THIRD EDITION

www.it-ebooks.info

http://www.it-ebooks.info/

Android in Action
Thaird Edition

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Android in Action
Third Edition

www.it-ebooks.info

W. FRANK ABLESON
ROBI SEN

CHRIS KING

C. ENRIQUE ORTIZ

MANNING
SHELTER ISLAND

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editor: Troy Mott
20 Baldwin Road Copyeditors: Benjamin Berg, Tiffany Taylor
PO Box 261 Typesetter: Dottie Marsico
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN 9781617290503

Printed in the United States of America
12345678910 - MAL -16 15 14 13 12 11

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents

PART 1 WHAT IS ANDROID? THE BIG PICTURE

1 = Introducing Android 3

2 = Android’s development environment 33

PART 2 EXERCISING THE ANDROID SDK

© 00 N O O &~ W

10
11

User interfaces 65

Intents and Services 102

Storing and retrieving data 130
Networking and web services 160
Telephony 188

Notifications and alarms 206
Graphics and animation 226
Multimedia 260

Location, location, location 284

PART 3 ANDROID APPLICATIONS uveeteecercesceccscessescscescescssescesces 309

12 = Putting Android to work in a field service application 311

13 = Building Android applications in C 356

www.it-ebooks.info

http://www.it-ebooks.info/

vi BRIEF CONTENTS

PART 4 THE MATURING PLATFORM .ccueeeeeeereeseescescensoescescessonses

14 = Bluetooth and sensors 385

15 = Integration 405

16 = Android web development 439

17 = AppWidgets 472

18 = Localization 509

19 = Android Native Development Kit 524
20 = Activity fragments 545

21 = Android 3.0 action bar 560

22 = Drag-and-drop 579

www.it-ebooks.info

http://www.it-ebooks.info/

contents

preface xix

acknowledgments — xxi

about this book xxiit

about the cover illustration — xxviit

PART 1 WHAT IS ANDROID? THE BIG PICTURE....cccceeeeecccessl

Introducing Android 3
1.1 The Android platform 4
1.2 Understanding the Android market 5

Mobile operators 5 = Android vs. the feature phones 6
Android vs. the smartphones 7 = Android vs. itself 8
Licensing Android 9

1.3 The layers of Android 10

Building on the Linux kernel 11 = Running in the
Dalvik VM 12

1.4 The Intent of Android development 13
Empowering intuitive Uls 13 = Intents and how they work 14

1.5 Four kinds of Android components 17

Activity 17 = Service 18 = BroadcastRecetver 19
ContentProvider 22

www.it-ebooks.info

http://www.it-ebooks.info/

viii CONTENTS

1.6 Understanding the AndroidManifest.xml file 24
1.7 Mapping applications to processes 26

1.8 Creating an Android application 26

1.9 Android 3.0 for tablets and smartphones 30

Why develop for Android tablets? 30 = What'’s new in the
Android 3.0 Honeycomb platform? 31

1.10 Summary 32

Android’s development environment 33
2.1 Introducing the Android SDK 34
Core Android packages 35 = Optional packages 36
2.2 Exploring the development environment 36

The Java perspective 37 = The DDMS perspective 39
Command-line tools 42

2.3 Building an Android application in Eclipse 45

The Android Project Wizard 45 = Android sample
application code 46 = Packaging the application 52

2.4 Using the Android emulator 53

Setting up the emulated environment 54 w Testing your
application in the emulator 58

2.5 Debugging your application 59
2.6 Summary 61

PART 2 EXERCISING THE ANDROID SDK ..cccccveeennccensceenss. 03

User interfaces 65
3.1 Creating the Activity 66

Creating an Activity class 68 = XML vs. programmatic
layouts 69 = Exploring the Activity lifecycle 72 = The server
connection 73

3.2 Working with views 75

Exploring common views 76 = Using a ListView 78
Multitasking with Handler and Message 82 = Creating custom
views 83 = Understanding layout 86 = Handling focus 88
Grasping events 89

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

3.3 Using resources 90

Supported resource types 90 = Referencing resources in
Java 91 = Defining views and layouts through XML
resources 93 = Externalizing values 95 = Providing
animations 98

3.4 Exploring the AndroidManifest file 99
3.5 Summary 101

Intents and Services 102

4.1 Serving up RestaurantFinder with Intent 103

Defining Intents 103 = Implicit and explicit invocation 104
Adding external links to RestaurantFinder 105 = Finding your
way with Intent 107 = Taking advantage of Android-provided
activities 109

4.2 Checking the weather with a custom URI 110
Offering a custom URI 110 = Inspecting a custom URI 112
4.3 Checking the weather with broadcast receivers 114
Broadcasting Intent 114 = Creating a recetver 115
4.4 Building a background weather service 116

4.5 Communicating with the WeatherAlertService
from other apps 120

Android Interface Definition Language 120 = Binder and
Parcelable 122 = Exposing a remote interface 123
Binding to a Service 124 = Starting vs. binding 127
Service lifecycle 128

4.6 Summary 129

Storing and retrieving data 130
5.1 Using preferences 131

Working with SharedPreferences 131 = Preference access
permissions 134

5.2 Using the filesystem 137

Creating files 137 = Accessing files 138 = Files as raw
resources 139 » XML file resources 140 = External storage
via an SD card 142

5.3 Persisting data to a database 145

Building and accessing a database 146 = Using the sqlite3
tool 150

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

5.4 Working with ContentProvider classes 151

Using an existing ContentProvider 151 = Creating a
ContentProvider 152

5.5 Summary 159

Networking and web services 160
6.1 An overview of networking 162
Networking basics 162 = Clients and servers 164
6.2 Checking the network status 165
6.3 Communicating with a server socket 166
6.4 Working with HTTP 169

Simple HT'TP and java.net 170 = Robust HT'TP with
HitpClient 171 = Creating an HT'TP and HTTPS
helper 173

6.5 Web services 179

POX: putting it together with HI'TP and XML 180
REST 182 = To SOAP or not to SOAP, that is the question 185

6.6 Summary 186

Telephony 188
7.1 Exploring telephony background and terms 189
Understanding GSM 190 = Understanding CDMA 190

7.2 Phone or not? 191
7.3 Accessing telephony information 192

Retrieving telephony properties 192 = Obtaining phone state
information 195

7.4 Interacting with the phone 196

Using Intents to make calls 196 = Using phone number—related
utilities 198 = Intercepting outbound calls 200

7.5 Working with messaging: SMS 200
Sending SMS messages 201 = Receiving SMS messages 204

7.6 Summary 205

Notifications and alarms 206
8.1 Introducing Toast 207

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi

8.2 Placing your Toast message 209
8.3 Making a custom Toast view 210
8.4 Introducing notifications 212

The Notification class 212 = Notifying a user with a simple
button press 214

8.5 Making a custom notification view 216
8.6 Introducing alarms 219

Creating a simple alarm example 220 = Using notifications
with alarms 222

8.7 Summary 225

Graphics and animation 226

9.1 Drawing graphics in Android 227

Drawing with XML 228 = Exploring XML drawable
shapes 230

9.2 Creating animations with Android’s Graphics API 231

Android’s frame-by-frame animation 232 = Programmatically
creating an animation 234

9.3 Introducing OpenGL for Embedded Systems 238

Creating an OpenGL context 239 = Drawing a rectangle with
OpenGL ES 243 w» Three-dimensional shapes and surfaces with
OpenGL ES 245

9.4 Introducing RenderScript for Android 250

RenderScript advantages and disadvantages 251 = Building a
RenderScript application 252

9.5 Summary 258

Multimedia 260
10.1 Introduction to multimedia and Stagefright 261
Stagefright overview 261
10.2 Playing audio 263
10.3 Playing video 264
10.4 Capturing media 266

Understanding the camera 267 = Capturing audio 272
Recording video 276

10.5 Summary 282

www.it-ebooks.info

http://www.it-ebooks.info/

xii CONTENTS

Location, location, location 284

11.1 Simulating your location within the emulator 286
Sending in your coordinales with the DDMS tool 286 = The GPS
Exchange Format 288 = The Google Earth Keyhole Markup
Language 289

11.2 Using LocationManager and LocationProvider 292

Accessing location data with LocationManager 292
Using a LocationProvider 294 = Receiving location
updates with LocationListener 296

11.3 Working with maps 298

Extending MapActivity 299 = Using a MapView 299
Placing data on a map with an Overlay 302

11.4 Converting places and addresses with Geocoder 305
11.5 Summary 307

PART 3 ANDROID APPLICATIONS .vveeececrccesccesccnscssccsceese 309

Putting Android to work in a field service application 311

12.1 Designing a real-world Android application 312

Core requirements of the application 313 = Managing the
data 314 = Application architecture and integration 315

12.2 Mapping out the application flow 316

Mapping out the field service application 316 = List of source
files 318 = Field service application’s AndroidManifest.xml 320

12.3 Application source code 320

Splash Activity 320 = Preferences used by the FieldService
Activity 322 = Implementing the FieldService Activity 324
Settings 325 = Managing job data 327

12.4 Source code for managing jobs 334

RefreshJobs 335 = Managing jobs: the Managefobs Activity 338
Working with a job with the ShowJob Activity 341 = Capturing a
signature with the Closefob Activity 345

12.5 Server code 351

Dispatcher user interface 352 = Database 352 = PHP
dispatcher code 353 = PHP mobile integration code 354

12.6 Summary 355

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

Building Android applications in C 356

13.1 Building Android apps without the SDK 357
The C compiler and linker tools 357 = Building a Hello World
application 358 = Installing and running the application ~ 360
C application build script 362

13.2 Solving the problem with dynamic linking 362

Android system libraries 363 = Building a dynamically linked
application 364 = exit() vs. return() 367 = Startup code 368

13.3 What time is it? The DayTime Server 370

DayTime Server application 370 = daytime.c 371 = TheSQLite
database 373 = Building and running the DayTime Server 376

13.4 Daytime Client 378

Activity 378 = Socket client 379 = Testing the Daytime
Client 380

13.5 Summary 380

PART 4 THE MATURING PLATFORM ...ceeeeereccessccescccesccces I8

Bluetooth and sensors 385

14.1 Exploring Android’s Bluetooth capabilities 386
Replacing cables 387 = Primary and secondary roles and
sockets 387 = Trusting a device 388 = Connecting to a
remote device 390 = Capturing Bluetooth events 392
Bluetooth permissions 393

14.2 Interacting with the SensorManager 393

Types of sensors 394 = Reading sensor values 395
Enabling and disabling sensors 396

14.3 Building the SenseBot application 397

User interface 398 = Interpreting sensor values 400
Driving the robot 401 = Communication with the robot 402

14.4 Summary 403

Integration 405

15.1 Understanding the Android contact model 406

Choosing open-ended records 406 = Dealing with multiple
accounts 408 = Unifying a local view from diverse remote
stores 410 = Sharing the playground 411

www.it-ebooks.info

http://www.it-ebooks.info/

xiv CONTENTS

15.2 Getting started with LinkedIn 411

15.3 Managing contacts 413
Leveraging the built-in Contacts app 413 = Requesting operations
Jfrom your app 416 = Directly reading and modifying the contacts
database 417 = Adding contacts 418

15.4 Keeping it together 421
The dream of sync 421 = Defining accounts 422 = Telling
secrets: The AccountManager service 423

15.5 Creating a LinkedIn account 424
Not friendly to mobile 424 = Authenticating to LinkedIn 425

15.6 Synchronizing to the backend with SyncAdapter 432
The synchronizing lifecycle 432 » Synchronizing LinkedIn
data 432

15.7 Wrapping up: LinkedIn in action 435
Finalizing the LinkedIn project 435 = Troubleshooting tips 436
Moving on 437

15.8 Summary 437

Android web development 439

16.1 What’s Android web development? 440

Introducing WebKit 440 = Examining the architectural
options 441

16.2 Optimizing web applications for Android 442
Designing with mobile in mind 442 = Adding the viewport
tag 444 = Selectively loading content 446 = Interrogating the
user agent 446 = The media query 447 = Considering a made-
for-mobile application 448

16.3 Storing data directly in the browser 449

Setting things up 450 = Examining the code 451 = The user
interface 451 = Opening the database 453 = Unpacking the
transaction function 454 = Inserting and deleting rows 456
Testing the application with WebKit tools 457

16.4 Building a hybrid application 458

Examining the browser control 458 = Wiring up the control 459
Implementing the JavaScript handler 461 = Accessing the code
Jfrom JavaScript 463 = Digging into the JavaScript 463

Security matters 465 = Implementing a WebViewClient 466
Augmenting the browser 466 = Detecting navigation events 467
Implementing the WebChromeClient 470

16.5 Summary 471

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS XV

AppWidgets 472
17.1 Introducing the AppWidget 473

What’s an AppWidget? 473 = AppWidget deployment
strategies 475

17.2 Introducing SiteMonitor 476
Benefits of SiteMonitor 476 = The user experience 477
17.3 SiteMonitor application architecture 480
Bird’s-eye view of the application 480 = File by file 482
17.4 AppWidget data handling 483
17.5 Implementing the AppWidgetProvider 487

AppWidgetProvider method inventory 487 = Implementing
SiteMonitorWidgetImpl 488 = Handling zombie widgets 490

17.6 Displaying an AppWidget with RemoteViews 491

Working with RemoteViews 491 = UpdateOneWidget
explained 492

17.7 Configuring an instance of the AppWidget 494

AppWidget metadata 495 = Working with Intent data 496
Confirming widget creation 497

17.8 Updating the AppWidget 498

Comparing services to alarms 499 = Triggering the update 500
Updating the widgets, finally! 502

17.9 Tying it all together with AndroidManifest.xml 506
17.10 Summary 507

Localization 509
18.1 The need for localization 510
18.2 Exploring locales 511
18.3 Strategies for localizing an application 512

Identifying target locales and data 512 = Identifying and
managing strings 513 = Drawables and layouts 515
Dates, times, numbers, and currencies 516 = Working with
the translation team 517

18.4 Leveraging Android resource capabilities 518

More than locale 518 = Assigning strings in resources 518
18.5 Localizing in Java code 520
18.6 Formatting localized strings 521

www.it-ebooks.info

http://www.it-ebooks.info/

xvi CONTENTS

18.7 Obstacles to localization 522
18.8 Summary 523

Android Native Development Kit 524
19.1 Introducing the NDK 525
Uses for the NDK 525 = Looking at the NDK 526
19.2 Building an application with the NDK 527

Demonstrating the completed application 528 = Examining the
project structure 529

19.3 Building the JNI library 530
Understanding [NI 530 = Implementing the library 531
Compiling the [NI libvary 536

19.4 Building the user interface 537

User interface layout 537 = Taking a photo 539 = Finding the
edges 541

19.5 Integrating the NDKinto Eclipse 542
19.6 Summary 544

Activity fragments 545
20.1 Fragment lifecyle 546
20.2 Creating fragments and fragment layouts 548

Create the fragment subclass 548 = Defining a fragment
layout 551 = Include the fragment within the activity 552

20.3 Background fragments 553

20.4 The fragment manager 555

20.5 Fragment transactions 555

20.6 Fragment back stack 556

20.7 The Android Compatibility Package 557
20.8 Summary 558

Android 3.0 action bar 560

21.1 Introducing the action bar 561
21.2 Opverview of the ActionBar classes 562
21.3 Action bar display options 563
Application name and icon 564 = Navigation modes 565

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xvii

21.4 Action items 570
The application icon as an action item 573 = Action views 574
21.5 Removing, showing, and hiding the action bar 575
21.6 Action bar styling 575
21.7 Summary 578

Drag-and-drop 579
22.1 The drag-and-drop classes 580
22.2 Drag-and-drop operations 581
22.3 The shadow builder 583
22.4 Dragevents 585
22.5 Starting drag operations 586
22.6 Listening for drag-and-drop events 587
22.7 Responding to drag-start operations 588
22.8 Handling drop operations 589
229 Summary 590

appendix A Installing the Android SDK 591
appendix B Publishing applications 601
index 613

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

preface

The idea of a writing a book about Android development can be somewhat futile at
times, considering the pace at which Android continues to expand, morph, and
change. What started out as a book project a few years ago has now become a series of
updates to the original work with the page count nearly double the original project—
and that after making hard decisions about what to leave out of the book to make sure
it gets published.

This update to Android in Action represents our latest effort to provide coverage
on important Android development topics, namely the expansion into the tablet
space with Android 3.x as well as advances in mobile graphics and media such as
RenderScript.

Although there have been many off-brand and name-brand tablet offerings pop-
ping up over time, the Android development team has taken the step of adding tablet-
specific capabilities to the SDK under the banner of 3.0. True to form, 3.0 was quickly
updated, so we generally refer to the tablet-specific features as 3.x; and before long I
am sure Android 4.x will be out with a super-set of features.

Like many things in life, the only constant is change, but by now we’re somewhat
accustomed to the rapid-fire environment of Android development. To that end, we
have ensured that all of the applications in the book work with Android 3.x. The new-
est chapters covering tablet-specific content (20-22) require the 3.x SDK, whereas the
remaining chapters are compatible with the 2.x SDK versions. If you plan to write appli-
cation software for Android, you simply need to steel yourself for navigating the multi-
ple version game. It is at once a strength and a challenge of the Android ecosystem.

www.it-ebooks.info

http://www.it-ebooks.info/

XX PREFACE

The third edition was written by Frank Ableson, Robi Sen, Chris King, and new-
comer C. Enrique Ortiz, aka CEO. To borrow a line from the air-travel industry, “We
know you have a choice when it comes to Android development books, so thank you

for learning and collaborating with us.”

FRANK ABLESON

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

Writing a third edition of Android in Action feels somewhat like the old saying about
weddings: “Something old, something new...” The deadlines for the third edition did
not become any easier as at last count there are still only 24 hours in the day. And as
for something new—it seems as though Android’s pace of innovation is continuing to
match its adoption rate by mobile users around the globe. Like the two earlier edi-
tions, Android in Action, Third Edition represents a collaboration between a number of
contributors. I had the privilege of working again with Robi Sen and Chris King, who
worked with me on the second edition. C. Enrique Ortiz joined us to contribute the
tablet content. Once again the talented team at Manning have labored to bring about
this edition.

In particular, we’d like to acknowledge and thank everyone at Manning. First,
thanks to Troy Mott, our acquisition and development editor, who has been involved
in every aspect of now three editions of this project—congratulations, Troy, on your
hat-trick! Bob Herbstman did all the big and little things to bring the project together;
Mary Piergies skillfully piloted the team through the harrowing production process;
and Marjan Bace, our publisher, showed an attention to detail at once challenging,
beneficial, and appreciated.

Once the writing was finished, the next round of work began. Special thanks need
to go to Benjamin Berg, who performed the preproduction editing pass; Tiffany Tay-
lor, who did the second copyediting pass and helped us bring the final pieces of the
project together; and finally Dottie Marsico, who handled the actual layout of the
pages. It’s sometimes hard to envision the final product when looking at edits upon
edits in MS Word, but Dottie’s magic made the product you hold in your hands. Next,

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

ACKNOWLEDGMENTS

we would like to thank Candace Gillhoolley for her efforts in getting the word out
about the book. Thanks to each of you for your special contribution to this project.

And special thanks to the reviewers who read our revised manuscript at different
times during its development: Steve Prior, Matthew Johnson, Julian Harty, David
Strong, Loic Simon, Al Scherer, Gabor Paller, and Pieter Kuijpers; and to Jéréme
Baton for his careful technical review of the final manuscript during production.

Last, we want to thank the thoughtful and encouraging MEAP subscribers who pro-
vided feedback along the way; the book is better thanks to your contributions.

FRANK ABLESON

I 'would like to thank my coauthors: Robi Sen, a real pro who has been involved in this
project from the beginning; Chris King, who has proven to be rock-solid in terms of
both technical capability and reliability; and newcomer C. Enrique Ortiz (CEO), who
has injected energy and enthusiasm into the Third Edition. Of course, through each
iteration of this project, Troy Mott has led the way: managing the process, coaxing us
at times, and delivering every time. Bob Herbstman has contributed invaluably to the
finished product and is likely tired of cleaning up after my writing and amateurish
graphics after all of these years. Special thanks to Bob for re-creating many illustra-
tions. Thanks also to the production team at Manning Publications who have once
again delivered an excellent work. Thanks also to Candace Gillhoolley for continued
support with books and promotions to support speaking events and conferences—
always aiding my last-minute requests. Last and most important, I would like to thank
Nikki and company at the Ableson household for unconditional support. Praise be to
God, another version is complete!

CHRIs KING

I am deeply grateful to Troy Mott, Frank, Robi, and Enrique for being such a pleasure
to collaborate with as we drove toward the latest incarnation of this book. I also appre-
ciate all the work done by the reviewers and editors from Manning, and also the dedi-
cated readers of previous editions who contributed suggestions at the Author Online
forums. Special thanks go to Eric Tamo and Zac White for their support and relentless
good cheer. Finally, my love to my family: Charles, Karen, Patrick, Kathryn, and
Andrew.

RoBI SEN

I would like to thank Troy Mott and the team—and everyone at Manning Publica-
tions—for their hard work making this book something worth reading. I would like to
thank my coauthors, Frank and Chris, who were great to work with and very under-
standing when I was the one holding things up. I would also like to thank C. Enrique
Ortiz for his contributions. Finally, I would like to dedicate my efforts on this book to
my brother Neel, who passed away while we were wrapping up the book.

C. ENRIQUE ORTIZ
To my parents, family, friends, and colleagues, who influence my work and make it
exciting.

www.it-ebooks.info

http://www.it-ebooks.info/

about this book

Android in Action, Third Edition is a revision and update of, you guessed it, the Second
Edition, published in January 2011. This third edition adds new content related to
Android’s push into the tablet space as well as enhancements to various sub-systems
within the Android platform. Like its predecessors, this book covers important begin-
ner topics such as “What is Android?” and installing and using the development envi-
ronment. We then advance to practical working examples of core programming topics
any developer will be happy to have at the ready on the reference shelf. The remain-
ing chapters present detailed example applications covering advanced topics, includ-
ing a complete field-service application, localization, and material on Android web
applications, Bluetooth, sensors, AppWidgets, and integration adapters. We even
include two chapters on writing applications in C—one for the native side of Android
and one using the more generally accepted method of employing the Android Native
Development Kit. Brand-new content covering tablet programming is found in chap-
ters 20 through 22. Chapters 20-22 specifically require Android SDK 3.0 and beyond,
whereas the balance of the book is compatible with 2.x versions of Android.

Although you can read the book from start to finish, you can also consider it a few
books in one. If you’re new to Android, focus first on chapter 1, appendix A, and then
chapter 2. With that foundation, you can work your way through chapters 3—12. Chap-
ters 13 and on are more in-depth in nature and can be read independently of the oth-
ers. Chapters 20-22 focuses on important topics related to Android 3.0 and tablets.

Who should read this book?

We wrote this book for professional programmers and hobbyists alike. Many of the
concepts can be absorbed without specific Java language knowledge, although you’ll

xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv

ABOUT THIS BOOK

obtain the most value if you have Java programming skills—Android application pro-
gramming requires them. If you have C, C++, or G# programming knowledge, you’ll
be able to follow the examples.

Prior Eclipse experience is helpful, but not required. A number of good resources
are available on Java and Eclipse to augment the content of this book.

Roadmap

This book is divided into four parts. Part 1 contains introductory material about the
platform and development environment. Part 2 takes a close look at the fundamental
skills required for building Android applications. Part 3 presents a larger-scope appli-
cation and a Native C Android application. Part 4 explores features added to the
Android platform, providing examples of using the capable Android platform to cre-
ate innovative mobile applications.

Part 1: The essentials

Part 1 introduces the Android platform, including its architecture and setting up the
development environment.

Chapter 1 delves into the background and positioning of the Android platform,
including comparisons to other popular platforms such as BlackBerry, iPhone, and
Windows Mobile. After an introduction to the platform, the balance of the first chap-
ter introduces the high-level architecture of Android applications and the operating
system environment.

Chapter 2 takes you on a step-by-step development exercise, teaching you the ropes
of using the Android development environment, including the key tools and concepts
for building an application. If you’ve never used Eclipse or have never written an
Android application, this chapter will prepare you for the next part of the book.

Part 2: The programming environment

Part 2 includes an extensive survey of fundamental programming topics in the
Android environment.

Chapter 3 covers the fundamental Android UI components, including View and
Layout. We also review the Activity in more detail. These are the basic building
blocks of screens and applications on the Android platform. Along the way, we also
touch on other basic concepts such as accessing external resources, responding to
events, and the lifecycle of an Android application.

Chapter 4 expands on the concepts you learned in chapter 3. We delve into the
Android Intent to demonstrate interaction between screens, activities, and entire
applications. We also introduce and use the Service framework, which allows for
ongoing background processes.

Chapter 5 incorporates methods and strategies for storing and retrieving data
locally. The chapter examines use of the filesystem, databases, the SD card, and
Android-specific storage entities such as the SharedPreferences and ContentProvider

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK XXV

classes. This chapter begins combining fundamental concepts with more real-world
details, such as handling application state, using a database for persistent storage, and
working with SQLite.

Chapter 6 deals with storing and retrieving data over the network. Here we include
a networking primer before delving into using raw networking concepts such as sock-
ets on Android. From there, we progress to using HTTP, and even explore web services
(such as REST and SOAP).

Chapter 7 covers telephony on the Android platform. We touch on basics such as
originating and receiving phone calls, as well as more involved topics such as identify-
ing cell towers and sending or receiving SMS messages.

Chapter 8 looks at how to work with notifications and alarms. In this chapter, we
look at how to notify users of various events such as receiving a SMS message, as well as
how to manage and set alarms.

Chapter 9 deals with the basics of Android’s Graphics API and more advanced con-
cepts such as working with the OpenGL ES library for creating sophisticated 2D and
3D graphics. We also touch on animation as well as Android’s new graphics systems
RenderScript.

Chapter 10 looks at Android’s support for multimedia; we cover both playing
multimedia as well as using the camera and microphone to record your own multi-
media files.

Chapter 11 introduces location-based services as we look at an example that com-
bines many of the concepts from the earlier parts of the book in a mapping applica-
tion. You’ll learn about using the mapping APIs on Android, including different
location providers and properties that are available, how to build and manipulate map-
related screens, and how to work with location-related concepts within the emulator.

Part 3: Bringing it all together

Part 3 contains two chapters, both of which build on knowledge you gained earlier in
the text, with a focus on bringing a larger application to fruition.

Chapter 12 demonstrates an end-to-end field service application. The application
includes server communications, persistent storage, multiple Activity navigation
menus, and signature capture.

Chapter 13 explores the world of native C language applications. The Android SDK
is limited to the Java language, although native applications can be written for
Android. This chapter walks you through examples of building C language applica-
tions for Android, including the use of built-in libraries and TCP socket communica-
tions as a Java application connects to your C application. This chapter is useful for
developers targeting solutions beyond carrier-subsidized, locked-down cell phones.

Part 4: The maturing platform

Part 4 contains nine new chapters, each of which represents a more advanced devel-
opment topic.

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi

ABOUT THIS BOOK

Chapter 14 demonstrates the use of both Bluetooth communication and process-
ing sensor data. The sample application accompanying the chapter, SenseBot, permits
the user to drive a LEGO Mindstorms robot with their Android phone.

Chapter 15 explores the Android contact database and demonstrates integrating
with an external data source. In particular, this application brings Android into the
social-networking scene by integrating with the popular LinkedIn professional net-
working service.

Chapter 16 explores the world of web development. Android’s browser is based on
the open source WebKit engine and brings desktop-like capability to this mobile
browser. This chapter equips you to bring attractive and capable web applications to
Android.

Chapter 17 brings the home screen of your Android application to life by showing
you how to build an application that presents its user interface as an AppWidget. In
addition to AppWidgets, this chapter demonstrates BroadcastReceiver, Service, and
Alarms.

Chapter 18 takes a real-world look at localizing an existing application.
Chapter 12’s Field Service application is modified to support multiple languages.
Chapter 18’s version of the Field Service application contains support for both Eng-
lish and Spanish.

Chapter 19 reaches into Android’s open source foundation by using a popular
edge-detection image-processing algorithm. The Sobel Edge Detection algorithm is
written in C and compiled into a native library. The sample application snaps a picture
with the Android camera and then uses this C algorithm to find the edges in the photo.

Chapter 20 covers Android Fragments, a new application component that was
introduced with Android 3.0. Fragments provide more granular application control
than working only with Activitys alone.

Chapter 21 explores the action bar. Also introduced with Android 3.0, the action
bar provides a consistent look-and-feel for the application title, icon, actions, and
menu options.

Chapter 22 introduces the new drag-and-drop API, also introduced with
Android 3.0. The drag-and-drop API allows for touch-based, interactive operations: for
example, to move or copy data across views by visually selecting data from one view
and dropping it onto another view on the screen. Another example is to trigger appli-
cation actions: for example, image sharing by dragging an image from an image gal-
lery view onto a sharing view.

Appendixes

The appendixes contain additional information that didn’t fit with the flow of the main
text. Appendix A is a step-by-step guide to installing the development environment.
This appendix, along with chapter 2, provides all the information you need to build an
Android application. Appendix B demonstrates how to prepare and submit an applica-
tion for the Android Market—an important topic for anyone looking to sell an appli-
cation commercially.

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK XXVil

Code conventions and downloads

All source code in the book is in a fixed-width font like this, which sets it off from
the surrounding text. In many listings, the code is annotated to point out the key con-
cepts, and numbered bullets are sometimes used in the text to provide additional
information about the code. We have tried to format the code so that it fits within the
available page space in the book by adding line breaks and using indentation care-
fully. Sometimes, however, very long lines include line-continuation markers.

Source code for all the working examples is available from www.manning.com/
AndroidinActionThirdEdition or www.manning.com/ableson3. A Readme.txt file is
provided in the root folder and also in each chapter folder; the files provide details on
how to install and run the code. Code examples appear throughout this book. Longer
listings appear under clear listing headers, whereas shorter listings appear between
lines of text.

Software requirements

Developing applications for Android may be done from the Windows XP/Vista/7
environment, a Mac OS X (Intel only) environment, or a Linux environment. Appen-
dix A includes a detailed description of setting up the Eclipse environment along with
the Android Developer Tools plug-in for Eclipse.

A note about the graphics

Many of the original graphics from the first edition, Unlocking Android, have been
reused in the second and third editions of the book. Although the title was changed to
Android in Action during the writing of the second edition, we kept the original book
title in our graphics and sample applications.

Author Online

Purchase of Android in Action, Third Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
AndroidinActionThirdEdition or www.manning.com/ableson3. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.it-ebooks.info

www.manning.com/AndroidinActionThirdEdition
www.manning.com/AndroidinActionThirdEdition
www.manning.com/ableson3
www.manning.com/AndroidinActionThirdEdition
www.manning.com/AndroidinActionThirdEdition
www.manning.com/ableson3
http://www.it-ebooks.info/

about the cover illustration

The illustration on the cover of Android in Action, Third Edition is taken from a French
book of dress customs, Encyclopédie des Voyages by J. G. St. Saveur, published in 1796.
Travel for pleasure was a relatively new phenomenon at the time and illustrated
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other regions of the world, as well as to the
regional costumes and uniforms of France.

The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and regions just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wear-
ing. This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.

Dress codes have changed since then and the diversity by region and tribe, so rich
at the time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a world of cul-
tural and visual diversity for a more varied personal life. Or a more varied and interest
ing intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.

xxviii

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

What 1s Android?
The big prcture

Android has become a market-moving technology platform—not just
because of the functionality available in the platform but because of how the
platform has come to market. Part 1 of this book brings you into the picture as a
developer of the open source Android platform. We begin with a look at the
Android platform and the impact it has on each of the major stakeholders in the
mobile marketplace (chapter 1). We then bring you on board to developing
applications for Android with a hands-on tour of the Android development envi-
ronment (chapter 2).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Androwd

This chapter covers

Exploring Android, the open source phone and
tabtet platform

Android Intents, the way things work
Sample application

You’ve heard about Android. You’ve read about Android. Now it’s time to begin
unlocking Android.

Android is a software platform that’s revolutionizing the global cell phone mar-
ket. It’s the first open source mobile application platform that’s moved the needle
in major mobile markets around the globe. When you’re examining Android,
there are a number of technical and marketrelated dimensions to consider. This
first section introduces the platform and provides context to help you better under-
stand Android and where it fits in the global cell phone scene. Moreover, Android
has eclipsed the cell phone market, and with the release of Android 3.X has begun
making inroads into the tablet market as well. This book focuses on using SDKs
from 2.0 to 3.X.

Android is primarily a Google effort, in collaboration with the Open Handset
Alliance. Open Handset Alliance is an alliance of dozens of organizations commit-
ted to bringing a “better” and more “open” mobile phone to market. Considered a

www.it-ebooks.info

http://www.it-ebooks.info/

1.1

CHAPTER 1 Introducing Android

novelty at first by some, Android has grown to become a market-changing player in a
few short years, earning both respect and derision alike from peers in the industry.

This chapter introduces Android—what it is, and, equally important, what it’s not.
After reading this chapter, you’ll understand how Android is constructed, how it com-
pares with other offerings in the market, and what its foundational technologies are,
plus you’ll get a preview of Android application architecture. More specifically, this
chapter takes a look at the Android platform and its relationship to the popular Linux
operating system, the Java programming language, and the runtime environment
known as the Dalvik virtual machine (VM).

Java programming skills are helpful throughout the book, but this chapter is more
about setting the stage than about coding specifics. One coding element introduced
in this chapter is the Intent class. Having a good understanding of and comfort level
with the Intent class is essential for working with the Android platform.

In addition to Intent, this chapter introduces the four main application compo-
nents: Activity, Service, ContentProvider, and BroadcastReceiver. The chapter
concludes with a simple Android application to get you started quickly.

The Android platform

Android is a software environment built for mobile devices. It’s not a hardware plat-
form. Android includes a Linux kernel-based OS, a rich Ul, end-user applications,
code libraries, application frameworks, multimedia support, and much more. And,
yes, even telephone functionality is included! Whereas components of the underlying
OS are written in C or C++, user applications are built

for Android in Java. Even the built-in applications are
written in Java. With the exception of some Linux Android Software
exploratory exercises in chapter 13 and the Native Environment

Developer Kit (NDK) in chapter 19, all the code

examples in this book are written in Java, using the
. . C &built-i
Android software development kit (SDK). u;f;:cati;;: "
One feature of the Android platform is that written in Java
there’s no difference between the builtin applica- Dalvikvi
alvik virtual
tions and applications that you create with the SDK. machine

This means that you can write powerful applications Linux Kernel

to tap into the resources available on the device. Fig-
ure 1.1 shows the relationship between Android and

the hardware it runs on. The most notable feature of
Android might be that it’s open source; missing ele-

ments can and will be provided by the global devel- Figure 1.1 Android is software

oper community. Android’s Linux kernel-based OS only. By leveraging its Linux kernel
doesn’t come with a sophisticated shell environment, to interface with the hardware,
Android runs on many different
devices from multiple cell phone
manufacturers. Developers write
can be supplied by third-party developers and don’t applications in Java.

but because the platform is open, you can write and
install shells on a device. Likewise, multimedia codecs

www.it-ebooks.info

http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.it-ebooks.info/

1.2

1.2.1

Understanding the Android market 5

need to rely on Google or anyone else to provide new functionality. That’s the power
of an open source platform brought to the mobile market.

PLATFORM VS. DEVICE Throughout this book, wherever code must be tested
or exercised on a device, a software-based emulator is typically employed. An
exception is in chapter 14 where Bluetooth and Sensors are exercised. See
chapter 2 for information on how to set up and use the Android emulator.

The term platform refers to Android itself—the software—including all the
binaries, code libraries, and tool chains. This book focuses on the Android
platform; the Android emulators available in the SDK are simply components
of the Android platform.

With all of that as a backdrop, creating a successful mobile platform is clearly a non-
trivial task involving numerous players. Android is an ambitious undertaking, even for
Google, a company of seemingly boundless resources and moxie—and they’re getting
the job done. Within a span of three years, Android has seen numerous major soft-
ware releases, the release of multiple handsets across most major mobile carriers in
the global market, and most recently the introduction of Android-powered tablets.
Now that you’ve got an introduction to what Android is, let’s look at the why and
where of Android to provide some context and set the perspective for Android’s intro-
duction to the marketplace. After that, it’s on to exploring the platform itself!

Understanding the Android market

Android promises to have something for everyone. It aims to support a variety of hard-
ware devices, not just high-end ones typically associated with expensive smartphones.
Of course, Android users will enjoy improved performance on a more powerful
device, considering that it sports a comprehensive set of computing features. But how
well can Android scale up and down to a variety of markets and gain market and mind
share? How quickly can the smartphone market become the standard? Some folks are
still clinging to phone-only devices, even though smartphones are growing rapidly in
virtually every demographic. Let’s look at Android from the perspective of a few exist-
ing players in the marketplace. When you’re talking about the cellular market, the
place to start is at the top, with the carriers, or as they’re sometimes referred to, the
mobile operators.

Mobile operators

Mobile operators (the cell phone companies such as AT&T and Verizon) are in the
business, first and foremost, of selling subscriptions to their services. Shareholders
want a return on their investment, and it’s hard to imagine an industry where there’s a
larger investment than in a network that spans such broad geographic territory. To
the mobile operator, cell phones are simultaneously a conduit for services, a drug to
entice subscribers, and an annoyance to support and lock down.

Some mobile operators are embracing Android as a platform to drive new data ser-
vices across the excess capacity operators have built into their networks. Data services

www.it-ebooks.info

http://www.it-ebooks.info/

122

CHAPTER 1 Introducing Android

represent high-premium services and high-margin revenues for the operator. If
Android can help drive those revenues for the mobile operator, all the better.

Other mobile operators feel threatened by Google and the potential of “free wire-
less,” driven by advertising revenues and an upheaval of the market. Another challenge
for mobile operators is that they want the final say on what services are enabled across
their networks. Historically, handset manufacturers complain that their devices are
handicapped and don’t exercise all the features designed into them because mobile
operators lack the capability or willingness to support those features. An encouraging
sign is that there are mobile operators involved in the Open Handset Alliance.

Let’s move on to a comparison of Android and existing cell phones on the market
today.

Android vs. the feature phones

The majority of cell phones on the market continue to be consumer flip phones and
feature phones—phones that aren’t smartphones.! These phones are the ones consum-
ers get when they walk into the retailer and ask what can be had for free. These con-
sumers are the “I just want a phone” customers. Their primary interest is a phone for
voice communications, an address book, and increasingly, texting. They might even
want a camera. Many of these phones have addi-
tional capabilities such as mobile web browsing,

but because of relatively poor user experience,
@ ol = 123940

these features aren’t employed heavily. The one
exception is text messaging, which is a dominant
application no matter the classification of device.
Another increasingly in-demand category is loca-
tion-based services, which typically use the Globai
Positioning System (GPS).

Android’s challenge is to scale down to this
market. Some of the bells and whistles in
Android can be left out to fit into lower-end
hardware. One of the big functionality gaps on
these lower-end phones is the web experience
the user gets. Part of the problem is screen size,
but equally challenging is the browser technol-
ogy itself, which often struggles to match the rich
web experience of desktop computers. Android
features the marketleading WebKit browser
engine, which brings desktop-compatible brows-

android - Google Search

Web Images Maps News Shopping Gmail m

G 0 L)gle androld

Web Video Images Results 1 10 of about 10,800.9

Android Platform Sponsored Link
code google.com/androld Learn about the platform and
et an early look at the Androld SDK

Android
Official website. Provides a project documentation and links b
downlcad the Android SDK.

code. |
What Is Android? - Android

an operating m, I
arly ook at the Android
el <

Figure 1.2 Android’s built-in browser
technology is based on WebKit’s browser
engine.

ing to the mobile arena. Figure 1.2 shows WebKit
in action on Android. If a rich web experience

I About 256% of phones sold in the second quarter of 2011 were smartphones: http://www.gartner.com/it/
page.jsp?id=1764714.

www.it-ebooks.info

http://www.gartner.com/it/page.jsp?id=1764714
http://www.gartner.com/it/page.jsp?id=1764714
http://www.it-ebooks.info/

1.2.3

Understanding the Android market 7

can be effectively scaled down to feature phone class hardware, it would go a long way
toward penetrating this end of the market. Chapter 16 takes a close look at using web
development skills for creating Android applications.

WEBKIT The WebKit (www.webkit.org) browser engine is an open source
project that powers the browser found in Macs (Safari) and is the engine
behind Mobile Safari, which is the browser on the iPhone. It’s not a stretch to
say that the browser experience is one of a few features that made the iPhone
popular out of the gate, so its inclusion in Android is a strong plus for
Android’s architecture.

Software at the lower end of the market generally falls into one of two camps:

= Qualcomm’s BREW environment—BREW stands for Binary Runtime Environment
for Wireless. For a high-volume example of BREW technology, consider Veri-
zon’s Get It Now-capable devices, which run on this platform. The challenge for
software developers who want to gain access to this market is that the bar to get
an application on this platform is high, because everything is managed by the
mobile operator, with expensive testing and revenue-sharing fee structures. The
upside to this platform is that the mobile operator collects the money and dis-
burses it to the developer after the sale, and often these sales recur monthly.
Just about everything else is a challenge to the software developer. Android’s
open application environment is more accessible than BREW.

= Java ME, or Java Platform, Micro Edition—A popular platform for this class of
device. The barrier to entry is much lower for software developers. Java ME
developers will find a same-but-different environment in Android. Android isn’t
strictly a Java ME-compatible platform, but the Java programming environment
found in Android is a plus for Java ME developers. There are some projects
underway to create a bridge environment, with the aim of enabling Java ME
applications to be compiled and run for Android. Gaming, a better browser,
and anything to do with texting or social applications present fertile territory
for Android at this end of the market.

Although the majority of cell phones sold worldwide are not considered smartphones,
the popularity of Android (and other capable platforms) has increased demand for
higher-function devices. That’s what we’re going to discuss next.

Android vs. the smartphones

Let’s start by naming the major smartphone players: Symbian (big outside North
America), BlackBerry from Research in Motion, iPhone from Apple, Windows
(Mobile, SmartPhone, and now Phone 7), and of course, the increasingly popular
Android platform.

One of the major concerns of the smartphone market is whether a platform can
synchronize data and access Enterprise Information Systems for corporate users.
Device-management tools are also an important factor in the enterprise market. The

www.it-ebooks.info

www.webkit.org
http://www.it-ebooks.info/

1.24

CHAPTER 1 Introducing Android

browser experience is better than with the lower-end phones, mainly because of larger
displays and more intuitive input methods, such as a touch screen, touch pad, slide-
out keyboard, or jog dial.

Android’s opportunity in this market is to provide a device and software that peo-
ple want. For all the applications available for the iPhone, working with Apple can be
a challenge; if the core device doesn’t suit your needs, there’s little room to maneuver
because of the limited models available and historical carrier exclusivity. Now that
email, calendaring, and contacts can sync with Microsoft Exchange, the corporate
environment is more accessible, but Android will continue to fight the battle of scal-
ing the Enterprise walls. Later Android releases have added improved support for the
Microsoft Exchange platform, though third-party solutions still out-perform the built-
in offerings. BlackBerry is dominant because of its intuitive email capabilities, and the
Microsoft platforms are compelling because of tight integration to the desktop experi-
ence and overall familiarity for Windows users. iPhone has surprisingly good integra-
tion with Microsoft Exchange—for Android to compete in this arena, it must
maintain parity with iPhone on Enterprise support.

You’ve seen how Android stacks up next to feature phones and smartphones. Next,
we’ll see whether Android, the open source mobile platform, can succeed as an open
source project.

Android vs. itself

Android will likely always be an open source project, but to succeed in the mobile mar-
ket, it must sell millions of units and stay fresh. Even though Google briefly entered the
device fray with its Nexus One and Nexus S phones, it’s not a hardware company. His-
torically, Android-powered devices have been brought to market by others such as
HTC, Samsung, and Motorola, to name the larger players. Starting in mid-2011, Google
began to further flex its muscles with the acquisition of Motorola’s mobile business
division. Speculation has it that Google’s primary interest is in Motorola’s patent port-
folio, because the intellectual property scene has heated up considerably. A secondary
reason may be to acquire the Motorola Xoom platform as Android continues to reach
beyond cell phones into tablets and beyond.

When a manufacturer creates an Android-powered device, they start with the
Android Open Source Platform (AOSP) and then extend it to meet their need to dif-
ferentiate their offerings. Android isn’t the first open source phone, but it’s the first
from a player with the market-moving weight of Google leading the charge. This mar-
ket leadership position has translated to impressive unit sales across multiple manu-
facturers and markets around the globe. With a multitude of devices on the market,
can Android keep the long-anticipated fragmentation from eroding consumer and
investor confidence?

Open source is a double-edged sword. On one hand, the power of many talented
people and companies working around the globe and around the clock to deliver
desirable features is a force to be reckoned with, particularly in comparison with a tra-
ditional, commercial approach to software development. This topic has become trite

www.it-ebooks.info

http://www.it-ebooks.info/

1.2.5

Understanding the Android market 9

because the benefits of open source development are well documented. On the other
hand, how far will the competing manufacturers extend and potentially split Android?
Depending on your perspective, the variety of Android offerings is a welcome alterna-
tive to a more monolithic iPhone device platform where consumers have few choices
available.

Another challenge for Android is that the licensing model of open source code
used in commercial offerings can be sticky. Some software licenses are more restrictive
than others, and some of those restrictions pose a challenge to the open source label.
At the same time, Android licensees need to protect their investment, so licensing is
an important topic for the commercialization of Android.

Licensing Android

Android is released under two different open source licenses. The Linux kernel is
released under the GNU General Public License (GPL) as is required for anyone licensing
the open source OS kernel. The Android platform, excluding the kernel, is licensed
under the Apache Software License (ASL). Although both licensing models are open
source—oriented, the major difference is that the Apache license is considered friend-
lier toward commercial use. Some open source purists might find fault with anything
but complete openness, source-code sharing, and noncommercialization; the ASL
attempts to balance the goals of open source with commercial market forces. So far
there has been only one notable licensing hiccup impacting the Android mod com-
munity, and that had more to do with the gray area of full system images than with a
manufacturer’s use of Android on a mainstream product release. Currently, Android
is facing intellectual property challenges; both Microsoft and Apple are bringing liti-
gation against Motorola and HTC for the manufacturer’s Android-based handsets.
The high-level, market-oriented portion of the book has now concluded! The
remainder of this book is focused on Android application development. Any technical
discussion of a software environment must include a review of the layers that compose
the environment, sometimes referred to as a stack because of the layer-upon-layer con-
struction. Next up is a high-level breakdown of the components of the Android stack.

Selling applications

A mobile platform is ultimately valuable only if there are applications to use and enjoy
on that platform. To that end, the topic of buying and selling applications for Android
is important and gives us an opportunity to highlight a key difference between Android
and the iPhone. The Apple App Store contains software titles for the iPhone—Ilots of
them. But Apple’s somewhat draconian grip on the iPhone software market requires
that all applications be sold through its venue. Although Apple’s digital rights man-
agement (DRM) is the envy of the market, this approach can pose a challenging envi-
ronment for software developers who might prefer to make their application available
through multiple distribution channels.

www.it-ebooks.info

http://www.it-ebooks.info/

10

1.3

CHAPTER 1 Introducing Android

(continued)

Contrast Apple’s approach to application distribution with the freedom Android
developers enjoy to ship applications via traditional venues such as freeware and
shareware, and commercially through various marketplaces, including their own
website! For software publishers who want the focus of an on-device shopping expe-
rience, Google has launched and continues to mature the Android Market. For soft-
ware developers who already have titles for other platforms such as Windows
Mobile, Palm, and BlackBerry, traditional software markets such as Handango
(www.Handango.com) also support selling Android applications. Handango and its
ilk are important outlets; consumers new to Android will likely visit sites such as
Handango because that might be where they first purchased one of their favorite
applications for their prior device.

The layers of Android

The Android stack includes an impressive array of features for mobile applications. In
fact, looking at the architecture alone, without the context of Android being a plat-
form designed for mobile environments, it would be easy to confuse Android with a
general computing environment. All the major components of a computing platform
are there. Here’s a quick rundown of prominent components of the Android stack:

= A Linux kernel that provides a foundational hardware abstraction layer, as well as
core services such as process, memory, and filesystem management. The kernel
is where hardware-specific drivers are implemented—capabilities such as Wi-Fi
and Bluetooth are here. The Android stack is designed to be flexible, with
many optional components that largely rely on the availability of specific hard-
ware on a given device. These components include features such as touch
screens, cameras, GPS receivers, and accelerometers.
= Prominent code libraries, including the following:
¢ Browser technology from WebKit, the same open source engine powering
Mac’s Safari and the iPhone’s Mobile Safari browser. WebKit has become the
de facto standard for most mobile platforms.
¢ Database support via SQLite, an easy-to-use SQL database.
¢ Advanced graphics support, including 2D, 3D, animation from Scalable
Games Language (SGL), and OpenGL ES.
¢ Audio and video media support from PacketVideo’s OpenCORE, and
Google’s own Stagefright media framework.
¢ Secure Sockets Layer (SSL) capabilities from the Apache project.
= An array of managers that provide services for
e Activities and views
¢ Windows
® Location-based services
¢ Telephony
® Resources

www.it-ebooks.info

http://www.Handango.com
http://www.it-ebooks.info/

13.1

The layers of Android 11

= The Android runtime, which provides
* Core Java packages for a nearly fullfeatured Java programming environ-
ment. Note that this isn’t a Java ME environment.
¢ The Dalvik VM, which employs services of the Linux-based kernel to provide an
environment to host Android applications.

Both core applications and third-party applications (such as the ones you’ll build in
this book) run in the Dalvik VM, atop the com-
ponents we just listed. You can see the relation-

. . User applications: Contacts, phone, browser, etc.
ship among these layers in figure 1.3.

TIP Without question, Android devel- Application managers: Windows, content, activities,
. . telephony, location, notifications, etc.

opment requires Java programming

skills. To get the most out of this book,

be sure to brush up on your Java pro-

gramming knowledge. There are many

Android runtime: Java via Dalvik VM

Libraries: Graphics, media, database,

]ava references on the internet, and no communications, browser engine, etc.
shortage of Java books on the market.

An excellent source of Java titles can | Linux kernel, including device drivers I
be found at www.manning.com/

catalog/j ava. Hardware device with specific capabilities such

as GPS, camera, Bluetooth, etc.

Now that we’ve shown you the obligatory stack

diagram and introduced all the layers, let’s
1a8 A ! u) Yers, Figure 1.3 The Android stack offers an

look more in depth at the runtime technology jmpressive array of technologies and

that underpins Android. capabilities.

Building on the Linux kernel

Android is built on a Linux kernel and on an advanced, optimized VM for its Java appli-
cations. Both technologies are crucial to Android. The Linux kernel component of the
Android stack promises agility and portability to take advantage of numerous hardware
options for future Android-equipped phones. Android’s Java environment is key: it
makes Android accessible to programmers because of both the number of Java soft-
ware developers and the rich environment that Java programming has to offer.

Why use Linux for a phone? Using a full-featured platform such as the Linux ker-
nel provides tremendous power and capabilities for Android. Using an open source
foundation unleashes the capabilities of talented individuals and companies to move
the platform forward. Such an arrangement is particularly important in the world of
mobile devices, where products change so rapidly. The rate of change in the mobile
market makes the general computer market look slow and plodding. And, of course,
the Linux kernel is a proven core platform. Reliability is more important than perfor-
mance when it comes to a mobile phone, because voice communication is the primary
use of a phone. All mobile phone users, whether buying for personal use or for a busi-
ness, demand voice reliability, but they still want cool data features and will purchase a
device based on those features. Linux can help meet this requirement.

www.it-ebooks.info

http://www.manning.com/catalog/java
http://www.manning.com/catalog/java
http://www.it-ebooks.info/

12

13.2

CHAPTER 1 Introducing Android

Speaking to the rapid rate of phone turnover and accessories hitting the market,
another advantage of using Linux as the foundation of the Android platform stack is
that it provides a hardware abstraction layer; the upper levels remain unchanged
despite changes in the underlying hardware. Of course, good coding practices
demand that user applications fail gracefully in the event a resource isn’t available,
such as a camera not being present in a particular handset model. As new accessories
appear on the market, drivers can be written at the Linux level to provide support, just
as on other Linux platforms. This architecture is already demonstrating its value;
Android devices are already available on distinct hardware platforms. HTC, Motorola,
and others have released Android-based devices built on their respective hardware
platforms. User applications, as well as core Android applications, are written in Java
and are compiled into byte codes. Byte codes are interpreted at runtime by an inter-
preter known as a virtual machine (VM).

Running in the Dalvik VM

The Dalvik VM is an example of the need for efficiency, the desire for a rich program-
ming environment, and even some intellectual property constraints, colliding, with
innovation as the result. Android’s Java environment provides a rich application plat-
form and is accessible because of the popularity of Java itself. Also, application perfor-
mance, particularly in a low-memory setting such as you find in a mobile phone, is
paramount for the mobile market. But this isn’t the only issue at hand.

Android isn’t a Java ME platform. Without commenting on whether this is ultimately
good or bad for Android, there are other forces at play here. There’s the matter of Java
VM licensing from Oracle. From a high level, Android’s code environment is Java.
Applications are written in Java, which is compiled to Java byte codes and subsequently
translated to a similar but different representation called dex files. These files are logi-
cally equivalent to Java byte codes, but they permit Android to run its applications in its
own VM that’s both (arguably) free from Oracle’s licensing clutches and an open plat-
form upon which Google, and potentially the open source community, can improve as
necessary. Android is facing litigation challenges from Oracle about the use of Java.

NOTE From the mobile application developer’s perspective, Android is a Java
environment, but the runtime isn’t strictly a Java VM. This accounts for the
incompatibilities between Android and proper Java environments and librar-
ies. If you have a code library that you want to reuse, your best bet is to assume
that your code is nearly source compatible, attempt to compile it into an Android
project, and then determine how close you are to having usable code.

The important things to know about the Dalvik VM are that Android applications run
inside it and that it relies on the Linux kernel for services such as process, memory,
and filesystem management.

Now that we’ve discussed the foundational technologies in Android, it’s time to
focus on Android application development. The remainder of this chapter discusses
high-level Android application architecture and introduces a simple Android

www.it-ebooks.info

http://www.it-ebooks.info/

1.4

14.1

The Intent of Android development 13

application. If you’re not comfortable or ready to begin coding, you might want to
jump to chapter 2, where we introduce the development environment step-by-step.

The Intent of Android development

Let’s jump into the fray of Android development, focus on an important component
of the Android platform, and expand to take a broader view of how Android applica-
tions are constructed.

An important and recurring theme of Android development is the Intent. An
Intent in Android describes what you want to do. An Intent might look like “I want
to look up a contact record” or “Please launch this website” or “Show the order confir-
mation screen.” Intents are important because they not only facilitate navigation in
an innovative way, as we’ll discuss next, but also represent the most important aspect
of Android coding. Understand the Intent and you’ll understand Android.

NOTE Instructions for setting up the Eclipse development environment are in
appendix A. This environment is used for all Java examples in this book. Chap-
ter 2 goes into more detail on setting up and using the development tools.

The code examples in this chapter are primarily for illustrative purposes.
We reference and introduce classes without necessarily naming specific Java
packages. Subsequent chapters take a more rigorous approach to introducing
Android-specific packages and classes.

Next, we’ll look at the foundational information about why Intents are important,
and then we’ll describe how Intents work. Beyond the introduction of the Intent,
the remainder of this chapter describes the major elements of Android application
development, leading up to and including the first complete Android application that
you’ll develop.

Empowering intuitive Uls

The power of Android’s application framework lies in the way it brings a web mindset
to mobile applications. This doesn’t mean the platform has only a powerful browser
and is limited to clever JavaScript and server-side resources, but rather it goes to the
core of how the Android platform works and how users interact with the mobile
device. The power of the internet is that everything is just a click away. Those clicks are
known as Uniform Resource Locators (URLs), or alternatively, Uniform Resource Identifiers
(URIs). Using effective URIs permits easy and quick access to the information users
need and want every day. “Send me the link” says it all.

Beyond being an effective way to get access to data, why is this URI topic important,
and what does it have to do with Intents? The answer is nontechnical but crucial: the
way a mobile user navigates on the platform is crucial to its commercial success. Plat-
forms that replicate the desktop experience on a mobile device are acceptable to only
a small percentage of hardcore power users. Deep menus and multiple taps and clicks
are generally not well received in the mobile market. The mobile application, more
than in any other market, demands intuitive ease of use. A consumer might buy a

www.it-ebooks.info

http://www.it-ebooks.info/

14

14.2

CHAPTER 1 Introducing Android

device based on cool features that were enumerated in the marketing materials, but
that same consumer is unlikely to even touch the instruction manual. A UI’s usability
is highly correlated with its market penetration. Uls are also a reflection of the plat-
form’s data access model, so if the navigation and data models are clean and intuitive,
the UI will follow suit.

Now we’re going to introduce Intents and IntentFilters, Android’s innovative
navigation and triggering mechanisms.

Intents and how they work

Intents and IntentFilters bring the “click it” paradigm to the core of mobile appli-
cation use (and development) for the Android platform:

= An Intent is a declaration of need. It’s made up of a number of pieces of infor-
mation that describe the desired action or service. We’re going to examine the
requested action and, generically, the data that accompanies the requested
action.

= An IntentFilter is a declaration of capability and interest in offering assis-
tance to those in need. It can be generic or specific with respect to which
Intents it offers to service.

The action attribute of an Intent is typically a verb: for example VIEW, PICK, or EDIT. A
number of builtin Intent actions are defined as members of the Intent class, but
application developers can create new actions as well. To view a piece of information,
an application employs the following Intent action:

android.content.Intent.ACTION_VIEW

The data component of an Intent is expressed in the form of a URI and can be virtu-
ally any piece of information, such as a contact record, a website location, or a refer-
ence to a media clip. Table 1.1 lists some Android URI examples.

The IntentFilter defines the relationship between the Intent and the applica-
tion. IntentFilters can be specific to the data portion of the Intent, the action por-
tion, or both. IntentFilters also contain a field known as a category. The category
helps classify the action. For example, the category named CATEGORY_LAUNCHER
instructs Android that the Activity containing this IntentFilter should be visible in
the main application launcher or home screen.

When an Intent is dispatched, the system evaluates the available Activitys,
Services, and registered BroadcastReceivers (more on these in section 1.5) and

Table 1.1 Commonly employed URIs in Android

Type of information URI data
Contact lookup content://contacts/people
Map lookup/search Geo0:0,0?g=23+Route+206+Stanhope+NJ

Browser launch to a specific website | http://www.google.com/

www.it-ebooks.info

http://www.google.com/
http://www.it-ebooks.info/

The Intent of Android development 15

For hire: Take a ride on For hire: Find anything on
the Internet (IntentFilter) the map (IntentFilter)

Android application #2 (BroadcastReceiver)

startActivity(Intent);

For hire: View, edit, browse any contacts (IntentFilter)

or
> Android application #3 (BroadcastReceiver)

startActivity(Intent,identifier);

or

startService(Intent); . K .
For hire: Custom action on custom data (IntentFilter)

«—>
Android application #4 (BroadcastReceiver)
Help me: Find a Person Help me: Find an address Figure 1.4 Intents are distributed to Android
(Intent) on the map (Intent) applications, which register themselves by way of
Android application #1 the IntentFilter, typically in the

AndroidManifest.xml file.

dispatches the Intent to the most appropriate recipient. Figure 1.4 depicts this rela-
tionship among Intents, IntentFilters, and BroadcastReceivers.

IntentFilters are often defined in an application’s AndroidManifest.xml file with
the <intent-filter> tag. The AndroidManifest.xml file is essentially an application
descriptor file, which we’ll discuss later in this chapter.

A common task on a mobile device is looking up a specific contact record for the
purpose of initiating a call, sending a text message, or looking up a snail-mail address
when you’re standing in line at the neighborhood pack-and-ship store. Or a user
might want to view a specific piece of information, say a contact record for user 1234.
In these cases, the action is ACTION_VIEW and the data is a specific contact record
identifier. To carry out these kinds of tasks, you create an Intent with the action set to
ACTION_VIEW and a URI that represents the specific person of interest.

Here are some examples:

= The URI that you would use to contact the record for user 1234: content://
contacts/people/1234
= The URI for obtaining a list of all contacts: content://contacts/people

The following code snippet shows how to PICK a contact record:

Intent pickIntent = new Intent (Intent.ACTION_PICK,Uri.parse("content://
contacts/people")) ;

startActivity (pickIntent) ;

An Intent is evaluated and passed to the most appropriate handler. In the case of pick-
ing a contact record, the recipient would likely be a built-in Activity named
com.google.android.phone.Dialer. But the best recipient of this Intent might be an
Activity contained in the same custom Android application (the one you build), a
built-in application (as in this case), or a third-party application on the device. Appli-
cations can leverage existing functionality in other applications by creating and

www.it-ebooks.info

http://www.it-ebooks.info/

16

CHAPTER 1 Introducing Android

dispatching an Intent that requests existing code to handle the Intent rather than
writing code from scratch. One of the great benefits of employing Intents in this man-
ner is that the same Uls get used frequently, creating familiarity for the user. This is par-
ticularly important for mobile platforms where the user is often neither tech-savvy nor interested in
learning multiple ways to accomplish the same task, such as looking up a contact on the phone.
The Intents we’ve discussed thus far are known as implicit Intents, which rely on
the IntentFilter and the Android environment to dispatch the Intent to the
appropriate recipient. Another kind of Intent is the explicit Intent, where you can
specify the exact class that you want to handle the Intent. Specifying the exact class is
helpful when you know exactly which Activity you want to handle the Intent and
you don’t want to leave anything to chance in terms of what code is executed. To cre-
ate an explicit Intent, use the overloaded Intent constructor, which takes a class as

an argument:

public void onClick(View v) {
try {

startActivityForResult (new Intent (v.getContext (),RefreshJobs.class),0);

} catch (Exception e) {

}

}

These examples show how an Android
developer creates an Intent and asks for
it to be handled. Similarly, an Android
application can be deployed with an
IntentFilter,
responds to Intents that were already

indicating that it

defined on the system, thereby publish-
ing new functionality for the platform.
This facet alone should bring joy to
independent software vendors (ISVs)
who’ve made a living by offering better
contact managers and to-do list manage-
ment software titles for other mobile
platforms.

Intent resolution, or dispatching,
takes place at runtime, as opposed to
when the application is compiled. You
can add specific Intent-handling fea-
tures to a device, which might provide
an upgraded or more desirable set of
functionality than the original shipping
software. This runtime dispatching is
also referred to as late binding.

The power and the

complexity of Intents

It’s not hard to imagine that an abso-
lutely unique user experience is possi-
ble with Android because of the variety
of Activitys with specific Intent-
Filters that are installed on any given
device. It’s architecturally feasible to
upgrade various aspects of an Android
installation to provide sophisticated
functionality and customization.
Though this might be a desirable char-
acteristic for the user, it can be trou-
blesome for someone providing tech
support who has to navigate a number
of components and applications to
troubleshoot a problem.

Because of the potential for added
complexity, this approach of ad hoc
system patching to upgrade specific
functionality should be entertained
cautiously and with your eyes wide
open to the potential pitfalls associ-
ated with this approach.

www.it-ebooks.info

http://www.it-ebooks.info/

1.5

1.5.1

Four kinds of Android components 17

Thus far, this discussion of Intents has focused on the variety of Intents that cause
Ul elements to be displayed. Other Intents are more event-driven than task-oriented,
as our earlier contact record example described. For example, you also use the Intent
class to notify applications that a text message has arrived. Intents are a central ele-
ment to Android; we’ll revisit them on more than one occasion.

Now that we’ve explained Intents as the catalyst for navigation and event flow on
Android, let’s jump to a broader view and discuss the Android application lifecycle
and the key components that make Android tick. The Intent will come into better
focus as we further explore Android throughout this book.

Four kinds of Android components

Let’s build on your knowledge of the Intent and IntentFilter classes and explore
the four primary components of Android applications, as well as their relation to the
Android process model. We’ll include code snippets to provide a taste of Android
application development. We're going to leave more in-depth examples and discus-
sion for later chapters.

NOTE A particular Android application might not contain all of these ele-
ments but will have at least one of these elements, and could have all of them.

Activity

An application might have a UI, but it doesn’t have to have one. If it has a UL, it’ll have
at least one Activity.

The easiest way to think of an Android Activity is to relate it to a visible screen,
because more often than not there’s a one-to-one relationship between an Activity
and a Ul screen. This relationship is similar to that of a controller in the MVC paradigm.

Android applications often contain more than one Activity. Each Activity dis-
plays a UI and responds to system- and user-initiated events. The Activity employs
one or more Views to present the actual UI elements to the user. The Activity class is
extended by user classes, as shown in the following listing.

Listing 1.1 A basic Activity in an Android application

package com.msi.manning.chapterl;
import android.app.Activity;
import android.os.Bundle;
public class Activityl extends Activity {
@QOverride
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

}

The Activity class is part of the android.app Java package, found in the Android
runtime. The Android runtime is deployed in the android.jar file. The class

www.it-ebooks.info

http://www.it-ebooks.info/

18

1.5.2

CHAPTER 1 Introducing Android

You say Intent; | say Intent
The Intent class is used in similar sounding but very different scenarios.

Some Intents are used to assist in navigating from one Activity to the next,
such as the example given earlier of viewing a contact record. Activities are the tar-
gets of these kinds of Intents, which are used with the startActivity and
startActivityForResult methods.

Also, a Service can be started by passing an Intent to the startService method.

BroadcastReceivers receive Intents when responding to system-wide events,
such as a ringing phone or an incoming text message.

Activityl extends the class Activity, which we’ll examine in detail in chapter 3.
One of the primary tasks an Activity performs is displaying UI elements, which are
implemented as Views and are typically defined in XML layout files. Chapter 3 goes
into more detail on Views and Resources.

Moving from one Activity to another is accomplished with the startActivity ()
method or the startActivityForResult () method when you want a synchronous
call/result paradigm. The argument to these methods is an instance of an Intent.

The Activity represents a visible application component within Android. With
assistance from the View class, which we’ll cover in chapter 3, the Activity is the most
commonly employed Android application component. Android 3.0 introduced a new
kind of application component, the Fragment. Fragments, which are related to Activ-
itys and have their own life cycle, provide more granular application control than
Activitys. Fragments are covered in Chapter 20. The next topic of interest is the Ser-
vice, which runs in the background and doesn’t generally present a direct UL

Service

If an application is to have a long lifecycle, it’s often best to put it into a Service. For
example, a background data-synchronization utility should be implemented as a
Service. A best practice is to launch Services on a periodic or as-needed basis, trig-
gered by a system alarm, and then have the Service terminate when its task is complete.

Like the Activity, a Service is a class in the Android runtime that you should
extend, as shown in the following listing. This example extends a Service and period-
ically publishes an informative message to the Android log.

Listing 1.2 A simple example of an Android Service

package com.msi.manning.chapterl;
import android.app.Service;
import android.content.Intent;
import android.os.IBinder;

import android.util.Log;

public class Servicel extends Service implements Runnable { < Extend
public static final String tag = "servicel"; Service
private int counter = 0; class

www.it-ebooks.info

http://www.it-ebooks.info/

1.5.3

Four kinds of Android components 19

@QOverride
protected void onCreate() { <@ Initialization
super.onCreate() ;
Thread aThread = new Thread (this);
aThread.start () ;
}

public void run() {
while (true) {
try {
Log.i(tag, "servicel firing : # " + counter++);

Thread.sleep(10000) ;

} catch(Exception ee) {
Log.e(tag, ee.getMessage()) ;
}

}

@override Handle
public IBinder onBind(Intent intent) {) binding request
return null;

}
}

This example requires that the package android.app.Service be imported. This
package contains the Service class. This example also demonstrates Android’s log-
ging mechanism android.util.Log, which is useful for debugging purposes. (Many
examples in this book include using the logging facility. We’ll discuss logging in more
depth in chapter 2.) The Servicel class @ extends the Service class. This class
implements the Runnable interface to perform its main task on a separate thread. The
onCreate method @ of the Service class permits the application to perform initial-
ization-type tasks. We're going to talk about the onBind () method @ in further detail
in chapter 4, when we’ll explore the topic of interprocess communication in general.

Services are started with the startService(Intent) method of the abstract
Context class. Note that, again, the Intent is used to initiate a desired result on the
platform.

Now that the application has a UI in an Activity and a means to have a back-
ground task via an instance of a Service, it’s time to explore the BroadcastReceiver,
another form of Android application that’s dedicated to processing Intents.

BroadcastReceiver

If an application wants to receive and respond to a global event, such as a ringing
phone or an incoming text message, it must register as a BroadcastReceiver. An
application registers to receive Intents in one of the following ways:

= The application can implement a <receiver> element in the Android-
Manfest.xml file, which describes the BroadcastReceiver’s class name and
enumerates its IntentFilters. Remember, the IntentFilter is a descriptor of
the Intent an application wants to process. If the receiver is registered in the
AndroidManifest.xml file, the application doesn’t need to be running in order

www.it-ebooks.info

http://www.it-ebooks.info/

20

CHAPTER 1 Introducing Android

to be triggered. When the event occurs, the application is started automatically

upon notification of the triggering event. Thankfully, all this housekeeping is

managed by the Android OS itself.

= An application can register at runtime via the Context class’s register-

Receiver method.
Like Services, BroadcastReceivers don’t have a UI. Even more important, the code
running in the onReceive method of a BroadcastReceiver should make no assump-
tions about persistence or long-running operations. If the BroadcastReceiver
requires more than a trivial amount of code execution, it’s recommended that the
code initiate a request to a Service to complete the requested functionality because
the Service application component is designed for longerrunning operations
whereas the BroadcastReceiver is meant for responding to various triggers.

NOTE The familiar Intent class is used in triggering BroadcastReceivers.
The parameters will differ, depending on whether you’re starting an
Activity, a Service, or a BroadcastReceiver, but it’s the same Intent class
that’s used throughout the Android platform.

A BroadcastReceiver implements the abstract method onReceive to process incom-
ing Intents. The arguments to the method are a Context and an Intent. The method
returns void, but a handful of methods are useful for passing back results, including
setResult, which passes back to the invoker an integer return code, a String return
value, and a Bundle value, which can contain any number of objects.

The following listing is an example of a BroadcastReceiver triggering upon
receipt of an incoming text message.

Listing 1.3 A sample BroadcastReceiver

package com.msi.manning.unlockingandroid;
import android.content.Context;

import android.content.Intent;

import android.util.Log;
import.android.content.BroadcastReceiver

public class MySMSMailBox extends BroadcastReceiver { " Thgused
public static final String tag = "MySMSMailBox"; - | in logging
@Override

public void onReceive (Context context, Intent intent) {
Log.1(tag, "onReceive") ;
if (intent.getAction().equals i) Check
("android.provider.Telephony.SMS_RECEIVED")) { - | Intent’s action
Log.1(tag, "Found our Event!");

}

We need to discuss a few items in this listing. The class MySMSMailBox extends the
BroadcastReceiver class. This subclass approach is the most straightforward way to
employ a BroadcastReceiver. (Note the class name MySMSMailBox; it'll be used in the
AndroidManifest.xml file, shown in listing 1.4.) The tag variable © is used in

www.it-ebooks.info

http://www.it-ebooks.info/

Four kinds of Android components 21

conjunction with the logging mechanism to assist in labeling messages sent to the con-
sole log on the emulator. Using a tag in the log enables you to filter and organize log
messages in the console. (We discuss the log mechanism in more detail in chapter 2.)
The onReceive method is where all the work takes place in a BroadcastReceiver; you
must implement this method. A given BroadcastReceiver can register multiple
IntentFilters. A BroadcastReceiver can be instantiated for an arbitrary number of
Intents.

It’s important to make sure that the application handles the appropriate Intent by
checking the action of the incoming Intent @. When the application receives the
desired Intent, it should carry out the specific functionality that’s required. A com-
mon task in an SMS-receiving application is to parse the message and display it to the
user via the capabilities found in the NotificationManager. (We’ll discuss notifica-
tions in chapter 8.) In listing 1.3, you simply record the action to the log.

In order for this BroadcastReceiver to fire and receive this Intent, the Broadcast-
Receiver is listed in the AndroidManifest.xml file, along with an appropriate intent-
filter tag, as shown in the following listing. This listing contains the elements
required for the application to respond to an incoming text message.

Listing 1.4 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?> Required permission
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<uses-permission android:name="android.permission.RECEIVE_SMS" /> <
<application android:icon="@drawable/icon">
<activity android:name=".Activityl" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity> @ Receiver tag;
<receiver android:name=".MySMSMailBox" > - | note dot prefix
<intent-filter>
<action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>
</receiver>
</application>
</manifest>

Certain tasks within the Android platform require the application to have a designated
privilege. To give an application the required permissions, use the <uses-
permission> tag ©. (We’ll discuss this tag in detail in section 1.6.) The <receiver>
tag contains the class name of the class implementing the BroadcastReceiver. In this
example, the class name is MySMSMailBox, from the package com.msi.manning
.unlockingandroid. Be sure to note the dot that precedes the name ®. This dot is
required. If your application isn’t behaving as expected, one of the first places to
check is your Android.xml file, and look for the dot before the class name! The
IntentFilter is defined in the <intent-filter> tag. The desired action in this

www.it-ebooks.info

http://www.it-ebooks.info/

22

1.54

CHAPTER 1 Introducing Android

Testing SMS

The emulator has a built-in set of tools for manipulating certain telephony behavior
to simulate a variety of conditions, such as in-network and out-of-network coverage
and placing phone calls.

To send an SMS message to the emulator, telnet to port 5554 (the port number
might vary on your system), which will connect to the emulator, and issue the follow-
ing command at the prompt:

sms send <sender's phone number> <body of text message>

To learn more about available commands, type help at the prompt.

We’ll discuss these tools in more detail in chapter 2.

example is android.provider.Telephony.SMS_RECEIVED. The Android SDK contains
the available actions for the standard Intents. Also, remember that user applications
can define their own Intents, as well as listen for them.

Now that we’ve introduced Intents and the Android classes that process or handle
Intents, it’s time to explore the next major Android application topic: the Content-
Provider, Android’s preferred data-publishing mechanism.

ContentProvider

If an application manages data and needs to expose that data to other applications
running in the Android environment, you should consider a ContentProvider. If an
application component (Activity, Service, or BroadcastReceiver) needs to access
data from another application, the component accesses the other application’s
ContentProvider. The ContentProvider implements a standard set of methods to
permit an application to access a data store. The access might be for read or write
operations, or for both. A ContentProvider can provide data to an Activity or
Service in the same containing application, as well as to an Activity or Service con-
tained in other applications.

A ContentProvider can use any form of data-storage mechanism available on the
Android platform, including files, SQLite databases, or even a memory-based hash
map if data persistence isn’t required. The ContentProvider is a data layer that pro-
vides data abstraction for its clients and centralizing storage and retrieval routines in a
single place.

Sharing files or databases directly is discouraged on the Android platform, and is
enforced by the underlying Linux security system, which prevents ad hoc file access
from one application space to another without explicitly granted permissions.

Data stored in a ContentProvider can be traditional data types, such as integers and
strings. Content providers can also manage binary data, such as image data. When
binary data is retrieved, the suggested best practice is to return a string representing
the filename that contains the binary data. If a filename is returned as part of a
ContentProvider query, the application shouldn’t access the file directly; you should

www.it-ebooks.info

http://www.it-ebooks.info/

Four kinds of Android components 23

Android Application #3

Activity 3.1
Android Application #1
Activity 1.1 Android Application #2
ctivity
\
ContentProvider A ~ Activity 2.1

/ / \\

Figure 1.5 The content
provider is the data tier for
Android applications and is
Data file Virtual connection the prescribed manner in
to remote store which data is accessed and
shared on the device.

use the helper class, ContentResolver’s openInputStream method, to access the

binary data. This approach navigates the Linux process and security hurdles, as well as
keeps all data access normalized through the ContentProvider. Figure 1.5 outlines
the relationship among ContentProviders, data stores, and their clients.

A ContentProvider’s data is accessed by an Android application through a Con-
tent URIL A ContentProvider defines this URI as a public static final String. For
example, an application might have a data store managing material safety data sheets.
The Content URI for this ContentProvider might look like this:

public static final Uri CONTENT_URI =
Uri.parse("content://com.msi.manning.provider.unlockingandroid/datasheets") ;
From this point, accessing a ContentProvider is similar to using Structured Query
Language (SQL) in other platforms, though a complete SQL statement isn’t
employed. A query is submitted to the ContentProvider, including the columns
desired and optional Where and Order By clauses. Similar to parameterized queries in
traditional SQL, parameter substitution is also supported when working with the
ContentProvider class. Where do the results from the query go? In a Cursor class,
naturally. We’ll provide a detailed ContentProvider example in chapter 5.

NOTE In many ways, a ContentProvider acts like a database server.
Although an application could contain only a ContentProvider and in
essence be a database server, a ContentProvider is typically a component of
a larger Android application that hosts at least one Activity, Service, or
BroadcastReceiver.

www.it-ebooks.info

http://www.it-ebooks.info/

24

1.6

CHAPTER 1 Introducing Android

This concludes our brief introduction to the major Android application classes. Gain-
ing an understanding of these classes and how they work together is an important
aspect of Android development. Getting application components to work together
can be a daunting task. For example, have you ever had a piece of software that just
didn’t work properly on your computer? Perhaps you copied it from another devel-
oper or downloaded it from the internet and didn’t install it properly. Every software
project can encounter environmentrelated concerns, though they vary by platform.
For example, when you’re connecting to a remote resource such as a database server
or FTP server, which username and password should you use? What about the libraries
you need to run your application? All these topics are related to software deployment.

Before we discuss anything else related to deployment or getting an Android
application to run, we need to discuss the Android file named AndroidManifest.xml,
which ties together the necessary pieces to run an Android application on a device. A
one-to-one relationship exists between an Android application and its Android-
Manifest.xml file.

Understanding the AndroidManifest.xml file

In the preceding sections, we introduced the common elements of an Android appli-
cation. A fundamental fact of Android development is that an Android application
contains at least one Activity, Service, BroadcastReceiver, or ContentProvider.
Some of these elements advertise the Intents they’re interested in processing via the
IntentFilter mechanism. All these pieces of information need to be tied together
for an Android application to execute. The glue mechanism for this task of defining
relationships is the AndroidManifest.xml file.

The AndroidManifest.xml file exists in the root of an application directory and
contains all the design-time relationships of a specific application and Intents.
AndroidManfest.xml files act as deployment descriptors for Android applications. The
following listing is an example of a simple AndroidManifest.xml file.

Listing 1.5 AndroidManifest.xml file for a basic Android application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<application android:icon="@drawable/icon">
<activity android:name=".Activityl" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Looking at this simple AndroidManifest.xml file, you see that the manifest element
contains the obligatory namespace, as well as the Java package name containing this
application. This application contains a single Activity, with the class name

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the AndroidManifest.xml file 25

Activityl. Note also the @string syntax. Any
time an @ symbol is used in an AndroidMani-
fest.xml file, it references information stored in
one of the resource files. In this case, the 1abel
attribute is obtained from the string resource
identified as app_name. (We discuss resources
in further detail later in chapter 3.) This appli-
cation’s lone Activity contains a single
IntentFilter definition. The IntentFilter
used here is the most common IntentFilter
seen in Android applications. The action
android.intent.action.MAIN indicates that
this is an entry point to the application. The
category android.intent.category.LAUNCHER
places this Activity in the launcher window, as
shown in figure 1.6. It’s possible to have multi-
ple Activity elements in a manifest file (and
thereby an application), with zero or more of
them visible in the launcher window.

In addition to the elements used in the sam-
ple manifest file shown in listing 1.5, other
common tags are as follows:

= The <service> tag represents a Service.
The attributes of the <service> tag
include its class and label. A Service
might also include the <intent-filter>
tag.

= The <receiver> tag represents a
BroadcastReceiver, which might have
an explicit <intent-filter> tag.

@ il 3 %20am

Applications

o B

Browser Contacts

MENU

Figure 1.6 Applications are listed in the

launcher based on their IntentFilter.In
this example, the application Where Do You
Live is available in the LAUNCHER category.

= The <uses-permission> tag tells Android that this application requires certain

security privileges. For example, if an application requires access to the contacts

on a device, it requires the following tag in its AndroidManifest.xml file:

<uses-permission android:name=
"android.permission.READ_CONTACTS" />

We’ll revisit the AndroidManifest.xml file a number of times throughout the book
because we need to add more details about certain elements and specific coding

scenarios.

Now that you have a basic understanding of the Android application and the
AndroidManifest.xml file, which describes its components, it’s time to discuss how
and where an Android application executes. To do that, we need to talk about the
relationship between an Android application and its Linux and Dalvik VM runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

26

1.7

18

CHAPTER 1 Introducing Android

Mapping applications to processes

Android applications each run in a single Linux process. Android relies on Linux for
process management, and the application itself runs in an instance of the Dalvik VM.
The OS might need to unload, or even Kkill, an application from time to time to accom-
modate resource allocation demands. The system uses a hierarchy or sequence to
select the victim during a resource shortage. In general, the system follows these rules:

= Visible, running activities have top priority.

= Visible, nonrunning activities are important, because they’re recently paused
and are likely to be resumed shortly.

= Running services are next in priority.

= The most likely candidates for termination are processes that are empty
(loaded perhaps for performance-caching purposes) or processes that have
dormant Activitys.

ps -a

The Linux environment is complete, including process management. You can launch
and Kill applications directly from the shell on the Android platform, but this is a
developer's debugging task, not something the average Android handset user is
likely to carry out. It’s nice to have this option for troubleshooting application issues.
It’s a relatively recent phenomenon to be able to touch the metal of a mobile phone
in this way. For more in-depth exploration of the Linux foundations of Android, see
chapter 13.

Let’s apply some of what you’ve learned by building your first Android application.

Creating an Android application

Let’s look at a simple Android application consisting of a single Activity, with one
View. The Activity collects data (a street address) and creates an Intent to find this
address. The Intent is ultimately dispatched to Google Maps. Figure 1.7 is a screen
shot of the application running on the emulator. The name of the application is
Where Do You Live.

As we previously stated, the AndroidManifest.xml file contains the descriptors for
the application components of the application. This application contains a single
Activity named AWhereDoYouLive. The application’s AndroidManifest.xml file is
shown in the following listing.

Listing 1.6 AndroidManifest.xml for the Where Do You Live application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.unlockingandroid">
<application android:icon="@drawable/icon">
<activity android:name=".AWhereDoYouLive"

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Android application 27

android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

e
Where Do You Live White House, Washingto
ot St e] B

Please enter your home address. See on the map

[White House 5 rections to here
show Map 1 rections from here

Unlocking Android, Chapter 1. Save to Address Book

MENU

Figure 1.7 This Android application demonstrates a simple Activity and an Intent.

The sole Activity is implemented in the file AWhereDoYoulLive.java, shown in the
following listing.

Listing 1.7 Implementing the Android Activity in AWhereDoYoulive.java

package com.msi.manning.unlockingandroid;

// imports omitted for brevity

public class AWhereDoYouLive extends Activity {
@Override
public void onCreate(Bundle icicle) {

www.it-ebooks.info

http://www.it-ebooks.info/

28

CHAPTER 1 Introducing Android

super.onCreate(icicle) ;
setContentView(R.layout.main) ;
final EditText addressfield =
(EditText) findviewById(R.id.address);
final Button button = (Button)
findViewById(R.id.launchmap) ;
button.setOnClickListener (new Button.OnClickListener () {
public void onClick(View view) {

try { o Get

String address = addressfield.getText ().toString(); < address

address = address.replace(' ', '+');

Intent geolIntent = new Intent
(android.content.Intent.ACTION_VIEW, Q Prepare
Uri.parse("geo:0,0?g=" + address)); + Intent

startActivity (geoIntent) ;
} catch (Exception e) {

In this example application, the setContentView method creates the primary Ul,
which is a layout defined in main.xml in the /res/layout directory. The EditText view
collects information, which in this case is an address. The EditText view is a text box
or edit box in generic programming parlance. The findviewById method connects
the resource identified by R.1d.address to an instance of the EditText class.

A Button object is connected to the launchmap UI element, again using the find-
ViewById method. When this button is clicked, the application obtains the entered
address by invoking the getText method of the associated EditText @.

When the address has been retrieved from the U, you need to create an Intent to
find the entered address. The Intent has a VIEW action, and the data portion repre-
sents a geographic search query @.

Finally, the application asks Android to perform the Intent, which ultimately
results in the mapping application displaying the chosen address. The startActivity
method is invoked, passing in the prepared Intent.

Resources are precompiled into a special class known as the R class, as shown in
listing 1.8. The final members of this class represent UI elements. You should never
modify the Rjava file manually; it’s automatically built every time the underlying
resources change. (We’ll cover Android resources in greater depth in chapter 3.)

Listing 1.8 R.java containing the R class, which has Ul element identifiers

/* AUTO-GENERATED FILE. DO NOT MODIFY.

This class was automatically generated by the
aapt tool from the resource data it found. It
* should not be modified by hand.

*/

package com.msi.manning.unlockingandroid;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an Android application 29

public final class R {
public static final class attr {
}
public static final class drawable {
public static final int icon=0x7£020000;
}
public static final class id {
public static final int address=0x7£050000;
public static final int launchmap=0x7£050001;
}
public static final class layout {
public static final int main=0x7£f030000;
}

public static final class string {
public static final int app_name=0x7£040000;

}

Figure 1.7 shows the sample application in action. Someone looked up the address of
the White House; the result shows the White House pinpointed on the map.

The primary screen of this application is defined as a LinearLayout view, as shown
in the following listing. It’s a single layout containing one label, one text-entry ele-
ment, and one button control.

Listing 1.9 Main.xml defining the Ul elements for the sample application

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Please enter your home address."

/>
<EditText ID assignment
android:id="@+id/address" for EditText

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:autoText="true"

/>

<Button ID assignment
android:id="@+id/launchmap" for Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Show Map"
/>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Unlocking Android, Chapter 1."
/>

</LinearLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

30

1.9

1.9.1

CHAPTER 1 Introducing Android

Note the use of the @ symbol in this resource’s id attribute O and ©. This symbol
causes the appropriate entries to be made in the R class via the automatically gener-
ated Rjava file. These R class members are used in the calls to findviewById(), as
shown in listing 1.7, to tie the Ul elements to an instance of the appropriate class.

A strings file and icon round out the resources in this simple application. The
strings.xml file for this application is shown in the following listing. This file is used to
localize string content.

Listing 1.10 strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Where Do You Live</string>
</resources>
As you’ve seen, an Android application has a few moving pieces—though the compo-
nents themselves are rather straightforward and easy to stitch together. As we progress
through the book, we’ll introduce additional sample applications step-by-step as we
cover each of the major elements of Android development activities.

Android 3.0 for tablets and smartphones

Android 3.0 was originally introduced for tablets. But what makes the tablet different?
It’s the richer and more interactive application user experience that tablets provide. This
user experience is driven by the tablet’s form factor (larger screen), ease of handling,
media-rich and graphical capabilities, content and application distribution support,
computing power, and, as in the case of smartphones, connectivity, including offline
support.

