }

5

6 private fun loadForecast() = async {

7 val result = RequestForecastCommand(zipCode).execute()

8 uiThread {

9 val adapter = ForecastListAdapter(result) {

10 startActivity<DetailActivity>(DetailActivity.ID to it.id,

11 DetailActivity.CITY_NAME to result.city)

12 }

13 forecastList.adapter = adapter

14 toolbarTitle = "${result.city} (${result.country})"

15 }

16 }

The RequestForecastCommand is now using the zipCode property instead of the previous fixed value.

There’s just one more thing we must do: start the settings activity when the user clicks on the
overflow action. In ToolbarManager, the initToolbar function requires a small change:

1 when (it.itemId) {

2 R.id.action_settings -> toolbar.ctx.startActivity<SettingsActivity>()

3 else -> App.instance.toast("Unknown option")

4 }

26.3 Generic preference delegate

Now that we are generics experts, why not extending LongPreference to be used with any type that
Shared Preferences support? Let’s create a new Preference delegate:

1 class Preference<T>(val context: Context, val name: String, val default: T) :

2 ReadWriteProperty<Any?, T> {

3

4 val prefs by lazy {

5 context.getSharedPreferences("default", Context.MODE_PRIVATE)

6 }

7

8 override fun get(thisRef: Any?, property: PropertyMetadata): T {

9 return findPreference(name, default)

10 }

26 Settings Screen 129

11

12 override fun set(thisRef: Any?, property: PropertyMetadata, value: T) {

13 putPreference(name, value)

14 }

15 ...

16 }

This preference is very similar to what we had before. We just substituted the Long references with
a generic type T, and called to a couple of functions that will do the hard work. These functions
are very simple, though a bit repetitive. They will check the type and use the specific method from
preferences. For instance, the findPreference function looks like this:

1 private fun <T> findPreference(name: String, default: T): T = with(prefs) {

2 val res = when (default) {

3 is Long -> getLong(name, default)

4 is String -> getString(name, default)

5 is Int -> getInt(name, default)

6 is Boolean -> getBoolean(name, default)

7 is Float -> getFloat(name, default)

8 else -> throw IllegalArgumentException(

9 "This type can be saved into Preferences")

10 }

11

12 res as T

13 }

And basically the same for putPreference function, but using the preferences editor and saving the
result of when at the end, by calling apply():

1 private fun <U> putPreference(name: String, value: U) = with(prefs.edit()) {

2 when (value) {

3 is Long -> putLong(name, value)

4 is String -> putString(name, value)

5 is Int -> putInt(name, value)

6 is Boolean -> putBoolean(name, value)

7 is Float -> putFloat(name, value)

8 else -> throw IllegalArgumentException("This type can be saved into Pref\

9 erences")

10 }.apply()

11 }

Now update DelegatesExt object and you’re done:

26 Settings Screen 130

1 object DelegatesExt {

2 ...

3 fun preference<T : Any>(context: Context, name: String, default: T)

4 = Preference(context, name, default)

5 }

After this chapter, the user can now access the settings screen and modify the zip code. That way,
when they return to the main screen, the forecast will automatically be refreshed with the new
information. Check the rest of small tweaks at the repository.

27 Testing your App
We are reaching the end of this trip. You already learned most Kotlin features throughout this book,
but you are probably wondering if you can test your Android Apps using Kotlin exclusively. The
answer is: of course!

In Android we have a couple of well differentiated tests: unit tests and instrumentation tests. This
book is obviously not meant to teach you how tests should be done, there are whole books dedicated
to that matter. My goal in this chapter is to explain how to prepare your environment to be able to
write some tests, and show you that Kotlin also works fine for testing.

27.1 Unit testing

I’m not entering into discussions about what unit testing is. There are many definitions out there
with some slight differences. I general idea could be that unit tests are the tests that validate an
individual unit of source code. What a ‘unit’ includes is left to the reader. In our case, I’m just going
to define a unit test as a test that doesn’t need a device to be run. The IDE will be able to run the
tests and show a result identifying which tests succeeded and which ones failed.

Unit testing is usually done using JUnit library. So let’s add the dependency to the build.gradle.
As this dependency is only used when running tests, we can use testCompile instead of compile.
This way, the library is left out of regular compilations, reducing the size of the APK:

1 dependencies {

2 ...

3 testCompile 'junit:junit:4.12'

4 }

Now sync gradle to get the library included into your project. To enable unit testing, go to the ‘Build
Variants’ tab (you probably have it in the left side of the IDE) and click on ‘Test Artifact’ dropdown.
You should choose ‘Unit Tests’ there.

Another thing you need is to create a new folder. Below src, you already probably have androidTest
and main. Create another one called test, and a folder called java below. So now you should have
a src/test/java folder coloured in green. This is a good indication that the IDE detected that we
are in ‘Unit Test’ mode and that this folder will contain test files.

Let’s write a very simple test to see everything works properly. Create a new Kotlin class called
SimpleTest using the proper package (in my case com.antonioleiva.weatherapp, but you need to
use the main package of your app). Once you’ve created the new file, write this simple test:

27 Testing your App 132

1 import org.junit.Test

2 import kotlin.test.assertTrue

3

4 class SimpleTest {

5

6 @Test fun unitTestingWorks() {

7 assertTrue(true)

8 }

9 }

Use the @Test annotation to identify the function as a test. Be sure to use org.unit.Test. Then add
a simple assertion. It will just check that true is true, which should obviously succeed. This test
will just check that everything is configured properly.

To execute the tests, just right click over the new java folder you created below test, and choose
‘Run All Tests’. When compilation finishes, it will run the test and you’ll see a summary showing
the result. You should see that our test passed.

Now it’s time to create some real tests. Everything that deals with Android framework will probably
need an instrumentation test or more complex libraries such as Robolectric²⁷. Because of that, in
these examples I’ll be testing things that don’t use anything from the framework. For instance, I’ll
test the extension function that creates a date String from a Long.

Create a new file called ExtensionTests, and add this tests:

1 class ExtensionsTest {

2

3 @Test fun testLongToDateString() {

4 assertEquals("Oct 19, 2015", 1445275635000L.toDateString())

5 }

6

7 @Test fun testDateStringFullFormat() {

8 assertEquals("Monday, October 19, 2015",

9 1445275635000L.toDateString(DateFormat.FULL))

10 }

11 }

These tests check that a Long instance is properly converted to a String. The first one tests the default
behaviour (which uses DateFormat.MEDIUM), while the second one specifies a different format. Run
the tests and see that all of them pass. I also recommend you to change something and see how it
crashes.

²⁷http://robolectric.org/

http://robolectric.org/
http://robolectric.org/

27 Testing your App 133

If you’re used to test your apps in Java, you’ll see there’s not much difference here. I’ve covered a
very simple example, but from here you can create more complex tests to validate other parts of the
App. For instance, we could do some tests about ForecastProvider. We can use Mockito library to
mock some other classes and be able to test the provider independently:

1 dependencies {

2 ...

3 testCompile "junit:junit:4.12"

4 testCompile "org.mockito:mockito-core:1.10.19"

5 }

Now create a ForecastProviderTest. We are going to test that a ForecastProvider with a
DataSource that returns something will get a result that is not null. So first we need to mock a
ForecastDataSource:

1 val ds = mock(ForecastDataSource::class.java)

2 `when`(ds.requestDayForecast(0)).then {

3 Forecast(0, 0, "desc", 20, 0, "url")

4 }

As you see, we need backquotes for when function. This is because when is a reserved word in Kotlin,
so we need to escape it if we find some Java code that uses it. Now we create a provider with this
data source, and check that the result of the call to that method is not null:

1 val provider = ForecastProvider(listOf(ds))

2 assertNotNull(provider.requestForecast(0))

This is the complete test function:

1 @Test fun testDataSourceReturnsValue() {

2 val ds = mock(ForecastDataSource::class.java)

3 `when`(ds.requestDayForecast(0)).then {

4 Forecast(0, 0, "desc", 20, 0, "url")

5 }

6

7 val provider = ForecastProvider(listOf(ds))

8 assertNotNull(provider.requestForecast(0))

9 }

If you run this, you’ll see that it crashes. Thanks to this test, we detect we have something wrong in
our code. The test is failing because ForecastProvider is initialising SOURCES inside its companion
object before it’s used. We can add some sources to the ForecastProvider through the constructor,
and this static list would never be used, so it should be lazy loaded:

27 Testing your App 134

1 companion object {

2 val DAY_IN_MILLIS = 1000 * 60 * 60 * 24

3 val SOURCES by lazy { listOf(ForecastDb(), ForecastServer()) }

4 }

If you now run again, you’ll see it’s now passing all the tests.