This new form factor opens the door to new application verticals such as eHealth,
where ease of use and privacy issues are of primary importance, and content media
distribution where content protection via DRM will play an important role.

The tablet form factor also introduces new challenges to Android developers—
challenges related to UI design and development considerations not found when
developing for smartphones. The larger form factor encourages touch interaction
and navigation using one or both hands, and layout design that takes full advantage of
landscape versus portrait. And because tablets are now part of the mobile platform
family, application compatibility and portability across smartphones and tablets is an
important consideration for mobile developers.

Android 3.0 isn’t limited to tablets and applies to smartphones as well, but on a
smaller scale. Everything in this chapter also applies to smartphones, once Android
3.0 is ported across the different platforms.

Why develop for Android tablets?

Mobile developers already have to deal with many different kinds of mobile platforms:
iOS, mobile web, Android (and its different versions), BlackBerry, Windows Phone,

www.it-ebooks.info

http://www.it-ebooks.info/

Android 3.0 for tablets and smartphones 31

Web OS, and so on. This can be overwhelming, so it’s important to focus on the
platforms that matter to you and your customers—in other words, the platforms with
greater return on investment.

The tablet space is not only growing, but is expected to be massive. Driven by iOS
and Android tablets, a recent 2011 Yankee Report puts total tablet device sales in the
USA alone at $7 billion.? Tablets will play a major role in both the consumer and enter-
prise spaces. The opportunities for tablet application development seem endless.

According to Gartner, 17.6 million tablets were sold in 2010, and it anticipates a
significant increase with sales jumping to 69.5 million tablets in 2011. The firm’s ana-
lysts anticipate in 2015 nearly 300 million devices could be sold.?

Tablets will be a predominate mobile platform that must be considered by any
developer who is serious about developing for mobile.

1.9.2 What’s new in the Android 3.0 Honeycomb platform?

The new Android 3.0 platform provides all the elements for tablet application devel-
opment. Android 3.0 introduces a number of UI enhancements that improve overall
application usage experience on tablets. These include a new holographic theme, a
new global notification bar, an application-specific action bar, a redesigned keyboard,
and text selection with cut/paste capabilities. New connectivity features for Bluetooth
and USB are provided, as well as updates to a number of the standard applications
such as the browser, camera, and email. Because tablets are expected to play a major
role in the Enterprise and businesses, new policy-management support has been intro-
duced as well.

From the developer perspective, the changes introduced by Android 3.0 are exten-
sive with additions and changes to many existing Java packages and three new Java
packages:

= Animation (android.animation)
= Digital Rights Management (DRM, android.drm)
= High-performance 3D graphics (android.renderscript)

The changes to the other existing Java packages touch many aspects of the Android
API layer, including the following:

® Activitys and Fragments

= The Action bar

= Drag and drop

= Custom notifications

= Loaders

= Bluetooth

? www.yankeegroup.com/ResearchDocument.do?id=55390

3 http://mng.bz/680r

www.it-ebooks.info

www.yankeegroup.com/ResearchDocument.do?id=55390
http://mng.bz/680r
http://www.it-ebooks.info/

32

1.10

CHAPTER 1 Introducing Android

This book will cover the major aspects of tablet development using Android 3.0, start-
ing with Activitys and Fragments. Although we’ll focus on tablets, note that Google
TV is Android 3.1-based, meaning that most of the content covered here is also appli-
cable to Google TV.

Summary

This chapter introduced the Android platform and briefly touched on market posi-
tioning, including what Android is up against in the rapidly changing and highly com-
petitive mobile marketplace. In a few years, the Android SDK has been announced,
released, and updated numerous times. And that’s just the software. Major device
manufacturers have now signed on to the Android platform and have brought capa-
ble devices to market, including a privately labeled device from Google itself. Add to
that the patent wars unfolding between the major mobile players, and the stakes con-
tinue to rise—and Android’s future continues to brighten.

In this chapter, we examined the Android stack and discussed its relationship with
Linux and Java. With Linux at its core, Android is a formidable platform, especially
for the mobile space where it’s initially targeted. Although Android development is
done in the Java programming language, the runtime is executed in the Dalvik VM, as
an alternative to the Java VM from Oracle. Regardless of the VM, Java coding skills are
an important aspect of Android development.

We also examined the Android SDK’s Intent class. The Intent is what makes
Android tick. It’s responsible for how events flow and which code handles them. It
provides a mechanism for delivering specific functionality to the platform, enabling
third-party developers to deliver innovative solutions and products for Android. We
introduced all the main application classes of Activity, Service, ContentProvider,
and BroadcastReceiver, with a simple code snippet example for each. Each of these
application classes use Intents in a slightly different manner, but the core facility of
using Intents to control application behavior enables the innovative and flexible
Android environment. Intents and their relationship with these application classes
will be unpacked and unlocked as we progress through this book.

The AndroidManifest.xml descriptor file ties all the details together for an
Android application. It includes all the information necessary for the application to
run, what Intents it can handle, and what permissions the application requires.
Throughout this book, the AndroidManifest.xml file will be a familiar companion as
we add and explain new elements.

Finally, this chapter provided a taste of Android application development with a
simple example tying a simple UL, an Intent, and Google Maps into one seamless and
useful experience. This example is, of course, just scratching the surface of what
Android can do. The next chapter takes a deeper look into the Android SDK so that
you can learn more about the toolbox we’ll use to unlock Android.

www.it-ebooks.info

http://www.it-ebooks.info/

Android’s development
environment

This chapter covers

Introducing the Android SDK

Exploring the development environment
Building an Android application in Eclipse
Debugging applications in the Android emulator

Building upon the foundational information presented in the first chapter, we pick
up the pace by introducing the Android development environment used to con-
struct the applications in the balance of the book. If you haven’t installed the devel-
opment tools, refer to appendix A for a step-by-step guide to downloading and
installing the tools.

This chapter introduces the Android development tool chain and the software
tools required to build Android applications, and serves as your hands-on guide to
creating, testing, and even debugging applications. When you’ve completed this
chapter, you’ll be familiar with using Eclipse and the Android Development Tools
(ADT) plug-in for Eclipse, navigating the Android SDK, running Android

33

www.it-ebooks.info

http://www.it-ebooks.info/

34

2.1

CHAPTER 2 Android’s development environment

applications in the emulator, and stepping line-by-line through a sample application
that you’ll construct in this chapter: a simple tip calculator.

Android developers spend a significant amount of time working with the Android
emulator to debug their applications. This chapter goes into detail about creating and
building projects, defining Android virtual devices (emulators), setting up run config-
urations, and running and debugging applications on an instance of the Android
emulator. If you’ve never constructed an Android application, please don’t skip this
chapter; mastering the basics demonstrated here will aide your learning throughout
the rest of the book.

When embracing a new platform, the first task for a developer is gaining an under-
standing of the SDK and its components. Let’s start by examining the core compo-
nents of the Android SDK and then transition into using the SDK’s tools to build and
debug an application.

Introducing the Android SDK

The Android SDK is a freely available download from the Android website. The first
thing you should do before going any further in this chapter is make sure you have the
Android SDK installed, along with Eclipse and the Android plug-in for Eclipse, also
known as the Android Development Tools, or simply as the ADT. The Android SDK is
required to build Android applications, and Eclipse is the preferred development envi-
ronment for this book. You can download the Android SDK from http://developer.
android.com/sdk/index.html.

TIP The Android download page has instructions for installing the SDK, or
you can refer to appendix A of this book for detailed information on install-
ing the required development tools.

As in any development environment, becoming familiar with the class structures is
helpful, so having the documentation at hand as a reference is a good idea. The
Android SDK includes HTML-based documentation, which primarily consists of
Javadoc-formatted pages that describe the available packages and classes. The
Android SDK documentation is in the /doc directory under your SDK installation.
Because of the rapidly changing nature of this platform, you might want to keep an
eye out for any changes to the SDK. The most up-to-date Android SDK documentation
is available at http://developer.android.com/reference/packages.html.

Android’s Java environment can be broken down into a handful of key sections.
When you understand the contents in each of these sections, the Javadoc reference
material that ships with the SDK becomes a real tool and not just a pile of seemingly
unrelated material. You might recall that Android isn’t a strictly Java ME software envi-
ronment, but there’s some commonality between the Android platforms and other
Java development platforms. The next few sections review some of the Java packages
(core and optional) in the Android SDK and where you can use them. The remaining
chapters provide a deeper look into using many of these programming topics.

www.it-ebooks.info

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/reference/packages.html
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.manning.com/loughran/
http://www.it-ebooks.info/

211

Introducing the Android SDK 35

Core Android packages

If you’ve ever developed in Java, you’ll recognize many familiar Java packages for core
functionality. These packages provide basic computational support for things such as
string management, input/output controls, math, and more. The following list con-
tains some of the Java packages included in the Android SDK:

= java.lang—Core Java language classes

= java.io—Input/output capabilities

= java.net—Network connections

= java.text—Text-handling utilities

= java.math—Math and number-manipulation classes
= javax.net—Network classes

= javax.security—Security-related classes

= javax.xml—DOM-based XML classes

" org.apache.*—HTTP-related classes

= org.xml—SAX-based XML classes

Additional Java classes are also included. Generally speaking, this book won’t focus
much on the core Java packages listed here, because our primary concern is Android
development. With that in mind, let’s look at the Android-specific functionality found
in the Android SDK.

Android-specific packages are easy to identify because they start with android in
the package name. Some of the more important packages are as follows:

= android.app—Android application model access

= android.bluetooth—Android’s Bluetooth functionality

= android.content—Accessing and publishing data in Android

= android.net—Contains the Uri class, used for accessing content

= android.gesture—Creating, recognizing, loading, and saving gestures

= android.graphics—Graphics primitives

= android.location—ILocation-based services (such as GPS)

= android.opengl—OpenGL classes

= android.os—System-level access to the Android environment

= android.provider—ContentProvider-related classes

= android.telephony—Telephony capability access, including support for both
Code Division Multiple Access (CDMA) and Global System for Mobile commu-
nication (GSM) devices

= android.text—Text layout

= android.util—Collection of utilities for logging and text manipulation,
including XML

= android.view—UI elements

= android.webkit—Browser functionality

® android.widget—More Ul elements

www.it-ebooks.info

http://www.it-ebooks.info/

36

212

2.2

CHAPTER 2 Android’s development environment

Some of these packages are core to Android application development, including
android.app, android.view, and android.content. Other packages are used to vary-
ing degrees, depending on the type of applications that you’re constructing.

Optional packages

Not every Android device has the same hardware and mobile connectivity capabilities,
so you can consider some elements of the Android SDK as optional. Some devices sup-
port these features, and others don’t. It’s important that an application degrade grace-
fully if a feature isn’t available on a specific handset. Java packages that you should pay
special attention to include those that rely on specific, underlying hardware and net-
work characteristics, such as location-based services (including GPS) and wireless tech-
nologies such as Bluetooth and Wi-Fi (802.11).

This quick introduction to the Android SDK’s programming interfaces is just
that—quick and at-a-glance. Upcoming chapters go into the class libraries in further
detail, exercising specific classes as you learn about various topics such as Uls, graph-
ics, location-based services, telephony, and more. For now, the focus is on the tools
required to compile and run (or build) Android applications.

Before you build an Android application, let’s examine how the Android SDK and
its components fit into the Eclipse environment.

Exploring the development environment
After you install the Android SDK and the ADT plug-in for Eclipse, you're ready to
explore the development environment. Figure 2.1 depicts the typical Android devel-
opment environment, including both real hardware and the useful Android emulator.
Although Eclipse isn’t the exclusive tool required for Android development, it can
play a big role in Android development, not only because it provides a rich Java com-
pilation and debugging environment, but also because with the ADT plug-in, you can
manage and control virtually all aspects of testing your Android applications directly
from the Eclipse IDE.

The following list describes key features of the Eclipse environment as it pertains
to Android application development:

= A rich Java development environment, including Java source compilation, class
auto-completion, and integrated Javadoc

= Source-level debugging

= AVD management and launch

= The Dalvik Debug Monitor Server (DDMS)

= Thread and heap views

= Emulator filesystem management

= Data and voice network control

= Emulator control

= System and application logging

Eclipse supports the concept of perspectives, where the layout of the screen has a set of
related windows and tools. The windows and tools included in an Eclipse perspective

www.it-ebooks.info

http://www.it-ebooks.info/

221

Exploring the development environment 37

Development environment (laptop)

Eclipse open source IDE

e Coding
e Debugging

Command-line tools

 File transfer tools
e GSM simulation tester

Android Development Tools (plug-in)
e SDK

* Emulator profile configuration

e Emulator launch

® Process & file system viewing

e Log viewing plug-in

Android emulator
* Multiple skins
e Network connectivity options

e Integrated with Eclipse via
Android Development Tools

SDK documentation

Android device

e Physical phone hardware

Figure 2.1

The development
environment for building
Android applications,

are known as views. When developing Android
applications, there are two Eclipse perspectives
of primary interest: the Java perspective and
the DDMS perspective. Beyond those two, the
Debug perspective is also available and useful
when you’re debugging an Android applica-
tion; we’ll talk about the Debug perspective in
section 2.5. To switch between the available
perspectives in Eclipse, use the Open Perspec-
tive menu, under the Window menu in the
Eclipse IDE.

Let’s examine the features of the Java and
DDMS perspectives and how you can leverage
them for Android development.

The Java perspective

The Java perspective is where you’ll spend
most of your time while developing Android
applications. The Java perspective boasts a
number of convenient views for assisting in the
development process. The Package Explorer
view allows you to see the Java projects in your
Eclipse workspace. Figure 2.2 shows the Pack-
age Explorer listing some of the sample proj-
ects for this book.

www.it-ebooks.info

including the popular
open source Eclipse IDE

[l8 pacooeemorers 3 T Hearchy] = O
=k =

e

1 AndroidChapterl
=& AndroidChapter 1Example
28 src
= 8 com.msi.manning.unlockingandroid
= 1) awhereDoYoulive.java
= @ awhereDovoulive
= @ onCreate{Bundle)
@ G new OnClickListener() ...}
@ (1) R.java
B Android Library

B = res
€ AndroidManifest, xml
2] 151 AndroidChapter 1Sample
=
B src
= # com.manning.unlockingandroid
Fl [J) ChapterTwo.java
SR C] ChapterTwo
@. onCreate(Bundle)
® -] R.java
B\ Android Library
(= assets
= res
€ AndroidManifest. xml
R testproject

&

Figure 2.2 The Package Explorer allows
you to browse the elements of your Android
projects.

http://www.it-ebooks.info/

CHAPTER 2 Android’s development environment

(1) chapterTuo java 53

I. package com.manning.unlockingandroid;

#Fimport android.app.ievivity:[]

public class ChapterTwo extends Activity {

al shen the activity is first created. *#

-~ public void onCreate (Bundle icicle)
super.onCreate (icicle) ;
a secContentView(R.1 hyout.main):
H
}
K|

(2. Problems 52 @ Javadac|
2 errors, O warnings, 0 infos

Description_+ |Resource | Path | Location |
= % Errors (2 items)
@ R, cannot be resolved ChapterTw.., Chapter2/srcfcom/manning... Bine 11

@ Syntax error on token "ayout”, delete tl ChapterTw... Chapter2fsrc/com/manning... line 11

Figure 2.3 The Problems view shows any errors in your source code.

The Java perspective is where you’ll edit your Java source code. Every time you save
your source file, it’s automatically compiled by Eclipse’s Java development tools (JDT)
in the background. You don’t need to worry about the specifics of the JDT; the impor-
tant thing to know is that it’s functioning in the background to make your Java experi-
ence as seamless and painless as possible. If there’s an error in your source code, the
details will show up in the Problems view of the Java perspective. Figure 2.3 has an
intentional error in the source code to demonstrate the Problems view. You can also
put your mouse over the red x to the left of the line containing the error for a tool-tip
explanation of the problem.

One powerful feature of the Java perspective in Eclipse is the integration between
the source code and the Javadoc view. The Javadoc view updates automatically to pro-
vide any available documentation about a currently selected Java class or method, as
shown in figure 2.4. In this figure, the Javadoc view displays information about the
Activity class.

TIP This chapter scratches the surface in introducing the powerful
Eclipse environment. To learn more about Eclipse, you might consider
reading Eclipse in Action: A Guide for Java Developers, by David Gallardo, Ed
Burnette, and Robert McGovern, published by Manning and available
online at www.manning.com/gallardo.

www.it-ebooks.info

http://www.manning.com/
http://www.it-ebooks.info/

222

Exploring the development environment 39

3] chopterTwo java £3

AT

package com.manning.unlockingandroids

+import android.app.hccivicy:[]

public class ChapterTwo extends Activicy (
/** Called when the activity is first created. */
@override
public void onCreate (Bundle icicle) |
super.onCreate (icicle) ;
setContentView (R. layout.main) ;

I
@ Javadoc £3
An activity is a single, focused thing that the user can do. Mdummna«tmh&eum mtheMtwivdosstm:aadawmam(umnmhm:mmowm
windows, they can also be used in other ways: as floating windows (via a theme with Floating set) d inside of ancther activity (using ActivityGroup). There are two methad)

* onCreste(Bundis) is where you intislize your activity. Most importantly, here you wil usually call setContentyievint) with a layout resource defining your U, and using findviewgvid{int}
» onPaused) is where you deal with the user leaving your activity. Most importantly, any changes made by the usar should at this point be committed {usually to the ContentProvider hold

Ta be of use with Conteod. startActivite(), all activity classes must have a corresponding <activity > declaration in their package'’s AndroidHani fest. xul.
The Activity class is an important part of an appbcation's overall Wecyde,
Topics covered here:

. Cofauration Chanans

: ECIMEsSSIOns

. Brocess Lfecycle

oA s LR

Activity Lifecycle
Activities in the system are managed as an actily stack. When a new activity is started, it i placed on the top of the stack and becomes the running activity - the previous activty ahways ren

Anackhdbib B foum skl

Figure 2.4 The Javadoc view provides context-sensitive documentation, in this case for the
Activity class.

It’s easy to get the views in the current perspective into a layout that isn’t what you
really want. If this occurs, you have a couple of choices to restore the perspective to a
more useful state. You can use the Show View menu under the Window menu to dis-
play a specific view or you can select the Reset Perspective menu to restore the per-
spective to its default settings.

In addition to the JDT, which compiles Java source files, the ADT automatically
compiles Android-specific files such as layout and resource files. You’ll learn more
about the underlying tools later in this chapter and again in chapter 3, but now it’s
time to have a look at the Android-specific perspective in the DDMS.

The DDMS perspective

The DDMS perspective provides a dashboard-like view into the heart of a running
Android device or, in this example, a running Android emulator. Figure 2.5 shows the
emulator running the chapter 2 sample application.

We’ll walk through the details of the application, including how to build the appli-
cation and how to start it running in the Android emulator, but first let’s see what
there is to learn from the DDMS with regard to our discussion about the tools available
for Android development.

www.it-ebooks.info

http://www.it-ebooks.info/

40

CHAPTER 2 Android’s development environment

Grab File Edit Cantute Window Help ol : B =) (= (Charged) Thu 1:07 AM Q
™ ™) DDMS - Chapter2 {srefcom/manning/unlockingandroid/ ChapterTwo.java - Eclipse Platform - fUisersfableson/Documents | VirtualBosx/cfg/msi/.. i
i IBIE N #|5-0-Qr & a7 | P sG]l i oGy, = (G5 Riea e
[@ Devices 5 = O[3 meeads | @ reap | @ File Explorer F wa =" ,.,l &
G BB 0|2 Oz teme Size | Date L e ! % M Find -
ame - | * &cm 2010-01-03 2353 drwarwx—x £ AaBbc P
Bemutator-5554 Online 201Coogie | & anr 2010-01-03 2354 drwnrex-—x i tHeading2 - .;_"..;:.lg_, i
syswm_process |58 || 8600 1= 10 2010-01-03 2353 drwrw--x | a|aes
ipeo.omronsofuopss || 860l < commanning.unlockingandraid.apk 12732 2010-01-07 0104 -rw-r—r— commanning - -
androidprocess.aci 103 | % | [ss0z (= app-private 2010-01-03 2353 drwarwa—x i 5
comandroidphone 101 % 8603 2 baclup — 2010-01-03 2355 drw——— B
comandroidseming 118 | S| [8604 (= dalvik-cache 01Googht
comandroidmms | 136 |3 8605 = data
comandroidalarme 153 | B 8606 = dontpanic
android process.me 169 | 3 8607 = local
comandroid.emad (187 |% 8608 (= losts found
com.googleandroic 200 | 5, 8609 (& misc
com.svox pica 240 |%B sE10 (& property
com.manningunioc 1707 |5, B811 (& system
2 sdcard
2 system
—_—x

(@ emutator Comrol 52

Incoming number.

[Logear B2

Time

& consate|

nid tg Messay

Figure 2.5 DDMS perspective with an application running in the Android emulator

The Devices view in figure 2.5 shows a single emulator session, titled emulator-tcp-
5554. The title indicates that there’s a connection to the Android emulator at TCP/IP
port 55564. Within this emulator session, five processes are running. The one of inter-
est to us is com.manning.unlockingandroid, which has the process ID 1707.

TIP Unless you're testing a peer-to-peer application, you’ll typically have
only a single Android emulator session running at a time, although it is pos-
sible to have multiple instances of the Android emulator running concur-
rently on a single development machine. You might also have a physical
Android device connected to your development machine—the DDMS inter-
face is the same.

Logging is an essential tool in software development, which brings us to the LogCat
view of the DDMS perspective. This view provides a glimpse at system and application
logging taking place in the Android emulator. In figure 2.5, a filter has been set up for
looking at entries with a tag value of Chapter2. Using a filter on the LogCat is a help-
ful practice, because it can reduce the noise of all the logging entries and let you focus
on your own application’s entries. In this case, four entries in the list match our filter
criteria. We’ll look at the source code soon to see how you get your messages into the
log. Note that these log entries have a column showing the process ID, or PID, of the

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the development environment 41

2 Threads f@ Heap | € File Explorer 23\\\ [P | =¥ =0
Name Size Date Time | Permissions InfoIDeme the selection |
¥ (= data 2010-01-03 23:53 drwxrwx--x !
> (= anr 2010-01-03 23:54 drwxrwx--x
¥ (= app 2010-01-03 23:53 drwxrwx--x
€ com.manning.unlockingandroid.apk 12732 2010-01-07 01:04 -rw-r--r-- com.manning.unlocking:
» (= app-private 2010-01-03 23:53 drwxrwx--x
> (= backup 2010-01-03 23:55 drwx------
P (= dalvik-cache 2010-01-03 23:53 drwxrwx--x
P = data 2010-01-03 23:53 drwxrwx--x
» (= dontpanic 2010-01-03 23:53 drwxr-x---
P (= local 2010-01-03 23:53 drwxrwx-—-x
» (= lost+found 2010-01-03 23:53 drwxrwx---
P = misc 2010-01-03 23:53 drwxrwx--t
» (= property 2010-01-03 23:53 drwx------
P = system 2010-01-03 23:54 drwxrwxr-x
P (= sdcard 1969-12-31 19:00 d---rwxr-x
P = system 2009-11-23 15:24 drwxr-xr-x

Figure 2.6 Delete applications from the emulator by highlighting the application file and clicking the
Delete button.

application contributing the log entry. As expected, the PID for our log entries is 616,
matching our running application instance in the emulator.

The File Explorer view is shown in the upper right of figure 2.5. User applica-
tions—the ones you and I write—are deployed with a file extension of .apk and stored
in the /data/app directory of the Android device. The File Explorer view also permits
filesystem operations such as copying files to and from the Android emulator, as well
as removing files from the emulator’s filesystem. Figure 2.6 shows the process of delet-
ing a user application from the /data/app directory.

Obviously, being able to casually browse the filesystem of your mobile phone is a
great convenience. This feature is nice to have for mobile development, where you’re
often relying on cryptic pop-up messages to help you along in the application develop-
ment and debugging process. With easy access to the filesystem, you can work with files
and readily copy them to and from your development computer platform as necessary.

In addition to exploring a running application, the DDMS perspective provides
tools for controlling the emulated environment. For example, the Emulator Control
view lets you test connectivity characteristics for both voice and data networks, such as
simulating a phone call or receiving an incoming Short Message Service (SMS).
Figure 2.7 demonstrates sending an SMS message to the Android emulator.

The DDMS provides a lot of visibility into, and control over, the Android emulator,
and is a handy tool for evaluating your Android applications. Before we move on to
building and testing Android applications, it’s helpful to understand what’s happen-
ing behind the scenes and what’s enabling the functionality of the DDMS.

www.it-ebooks.info

http://www.it-ebooks.info/

42

223

CHAPTER 2 Android’s development environment

| B Emulator Contral 53 . =
[Telephony Status —

Yoice: |home ¥ | Speed: |Fu|| 'l

Data: Ihome ‘I Latency: | TR ~
[~ Telephony Actions

Incorming number: | 9734480070

" Yoice
& 5Ms

Message: Hey, Android! Where are we going for lunch?

Figure 2.7 Sending a test SMS to the Android emulator

Command-line tools

The Android SDK ships with a collection of command-line tools, which are located in
the tools subdirectory of your Android SDK installation. Eclipse and the ADT provide a
great deal of control over the Android development environment, but sometimes it’s
nice to exercise greater control, particularly when considering the power and conve-
nience that scripting can bring to a development platform. Next, we’re going to
explore two of the command-line tools found in the Android SDK.

TIP It’s a good idea to add the tools directory to your search path. For exam-
ple, if your Android SDK is installed to c\software\google\ androidsdk, you can
add the Android SDK to your path by performing the following operation in a
command window on your Windows computer:

set path=%path%;c:\software\google\androidsdk\tools;

Or use the following command for Mac OS X and Linux:

export PATH=$PATH: /path_to_Android_SDK_directory/tools

ANDROID ASSET PACKAGING TOOL
You might be wondering just how files such as the layout file main.xml get processed
and exactly where the R.java file comes from. Who zips up the application file for you
into the apk file? Well, you might have already guessed the answer from the heading
of this section—it’s the Android Asset Packaging Tool, or as it’s called from the command
line, aapt. This versatile tool combines the functionality of pkzip or jar along with an
Android-specific resource compiler. Depending on the command-line options you
provide to it, aapt wears a number of hats and assists with your design-time Android
development tasks. To learn the functionality available in aapt, run it from the com-
mand line with no arguments. A detailed usage message is written to the screen.
Whereas aapt helps with design-time tasks, another tool, the Android Debug
Bridge, assists you at runtime to interact with the Android emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the development environment 43

ANDROID DEBUG BRIDGE

The Android Debug Bridge (adb) utility permits you to interact with the Android emula-
tor directly from the command line or script. Have you ever wished you could navigate
the filesystem on your smartphone? Now you can with adb! It works as a client/server
TCP-based application. Although a couple of background processes run on the devel-
opment machine and the emulator to enable your functionality, the important thing
to understand is that when you run adb, you get access to a running instance of the
Android emulator. Here are a couple of examples of using adb. First, let’s look to see if
you have any available Android emulator sessions running:

adb devices<return>

This command returns a list of available Android emulators; figure 2.8 demonstrates
adb locating two running emulator sessions.

Let’s connect to the first Android emulator session and see if your application is
installed. You connect to a device or emulator with the syntax adb shell. You would
connect this way if you had a single Android emulator session active, but because two
emulators are running, you need to specify the serial number, or identifier, to connect
to the appropriate session:

adb -s "serialnumber" shell

Figure 2.9 shows off the Android filesystem and demonstrates looking for a specific
installed application, namely the chapter2 sample application, which you’ll build in
section 2.3.

Using the shell can be handy when you want to remove a specific file from the
emulator’s filesystem, kill a process, or generally interact with the operating environ-
ment of the Android emulator. If you download an application from the internet, for
example, you can use the adb command to install the application:

adb [-s serialnumber] shell install someapplication.apk

This command installs the application named someapplication to the Android emu-
lator. The file is copied to the /data/app directory and is accessible from the Android
application launcher. Similarly, if you want to remove an application, you can run adb
to remove an application from the Android emulator. If you want to remove the

000 X xterm

Figure 2.8 The adb tool
provides interaction at runtime
~ with the Android emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

44

CHAPTER 2 Android’s development environment

Figure 2.9 Using the shell command of the adb, you can browse Android’s filesystem.

com.manning.unlockingandroid.apk sample application from a running emulator’s
filesystem, for example, you can execute the following command from a terminal or
Windows command window:

adb shell rm /data/app/com.manning.unlockingandroid.apk

You certainly don’t need to master the command-line tools in the Android SDK to
develop applications in Android, but understanding what’s available and where to
look for capabilities is a good skill to have in your toolbox. If you need assistance with
either the aapt or adb command, enter the command at the terminal, and a fairly ver-
bose usage/help page is displayed. You can find additional information about the
tools in the Android SDK documentation.

TIP The Android filesystem is a Linux filesystem. Though the adb shell
command doesn’t provide a rich shell programming environment, as you
find on a Linux or Mac OS X system, basic commands such as 1s, ps, kill,
and rm are available. If you’re new to Linux, you might benefit from learning
some basic shell commands.

TELNET

One other tool you’ll want to make sure you’re familiar with is telnet. Telnet allows you
to connect to a remote system with a character-based Ul In this case, the remote sys-
tem you connect to is the Android emulator’s console. You can connect to it with the
following command:

telnet localhost 5554

In this case, localhost represents your local development computer where the
Android emulator has been started, because the Android emulator relies on your
computer’s loopback IP address of 127.0.0.1. Why port 5554? Recall that when you
employed adb to find running emulator instances, the output of that command
included a name with a number at the end. The first Android emulator can generally
be found at IP port 5554.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3

23.1

Building an Android application in Eclipse 45

NOTE In early versions of the Android SDK, the emulator ran at port 5555
and the Android console—where you could connect via Telnet—ran at 5554,
or one number less than the number shown in DDMS. If you’re having diffi-
culty identifying which port number to connect on, be sure to run netstat
on your development machine to assist in finding the port number. Note that
a physical device listens at port 5037.

Using a telnet connection to the emulator provides a command-line means for config-
uring the emulator while it’s running and for testing telephony features such as calls
and text messages.

So far you’ve learned about the Eclipse environment and some of the command-
line elements of the Android tool chain. At this point, it’s time to create your own
Android application to exercise this development environment.

Building an Android application in Eclipse

Eclipse provides a comprehensive environment for Android developers to create appli-
cations. In this section, we’ll demonstrate how to build a basic Android application,
step by step. You’ll learn how to define a simple U, provide code logic to support it,
and create the deployment file used by all Android applications: AndroidManifest.xml.
The goal in this section is to get a simple application under your belt. We’ll leave more
complex applications for later chapters; our focus is on exercising the development
tools and providing a concise yet complete reference.

Building an Android application isn’t much different from creating other types of
Java applications in the Eclipse IDE. It all starts with choosing File > New and selecting
an Android application as the build target.

Like many development environments, Eclipse provides a wizard interface to ease
the task of creating a new application. You’ll use the Android Project Wizard to get off
to a quick start in building an Android application.

The Android Project Wizard

The most straightforward manner to create an Android application is to use the
Android Project Wizard, which is part of the ADT plug-in. The wizard provides a sim-
ple means to define the Eclipse project name and location, the Activity name corre-
sponding to the main UI class, and a name for the application. Also of importance is
the Java package name under which the application is created. After you create an
application, it’s easy to add new classes to the project.

NOTE In this example, you’ll create a brand-new project in the Eclipse work-
space. You can use this same wizard to import source code from another
developer, such as the sample code for this book. Note also that the specific
screens have changed over time as the Android tools mature. If you're follow-
ing along and have a question about this chapter, be sure to post a question
on the Manning Author forum for this book, available online at http://
manning.com/ableson3.

www.it-ebooks.info

http://manning.com/ableson2
http://manning.com/ableson2
http://www.it-ebooks.info/

46

23.2

CHAPTER 2 Android’s development environment

<f5i 1]
New Android Project
Creates a new Android Project resource., q

Project name: | Chapter2
[~ Contents
(% Create new project in workspace
" Create project from existing source
¥ Usa defaulk location

- Properties
Package name: | «com.manning. unbockingandroid

Activity name: | ChapterTwo

Application name: | Chapter Twol

Figure 2.10 Using the Android
Project Wizard, it’s easy to create an

e empty Android application, ready for

customization.

=)

Figure 2.10 demonstrates the creation of a new project named Chapter2 using the
wizard.

TIP You’ll want the package name of your applications to be unique from
one application to the next.

Click Finish to create your sample application. At this point, the application compiles
and is capable of running on the emulator—no further development steps are
required. Of course, what fun would an empty project be? Let’s flesh out this sample
application and create an Android tip calculator.

Android sample application code

The Android Project Wizard takes care of a number of important elements in the
Android application structure, including the Java source files, the default resource
files, and the AndroidManifest.xml file. Looking at the Package Explorer view in
Eclipse, you can see all the elements of this application. Here’s a quick description of
the elements included in the sample application:

= The src folder contains two Java source files automatically created by the wizard.

= ChapterTwo.java contains the main Activity for the application. You’ll modify
this file to add the sample application’s tip calculator functionality.

= Rjava contains identifiers for each of the UI resource elements in the applica-
tion. Never modify this file directly. It automatically regenerates every time a
resource is modified; any manual changes you make will be lost the next time
the application is built.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Android application in Eclipse 47

= Android.jar contains the Android runtime Java classes. This reference to the
android jar file found in the Android SDK ensures that the Android runtime
classes are accessible to your application.

= The res folder contains all the Android resource folders, including these:

¢ Drawables contains image files such as bitmaps and icons. The wizard pro-
vides a default Android icon named icon.png.

* Layout contains an XML file called main.xml. This file contains the UI ele-
ments for the primary view of your Activity. In this example, you’ll modify
this file but you won’t make any significant or special changes—just enough to
accomplish the meager Ul goals for your tip calculator. We cover UI elements,
including Views, in detail in chapter 3. It’s not uncommon for an Android
application to have multiple XML files in the Layout section of the resources.

¢ Values contains the strings.xml file. This file is used for localizing string val-
ues, such as the application name and other strings used by your application.

AndroidManifest.xml contains the deployment information for this project.
Although AndroidManifest.xml files can become somewhat complex, this chapter’s
manifest file can run without modification because no special permissions are
required. We’ll visit AndroidManifest.xml a number of times throughout the book as
we discuss new features.

Now that you know what’s in the project, let’s review how you're going to modify
the application. Your goal with the Android tip calculator is to permit your user to
enter the price of a meal and then tap a button to calculate the total cost of the meal,
tip included. To accomplish this, you need to modify two files: ChapterTwo.java and
the UI layout file, main.xml. Let’s start with the UI changes by adding a few new ele-
ments to the primary View, as shown in the next listing.

Listing 2.1 main.xml, which contains Ul elements

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Chapter 2 Android Tip Calculator"
/>

<EditText
android:id="@+id/mealprice"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:autoText="true"

/>

<Button

android:id="@+id/calculate"

www.it-ebooks.info

http://www.it-ebooks.info/

48

CHAPTER 2 Android’s development environment

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Calculate Tip"
/>

<TextView
android:id="@+id/answer"
android:layout_width="£fill_parent"
android:layout_height="wrap_content"
android:text=""
/>

</LinearLayout>

The layout for this application is straightforward. The overall layout is a vertical, linear
layout with only four elements; all the UI controls, or widgets, are going to be in a verti-
cal arrangement. A number of layouts are available for Android UI design, which we’ll
discuss in greater detail in chapter 3.

A static TextView displays the title of the application. An EditText collects the
price of the meal for this tip calculator application. The EditText element has an
attribute of type android:id, with a value of mealprice. When a UI element contains
the android:id attribute, it permits you to manipulate this element from your code.
When the project is built, each element defined in the layout file containing the
android:id attribute receives a corresponding identifier in the automatically gener-
ated R.java class file. This identifying value is used in the findviewById method,
shown in listing 2.2. If a UI element is static, such as the TextView, and doesn’t need to
be set or read from our application code, the android: id attribute isn’t required.

A button named calculate is added to the view. Note that this element also has
an android:id attribute because you need to capture click events from this UI ele-
ment. A TextView named answer is provided for displaying the total cost, including
tip. Again, this element has an id because you’ll need to update it during runtime.

When you save the file main.xml, it’s processed by the ADT plug-in, compiling the
resources and generating an updated R java file. Try it for yourself. Modify one of the
id values in the main.xml file, save the file, and open R.java to have a look at the con-
stants generated there. Remember not to modify the R java file directly, because if you
do, all your changes will be lost! If you conduct this experiment, be sure to change the
values back as they’re shown in listing 2.1 to make sure the rest of the project will com-
pile as it should. Provided you haven’t introduced any syntactical errors into your
main.xml file, your UI file is complete.

NOTE This example is simple, so we jumped right into the XML file to define
the UI elements. The ADT also contains an increasingly sophisticated GUI lay-
out tool. With each release of the ADT, these tools have become more and
more usable; early versions were, well, early.

Double-click the main.xml file to launch the layout in a graphical form. At the bottom
of the file you can switch between the Layout view and the XML view. Figure 2.11
shows the Layout tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Android application in Eclipse 49

=7 Uncategorized

IS Layours M Chapter 2 Android Tip Calculator /-'-
[A) AbsoluteLayout
@ DialerFilter
[E] ExpandableList...
@ FramelLayout
CridView

HorizontalScro...
(1) imageswitcher

(52 Outine SS\ =1

.[_ Vmim =t 4|
~ LinearLayout

(©) GestureOverla... ® Texsviaw

@ SurfacaYiew @ mealprice (EditText)

@ View calculate (Button)

(@) viewstub (@) answer (TextView)

() AnalogClock
@ AutoComplete...

Figure 2.11 Using the GUI Layout tool provided in the ADT to define the user interface
elements of your application

It’s time to turn our attention to the file ChapterTwo.java to implement the tip calcu-
lator functionality. ChapterTwo.java is shown in the following listing. We’ve omitted
some imports for brevity. You can download the complete source code from the Man-
ning website at http://manning.com/ableson3.

Listing 2.2 ChapterTwo.java: implements the tip calculator logic

package com.manning.unlockingandroid;
import com.manning.unlockingandroid.R;
import android.app.Activity;
import java.text.NumberFormat;
import android.util.Log;
// some imports omitted
public class ChapterTwo extends Activity ({
public static final String tag = "Chapter2";
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;

setContentView (R.layout.main) ; Reference
final EditText mealpricefield = EdltTex.tfor
(EditText) findviewById(R.id.mealprice); < mealprice

final TextView answerfield =
(TextView) findviewById(R.id.answer) ;

final Button button = (Button) findviewById(R.id.calculate);
button.setOnClickListener (new Button.OnClickListener () {
public void onClick(View v) {
try {
Log.i(tag, "onClick invoked."); < i’ Log entry

// grab the meal price from the UI

String mealprice =

mealpricefield.getText () .toString() ; < c’ Get meal price
Log.i(tag, "mealprice is [" + mealprice + "]1");

String answer = "";

// check to see if the meal price includes a "S$"

www.it-ebooks.info

http://manning.com/ableson2
http://www.it-ebooks.info/

CHAPTER 2 Android’s development environment

if (mealprice.indexOf("$") == -1) {
mealprice = "$" + mealprice;

}

float fmp = 0.0F;

// get currency formatter

NumberFormat nf =

java.text .NumberFormat.getCurrencyInstance () ;

// grab the input meal price

fmp = nf.parse(mealprice).floatValue() ;

// let's give a nice tip -> 20%

fmp *= 1.2;

Log.1i(tag, "Total Meal Price (unformatted) is ["

+ fmp + 1)
// format our result
answer = "Full Price, Including 20% Tip: "
+ nf.format (fmp) ; Display full price,
answerfield.setText (answer) ; | including tip
Log.1i(tag, "onClick complete.");
} catch (java.text.ParseException pe) { < Catch
Log.1(tag, "Parse exception caught"); parse
answerfield.setText ("Failed to parse amount?") ; error

} catch (Exception e) {
Log.e(tag, "Failed to Calculate Tip:" + e.getMessage());
e.printStackTrace () ;
answerfield.setText (e.getMessage()) ;

Let’s examine this sample application. Like all but the most trivial Java applications,
this class contains a statement identifying which package it belongs to: com.manning
.unlockingandroid. This line containing the package name was generated by the
Project Wizard.

You import the com.manning.unlockingandroid.R class to gain access to the defi-
nitions used by the UL This step isn’t required, because the R class is part of the same
application package, but it’s helpful to include this import because it makes your code
easier to follow. Newcomers to Android always ask how the identifiers in the R class are
generated. The short answer is that they’re generated automatically by the ADT! Also
note that you’ll learn about some built-in UI elements in the R class later in the book
as part of sample applications.

Though a number of imports are necessary to resolve class names in use, most of
the import statements have been omitted from listing 2.2 for the sake of brevity. One
import that’s shown contains the definition for the java.text.NumberFormat class,
which is used to format and parse currency values.

Another import shown is for the android.util.Log class, which is employed to
make entries to the log. Calling static methods of the Log class adds entries to the log.
You can view entries in the log via the LogCat view of the DDMS perspective. When
making entries to the log, it’s helpful to put a consistent identifier on a group of

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Android application in Eclipse 51

related entries using a common string, commonly referred to as the fag. You can filter
on this string value so you don’t have to sift through a mountain of LogCat entries to
find your few debugging or informational messages.

Now let’s go through the code in listing 2.2. You connect the UI element contain-
ing mealprice to a class-level variable of type EditText @ by calling the findview-
ById() method and passing in the identifier for the mealprice, as defined by the
automatically generated R class, found in R.java. With this reference, you can access
the user’s input and manipulate the meal price data as entered by the user. Similarly,
you connect the UI element for displaying the calculated answer back to the user,
again by calling the findviewById () method.

To know when to calculate the tip amount, you need to obtain a reference to the
Button so you can add an event listener. You want to know when the button has been
clicked. You accomplish this by adding a new OnClickListener() method named
onClick.

When the onClick () method is invoked, you add the first of a few log entries using
the static i () method of the Log class @. This method adds an entry to the log with an
Information classification. The Log class contains methods for adding entries to the
log for different levels, including Verbose, Debug, Information, Warning, and Error.
You can also filter the LogCat based on these levels, in addition to filtering on the pro-
cess ID and tag value.

Now that you have a reference to the mealprice UI element, you can obtain the
text entered by the user with the getText () method of the EditText class ©. In
preparation for formatting the full meal price, you obtain a reference to the static
currency formatter.

Let’s be somewhat generous and offer a 20 percent tip. Then, using the formatter,
let’s format the full meal cost, including tip. Next, using the setText () method of the
TextView Ul element named answerfield, you update the UI to tell the user the total
meal cost @.

Because this code might have a problem with improperly formatted data, it’s a
good practice to put code logic into try/catch blocks so that the application behaves
when the unexpected occurs (5}

Additional boilerplate files are in this sample project, but in this chapter we’re
concerned only with modifying the application enough to get basic, custom function-
ality working. You’ll notice that as soon as you save your source files, the Eclipse IDE
compiles the project in the background. If there are any errors, they’re listed in the
Problems view of the Java perspective; they’re also marked in the left margin with a
small red x to draw your attention to them.

TIP Using the command-line tools found in the Android SDK, you can
create batch builds of your applications without using the IDE. This approach
is useful for software shops with a specific configuration-management
function and a desire to conduct automated builds. In addition to the
Android-specific build tools found under the tools subdirectory of your

www.it-ebooks.info

http://www.it-ebooks.info/

52

233

CHAPTER 2 Android’s development environment

Android SDK installation, you’ll also need JDK version 5.0 or later to com-
plete command-line application builds. Creating sophisticated automated
builds of Android applications is beyond the scope of this book, but you can
learn more about the topic of build scripts by reading Ant in Action: Second
Edition of Java Development with Ant, by Steve Loughran and Erik Hatcher,
found at www.manning.com/loughran/.

Assuming there are no errors in the source files, your classes and UTI files will compile
correctly. But what needs to happen before your project can be run and tested in the
Android emulator?

Packaging the application

At this point, your application has compiled and is ready to be run on the device. Let’s
look more deeply at what happens after the compilation step. You don’t need to per-
form these steps because the ADTs handle them for you, but it’s helpful to understand
what’s happening behind the scenes.

Recall that despite the compile-time reliance on Java, Android applications don’t
run in a Java VM. Instead, the Android SDK employs the Dalvik VM. For this reason,
Java byte codes created by the Eclipse compiler must be converted to the .dex file for-
mat for use in the Android runtime. The Android SDK has tools to perform these
steps, but thankfully the ADT takes care of all of this for you transparently.

The Android SDK contains tools that convert the project files into a file ready to
run on the Android emulator. Figure 2.12 depicts the generalized flow of source files
in the Android build process. If you recall from our earlier discussion of Android SDK
tools, the tool used at design time is aapt. Application resource XML files are pro-
cessed by aapt, with the R java file created as a result—remember that you need to
refer to the R class for Ul identifiers when you connect your code to the UL Java source

layout.xml ‘ R.java

q * class ‘ * dex

*java

android-
manifest.xml

application.apk file

Figure 2.12 The ADT employs tools from the Android SDK to convert source
files to a package that’s ready to run on an Android device or emulator.

www.it-ebooks.info

http://www.manning.com/loughran/
http://www.it-ebooks.info/

24

Using the Android emulator 53

File Commands Tools Favorites Options Help

QEIMB@'&Q@ S

Extract To View Delete: Info ¥irusScan Comment SFX

(| |_] Chapter2.apk - ZIP archive, unpacked size 15,220 bytes

Name & | size | Packed [Type [Modfied | rCaZ |
.. Folder

Cres Folder 2/25]2008 12:45 AM

[Androidmanifest mi 1,564 1,564 XML Document 2/25{2008 12:45 AM 830104CD
[8) classes. dex 4,835 2,011 Filedex 2/25/2008 12:59 &M 55438889
@ FESOUrCEs, arse 1,036 1,036 File arsc 2[25/2008 12:45 AM E1AFSSEE

Figure 2.13 The Android application file format is pzip compatible.

files are first compiled to class files by your Java environment, typically Eclipse and the
JDT. After they’re compiled, they’re then converted to dex files to be ready for use
with Android’s Dalvik VM. Surprisingly, the project’s XML files are converted to a
binary representation, not to text as you might expect. But the files retain their .xml
extension on the device.

The converted XML files, a compiled form of the nonlayout resources including
the Drawables and Values, and the dex file (classes.dex) are packaged by the aapt
tool into a file with a naming structure of projeciname.apk. The resulting file can be
read with a pkzip-compatible reader, such as WinRAR or WinZip, or the Java archiver,
jar. Figure 2.13 show this chapter’s sample application in WinRAR.

Now you’re finally ready to run your application on the Android emulator! It’s
important to become comfortable with working in an emulated environment when
you’re doing any serious mobile software development. There are many good reasons
for you to have a quality emulator available for development and testing. One simple
reason is that having multiple real devices with requisite data plans is an expensive
proposition. A single device alone might cost hundreds of dollars. Android continues
to gain momentum and is finding its way to multiple carriers with numerous devices
and increasingly sophisticated capabilities. Having one of every device is impractical
for all but development shops with the largest of budgets. For the rest of us, a device
or two and the Android emulator will have to suffice. Let’s focus on the strengths of
emulator-based mobile development.

Speaking of testing applications, it’s time to get the tip calculator application
running!

Using the Android emulator

At this point, your sample application, the Android tip calculator, has compiled suc-
cessfully. Now you want to run your application in the Android emulator. Before you
can run an application in the emulator, you have to configure the emulated environ-
ment. To do this, you’ll learn how to create an instance of the AVD using the AVD Man-
ager. After you’ve got that sorted out, you’ll define a run configuration in Eclipse,
which allows you to run an application in a specific AVD instance.

www.it-ebooks.info

http://www.it-ebooks.info/

54

24.1

CHAPTER 2 Android’s development environment

TIP If you've had any trouble building the sample application, now would be
a good time to go back and clear up any syntax errors that are preventing the
application from building. In Eclipse, you can easily see errors because
they’re marked with a red x next to the project source file and on the offend-
ing lines. If you continue to have errors, make sure that your build environ-
ment is set up correctly. Refer to appendix A of this book for details on
configuring the build environment.

Setting up the emulated environment

Setting up your emulator environment can be broken down into two logical steps.
The first is to create an instance of the AVD via the AVD Manager. The second is to
define a run configuration in Eclipse, which permits you to run your application in a
specific AVD instance. Let’s start with the AVD Manager.

Emulator vs. simulator

You might hear the words emulator and simulator thrown about interchangeably.
Although they have a similar purpose—testing applications without the requirement
of real hardware—those words should be used with care.

A simulator tool works by creating a testing environment that behaves as close to
100 percent in the same manner as the real environment, but it’s just an approxima-
tion of the real platform. This doesn’t mean that the code targeted for a simulator will
run on a real device, because it’s compatible only at the source-code level. Simulator
code is often written to be run as a software program running on a desktop computer
with Windows DLLs or Linux libraries that mimic the application programming inter-
faces (APIs) available on the real device. In the build environment, you typically select
the CPU type for a target, and that’s often x86/Simulator.

In an emulated environment, the target of your projects is compatible at the binary
level. The code you write works on an emulator as well as the real device. Of course,
some aspects of the environment differ in terms of how certain functions are imple-
mented on an emulator. For example, a network connection on an emulator runs
through your development machine’s network interface card, whereas the network
connection on a real phone runs over the wireless connection such as a GPRS, EDGE,
or EVDO network. Emulators are preferred because they more reliably prepare you to
run your code on real devices. Fortunately, the environment available to Android
developers is an emulator, not a simulator.

MANAGING AVDS

Starting with version 1.6 of the Android SDK, developers have a greater degree of con-
trol over the emulated Android environment than in previous releases. The SDK and
AVD Manager permit developers to download the specific platforms of interest. For
example, you might be targeting devices running version 1.5 and 2.2 of the Android
platform, but you might want to add to that list as new versions become available. Fig-
ure 2.14 shows the SDK and AVD Manager with a few packages installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Virtual Devices
Installed Packages
Available Packages

Using the Android emulator

Android SDK and AVD Manag_er

SDK Location: /Users/fableson /Software fandroid fandroid-sdk-mac_86/
"Ir\st‘!lled Packages
x Android SDK Tools, revision &
Documentation for Android SDK, API 8, revision 1
7' SDK Platform Android 2.2, AP 8, revision 2
& samples for SDK API 8, revision 1
' Google APIs by Google Inc., Android API 8, revision 2
W' SDK Platform Android 2.1-updatel, APl 7, revision 2
(_5 Samples for SDK APl 7, revision 1
'i]. GCoogle APls by Google Inc., Android API 7, revision 1
‘"' SDK Platform Android 2.0.1, API 6, revision 1
EL Gooagle APls by Google Inc., Android API 6, revision 1
#' SDK Platform Android 1.6, API 4, revision 2

Description

Figure 2.14 The installed Android packages listed in the AVD and SDK Manager

Delete. Refresh

55

After you’ve installed the Android platforms that you want, you can define instances
of the AVD. To define instances, select which platform you want to run on, select the
device characteristics, and then create the AVD, as shown in figure 2.15.

M T 7 Create new Android Virtual Device (AVD)

Name: New AVD
Targer. [Coosle APls Gongle nc) - Al Leveis T8)
SD Card:
@ Size: Eﬁ MiB ,;]
() File: Browse...
Skin:
() Built-in:
WVCABS4
() Resolution ~ WQVGA400
HVGA
Hardware: WQVGA432 =
Property WVCABDD =1
Abstracted LC QVGA —
I —
rmde the existing AVD with the same name

X AVD name 'New AVD' contains invalid characters.
Allowed characters are: a-z A-Z0-9 . _ -

\ Cancel)

Figure 2.15 Creating a new AVD
includes defining characteristics
such as SD card storage capacity and
screen resolution.

www.it-ebooks.info

http://www.it-ebooks.info/

56

CHAPTER 2 Android’s development environment

Android SDK and AVD Manager

Virtual Devices List of existing Android Virtual Devices located at /Users/fableson/.android /avd

Installed Packages

AVD Name Target Name Platform APl Level
Available Packages ~ A22_NOMAPS Android 2.2 2.2 8

~ AZ2 Google APis (Google Inc.) 2.2 8

~ fitc Google APIs (Google Inc.) 2.2 8

~ A valid Android Virtual Device. A repairable Android Virtual Device.

X An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Figure 2.16 Available AVDs defined. You can set up as many different AVD instances as your
requirements demand.

At this point, your AVD is created and available to be started independently. You can
also use it as the target of a run configuration. Figure 2.16 shows a representative list
of available AVDs on a single development machine.

NOTE Each release of the Android platform has two versions: one with
Google APIs and one without. In Figure 2.16, notice that the first entry, named
A22_NOMAPS, has a target of Android 2.2. The second entry, A22, has a target
of Google APIs (Google Inc.). The Google version is used when you want to
include application functionality such as Google Maps. Using the wrong target
version is a common problem encountered by developers new to the Android
platform hoping to add mapping functionality to their applications.

Now that you have the platforms downloaded and the AVDs defined, it’s time to wire
these things together so you can test and debug your application!

SETTING UP EMULATOR RUN CONFIGURATIONS
Your approach is to create a new
Android emulator profile so you can

™ () Java - Chapter2/res/layout/main.xml - Eclipse Platform - [Users/fal

1) |G I8 f &t 00 lBse l®ms 210
easily reuse your test environment set- Gl CraSll S a 1 Chapter? T
tings. The starting place is the Open a2 & o 2 AndroidChapter1Example

. . . I AndroidChapter 1Example !
Run Dialog menu in the Eclipse IDE, as 28 e Run As -

Run Configurations...
Organize Favorites...
P MY akeabiral aunnre 1

8 src
28 gen [Generated Java Files,
=i Fannla 01 [Andeaid 3 011

shown in figure 2.17. As new releases of

Eclipse become available, these screen

shots might vary slightly from your per-
sonal development environment.

Figure 2.17 Creating a new launch configuration for
testing your Android application

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Android emulator 57

,' e Run Configurations.

Create, and run configurations

Android Application

Configure launch settings from this dialog:

New lil-lﬂ;i_"‘ g! xt 7 = Press the "New' button to create a configuration of the selected type.
v [T Android Application | = Press the 'Duplicate’ button to copy the selected configuration.
=
_ L} Sensors X - Press the 'Delete’ button to remove the selected configuration.

Ju Android JUnit Test
5 Java Applet ':s - Press the 'Filter' button to configure filtering options.
L] Java Application - Edit or view an existing configuration by selecting it
Ju Junit
G Majo Application Conf L h = _ f - f
Jby Task Context Test onfigure launch perspective settings from the Perspectives preference page.

Figure 2.18 Create a new run configuration based on the Android template.

You want to create a new launch configuration, as shown in figure 2.18. To begin this
process, highlight the Android Application entry in the list to the left, and click the
New Launch Configuration button, circled in figure 2.18.

Now, give your launch configuration a name that you can readily recognize. You’re
going to have quite a few of these launch configurations on the menu, so make the
name something unique and easy to identify. The sample is titled Android Tip Calcu-
lator, as shown in figure 2.19. The three tabs have options that you can configure. The
Android tab lets you select the project and the first Activity in the project to launch.

06 Run Configurations
Create, and run c]
Android Application @
R =
Name: Android Tip Calculator
type filter text E] ,] }
Android Target|] Common
€l Android Application Proj \\@
roject:
@ AndroidChapterl *
a Chapter2 Chagter? " Browse...
€1 New_configuratio :
Ju Android JUnit Test _ Launch Action:
% Java Applet ") Launch Default Activity
[3] Java Application =
Ju Junit (*) Launch: | com ing.unlocki droid.ChapterTwo >
D Meajo Application () Do Nothing
Juy Task Context Test s
[4) Y al» ([Apply Revert
Filter matched 10 of 10 items
Close (Run

@

Figure 2.19 Setting up the Android emulator launch configuration

www.it-ebooks.info

http://www.it-ebooks.info/

58

¥

Name: Andro

| :J Android

CHAPTER 2 Android’s development environment

d Tip Calculator

E Targe?__ﬂ__' éommo;]

Deployment Target Selection Mode

Select a preferred Android Virtual Device for deployment:

AVD Name Target Name Platform APl Level
M A22 Coogle APIs (Google Inc.) 2.2 8
L] fitc Coogle APIs (Coogle Inc.) 2.2 8

Emulator launch parameters:
Network Speed: Full

Network Latency: None

Additional Emulator Command Line Options

Figure 2.20 Selecting the AVD to host the application and specify launch parameters

24.2

Use the next tab to select the AVD and network characteristics that you want, as shown
in figure 2.20. Additionally, command-line parameters might be passed to the emula-
tor to customize its behavior. For example, you might want to add the parameter
wipe-data to erase the device’s persistent storage prior to running your application
each time the emulator is launched. To see the available command-line options avail-
able, run the Android emulator from a command or terminal window with the option
emulator -help.

Use the third tab to put this configuration on the Favorites menu in the Eclipse
IDE for easy access, as shown in figure 2.21. You can select Run, Debug, or both. Let’s
choose both for this example, because it makes for easier launching when you want to
test or debug the application.

Now that you’ve defined your AVD and created a run configuration in Eclipse, you
can test your application in the Android emulator environment.

Testing your application in the emulator

You’re finally ready to start the Android emulator to test your tip calculator applica-
tion. Select the new launch configuration from the Favorites menu, as shown in
figure 2.22.

If the AVD that you choose is already running, the ADT attempts to install the appli-
cation directly; otherwise, the ADT must first start the AVD and then install the applica-
tion. If the application was already running, it’s terminated and the new version
replaces the existing copy within the Android storage system.

www.it-ebooks.info

http://www.it-ebooks.info/

2.5

Debugging your application 59

OO Run Configurations

Create, ge, and run c g
Android Application

SR B 3B
Name: Android Tip Calculator
type filter text
=] Android |i Target |] Comman
€1 Android Application
Save as
€l Android Tip Cz =
€ AndroidChapte (#) Local file
€ Chapter2 ¥ Shared 8t Chaptar? 'm-.
Q d f flhapters s
Ju Android JUnit Test A -
5 Java Applet Tt e e
I3 Java Application Sy T S IVOTHIEE Enenl LR ENCOCTG
Ju JUnit @ © Run) Default - inherited (MacRoman)
D Mojo Application E '?} Debug ™\ Other | 150-8859-1 .
Juy Task Context Test g
Standard Input and Output
V! Allocate Console (necessary for input)
| File
Workspace... File System... " Variables...
| Append
V' Launch in background
[y la » Apply Revert
Filter matched 10 of 10 items
@ Close Run

Figure 2.21 Adding the run configuration to the toolbar menu

At this point, the Android tip calculator should be running in the Android emulator!
Go ahead; test it! But wait, what if there’s a problem with the code but you’re not sure
where? It’s time to briefly look at debugging an Android application.

Debugging your application

Debugging an application is a skill no pro-
grammer can survive without. Fortunately,
debugging an Android application is straight-
forward under Eclipse. The first step to take
is to switch to the Debug perspective in the
Eclipse IDE. Remember, you switch from one
perspective to another by using the Open
Perspective submenu found under the Win-
dow menu.

www.it-ebooks.info

AP0 BEE o 0]

e @ 1 Android Tip Calculator

= % | . @ 2AndroidChapterlExample
I
o Run As >
Run Configurations...
d Java Files) Organize Favorites...
imdeatd %A ur

Figure 2.22 Starting this chapter’s sample
application, an Android tip calculator

http://www.it-ebooks.info/

60 CHAPTER 2 Android’s development environment

Tvos

EdeTat Smmiconcni et}
R

.

0

charfi] (ded2000748820)

.
hapter | (e300 TITM)
Bt (el 000915400
Livoutfilgrmant. (<b-400008 75500

j - =
R Vo
El RLogl4sTy Chapter2 |
Tine | lpid |tag JEETYET
=01 10 T 800 Chapter? ariich Thve
vab 001 2033 T 600 Chapher? Total Neal price fuslorsatted) i [23.9761
seeisy mealp
B84t
Sal
B
oy = B @ D 8:26PM
B = Chapter Two Sample.
ey "= 1.3; ' o .
$19.98
E0g.i{tay, "Toral Beal price (wnforsacced] is [+ fmp + *]%)2
wer ® SPULL Price; Includiag 30v Tipt * ' af.ferwat(tmp)i Calosate T
- 1123 4 s:6 78 90
0030 S BRI R I e
caton (Exeeption AL ESE D BRSO TR ED SR TR 181

Figure 2.23 The Debug perspective permits you to step line-by-line through an Android application.

Starting an Android application for debugging is as simple as running the application.
Instead of selecting the application from the Favorites Run menu, use the Favorites
Debug menu instead. This menu item has a picture of an insect (that is, a bug).
Remember, when you set up the launch configuration, you added this configuration
to both the Run and the Favorites Debug menus.

The Debug perspective gives you debugging capabilities similar to other develop-
ment environments, including the ability to single-step into, or over, method calls,
and to peer into variables to examine their value. You can set breakpoints by double-
clicking in the left margin on the line of interest. Figure 2.23 shows how to step
through the Android tip calculator project. The figure also shows the resulting values
displayed in the LogCat view. Note that the full meal price, including tip, isn’t dis-
played on the Android emulator yet, because that line hasn’t yet been reached.

Now that we’ve gone through the complete cycle of building an Android
application and you have a good foundational understanding of using the Android
ADT, you're ready to move on to digging in and unlocking Android application devel-
opment by learning about each of the fundamental aspects of building Android
applications.

www.it-ebooks.info

http://www.it-ebooks.info/

2.6

Summary 61

Summary

This chapter introduced the Android SDK and offered a glance at the Android SDK’s
Java packages to get you familiar with the contents of the SDK from a class library per-
spective. We introduced the key development tools for Android application develop-
ment, including the Eclipse IDE and the ADT plug-in, as well as some of the behind-
the-scenes tools available in the SDK.

While you were building the Android tip calculator, this chapter’s sample applica-
tion, you had the opportunity to navigate between the relevant perspectives in the
Eclipse IDE. You used the Java perspective to develop your application, and both the
DDMS perspective and the Debug perspective to interact with the Android emulator
while your application was running. A working knowledge of the Eclipse IDE’s per-
spectives will be helpful as you progress to build the sample applications and study the
development topics in the remainder of this book.

We discussed the Android emulator and some of its fundamental permutations
and characteristics. Employing the Android emulator is a good practice because of
the benefits of using emulation for testing and validating mobile software applications
in a consistent and cost-effective manner.

From here, the book moves on to dive deeper into the core elements of the
Android SDK and Android application development. The next chapter continues this
journey with a discussion of the fundamentals of the Android UL

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Exercising
the Android SDK

rI?qe Android SDK provides a rich set of functionality, enabling developers to
create a wide range of applications. In part 2 we systematically examine the
major portions of the Android SDK, including practical examples in each chap-
ter. We start with a look at the application lifecycle and user interfaces (chapter
3), graduating to Intents and Services (chapter 4). No platform discussion is
complete without a thorough examination of the available persistence and stor-
age methods (chapter 5), and in today’s connected world, we can’t overlook
core networking and web services skills (chapter 6). Because the Android plat-
form is a telephone, among other things, we look at the telephony capabilities of
the platform (chapter 7). Next we move on to notifications and alarms (chapter
8). Android graphics and animation are covered (chapter 9) as well as multime-
dia (chapter 10). Part 2 concludes with a look at the location-based services avail-
able to the Android developer (chapter 11).

www.it-ebooks.info

http://code.google.com/android/reference/android/view/View.html
http://code.google.com/android/reference/android/view/View.html
http://code.google.com/android/reference/android/view/View.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

User interfaces

This chapter covers

Understanding activities and views
Exploring the Activity lifecycle
Working with resources

Exploring the AndroidManifest.xml file

With our introductory tour of the main components of the Android platform and
development environment complete, it’s time to look more closely at the funda-
mental Android concepts surrounding activities, views, and resources. Activities
provide screens for your application and play a key role in the Android application
lifecycle. The Android framework manages the life span of visible screens, and
you’ll learn how to respond to the various lifecycle points you encounter.

The visible part of an Activity consists of subcomponents called views. Views
are what your users see and interact with. Views handle layout, provide text ele-
ments for labels and feedback, provide buttons and forms for user input, and draw
images to the device screen. You can also associate views with interface event listen-
ers, such as those for touch-screen controls. A hierarchical collection of views is
used to compose an Activity.

65

www.it-ebooks.info

http://www.it-ebooks.info/

66

3.1

CHAPTER 3 User interfaces

Views use strings, colors, styles, and
graphic resources, which Android com-
piles into a binary form and makes avail-
able to applications as resources. The ¥

Activity

View (text label) View (text input)

automatically generated R.java class, ‘)
View (selection input)

which we introduced in chapter 1, pro-

vides a reference to individual resources |
and is the bridge between binary refer-
ences and the source code of an

View (map) View (image)

Android application. You use the R class,

for example, to grab a string of text or a

color and add it to a view. The relation- T ™

ship between activities, views, and

resources is depicted in figure 3.1. C Resources)
Along with the components you use to

build an application—views, resources, Manifest

and activities—Android includes the (application definition, activities, permissions, intents)

manifest file we introduced in chapter 1:
AndroidManifest.xml. This XML file pro- Figure 3.1 High-level diagram of Activity,
vides entrance points into your app, as view, resource, and manifest relationships,

. .. . showing that activities are made up of views,
well as describes what permissions it has e o 5 e
and what components it includes.
Because every Android application requires this file, we’ll address it in more detail in
this chapter, and we’ll come back to it frequently in later parts of the book. The mani-
fest file is the one-stop shop for the platform to start and manage your application.

If you’ve done any development involving Uls on any platform, the concepts of
activities, views, and resources should seem familiar. Android approaches UI in a
slightly different way, and this chapter will help address common points of confusion.

First, we’ll introduce the sample application that we use to walk through these con-
cepts, moving beyond theory and into the code to construct an Activity. You can
download the complete source code for this sample from this book’s website. This
chapter will include the portions that focus on the user interface, chapter 4 adds the
sections that integrate with other Android apps, and the online portions include the
remaining components such as networking and parsing.

Creating the Activity

Over the course of this chapter and the next, you’ll build a sample application that
allows users to search for restaurant reviews based on location and cuisine. This appli-
cation, RestaurantFinder, will also allow the user to call the restaurant, visit its website,
or look up map directions. We chose this application as a starting point because it has
a clear and simple use case, and because it involves many different parts of the

www.it-ebooks.info

http://code.google.com/android/reference/view-gallery.html
http://code.google.com/android/reference/view-gallery.html
http://code.google.com/android/reference/view-gallery.html
http://www.it-ebooks.info/

Creating the Activity 67

Android platform. Making a sample application will let us cover a lot of ground
quickly, with the additional benefit of providing a useful app on your Android phone.
To create this application, you’ll need three basic screens to begin with:

= A criteria screen where the user enters parameters to search for restaurant
reviews

= A list-of-reviews screen that shows pages of results matching the specified
criteria

= Areview-detail page that shows the details for a selected review item

Recall from chapter 1 that a screen is roughly analogous to an Activity, which means
you’ll need three Activity classes, one for each screen. When complete, the three
screens for the RestaurantFinder application will look like what’s shown in figure 3.2.

Our first step in exploring activities and views will be to build the RestaurantFinder
ReviewCriteria screen. From there, we’ll move on to the others. Along the way, we’ll
highlight many aspects of designing and implementing your Android Ul

Enter riteria Ml & 12:28 AM
Location (City, ST):) |

Cuisine:
Foodlife Bl Gl @ 12:28 am
p = | Restauranttinder-feview |

Hot Doug's

The Wie

Get Reviews

Get reviews

MENU

Pizzeria Uno Chicago Bar and Grill

Figure 3.2 RestaurantFinder application screenshots,
showing three activities: ReviewCriteria,
ReviewList, and ReviewDetail

www.it-ebooks.info

http://code.google.com/android/reference/view-gallery.html
http://www.it-ebooks.info/

68

3.1.1

CHAPTER 3 User interfaces

Creating an Activity class

To create a screen, extend the android.app.Activity base class (as you did in chap-
ter 1) and override the key methods it defines. The following listing shows the first
portion of the RestaurantFinder’s ReviewCriteria class.

Listing 3.1 First half of the ReviewCriteria Activity class

public class ReviewCriteria extends Activity {
private static final int MENU_GET_REVIEWS = Menu.FIRST;
private Spinner cuisine;
private Button grabReviews;
private EditText location;

@override Override
public void onCreate(Bundle savedInstanceState) { < onCrﬁueO
super.onCreate (savedInstanceState) ; Define layout with
setContentView(R.layout.review_criteria); < setContentView
location = (EditText)
findviewById(R.id.location) ; cuisine = (Spinner)
findViewById(R.id.cuisine) ; < .
grabReviews = (Button) 9 :nﬂatexnfws
findviewById(R.id.get_reviews_button) ; < rom

ArrayAdapter<String> cuisines =
new ArrayAdapter<String>(this, R.layout.spinner_view,
getResources() .
getStringArray (R.array.cuisines)) ; < Define
cuisines.setDropDownViewResource (J’

ArrayAdapter

A =V instance
cuisine.setAdapter (cuisines) ;

grabReviews.setOnClickListener (
new OnClickListener() {
public void onClick(View v) {
handleGetReviews () ;

Set view for

R.layout.spinner_view_dropdown) ; <
$ drop-down

1)
}
The ReviewCriteria class extends android.app.Activity, which does a number of
important things. It gives your application a context, because Activity itself indi-
rectly extends the android.content.Context class; Context provides access to many
important Android operations, as you’ll see later. Extending Activity also causes you
to inherit the Android lifecycle methods, which give the framework a hook to start
and run your application. Finally, the Activity provides a container into which vView
elements can be placed.

Because an Activity represents an interaction with the user, it needs to provide
visible components on the screen. In the ReviewCriteria class, you reference three
views in the code: cuisine, grabReviews, and location. cuisine is a Spinner, a spe-
cial Android single-selection list component. grabReviews is a Button. location is a
type of View called EditText, a basic text-entry component.

You place View elements like these within an Activity using a layout to define the
elements of a screen. You can define layouts and views directly in code or in a layout

www.it-ebooks.info

http://www.it-ebooks.info/

3.1.2

Creating the Activity 69

XML resource file. You’ll learn more about views and layouts as we progress through
this section.

After an Activity is started, the Android application lifecycle rules take over and
the onCreate () method is invoked @. This method is one of a series of important life-
cycle methods the Activity class provides. Every Activity overrides onCreate(),
where component initialization steps are invoked.

Inside the onCreate () method, you’ll typically invoke setContentView() to dis-
play the content from an XML layout file @. An XML layout file defines View objects,
organized into a hierarchical tree structure. After they're defined in relation to the
parent layout, each view can then be inflated at runtime.

XML vs. programmatic layouts

Android provides APIs that allow you to manage your layout through Java code instead
of XML. Although this approach may be more familiar and comfortable for develop-
ers from other mobile platforms, you should generally avoid it. XML layouts tend to be
much easier to read, understand, and maintain, and they nicely enforce separation of
your app’s Ul from its logic.

Views that need some runtime manipulation, such as binding to data, can then be
referenced in code and cast to their respective subtypes €. Views that are static—
those you don’t need to interact with or update at runtime, such as labels—don’t need
to be referenced in code at all. These views automatically show up on the screen
because they’re part of the layout as defined in the XML. For example, the screen-
shots in figure 3.1 show two labels in the ReviewCriteria screen as well as the three
inputs we’ve already discussed. These labels aren’t present in the code; they’re
defined in the review_criteria.xml file that’s associated with this Activity. You’ll see
this layout file when we discuss XML-defined resources.

The next area of interest in ReviewCriteria Activity is binding data to the select
list views, the Spinner objects. Android provides an adapter concept used to link views
with an underlying data source. An adapter is a collection handler that returns each
item in the collection as a View. Android provides many basic adapters: ListAdapter,
ArrayAdapter, GalleryAdapter, CursorAdapter, and more. You can also easily create
your own adapter, a technique you’ll use when we discuss creating custom views in sec-
tion 3.2. Here, we’re using an ArrayAdapter that’s populated with Context (this), a
View element defined in an XML resource file, and an array representing the data.
Note that the underlying data source for the array is also defined as a resource in XML
O—which you’ll learn more about in section 3.3. When we create the ArrayAdapter,
we define the View to be used for the element shown in the Spinner before it’s
selected by the user. After it’s selected, it must provide a different visual interface—
this is the view defined in the drop-down ©. After we define the adapter and its view
elements, we set it in the Spinner object.

The last thing this initial Activity demonstrates is our first explicit use of event
handling. UI elements support many types of events, many of which you’ll learn about

www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 3 User interfaces

in section 3.2.7. In this instance, we’re using an OnClickListener with our Button in
order to respond to button clicks.

After the onCreate () method finishes and our data is bound to our Spinner views,
we have menu items and their associated action handlers. The next listing shows how
these are implemented in the last part of ReviewCriteria.

Listing 3.2 Second half of the ReviewCriteria Activity class

@Override
public boolean onCreateOptionsMenu (Menu menu) {
super.onCreateOptionsMenu (menu) ;
menu.add (0, ReviewCriteria.MENU_GET_REVIEWS, O,
R.string.menu_get_reviews) .setIcon (
android.R.drawable.ic_menu_more) ;
return true;

}

@Override
public boolean onMenultemSelected(int featureId, Menultem item) ({
switch (item.getItemId()) {
case MENU_GET_REVIEWS: <

Respond when

handleGetReviews () ; menu item selected

return true;
}
return super.onMenultemSelected(featureId, item);

} Define method to
private void handleGetReviews () { < pnxessreﬁews
if ((location.getText() == null) ||
location.getText () .toString() .equals("")) {

new AlertDialog.Builder (this).setTitle(R.string.alert_label).
setMessage (R.string.location_not_supplied_message) .
setPositiveButton ("Continue",
new android.content.DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog, int argl) {
// Just close alert.
}
}) .show() ;
return;
}
RestaurantFinderApplication application =
(RestaurantFinderApplication) Use Application
getApplication(); < object for state
application.setReviewCriteriaCuisine (
cuisine.getSelectedItem() .toString());
application.setReviewCriteriaLocation (
location.getText () .toString()) ;
Intent intent =
new Intent (Constants.INTENT ACTION_VIEW_LIST) ; < @) Create Intent
startActivity (intent) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the Activity 71

The menu items at the bottom of the Activity screens in figure 3.2 were all created
using the onCreateOptionsMenu() method. Here, we use the Menu class’s add()
method to create a single MenuItem element. We pass a group ID, an ID, a sequence/
order, and a text resource reference as parameters to create the menu item. We also
assign an icon to the menu item with the setIcon method. The text and the image are
externalized from the code, using Android’s programmer-defined resources. The
MenuItem we’ve added duplicates the functionality of the onscreen Button, so we use
the same text value for the label: Get reviews.

In addition to creating the menu item, we need to perform an action when the
MenuItem is selected. We do this in the onMenuItemSelected() event method @,
where we parse the ID of the multiple possible menu items with a switch statement.
When the MENU_GET_REVIEWS item is selected, we invoke the handleGetReviews ()
method @.

USING THE MENU VS. ONSCREEN BUTTONS

We’ve chosen to use the Menu here, in addition to the onscreen buttons. When decid-
ing whether to use buttons, a menu, or both, you need to consider whether the Menu,
which is invoked by pressing the Menu button on the device and tapping a selection
(button and a tap), is appropriate for what you're doing, or whether an onscreen but-
ton (single tap) is more appropriate. Generally, onscreen buttons should be tied to UI
elements, such as a button that clears search form input, and menu items should be
used for broader actions such as creating, saving, or deleting.

We check for valid input and use an AlertDialog to warn users about problems
with the location they entered. Along with generally demonstrating the use of Alert-
Dialog, this demonstrates how a button can be made to respond to a click event with
an OnClickListener (). Here, the Android framework automatically dismisses the
pop-up, so no extra code is required in the listener.

THE BUILDER PATTERN

You might have noticed the use of the Builder pattern, where we add parameters to
the AlertDialog we created. In this approach, each of the methods invoked, such as
AlertDialog.setMessage() and AlertDialog.setTitle(), returns a reference to
itself (this), which means we can continue chaining method calls. This approach
avoids either using an extra-long constructor with many parameters or repeating the
class reference throughout the code. Intents also use this handy pattern; it’s some-
thing you’ll see frequently in Android.

After passing validation, this method stores the user’s selection state in the
Application object € and prepares to call the next screen. We’ve moved this logic
into its own method because we’re using it from multiple places—both from our
onscreen Button and our Menultem.

The Application object is used internally by Android for many purposes, and it
can be extended, as we've done with RestaurantFinderApplication. You can find
the source of this class online. To store global state information, RestaurantFinder-
Application defines a few member variables in JavaBean style. We reference this

www.it-ebooks.info

http://www.it-ebooks.info/

72

3.1.3

CHAPTER 3 User interfaces

object from other activities to retrieve the information we’re storing here. Objects can
be passed back and forth between activities in several ways; using Application is just
one of them.

After we store the criteria state, we fire off an action in the form of an Android
Intent @. We touched on Intents in chapter 1, and we’ll delve into them further in
the next chapter; here, we ask another Activity to respond to the user’s selection of
a menu item by calling startActivity (intent).

With that, we’ve covered a good deal of material and you’ve completed Review-
Criteria, your first Activity. Now that this class is fully implemented, we’ll take a
closer look at the Android Activity lifecycle and how it relates to processes on the
platform.

Exploring the Activity lifecycle

Every process running on the Android platform is placed on a stack. When you use an
Activity in the foreground, the system process that hosts that Activity is placed at
the top of the stack, and the previous process (the one hosting whatever Activity was
previously in the foreground) is moved down one notch. This concept is a key point to
understand. Android tries to keep processes running as long as it can, but it can’t
keep every process running forever because system resources are finite. What happens
when memory starts to run low or the CPU gets too busy?

HOW PROCESSES AND ACTIVITIES RELATE

When the Android platform decides it needs to reclaim resources, it goes through a
series of steps to prune processes and the activities they host. It decides which ones to
get rid of based on a simple set of priorities:

= The process hosting the foreground Activity is the most important.

= Any process hosting a visible-but-not-foreground Activity comes next in terms
of importance (for example, a full-screen app that’s visible behind an app run-
ning in a pop-up window).

= After that comes any process hosting a background Activity.

= Any process not hosting any Activity (or Service or BroadcastReceiver) is
known as an empty process and is thus first in line to be killed.

A useful tool for development and debugging, especially in the context of process
priority, is the adb tool, which you first met in chapter 2. You can see the state of all
the running processes in an Android device or emulator by issuing the following
command:

adb shell dumpsys activity

This command outputs a lot of information about all the running processes, including
the package name, PID, foreground or background status, current priority, and more.

All Activity classes must be able to handle being stopped and shut down at any
time. Remember, a user can and will change directions at any time. They might
receive a phone call or an incoming SMS message, causing them to bounce around

www.it-ebooks.info

http://www.it-ebooks.info/

3.14

Creating the Activity 73

from one application to the next. If the process your Activity is in falls out of the
foreground, it’s eligible to be killed without your consent; it’s up to the platform’s
algorithm, based on available resources and relative priorities.

To manage this environment, Android applications (and the Activity classes they
host) use a different design from what you might be used to in other environments.
Using a series of eventrelated callback methods defined in the Activity class, you
can set up and tear down the Activity state gracefully. The Activity subclasses that
you implement override a set of lifecycle methods to make this happen. As we dis-
cussed in section 3.1.1, every Activity must implement the onCreate () method. This
method is the starting point of the lifecycle. In addition to onCreate (), most activities
will want to implement the onPause () method, where data and state can be persisted
before the hosting process potentially falls out of scope.

The server connection

If you’ve worked in managed environments such as Java EE servlet containers, you
should already be familiar with the concept of lifecycles. Your app responds to invoca-
tions by a framework, instead of driving its own lifespan. The critical difference for
Android is that your app is much more likely to be shut down entirely, and you’ll need
to handle any necessary cleanup.

The lifecycle methods provided by the Activity class are called in a specific order
by the platform as it decides to create and kill processes. Because you, as an application
developer, can’t control the processes, you need to rely on the callback lifecycle meth-
ods to control state in your Activity classes as they come into the foreground, move
into the background, and fall away altogether. As the user makes choices, activities are
created and paused in a defined order by the system as it starts and stops processes.

ACTIVITY LIFECYCLE

Beyond onCreate() and onPause (), Android provides other distinct stages, each of
which is a part of a particular phase of the life of an Activity class. The methods that
you’ll encounter most and the phases for each part of the lifecycle are shown in
figure 3.3.

Oncreate()\‘ Entire lifecycle
onRestart() Visible phase
onStart() Foreground phase
onResume()
onPause()
Figure 3.3 Android Activity
onStop() lifecycle diagram, showing the
methods involved in the foreground
onDestroy() and visible phases

www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 User interfaces

Each of the Android lifecycle methods has a distinct purpose, and each happens
during one of the following phases:

= In the foreground phase, the Activity is viewable on the screen and is on top of
everything else (when the user is interacting with the Activity to perform a
task).

= In the visible phase, the Activity is on the screen, but it might not be on top and
interacting with the user (when a dialog or floating window is on top of the
Activity, for example).

= The entire lifecycle phase refers to the methods that might be called when the
application isn’t on the screen, before it’s created, and after it’s gone (prior to
being shut down).

Table 3.1 provides more information about the lifecycle phases and outlines the main
high-level methods on the Activity class.

Table 3.1 Android Activity main lifecycle methods and their purposes

Method Purpose

onCreate () Called when the Activity is created. Setup is done here. Also provides
access to any previously stored state in the form of a Bundle, which can be
used to restore what the user was doing before this Activity was destroyed.

onRestart () Called if the Activity is being restarted, if it's still in the stack, rather than
starting new.

onStart () Called when the Activity is becoming visible on the screen to the user.

onResume () Called when the Activity starts interacting with the user. (This method is
always called, whether starting or restarting.)

onPause () Called when the Activity is pausing or reclaiming CPU and other resources.
This method is where you should save state information so that when an
Activity is restarted, it can start from the same state it was in when it quit.

onStop () Called to stop the Activity and transition it to a nonvisible phase and subse-
quent lifecycle events.

onDestroy () Called when an Activity is being completely removed from system memory.
This method is called either because onFinish () is directly invoked or
because the system decides to stop the Activity to free up resources.

Beyond the main high-level lifecycle methods outlined in table 3.1, additional, finer-
grained methods are available. You don’t typically need methods such as onPost-
Create() and onPostResume (), but be aware that they exist if you need that level of
control. See the Activity documentation for full method details.

As for the main lifecycle methods that you’ll use the majority of the time, it’s
important to know that onPause () is your last opportunity to clean up and save state
information. The processes that host your Activity classes won’t be killed by the plat-
form until after the onPause () method has completed, but they might be killed there-

www.it-ebooks.info

http://www.it-ebooks.info/

3.2

Working with views 75

after. The system will attempt to run through all of the lifecycle methods every time,
but if resources have grown critically low, the processes that are hosting activities
which are beyond the onPause () method might be killed at any point. Any time your
Activity is moved to the background, onPause() is called. Before your Activity is
completely removed, onDestroy () is called, although it might not be invoked in all
circumstances. You should save persistent state in onPause (). We’ll discuss how to save
data in chapter 5.

Instance state

In addition to persistent state, you should be familiar with one more scenario:
instance state. Instance state refers to the state of the Ul itself. For example, instance
state refers to the current selection of any buttons, lists, text boxes, and so on,
whereas persistent state refers to data that you expect to remain after the phone
reboots.

The onSaveInstanceState() method is called when an Activity might be
destroyed, so that at a future time the interface state can be restored. This method
is used transparently by the platform to handle the view state processing in the vast
majority of cases; you don’t need to concern yourself with it under most circum-
stances. Nevertheless, it's important to know that it's there and that the Bundle it
saves is handed back to the onCreate () method when an Activity is restored—
as savedInstanceState in most code examples. If you need to customize the view
state, you can do so by overriding this method, but don’t confuse this with the more
common general lifecycle methods.

Managing activities with lifecycle events allows Android to do the heavy lifting, decid-
ing when things come into and out of scope, relieving applications of the decision-
making burden, and ensuring a level playing field for applications. This is a key aspect
of the platform that varies somewhat from many other application-development envi-
ronments. To build robust and responsive Android applications, you need to pay care-
ful attention to the lifecycle.

Now that you have some background about the Activity lifecycle and you’ve cre-
ated your first screen, we’ll take a longer look at the various views that Android offers.

Working with views

Views are the building blocks of Android application’s Ul Activities contain views, and
View classes represent elements on the screen and are responsible for interacting with
users through events.

Every Android screen contains a hierarchical tree of View elements. These views
come in a variety of shapes and sizes. Many of the views you’ll need on a day-to-day basis
are provided as part of the platform—text elements, input elements, images, buttons,
and the like. In addition, you can create your own composite views and custom views
when the need arises. You can place views into an Activity (and thus on the screen)
either directly in code or by using an XML resource that’s later inflated at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 User interfaces

In this section, we’ll discuss the fundamental aspects of views: the common views
that Android provides, custom views that you can create as you need them, layout in
relation to views, and event handling. Views defined in XML will be covered in
section 3.3 as part of a larger discussion on resources. We’ll begin with the common
View elements Android provides by taking a short tour of the APIL

3.2.1 Exploring common views

Android provides a generous set of View classes in the android.view package. These
classes range from familiar constructs such as the EditText, Spinner, and TextView
that you’ve already seen in action, to more specialized widgets such as AnalogClock,
Gallery, DatePicker, TimePicker, and VideoView. For a glance at some of the more
eye-catching views, check out the sample page in the Android documentation: http://
mng.bz/b83c.

AnalogClock N

ViewStub
> View G|

ProgressBar LA
TextView
ImageView VI
SurfaceView
Button| ——
N /\
| ImageButton | | VideoView i

CompoundButton DigitalClock

ViewGroup
S, CheckedTextView
SN
| RelativeLayout I | LinearLayout i FrameLayout AbsoluteLayout

D D

TwoLineListitem ScrollView
TimePicker
TableLayout -

TableRow DatePicker
T\ : i
RadioGroup

ScaleLayout
TabWidget
ZoomControls

Figure 3.4 Class diagram of the Android
View API, showing the root View class and
specializations from there. Note that
ViewGroup classes such as layouts are
also a type of View.

www.it-ebooks.info

http://mng.bz/b83c
http://mng.bz/b83c
http://www.it-ebooks.info/

Working with views 77

Table 3.2 A subset of methods in the base Android View API

Method Purpose

setBackgroundColor (int color) Set the background color

setBackgroundDrawable (Drawable d) Set the background drawable
(such as an image or gradient)

setClickable (boolean c) Set whether element is clickable
setFocusable (boolean f) Set whether element is focusable
setLayoutParams (ViewGroup.LayoutParams 1) Set parameters for layout (posi-

tion, size, and more)

setMinimumHeight (int minHeight) Set the minimum height (parent
can override)

setMinimumWidth (int minwidth) Set the minimum width (parent
can override)

setOnClickListener (OnClickListener 1) Set listener to fire when click
event occurs

setOnFocusChangeListener (OnFocusChangeListener 1) | Set listener to fire when focus
event occurs

setPadding (int left, int right, int top, Set the padding
int bottom)

The class diagram in figure 3.4 provides a high-level snapshot of what the overall View
API looks like. This diagram shows how the specializations fan out and includes many,
but not all, of the View-derived classes.

As is evident from the diagram in figure 3.4, View is the base class for many classes.
ViewGroup is a special subclass of View related to layout, as are other elements such as
the commonly used TextView. All UI classes are derived from the View class, including
the layout classes (which extend ViewGroup).

Of course, everything that extends View has access to the base class methods.
These methods allow you to perform important Ul-related operations such as setting
the background, minimum height and width, padding, layout parameters, and event-
related attributes. Table 3.2 lists some of the methods available in the root View class.
Beyond the base class, each View subclass typically adds a host of refined methods to
further manipulate its respective state, such as what’s shown for TextView in table 3.3.

Table 3.3 More View methods for the TextView subclass

Method Purpose
setGravity (int gravity) Set alignment gravity: top, bottom, left, right, and more
setHeight (int height) Set height dimension
setText (CharSequence text) Set text to display in TextView

www.it-ebooks.info

http://www.it-ebooks.info/

78

3.2.2

CHAPTER 3 User interfaces

Table 3.3 More View methods for the TextView subclass (continued)

Method Purpose
setTypeFace (TypeFace face) Set typeface
setWidth (int width) Set width dimension

The View base class and the methods specific to TextView combine to give you exten-
sive control over how an application can manipulate an instance of TextView. For
example, you can set layout, padding, focus, events, gravity, height, width, colors, and
so on. These methods can be invoked in code or set at design time when defining a Ul
layout in XML, as we’ll introduce in section 3.3.

Each view element you use has its own unique API; for details on all the methods,
see the Android Javadocs at http://mng.bz/82Qy.

When you couple the wide array of classes with the rich set of methods available
from the base View class on down, the Android View API can seem intimidating.
Thankfully, despite this initial impression, many of the concepts involved quickly
become evident; and their use becomes more intuitive as you move from view to view,
because they’re ultimately just specializations of the same base class. When you get
familiar with working with View classes, learning to use a new view becomes intuitive
and natural.

Although the RestaurantFinder application won’t use many of the views listed in
our whirlwind tour here, they’re still useful to know about. We’ll use many of them in
later examples throughout the book.

The next thing we’ll focus on is a bit more detail concerning one of the most com-
mon nontrivial View elements—the ListView component.

Using a ListView

On the RestaurantFinder application’s ReviewList Activity, shown in figure 3.2, you
can see a view that’s different from the simple user inputs and labels we’ve used up to
this point—this screen presents a scrollable list of choices for the user to pick from.

This Activity uses a ListView component to display a list of review data that’s
obtained from calling a mock web service for restaurant reviews. We make an HTTP
call by appending the user’s criteria to the mock web service’s URL. We then parse the
results with the Simple API for XML (SAX) and create a List of reviews. Neither the
details of XML parsing nor the use of the network itself is of much concern to us
here—rather we’ll focus on the views employed to represent the data returned from
the web service call. The resulting List will be used to populate our screen’s list of
items to choose from.

The code in the following listing shows how to create and use a ListView to pres-
ent to the user the List of reviews within an Activity.

www.it-ebooks.info

http://mng.bz/82Qy
http://www.it-ebooks.info/

Working with views 79

Listing 3.3 First half of the ReviewList Activity class, showing a ListView

public class ReviewList extends ListActivity {

private static final int MENU_CHANGE_CRITERIA = Menu.FIRST + 1;
private static final int MENU_GET NEXT_PAGE = Menu.FIRST;
private static final int NUM_RESULTS_PER_PAGE = 8§;
private TextView empty;
private ProgressDialog progressDialog; ‘) Use
private ReviewAdapter reviewAdapter; - ReviewAdapter
private List<Review> reviews;
private final Handler handler = new Handler () {

public void handleMessage (final Message msg) {

progressDialog.dismiss () ;

if ((reviews == null) || (reviews.size() == 0)) {
empty.setText ("No Data") ;
} else {

reviewAdapter = new ReviewAdapter (
ReviewList.this, reviews);
setListAdapter (reviewAdapter) ;

}i
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstancestate) ; Apply resource-
setContentView (R.layout.review list); defined layout
empty = (TextView)

.f1n§V1ew§yIdFR.1d.empt¥); . < Retrieve
ListView listView = getListView() ; o TextView
listView.setItemsCanFocus (false) ;
listView.setChoiceMode (ListView.CHOICE_MODE_SINGLE) ;
listView.setEmptyView (empty) ;

}
@Override
protected void onResume () {
super . onResume () ; Access Application
RestaurantFinderApplication application = for global state
(RestaurantFinderApplication) getApplication()
String criteriaCuisine = application.getReviewCriteriaCuisine() ;
String criterialLocation = application.getReviewCriteriaLocation() ;
int startFrom = getIntent().getIntExtra (
Constants.STARTFROM_EXTRA, 1);
loadReviews (criterialLocation,
criteriaCuisine, startFrom) ;

Use
Intent extra

}

// onCreateOptionsMenu omitted for brevity

The ReviewList Activity extends ListActivity, which is used to host a ListView.
The default layout of a ListActivity is a full-screen, centered list of choices for the
user to select from. A ListView provides functionality similar to a Spinner; in fact,
they’re both subclasses of AdapterView, as you saw in the class diagram in figure 3.4.
ListView, like Spinner, uses an adapter to bind to data. In this case, we’re using a cus-

www.it-ebooks.info

http://www.it-ebooks.info/

80

CHAPTER 3 User interfaces

tom ReviewAdapter class @. You’'ll learn more about ReviewAdapter in the next sec-
tion, when we discuss custom views. For now, note that we’re using a custom adapter
for our ListView, and we use a List of Review objects to populate the adapter.

Because we don’t yet have the data to populate the list, which we’ll get from a web
service call in another thread, we need to include a handler to allow for fetching data
and updating the Ul to occur in separate steps. Don’t worry too much about these
concepts here; they’ll make more sense when we look at the second half of Review-
List in listing 3.4.

After we declare our ListView and its data, we move on to the typical onCreate ()
tasks you’ve already seen, including using a layout defined in an XML file @. This is
significant with respect to ListActivity because a ListView with the ID name list is
required if you want to customize the layout, as we’ve done. Note that the ID is
defined in the layout XML file; we’ll cover that in section 3.3.3. If you don’t provide a
layout, you can still use ListActivity and ListView, but you get the system default
configuration. We also look up a UI element that’s used to display the message No Data
in the event that our List of reviews is empty €. We set several specific properties on
the ListView, using its customization methods: we make the list items selectable, allow
a single selection at a time, and provide the view to display for an empty list.

After we set up the View elements that are needed for the Activity, we get the cri-
teria to make our web service call from the Review object, which we previously placed
in the Application back in the ReviewCriteria Activity @. Here we also use an
Intent extra to store a primitive int for page number @. We pass all the criteria data
(criterialocation, criteriaCuisine, and startFrom) into the loadReviews ()
method, which makes our web service call to populate the data list. This method, and
several others that show how we deal with items in the list being clicked, are shown
here in the second half of the ReviewList class.

Listing 3.4 Second half of the ReviewList Activity class

@Override
public boolean onMenultemSelected
(int featureId, Menultem item) {

Intent intent = null; Increment
switch (item.getItemId()) { startFrom
case MENU_GET_NEXT_PAGE: - Intent extra

intent = new Intent (Constants.INTENT_ACTION_VIEW_LIST);

intent.putExtra (Constants.STARTFROM_EXTRA,
getIntent () .getIntExtra (Constants.STARTFROM_EXTRA, 1)
+ ReviewList.NUM_RESULTS_PER_PAGE) ;

startActivity(intent) ;

return true;

case MENU_CHANGE_CRITERIA:

intent = new Intent(this, ReviewCriteria.class);

startActivity(intent) ;

return true;

}

return super.onMenultemSelected(featureId, item);

www.it-ebooks.info

http://www.it-ebooks.info/

Working with views 81

}
@Override
protected void onListItemClick(ListView 1, View v,
int position, long id) {
RestaurantFinderApplication application = Set state in
(RestaurantFinderApplication) getApplication(); Application
application.setCurrentReview (reviews.get (position));
Intent intent = new Intent (Constants.INTENT_ACTION_VIEW_DETAIL) ;
intent.putExtra (Constants.STARTFROM_EXTRA, getIntent().getIntExtra (
Constants.STARTFROM_EXTRA, 1));
startActivity (intent) ;
}

private void loadReviews (String location, String cuisine,

int startFrom) { <

final ReviewFetcher rf = new ReviewFetcher (location,

cuisine, "ALL", startFrom, Create
ReviewList.NUM_RESULTS_PER_PAGE) ; loadReviews

progressDialog = method
ProgressDialog.show(this, " Working...",

" Retrieving reviews", true, false); < Show

new Thread() { <1 Make web ProgressDialog

public void run() { O service call

reviews = rf.getReviews() ;
handler.sendEmptyMessage (0) ;
}
}.start();

}
This Activity has a menu item that allows the user to access the next page of results

or change the list criteria. To support this, we must implement the onMenuItem-
Selected() method. When the MENU_GET_NEXT_PAGE menu item is selected, we define
a new Intent to reload the screen with an incremented startFrom value, with some
assistance from the Intent class’s getExtras () and putExtras () methods @.

After the menu-related methods comes the method onListItemClick(). Android
invokes this method when a user clicks one of the list items in a ListView. We use the
clicked item’s ordinal position to reference the particular Review item the user
selected, and we set this into the Application for later use in the ReviewDetail
Activity (which we’ll begin to implement in section 3.3) @. After we have the data
set, we then call the next Activity, including the startFrom extra.

In the ReviewList class, we have the loadReviews () method €. This method is
significant for several reasons. First, it sets up the ReviewFetcher class instance, which
initiates a call to the mock web service over the network to retrieve a List of Review
objects. Then it invokes the ProgressDialog.show() method to show the user we’re
retrieving data 0. Finally, it sets up a new thread ©, within which the ReviewFetcher
is used, and the earlier handler you saw in the first half of ReviewList is sent an empty
message. If you refer to listing 3.3, which is when the handler was established, you can
see where we dismiss the ProgressDialog when the message is received, populate the
adapter our ListView is using, and call setListAdapter () to update the UL The set-
ListAdapter () method iterates the adapter and displays a returned view for every

www.it-ebooks.info

http://www.it-ebooks.info/

82

3.23

CHAPTER 3 User interfaces

item. With the Activity configured and the handler ready to update the adapter with
data, we now have a second screen in our application.

Next, we’ll explore some details regarding handlers and multithreaded apps.
These concepts aren’t view-specific but are worth a small detour at this point, because
you’ll want to use these classes when you’re trying to perform tasks related to retriev-
ing and manipulating data that the UI needs—a common design pattern for building
Android applications.

Multitasking with Handler and Message

Handler helps you manage messaging and scheduling operations for Android. This
class allows you to queue tasks to be run on different threads and to schedule tasks
using Message and Runnable objects.

The Android platform monitors the responsiveness of applications and kills those
that are considered nonresponsive. An Application Not Responding (ANR) event occurs
when no response is received to a user input for five seconds. When a user interacts
with your application by touching the screen or pressing a key, your application must
respond. Not every operation in your code must complete within five seconds, but the
main UI thread does need to respond within that time frame. To keep the main UI
thread snappy, any long-running tasks, such as retrieving data over the network, read-
ing a large amount of data from a database, or performing complicated or time-
consuming calculations, should be performed in a separate thread, apart from the
main UI thread.

Getting tasks into a separate thread and MainUIThread
. . . (HandlerThread)
getting results back to the main UI thread is
Handler myHandler = new Handler() {

where Handler and related classes come AT e e e ([eeeae 2 1)

into play. When a handler is created, it’s : updateUlHere();
associated with a Looper. A Looper is a class %
that contains a MessageQueue and that pro- new Thread() {
cesses Message or Runnable objects that are p”gi‘)‘:S;’:f'fc(’)_’““() {
sent via the handler. Message m = myHandler.obtainMessage();
. .. Bundle b = new Bundle();
When we used a handler in listings 3.3 b.putString("key", ,,Valug..);
and 3.4, we created a handler with a no- m.setData(b); _
. . myHandler.sendMessage(m);
argument constructor. With this approach, }
}.start();

the handler is automatically associated with
the Looper of the currently running thread,
typically the main UI thread. The main Ul

thread, which is created by the process of [
the running application, is an instance of
HandlerThread. A HandlerThread is an
Android Thread specialization that provides Figure 3.5 Using the Handler class with

a Looper. The key parts involved in this separate threads, and the relationship among
HandlerThread, Looper, and
MessageQueue

Looper

MessageQueue]

arrangement are depicted in figure 3.5.

www.it-ebooks.info

http://www.it-ebooks.info/

3.24

Working with views 83

When you’re implementing a handler, youll need to provide a handle-
Message (Message m) method. When you create a new thread, you can then call one
of several sendMessage methods on Handler from within that thread’s run method, as
our examples and figure 3.5 demonstrate. Calling sendMessage () puts your message
on the MessageQueue, which the Looper services.

Along with sending messages into handlers, you can also send Runnable objects
directly, and you can schedule things to be run at different times in the future. You
send messages and you post runnables. Each of these concepts supports methods such
as sendEmptyMessage (int what), which we’ve already used, and its counterparts
sendEmptyMessageAtTime (int what, long time) and sendEmptyMessageDelayed (int
what, long delay). After your Message is in the queue, Android will deliver it either
as soon as possible or according to the requested time that you indicated.

You’ll see more of Handler and Message in other examples throughout the book,
and we’ll cover more detail in some instances, but the main point to remember when
you see these classes is that they’re used to communicate between threads and for
scheduling.

Getting back to our RestaurantFinder application and more view-oriented topics,
we next need to elaborate on the ReviewAdapter used by our RestaurantFinder’s
ReviewList screen after it’s populated with data from a Message. This adapter returns
a custom View object for each data element it processes.

Creating custom views

Although the views that are provided with Android will suffice for many apps, there
might be situations where you prefer a custom view to display your own object in a
unique way.

In the ReviewList screen, we used an adapter of type ReviewAdapter to back our
ListView. This custom adapter contains a custom View object, ReviewListView. A
ReviewListView is what our ReviewList Activity displays for every row of data it
contains. The adapter and view are shown in the following listing.

Listing 3.5 ReviewAdapter and inner ReviewListView classes

public class ReviewAdapter extends BaseAdapter {
private final Context context;
private final List<Review> reviews;
public ReviewAdapter (Context context, List<Review> reviews) {

this.context = context;
this.reviews = reviews;
}
@Override
public int getCount() { <
return reviews.size();
} Override
@override basic adapter

public Object getItem(int position) {
return reviews.get (position);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 User interfaces

} Override
@override basic
public long getItemId(int position) { 4 adapter

return position; 0 Override
} ‘ adapter
@Override < getView

public View getView(int position, View convertView, ViewGroup parent) ({
Review review = reviews.get (position);
if (convertView == null ||
! (convertView instanceof ReviewListView))

return new ReviewListView(context, review.name,
review.rating) ;

}
ReviewListView view = (ReviewListView)convertView;
view.setName (review.name) ;
view.setRating (review.rating) ; Define
return view; custom
} inner view
private final class ReviewListView extends LinearLayout { 4 class

private TextView name;
private TextView rating;
public ReviewListView (
Context context, String itemName,
String itemRating) {
super (context) ;
setOrientation (LinearLayout.VERTICAL) ;
LinearLayout.LayoutParams params =
new LinearLayout.LayoutParams (
ViewGroup.LayoutParams.WRAP_CONTENT, Set layout
ViewGroup.LayoutParams .WRAP_CONTENT) ; 4 in code
params.setMargins (5, 3, 5, 0);
name = new TextView (context) ;
name.setText (itemName) ;
name.setTextSize (16f) ;
name.setTextColor (Color .WHITE) ;
addview (name, params) ;
rating = new TextView(context) ;
rating.setText (itemRating) ;
rating.setTextSize (16f);

rating.setTextColor (Color.GRAY) ; Add TextView
addview (rating, params) ; 4 to tree

}

public void setName (String itemName)

{
name.setText (itemName) ;

}

public void setRating(String itemRating)

{
rating.setText (itemRating) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with views 85

The first thing to note in ReviewAdapter is that it extends BaseAdapter. BaseAdapter
is an Adapter implementation that provides basic event-handling support. Adapter
itself is an interface in the android.widget package and provides a way to bind data to
a View with some common methods. This is often used with collections of data, as you
saw with Spinner and ArrayAdapter in listing 3.1. Another common use is with a
CursorAdapter, which returns results from a database (something you’ll see in
chapter 5). Here we’re creating our own adapter because we want it to return a cus-
tom view.

Our ReviewAdapter class accepts and stores two parameters in the constructor.
This class goes on to implement the required Adapter interface methods that return a
count, an item, and an ID; we use the ordinal position in the collection as the ID 0.
The next Adapter method to implement is the most important: getView(). The
adapter returns any view we create for a particular item in the collection of data that
it’s supporting. Within this method, we get a particular Review object based on the
position/ID. The UI framework might call getView() multiple times for a given item;
for example, the UI may need to make multiple layout passes in order to determine
how items will fit inside. The framework might provide an old view that we may be
able to recycle for this item; doing so helps avoid wasted allocations. If there isn’t a
valid older view, we create an instance of a custom ReviewListView object to return as
the view @.

ReviewListView itself is an inner class inside ReviewAdapter; we never use it
except to return a view from ReviewAdapter ©. Within it, you see an example of set-
ting layout and view details in code, rather than relying on their definition in XML. In
this listing, we set the orientation, parameters, and margin for our layout @. Next,
we populate the simple TextView objects that will be children of our new view and
represent data. When these are set up via code, we add them to the parent container,
which is in this case our custom class ReviewListView @. This is where the data bind-
ing happens—the bridge to the view from data. Another important thing to note
about this is that we’ve created not only a custom view, but also a composite one.
We’re using simple existing View objects in a particular layout to construct a new type
of reusable view, which shows the detail of a selected Review object on screen, as
depicted in figure 3.2.

Our custom ReviewListView object is intentionally fairly simple. In many cases,
you’ll be able to create custom views by combining existing views in this manner. An
alternative approach is to extend the View class itself. If you extend View, you can
implement core methods as desired, and you have access to the lifecycle methods of a
View, such as onMeasure (), onLayout (), onDraw (), and onVisibilityChanged(). You
should rarely need to go to these lengths; for most apps, you can achieve your desired
UI by combining preexisting View components, as we’ve done here.

Now that you’ve seen how you get the data for your reviews and what the adapter
and custom view look like, let’s take a closer look at a few more aspects of views,
including layout.

www.it-ebooks.info

http://www.it-ebooks.info/

86

3.2.5

CHAPTER 3 User interfaces

Understanding layout

One of the most significant aspects of creating your UI and designing your screens is
understanding layout. Android manages layouts through ViewGroup and Layout-
Params objects. ViewGroup is a view that contains other views and also provides access
to the layout.

On every screen, all the views are placed in a hierarchical tree; every element can
have one or more children, with a ViewGroup at the root. All the views on the screen
support a host of attributes that we addressed in section 3.2.1. Dimensions—width
and height—and other properties such as the margins and whether to use relative or
absolute placement are based on the LayoutParams a view requests and what the par-
ent can accommodate. The final layout reflects the cumulative dimensions of the par-
ent and its child views.

The main ViewGroup classes are shown in the class diagram in figure 3.4. The dia-
gram in figure 3.6 expands on this class structure to show the specific LayoutParams
inner classes of the view groups and layout properties each type provides.

ViewGroup

ViewGroup.LayoutParams

height
width \

ViewGroup.MarginLayoutParams
marginBottom

marginLeft
marginRight
marginTop
FramelLayout AbsoluteLayout
FrameLayout.LayoutParams AbsoluteLayout.LayoutParams
gravity x (position)
y (position)

LinearLayout

LinearLayout.LayoutParams
gravity
weight

RelativeLayout

RelativeLayout.LayoutParams
above

below

alignLeft

alignRight .

toLeftof Figure 3.6

toRightOf Common ViewGroup classes
centerHorizontal .

centerVertical with LayoutParams and

properties provided

www.it-ebooks.info

http://www.it-ebooks.info/

Working with views 87

As figure 3.6 shows, the base ViewGroup.LayoutParams class supports height and
width. From there, an AbsoluteLayout type with AbsoluteLayout.LayoutParams
allows you to specify the exact x and y coordinates of the child View objects placed
within. You should generally avoid the AbsoluteLayout because it prevents layouts
from looking good on larger or smaller screen resolutions.

As an alternative to AbsoluteLayout, you can use the FrameLayout, Linear-
Layout, and RelativeLayout subtypes, all of which support variations of Layout-
Params that are derived from ViewGroup.MarginLayoutParams. A FramelLayout
frames one child element, such as an image. A FrameLayout supports multiple chil-
dren, but all the items are pinned to the top left—they’ll overlap each other in a
stack. A LinearLayout aligns child elements in either a horizontal or a vertical line.
Recall that we used a LinearLayout in our ReviewListView in listing 3.5. There we
created our view and its LayoutParams directly in code. Also, in our previous
Activity examples, we used a RelativeLayout in our XML layout files that was
inflated into our code. A RelativeLayout specifies child elements relative to each
other: above, below, toLeftOf, and so on.

To summarize, the container is a ViewGroup, and a ViewGroup supports a particular
type of LayoutParams. Child View elements are then added to the container and must
fit into the layout specified by their parents. Even though a child view needs to lay
itself out based on its parents’ LayoutParams, it can also specify a different layout for
its own children. This flexibility allows you to construct just about any type of screen
you want.

The dimensions for a given view are dictated by the LayoutParms of its parent—so
for each dimension of the layout of a view, you must define one of the following three
values:

= An exact number (unit required)
= FILL_PARENT
= WRAP_CONTENT

The FILL_PARENT constant means “take up as much space in that dimension as the
parent does (subtracting padding).” WRAP_CONTENT means “take up only as much
space as is needed for the provided content (adding padding).” A child view requests
a size, and the parent makes a decision on how to position the child view on the
screen. The child makes a request, and the parent makes the decision.

Child elements do keep track of what size they’re initially asked to be, in case lay-
out is recalculated when things are added or removed, but they can’t force a particu-
lar size. Because of this, View elements have two sets of dimensions: the size and width
they want to take up (getMeasuredwidth() and getMeasuredHeight()) and the
actual size they end up after a parent’s decision (getwidth() and getHeight ()). Lay-
out is a two-step process: first, measurements are taken during the measure pass, and
subsequently, the items are placed to the screen during the layout pass, using the asso-
ciated LayoutParams. Components are drawn to the screen in the order in which

www.it-ebooks.info

http://www.it-ebooks.info/

88

3.2.6

CHAPTER 3 User interfaces

they’re found in the layout tree: parents first, then children. Note that parent views
end up behind children if they overlap in positioning.

Layout is a big part of understanding screen design with Android. Along with plac-
ing your View elements on the screen, you need to have a good grasp of focus and
event handling in order to build effective applications.

FRAGMENTATION

Android 3.0 has introduced a new concept, the fragment, which lies somewhere
between a view and an Activity. A fragment defines a reusable user interface chunk
with its own lifecycle. Fragments are most useful if you wish to present multiple
“screens” at once on a larger device such as a tablet. For example, in the Restaurant-
Finder, you could represent the ReviewCriteria in one fragment, the ReviewList in
another, and the ReviewDetail in a third. A smartphone would display one fragment
at a time, but on a tablet, you could show the list of reviews in one pane and the
selected review’s detail in another pane. Fragments are more complicated than stan-
dard views, but in the long run they can reduce overall maintenance in your code by
letting you keep a single codebase that supports significantly different user interfaces.

Handling focus

Focus is like a game of tag; one and only one component on the screen is “it” at any
given time. Although a particular screen can have many different windows and wid-
gets, only one has the current focus and can respond to user input. An event, such as
movement of a stylus or finger, a tap, or a keyboard press, might trigger the focus to
shift to another component.

In Android, focus is handled for you by the platform a majority of the time. When
a user selects an Activity, it’s invoked and the focus is set to the foreground View.
Internal Android algorithms then determine where the focus should go next based on
events taking place in the applications. Events might include buttons being clicked,
menus being selected, or services returning callbacks. You can override the default
behavior and provide hints about where specifically you want the focus to go using the
following View class methods or their counterparts in XML:

" nextFocusDown ()
= nextFocusLeft ()
= nextFocusRight ()
= nextFocusUp ()

Views can also indicate a particular focus type, DEFAULT_FOCUS or WEAK_FOCUS, to set
the priority of focus to either themselves (default) or their descendants (weak). In
addition to hints, such as UP, DOWN, and WEAK, you can use the View.requestFocus ()
method directly, if you need to, to indicate that focus should be set to a particular view
at a given time. Manipulating the focus manually should be the exception rather than
the rule—the platform logic generally does what you’d expect (and more important,
what the user expects). Your application’s behavior should be mindful of how other
Android applications behave and should act accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.7

Working with views 89

Focus changes based on event-handling logic using the OnFocusChangeListener
object and related setOnFocusChangedListener () method. This brings us to the
topic of event handling.

Grasping events

Events are used to change the focus and for many other actions. We’ve already imple-
mented several onClickListener() methods for buttons in listing 3.2. Those
OnClickListener instances were connected to button presses. They indicated events
that said, “Hey, somebody pressed me.” Focus events go through this same process
when announcing or responding to OnFocusChange events.

Events have two halves: the component raising the event and the component (or
components) that respond to the event. These two halves are variously known as
Observable and Observer in design-pattern terms, or sometimes subject and observer. Fig-
ure 3.7 is a class diagram of the relationships in this pattern.

An Observable component provides a way for Observer instances to register.
When an event occurs, the Observable notifies all the Observers that something has
taken place. The Observers can then respond to that notification however they see fit.
Interfaces are typically used for the various types of events in a particular API. An
Android Button represents this as follows:

= Observable—Button.setOnClickListener (OnClickListener listener)

" QObserver—listener.onClick (View v)

This pattern affects Android View items, because many things are Observable and
allow other components to attach and listen for events. For example, most of the View
class methods that begin with on are related to events: onFocusChanged(),
onSizeChanged (), onLayout (), onTouchEvent (), and the like.

Events occur both within the UI and all over the platform. For example, when an
incoming phone call occurs or a GPS-based location changes based on physical move-
ment, many different reactions can occur. More than one component might want to be
notified when the phone rings or when the location changes—not just the one you’re
working on—and this list of Observers isn’t necessarily limited to Ul-oriented objects.

Observable (Source)

observerCollection : Collection<Observer> (Listeners) Observer
registerObserver() : void 0..1 (Listener)
unregisterObserver(): void notify() : void

notifyObserver(): void

Observerimpl

Observeablelmpl

Figure 3.7 A class diagram depicting the
Observer design pattern. Each Observable
component has zero to many Observers, which
can be notified of changes when necessary.

For observer in
observerCollection:
notifyObserver()

www.it-ebooks.info

http://www.it-ebooks.info/

90

3.3

331

CHAPTER 3 User interfaces

Views support events on many levels. When an interface event occurs, such as a
user pressing a button, scrolling, or selecting a portion of a window, the event is dis-
patched to the appropriate view. Click events, keyboard events, touch events, and
focus events represent the kinds of events you’ll primarily deal with in the UL

Remember that Android’s user interface is single-threaded. If you call a method
on a view, you need to be on the Ul thread. Recall that this is why we used a handler in
listing 3.3—to get data outside the UI thread and to notify the UI thread to update the
view after the data was retrieved. The data was sent back to the handler as a Message
via the setMessage () event.

Our coverage of events in general and how they relate to layout rounds out the
majority of our discussion of views, but we still have one notable related concept to
discuss—resources. In the next section, we’ll address all the aspects of resources,
including XML-defined views.

Using resources

You’ve already seen several examples of resources throughout the book. We’ll now
explore them in detail and implement the third and final Activity in Restaurant-
Finder—the ReviewDetail screen.

When you begin working with Android, you’ll quickly notice many references to a
class named R. This class was introduced in chapter 1, and we’ve used it in our previ-
ous Activity examples in this chapter. Android automatically generates this class for
each of your projects to provide access to resources. Resources are noncode items that
the platform automatically includes in your project.

To begin looking at resources, we’ll first explore the various available types, and
then we’ll demonstrate examples of each type of resource.

Supported resource types

Each Android project’s resources are located in the res directory. Not every project
will use every type, but any resource must fit one of the available types:

= res/anim—XML representations of frame-by-frame animations

= res/drawable—Graphics such as PNG and JPG images, stretchable nine-patch
images, and gradients

= res/layout—XML representations of View object hierarchies

= res/values—XML representations of strings, colors, styles, dimensions, and
arrays

= res/xml—User-defined XML files that are compiled into a compact binary rep-
resentation

= res/raw—Arbitrary and uncompiled files

Resources are treated specially in Android because they’re typically compiled into an
efficient binary type, with the noted exceptions of items that are already binary and
the raw type, which isn’t compiled. Animations, layouts and views, string and color

www.it-ebooks.info

http://www.it-ebooks.info/

Using resources 91

values, and arrays can all be defined in an XML format on the platform. These XML
resources are then processed by the aapt tool, which you saw in chapter 2, and com-
piled. After resources have been compiled, they’re accessible in Java through the auto-
matically generated R class.

3.3.2 Referencing resources in Java

The first portion of the ReviewDetail Activity, shown in the following listing, reuses
many of the Activity tenets you've already learned and uses several subcomponents
that come from R. java.

Listing 3.6 First portion of ReviewDetail showing multiple uses of the R class

public class ReviewDetail extends Activity {
private static final int MENU_CALL_REVIEW = Menu.FIRST + 2;
private static final int MENU_MAP_REVIEW = Menu.FIRST + 1;
private static final int MENU_WEB_REVIEW = Menu.FIRST;
private String imageLink;
private String link;
private TextView location;
private TextView name; Define inflatable
private TextView phone; View items
private TextView rating;
private TextView review;
private ImageView reviewlImage;

private Handler handler = new Handler () {
public void handleMessage (Message msg) {
if ((imageLink != null) && !imageLink.equals("")) {
try {

URL url = new URL (imageLink) ;
URLConnection conn = url.openConnection() ;
conn.connect () ;
BufferedInputStream bis = new
BufferedInputStream(conn.getInputStream()) ;

Bitmap bm = BitmapFactory.decodeStream(bis) ;
bis.close();
reviewImage.setImageBitmap (bm) ;

} catch (IOException e) {
// log and or handle here

}

} else {
reviewImage.setImageResource (R.drawable.no_review_image) ;

}i

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ; Set layout using
setContentView (R.layout.review_detail) ; setContentView()
name =

(TextView) findViewById(R.id.name_detail) ;
rating =
(TextView) findViewById(R.id.rating detail) ;

www.it-ebooks.info

http://www.it-ebooks.info/

92

CHAPTER 3 User interfaces

location =

(TextView) findvViewById(R.id.location_detail);
phone =

(TextView) findViewById(R.id.phone_detail) ;
review =

(TextView) findViewById(R.id.review_detail) ;
reviewImage =

(ImageView) findViewById(R.id.review_image) ;
RestaurantFinderApplication application =
(RestaurantFinderApplication) getApplication() ;
Review currentReview = application.getCurrentReview() ;
link = currentReview.link;
imageLink = currentReview.imageLink;
name.setText (currentReview.name) ;
rating.setText (currentReview.rating) ;
location.setText (currentReview.location) ;
review.setText (currentReview.content) ;

if ((currentReview.phone != null) &&
lcurrentReview.phone.equals("")) {
phone.setText (currentReview.phone) ;
} else {

phone.setText ("NA") ;

}
@Override
public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;
menu.add (0, ReviewDetail.MENU_WEB_REVIEW, O,
R.string.menu_web_review) .setIcon (
android.R.drawable.ic_menu_info_details) ; <
menu.add (0, ReviewDetail.MENU_MAP_REVIEW, 1,
R.string.menu_map_review) .setIcon (
android.R.drawable.ic_menu_mapmode) ;

#3 © Use String
menu.add (0, ReviewDetail.MENU_CALL_REVIEW, 2, and Drawable
R.string.menu_call_review) .setIcon (resources
android.R.drawable.ic_menu_call) ; B

return true;

}

In the ReviewDetail class, we first define View components that we’ll later reference
from resources @. Next, you see a handler that’s used to perform a network call to
populate an ImageView based on a URL. (Don’t worry too much about the details of
the network calls here; these will be addressed in the networking sections in
chapter 5.) After the handler, we set the layout and view tree using setContentView
(R.layout.review detail) @. This maps to an XML layout file at src/res/layout/
review_detail.xml. Next, we reference some of the View objects in the layout file
directly through resources and corresponding IDs.

Views defined in XML are inflated by parsing the layout XML and injecting the cor-
responding code to create the objects for you. This process is handled automatically

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.3

Using resources 93

by the platform. All the View and LayoutParams methods we’ve discussed have coun-
terpart attributes in the XML format. This inflation approach is one of the most
important aspects of view-related resources, and it makes them convenient to use and
reuse. We’ll examine the layout file we’re referring to here and the specific views it
contains more closely in the next section.

You reference resources in code, as we’ve been doing here, using the automatically
generated R class. The R class is made up of static inner classes (one for each resource
type) that hold references to all of your resources in the form of an int value. This
value is a constant pointer to an object file, by way of a resource table that’s contained
in a special file which is created by the aapt tool and used by the R.java file.

The last reference to resources in listing 3.6 shows the creation of our menu
items €. For each of these, we reference a String for text from our own local
resources, and we also assign an icon from the android.R.drawable resources
namespace. You can qualify resources in this way and reuse the platform drawables,
which provides stock icons, images, borders, backgrounds, and so on. You’ll likely
want to customize much of your own applications and provide your own drawable
resources. Note that the platform provides resources if you need them, and they’re
arguably the better choice in terms of consistency for the user, particularly if you're
calling out to well-defined actions as we are here: map, phone call, and web page.

We’ll cover how all the different resource types are handled in the next several sec-
tions. The first types of resources we’ll look at more closely are layouts and views.

Defining views and layouts through XML resources

As we’ve noted in several earlier sections, views and layouts are often defined in XML
rather than in Java code. Defining views and layouts as resources in this way makes
them easier to work with, because they’re decoupled from the code and in some cases
reusable in across different screens.

View resource files are placed in the res/layout source directory. The root of these
XML files is usually one of the ViewGroup layout subclasses we’ve already discussed:
RelativeLayout, LinearLayout, FrameLayout, and so on. Within these root elements
are child XML elements that form the view/layout tree.

Resources in the res/layout directory don’t have to be complete layouts. For exam-
ple, you can define a single TextView in a layout file the same way you might define an
entire tree starting from an AbsoluteLayout. More often, you might create a compos-
ite view that contains several interior View components. You might use this approach
when a particularly configured view is used in multiple areas of your application. By
defining it as a standalone resource, you can maintain it more readily over the lifetime
of your project.

You can have as many XML layout/view files as you need, all defined in the res/
layout directory. Each view is then referenced in code, based on the type and ID. Our
layout file for the ReviewDetail screen—review_detail.xml, shown in the following
listing—is referenced in the Activity code as R.layout.review_detail, which is a
pointer to the RelativeLayout parent View object in the file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 User interfaces

Listing 3.7 XML layout resource file for review_detail.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="£fill_parent"
android:layout_height="fill_parent"
android:gravity="center_horizontal"
android:padding="10px"
android.setVerticalScrollBarEnabled="true"
> Include child
<ImageView android:id="@+id/review_image" 4 element with ID
android:layout_width="100px"
android:layout_height="100px"
android:layout_marginLeft="10px"
android:layout_marginBottom="5px" />
<TextView android:id="@+id/name_detail"

android:layout_width="fill_parent" i’ Reference
android:layout_height="wrap_content" another
android:layout_below="@id/review_image" < resource

android:layout_marginLeft="10px"
android:layout_marginBottom="5px"
style="@style/intro_blurb" />
<TextView android:id="@+id/rating_label_detail"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/name_detail"
android:layout_marginLeft="10px"
android:layout_marginBottom="5px"
style="@style/label"
android:text="@string/rating_label" />

</RelativeLayout>

This file uses a RelativeLayout as the root of the view tree. The XML also defines
LayoutParams using the android:layout_[attribute] convention, where
[attribute] refers to a layout attribute such as width or height. Along with layout,
you can also define other view-related attributes in XML, such as android:padding,
which is analogous to the setPadding () method.

After we’ve defined the RelativeLayout parent itself, we add the child View ele-
ments. Here we’re using an ImageView and multiple TextView components. Each of
the components is given an ID using the form android:id="@+id/ [name]" @. When
you define an ID like this, Android generates an int reference in the resource table
and gives it your specified name. Other components can reference the ID using the
friendly textual name. Never use the integer value directly, because it will change over
time as your view changes. Always use the constant value defined in the R class.

After you’ve defined your views in a layout resource file and set the content view in
your Activity, you can use the Activity method findviewById() to obtain a refer-
ence to a particular view. You can then manipulate that view in code. For example, in
listing 3.6 we retrieved the rating TextView as follows:

rating = (TextView) findViewById(R.id.rating detail)

www.it-ebooks.info

http://www.it-ebooks.info/

3.34

Using resources 95

This provides access to the rating_detail element.

XML can define all the properties for a view, including the layout. Because we’re
using a RelativeLayout, we use attributes that place one view relative to another, such
as below or toRightof. To accomplish relative placement, we wuse the
android:layout_below="@id/ [name]" syntax @. The @id syntax lets you reference
other resource items from within a current resource file. Using this approach, you can
reference other elements defined in the file you’re currently working on or other ele-
ments defined in other resource files.

Some of our views represent labels that are shown on the screen as-is and aren’t
manipulated in code, such as rating_label_detail. Others we’ll populate at run-
time, such as name_detail; these views don’t have a text value set. We do know the text
for labels, which we’ll apply with references to externalized strings.

You use the same syntax for styles, using the form style="@style/[stylename]".
Strings, styles, and colors are themselves defined as resources in another type of
resource file.

Externalizing values

It’s common practice in the programming world to externalize string literals from
code. In Java, you usually use a ResourceBundle or a properties file to externalize val-
ues. Externalizing references to strings in this way allows the value of a component to
be stored and updated separately from the component itself, away from code.
Android includes support for values resources that are subdivided into several
groups: animations, arrays, styles, strings, dimensions, and colors. Each of these items
is defined in a specific XML format and made available in code as references from the
R class, just like layouts, views, and drawables. We use externalized strings in the
RestaurantFinder application, as shown in the following listing for strings.xml.

Listing 3.8 Externalized strings for the RestaurantFinder application, strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="app_name_criteria">RestaurantFinder - Criteria</string>
<string name="app_name_reviews">RestaurantFinder - Reviews</string>
<string name="app_name_review">RestaurantFinder - Review</string>
<string name="app_short_name">Restaurants</string>
<string name="menu_get_reviews">Get reviews</string>
<string name="menu_web_review">Get full review</string>
<string name="menu_map_review">Map location</string>
<string name="menu_call_review">Call restaurant</string>
<string name="menu_change_criteria">Change review criteria</string>
<string name="menu_get_next_page">Get next page of results</string>
<string name="intro_blurb_criteria">Enter review criteria</string>
<string name="intro_blurb_detail">Review details</string>

</resources>

This file uses a <string> element with a name attribute for each string value we define.
We used this file for the application name, menu buttons, labels, and alert validation

www.it-ebooks.info

http://www.it-ebooks.info/

96

CHAPTER 3 User interfaces

messages. This format is known as simple value in Android terminology. This file is
placed in source at the res/values/strings.xml location. In addition to strings, you can
define colors and dimensions the same way.

Dimensions are placed in dimens.xml and defined with the <dimen> element:
<dimen name=dimen_name>dimen_value</dimen>. Dimensions can be expressed in
any of the following units:

= Pixels (px) indicate the actual number of pixels on a screen. You should gener-
ally avoid using this unit, because it might make your UI look tiny on a high-
resolution screen or huge on a low-resolution screen.

= Inches (in) determine the physical amount of space the item will occupy. Again,
use caution; one inch looks big on a handset but tiny on a tablet.

= Millimeters (mm) are the metric counterpart to inches.

= Density-independent pixels (dp) will scale automatically based on the pixel density
(dots per inch, or dpi) of the screen; you should try to use this unit for most
items.

= Scaled pixels (sp) are similar to dp but also take into account the user’s preferred
text size. Developers should try to use sp to describe text sizes.

Colors are defined in colors.xml and are declared with the <color> element: <color
name=color_name>#color_value</color>. Color values are expressed using Red
Green Blue triplet values in hexadecimal format, as in HTML. For example, solid blue
is #0000££. Color and dimension files are also placed in the res/values source location.
Although we haven’t defined separate colors and dimensions for the Restaurant-
Finder application, we’re using several styles, which we referenced in listing 3.7. The
style definitions are shown in the following listing. Unlike the string, dimension, and
color resource files, which use a simplistic value structure, the style resource file has a
more complex structure, including specific attributes from the android: namespace.

Listing 3.9 Values resource defining reusable styles, styles.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="intro_blurb">
<item name="android:textSize">22sp</item>
<item name="android:textColor">#ee7620</item>
<item name="android:textStyle">bold</item>
</style>
<style name="label">
<item name="android:textSize">18sp</item>
<item name="android:textColor">#ffffff</item>
</style>
<style name="edit_text">
<item name="android:textSize">1l6sp</item>
<item name="android:textColor">#000000</item>
</style>

</resources>

www.it-ebooks.info

http://www.it-ebooks.info/

Using resources 97

The Android styles approach is similar in concept to using Cascading Style Sheets (CSS)
with HTML. You define styles in styles.xml and then reference them from other
resources or code. Each <style> element has one or more <item> children that
define a single setting. Styles consist of the various view settings: dimensions, colors,
margins, and such. They’re helpful because they facilitate easy reuse and the ability to
make changes in one place that are applied throughout your app. Styles are applied in
layout XML files by associating a style name with a particular View component, such as
style="@style/intro_blurb". Note that in this case, style isn’t prefixed with the
android: namespace; it’s a custom local style, not one provided by the platform.

Styles can be taken one step further and used as themes. Whereas a style refers to a
set of attributes applied to a single View element, themes refer to a set of attributes
being applied to an entire screen. Themes can be defined in the same <style> and
<item> structure as styles are. To apply a theme, you associate a style with an entire
Activity, such as android: theme="@android:style/[stylename]".

Along with styles and themes, Android supports a specific XML structure for defin-
ing arrays as a resource. You can place arrays in res/values/arrays.xml and use them to
define collections of constant values, such as the cuisines we used to pass to our
ArrayAdapter back in listing 3.1. The following listing shows an example of defining
these arrays in XML.

Listing 3.10 Arrays.xml used for defining cuisines and ratings

<?xml version="1.0" encoding="utf-8"?>
<resources>
<array name="cuisines">
<item>ANY</item>
<item>American</item>
<item>Barbeque</item>
<item>Chinese</item>
<item>French</item>
<item>German</item>
<item>Indian</item>
<item>Italian</item>
<item>Mexican</item>
<item>Thai</item>
<item>Vegetarian</item>
<item>Kosher</item>
</array>
</resources>

Array resources use an <array> element with a name attribute and include any num-
ber of <item> child elements to define each array member. You can access arrays in
code using the syntax shown in listing 3.1: String[] ratings = getResources()
.getStringArray (R.array.ratings).

Android resources can also support raw files and XML. Using the res/raw and res/
xml directories, respectively, you can package these file types with your application
and access them through either Resources.openRawResource (int id) or Resources
.getXml (int id).

www.it-ebooks.info

http://www.it-ebooks.info/

98

3.3.5

CHAPTER 3 User interfaces

The last type of resource to examine is the most complex one: the animation
resource.

Providing animations
Animations are more complicated than other Android resources, but they’re also the
most visually impressive. Android allows you to define animations that can rotate,
fade, move, or stretch graphics or text. Although you don’t want to go overboard with
a constantly blinking animated shovel, an initial splash or occasional subtle animated
effect can enhance your UL

Animation XML files go into the res/anim source directory. As with layouts, you
reference the respective animation you want by name/ID. Android supports four
types of animations:

= <alpha>—Defines fading, from 0.0 to 1.0 (0.0 being transparent)
= <scale>—Defines sizing, x and y (1.0 being no change)

= <translate>—Defines motion, x and y (percentage or absolute)
= <rotate>—Defines rotation, pivot from x and y (degrees)

In addition, Android provides several attributes that can be used with any animation
type:

= duration—Time for the animation to complete, in milliseconds

" startOffset—Offset start time, in milliseconds

= interpolator—Used to define a velocity curve for speed of animation

The following listing shows a simple animation that you can use to scale a view.

Listing 3.11 Example of an animation defined in an XML resource, scaler.xml

<?xml version="1.0" encoding="utf-8"?>

<scale xmlns:android="http://schemas.android.com/apk/res/android"
android: fromXScale="0.5"
android:toXScale="2.0"
android: fromYScale="0.5"
android:toYScale="2.0"
android:pivotX="50%"
android:pivotY="50%"
android:startOffset="700"
android:duration="400"
android:fillBefore="false" />

In code, you can reference and use this animation with any View object (TextView, for
example) as follows:

view.startAnimation (AnimationUtils.loadAnimation(this, R.anim.scaler)) ;

This will scale the View element up in size on both the x and y axes. Although we don’t
have any animations in the RestaurantFinder sample application by default, to see this
animation work, you can add the startAnimation() method to any View element in
the code and reload the application.

www.it-ebooks.info

http://www.it-ebooks.info/

3.4

Exploring the AndroidManifest file 99

Animations can come in handy, so you should be aware of them. We’ll cover ani-
mations and other graphics topics in greater detail in chapter 9.

With our journey through Android resources now complete, we’re going to
address the final aspect of RestaurantFinder that we need to cover: the Android-
Manifest.xml manifest file, which is required for every Android application.

Exploring the AndroidManifest file

As you learned in chapter 1, Android requires a manifest file for every application—
AndroidManifest.xml. This file, located in the root directory of the project source,
describes the application context and any supported activities, services, broadcast
receivers, or content providers, as well as the requested permissions for the applica-
tion. You’ll learn more about services, Intents, and BroadcastReceivers in chapter 4
and about content providers in chapter 5. For now, the manifest file for our
RestaurantFinder sample application, as shown in the following listing, contains only
the <application> itself, an <activity> element for each screen, and several <uses-
permission> elements.

Listing 3.12 RestaurantFinder AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<application android:icon="@drawable/restaurant_icon_trans"
android:label="@string/app_short_name"

android:name="RestaurantFinderApplication"
android:allowClearUserData="true"

android:theme="@android:style/Theme.Black"> Define
<activity android:name="ReviewCriteria" Revngruena
android:label="@string/app_short_name"> < Activity

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

. Define
</activity> o MAIN LAUNCHER
<activity android:name="ReviewList

) . . Intent filter
android:label="@string/app_name_reviews">

<intent-filter>

<category
android:name="android.intent.category.DEFAULT" />
<action
android:name=
"com.msi.manning.restaurant .VIEW_LIST" />

</intent-filter>
</activity>
<activity android:name="ReviewDetail"

android:label="@string/app_name_review">

<intent-filter>

<category
android:name="android.intent.category.DEFAULT" />
<action

www.it-ebooks.info

http://www.it-ebooks.info/

100

CHAPTER 3 User interfaces

android:name=
"com.msi.manning.restaurant.VIEW_DETAIL" />
</intent-filter>
</activity>

</application>

<uses-permission android:name="android.permission.CALL_PHONE" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-sdk android:minSdkVersion="3"
android:targetSdkVersion="9"></uses-sdk>

<supports-screens largeScreens="false" xlargeScreens="false"
anyDensity="false" />
</manifest>
In the RestaurantFinder descriptor file, you first see the root <manifest> element dec-
laration, which includes the application’s package declaration and the Android
namespace. Then you see the <application> element with both the name and icon
attributes defined. You don’t need to include the name attribute here unless you want
to extend the default Android Application object to provide some global state to
your application. We took this approach so we could access the Application instance
to store the current Review object. The icon is also optional; if you don’t specify one, a
system default will represent your application on the main menu. We highly recom-
mended that you provide an attractive icon for your application to make it stand out.

After the application is defined, you see the child <activity> elements within.
These elements define each Activity the application supports @. As we noted when
we discussed activities in general, one Activity in every application is defined as the
entry point for the application; this Activity has the <intent-filter> action MAIN
and category LAUNCHER designation @. This tells the Android platform how to start an
application from the Launcher, meaning this Activity will be placed in the main
menu on the device.

After the ReviewCriteria Activity, you see another <activity> designation for
ReviewList. This Activity also includes an <intent-filter>, but for our own action,
com.msi.manning.restaurant.VIEW_LIST. This tells the platform that this Activity
should be invoked for that Intent. Next, the <uses-permission> elements tell the
platform that this application needs the CALL_PHONE and INTERNET permissions.

The <uses-sdk> element has grown increasingly important as Android has
evolved. This element lets Android’s build tools recognize which version of the SDK
you intend to build with. If you want to access advanced features, either in your code
or in the manifest itself, you must set a targetSdkVersion that supports those fea-
tures. Using targetSdkVersion will usually restrict your app to only run on devices
with that version or higher; if you want to allow running on earlier devices, you can set
a lower minSdkVersion. When setting minSdkVersion, make sure that you test on that
version of device, and in particular verify that you don’t call any APIs that weren’t pres-
ent in that SDK—doing so will crash your app. In this example, we’re setting target-
SdkVersion to 9 so we can access the xlargeScreens property that was added in that
SDK revision; because we don’t call any APIs that were defined after Android 1.5, we
can safely leave minsdkVersion at 3.

www.it-ebooks.info

http://www.it-ebooks.info/

3.5

Summary 101

Finally, <supports-screens> provides some instructions to Android that tell it how
to display our Ul By default, Android won’t try to stretch your app to fit very large
screens; as a result, apps that looked good when running on smartphones might look
tiny when running on a tablet. By setting xlargeScreeens="false", we’re telling
Android that we don’t offer any custom support for larger screens. This will cause
Android to run our app in screen-compatibility mode, automatically scaling up the
size of our screens to fill a tablet or other large device.

The RestaurantFinder sample application uses a fairly basic manifest file with three
activities and a series of Intents. Wrapping up the description of the manifest file
completes our discussion of views, activities, resources, and working with Uls in
Android.

Summary

A big part of the Android platform revolves around the UI and the concepts of activi-
ties and views. In this chapter, we explored these concepts in detail and worked on a
sample application to demonstrate them. In relation to activities, we addressed the
concepts and methods involved, and we covered the all-important lifecycle events the
platform uses to manage them. Moving on to views, we looked at common and custom
types, attributes that define layout and appearance, and focus and events.

In addition, we examined how Android handles various types of resources, from
simple strings to more involved animations. We also explored the Android-
Manifest.xml application descriptor and saw how it brings all these components
together to define an Android application.

This chapter has given you a good foundation for general Android UI develop-
ment. Now we need to go deeper into the Intent and BroadcastReceiver classes,
which form the communication layer that Android activities and other components
rely on. We’ll cover these items, along with longer-running Service processes and the
Android interprocess communication (IPC) system involving the Binder, in chapter 4,
where you’ll also complete the RestaurantFinder application.

www.it-ebooks.info

http://www.it-ebooks.info/

Intents and Services

This chapter covers

Asking other programs to do work for you with Intents
Advertising your capabilities with intent filters
Eavesdropping on other apps with broadcast receivers

Building Services to provide long-lived background
processing

Offering APIs to external applications through AIDL

You’ve already created some interesting applications that didn’t require much
effort to build. In this chapter, we’ll dig deeper into the use of Intent objects and
related classes to accomplish tasks. We’ll expand the RestaurantFinder application
from chapter 3, and show you how an Intent can carry you from one Activity to
another and easily link into outside applications. Next, you’ll create a new weather-
reporting application to demonstrate how Android handles background processes
through a service. We’ll wrap up the chapter with an example of using the Android
Interface Definition Language (AIDL) to make different applications communicate
with one another.

We introduced the Intent in chapter 1. An Intent describes something you
want to do, which might be as vague as “Do whatever is appropriate for this URL” or
as specific as “Purchase a flight from San Jose to Chicago for $400.” You saw several

102

www.it-ebooks.info

http://www.it-ebooks.info/

4.1

4.1.1

Serving up RestaurantFinder with Intent 103

examples of working with Intent objects in chapter 3. In this chapter, we’ll look more
closely at the contents of an Intent and how it matches with an IntentFilter. The
RestaurantFinder app will use these concepts to display a variety of screens.

After you complete the RestaurantFinder application, we’ll move on to Weather-
Reporter. WeatherReporter will use the Yahoo! Weather API to retrieve weather data
and alerts and show them to the user. Along the way, you’ll see how an Intent can
request work outside your UI by using a BroadcastReceiver and a Service. A
BroadcastReceiver catches broadcasts sent to any number of interested receivers.
Services also begin with an Intent but work in background processes rather than
Ul screens.

Finally, we’ll examine the mechanism for making interprocess communication
(IPC) possible using Binder objects and AIDL. Android provides a high-performance
way for different processes to pass messages among themselves.

All these mechanisms require the use of Intent objects, so we’ll begin by looking
at the details of this class.

Serving up RestaurantFinder with Intent

The mobile Android architecture looks a lot like the service-oriented architecture
(SOA) that’s common in server development. Each Activity can make an Intent call
to get something done without knowing exactly who’ll receive that Intent. Develop-
ers usually don’t care how a particular task gets performed, only that it’s completed to
their requirements. As you complete the RestaurantFinder application, you'll see that
you can request sophisticated tasks while remaining vague about how those tasks
should get done.

Intent requests are late binding; they're mapped and routed to a component that
can handle a specified task at runtime rather than at build or compile time. One
Activity tells the platform, “I need a map of Langtry, TX, US,” and another compo-
nent returns the result. With this approach, individual components are decoupled
and can be modified, enhanced, and maintained without requiring changes to a
larger application or system.

Let’s look at how to define an Intent in code, how to invoke an Intent within an
Activity, and how Android resolves Intent routing with IntentFilter classes. Then
we’ll talk about Intents that anyone can use because they’re built into the platform.

Defining Intents

Suppose that you want to call a restaurant to make a reservation. When you’re crafting
an Intent for this, you need to include two critical pieces of information. An action is
a verb describing what you want to do—in this case, make a phone call. Data is a noun
describing the particular thing to request—in this case, the phone number. You
describe the data with a Uri object, which we’ll describe more thoroughly in the next
section. You can also optionally populate the Intent with other information that fur-
ther describes how to handle the request. Table 4.1 lists all the components of an
Intent object.

www.it-ebooks.info

http://www.it-ebooks.info/

104

4.1.2

CHAPTER 4 Intents and Services

Table 4.1 Intent data and descriptions

Intent attribute Description

Action Fully qualified String indicating the action (for example,
android.intent.action.DIAL)

Category Describes where and how the Intent can be used, such as from the main
Android menu or from the browser

Component Specifies an explicit package and class to use for the Intent, instead of infer-
ring from action, type, and categories

Data Data to work with, expressed as a URI (for example, content://contacts/1)
Extras Extra data to pass to the Intent in the form of a Bundle
Type Specifies an explicit MIME type, such as text/plain or

vnd.android.cursor.item/email_v2

Intent definitions typically express a combination of action, data, and other attri-
butes, such as category. You combine enough information to describe the task you
want done. Android uses the information you provide to resolve which class should
fulfill the request.

Implicit and explicit invocation

Android’s loose coupling allows you to write applications that make vague requests.
An implicit Intent invocation happens when the platform determines which compo-
nent should run the Intent. In our example of making a phone call, we don’t care
whether the user has the native Android dialer or has installed a third-party dialing
app; we only care that the call gets made. We’ll let Android resolve the Intent using
the action, data, and category we defined. We’ll explore this resolution process in
detail in the next section.

Other times, you want to use an Intent to accomplish some work, but you want to
make sure that you handle it yourself. When you open a review in RestaurantFinder,
you don’t want a third party to intercept that request and show its own review instead.
In an explicit Intent invocation, your code directly specifies which component
should handle the Intent. You perform an explicit invocation by specifying either the
receiver’s Class or its ComponentName. The ComponentName provides the fully qualified
class name, consisting of a String for the package and a String for the class.

To explicitly invoke an Intent, you can use the following form: Intent (Context
ctx, Class cls). With this approach, you can short-circuit all the Android Intent-
resolution wiring and directly pass in an Activity class reference to handle the
Intent. Although this approach is convenient and fast, it also introduces tight cou-
pling that might be a disadvantage later if you want to start using a different Activity.

www.it-ebooks.info

http://groups.google.com/group/android-developers/browse_thread/thread/fa2848e31636af70
http://www.it-ebooks.info/

Serving up RestaurantFinder with Intent 105

4.1.3 Adding external links to RestaurantFinder

When we started the RestaurantFinder in listing 3.6, we used Intent objects to move
between screens in our application. In the following listing, we finish the Review-

Detail Activity by using a new set of implicit Intent objects to link the user to other
applications on the phone.

Listing 4.1 Second section of ReviewDetail, demonstrating Intent invocation

@Override

public boolean onMenultemSelected(int featureId, Menultem item) {
Intent intent = null;

<

;) Declare
switch (item.getItemId()) { Intent
case MENU_WEB_REVIEW:
if ((link != null) && !link.equals("")) {
intent = new Intent (Intent.ACTION_VIEW,
Uri.parse(link));
startActivity (intent) ; kahy
} else { web page

new AlertDialog.Builder (this)
setTitle (getResources ()
.getString(R.string.alert_label))
.setMessage (R.string.no_link_ _message)
.setPositiveButton ("Continue",
new OnClickListener () {
public void onClick(DialogInterface dialog,
int argl) {
}
}) .show () ;
}
return true;
case MENU_MAP_REVIEW:
if ((location.getText () != null)
&& !location.getText () .equals("")) {
intent = new Intent (Intent.ACTION_VIEW,
Uri.parse("geo:0,0?qg=" +

location.getText () .toString())); Set Intent for
startActivity (intent) ; mapnmnunem
} else {

new AlertDialog.Builder (this)
.setTitle(getResources ()
.getString(R.string.alert_label))
.setMessage (R.string.no_location_message)
.setPositiveButton ("Continue", new OnClickListener () {
public void onClick(DialogInterface dialog,
int argl) {
}
}) .show () ;
}
return true;
case MENU_CALL_REVIEW:
if ((phone.getText () != null)
&& !phone.getText () .equals("")

www.it-ebooks.info

http://www.it-ebooks.info/

106

CHAPTER 4 Intents and Services

&& !phone.getText () .equals("NA")) {

String phoneString =

parsePhone (phone.getText () .toString()) ;
intent = new Intent (Intent.ACTION_CALL,

Uri.parse("tel:" + phoneString)); <
startActivity (intent) ;

} else {

new AlertDialog.Builder (this)
.setTitle (getResources ()
.getString(R.string.alert_label))
.setMessage (R.string.no_phone_message)
.setPositiveButton ("Continue", new OnClickListener () {

public void onClick(DialogInterface dialog,

int argl) {

Set Intent for
call menu item

}
}) .show () ;
}
return true;
}
return super.onMenultemSelected(featureId, item);
}
private String parsePhone(final String phone) {
String parsed = phone;
parsed = parsed.replaceAll ("\\D", "");
parsed = parsed.replaceAll ("\\s", "");
return parsed.trim() ;

}
The Review model object contains the address and phone number for a restaurant and
a link to a full online review. Using ReviewDetail Activity, the user can open the
menu and choose to display a map with directions to the restaurant, call the restaurant,
or view the full review in a web browser. To allow all of these actions to take place,
ReviewDetail launches built-in Android applications through implicit Intent calls.

In our new code, we initialize an Intent class instance @ so it can be used later by
the menu cases. If the user selects the MENU_WEB_REVIEW menu button, we create a
new instance of the Intent variable by passing in an action and data. For the action,
we use the String constant Intent.ACTION_VIEW, which has the value
android.app.action.VIEW. You can use either the constant or the value, but sticking
to constants helps ensure that you don’t mistype the name. Other common actions
are Intent .ACTION_EDIT, Intent.ACTION_INSERT, and Intent.ACTION_DELETE.

For the data component of the Intent, we use Uri.parse(link) to create a URL
We’ll look at Uri in more detail in the next section; for now, just know that this allows
the correct component to answer the startActivity (Intent i) request @ and ren-
der the resource identified by the URI. We don’t directly declare any particular
Activity or Service for the Intent; we simply say we want to view http://somehost/
somepath. Android’s late-binding mechanism will interpret this request at runtime,
most likely by launching the device’s built-in browser.

ReviewDetail also handles the MENU_MAP_REVIEW menu item. We initialize the
Intent to use Intent.ACTION_VIEW again, but this time with a different type of URI:

www.it-ebooks.info

http://www.it-ebooks.info/

4.14

Serving up RestaurantFinder with Intent

"geo:0,0?gq=" + street_address @. This combina-
tion of VIEW and geo invokes a different Intent, proba-
bly the application. Finally,
handling MENU_MAP_CALL, we request a phone call
using the Intent.ACTION_CALL action and the tel:Uri
scheme @.

Through these simple requests, our Restaurant-
Finder application uses implicit Intent invocation to
allow the user to phone or map the selected restaurant

builtin maps when

107

D@ 10:13am

Chapeau
Rating:

5

Review:

or to view the full review web page. These menu buttons

It's the gem of the Richmond district in
SF IT's been open for nearly four years,
owned and run by Philippe and Ellen
Gardelle who are on-site every night
closely supervising everything, chatting
at tables, racing out the door after you

$o oo

are shown in figure 4.1.
The RestaurantFinder application is now complete.

Users can search for reviews, select a particular review
from a list, display a detailed review, and use additional
built-in applications to find out more about a selected
restaurant.

You’ll learn more about all the builtin apps and
action-data pairs in section 4.1.5. Right now, we’re
going to focus on the Intent-resolution process and

O HEH \

Get full review Map location Call restaurant

Figure 4.1 Menu buttons on
the RestaurantFinder sample
application that invoke external
applications

how it routes requests.

Finding your way with Intent

RestaurantFinder makes requests to other applications by using Intent invocations,
and guides its internal movement by listening for Intent requests. Three types of
Android components can register to handle Intent requests: Activity, Broadcast-
Receiver, and Service. They advertise their capabilities through the <intent-
filter> element in the AndroidManifest.xml file.

Android parses each <intent-filter> element into an IntentFilter object.
After Android installs an .apk file, it registers the application’s components, including
the Intent filters. When the platform has a registry of Intent filters, it can map any
Intent requests to the correct installed Activity, BroadcastReceiver, or Service.

To find the appropriate handler for an Intent, Android inspects the action, data,
and categories of the Intent. An <intent-filter> must meet the following condi-
tions to be considered:

= The action and category must match.

= If specified, the data type must match, or the combination of data scheme and
authority and path must match.

Let’s look at these components in more detail.

ACTIONS AND CATEGORIES

Each individual IntentFilter can specify zero or more actions and zero or more cat-
egories. If no action is specified in the IntentFilter, it’ll match any Intent; other-
wise, it’ll match only if the Intent has the same action.

www.it-ebooks.info

http://www.it-ebooks.info/

108

CHAPTER 4 Intents and Services

An IntentFilter with no categories will match only an Intent with no categories;
otherwise, an IntentFilter must have at least what the Intent specifies. For exam-
ple, if an IntentFilter supports both the HOME and the ALTERNATIVE categories,
it’ll match an Intent for either HOME or CATEGORY. But if the IntentFilter doesn’t
provide any categories, it won’t match HOME or CATEGORY.

You can work with actions and categories without specifying any data. We used this
technique in the ReviewList Activity we built in chapter 3. In that example, we
defined the IntentFilter in the manifest XML, as shown in the following listing.

Listing 4.2 Manifest declaration of ReviewList Activity with <intent-filter>

<activity android:name="ReviewList" android:label="@string/app_name">
<intent-filter>
<category android:name="android.intent.category.DEFAULT" />
<action android:name="com.msi.manning.restaurant.VIEW_LIST" />
</intent-filter>
</activity>

To match the filter declared in this listing, we used the following Intent in code,

where Constants.INTENT_ACTION_VIEW LIST is the String "com.msi.manning
.restaurant .VIEW_LIST":

Intent intent = new Intent (Constants.INTENT_ACTION_VIEW_LIST) ;

startActivity (intent) ;

DATA

After Android has determined that the
action and category match, it inspects
the Intent data. The data can be either

weather:// com.msi.manning/loc?zip=12345

an explicit MIME type or a combination
of scheme, authority, and path. The Uri \
shown in figure 4.2 is an example of scheme authority path

using scheme, authorlty, and path. Figure 4.2 The portions of a URI that are used in
The following example shows what Android, showing scheme, authority, and path
using an explicit MIME type within a

URI looks like:
audio/mpeg

IntentFilter classes describe what combination of type, scheme, authority, and path
they accept. Android follows a detailed process to determine whether an Intent
matches:

= Ifascheme is present and type is not present, Intents with any type will match.

= If a type is present and scheme is not present, Intents with any scheme will
match.

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.5

Serving up RestaurantFinder with Intent 109

= If neither a scheme nor a type is present, only Intents with neither scheme nor
type will match.
= If an authority is specified, a scheme must also be specified.

= Ifa path is specified, a scheme and an authority must also be specified.

Most matches are straightforward, but as you can see, it can get complicated. Think of
Intent and IntentFilter as separate pieces of the same puzzle. When you call an
Intent in an Android application, the system resolves the Activity, Service, or
BroadcastReceiver to handle your request through this process using the actions,
categories, and data provided. The system searches all the pieces of the puzzle it has
until it finds one that meshes with the Intent you've provided, and then it snaps those
pieces together to make the late-binding connection.

Figure 4.3 shows an example of how a match occurs. This example defines an
IntentFilter with an action and a combination of a scheme and an authority. It
doesn’t specify a path, so any path will match. The figure also shows an example of an
Intent with a URI that matches this filter.

If multiple IntentFilter classes match the provided Intent, the platform chooses
which one will handle the Intent. For a userwvisible action such as an Activity,
Android usually presents the user with a pop-up menu that lets them select which
Intent should handle it. For nonvisible actions such as a broadcast, Android consid-
ers the declared priority of each IntentFilter and gives them an ordered chance to
handle the Intent.

Taking advantage of Android-provided activities

In addition to the examples in the RestaurantFinder application, Android ships with a
useful set of core applications that allow access via the formats shown in table 4.2.
Using these actions and URIs, you can hook into the built-in maps application, phone
application, or browser application. By experimenting with these, you can get a feel
for how Intent resolution works in Android.

IntentFilter

<Intent-filter>

<action android:name="android.intent.action.VIEW" />

<data android:scheme="weather” android:host="com.msi.manning” />
</Intent-filter>

Intent

Intent = newlntent(Intent. ACTION_VIEW
Uri.parse("weather://com.msi.manning /loc?zip=12345");

Figure 4.3 Example Intent and IntentFilter matching using a filter defined in XML

www.it-ebooks.info

http://www.it-ebooks.info/

110

4.2

4.2.1

CHAPTER 4 Intents and Services

Table 4.2 Common Android application Intent, action, and URI combinations

Action URI

Intent .ACTION_CALL tel:phone_number

Intent .ACTION_DIAL tel :phone_number

Intent .ACTION_DIAL voicemail:

Intent .ACTION_VIEW geo:latitude, longitude

Intent .ACTION_VIEW geo:0,0?g=street+address

Intent.ACTION_VIEW http://web_address

Intent .ACTION_VIEW https://web_address

Description

Opens the phone application and
calls the specified number

Opens the phone application and
dials (but doesn’t call) the speci-
fied number

Opens the phone application and
dials (but doesn’t call) the voice-
mail number

Opens the maps application
to the specified latitude and
longitude

Opens the maps application to
the specified address

Opens the browser application to
the specified URL

Opens the browser application to
the specified secure URL

With a handle on the basics of Intent resolution and a quick look at built-in Intents
out of the way, we can move on to a new sample application: WeatherReporter.

Checking the weather with a custom URI

WeatherReporter, the next sample application we’ll
build, uses the Yahoo! Weather API to retrieve weather
data and then displays the data to the user. This applica-
tion can also optionally alert users about severe weather
for certain locations, based either on the current loca-
tion of the device or on a specified postal code.

Within this project, you’ll see how you can define a
custom URI and register it with a matching Intent filter
to allow any other application to invoke a weather report
through an Intent. Defining and publishing an Intent
in this way allows other applications to easily use your
application. When the WeatherReporter application is
complete, the main screen will look like figure 4.4.

Offering a custom URI

Let’s look more deeply into how to define Intent filters
in XML. The manifest for WeatherReporter is shown in
the following listing.

www.it-ebooks.info

stly (day
Temperature: 54 F (wind chill 54 F)
Bar .01 Fal

b - Wind: W

Partly Cloudy (day) High:59 F - Low:53

@ W

Spedfy location Saved locations

Figure 4.4 The WeatherReporter
application, showing the weather
forecast for the current location

http://www.it-ebooks.info/

Checking the weather with a custom URI 111

Listing 4.3 Android manifest file for the WeatherReporter application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.weather">
<application android:icon="@drawable/weather_ sun_clouds_120"
android:label="@string/app_name"
android:theme="@android:style/Theme.Black"
android:allowClearUserData="true">

<activity android:name="ReportViewSavedLocations" <
android:label="@string/app_name_view_saved_locations" />
<activity android:name="ReportSpecifyLocation" qg"

android:label=
"@string/app_name_specify_location" />
<activity android:name="ReportViewDetail" <
android:label="@string/app_name_view_detail">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="weather"
android:host="com.msi.manning" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<data android:scheme="weather"
android:host="com.msi.manning" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<receiver android:name=
".service.WeatherAlertServiceReceiver"> <F44€) Define receiver
<intent-filter>
<action android:name=
"android.intent.action.BOOT_COMPLETED" />
</intent-filter>

Define activities

</receiver>
<service
android:name=".service.WeatherAlertService" /> <k44€, Define Service
</application>
<uses-permission <

android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name= Include necessary

"android.permission.ACCESS_FINE_LOCATION" /> permissions
<uses-permission android:name=

"android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

www.it-ebooks.info

http://www.it-ebooks.info/

112

4.2.2

CHAPTER 4 Intents and Services

In the WeatherReporter manifest, we define three activities @. The first two don’t
include an <intent-filter>, so they can only be explicitly invoked from within this
application. The ReportViewDetail Activity has multiple <intent-filter> tags
defined for it, including one denoting it as the MAIN LAUNCHER and one with the
weather://com.msi.manning scheme and authority. Our application supports this
custom URI to provide weather access.

You can use any combination of scheme, authority, and path, as shown in listing
4.3, or you can use an explicit MIME type. You’'ll find out more about MIME types and
how they’re processed in chapter 5, where we’ll look at data sources and use an
Android concept known as a ContentProvider.

After we define these activities, we use the <receiver> element in the manifest file
to refer to a BroadcastReceiver class @. We’ll examine BroadcastReceiver more
closely in section 4.3, but for now know that an <intent-filter> associates this
receiver with an Intent—in this case, for the BOOT_COMPLETED action. This filter tells
the platform to invoke the WeatherAlertServiceReceiver class after it completes the
bootup sequence.

We also define a Service . You’ll see how this Service is built, and how it polls
for severe weather alerts in the background, in section 4.3. Finally, our manifest
includes a set of required permissions @.

Inspecting a custom URI

With the foundation for our sample application in place via the manifest, Android will
launch WeatherReporter when it encounters a request that uses our custom URI. As
usual, it’ll invoke the onStart () method of the main Activity WeatherReporter will
use. The following listing shows our implementation, where we parse data from the
URI and use it to display a weather report.

Listing 4.4 onStart () method of the ReportViewDetail Activity

@Override
public void onStart() {
super.onStart () ; o Create Get device
dbHelper = new DBHelper (this); | database helper ? location
deviceZip = WeatherAlertService.deviceLocationZIP; . postal code
if ((getIntent().getData() != null)
&& (getIntent () .getData() .getEncodedQuery () != null)

&& (getIntent () .getData () .getEncodedQuery () .length() > 8)) {
String queryString =
getIntent () .getData () .getEncodedQuery () ;
reportZip = queryString.substring (4, 9);
useDeviceLocation = false;
} else {
reportZip = deviceZip;
useDevicelLocation = true;
}
savedLocation = dbHelper.get (reportZip) ;
deviceAlertEnabledLocation =
dbHelper.get (DBHelper.DEVICE_ALERT_ENABLED_ZIP) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Checking the weather with a custom URI 113

if (useDeviceLocation) {
currentCheck.setText (R.string.view_checkbox_current) ;

if (deviceAlertEnabledLocation != null) {
currentCheck.setChecked (true) ; <+
} else {
currentCheck.setChecked(false) ; <—
}
} else {
currentCheck.setText (R.string.view_checkbox_specific) ;
if (savedLocation != null) { Set status of alert- 9
if (savedLocation.alertenabled == 1) { enabled check box
currentCheck. setChecked (true) ; <—
} else {
currentCheck.setChecked (false) ; <

}
}

}

loadReport (reportzip) ;
}
You can get the complete ReportViewDetail Activity from the source code down-
load for this chapter. In the onStart () method shown in this listing, we focus on pars-
ing data from the URI passed in as part of the Intent that invokes the Activity.

First, we establish a database helper object @. This object will be used to query a
local SQLite database that stores user-specified location data. We’ll show more about
how data is handled, and the details of this helper class, in chapter 5.

In this method, we also obtain the postal code of the current device location from
a LocationManager in the WeatherAlertService class @. We want to use the location
of the device as the default weather report location. As the user travels with the
phone, this location will automatically update. We’ll cover location and Location-
Manager in chapter 11.

After obtaining the device location, we move on to the key aspect of obtaining URI
data from an Intent. We check whether our Intent provided specific data; if so, we
parse the URI passed in to obtain the queryString and embedded postal code to use
for the user’s specified location. If this location is present, we use it; if not, we default
to the device location postal code.

After determining the postal code to use, we set the status of the check box that
indicates whether to enable alerts €. We have two kinds of alerts: one for the device
location and another for the user’s specified saved locations.

Finally, we call the loadReport () method, which makes the call to the Yahoo!
Weather API to obtain data; then we use a Handler to send a Message to update the
needed Ul View elements.

Remember that this Activity registered in the manifest to receive weather://
com.msi.manning Intents. Any application can invoke this Activity without knowing
any details other than the URI This separation of responsibilities enables late binding.
After invocation, we check the URI to see what our caller wanted.

You’ve now seen the manifest and pertinent details of the main Activity class for
the WeatherReporter application we’ll build in the next few sections. We've also

www.it-ebooks.info

http://www.it-ebooks.info/

114

4.3

4.3.1

CHAPTER 4 Intents and Services

discussed how Intent and IntentFilter classes work together to wire up calls
between components. Next, we’ll look at some of the built-in Android applications
that accept external Intent requests. These requests enable you to launch activities by
simply passing in the correct URL

Checking the weather with broadcast receivers

So far, you’ve seen how to use an Intent to communicate within your app and to issue
a request that another component will handle. You can also send an Intent to any
interested receiver. When you do, you aren’t requesting the execution of a specific
task, but instead you’re letting everyone know about something interesting that has
happened. Android sends these broadcasts for several reasons, such as when an
incoming phone call or text message is received. In this section, we’ll look at how
events are broadcast and how they’re captured using a BroadcastReceiver.

We’ll continue to work through the WeatherReporter sample application we began
in section 4.2. The WeatherReporter application will display alerts to the user when
severe weather is forecast for the user’s indicated location. We’ll need a background
process that checks the weather and sends any needed alerts. This is where the
Android Service concept will come into play. We need to start the Service when the
device boots, so we’ll listen for the boot through an Intent broadcast.

Broadcasting Intent

As you’ve seen, Intent objects let you move from Activity to Activity in an
Android application, or from one application to another. Intents can also broadcast
events to any configured receiver using one of several methods available from the
Context class, as shown in table 4.3.

Table 4.3 Methods for broadcasting Intents

Method Description

sendBroadcast (Intent intent) Simple form for broadcasting an Intent.

sendBroadcast (Intent intent, String Broadcasts an Intent with a permission String that

receiverPermission) receivers must declare in order to receive the broadcast.

sendOrderedBroadcast (Intent intent, Broadcasts an Intent call to the receivers one by one seri-

String receiverPermission) ally, stopping after a receiver consumes the message.

sendOrderedBroadcast (Intent intent, Broadcasts an Intent and gets a response back through

String receiverPermission, the provided BroadcastReceiver. All receivers can

BroadcastReceiver resultReceiver, append data that will be returned in the

Handler scheduler, int initialCode, BroadcastReceiver. When you use this method, the

String initialData, Bundle receivers are called serially.

initialExtras)

sendStickyBroadcast (Intent intent) Broadcasts an Intent that remains a short time after
broadcast so that receivers can retrieve data. Applications
using this method must declare the BROADCAST_STICKY
permission.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3.2

Checking the weather with broadcast receivers 115

When you broadcast Intents, you send an event into the background. A broadcast
Intent doesn’t invoke an Activity, so your current screen usually remains in the
foreground.

You can also optionally specify a permission when you broadcast an Intent. Only
receivers that have declared that permission will receive the broadcast; all others will
remain unaware of it. You can use this mechanism to ensure that only certain trusted
applications can listen in on what your app does. You can review permission declara-
tions in chapter 1.

Broadcasting an Intent is fairly straightforward; you use the Context object to
send it, and interested receivers catch it. Android provides a set of platform-related
Intent broadcasts that use this approach. In certain situations, such as when the time
zone on the platform changes, when the device completes booting, or when a package
is added or removed, the system broadcasts an event using an Intent. Table 4.4 shows
some of the specific Intent broadcasts the platform provides.

To register to receive an Intent broadcast, you implement a BroadcastReceiver.
You’ll make your own implementation to catch the platform-provided BOOT_COMPLETED
Intent to start the weather alert service.

Table 4.4 Broadcast actions provided by the Android platform

Action Description

ACTION_BATTERY_CHANGED Sent when the battery charge level or charging state changes
ACTION_BOOT_COMPLETED Sent when the platform completes booting
ACTION_PACKAGE_ADDED Sent when a package is added to the platform
ACTION_PACKAGE_REMOVED Sent when a package is removed from the platform
ACTION_TIME_CHANGED Sent when the user changes the time on the device
ACTION_TIME_TICK Sent every minute to indicate that time is ticking
ACTION_TIMEZONE_CHANGED Sent when the user changes the time

Creating a receiver

Because the weather alert Service you're going to create should always run in the
background, you need a way to start it when the platform boots. To do this, you’ll cre-
ate a BroadcastReceiver that listens for the BOOT_COMPLETED Intent broadcast.

The BroadcastReceiver base class provides a series of methods that let you get
and set a result code, result data (in the form of a String), and an extra Bundle. It
also defines a lifecycle-related method to run when the appropriate Intent is
received.

You can associate a BroadcastReceiver with an IntentFilter in code or in the
manifest XML file. We declared this for the WeatherReporter manifest in listing 4.3,
where we associated the BOOT_COMPLETED broadcast with the WeatherAlertService-
Receiver class. This class is shown in the following listing.

www.it-ebooks.info

http://www.it-ebooks.info/

116

44

CHAPTER 4 Intents and Services

Listing 4.5 WeatherAlertServiceReceiver BroadcastReceiver class

public class WeatherAlertServiceReceiver extends BroadcastReceiver {
@Override
public void onReceive (Context context, Intent intent) {
if (intent.getAction().equals(Intent.ACTION_BOOT_ COMPLETED)) {
context.startService (new Intent (context,
WeatherAlertService.class)) ;

}

When you create your own Intent broadcast receiver, you extend the Broadcast-
Receiver class and implement the abstract onReceive (Context ¢, Intent i) method.
In our implementation, we start the WeatherAlertService. This Service class, which
we’ll create next, is started using the Context.startService(Intent i, Bundle b)
method.

Keep in mind that receiver class instances have a short and focused lifecycle. After
completing the onReceive (Context ¢, Intent i) method, the instance and process
that invoked the receiver are no longer needed and might be killed by the system. For
this reason, you can’t perform any asynchronous operations in a BroadcastReceiver,
such as starting a thread or showing a dialog. Instead, you can start a Service, as we’ve
done in listing 4.5, and use it to do work.

Our receiver has started the WeatherAlertService, which will run in the back-
ground and warn users of severe weather in the forecast with a Notification-based
alert. Let’s look more deeply into the concept of an Android Service.

Building a background weather service

In a basic Android application, you create Activity DO 7:38m
classes and move from screen to screen using Intent

. . . | June 24, 2010 @ 7:39

calls, as we’ve done in previous chapters. This approach Juns L =
. . Android Clear

works for the canonical Android screen-to-screen fore- =)

ground application, but it doesn’t work for cases like

. . B) Severe Weather Alert!
ours where we want to always listen for changes in the

Beardstown, IL T:38 AM
weather, even if the user doesn’t currently have our app =+
open. For this, we need a Service.

In this section, we’ll implement the Weather-
AlertService we launched in listing 4.4. This Service
sends an alert to the user when it learns of severe
weather in a specified location. This alert will display
over any application, in the form of a Notification, if
severe weather is detected. Figure 4.5 shows the notifi-

cation we’ll send. .
. . , Figure 4.5 Warning from a
A background task is typically a process that doesn’t ground application about

involve direct user interaction or any type of UL This severe weather

www.it-ebooks.info

http://www.it-ebooks.info/

Building a background weather service 117

process perfectly describes checking for severe weather. After a Service is started, it
runs until it’s explicitly stopped or the system kills it. The WeatherAlertService back-
ground task, which starts when the device boots via the BroadcastReceiver from list-
ing 4.5, is shown in the following listing.

Listing 4.6 WeatherAlertService class, used to register locations and send alerts

public class WeatherAlertService extends Service {
private static final String LOC = "LOC";
private static final String ZIP = "ZIP";
private static final long ALERT_QUIET_PERIOD = 10000;
private static final long ALERT_POLL_INTERVAL = 15000;
public static String deviceLocationZIP = "94102";
private Timer timer;
private DBHelper dbHelper;
private NotificationManager nm;
private TimerTask task = new TimerTask() {
public void run() {
List<Location> locations = /0 Get locations with
dbHelper.getAllAlertEnabled() ; alerts enabled
for (Location loc : locations) {
WeatherRecord record = loadRecord(loc.zip);
if (record.isSevere()) {
if ((loc.lastalert +
WeatherAlertService.ALERT QUIET_PERIOD)
< System.currentTimeMillis()) {
loc.lastalert = System.currentTimeMillis() ;
dbHelper .update(loc) ;

sendNotification(loc.zip, record); < Fire alert

if severe
}
}
device location alert omitted for brevity
}
Y
private Handler handler = new Handler () {
public void handleMessage (Message msg) {
notifyFromHandler ((String) msg.getData()
.get (WeatherAlertService.LOC), (String) msg.getData ()
.get (WeatherAlertService.ZIP)); NoﬁWlH
} } % from handler
@Override
public void onCreate() {
dbHelper = new DBHelper (this) ;
timer = new Timer(); <@ Initialize timer

timer.schedule(task, 5000,
WeatherAlertService.ALERT_POLL_INTERVAL) ;
nm = (NotificationManager)
getSystemService (Context .NOTIFICATION_SERVICE) ;

onStart with LocationManager and LocationListener \

omitted for brevity
@Override

www.it-ebooks.info

http://www.it-ebooks.info/

118

CHAPTER 4 Intents and Services

public void onDestroy () {
super.onDestroy () ; Clean up
dbHelper.cleanup () ; - database connection
}
@Override

public IBinder onBind(Intent intent) {
return null;
}
protected WeatherRecord loadRecord(String zip) {
final YWeatherFetcher ywh =
new YWeatherFetcher (zip, true);
return ywh.getWeather () ;
}
private void sendNotification(String zip,
WeatherRecord record) {
Message message = Message.obtain() ;
Bundle bundle = new Bundle() ;
bundle.putString (WeatherAlertService.zZIP, zip);
bundle.putString (WeatherAlertService.LOC, record.getCity()
+ ", " + record.getRegion()) ;
message.setData (bundle) ;
handler.sendMessage (message) ;

} Display
private void actionable
notifyFromHandler (String location, String zip) { < notification

Uri uri = Uri.parse("weather://com.msi.manning/loc?zip=" + zip);
Intent intent = new Intent (Intent.ACTION_VIEW, uri);
PendingIntent pendingIntent =
PendingIntent.getActivity(this, Intent.FLAG_ACTIVITY_NEW_TASK,

intent, PendingIntent.FLAG_ONE_SHOT) ;
final Notification n =

new Notification(R.drawable.severe_weather_24,

"Severe Weather Alert!",
System.currentTimeMillis());

n.setLatestEventInfo(this, "Severe Weather Alert!",

location, pendingIntent) ;
nm.notify(Integer.parselInt(zip), n);

}

WeatherAlertService extends Service. We create a Service in a way that’s similar to
how we’ve created activities and broadcast receivers: extend the base class, implement
the abstract methods, and override the lifecycle methods as needed.

After the initial class declaration, we define several member variables. First come
constants that describe our intervals for polling for severe weather and a quiet period.
We’ve set a low threshold for polling during development—severe weather alerts will
spam the emulator often because of this setting. In production, we’d limit this to
check every few hours.

Next, our TimerTask variable will let us periodically poll the weather. Each time
the task runs, it gets all the user’s saved locations through a database call O. we'll
examine the specifics of using an Android database in chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a background weather service 119

When we have the saved locations, we parse each one and load the weather report.
If the report shows severe weather in the forecast, we update the time of the last alert
field and call a helper method to initiate sending a Notification @. After we process
the user’s saved locations, we get the device’s alert location from the database using a
postal code designation. If the user has requested alerts for their current location, we
repeat the process of polling and sending an alert for the device’s current location as
well. You can see more details on Android location-related facilities in chapter 11.

After defining our TimerTask, we create a Handler member variable. This variable
will receive a Message object that’s fired from a non-UI thread. In this case, after
receiving the Message, our Handler calls a helper method that instantiates and dis-
plays a Notification @.

Next, we override the Service lifecycle methods, starting with onCreate (). Here
comes the meat of our Service: a Timer @ that we configure to repeatedly fire. For
as long as the Service continues to run, the timer will allow us to update weather
information. After onCreate (), you see onDestroy (), where we clean up our database
connection @. Service classes provide these lifecycle methods so you can control
how resources are allocated and deallocated, similar to Activity classes.

After the lifecycle-related methods, we implement the required onBind () method.
This method returns an IBinder, which other components that call into Service
methods will use for communication. WeatherAlertService performs only a back-
ground task; it doesn’t support binding, and so it returns a null for onBind. We’ll add
binding and interprocess communication (IPC) in section 4.5.

Next, we implement our helper methods. First, loadRecord() calls out to the
Yahoo! Weather API via YWeatherFetcher. (We’ll cover networking tasks, similar to
those this class performs, in chapter 6.) Then sendNotification configures a
Message with location details to activate the Handler we declared earlier. Last of all,
you see the notifyFromHandler () method. This method fires off a Notification with
Intent objects that will call back into the WeatherReporter Activity if the user clicks
the Notification @.