We can also test, for instance, that when a source returns null, it will iterate over the next source to
get a result:

1 @Test fun emptyDatabaseReturnsServerValue() {

2 val db = mock(ForecastDataSource::class.java)

3

4 val server = mock(ForecastDataSource::class.java)

5 `when`(server.requestForecastByZipCode(

6 any(Long::class.java), any(Long::class.java)))

7 .then {

8 ForecastList(0, "city", "country", listOf())

9 }

10

11 val provider = ForecastProvider(listOf(db, server))

12

13 assertNotNull(provider.requestByZipCode(0, 0))

14 }

As you see, the simple dependency inversion we solved by using default values for arguments is
enough to let us implement some simple unit tests. There are many more things we could test about
this provider, but this example is enough to show that we are able to use the basic unit testing tools.

27.2 Instrumentation tests

Instrumentation tests are a bit different. They are normally used to test UI interactions, where we
need an Application instance to be running by the time the tests are executed. To do this, we’ll need
to deploy the App and run the tests in a device.

This type of tests must be included in the androidTest folder, and we must change ‘Test Artifact’
to ‘Android Instrumentation Tests’ in ‘Build Variants’ panel. The official library to implement
instrumentation tests is Espresso²⁸, which will help us to easily navigate through our App by writing
Actions, and filter and check results using ViewMatchers and Matchers.

²⁸https://google.github.io/android-testing-support-library/

https://google.github.io/android-testing-support-library/
https://google.github.io/android-testing-support-library/

27 Testing your App 135

The configuration is a bit harder than the previous one.We need a bunch of extra libraries andGradle
configuration. The good thing is that Kotlin doesn’t add any extra overhead, so if you already know
how to configure Espresso, it will be easy for you.

First, specify the test runner in defaultConfig:

1 defaultConfig {

2 ...

3 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

4 }

Once you’ve dealt with the runner, it’s time to add the rest of dependencies, this time using
androidTestCompile. That way, these libraries only will be added when we compile to run the
instrumentation tests:

1 dependencies {

2 ...

3 androidTestCompile "com.android.support:support-annotations:$support_version"

4 androidTestCompile "com.android.support.test:runner:0.4.1"

5 androidTestCompile "com.android.support.test:rules:0.4.1"

6 androidTestCompile "com.android.support.test.espresso:espresso-core:2.2.1"

7 androidTestCompile ("com.android.support.test.espresso:espresso-contrib:2.2.\

8 1"){

9 exclude group: 'com.android.support', module: 'appcompat'

10 exclude group: 'com.android.support', module: 'support-v4'

11 exclude module: 'recyclerview-v7'

12 }

13 }

I don’t want to spend much time talking about this, but here it is a brief reasoning about why you
need these libraries:

• support-annotations: it’s required by some of the other libraries.
• runner: It’s the test runner, the one we specified in defaultConfig.
• rules: Includes some rules that help tests inflate and launch the activities. We’ll use a rule in
our examples.

• espresso-core: the basic implementation of Espresso, the library that makes instrument tests
easier.

• espresso-contrib: it adds some extra features, such as RecyclerView testing support. We
have to exclude some of its dependencies, because we already have them in the project, and
tests will crash otherwise.

27 Testing your App 136

Let’s now create a simple example. The test will click on the first row of the forecast list, and check
that it can find a view with the id R.id.weatherDescription. This view is in the DetailActivity,
which means we are testing that we successfully navigated to the detail after clicking on a view
inside the RecyclerView.

1 @RunWith(AndroidJUnit4::class)

2 class SimpleInstrumentationTest {

3

4 @get:Rule

5 val activityRule = ActivityTestRule(MainActivity::class.java)

6

7 ...

8 }

First we need to specify that it’s being run using AndroidJUnit4. Then, create an activity rule, that
will instantiate the activity the test will use. In Java, you would annotate the field using @Rule. But
as you now, fields and properties are not the same, so if you use just that, the execution will fail
because the access to the field inside the property is not public. What you need to do is to annotate
the getter. Kotlin allows to do that by specifying get or set before the name of the rule. In this case,
just write @get:Rule.