A warning about long-running Services

Our sample application starts a Service and leaves it running in the background.
This Service is designed to have a minimal footprint, but Android best practices dis-
courage long-running Services. Services that run continually and constantly use
the network or perform CPU-intensive tasks will eat up the device’s battery life and
might slow down other operations. Even worse, because they run in the background,
users won't know what applications are to blame for their device’s poor performance.

The OS will eventually kill running Services if it needs to acquire additional memory,
but otherwise it won’t interfere with poorly designed Services. If your use case no
longer requires the Service, you should stop it. If you do require a long-running
Service, you might want to give users the option of whether to use it.

www.it-ebooks.info

http://www.it-ebooks.info/

120

4.5

4.5.1

CHAPTER 4 Intents and Services

Now that we’ve discussed the purpose of Services and you’ve created a Service
class and started one via a BroadcastReceiver, we can start looking at how other
developers can interact with your Service.

Communicating with the WeatherAlertService
from other apps

In Android, each application runs within its own process. Other applications can’t
directly call methods on your weather alert service, because the applications are in dif-
ferent sandboxes. You've already seen how applications can invoke one another by
using an Intent. Suppose, though, that you wanted to learn something specific from a
particular application, like check the weather in a particular region. This type of gran-
ular information isn’t readily available through simple Intent communication, but
fortunately Android provides a new solution: IPC through a bound service.

We’ll illustrate bound services by expanding the weather alert with a remotable
interface using AIDL, and then we’ll connect to that interface through a proxy that
we’ll expose using a new Service. Along the way, we’ll explore the IBinder and
Binder classes Android uses to pass messages and types during IPC.

Android Interface Definition Language

If you want to allow other developers to use your weather features, you need to give
them information about the methods you provide, but you might not want to share
your application’s source code. Android lets you specify your IPC features by using an
interface definition language (IDL) to create AIDL files. These files generate a Java
interface and an inner Stub class that you can use to create a remotely accessible
object, and that your consumers can use to invoke your methods.

AIDL files allow you to define your package, imports, and methods with return
types and parameters. Our weather AIDL, which we place in the same package as the
Jjava files, is shown in the following listing.

Listing 4.7 [WeatherReporter.aidl remote IDL file

package com.msi.manning.weather;
interface IWeatherReporter
{

String getWeatherFor (in String zip);

void addLocation(in String zip, in String city, in String region);
}
You define the package and interface in AIDL as you would in a regular Java file. Simi-
larly, if you require any imports, you’d list them above the interface declaration. When
you define methods, you must specify a directional tag for all nonprimitive types. The
possible directions are in, out, and inout. The platform uses this directional tag to
generate the necessary code for marshaling and unmarshaling instances of your inter-
face across IPC boundaries.

www.it-ebooks.info

http://www.it-ebooks.info/

Communicating with the WeatherAlertService from other apps 121

Our interface IeatherReporter includes methods to look up the current weather
from the Service, or to add a new location to the Service. Other developers could use
these features to provide other front-end applications that use our back-end service.

Only certain types of data are allowed in AIDL, as shown in table 4.5. Types that
require an import must always list that import, even if they’re in the same package as
your .aidl file.

Table 4.5 Android IDL allowed types

Type Description Import required
Java primitives boolean, byte, short, int, float, double, No
long, char.
String java.lang.String. No
CharSequence java.lang.CharSequence. No
List Can be generic; all types used in collection must be No
allowed by IDL. Ultimately provided as an
ArrayList.
Map Can be generic, all types used in collection must be No
one allowed by IDL. Ultimately provided as a
HashMap.
Other AIDL interfaces Any other AlIDL-generated interface type. Yes
Parcelable objects Objects that implement the Android Parcelable inter- | Yes
face, described in section 4.5.2.

After you've defined your interface methods with return types and parameters, you
then invoke the aidl tool included in your Android SDK installation to generate a Java
interface that represents your AIDL specification. If you use the Eclipse plug-in, it’ll
automatically invoke the aidl tool for you, placing the generated files in the appropri-
ate package in your project’s gen folder.

The interface generated through AIDL includes an inner static abstract class
named Stub, which extends Binder and implements the outer class interface. This
Stub class represents the local side of your remotable interface. Stub also includes an
asInterface(IBinder binder) method that returns a remote version of your
interface type. Callers can use this method to get a handle to the remote object and
use it to invoke remote methods. The AIDL process generates a Proxy class (another
inner class, this time inside Stub) that connects all these components and returns to
callers from the asInterface() method. Figure 4.6 depicts this IPC local/remote
relationship.

After all the required files are generated, create a concrete class that extends from
Stub and implements your interface. Then, expose this interface to callers through a
Service. We’ll be doing that soon, but first, let’s take a quick look under the hood
and see how these generated files work.

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 4 Intents and Services

AIDL file

IWeatherAlertService.aidl

AIDL
tool

Generated Java interface
IWeatherAlertService.java

Generated inner static abstract Stub
IWeatherAlertService.Stub

Generated inner static Proxy
IWeatherAlertService.Stub.Proxy

[IWeatherAlertService |
| addAlertLocation(String zip) |
7

/
/

4 REMOTE object
Proxy

LOCAL object /
Stub

Caller uses "aslnterface" to

Stub.aslInterface() returns
get reference to a remote

At Ol iz (i) object - Proxy is returned
onTransact() transact()
IWeatherAlertService.Stub IWeatherAlertService.Stub.Proxy
IWeatherAlertService asinterface(IBinder b) IWeatherAlertService asinterface(IBinder b)
IBinder asBinder() IBinder asBinder()
boolean onTransact(int code, Parcel data, boolean onTransact(int code, Parcel data,
Parcel reply, int flags) Parcel reply, int flags)

Figure 4.6 Diagram of the Android AIDL process

4.5.2 Binder and Parcelable

The IBinder interface is the base of the remoting protocol in Android. As we discussed
in the previous section, you don’t implement this interface directly; rather, you typi-
cally use AIDL to generate an interface which contains a Stub Binder implementation.
The IBinder.transact() method and corresponding Binder.onTransact()
method form the backbone of the remoting process. Each method you define using
AIDL is handled synchronously through the transaction process, enabling the same
semantics as if the method were local.
All the objects you pass in and out through the interface methods that you define
using AIDL use this transact process. These objects must be Parcelable in order for

www.it-ebooks.info

http://www.it-ebooks.info/

4.5.3

Communicating with the WeatherAlertService from other apps 123

you to place them inside a Parcel and move them across the local/remote process
barrier in the Binder transaction methods.

The only time you need to worry about something being Parcelable is when you
want to send a custom object through Android IPC. If you use only the default allow-
able types in your interface definition files—primitives, String, CharSequence, List,
and Map—AIDL automatically handles everything.

The Android documentation describes what methods you need to implement to
create a Parcelable class. Remember to create an .aidl file for each Parcelable
interface. These .aidl files are different from those you use to define Binder classes
themselves; these shouldn’t be generated from the aidl tool.

CAUTION When you’re considering creating your own Parcelable types,
make sure you actually need them. Passing complex objects across the
IPC boundary in an embedded environment is expensive and tedious;
you should avoid doing it, if possible.

Exposing a remote interface

Now that you've defined the features you want to expose from the weather app, you
need to implement that functionality and make it available to external callers.
Android calls this publishing the interface.

To publish a remote interface, you create a class that extends Service and returns
an IBinder through the onBind(Intent intent) method. Clients will use that
IBinder to access a particular remote object. As we discussed in section 4.5.2, you can
use the AIDL-generated Stub class, which itself extends Binder, to extend from and
return an implementation of a remotable interface. This process is shown in the fol-
lowing listing, where we implement and publish the IWeatherReporter service we cre-
ated in the previous section.

Listing 4.8 Implementing a weather service that publishes a remotable object

public class WeatherReporterService extends WeatherAlertService {
private final class WeatherReporter
extends IWeatherReporter.Stub ({
public String getWeatherFor (String zip) throws RemoteException {

A

WeatherRecord record = loadRecord(zip) ; Implement
return record.getCondition() .getDisplay () ; remote
} interface

public void addLocation(String zip, String city, String region)

throws RemoteException {
DBHelper db = new DBHelper (WeatherReporterService.this);
Location location = new Location() ;
location.alertenabled = 0;
location.lastalert = 0;
location.zip = zip;

location.city = city;

location.region = region;
db.insert (location) ;

www.it-ebooks.info

http://www.it-ebooks.info/

124

4.5.4

CHAPTER 4 Intents and Services

Return IBinder

}i @ representing

public IBinder onBind(Intent intent) { < remotable obiect

return new WeatherReporter () ;

}

}

Our concrete instance of the generated AIDL Java interface must return an IBinder to
any caller that binds to this Service. We create an implementation by extending the
Stub class that the aidl tool generated @. Recall that this Stub class implements the
AIDL interface and extends Binder. After we’ve defined our IBinder, we can create
and return it from the onBind () method @.

Within the stub itself, we write whatever code is necessary to provide the features
advertised by our interface. You can access any other classes within your application. In
this example, our Service has extended WeatherAlertService so we can more easily
access the weather functions we’ve already written, such as the loadRecord () method.

You’ll need to define this new WeatherReporterService in your application’s man-
ifest, in the same way you define any other Service. If you want to bind to the Service
only from within your own application, no other steps are necessary. But if you want to
allow binding from another application, you must provide some extra information
within AndroidManifest.xml, as shown in the following listing.

Listing 4.9 Exporting a Service for other applications to access

<service android:name=".service.WeatherReporterService"
android:exported="true">
<intent-filter>
<action android:name=
"com.msi.manning.weather.IWeatherReporter" />
</intent-filter>
</service>
To allow external applications to find our Service, we instruct Android to export this
Service declaration. Exporting the declaration allows other applications to launch
the Service, a prerequisite for binding with it. The actual launch will happen through
an <intent-filter> that we define. In this example, the caller must know the full
name of the action, but any <intent-filter> we discussed earlier in the chapter can
be substituted, such as filtering by scheme or by type.
Now that you’ve seen how a caller can get a reference to a remotable object, we’ll
finish that connection by binding to a Service from an Activity.

Binding to a Service

Let’s switch hats and pretend that, instead of writing a weather service, we’re another
company that wants to integrate weather functions into our own app. Our app will let
the user enter a ZIP code and either look up the current weather for that location or
save it to the WeatherReporter application’s list of saved locations. We’ve received the
.aidl file and learned the name of the Service. We generate our own interface from

www.it-ebooks.info

http://www.it-ebooks.info/

Communicating with the WeatherAlertService from other apps 125

that .aidl file, but before we can call the remote methods, we’ll need to first bind with
the Service.

When an Activity class binds to a Service using the Context.bindService
(Intent i, ServiceConnection connection, int flags) method, the Service-
Connection object that you pass in will send several callbacks from the Service back
to the Activity. The callback onServiceConnected (ComponentName className,
IBinder binder) lets you know when the binding process completes. The platform
automatically injects the IBinder returned from the Service’s onBind () method into
this callback, where you can save it for future calls. The following listing shows an
Activity that binds to our weather-reporting service and invokes remote methods on
it. You can see the complete source code for this project in the chapter downloads.

Listing 4.10 Binding to a Service within an Activity

package com.msi.manning.weatherchecker;
Imports omitted for brevity
public class WeatherChecker extends Activity { Use generated
private IWeatherReporter reporter; interface
private boolean bound;
private EditText zipEntry;

private Handler uiHandler; Define
private ServiceConnection connection = 4| ServiceConnection behavior
new ServiceConnection() {

public void onServiceConnected
(ComponentName name, IBinder service) {
reporter = IWeatherReporter.Stub.
asInterface (service) ;
Toast .makeText (WeatherChecker.this, "Connected to Service",
Toast .LENGTH_SHORT) .show () ;
bound = true; Retrieve remotely

} callable interface
public void onServiceDisconnected

(ComponentName name) {

reporter = null;

Toast .makeText (WeatherChecker.this, "Disconnected from Service",
Toast .LENGTH_SHORT) .show() ;

bound = false;

}i
onCreate method omitted for brevity
public void checkWeather (View caller) {
final String zipCode = zipEntry.getText () .toString() ;

if (zipCode != null && zipCode.length() == 5) { Don’t block
new Thread() { | Ul thread
public void run() {
try { ? Invoke remote method
final String currentWeather = <

reporter.getWeatherFor (zipCode) ;
uiHandler.post (new Runnable() { < Show feedback on Ul thread
public void run() {
Toast .makeText (WeatherChecker.this, currentWeather,
Toast .LENGTH_LONG) .show () ;

www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 4 Intents and Services

}

)

} catch (DeadObjectException e) {
e.printStackTrace () ;

} catch (RemoteException e) {
e.printStackTrace () ;

} catch (Exception e) {
e.printStackTrace() ;

}
}.start();

}

public void saveLocation (View caller) {

final String zipCode = zipEntry.getText().toString() ;

if (zipCode != null && zipCode.length() == 5) { Don’t block
new Thread() { | Ul thread
public void run() {
try {
reporter.addLocation(zipCode, "", ""); Show feedback
uiHandler.post (new Runnable() { ~ on Ul thread

public void run() {
Toast .makeText (
WeatherChecker.this, R.string.saved,

Toast .LENGTH_LONG) .show() ;
}

)i

} catch (DeadObjectException e) {
e.printStackTrace() ;

} catch (RemoteException e) {
e.printStackTrace () ;

} catch (Exception e) {
e.printStackTrace () ;

}
}.start () ;

}

public void onStart() {
super.onStart () ;
if (!bound) {

Start binding
bindService (new Intent

< to Service
(IWeatherReporter.class.getName()),

connection,
Context .BIND_AUTO_CREATE) ;

}
public void onPause () {
super.onPause () ;
if (bound) {
bound = false;
unbindService (connection) ;

www.it-ebooks.info

http://www.it-ebooks.info/

4.5.5

Communicating with the WeatherAlertService from other apps 127

In order to use the remotable IWeatherReporter we defined in AIDL, we declare a
variable with this type @. We also define a boolean to keep track of the current state
of the binding. Keeping track of the current state will prevent us from rebinding to
the Service if our application is suspended and resumed.

We use the ServiceConnection object ® to bind and unbind using Context meth-
ods. After a Service is bound, the platform notifies us through the onService-
Connected callback. This callback returns the remote IBinder reference, which we
assign to the remotable type € so we can invoke it later. Next, a similar onService-
Disconnected callback will fire when a Service is unbound.

After we’ve established a connection, we can use the AIDL-generated interface to
perform the operations it defines 0. When we call getWeatherFor (or later, add-
Location), Android will dispatch our invocation across the process boundary, where
the Service we created in listing 4.8 will execute the methods. The return values will
be sent back across the process boundary and arrive as shown at @. This sequence can
take a long time, so you should avoid calling remote methods from the UI thread.

In onStart(), we establish the binding using bindService() ©O; later, in
onPause (), we use unbindService (). The system can choose to clean up a Service
that’s been bound but not started. You should always unbind an unused Service so
the device can reclaim its resources and perform better. Let’s look more closely at the
difference between starting and binding a Service.

Starting vs. binding
Services serve two purposes in Android, and you can use them in two different ways:

= Starting—Context.startService(Intent service, Bundle b)
= Binding—Context.bindService(Intent service, ServiceConnection ¢,
int flag)

Starting a Service tells the platform to launch it in the background and keep it run-
ning, without any particular connection to any other Activity or application. You
used the WeatherAlertService in this manner to run in the background and issue
severe weather alerts.

Binding to a Service, as you did with WeatherReporterService, gave you a handle
to a remote object, which let you call the Service’s exported methods from an
Activity. Because every Android application runs in its own process, using a bound
Service lets you pass data between processes.

The actual process of marshaling and unmarshaling remotable objects across pro-
cess boundaries is complicated. Fortunately, you don’t have to deal with all the inter-
nals, because Android handles the complexity through AIDL. Instead, you can stick to
a simple recipe that will enable you to create and use remotable objects:

1 Define your interface using AIDL, in the form of a .aidl file; see listing 4.7.
2 Generate a Java interface for the .aidl file. This happens automatically in
Eclipse.

www.it-ebooks.info

http://www.it-ebooks.info/

128

4.5.6

CHAPTER 4 Intents and Services

3 Extend from the generated Stub class and implement your interface methods;
see listing 4.8.

4 Expose your interface to clients through a Service and the Service
onBind (Intent i) method; see listing 4.8.

5 If you want to make your Service available to other applications, export it in
your manifest; see listing 4.9.

6 Client applications will bind to your Service with a ServiceConnection to geta
handle to the remotable object; see listing 4.10.

As we discussed earlier in the chapter, Services running in the background can have
a detrimental impact on overall device performance. To mitigate these problems,
Android enforces a special lifecycle for Services, which we’re going to discuss now.

Service lifecycle

You want the weather-alerting Service to constantly lurk in the background, letting
you know of potential dangers. On the other hand, you want the weather-reporting
Service to run only while another application actually needs it. Services follow their
own well-defined process phases, similar to those followed by an Activity or an
Application. A Service will follow a different lifecycle, depending on whether you
start it, bind it, or both.

SERVICE-STARTED LIFECYCLE

If you start a Service by calling Context.startService (Intent service, Bundle b),
as shown in listing 4.5, it runs in the background whether or not anything binds to it.
If the Service hasn’t been created, the Service onCreate() method is called. The
onStart (int id, Bundle args) method is called each time someone tries to start the
Service, regardless of whether it’s already running. Additional instances of the
Service won’t be created.

The Service will continue to run in the background until someone explicitly stops
it with the Context.stopService() method or when the Service calls its own
stopSelf () method. You should also keep in mind that the platform might kill
Services if resources are running low, so your application needs to be able to react
accordingly. You can choose to restart the Service automatically, fall back to a more
limited feature set without it, or take some other appropriate action.

SERVICE-BOUND LIFECYCLE
If an Activity binds a Service by calling Context.bindService (Intent service,
ServiceConnection connection, int flags), as shown in listing 4.10, it’ll run as long
as the connection is open. An Activity establishes the connection using the Context
and is also responsible for closing it.

When a Service is only bound in this manner and not also started, its onCreate ()
method is invoked, but onStart (int id, Bundle args) is not used. In these cases, the
platform can stop and clean up the Service after it’s unbound.

www.it-ebooks.info

http://www.it-ebooks.info/

4.6

Summary 129

SERVICE-STARTED AND SERVICE-BOUND LIFECYCLE

If a Service is both started and bound, it’ll keep running in the background, much
like in the started lifecycle. In this case, both onStart(int id, Bundle args) and
onCreate () are called.

CLEANING UP WHEN A SERVICE STOPS

When a Service stops, its onDestroy () method is invoked. Inside onDestroy (), every
Service should perform final cleanup, stopping any spawned threads, terminating
network connections, stopping Services it had started, and so on.

And that’s it! From birth to death, from invocation to dismissal, you've learned
how to wrangle Android Services. They might seem complex, but they offer
extremely powerful capabilities that can go far beyond what a single foregrounded
application can offer.

Summary

In this chapter, we covered a broad swath of Android territory. We first focused on the
Intent component, seeing how it works, how it resolves using IntentFilter objects,
and how to take advantage of built-in platform-provided Intent handlers. We also
looked at the differences between explicit Intent invocation and implicit Intent
invocation, and the reasons you might choose one type over another. Along the way,
you completed the RestaurantFinder sample application, and with just a bit more
code, you drastically expanded the usefulness of that app by tapping into preloaded
Android applications.

After we covered the Intent class, we moved on to a new sample application,
WeatherReporter. You saw how a BroadcastReceiver could respond to notifications
sent by the platform or other applications. You used the receiver to listen for a boot
event and start the Service. The Service sends notification alerts from the back-
ground when it learns of severe weather events. You also saw another flavor of
Service, one that provides communication between different processes. Our other
weather service offered an API that third-party developers could use to take advantage
of the low-level network and storage capabilities of the weather application. We cov-
ered the difference between starting and binding Services, and you saw the moving
parts behind the Android IPC system, which uses the AIDL to standardize communica-
tion between applications.

By seeing all these components interact in several complete examples, you now
understand the fundamentals behind Android Intents and Services. In the next
chapter, you’ll see how to make Services and other applications more useful by using
persistent storage. We’ll look at the various options Android provides for retrieving
and storing data, including preferences, the file system, databases, and how to create a
custom ContentProvider.

www.it-ebooks.info

http://www.it-ebooks.info/

Storing and
retrieving data

This chapter covers

= Storing and retrieving data with SharedPreferences
= Using the filesystem

= Working with a SQLite database

= Accessing and building a ContentProvider

Android provides several ways to store and share data, including access to the file-
system, a local relational database through SQLite, and a preferences system that
allows you to store simple key/value pairs within applications. In this chapter, we’ll
start with preferences and you’ll create a small sample application to exercise those
concepts. From there, you’ll create another sample application to examine using
the filesystem to store data, both internal to the application and external using the
platform’s Secure Digital (SD) card support. You’ll also see how to create and
access a database.

Beyond the basics, Android also allows applications to share data through a
clever URI-based approach called a ContentProvider. This technique combines
several other Android concepts, such as the URI-based style of intents and the

130

www.it-ebooks.info

http://www.it-ebooks.info/

5.1

511

Using preferences 131

Cursor result set seen in SQLite, to make data accessible across different applications.
To demonstrate how this works, you’ll create another small sample application that
uses built-in providers, then we’ll walk through the steps required to create your own
ContentProvider.

We’ll begin with preferences, the simplest form of data storage and retrieval
Android provides.

Using preferences

If you want to share simple application data from one Activity to another, use a
SharedPreferences object. You can save and retrieve data, and also choose whether
to make preferences private to your application or accessible to other applications on
the same device.

Working with SharedPreferences

You access a SharedPreferences object through your current Context, such as the
Activity or Service. Context defines the method getSharedPreferences (String
name, int accessMode) that allows you to get a preferences handle. The name you
specify will be the name for the file that backs these preferences. If no such file exists
when you try to get preferences, one is automatically created. The access mode refers
to what permissions you want to allow.

The following listing demonstrates allowing the user to input and store data
through SharedPreferences objects with different access modes.

Listing 5.1 Storing SharedPreferences using different modes

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestInput extends Activity {

public static final String PREFS_PRIVATE = "PREFS_PRIVATE";
public static final String PREFS_WORLD_READ = "PREFS_WORLD_READABLE";
public static final String PREFS_WORLD_WRITE = "PREFS_WORLD_WRITABLE";

public static final String PREFS_WORLD_READ_WRITE =
"PREFS_WORLD_READABLE_WRITABLE";

public static final String KEY_PRIVATE = "KEY_PRIVATE";
public static final String KEY_WORLD_READ = "KEY_WORLD_READ";
public static final String KEY_WORLD_WRITE = "KEY_WORLD_WRITE";

public static final String KEY_WORLD_READ WRITE =
"KEY_WORLD_READ_WRITE";

view element variable declarations omitted for brevity

private SharedPreferences prefsPrivate;

private SharedPreferences prefsWorldRead; ?I‘:::‘aezel’references
private SharedPreferences prefsWorldwWwrite; variables
private SharedPreferences prefsWorldReadWrite;

@QOverride

public void onCreate(Bundle icicle) {
view inflation omitted for brevity
button.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
boolean valid = validate();

www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 Storing and retrieving data

if (valid) { Use
prefsPrivate = Context.getShared
getSharedPreferences (Preferences for
SharedPrefTestInput.PREFS_PRIVATE, < references
Context .MODE_PRIVATE) ; < Use
prefsWorldRead =

different modes
getSharedPreferences (

SharedPrefTestInput.PREFS_WORLD_READ,
Context .MODE_WORLD_READABLE) ;
prefsWorldWrite =
getSharedPreferences (
SharedPrefTestInput.PREFS_WORLD_WRITE,
Context .MODE_WORLD_WRITEABLE) ;
prefsWorldReadWrite =
getSharedPreferences (
SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
Context .MODE_WORLD_READABLE

+ Context .MODE_WORLD_WRITEABLE) ; Get
Editor prefsPrivateEditor = SharedPreferences
prefsPrivate.edit () ; | editor

Editor prefsWorldReadEditor =
prefsWorldRead.edit () ;
Editor prefsWorldWriteEditor =
prefsWorldWrite.edit () ;
Editor prefsWorldReadWriteEditor =
prefsWorldReadWrite.edit ()
prefsPrivateEditor.putString (
SharedPrefTestInput.KEY_PRIVATE, Q Store values
inputPrivate.getText.toString()); - | with editor
prefsWorldReadEditor.putString (
SharedPrefTestInput.KEY_WORLD_READ,
inputWorldRead.getText () .toString()) ;
prefsWorldWriteEditor.putString (
SharedPrefTestInput.KEY_WORLD_WRITE,
inputWorldWrite.getText () .toString()) ;
prefsWorldReadWriteEditor.putString (
SharedPrefTestInput.KEY_WORLD_READ_WRITE,
inputWorldReadWrite.getText () .toString());
prefsPrivateEditor.commit () ; <
prefsWorldReadEditor.commit () ;
prefsWorldWriteEditor.commit () ;
prefsWorldReadWriteEditor.commit () ;
Intent intent =
new Intent (SharedPrefTestInput.this,
SharedPrefTestOutput.class) ;
startActivity(intent) ;

Persist
changes

)i

validate omitted for brevity
}

After you have a SharedPreferences variable (1) you can acquire a reference
through the Context @. Note that for each SharedPreferences object we get, we use

www.it-ebooks.info

http://www.it-ebooks.info/

Using preferences 133

a different constant value for the access mode, and in some cases we also add modes
©. We repeat this coding for each mode we retrieve. Modes specify whether the pref-
erences should be private, world-readable, or world-writable.

To modify preferences, you must get an Editor handle @. With the Editor, you
can set String, boolean, float, int, and long types as key/value pairs ©. This limited
set of types can be restrictive, but often preferences are adequate, and they’re simple
to use.

After storing with an Editor, which creates an in-memory Map, you have to call
commit () to persist it to the preferences backing file @. After data is committed, you
can easily get it from a SharedPreferences object. The following listing gets and dis-
plays the data that was stored in listing 5.1.

Listing 5.2 Getting SharedPreferences data stored in the same application

package com.msi.manning.chapter5.prefs;
// imports omitted for brevity
public class SharedPrefTestOutput extends Activity {
view element variable declarations omitted for brevity
private SharedPreferences prefsPrivate;
private SharedPreferences prefsWorldRead;
private SharedPreferences prefsWorldwrite;
private SharedPreferences prefsWorldReadWrite;
onCreate omitted for brevity
@QOverride
public void onStart() {
super.onStart () ;
prefsPrivate =
getSharedPreferences (SharedPrefTestInput.PREFS_PRIVATE,
Context .MODE_PRIVATE) ;
prefsWorldRead =
getSharedPreferences (SharedPrefTestInput.PREFS_WORLD_READ,
Context .MODE_WORLD_READABLE) ;
prefsWorldWrite =
getSharedPreferences (SharedPrefTestInput.PREFS_WORLD_WRITE,
Context .MODE_WORLD_WRITEABLE) ;
prefsWorldReadWrite =
getSharedPreferences (
SharedPrefTestInput.PREFS_WORLD_READ_WRITE,
Context .MODE_WORLD_READABLE
+ Context.MODE_WORLD_WRITEABLE) ;
outputPrivate.setText (prefsPrivate.getString (

SharedPrefTestInput.KEY_PRIVATE, "NA")); P
outputWorldRead.setText (prefsWorldRead.getString(Get values ‘)
SharedPrefTestInput.KEY _WORLD_READ, "NA")); <+

outputWorldWrite.setText (prefsWorldiWrite.getString (
SharedPrefTestInput.KEY_WORLD_WRITE, "NA")); <

outputWorldReadWrite.setText (prefsWorldReadWrite.getString (
SharedPrefTestInput.KEY_WORLD_READ_WRITE, <
"NA")) ;

www.it-ebooks.info

http://www.it-ebooks.info/

134

5.1.2

CHAPTER 5 Storing and retrieving data

To retrieve previously stored values, we again declare variables and assign references.
When these are in place, we can get values using methods such as getString (String
key, String default) @. The default value is returned if no data was previously
stored with that key.

Setting and getting preferences is straightforward. Access modes, which we’ll focus
on next, add a little more complexity.

Preference access permissions

You can open and create SharedPreferences with any combination of several Context
mode constants. Because these values are int types, you can add them, as in listings 5.1
and 5.2, to combine permissions. The following mode constants are supported:

= Context.MODE_PRIVATE (value 0)
= Context.MODE_WORLD_READABLE (value 1)
® Context.MODE_WORLD_WRITEABLE (value 2)

These modes allow you to tune who can access this preference. If you take a look at
the filesystem on the emulator after you've created SharedPreferences objects
(which themselves create XML files to persist the data), you can see how setting per-
missions works using a Linux-based filesystem.

Figure 5.1 shows the Android Eclipse plug-in File Explorer view. Within the
explorer, you can see the Linux-level permissions for the SharedPreferences XML
files that we created from the SharedPreferences in listing 5.1.

Each Linux file or directory has a type and three sets of permissions, represented
by a drwxrwxrwx notation. The first character indicates the type (d means directory,
- means regular file type, and other types such as symbolic links have unique types as
well). After the type, the three sets of rwx represent the combination of read, write,
and execute permissions for user, group, and world, in that order. Looking at this nota-
tion, you can tell which files are accessible by the user they’re owned by, by the group
they belong to, or by everyone else on the device. Note that the user and group always
have full permission to read and write, whereas the final set of permissions fluctuates
based on the preference’s mode.

Android puts SharedPreferences XML files in the /data/data/PACKAGE_NAME/
shared_prefs path on the filesystem. An application or package usually has its own

¥ = com.msi.manning.chapter5.prefs 2008-03-12 13:40 drwxrwx--x
= shared_prefs 2008-03-12 13:41 drwxrwx--x
PREFS_PRIVATE.xml 114 2008-03-12 13:41 -rw-rw----
PREFS_WORLD_READABLE.xml| 117 2008-03-12 13:41 -rw-rw-r--
PREFS_WORLD_READABLE_WRITABLE.xml| 126 2008-03-12 13:41 -rw-rw-rw-

|~ PREFS_WORLD_WRITABLE.xml 119 2008-03-12 13:41 -rw-rw--w-

= com.other.manning.chapter5.prefs 2008-03-12 13:42 drwxrwx--x

= download 2008-03-12 13:37 drwxrwxrwx

Figure 5.1 The Android File Explorer view showing preferences file permissions

www.it-ebooks.info

http://www.it-ebooks.info/

Using preferences 135

Directories with the world x permission

In Android, each package directory is created with the world x permission. This per-
mission means anyone can search and list the files in the directory, which means
that Android packages have directory-level access to one another’s files. From there,
file-level access determines file permissions.

user ID. When an application creates files, including SharedPreferences, they’re
owned by that application’s user ID. To allow other applications to access these files,
you have to set the world permissions, as shown in figure 5.1.

If you want to access another application’s files, you must know the starting path.
The path comes from the Context. To get files from another application, you have to
know and use that application’s Context. Android doesn’t officially condone sharing
preferences across multiple applications; in practice, apps should use a content pro-
vider to share this kind of data. Even so, looking at SharedPreferences does show the
underlying data storage models in Android. The following listing shows how to get the
SharedPreferences we set in listing 5.1 again, this time from a different application
(different .apk and different package).

Listing 5.3 Getting SharedPreferences data stored in a different application

package com.other.manning.chapter5.prefs; <

Use
. imports omitted for brevity different
public class SharedPrefTestOtherOutput extends Activity { package

constants and variable declarations omitted for brevity
onCreate omitted for brevity
@Override
public void onStart() {
super.onStart () ;
Context otherAppsContext = null;

try {
otherAppsContext =
createPackageContext ("com.msi.manning.chapter5.prefs",
Context.MODE_WORLD_WRITEABLE) ; <

A Get another
} catch (NameNotFoundException e) {

application’s
} // log and/or handle context
prefsPrivate =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_PRIVATE, 0); <« Use
prefsWorldRead = otherAppsContext

otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_WORLD_READ, O0);
prefsWorldWrite =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_WORLD_WRITE, O0);
prefsWorldReadWrite =
otherAppsContext.getSharedPreferences (
SharedPrefTestOtherOutput.PREFS_WORLD_READ_WRITE, O0);
outputPrivate.setText (

www.it-ebooks.info

http://www.it-ebooks.info/

136

CHAPTER 5 Storing and retrieving data

prefsPrivate.getString(
SharedPrefTestOtherOutput.KEY_PRIVATE, "NA"));
outputWorldRead.setText (
prefsWorldRead.getString(
SharedPrefTestOtherOutput.KEY_WORLD_READ, "NA"));
outputWorldWrite.setText (
prefsWorldWrite.getString(
SharedPrefTestOtherOutput.KEY_WORLD_WRITE, "NA"));
outputWorldReadWrite.setText (
prefsWorldReadWrite.getString (
SharedPrefTestOtherOutput.KEY_WORLD_READ_WRITE, "NA")) ;

}

To get one application’s SharedPreferences from another application’s package @,
we use the createPackageContext (String contextName, int mode) method @. When
we have the other application’s Context, we can use the same names for the Shared-
Preferences objects that the other application created to access those preferences €.

With these examples, we now have one application that sets and gets Shared-
Preferences, and a second application with a different .apk file that gets the prefer-
ences set by the first. The composite screen shot in figure 5.2 shows what the apps
look like. NA indicates a preference we couldn’t access from the second application,
either as the result of permissions that were set or because no permissions had been
created.

Though SharedPreferences are ultimately backed by XML files on the Android
filesystem, you can also directly create, read, and manipulate files, as we’ll discuss in

the next section.

B @ 2:06em

Bl @ 2:08em

B @ 2:120m

Figure 5.2

Two separate applications
getting and setting
SharedPreferences

www.it-ebooks.info

http://www.it-ebooks.info/

Using the filesystem 137

5.2 Using the filesystem

Android’s filesystem is based on Linux and supports mode-based permissions. You can
access this filesystem in several ways. You can create and read files from within applica-
tions, you can access raw resource files, and you can work with specially compiled cus-
tom XML files. In this section, we’ll explore each approach.

5.2.1 Creating files

Android’s stream-based system of manipulating files will feel familiar to anyone who’s
written I/0 code in Java SE or Java ME. You can easily create files in Android and store
them in your application’s data path. The following listing demonstrates how to open
a FileOutputStream and use it to create a file.

Listing 5.4 Creating a file in Android from an Activity

public class CreateFile extends Activity {
private EditText createlInput;
private Button createButton;
@Override
public void onCreate(Bundle icicle) {
super.onCreate (icicle) ;
setContentView (R.layout.create_file);
createInput =
(EditText) findviewById(R.id.create_input) ;
createButton =
(Button) findViewById(R.id.create_button);
createButton.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
FileOutputStream fos = null;

try {
fos = openFileOutput ("filename.txt", ‘} Use
Context .MODE_PRIVATE) ; | openFileOutput
fos.write(createInput.getText (). Write data
toString () .getBytes()) ; to stream

} catch (FileNotFoundException e) {
Log.e("CreateFile", e.getLocalizedMessage());
} catch (IOException e) {

Log.e("CreateFile", e.getLocalizedMessage());
} finally {
if (fos != null) {
try {
fos.flush(); Flush and
fos.close(); close stream

} catch (IOException e) {
// swallow

}
startActivity(
new Intent(CreateFile.this, ReadFile.class));

www.it-ebooks.info

http://www.it-ebooks.info/

138

5.2.2

CHAPTER 5 Storing and retrieving data

Android provides a convenience method on Context to get a FileOutputStream—
namely openFileOutput (String name, int mode) 0. Using this method, you can cre-
ate a stream to a file. That file will ultimately be stored at the data/data/
[PACKAGE_NAME] /files/file.name path on the platform. After you have the stream,
you can write to it as you would with typical Java @. After you're finished with a
stream, you should flush and close it to clean up .

Reading from a file within an application context (within the package path of the
application) is also simple; in the next section we’ll show you how.

Accessing files

Similar to openFileOutput (), the Context also has a convenience openFileInput ()
method. You can use this method to access a file on the filesystem and read it in, as
shown in the following listing.

Listing 5.5 Accessing an existing file in Android from an Activity

public class ReadFile extends Activity {
private TextView readOutput;
private Button gotoReadResource;
@Override
public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.read_ file);

readOutput =
(TextView) findviewById(R.id.read output) ;
FileInputStream fis = null; Use
try { j openFilelnput
fis = openFileInput("filename.txt"); - for stream
byte[] reader = new byte[fis.available()];
while (fis.read(reader) != -1) {} < Read data

readOutput.setText (new String(reader)) ;

_ @ from stream
} catch (IOException e) {

Log.e("ReadFile", e.getMessage(), e);
} finally {
if (fis != null) {
try {

fis.close();
} catch (IOException e) {
// swallow

. goto next Activity via startActivity omitted for brevity

}

For input, you use openFileInput (String name, int mode) to get the stream 0, and
then read the file into a byte array as with standard Java @. Afterward, close the
stream properly to avoid hanging on to resources.

With openFileOutput and openFileInput, you can write to and read from any file
within the files directory of the application package you're working in. Also, as we

www.it-ebooks.info

http://www.it-ebooks.info/

5.23

Using the filesystem 139

Running a bundle of apps with the same user ID

Occasionally, setting the user ID of your application can be extremely useful. For
instance, if you have multiple applications that need to share data with one another,
but you also don’t want that data to be accessible outside that group of applications,
you might want to make the permissions private and share the UID to allow access.
You can allow a shared UID by using the sharedUserId attribute in your manifest:
android:sharedUserId="YourID".

discussed in the previous section, you can access files across different applications if
the permissions allow it and if you know the package used to obtain the full path to
the file.

In addition to creating files from within your application, you can push and pull
files to the platform using the adb tool, described in section 2.2.3. The File Explorer
window in Eclipse provides a Ul for moving files on and off the device or simulator.
You can optionally put such files in the directory for your application; when they’re
there, you can read these files just like you would any other file. Keep in mind that
outside of developmentrelated use, you won’t usually push and pull files. Rather,
you’ll create and read files from within the application or work with files included
with an application as raw resources, as you’ll see next.

Files as raw resources

If you want to include raw files with your application, you can do so using the res/raw
resources location. We discussed resources in general in chapter 3. When you place a
file in the res/raw location, it’s not compiled by the platform but is available as a raw
resource, as shown in the following listing.

Listing 5.6 Accessing a noncompiled raw file from res/raw

public class ReadRawResourceFile extends Activity {
private TextView readOutput;
private Button gotoReadXMLResource;
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.read_rawresource_file) ;

readOutput =
(TextView) findViewById(R.id.readrawres_output) ; " Hold raw

Resources resources = getResources() ; resource with
InputStream is = null; < InputStream
try {

is = resources.openRawResource (R.raw.people) ; <

byte[] reader = new bytel[is.available()];

while (is.read(reader) != -1) {}

readOutput.setText (new String(reader)) ;

} catch (IOException e) { Use getResources().openRawResource() @

www.it-ebooks.info

http://www.it-ebooks.info/

140

5.24

CHAPTER 5 Storing and retrieving data

Log.e ("ReadRawResourceFile", e.getMessage(), e);
} finally {
if (is != null) {
try {
is.close();
} catch (IOException e) {
// swallow

}

go to next Activity via startActivity omitted for brevity

}

Accessing raw resources closely resembles accessing files. You open a handle to an
InputStream @. You call Context .getResources () to get the Resources for your cur-
rent application’s context and then call openRawResource (int id) to link to the par-
ticular item you want @. Android will automatically generate the ID within the R class
if you place your asset in the res/raw directory. You can use any file as a raw resource,
including text, images, documents, or videos. The platform doesn’t precompile raw
resources.

The last type of file resource we need to discuss is the res/xml type, which the plat-
form compiles into an efficient binary type accessed in a special manner.

XML file resources
Bl @ 2:19m

The term XML resources sometimes confuses new
Android developers. XML resources might mean
resources in general that are defined in XML—such
as layout files, styles, arrays, and the like—or it can
specifically mean res/xml XML files.

In this section, we’ll deal with res/xml XML files.
These files are different from raw files in that you

Go to read/write SD Card

don’t use a stream to access them because they’re
compiled into an efficient binary form when
deployed. They’re different from other resources in
that they can be of any custom XML structure.

To demonstrate this concept, we’re going to use
an XML file named people.xml that defines multiple
<person> elements and uses attributes for firstname
and lastname. We’ll grab this resource and display its

elements in last-name, first-name order, as shown in Figure 5.3 The example
ﬁgureBi& ReadXMLResourceFile
Activity that we’ll create in
listing 5.8, which reads a res/xml
res/xml, is shown in the following listing. resource file

Our data file for this process, which we’ll place in

www.it-ebooks.info

http://www.it-ebooks.info/

Using the filesystem 141

Listing 5.7 A custom XML file included in res/xml

<people>
<person firstname="John" lastname="Ford" />
<person firstname="Alfred" lastname="Hitchcock" />
<person firstname="Stanley" lastname="Kubrick" />
<person firstname="Wes" lastname="Anderson" />
</people>

If you’re using Eclipse, it’ll automatically detect a file in the res/xml path and compile
it into a resource asset. You can then access this asset in code by parsing its binary
XML, as shown in the following listing.

Listing 5.8 Accessing a compiled XML resource from res/xml

public class ReadXMLResourceFile extends Activity {
private TextView readOutput;
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.read_xmlresource_file) ;
readOutput = (TextView)
findviewById(R.id.readxmlres_output) ; 0 Parse XML with
XmlPullParser parser = 1 XMLPullParser
getResources () .getXml (R.xml.people) ;

i::}];lrggBuffer sb = new StringBuffer(); Walk XML tree o
while (parser.next() != XmlPullParser.END_DOCUMENT) { <
ztiig e TS ostiane 0 Get attributeCount
String last = null; for element
if ((name != null) && name.equals("person")) {
int size = parser.getAttributeCount();
for (int 1 = 0; 1 < size; i++) {
String attrName =
parser.getAttributeName (i) ; Get attribute
String attrvValue = name and value
parser.getAttributevValue (1) ;
if ((attrName != null)
&& attrName.equals ("firstname")) {
first = attrValue;
} else if ((attrName != null)
&& attrName.equals ("lastname")) {
last = attrValue;
}
}
if ((first != null) && (last != null)) {
sb.append(last + ", " + first + "\n");
}
}
}
readOutput.setText (sb.toString()) ;
} catch (Exception e) {
Log.e (“ReadXMLResourceFile”, e.getMessage(), e);

www.it-ebooks.info

http://www.it-ebooks.info/

142

5.2.5

CHAPTER 5 Storing and retrieving data

. goto next Activity via startActivity omitted for brevity

}

To process a binary XML resource, you use an Xxm1PullParser @. This class supports
SAX-style tree traversal. The parser provides an event type for each element it encoun-
ters, such as DOCDECL, COMMENT, START_DOCUMENT, START_TAG, END_TAG, END_DOCUMENT,
and so on. By using the next () method, you can retrieve the current event type value
and compare it to event constants in the class ®. Each element encountered has a
name, a text value, and an optional set of attributes. You can examine the document
contents by getting the attributeCount @ for each item and grabbing each name
and value @. SAX is covered in more detail in chapter 13.

In addition to local file storage on the device filesystem, you have another option
that’s more appropriate for certain types of content: writing to an external SD card
filesystem.

External storage via an SD card

One of the advantages the Android platform provides over some other smartphones is
that it offers access to an available SD flash memory card. Not every Android device
will necessarily have an SD card, but almost all do, and the platform provides an easy
way for you to use it.

SD cards and the emulator

To work with an SD card image in the Android emulator, you’ll first need to use the
mksdcard tool provided to set up your SD image file (you'll find this executable in the
tools directory of the SDK). After you've created the file, you’ll need to start the emu-
lator with the -sdcard <path_to_file> option in order to have the SD image
mounted. Alternately, use the Android SDK Manager to create a new virtual device
and select the option to create a new SD card.

All applications can read data stored on the SD card. If you want to write data here,
you’ll need to include the following permission in your AndroidManifest.xml:
<uses-permission android:name=

"android.permission.WRITE_EXTERNAL_STORAGE" />
Failing to declare this permission will cause write attempts to the SD card to fail.

Generally, you should use the SD card if you use large files such as images and
video, or if you don’t need to have permanent secure access to certain files. On the
other hand, for permanent application-specialized data, you should use the internal
filesystem.

The SD card is removable, and SD card support on most devices (including Android-
powered devices) supports the File Allocation Table (FAT) filesystem. The SD card
doesn’t have the access modes and permissions that come from the Linux filesystem.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the filesystem 143

Using the SD card is fairly basic. The standard java.io.File and related objects
can create, read, and remove files on the external storage path, typically /sdcard,
assuming it’s available. You can acquire a File for this location by using the method
Environment.getExternalStorageDirectory (). The following listing shows how to
check that the SD card’s path is present, create another subdirectory inside, and then
write and subsequently read file data at that location.

Listing 5.9 Using standard java.io.File techniques with an SD card

public class ReadWriteSDCardFile extends Activity {
private TextView readOutput;
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.read _write_sdcard_file);

readOutput = (TextView)
findviewById(R.id.readwritesd_output) ;
String fileName = "testfile-" Establish
+ System.currentTimeMillis() + ".txt"; < filename
File sdDir = Environment.getExternalStorageDirectory () ; <
if (sdDir.exists() && sdDir.canWrite()) { Get SD card
File uadDir = new File(sdDir.getAbsolutePath () dWEGQTY
+ "/unlocking_android") ; - reference a
uadDir.mkdir () ;
if (uadDir.exists() && uadDir.canWrite()) { Instantiate
File file = new File(uadDir.getAbsolutePath/() File for path
+ "/" + fileName) ;
try {
file.createNewFile () ; Get reference
} catch (IOException e) { to File

// log and or handle

if (file.exists() && file.canWrite()) {
FileOutputStream fos = null;
try {

fos = new FileOutputStream(file);
fos.write("I fear you speak upon the rack,"
+ "where men enforced do speak "
+ "anything.".getBytes()); <t
} catch (FileNotFoundException e) {
Log.e(ReadWriteSDCardFile.LOGTAG, "ERROR", e);
} catch (IOException e) {
Log.e (ReadWriteSDCardFile.LOGTAG, "ERROR", e);
} finally {
if (fos != null) { Write with 6
try { FileOutputStream
fos.flush();
fos.close();
} catch (IOException e) {
// swallow

} else {

www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 Storing and retrieving data

// log and or handle - error writing to file

}
} else {
// log and or handle -
// unable to write to /sdcard/unlocking_android
}
} else {
Log.e("ReadWriteSDCardFile.LOGTAG",
"ERROR /sdcard path not available (did you create
+ " an SD image with the mksdcard tool,"
+ " and start emulator with -sdcard "
+ <path_to_file> option?");

}

File rFile =

new File("/sdcard/unlocking android/" + fileName) ; <
if (rFile.exists() && rFile.canRead()) {)
FileInputStream fis = null; . Usenewfﬂe
try { object for reading
fis = new FileInputStream(rFile);
byte[] reader = new byte[fis.available()]; < Read with
while (fis.read(reader) != -1) { o FilelnputStream

}

readOutput.setText (new String(reader)) ;
} catch (IOException e) {
// log and or handle

} finally {
if (fis != null) {
try {

fis.close();
} catch (IOException e) {
// swallow

}
} else {
readOutput.setText (
"Unable to read/write sdcard file, see logcat output");

}
We first define a name for the file to create @. In this example, we append a time-
stamp to create a unique name each time this example application runs. After we
have the filename, we create a File object reference to the removable storage direc-
tory @®. From there, we create a File reference to a new subdirectory, /sdcard/
unlocking_android ©. The File object can represent both files and directories.
After we have the subdirectory reference, we call mkdir () to create it if it doesn’t
already exist.

With our directory structure in place, we follow a similar pattern to create the
actual file. We instantiate a reference File object O and then call createFile() to
create a file on the filesystem. When we have the File and know it exists and that
we’re allowed to write to it, we use a FileOutputStream to write data into the file @.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3

Persisting data to a database 145

After we create the file and have data in it, we create another File object with the
full path to read the data back 0. With the File reference, we then create a File-
InputStream and read back the data that was earlier stored in the file @.

As you can see, working with files on the SD card resembles standard java.io.File
code. A fair amount of boilerplate Java code is required to make a robust solution,
with permissions and error checking every step of the way, and logging about what'’s
happening, but it’s still familiar and powerful. If you need to do a lot of File han-
dling, you’ll probably want to create some simple local utilities for wrapping the mun-
dane tasks so you don’t have to repeat them over and over again. You might want to
use or port something like the Apache commons.io package, which includes a File-
Utils class that handles these types of tasks and more.

The SD card example completes our exploration of the various ways to store differ-
ent types of file data on the Android platform. If you have static predefined data, you
can use res/raw; if you have XML files, you can use res/xml. You can also work directly
with the filesystem by creating, modifying, and retrieving data in files, either in the
local internal filesystem or on the SD card, if one is available.

A more complex way to deal with data—one that supports more robust and spe-
cialized ways to persist information—is to use a database, which we’ll cover in the next
section.

Persisting data to a database

Android conveniently includes a built-in relational
database.! SQLite doesn’t have all the features of DE @ 2:35m
larger client/server database products, but it includes | E
everything you need for local data storage. At the
same time, it’s quick and relatively easy to work with.
In this section, we’ll cover working with the built-
in SQLite database system, from creating and query-
ing a database to upgrading and working with the |FTSeeEa—=——TIyN
sqlite3 tool available in the adb shell. We’ll demon- .
strate these features by expanding the Weather
Reporter application from chapter 4. This ETITAvATNErEvN
application uses a database to store the user’s saved

95126 San Jose, CA

94103 San Francisco, CA

44444 Newton Falls, OH

locations and persists user preferences for each loca- S0190 Winfisid. 11

tion. The screenshot shown in figure 5.4 displays the [EFNIINRI R
saved data that the user can select from; when the
user selects a location, the app retrieves information
from the database and shows the corresponding
weather report.

Figure 5.4

The WeatherReporter Saved
Locations screen, which pulls
We’ll start by creating WeatherReporter’s database. data from a SQLite database

Check out Charlie Collins’ site for Android SQLLite basics: www.screaming-penguin.com/node/7742.

www.it-ebooks.info

http://www.screaming-penguin.com/node/7742
http://www.it-ebooks.info/

146

53.1

CHAPTER 5 Storing and retrieving data

Building and accessing a database

To use SQLite, you have to know a bit about SQL in general. If you need to brush up
on the background of the basic commands, such as CREATE, INSERT, UPDATE, DELETE,
and SELECT, then you might want to take a look at the SQLite documentation at
www.sqlite.org/lang.html.

For now, we’ll jump right in and build a database helper class for our application.
You need to create a helper class so that the details concerning creating and upgrad-
ing the database, opening and closing connections, and running through specific
queries are all encapsulated in one place and not otherwise exposed or repeated in
your application code. Your Activity and Service classes can use simple get and
insert methods, with specific bean objects representing your model, rather than
database-specific abstractions such as the Android Cursor object. You can think of this
class as a miniature Data Access Layer (DAL).

The following listing shows the first part of our DBHelper class, which includes a
few useful inner classes.

Listing 5.10 Portion of the DBHelper class showing the DBOpenHelper inner class

public class DBHelper {

public static final String DEVICE_ALERT_ENABLED_ZIP = "DAEZ99";

public static final
public static final String DB_TABLE =
public static final int DB_VERSION =

private static final String CLASSNAME

String DB_NAME =

"w_alert";

"w_alert_loc";
3;

= DBHelper.class.getSimpleName () ;

private static final String[] COLS = new Stringl[]
{ "_id", "zip", "city", "lastalert",

private SQLiteDatabase db;

private final DBOpenHelper dbOpenHelper;

public static class Location { 4

"region", "alertenabled" };

Define constants
for database

. : Define inner properties
public long id; Location bean
public long lastalert;
public int alertenabled;
public String zip;
public String city;

public String region;

Location constructors and toString omitted for brevity

} @ Define inner
private static class DBOpenHelper extends DBOpenHelper
SQLiteOpenHelper { < class

private static final String DB_CREATE =
+ DBHelper.DB_TABLE
+ " (_id INTEGER PRIMARY KEY,
+ "city TEXT, region TEXT,
+ "alertenabled INTEGER);";

"CREATE TABLE "

zip TEXT UNIQUE NOT NULL, "
lastalert INTEGER, "

public DBOpenHelper (Context context,
super (context, DBHelper.DB_NAME,

String dbName, int version) {
null, DBHelper.DB_VERSION) ;
} Define SQL query for

@override database creation

www.it-ebooks.info

http://www.sqlite.org/lang.html
http://www.it-ebooks.info/

Persisting data to a database 147

public void onCreate (SQLiteDatabase db) { <

try { Override
db.execSQL (DBOpenHelper .DB_CREATE) ; hdperca"backs
} catch (SQLException e) {
Log.e("ProviderWidgets", DBHelper.CLASSNAME, e);

}

@Override

public void onOpen (SQLiteDatabase db) {
super.onOpen (db) ;

}

@Override

public void onUpgrade (SQLiteDatabase db, int oldvVersion,
int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS " + DBHelper.DB_TABLE) ;
onCreate (db) ;

}

Within our DBHelper class, we first create constants that define important values for
the database we want to work with, such as its name, version, and table €. Then we
show several inner classes that we created to support the WeatherReporter application.

The first inner class is a simple Location bean that represents a user’s selected
location @. This class intentionally doesn’t provide accessors and mutators, because
these add overhead and we don’t expose the class externally. The second inner class is
a SQLiteOpenHelper implementation ©.

Our DBOpenHelper inner class extends SQLiteOpenHelper, which Android pro-
vides to help with creating, upgrading, and opening databases. Within this class, we
include a String that represents the CREATE query we’ll use to build our database
table; this shows the exact columns and types our table will have @. We also imple-
ment several key SQLiteOpenHelper callback methods (5} notably onCreate and
onUpgrade. We’ll explain how these callbacks are invoked in the outer part of our
DBHelper class, which is shown in the following listing.

Listing 5.11 Portion of the DBHelper class showing convenience methods

public DBHelper (Context context) ({ <t
dbOpenHelper = new DBOpenHelper (context, "WR_DATA", 1);
establishDb () ; Create
} DBOpenHelper
private void establishDb () { < instance
if (db == null) {
db = dbOpenHelper.getWritableDatabase() ; Open database
} connection
}
publ%(f: vggdfleazﬂip() { Tear down
it t= null) { database connection
db.close() ;
db = null;

www.it-ebooks.info

http://www.it-ebooks.info/

148

CHAPTER 5 Storing and retrieving data

}

public void insert (Location location) {
ContentValues values = new ContentValues() ;
values.put ("zip", location.zip);
values.put("city", location.city);
values.put ("region", location.region) ;
values.put ("lastalert", location.lastalert);
values.put ("alertenabled", location.alertenabled);
db.insert (DBHelper.DB_TABLE, null, values);

(
(
(
(

}

public void update (Location location) {
ContentValues values = new ContentValues() ;
values.put ("zip", location.zip);
values.put("city", location.city);
values.put ("region", location.region) ;
values.put ("lastalert", location.lastalert);
values.put ("alertenabled", location.alertenabled) ;
db.update (DBHelper .DB_TABLE, values,

"_id=" + location.id, null);

}
public void delete(long id) {

db.delete (DBHelper.DB_TABLE, "_id=" + id, null);
}

public void delete(String zip) {

db.delete (DBHelper .DB_TABLE, "zip='" + zip + "'", null);

}

public Location get(String zip) {
Cursor ¢ = null;
Location location = null;

<+

Provide @)
convenience
insert, update,
delete, get

VAN

try {
c = db.query(true, DBHelper.DB_TABLE, DBHelper.COLS,
"zip = '" + zip + "'", null, null, null, null,
null) ;

if (c.getCount() > 0) {
c.moveToFirst () ;
location = new Location();
location.id = c.getLong(0);
location.zip = c.getString(1l);
location.city = c.getString(2);
location.region = c.getString(3);
location.lastalert = c.getLong(4) ;
location.alertenabled = c.getInt(5);

}

} catch (SQLException e) {
Log.v ("ProviderWidgets", DBHelper.CLASSNAME, e);

} finally {
if (¢ != null && !c.isClosed()) {
c.close();
}
}

return location;
}
public List<Location> getAll() {
ArrayList<Location> ret = new ArrayList<Location>();
Cursor c = null;
try {

www.it-ebooks.info

Provide
additional
<

get methods

http://www.it-ebooks.info/

Persisting data to a database 149

c = db.query (DBHelper.DB_TABLE, DBHelper.COLS, null,
null, null, null, null);
int numRows = c.getCount() ;
c.moveToFirst () ;
for (int i = 0; 1 < numRows; ++1) {
Location location = new Location() ;
location.id = c.getLong(0) ;
location.zip = c.getString(1l);
location.city = c.getString(2);
location.region = c.getString(3);
location.lastalert = c.getLong(4);
location.alertenabled = c.getInt(5);
if (!location.zip.equals
(DBHelper .DEVICE_ALERT_ ENABLED_ZIP)) {
ret.add(location) ;
}
c.moveToNext () ;
}
} catch (SQLException e) {
Log.v ("ProviderWidgets", DBHelper.CLASSNAME, e);

} finally {
if (¢ != null && !c.isClosed()) {
c.close();

}

return ret;

getAllAlertEnabled omitted for brevity
}
Our DBHelper class contains a member-level variable reference to a SQLiteDatabase
object, as you saw in listing 5.10. We use this object as a workhorse to open database
connections, to execute SQL statements, and more.

In the constructor, we instantiate the DBOpenHelper inner class from the first part
of the DBHelper class listing @. Inside the establishDb method, we use dbOpen-
Helper to call openDatabase with the current Context, database name, and database
version @. db is established as an instance of SQLiteDatabase through DBOpenHelper.

Although you can also just open a database connection directly on your own, using
the open helper in this way invokes the provided callbacks and makes the process eas-
ier. With this technique, when you try to open your database connection, it’s automat-
ically created, upgraded, or just returned, through your DBOpenHelper. Though using
a DBOpenHelper requires a few extra steps up front, it’s extremely handy when you
need to modify your table structure. You can simply increment the database’s version
number and take appropriate action in the onUpgrade callback.

Callers can invoke the cleanup method € when they pause, in order to close con-
nections and free up resources.

After the cleanup method, we include the raw SQL convenience methods that
encapsulate our helper’s operations. In this class, we have methods to insert, update,
delete, and get data 0. We also have a few additional specialized get and getAll

www.it-ebooks.info

http://www.it-ebooks.info/

150

5.3.2

CHAPTER 5 Storing and retrieving data

Databases are application private

Unlike the SharedPreferences you saw earlier, you can't make a database
WORLD_READABLE. Each database is accessible only by the package in which it was
created. If you need to pass data across processes, you can use AIDL/Binder (as in
chapter 4) or create a ContentProvider (as we'll discuss in section 5.4), but you
can’t use a database directly across the process/package boundary.

methods @. Within these methods, you can see how to use the db object to run que-
ries. The SQLiteDatabase class itself has many convenience methods, such as insert,
update, and delete, and it provides direct query access that returns a Cursor over a
result set.

You can usually get a lot of mileage and utility from basic uses of the SQLiteData-
base class. The final aspect for us to explore is the sqlite3 tool, which you can use to
manipulate data outside your application.

Using the sqlite3 tool

When you create a database for an application in Android, it creates files for that data-
base on the device in the /data/data/[PACKAGE_NAME] /database/db.name location.
These files are SQLite proprietary, but you can manipulate, dump, restore, and work
with your databases through these files in the adb shell by using the sqlite3 tool.

DATA PERMISSIONS Most devices lock down the data directory and will not
allow you to browse their content using standalone tools. Use sqlite3 in the
emulator or on a phone with firmware that allows you to access the /data/
data directory.

You can access this tool by issuing the following commands on the command line.
Remember to use your own package name; here we use the package name for the
WeatherReporter sample application:
cd [ANDROID_HOME]/tools
adb shell
sglite3 /data/data/com.msi.manning.chapterd/databases/w_alert.db
When you’re in the shell and see the # prompt, you can then issue sqlite3 commands.
Type .help to get started; if you need more help, see the tool’s documentation at
www.sqlite.org/sqlite.html. Using the tool, you can issue basic commands, such as
SELECT or INSERT, or you can go further and CREATE or ALTER tables. Use this tool to
explore, troubleshoot, and .dump and .load data. As with many command-line SQL
tools, it takes some time to get used to the format, but it’s the best way to back up or
load your data. Keep in mind that this tool is available only through the development
shell; it’s not something you can use to load a real application with data.

Now that we’ve shown you how to use the SQLite support provided in Android, you
can do everything from creating and accessing tables to investigating databases with

www.it-ebooks.info

www.sqlite.org/sqlite.html
http://www.it-ebooks.info/

5.4

54.1

Working with ContentProvider classes 151

the provided tools in the shell. Next we’ll examine the last aspect of handling data on
the platform: building and using a ContentProvider.

Working with ContentProvider classes

A content provider in Android shares data between applications. Each application usu-
ally runs in its own process. By default, applications can’t access the data and files of
other applications. We explained earlier that you can make preferences and files avail-
able across application boundaries with the correct permissions and if each
application knows the context and path. This solution applies only to related applica-
tions that already know details about one another. In contrast, with a content provider
you can publish and expose a particular data type for other applications to query, add,
update, and delete, and those applications don’t need to have any prior knowledge of
paths, resources, or who provides the content.

The canonical content provider in Android is the contacts list, which provides
names, addresses, and phone numbers. You can access this data from any application
by using the correct URI and a series of methods provided by the Activity and
ContentResolver classes to retrieve and store data. You’ll learn more about Content-
Resolver as we explore provider details. One other data-related concept that a
content provider offers is the Cursor, the same object we used previously to process
SQLite database result sets.

In this section, you’ll build another application that implements its own content
provider and includes a similar explorer-type Activity to manipulate that data.

NOTE For a review of content providers, please see chapter 1. You can also
find a complete example of working with the Contacts content provider in
chapter 15.

To begin, we’ll explore the syntax of URIs and the combinations and paths used to
perform different types of operations with the ContentProvider and Content-
Resolver classes.

Using an existing ContentProvider

Each ContentProvider class exposes a unique CONTENT_URI that identifies the con-
tent type it’ll handle. This URI can query data in two forms, singular or plural, as
shown in table 5.1.

Table 5.1 ContentProvider URI variations for different purposes

URI Purpose
content://food/ingredients/ Returns a List of all ingredients from the provider registered to handle
content://food
content://food/meals/ Returns a List of all meals from the provider registered to handle
content://food
content://food/meals/1 Returns or manipulates a single meal with ID 1 from the provider regis-
tered to handle content://food

www.it-ebooks.info

http://www.it-ebooks.info/

152

54.2

CHAPTER 5 Storing and retrieving data

Managed Cursor

To obtain a Cursor reference, you can also use the managedQuery method of the
Activity class. The Activity automatically cleans up any managed Cursor
objects when your Activity pauses and restarts them when it starts. If you just need
to retrieve data within an Activity, you’ll want to use a managed Cursor, as
opposed to a ContentResolver.

A provider can offer as many types of data as it likes. By using these formats, your
application can either iterate through all the content offered by a provider or retrieve
a specific datum of interest.

The Activity class has a managedQuery () method that makes calls into registered
ContentProvider classes. When you create your own content provider in section 5.4.2,
we’ll show you how a provider is registered with the platform. Each provider is
required to advertise the CONTENT_URI it supports. To query the contacts provider, you
have to know this URI and then get a Cursor by calling managedQuery (). When you
have the Cursor, you can use it, as we showed you in listing 5.11.

A ContentProvider typically supplies all the details of the URI and the types it sup-
ports as constants in a class. In the android.provider package, you can find classes
that correspond to built-in Android content providers, such as the MediaStore. These
classes have nested inner classes that represent types of data, such as Audio and
Images. Within those classes are additional inner classes, with constants that represent
fields or columns of data for each type. The values you need to query and manipulate
data come from the inner classes for each type.

For additional information, see the android.provider package in the Javadocs,
which lists all the built-in providers. Now that we’ve covered a bit about using a pro-
vider, we’ll look at the other side of the coin—creating a content provider.

What if the content changes after the fact?

When you use a ContentProvider to make a query, you get only the current state
of the data. The data could change after your call, so how do you stay up to date? To
receive notifications when a Cursor changes, you can use the ContentObserver
API. ContentObserver supports a set of callbacks that trigger when data changes.
The Cursor class provides register () and unregister () methods for Content-
Observer objects.

Creating a ContentProvider

In this section, you’ll build a provider that handles data responsibilities for a generic
Widget object you'll define. This simple object includes a name, type, and category; in
a real application, you could represent any type of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with ContentProvider classes 153

To start, define a provider constants class that declares the CONTENT_URI and
MIME_TYPE your provider will support. In addition, you can place the column names
your provider will handle here.

DEFINING A CONTENT_URI AND MIME_TYPE
In the following listing, as a prerequisite to extending the ContentProvider class for a
custom provider, we define necessary constants for our Widget type.

Listing 5.12 wWidgetProvider constants, including columns and URI

public final class Widget implements BaseColumns {

public static final String MIME_DIR_PREFIX =
"vnd.android.cursor.dir";

public static final String MIME_ITEM_PREFIX =
"vnd.android.cursor.item";

public static final String MIME_ITEM = "vnd.msi.widget";

public static final String MIME_TYPE_SINGLE =

MIME_ITEM_PREFIX + "/" + MIME_ITEM;

public static final String MIME_TYPE_MULTIPLE =

MIME_DIR_PREFIX + "/" + MIME_ITEM; o Define
public static final String AUTHORITY = | authority
"com.msi.manning.chapter5.Widget";
public static final String PATH_SINGLE = "widgets/#";
public static final String PATH_MULTIPLE = "widgets";
public static final Uri CONTENT_URI =
Uri.parse("content://" + AUTHORITY + "/" + PATH MULTIPLE) ; <
public static final String DEFAULT_SORT_ORDER = "updated DESC";
public static final String NAME = "name";
public static final String TYPE = "type"; Define ultimate
public static final String CATEGORY = "category"; CONTENT URI
public static final String CREATED = "created"; -
public static final String UPDATED = "updated";

}

In our Widget-related provider constants class, we first extend the BaseColumns class.
Now our class has a few base constants, such as _ID. Next, we define the MIME_TYPE
prefix for a set of multiple items and a single item. By convention, vnd.android.
cursor.dir represents multiple items, and vnd.android.cursor.item represents a
single item. We can then define a specific MIME item and combine it with the single
and multiple paths to create two MIME_TYPE representations.

After we have the MIME details out of the way, we define the authority @ and path
for both single and multiple items that will be used in the CONTENT_URI that callers
pass in to use our provider. Callers will ultimately start from the multiple-item URI, so
we publish this one 0.

After taking care of all the other details, we define column names that represent
the variables in our Widget object, which correspond to fields in the database table
we’ll use. Callers will use these constants to get and set specific fields. Now we’re on to
the next part of the process, extending ContentProvider.

www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 5 Storing and retrieving data

EXTENDING CONTENTPROVIDER

The following listing shows the beginning of our ContentProvider implementation
class, WidgetProvider. In this part of the class, we do some housekeeping relating to
the database we’ll use and the URI we’re supporting.

Listing 5.13 The first portion of the WidgetProvider ContentProvider

public class WidgetProvider extends ContentProvider {
private static final String CLASSNAME =

WidgetProvider.class.getSimpleName () ; Define
private static final int WIDGETS = 1; database
private static final int WIDGET = 2; constants
public static final String DB_NAME = "widgets_db";
public static final String DB_TABLE = "widget";
public static final int DB_VERSION = 1;
private static UriMatcher URI_MATCHER = null; Use
private static HashMap<String, String> PROJECTION_MAP; SQLiteDatabase
private SQLiteDatabase db; reference
static {

WidgetProvider .URI_MATCHER = new UriMatcher (UriMatcher .NO_MATCH) ;
WidgetProvider .URI_MATCHER.addURI (Widget .AUTHORITY,
Widget.PATH_MULTIPLE, WidgetProvider .WIDGETS) ;
WidgetProvider .URI_MATCHER.addURI (Widget .AUTHORITY,
Widget.PATH_SINGLE, WidgetProvider.WIDGET) ;
WidgetProvider.PROJECTION_MAP = new HashMap<String, String>();
WidgetProvider.PROJECTION_MAP.put (BaseColumns._ID, "_id");
WidgetProvider .PROJECTION_MAP.put (Widget .NAME, "name") ;
WidgetProvider.PROJECTION_MAP.put (Widget.TYPE, "type");
WidgetProvider.PROJECTION_MAP.put (Widget.CATEGORY, "category");
WidgetProvider.PROJECTION_MAP.put (Widget.CREATED, "created");
WidgetProvider.PROJECTION_MAP.put (Widget.UPDATED, "updated") ;
}
private static class DBOpenHelper extends SQLiteOpenHelper {

private static final String DB_CREATE = "CREATE TABLE "
+ WidgetProvider.DB_TABLE
+ " (_id INTEGER PRIMARY KEY, name TEXT UNIQUE NOT NULL, "
+ "type TEXT, category TEXT, updated INTEGER, created"
+ "INTEGER);";
public DBOpenHelper (Context context) ({ Create and
super (context, WidgetProvider.DB_NAME, null, opendatabase

WidgetProvider .DB_VERSION) ;
}
@Override
public void onCreate(SQLiteDatabase db) {
try {
db.execSQL (DBOpenHelper .DB_CREATE) ;
} catch (SQLException e) {
// log and or handle

}

@Override

public void onOpen (SQLiteDatabase db) {
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with ContentProvider classes 155

@QOverride
public void onUpgrade (SQLiteDatabase db, int oldvVersion,
int newVersion) {
db.execSQL ("DROP TABLE IF EXISTS "
+ WidgetProvider.DB_TABLE) ;
onCreate (db) ;

}
@override Override
public boolean onCreate() { < onCreate
DBOpenHelper dbHelper = new DBOpenHelper (getContext());
db = dbHelper.getWritableDatabase() ;
if (db == null) {
return false;
} else {
return true;

}
@Override Implement
public String getType (Uri uri) { (J? getType method
switch (WidgetProvider.URI_MATCHER.match (uri)) {
case WIDGETS:
return Widget.MIME_TYPE_MULTIPLE;
case WIDGET:
return Widget.MIME_TYPE_SINGLE;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);

}

Our provider extends ContentProvider, which defines the methods we’ll need to
implement. We use several database-related constants to define the database name
and table we’ll use @. After that, we include a UriMatcher, which we’ll use to match
types, and a projection Map for field names.

We include a reference to a SQLiteDatabase object; we’ll use this to store and
retrieve the data that our provider handles @. We create, open, or upgrade the data-
base using a SQLiteOpenHelper in an inner class €. We've used this helper pattern
before, when we worked directly with the database in listing 5.10. In the onCreate ()
method, the open helper sets up the database @.

After our setup-related steps, we come to the first method ContentProvider
requires us to implement, getType () @. The provider uses this method to resolve
each passed-in URI to determine whether it’s supported. If it is, the method checks
which type of data the current call is requesting. The data might be a single item or
the entire set.

Next, we need to cover the remaining required methods to satisfy the Content-
Provider contract. These methods, shown in the following listing, correspond to the
CRUD-related activities: query, insert, update, and delete.

www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 5 Storing and retrieving data

Listing 5.14 The second portion of the WidgetProvider ContentProvider

@Override
public Cursor query (Uri uri, String[] projection,
String selection, String[] selectionArgs,
String sortOrder) {

Use query builder

SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder(); 4
String orderBy = null;

switch (WidgetProvider.URI_MATCHER.match(uri)) { Set up query
case WIDGETS: Qa based on URI

queryBuilder.setTables (WidgetProvider .DB_TABLE) ;
queryBuilder.setProjectionMap (WidgetProvider.PROJECTION_MAP) ;
break;
case WIDGET:
queryBuilder.setTables (WidgetProvider .DB_TABLE) ;
queryBuilder.appendWhere ("_id="
+ uri.getPathSegments () .get (1)) ;
break;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);
}
if (TextUtils.isEmpty (sortOrder)) {
orderBy = Widget.DEFAULT_ SORT_ORDER;
} else {
orderBy = sortOrder;
}
Cursor ¢ = queryBuilder.query(db, projection,
selection, selectionArgs, null, null, Perform query
orderBy) ; to get Cursor
c.setNotificationUri (
getContext () .getContentResolver (), uri);
return c;

Set notification

} URI on Cursor

@Override
public Uri insert (Uri uri, ContentValues initialvalues) {
long rowId = O0L;

?;nt?n.tvfahlleslvalu?f N rlullll; Use ContentValues

if (initialvalues != null) { o in insert method
values = new ContentValues(initialValues) ;

} else {

values = new ContentValues() ;
}
if (WidgetProvider.URI_MATCHER.match (uri) !=
WidgetProvider .WIDGETS) {
throw new IllegalArgumentException ("Unknown URI " + uri);
}

Long now = System.currentTimeMillis();

. omit defaulting of values for brevity Call
rowId = db.insert (WidgetProvider.DB_TABLE, "widget_hack", database
values) ; ~ | insert

if (rowId > 0) {

Uri result ContentUris.withAppendedId (Widget.CONTENT_URI,

rowId) ;
getContext () .getContentResolver () . a’ Get URI to return
notifyChange (result, null); e ge
Notify listeners
data was inserted

www.it-ebooks.info

http://www.it-ebooks.info/

Working with ContentProvider classes 157

return result;
}
throw new SQLException("Failed to insert row into " + uri);
}
@QOverride
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) { b Provide
1nt.: count.: 0; . . update
switch (WidgetProvider.URI_MATCHER.match(uri)) { method
case WIDGETS:
count = db.update (WidgetProvider.DB_TABLE, values,
selection, selectionArgs);
break;
case WIDGET:
String segment = uri.getPathSegments().get(l);
String where = "";
if (!TextUtils.isEmpty (selection)) {
where = " AND (" + selection + ")";
}
count = db.update (WidgetProvider.DB_TABLE, values,
"_id=" + segment + where, selectionArgs);
break;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);
}
getContext () .getContentResolver () .notifyChange (uri, null);
return count;
}
@Override Provide
public int delete(delete
Uri uri, String selection, String[] selectionArgs) { < method
int count;
switch (WidgetProvider.URI_MATCHER.match (uri)) {
case WIDGETS:
count = db.delete(WidgetProvider.DB_TABLE, selection,
selectionArgs) ;
break;
case WIDGET:
String segment = uri.getPathSegments().get(l);
String where = "";
if (!TextUtils.isEmpty (selection)) {
where = " AND (" + selection + ")";
}
count = db.delete(WidgetProvider.DB_TABLE,
"_id=" + segment + where, selectionArgs);
break;
default:
throw new IllegalArgumentException ("Unknown URI " + uri);
}
getContext () .getContentResolver () .notifyChange (uri, null);
return count;

}

The last part of our WidgetProvider class shows how to implement the Content-
Provider methods. First, we use a SQLQueryBuilder inside the query() method to

www.it-ebooks.info

http://www.it-ebooks.info/

158

CHAPTER 5 Storing and retrieving data

append the projection map passed in @ and any SQL clauses, along with the correct
URI based on our matcher @, before we make the actual query and get a handle on a
Cursor to return @.

At the end of the query () method, we use the setNotificationUri () method to
watch the returned URI for changes 0. This event-based mechanism keeps track of
when Cursor data items change, regardless of who changes them.

Next, you see the insert () method, where we validate the passed-in Content-
Values object and populate it with default values, if the values aren’t present @. After
we have the values, we call the database insert () method @ and get the resulting
URI to return with the appended ID of the new record @. After the insert is complete,
we use another notification system, this time for ContentResolver. Because we’ve
made a data change, we inform the ContentResolver what happened so that any reg-
istered listeners can be updated @.

After completing the insert() method, we come to the update() ©® and
delete() @ methods. These methods repeat many of the previous concepts. First,
they match the URI passed in to a single element or the set, and then they call the
respective update () and delete () methods on the database object. Again, at the end
of these methods, we notify listeners that the data has changed.

Implementing the needed provider methods completes our class. After we register
this provider with the platform, any application can use it to query, insert, update, or
delete data. Registration occurs in the application manifest, which we’ll look at next.

PROVIDER MANIFESTS

Content providers must be defined in an application manifest file and installed on the
platform so the platform can learn that they’re available and what data types they
offer. The following listing shows the manifest for our provider.

Listing 5.15 wWidgetProvider AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.chapter5.widget">
<application android:icon="@drawable/icon"
android:label="@string/app_short_name">
<activity android:name=".WidgetExplorer"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
<provider android:name="WidgetProvider" Declare
android:authorities= Jj’ provider’s
"com.msi.manning.chapters.Widget" /> < authority

</application>
</manifest>

www.it-ebooks.info

http://www.it-ebooks.info/

5.5

Summary 159

Additional ContentProvider manifest properties

The properties of a content provider can configure several important settings beyond
the basics, such as specific permissions, initialization order, multiprocess capability,
and more. Though most ContentProvider implementations won’t need to delve into
these details, you should still keep them in mind. For complete and up-to-date Con-
tentProvider properties, see the SDK documentation.

The <provider> element @ defines the class that implements the provider and associ-
ates a particular authority with that class.

A completed project that supports inserting, retrieving, updating, and deleting
records rounds out our exploration of using and building ContentProvider classes.
And with that, we’ve also now demonstrated the ways to locally store and retrieve data
on the Android platform.

Summary

From a simple SharedPreferences mechanism to file storage, databases, and finally
the concept of a content provider, Android provides myriad ways for applications to
retrieve and store data.

As we discussed in this chapter, several storage types can share data across applica-
tion and process boundaries, and several can’t. You can create SharedPreferences
with a permissions mode, allowing the flexibility to keep things private, or to share
data globally with read-only or read-write permissions. The filesystem provides more
flexible and powerful data storage for a single application.

Android also provides a relational database system based on SQLite. Use this light-
weight, speedy, and capable system for local data persistence within a single applica-
tion. To share data, you can still use a database, but you need to expose an interface
through a content provider. Providers expose data types and operations through a
URI-based approach.

In this chapter, we examined each of the data paths available to an Android appli-
cation. You built several small, focused sample applications to use preferences and the
filesystem, and you expanded the WeatherReporter sample application that you began
in the last chapter. This Android application uses a SQLite database to access and per-
sist data. You also built your own custom content provider from the ground up.

To expand your Android horizons beyond data, we’ll move on to general network-
ing in the next chapter. We’ll cover networking basics and the networking APIs
Android provides. We’ll also expand on the data concepts we’ve covered in this chap-
ter to use the network itself as a data source.

www.it-ebooks.info

http://www.it-ebooks.info/

Networking and
web services

This chapter covers

Networking basics
Determining network status
Using the network to retrieve and store data

= Working with web services

With the ubiquity of high-speed networking, mobile devices are now expected to
perform many of the same data-rich functions of traditional computers such as
email, providing web access, and the like. Furthermore, because mobile phones
offer such items as GPS, microphones, CDMA/GSM, built in cameras, accelerome-
ters, and many others, user demand for applications that leverage all the features of
the phone continues to increase.

You can build interesting applications with the open Intent-and Service-based
approach you learned about in previous chapters. That approach combines built-in
(or custom) intents, such as fully capable web browsing, with access to hardware
components, such as a 3D graphics subsystem, a GPS receiver, a camera, removable
storage, and more. This combination of open platform, hardware capability, soft-
ware architecture, and access to network data makes Android compelling.

160

www.it-ebooks.info

http://code.google.com/apis/gdata/
http://www.it-ebooks.info/

161

This doesn’t mean that the voice network isn’t important—we’ll cover telephony
explicitly in chapter 7—but we admit that voice is a commodity—and data is what we’ll
focus on when talking about the network.

Android provides access to networking in several ways, including mobile Internet
Protocol (IP), Wi-Fi, and Bluetooth. It also provides some open and closed source third-
party implementations of other networking standards such as ZigBee and Worldwide
Interoperability for Microwave Access (WiMAX). In this chapter, though, we’ll concen-
trate on getting your Android applications to communicate using IP network data,
using several different approaches. We’ll cover a bit of networking background, and
then we’ll deal with Android specifics as we explore communication with the network
using sockets and higher-level protocols such as Hypertext Transfer Protocol (HTTP).

Android provides a portion of the java.net package and the org.apache.http-
client package to support basic networking. Other related packages, such as
android.net, address internal networking details and general connectivity properties.
You’ll encounter all these packages as we progress though networking scenarios in
this chapter.

In terms of connectivity properties, we’ll look at using the ConnectivityManager
class to determine when the network connection is active and what type of connection
it is: mobile or Wi-Fi. From there, we’ll use the network in various ways with sample
applications.

One caveat to this networking chapter is that we won’t dig into the details concern-
ing the Android Wi-Fi or Bluetooth APIs. Bluetooth is an important technology for
close-range wireless networking between devices, but it isn’t available in the Android
emulator (see chapter 14 for more on Bluetooth). On the other hand, Wi-Fi has a good
existing API but also doesn’t have an emulation layer. Because the emulator doesn’t dis-
tinguish the type of network you’re using and doesn’t know anything about either
Bluetooth or Wi-Fi, and because we think the importance lies more in how you use the
network, we aren’t going to cover these APIs. If you want more information on the Wi-
Fi APIs, please see the Android documentation (http://code.google.com/android/
reference/android/net/wifi/package-summary.html).

The aptly named sample application for this chapter, NetworkExplorer, will look at
ways to communicate with the network in Android and will include some handy utili-
ties. Ultimately, this application will have multiple screens that exercise different net-
working techniques, as shown in figure 6.1.

After we cover general IP networking with regard to Android, we’ll discuss turning
the server side into a more robust API itself by using web services. On this topic, we’ll
work with plain old XML over HTTP (POX) and Representational State Transfer (REST).
We’ll also discuss the Simple Object Access Protocol (SOAP). We’ll address the pros and
cons of the various approaches and why you might want to choose one method over
another for an Android client.

Before we delve into the details of networked Android applications, we’ll begin
with an overview of networking basics. If you're already well versed in general

www.it-ebooks.info

http://code.google.com/android/reference/android/net/wifi/package-summary.html
http://code.google.com/android/reference/android/net/wifi/package-summary.html
http://www.it-ebooks.info/

162

6.1

6.1.1

CHAPTER 6 Networking and web services

C I REE

Qﬁm 7:36 PM

SIMPLE SOCKET

SIMPLE HTTP JAVA.NET

APACHE HTTPCLIENT

APACHE VIA HELPER

HTTP HELPER FORM

DEL.ICIO.US LOGIN and POSTS

GOOGLE CLIENTLOGIN and TOKEN

Figure 6.1 The NetworkExplorer application you’ll build to cover networking topics

networking, you can skip ahead to section 6.2, but it’s important to have this founda-
tion if you think you need it, and we promise to keep it short.

An overview of networking

A group of interconnected computers is a network. Over time, networking has grown
from something that was available only to governments and large organizations to the
almost ubiquitous and truly amazing internet. Though the concept is simple—allow
computers to communicate—networking does involve advanced technology. We won’t
get into great detail here, but we’ll cover the core tenets as a background to the gen-
eral networking you’ll do in the remainder of this chapter.

Networking basics

A large percentage of the time, the APIs you use to program Android applications
abstract the underlying network details. This is good. The APIs and the network proto-
cols themselves are designed so that you can focus on your application and not worry
about routing, reliable packet delivery, and so on.

Nevertheless, it helps to have some understanding of the way a network works so
that you can better design and troubleshoot your applications. To that end, let’s cover
some general networking concepts, with a focus on Transmission Control Protocol/Inter-
net Protocol (TCP/1P).! We’ll begin with nodes, layers, and protocols.

NODES

The basic idea behind a network is that data is sent between connected devices using
particular addresses. Connections can be made over wire, over radio waves, and so on.
Each addressed device is known as a node. A node can be a mainframe, a PC, a fancy

I For an in-depth study of all things TCP/IP related, take a look at Craig Hunt’s book, TCP/IP Network Admin-
istration, Third Edition (O’Reilly, 2002): http:/ /oreilly.com/catalog/9780596002978.

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://oreilly.com/catalog/9780596002978
http://www.it-ebooks.info/

An overview of networking 163

toaster, or any other device with a network stack and connectivity, such as an Android-
enabled handheld.

LAYERS AND PROTOCOLS

Protocols are a predefined and agreed-upon set of rules for communication. Protocols
are often layered on top of one another because they handle different levels of
responsibility. The following list describes the main layers of the TCP/IP stack, which
is used for the majority of web traffic and with Android:

= Link Layer—Physical device address resolution protocols such as ARP and RARP

= Internet Layer—IP itself, which has multiple versions, the ping protocol, and
ICMP, among others

= Transport Layer—Different types of delivery protocols such as TCP and UDP

= Application Layer—Familiar protocols such as HTTP, FTP, SMTP, IMAP, POP, DNS,
SSH, and SOAP

Layers are an abstraction of the different levels of a network protocol stack. The low-
est level, the Link Layer, is concerned with physical devices and physical addresses.
The next level, the Internet Layer, is concerned with addressing and general data
details. After that, the Transport Layer is concerned with delivery details. And, finally,
the top-level Application Layer protocols, which make use of the stack beneath them,
are application-specific for sending files or email or viewing web pages.

IP

IP is in charge of the addressing system and delivering data in small chunks called
packets. Packets, known in IP terms as datagrams, define how much data can go in each
chunk, where the boundaries for payload versus header information are, and the
like. IP addresses tell where each packet is from (its source) and where it’s going (its
destination).

IP addresses come in different sizes, depending on the version of the protocol
being used, but by far the most common at present is the 32-bit address. 32-bit IP
addresses (TCP/IP version 4, or IPv4) are typically written using a decimal notation
that separates the 32 bits into four sections, each representing 8 bits (an octet), such
as 74.125.45.100.

Certain IP address classes have special roles and meaning. For example, 127 always
identifies a loopback2 or local address on every machine; this class doesn’t communi-
cate with any other devices (it can be used internally, on a single machine only).
Addresses that begin with 10 or 192 aren’t routable, meaning they can communicate
with other devices on the same local network segment but can’t connect to other seg-
ments. Every address on a particular network segment must be unique, or collisions
can occur and it gets ugly.

? The TCP/IP Guide provides further explanation of datagrams and loopbacks: www.tcpipguide.com/
index.htm.

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://code.google.com/apis/gdata/auth.html
http://code.google.com/apis/gdata/auth.html
http://www.tcpipguide.com/index.htm
http://www.tcpipguide.com/index.htm
http://www.it-ebooks.info/

164

6.1.2

CHAPTER 6 Networking and web services

The routing of packets on an IP network—how packets traverse the network and
go from one segment to another—is handled by routers. Routers speak to each other
using IP addresses and other IP-related information.

TCP AND UDP

TCP and UDP (User Datagram Protocol) are different delivery protocols that are com-
monly used with TCP/IP. TCP is reliable, and UDP is fire and forget. What does that
mean? It means that TCP includes extra data to guarantee the order of packets and to
send back an acknowledgment when a packet is received. The common analogy is cer-
tified mail: the sender gets a receipt that shows the letter was delivered and signed for,
and therefore knows the recipient got the message. UDP, on the other hand, doesn’t
provide any ordering or acknowledgment. It’s more like a regular letter: it’s cheaper
and faster to send, but you basically just hope the recipient gets it.

APPLICATION PROTOCOLS

After a packet is sent and delivered, an application takes over. For example, to send an
email message, Simple Mail Transfer Protocol (SMTP) defines a rigorous set of proce-
dures that have to take place. You have to say hello in a particular way and introduce
yourself; then you have to supply from and to information, followed by a message
body in a particular format. Similarly, HTTP defines the set of rules for the internet—
which methods are allowed (GET, POST, PUT, DELETE) and how the overall request/
response system works between a client and a server.

When you’re working with Android (and Java-related APIs in general), you typi-
cally don’t need to delve into the details of any of the lower-level protocols, but you
might need to know the major differences we’ve outlined here for troubleshooting.
You should also be well-versed in IP addressing, know a bit more about clients and
servers, and understand how connections are established using ports.

Clients and servers

Anyone who’s ever used a web browser is familiar with the client/server computing
model. Data, in one format or another, is stored on a centralized, powerful server. Cli-
ents then connect to that server using a designated protocol, such as HTTP, to retrieve
the data and work with it.

This pattern is, of course, much older than the web, and it has been applied to
everything from completely dumb terminals that connect to mainframes to modern
desktop applications that connect to a server for only a portion of their purpose. A
good example is iTunes, which is primarily a media organizer and player, but also has
a store where customers can connect to the server to get new content. In any case, the
concept is the same: the client makes a type of request to the server, and the server
responds. This model is the same one that the majority of Android applications (at
least those that use a server side at all) generally follow. Android applications typically
end up as the client.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2

Checking the network status 165

In order to handle many client requests that are often for different purposes and
that come in nearly simultaneously to a single IP address, modern server operating sys-
tems use the concept of ports. Ports aren’t physical; they're a representation of a par-
ticular area of the computer’s memory. A server can listen on multiple designated
ports at a single address: for example, one port for sending email, one port for web
traffic, two ports for file transfer, and so on. Every computer with an IP address also
supports a range of thousands of ports to enable multiple conversations to happen at
the same time.

Ports are divided into three ranges:

= Well-known ports—0 through 1023
= Regustered ports—1024 through 49151
= Dynamic and/or private ports—49152 through 65535

The well-known ports are all published and are just that—well known. HTTP is port 80
(and HTTP Secure, or HTTPS, is port 443), FTP is ports 20 (control) and 21 (data),
SSH is port 22, SMTP is port 25, and so on.

Beyond the well-known ports, the registered ports are still controlled and pub-
lished, but for more specific purposes. Often these ports are used for a particular
application or company; for example, MySQL is port 3306 (by default). For a com-
plete list of well-known and registered ports, see the Internet Corporation for
Assigned Names and Numbers (ICANN) port-numbers document: www.iana.org/
assignments/port-numbers.

The dynamic or private ports are intentionally unregistered because they’re used
by the TCP/IP stack to facilitate communication. These ports are dynamically regis-
tered on each computer and used in the conversation. Dynamic port 49500, for exam-
ple, might be used to handle sending a request to a web server and dealing with the
response. When the conversation is over, the port is reclaimed and can be reused
locally for any other data transfer.

Clients and servers communicate as nodes with addresses, using ports, on a net-
work that supports various protocols. The protocols Android uses are based on the IP
network the platform is designed to participate in and involve the TCP/IP family.
Before you can build a full-on client/server Android application using the network,
you need to handle the prerequisite task of determining the state of the connection.

Checking the network status

Android provides a host of utilities that determine the device configuration and the
status of various services, including the network. You’ll typically use the
ConnectivityManager class to determine whether network connectivity exists and to
get notifications of network changes. The following listing, which is a portion of the
main Activity in the NetworkExplorer application, demonstrates basic usage of the
ConnectivityManager.

www.it-ebooks.info

http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.it-ebooks.info/

166

6.3

CHAPTER 6 Networking and web services

Listing 6.1 The onsStart method of the NetworkExplorer main Activity

@Override

public void onStart() {
super.onStart () ;
ConnectivityManager cMgr = (ConnectivityManager)

this.getSystemService (Context.CONNECTIVITY_ SERVICE) ;
NetworkInfo netInfo = cMgr.getActiveNetworkInfol() ;
this.status.setText (netInfo.toString());

}

This short example shows that you can get a handle to the ConnectivityManager
through the context’s getSystemService() method by passing the CONNECTIVITY_
SERVICE constant. When you have the manager, you can obtain network information
via the NetworkInfo object. The toString() method of the NetworkInfo object
returns the output shown in figure 6.2.

Of course, you won’t normally just display the

M8 7:44pm |

String output from NetworkInfo, but this example
does give you a glance at what’s available. More often,
you’ll use the isAvailable() or isConnected()
method (which returns a boolean value), or you'll
directly query the NetworkInfo.State using the get-
State() method. NetworkInfo.State is an enum that
defines the coarse state of the connection. The possi-
ble values are CONNECTED, CONNECTING, DISCONNECTED,
and DISCONNECTING. The NetworkInfo object also pro-
vides access to more detailed information, but you

SIMPLE HTTP JAVA.NET

APACHE HTTPCLIENT

APACHE VIA HELPER

HTTP HELPER FORM

DEL.ICIO.US LOGIN and POSTS

GOOGLE CLIENTLOGIN and TOKEN

won’t normally need more than the basic state.

When you know that you’re connected, either via
mobile or Wi-Fi, you can use the IP network. For the
purposes of our NetworkExplorer application, we’re
going to start with the most rudimentary IP connec- Ffigyre 6.2 The output of the
tion, a raw socket, and work our way up to HTTP and NetworkInfo toString()
web services. method

Communicating with a server socket

A server socket is a stream that you can read or write raw bytes to, at a specified IP
address and port. You can deal with data and not worry about media types, packet
sizes, and so on. A server socket is yet another network abstraction intended to make
the programmer’s job a bit easier. The philosophy that sockets take on—that every-
thing should look like file input/output (I/0) to the developer—comes from the Por-
table Operating System Interface for UNIX (POSIX) family of standards and has been
adopted by most major operating systems in use today.

We’ll move on to higher levels of network communication in a bit, but we’ll start
with a raw socket. For that, we need a server listening on a particular port. The

www.it-ebooks.info

http://www.it-ebooks.info/

Communicating with a server socket 167

EchoServer code shown in the next listing fits the bill. This example isn’t an Android-
specific class; rather, it’s an oversimplified server that can run on any host machine
with Java. We’ll connect to it later from an Android client.

Listing 6.2 A simple echo server for demonstrating socket usage

public final class EchoServer extends Thread {
private static final int PORT = 8889;
private EchoServer () {}

public static void main(String args[]) {
EchoServer echoServer = new EchoServer () ;
if (echoServer != null) {

echoServer.start () ;

}) . Use
public void run() { java.net.ServerSocket
try {
ServerSocket server = new ServerSocket (PORT, 1); <
while (true) {
Socket client = server.accept();

System.out.println("Client connected");
while (true) { Read input with
BufferedReader reader = BufferedReader
new BufferedReader (new InputStreamReader (
client.getInputStream())) ;
System.out.println("Read from client");

String textLine = reader.readLine() + "\n";
if (textLine.equalsIgnoreCase ("EXIT\n")) { <
System.out.println ("EXIT invoked, closing client");
break;
} EXIT, break
the loop

BufferedWriter writer = new BufferedWriter (
new OutputStreamWriter (
client.getOutputStream())) ;

System.out.println("Echo input to client");

writer.write ("ECHO from server: "

+ textLine, 0, textLine.length() + 18);
writer.flush();

}

client.close();

}
} catch (IOException e) {
System.err.println(e);

}

The EchoServer class we’re using is fairly basic Java I/0. It extends Thread and imple-
ments run, so that each client that connects can be handled in its own context. Then
we use a ServerSocket @ to listen on a defined port. Each client is then an imple-
mentation of a Socket. The client input is fed into a BufferedReader that each line is
read from @. The only special consideration this simple server has is that if the input

www.it-ebooks.info

http://www.it-ebooks.info/

168

CHAPTER 6 Networking and web services

is EXIT, it breaks the loops and exits @. If the input doesn’t prompt an exit, the server
echoes the input back to the client’s OuputStream with a Bufferediriter.

This example is a good, albeit intentionally basic, representation of what a server
does. It handles input, usually in a separate thread, and then responds to the client,
based on the input. To try out this server before using Android, you can telnet to the
specified port (after the server is running, of course) and type some input; if all is
well, it will echo the output.

To run the server, you need to invoke it locally with Java. The server has a main
method, so it'll run on its own; start it from the command line or from your IDE. Be
aware that when you connect to a server from the emulator (this one or any other),
you need to connect to the IP address of the host you run the server process on, not
the loopback (not 127.0.0.1). The emulator thinks of itself as 127.0.0.1, so use the
nonloopback address of the server host when you attempt to connect from Android.
(You can find out the IP address of the machine you’re on from the command line by
entering ifconfig on Linux or Mac and ipconfig on Windows.)

The client portion of this example is where NetworkExplorer itself begins, with the
callSocket () method of the SimpleSocket Activity, shown in the next listing.

Listing 6.3 An Android client invoking a raw socket server resource, the echo server

public class SimpleSocket extends Activity {
. View variable declarations omitted for brevity
@Override
public void onCreate(final Bundle icicle) {
super.onCreate (icicle) ;
this.setContentView(R.layout.simple_socket) ;
. View inflation omitted for brevity
this.socketButton.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
socketOutput.setText ("") ;

String output = callSocket (
ipAddress.getText () .toString(),
port.getText () .toString(),

socketInput.getText () .toString());

socketOutput.setText (output) ;

@ Use callSocket
~ | method

1)

}

private String callSocket (String ip, String port, String socketData) {
Socket socket = null;
BufferedWriter writer = null;

BufferedReader reader

null;

String output = null; Create
try { client
socket = new Socket (ip, Integer.parselnt (port)); < Socket

writer = new BufferedWriter (
new OutputStreamWriter (
socket.getOutputStream())) ;

reader = new BufferedReader (

www.it-ebooks.info

http://www.it-ebooks.info/

6.4

Working with HTTP 169

new InputStreamReader (
socket.getInputStream())) ;

Write to

String input = socketData;
+ 1) - socket

writer.write(input + "\n", 0, input.length()
writer.flush();

output = reader.readLine() ; q?, Get socket

this.socketOutput.setText (output) ; output

// send EXIT and close
writer.write("EXIT\n", 0, 5);
writer.flush();
catches and reader, writer, and socket closes omitted for brevity
onCreate omitted for brevity
return output;

}

In this listing, we use the onCreate() method to call a private helper callSocket ()
method @ and set the output to a TextView. Within the callSocket () method, we
create a socket to represent the client side of our connection @, and we establish a
writer for the input and a reader for the output. With the housekeeping taken care of,
we then write to the socket €, which communicates with the server, and get the out-
put value to return @.

A socket is probably the lowest-level networking usage in Android you’ll encounter.
Using a raw socket, though abstracted a great deal, still leaves many of the details up
to you, especially the serverside details of threading and queuing. Although you
might run up against situations in which you either have to use a raw socket (the
server side is already built) or elect to use one for one reason or another, higher-level
solutions such as leveraging HTTP usually have decided advantages.

Working with HTTP

As we discussed in the previous section, you can use a raw socket to transfer IP data to
and from a server with Android. This approach is an important one to be aware of so
that you know you have that option and understand a bit about the underlying details.
Nevertheless, you might want to avoid this technique when possible, and instead take
advantage of existing server products to send your data. The most common way to do
this is to use a web server and HTTP.

Now we’re going to take a look at making HTTP requests from an Android client
and sending them to an HTTP server. We’ll let the HTTP server handle all the socket
details, and we’ll focus on our client Android application.

The HTTP protocol itself is fairly involved. If you’re unfamiliar with it or want the
complete details, information is readily available via Requests for Comments (RFCs)
(such as for version 1.1: www.w3.org/Protocols/rfc2616/rfc2616.html). The short
story is that the protocol is stateless and involves several different methods that allow
users to make requests to servers, and those servers return responses. The entire web
is, of course, based on HTTP. Beyond the most basic concepts, there are ways to pass
data into and out of requests and responses and to authenticate with servers. Here

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.it-ebooks.info/

170

6.4.1

CHAPTER 6 Networking and web services

we’re going to use some of the most common methods and concepts to talk to net-
work resources from Android applications.

To begin, we’ll retrieve data using HTTP GET requests to a simple HTML page,
using the standard java.net API. From there, we’ll look at using the Android-included
Apache HttpClient API. After we use HttpClient directly to get a feel for it, we’ll also
make a helper class, Ht tpRequestHelper, that you can use to simplify the process and
encapsulate the details. This class—and the Apache networking API in general—has a
few advantages over rolling your own networking with java.net, as you’ll see. When the
helper class is in place, we’ll use it to make additional HTTP and HTTPS requests, both
GET and POST, and we’ll look at basic authentication.

Our first HTTP request will be an HTTP GET call using an HttpUrlConnection.

Simple HTTP and java.net

The most basic HTTP request method is GET. In this type of request, any data that’s
sent is embedded in the URL, using the query string. The next class in our Network-
Explorer application, which is shown in the following listing, has an Activity that
demonstrates the GET request method.

Listing 6.4 The SimpleGet Activity showing java.net.UrlConnection

public class SimpleGet extends Activity {
other portions of onCreate omitted for brevity

this.getButton.setOnClickListener (new OnClickListener () {
public void onClick(View v) {
getOutput . setText ("") ; Invoke getHttpResponse
String output = method ?
getHttpResponse (getInput.getText () .toString()) ; <

if (output != null) {
getOutput.setText (output) ;

1)
Y

private String getHttpResponse(String location) {
String result = null;
URL url = null;
try { @ Construct
url = new URL(location); - URL object

} catch (MalformedURLException e) {
// log and or handle
}
if (url != null) { Open connection using
try { HttpURLConnection
HttpURLConnection urlConn =
(HttpURLConnection) url.openConnection() ;
BufferedReader in =
new BufferedReader (
new InputStreamReader (

A

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.2

Working with HTTP 171

urlConn.getInputStream())) ;
String inputLine;
int lineCount = 0; // limit lines for example

while ((lineCount < 10)
i i = i 1 | =
&& ((inputLine in.readLine()) != null)) { < Read
lineCount++; data
result += "\n" + inputLine; < Append
? to result
in.close();

urlConn.disconnect () ;
} catch (IOException e) {
// log and or handle
}
} else {
// log and or handle
}

return result;

}

To get an HTTP response and show the first few lines of it in our SimpleGet class, we
call a getHttpResponse () method that we’ve built @. Within this method, we con-
struct a java.net.URL object ®, which takes care of many of the details for us, and
then we open a connection to a server using an HttpURLConnection €.

We then use a BufferedReader to read data from the connection one line at a
time @. Keep in mind that as we’re doing this, we’re using the same thread as the Ul
and therefore blocking the UL This isn’t a good idea. We’re using the same thread
here only to demonstrate the network operation; we’ll explain more about how to
use a separate thread shortly. After we have the data, we append it to the result
String that our method returns @, and we close the reader and the connection.
Using the plain and simple java.net support that has been ported to Android this way
provides quick and dirty access to HTTP network resources.

Communicating with HTTP this way is fairly easy, but it can quickly get cumber-
some when you need to do more than just retrieve simple data, and, as noted, the
blocking nature of the call is bad form. You could get around some of the problems
with this approach on your own by spawning separate threads and keeping track of
them and by writing your own small framework/API structure around that concept for
each HTTP request, but you don’t have to. Fortunately, Android provides another set
of APIs in the form of the Apache HttpClient® library that abstract the java.net classes
further and are designed to offer more robust HTTP support and help handle the
separate-thread issue.

Robust HTTP with HttpClient

To get started with HttpClient, we’re going to look at using core classes to perform
HTTP GET and POST method requests. We’re going to concentrate on making network

* You’ll find more about the Apache HttpClient here: http://hc.apache.org/httpclient-3.x/.

www.it-ebooks.info

http://hc.apache.org/httpclient-3.x/
http://www.it-ebooks.info/

172 CHAPTER 6 Networking and web services

requests in a Thread separate from the UI, using a combination of the Apache
ResponseHandler and Android Handler (for different but related purposes, as you’ll
see). The following listing shows our first example of using the HttpClient API.

Listing 6.5 Apache HttpClient with Android Handler and Apache ResponseHandler

private final Handler handler = new Handler () {
public void handleMessage (Message msg) {
progressDialog.dismiss () ;
String bundleResult =

msg.getData () .getString ("RESPONSE") ; /" Use Handler
output.setText (bundleResult) ; to update Ul
}
}s

onCreate omitted for brevity Create
private void performRequest () { ResponseHandler
final ResponseHandler<String> responseHandler = for asynchronous

new ResponseHandler<String>() { HTTP

public String handleResponse (HttpResponse response) {

StatusLine status = response.getStatusLine() ;

HttpEntity entity = response.getEntity();

String result = null; Get HTTP

try { response
result = StringUtils.inputStreamToString (payload

entity.getContent()) ;

Message message = handler.obtainMessage() ;
Bundle bundle = new Bundle() ;
bundle.putString ("RESPONSE", result) ;
message.setData (bundle) ;
handler.sendMessage (message) ;

} catch (IOException e) {
// log and or handle

}

return result;

}i
this.progressDialog =
ProgressDialog.show(this, "working

"performing HTTP request"); Use separate Thread
new Thread() ({ 5 for HTTP call
public void run() {
try {

DefaultHttpClient client = new DefaultHttpClient () ;
HttpGet httpMethod =
new HttpGet (
. urlChooser.getSelectedItem() .toString()); Create
client.execute(HﬁpGet
httpMethod, responseHandler) ; <t owed
} catch (ClientProtocolException e) {
// log and or handle Execute
} catch (IOException e) { HTTP with
// log and or handle HttpClient

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.3

Working with HTTP 173

}
}
}.start();
}

The first thing we do in our initial HttpClient example is create a Handler that we
can send messages to from other threads. This technique is the same one we’ve used
in previous examples; it allows background tasks to send Message objects to hook back
into the main UI thread @. After we create an Android Handler, we create an Apache
ResponseHandler @. This class can be used with HttpClient HTTP requests to pass in
as a callback point. When an HTTP request that’s fired by HttpClient completes, it
calls the onResponse () method if a ResponseHandler is used. When the response
comes in, we get the payload using the HttpEntity the API returns €. This in effect
allows the HTTP call to be made in an asynchronous manner—we don’t have to block
and wait the entire time between when the request is fired and when it completes.
The relationship of the request, response, Handler, ResponseHandler, and separate
threads is diagrammed in figure 6.3.

Now that you’ve seen HttpClient at work and understand the basic approach, the
next thing we’ll do is encapsulate a few of the details into a convenient helper class so
that we can call it over and over without having to repeat a lot of the setup.

Creating an HTTP and HTTPS helper

The next Activity in our NetworkExplorer application, which is shown in listing 6.6,
is a lot more straightforward and Android-focused than our other HTTP-related
classes up to this point. We’ve used the helper class we mentioned previously, which

Non Ul Thread - network request

Apache HttpClient
HTTP request
execute(method, responseHandler)
A

Apache ResponseHandler

HTTP
server

HTTP response
handleResponse(httpResponse)

Android Handler
sendMessage(message)
onMessage(message)
Figure 6.3 The relationship between

Ul Thread - Ul updates HttpClient, ResponseHandler,
and Android Handler

www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 6 Networking and web services

hides some of the complexity. We’ll examine the helper class itself after we look at this
first class that uses it.

Listing 6.6 Using Apache HttpClient via a custom HttpRequestHelper

public class ApacheHTTPViaHelper extends Activity {
other member variables omitted for brevity
private final Handler handler = new Handler () {
public void handleMessage (Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData() .getString ("RESPONSE") ;
output.setText (bundleResult) ;

}i
@Override
public void onCreate(final Bundle icicle) {
super.onCreate (icicle) ;
. view inflation and setup omitted for brevity
this.button.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
output.setText ("");
performRequest (
urlChooser.getSelectedItem() .toString()) ;

Call local
performRequest

1)
Y
onPause omitted for brevity
private void performRequest (String url) {
final ResponseHandler<String> responseHandler =
HTTPRequestHelper.getResponseHandlerInstance (

this.handlex); Get ResponseHandler
this.progressDialog = from RequestHelper
ProgressDialog.show(this, "working . . .",
"performing HTTP request");
new Thread() {
public void run() { Instantiate
HTTPRequestHelper helper = new ? RequestHelper with
HTTPRequestHelper (responseHandler) ; < ResponseHandler
helper.performGet (url, null, null, null);

}
}.start () ;

}

The first thing we do in this class is create another Handler. From within it, we update
a Ul TextView based on data in the Message. Further on in the code, in the
onCreate () method, we call a local performRequest () method when the Go button is
clicked, and we pass a selected String representing a URL @.

Inside the performRequest () method, we use a static convenience method to return
an HttpClient ResponseHandler, passing in the Android Handler thatit’ll use . we'll
examine the helper class next to get a look at exactly how this works, but the important
partfor now is that the ResponseHandler is created for us by the static method. With the

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTTP 175

ResponseHandler instance taken care of, we instantiate an HttpRequestHelper
instance @ and use it to make a simple HTTP GET call (passing in only the String URL).
Similar to what happened in listing 6.5, when the request completes, the Response-
Handler fires the onResponse () method, and our Handler is sent a Message, complet-
ing the process.

The example Activity in listing 6.6 is fairly clean and simple, and it’s asynchronous
and doesn’t block the UI thread. The heavy lifting is taken care of by HttpClient itself
and by the setup our custom HttpRequestHelper makes possible. The first part of the
all-important Ht tpRequestHelper, which we’ll explore in three listings (listings 6.7, 6.8,
and 6.9), is shown next.

Listing 6.7 The first part of the HttpRequestHelper class

public class HTTPRequestHelper {
private static final int POST_TYPE = 1;
private static final int GET_TYPE = 2;

private static final String CONTENT_TYPE = "Content-Type"; Require
public static final String MIME_FORM_ENCODED = ResponseHandler

"application/x-www-form-urlencoded"; to construct
public static final String MIME_TEXT_PLAIN = "text/plain";

private final ResponseHandler<String> responseHandler;

public HTTPRequestHelper (ResponseHandler<String> responseHandler) {
this.responseHandler = responseHandler;

}

public void performGet (String url, String user, String pass,
final Map<String, String> additionalHeaders) {

Provide

performRequest (null, url, user, pass, shnph
additionalHeaders, null, HTTPRequestHelper.GET_TYPE) ; GET

} method

public void performPost (String contentType, String url,
String user, String pass,
Map<String, String> additionalHeaders, PrOﬁdeS“ﬂPh
Map<String, String> params) { 4 POST methods

performRequest (contentType, url, user, pass,
additionalHeaders, params, HTTPRequestHelper.POST_TYPE) ;
}
public void performPost (String url, String user, String pass,
Map<String, String> additionalHeaders,
Map<String, String> params) {
performRequest (HTTPRequestHelper .MIME_FORM_ENCODED,
url, user, pass,
additionalHeaders, params, HTTPRequestHelper.POST TYPE) ;
}
private void performRequest (
String contentType,
String url,
String user,
String pass,
Map<String, String> headers, Handle
Map<String, String> params, ﬁ) combinations in
int requestType) { < private method

www.it-ebooks.info

http://www.it-ebooks.info/

176

CHAPTER 6 Networking and web services

DefaultHttpClient client = new DefaultHttpClient() ;

if ((user != null) && (pass != null)) {
client.getCredentialsProvider () .setCredentials (

AuthScope.ANY,

new UsernamePasswordCredentials (user, pass));

}

final Map<String, String> sendHeaders =

new HashMap<String, String>();

if ((headers != null) && (headers.size() > 0)) {
sendHeaders.putAll (headers) ;

}

if (requestType == HTTPRequestHelper.POST TYPE) {
sendHeaders.put (HTTPRequestHelper .CONTENT_TYPE, contentType) ;

}

if (sendHeaders.size() > 0) { Use Interceptor
client.addRequestInterceptor (forrequeﬂ
new HttpRequestInterceptor () { < headers

public void process (
final HttpRequest request, final HttpContext context)
throws HttpException, IOException {
for (String key : sendHeaders.keySet())
if (!request.containsHeader (key)) {
request .addHeader (key,
sendHeaders.get (key)) ;

{

)

POST and GET execution in listing 6.8
}

The first thing of note in the HttpRequestHelper class is that a ResponseHandler is
required to be passed in as part of the constructor @. This ResponseHandler will be
used when the HttpClient request is ultimately invoked. After the constructor, you
see a public HTTP GETrelated method @ and several different public HTTP POST
related methods €. Each of these methods is a wrapper around the private perform-
Request () method that can handle all the HTTP options 0. The performRequest ()
method supports a content-type header value, URL, username, password, Map of addi-
tional headers, similar Map of request parameters, and request method type.

Inside the performRequest () method, a DefaultHttpClient is instantiated. Next,
we check whether the user and pass method parameters are present; if they are, we
set the request credentials with a UsernamePasswordCredentials type (HttpClient
supports several types of credentials; see the Javadocs for details). At the same time as
we set the credentials, we also set an AuthScope. The scope represents which server,
port, authentication realm, and authentication scheme the supplied credentials are
applicable for.

You can set any of the HttpClient parameters as finely or coarsely grained as you
want; we’re using the default ANY scope that matches anything. What we notably

www.it-ebooks.info

http://www.it-ebooks.info/

Working with HTTP 177

haven’t set in all of this is the specific authentication scheme to use. HttpClient sup-
ports various schemes, including basic authentication, digest authentication, and a
Windows-specific NT Lan Manager (NTLM) scheme. Basic authentication (simple
username/password challenge from the server) is the default. Also, if you need to,
you can use a preemptive form login for form-based authentication—submit the form
you need, get the token or session ID, and set default credentials.

After the security is out of the way, we use an HttpRequestInterceptor to add
HTTP headers @. Headers are name/value pairs, so adding the headers is pretty easy.
After we have all of the properties that apply regardless of our request method type,
we then add additional settings that are specific to the method. The following listing,
the second part of our helper class, shows the POST and GET-specific settings and the
execute method.

Listing 6.8 The second part of the Ht tpRequestHelper class

... (1) Create
if (requestType == HTTPRequestHelper.POST_TYPE) { HttpPost
HttpPost method = new HttpPost (url) ; < ohed

List<NameValuePair> nvps = null;

if ((params != null) && (params.size() > 0)) {
nvps = new ArrayList<NameValuePair> () ;
for (String key : params.keySet()) {

nvps.add (new BasicNameValuePair (key,

params.get (key))) ; < Add name/value

} parameters
}
if (nvps != null) {
try {
method.setEntity (
new UrlEncodedFormEntity (nvps, HTTP.UTF_8));
} catch (UnsupportedEncodingException e) {
// log and or handle

} © Call execute
execute (client, method) ; ~ | method
} else if (requestType == HTTPRequestHelper.GET_TYPE) {

HttpGet method = new HttpGet (url) ;
execute (client, method);

private void execute (HttpClient client, HttpRequestBase method) {
BasicHttpResponse errorResponse =
new BasicHttpResponse (

new ProtocolVersion("HTTP_ERROR", 1, 1), Set up an
500, "ERROR"): - error handler

try {
client.execute (method, this.responseHandler) ;
} catch (Exception e) {
errorResponse.setReasonPhrase (e.getMessage ()) ;

www.it-ebooks.info

http://www.it-ebooks.info/

178

CHAPTER 6 Networking and web services

try {

this.responseHandler.handleResponse (errorResponse) ;
} catch (Exception ex) {

// log and or handle

}

When the specified request is a POST type, we create an HttpPost object to deal with it
@. Then we add POST request parameters, which are another set of name/value pairs
and are built with the BasicNameValuePair object @. After adding the parameters,
we’re ready to perform the request, which we do with our local private execute()
method using the method object and the client €.

Our execute () method sets up an error response handler (we want to return a
response, error or not, so we set this up just in case) @ and wraps the HttpClient
execute () method, which requires a method object (either POST or GET in our case,
pre-established) and a ResponseHandler as input. If we don’t get an exception when
we invoke HttpClient execute(), all is well and the response details are placed into
the ResponseHandler. If we do get an exception, we populate the error handler and
pass it through to the ResponseHandler.

We call the local private execute () method with the established details for either a
POST or a GET request. The GET method is handled similarly to the POST, but we don’t
set parameters (with GET requests, we expect parameters encoded in the URL itself).
Right now, our class supports only POST and GET, which cover 98 percent of the
requests we generally need, but it could easily be expanded to support other HTTP
method types.

The final part of the request helper class, shown in the following listing, takes us
back to the first example (listing 6.7), which used the helper. Listing 6.9 outlines exactly
what the convenience getResponseHandlerInstance () method returns (constructing
our helper requires a ResponseHandler, and this method returns a default one).

Listing 6.9 The final part of the Ht tpRequestHelper class

public static ResponseHandler<String>
getResponseHandlerInstance (final Handler handler) {
final ResponseHandler<String> responseHandler = ﬂ;&
new ResponseHandler<String>() {
public String handleResponse(final HttpResponse response) {
Message message = handler.obtainMessage() ;
Bundle bundle = new Bundle() ;
StatusLine status = response.getStatusLine() ;
HttpEntity entity = response.getEntity();
String result = null;

Require Handler
parameter

Get response

if (entity != null) { content as String
try {
result = StringUtils.inputStreamToString (
entity.getContent()); <
bundle.putString (Put result value
"RESPONSE", result); | into Bundle

www.it-ebooks.info

http://www.it-ebooks.info/

6.5

Web services 179

message.setData (bundle) ;
handler.sendMessage (message) ; < Set Bundle as
} catch (IOException e) { data into Message
bundle.putString ("
RESPONSE", "Error - " + e.getMessage()):;
message.setData (bundle) ;
handler.sendMessage (message) ;
}
} else {
bundle.putString ("RESPONSE", "Error - "
+ response.getStatusLine () .getReasonPhrase()) ;
message.setData (bundle) ;

handler.sendMessage (message) ; < Send Message
) via Handler

return result;
}
Y
return responseHandler;

}

As we discuss the getResponseHandlerInstance () method of our helper, we should
note that although we find it helpful, it’s entirely optional. You can still use the helper
class without using this method. To do so, construct your own ResponseHandler and
pass it in to the helper constructor, which is a perfectly plausible case. The get-
ResponseHandlerInstance () method builds a convenient default ResponseHandler
that hooks in a Handler via a parameter @ and parses the response as a String @. The
response String is sent back to the caller using the Handler, Bundle, and Message pat-
tern we’ve seen used time and time again to pass messages between threads in our
Android screens.

With the gory HttpRequestHelper details out of the way, and having already
explored basic usage, we’ll next turn to more involved uses of this class in the context
of web service calls.

Web services

The term web services means many different things, depending on the source and the
audience. To some, it’s a nebulous marketing term that’s never pinned down; to oth-
ers, it’s a rigid and specific set of protocols and standards. We’re going to tackle it as a
general concept, without defining it in depth, but not leaving it entirely undefined
either.

Web services are a means of exposing an API over a technology-neutral network
endpoint. They’re a means to call a remote method or operation that’s not tied to a
specific platform or vendor and get a result. By this definition, POX over the network
is included; so are REST and SOAP—and so is any other method of exposing opera-
tions and data on the wire in a neutral manner.

www.it-ebooks.info

http://www.it-ebooks.info/

180

6.5.1

CHAPTER 6 Networking and web services

POX, REST, and SOAP are by far the most common web services around, so they’re
what we’ll focus on in this section. Each provides a general guideline for accessing
data and exposing operations, each in a more rigorous manner than the previous.
POX basically exposes chunks of XML over the wire, usually over HTTP. REST is more
detailed in that it uses the concept of resources to define data and then manipulates
them with different HTTP methods using a URL-style approach (much like the
Android Intent system in general, which we explored in previous chapters). SOAP is
the most formal of them all, imposing strict rules about types of data, transport mech-
anisms, and security.

All these approaches have advantages and disadvantages, and these differences are
amplified on a mobile platform like Android. Though we can’t possibly cover all the
details here, we’ll touch on the differences as we discuss each of these concepts. We’ll
examine using a POX approach to return recent posts

from the Delicious API (formerly del.icio.us), and then
we’ll look at using REST with the Google GData AtomPub
API. Up first is probably the most ubiquitous type of web
service in use on the internet today, and therefore one
you’ll come across again and again when connecting
Android applications—POX.

WAl G s:sepm

POX: putting it together with HTTP and XML

To work with POX, we’re going to make network calls to
the popular Delicious online social bookmarking site.
We’ll specify a username and password to log in to an
HTTPS resource and return a list of recent posts, or book-
marks. This service returns raw XML data, which we’ll
parse into a JavaBean-style class and display as shown in
figure 6.4.

Figure 6.4 The Delicious recent

> posts screen from the
HTTPS POST Activity code from our NetworkExplorer NetworkExplorer application

application.

The following listing shows the Delicious login and

Listing 6.10 The Delicious HTTPS POX API with authentication from an Activity

public class DeliciousRecentPosts extends Activity {
private static final String CLASSTAG =

DeliciousRecentPosts.class.getSimpleName () ; Include
private static final String URL_GET_POSTS_RECENT = Delicious
"https://api.del.icio.us/vl/posts/recent?"; <+ URL

. member var declarations for user, pass, output,
and button (Views) omitted for brevity,

private final Handler handler = new Handler () { 42) Provide Handler
public void handleMessage (final Message msg) { to update Ul

progressDialog.dismiss () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Web services 181

String bundleResult = msg.getData() .getString("RESPONSE") ;
output.setText (parseXMLResult (bundleResult)) ;

Y
@Override
public void onCreate(final Bundle icicle) {
super.onCreate(icicle) ;
this.setContentView(R.layout.delicious_posts) ;
. inflate views omitted for brevity
this.button.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
output.setText ("");
performRequest (user.getText () .toString(),

pass.getText () .toString()); <é Pass credentials to

" performRequest

}i
onPause omitted for brevity
private void performRequest (String user, String pass) {
this.progressDialog = ProgressDialog.show(this,
"working . . .", "performing HTTP post to del.icio.us");
final ResponseHandler<String> responseHandler =
HTTPRequestHelper.getResponseHandlerInstance (this.handler) ;
new Thread() {
public void run() {
HTTPRequestHelper helper =
new HTTPRequestHelper (responseHandler) ;

helper.performPost (URL_GET_POSTS_RECENT, Use helper
user, pass, null, null); < for HTTP
}
}.start () ;
} Parse XML
private String parseXMLResult (String xmlString) { < String result
StringBuilder result = new StringBuilder();
try {

SAXParserFactory spf = SAXParserFactory.newInstance() ;
SAXParser sp = spf.newSAXParser();
XMLReader xr = sp.getXMLReader () ;
DeliciousHandler handler = new DeliciousHandler () ;
xr.setContentHandler (handler) ;
xr.parse (new InputSource(new StringReader (xmlString)));
List<DeliciousPost> posts = handler.getPosts();
for (DeliciousPost p : posts) {
result.append("\n" + p.getHref());
}
} catch (Exception e) {
// log and or handle
}
return result.toString() ;

}

To use a POX service, we need to know a bit about it, beginning with the URL end-
point @. To call the Delicious service, we again use a Handler to update the Ul (2}
and we use the HttpRequestHelper we previously built and walked through in the last

www.it-ebooks.info

http://www.it-ebooks.info/

182

6.5.2

CHAPTER 6 Networking and web services

section. Again in this example, we have many fewer lines of code than if we didn’t use
the helper—Ilines of code we’d likely be repeating in different Activity classes. With
the helper instantiated, we call the performRequest () method with a username and
password @. This method, via the helper, will log in to Delicious and return an XML
chunk representing the most recently bookmarked items @.

To turn the raw XML into useful types, we then also include a parseXMLResult ()
method ©. Parsing XML is a subject in its own right, and we’ll cover it in more detail
in chapter 13, but the short takeaway with this method is that we walk the XML struc-
ture with a parser and return our own DeliciousPost data beans for each record.
That’s it—that’s using POX to read data over HTTPS.

Building on the addition of XML to HTTP, above and beyond POX, is the REST
architectural principle, which we’ll explore next.

REST

While we look at REST, we’ll also try to pull in another useful concept in terms of
Android development: working with the various Google GData APIs (http://
code.google.com/apis/gdata/). We used the GData APIs for our RestaurantFinder
review information in chapter 3, but there we didn’t authenticate, and we didn’t get
into the details of networking or REST. In this section, we’ll uncover the details as we
perform two distinct tasks: authenticate and retrieve a Google ClientLogin token and
retrieve the Google Contacts data for a specified user. Keep in mind that as we work
with the GData APIs in any capacity, we’ll be using a REST-style API.

The main REST concepts are that you specify resources in a URI form and you
use different protocol methods to perform different actions. The Atom Publishing
Protocol (AtomPub) defines a REST-style protocol, and the GData APIs are an imple-
mentation of AtomPub (with some Google extensions). As we noted earlier, the
entire Intent approach of the Android platform is a lot like REST. A URI such as
content://contacts/1 is in the REST style. It includes a path that identifies the type
of data and a particular resource (contact number 1).

That URI doesn’t say what to do with contact 1, though. In REST terms, that’s
where the method of the protocol comes into the picture. For HTTP purposes, REST
uses various methods to perform different tasks: POST (create, update, or in special
cases, delete), GET (read), PUT (create, replace), and DELETE (delete). True HTTP
REST implementations use all the HTTP method types and resources to construct APIs.

In the real world, you’ll find few true REST implementations. It’s much more com-
mon to see a REST=style API. This kind of API doesn’t typically use the HTTP DELETE
method (many servers, proxies, and so on, have trouble with DELETE) and overloads
the more common GET and POST methods with different URLs for different tasks (by
encoding a bit about what’s to be done in the URL, or as a header or parameter, rather
than relying strictly on the method). In fact, though many people refer to the GData
APIs as REST, they’re technically only REST-like, not true REST. That’s not necessarily a
bad thing; the idea is ease of use of the API rather than pattern purity. All in all, REST
is a popular architecture or style because it’s simple, yet powerful.

www.it-ebooks.info

http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/
http://www.it-ebooks.info/

Web services 183

The following listing is an example that focuses on the network aspects of authen-
tication with GData to obtain a ClientLogin token and use that token with a subse-
quent REST-style request to obtain Contacts data by including an email address as a
resource.

Listing 6.11 Using the Google Contacts AtomPub API with authentication

public class GoogleClientLogin extends Activity {

private static final String URL_GET_GTOKEN =
"https://www.google.com/accounts/ClientLogin";

private static final String URL_GET_CONTACTS_PREFIX =
"http://www.google.com/m8/feeds/contacts/";

private static final String URL_GET_CONTACTS_SUFFIX = "/full";

private static final String GTOKEN_AUTH_HEADER_NAME = "Authorization";

private static final String GTOKEN_AUTH_HEADER_VALUE_PREFIX =
"GoogleLogin auth=";

private static final String PARAM ACCOUNT_TYPE = "accountType";

private static final String PARAM ACCOUNT_TYPE_VALUE =
"HOSTED_OR_GOOGLE" ;

private static final String PARAM EMAIL = "Email";

private static final String PARAM PASSWD = "Passwd";

private static final String PARAM_ SERVICE = "service";

private static final String PARAM SERVICE_VALUE = "cp";

private static final String PARAM SOURCE = "source";

private static final String PARAM_SOURCE_VALUE =
"manning-unlockingAndroid-1.0"; Create

private String tokenValue; Handler

View member declarations omitted for brevity token
private final Handler tokenHandler = new Handler () { < request

public void handleMessage (final Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData() .getString("RESPONSE") ;
String authToken = bundleResult;
authToken = authToken.substring(authToken.indexOf ("Auth=")
+ 5, authToken.length()) .trim();
tokenValue = authToken; < Set

GtokenText.setText (authToken) ; tokenValue

Y
private final Handler contactsHandler =
new Handler () {

public void handleMessage (final Message msg) {
progressDialog.dismiss () ;
String bundleResult = msg.getData() .getString("RESPONSE") ;
output.setText (bundleResult) ;

};
onCreate and onPause omitted for brevity

private void getToken (String email, String pass) { hnMement

final ResponseHandler<String> responseHandler = getToken
HTTPRequestHelper.getResponseHandlerInstance (

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 6 Networking and web services

this.tokenHandler) ;
this.progressDialog = ProgressDialog.show(this,

"working . . .", "getting Google ClientLogin token");
new Thread() { Required
public void run() { parameters for
HashMap<String, String> params = ClientLogin

new HashMap<String, String>();
params.put (GoogleClientLogin.PARAM ACCOUNT_TYPE,
GoogleClientLogin.PARAM ACCOUNT_TYPE_VALUE) ;
params .put (GoogleClientLogin.PARAM EMAIL, email);
params.put (GoogleClientLogin.PARAM PASSWD, pass) ;
params.put (GoogleClientLogin.PARAM SERVICE,

GoogleClientLogin.PARAM SERVICE_VALUE) ;
params .put (GoogleClientLogin.PARAM SOURCE,

GoogleClientLogin.PARAM_SOURCE_VALUE) ;
HTTPRequestHelper helper =
new HTTPRequestHelper (responseHandler) ;
helper.performPost (HTTPRequestHelper .MIME_FORM_ENCODED,
GoogleClientLogin.URL_GET_GTOKEN,
null, null, null, params); < Perform POST

N t} cO to get token
.star ;

private void getContacts(final String email, final String token) { <

final ResponseHandler<String> responseHandler =
HTTPRequestHelper.getResponseHandlerInstance (
this.contactsHandler) ;

this.progressDialog = ProgressDialog.show(this, g:;gkﬂ:z:
"working . . .", "getting Google Contacts");
new Thread() {
public void run() {

HashMap<String, String> headers =
new HashMap<String, String>();

headers.put (GoogleClientLogin.GTOKEN_AUTH_HEADER_NAME,
GoogleClientLogin.GTOKEN_AUTH_HEADER_VALUE_PREFIX

+ token); < Add token
String encEmail = email; as header
try {
encEmail = URLEncoder.encode (encEmail,
TOTE=8) = Encode
} catch (UnsupportedEncodingException e) { email address
// log and or handle in URL

}
String url =
GoogleClientLogin.URL_GET_CONTACTS_PREFIX + encEmail
+ GoogleClientLogin.URL_GET _CONTACTS_SUFFIX;
HTTPRequestHelper helper = new
HTTPRequestHelper (responseHandler) ;

helper.performGet (url, null, null, headers); <7 Make GET
}
request for
}.start(); O Contacts

www.it-ebooks.info

http://www.it-ebooks.info/

6.5.3

Web services 185

After a host of constants that represent various String values we’ll use with the GData
services, we have several Handler instances in this class, beginning with a token-
Handler @. This handler updates a UI TextView when it receives a message, like simi-
lar examples you saw previously, and updates a non-Ul member tokenValue variable
that other portions of our code will use ®. The next Handler we have is the contacts-
Handler that will be used to update the UI after the contacts request.

Beyond the handlers, we have the getToken () method ©. This method includes
all the required parameters for obtaining a ClientLogin token from the GData serv-
ers (http://code.google.com/apis/gdata/auth.html) @. After the setup to obtain the
token, we make a POST request via the request helper 6.

After the token details are taken care of, we have the getContacts () method @.
This method uses the token obtained via the previous method as a header @. After
you have the token, you can cache it and use it with all subsequent requests; you don’t
need to obtain the token every time. Next, we encode the email address portion of the
Contacts API URL @, and we make a GET request for the data—again using the
HttpRequestHelper ©.

With this approach, we’re making several network calls (one as HTTPS to get the
token and another as HTTP to get data) using our previously defined helper class.
When the results are returned from the GData API, we parse the XML block and
update the UL

GData ClientLogin and CAPTCHA

Though we included a working ClientLogin example in listing 6.11, we also skipped
over an important part—CAPTCHA. Google might optionally require a CAPTCHA with the
ClientLogin approach. To fully support ClientLogin, you need to handle that
response and display the CAPTCHA to the user, and then resend a token request with
the CAPTCHA value that the user entered. For details, see the GData documentation.

Now that we’ve explored some REST-style networking, the last thing we need to discuss
with regard to HTTP and Android is SOAP. This topic comes up frequently in discus-
sions of networking mobile devices, but sometimes the forest gets in the way of the
trees in terms of framing the real question.

To SOAP or not to SOAP, that is the question

SOAP is a powerful protocol that has many uses. We would be remiss if we didn’t at
least mention that though it’s possible to use SOAP on a small, embedded device such
as a smartphone, regardless of the platform, it’s not recommended. The question
within the limited resources environment Android inhabits is really more one of
should it be done rather than can it be done.

Some experienced developers, who might have been using SOAP for years on
other devices, might disagree. The things that make SOAP great are its support for
strong types (via XML Schema), its support for transactions, its security and

www.it-ebooks.info

http://code.google.com/apis/gdata/auth.html
http://www.it-ebooks.info/

186

6.6

CHAPTER 6 Networking and web services

encryption, its support for message orchestration and choreography, and all the
related WS-* standards. These things are invaluable in many server-oriented comput-
ing environments, whether or not they involve the enterprise. They also add a great
deal of overhead, especially on a small, embedded device. In fact, in many situations
where people use SOAP on embedded devices, they often don’t bother with the
advanced features—and they use plain XML with the overhead of an envelope at the
end of the day anyway. On an embedded device, you often get better performance,
and a simpler design, by using a REST- or POX-style architecture and avoiding the over-
head of SOAP.

Even with the increased overhead, it makes sense in some situations to investigate
using SOAP directly with Android. When you need to talk to existing SOAP services
that you have no control over, SOAP might make sense. Also, if you already have J2ME
clients for existing SOAP services, you might be able to port those in a limited set of
cases. Both these approaches make it easier only on you, the developer; they have
either no effect or a negative one in terms of performance on the user. Even when
you’re working with existing SOAP services, remember that you can often write a POX-
or REST-style proxy for SOAP services on the server side and call that from Android,
rather than use SOAP directly from Android.

If you feel like SOAP is still the right choice, you can use one of several ports of the
kSOAP toolkit (http://ksoap2.sourceforge.net/), which is specially designed for SOAP
on an embedded Java device. Keep in mind that even the kSOAP documentation
states, “SOAP introduces some significant overhead for web services that may be prob-
lematic for mobile devices. If you have full control over the client and the server, a
REST-based architecture may be more adequate.” In addition, you might be able to
write your own parser for simple SOAP services that don’t use fancy SOAP features and
just use a POX approach that includes the SOAP XML portions you require (you can
always roll your own, even with SOAP).

All in all, to our minds the answer to the question is to not use SOAP on Android,
even though you can. Our discussion of SOAP, even though we don’t advocate it,
rounds out our more general web services discussion, and that wraps up our network-
ing coverage.

Summary

In this chapter, we started with a brief background of basic networking concepts, from
nodes and addresses to layers and protocols. With that general background in place,
we covered details about how to obtain network status information and showed several
different ways to work with the IP networking capabilities of the platform.

In terms of networking, we looked at using basic sockets and the java.net pack-
age. Then we also examined the included Apache HttpClient API. HTTP is one of the
most common—and most important—networking resources available to the Android
platform. Using HttpClient, we covered a lot of territory in terms of different request
types, parameters, headers, authentication, and more. Beyond basic HTTP, we also

www.it-ebooks.info

http://ksoap2.sourceforge.net/
http://www.it-ebooks.info/

Summary 187

explored POX and REST, and we discussed a bit of SOAP—all of which use HTTP as the
transport mechanism.

Now that we’ve covered a good deal of the networking possibilities, and hopefully
given you at least a glint of an idea of what you can do with server-side APIs and inte-
gration with Android, we’re going to turn to another important part of the Android
world—telephony.

www.it-ebooks.info

http://www.it-ebooks.info/

Telephony

This chapter covers

Making and receiving phone calls
Capturing call-related events

Obtaining phone and service information
Using SMS

People use Android devices to surf the web, download and store data, access net-
works, find location information, and use many types of applications. Android can
even make phone calls.

Android phones support dialing numbers, receiving calls, sending and receiv-
ing text and multimedia messages, and other related telephony services. In contrast
to other smartphone platforms, all these items are accessible to developers through
simple-to-use APIs and built-in applications. You can easily leverage Android’s tele-
phony support into your own applications.

In this chapter, we’ll discuss telephony in general and cover terms related to
mobile devices. We’ll move on to basic Android telephony packages, which handle
calls using builtin Intent actions, and more advanced operations via the
TelephonyManager and PhoneStateListener classes. The Intent actions can initi-
ate basic phone calls in your applications. TelephonyManager doesn’t make phone
calls directly but is used to retrieve all kinds of telephony-related data, such as the

188

www.it-ebooks.info

http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html
http://www.it-ebooks.info/

Exploring telephony background and terms 189

Tl @ s:06 AM

AR DI s:01am
' ' 1Ao®
Telexp

[Explore Am

TelephonyExplorer %a 8:11 AM

mberUtils Example
mple

TelephonyManager Exampl

Telephony Manager Information:

1800G00G411|

PhoneNumberUtils Exampl 415-555-1234
SMs Example - : —
Reboot! Let's hope this is j

test message n ow!
Dial via Intent

Send SM5

Call via Intent

Change focus to here to
format previous field

Figure 7.1 TelephonyExplorer main screen, along with the related activities the sample
application performs

state of the voice network, the device’s own phone number, and other details.
TelephonyManager supports adding a PhoneStateListener, which can alert you when
call or phone network states change.

After covering basic telephony APIs, we’ll move on to sending and receiving SMS
messages. Android provides APIs that allow you to send SMS messages and be notified
when SMS messages are received. We’ll also touch on emulator features that allow you
to test your app by simulating incoming phone calls or messages.

Once again, a sample application will carry us through the concepts related to the
material in this chapter. You’ll build a sample TelephonyExplorer application to dem-
onstrate dialing the phone, obtaining phone and service state information, adding lis-
teners to the phone state, and working with SMS. Your TelephonyExplorer application
will have several basic screens, as shown in figure 7.1.

TelephonyExplorer exercises the telephony-related APIs while remaining simple
and uncluttered. Before we start to build TelephonyExplorer, let’s first define tele-
phony itself.

7.1 Exploring telephony background and terms

Whether you're a new or an experienced mobile developer, it’s important to clarify
terms and set out some background for discussing telephony.

First, telephony is a general term that refers to electrical voice communications over
telephone networks. Our scope is, of course, the mobile telephone networks that
Android devices' participate in, specifically the Global System for Mobile Communica-
tions (GSM) and Code Division Multiple Access (CDMA) networks.

! For a breakdown of all Android devices by year of release, go here: www.androphones.com/all-android-
phones.php.

www.it-ebooks.info

http://www.androphones.com/all-android-phones.php
http://www.androphones.com/all-android-phones.php
http://www.it-ebooks.info/

190

711

7.1.2

CHAPTER 7 Telephony

GSM and CDMA are cellular telephone networks. Devices communicate over radio
waves and specified frequencies using cell towers. The standards must define a few
important things, such as identities for devices and cells, along with all the rules for
making communications possible.

Understanding GSM

We won’t delve into the underlying details of the networks, but it’s important to know
some key facts. GSM is based on Time Division Multiple Access (TDMA), a technology
that slices time into smaller chunks to allow multiple callers to share the same fre-
quency range. GSM was the first network that the Android stack supported for voice
calls; it’s ubiquitous in Europe and very common in North America. GSM devices use
Subscriber Identity Module (SIM) cards to store important network and user settings.

A SIM card is a small, removable, secure smart card. Every device that operates on a
GSM network has specific unique identifiers, which are stored on the SIM card or on
the device itself:

= Integrated Circuit Card Identifier (ICCID)—Identifies a SIM card; also known as a
SIM Serial Number, or SSN.

= International Mobile Equipment Identity (IMEI)—Identifies a physical device. The
IMEI number is usually printed underneath the battery.

= International Mobile Subscriber Identity (IMSI)—Identifies a subscriber (and the
network that subscriber is on).

= Location Avea Identity (LAI)—ldentifies the region within a provider network
that’s occupied by the device.

= Authentication key (Ki)—A 128-bit key used to authenticate a SIM card on a pro-
vider network.

GSM uses these identification numbers and keys to validate and authenticate a SIM
card, the device holding it, and the subscriber on the network and across networks.
Along with storing unique identifiers and authentication keys, SIM cards often store
user contacts and SMS messages. Users can easily move their SIM card to a new device
and carry along contact and message data. Currently, the Android platform handles
the SIM interaction, and developers can get read-only access via the telephony APIs.

Understanding CDMA

The primary rival to GSM technology is CDMA, which uses a different underlying
technology that’s based on using different encodings to allow multiple callers to share
the same frequency range. CDMA is widespread in the Unites States and common in
some Asian countries.

Unlike GSM phones, CDMA devices don’t have a SIM card or other removable mod-
ule. Instead, certain identifiers are burned into the device, and the carrier must main-
tain the link between each device and its subscriber. CDMA devices have a separate set
of unique identifiers:

www.it-ebooks.info

http://www.3gpp.org/ftp/Specs/html-info/23040.htm
http://www.it-ebooks.info/

7.2

Phone or not? 191

= Mobile Equipment Identifier (MEID)—Identifies a physical device. This number is
usually printed under the battery and is available from within device menus. It
corresponds to GSM’s IMEL

= Electronic Serial Number (ESN)—The predecessor to the MEID, this number is
shorter and identifies a physical device.

= Pseudo Electronic Serial Number (pESN)—A hardware identifier, derived from the
MEID, that’s compatible with the older ESN standard. The ESN supply was
exhausted several years ago, so pESNs provide a bridge for legacy applications
built around ESN. A pESN always starts with 0x80 in hex format or 128 in deci-
mal format.

Unlike GSM phones, which allow users to switch devices by swapping out SIM cards,
CDMA phones require you to contact your carrier if you want to transfer an account to
a new device. This process is often called an ESN swap or ESN change. Some carriers
make this easy, and others make it difficult. If you’ll be working on CDMA devices,
learning how to do this with your carrier can save you thousands of dollars in sub-
scriber fees.

NOTE A few devices, sometimes called world phones, support both CDMA
and GSM. These devices often have two separate radios and an optional
SIM card. Currently, such devices operate only on one network or the
other at any given time. Additionally, these devices are often restricted to
using only particular carriers or technologies in particular countries. You
generally don’t need to do anything special to support these devices, but
be aware that certain phones might appear to change their network tech-
nology from time to time.

Fortunately, few applications need to deal with the arcana of GSM and CDMA technol-
ogy. In most cases, you only need to know that your program is running on a device
that in turn is running on a mobile network. You can leverage that network to make
calls and inspect the device to find unique identifiers. You can locate this sort of infor-
mation by using the TelephonyManager class.

Phone or not?

Starting with version 2.1 of the Android OS, devices no longer need to support tele-
phony features. Expect more and more non-phone devices to reach the market, such
as set-top boxes, auto devices, and certain tablets. If you want to reach the largest pos-
sible market with your app, you should include telephony features but fail gracefully if
they’re not available. If your application makes sense only when running on a phone,
go ahead and use any phone features you require.

If your application requires telephony to function, you should add the following
declaration to your AndroidManifest.xml:

<uses-feature android:name="android.hardware.telephony"
android:required="true"/>

www.it-ebooks.info

http://www.it-ebooks.info/

192

7.3

7.3.1

CHAPTER 7 Telephony

This will let Android Market and other storefronts know not to offer your app to non-
phone devices; otherwise, expect many complaints and queries from disappointed
customers. If your application supports telephony but can operate without it, set
android:required to "false".

Accessing telephony information

Android provides an informative manager class that supplies information about many
telephony-related details on the device. Using TelephonyManager, you can access
phone properties and obtain phone network state information.

NOTE Starting with version 2.1 of the Android OS, devices no longer
need to support telephony features. Expect more and more non-phone
devices to reach the market, such as set-top boxes and auto devices. If you
want to reach the largest possible market with your app, you should lever-
age telephony features but fail gracefully if they’re not available. If your
application makes sense only when running on a phone, go ahead and
use any phone features you require.

You can attach a PhoneStateListener event listener to the phone by using the man-
ager. Attaching a PhoneStateListener makes your applications aware of when the
phone gains and loses service, and when calls start, continue, or end.

Next, we’ll examine several parts of the Telepho-
nyExplorer example application to look at both
these classes. We’ll start by obtaining a Telephony-
Manager instance and using it to query useful tele-

Adl Al @ 5:54PM

Telephony Manager Information:

phony information.

Retrieving telephony properties

The android.telephony package contains the
TelephonyManager class, which provides details
about the phone status. Let’s retrieve and display a
small subset of that information to demonstrate the
approach. First, you’ll build an Activity that dis-
plays a simple screen showing some of the informa-
tion you can obtain via TelephonyManager, as shown
in figure 7.2.

The TelephonyManager class is the information
hub for telephony-related data in Android. The fol-
lowing listing demonstrates how you obtain a refer-

Figure 7.2 Displaying device and

. R . phone network meta-information
ence to this class and use it to retrieve data. obtained from TelephonyManager

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing telephony information 193

Listing 7.1 Obtaining a TelephonyManager reference and using it to retrieve data

// . . . start of class omitted for brevity
final TelephonyManager telMgr =
(TelephonyManager) getSystemService (Get TelephonyManager
Context . TELEPHONY_SERVICE) ; . from Context
// . . . onCreate method and others omitted for brevity
public String getTelephonyOverview (Implement information
TelephonyManager telMgr) { helper method
String callStateString = "NA";

int callState = telMgr.getCallState();
switch (callState) {
case TelephonyManager.CALL_STATE_IDLE:

<7 Obtain call state
© information

callStateString = "IDLE";
break;
case TelephonyManager.CALL_STATE_OFFHOOK:
callStateString = "OFFHOOK";
break;
case TelephonyManager.CALL_STATE_RINGING:
callStateString = "RINGING";
break;
}
CellLocation celllLocation = (CellLocation)telMgr.getCellLocation() ;

String celllLocationString = null;
if (cellLocation instanceof GsmCellLocation)

{

cellLocationString = ((GsmCellLocation)cellLocation) .getLac ()
+ " " + ((GsmCellLocation)cellLocation) .getCid() ;
}
else if (cellLocation instanceof CdmaCellLocation)
{
cellLocationString = ((CdmaCellLocation)cellLocation).
getBaseStationLatitude() + " " +
((CdmaCellLocation)cellLocation) .getBaseStationLongitude() ;
}
Str%ng dev%ceId = telMgr.getDev1ceId(); Get device
String deviceSoftwareVersion = information

telMgr.getDeviceSoftwareVersion () ;
String linelNumber = telMgr.getLinelNumber () ;
String networkCountryIso = telMgr.getNetworkCountryIso() ;
String networkOperator = telMgr.getNetworkOperator () ;
String networkOperatorName = telMgr.getNetworkOperatorName () ;

String phoneTypeString = "NA";

int phoneType = telMgr.getPhoneType /() ;
switch (phoneType) {

case TelephonyManager.PHONE_TYPE_GSM:

phoneTypeString = "GSM";
break;

case TelephonyManager.PHONE_TYPE_CDMA:
phoneTypeString = "CDMA";
break;

case TelephonyManager.PHONE_TYPE_NONE :
phoneTypeString = "NONE";

www.it-ebooks.info

http://www.it-ebooks.info/

194

CHAPTER 7 Telephony

break;

}

String simCountryIso = telMgr.getSimCountryIsol();
String simOperator = telMgr.getSimOperator();

String simOperatorName = telMgr.getSimOperatorName () ;
String simSerialNumber = telMgr.getSimSerialNumber () ;
String simSubscriberId = telMgr.getSubscriberId() ;
String simStateString = "NA";

int simState = telMgr.getSimState() ;

switch (simState) {

case TelephonyManager.SIM_STATE_ABSENT:

simStateString = "ABSENT";
break;
case TelephonyManager.SIM_STATE_NETWORK_LOCKED:
simStateString = "NETWORK_LOCKED";
break;
// . . . other SIM states omitted for brevity

}

StringBuilder sb = new StringBuilder () ;

sb.append ("telMgr - ");

sb.append (" \ncallState = " + callStateString);
// . . . remainder of appends omitted for brevity
return sb.toString() ;

}
We use the current Context, through the getSystemService method with a constant,
to obtain an instance of the TelephonyManager class @. After you have the manager,
you can use it as needed. In this case, we create a helper method to get data from the
manager and return it as a String that we later display on the screen 0.

The manager allows you to access phone state data, such as whether a call is in
progress ©, the device ID and software version @, the phone number registered to
the current user/SIM, and other SIM details, such as the subscriber ID (IMSI) and the
current SIM state. TelephonyManager offers even more properties; see the Javadocs for
complete details.

NOTE Methods generally return null if they don’t apply to a particular
device; for example, getSimOperatorName() returns null for CDMA
phones. If you want to know in advance what type of device you’re work-
ing with, try using the method getPhoneType ().

For this class to work, you must set the READ_PHONE_STATE permission in the manifest.
Without it, security exceptions will be thrown when you try to read data from the man-
ager. Phone-related permissions are consolidated in table 7.1.

In addition to providing telephony-related information, including metadata about
the device, network, and subscriber, TelephonyManager allows you to attach a Phone-
StateListener, which we’ll describe in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

7.3.2

Accessing telephony information 195

Obtaining phone state information

A phone can be in any one of several conditions. The primary phone states include
idle (waiting), in a call, or initiating a call. When you’re building applications on a
mobile device, sometimes you not only need to know the current phone state, but you
also want to know when the state changes.

In these cases, you can attach a listener to the phone and subscribe to receive noti-
fications of published changes. With Android, you use a PhoneStateListener, which
attaches to the phone through TelephonyManager. The following listing demonstrates
a sample usage of both these classes.

Listing 7.2 Attaching a PhoneStateListener via the TelephonyManager

@Override

public void onStart() {
super.onStart () ;
final TelephonyManager telMgr =

(TelephonyManager) getSystemService (
Context .TELEPHONY_SERVICE) ;
PhoneStateListener phoneStatelListener =
new PhoneStateListener () {

public void onCallStateChanged (
int state, String incomingNumber) {
telMgrOutput.setText (getTelephonyOverview (telMgr)) ;
}
Y
telMgr.listen (phoneStateListener,
PhoneStateListener.LISTEN_CALL_STATE) ;
String telephonyOverview = getTelephonyOverview (telMgr) ;
telMgroOutput.setText (telephonyOverview) ;
}

To start working with a PhoneStateListener, you need to acquire an instance of
TelephonyManager. PhoneStateListener itself is an interface, so you need to create
an implementation, including the required onCallStateChanged() method. When
you have a valid PhoneStateListener instance, you attach it by assigning it to the
manager with the listen() method.

Listing 7.2 shows how to listen for any PhoneStateListener.LISTEN_CALL_STATE
change in the phone state. This constant value comes from a list of available states that
are in PhoneStateListener class. You can use a single value when assigning a listener
with the listen() method, as demonstrated in listing 7.2, or you can combine multi-
ple values to listen for multiple states.

If a call state change does occur, it triggers the action defined in the onCallState-
Changed () method of your PhoneStateListener. In this example, we reset the details
on the screen using the getTelephonyOverview() method from listing 7.1. You can
filter this method further, based on the passed-in int state.

To see the values in this example change while you’re working with the emulator,
you can use the SDK tools to send incoming calls or text messages and change the

www.it-ebooks.info

http://www.it-ebooks.info/

196

74

74.1

CHAPTER 7 Telephony

Terminal — telnet — 80x24

| chris-kings-macbook :~ cirion$ telnet 127.0.0.1 5554

Trying 127.8.8.1...

| Connected to localhost.

Escope character is 'A]'.

| Android Console: type 'help' for a list of commands

0K

| gsm

|allows you to chonge GSM-related settings, or to make a new inbound phone call

available sub-commands :

list list current phone calls
call create inbound phone call
busy close waiting outbound call as busy
hold change the state of an oubtound call to ‘held’
accept change the state of an outbound call to ‘active’
cance | disconnect an inbound or outbound phorne call
data modify data connection stote
voice modify voice connection state
status display GSM status
KO: missing sub-command xJ

Figure 7.3 An Android console session demonstrating the gsm command and
available subcommands

state of the voice connection. You can access these options from the DDMS perspective
in Eclipse. Additionally, the emulator includes a mock GSM modem that you can
manipulate using the gsm command from the console. Figure 7.3 shows an example
session from the console that demonstrates using the gsm command. For complete
details, see the emulator telephony documentation at http://code.google.com/
android/reference/emulator.html#telephony.

Now that we’ve covered the major elements of telephony, let’s start exploring basic
uses of the telephony APIs and other related facilities. We’ll intercept calls, leverage
telephony utility classes, and make calls from within applications.

Interacting with the phone

In regular development, you’ll often want to use your Android device as a phone. You
might dial outbound calls through simple built-in intents, or intercept calls to modify
them in some way. In this section, we’ll cover these basic tasks and examine some of
the phone-number utilities Android provides for you.

One of the more common things you’ll do with Android telephony support
doesn’t even require using the telephony APIs directly: making calls using built-in
Intents.

Using Intents to make calls

As we demonstrated in chapter 4, to invoke the built-in dialer and make a call all you
need to use is the Intent.ACTION_CALL action and the tel: Uri. This approach
invokes the dialer application, populates the dialer with the provided telephone num-
ber (taken from the URI), and initiates the call.

www.it-ebooks.info

http://code.google.com/android/reference/emulator.html#telephony
http://code.google.com/android/reference/emulator.html#telephony
http://www.it-ebooks.info/

Interacting with the phone 197

Alternatively, you can invoke the dialer application with the Intent.ACTION_DIAL
action, which also populates the dialer with the supplied phone number but stops
short of initiating the call. The following listing demonstrates both techniques using
their respective actions.

Listing 7.3 Using Intent actions to dial and call using the built-in dialer application

dialintent = (Button) findViewById(R.id.dialintent_button) ;
dialintent.setOnClickListener (new OnClickListener () {
public void onClick(View v) {
Intent intent =
new Intent (Intent.DIAL_ACTION,
Uri.parse("tel:" + NUMBER)) ;
startActivity(intent) ;
}
)i
callintent = (Button) findViewById(R.id.callintent_button) ;
callintent.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
Intent intent =
new Intent (Intent.CALL_ACTION,
Uri.parse("tel:" + NUMBER)) ;
startActivity(intent) ;

1)

By now you should feel quite comfortable using Intents in the Android platform. In
this listing, we again take advantage of Android’s loose coupling, in this case to make
outgoing calls to specified numbers. First, you set the action you want to take place,
either populating the dialer with ACTION_DIAL or populating the dialer and initiating
a call with ACTION_CALL. In either case, you also need to specify the telephone number
you want to use with the Intent URL

Dialing calls also requires the proper permissions, which your application mani-
fest includes in order to access and modify the phone state, dial the phone, or inter-
cept phone calls (shown in section 7.3.3). Table 7.1 lists the relevant phone-related

Table 7.1 Phone-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.CALL_PHONE Initiates a phone call without user confirma-
tion in dialer
android.permission.CALL_PRIVILEGED Calls any number, including emergency, with-

out confirmation in dialer

android.permission.MODIFY_PHONE_STATE Allows the application to modify the phone
state: for example, to turn the radio on or off

android.permission.PROCESS_OUTGOING_CALLS Allows the application to receive broadcast
for outgoing calls and modify

android.permission.READ_PHONE_STATE Allows the application to read the phone
state

www.it-ebooks.info

http://www.it-ebooks.info/

198

74.2

CHAPTER 7 Telephony

permissions and their purposes. For more detailed information, see the security sec-
tion of the Android documentation at http://code.google.com/android/devel/
security.html.

Android makes dialing simple with builtin handling via Intents and the dialer
application. The PhoneNumberUtils class, which you can use to parse and validate
phone number strings, helps simplify dialing even more, while keeping numbers
human-readable.

Using phone number-related utilities

Applications running on mobile devices that support telephony deal with a lot of
String formatting for phone numbers. Fortunately, the Android SDK provides a
handy utility class that helps to mitigate the risks associated with this task and stan-
dardize the numbers you use—PhoneNumberUtils.

The PhoneNumberUtils class parses String data into phone numbers, transforms
alphabetical keypad digits into numbers, and determines other properties of phone
numbers. The following listing shows an example of using this class.

Listing 7.4 Working with the PhoneNumberUtils class

// Imports omitted for brevity

private TextView pnOutput;

private EditText pnInput;

private EditText pnInPlaceInput;

private Button pnFormat;

// Other instance variables and methods omitted for brevity

pnFormat.setOnClickListener (new OnClickListener () {
public void onClick(View v) { Format as
String phoneNumber = PhoneNumberUtils.formatNumber (Jj) phone
pnInput.getText ().toString()); < number

phoneNumber = PhoneNumberUtils.convertKeypadLettersToDigits (

pnInput.getText () .toString()) ; < Convert alpha

StringBuilder result = new StringBuilder(); characters to digits
result.append (phoneNumber) ;
result.append("\nisGlobal - "

+ PhoneNumberUtils.isGlobalPhoneNumber (phoneNumber)) ;

result.append("\nisEmergency - " Compare
+ PhoneNumberUtils.isEmergencyNumber (phoneNumber)) ; to another
result.append("\ncompare to 415-555-1234 - " + < number

PhoneNumberUtils.compare (phoneNumber, "415-555-1234"));
pnOutput .setText (result.toString()) ;
pnInput.setText ("") ;
}

3
The PhoneNumberUtils class offers several static helper methods for parsing phone
numbers, including the useful formatNumber. This method takes a single String as
input and uses the default locale settings to return a formatted phone number @.
Additional methods format a number using a locale you specify, parse different

www.it-ebooks.info

http://code.google.com/android/devel/security.html
http://code.google.com/android/devel/security.html
http://www.it-ebooks.info/

Interacting with the phone 199

segments of a number, and so on. Parsing a number can be combined with another
helpful method, convertKeypadLettersToDigits (), to convert any alphabetic keypad
letter characters into digits @. The conversion method won’t work unless it already
recognizes the format of a phone number, so you should run the format method first.

Along with these basic methods, you can also check properties of a number string,
such as whether the number is global and whether it represents an emergency call. The
compare () method lets you see whether a given number matches another number €,
which is useful for user-entered numbers that might include dashes or dots.

NOTE Android defines a global number as any string that contains one or
more digits; it can optionally be prefixed with a + symbol, and can option-
ally contain dots or dashes. Even strings like 3 and +4-2 are considered
global numbers. Android makes no guarantee that a phone can even dial
such a number; this utility simply provides a basic check for whether
something that looks like it could be a phone number in some country.

You can also format a phone number with the overloaded formatNumber () method.
This method is useful for any Editable, such as the common EditText (or TextView).
This method updates the provided Editable in-place, as shown in the following listing.

Listing 7.5 Using in-place Editable View formatting via PhoneNumberUtils

pnInPlaceInput.setOnFocusChangeListener (
new OnFocusChangeListener () {
public void onFocusChange (View v, boolean hasFocus) {
if (v.equals(pnInPlaceInput) && (!hasFocus)) {
PhoneNumberUtils. formatNumber (
pnInPlaceInput.getText (),
PhoneNumberUtils.FORMAT_NANP) ;

1)

The in-place editor can be combined with a dynamic update using various techniques.
You can make the update happen automatically when the focus changes from a
phone-number field. The in-place edit does not provide the keypad alphabetic charac-
ter-to-number conversion automatically. To ensure that the conversion occurs, we’ve
implemented an OnFocusChangeListener. Inside the onFocusChange() method,
which filters for the correct View item, we call the formatNumber () overload, passing
in the respective Editable and the formatting style we want to use. NANP stands for
North American Numbering Plan, which includes an optional country and area code
and a 7-digit local phone number.

NOTE PhoneNumberUtils also defines a Japanese formatting plan and
might add others in the future.

Now that you can use the phone number utilities and make calls, we can move on to
the more challenging and interesting task of call interception.

www.it-ebooks.info

http://www.it-ebooks.info/

200

74.3

7.5

CHAPTER 7 Telephony

Intercepting outbound calls

Imagine writing an application that catches outgoing calls and decorates or aborts
them, based on certain criteria. The following listing shows how to perform this type
of interception.

Listing 7.6 Catching and aborting an outgoing call

public class OutgoingCallReceiver extends BroadcastReceiver {

public static final String ABORT_PHONE_NUMBER = "1231231234";
@Ozi{fnde » e (c , <71 Override
pu %c V?l onRecelveF ontext context, Intent intent) { ‘) onReceive
if (intent.getAction() .equals(
Intent.ACTION_NEW_OUTGOING_CALL)) { <@ Filter Intent for action

String phoneNumber =
intent.getExtras () .getString (Intent.EXTRA_PHONE_NUMBER) ;
if ((phoneNumber != null)
&& phoneNumber.equals (
OutgoingCallReceiver.ABORT_PHONE_NUMBER)) {
Toast .makeText (context,
"NEW_OUTGOING_CALL intercepted to number "
+ "123-123-1234 - aborting call",
Toast .LENGTH_LONG) . show () ;
abortBroadcast () ;

}

Our interception class starts by extending BroadcastReceiver. The new subclass
implements the onReceive () method @. Within this method, we filter on the Intent
action we want @, and then we get the Intent data using the phone number key. If
the phone number matches, we send a Toast alert to the UI and abort the outgoing
call by calling the abortBroadcast () method.

Beyond dialing out, formatting numbers, and intercepting calls, Android also pro-
vides support for sending and receiving SMS. Managing SMS can seem daunting but
provides significant rewards, so we’re going to focus on it for the rest of the chapter.

Working with messaging: SMS

Mobile devices use the Short Message Service (SMS), a hugely popular and important
means of communication, to send simple text messages with small amounts of data.
Android includes a built-in SMS application that allows users to send, view, and reply
to SMS messages. Along with the built-in user-facing apps and the related ContentPro-
vider for interacting with the default text-messaging app, the SDK provides APIs for
developers to send and receive messages programmatically.

Because Android now supplies an excellent built-in SMS message application, you
might wonder why anyone would bother building another one. The Android market
sells several superior third-party SMS messaging applications, but SMS can do a lot
more than text your contacts. For example, you could build an application that, upon

www.it-ebooks.info

http://www.it-ebooks.info/

Working with messaging: SMS 201

receiving a special SMS, sends back another SMS
containing its location information. Due to the

R . . B2 7035551234: A example message
nature of SMS, this strategy might succeed, while Telexplore.
another approach like trying to get the phone to SMS Example

transmit its location in real time would fail. Alter- il
nately, adding SMS as another communications 555-123-1234
channel can enhance other applications. Best of
all, Android makes working with SMS relatively

K . SMS Messages are simple to
simple and straightforward. work with in Android.

To explore Android’s SMS support, you’ll cre-
ate an app that sends and receives SMS messages.
The screen in figure 7.4 shows the SMS-related
Activity you’ll build in the TelephonyExplorer
application.

To get started working with SMS, you’ll first
build a class that programmatically sends SMS mes-

sages, using the SmsManager. Figure 7.4 An Activity that sends
SMS messages

7.5.1 Sending SMS messages

The android.telephony package contains the SmsManager and SmsMessage classes.
The SmsManager defines many important SMS-related constants, and also provides the
sendDataMessage, sendMultipartTextMessage, and sendTextMessage methods.

NOTE Early versions of Android provided access to SMS only through the
android.telephony.gsm subpackage. Google has deprecated this usage,
but if you must target older versions of the OS, look there for SMS-related
functions. Of course, such classes work only on GSM-compatible devices.

The following listing shows an example from our TelephonyExplorer application that
uses the SMS manager to send a simple text message.

Listing 7.7 Using SmsManager to send SMS messages

// . . . start of class omitted for brevity
private Button smsSend;
private SmsManager smsManager;
@QOverride
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.smsexample) ;

// . . . other onCreate view item inflation omitted for brevity

smsSend = (Button) findViewById(R.id.smssend_button) ;

smsManager = SmsManager.getDefault(); Get

final PendingIntent sentIntent = Create 1 SmsManager
PendingIntent.getActivity (Pendhghnent handle

this, 0, new Intent (this, for post action
SmsSendCheck.class), 0);

www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 7 Telephony

smsSend.setOnClickListener (new OnClickListener () {
public void onClick(View v) {
String dest = smsInputDest.getText().toString() ;
if (PhoneNumberUtils.
isWellFormedSmsAddress (dest)) { < Check that
smsManager . sendTextMessage (é, destination
smsInputDest.getText () .toString, null, is valid
smsInputText.getText () .toString(),
sentIntent, null);
Toast .makeText (SmsExample.this,
"SMS message sent",
Toast .LENGTH_LONG) . show () ;
} else {
Toast .makeText (SmsExample.this,
"SMS destination invalid - try again",
Toast .LENGTH_LONG) .show() ;

1)
}
Before doing anything with SMS messages, we must obtain an instance of the SmsMan-
ager with the static getDefault () method @. The manager will also send the mes-
sage later. Before we can send the message, we need to create a PendingIntent to
provide to the send method.

A PendingIntent can specify an Activity, a Broadcast, or a Service that it
requires. In our case, we use the getActivity () method, which requests an Activity,
and then we specify the context, a request code (not used for this case), the Intent to
execute, and additional flags ®. The flags indicate whether the system should create a
new instance of the referenced Activity (or Broadcast or Service), if one doesn’t
already exist.

Next, we check that the destination address is valid for SMS @, and we send the
message using the manager’s sendTextMessage () method.

This send method takes several parameters. The following snippet shows the signa-
ture of this method:

sendDataMessage (String destinationAddress, String scAddress,
short destinationPort, byte[] data, PendingIntent sentIntent,
PendingIntent deliveryIntent)

What is a Pendingintent?

A PendingIntent specifies an action to take in the future. It lets you pass a future
Intent to another application and allow that application to execute that Intent as
if it had the same permissions as your application, whether or not your application is
still around when the Intent is eventually invoked. A PendingIntent provides a
means for applications to work, even after their process exits. It's important to note
that even after the application that created the PendingIntent has been killed, that
Intent can still run.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with messaging: SMS 203

The method requires the following parameters:

destinationAddress—The phone number to receive the message.
scAddress—The messaging center address on the network. You should almost
always leave this as null, which uses the default.

destinationPort—The port number for the recipient handset.

data—The payload of the message.

sentIntent—The PendingIntent instance that’s fired when the message is suc-
cessfully sent.

deliveryIntent—The PendingIntent instance that’s fired when the message is
successfully received.

NOTE GSM phones generally support receiving SMS messages to a partic-
ular port, but CDMA phones generally don’t. Historically, port-directed
SMS messages have allowed text messages to be delivered to a particular
application. Modern phones support better solutions; in particular, if you
can use a server for your application, consider using Android Cloud to
Device Messaging (C2DM)? for Android phones with software version 2.2
or later.

Much like the phone permissions listed in table 7.1, SMS-related tasks also require
manifest permissions. SMS permissions are shown in table 7.2.

Table 7.2 SMS-related manifest permissions and their purpose

Phone-related permission Purpose

android.permission.READ_SMS Allows the application to read SMS messages

android.permission.RECEIVE_SMS Allows the application to monitor incoming SMS messages

android.permission.SEND_SMS Allows the application to send SMS messages

android.permission.WRITE_SMS Writes SMS messages to the built-in SMS provider (not

related to sending messages directly)

The AndroidManifest.xml file for the TelephonyExplorer application contains these

permissions:

<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.READ_SMS" />
<uses-permission android:name="android.permission.WRITE_SMS" />

<uses-permission android:name="android.permission.SEND_SMS" />

Along with sending text and data messages via SmsManager, you can create an SMS

BroadcastReceiver to receive incoming SMS messages.

2 Read Wei Huang’s detailed article for more about C2DM: http://android-developers.blogspot.com/2010/
05/android-cloud-to-device-messaging.html.

www.it-ebooks.info

http://android-developers.blogspot.com/2010/05/android-cloud-to-device-messaging.html
http://android-developers.blogspot.com/2010/05/android-cloud-to-device-messaging.html
http://www.it-ebooks.info/

204

7.5.2

CHAPTER 7 Telephony

Receiving SMS messages

You can receive an SMS message programmatically by registering for the appropriate
broadcast. To demonstrate how to receive SMS messages in this way with our Telepho-
nyExplorer application, we’ll implement a receiver, as shown in the following listing.

Listing 7.8 Creating an SMS-related BroadcastReceiver

public class SmsReceiver extends BroadcastReceiver ({
private static final String SMS_REC_ACTION =
"android.provider.Telephony.SMS_RECEIVED";

@Override
public void onReceive (Context context, Intent intent) ({
if (intent.getAction(). <
equals (SmsReceiver.SMS_REC_ACTION)) {

Filter for action

in receiver
StringBuilder sb = new StringBuilder () ;
Bundle bundle = intent.getExtras();
if (bundle != null) { @ Get pdus from
Object[] pdus = (Object[]) <~ Intent Bundle
bundle.get ("pdus") ;
for (Object pdu : pdus) { © Create SmsMessage
SmsMessage smsMessage = < from pdus
SmsMessage.createFromPdu
((bytel]l) pdu);
sb.append("body - " + smsMessage.

getDisplayMessageBody ()) ;
}

}
Toast .makeText (context, "SMS RECEIVED - "
+ sb.toString(), Toast.LENGTH_LONG) .show() ;

}

To react to an incoming SMS message, we again create a custom BroadcastReceiver
by extending that class. Our receiver defines a local constant for the Intent action it
wants to catch, in this case, android.provider.Telephony.SMS_RECEIVED.

Next, we filter for the action we want on the onReceive () method @, and we get
the SMS data from the Intent extras Bundle using the key pdus ®. The Bundle is a
hash that contains Android data types.

What’s a PDU?

PDU, or protocol data unit, refers to one method of sending information along cellular
networks. SMS messaging, as described in the 3rd Generation Partnership Project
(3GPP) Specification, supports two different ways of sending and receiving mes-
sages. The first is text mode, which some phones don’t support. Text mode encodes
message content as a simple bit stream. The other is PDU mode, which contains not
only the SMS message, but also metadata about the SMS message, such as text

www.it-ebooks.info

http://www.it-ebooks.info/

7.6

Summary 205

(Continued)

encoding, the sender, SMS service center address, and much more. To access this
metadata, mobile SMS applications almost always use PDUs to encode the contents
of a SMS message. For more information about PDUs and the metadata they provide,
refer to the specification titled “Technical Realization of the Short Message Service
(SMS)” which you can find at www.3gpp.org/ftp/Specs/html-info/23040.htm. This
document, part of the 3GPP TS 23.040 Specification, is extremely technical but will
help you with developing more sophisticated SMS applications.

For every pdu Object that we receive, we need to construct an SmsMessage by casting
the data to a byte array ©. After this conversion, we can use the methods in that class,
such as getDisplayMessageBody ().

NOTE If you run the example shown in listing 7.8, you’ll see that even
though the receiver does properly report the message, the message still
arrives in the user’s inbox. Some applications might process specific mes-
sages themselves and prevent the user from ever seeing them; for example,
you might implement a play-by-SMS chess program that uses text messages
to report the other players’ moves. To consume the incoming SMS mes-
sage, call abortBroadcast from within your onReceive () method. Note
that your receiver must have a priority level higher than that of the inbox.
Also, certain versions of the Android OS don’t honor this request, so test
on your target devices if this behavior is important to your app.

Congratulations! Now that you’ve learned how to send SMS messages programmati-
cally, set permissions appropriately, and receive and work with incoming SMS mes-
sages, you can incorporate useful SMS features into your application.

Summary

Our trip through the Android telephony-related APIs covered several important topics.
After a brief overview of some telephony terms, we examined Android-specific APIs.

You accessed telephony information with the TelephonyManager, including device
and SIM card data and phone state. From there, we addressed hooking in a Phone-
StateListener to react to phone state changes.

Besides retrieving data, you also learned how to dial the phone using built-in
intents and actions, intercept outgoing phone calls, and format numbers with the
PhoneNumberUtils class. After we covered standard voice usages, we looked at how to
send and receive SMS messages using the SmsManager and SmsMessage classes.

In the next chapter, we’ll turn to the specifics of interacting with notifications and
alerts on the Android platform. We’ll also revisit SMS, and you’ll learn how to notify
users of events, such as an incoming SMS, by putting messages in the status bar, flash-
ing a light, or even making the phone vibrate.

www.it-ebooks.info

http://www.it-ebooks.info/

Notifications and alarms

This chapter covers

Building an SMS notification application
Working with Toasts

Working with the NotificationManager
Using alarms and the AlarmManager
Setting an alarm

Today’s cell phones and tablets are expected to be not only phones but personal
assistants, cameras, music and video players, and instant-messaging clients, as well
as to do just about everything else a computer might do. With all these applications
running on phones and tablets, applications need a way to notify users to get their
attention or to take some sort of action, whether in response to an SMS, a new
voicemail, or an alarm reminding them of a new appointment. With Android 3.1
Google has updated notifications, refined them, and made them richer. These noti-
fications will be part of the next version of Android, currently code-named “ice
cream sandwich,” which will run on handsets as well.

In this chapter, we’re going to look at how to use the Android Broadcast-
Receiver and the AlarmManager to notify users of these sorts of events. First, we’ll
discuss how to display quick, unobtrusive, and nonpersistent messages called

206

www.it-ebooks.info

http://www.it-ebooks.info/

8.1

Introducing Toast 207

Toasts, based on an event. Second, we’ll talk about how to create persistent messages,
LED flashes, phone vibrations, and other events to alert the user. These events are
called notifications. Finally, we’ll look at how to trigger events by making alarm events
through the AlarmManager. Before we go too deeply into how notifications work, let’s
first create a simple example application.

Introducing Toast

For this example, you’ll create a simple interface that has two buttons that pop up a
message, called a Toast, on the screen. A Toast is a simple, nonpersistent message
designed to alert the user of an event. Toasts are a great way to let a user know that a
call is coming in, an SMS or email has arrived, or some other event has just happened.
Toasts are designed to take up minimal space, allowing the user to continue to inter-
act with the system without having to stop what they’re doing. Toasts, after popping
up, fade away without user intervention. A Toast is different from a message, such as a
status bar notification, which persists even when a phone is turned off or until the user
selects the notification or the Clear Notification button.
First let’s define a simple layout.

Listing 8.1 Main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>
<Button android:id="@+id/button_short"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Short Message"
android:layout_x="50px"
android:layout_y="200px"
/>
<Button android:id="@+id/button_long"
android:text="Long Message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_x="150px"
android:layout_y="200px"
/>

</LinearLayout>

Next let’s create the Activity that will display the Toast messages.

www.it-ebooks.info

http://www.it-ebooks.info/

208

CHAPTER 8 Notifications and alarms

Listing 8.2 SimpleToast.java

package com.msi.manning.chapter8.SimpleToast;

import android.app.Activity;
import android.os.Bundle;
import android.widget.Button;
import android.view.View;
import android.widget.Toast;

public class SimpleToast extends Activity
{
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
Button button = (Button) findViewById(R.id.button_short);
button.setOnClickListener (new Button.OnClickListener ()
{
public void onClick(View v)
{
Toast .makeText (SimpleToast.this, "A short Toast",

Toast .LENGTH_SHORT) .show () ; < Slmple Toast created with
. } @ short display duration
button = (Button) findViewById(R.id.button_long) ;

button.setOnClickListener (new Button.OnClickListener ()
{
public void onClick(View v)
{
Toast .makeText (SimpleToast.this, "A Longer
Toast", Toast.LENGTH_LONG) .show () ;

) “| Toast with

1 long duration

}

As you can see, Toasts are simple to create. Generally all you need to do is instantiate
a Toast object with either of the makeText () methods. The makeText () methods take
three parameters: the application context, the text to display, and the length of time
to display the message. Normally, the syntax looks like this:

Toast toast = Toast.makeText (context, text, duration);

The duration is always either LENGTH_SHORT or LENGTH_LONG, and text can be a
resource id or a string. You can display the Toast by calling the show() method. In
this example, we have chained the methods @. If you run this project and click one of
the buttons, you should see something like figure 8.1.