After that, we are ready to create our first test:

1 @Test fun itemClick_navigatesToDetail() {

2 onView(withId(R.id.forecastList)).perform(

3 RecyclerViewActions

4 .actionOnItemAtPosition<RecyclerView.ViewHolder>(0, click()))

5 onView(withId(R.id.weatherDescription))

6 .check(matches(isAssignableFrom(TextView::class.java)))

7 }

The function is annotated with @Test, the same way we did with unit tests. We can start using
Espresso in the body of the test. It first performs a click over the first position of the recycler. Then,
it checks that it can find a view with an specific id and that it is an instance of TextView.

To run the test, click on the top ‘Run configurations’ dropdown and choose ‘Edit Configurations…’.
Press the ‘+’ icon, select ‘Android Tests’, and choose the app module. Now, in target device, choose
the target you prefer. Click ‘OK’ and then run. You should see how the App is started in your device,
and the test clicks on the first position, opens the detail activity and closes the App again.

Now we are going to do a more difficult one. The test will open the overflow from the Toolbar,
click on Settings action, change the city code and check that the Toolbar title has changed to the
corresponding one.

27 Testing your App 137

1 @Test fun modifyZipCode_changesToolbarTitle() {

2 openActionBarOverflowOrOptionsMenu(activityRule.activity)

3 onView(withText(R.string.settings)).perform(click())

4 onView(withId(R.id.cityCode)).perform(replaceText("28830"))

5 pressBack()

6 onView(isAssignableFrom(Toolbar::class.java))

7 .check(matches(

8 withToolbarTitle(`is`("San Fernando de Henares (ES)"))))

9 }

What the test exactly does is:

• It first opens the overflow by using openActionBarOverflowOrOptionsMenu.
• It then finds a view with the Settings text, and performs a click on it.
• After that, the settings activity is open, so it will look for the EditText and replace the old
city code with a new one.

• It presses the back button. This will save the new value inside the preferences, and close the
activity.

• As onResume is executed in MainActivity, the request is performed again. This will retrieve
the forecast of the new city.

• Last line will check the Toolbar title and see whether it matches with the proper value.

There is not a default matcher to check Toolbar title, but Espresso is easy to extend, so we can create
a new matcher which implements the check:

1 private fun withToolbarTitle(textMatcher: Matcher<CharSequence>): Matcher<Any> =

2 object : BoundedMatcher<Any, Toolbar>(Toolbar::class.java) {

3

4 override fun matchesSafely(toolbar: Toolbar): Boolean {

5 return textMatcher.matches(toolbar.title)

6 }

7

8 override fun describeTo(description: Description) {

9 description.appendText("with toolbar title: ")

10 textMatcher.describeTo(description)

11 }

12 }

The matchesSafely function is the place where the check is done, while the describeTo function
adds some information about the matcher.

This chapter has been specially interesting, because we’ve seen how Kotlin is perfectly compatible
with both unit and integration tests and is able to interoperate with the testing libraries without any
issues. Take a look at the code and run the tests by yourself.

28 Extra concepts
Through this book, we’ve talked about most important concepts of Kotlin language. But we didn’t
use some of them when implementing the App, and I wouldn’t want to let them out of these pages.
In this chapter, I will review some unrelated features that you could need when you develop your
next Android App using Kotlin.

28.1 Nested classes

As in Java, we can define classes inside other classes. If it’s a regular class, it won’t we able to access
the members of the out class (it would work as an static class in Java):

1 class Outer {

2 private val bar: Int = 1

3 class Nested {

4 fun foo() = 2

5 }

6 }

7

8 val demo = Outer.Nested().foo() // == 2

If we want to access to the members of the outer class, we need to declare it as an inner class:

1 class Outer {

2 private val bar: Int = 1

3 inner class Inner {

4 fun foo() = bar

5 }

6 }

7

8 val demo = Outer().Inner().foo() // == 1

28.2 Enum classes

Kotlin also provides a way to implement enums:

28 Extra concepts 139

1 enum class Day {

2 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

3 THURSDAY, FRIDAY, SATURDAY

4 }

Enums can have parameters:

1 enum class Icon(val res: Int) {

2 UP(R.drawable.ic_up),

3 SEARCH(R.drawable.ic_search),

4 CAST(R.drawable.ic_cast)

5 }

6

7 val searchIconRes = Icon.SEARCH.res

Enums can be requested by the String that matches its name, and we can also get an Array which
includes all the values of an enum, so that we can iterate over them.