Although Toasts are simple, they can be useful for providing information to users.
With Android 3.0, they’re more flexible, allowing custom positioning and styling that
was lacking in earlier versions of Android. To show off some of these newer features,
let’s make a few changes to the application. First, let’s look at how to reposition the

www.it-ebooks.info

http://www.it-ebooks.info/

8.2

Placing your Toast message 209

Hello ¥ SimpleToast!

short Message

Long Message

Figure 8.1 Simple example of a Toast message on a Xoom tablet

Toast message so that instead of appearing in the default position, it shows in either
the upper-right corner or the lower-left corner.

Placing your Toast message

We want to display our short message in the upper-right corner. To do that, we can use
one of the Toast’s other methods: setGravity (). The setGravity () method allows
you to define exactly where you would like a Toast message to appear. It takes three
parameters: the Gravity constant, an x-position offset, and a y-position offset. The
syntax looks like this:

toast.setGravity (Gravity.TOP|Gravity.LEFT, 0, 0);

To use it in the example code, change the first Toast from

Toast .makeText (SimpleToast.this, "A short Toast", Toast.LENGTH_SHORT) .show() ;
to

Toast toast = Toast.makeText (SimpleToast.this, "A short Toast",

Toast .LENGTH_SHORT) ;

toast.setGravity(Gravity.TOP|Gravity.RIGHT, 0, 0);

toast.show() ;
If you run this code, you should now see the Toast message in the upper-right corner
of your device, as shown in figure 8.2.

www.it-ebooks.info

http://www.it-ebooks.info/

210

8.3

CHAPTER 8 Notifications and alarms

Hello World, SimpleTaast1! m
short Message

Long Message

Figure 8.2 Custom positioning of a Toast message

You can make the positioning much more specific by using the x and y offsets. Now
that you know how to position a Toast wherever you want, let’s make a truly custom
Toast by making a specialized Toast view.

NOTE For more information, see the Gravity class:
http://developer.android.com/reference/android/view/ Gravity.html.

Making a custom Toast view

Making a custom Toast view is a little more involved than specifying its position, but
as you'll see, it’s still straightforward. To make the custom Toast view, you first need to
define a new layout specifically for that Toast view. You can do this a number of ways,
including in your application’s code or in XML. Then all you need to do is pass the
view to setView(View) when you create the Toast message to display.

Let’s create a new XML layout called customtoast.xml, in the layout directory.

Listing 8.3 Customtoast.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/toast_layout_root"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:padding="10dp"
android:background="#DAAA" android:orientation="horizontal">

<ImageView android:id="@+id/mandsm"

www.it-ebooks.info

http://developer.android.com/reference/android/view/Gravity.html
http://www.it-ebooks.info/

Making a custom Toast view 211

android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:layout_marginRight="10dp"
/>
<TextView android:id="@+id/text"

android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:textColor="#FFFF"

/>

</LinearLayout>

As you can see, this is a simple layout. We define an ImageView to present a graphic
and a TextView to replace our need to use the makeText () method.

Now we need to change the application code. For this example, we’ll only change
the first Toast message to use the custom view. Assuming you're editing our original
code, you can change the code in the first onClick() method to look like the follow
listing.

Listing 8.4 Modified application code

protected void onCreate (Bundle savedInstanceState)

{

super.onCreate (savedInstanceState) ;

setContentView (R.layout.main) ; ? Instantiate layout XML
LayoutInflater inflater = getLayoutInflater(); <«

final View layout = inflater.inflate(R.layout.customtoast,
(ViewGroup) findViewById (R.id.toast_layout_root)); <—@) Inflate XML
ImageView image = (ImageView) layout.findViewById(R.id.mandsm) ;
image.setImageResource (R.drawable.mandsm) ;

TextView text = (TextView) layout.findViewById(R.id.text);

text.setText ("Short custom message") ;

Button button = (Button) findViewById(R.id.button_short) ;
button.setOnClickListener (new Button.OnClickListener ()

{

public void onClick(View v)
{

Toast toast = new Toast (getApplicationContext()) ;
toast.setGravity (Gravity.TOP|Gravity.RIGHT, 200, 200);
toast.setDuration (Toast.LENGTH_LONG) ;
toast.setView(layout) ; QE,

Hold new
toast.show() ;

Toast view
1)

We use several classes and methods that you should be familiar with from earlier chap-
ters. The getLayoutInflater () method retrieves the LayoutInflater to instantiate
the customtoast layout XML @. Then we use the inflater to inflate the XML @. Next
we set the ImageView and the TextView, from the custom layout, and after that we cre-
ate a Toast. Note that we don’t use makeText () when we create the Toast, because
we’ve defined a custom TextView and ImageView €).

www.it-ebooks.info

http://www.it-ebooks.info/

212

8.4

84.1

CHAPTER 8 Notifications and alarms

Hello World, SimpleToasti!

short Message

Long Message

. Short custom message

“I

Figure 8.3 A custom Toast message with embedded graphic

When you run the code, you should get a result like that shown in figure 8.3.

Toasts are used in almost all major Android applications. But sometimes you need
to call the user’s attention to an event until the user takes some sort of action; a Toast
can’t do this, because it goes away on its own. Such persistent messages to the user are
called notifications; in the next section, we’ll look at how they work and what you can
do with them.

Introducing notifications

In the previous section, we showed how simple it is to create a quick, unobtrusive mes-
sage to let the user know that some event has happened or to provide them some use-
ful information. In this section, we’re going to look at how to create a persistent
notification that not only shows up in the status bar, but stays in a notification area
until the user deletes it. To do that, we need to use the classes Notification and
NotificationManager.

The Notification class

A notification on Android can be many things, ranging from a pop-up message, to a
flashing LED, to a vibration, but all these actions start with and are represented by the
Notification class. The Notification class defines how you want to represent a noti-
fication to a user. This class has three constructors, one public method, and a number
of fields. Table 8.1 summarizes the class.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing notifications 213

Table 8.1 Notification fields
Access Type Method Description
public int audioStreamType Stream type to use when playing a sound
public RemoteViews contentView View to display when the statusBar-Icon is

public

public

public

public

public

public

public

public

public

public

public

public

public

public

public

public

public

selected in the status bar

PendingIntent contentIntent Intent to execute when the icon is clicked

int defaults Defines which values should be taken from
defaults

int deleteIntent Intent to execute when the user clicks the
Clear All Notifications button

flags Places all flags in the flag fields as bits

PendingIntent fullScreenIntent Intent to launch instead of posting the notifi-

cation in status bar

int icon Resource ID of a drawable to use as the icon in
the status bar

Int iconLevel Level of an icon in the status bar

bitmap largeIcon Bitmap that may be bigger than the bounds of
the panel

int 1edARGB Color of the LED notification

int ledOffMs Number of milliseconds for the LED to be off

between flashes

int 1ledOnMS Number of milliseconds for the LED to be on
for each flash

Int number Number of events represented by this
notification

ContentURI sound Sound to play

CharSequence tickerText Text to scroll across the screen when this item
is added to the status bar

RemoteViews tickerview View shown by the ticker notification in the sta-
tus bar

longl[] vibrate Vibration pattern to use

long when Timestamp for the notification

As you can see, the Notification class has numerous fields; it has to describe every
way you can notify a user. The NotificationManager class, though, is required in
order to use the Notification class, because it’s the system service that executes and
manages notifications. Using a notification follows these steps:

www.it-ebooks.info

http://www.it-ebooks.info/

214

8.4.2

CHAPTER 8 Notifications and alarms

NotificationManager myNotificationManager;

private static final int NOTIFICATION_ID = 1;

myNotificationManager =
(NotificationManager)getSystemService (Context .NOTIFICATION_SERVICE) ;

Here we set up a NotificationManager and instantiate it.

Next we use the Notification.Builder to set Notification objects such as the
message icon for the notification, the title, and much more. The Notification
.Builder provides a much simpler mechanism for building notifications than in pre-
vious versions of Android:

Notification.Builder builder = new Notification.Builder (this);
builder.setTicker ("Message to Show when Notification pops up");
builder.setContentTitle ("Title of Message");
builder.setSmallIcon(R.drawable.icon) ;
builder.setContentText ("- Message for the User -");

Intent notificationIntent = new Intent(this, SimpleNotification.class);

PendingIntent contentIntent = PendingIntent.getActivity(this, 0,
notificationIntent, 0);

builder.setContentIntent (contentIntent) ;

Next we create PendingIntent for the Builder. You must create a PendingIntent for
all notifications.

Finally, to send the notification, all you have to do is use the notify () method and
supply the Notification ID as well as the builder:

myNotificationManager .notify (NOTIFICATION_ID, builder.getNotification());

Here the notify () method wakes up a thread that performs the notification task you
have defined. You can use either an Activity or a Service to trigger the notification,
but generally you’ll want to use a Service because a Service can trigger a notification
in the background regardless of whether it’s the active application at the time.

Notifying a user with a simple button press

Based on the previous example, let’s make a simple interface with two buttons: one
that will trigger the notification and one that will clear it. Make a new project, and first
define the layout in main.xml as in the following listing.

Listing 8.5 main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<TextView android:layout_width="fill_ parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>
<Button android:id="@+id/button_cn"

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing notifications 215

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Create Notification"
android:layout_x="50px"
android:layout_y="200px"
/>

<Button android:id="@+id/button_dn"
android:text="Clear Notification"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_x="150px"
android:layout_y="200px"
/>

</LinearLayout>

Now that we have our layout, let’s create the Activity that will trigger the notification.
(We’re using an Activity in this example for simplicity’s sake.) Make an Activity
called simpleNotification, as shown in the following listing.

Listing 8.6 SimpleNotification.java

public class SimpleNotification extends Activity
{

NotificationManager myNotificationManager;
private static final int NOTIFICATION_ID = 1;

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

Button myGen = (Button) findvViewById(R.id.button_cn);
myGen.setOnClickListener (myGenOnClickListener) ;
Button myClear = (Button)findViewById(R.id.button_dn) ;

myClear.setOnClickListener (myClearOnClickListener) ;

}

private void GenerateNotification/() { Get reference to

myNotificationManager = NotificationManager
(NotificationManager)getSystemService (Context .NOTIFICATION_SERVICE) ;
Notification.Builder builder = new Notification.Builder (this) ;

builder.setContentTitle ("Attention Please!"); Set up new

builder.setTicker ("*** Notification ***"); Notification.Builder

builder.setSmallIcon(R.drawable.notand) ;

builder.setContentText ("- Message for the User -");

Intent notificationIntent = Set up Intent and
new Intent (this, SimpleNotification.class); Pendingintent

PendingIntent contentIntent = PendingIntent.getActivity(this, 0,
notificationIntent, 0);
builder.setContentIntent (contentIntent) ;

myNotificationManager .notify (NOTIFICATION_ID,
builder.getNotification()) ;
}

Button.OnClickListener myGenOnClickListener =
new Button.OnClickListener () {

www.it-ebooks.info

http://www.it-ebooks.info/

216

8.5

CHAPTER 8 Notifications and alarms

public void onClick(View v) {
GenerateNotification() ;
}
}s
Button.OnClickListener myClearOnClickListener =

new Button.OnClickListener () {

public void onClick(View v) {
myNotificationManager.cancel (NOTIFICATION_ID) ;
}

}i

}

As you can see, the code for creating a notification is straightforward and follows the
same process we outlined earlier. In this example, we have two buttons. The first calls
the GenerateNotification() method, where we first get a reference to the
NotificationManager @. Then we build the message that we’ll pass to the user 0.
Next we set up a PendingIntent € and then send the notification. If you build the
project, run it, and click the Create Notification button, you should see something
like figure 8.4.

Making a custom notification view

Just like Toasts, you can make custom views for notifications. One excellent example
is the Gmail application that ships with the Xoom. If you check your email, the notifi-
cations that pop up in the notification area include not only the subject of the email

Hello World, SimpleNotMessage!

Create Notification

Clear Notification

Figure 8.4 Notification being displayed on a Xoom tablet

www.it-ebooks.info

http://www.it-ebooks.info/

Matking a custom notification view 217

but, if available, the image associated with the person. Much as you do with Toasts, to
create a custom view for a Notification you need to first define a layout either in the
application code or in XML. For this example, we’ll use XML. In the example, create
the customnotification.xml file in your layout directory.

Listing 8.7 customnotification.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="#000" android:orientation="horizontal">
>

<ImageView android:id="@+id/avatar"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:layout_marginRight="10dp"
/>
<TextView android:id="@+id/text"
android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:textColor="#FFF"
/>
<TextView android:id="@+id/textTicker"

android:layout_width="wrap_content"
android:layout_height="fill_parent"
android:textColor="#FFF"
/>

</LinearLayout>

Now we’ll change the application code somewhat from the previous notification
example, to use the new custom layout.

Listing 8.8 SimpleNotification.java

private void GenerateNotification/() {

String contenttitle = "Attention Please!";

String contenttext = "- Message for the User -" ;

RemoteViews layout = new RemoteViews (getPackageName (), Define image and
R.layout.customnotification) ; text for layout

layout.setTextViewText (R.id.text, contenttitle);
layout.setTextViewText (R.1id.textTicker, contenttext) ;
layout.setImageViewResource (R.1d.avatar, R.drawable.mandsm) ;

myNotificationManager =

(NotificationManager)getSystemService (Context.NOTIFICATION_SERVICE) ;
Notification.Builder builder = new Notification.Builder (this);
builder.setContentTitle (contenttitle);

builder.setTicker ("*** Notification ***");
builder.setSmallIcon(R.drawable.notand) ;

builder.setContentText (contenttext) ; 0 Pass RemoteViews
reference to
builder.setContent (layout) ; < Notification.Builder

www.it-ebooks.info

http://www.it-ebooks.info/

218

CHAPTER 8 Notifications and alarms

Intent notificationIntent = new Intent(this, SimpleNotMessage.class);
PendingIntent contentIntent = PendingIntent.getActivity(this, O,
notificationIntent, 0);

builder.setContentIntent (contentIntent) ;

myNotificationManager.notify (NOTIFICATION_ID, builder.getNotification());
}
We use a RemoteViews to set the text and image we plan to use inside the notification
@. When we’ve done that, we can pass the reference to the RemoteViews to the
Notification.Builder that will create the customer notification when the new code
is run @. Run the code and click Create Notification to open the notification shown
in figure 8.5.

As you can see, creating a custom notification is straightforward. That being said,
you can make a notification even more sophisticated by having it flash an LED, play
sounds, vibrate the device, or perform any other number of actions by using the
Notification.Builder’s various setters. For example, you could have the previous
code turn on an LED on the device by adding this single line:

builder.setLights (0xFF££0000,1000,100) ;

The first parameter is the Red, Green, Blue (RGB) value of the LED, the second value
is the number of milliseconds the LED should stay on, and the last value is how long
the LED should stay off before going back on.

Hello World, SimpleNotMessage!

Create Notification

Clear Notification

Figure 8.5 Custom styling for a notification on the Xoom

www.it-ebooks.info

http://www.it-ebooks.info/

8.6

Introducing alarms 219

You could also add sound to a notification using the Notification.Builder like
this:

builder.setSound (Uri.parse("File///sdcard/music/Travis-Sing.mp3")) ;

There are also numerous other options. For now, we’ll move on and look at alarms in
Android 3.0.

Introducing alarms

In Android, alarms allow you to schedule your application to run at some point in the
future. Alarms can be used for a wide range of applications, from notifying a user of
an appointment to something more sophisticated, such as having an application start,
checking for software updates, and then shutting down. An alarm works by register-
ing an Intent with the alarm; at the scheduled time, the alarm broadcasts the
Intent. Android automatically starts the targeted application, even if the Android
handset is asleep.

Android manages all alarms somewhat as it manages the NotificationManager—
via an AlarmManager class. The AlarmManager has the methods described table 8.2.

Table 8.2 AlarmManager public methods

Returns Method description

void cancel (PendingIntent intent) Remove alarms with matching
Intent.

void set (int type, long triggerAtTime, Set an alarm.

PendingIntent operation)

void setInexactRepeating (int type, Repeating alarm that has inex-
long triggerAtTime, long interval, act trigger requirements.
PendingIntent operation)

void setRepeating (int type, long triggerAtTime, Set a repeating alarm.
long interval, PendingIntent operation)

void setTime (longmilliseconds) Set the time for an alarm.

void setTimeZone (String TimeZone) Set the time zone for the alarm.

You retrieve the AlarmManager indirectly (as you do the NotificationManager), by
using Context.getSystemService (Context.ALARM SERVICE).

Setting alarms is easy, like most things in Android. In the next example, you’ll cre-
ate a simple application that sets an alarm when a button is clicked. When the alarm
is triggered, it will pass back a simple Toast to inform you that the alarm has been
fired.

www.it-ebooks.info

http://www.it-ebooks.info/

220

8.6.1

CHAPTER 8 Notifications and alarms

Creating a simple alarm example

In this next example, you’ll create an Android project called SimpleAlarm that has
the package name com.msi.manning.chapter8.simpleAlarm, the application name
SimpleAlarm, and the Activity name GenerateAlarm. This project uses another
open source icon, which you can find at www.manning.com/ableson3/ or in the
download for this chapter. Change the name of the icon to clock, and add it to the
res/drawable directory of the project when you create it.

Next, edit the AndroidManifest.xml file to have a receiver (you’ll create that soon)
called AlarmReceiver, as shown in the following listing.

Listing 8.9 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.chapter8.simpleAlarm">
<uses-sdk android:minSdkVersion="11"></uses-sdk>
<application android:icon="@drawable/clock">
<activity android:name=".GenerateAlarm"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<receiver android:name=".AlarmReceiver" android:process=":remote"
/>
</application>
</manifest>

Next, edit the string.xml file in the values directory, and add two new strings:

<string name="set_alarm_text">Set Alarm</string>
<string name="alarm_message">Alarm Fired</string>

You’ll use this as the value of the button in the layout. Next, edit the main.xml file to
add a new button to the layout:

<Button android:id="@+id/set_alarm_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/set_alarm_text">

<requestFocus />

</Button>

You’'re ready to create a new class that will act as the Receiver for the notification the
alarm will generate, as shown in the following listing. In this case, you’ll generate a
Toast-style notification to let the user know the alarms have been triggered. This class
waits for the alarm to broadcast to the AlarmReceiver and then generates the Toast.

www.it-ebooks.info

www.manning.com/ableson/
http://www.it-ebooks.info/

Introducing alarms 221

Listing 8.10 AlarmReceiver.java

public class AlarmReceiver extends BroadcastReceiver {

public void onReceive (Context context, Intent intent) {

try {
Y . Broadcast Toast when
Toast .makeText (context, R.string.app_name, . .
Intent is received
Toast . LENGTH_SHORT) .show(); 1}

catch (Exception r) { Toast.makeText (context, "woops",
Toast .LENGTH_SHORT) .show () ; }

}

Next, edit the SimpleAlarm class to create a button widget (as discussed in chapter 3)
that calls the inner class setAlarm. In setAlarm, we create an onClick method that
will schedule the alarm, call the Intent, and fire off the Toast. The following listing
shows what the finished class should look like.

Listing 8.11 GenerateAlarm.java

public class GenerateAlarm extends Activity {

protected void onCreate(Bundle icicle) {

super.onCreate(icicle) ;
Set up Button to call

setContentView (R.layout.main) ; mOneShotListener

Button button = (Button) findViewById(R.id.set_alarm button) ;
button.setOnClickListener (this.mOneShotListener) ; <
}

private OnClickListener mOneShotListener = new OnClickListener () {
public void onClick(View v) {

Intent intent = new Intent (GenerateAlarm.this,
AlarmReceiver.class

PendingIntent appIntent =

PendingIntent.getBroadcast (GenerateAlarm.this, Create Intent to fire

0, intent, 0); | when alarm goes off
long triggerAlarm = System.currentTimeMillis() + 30000;
AlarmManager am = (AlarmManager) Create

getSystemService (Context.ALARM SERVICE) ; AlarmManager

am.set (AlarmManager .RTC_WAKEUP, triggerAlarm, appIntent) ;

}

As you can see, this class is simple. We create a Button to trigger the alarm @. Next,
we create an inner class for mOneShotListener. Then, we create the Intent to be trig-
gered when the alarm goes off @. In the next section of code, we use the Calendar

www.it-ebooks.info

http://www.it-ebooks.info/

222

8.6.2

CHAPTER 8 Notifications and alarms

class to help calculate the number of milliseconds from the time the button is clicked,
which we’ll use to set the alarm.

Now we’ve done everything necessary to create and set the alarm. We create the
AlarmManager € and then call its set () method to set the alarm. To see a little more
detail of what’s going on in the application, look at these lines of code:

AlarmManager am = (AlarmManager) getSystemService (Context.ALARM SERVICE) ;
am.set (AlarmManager .RTC_WAKEUP, triggerAlarm, applntent);

These lines are where we create and set the alarm by first using getSystemService ()

to create the AlarmManager. The first parameter we pass to the set() method is

RTC_WAKEUP, which is an integer representing the alarm type we want to set. The

AlarmManager currently supports four alarm types, as shown in table 8.3.

Table 8.3 AlarmManager alarm types

Type Description

ELAPSED_REALTIME Alarm time in SystemClock.elapsedRealtime () (time since
boot, including sleep).

ELAPSED_REALTIME_WAKEUP Alarm time in SystemClock.elapsedRealtime () (time since
boot, including sleep). This will wake up the device when it goes

off.

RTC Alarm time in System.currentTimeMillis () (wall clock time
in UTC).

RTC_WAKEUP Alarm time in System.currentTimeMillis () (wall clock time

in UTC). This will wake up the device when it goes off.

You can use multiple types of alarms, depending on your requirements. RTC_WAKEUP,
for example, sets the alarm time in milliseconds; when the alarm goes off, it’ll wake
the device from sleep mode for you, as opposed to RTC, which won’t.

The next parameter we pass to the method is the time, in milliseconds, for when
we want the alarm to be triggered. We do this with the following snippet by adding the
number of milliseconds to the current time:

long triggerAlarm = System.currentTimeMillis() + 30000

The last parameter is the Intent to which we want to broadcast, which is the Intent-
Receiver. Now, build the application and run it.

Clicking the Set Alarm button sets the alarm; after 30 seconds, you should see
something like figure 8.6, displaying the Toast message.

Using notifications with alarms

Creating an alarm is pretty easy in Android, but what might make more sense would
be for that alarm to trigger a notification in the status bar. To do that, you need to add
a NotificationManager and generate a Notification. We’ve created a new method

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing alarms 223

Hello World, GenerateAlarm

Set Alarm

Figure 8.6 After the alarm runs, the application shows a simple Toast message.

to add to listing 8.11 called showNotification(), which takes four parameters and
creates a Notification:

Intent contentIntent = new Intent(this, SetAlarm.class);
PendingIntent theappIntent =

PendingIntent.getBroadcast (SetAlarm.this, 0, contentIntent, 0);
Notification.Builder builder = new Notification.Builder (this) ;
builder.setContentTitle ("Attention Please!");
builder.setTicker ("Alarm") ;
builder.setSmallIcon(statusBarIconID) ;
builder.setContentText ("- Message for the User -");
builder.setContentIntent (theappIntent) ;

nm.notify (NOTIFICATION_ID, builder.getNotification());

Much of this code is similar to the SimpleNotMessage code. To add it to your
GenerateAlarm, edit listing 8.10 to look like listing 8.12; the only other things we’ve
done are to import the Notification and NotificationManager into the code and
add the private variables nm and NOTIFICATION_ID.

Listing 8.12 AlarmReceiver.java

public class AlarmReceiver extends BroadcastReceiver {

private NotificationManager nm;
private int NOTIFICATION_ID;

public void onReceive (Context context, Intent intent) {

this.nm = (NotificationManager)

www.it-ebooks.info

http://www.it-ebooks.info/

224

CHAPTER 8 Notifications and alarms

context.getSystemService (Context .NOTIFICATION_SERVICE) ;

Intent contentIntent = new Intent (context, AlarmReceiver.class);
PendingIntent theappIntent = PendingIntent.getBroadcast (context, 0,
contentIntent, 0);

Notification.Builder builder =

new Notification.Builder (context) ; < .
builder.setContentTitle ("Attention Please!"); Build
builder.setTicker ("Alarm") ;
builder.setSmallIcon (R.drawable.alarm) ;
builder.setContentText ("- Message for the User -");
builder.setContentIntent (theappIntent) ;
nm.notify (NOTIFICATION_ID, builder.getNotification());
abortBroadcast () ;

notification

}

Now edit GenerateAlarm java so it looks like listing 8.13.

Listing 8.13 GenerateAlarm.java

}

public class GenerateAlarm extends Activity {

Toast mToast;
protected void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.main) ;
Button button = (Button) findviewById(R.id.set_alarm_button) ;
button.setOnClickListener (this.mOneShotListener) ;

}

private OnClickListener mOneShotListener = new OnClickListener() {
public void onClick(View v) {
Intent intent = new Intent (GenerateAlarm.this,
AlarmReceiver.class) ;
PendingIntent appIntent =
PendingIntent.getBroadcast (GenerateAlarm.this, 0, intent, 0);
Calendar calendar = Calendar.getInstance();
calendar.setTimeInMillis (System.currentTimeMillis()) ;
calendar.add(Calendar.SECOND, 30);
AlarmManager am = (AlarmManager)
getSystemService (Context .ALARM SERVICE) ;
am.set (AlarmManager .RTC_WAKEUP, calendar.getTimeInMillis(),
appIntent) ;
NotificationManager nm = (NotificationManager)
getSystemService (Context .NOTIFICATION_SERVICE) ;
nm.cancel (R.string.app_name) ;
Toast .makeText (GenerateAlarm. this,
"alarm fired wait 30 seconds", Toast.LENGTH_SHORT) .show() ;
}
}i
}

If you run the code and click Set Alarm, you should see the alarm notification in the
status bar as shown in figure 8.7. You could easily edit this code to take parameters for
time and date, have it show different Intents when the icons are clicked, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

8.7

Summary 225

Set Alarm

Hello World, SetAlarm

Figure 8.7 Alarm notification shown in the status bar

As you can see from this example, Android alarms and the AlarmManager are straight-
forward, and you should be able to easily integrate them into your applications.

Summary

In this chapter, we’ve looked at three separate but related items: Toast, Notification,
and Alarm. You learned that for simple, nonpersistent messages, the Toast class pro-
vides an easy and convenient way to alert the user. We also discussed how to use the
NotificationManager to generate simple to relatively complex notifications. Then
you used the Notification class to present a notification to the user by building an
example that displays a message in the status bar, vibrates a phone, or even flashes an
LED when an SMS messages arrives in the inbox.

We also looked at how to set an alarm to cause an application to start or take some
action in the future, including waking the system from sleep mode. Finally, we talked
about how to trigger a notification from an alarm. Although the code presented in
these examples gives you a taste of what can be done, notifications and alarms both
have broad applications limited only by your imagination.

Now that you have an understanding of how to work with the Notification and
Alarm classes, we’re going to move on a discussion of graphics and animation. In
chapter 9, you’ll learn the basic methods of generating graphics in Android, how to
create simple animations, and even how to work with OpenGL to generate stunning
3D graphics.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics and animation

This chapter covers

Drawing graphics in Android

= Applying the basics of OpenGL for embedded systems (ES)
= Animating with Android

By now, you should’ve picked up on the fact that it’s much easier to develop
Android applications than it is to use other mobile application platforms. This ease
of use is especially apparent when you’re creating visually appealing Uls and meta-
phors, but there’s a limit to what you can do with typical Android UI elements
(such as those we discussed in chapter 3). In this chapter, we’ll look at how to cre-
ate graphics using Android’s Graphics API, discuss how to develop animations, and
explore Android’s support for the OpenGL standard, as well as introduce you to
Android’s new cross-platform, high-performance graphics language RenderScript.
(To see examples of what you can do with Android’s graphics platform, go to
www.omnigsoft.com/Android/ADC/readme.html.)

First, we’re going to show you how to draw simple shapes using the Android 2D
Graphics API, using Java and then XML to describe 2D shapes. Next, we’ll look at
making simple animations using Java and the Graphics API to move pixels around,
and then using XML to perform a frame-by-frame animation. After that we’ll exam-
ine Android’s support of the OpenGL ES API, make a simple shape, and then make

226

www.it-ebooks.info

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://code.google.com/p/unlocking-android/
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.it-ebooks.info/

9.1

Drawing graphics in Android 227

a more complex, rotating, three-dimensional shape. Finally we’ll introduce Render-
Script, a low-level, C-derived, native language that allows developers to take advantage
of multicore systems and graphics accelerators to make more performant, visually
intensive applications.

If you’ve ever worked with graphics in Java, you’ll likely find the Graphics API and
how graphics work in Android familiar. If you've worked with OpenGL, you’ll find
Android’s implementation of OpenGL ES reasonably straightforward. You must
remember, though, that cell phones, tablets, and other mobile devices don’t have the
graphical processing power of a desktop. Regardless of your experience, you’ll find
the Android Graphics API both powerful and rich, allowing you to accomplish even
some of the most complex graphical tasks.

NOTE You can find more information on the differences between
OpenGL and OpenGL ES to help you determine the level of effort in
porting code at the Khronos website. For example, the OpenGL ES 1.5
specification at http://mng.bz/qapb provides information on differ-
ences between OpenGL and OpenGL ES.

Drawing graphics in Android

In this section, we’ll cover Android’s graphical capabilities and show you examples of
how to make simple 2D shapes. We’ll be applying the android.graphics package (see
http://mng.bz/CIF]), which provides all the low-level classes you need to create
graphics. The graphics package supports such things as bitmaps (which hold pixels),
canvases (what your draw calls draw on), primitives (such as rectangles and text), and
paints (which you use to add color and styling). Although these aren’t the only graph-
ics packages, they’re the main ones you’ll use in most applications. Generally, you use
Java to call the Graphics API to create complex graphics.

To demonstrate the basics of drawing a shape with Java and the Graphics API, let’s
look at a simple example in the following listing, where we’ll draw a rectangle.

Listing 9.1 simpleshape.java

package com.msi.manning.chapter9.SimpleShape;
public class SimpleShape extends Activity {
@QOverride
protected void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (new SimpleView(this));

) @ Create new
private static class SimpleView extends View { ShapeDrawable
private ShapeDrawable mDrawable = < to hold Drawable

new ShapeDrawable() ;
public SimpleView(Context context) { 4—‘) Set up View
super (context) ;
setFocusable(true) ;
this.mDrawable = Create Rectangle,
new ShapeDrawable (new RectShape()) ; < assign to mDrawable
this.mDrawable.getPaint () .setColor (0XFFFF0000) ;

www.it-ebooks.info

http://mng.bz/qapb
http://code.google.com/android/reference/android/graphics/package-summary.html
http://www.it-ebooks.info/

228

9.1.1

CHAPTER 9 Graphics and animation

}
@Override
protected void onDraw(Canvas canvas) {
int x = 10;
int y = 10;
int width = 300;
int height = 50;
this.mDrawable.setBounds (x, y, x + width, y + height);
this.mDrawable.draw (canvas) ;
vy += height + 5;

}

First, we need to import the necessary packages, including graphics. Then we import
ShapeDrawable, which will support adding shapes to our drawing, and then shapes,
which supports several generic shapes (including

RectShape) that we’ll use. Next, we need to create @
and then set up a View @. After this, we create a new _
ShapeDrawable to add our Drawable to €. After we
have a ShapeDrawable, we can assign shapes to it. In
the code, we use the RectShape, but we could’ve used
OvalShape, PathShape, RectShape, RoundRectShape,
or Shape. We then use the onDraw () method to draw
the Drawable on the Canvas. Finally, we use the
Drawable’s setBounds () method to set the boundary
(a rectangle) in which we’ll draw our rectangle using
the draw() method.
When you run listing 9.1, you should see a simple
rectangle like the one shown in figure 9.1 (it’s red,

although you can’t see the color in the printed book). T

Another way to do the same thing is through)
Figure 9.1 A simple rectangle

XML. Android allows you to define shapes to draw in 4, using Android’s Graphics API

an XML resource file.

Drawing with XML
With Android, you can create simple drawings using an XML file approach. You might

want to use XML for several reasons. One basic reason is because it’s simple to do.
Also, it’s worth keeping in mind that graphics described by XML can be programmati-
cally changed later, so XML provides a simple way to do initial design that isn’t neces-
sarily static.

To create a drawing with XML, create one or more Drawable objects, which are
defined as XML files in your drawable directory, such as res/drawable. The XML to
create a simple rectangle looks like this:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing graphics in Android 229

<solid android:color="#FF0000FF"/>
</shape>

With Android XML drawable shapes, the default is a rectangle, but you can choose a
different shape by using the type tag and selecting the value oval, rectangle, line,
or arc. To use your XML shape, you need to reference it in a layout, as shown in
listing 9.2. The layout resides in res/layout.

ARGB color values

Android uses of Alpha, Red, Green, Blue (ARGB) values common in the software
industry for defining color values throughout the Android API. In RGB, colors are
defined as ints made up of four bytes: red, green, and blue, plus an alpha. Each value
can be a number from O to 255 that is converted to hexadecimal (hex). The alpha
indicates the level of transparency from O to 255.

For example, to create a transparent yellow, we might start with an alpha of 50.2%
transparency, where the hex value is 0x80: this is 128, which is 50.2% of 255. To
get yellow, we need red plus green. The number 255 in hex for red and green is FF.
No blue is needed, so its value is 00. Thus a transparent yellow is 80FFFFOO. This
may seem confusing, but numerous ARGB color charts are available that show the
hexadecimal values of a multitude of colors.

Listing 9.2 xmllayout.xml

<?xml version="1.0" encoding="utf-8"?>
<Scrollview xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<ImageView android:layout_width="fill_parent"
android:layout_height="50dip"
android:src="@drawable/simplerectangle" />
</LinearLayout>
</Scrollview>

All you need to do is create a simple Activity and place the Ul in a ContentView, as
follows:

public class XMLDraw extends Activity {
@QOverride
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.xmldrawable) ;

www.it-ebooks.info

http://www.it-ebooks.info/

230

9.12

CHAPTER 9 Graphics and animation

If you run this code, it draws a simple rectangle. You can make more complex draw-
ings or shapes by stacking or ordering XML drawables, and you can include as many
shapes as you want or need, depending on space. Let’s explore what multiple shapes
might look like next.

Exploring XML drawable shapes

One way to draw multiple shapes with XML is to create multiple XML files that repre-
sent different shapes. A simple way to do this is to change the xmldrawable.xml file
to look like the following listing, which adds a number of shapes and stacks them
vertically.

Listing 9.3 xmldrawable.xml

<?xml version="1.0" encoding="utf-8"?>
<ScrollvView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<LinearLayout
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<ImageView android:layout_width="fill_parent"
android:layout_height="50dip"
android:src="@drawable/shape_1" />
<ImageView android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:src="@drawable/shape_2" />
<ImageView
android:layout_width="fill_parent"
android:layout_height="50dip"
android:src="@drawable/shape_3" />
<ImageView
android:layout_width="fill_parent"
android:layout_height="50dip"
android:src="@drawable/shape_4" />
</LinearLayout>
</ScrollvView>

Try adding any of the shapes shown in the following code snippets into the res/draw-
able folder. You can sequentially name the files shape_n.xml, where 7 is some number.
Or you can give the files any acceptable name as long as the XML file defining the
shape is referenced in the xmldrawable.xml file.

In the following code, we’re creating a rectangle with rounded corners. We’ve
added a tag called padding, which allows us to define padding or space between the
object and other objects in the UL
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval" >

<solid android:color="#00000000"/>
<padding android:left="10sp" android:top="4sp"

www.it-ebooks.info

http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://www.manning.com/selman/
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.manning.com/AndroidinActionSecondEdition
http://www.manning.com/AndroidinActionSecondEdition
http://www.manning.com/AndroidinActionSecondEdition
http://www.it-ebooks.info/

9.2

Creating animations with Android’s Graphics API 231

android:right="10sp" android:bottom="4sp" />
<stroke android:width="1dp" android:color="#FFFFFFFF"/>
</shape>

We’re also using the stroke tag, which allows us to define the style of the line that
makes up the border of the oval, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
<solid android:color="#FFO0OOFF"/>
<stroke android:width="4dp" android:color="#FFFFFFFF"
android:dashWidth="1dp" android:dashGap="2dp" />
<padding android:left="7dp" android:top="7dp"
android:right="7dp" android:bottom="7dp" />
<corners android:radius="4dp" />
</shape>

The next snippet introduces the corners tag, which allows us to make rounded cor-
ners with the attribute android:radius:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="oval">
<gradient android:startColor="#FFFF0000" android:endColor="#80FF00FF"
android:angle="270"/>
<padding android:left="7dp" android:top="7dp"
android:right="7dp" android:bottom="7dp" />
<corners android:radius="8dp" />
</shape>

Finally, we create a shape of the type line with a size tag using the android:height

attribute, which allows us to describe the number of pixels used on the vertical to size
the line:

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
type="line" >
<solid android:color="#FFFFFFFF" />
<stroke android:width="1dp" android:color="#FFFFFFFF"
android:dashiWidth="1dp" android:dashGap="2dp" />
<padding android:left="1dp" android:top="25dp"
android:right="1dp" android:bottom="25dp" />
<size android:height="23dp" />
</shape>

If you run this code, you should see something like figure 9.2.

As you can see, Android provides the ability for developers to programmatically
draw anything they need. In the next section, we’ll look at what you can draw with
Android’s animation capabilities.

Creating animations with Android’s Graphics API

If a picture says a thousand words, then an animation must speak volumes. Android
supports multiple methods of creating animation, including through XML, as you saw

www.it-ebooks.info

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://www.it-ebooks.info/

232

9.2.1

CHAPTER 9 Graphics and animation

Figure 9.2 Various shapes drawn using XML

in chapter 3; via Android’s XML frame-by-frame animations using the Android Graph-
ics API; and via Android’s support for OpenGL ES. In this section, you’ll create a sim-
ple animation of a bouncing ball using Android’s frame-by-frame animation.

Android’s frame-by-frame animation

Android allows you to create simple animations by showing a set of images one after
another to give the illusion of movement, much like stop-motion film. Android sets
each frame image as a drawable resource; the images are then shown one after the
other in the background of a View. To use this feature, you define a set of resources in
an XML file and then call AnimationDrawable.start ().

To demonstrate this method for creating an animation, you need to download this
project from the Manning website (www.manning.com/ableson3) so you’ll have the
images. The images for this exercise are six representations of a ball bouncing. Next,
create a project called XMLanimation, and create a new directory called /anim under
the /res resources directory. Place all the images for this example in res/drawable.
Then, create an XML file called Simple_animation.xml that contains the code shown
in the following listing.

Listing 9.4 Simple_animation.xml

<?xml version="1.0" encoding="utf-8"?>
<animation-list xmlns:android="http://schemas.android.com/apk/res/android"
id="selected" android:oneshot="false">

www.it-ebooks.info

www.manning.com/ableson3
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/
http://www.it-ebooks.info/

Creating animations with Android’s Graphics API 233

<item android:drawable="@drawable/balll" android:duration="50" />
<item android:drawable="@drawable/ball2" android:duration="50" />
<item android:drawable="@drawable/ball3" android:duration="50" />
<item android:drawable="@drawable/ball4" android:duration="50" />
<item android:drawable="@drawable/ball5" android:duration="50" />
<item android:drawable="@drawable/ball6" android:duration="50" />
</animation-list>

The XML file defines the list of images to be displayed for the animation. The XML
<animation-list> tag contains the tags for two attributes: drawable, which describes
the path to the image, and duration, which describes the length of time to show the
image, in nanoseconds.

Now, edit the main.xml file to look like the following listing.

Listing 9.5 main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>
<ImageView android:id="@+id/simple_anim"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:gravity="center"
android:layout_centerHorizontal="true"
/>
<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, XMLAnimation"
/>
</LinearLayout>

All we’ve done to the file is added an ImageView tag that sets up the layout for the
ImageView. Finally, create the code to run the animation, as follows.

Listing 9.6 xmlanimation.java

public class XMLAnimation extends Activity
{
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.main) ;
ImageView img =

(ImageView) findvViewById(R.id.simple_anim) ; Bind resources
img. setBackgroundResource (R.anim.simple_animation) ; to ImageView
MyAnimationRoutine mar =

new MyAnimationRoutine() ; Call subclasses to start
MyAnimationRoutine2 mar2 = and stop animation

new MyAnimationRoutine2 () ;
Timer t = new Timer (false);

www.it-ebooks.info

http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.zeuscmd.com/tutorials/opengles/index.php
http://www.it-ebooks.info/

234

9.2.2

CHAPTER 9 Graphics and animation

t.schedule (mar, 100);

Timer t2 = new Timer (false);
t2.schedule(mar2, 5000);
) Allow wait time before
class MyAnimationRoutine extends TimerTask { < starting animation
@Override
public void run() {
ImageView img = (ImageView) findViewById(R.id.simple_anim) ;
AnimationDrawable frameAnimation = (AnimationDrawable)

img.getBackground() ;
frameAnimation.start () ;

}

class MyAnimationRoutine2 extends TimerTask {

@Override

public void run() {
ImageView img = (ImageView) findViewById(R.id.simple_anim) ;
AnimationDrawable frameAnimation = (AnimationDrawable)

img.getBackground() ;
frameAnimation.stop() ;

}

Listing 9.6 may be slightly confusing because we’ve used the TimerTask classes.
Because we can’t control the animation from within the OnCreate() method, we
need to create two such subclasses to call AnimationDrawable’s start () and stop ()
methods, respectively. The first subclass, MyAnimationRoutine, extends TimerTask (1)
and calls the frameAnimation.start () method for the AnimationDrawable bound to
the ImageView background. If you run the project now, you should see something
like figure 9.3.

As you can see, creating an Animation with XML in Android is pretty simple. You
can make animations that are reasonably complex, as you would with any stop-motion-
type movie; but to create more sophisticated animations programmatically, you need
to use Android’s 2D and 3D graphics abilities. In the next section, we’ll show you how
to do just that.

Programmatically creating an animation

In the previous section, you used Android’s frame-by-frame animation capabilities to
show a series of images in a loop that gives the impression of movement. In this sec-
tion, you’ll programmatically animate a globe so that it moves around the screen.

To create this animation, you’ll animate a graphics file (a PNG file) with a ball that
appears to be bouncing around inside the Android viewing window. You’ll create a
Thread in which the animation will run and a Handler that will help communicate
back to the program messages that reflect the changes in the state of the animation.
You’ll use this same approach in section 9.3 when we talk about OpenGL ES. You’ll
find that this approach is useful for creating most complex graphics applications and
animations.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating animations with Android’s Graphics API 235

LR
Hello World, XMLAnImation

Figure 9.3 Making a ball bounce using an Android XML animation

CREATING THE PROJECT

This example’s animation technique uses an image bound to a sprite. In general, sprite
refers to a two-dimensional image or animation that is overlaid onto a background or
more complex graphical display. For this example, you’ll move the sprite around the
screen to give the appearance of a bouncing ball. To get started, create a new project
called BouncingBall with a BounceActivity. You can copy and paste the code in the
following listing for the BounceActivity.java file.

Listing 9.7 BounceActivity.java

public class BounceActivity extends Activity { Create unique
protected static final int GUIUPDATEIDENTIFIER = 0x101; identifier
Thread myRefreshThread = null;
BounceView myBounceView = null;
Handler myGUIUpdateHandler = new Handler () { <40 Create handler
public void handleMessage (Message msg) {
switch (msg.what) {
case BounceActivity.GUIUPDATEIDENTIFIER:
myBounceView. invalidate() ;
break;
}
super.handleMessage (msg) ;

}i

@Override
public void onCreate (Bundle icicle) {

www.it-ebooks.info

http://www.it-ebooks.info/

236

CHAPTER 9 Graphics and animation

super.onCreate(icicle) ;

this.requestWindowFeature (Window.FEATURE_NO_TITLE) ;
this.myBounceView = new BounceView(this) ; < 9 Create view
this.setContentView (this.myBounceView) ;

new Thread(new RefreshRunner()).start();

}

class RefreshRunner implements Runnable {
public void run() { <@ Run animation
while (!Thread.currentThread().isInterrupted()) {

Message message = new Message();

message.what = BounceActivity.GUIUPDATEIDENTIFIER;

BounceActivity.this.myGUIUpdateHandler

.sendMessage (message) ;

try {
Thread.sleep(100) ;

} catch (InterruptedException e) {
Thread.currentThread () .interrupt () ;

}

First we import the Handler and Message classes, and then we create a unique identi-
fier to allow us to send a message back to our program to update the View in the main
thread. We need to send a message telling the main thread to update the View each
time the child thread has finished drawing the ball. Because different messages can be
thrown by the system, we need to guarantee the uniqueness of our message to our
handler by creating a unique identifier called GUTUPDATEIDENTIFIER @. Next, we cre-
ate the Handler that will process our messages to update the main vView @. A Handler
allows us to send and process Message classes and Runnable objects associated with a
thread’s message queue.

Handlers are associated with a single thread and its message queue, but their meth-
ods can be called from any thread. Thus we can use the Handler to allow objects run-
ning in another thread to communicate changes in state back to the thread that
spawned them, or vice versa.

NOTE For more information about handling long-running requests in
your applications, see http://mng.bz/K0H4.

We set up a View ©® and create the new thread. Finally, we create a RefreshRunner
inner class implementing Runnable that will run unless something interrupts the
thread, at which point a message is sent to the Handler to call BounceView’s invali-
date() method @. The invalidate() method invalidates the View and forces a
refresh.

You’ve got your new project. Now you need to create the code that will perform
the animation and create a View.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating animations with Android’s Graphics APl 237

MAKING ANIMATION HAPPEN
The example uses an image of a globe, which you can obtain from www.manning
.com/ableson3. (Alternatively, you can use any PNG file you’d like.) You’ll also have
the Android logo as a background; it’s included with the source code downloads.
Make sure to drop the images into res/drawable/.

Next, create a Java file called BounceView, using the code from the following listing.

Listing 9.8 BounceView.java

public class BounceView extends View {
protected Drawable mySprite;
protected Point mySpritePos = new Point(0,0);
protected enum HorizontalDirection {LEFT, RIGHT} ;
protected enum VerticalDirection {UP, DOWN} ;
protected HorizontalDirection myXDirection =
HorizontalDirection.RIGHT;
protected VerticalDirection myYDirection = VerticalDirection.UP;
public BounceView (Context context) {
super (context) ;
this.setBackground (this.getResources () .getDrawable (R.drawable.android)) ;
this.mySprite =
this.getResources () .getDrawable (R.drawable.world) ; <

y Get image file and

@ map to sprite

@QOverride
protected void onDraw(Canvas canvas) {

this.mySprite.setBounds (this.mySpritePos.x, Set bounds
this.mySpritePos.y, of globe

this.mySpritePos.x + 50, this.mySpritePos.y + 50);
if (mySpritePos.x >= this.getWidth() -

mySprite.getBounds () .width()) {
this.myXDirection = HorizontalDirection.LEFT; Move ball
} else if (mySpritePos.x <= 0) { left or
this.myXDirection = HorizontalDirection.RIGHT; ﬁght,up
} or down
if (mySpritePos.y >= this.getHeight() -
mySprite.getBounds () .height()) {
this.myYDirection = VerticalDirection.UP;
} else if (mySpritePos.y <= 0) {
this.myYDirection = VerticalDirection.DOWN;
}
if (this.myXDirection ==
HorizontalDirection.RIGHT) { <
this.mySpritePos.x += 10; Check if ball
} else { , is trying to
this.mySpritePos.x -= 10; leave
} screen

if (this.myYDirection ==
VerticalDirection.DOWN) { <
this.mySpritePos.y += 10;
} else {
this.mySpritePos.y -= 10;
}

this.mySprite.draw(canvas) ;

www.it-ebooks.info

www.manning.com/ableson3
www.manning.com/ableson3
http://www.it-ebooks.info/

238

9.3

CHAPTER 9 Graphics and animation

In this listing, we do all the real work of animating the image. First, we create a
Drawable to hold the globe image and a Point that we use to position and track the
globe as we animate it. Next, we create enumerations (enums) to hold directional val-
ues for horizontal and vertical directions, which we’ll use to keep track of the moving
globe. Then we map the globe to the mySprite variable and set the Android logo as
the background for the animation @.

Now that we’ve done the setup work, we create a new View and set all the boundar-
ies for the Drawable @. After that, we create simple conditional logic that detects
whether the globe is trying to leave the screen; if it starts to leave the screen, we
change its direction ©. Then we provide simple conditional logic to keep the ball
moving in the same direction if it hasn’t encountered the bounds of the View @.
Finally, we draw the globe using the draw () method.

If you compile and run the project, you should see the globe bouncing around in
front of the Android logo, as shown in figure 9.4.

Although this animation isn’t too excit-
ing, you could—with a little extra work—
use the key concepts (dealing with bound-
aries, moving drawables, detecting
changes, dealing with threads, and so on)
to create something like the Google
Lunar Lander example game or even a
simple version of Asteroids. If you want
more graphics power and want to easily

work with 3D objects to create things such
as games or sophisticated animations,

Figure 9.4 Animation of a globe bouncing in
you’ll learn how in the next section on front of the Android logo

OpenGL ES.

Introducing OpenGL for Embedded Systems

One of the most interesting features of the Android platform is its support of OpenGL
Jor Embedded Systems (OpenGL ES). OpenGL ES is the embedded systems version of the
popular OpenGL standard, which defines a cross-platform and cross-language API for
computer graphics. The OpenGL ES API doesn’t support the full OpenGL API, and
much of the OpenGL API has been stripped out to allow OpenGL ES to run on a vari-
ety of mobile phones, PDAs, video game consoles, and other embedded systems.
OpenGL ES was originally developed by the Khronos Group, an industry consortium.
You can find the most current version of the standard at www.khronos.org/opengles/.

OpenGL ES is a fantastic API for 2D and 3D graphics, especially for graphically
intensive applications such as games, graphical simulations, visualizations, and all sorts
of animations. Because Android also supports 3D hardware acceleration, developers
can make graphically intensive applications that target hardware with 3D accelerators.

Android 2.1 supports the OpenGL ES 1.0 standard, which is almost equivalent to
the OpenGL 1.3 standard. If an application can run on a computer using OpenGL 1.3,

www.it-ebooks.info

www.khronos.org/opengles/
http://www.it-ebooks.info/

9.3.1

Introducing OpenGL for Embedded Systems 239

it should be possible to run it on Android after light modification, but you need to con-
sider the hardware specifications of your Android handset. Although Android offers
support for hardware acceleration, some handsets and devices running Android have
had performance issues with OpenGL ES in the past. Before you embark on a project
using OpenGL, consider the hardware you’re targeting and do extensive testing to
make sure that you don’t overwhelm your hardware with OpenGL graphics.

Because OpenGL and OpenGL ES are such broad topics, with entire books dedi-
cated to them, we’ll cover only the basics of working with OpenGL ES and Android.
For a much deeper exploration of OpenGL ES, check out the specification and the
OpenGL ES tutorial at http://mng.bz/0tdm. After reading this section on Android
support for OpenGL ES, you should have enough information to follow a more in-
depth discussion of OpenGL ES, and you should be able to port your code from other
languages (such as the tutorial examples) into the Android framework. If you already
know OpenGL or OpenGL ES, then the OpenGL commands will be familiar; concen-
trate on the specifics of working with OpenGL on Android.

NOTE For another good OpenGL resource from Silicon Graphics see
www.glprogramming.com/red/index.html.

Creating an OpenGL context

Keeping in mind the comments we made in the introduction to this section, let’s
apply the basics of OpenGL ES to create an OpenGLContext and a Window to draw in.
Much of this task will seem overly complex compared to Android’s Graphics API. The
good news is that you have to do this setup work only once.

NOTE Much of the material covered here will require further detailed
explanation if you aren’t already experienced with OpenGL. For more
information, we suggest that you refer directly to the documentation
from OpenGL at www.opengl.org/.

You’ll use the general processes outlined in the following sections to work with

OpenGL ES in Android:

1 Create a custom View subclass.

2 Geta handle to an OpenGLContext, which provides access to Android’s OpenGL
ES functionality.

3 In the View’s onDraw () method, use the handle to the GL object and then use
its methods to perform any GL functions.

Following these basic steps, first you’ll create a class that uses Android to create a
blank surface to draw on. In section 9.3.2, you’ll use OpenGL ES commands to draw a
square and an animated cube on the surface. To start, open a new project called
OpenGLSquare and create an Activity called OpenGLSquare, as shown in the follow-
ing listing.

www.it-ebooks.info

http://mng.bz/0tdm
http://www.glprogramming.com/red/index.html
www.opengl.org/
http://www.it-ebooks.info/

240 CHAPTER 9 Graphics and animation

Listing 9.9 OpenGLSquare.java

public class SquareActivity extends Activity {
@Override
public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (new DrawingSurfaceView(this)) ;

} Handle
class DrawingSurfaceView extends SurfaceView implements creation and
SurfaceHolder.Callback { destruction
public SurfaceHolder mHolder;
public DrawingThread mThread; <@ Do drawing
public DrawingSurfaceView(Context c) {
super (c) ;
init();
} Register as
public void init () { callback

mHolder = getHolder();
mHolder.addCallback(this) ;
mHolder.setType (SurfaceHolder.SURFACE_TYPE_GPU) ;

}

public void surfaceCreated(SurfaceHolder holder) {
mThread = new DrawingThread() ;
mThread.start () ;

}

public void surfaceDestroyed (SurfaceHolder holder) {
mThread.waitForExit () ;
mThread = null;

}

public void surfaceChanged(SurfaceHolder holder,

int format, int w, int h) {
mThread.onWindowResize (w, h);

} Create thread
class DrawingThread extends Thread { to do drawing
boolean stop;

int w;
int h;
boolean changed =
DrawingThread () {
super () ;
stop = false;
w = 0;
h = 0;

true;

}
@Override
public void run() { Get EGL
EGL10 egl = (EGL10)EGLContext.getEGL() ; Instance
EGLDisplay dpy =
egl.eglGetDisplay (EGL10.EGL_DEFAULT_DISPLAY) ;

int[] version = new int[2]; Specify .
egl.eglInitialize(dpy, version); configuration
int[] configSpec = { to use

EGL10.EGL_RED_SIZE, 5,

EGL10.EGL_GREEN_SIZE, 6,

EGL10.EGL_BLUE_SIZE, 5,

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing OpenGL for Embedded Systems 241

EGL10.EGL_DEPTH_SIZE, 16,
EGL10.EGL_NONE
}i
EGLConfig[] configs = new EGLConfig[1l];
int[] num_config = new int[1];
egl.eglChooseConfig(dpy, configSpec, configs, 1,
num_config) ;
EGLConfig config = configs[0];
EGLContext context = egl.eglCreateContext (dpy,

config, EGL10.EGL_NO_CONTEXT, null); < Obtain reference to

EGLSurface surface = null; OpenGLEScmnem
GL10 gl = null;
while(!stop) { <@ Do drawing

int W, H;

boolean updated;
synchronized(this) {
updated = this.changed;
W = this.w;
H = this.h;
this.changed = false;

if (updated) {
if (surface != null) {
egl.eglMakeCurrent (dpy,
EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT) ;
egl.eglDestroySurface (dpy,
surface) ;
}
surface =
egl.eglCreateWindowSurface (dpy, config, mHolder, null);
egl.eglMakeCurrent (dpy, surface,
surface, context);
gl = (GL10) context.getGL() ;
gl.glDisable (GL10.GL_DITHER) ;
gl.glHint (GL10.GL_PERSPECTIVE_CORRECTION_HINT,
GL10.GL_FASTEST) ;
gl.glClearColor(1, 1, 1, 1);
gl.glEnable(GL10.GL_CULL_FACE) ;
gl.glShadeModel (GL10.GL_SMOOTH) ;
gl.glEnable (GL10.GL_DEPTH_TEST) ;
gl.glviewport (0, 0, W, H);
float ratio = (float) W / H;
gl.glMatrixMode (GL10.GL_PROJECTION) ;
gl.glLoadIdentity () ;
gl.glFrustumf (-ratio, ratio, -1,

}
drawFrame (gl) ;
egl.eglSwapBuffers (dpy, surface);
if (egl.eglGetError() ==
EGL11.EGL_CONTEXT_LOST) {
Context ¢ = getContext();
if (c instanceof Activity) {
((Activity)c) .finish() ;

www.it-ebooks.info

http://www.it-ebooks.info/

242

CHAPTER 9 Graphics and animation

}
}
egl.eglMakeCurrent (dpy, EGL10.EGL_NO_SURFACE,
EGL10.EGL_NO_SURFACE,

EGL10.EGL_NO_CONTEXT) ;
egl.eglDestroySurface(dpy, surface);
egl.eglDestroyContext (dpy, context) ;

egl.eglTerminate (dpy) ;
}
public void onWindowResize (int w, int h) {
synchronized(this) {
this.w = w;
this.h = h;
this.changed = true;
}
}

public void waitForExit () {
this.stop = true;
try {
join();

} catch (InterruptedException ex) {
}

}

private void drawFrame (GL10 gl) {
// do whatever drawing here.

}

}

Listing 9.9 generates an empty black screen. Everything in this listing is code you need
to draw and manage any OpenGL ES visualization. First, we import all our needed
classes. Then we implement an inner class, which will handle everything about manag-
ing a surface: creating it, changing it, or deleting it. We extend the class Surfaceview
and implement the SurfaceHolder interface, which allows us to get information back
from Android when the surface changes, such as when someone resizes it ©. With
Android, all this has to be done asynchronously; you can’t manage surfaces directly.

Next, we create a thread to do the drawing ® and create an init () method that
uses the SurfaceView class’s getHolder () method to get access to the SurfaceView
and add a callback to it via the addcallBack () method €. Now we can implement
surfaceCreated (), surfaceChanged (), and surfaceDestroyed (), which are all meth-
ods of the Callback class and are fired on the appropriate condition of change in the
Surface’s state.

When all the Callback methods are implemented, we create a thread to do the
drawing @. Before we can draw anything, though, we need to create an OpenGL ES
context @ and create a handler to the Surface @ so that we can use the OpenGL
context’s method to act on the surface via the handle @. Now we can finally draw
something, although in the drawFrame () method @ we aren’t doing anything.

If you were to run the code right now, all you’d get would be an empty window; but
what we’ve generated so far will appear in some form or another in any OpenGL ES

www.it-ebooks.info

http://www.it-ebooks.info/

9.3.2

Introducing OpenGL for Embedded Systems 243

application you make on Android. Typically, you’ll break up the code so that an
Activity class starts the code and another class implements the custom View. Yet
another class may implement your SurfaceHolder and SurfaceHolder.Callback, pro-
viding all the methods for detecting changes to the surface, as well as those for the
drawing of your graphics in a thread. Finally, you may have another class for whatever
code represents your graphics.

In the next section, we’ll look at how to draw a square on the surface and how to
create an animated cube.

Drawing a rectangle with OpenGL ES

In the next example, you’ll use OpenGL ES to create a simple drawing, a rectangle,
using OpenGL primitives, which in OpenGL ES are pixels and triangles. When you
draw the square, you’ll use a primitive

called the GL_Triangle_Strip, which

takes three vertices (the x, y, and z points 075
in an array of vertices) and draws a trian- Triangle 2
gle. The last two vertices become the first 05
two vertices for the next triangle, with the
next vertex in the array being the final
point. This process repeats for as many
vertices as there are in the array, and it 2
generates something like figure 9.5, 025 05 075

25 Triangle 1

Ny

where two triangles are drawn. 025
OpenGL ES supports a small set of '

primitives, shown in table 9.1, that allow 05 Figure 9.5 How two

you to build anything using simple geo- triangles are drawn from

metric shapes, from a rectangle to 3D 0.75 an array of vertices

models of animated characters.

Table 9.1 OpenGL ES primitives and their descriptions

Primitive flag Description

GL_LINE_LOOP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it. Then it con-
nects the start and end vertices.

GL_LINE_STRIP Draws a continuous set of lines. After the first vertex, it draws a line
between every successive vertex and the vertex before it.

GL_LINES Draws a line for every pair of vertices given.
GL_POINTS Places a point at each vertex.
GL_TRIANGLE_FAN After the first two vertices, every successive vertex uses the previous

vertex and the first vertex to draw a triangle. This flag is used to draw
cone-like shapes.

www.it-ebooks.info

http://www.it-ebooks.info/

244

CHAPTER 9 Graphics and animation

Table 9.1 OpenGL ES primitives and their descriptions (continued)

Primitive flag Description

GL_TRIANGLE_STRIP After the first two vertices, every successive vertex uses the previous
two vertices to draw the next triangle.

GL_TRIANGLES For every triplet of vertices, it draws a triangle with corners specified by
the coordinates of the vertices.

In the next listing, we use an array of vertices to define a square to paint on our sur-
face. To use the code, insert it directly into the code for listing 9.9, immediately below
the commented line // do whatever drawing here.

Listing 9.10 OpenGLSquare.java

gl.glClear (GL10.GL_COLOR_BUFFER_BIT |

GL10.GL_DEPTH_BUFFER_BIT) ;
float[] square = new float[] {

0.25f£, 0.25f, 0.0f,

0.75f, 0.25f, 0.0f,

0.25f, 0.75f, 0.0f,

0.75f, 0.75f, 0.0f }; Create float buffer
FloatBuffer squareBuff; to hold square
ByteBuffer bb =
ByteBuffer.allocateDirect (square.length*4) ;

bb.order (ByteOrder.nativeOrder ()) ;

squareBuff = bb.asFloatBuffer();

squareBuff.put (square) ;

squareBuff.position(0) ;

gl.glMatrixMode (GL10.GL_PROJECTION) ; Set up 2D
gl.glLoadIdentity () ; o.rthpgraphic
GLU.gluOrtho2D(gl, 0.0f,1.2f,0.0f,1.0f); viewing region
gl.glVertexPointer (3, GL10.GL_FLOAT, 0, squareBuff); Set current
gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ; vertices for
gl.glClear (GL10.GL_COLOR_BUFFER_BIT) ; drawing

gl.glColor4£f(0,1,1,1);

gl.glDrawArrays (GL10.GL_TRIANGLE_STRIP, 0, 4);
This code is dense with OpenGL commands. The first thing we do is clear the screen
using glClear, which you want to do before every drawing. Then we build the array to
represent the set of vertices that make up our square. As we explained, we use the
OpenGL primitive GL_TRIANGLE_STRIP to create the rectangle shown in figure 9.5,
where the first set of three vertices (points 1, 2, and 3) represent the first triangle. The
last vertex represents the third vertex (point 4) in the second triangle, which reuses
vertices 2 and 3 from the first triangle as its first two to make the triangle described by
points 2, 3, and 4. To put it more succinctly, Open GL ES takes one triangle and flips it
over on its third side (in this case, the hypotenuse). We then create a buffer to hold
that same square data @. We also tell the system that we’ll be using a GL_PROJECTION
for our matrix mode, which is a type of matrix transformation that’s applied to every
point in the matrix stack.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3.3

Introducing OpenGL for Embedded Systems 245

The next things we do are more related to setup. We load the identity matrix and
then use the gluOrtho2D(GL10 gl, float left, float right, float bottom, float
top) command to set the clipping planes that are mapped to the lower-left and upper-
right corners of the window 0.

Now we’re ready to start drawing the image. First, we use the glvertex-
Pointer (int size, int type, int stride, pointer to array) method, which indi-
cates the location of vertices for the triangle strip. The method has four attributes:
size, type, stride, and pointer. The size attribute specifies the number of coordi-
nates per vertex (for example, a 2D shape might ignore the z axis and use only two
coordinates per vertex), type defines the data type to be used (GL_BYTE, GL_SHORT,
GL_FLOAT, and so on) @, stride specifies the offset between consecutive vertices (how
many unused values exist between the end of the current vertex and the beginning of
the next), and pointer is a reference to the array. Although most drawing in OpenGL
ES is performed by using various forms of arrays such as the vertex array, they’re all
disabled by default to save system resources. To enable them, we use the OpenGL
command glEnableClientState(array type), which accepts an array type; in this
case, the type is GL_VERTEX_ARRAY.

Finally, we use the glDrawArrays function to render our arrays into the OpenGL
primitives and create our simple drawing. The glDrawArrays (mode, first, count)
function has three attributes: mode indicates which primitive to render, such as
GL_TRIANGLE_STRIP; first is the starting index into the array, which we set to 0
because we want it to render all the vertices in the array; and count specifies the num-
ber of indices to be rendered, which in this case is 4.

If you run the code, you should see a simple blue rectangle on a white surface, as
shown in figure 9.6. It isn’t particularly exciting, but you’ll need most of the code you
used for this example for any OpenGL project.

There you have it—your first graphic in OpenGL ES. Next, we’re going to do
something way more interesting. In the next example, you’ll create a 3D cube with dif-
ferent colors on each side and then rotate it in space.

Three-dimensional shapes and surfaces with OpenGL ES

In this section, you’ll use much of the code from the previous example, but you’ll
extend it to create a 3D cube that rotates. We’ll examine how to introduce perspective
to your graphics to give the illusion of depth.

Depth works in OpenGL by using a depth buffer, which contains a depth value for
every pixel, in the range 0 to 1. The value represents the perceived distance between
objects and your viewpoint; when two objects’ depth values are compared, the value
closer to 0 will appear in front on the screen. To use depth in your program, you need
to first enable the depth buffer by passing GL_DEPTH_TEST to the glEnable () method.
Next, you use glDepthFunc () to define how values are compared. For this example,
you’ll use GL_LEQUAL, defined in table 9.2, which tells the system to show objects with a
lower depth value in front of other objects.

www.it-ebooks.info

http://www.it-ebooks.info/

246

CHAPTER 9 Graphics and animation

OpenGLSquare

Figure 9.6 A rectangle drawn on the surface using OpenGL ES

When you draw a primitive, the depth test occurs. If the value passes the test, the
incoming color value replaces the current one.

The default value is GL_LESS. You want the value to pass the test if the values are
equal as well. Objects with the same z value will display, depending on the order in
which they were drawn. We pass GL_LEQUAL to the function.

Table 9.2 Flags for determining how values in the depth buffer are compared

Flag Description

GL_ALWAYS Always passes

GL_EQUAL Passes if the incoming depth value is equal to the stored value

GL_GEQUAL Passes if the incoming depth value is greater than or equal to the stored value
GL_GREATER Passes if the incoming depth value is greater than the stored value
GL_LEQUAL Passes if the incoming depth value is less than or equal to the stored value
GL_LESS Passes if the incoming depth value is less than the stored value

GL_NEVER Never passes

GL_NOTEQUAL Passes if the incoming depth value isn’t equal to the stored value

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing OpenGL for Embedded Systems 247

e
= :
=

Figure 9.7 In OpenGL, a
perspective is made up of a

Viewpoint ‘ viewpoint and near (N), far (F),
— left (L), right (R), top (T), and

B bottom (B) clipping planes.

One important part of maintaining the illusion of depth is providing perspective. In
OpenGL, a typical perspective is represented by a viewpoint with near and far clipping
planes and top, bottom, left, and right planes, where objects that are closer to the far
plane appear smaller, as in figure 9.7.

OpenGL ES provides a function called gluPerspective(GL10 gl, float fovy,
float aspect, float zNear, float zFar) with five parameters (see table 9.3) that lets
you easily create perspective.

Table 9.3 Parameters for the gluPerspective function

Parameter Description

aspect Aspect ratio that determines the field of view in the x direction. The aspect ratio is the
ratio of x (width) to y (height).

fovy Field of view angle in the y direction, in degrees.

gl GL10 interface.

zFar Distance from the viewer to the far clipping plane. This value is always positive.

zNear Distance from the viewer to the near clipping plane. This value is always positive.

To demonstrate depth and perspective, you’re going to create a project called
OpenGLCube. Copy and paste the code from listing 9.11 into OpenGLCubeActivity.

Now add two new variables to your code, shown in the following listing, right at the
beginning of the DrawSurfaceView inner class.

Listing 9.11 OpenGLCubeActivity.java

class DrawingSurfaceView extends SurfaceView implements
SurfaceHolder.Callback {

public SurfaceHolder mHolder;

float xrot = 0.0f;

float yrot = 0.0f;

We’ll use the xrot and yrot variables later in the code to govern the rotation of the
cube.

Next, just before the method, add a new method called makeFloatBuffer(), as in
the following listing.

www.it-ebooks.info

http://www.it-ebooks.info/

248

CHAPTER 9 Graphics and animation

Listing 9.12 OpenGLCubeActivity.java

protected FloatBuffer makeFloatBuffer (float[] arr) {
ByteBuffer bb = ByteBuffer.allocateDirect (arr.length*4) ;
bb.order (ByteOrder.nativeOrder ()) ;
FloatBuffer fb = bb.asFloatBuffer();
fb.put (arr) ;
fb.position(0) ;
return fb;

}

This float buffer is the same as the one in listing 9.11, but we’ve abstracted it from the
drawFrame () method so we can focus on the code for rendering and animating the cube.

Next, copy and paste the code from the following listing into the drawFrame ()
method. Note thatyou’ll also need to update your drawFrame () callin the following way:

drawFrame (gl, w, h);

Listing 9.13 OpenGLCubeActivity.java

private void drawFrame (GL10 gl, int wl, int hl) {
float mycube[] = {

// FRONT
-0.5f, -0.5f, 0.5f,
0.5f, -0.5f, 0.5f,
-0.5f, 0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
// BACK
-0.5f, -0.5f, -0.5f,
-0.5f, 0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
// LEFT
-0.5f, -0.5f, O0.5f,
-0.5f, 0.5f, 0.5f,
-0.5f£, -0.5f, -0.5f,
-0.5f£, 0.5f, -0.5f,
// RIGHT
0.5f, -0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
0.5f, -0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
// TOP
-0.5f, 0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
-0.5f£, 0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
// BOTTOM
-0.5f, -0.5f, 0.5f,
-0.5f, -0.5f, -0.5f,
0.5f, -0.5f, 0.5f,
0.5f, -0.5f, -0.5f,

1; Create float
FloatBuffer cubeBuff; buﬁ?rhr
cubeBuff = makeFloatBuffer (mycube) ; . vertices

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing OpenGL for Embedded Systems 249

gl.glEnable (GL10.GL_DEPTH_TEST) ; Enable
gl.glEnable (GL10.GL_CULL_FACE) ; depth
gl.glDepthFunc (GL10.GL_LEQUAL) ; test
gl.glClearDepthf (1.0£f) ;

gl.glClear (GL10.GL_COLOR_BUFFER_BIT |

GL10.GL_DEPTH_BUFFER_BIT) ;
gl.glMatrixMode (GL10.GL_PROJECTION) ;
gl.glLoadIdentity () ;
gl.glviewport(0,0,w,h);
GLU.gluPerspective(gl,

((float)w)/h, 1£f, 100f);
gl.glMatrixMode (GL10
gl.glLoadIdentity () ;
GLU.gluLookAt (gl, O,
gl.glShadeModel (GL10.GL_SMOOTH) ;
gl.glVertexPointer (3, GL10.GL_FLOAT, 0, cubeBuff);
gl.glEnableClientState (GL10.GL_VERTEX_ ARRAY) ;
gl.glRotatef (xrot, 1, 0, 0);
gl.glRotatef (yrot, 0, 1, 0);
gl.glColor4f(1.0£, 0, 0, 1.0f);
gl.glDrawArrays (GL10.GL_TRIANGLE_STRIP,
gl.glDrawArrays (GL10.GL_TRIANGLE_STRIP,
gl.glColor4f (0, 1.0£f, 0, 1.0f);

Define

45.0f, .
perspective

.GL_MODELVIEW) ;

0, 3,0, 0,0, 0,1, 0);

Draw six sides
in three colors

gl.

gl

gl.
gl.

gl

glDrawArrays (GL10.
.glDrawArrays (GL10.
glColor4f (0, 0, 1.
glDrawArrays (GL10.
.glDrawArrays (GL10.

GL_TRIANGLE_STRIP,
GL_TRIANGLE_STRIP,
0f, 1.0£f);

GL_TRIANGLE_STRIP,
GL_TRIANGLE_STRIP,

xrot += 1.0f;
yrot += 0.5f;

Increment x
and y rotations

This listing doesn’t contain much new code. First, we describe the vertices for a cube,
which is built the same way as the rectangle in listing 9.10 (using triangles). Next, we
set up the float buffer for our vertices @ and enable the depth function @ and per-
spective function O o provide a sense of depth. Note that with gluPerspective we
passed 45.0f (45 degrees) to give a more natural viewpoint.

Next, we use the GLU.gluLookAt (GL10 gl, float eyeX, float eyeY, float eyeZ,
float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
function to move the position of the View without having to modify the projection
matrix directly. When we’ve established the View position, we turn on smooth shading
for the model and rotate the cube around the x and y axes. Then we draw the cube
sides and increment the rotation so that on the next iteration of draw(), the cube is
drawn at a slightly different angle @. If you run the code, you should see a rotating 3D
cube like the one shown in figure 9.8.

NOTE You can try experimenting with the fovy value to see how chang-
ing the angle affects the display of the cube.

You’ve done a lot in this section, starting with creating an OpenGL ES context in
which you can develop your OpenGL ES applications. Next, you learned how to build
shapes using OpenGL ES by “triangulation” (creating multiple triangles). Then, you

www.it-ebooks.info

http://www.it-ebooks.info/

250

9.4

CHAPTER 9 Graphics and animation

! OpenGLCube

Figure 9.8 A 3D cube rotating in space

learned how to realize this in three dimensions while incorporating it into a simple
example. You accomplished much of this without diving deep into OpenGL ES, which
is definitely nontrivial, but the good news is that if you're serious about doing 3D
graphics on Android, it’s definitely possible.

With the addition of RenderScript, introduced in the next section of this chapter,
developers can write code that is designed to use native code on specific hardware,
allowing for much better performance of applications that are heavily dependent on
processing power (such as Open GL applications). Because Android provides excel-
lent support for OpenGL ES, you can find plenty of tutorials and references on the
internet or at your local bookstore.

Now, let’s look at how to use RenderScript to develop complex, rich, and high-per-
formance graphical application that let you take advantage of the latest mobile hard-
ware platforms that run multicore processors with dedicated graphics accelerators.

Introducing RenderScript for Android

RenderScript is a new API in Android that is focused on helping developers who need
extremely high performance for graphics and computationally intensive operations.
RenderScript isn’t completely new to Android 3.0+; it’s been part of earlier versions in
2.0 but not publicly available. As of Android 3, RenderScript has come to the fore as
the tool of choice for graphically intensive games and applications such as live wallpa-
pers, the new video carousel, and Google’s e-book reader on the Xoom. In this sec-
tion, we’ll look at how RenderScript fits into the Android architecture, how to build a
RenderScript application, and when and where to use RenderScript.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4.1

Introducing RenderScript for Android 251

RenderScript in many ways is a new paradigm for the Android platform. Although
Android uses Java syntax and a virtual machine for developing applications, Render-
Script is based on C99, a modern dialect of the C language. Furthermore, Render-
Script is compiled down to native code on each device at runtime but is controlled by
higher-level APIs running in the Android VM. This allows Android via RenderScript to
provide developers a way to develop optimized high-performance code that is cross
platform. This may seem extremely attractive, and many developers may be keen to
write most of their applications in RenderScript, but RenderScript doesn’t replace or
subsume development of Android apps in Java. There are both pros and cons to work-
ing with RenderScript.

RenderScript advantages and disadvantages

As already discussed, the first advantage of using RenderScript is that it’s a lower-level
language offering higher performance. Second, it allows Android apps to more easily
use multicore CPUs as well as graphical processing units (GPUs). RenderScript, by
design, at runtime selects the best-performance approach to running its code. This
includes running the code across multiple CPUs; running some simpler tasks on GPUs;
or, in some cases where no special hardware is present, running on just one CPU.

RenderScript offers fantastic performance and cross-platform compatibility with-
out the need to target specific devices or create your own complex architectures for
cross-platform compatibility. RenderScript is best for two types of applications and
only has APIs to support those two types of applications: graphical applications and
computationally intensive applications. Many applications that use Android’s imple-
mentation of OpenGL are good candidates to target for RenderScript.

The first major drawback of RenderScript is that it uses C99. Although there is
nothing wrong with C99, it breaks the Java style paradigm that most Android develop-
ers are comfortable with. To be truly comfortable developing RenderScript applica-
tions, you should also be comfortable with C, a lower-level language when compared
to Java.

Second, and perhaps most important, RenderScript applications are inherently
more complex and difficult to develop than regular Android applications. In part this
is because you’re developing in two different languages, Java and C; but in addition,
RenderScript by its nature is very hard to debug—at times frustratingly so, unless you
have a strong understanding of both your application and the hardware it’s running
on. For example, if you have a multicore platform with a GPU, your code may be run
on either the CPUs or the GPU, reducing your ability to spot issues. Also be aware that
most RenderScript applications won’t run in the emulator, forcing you to debug on
hardware as well.

Finally, you’ll find that you have a lot more bugs, because RenderScript is in C,
the current Android Development Tools (ADT) application for Eclipses doesn’t sup-
port the various extensions for it, and RenderScript applications tend to be more
complex than regular Android applications. But you shouldn’t avoid developing in

www.it-ebooks.info

http://www.it-ebooks.info/

252

9.4.2

CHAPTER 9 Graphics and animation

RenderScript, nor should you overuse it as opposed to the standard Android APIs and
Java syntax. Rather, you should look to use RenderScript in applications that are
graphically intensive or computationally intensive.

Let’s try building a RenderScript application.

Building a RenderScript application

Building a RenderScript application is a bit more complicated than developing a nor-
mal Android application. You lay out your application in a similar manner, but keep in
mind that you’ll be also developing RenderScript files, with the .rs file extension,
alongside your .java files. Your normal .java application files then call the Render-
Script code as needed; when you build your project, you’ll see the .rs files built into
bytecode with the same name as the RenderScript file but with the .bc extension
under the raw folder. For example, if you had a RenderScript file called Helloworld.rs
under src, you’d see a Helloworld.bc file when your application was built.

NOTE We won’t be covering the C or C99 language; we assume you know
C. If you don’t know C, you’ll need to reference another resource such as
Manning’s C# in Depth, 2nd edition, by John Skeet.

For your RenderScript application, you're going to use the ADT’s builtin Android
project wizard to create a RenderScript project from built-in sample applications. To
do so, first create a new project using the ADT, but instead of selecting Create New
Project in Workspace, select Create Project from Existing Sample, as shown in
figure 9.9. Make sure you’ve selected API level of 11 or Android 3.0, and select the
sample RenderScript > Fountain from the Samples drop-down list. Click OK.

Eclipse now builds the RenderScript application. Expand the application in the
Eclipse Package Explorer, as shown in figure 9.10. There are several things to note
here before we go over each file. First, note the RenderScript file with the extension
.xs. This is a file written in C. This file does all the real graphics work, and the other
java files provide the higher-level calls to APIs to set up a View, manage inputs, and the
like. This file is compiled when the project is built into bytecode, which you can see
when you expand the raw directory.

Project name: Fountain

Contents
Create new project in workspace
Create project from existing source

Use default location

@) Create project from existing sample

Samples: | RenderScript > Fountain >

Figure 9.9 Using the
ADT to build a sample

Build Target . e
RenderScript application

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RenderScript for Android 253

4 = Fountain
4 §8 src
4 [# com.example.android.rs.fountain
» 4J] Fountainjava
> 1] FountainRS,java
» 1)) FountainView.java
.= fountain.rs
4 B gen [Generated Java Files]
> fH com.example.android.rs.fountain
> =0 Android 3.1

E;‘.— assets

4 32 res
> (= drawable
(= drawable-hdpi
(= drawable-Idpi

(= drawable-mdpi

mn

= layout
4 =y) Figure 9.10 The Fountain
I8 fountainbe project in the Eclipse Package
(= values Explorer showing a typical
Al AndroidManifestxml RenderScript application
[Z] default.properties structure

Now that we’ve touched on the file layout, let’s look at the source code. The first file,
Fountain java, is trivial: it’s the basic Android Activity class. As you can see in the fol-
lowing listing, it has an onCreate () method that sets the contentView to an instance
of the FountainView class.

Listing 9.14 Basic Android Activity class

public class Fountain extends Activity {

private static final String LOG_TAG = "1libRS_jni";
private static final boolean DEBUG = false;
private static final boolean LOG_ENABLED = DEBUG ? Config.LOGD
Config.LOGV;
private FountainView mView;
public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;
mView = new FountainView(this);
setContentView (mView) ;

}

protected void onResume () {
Log.e("rs", "onResume");
super.onResume () ;
mView.resume () ;

}

protected void onPause () {
Log.e("rs", "onPause");
super.onPause () ;
mView.pause() ;

www.it-ebooks.info

http://www.it-ebooks.info/

254

CHAPTER 9 Graphics and animation

static void log(String message) {
if (LOG_ENABLED) {
Log.v (LOG_TAG, message);

}

The FountainView.java file introduces a new type of Android View, the RSSurface-
View, as you can see in the next listing. This class represents the SurfaceView on
which your RenderScript code will draw its graphics.

Listing 9.15 RSSurfaceView

public class FountainView extends RSSurfaceView {

public FountainView (Context context) {
super (context) ;
}

private RenderScriptGL mRS;
private FountainRS mRender;
public void surfaceChanged(SurfaceHolder holder, int format, int w,

int h) {
super.surfaceChanged (holder, format, w, h);

if (mRS == null) {
RenderScriptGL.SurfaceConfig sc = new
RenderScriptGL.SurfaceConfig() ; o Create new
mRS = createRenderScriptGL(sc); ‘ RenderScript
mRS.setSurface (holder, w, h);
mRender = new FountainRS(); Create the
mRender.init (mRS, getResources(), w, h); FountainRS$ class
}
}
protected void onDetachedFromWindow () {
if (mRS != null) {
mRS = null;
destroyRenderScriptGL() ;
}
}
public boolean onTouchEvent (MotionEvent ev) < Handle
{) : touch events
int act = ev.getActionMasked() ;
if (act == ev.ACTION_UP) {

mRender .newTouchPosition (0, 0, 0, ev.getPointerId(0));
return false;

} else if (act == MotionEvent.ACTION_POINTER_UP) {
int pointerIndex = ev.getActionIndex() ;
int pointerId = ev.getPointerId(pointerIndex) ;
mRender .newTouchPosition(0, 0, 0, pointerId);

}

int count = ev.getHistorySize();

int pcount = ev.getPointerCount() ;

for (int p=0; p < pcount; p++) {

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RenderScript for Android 255

int id = ev.getPointerId(p);

mRender .newTouchPosition (ev.getX(p),
ev.getY(p),
ev.getPressure(p),
id) ;

for (int 1=0; 1 < count; i++) {
mRender .newTouchPosition (ev.getHistoricalX(p, 1),
ev.getHistoricalY(p, i),
ev.getHistoricalPressure(p, i),
id) ;

}

return true;

}

If you look at the listing, you’ll notice in the surfacedChanged () method a new Ren-
derScript class as well as a FountainRs class @. The code

RenderScriptGL.SurfaceConfig sc = new RenderScriptGL.SurfaceConfig() ;
mRS = createRenderScriptGL(sc) ;

is important in that it not only creates a RenderScriptGL object that contains the sur-
face our graphics go into, but the SurfaceConfig class allows us to set all the major
properties for the drawing surface (such as depth). The FountainRS class is important
in that it acts as a renderer for the Fountainview @ SurfaceView as well as controls
the actual RenderScript. One of the other important things this FountainView class
does is handle touch events with the onTouchEvent () method and pass these events to
the RenderScript €.
The next class we’ll look at is FountainRS, shown in the following listing.

Listing 9.16 FountainRS class

public class FountainRS {
public static final int PART_COUNT = 50000;

public FountainRS() {
}
private Resources mRes;
private RenderScriptGL mRS;
private ScriptC_fountain mScript;
public void init (RenderScriptGL rs, Resources res,
int width, int height) {
mRS = rs;
mRes = res;
ProgramFragmentFixedFunction.Builder pfb = new
ProgramFragmentFixedFunction.Builder (rs) ;
pfb.setVaryingColor (true) ;
rs.bindProgramFragment (pfb.create()) ;
ScriptField_Point points = 4? Bind ScriptC_fountain class
new ScriptField_Point (mRS, PART_COUNT) ;
Mesh.AllocationBuilder smb = new Mesh.AllocationBuilder (mRS) ;
smb.addVertexAllocation (points.getAllocation()) ;

www.it-ebooks.info

http://www.it-ebooks.info/

256

CHAPTER 9 Graphics and animation

smb.addIndexSetType (Mesh.Primitive.POINT) ;
Mesh sm = smb.create();

mScript = new ScriptC_fountain(mRS, mRes, R.raw.fountain);
mScript.set_partMesh (sm) ;
mScript.bind_point (points) ;
mRS.bindRootScript (mScript) ;
}

boolean holdingColor[] = new boolean[10];
public void newTouchPosition(float x, float vy,
float pressure, int id) {
if (id >= holdingColor.length) {

return;
}
int rate = (int) (pressure * pressure * 500.f);
if (rate > 500) {

rate = 500;

}

if (rate > 0) {
mScript.invoke_addParticles(rate, x, y, id, 'holdingColor([id]);
holdingColor[id] = true;

} else {
holdingColor[id] = false;

}

When developing a graphical RenderScript application, you’ll have a class called
ClassNameRS that acts as a communication channel between your RenderScript file
and the rest of the Android application. (RenderScript compute projects don’t have a
file like this.) The FountainRS class interacts with the RenderScript code in foun-
tain.rs via interfaces exposed by ScriptC_fountain, a class generated by the ADT
when you build the project and found in the gen folder. The ScriptC_fountain class
binds to the RenderScript bytecode so the RenderScriptGL context knows which Ren-
derScript to bind to @. This may sound somewhat complicated, and it is, but the ADT
or Android tooling manages most of this for you.

Finally, let’s look at the C code in fountain.rs, shown in listing 9.17. The first thing
you’ll notice is how simple it is. The code draws a simple cascade of points whose cen-
ter is the point touched on the screen. It’s important to note that all the methods to
capture the information about where the user presses are captured, handled, and
passed down to this class via the higher-level java classes already discussed, and that
fountain.rs is solely focused on drawing.

Listing 9.17 C code in fountain.rs

#pragma version(1l)
#pragma rs java_package_name (com.example.android.rs.fountain)
#pragma stateFragment (parent)

#include "rs_graphics.rsh" Requwed pragma

directives class
static int newPart = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing RenderScript for Android 257

rs_mesh partMesh;

typedef struct __attribute__ ((packed, aligned(4))) Point {
float2 delta;
float2 position;
uchar4 color;

} Point_t;

Point_t *point;

int root () {
float dt = min(rsGetDt(), 0.1f);
rsgClearColor(0.£f, 0.£f, 0.£, 1.f);
const float height = rsgGetHeight () ;
const int size = rsAllocationGetDimX (rsGetAllocation (point)) ;
float dy2 = dt * (10.f);
Point_t *p = point;
for (int ct=0; ct < size; ct++) {
p->delta.y += dy2;
p->position += p->delta;
if ((p->position.y > height) && (p->delta.y > 0)) {
p->delta.y *= -0.3f;
}
pt++;

}

rsgDrawMesh (partMesh) ;
return 1;

}

static float4 partColor[10];
void addParticles(int rate, float x, float y, int index, bool newColor)
{
if (newColor) {
partColor[index] .x = rsRand(0.5f, 1.0f);
partColor([index].y = rsRand(1.0f);
partColor[index] .z = rsRand(1.0f);
}
float rMax = ((float)rate) * 0.02f;
int size = rsAllocationGetDimX(rsGetAllocation (point)) ;
uchar4d ¢ = rsPackColorTo8888 (partColor[index]) ;

Point_t * np = &point[newPart];
float2 p = {x, v};
while (rate--) {
float angle = rsRand(3.14f * 2.f);
float len = rsRand(rMax) ;
np->delta.x = len * sin(angle) ;
np->delta.y = len * cos(angle);
np->position = p;
np->color = c;
newbPart++;
np++;
if (newPart >= size) {
newPart = 0;
np = &point[newPart];

www.it-ebooks.info

http://www.it-ebooks.info/

258

9.5

CHAPTER 9 Graphics and animation

RsFountain

Figure 9.11 Example of the Fountain project running on the Xoom

The first thing to note is the inclusion of two pragmas that must be part of any
RenderScript file, which provide the version and package name. Also note the use of
two functions familiar to C developers, init () and root (). The init () function pro-
vides a mechanism for setting up variables or constants before anything else is exe-
cuted in the class. The root () method is of course the main root function of the class;
for graphics applications, RenderScript will expect to render the frame to be dis-
played in this method. Other than that, the C code is relatively straightforward.

If you run this application and then touch the screen, you should see a burst of
color and cascading dots that fall to the bottom of the screen as shown in figure 9.11.
Although you could have done the same thing with Android’s 2-D API, and it would
have been much easier to code, the RenderScript application is extremely fast with no
discernable lag on a Motorola Xoom.

We can’t go into RenderScript in depth in this book—it warrants its own chapter—
but we’ve touched on the main points. You now know the basics of how to build your
own RenderScript graphical applications.

Summary

In this chapter, we’ve lightly touched on a number of topics related to Android’s pow-
erful graphics features. First, we looked at how both Java and XML can be used with
the Android Graphics API to describe simple shapes. Next, we examined how to use
Android’s frame-by-frame XML to create an animation. You also learned how to use
more standard pixel manipulation to provide the illusion of movement through Java

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 259

and the Graphics API. Finally, we delved into Android’s support of OpenGL ES. We
looked at how to create an OpenGL ES context, and then we built a shape in that con-
text as well as a 3D animated cube. Finally, we took a high-level look at a RenderScript
application and discussed how the RenderScript system works inside Android.

Graphics and visualizations are large and complex topics that can easily fill a book.
But because Android uses open and well-defined standards and supports an excellent
API for graphics, it should be easy for you to use Android’s documentation, API, and
other resources, such as Manning’s Java 3D Programming by Daniel Selman, to develop
anything from a new drawing program to complex games.

In the next chapter, we’ll move from graphics to working with multimedia. We’ll
explore working with audio and video to lay the groundwork for making rich multi-
media applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Multimedia

This chapter covers

Playing audio and video
Controlling the camera
Recording audio
Recording video

Today, people use cell phones for almost everything but phone calls, from instant
messaging to surfing the web to listening to music and even to watching live stream-
ing TV. Nowadays, a cell phone needs to support multimedia to be considered a
usable device. In this chapter, we’re going to look at how you can use Android to
play audio files, watch video, take pictures, and even record sound and video.

As of Android 2.0, Google decided to phase out the OpenCORE system for
Android’s multimedia needs and move to a new multimedia system called Stage-
fright. As of Android 2.3, Stagefright has subsumed OpenCORE and become its
replacement. That being said, most of Android’s interaction with media is
abstracted through the MediaPlayer API, hiding the specific implementation of
Stagefright, versus OpenCORE in older versions of Android. What this means to you
is that by considering which core media formats you wish to support and by carefully
developing your application, it’s possible to create applications that will work on
Android 2.3 and up as well as older versions of Android that use OpenCORE.

260

www.it-ebooks.info

http://www.it-ebooks.info/

10.1

10.1.1

Introduction to multimedia and Stagefright 261

In this chapter, we’ll be looking at Stagefright’s multimedia architecture and fea-
tures. Moving on from architecture, we’ll explore how to use Stagefright via Android’s
MediaPlayer APIL

Introduction to multimedia and Stagefright

Because the foundation of Android’s multimedia platform is Google’s new media plat-
form Stagefright, we’re going to review Stagefright’s architecture and services. Stage-
fright, as of now, supports the following core media files, services, and features:

= Interfaces for third-party and hardware media codecs, input and output
devices, and content policies

= Media playback, streaming, downloading, and progressive playback, including
third-Generation Partnership Program (3GPP), Moving Picture Experts Group 4
(MPEG-4), Advanced Audio Coding (AAC), and Moving Picture Experts Group
(MPEG) Audio Layer 3 (MP3) containers

= Network protocols including RTSP (TRP, SDP), HTTP progressive streaming, and
HTTP live streaming.

= Video and image encoders and decoders, including MPEG-4, International Tele-
communication Union H.263 video standard (H.263), Advanced Video Coding
(AVC H.264), and the Joint Photographic Experts Group (JPEG)

= Speech codecs, including Adaptive Multi-Rate audio codecs AMR-NB and
AMR-WB

= Audio codecs, including MP3, AAC, and AAC+, and more

= Media recording, including 3GPP, VP8, MPEG-4, and JPEG

= Video telephony based on the 3GPP video conferencing standard 324-M

Stagefright provides all this functionality in a well-laid-out set of services, shown in
figure 10.1.

NOTE Different API versions, such as 3.0 on the Xoom, may not support
all the listed media formats. To check which formats are supported, see
http://developer.android.com/guide/appendix/media-formats.html.

Stagefright overview

Stagefright has a much simpler internal implementation than OpenCORE. In figure
10.1, you can see a rough outline of how the MediaPlayer works with Stagefright inter-
nally. Essentially Stagefright works as follows:

= MediaExtractor retrieves track data and corresponding metadata from the file
system or HTTP stream.

= AudioPlayer is responsible for playing audio as well as managing timing for
A/V synchronization for audio.

= Depending on which codec is picked, a local or remote render is created for
video play. The system clock is used as the time base for video-only playback.

www.it-ebooks.info

http://developer.android.com/guide/appendix/media-formats.html
http://www.it-ebooks.info/

262

CHAPTER 10 Multimedia

= AwesomePlayer works as the engine to coordinate the preceding classes. It’s

integrated via StagefrightPlayer in the Android MediaPlayerService.
= OpenCORE is still partially present for the Ocean Matrix (OMX) video standard

for decoding. There are two OMX plugins currently, although this may change

in future versions of Android.

LIbStageFright

AMRWriter

StagefrightRecorder

MediaRecorderClient

MediaPlayerService
/
\

™~
MPEG4Writer

|

AwesomePlayer

StagefrightPlayer

AudioOutput

/

AudioPlayer

MediaPlayerService

DataSource

\ O/\/IXCodec

MediaExtractor

AudioFlinger
¥

/

|
i
'
'
|
i
|
'
1
'
i
'
1
'
1

'
i
'
1
'
1
'
i
'
1
'

AudioFlinger
MPEG4Extractor
SurfaceFlinger l
. MPEG4Source y
ISurface v colorconversion
e M4vH263Decoder
| S
™ SoftwareRenderer /
~_
AwesomeRenderer
omx
OMXRenderer
- Y
OMXClient
//’ |
L&
owx L
OMXMNodelnstance opencore

PVPlayer

,v| pv_omxcore ||

OMXMaster — |

OMXPVCodecsPlugin

| —

Figure 10.1 Stagefright services

www.it-ebooks.info

http://www.it-ebooks.info/

10.2

Playing audio 263

In the next section, we’ll dive in and use the Android API, and thus Stagefright, to play
audio files.

Playing audio

Probably the most basic need for multimedia on a cell phone is the ability to play
audio files, whether new ringtones, MP3s, or quick audio notes. Android’s Media-
Player is easy to use. At a high level, all you need to do to play an MP3 file is follow
these steps:

1 Put the MP3 in the res/raw directory in a project (note that you can also use a
URI to access files on the network or via the internet).

2 Create a new instance of the MediaPlayer, and reference the MP3 by calling
MediaPlayer.create().

3 C(Call the MediaPlayer methods prepare() and start().

Let’s work through an example to demonstrate how simple this task is. First, create a
new project called MediaPlayerExample, with an Activity called MediaPlayer-
Activity. Now, create a new folder under res/ called raw; you’ll store your MP3s in
this folder. For this example, we’ll use a ringtone for the game Halo 3, which you can
download from the Android in Action Google code site at http://code.google.com/
p/android-in-action/, or you can use your own MP3. Download the Halo 3 theme
song and any other MP3s you fancy, and put them in the raw directory. Next, create a
simple Button for the music player, as shown in the following listing.

Listing 10.1 main.xml for MediaPlayer example

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Simple Media Player"
/>

<Button android:id="@+id/playsong"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Halo 3 Theme Song"
/>

</LinearLayout>

Next, fill out the MediaPlayerActivity class, as shown in the following listing.

www.it-ebooks.info

http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en
http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en
http://code.google.com/p/android-in-action/
http://code.google.com/p/android-in-action/
http://www.it-ebooks.info/

264

10.3

CHAPTER 10 Multimedia

Listing 10.2 MediaPlayerActivity.java

public class MediaPlayerActivity extends Activity {

public void onCreate(Bundle icicle) { Set view and
super.onCreate(icicle) ; button to play MP3
setContentView (R.layout.main) ;
Button mybutton = (Button) findViewById(R.id.playsong) ;
mybutton.setOnClickListener (new Button.OnClickListener () { <

public void onClick(View v) {
MediaPlayer mp =
MediaPlayer.create (MediaPlayerActivity.this, 6 Get context
R.raw.halotheme) ; < and play MP3
mp.start () ;
mp.setOnCompletionListener (new OnCompletionListener () {
public void onCompletion (MediaPlayer arg0) {
}

As you can see, playing back an MP3 is easy. In listing 10.2, all we do is use the View
that we created in listing 10.1 and map the resource ID, playsong, to mybutton, which
we then bind to setOnClickListener () @. Inside the listener, we create the Media-
Player instance @ using the create(Context context, int resourceid) method,
which takes our context and a resource ID for the MP3. Finally, we set the setOn-
CompletionListener, which will perform some task on completion. For the moment,
we do nothing, but you may want to change a button’s state or provide a notification
to a user that the song is over, or ask if the user would like to play another song. If you
want to do any of these things, you’ll use this method.

If you compile the application and run it, you should see something like
figure 10.2. Click the button, and you should hear the Halo 3 song played back on
your device’s speakers.

Now that we’ve looked at how to play an audio file, let’s see how you can play a
video file.

Playing video

Playing a video is slightly more complicated than playing audio with the MediaPlayer
API, in part because you have to provide a view surface for your video to play on.
Android has a VideoView widget that handles that task for you; you can use it in any
layout manager. Android also provides a number of display options, including scaling
and tinting. Let’s get started with playing video by creating a new project called Sim-
ple Video Player. Next, create a layout, as shown in the following listing.

www.it-ebooks.info

http://groups.google.com/group/android-developers/files
http://www.it-ebooks.info/

Playing video 265

MediaPlayerExample

Halo 3 Theme Song

Figure 10.2 Media player example

NOTE Currently the emulator has some issues playing video content on
certain computers and operating systems. Don’t be surprised if your
audio or video playback is choppy.

Listing 10.3 main.xml Ul for Simple Video Player

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent" Add
> VideoView
<VideoView android:id="@+id/video" < widget

android:layout_width="320px"

android:layout_height="240px"

/>/
</LinearLayout>
All we’ve done in this listing is add the Videoview widget @. It provides a UI widget
with Stop, Play, Advance, Rewind, and other buttons, making it unnecessary to add
your own. Next, you need to write a class to play the video, as shown in the following
listing.

www.it-ebooks.info

http://www.it-ebooks.info/

266

10.4

CHAPTER 10 Multimedia

Listing 10.4 SimpleVideo.java

public class SimpleVideo extends Activity {

private VideoView myVideo;

private MediaController mc;

public void onCreate (Bundle icicle) { Create
super.onCreate (icicle) ; ﬁ’ translucent
getWindow () .setFormat (PixelFormat.TRANSLUCENT) ; < window
setContentView (R.layout.main) ;

myVideo = (VideoView) findviewById(R.id.video) ;
File pathToTest= new File
(Environment .getExternalFileDirectory (), "test.mp4") ;

mc = new MediaController (this);
mc.setMediaPlayer (myVideo) ;
myVideo.setMediaController (mc) ;
myVideo.requestFocus () ;

}

In this listing, we first create a translucent window, which is necessary for the Surface-
view @. Next, we reference the VideoView as a container for playing the video and
use its setVideoPath() method to have it look at an SD card (using the approved
Environment API for this purpose) for our test MP4. Finally, we set up the Media-
Controller and use the setMediaController () method to perform a callback to the
VideoView to notify it when our video is finished playing.

Before you can run this application, you’ll need to either use the ADB to push a
video onto your Android 3.0 device or create one that you’ll reference in the set-
VideoPath() method. You can download this project from the book’s source code
repository, which includes a number of short, license-free videos you can use for test-
ing. When the videos are on your device’s SD card, run the application and touch the
screen where the movie will play in the upper-left corner. Doing so will cause the con-
trols to appear. Push Play, and you should see something like figure 10.3.

As you can see, the VideoView and MediaPlayer classes simplify working with video
files. Something you’ll need to pay attention to when working with video files is that
the emulator and physical devices will react differently with very large media files.

Now that you’ve seen how simple it is to play media using Android’s MediaPlayer
API, let’s look at how you can use a phone’s built-in camera or microphone to capture
images or audio.

Capturing media
Using your cell phone to take pictures, record memos, film short videos, and so on,
are features that are expected of any such device. In this section, we’ll look at how to
capture media from the microphone and camera, and also how to write these files to
the SD card.

To get started, let’s examine how to use the Android Camera class to capture
images and save them to a file.

www.it-ebooks.info

http://www.it-ebooks.info/

104.1

Capturing media 267

SimpleVideo

Figure 10.3 Video and associated player controls in VideoView

Understanding the camera

An important feature of modern cell phones is their ability to take pictures or video
using a built-in camera. Some phones even support using the camera’s microphone to
capture audio. Android, of course, supports all three features and provides a variety of
ways to interact with the camera. In this section, we’ll look at how to interact with the
camera and take photographs.

You’ll be creating a new project called SimpleCamera to demonstrate how to con-
nect to a phone’s camera to capture images. For this project, you’ll use the Camera
class (http://mng.bz/E244) to tie the emulator’s (or phone’s) camera to a View. Most
of the code that you’ll create for this project deals with showing the input from the
camera, but the main work for taking a picture is done by a single method called
takePicture (Camera.ShutterCallback shutter, Camera.PictureCallback raw,
Camera.PictureCallback jpeg), which has three callbacks that allow you to control
how a picture is taken.

Before we get any further into the Camera class and how to use the camera, let’s
create the project. You’ll be creating two classes; because the main class is long, we’ll
break it into two sections. When you create the project, you’ll need to add the CAMERA
and WRITE_EXTERNALSTORAGE permissions to the manifest, like this:

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name=
"android.permission.WRITE_EXTERNAL_STORAGE" />

Both permissions are essentially self explanatory.

www.it-ebooks.info

http://mng.bz/E244
http://code.google.com/android/reference/android/hardware/Camera.ShutterCallback.html
http://code.google.com/android/reference/android/hardware/Camera.PictureCallback.html
http://code.google.com/android/reference/android/hardware/Camera.PictureCallback.html
http://www.it-ebooks.info/

268

CHAPTER 10 Multimedia

NOTE The Android emulator doesn’t allow you to connect to camera
devices, such as a webcam, on your computer; all your pictures will dis-
play a chessboard. You can connect to a web camera and get live images
and video, but doing so requires some hacking. You can find an excellent
example of how to do this at Tom Gibara’s website, where he has an open
source project for obtaining live images from a webcam: www.tomgibara
.com/android/camera-source. It’s possible that in later versions of the
SDK, the emulator will support connections to cameras on the hardware
the emulator is running on.

Now, create the example’s layout, as shown in the following listing.

Listing 10.5 Main.xml for SimpleCamera

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent" android:layout_height="fill_parent"
android:orientation="vertical">
<SurfacevView android:id="@+id/surface"
android:layout_width="fill_parent" android:layout_height="10dip"
android:layout_weight="1">
</Surfaceview>
<Button android:id="@+id/pictureButton"
android:layout_width="fill_parent"
android:layout_height="wrap_content" android:text=
"Take Picture"
android:enabled="true" />

</LinearLayout>

The next listing shows the first part of CameraExample.java.

Listing 10.6 CameraExample.java

public class SimpleCamera extends Activity implements
SurfaceHolder.Callback {

private Camera camera;

private boolean isPreviewRunning = false;

private SimpleDateFormat timeStampFormat =

new SimpleDateFormat ("yyyyMMddHHmmssSS") ;

private static final String TAG = "camera";

private SurfaceView surfaceView;

private SurfaceHolder surfaceHolder;

private Uri targetResource = Media.EXTERNAL_CONTENT_URI;

public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;
Log.e(getClass () .getSimpleName (), "onCreate");
getWindow () .setFormat (PixelFormat . TRANSLUCENT) ;
setContentView (R.layout.main) ;
this.surfaceView = (SurfaceView) findViewById(R.id.surface);
this.surfaceHolder = this.surfaceView.getHolder () ;
this.surfaceHolder.addCallback(this) ;

www.it-ebooks.info

www.tomgibara.com/android/camera-source
www.tomgibara.com/android/camera-source
http://www.it-ebooks.info/

Capturing media 269

this.surfaceHolder.setType (SurfaceHolder.
SURFACE_TYPE_PUSH_BUFFERS) ;

Button takePicture = (Button) findViewById(R.id.pictureButton) ;
takePicture.setOnClickListener (new OnClickListener () {
public void onClick(View view) {
try {
takePicture() ;

} catch (Exception e) {
Log.e(TAG, e.toString());
e.printStackTrace() ;

public boolean onCreateOptionsMenu (android.view.Menu menu) {
Menultem item = menu.add(0, 0, 0, "View Pictures");
) OnMenuTtemClickL Create menu
1tem. setOnMenu Fem .1c istener (new to Android’s
MenuItem.OnMenultemClickListener () { Phoﬂ)Ga"ery

public boolean onMenultemClick (MenuItem item) {
Intent intent = new Intent (Intent.ACTION_VIEW,
SimpleCamera.this.targetResource) ;
startActivity (intent) ;
return true;

)i

return true;

}

protected void onRestorelInstanceState (Bundle savedInstanceState) {
super.onRestorelInstanceState (savedInstanceState) ;

}

Camera.PictureCallback mPictureCallbackRaw = Create
new Camera.PictureCallback() { < PictureCallback

public void onPictureTaken (byte[] data, Camera c) {
SimpleCamera.this.camera.startPreview() ;

};
Camera.ShutterCallback mShutterCallback = Create
new Camera.ShutterCallback() { P ShutterCallback

public void onShutter () {
}
}i }i

This listing is straightforward. First, we set variables for managing a SurfaceView and
then set up the view. Next, we create a menu and menu option that will float over the
surface when the user clicks the Menu button on the phone while the application is
running @. Doing so will open Android’s picture browser and let the user view the
photos on the camera. Next, we create the first PictureCallback, which is called

www.it-ebooks.info

http://www.it-ebooks.info/

270

CHAPTER 10 Multimedia

when a picture is first taken @. This first callback captures the PictureCallback’s
only method, onPictureTaken (byte[] data, Camera camera), to grab the raw image
data directly from the camera. Next, we create a ShutterCallback, which can be used
with its onShutter () method, to play a sound; here we don’t call the onShutter ()
method ©.

We’ll continue with CameraExample . java in the next listing.

Listing 10.7 CameraExample.java, continued

public boolean takePicture() { Call method
ImageCaptureCallback camDemo = null; to take
picture Set up required
try { information for
String filename = camera to
this.timeStampFormat.format (new Date()) ; capture image

ContentValues values = new ContentValues() ;

values.put (MediaColumns.TITLE, filename) ;

values.put (ImageColumns.DESCRIPTION, "Image from Xoom") ;

Uri uri =
getContentResolver () .insert (Media.EXTERNAL_CONTENT_URI, values);

camDemo = new
ImageCaptureCallback (getContentResolver () .openOutputStream(uri)) ;

} catch (Exception ex) {

}

this.camera.takePicture (this.mShutterCallback,
this.mPictureCallbackRaw, camDemo) ; < @) Take picture
return true;

protected void onResume () {
Log.e(getClass () .getSimpleName (), "onResume") ;
super.onResume () ;

protected void onSavelnstanceState (Bundle outState) {
super.onSavelnstanceState (outState) ;

protected void onStop () {
super.onStop () ;

}

public void surfaceChanged(SurfaceHolder holder, int format,
int w, int h) {
if (this.isPreviewRunning) {
this.camera.stopPreview() ;
}
Camera.Parameters p = this.camera.getParameters();
p.setPreviewSize (w, h);
this.camera.setParameters (p) ;
try {

www.it-ebooks.info

http://code.google.com/android/reference/android/hardware/Camera.html
http://www.it-ebooks.info/

Capturing media 271

this.camera.setPreviewDisplay (holder) ;
} catch (IOException e) {

e.printStackTrace() ;
}
this.camera.startPreview() ;
this.isPreviewRunning = true;

}

public void surfaceCreated(SurfaceHolder holder) {
this.camera = Camera.open() ;

}

public void surfaceDestroyed(SurfaceHolder holder) {
this.camera.stopPreview() ;
this.isPreviewRunning = false;
this.camera.release();

}

This listing is more complicated than listing 10.5. Much of the code is about manag-
ing the surface for the camera preview. The first line is the start of an implementation
of the method takePicture() @, which checks to see whether the Take Picture but-
ton was clicked. If it was, we set up the creation of a file; and by using the Image-
CaptureCallback (which we’ll define in listing 10.7), we create an Outputstream to
which we write our image data @, including not only the image but the filename and
other metadata. Next, we call the method takePicture() and pass to it the three call-
backs mShutterCallback, mPictureCallbackRaw, and camDemo. mPictureCallback-
Raw is the raw image, and camDemo writes the image to a file on the SD card @), as you
can see in the following listing.

Listing 10.8 ImageCaptureCallback.java

public class ImageCaptureCallback implements PictureCallback {
private OutputStream filoutputStream;
public ImageCaptureCallback (OutputStream filoutputStream) {
this.filoutputStream = filoutputStream;
}
public void onPictureTaken(byte[] data, Camera camera) {
try {
this.filoutputStream.write (data) ;
this.filoutputStream.flush() ;
this.filoutputStream.close() ;
} catch(Exception ex) {
ex.printStackTrace() ;

}

Here, the class implements the PictureCallback interface and provides two meth-
ods. The constructor creates a stream to write data to, and the second method,
onPictureTaken (), takes binary data and writes to the SD card as a JPEG.

www.it-ebooks.info

http://www.it-ebooks.info/

272

104.2

CHAPTER 10 Multimedia

! SimpleCamera

Take Picture

Figure 10.4 Using the SimpleCamera application on a Xoom

If you build this project and attempt to run it on a 3.0 emulator, it’s likely that it won’t
work; as noted earlier, the emulator in 3.0 has issues with trying to detect a camera
device. Probably the best to test camera support on an emulator is to create an input to
the emulator that simulates a camera. One tool to do this is NyARToolkit, which you
can get at http://mng.bz/gdBh. Because simulating a camera in Android isn’t an opti-
mal way to test your code, it’s by far preferred to use a real device such as the Motorola
Xoom. If you run this project in a Xoom, you should see something like figure 10.4.

Now that you've seen how the Camera class works in Android, let’s look at how to
capture or record audio from a camera’s microphone. In the next section, we’ll
explore the MediaRecorder class, and you’ll write recordings to an SD card.

Capturing audio

Now we’ll look at using the onboard microphone to record audio. In this section,
you’ll use the Android MediaRecorder example from the Google Android Developers
list, which you can find at http://code.google.com/p/unlocking-android/. The code
shown in this section has been updated slightly.

NOTE Audio capture requires a physical device running Android,
because it’s not currently supported in the Android emulator.

In general, recording audio or video follows the same process in Android:

www.it-ebooks.info

http://mng.bz/gdBh
http://code.google.com/p/unlocking-android/
http://www.it-ebooks.info/

Capturing media 273

1 Create an instance of android.media.MediaRecorder.
Create an instance of android.content.ContentValues, and add properties
such as TITLE, TIMESTAMP, and the all-important MIME_TYPE.

3 Create a file path for the data to go to, using android.content.Content-
Resolver.

4 To set a preview display on a view surface, use MediaRecorder.setPreview-

Display().

Set the source for audio, using MediaRecorder.setAudioSource ().

Set the output file format, using MediaRecorder.setOutputFormat ().

Set your encoding for audio, using MediaRecorder.setAudioEncoder ().

Use prepare () and start () to prepare and start your recordings.

© 0 N o Oa

Use stop () and release() to gracefully stop and clean up your recording
process.

Although recording media isn’t especially complex, you may notice that it’s more
involved than playing it. To understand how to use the MediaRecorder class, we’ll look
at an application. To begin, create a new project called SoundRecordingDemo. Next,
edit the AndroidManifest.xml file and add the following:

<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

This code will allow the application to record the audio files and play them. Next, cre-
ate the class shown in the following listing.

Listing 10.9 SoundRecordingdemo.java

public class SoundRecordingDemo extends Activity {

MediaRecorder mRecorder;

File mSampleFile = null;

static final String SAMPLE_PREFIX = "recording";

static final String SAMPLE_EXTENSION = ".3gpp";

private static final String OUTPUT_FILE = "/sdcard/audiooutput.3gpp";
private static final String TAG = "SoundRecordingDemo";

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
this.mRecorder = new MediaRecorder () ;

Button startRecording = (Button) findviewById(R.id.startrecording) ;
Button stopRecording = (Button) findViewById(R.id.stoprecording) ;

startRecording.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
startRecording () ;

1)

stopRecording.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 10 Multimedia

stopRecording () ;
addToDB() ;

)i
}

protected void addToDB() {
ContentValues values = new ContentValues(3);
long current = System.currentTimeMillis();

Set metadata
for audio

values.put (MediaColumns.TITLE, "test_audio");

values.put (MediaColumns.DATE_ADDED, (int) (current / 1000));
values.put (MediaColumns .MIME_TYPE, "audio/3gpp"):

values.put (MediaColumns.DATA, OUTPUT_FILE) ;

ContentResolver contentResolver = getContentResolver();

Uri base = MediaStore.Audio.Media.EXTERNAL_CONTENT_URI;
Uri newUri = contentResolver.insert (base, values);

sendBroadcast (new Intent (Intent.ACTION_MEDIA_SCANNER_SCAN_FILE,

newUri)); } <1 Notify music player

protected void startRecording() { new audio file created 4
this.mRecorder = new MediaRecorder () ;
this.mRecorder.setAudioSource (MediaRecorder.AudioSource.MIC) ;
this.mRecorder.setOutputFormat (MediaRecorder.
OutputFormat . THREE_GPP) ;
this.mRecorder.setAudioEncoder (MediaRecorder.AudioEncoder.AMR_NB) ;
this.mRecorder.setOutputFile (OUTPUT_FILE) ;
try {
this.mRecorder.prepare () ;

} catch (IllegalStateException el) {
// TODO Auto-generated catch block
el.printStackTrace() ;

} catch (IOException el) {
// TODO Auto-generated catch block
el.printStackTrace() ;

Start recording file

}

this.mRecorder.start () ;

if (this.mSampleFile == null) {
File sampleDir = Environment.getExternalStorageDirectory () ;

try {
this.mSampleFile =
File.createTempFile (SoundRecordingDemo.SAMPLE_PREFIX,
SoundRecordingDemo.SAMPLE_EXTENSION, sampleDir);
} catch (IOException e) {
Log.e (SoundRecordingDemo.TAG, "sdcard access error");
return;

}

protected void stopRecording() { 4
this.mRecorder.stop() ;
this.mRecorder.release() ;

Stop recording
and release
MediaRecorder

www.it-ebooks.info

http://www.it-ebooks.info/

Capturing media 275

The first part of the code creates the buttons and button listeners to start and stop the
recording; reference main.xml by downloading the code. The first part of the listing
that you need to pay attention to is the addToDB () method. In this method, we set all
the metadata for the audio file we plan to save, including the title, date, and type of
file @. Next, we call the Intent ACTION_MEDIA_SCANNER_SCAN_FILE to notify applica-
tions such as Android’s Music Player that a new audio file has been created @. Calling
this Intent allows us to use the Music Player to look for new files in a playlist and play
the files.

Next, we create the startRecording() method, which creates a new Media-
Recorder @. As in the steps in the beginning of this section, we set an audio source,
which is the microphone; set an output format as THREE_GPP; set the audio encoder
type to AMR_NB; and then set the output file path to write the file. Next, we use the
methods prepare () and start () to enable audio recording.

Finally, we create the stopRecording() method to stop the MediaRecorder from
saving audio @ by using the methods stop () and release().

If you build this application and run the emulator with the SD card image from the
previous section, you should be able to launch the application from Eclipse and click
the Start Recording button. After a few seconds, click the Stop Recording button and
open the DDMS; you should be able to navigate to the sdcard folder and see your
recordings, as shown in figure 10.5. Alternately you can use your device’s media
player, file browser, or the like to navigate to that file and play it.

If music is playing on your computer’s audio system, the Android emulator will
pick it up and record it directly from the audio buffer (it’s not recording from a
microphone). You can then easily test whether it recorded sound by opening the
Android Music Player and selecting Playlists > Recently Added. It should play your
recorded file, and you should be able to hear anything that was playing on your com-
puter at the time.

As of version 1.5, Android supported the recording of video, although many devel-
opers found it difficult and some vendors implemented their own customer solutions

57! File Explorer &2
MName Size Date Time Permissions |
(= Download 2011-04-08 01:05 drwxrwar-x
= MoboTap 2011-04-01 1509 drwxrwar-x
= Movies 2011-02-24 19:44 drwarwar-x
= Music -04 13:45 drwarworr-x
(= Notifications 11-02-24 19:44 drwxrwar-x
(= Pictures 2011-02-24 19:44 drwarwar-x
= Podcasts 2011-02-24 19:44 drwxrwar-x
(= Ringtones 2011-02-24 19:44 drwxrwar-x
airportmania-hd.bin 2011-04-13 19:38 -rw-rwe-r--
(= apps2SD 2011-04-02 20:31 drwxrwar-x
audicoutput3gpp 6523 2011-04-21 00:32 -rw-rw-r--
= documents 2011-04-01 16:57 drwarwoer-x

Figure 10.5 An example of audio files being saved to the SD card image in the file explorer

www.it-ebooks.info

http://www.it-ebooks.info/

276

10.4.3

CHAPTER 10 Multimedia

to support video recording. With the releases of Android 2.0 to Android 3.1, video has
become far easier to work with, both for playing as well as recording. You’ll see how
much easier in the next section about using the MediaRecorder class to write a simple
application for recording video.

Recording video

Video recording on Android is no more difficult than recording audio, with the
exception that you have a few different fields. But there’s one important difference—
unlike with recording audio data, Android requires you to first preview a video feed
before you can record it by passing it a surface object, much as we did with the camera
application earlier in this chapter. It’s worth repeating this point because when
Android started supporting video recording, many developers found themselves
unable to record video: you must always provide a surface object. This may be awk-
ward for some applications, but it’s currently required in Android up to 2.2 and up.
Also, as with recording audio, you have to provide several permissions to Android so
you can record video. The new one is RECORD_VIDEO, which lets you use the camera to
record video. The other permissions are CAMERA, RECORD_AUDIO, and
WRITE_EXTERNAL_STORAGE, as shown in the following listing. Go ahead and set up a new
project called VideoCam, and use the permissions in this AndroidManifest.xml file.

Listing 10.10 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.chapterl0.VideoCamn"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app_name">
<activity android:name=".VideoCam"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.CAMERA">
</uses-permission>
<uses-permission android:name=
"android.permission.RECORD_AUDIO"></uses-permission>
<uses-permission android:name=
"android.permission.RECORD_VIDEO"></uses-permission>
<uses-permission android:name=
"android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-feature android:name="android.hardware.camera" />
</manifest>

www.it-ebooks.info

http://www.it-ebooks.info/

Capturing media 277

One interesting thing that is worth pointing out about the manifest file for this project
is the uses-feature statement:

<uses-feature android:name="android.hardware.camera" />

This statement is needed for the application to run, but in general you would use this
statement to tell external entities what software and/or hardware the application
depends on. This is useful for informing users that your application will only run on
devices that have specific hardware, such as a camera or a 3G radio. To read more, see
http://mng.bz/PdE4.

Now that you’ve defined the manifest, you need to create a simple layout that has a
preview area and some buttons to start, stop, pause, and play your video recording.
The layout is shown in the following listing.

Listing 10.11 main.xml for VideoCam

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="£fill_parent">
<RelativeLayout android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:id="@+id/relativevVideoLayoutView"
android:layout_centerInParent="true">
<VideoView android:id="@+id/videoView"
android:layout_width="176px"
android:layout_height="144px"
android:layout_centerInParent="true"/>
</RelativeLayout>
<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:layout_centerHorizontal="true"
android:layout_below="@+id/relativeVideoLayoutView">
<ImageButton android:id="@+id/playRecordingBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/play"
/>
<ImageButton android:id="@+id/bgnBtn"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@drawable/record"
android:enabled="false"
/>
</LinearLayout>
</RelativeLayout>

NOTE You’ll need to download this code from https://code.google
.com/p/android-in-action/ to get the open source icons that we use for
the buttons, or you can use your own.

www.it-ebooks.info

http://mng.bz/PdE4
https://code.google.com/p/android-in-action/
https://code.google.com/p/android-in-action/
http://www.it-ebooks.info/

278

CHAPTER 10 Multimedia

Video recording follows a set of steps that are similar to those for audio recording:

w

© 0 N o O »

10
11
12

Create an instance of android.media.MediaRecorder.

Set up a VideoView.

To set a preview display on a View surface, use MediaRecorder.setPreview-
Display().

Set the source for audio using MediaRecorder.setAudioSource().

Set the source for video using MediaRecorder.setVideoSource().

Set the encoding for audio using MediaRecorder.setAudioEncoder ().

Set the encoding for video using MediaRecorder.setVideoEncoder ().

Set the output file format using MediaRecorder.setOutputFormat ().

Set the video size using setVideoSize(). (At the time this book was written,
there was a bug in setvVideoSize() that limited it to 320 by 240.)

Set the video frame rate, using setVideoFrameRate ().

Use prepare () and start () to prepare and start your recordings.

Use stop () and release() to gracefully stop and clean up the recording
process.

As you can see, using video is similar to using audio. Let’s finish the example by using
the code in the following listing.

Listing 10.12 VideoCam.java

public class VideoCam extends Activity implements SurfaceHolder.Callback {

private MediaRecorder recorder = null;
private static final String OUTPUT_FILE =

"/sdcard/uatestvideo.mp4d";

private static final String TAG = "RecordVideo";
private VideoView videoView = null;

private ImageButton startBtn = null;

private ImageButton playRecordingBtn = null;
private Boolean playing = false;

private Boolean recording = false;

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

startBtn = (ImageButton) findViewById(R.id.bgnBtn) ;

playRecordingBtn = (ImageButton)
findvViewById(R.id.playRecordingBtn) ;

videoView = (VideoView)this.findViewById(R.id.videoView) ;

final SurfaceHolder holder = videoView.getHolder () ;
holder.addCallback(this) ;
holder.setType (SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS) ;
startBtn.setOnClickListener (new OnClickListener () {
public void onClick(View view) {
if (!VideoCam.this.recording & !VideoCam.this.playing)
{
try
{
beginRecording (holder) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Capturing media 279

playing=false;

recording=true;

startBtn.setBackgroundResource (R.drawable.stop) ;
} catch (Exception e) {

Log.e(TAG, e.toString());

e.printStackTrace() ;

}
else if (VideoCam.this.recording)
{

try

stopRecording () ;

playing = false;

recording= false;

startBtn.setBackgroundResource (R.drawable.play) ;
}catch (Exception e) {

Log.e(TAG, e.toString());

e.printStackTrace() ;

)

playRecordingBtn.setOnClickListener (new OnClickListener () {
public void onClick(View view)
{
if (!VideoCam.this.playing & !VideoCam.this.recording)
{
try
{
playRecording () ;
VideoCam.this.playing=true;
VideoCam.this.recording=false;

playRecordingBtn.setBackgroundResource
(R.drawable.stop) ;

} catch (Exception e) {
Log.e(TAG, e.toString());
e.printStackTrace() ;

}
else if(VideoCam.this.playing)
{
try
{
stopPlayingRecording () ;
VideoCam.this.playing = false;
VideoCam.this.recording= false;

playRecordingBtn.setBackgroundResource
(R.drawable.play) ;

}catch (Exception e) {

Log.e(TAG, e.toString());
e.printStackTrace() ;

www.it-ebooks.info

http://www.it-ebooks.info/

280

CHAPTER 10 Multimedia

)i
}
public void surfaceCreated(SurfaceHolder holder) {
startBtn.setEnabled (true) ;
}
public void surfaceDestroyed(SurfaceHolder holder) {
}
public void surfaceChanged(SurfaceHolder holder, int format, int width,
int height) {
Log.v(TAG, "Width x Height = " + width + "x" + height);
}
private void playRecording() {
MediaController mc = new MediaController(this);
videoView.setMediaController (mc) ;
videoView.setVideoPath (OUTPUT_FILE) ;
videoView.start () ;
}
private void stopPlayingRecording() {
videoView. stopPlayback() ;
}
private void stopRecording() throws Exception {
if (recorder != null) {
recorder.stop() ;

}
protected void onDestroy () {
super.onDestroy () ;
if (recorder != null) {
recorder.release() ;

}
private void beginRecording (SurfaceHolder holder) throws Exception {
if (recorder!=null)
{
recorder.stop() ;
recorder.release() ;
}
File outFile = new File (OUTPUT_FILE) ;
if (outFile.exists())

{

outFile.delete() ;
}
try {

recorder = new MediaRecorder () ;

recorder.setVideoSource (MediaRecorder.VideoSource.CAMERA) ;
recorder.setAudioSource (MediaRecorder.AudioSource.MIC) ;
recorder.setOutputFormat (MediaRecorder.OutputFormat .MPEG_4) ;
recorder.setVideoSize (320, 240);
recorder.setVideoFrameRate (15) ;

recorder.setVideoEncoder (MediaRecorder.VideoEncoder .MPEG_4_SP) ;
recorder.setAudioEncoder (MediaRecorder.AudioEncoder.AMR_NB) ;
recorder.setMaxDuration (20000) ;

recorder.setPreviewDisplay (holder.getSurface()) ;
recorder.setOutputFile (OUTPUT_FILE) ;

recorder .prepare() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Capturing media 281

recorder.start () ;

}

catch (Exception e) {
Log.e(TAG, e.toString());
e.printStackTrace() ;

}

Because much of this listing is similar to other code in this chapter, we won’t describe
everything that’s happening. If you look quickly at the code, you’ll note that it’s rela-
tively simple. The first thing we do, besides setting some fields, is set up our surface to
support the camera preview, much as we did in the camera application earlier in this
chapter. The next part of the code that’s important is the beginRecording () method.
First, this method checks to make sure that everything is ready to record a video file by
making sure that the camera is free and that it can record the output file. Then, the
method closely follows the preceding processes to set up the camera for recording
before calling prepare () and then start ().

Unfortunately, as we noted with the camera project, there’s no easy way to test your
application in the emulator. For this example, we’ve pushed the application to a cell
phone to test the camera, and we used the DDMS to note the file that was recorded
and to play it back. You can see an example of the output, captured with the DDMS
from a Motorola Xoom, in figure 10.6.

Begin Recording
Stop Recording

Play Recording

Stop Playing Recording

Figure 10.6 Photograph of the VideoCam application running on a Xoom

www.it-ebooks.info

http://www.it-ebooks.info/

282

10.5

CHAPTER 10 Multimedia

SUPPORT FOR MULTIPLE CAMERAS
As of Android 2.3, Android supports multiple cameras. For example, the Motorola
Xoom has a front-facing camera and a back-facing camera to support applications like
video conferencing. For this reason, Android now supports multiple new API calls for
the Camera class to help developers support multiple cameras.

The Camera.CameraInfo class stores the device’s camera orientation. Currently it
supports CAMERA FACING_BACK and CAMERA_FACING_FRONT. You can use this class to
essentially auto-discover which camera is which, as in the following code snippet:

numberOfCameras = Camera.getNumberOfCameras|() ;
CameraInfo cameraInfo = new CameraInfo();
for (int i = 0; i < numberOfCameras; i++) {
Camera.getCameraInfo (i, cameraInfo);
if (cameralInfo.facing == CameraInfo.CAMERA_FACING_BACK) {

defaultCameralId = 1i;

}

Other new camera-related methods include getNumberOfCameras () and getCamera-
Info (). If you look at the previous code snippet, you can see how these methods can
be used to query an application for the number of cameras available and find the cam-
era an application needs.

Another new method, get (), allows you to programmatically retrieve information
about a specific camera as a CamcorderProfile. This lets your applications be more
flexible because they can get information about a device’s capabilities, and you have to
write less code targeting certain hardware platforms. Android 3.0 includes a number of
other new methods related to cameras, so be sure to review the Camera API at http://
mng.bz/vlsw. That being said, if you wish to work with cameras, you’ll most likely have
to work directly with the hardware on which you wish to run your applications.

DEBUGGING VIDEO APPS

Without a device to test on, you’ll have major difficulties debugging your video appli-
cations. This is especially true with the Android SDK emulator for Xoom-like tablets,
which is difficult to use due to its extremely poor performance. If you decide to
develop a video application, we strongly suggest that you not only obtain an Android
device to test on, but also test every physical device that you hope your application will
run on. Although Android applications that record data from sensors can be difficult
to work with on the emulator, they’re relatively straightforward to code—but you need
to use a physical Android device to test.

Summary

In this chapter, we looked at how the Android SDK supports multimedia and how you
can play, save, and record video and audio. We also discussed various features the
Android MediaPlayer offers developers, from a built-in video player to wide support
for formats, encodings, and standards.

www.it-ebooks.info

http://mng.bz/v1sw
http://mng.bz/v1sw
http://www.it-ebooks.info/

Summary 283

We explained how to interact with other hardware devices attached to the phone,
such as a microphone and camera. You used the MediaRecorder application to record
audio and video and then save it to the SD card.

The most consistent characteristic of multimedia programming with Android is
that things are changing and maturing! Multimedia support has moved from Open-
CORE to Stagefright as of Android 3.0. Writing multimedia applications requires you
to conduct a bit more work directly on the hardware you wish an application to work
on, because the emulated environments don’t adequately replicate the hardware
capabilities of the handsets. Despite this potential speed bump in the development
process, Android currently offers everything you need to create rich and compelling
media applications.

In the next chapter, you’ll learn how to use Android’s location services to interact
with GPS and maps. By mixing in what you’ve learned in this chapter, you’ll be able to
create your own GPS application that not only provides voice direction, but also
responds to voice commands.

www.it-ebooks.info

http://www.it-ebooks.info/

Location,
location, location

This chapter covers

Working with LocationProvider and LocationManager
Testing location in the emulator

Receiving location alerts with LocationListener
Drawing with MapActivity and MapView

Looking up addresses with the Geocoder

Accurate location awareness makes a mobile device more powerful. Combining
location awareness with network data can change the world—and Android shines
here. Other platforms have gained similar abilities in recent years, but Android
excels with its easy-to-use and popular location API framework based on Google
Maps.

From direct network queries to triangulation with cell towers and even satellite
positioning via GPS, an Android-powered device has access to different types of
LocationProvider classes that allow access to location data. Various providers sup-
ply a mix of location-related metrics, including latitude and longitude, speed, bear-
ing, and altitude.

284

www.it-ebooks.info

http://www.it-ebooks.info/

285

Developers generally prefer to work with GPS because of its accuracy and power.
But some devices may not have a GPS receiver, and even GPS-enabled devices can’t
access satellite data when inside a large building or otherwise obstructed from receiv-
ing the signal. In those instances the Android platform provides a graceful and auto-
matic fallback to query other providers when your first choice fails. You can examine
provider availability and hook into one or another using the LocationManager class.

Location awareness' opens up a new world of possibilities for application develop-
ment. In this chapter, you’ll build an application that combines location awareness
with data from the U.S. National Oceanic and Atmospheric Administration (NOAA) to
produce an interesting and useful mashup.

Specifically, you’ll connect to the National Data Buoy Center (NDBC) to retrieve
data from buoys and ships located around the coastline in North America. Thanks to
the NOAA-NDBC system, which polls sensors on buoys and makes that data available in
RSS feeds, you can retrieve data for the vicinity, based on the current location, and dis-
play condition information such as wind speed, wave height, and temperature.
Although we won’t cover non-location-related details in this chapter, such as using
HTTP to pull the RSS feed data, the full source code for the application is available
with the code download for this chapter. Our Wind and Waves application has several
main screens, including an Android MapActivity with a MapView. These components
are used for displaying and manipulating map information, as shown in figure 11.1.

Al & 7:55am

G @ 7:52am
< @l @ 7:30

Figure 11.1 Screens from the Wind and Waves location-aware application

! For more about location, check out Location-Aware Applications by Richard Ferraro and Murat Aktihanoglu,
published by Manning in July 2011: www.manning.com/ferraro.

www.it-ebooks.info

http//www.manning.com/ferraro
http://www.it-ebooks.info/

286

11.1

11.1.1

CHAPTER 11 Location, location, location

Accessing buoy data, which is important mainly for marine use cases, has a some-
what limited audience. But the principles shown in this app demonstrate the range of
Android’s location-related capabilities and should inspire you to develop your own
unique application.

In addition to displaying data based on the current location, you’ll use this applica-
tion to create several LocationListener instances that receive updates when the
user’s location changes. When the position changes, the device will inform your appli-
cation, and you’ll update your MapView using an Overlay—an object that allows you to
draw on top of the map.

Beyond the buoy application requirements, you’ll also write a few samples for
working with the Geocoder class. This class allows you to map between a GeoPoint (lat-
itude and longitude) and a place (city or postal code) or address. This utility doesn’t
help much on the high seas but does benefit many other apps.

Before writing the sample apps, you’ll start by using the device’s built-in mapping
application and simulating your position within the Android emulator. This approach
will allow you to mock your location for the emulator. After we’ve covered all of the
emulator location-related options, we’ll move on to building Wind and Waves.

Simulating your location within the emulator

For any location-aware application, you’ll start by working with the provided SDK and
the emulator. Within the emulator, you’ll set and update your current location. From
there you’ll want to progress to supplying a range of locations and times to simulate
movement over a geographic area.

You can accomplish these tasks in several ways, either by using the DDMS tool or by
using the command line from the shell. To get started quickly, let’s first send in direct
coordinates through the DDMS tool.

Sending in your coordinates with the DDMS tool

You can access the DDMS tool in two ways, either launched on its own from the SDK
tools subdirectory or as the Emulator Control view within the Eclipse IDE. You need to
have Eclipse and the Android Eclipse plug-in to
use DDMS within Eclipse; see chapter 2 and

. : . (@ emulator Control = =] m|
appendix A for more details about getting the

Manual = GPX KML

SDK and plug-in set up.

) . . ® Decimal
With the DDMS tool you can send direct lati-

() sexagesimal

tude and longitude coordinates manually from Longitude [-122.084095 | m
the Emulator Control > Location Controls Latitude |37.422006 |

form. This is shown in figure 11.2. Note that (Send) 1
Longitude is the first field, which is the standard 1

around the world, but backward from how lati-) .
Figure 11.2 Using the DDMS tool to send

direct latitude and longitude coordinates to
the United States. the emulator as a mock location

tude and longitude are generally expressed in

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating your location within the emulator 287

If you launch the built-in Maps application from Android’s main menu and send
in a location with the DDMS tool, you can then use the menu to select My Location,
and the map will animate to the location you’ve specified—anywhere on Earth.

NOTE Both the Google Maps application and the mapping APIs are part of
the optional Google APIs. As such, not all Android phones support these fea-
tures. Check your target devices to ensure that they provide this support. For
development, you’ll need to install an Android Virtual Device? (AVD) that
supports the Google APIs.

Try this a few times to become comfortable with setting locations; for example, send
the decimal coordinates in table 11.1 one by one, and in between browse around the
map. When you supply coordinates to the emulator, you'll need to use the decimal
form.

Although the DDMS tool requires the decimal format, latitude and longitude are
more commonly expressed on maps and other tools as degrees, minutes, and seconds.
Degrees (°) represent points on the surface of the globe as measured from either the
equator (for latitude) or the prime meridian (for longitude). Each degree is further
subdivided into 60 smaller sections, called minutes ('), and each minute also has 60
seconds ("). If necessary, seconds can be divided into tenths of a second or smaller
fractions.

Table 11.1 Example coordinates for the emulator to set using the DDMS tool

o e Latitude Longitude Latitude Longitude
Description) s
degrees degrees decimal decimal

Golden Gate Bridge, California 37°49' N 122°29' W 37.82 -122.48
Mount Everest, Nepal 27°59' N 86°56' E 27.98 86.93
Ayer’s Rock, Australia 25°23'S 131°05' E -25.38 131.08
North Pole 90°00' N 90.00
South Pole 90°00' S -90.00

When representing latitude and longitude on a computer, the degrees are usually
converted into decimal form with positive representing north and east and negative
representing south and west, as shown in figure 11.3.

If you live in the southern and eastern hemispheres, such as in Buenos Aires,
Argentina, which is 34°60' S, 58°40' W in the degree form, the decimal form is nega-
tive for both latitude and longitude, -34.60, -58.40. If you haven’t used latitude and
longitude much, the different forms can be confusing at first, but they quickly
become clear.

2 For more on Android, maps and Android Virtual Devices, try here: http://developer.appcelerator.com/doc/
mobile/android-maps.

www.it-ebooks.info

http://developer.appcelerator.com/doc/mobile/android-maps
http://developer.appcelerator.com/doc/mobile/android-maps
http://www.it-ebooks.info/

288 CHAPTER 11 Location, location, location

Once you’ve mastered setting a fixed position, you
can move on to supplying a set of coordinates that the
emulator will use to simulate a range of movement.

NOTE You can also send direct coordinates from
within the emulator console. If you telnet localhost
5554 (adjust the port where necessary) or adb
shell, you’ll connect to the default emulator’s con-
sole. From there you can use the geo fix com-
mand to send longitude, latitude, and optional
altitude; for example, geo fix -21.55 64.1. Keep
in mind that the Android tools require longitude

in the first parameter. Figure 11.3 Latitude and longitude
spherical diagram, showing positive
11.1.2 The GPS Exchange Format north and east and negative south
and west

The DDMS tool supports two formats for supplying a
range of location data in file form to the emulator. The GPS Exchange Format (GPX)
allows a more expressive form when working with Android.

GPX is an XML schema that allows you to store waypoints, tracks, and routes. Many
handheld GPS devices support this format. The following listing shows the basics of
the format in a portion of a sample GPX file.

Listing 11.1 A sample GPX file

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<gpx xmlns="http://www.topografix.com/GPX/1/1" ’ Define root
version="1.1" . . gpxehnmnt
creator="Charlie Collins - Hand Rolled"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www. topografix.com/GPX/1/1/gpx.xsd">

<metadata> Include
<name>Sample Coastal California Waypoints</name> metadata
<desc>Test waypoints for use with Android</desc> stanza

<time>2008-11-25T06:52:56%</time>
<bounds minlat="25.00" maxlat="75.00"
minlon="100.00" maxlon="-150.00" />
</metadata>

<wpt lat="41.85" lon="-124.38"> /‘) Supply
<ele>0</ele> waypoint
<name>Station 46027</name> element
<desc>0ff the coast of Lake Earl</desc>

</wpt>

<wpt lat="41.74" lon="-124.18">
<ele>0</ele>

<name>Station CECCl</name>
<desc>Crescent City</desc>
</wpt>
<wpt lat="38.95" lon="-123.74">

www.it-ebooks.info

http://www.it-ebooks.info/

11.1.3

Simulating your location within the emulator 289

<ele>0</ele>
<name>Station PTACl</name>
<desc>Point Arena Lighthouse</desc>

</wpt>
. remainder of wpts omitted for brevity Supply track
<trk> < element
<name>Example Track</name>
<desc>A fine track with trkpts.</desc> Use track
<trkseg> < segment
<trkpt lat="41.85" lon="-124.38"> Provide
<ele>0</ele> spedﬁc
<time>2008-10-15T06:00:002</time> point
</trkpt>
<trkpt lat="41.74" lon="-124.18">
<ele>0</ele>
<time>2008-10-15T06:01:00Z</time>
</trkpt>
<trkpt lat="38.95" lon="-123.74">
<ele>0</ele>
<time>2008-10-15T06:02:00Z</time>
</trkpt>
remainder of trkpts omitted for brevity
</trkseg>
</trk>

</gpx>

A GPX file requires the correct XML namespace in the root gpx element @. Within
its body, the file includes metadata @ and individual waypoints €. Waypoints are
named locations at a particular latitude and longitude. Along with individual way-
points, a GPX file supports related route information in the form of tracks @, which
can be subdivided further into track segments @. Each track segment is made up of
track points. Finally, each track point 0 contains a waypoint with an additional point-
in-time property.

When working with a GPX file in the DDMS tool, you can use two different modes,
as figure 11.4 reveals. The top half of the GPX box lists individual waypoints; when you
click one, that individual location is sent to the emulator. In the bottom half of the
GPX box, all the tracks are displayed. Tracks can be “played” forward and backward to
simulate movement. As the track reaches each track point, based on the time it
defines, it sends those coordinates to the emulator. You can modify the speed for this
playback via the Speed button.

GPX is simple and extremely useful when working with mock location information
for your Android applications, but it’s not the only file format supported. The DDMS
tool also supports a format called KML.

The Google Earth Keyhole Markup Language

The second format that the Android DDMS tool supports for sending a range of mock
location information to the emulator is the Keyhole Markup Language (KML). KML was
originally a proprietary format created by a company named Keyhole. After Google

www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 11 Location, location, location

Hie Edit Actions Device Help

Info Theeads VM Heap | Aliocation Tracker Sysinfo| Emulater Control |Event Log
Name
= B emulator555 Online 1.0 Location Controls
@1 R 8600 Marual GPX KML
& 81 g sent Toad GP
&1 CLA S
T ne % 8603 Hame Longitude Latitade Elevation Description
'Y 120 % se04 Slolion 46215 -120860000 35200000 00 South of Montana de Oro Slate Rark
1 16 % 8605 Station 46216 -119.600000 34330000 00 O the coast of Santa Barbara
&7 175 % 8606 Station 46222 ~118 310000 33.610000 oo San Pedro Channel
7 1| % 8607 § §
Name Point Count| Firet Point Time Last Point Time Comment
Example Track 9 Sal Nov 15 01:00:00 EST 2008 Sal Nov 15 05:00:00 EST 2008
o] | speed 1x
+Y - CEROO0O EH
Lag
Time pid |tag Message o
B T S s e S e S e S el
125231017 D 175 WindiWaves per Gn int - A5 34% 124,329
1123231017 O 175 WindWaves LocationHeiper getGeoPoint - geolssPount - 40290 -124.740
11-23 231117 D 175 WindWaves MapVicwAcvily handicMessage imoked - updale overlays with new dala
11-25 231017 © 175 WindWaves it Ctivity buoys (List<b Aayitems) size - 10
11-25 231319 D 46 dalvikvmn GC freed 13314 objects / 538400 bytes in 118ms
|)

Filer:

Figure 11.4 Using the DDMS tool with a GPX file to send mock location information

acquired Keyhole, it submitted KML to the Open Geospatial Consortium (OGC),
which accepted KML as an international standard.
OGC KML pursues the following goal:

That there be one international standard language for expressing geographic annotation
and visualization on existing or future web-based online and mobile maps (2d) and earth
browsers (3d).

The following listing shows a sample KML file for sending location data to the Android

emulator. This file uses the same coastal location data as you saw with the previous
GPX example.

Listing 11.2 A sample KML file

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.2"> @ Capture information
<Placemark> ~ | with Placemark
<name>Station 46027</name>
<description>0ff the coast of Lake Earl</description>

<Point> .
Provide

<coordinates>-124.38,41.85,0</coordinates> q}) Point
</Point> Supply coordinates

</Placemark> for Point

<Placemark>
<name>Station 46020</name>
<description>Outside the Golden Gate</description>
<Point>
<coordinates>-122.83,37.75,0</coordinates>

www.it-ebooks.info

http://www.it-ebooks.info/

Simulating your location within the emulator 291

</Point>
</Placemark>
<Placemark>
<name>Station 46222</name>
<description>San Pedro Channel</description>
<Point>
<coordinates>-118.31,33.61,0</coordinates>
</Point>
</Placemark>
</kml>

KML uses a kml root element requiring the correct namespace declaration. KML sup-
ports many more elements and attributes than the DDMS tool handles. DDMS only
checks your KML files for Placemark elements @, which contain Point child
elements @, which in turn supply coordinates @.

Figure 11.5 shows an example of using a KML file with the DDMS tool.

KML? is flexible and expressive, but it has drawbacks when used with the Android
emulator. As we’ve noted, the DDMS parser looks for the coordinate elements in the
file and sends the latitude, longitude, and elevation for each in a sequence, one

File Edit Actions Device Help
Info Threads VM Heap Allocation Tracker Sysinfo| Emulator Control Event Log

Name : Location Controls
< [@ emulator-555- Online 1.0 Manual | Gox| KML
system_per 52 S 8600 .
com.androi 87 E-S 8601 Load KML ..
androidprc 92 % 8602 Name Longitude Latitude | Elevation Descriptic
comandroi 110 % 8603 Station 46027 -124.380000 41850000 0.0
@comandroi 121 % 8604 Station 46020 122830000 37.750000 0.0
? 15 = 8005 Station 46222 -118.310000 33.610000 0.0
&7 145 £ 8606
commsim 321 R 8607

»| [P speed:1x

+ @eOCeE B R

Lm —
pid |tag Message =1

B LTI W SR WEORIERLYLD B L e

25234740 D 321 WindWaves LecationHelper getGeoPoint - geoRssPoint - 38,955 -123.740 |

2523:47:40 D 321 WindWaves LocationHelper getGeoPoint - geoRssPoint - 36.338 -122.101 vl

| I3 »

Filter: | |

Figure 11.5 Using the DDMS tool with a KML file to send mock location information

3 For more details on KML, go to http://code.google.com/apis/kml/documentation/.

www.it-ebooks.info

http://code.google.com/apis/kml/documentation/
http://www.it-ebooks.info/

292

11.2

11.2.1

CHAPTER 11 Location, location, location

Placemark per second. Timing and other advanced features of KML aren’t yet sup-
ported by DDMS. Because of this, we find it more valuable at present to use GPX as a
debugging and testing format, because it supports detailed timing.

KML is still important; it’s an international standard and will continue to gain trac-
tion. Also, KML is an important format for other Google applications, so you may
encounter it more frequently in other contexts than GPX. For example, you could cre-
ate a KML route using Google Earth, and then later use it in your emulator to simulate
movement.

Now that you know how to send mock location information to the emulator in var-
ious formats, you can step out of the built-in Maps application and start creating your
own programs that rely on location.

Using LocationManager and LocationProvider

When building location-aware applications on the Android platform, you’ll most
often use several key classes. A LocationProvider provides location data using several
metrics, and you can access providers through a LocationManager.

LocationManager allows you to attach a LocationListener that receives updates
when the device location changes. LocationManager also can directly fire an Intent
based on the proximity to a specified latitude and longitude. You can always retrieve
the last-known Location directly from the manager.

The Location class is a Java bean that represents all the location data available
from a particular snapshot in time. Depending on the provider used to populate it, a
Location may or may not have all the possible data present; for example, it might not
include speed or altitude.

To get your Wind and Waves sample application started and to grasp the related
concepts, you first need to master the LocationManager.

Accessing location data with LocationManager

LocationManager lets you retrieve location-related data on Android. Before you can
check which providers are available or query the last-known Location, you need to
acquire the manager from the system service. The following listing demonstrates this
task and includes a portion of the MapViewActivity that will drive our Wind and
Waves application.

Listing 11.3 Start of MapViewActivity

public class MapViewActivity extends MapActivity { < Extend
pr%vate stat%c f%nal %nt MENU_SET_SATELLITE = 1; MapActivity
private static final int MENU_SET MAP = 2;
private static final int MENU _BUOYS_FROM_MAP CENTER = 3;
private static final int MENU_BACK_TO_LAST LOCATION = 4;
. Handler and LocationListeners omitted here for brevity - shown in
later listings
private MapController mapController; 0 Define
private LocationManager locationManager; . LocationManager

www.it-ebooks.info

http://www.it-ebooks.info/

Using LocationManager and LocationProvider

293

private LocationProvider locationProvider; < Define

private MapView mapView;

private ViewGroup zoom;

private Overlay buoyOverlay;

private ProgressDialog progressDialog;

private Drawable defaultMarker;

private ArrayList<BuoyOverlayItem> buoys;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.mapview_activity) ;

© LocationProvider

mapView = (MapView) this.findViewById(R.id.map view) ;
zoom = (ViewGroup) findViewById(R.id.zoom) ;
zoom.addView (this.mapView.getZoomControls()) ;
defaultMarker =

getResources () .getDrawable (R.drawable.redpin) ;
defaultMarker.setBounds (0, O,
defaultMarker.getIntrinsicWidth(),
defaultMarker.getIntrinsicHeight()) ;
buoys = new ArrayList<BuoyOverlayItem> () ;
}
@QOverride
public void onStart() {
super.onStart () ;

locationManager = (LocationManager) Instantiate LocationManager
getSystemService system service

(Context.LOCATION_SERVICE) ;
locationProvider =
locationManager.getProvider (
LocationManager .GPS_PROVIDER) ;
// LocationListeners omitted here for brevity

Assign GPS
LocationProvider

GeoPoint lastKnownPoint = this.getLastKnownPoint () ; ”‘3 Set up

mapController = this.mapView.getController () ;
mapController.setZoom(10) ;
mapController.animateTo (lastKnownPoint) ;
getBuoyData (lastKnownPoint) ;

onResume and onPause omitted for brevity

other portions of MapViewActivity are included

in later listings in this chapter
private GeoPoint getLastKnownPoint () {

GeoPoint lastKnownPoint = null;

Location lastKnownLocation =
locationManager.getLastKnownLocation (
LocationManager .GPS_PROVIDER) ;

if (lastKnownLocation != null) {

map

g Get last-known
Location

lastKnownPoint = LocationHelper.getGeoPoint (lastKnownLocation) ;

} else {

lastKnownPoint = LocationHelper.GOLDEN_GATE;
}
return lastKnownPoint;

}

Our custom MapViewActivity extends MapActivity @. We’ll focus on the Map-
Activity in more detail in section 11.3, but for now, recognize that this is a special

www.it-ebooks.info

http://www.it-ebooks.info/

294

11.2.2

CHAPTER 11 Location, location, location

kind of Activity. Within the class, you declare member variables for Location-
Manager Q and LocationProvider 9

To acquire the LocationManager, you use the Activity getSystemService
(String name) method @. Once you have the LocationManager, you assign the
LocationProvider you want to use with the manager’s getProvider () method @. In
this case, use the GPS provider. We’ll talk more about the LocationProvider class in
the next section.

Once you have the manager and provider in place, you implement the onCreate ()
method of your Activity to instantiate a MapController and set the initial state for
the screen @. Section 11.3 covers MapController and the MapView it manipulates.

Along with helping you set up the provider you need, LocationManager supplies
quick access to the last-known Location @. Use this method if you need a quick fix on
the last location, as opposed to the more involved techniques for registering for peri-
odic location updates with a listener; we’ll cover that topic in section 11.2.3.

Besides the features shown in this listing, LocationManager allows you to directly
register for proximity alerts. For example, your app could show a custom message if
you pass within a quarter-mile of a store that has a special sale. If you need to fire an
Intent based on proximity to a defined location, call the addProximityAlert ()
method. This method lets you set the target location with latitude and longitude, and
also lets you specify a radius and a PendingIntent. If the device comes within the
range, the PendingIntent is fired. To stop receiving these messages, call remove-
ProximityAlert ().

Getting back to the main purpose for which you’ll use the LocationManager with
Wind and Waves, we’ll next look more closely at the GPS LocationProvider.

Using a LocationProvider

LocationProvider helps define the capabilities of a given provider implementation.
Each implementation responsible for returning location information may be available
on different devices and in different circumstances.

Available provider implementations depend on the hardware capabilities of the
device, such as the presence of a GPS receiver. They also depend on the situation: even
if the device has a GPS receiver, can it currently receive data from satellites, or is the
user somewhere inaccessible such as an elevator or a tunnel?

At runtime, you’ll query for the list of providers available and use the most suit-
able one. You may select multiple providers to fall back on if your first choice isn’t
available or enabled. Developers generally prefer using the LocationManager
.GPS_PROVIDER provider, which uses the GPS receiver. You’ll use this provider for
Wind and Waves because of its accuracy and its support in the emulator. Keep in
mind that a real device will normally offer multiple providers, including the
LocationManager .NETWORK_PROVIDER, which uses cell tower and Wi-Fi access points
to determine location data. To piggyback on other applications requesting location,
use LocationManager .PASSIVE_PROVIDER.

www.it-ebooks.info

http://www.it-ebooks.info/

Using LocationManager and LocationProvider 295

In listing 11.3, we showed how you can obtain the GPS provider directly using the
getProvider (String name) method. Table 11.2 provides alternatives to this approach
of directly accessing a particular provider.

Table 11.2 Methods for obtaining a LocationProvider reference

LocationProvider code snippet Description

List<String> providers = Get all of the providers registered on the
locationManager.getAllProviders () ; device.
List<String> enabledProviders = Get all of the currently enabled
locationManager.getAllProviders (true) ; providers.
locationProvider = A shortcut to get the first enabled pro-
locationManager.getProviders (true) .get (0) ; vider, regardless of type.
locationProvider = An example of getting a
locationManager .getBestProvider (LocationProvider using a particular
myCriteria, true); Criteria argument. You can create a
Criteria instance and specify whether
bearing, altitude, cost, and other metrics
are required.

Different providers may support different location-related metrics and have different
costs or capabilities. The Criteria class helps define what each provider instance can
handle. Available metrics are latitude and longitude, speed, bearing, altitude, cost,
and power requirements.

Remember to set the appropriate Android permissions. Your manifest needs to
include location-related permissions for the providers you want to use. The following
listing shows the Wind and Waves manifest XML file, which includes both COARSE- and
FINE-grained location-related permissions.

Listing 11.4 A manifest file showing COARSE and FINE location-related permissions

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.windwaves">
<application android:icon="@drawable/wave_45"
android:label="@string/app_name"
android:theme="@android:style/Theme.Black”>
<activity android:name="StartActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name="MapViewActivity" />
<activity android:name="BuoyDetailActivity" />
<uses-library android:name="com.google.android.maps" />

www.it-ebooks.info

http://www.it-ebooks.info/

296

11.2.3

CHAPTER 11 Location, location, location

</application>
<uses-permission Acces's 0
android:name= LocationManager.NETWORK_PROVIDER
"android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission
android:name=
"android.permission.ACCESS_FINE_LOCATION" />
<uses-permission
android:name="android.permission.INTERNET" />
</manifest>

@) Access GPS
provider

Include both the ACCESS_COARSE_LOCATION @ and ACCESS_FINE_LOCATION @ permis-
sions in your manifest. The COARSE permission corresponds to the LocationManager
.NETWORK_PROVIDER provider for cell and Wi-Fi based data, and the FINE permission
corresponds to the LocationManager.GPS_PROVIDER provider. You don’t use the net-
work provider in Wind and Waves, but this permission would allow you to enhance the
app to fall back to the network provider if the GPS provider becomes unavailable or
disabled.

Once you understand the basics of LocationManager and LocationProvider, you
can unleash the real power and register for periodic location updates in your applica-
tion with the LocationListener class.

Receiving location updates with LocationListener

You can keep abreast of the device location by creating a LocationListener imple-
mentation and registering it to receive updates. LocationListener lets you filter for
many types of location events based on a flexible and powerful set of properties. You
implement the interface and register your instance to receive location data callbacks.

Listing 11.5 demonstrates those principles as you create several LocationListener
implementations for the Wind and Waves MapViewActivity and then register those
listeners using the LocationManager and LocationProvider. This listing helps com-
plete the initial code from listing 11.3.

Listing 11.5 Creation of LocationListener implementations in MapViewActivity

Create anonymous

start of class in Listing 11.3 LocationListener

private final LocationListener locationListenerGetBuoyData =

new LocationListener () { <
public void onLocationChanged (Implement
final Location loc) { ‘ onLocationChanged
int lat = (int) (loc.getLatitude()
* LocationHelper.MILLION) ; Get latitude
int lon = (int) (loc.getLongitude () and longitude
* LocationHelper.MILLION) ;
GeoPoint geoPoint = new GeoPoint(lat, lon); < 0 Create GeoPoint
getBuoyData (geoPoint) ; < Update map
} pins (buoy data)

public void onProviderDisabled(String s) {

}

public void onProviderEnabled(String s) {

www.it-ebooks.info

http://www.it-ebooks.info/

Using LocationManager and LocationProvider 297

}
public void onStatusChanged(String s,

int i, Bundle b) {

Y
private final LocationListener locationListenerRecenterMap =
new LocationListener () {
public void onLocationChanged(final Location loc) {
int lat = (int) (loc.getLatitude()
* LocationHelper.MILLION) ;
int lon = (int) (loc.getLongitude ()
* LocationHelper.MILLION) ;
GeoPoint geoPoint = new GeoPoint(lat, lon);
mapController.animateTo (geoPoint) ;

Move map to
- new location

}

public void onProviderDisabled(String s) {

}

. . . . Methods
public void onProviderEnabled(String s) { hnenﬁona"y
} left blank

public void onStatusChanged(String s,
int i, Bundle b) {

Y

@Override

public void onStart () {
super.onStart () ;

locationManager =
(LocationManager)
getSystemService (Context .LOCATION_SERVICE) ;
locationProvider =
locationManager.getProvider (LocationManager .GPS_PROVIDER) ;
if (locationProvider != null) {
locationManager.requestLocationUpdates (/i’ Register
locationProvider.getName (), 3000, 185000, ’ locationListener-
locationListenerGetBuoyData) ; GetBuoyData
locationManager.requestLocationUpdates (‘) Register
locationProvider.getName (), 3000, 1000, T locationListener-
locationListenerRecenterMap) ; RecenterMap
} else {
Toast .makeText (this, "Wind and Waves cannot continue,"
+ " the GPS location provider is not available"
+ " at this time.", Toast.LENGTH_SHORT) .show() ;
finish();

. remainder of repeated code omitted (see listing 11.3)

}
You’ll usually find it practical to use an anonymous inner class @ to implement the
LocationListener interface. For this MapViewActivity, we create two Location-
Listener implementations so we can later register them using different settings.

The first listener, locationListenerGetBuoyData, implements the onLocation-
Changed method @. In that method we get the latitude and longitude from the

www.it-ebooks.info

http://www.it-ebooks.info/

298

11.3

CHAPTER 11 Location, location, location

Location sent in the callback €. We then use the data to create a GeoPoint @ after
multiplying the latitude and longitude by 1 million (1e6). You need to multiply by a
million because GeoPoint requires microdegrees for coordinates. A separate class,
LocationHelper, defines this constant and provides other location utilities; you can
view this class in the code download for this chapter.

After we have the data, we update the map @ using a helper method that resets a
map Overlay; you’ll see this method’s implementation in the next section. In the sec-
ond listener, locationListenerRecenterMap, we perform the different task of center-
ing the map @.

The need for two separate listeners becomes clear when you see how listeners are
registered with the requestLocationUpdates () method of the LocationManager class.
We register the first listener, locationListenerGetBuoyData, to fire only when the
new device location has moved a long way from the previous one @. The defined dis-
tance is 185,000 meters. (We chose this number to stay just under 100 nautical miles,
which is the radius you’ll use to pull buoy data for your map; you don’t need to redraw
the buoy data on the map if the user moves less than 100 nautical miles.) We register
the second listener, locationListenerRecenterMap, to fire more frequently; the map
view recenters if the user moves more than 1,000 meters . Using separate listeners
like this allows you to fine-tune the event processing, rather than having to build in
your own logic to do different things based on different values with one listener.

Keep in mind that your registration of LocationListener instances could become
even more robust by implementing the onProviderEnabled() and onProvider-
Disabled() methods. Using those methods and different providers, you could pro-
vide useful messages to the user and also provide a graceful fallback through a set of
providers; for example, if GPS becomes disabled, you could try the network provider
instead.

NOTE You should use the time parameter to the requestLocationUpdates()
method carefully. Requesting location updates too frequently (less than
60,000 ms per the documentation) can wear down the battery and make the
application too jittery. In this sample, you use an extremely low value (3,000
ms) for debugging purposes. Long-lived or always-running code shouldn’t
use a value lower than the recommended 60,000 ms in production code.

With LocationManager, LocationProvider, and LocationListener instances in place,
we can address the MapActivity and MapView in more detail.

Working with maps

In the previous sections, you wrote the start of the MapviewActivity for the Wind and
Waves application. We covered the supporting classes and showed you how to register
to receive location updates. With that structure in place, let’s now focus on the actual
map details.

www.it-ebooks.info

http://www.it-ebooks.info/

11.3.1

11.3.2

Working with maps 299

The MapViewActivity screen will look like fig- O RE@ 7:43am
ure 11.6, where several map Overlay classes dis- ‘WindWaves'
play on top of a MapView within a MapActivity.

Fernanso
o

To use the com.google.android.maps pack- Burbank Attadens
aQ
age on the Android platform and support all the Los Angeles Pomona __Ontario
Whittier 0 iod
features related to a MapView, you must use a 3 ® Giea Ghino f“e's

MapActivity. 5@ Ansheim Corona

w59 5anta Ana - pe,

ejo

Extending MapActivity u Qssion
o

Laguna

A MapActivity defines a gateway to the Android
Google Maps-like API package and other useful
map-related utilities. It handles several details
behind creating and using a MapView so you don’t
to have to worry about them.

The MapView, covered in the nextsection, offers
the most important features. But a MapActivity Google
provides essential support for the MapView. It man-

ages all the network- and filesystem-intensive setup Figure 11.6 The MapViewActivity
and teardown tasks needed for supporting the from the Wind and Waves application
map. For example, the MapActivity onResume () shows aMapActivity withaMapView.
method automatically sets up network threads for various map-related tasks and caches
map section tile data on the filesystem, and the onPause () method cleans up these
resources. Without this class, all these details would require extra housekeeping that any
Activity wishing to include a MapView would have to repeat each time.

Your code won’t do much with MapActivity. Extend this class (as in listing 11.3),
making sure to use only one instance per process, and include a special manifest ele-
ment to enable the com.google.android.maps package. You may have noticed the
uses-library element in the Wind and Waves manifest in listing 11.4:

<uses-library android:name="com.google.android.maps" />

The com.google.android.maps package, where MapActivity, MapView, Map-
Controller, and other related classes such as GeoPoint and Overlay reside, isn’t a
standard package in the Android library. This manifest element pulls in support for
the Google maps package.

Once you include the uses-library element and write a basic Activity that
extends MapActivity, you can start writing the main app features with a Mapview and
related Overlay classes.

Using a MapView

Android offers MapView® as a limited version of the Google Maps API in the form of a
View for your Android application. A MapView displays tiles of a map, which it obtains

4 Take a look at this MapView tutorial for more information: http://developer.android.com/guide/tutorials/
views/hello-mapview.html.

www.it-ebooks.info

http://developer.android.com/guide/tutorials/views/hello-mapview.html
http://developer.android.com/guide/tutorials/views/hello-mapview.html
http://www.it-ebooks.info/

300 CHAPTER 11 Location, location, location

over the network as the map moves and zooms,
much like the web version of Google Maps. Windwaves

Android supports many of the concepts from oL
the standard Google Maps API through the
MapView. For instance, MapView supports a plain

O HH @ 7:30am

map mode, a satellite mode, a street-view mode,
and a traffic mode. When you want to write some-
thing on top of the map, draw a straight line
between two points, drop a “pushpin” marker, or
display full-sized images, you use an Overlay.

You can see examples of several of these con-
cepts in figure 11.6, which shows MapView-
Activity screenshots for the Wind and Waves
application. Figure 11.7 shows that same
MapViewActivity again after switching into satel-
lite mode.

You’ve already seen the MapView we’ll use for

the Wind and Waves application declared and Figure 11.7 The MapViewActivity
from the Wind and Waves application

instantiated in listing 11.3. Now we’ll discuss
using satellite mode

using this class inside your Activity to control,
position, zoom, populate, and overlay your map.

Before you can use a map at all, you have to request a Google Maps API key and
declare it in your layout file. This listing shows the MapActivity layout file you’ll use
with a special android:apiKey attribute.

Listing 11.6 A MapView layout file including the Google Maps API key

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:gravity="center horizontal" android:padding="10px">

<com.google.android.maps.MapView qa Define MapView

android:id="@+id/map_view" element in XML

android:layout_width="fill_parent"
android:layout_height="fill_ parent"
android:enabled="true"
android:clickable="true"
android:apiKey= %0 Include apiKey
"051Sygx-ttd-J5GXfsIB-dlpNtggcadI4DMyVgQ" /> attribute
</RelativeLayout>

You can declare a MapView in XML just like other View components @. In order to use
the Google Maps network resources, a MapView requires an API key @. You can obtain
a map key from the Google Maps Android key registration web page at http://
code.google.com/android/maps-api-signup.html.

www.it-ebooks.info

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html
http://www.it-ebooks.info/

Working with maps 301

Before you register for a key, you need to look up the MD5 fingerprint of the certif-
icate that signs your application. This sounds tricky, but it’s really simple. When using
the Android emulator, the SDK always uses a Debug Certificate. To get the MD5 finger-
print for this certificate on Mac and Linux, you can use the following command:

cd ~/.android
keytool -list -keystore ./debug.keystore -storepass android -keypass android

On Windows, adjust for the user’s home directory slash directions, such as

cd c:\Users\Chris\.android

keytool -list -keystore debug.keystore -storepass android -keypass android
Getting a key for a production application follows the same process, but you need to
use the actual certificate your APK file is signed with instead of the debug.keystore file.
The Android documentation provides additional information about obtaining a key
at http://code.google.com/android/add-ons/google-apis/mapkey.html. For more
information about digital signatures, keys, and signing in general, see appendix B.

CAUTION Android requires you to declare the map API key in the layout file.
With the key in the layout file, you must remember to update the key between
debug and production modes. Additionally, if you debug on different devel-
opment machines, you must switch keys by hand.

Once you write a MapActivity with a MapView and create your view in the layout file,
complete with map API key, you can make full use of the map. Several of the previous
listings use the MapView from the Wind and Waves application. In the next listing, we
repeat a few of the map-related lines of code we’ve already shown and add related
items to consolidate all the map-related concepts in one listing.

Listing 11.7 Portions of code that demonstrate working with maps

from onCreate

mapView = (MapView) @ nflate MapView
findviewById(R.id.map_view) ; - from layout
mapView.

setBuiltInZoomControls (true) ;
from onStart
mapController = mapView.getController () ;
mapController.setZoom(10) ;
mapController. Animate to given
animateTo (lastKnownPoint) ; < GeoPoint
from onMenultemSelected
case MapViewActivity.MENU SET MAP:
mapView.setSatellite(false); /,o Set map
break; satellite mode
case MapViewActivity.MENU_SET SATELLITE:
mapView.setSatellite(true) ;
break;
case MapViewActivity.MENU BUOYS_FROM_MAP CENTER:
getBuoyData (mapView.getMapCenter ()) ;
break;

www.it-ebooks.info

http://code.google.com/android/add-ons/google-apis/mapkey.html
http://www.it-ebooks.info/

302

11.3.3

CHAPTER 11 Location, location, location

We declare the Mapview in XML and inflate it just like other View components @.
Because it’s a ViewGroup, we can also combine and attach other elements to it. We tell
the MapView to display its built-in zoom controls so the user can zoom in and out.

Next we get a MapController from the MapView. The controller allows us to pro-
grammatically zoom and move the map. When starting, we use the controller to set
the initial zoom level and animate to a specified GeoPoint @. When the user selects a
view mode from the menu, we set the mode of the map from plain to satellite or back
again @. Along with manipulating the map itself, you can retrieve data from it, such
as the coordinates of the map center.

Besides manipulating the map and getting data from it, you can draw items on top
of the map using Overlay instances.

Placing data on a map with an Overlay

The small buoy icons for the Wind and Waves application that we’ve used in several
figures up to this point draw on the screen at specified coordinates using an Overlay:.

Overlay describes an item to draw on the map. You can define your own Overlay
by extending this class or MyLocationOverlay. The MyLocationOverlay class lets you
display a user’s current location with a compass, and it has other useful features such
as a LocationListener for convenient access to position updates.

Besides showing the user’s location, you’ll often place multiple marker items on
the map. Users generally expect to see markers as pushpins. You'll create buoy mark-
ers for the location of every buoy using data you get back from the NDBC feeds.
Android provides built-in support for this with the ItemizedOverlay base class and
the OverlayItem.

OverlayItem, a simple bean, includes a title, a text snippet, a drawable marker,
coordinates defined in a GeoPoint, and a few other properties. The following listing
shows the buoy data-related BuoyOverlayItem class for Wind and Waves.

Listing 11.8 The OverlayItem subclass BuoyOverlayItem

public class BuoyOverlayItem extends OverlayItem {
public final GeoPoint point;
public final BuoyData buoyData;
public BuoyOverlayItem(GeoPoint point, BuoyData buoyData) {
super (point, buoyData.title, buoyData.dateString) ;
this.point = point;
this.buoyData = buoyData;

}

We extend OverlayItem to include all the necessary properties of an item to draw on
the map. In the constructor we call the superclass constructor with the location, the
title, and a brief snippet, and we assign additional elements our subclass instance vari-
ables. In this case, we add a BuoyData member, which is another bean with name,
water temperature, wave height, and other properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with maps 303

After you prepare the individual item class, you need a class that extends
ItemizedOverlay and uses a Collection of the items to display them on the map one
by one. The following listing, the BuoyItemizedOverlay class, shows how this works.

Listing 11.9 The BuoyItemizedOverlay class

public class BuoyItemizedOverlay Extend
extends ItemizedOverlay<BuoyOverlayItem> { ItemizedOverlay
private final List<BuoyOverlayItem> items; Include
priv§te final C?ntext contexF; . Collection of
public BuoyItemizedOverlay (List<BuoyOverlayItem> items, Oveﬂayhem
Drawable defaultMarker, Context context) {
su?erfdefaultgarker); Provide
th%s.ltems = items; drawable
this.context = context; marker
populate() ;
}
@QOverride
public BuoyOverlayItem createItem(int i) { /‘) Override
return items.get (i) ; createltem
}
@Override
protected boolean onTap(int i) { Get data to
final BuoyData bd = items.get (i) .buoyData; display
LayoutInflater inflater = LayoutInflater.from(context) ;
View bView = inflater.inflate(R.layout.buoy_ selected, null) ;
TextView title = (TextView) bView.findViewById(R.id.buoy title);
rest of view inflation omitted for brevity
new AlertDialog.Builder (context)
.setView (bView)
.setPositiveButton ("More Detail",
new DialogInterface.OnClickListener () {
public void onClick(DialogInterface di, int what) {
Intent intent =
new Intent (context, BuoyDetailActivity.class);
BuoyDetailActivity.buoyData = bd;
context.startActivity (intent) ;

1)
.setNegativeButton ("Cancel",
new DialogInterface.OnClickListener () {
public void onClick(DialogInterface di, int what) {
di.dismiss();

1)
.show () ;
return true;
}
@Override
public int size() { o Override
return items.size(); size method
}
@Override
public void draw(Canvas canvas, MapView mapView, boolean b) {

www.it-ebooks.info

http://www.it-ebooks.info/

304

CHAPTER 11 Location, location, location

super.draw(canvas, mapView, false); < Customized

, drawing

The BuoyItemizedOverlay class extends ItemizedOverlay @ and includes a
Collection of BuoyOverlayItemelements @. In the constructor, we pass the Drawable
marker to the parent class €. This marker draws on the screen in the overlay to repre-
sent each point on the map.

ItemizedOverlay takes care of many of the details you’d otherwise have to imple-
ment yourself if you made your own Overlay with multiple points drawn on it. This
includes drawing items, handling focus, and processing basic events. An Itemized-
oOverlay will invoke the onCreate () method @ for every element in the Collection
of items it holds. ItemizedOverlay also supports facilities such as onTap ©, where you
can react when the user selects a particular overlay item. In this code, we inflate some
views and display an AlertDialog with information about the respective buoy when a
BuoyOverlayItem is tapped. From the alert, the user can navigate to more detailed
information if desired.

The size () method tells ItemizedOverlay how many elements it needs to process
0. and even though we aren’t doing anything special with it in this case, there are
also methods such as onDraw () @ that you can customize to draw something beyond
the standard pushpin.

When working with a MapView, you create the Overlay instances you need and
then add them on top of the map. Wind and Waves uses a separate Thread to retrieve
the buoy data in the MapviewActivity. You can view the data-retrieval code in the
code download for this chapter. After downloading the buoy data, you send a Message
to a Handler that adds the BuoyItemizedOverlay to the MapView. The following listing
shows these details.

Listing 11.10 The Handler Wind and Waves uses to add overlays to the Mapview

private final Handler handler = new Handler () {
public void handleMessage (final Message msg) {
progressDialog.dismiss () ;
if (mapView.getOverlays () .contains (buoyOverlay)) {
mapView.getOverlays () .remove (buoyOverlay) ;
}
buoyOverlay = new BuoyItemizedOverlay (buoys,
defaultMarker,

MapViewActivity.this) ;
mapView.getOverlays () .add (buoyOverlay) ;

Y

A MapView contains a Collection of Overlay elements. We use the remove () method
to clean up any existing BuoyOverlayItem class before we create and add a new one.
This way, we reset the data instead of adding more items on top of each other.