1 val search: Icon = Icon.valueOf("SEARCH")

2 val iconList: Array<Icon> = Icon.values()

Besides, every Enum constant has functions to obtain its name and the position in the declaration:

1 val searchName: String = Icon.SEARCH.name()

2 val searchPosition: Int = Icon.SEARCH.ordinal()

Enums implement Comparable based on the constants ordinal, so it’s easy to compare them.

28.3 Sealed classes

Sealed classes are used for representing restricted class hierarchies, which means that the number
of classes that extend a sealed class is fixed. It’s similar to an Enum in the sense that you can
know beforehand the options you have when looking at the specific type of an object of the parent
sealed class. The difference is that enum instances are unique, while sealed classes can have multiple
instances which can contain different states.

We could implement, for instance, something similar to the Option class in Scala: a type that prevents
the use of null by returning a Some class when the object contains a value or the None instance when
it’s empty:

28 Extra concepts 140

1 sealed class Option<out T> {

2 class Some<out T> : Option<T>()

3 object None : Option<Nothing>()

4 }

The good thing about sealed classes is that when they are used in a when expression, we can check
all the options and won’t need to add the else clause.

1 val result = when (option) {

2 is Option.Some<*> -> "Contains a value"

3 is Option.None -> "Empty"

4 }

28.4 Exceptions

In Kotlin, all exceptions implement Throwable, have a message and are unchecked. This means we
are not obliged to use try/catch on any of them. That’s not the case in Java, where methods that
throw IOException, for instance, need to be surrounded by a try/catch block. Years of dealing
with them have shown that checked exceptions were not a good idea. People like Bruce Eckel²⁹, Rod
Waldhoff³⁰ or Anders Hejlsberg³¹ can give you a perspective about it.

The way to throw an exception is very similar to Java:

1 throw MyException("Exception message")

And the try expression is identical too:

1 try {

2 // some code

3 }

4 catch (e: SomeException) {

5 // handler

6 }

7 finally {

8 // optional finally block

9 }

Both throw and try are expressions in Kotlin, which means they can be assigned to a variable. This
is really useful when dealing with edge cases:

²⁹http://www.mindview.net/Etc/Discussions/CheckedExceptions
³⁰http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
³¹http://www.artima.com/intv/handcuffs.html

http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html
http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html

28 Extra concepts 141

1 val s = when(x){

2 is Int -> "Int instance"

3 is String -> "String instance"

4 else -> throw UnsupportedOperationException("Not valid type")

5 }

or

1 val s = try { x as String } catch(e: ClassCastException) { null }

29 Conclusion
Thanks for reading this book. Throughout this book, we’ve learned Kotlin by implementing an
Android App as an example. The weather App was a good example to implement the basic
features most Apps need: a master/detail UI, communication with an API, database storage, shared
preferences…

The good thing about this method is that you have learned the most important Kotlin concepts while
using them. In my opinion, new knowledge is more easily absorbed when it is put into action. It was
my main goal, because reference books are usually a nice tool to solve some punctual doubts, but
they are hard to read from the beginning to the very end. Besides, as the examples are usually out
of a bigger context, it’s difficult to understand which kind of problems those features solve.

And that was, in fact, the other goal of the book: to show you real problems and how they can be
solved using Kotlin. Any Android developer finds a lot of questions when dealing with asynchrony,
databases, or has to deal with really verbose listeners or activity navigations. By using a real App
as an example, we have answered many of these questions while learning new language or libraries
features.

I hope these goals were achieved, and I really hope that you not only learned Kotlin but also enjoyed
reading this book. I’m convinced that Kotlin is right now the best alternative to Java for Android
developers, and that we’ll see a boost during next months. You will be one of the first in the boat
when that happens, and will be perfectly positioned to be a reference in your circle.

This book is finished, but it doesn’t mean it’s dead. I’ll keep updating it to the latest versions of
Kotlin (1.0 at least), reviewing and improving it based on your comments and suggestions. Feel free
to write me about it at any moment and tell me what you think, the errors you find, concepts that
are not clear enough or whatever concern you may have.

It’s been an amazing journey during the months I’ve been writing this book. I have learned a lot to,
so thanks again for helping ‘Kotlin for Android Developers’ to become a reality.

Best,

Antonio Leiva

• Site: antonioleiva.com³²
• Email: contact@antonioleiva.com³³
• Twitter: @lime_cl³⁴
• Google+: +AntonioLeivaGordillo³⁵

³²http://antonioleiva.com
³³mailto:contact@antonioleiva.com
³⁴http://twitter.com/lime_cl
³⁵http://plus.google.com/+AntonioLeivaGordillo

http://antonioleiva.com
mailto:contact@antonioleiva.com
http://twitter.com/lime_cl
http://plus.google.com/+AntonioLeivaGordillo
http://antonioleiva.com
mailto:contact@antonioleiva.com
http://twitter.com/lime_cl
http://plus.google.com/+AntonioLeivaGordillo

	Table of Contents
	I. About this book
	II. Is this book for you?
	III. About the author
	1 Introduction
	1.1 What is Kotlin?
	1.2 What do we get with Kotlin?

	2 Getting ready
	2.1 Android Studio
	2.2 Install Kotlin plugins

	3 Creating a new project
	3.1 Create the project in Android Studio
	3.2 Configure Gradle
	3.3 Convert MainActivity to Kotlin code
	3.4 Test that everything works

	4 Classes and functions
	4.1 How to declare a class
	4.2 Class inheritance
	4.3 Functions
	4.4 Constructor and functions parameters

	5 Writing your first class
	5.1 Creating the layout
	5.2 The Recycler Adapter

	6 Variables and properties
	6.1 Basic types
	6.2 Variables
	6.3 Properties

	7 Anko and Extension Functions
	7.1 What is Anko?
	7.2 Start using Anko
	7.3 Extension functions

	8 Retrieving data from API
	8.1 Performing the request
	8.2 Moving request out of the main thread

	9 Data Classes
	9.1 Extra functions
	9.2 Copying a data class
	9.3 Mapping an object into variables

	10 Parsing data
	10.1 Converting json to data classes
	10.2 Shaping the domain layer
	10.3 Drawing the data in the UI

	11 Operator overloading
	11.1 Operators tables
	11.2 The example
	11.3 Operators in extension functions

	12 Making the forecast list clickable
	13 Lambdas
	13.1 Simplifying setOnClickListener()
	13.2 Click listener for ForecastListAdapter
	13.3 Extending the language

	14 Visibility Modifiers
	14.1 Modifiers
	14.2 Constructors
	14.3 Refactoring the code

	15 Kotlin Android Extensions
	15.1 How to use Kotlin Android Extensions
	15.2 Refactoring our code

	16 Application Singleton and Delegated Properties
	16.1 Application Singleton
	16.2 Delegated Properties
	16.3 Standard Delegates
	16.4 How to create a custom delegate
	16.5 Reimplementing App Singleton

	17 Creating an SQLiteOpenHelper
	17.1 ManagedSqliteOpenHelper
	17.2 Tables definition
	17.3 Implementing SqliteOpenHelper
	17.4 Dependency injection

	18 Collections and functional operations
	18.1 Aggregate operations
	18.2 Filtering operations
	18.3 Mapping operations
	18.4 Elements operations
	18.5 Generation operations
	18.6 Ordering operations

	19 Saving and requesting data from database
	19.1 Creating database model classes
	19.2 Writing and requesting data

	20 Null safety in Kotlin
	20.1 How Null types work
	20.2 Nullity and Java libraries

	21 Creating the business logic to data access
	22. Flow control and ranges
	22.1 If Expression
	22.2 When expression
	22.3 For loops
	22.4 While and do/while loops
	22.5 Ranges

	23 Creating a Detail Activity
	23.1 Preparing the request
	23.2 Providing a new activity
	23.3 Start an activity: reified functions

	24 Interfaces and Delegation
	24.1 Interfaces
	24.2 Delegation
	24.3 Implementing an example in our App

	25 Generics
	25.1 Basics
	25.2 Variance
	25.3 Generics examples

	26 Settings Screen
	26.1 Creating the settings activity
	26.2 Accessing Shared Preferences
	26.3 Generic preference delegate

	27 Testing your App
	27.1 Unit testing
	27.2 Instrumentation tests

	28 Extra concepts
	28.1 Nested classes
	28.2 Enum classes
	28.3 Sealed classes
	28.4 Exceptions

	29 Conclusion