The built-in Overlay subclasses perfectly handle our requirements. The Itemized-
Overlay and OverlayItem classes have allowed us to complete the Wind and Waves

www.it-ebooks.info

http://www.it-ebooks.info/

Converting places and addresses with Geocoder 305

application without having to make our own Overlay subclasses directly. If you need
to, Android lets you go to that level and implement your own draw (), tap (), touch(),
and other methods within your custom Overlay.

With this sample application now complete and providing you with buoy data
using a MapActivity and MapView, we need to address one final maps-related concept
that you haven’t yet encountered—geocoding.

11.4 Converting places and addresses with Geocoder

The Android documentation describes geocoding as converting a “street address or
other description of a location” into latitude and longitude coordinates. Reverse geocod-
ing is the opposite—converting latitude and longitude into an address. To accomplish
this, the Geocoder class makes a network call to a web service.

You won’t use geocoding in Wind and Waves because the ocean doesn’t contain
cities, addresses, and so on. Nevertheless, geocoding provides invaluable tools when
working with coordinates and maps. To demonstrate the concepts surrounding geo-
coding, this listing includes a new single Activity application, GeocoderExample.

Listing 11.11 A Geocoder example

Class declaration and Instance variables omitted for brevity
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
input = (EditText) findViewById(R.id.input) ;
output = (TextView) findViewById(R.id.output) ;
button = (Button) findViewById(R.id.geocode button) ;
isAddress = (CheckBox)
findViewById(R.id.checkbox_address) ;
button.setOnClickListener (new OnClickListener () {
public void onClick(final View v) {
output.setText (performGeocode (
input.getText () .toString (),
isAddress.isChecked()));

)
}

private String performGeocode (String in, boolean isAddr) {

String result = "Unable to Geocode - " + in;
if (input != null) { @ Instantiate Geocoder
Geocoder geocoder = new Geocoder (this) ; < with Context
if (isAddr) {
try {
List<Address> addresses = Get Address from
geocoder.getFromLocationName (in, 1); < location name
if (addresses != null) {

result = addresses.get(0).toString() ;

}
} catch (IOException e) {
Log.e("GeocodExample", "Error", e);

www.it-ebooks.info

http://www.it-ebooks.info/

306

CHAPTER 11 Location, location, location

}

} else {
try {
String[] coords = in.split(",");
if ((coords != null) && (coords.length == 2)) {

List<Address> addresses =
geocoder.getFromLocation (
Double.parseDouble(coords[0]),

Double.parseDouble(coords[1]), Get Address from
1); < coordinates
result = addresses.get(0).toString();

}
} catch (IOException e) {
Log.e("GeocodExample", "Error", e);

)

}

return result;

}
You create a Geocoder by constructing it with the Context of your application @. You
then use a Geocoder to either convert String instances that represent place names into
Address objects with the getFromLocationName () method ® or convert latitude and
longitude coordinates into Address objects with the getFromLocation () method @.

Figure 11.8 shows our GeocoderExample in use. In this case, we’ve converted a
String describing Wrigley Field in Chicago into
an Address object containing latitude and longi- = BRI @ 6:45Am
tude coordinates.

Geocoder provides many useful features. For
instance, if you have data that includes address
string portions, or only place descriptions, you can
easily convert them into latitude and longitude
numbers for use with GeoPoint and Overlay to
place them on the user’s map.

CAUTION As of this writing, the AVD for
API level 8 (the OS 2.2 emulator) doesn’t
properly support the geocoder. Attempts
to look up an address will result in a “Ser-
vice not Available” exception. Geocoding
does work properly on OS 2.2 devices. To
work around this problem during develop-
ment, you can use API level 7 for building
and testing your app on the emulator.

Figure 11.8 Geocoder example

R i turning a String into an Address
location- and mapping-related components of the gpject that provides latitude and

Android platform. longitude coordinates

Geocoding concludes our look at the powerful

www.it-ebooks.info

http://www.it-ebooks.info/

11.5

Summary 307

Summary

“Location, location, location,” as they say in real estate, could also be the mantra for
the future of mobile computing. Android supports readily available location informa-
tion and includes smart-mapping APIs and other location-related utilities.

In this chapter, we explored the location and mapping capabilities of the Android
platform. You built an application that acquired a LocationManager and Location-
Provider, to which you attached several LocationListener instances. You did this so
that you could keep your application informed about the current device location by
using updates delivered to your listeners. Along with the LocationListener, we also
briefly discussed several other ways to get location updates from the Android platform.

After we covered location-awareness basics, we showed you how to add information
from a unique data source, the National Data Buoy Center, to provide a draggable,
zoomable, interactive map. To build the map you used a MapActivity, along with
MapView and MapController. These classes make it fairly easy to set up and display
maps. Once you had your MapView in place, you created an ItemizedOverlay to
include points of interest, using individual OverlayItem elements. From the individ-
ual points, in this case buoys, you linked into another Activity class to display more
detailed information, thereby demonstrating how to go from the map to any other
kind of Activity and back.

Our water-based sample application didn’t include the important mapping feature
of converting from an address into a latitude and longitude and vice versa. To demon-
strate this capability, we showed you how to build a separate small sample and dis-
cussed usage of the Geocoder class.

With our exploration of the mapping capabilities of Android complete, including
a fully functional sample application that combines mapping with many other
Android tenets we’ve previously explored, we’ll move into a new stage of the book. In
the next few chapters, we’ll explore complete nontrivial applications that bring
together intents, activities, data storage, networking, and more.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Android applications

A s you learned in part 2, the Android platform is capable of enabling rich
applications in many genres and vertical industries. The goal of part 3 is to inte-
grate many of the lessons of part 2 on a larger scale and spur you on to explore
the platform in greater depth than simply using the Android SDK.

In chapter 12, we take a detailed look at the requirements of a field service
application. We next map those requirements on a practical application that
could be adapted for many industries. The application includes multiple UI ele-
ments, server communications, and detecting touch-screen events for capturing
and uploading a signature.

In chapter 13, we move on to a deeper examination of the Android/Linux
relationship by writing native C applications for Android and connecting to
Android core libraries such as SQLite and TCP socket communications.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Android to work
i a freld service application

This chapter covers

Designing a real-world Android application
Mapping out the application flow

Writing application source code

Downloading, data parsing, and signature capture
Uploading data to a server

Now that we’ve introduced and examined Android and some of its core technolo-
gies, it’s time to put together a more comprehensive application. Exercising APIs
can be informative, educational, and even fun for a while, but at some point a plat-
form must demonstrate its worth via an application that can be used outside of the
ivory tower—and that’s what this chapter is all about. In this chapter, we systemati-
cally design, code, and test an Android application to aid a team of field service
technicians in performing their job. The application syncs XML data with an inter-
net-hosted server, presents data to the user via intuitive user interfaces, links to
Google Maps, and concludes by collecting customer signatures via Android’s touch
screen. Many of the APIs introduced earlier are exercised here, demonstrating the
power and versatility of the Android platform.

311

www.it-ebooks.info

http://www.it-ebooks.info/

312

12.1

CHAPTER 12 Putting Android to work in a field service application

In addition to an in-depth Android application, this chapter’s sample application
works with a custom website application that manages data for use by a mobile worker.
This serverside code is presented briefly toward the end of the chapter. All of the
source code for the server-side application is available for download from the book’s
companion website.

If this example is going to represent a useful real-world application, we need to put
some flesh on it. Beyond helping you understand the application, this definition pro-
cess will get you thinking about the kinds of impact a mobile application can have on
our economy. This chapter’s sample application is called a field service application. A
pretty generic name perhaps, but it’ll prove to be an ample vehicle for demonstrating
key elements required in mobile applications, as well as demonstrating the power of
the Android platform for building useful applications quickly.

Our application’s target user is a fleet technician who works for a national firm
that makes its services available to a number of contracted customers. One day our
technician, who we’ll call a mobile worker, is replacing a hard drive in the computer at
the local fastfood restaurant, and the next day he may be installing a memory
upgrade in a piece of pick-and-place machinery at a telephone system manufacturer.
If you’ve ever had a piece of equipment serviced at your home or office and thought
the technician’s uniform didn’t really match the job he was doing, you’ve experienced
this kind of service arrangement. This kind of technician is often referred to as hands
and feet. He has basic mechanical or computer skills and is able to follow directions
reliably, often guided by the manufacturer of the equipment being serviced at the
time. Thanks to workers like these, companies can extend their reach to a much
broader geography than internal staffing levels would ever allow. For example, a small
manufacturer of retail music-sampling equipment might contract with such a firm to
provide tech support to retail locations across the country.

Because of our hypothetical technician’s varied schedule and lack of experience
on a particular piece of equipment, it’s important to equip him with as much relevant
and timely information as possible. But he can’t be burdened with thick reference
manuals or specialized tools. So, with a toolbox containing a few hand tools and of
course an Android-equipped device, our fearless hero is counting on us to provide an
application that enables him to do his job. And remember, this is the person who
restores the ice cream machine to operation at the local Dairy Barn, or perhaps fixes
the farm equipment’s computer controller so the cows get milked on time. You never
know where a computer will be found in today’s world!

If built well, this application can enable the efficient delivery of service to custom-
ers in many industries, where we live, work, and play. Let’s get started and see what
this application must be able to accomplish and how Android steps up to the task.

Designing a real-world Android application

We’ve established that our mobile worker will be carrying two things: a set of hand
tools and an Android device. Fortunately, in this book we’re not concerned with the
applicability of the hand tools in his toolbox, leaving us free to focus on the

www.it-ebooks.info

http://www.it-ebooks.info/

12.1.1

Designing a real-world Android application 313

capabilities and features of a field service application running on the Android plat-
form. In this section, we define the basic and high-level application requirements.

Core requirements of the application

Before diving into the bits and bytes of data requirements and application features,
it’s helpful to enumerate some basic requirements and assumptions about our field
service application. Here are a few items that come to mind for such an application:

= The mobile worker is dispatched by a home office/dispatching authority,
which takes care of prioritizing and distributing job orders to the appropriate
technician.

= The mobile worker is carrying an Android device, which has full data service—a
device capable of browsing rich web content. The application needs to access
the internet for data transfer as well.

= The home office dispatch system and the mobile worker share data via a wire-
less internet connection on an Android device; a laptop computer isn’t neces-
sary or even desired.

= A business requirement is the proof of completion of work, most readily accom-
plished with the capture of a customer’s signature. Of course, an electronic sig-
nature is preferred.

= The home office wants to receive job completion information as soon as possi-
ble, as this accelerates the invoicing process, which improves cash flow.

= The mobile worker is also eager to perform as many jobs as possible, because
he’s paid by the job, not by the hour, so getting access to new job information as
quickly as possible is a benefit to him.

= The mobile worker needs information resources in the field and can use as
much information as possible about the problem he’s being asked to resolve.
The mobile worker may have to place orders for replacement parts while in the
field.

= The mobile worker will require navigation assistance, as he’s likely covering a
rather large geographic area.

= The mobile worker needs an intuitive application—one that’s simple to use
with a minimum number of requirements.

There are likely additional requirements for such an application, but this list is ade-
quate for our purposes. One of the most glaring omissions from our list is security.
Security in this kind of an application comes down to two fundamental aspects.
The first is physical security of the Android device. Our assumption is that the device
itself is locked and only the authorized worker is using it. A bit naive perhaps, but
there are more important topics we need to cover in this chapter. If this bothers you,
just assume there’s a sign-in screen with a password field that pops up at the most
inconvenient times, forcing you to tap in your password on a small keypad. Feel better
now? The second security topic is the secure transmission of data between the

www.it-ebooks.info

http://www.it-ebooks.info/

314

12.1.2

CHAPTER 12 Putting Android to work in a field service application

Android device and the dispatcher. This is most readily accomplished through the use
of a Secure Sockets Layer (SSL) connection whenever required.

The next step in defining this application is to examine the data flows and discuss
the kind of information that must be captured to satisfy the functional requirements.

Managing the data

Throughout this chapter, the term job refers to a specific task or event that our mobile
worker engages in. For example, a request to replace a hard drive in a computer at the
bookstore is a job. A request to upgrade the firmware in the fuel-injection system at
the refinery is likewise a job. The home office dispatches one or more jobs to the
mobile worker on a regular basis. Certain data elements in the job are helpful to the
mobile worker to accomplish his goal of completing the job. This information comes
from the home office. Where the home office gets this information isn’t our concern
for this application.

In this chapter’s sample application, there are only two pieces of information the
mobile worker is responsible for submitting to the dispatcher:

= The mobile worker communicates to the home office that a job has been closed,
or completed.

= The mobile worker collects an electronic signature from the customer, acknowl-
edging that the job has, in fact, been completed.

Figure 12.1 depicts these data flows.

Of course, additional pieces of information exist that may be helpful here, such as
the customer’s phone number, the anticipated duration of the job, replacement parts
required in the repair (including tracking numbers), any observations about the con-
dition of related equipment, and much more. Although important to a real-world
application, these pieces of information are extraneous to the goals of this chapter and
are left as an exercise for you to extend the application for your own learning and use.

The next objective is to determine how data is stored and transported.

Home office/dispatcher Mobile worker
List of jobs sent to a ||
specific mobile worker » »

Each job contains

Job id

Customer name
Address

City, State, Zip

Product needing repair

URL to product information

Figure 12.1

Data flows between
the home office and
a mobile worker

Comments

Job status (updated by mobile)
Signature (updated by mobile)

[N

www.it-ebooks.info

http://www.it-ebooks.info/

Designing a real-world Android application 315

12.1.3 Application architecture and integration

Now that you know which entities are responsible for the relevant data elements, and
in which direction they flow, let’s look at how the data is stored and exchanged. You’ll
be deep into code before too long, but for now we’ll focus on the available options
and continue to examine things from a requirements perspective, building to a pro-
posed architecture.

At the home office, the dispatcher must manage data for multiple mobile workers.
The best tool for this purpose is a relational database. The options here are numer-
ous, but we’ll make the simple decision to use MySQL, a popular open source data-
base. Not only are there multiple mobile workers, but the organization we’re building
this application for is quite spread out, with employees in multiple markets and time
zones. Because of the nature of the dispatching team, it’s been decided to host the
MySQL database in a data center, where it’s accessed via a browser-based application.
For this sample application, the dispatcher system is supersimple and written in PHP.!

Data storage requirements on the mobile device are modest. At any point, a given
mobile worker may have only a half-dozen or so assigned jobs. Jobs may be assigned at
any time, so the mobile worker is encouraged to refresh the list of jobs periodically.
Although you learned about how to use SQLite in chapter 5, we have little need for
sharing data between multiple applications and don’t need to build a Content-
Provider, so we’ve decided to use an XML file stored on the filesystem to serve as a
persistent store of our assigned job list.

The field service application uses HTTP to exchange data with the home office.
Again, we use PHP to build the transactions for exchanging data. Though more com-
plex and sophisticated protocols can be employed, such as SOAP, this application sim-
ply requests an XML file of assigned jobs and submits an image file representing the
captured signature. In fact, SOAP is simple in name only and should be avoided. A
better solution that’s coming on strong in the mobile and web space is the JSON for-
mat. This architecture is depicted in figure 12.2.

The last item to discuss before diving into the code is configuration. Every mobile
worker needs to be identified uniquely. This way, the field service application can
retrieve the correct job list, and the dispatchers can assign jobs to workers in the field.
Similarly, the mobile application may need to communicate with different servers,
depending on locale. A mobile worker in the United States might use a server located
in Chicago, but a worker in the United Kingdom may need to use a server in Cam-
bridge. Because of these requirements, we’ve decided that both the mobile worker’s
identifier and the server address need to be readily accessed within the application.
Remember, these fields would likely be secured in a deployed application, but for our
purposes they’re easy to access and not secured.

See Manning’s PHP in Action for details on PHP development: www.manning.com/reiersol/.

www.it-ebooks.info

http://www.manning.com/reiersol/
http://www.it-ebooks.info/

316

12.2

12.2.1

CHAPTER 12 Putting Android to work in a field service application

3
WWW Server
MySQL (Apache or IIS)
with PHP

A getjoblistphp | «g
o closejob.php -«

| Dispatch functions

Figure 12.2 The field service application and

Distributed dispatchers dispatchers both leverage server-side transactions.

We’ve identified the functional requirements, defined the data elements necessary to
satisfy those objectives, and selected the preferred deployment platform. The next sec-
tion examines the high-level solution to the application’s requirements.

Mapping out the application flow

Have you ever downloaded an application’s source code, excited to get access to all
that code, but found it overwhelming to navigate? You want to make your own
changes, to put your own spin on the code, but you unzip the file into all the various
subdirectories, and you don’t know where to start. Before we jump directly into exam-
ining the source code, we need to pay attention to the architecture, in particular the
flow from one screen to the next.

Mapping out the field service application

In this section, we’ll examine the application flow to better understand the relation
among the application’s functionality, the UI, and the classes used to deliver this func-
tionality. Doing this process up-front helps ensure that the application delivers the
needed functionality and assists in defining which classes we require when it comes
time to start coding (which is soon)! Figure 12.3 shows the relation between the high-
level classes in the application, which are implemented as an Android Activity, as
well as interaction with other services available in Android.
Here’s the procession of steps in the application:

1 The application is selected from the application launch screen on the Android
device.

2 The application splash screen displays. Why? Some applications require setup
time to get data structures initialized. As a practical matter, such time-
consuming behavior is discouraged on a mobile device, but it’s an important
aspect to application design, so we include it in this sample application.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping out the application flow 317

- Splash screen
Appl | h
\
Main screen 83
(FieldService Activity)
#4 #6 L 7 #5
Refresh jobs Manage jobs Settings
(RefreshJobs Activity) (ManagelJobs Activity) (ShowsSettings Activity)
#7 l
Show job details
(ShowlJob Activity)
#8 #9 #10 #11
Map job location Look up product info No T e——
(Launch Google Maps) (Launch browser) Job closed? (CloseJob Activity)
#12

Display signature Figure 12.3 This figure
(Launch browser) depicts the basic flow of the
field service application.

3 The main screen displays the currently configured user and server settings,
along with three easy-to-hit-with-your-finger buttons.

4 The Refresh Jobs button initiates a download procedure to fetch the currently
available jobs for this mobile worker from the configured server. The download
includes a ProgressDialog, which we discuss in section 12.3.5.

5 The Settings button brings up a screen that allows you to configure the user
and server settings.

6 Selecting Manage Jobs lets our mobile worker review the available jobs assigned
to him and proceed with further steps specific to a chosen job.

7 Selecting a job from the list of jobs on the Manage Jobs screen brings up the
Show Job Details screen with the specific job information listed. This screen lists
the available information about the job and presents three additional buttons.

8 The Map Job Location button initiates a geo query on the device using an
Intent. The default handler for this Intent is the Maps application.

9 Because our mobile worker may not know much about the product he’s being
asked to service, each job includes a product information URL. Clicking this
button brings up the built-in browser and takes the mobile worker to a (hope-
fully) helpful internet resource. This resource may be an online manual or an
instructional video.

www.it-ebooks.info

http://www.it-ebooks.info/

318

12.2.2

10

11

12

CHAPTER 12 Putting Android to work in a field service application

The behavior of the third button depends on the current status of the job. If
the job is still marked OPEN, this button is used to initiate the closeout or com-
pletion of this job.

When the close procedure is selected, the application presents an empty canvas
upon which the customer can take the stylus (assuming a touch screen—capable
Android device) and sign that the work is complete. A menu on that screen
presents two options: Sign & Close and Cancel. If the user selects Sign & Close
option, the application submits the signature as a JPEG image to the server, and
the server marks the job as CLOSED. In addition, the local copy of the job is
marked as CLOSED. The Cancel button causes the Show Job Details screen to be
restored.

If the job being viewed has already been closed, the browser window is opened
to a page displaying the previously captured signature.

Now that you have a feel for what the requirements are and how you’re going to tackle
the problem from a functionality and application-flow perspective, let’s examine the

code that delivers this functionality.

List of source files

The source code for this application consists of 12 Java source files, one of which is the
R.java file, which you’ll recall is automatically generated based on the resources in the
application. This section presents a quick introduction to each of these files. We won’t

explain any code yet; we want you to know a bit about each file, and then it’ll be time

to jump into the application, step by step. Table 12.1 lists the source files in the
Android field service application.

Table 12.1 Source files used to implement the field service application

Source filename Description

Splash.java Activity provides splash screen functionality.

ShowSettings.java Activity provides management of the username and server URL address.

FieldService.java Activity provides the main screen of the application.

RefreshJobs.java Activity interacts with the server to obtain an updated list of jobs.
ManageJobs.java Activity provides access to the list of jobs.

ShowJob.java Activity provides detailed information on a specific job, such as an address

lookup, or initiates the signature-capture process.

CloseJob.java Activity collects an electronic signature and interacts with the server to

upload images and mark jobs as CLOSED.

R.java Automatically generated source file representing identifiers in the resources.
Prefs.java Helper class encapsulating SharedPreferences.
JobEntry.java Class that represents a job. Includes helpful methods used when passing

JobEntry objects from one Activity to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping out the application flow 319

Table 12.1 Source files used to implement the field service application (continued)

Source filename Description

JobList.java Class representing the complete list of JobEntry objects. Includes methods
for marshaling and unmarshaling to nonvolatile storage.

JobListHandler.java Class used for parsing the XML document containing job data.

The application also relies on layout resources to define the visual aspect of the UL
In addition to the layout XML files, an image used by the Splash Activity is placed
in the drawable subfolder of the res folder along with the stock Android icon image.
This icon is used for the home application launch screen. Figure 12.4 depicts the
resources used in the application.

In an effort to make navigating the code- as | g - |
easy as possible, table 2.2 shows the field service = & (= drawable
application resource files. Note that each is % andraidijpg
@ icon.png

clearly seen in figure 12.4, which is a screen-
shot from our project open in Eclipse.

= = layout
X fieldservice, xml
Examining the source files in this applica- X managejobs.xmi
- |X] refreshjobs.xml
Al
X
1]

tion tells us that we have more than one .
showjob. xml
Activity in use. To enable navigation between %] showsettings.xml
i | splash,xml
== values
\X] strings.xmi

one Activity and the next, our application
must inform Android of the existence of these
Activity classes. Recall from chapter 1 that
this registration step is accomplished with the Figure12.4 Resource files used in the
AndroidManifest.xml file. sample application

Table 12.2 Resource files used in the sample application

Filename Description

android.jpg Image used in the Splash Activity.

icon.jpg Image used in the application launcher.

fieldservice.xml Layout for the main application screen, FieldService Activity.

managejobs.xml Layout for the list of jobs, ManageJobs Activity.

refreshjobs.xml Layout for the screen shown when refreshing the job list, RefreshJobs
Activity.

showjob.xml Layout for the job detail screen, ShowJob Activity.

showsettings.xml Layout for the configuration/settings screen, ShowSettings Activity.

splash.xml Layout for the splash screen, Splash Activity.

strings.xml Strings file containing extracted strings. Ideally, all text is contained in a
strings file for ease of localization. This application’s file contains only the
application title.

www.it-ebooks.info

http://www.it-ebooks.info/

320

12.2.3

12.3

12.3.1

CHAPTER 12 Putting Android to work in a field service application

Field service application’s AndroidManifest.xml

Every Android application requires a manifest file to let Android properly “wire things
up” when an Intent is handled and needs to be dispatched. Take a look at the
AndroidManifest.xml file used by our application, shown in the following listing.

Listing 12.1 The field service application’s AndroidManifest.xml file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.msi.manning.UnlockingAndroid">

<application android:icon="@drawable/icon"> Entry point, Intent filter
<activity android:name=".Splash" SPI.as_h for main
android:label="@string/app_name"> < Activity @qpfher
<intent-filter> | visibility

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<activity android:name=".FieldService" >
</activity>
<activity android:name=".RefreshJobs" >
</aCFlYltY> . Application’s
<act1Yle android:name=".ManageJobs" > defined
</activity> Activity list
<activity android:name=".ShowJob" >
</activity>
<activity android:name=".CloseJob" >
</activity>
<activity android:name=".ShowSettings" >
</activity>
</application> Required
<uses-sdk android:minSdkVersion="6"/> permission
<uses-permission android:name="android.permission.INTERNET"> for internet
</uses-permission> ~| access

</manifest>

Application source code

After a rather long introduction, it’s time to look at the source code for the field ser-
vice application. The approach is to follow the application flow, step by step. Let’s start
with the splash screen. In this portion of the chapter, we work through each of the
application’s source files, starting with the splash screen and moving on to each subse-
quent Activity of the application.

Splash Activity

We’re all familiar with a splash screen for a software application. It acts like a curtain
while important things are taking place behind the scenes. Ordinarily, splash screens
are visible until the application is ready—this could be a brief amount of time or
much longer when a bit of housekeeping is necessary. As a rule, a mobile application
should focus on economy and strive to consume as few resources as possible. The
splash screen in this sample application is meant to demonstrate how such a feature

www.it-ebooks.info

http://www.it-ebooks.info/

Application source code 321

may be constructed—we don’t need one for housekeeping purposes. But that’s okay;
you can learn in the process. Two code snippets are of interest to us: the implementa-
tion of the Activity as well as the layout file that defines what the UI looks like. First,
examine the layout file in the following listing.

Listing 12.2 splash.xml, defining the layout of the application’s splash screen

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
> Full screen
<ImageView ImageView
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:scaleType="fitCenter" t) Image
android:src="@drawable/android" | reference
/>

</LinearLayout>

The splash.xml layout contains a single Imageview @), set to fill the entire screen.
The source image for this view is defined as the drawable resource ®, named
android. Note that this is simply the name of the file (minus the file extension) in
the drawable folder, as shown earlier.

Now you must use this layout in an Activity. Aside from the referencing of an
image resource from the layout, this part is not that interesting. Figure 12.5 shows the
splash screen running on the Android Emulator.

Of interest to us is the code that creates the splash page functionality, shown in
the following listing.

Listing 12.3 Splash.java, which implements the splash screen functionality

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class Splash extends Activity {

@Override
public void onCreate(Bundle icicle) {
super.onCreate (icicle) ; Se{up.
setContentView (R.layout.splash) ; main View
Handler x = new Handler(); @ Define and
x.postDelayed (new SplashHandler (), 2000); set up Handler
}
claés Sp:!.ashHandler implements Runnable { Start application’s 9
public void run() { mahlAcﬁvny
startActivity(
new Intent (getApplication(),FieldService.class)); QJ
Splash.this.finish(); 42) Kﬂlsphsh
} screen

www.it-ebooks.info

http://www.it-ebooks.info/

322

12.3.2

CHAPTER 12 Putting Android to work in a field service application

As with most Activity classes in Android, we
want to associate the splash layout with this
Activity’s View @. A Handler is set up ®, which
is used to close down the splash screen after an
elapsed period of time. Note that the arguments
to the postDelayed () method are an instance of
a class that implements the Runnable interface
and the desired elapsed time in milliseconds. In
this snippet of code, the screen will be shown for
2,000 milliseconds, or 2 seconds. After the indi-
cated amount of time has elapsed, the class
splashhandler is invoked. The FieldService
Activity is instantiated with a call to start-
Activity() €. Note that an Intent isn’t used
here—we explicitly specify which class is going to
satisfy our request. Once we’ve started the next
Activity, it’s time to get rid of the splash screen
Activity @.

The splash screen is happily entertaining our
mobile worker each time he starts the applica-
tion. Let’s move on to the main screen of the
application.

Preferences used by the FieldService Activity

& Aredroid Emulator

| @ g Dz3AM|

Unlocking Android

Figure 12.5 The splash screen

The goal of the FieldService Activity is to put the functions the mobile worker
requires directly in front of him and make sure they’re easy to access. A good mobile
application is often one that can be used with one hand, such as using the five-way nav-
igation buttons, or in some cases a thumb tapping on a button. In addition, if there’s

helpful information to display, you shouldn’t hide it. It’s helpful for our mobile worker
to know that he’s configured to obtain jobs from a particular server. Figure 12.6 dem-
onstrates the field service application conveying an easy-to-use home screen.

Before reviewing the code in FieldService. java, let’s take a break to discuss how the

user and server settings are managed. This is important

because these settings are used throughout the applica-
tion, and as shown in the fieldservice.xml layout file, we SRt S

need to access those values to display to our mobile

worker on the home screen.

TNl @ 10:43Pm

As you learned in chapter 5, there are a number of Manage Jobs

means for managing data. Because we need to persist _

this data across multiple invocations of our application,

settings

the data must be stored in a nonvolatile fashion. This

application employs private SharedPreferences to

www.it-ebooks.info

Figure 12.6 The home screen.
Less is more.

http://www.it-ebooks.info/

Application source code 323

accomplish this. Why? Despite the fact that we’re largely ignoring security for this sam-
ple application, using private SharedPreferences means that other applications can’t
casually access this potentially important data. For example, we presently use only an
identifier (let’s call it an email address for simplicity) and a server URL in this applica-
tion. But we might also include a password or a PIN in a production-ready application,
so keeping this data private is a good practice.

The Prefs class can be described as a helper or wrapper class. This class wraps the
SharedPreferences code and exposes simple getter and setter methods, specific to
this application. This implementation knows something about what we’re trying to
accomplish, so it adds value with some default values as well. Let’s look at the follow-
ing listing to see how our Prefs class is implemented.

Listing 12.4 Prefs class

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class Prefs {

private SharedpPreferences _prefs = null; <@ SharedPreferences object
private Editor _editor = null; < I
) ; , mplement
private String _useremailaddress = "Unknown"; Handler
private String _serverurl =
"http://androidl2.msi-wireless.com/getjoblist.php"; < Default
public Prefs(Context context) { < values
_prefs = context.getSharedPreferences (
"PREFS_PRIVATE", Initialize
Context .MODE_PRIVATE) ; SharedPreferences

_editor = _prefs.edit();
}

public String getValue(String key, String defaultvalue) { <
if (_prefs == null) return "Unknown"; .
return _prefs.getString(key,defaultvalue) ; Generic
) set/get
public void setValue(String key, String value) { methods
if (_editor == null) return;
_editor.putString (key,value) ;
} @ Extract
public String getEmail () { | email value
if (_prefs == null) return "Unknown";

_useremailaddress = _prefs.getString("emailaddress", "Unknown") ;
return _useremailaddress;
}
public void setEmail (String newemail) {
if (_editor == null) return;
_editor.putString("emailaddress",newemail) ;

. Set email
value

}

(abbreviated for brevity)

public void save () { <
if (_editor == null) return;

_editor.commit () ;

}

Save
@ preferences

www.it-ebooks.info

http://www.it-ebooks.info/

324

12.3.3

CHAPTER 12 Putting Android to work in a field service application

To persist the application’s settings data, we employ a SharedPreferences object @.
To manipulate data within the SharedPreferences object, here named _prefs, you
use an instance of the Editor class @. This snippet employs some default settings val-
ues @), which are appropriate for this application. The Prefs () constructor O does
the necessary housekeeping so we can establish our private SharedPreferences
object, including using a passed-in Context instance. The Context class is necessary
because the SharedPreferences mechanism relies on a Context for segregating data.
This snippet shows a pair of set and get methods that are generic in nature @. The
getEmail () @ and setEmail () methods @ are responsible for manipulating the
email setting value. The save () method © invokes a commit () on the Editor, which
persists the data to the SharedPreferences store.

Now that you have a feel for how this important preference data is stored, let’s
return to examine the code of FieldService java.

Implementing the FieldService Activity

Recall that the FieldServicejava file implements the FieldService class, which is
essentially the home screen of our application. This code does the primary dispatch-
ing for the application. Many of the programming techniques in this file have been
shown earlier in the book, but please note the use of the startActivityForResult ()
and onActivityResult () methods as you read through the code shown in the follow-
ing listing.

Listing 12.5 FieldService.java, which implements the FieldService Activity

package com.msi.manning.UnlockingAndroid;

// multiple imports trimmed for brevity, see full source code

public class FieldService extends Activity {
final int ACTIVITY_ REFRESHJOBS = 1;
final int ACTIVITY_ LISTJOBS =

2 Useful constants
final int ACTIVITY_SETTINGS = 3;

Prefs myprefs = null; <@ Prefs instance
@Override
public void onCreate (Bundle icicle) { .
super.onCreate (icicle); J Set up Ul 0 :::,setf:ntlate
setContentView (R.layout.fieldservice) ; < AJ instance
myprefs = new Prefs(this.getApplicationContext()); <
RefreshUserInfo(); < Initiate Ul field contents
final Button refreshjobsbutton = <
(Button) findvViewById(R.id.getjobs) ;
refreshjobsbutton.setOnClickListener (new Button.OnClickListener () {
public void onClick (View v) { Connect
try { o button to Ul
startActivityForResult (new
Intent (v.getContext (),RefreshdJobs.class) ,ACTIVITY REFRESHJOBS) ; 4

} catch (Exception e) {
}
}

})

// see full source comments

www.it-ebooks.info

http://www.it-ebooks.info/

Application source code 325

}

@Override
protected void onActivityResult (int requestCode, int resultCode, Intent
data) { <
switch (requestCode) {
case ACTIVITY_REFRESHJOBS: onActivityResuIt
break; (4] processing
case ACTIVITY_LISTJOBS:
break;
case ACTIVITY_SETTINGS:
RefreshUserInfo() ; <
break;
}
}
private void RefreshUserInfo() { < G’ RefreshUserInfo
try {
final TextView emaillabel = (TextView)
findviewById(R.id.emailaddresslabel) ;
emaillabel.setText ("User: " + myprefs.getEmail() + "\nServer: " +

myprefs.getServer () + "\n");
} catch (Exception e) {

}

}

This code implements a simple UI that displays three distinct buttons. As each is
selected, a particular Activity is started in a synchronous, call/return fashion. The
Activity is started with a call to startActivityForResult() €. When the called
Activity is complete, the results are returned to the FieldService Activity via the
onActivityResult () method @. An instance of the Prefs class @, @ is used to
obtain values for displaying in the Ul Updating the Ul is accomplished in the method
RefreshUserInfo() @.

Because the settings are so important to this
application, the next section covers the management

B Rl @ 10:43pm

Unlocking Android

of the user and server values.

12.3.4 Settings | fableson@msiservices.com

When the user clicks the Settings button on the main jEESEEE

application screen, an Activity is started that allows il Rl
the user to configure her user ID (email address) Save Settings
and the server URL. The screen layout is basic (see

listing 12.6). It’s shown graphically in figure 12.7. Figure 12.7 Settings screen in use

Listing 12.6 showsettings.xml, which contains Ul elements for the settings screen

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

www.it-ebooks.info

http://www.it-ebooks.info/

326 CHAPTER 12 Putting Android to work in a field service application

S TextView for
display of labels

<TextView <+
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Email Address"

/>
<EditText EditView for
android:id="@+id/emailaddress" - | entry of data

android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:autoText="true" i
/> TextView for

_ display of labels

<TextView <
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Server URL"

/>

<EditText EditView for
android:id="@+id/serverurl" < entry of data
android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:autoText="true" .
/> Button to initiate
<Button android:id="@+id/settingssave" - | saving data

android:text="Save Settings"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:enabled="true"
/>

</LinearLayout>

The source code behind the settings screen is also basic. Note the use of the
PopulateScreen() method, which makes sure the EditView controls are populated

with the current values stored in the SharedPreferences. Note also the use of the
Prefs helper class to retrieve and save the values, as shown in the following listing.

Listing 12.7 ShowSettings.java, which implements code behind the settings screen

package com.msi.manning.UnlockingAndroid;
// multiple imports trimmed for brevity, see full source code
public class ShowSettings extends Activity ({

Prefs myprefs = null;

@Override

public void onCreate(Bundle icicle) { Initialize
super.onCreate(icicle); Prefs instance
setContentView (R.layout.showsettings) ;
myprefs = new Prefs(this.getApplicationContext()); Populate Ul
PopulateScreen() ; < elements
final Button savebutton = (Button) findViewById(R.id.settingssave);
savebutton.setOnClickListener (new Button.OnClickListener () {
public void onClick(View v) {

try {

final EditText email=

www.it-ebooks.info

http://www.it-ebooks.info/

12.3.5

Application source code 327

(EditText) findViewById(R.id.emailaddress) ; 4
if (email.getText().length() == 0) {
// display dialog, see full source code Connect
return; EditText
} to Ul
final EditText serverurl =
(EditText) findViewById (R.id.serverurl) ; <
if (serverurl.getText().length() == 0) {
// display dialog, see full source code
return;
}
myprefs.setEmail (email.getText ().toString()); @) Store and
myprefs.setServer (serverurl.getText () .toString()); save
myprefs.save() ; seuhgs
}szi:;(ﬁéxception e) { ~__ Finish this
} © Activity
}
)i
} @ PopulateScreen
private void PopulateScreen() { 4 method sets up Ul
try {
final EditText emailfield = (EditText) findvViewById(R.id.emailaddress) ;
final EditText serverurlfield = (EditText)findViewById(R.id.serverurl) ;

emailfield.setText (myprefs.getEmail()) ;

serverurlfield.setText (myprefs.getServer());

} catch Exception e) {

}

}

}
This Activity commences by initializing the SharedPreferences instance @, which
retrieves the setting’s values and subsequently populates the UI elements @ by calling
the application-defined PopulateScreen () method @. When the user clicks the Save
Settings button, the onClick() method is invoked, wherein the data is extracted from
the UI elements € and put back into the Prefs instance O. A call to the finish()
method @ ends this Activity.

Once the settings are in order, it’s time to focus on the core of the application:
managing jobs for our mobile worker. To get the most out the higherlevel functional-
ity of downloading (refreshing) and managing jobs, let’s examine the core data struc-
tures in use in this application.

Managing job data

Data structures represent a key element of any software project and, in particular,
projects consisting of multiple tiers, such as our field service application. Job data is
exchanged between an Android application and the server, so the elements of the job
are central to our application. In Java, you implement these data structures as classes,
which include helpful methods in addition to the data elements. XML data shows up
in many locations in this application, so let’s start there.

www.it-ebooks.info

http://www.it-ebooks.info/

328

CHAPTER 12 Putting Android to work in a field service application

The following listing shows a sample XML document containing a joblist with a
single job entry.

Listing 12.8 XML document containing data for the field service application

<?xml version="1.0" encoding="UTF-8" ?>

<joblist>

<job>

<id>22</id>

<status>OPEN</status>

<customer>Big Tristan's Imports</customer>

<address>2200 East Cedar Ave</address>
<city>Flagstaff</city>

<state>AZ</state>

<zip>86004</zip>

<product>UnwiredTools UTCIS-PT</product>
<producturl>http://unwiredtools.com</producturl>
<comments>Requires tuning - too rich in the mid range RPM.
Download software from website before visiting.</comments>
</job>

</joblist>

Now that you have a feel for what the job data looks like, we’ll show you how the data
is handled in our Java classes.

JOBENTRY

The individual job is used throughout the application, and therefore it’s essential that
you understand it. In our application, we define the JobEntry class to manage the indi-
vidual job, as shown in listing 12.9. Note that many of the lines are omitted from this list-
ing for brevity; please see the available source code for the complete code listing.

Listing 12.9 JobEntry.java

package com.msi.manning.UnlockingAndroid; Bundle class
import android.os.Bundle; "“POH
public class JobEntry {
private String _jobid=""; < Each member
private String _status = ""; i) isastﬁng
// members omitted for brevity

private String _producturl = "";

private String _comments = "";

JobEntry () {

}

// get/set methods omitted for brevity toString

public String toString() { method

return this._jobid + ": " + this._customer + ": " + this._product;

}

publl? Str}ng toXMLString () F . toXMLStﬁng
StringBuilder sb = new StringBuilder(""); method

sb.append ("<job>") ;

sb.append("<id>" + this._jobid + "</id>");
sb.append("<status>" + this._status + "</status>");
sb.append ("<customer>" + this._customer + "</customer>");

www.it-ebooks.info

http://www.it-ebooks.info/

Application source code 329

sb.append ("<address>" + this._address + "</address>");
sb.append("<city>" + this._city + "</city>");
sb.append("<state>" + this._state + "</state>");
sb.append("<zip>" + this._zip + "</zip>");
(
(
(
(

sb.append ("<product>" + this._product + "</product>");
"<producturl>" + this._producturl + "</producturl>");
"<comments>" + this._comments + "</comments>");

sb.append
sb.append
sb.append("</job>") ;
return sb.toString() + "\n";
} toBundle
public Bundle toBundle() { < method
Bundle b = new Bundle() ;
b.putString("jobid", this._jobid);
b.putString("status", this._status);
// assignments omitted for brevity
b.putString ("producturl", this._producturl) ;

b.putString ("comments", this._comments) ;

return b;
} fromBundle
public static JobEntry fromBundle (Bundle b) { < method

JobEntry je = new JobEntry () ;

je.set_jobid(b.getString("jobid")) ;

je.set_status(b.getString("status")) ;

// assignments omitted for brevity

je.set_producturl (b.getString ("producturl")) ;

je.set_comments (b.getString ("comments")) ;

return je;
}
}
This application relies heavily on the Bundle class @ for moving data from one
Activity to another. (We’ll explain this in more detail later in this chapter.) A String
member @ exists for each element in the job, such as jobid or customer. The
toString () method @ is rather important, as it’s used when displaying jobs in the
ManageJobs Activity (also discussed later in the chapter). The toXMLString()
method @ generates an XML representation of this JobEntry, complying with the job
element defined in the previously presented DTD. The toBundle () method @ takes
the data members of the JobEntry class and packages them into a Bundle. This
Bundle is then able to be passed between activities, carrying with it the required data
elements. The fromBundle () static method @ returns a JobEntry when provided with
a Bundle. toBundle() and fromBundle() work together to assist in the passing of
JobEntry objects (at least the data portion thereof) between activities. Note that this is
one of many ways in which to move data throughout an application. Another method,
as an example, is to have a globally accessible class instance to store data.

Now that you understand the JobEntry class, we’ll move on to the JobList class,
which is a class used to manage a collection of JobEntry objects.

JOBLIST
When interacting with the server or presenting the available jobs to manage on the
Android device, the field service application works with an instance of the JobList

www.it-ebooks.info

http://www.it-ebooks.info/

330

CHAPTER 12 Putting Android to work in a field service application

class. This class, like the JobEntry class, has both data members and helpful methods.
The JobList class contains a typed List data member, which is implemented using a
Vector. This is the only data member of this class, as shown in the following listing.

Listing 12.10 JoblList.java

package com.msi.manning.UnlockingAndroid; List class
import java.util.List; imported for Vector
?mport org.x@l.saﬁ.lnputSource; InmRSoune
import android.util.Log; < imponed

. i
//bigdltional 1Ep?rts ?mltted for brevity, see source code usedbeML
ublic class JobList ore .
P Familiar logging parser

private Context _context = null;
private List<JobEntry> _joblist;
JobList (Context context) { <€) Constructor
_context = context;
_joblist = new Vector<JobEntry>(0) ;

mechanism

}
int addJob (JobEntry job) {
_Jjoblist.add(job) ;

return _joblist.size(); adMOb&eﬂOb
) methods
JobEntry getJob(int location) { <
return _joblist.get (location) ;
}
List<JobEntry> getAllJobs() { <@ getAlljobs method
return _joblist;
}
int getJobCount () {
return _joblist.size();
}
void replace (JobEntry newjob) { <—o replace method
try {
JobList newlist = new JobList();
for (int i=0;i<getJobCount ();i++) {
JobEntry je = getJob(i);
if (je.get_jobid() .equals (newjob.get_jobid())) {
newlist.addJob (newjob) ;
} else {
newlist.addJob(je);
}
}
this._joblist = newlist._joblist;
persist();
} catch (Exception e) {
}
}
void persist() { < @ persist method
try {
FileOutputStream fos = _context.openFileOutput ("chapterl2.xml",

Context .MODE_PRIVATE) ;
fos.write("<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n".getBytes());
fos.write("<joblist>\n".getBytes());
for (int i=0;i<getJobCount () ;i++) {

www.it-ebooks.info

http://www.it-ebooks.info/

Application source code 331

JobEntry je = getJob(i);
fos.write(je.toXMLString () .getBytes());
}
fos.write("</joblist>\n".getBytes());
fos.flush();
fos.close();
} catch (Exception e) {
Log.d("CH12",e.getMessage()) ;
}
}

static JobList parse(Context context) { <@ parse method
try {
FileInputStream fis = context.openFileInput ("chapterl2.xml");

if (fis == null) {
return null;

}

InputSource is = new InputSource(fis);
SAXParserFactory factory = SAXParserFactory.newlInstance() ;
SAXParser parser = factory.newSAXParser () ;
XMLReader xmlreader = parser.getXMLReader () ;
JobListHandler jlHandler =

new JobListHandler (null /* no progress updates when reading file */);

xmlreader.setContentHandler (jlHandler) ;
xmlreader.parse(is) ;

fis.close();

return jlHandler.getList();

} catch (Exception e) {
return null;

}

The list of jobs is implemented as a Vector, which is a type of List @. The XML struc-
ture containing job information is parsed with the SAX parser, so we need to be sure
to import those required packages @. JobEntry objects are stored in the typed List
object named _joblist €. Helper methods for managing the list are included as
addJob () and getJob () @. The getallJobs () method @ returns the list of JobEntry
items. Note that generally speaking, the application uses the getJob() method for
individual JobEntry management, but the getAllJobs () method is particularly useful
when we display the full list of jobs in the ManageJobs Activity, discussed later in this
chapter.

The replace () method @ is used when we’ve closed a job and need to update our
local store of jobs. Note that after it has updated the local list of JobEntry items,
replace() calls the persist ()@ method, which is responsible for writing an XML
representation of the entire list of JobEntry items to storage. This method invokes the
toXMLString () method on each JobEntry in the list. The openFileOutput () method
creates a file within the application’s private file area. This is essentially a helper
method to ensure we get a file path to which we have full read/write privileges.

The parse () method @ obtains an instance of a FileInputStream to gain access to
the file and creates an instance of an InputStream, which is required by the SAX XML

www.it-ebooks.info

http://www.it-ebooks.info/

332

CHAPTER 12 Putting Android to work in a field service application

parser. In particular, take note of the JobListHandler. SAX is a callback parser, mean-
ing that it invokes a usersupplied method to process events in the parsing process. It’s
up to the JobListHandler (in our example) to process the data as appropriate.

We have one more class to go before we can jump back to the higher-level func-
tionality of our application. The next section takes a quick tour of the JobList-
Handler, which is responsible for putting together a JobList from an XML data
source.

JOBLISTHANDLER

As presented earlier, our application uses an XML data storage structure. This XML
data can come from either the server or a local file on the filesystem. In either case,
the application must parse this data and transform it into a useful form. This is accom-
plished through the use of the SAX XML parsing engine and the JobListHandler,
which is shown in listing 12.11. The JobListHandler is used by the SAX parser for our
XML data, regardless of the data’s source. Where the data comes from dictates how
the SAX parser is set up and invoked in this application. The JobListHandler behaves
slightly differently depending on whether the class’s constructor includes a Handler
argument. If the Handler is provided, the JobListHandler will pass messages back for
use in a ProgressDialog. If the Handler argument is null, this status message passing
is bypassed. When parsing data from the server, the ProgressDialog is employed; the
parsing of a local file is done quickly and without user feedback. The rationale for this
is simple—the network connection may be slow, and we need to show progress infor-
mation to the user. An argument could be made for always showing the progress of
the parse operation, but this approach gives us an opportunity to demonstrate more
conditionally operating code.

Listing 12.11 JobListHandler.java

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source code
public class JobListHandler extends DefaultHandler ({
Handler phandler = null;
JobList _list;
JobEntry _job;
String _lastElementName = "";
StringBuilder sb = null;
Context _context; q’ JobListHandler
JobListHandler (Context c,Handler progressHandler) ({ < constructor
_context = c;
if (progressHandler != null) {
phandler = progressHandler; < Check for
Message msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Processing List");
phandler.sendMessage (msg) ;

progress handler

}
}
public JobList getList() { < o getList method

www.it-ebooks.info

http://www.it-ebooks.info/

Application source code 333

Message msg = new Message() ;
msg.what = 0;

msg.obj = (Object) ("Fetching List");

if (phandler != null) phandler.sendMessage (msg) ;

return _list;
} @ startDocument
public void startDocument () throws SAXException { < | method

Message msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Starting Document") ;
if (phandler != null) phandler.sendMessage (msg) ;
_list = new JobList(_context) ;
_job = new JobEntry () ;
} endDocument
public void endDocument () throws SAXException { < method
Message msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("End of Document") ;
if (phandler != null) phandler.sendMessage (msg) ;
}
public void startElement
(String namespaceURI, String localName, String gName,
Attributes atts) throws SAXException {

try {
sb = new StringBuilder("");
if (localName.equals("job")) {
Message msg = new Message() ;
msg.what = 0;
msg.obj = (Object) (localName) ;
if (phandler != null) phandler.sendMessage (msg) ;
_job = new JobEntry () ;
}
} catch (Exception ee) {
}

}
public void endElement
(String namespaceURI, String localName, String gName)
throws SAXException {
if (localName.equals("job")) { < Check for end
// add our job to the list!
_list.addJob(_job);
Message msg = new Message() ;
msg.what = 0;

of job element

msg.obj = (Object) ("Storing Job # " + _job.get_jobid()) ;
if (phandler != null) phandler.sendMessage (msg) ;
return;

}
// portions of the code omitted for brevity

}
public void characters(char ch[], int start, int length) {
String theString = new String(ch, start, length) ;
Log.d("CH12", "characters[" + theString + "1"); Build up String
sb.append (theString) ; < incrementally
}

www.it-ebooks.info

http://www.it-ebooks.info/

334

124

CHAPTER 12 Putting Android to work in a field service application

The JobListHandler constructor @ takes a single argument of Handler. This value
may be null. If null, Message passing is omitted from the operation. When reading
from a local storage file, this Handler argument is null. When reading data from the
server over the internet, with a potentially slow connection, the Message-passing code
is utilized to provide feedback for the user in the form of a ProgressDialog. The
ProgressDialog code is shown later in this chapter in the discussion of the Refresh-
Jobs Activity. A local copy of the Handler @ is set up when using the Progress-
Dialog, as described in @.

The getList ()@ method is invoked when parsing is complete. The role of
getList () is to return a copy of the JobList that was constructed during the parse
process. When the startDocument () callback method @ is invoked by the SAX parser,
the initial class instances are established. The endDocument () method @ is invoked by
the SAX parser when all of the document has been consumed. This is an opportunity
for the Handler to perform additional cleanup as necessary. In our example, a mes-
sage is posted to the user by sending a Message.

For each element in the XML file, the SAX parser follows the same pattern: start-
Element () is invoked, characters() is invoked (one or more times), and end-
Element () is invoked. In the startElement () method, we initialize StringBuilder
and evaluate the element name. If the name is “job,” we initialize the class-level
JobEntry instance.

In the endElement () method, the element name is evaluated. If the element name
is “job” 0, the JobListHandler adds this JobEntry to the JobList data member,
_joblist, with a call to addJob (). Also in the endElement () method, the data mem-
bers of the JobEntry instance (_job) are updated. Please see the full source code for
more details.

The characters () method is invoked by the SAX parser whenever data is available
for storage. The JobListHandler simply appends this string data to a StringBuilder
instance @ each time it’s invoked. It’s possible that the characters () method may be
invoked more than once for a particular element’s data. That’s the rationale behind
using a StringBuilder instead of a single String variable; StringBuilder is a more
efficient class for constructing strings from multiple substrings.

After this lengthy but important look into the data structures and the accompany-
ing explanations, it’s time to return to the higher-level functionality of the application.

Source code for managing jobs

Most of the time our mobile worker is using this application, he’ll be reading through
comments, looking up a job address, getting product information, and performing
other aspects of working on a specific job. Our application must supply the functional-
ity for the worker to accomplish each of these job-management tasks. We examine
each of these Activitys in detail in this section. The first thing we review is fetching
new jobs from the server, which gives us the opportunity to discuss the JobList-
Handler and the management of the jobs list used throughout the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Source code for managing jobs

12.4.1 RefreshJobs

The RefreshJobs Activity performs a simple yet vital
role in the field service application. Whenever
requested, the RefreshJobs Activity attempts to
download a list of new jobs from the server. The UI is
super simple—just a blank screen with a Progress-
Dialog informing the user of the application’s prog-
ress, as shown in figure 12.8.

The code for RefreshJobs is shown in listing 12.12.
The code is straightforward, as most of the heavy lift-
ing is done in the JobListHandler. This code’s respon-
sibility is to fetch configuration settings, initiate a
request to the server, and put a mechanism in place for
showing progress to the user.

Listing 12.12 Refreshlobs.java

package com.msi.manning.UnlockingAndroid;

335

@ (3 2:26 AM
Unlocking Android

(Refreshing Job List]

N

Figure 12.8
The ProgressDialog in use
during RefreshJdobs

// multiple imports omitted for brevity, see full source

public class RefreshJobs extends Activity {

Prefs myprefs = null;

Boolean bCancel = false;

JobList mList = null;

ProgressDialog progress;

Handler progresshandler;

@Override

public void onCreate(Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.refreshjobs) ;

9 Progress indicator

myprefs = new Prefs(this.getApplicationContext) ;
myprogress = ProgressDialog.show(this, "Refreshing Job List",

"Please Wait", true, false);
progresshandler = new Handler () {
@Override
public void handleMessage (Message msg)
switch (msg.what) {
case 0:

myprogress.setMessage("" + (String)

break;

case 1:
myprogress.cancel () ;
finish() ;
break;

case 2: // error occurred <

myprogress.cancel () ;
finish();
break;

super .handleMessage (msg) ;

www.it-ebooks.info

<7 Setup
= ProgressDialog
Define
Handler
<
. Update Ul
msg. obJ) ; with textual
message

Handle cancel
and cancel
with error

@ Use openFilelnput

~ | for stream

http://www.it-ebooks.info/

336

CHAPTER 12 Putting Android to work in a field service application

};
Thread workthread = new Thread(new DoReadJobs()) ; < Initiate
workthread.start () ; DoReadJobs
} class instance
class DoReadJobs implements Runnable {
public void run() {
InputSource is = null; Create

Message msg = new Message() ; < Message object

msg.what = 0;

try { Define looping

//Looper .prepare () ; 4 construct

msg.obj = (Object) ("Connecting ..."); <

progresshandler.sendMessage (msg) ; % Prepare status
message

URL url = new URL(myprefs.getServer () +

"getjoblist.php?identifier=" + myprefs.getEmail());
is = new InputSource(url.openStream()) ; <
SAXParserFactory factory = SAXParserFactory.newlInstance() ;
SAXParser parser = factory.newSAXParser(); Pmpm@to
XMLReader xmlreader = parser.getXMLReader() ; parse data
JobListHandler jlHandler =

new JobListHandler (progresshandler) ; 4 Instantiate
xmlreader.setContentHandler (jlHandler) ; é jobListHandIer
msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Parsing ...");
progresshandler.sendMessage (msg) ;
xmlreader.parse(is) ;
msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Parsing Complete") ;
progresshandler.sendMessage (msqg) ;
msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Saving Job List");
progresshandler.sendMessage (msg) ;
jlHandler.getList () .persist () ; < @ Persist data
msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Job List Saved.");
progresshandler.sendMessage (msg) ;
msg = new Message() ; Set status flag
msg.what = 1; 4 for completion

progresshandler.sendMessage (msg) ;
} catch (Exception e) {

Log.d("CH12", "Exception: " + e.getMessage());
msg = new Message(); Set status flag
msg.what = 2; // error occurred < for error
msg.obj = (Object) ("Caught an error retrieving

Job data: " + e.getMessage());

progresshandler.sendMessage (msg) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Source code for managing jobs 337

A ProgressDialog @ is used to display progress information to the user. There are a
number of ways to display progress in Android. This is perhaps the most straightfor-
ward approach. A Handler is employed to process Message instances. Though the
Handler itself is defined as an anonymous class, the code requires a reference to it for
passing to the JobListHandler when parsing, which is shown in @®. When instantiat-
ing the ProgressDialog @, the arguments include

= Context

= Title of Dialog

" Tnitial Textual Message
= Indeterminate

= Cancelable

Using true for the Indeterminate parameter means that you’re not providing any
clue as to when the operation will complete (such as percentage remaining), just an
indicator that something is still happening, which can be a best practice when you
don’t have a good handle on how long an operation may take. A new Handler O is
created to process messages sent from the parsing routine, which will be introduced
momentarily. An important class that has been mentioned but thus far not described
is Message. This class is used to convey information between different threads of exe-
cution. The Message class has some generic data members that may be used in a flexi-
ble manner. The first of interest is the what member, which acts as a simple identifier,
allowing recipients to easily jump to desired code based on the value of the what mem-
ber. The most typical (and used here) approach is to evaluate the what data member
via a switch statement.

In this application, a Message received with its what member equal to 0 represents
a textual update message @ to be displayed in the ProgressDialog. The textual data
itself is passed as a String cast to an Object and stored in the obj data member of the
Message. This interpretation of the what member is purely arbitrary. We could’ve used
999 as the value meaning textual update, for example. A what value of 1 or 2 indicates
that the operation is complete @, and this Handler can take steps to initiate another
thread of execution. For example, a value of 1 indicates successful completion, so the
ProgressDialog is canceled, and the RefreshJobs Activity is completed with a call
to finish(). The value of 2 for the what member has the same effect as a value of 1,
but it’s provided here as an example of handling different result conditions: for exam-
ple, a failure response due to an encountered error. In a production-ready applica-
tion, this step should be fleshed out to perform an additional step of instruction to
the user and/or a retry step. Any Message not explicitly handled by the Handler
instance should be passed to the super class @. In this way, system messages may be
processed.

When communicating with a remote resource, such as a remote web server in our
case, it’s a good idea to perform the communications steps in a thread other than the
primary GUI thread. A new Thread @ is created based on the DoReadJobs class, which

www.it-ebooks.info

http://www.it-ebooks.info/

338

12.4.2

CHAPTER 12 Putting Android to work in a field service application

implements the Runnable Java interface. A new Message object @ is instantiated and
initialized. This step takes place over and over throughout the run() method of the
DoReadJobs class. It’s important to not reuse a Message object, as they’re literally
passed and enqueued. It’s possible for them to stack up in the receiver’s queue, so
reusing a Message object will lead to losing data or corrupting data at best and Thread
synchronization issues or beyond at worst.

Why are we talking about a commented-out line of code ©? Great question—
because it caused so much pain in the writing of this application! A somewhat odd and
confusing element of Android programming is the Looper class. This class provides
static methods to help Java Threads to interact with Android. Threads by default don’t
have a message loop, so presumably Messages don’t go anywhere when sent. The first
call to make is Looper.prepare (), which creates a Looper for a Thread that doesn’t
already have one established. Then by placing a call to the loop () method, the flow of
Messages takes place. Prior to implementing this class as a Runnable interface, we
experimented with performing this step in the same thread and attempted to get the
ProgressDialog to work properly. That said, if you run into funny Thread/Looper
messages on the Android Emulator, consider adding a call to Looper.prepare () at the
beginning of your Thread and then Looper.loop() to help Messages flow.

When we want to send data to the user to inform him of our progress, we update
an instance of the Message class () and send it to the assigned Handler.

To parse an incoming XML data stream, we create a new InputSource from the
URL stream @. This step is required for the SAX parser. This method reads data from
the network directly into the parser without a temporary storage file.

Note that the instantiation of the JobListHandler @) takes a reference to the
progresshandler. This way the JobListHandler can (optionally) propagate messages
back to the user during the parse process. Once the parse is complete, the JobList-
Handler returns a JobList object, which is then persisted @® to store the data to the
local storage. Because this parsing step is complete, we let the Handler know by pass-
ing a Message (@ with the what field set to 1. If an exception occurs, we pass a message
with what set to 2, indicating an error (15}

Congratulations, your Android application has now constructed a URL object with
persistently stored configuration information (user and server) and successfully con-
nected over the internet to fetch XML data. That data has been parsed into a JobList
containing JobEntry objects, while providing our patient mobile worker with feed-
back, and subsequently storing the JobList to the filesystem for later use. Now we
want to work with those jobs, because after all, those jobs have to be completed for our
mobile worker friend to make a living!

Managing jobs: the ManageJobs Activity

The ManageJobs Activity presents a scrollable list of jobs for review and action. At
the top of the screen is a simple summary indicating the number of jobs in the list,
and each individual job is enumerated in a ListView.

Earlier we mentioned the importance of the JobEntry’s toString () method:

www.it-ebooks.info

http://www.it-ebooks.info/

Source code for managing jobs 339

public String toString() {
return this._jobid + ": " + this._customer + ": " + this._product;

}

This method generates the String that’s used to represent the JobEntry in the List-
View, as shown in figure 12.9.

The layout for this Activity’s View is simple: just a TextView and a ListView, as
shown in the following listing.

Listing 12.13 managejobs.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/joblistview"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:scrollbars="vertical"
>

@l D 2:41AM

Unlocking Android

<TextView android:id="@+id/statuslabel"

android:text="1list jobs here " 13:Path0fGromﬂh,LLC;
android:layout_height="wrap_content" Wireless Router
android:layout_width="fill_parent" 19: Indy Products: Water
/> Cooler

<ListView android:id="@+id/joblist"
android:layout_height="fill_parent"
android:layout_width="fill_parent"
/>

</LinearLayout>

21: Slim's Boats, Inc:
Cigarette Boat

The code in listing 12.14 for the ManageJobs Activity 23: JJ's Ices: Gelato Machine
connects a JobList to the GUI and reacts to the selec- PR

tion of a particular job from the ListView. In addition,
this class demonstrates taking the result from another,
synchronously invoked Activity and processing it

24: Matyas Grocer: Rototiller

Figure 12.9
The ManageJobs Activity
when a job is completed and closed, that JobEntry is lists downloaded jobs.

according to its specific requirement. For example,

updated to reflect its new status.

Listing 12.14 Managelobs.java, which implements the ManageJobs Activity

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class ManageJobs extends Activity implements OnItemClickListener {
final int SHOWJOB = 1;
Prefs myprefs = null;
JobList _joblist = null;
ListView jobListView;
@Override
public void onCreate(Bundle icicle) {
super.onCreate (icicle) ;

www.it-ebooks.info

http://www.it-ebooks.info/

340

CHAPTER 12 Putting Android to work in a field service application

. . Connect
setContentView (R.layout .managejobs) ; TextView to Ul
myprefs = new Prefs(this.getApplicationContext());

TextView tv = Pa“g
(TextView) findViewByTd(R.id.statuslabel); 4 ? datain
_joblist = JobList.parse(this.getApplicationContext ()); < storage
if (_joblist == null) {
_Jjoblist = new JobList (this.getApplicationContext()) ; < Handle
} Check for j& bad parse
if (_joblist.getJobCount () == 0){ < empty JobList .
tv.setText ("There are No Jobs Available"); <— Processc"cy
} else | events on List
tv.setText ("There are " + _joblist.getJobCount() + " jobs."); Use a
} Connect ListView to Ul built-in
jobListView = (ListView) findviewById(R.id.joblist); - list layout
ArrayAdapter<JobEntry> adapter = new ArrayAdapter<JobEntry> (this,
android.R.layout.simple_list_item_1, _joblist.getAllJobs()); <
jobL%stV%ew.setAdapter(édapFer); . < Connect list with
jobListView.setOnItemClickListener (this) ; dataevents on List
jobListView.setSelection(0) ;
}
public void onItemClick(AdapterView parent, Prepare
View v, int position, long id) { Fetch job from Intent for
JobEntry je = _joblist.getJob(position); < list by ordinal showing
Log.i("CH12", "job clicked! [" + je.get_jobid() + "1"); Job details
Intent jobintent = new Intent(this, ShowJob.class); <

Bundle b = je.toBundle() ;
jobintent.putExtras (b) ;

Q) Use Bundle to
store Job data

startActivityForResult (jobintent, SHOWJOB) ; < Start
} ShowJob Activity
@Override
protected void onActivityResult (int requestCode, int resultCode, Intent
data) {
switch (requestCode) {
case SHOWJOB: Check
if (resultCode == 1){ - return code
Log.d("CH12", "Good Close, let's update our list");
JobEntry je = JobEntry.fromBundle (data.getExtras()); < Extract
_joblist.replace(je); < Update the list with returned
} via replace method JobEntry
break;

}

The objective of this code is to display a list of available jobs to the user in a ListView
©. To display the list of jobs, we must first parse the list stored on the device . Note
that the Context argument is required to allow the JobList class access to the private
file area for this application. If the parse fails, we initialize the JobList instance to a
new, empty list. This is a somewhat simplistic way to handle the error without the GUI
falling apart @.

www.it-ebooks.info

http://www.it-ebooks.info/

12.4.3

Source code for managing jobs 341

When a specific job is selected, its details are extracted via a call to the getJob()
method @. The job is stored in a Bundle, put into an Intent @, and subsequently
sent to the ShowJob Activity for display and/or editing @. Note the use of the con-
stant SHOWJOB as the last parameter of the startActivityForResult () method. When
the called Activity returns, the second parameter to startActivityForResult () is
“passed back” when the onActivityResult () method is invoked @ and the return
code checked. To obtain the changed JobEntry, we need to extract it from the Intent
with a call to getExtras (), which returns a Bundle. This Bundle is turned into a
JobEntry instance via the static fromBundle() method of the JobEntry class. To
update the list of jobs to reflect this changed JobEntry, call the replace () method 0.

More on bundles

You need to pass the selected job to the ShowJob Activity, but you can’t casually
pass an object from one Activity to another. You don’'t want the ShowJob
Activity to have to parse the list of jobs again; otherwise you could simply pass
back an index to the selected job by using the integer storage methods of a Bundle.
Perhaps you could store the currently selected JobEntry (and JobList for that mat-
ter) in a global data member of the Application object, had you chosen to imple-
ment one. If you recall in chapter 1 when we discussed the ability of Android to
dispatch Intents to any Activity registered on the device, you want to keep the
ability open to an application other than your own to perhaps pass a job to you. If that
were the case, using a global data member of an Application object would never
work! The likelihood of such a step is low, particularly considering how the data is
stored in this application. This chapter’'s sample application is an exercise of evalu-
ating some mechanisms you might employ to solve data movement when program-
ming for Android. The chosen solution is to package the data fields of the JobEntry
in a Bundle (@ in listing 12.14) to move a JobEntry from one Activity to another.
In the strictest sense, you’re not moving a real JobEntry object but a representation
of a JobEntry’s data members. The net of this discussion is that this method cre-
ates a new Bundle by using the toBundle () method of the JobEntry.

Now that you can view and select the job of interest, it’s time to look at just what you
can do with that job. Before diving into the next section, be sure to review the Manage-
Jobs code carefully to understand how the JobEntry information is passed between
the two activities.

Working with a job with the ShowJob Activity

The ShowJob Activity is the most interesting element of the entire application, and
it’s certainly the screen most useful to the mobile worker carrying around his
Android-capable device and toolbox. To help in the discussion of the various features
available to the user on this screen, take a look at figure 12.10.

The layout is straightforward, but this time you have some Buttons and you’ll be
changing the textual description depending on the condition of a particular job’s sta-
tus. A TextView is used to present job details such as address, product requiring

www.it-ebooks.info

http://www.it-ebooks.info/

342

CHAPTER 12 Putting Android to work in a field service application

@ (D 2:42 AM

Unlocking Android r
b 1d 2200 E Cedar Ave

B 2200 E Cedar Ave
Q Bl Flagstaff, AZ 86004

Get Product Info

Close Job ; 4 &
Figure 12.10 An example of a job Figure 12.11 Viewing a job
shown in the ShowJob Activity address in the Maps application

service, and comments. The third Button will have the text property changed,
depending on the status of the job. If the job’s status is marked as CLOSED, the func-
tionality of the third button will change.

To support the functionality of this Activity, first the code needs to launch a new
Activity to show a map of the job’s address, as shown in figure 12.11.

The second button, Get Product Info, launches a browser window to assist users in
learning more about the product they’re being called on to work with. Figure 12.12

shows this in action.
The third requirement is to allow the user to close the job or to view the signature
if it’s already closed; we’ll cover the details in the next section on the CloseJob

Activity.

Unlocking Android T UnwiredTools UTCIS-PT™

UT

UnwiredTools ™

Map Job Location

Figure 12.12 Get Product Info
takes the user to a web page
specific to this job.

www.it-ebooks.info

http://www.it-ebooks.info/

Source code for managing jobs

343

Fortunately, the steps required for the first two operations are quite simple with
Android—thanks to the Intent. The following listing and the accompanying annota-

tions show you how.

Listing 12.15 ShowlJob.java

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class ShowJob extends Activity {
Prefs myprefs = null;
JobEntry je = null;
final int CLOSEJOBTASK = 1;
public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;
setContentView (R.layout.showjob) ;
myprefs = new Prefs(this.getApplicationContext());
StringBuilder sb = new StringBuilder () ;
String details = null;

Intent startingIntent = getIntent(); <—— Get Intent
if (startingIntent != null) {
Bundle b = startingIntent.getExtas() ; <

if (b == null) {
details = "bad bundle?";
} else {
je = JobEntry.fromBundle (b) ;

sb.append("Job Id: " + je.get_jobid() + " (" + je.get_

")\n\n") ;
sb.append(je.get_customer () + "\n\n");
sb.append(je.get_address() + "\n" + je.get_city() + ",
je.get_state() + "\n");

Extract
Bundle
from Intent

status () +

"o

sb.append("Product : "+ je.get_product() + "\n\n");
sb.append ("Comments: " + je.get_comments() + "\n\n");
details = sb.toString();
} Update Ul
} else { upon error
details = "Job Information Not Found."; < and return
TextView tv = (TextView) findviewById(R.id.details);
tv.setText (details) ;
return;
}
TextView tv = (TextView) findviewById(R.id.details);
tv.setText (details) ;
Button bmap = (Button) findviewById(R.id.mapjob) ;
bmap.setOnClickListener (new Button.OnClickListener () {
public void onClick(View v) {
// clean up data for use in GEO query
String address = je.get_address() + " " +
je.get_city() + " " +

je.get_zip();
String cleanAddress = address.replace(",", "");
cleanAddress = cleanAddress.replace(' ','+');
try {

Intent geoIntent = new Intent ("android.intent.action.VIEW",

android.net.Uri.parse("geo:0,0?g=" +

www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 12 Putting Android to work in a field service application

cleanAddress)); <7 Build and launch
startAct1v1tngeoIntent); geo query
} catch (Exception ee) {

}

1)
Button bproductinfo = (Button) findViewById(R.id.productinfo) ;

bproductinfo.setOnClickListener (new Button.OnClickListener ()
public void onClick(View v) {

{

try {
Intent productInfoIntent = new Obtain
Intent ("android.intent.action.VIEW", mmdudinh
android.net.Uri.parse(je.get_producturl())); - via URL
startActivity (productInfolIntent) ;
} catch (Exception ee) {
}
}
1) Selectively
Button bclose = (Button) findViewById(R.id.closejob) ; update
if (je.get_status().equals("CLOSED")) { ~| Button label

bclose.setText ("Job is Closed. View Signature");
}

bclose.setOnClickListener (new Button.OnClickListener ()
public void onClick(View v) {

{

if (je.get_status().equals("CLOSED")) { <7 Show Signature
Intent signatureIntent = new for CLOSED
Intent ("android.intent.action.VIEW", JobEntrys

android.net.Uri.parse (myprefs.getServer ()
+ "sigs/" +
je.get_jobid() + ".jpg")); Initiate Closejob
startActivity (signatureIntent) ; Activity
} else { v
Intent closeJobIntent = new Intent (ShowJob.this,Closedob.class) ;
Bundle b = je.toBundle() ;
closedobIntent.putExtras (b) ;
startActivityForResult (closeJobIntent, CLOSEJOBTASK) ;
}
}

)i

Log.d("CH12","Job status is :" + je.get_status());

}
@Override
protected void onActivityResult (
int requestCode, int resultCode, Intent data) {

switch (requestCode) {

case CLOSEJOBTASK:
if (resultCode == 1) { Handle newly
this.setResult(l, "", data.getExtras()); - closed JobEntry
finish();
}
break;

www.it-ebooks.info

http://www.it-ebooks.info/

12.4.4

Source code for managing jobs 345

Upon completion of the CloseJob Activity, the onActivityResult() callback is
invoked. When this situation occurs, this method receives a Bundle containing the
data elements for the recently closed JobEntry 0. If you recall, the ShowJob Activity
was launched “for result,” which permits a synchronous pattern, passing the result
back to the caller. The requirement is to propagate this JobEntry data back up to the
calling Activity, ManageJobs. Calling setResult () and passing the Bundle (obtained
with getExtras ()) fulfills this requirement.

Despite the simple appearance of some text and a few easy-to-hit buttons, the
ShowJob Activity provides a significant amount of functionality to the user. All that
remains is to capture the signature to close out the job. Doing so requires an examina-
tion of the CloseJob Activity.

Capturing a signature with the CloseJob Activity

Our faithful mobile technician has just completed the maintenance operation on the
part and is ready to head off to lunch before stopping for another job on the way
home, but first he must close out this job with a signature from the customer. To
accomplish this, the field service application presents a blank screen, and the cus-
tomer uses a stylus (or a mouse in the case of the Android Emulator) to sign the
device, acknowledging that the work has been completed. Once the signature has
been captured, the data is submitted to the server. The proof of job completion has
been captured, and the job can now be billed. Figure 12.13 demonstrates this
sequence of events.

This Activity can be broken down into two basic functions: the capture of a signa-
ture and the transmittal of job data to the server. Notice that this Activity’s UI has no
layout resource. All of the UI elements in this Activity are generated dynamically, as

@ D 2:47 AM @l (O 2:48 AM @l (D 2:48 AM
Unlocking Android Unlocking Android Unlocking Android

Closing Job

Map Job Location w
Get Product Info :

Cancel

Figure 12.13 The CloseJob Activity capturing a signature and sending data to the server

www.it-ebooks.info

http://www.it-ebooks.info/

346

CHAPTER 12 Putting Android to work in a field service application

Local queuing

One element not found in this sample application is the local queuing of the signa-
ture. Ideally this would be done in the event that data coverage isn’t available. The
storage of the image is quite simple; the perhaps more challenging piece is the logic
on when to attempt to send the data again. Considering all the development of this
sample application is done on the Android Emulator with near-perfect connectivity,
it’s of little concern here. But in the interest of best preparing you to write real-world
applications, it's worth reminding you of local queuing in the event of communica-
tions trouble in the field.

shown in listing 12.16. In addition, the ProgressDialog introduced in the Refresh-
Jobs Activity is brought back for an encore, to let our mobile technician know that
the captured signature is being sent when the Sign & Close menu option is selected. If
the user selects Cancel, the ShowJob Activity resumes control. Note that the signa-
ture should be made prior to selecting the menu option.

Listing 12.16 Closelob.java—GUI setup

package com.msi.manning.UnlockingAndroid;
// multiple imports omitted for brevity, see full source
public class CloseJob extends Activity {
ProgressDialog myprogress;
Handler progresshandler;
Message msg;
JobEntry je = null;
private closejobView sc = null;
@Override
public void onCreate (Bundle icicle) {
super.onCreate(icicle) ;
Intent startingIntent = getIntent();
if (startingIntent != null) {
Bundle b = startingIntent.getExtras/()
if (b != null) {
je = JobEntry.fromBundle (b) ;

}

sc = new closejobView(this);) Instantiate instance of

setContentView(sc) ; closejobYiew

if (je == null) {

finish();

}
}
@override Define available
public boolean onCreateOptionsMenu (Menu menu) { < menus

super .onCreateOptionsMenu (menu) ;
menu.add (0,0, "Sign & Close");
menu.add (0,1, "Cancel") ;

return true;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Source code for managing jobs 347

public boolean onOptionsItemSelected(Menu.Item item) { <
Prefs myprefs = new Prefs(ClosedJob.this.getApplicationContext());
switch (item.getId
(g) { Handle
case 0:

selected menu
try {

myprogress = ProgressDialog.show(this, "Closing Job ",
"Saving Signature to Network", true, false);
progresshandler = new Handler () {
@Override
public void handleMessage (Message msg) {
switch (msg.what) {
case 0:
myprogress.setMessage ("" + (String) msg.obj);
break;
case 1:
myprogress.cancel () ;
finish();
break;
}
super.handleMessage (msg) ;
}
Y
Thread workthread = new Start Thread
Thread (new DoCloseJob (myprefs)) ; < to Closejob
workthread.start () ;
} catch (Exception e) {
Log.d("closejob",e.getMessage()) ;
msg = new Message() ;
msg.what = 1;
progresshandler.sendMessage (msg) ;
}
return true;
case 1:
finish();
return true;
}
return false;

}

Unlike previous activities in this chapter, the UI doesn’t come from a design time-
defined layout, but rather an instance of a closejobView © is the primary UIL The
closejobview is defined in listing 12.17.

The onCreateOptionsMenu () method @ is an override of the base View’s method,
allowing a convenient way to add menus to this screen. Note that two menus are
added, one for Sign & Close and one for Cancel. The onOptionsItemSelected()
method @ is invoked when the user selects a menu item. A ProgressDialog and
accompanying Handler are instantiated when the user chooses the menu to close a
job. Once the progress-reporting mechanism is in place, a new Thread is created and
started in order to process the steps required to close the job @. Note that an instance
of Prefs is passed in as an argument to the constructor, as that will be needed to store
a signature, as we’ll show in listing 12.18.

www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 12 Putting Android to work in a field service application

The UI at this point is only partially set up; we need a means to capture a signature
on the screen of our Android device. The next listing implements the class closejob-
View, which is an extension of the View class.

Listing 12.17 Closelob.java—closejobView class

public class closejobView extends View { closejobView

Bitmap _bitmap; @ Required extends base
Canvas _canvas; classt'asfor class View
final Paint _paint; drawing
int lastX;
int lastyY;
public closejobView(Context c) { hﬁﬁ#he
super (c) ; drawing
_paint = new Paint(); < classes
_paint.setColor (Color.BLACK) ;
lastX = -1; Save method
) persists O Add
public boolean Save (OutputStream os) { signature contextual
try { fiata to
_canvas.drawText ("Unlocking Android", 10, 10, _paint); < image

_canvas.drawText ("http://manning.com/ableson", 10, 25, _paint);
_canvas.drawText ("http://androidl2.msi-wireless.com",
10, 40, _paint);
_bitmap.compress (Bitmap.CompressFormat.JPEG, 100, os);
invalidate() ;
return true;
} catch (Exception e) {
return false;

}
@Override
protected void onSizeChanged(int w, int h, int oldw, int oldh) {
Bitmap img =
Bitmap.createBitmap (w, h,Bitmap.Config.ARGB_8888) ;
Canvas canvas = new Canvas() ;
canvas.setBitmap (img) ;
if (_bitmap != null) {
canvas.drawBitmap (img, 0, 0, null);
}
_bitmap = img;
_canvas = canvas;
_canvas.drawColor (Color.WHITE) ;

}

@Override
protected void onDraw(Canvas canvas) {
if (_bitmap != null) { Draw image
canvas.drawBitmap (_bitmap, 0, 0, null); on screen
}
}
@override Handle touch
public boolean onTouchEvent (MotionEvent event) { events
int action = event.getAction() ;
int X = (int)event.getX();

int Y = (int)event.getY();

www.it-ebooks.info

http://www.it-ebooks.info/

Source code for managing jobs 349

switch (action) {
case MotionEvent.ACTION_UP:
// reset location

lastX = -1;
break;
case MotionEvent .ACTION_DOWN :
if (lastX != -1){
if ((int) event.getX() != lastX) {

_canvas.drawLine (lastX, lastY, X, Y, _paint);
}
}
lastX = (int)event.getX();
lastY = (int)event.getY();
break;
case MotionEvent.ACTION_MOVE:
if (lastx != -1){
_canvas.drawLine (lastX, lastY, X, Y, _paint);

}

lastX = (int)event.getX();
lastY = (int)event.getY();
break;

}

invalidate() ;

return true;

}

The closejobView extends the base View class @. The Bitmap and Canvas classes @
work together to form the drawing surface for this Activity. Note the call to the
Canvas.drawColor () method, which sets the background color to white. When the
onDraw () method is invoked, the canvas draws its associated bitmap with a call to
drawBitmap () @.

The logic for where to draw relies on the onTouchEvent () method 0, which
receives an instance of the MotionEvent class. The MotionEvent class tells what hap-
pened and where. ACTION_UP, ACTION_DOWN, and ACTION_MOVE are the events captured,
with some logic to guide when and where to draw. Once the signature is complete, the
Save () method @ is responsible for converting the contents of the image to a form
usable for submission to the server. Note that additional text is drawn on the signature
O. In this case, it’s little more than a shameless plug for this book’s web page, but this
could also be location-based data. Why is this important? Imagine someone forging a
signature. It could happen, but it would be more challenging and of less value to a
rogue mobile technician if the GPS/location data were stamped on the job, along with
the date and time. When converting the image to our desired JPEG format, there’s an
additional input argument to this method—an OutputStream, used to store the image
data. This OutputStream reference was an input argument to the Save() method.

Now that the UI has been created and a signature drawn on the screen, let’s look at
the code used to close the job. Closing the job involves capturing the signature and
sending it to the server via an HTTP POST. The class DoCloseJob is shown in the follow-
ing listing.

www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 12 Putting Android to work in a field service application

Listing 12.18 Closelob.java—DoCloseJob class

class DoClosedJob implements Runnable {

Prefs _myprefs; Constructor uses

DoCloseJob (Prefs p) { o Prefs instance
_myprefs = p;

}

public void run() {

try { Open file for
FileOutputStream os = storing
0); <

getApplication() .openFileOutput ("sig.jpg", signature
sc.Save(os) ;
os.flush() ;
os.close();
// reopen to so we can send this data to server
File f = new
File(getApplication() .getFileStreamPath("sig.jpg") .toString()) ;
long flength = f.length();
FileInputStream is =
getApplication() .openFileInput ("sig.jpg") ;
byte datal[] = new byte[(int) flength];
int count = is.read(data);
if (count != (int) flength) {
// bad read?
}
msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Connecting to Server");
progresshandler . sendMessage (msg) ; i) Construct
URL url = new URL (_myprefs.getServer () + ﬁonge
"/closejob.php?jobid=" + je.get_jobid()); <+ URL
URLConnection conn = url.openConnection() ;
conn.setDoOutput (true) ;
BufferedOutputStream wr = new
BufferedOutputStream(conn.getOutputStream()) ;
wr.write(data) ;
wr.flush();
wr.close();
msg = new Message() ;
msg.what = 0;
msg.obj = (Object) ("Data Sent");
progresshandler.sendMessage (msqg) ;
BufferedReader rd = new BufferedReader (new Read server
InputStreamReader (conn.getInputStream())) ; response
String line = "";
Boolean bSuccess = false; ? Check for
<

Whrite data
to server

while ((line = rd.readLine()) != null) { successful
if (line.indexOf ("SUCCESS") != -1) { processing
bSuccess = true;

}
wr.close();
rd.close() ;
if (bSuccess) {
msg = new Message() ;

www.it-ebooks.info

http://www.it-ebooks.info/

12.5

Server code 351

msg.what = 0;

msg.obj = (Object) ("Job Closed Successfully"); UPdaﬂith
progresshandler.sendMessage (msg) ; JobEntry
je.set_status ("CLOSED") ; < | status
CloseJob.this.setResult(1l,"",je.toBundle()); < Set result and
} else { store updated
msg = new Message() ;]obEnﬂy

msg.what = 0;
msg.obj = (Object) ("Failed to Close Job");
progresshandler.sendMessage (msg) ;
CloseJob.this.setResult (0) ;
}
} catch (Exception e) {
Log.d("CH12","Failed to submit job close signature: " +
e.getMessage()) ;
}
msg = new Message();
msg.what = 1;
progresshandler.sendMessage (msg) ;

}

At this point, we have a signature on the screen and need to capture it. A new File-
outputStream @ is obtained for a file on the local filesystem, and the signature is writ-
ten to this file. We’re now ready to transmit this file to the server—remember, we want
to bill the client as soon as possible for work completed!

In preparation for sending the signature to the server, the signature file contents
are read into a byte array via an instance of a FileInputStream. Using the Prefs
instance to get specific configuration information, a URL @ is constructed in order to
POST data to the server. The query String of the URL contains the jobid, and the
POST data contains the image itself. A BufferedOutputStream € is employed to POST
data, which consists of the captured signature in JPEG format.

Once the job data and signature have been sent to the server, the response data is
read back from the server @. A specific string indicates a successful transmission @.

Upon successful closing, the JobEntry status member is marked as CLOSED 0,
and this JobEntry is converted to a Bundle so that it may be communicated to the
caller by invoking the setResult () method @. Once the Handler receives the “I'm
done” message and the Activity finishes, this data is propagated back to the ShowJob
and all the way back to the ManageJob Activity.

And that thankfully wraps up the source code review for the Android side of
things! There were some methods omitted from this text to limit this already very long
chapter, so please be sure to examine the full source code. Now it’s time to look at the
server application.

Server code

A mobile application often relies on server-side resources, and our field service appli-
cation is no exception. This isn’t a book on server-side development techniques, server-
related code, and discussion, so we’ll present these things briefly. We’ll introduce the

www.it-ebooks.info

http://www.it-ebooks.info/

352

12.5.1

12.5.2

CHAPTER 12 Putting Android to work in a field service application

UI and the accompanying database structure that makes up our list of job entries, and
then we’ll review the two server-side transactions that concern the Android applica-
tion. The server code relies on open source staples: MySQL and PHP. Let’s get started
with the interface used to enter new jobs, used by the dispatcher.

Dispatcher user interface

Before jumping into any server code—specific items, it’s important to understand how
the application is organized. All jobs entered by a dispatcher are assigned to a partic-
ular mobile technician. That identifier is interpreted as an email address, as seen in
the Android example where the user ID was used throughout the application. Once
the user ID is specified, all of the records revolve around that data element. For
example, figure 12.14 demonstrates this by showing the jobs assigned to the author,
fableson@msiservices.com.

NOTE This application is available for you to test. It’s located at http://
android12.msi-wireless.com. Sign on and add jobs for your email address.

Let’s now turn our attention to the underlying data structure, which contains the list
of jobs.

Database

As mentioned earlier in section 12.1.3, the database in use in this application is
MySQL,? with a single database table called tbl_jobs. The SQL to create this table is
provided in the next listing.

Unlocking Android, Chapter 12 Sample Application

For assistance with this application, please contact Frank Ableson of MEI Services, Inc

Job List for [fableson@msiservices.com).

I
£

T Customer Address City State Zip [Product Praduet TEL Comments Statag
e
13 EE of Growth, 123 Main Street Chester NI 07930 Wireless Router SID broadcast not workag CLOSED
19 Indy Prodiscts 4% Route 206 Stashope MI 07874 Water Cocler Water it not cold encughl CLOSED
21 Sho'sBoats,Inc 1 OrchardLane |Chester NJ 07930 |Cigarette Boat needs a ight CLOSED
. o 2200 East Cedar | , UnwiredTocls — [Requres tuning - to0 rch in the mid range RPM. Download soffware from website | oy o o
22 Big Tristan ve Flagstaff |AZ 86004 VTCIS-FT hittp /e o ore vistng CLOSED
23 JT's Iees 17 Reoute 206 Stashope MI 07874 | Gelato Machine bittpige com Ice pope CLOSED
24 Matyas Grocer 144 Whatehall Road | Andover NI 07221 Rototiller http ifjohadeere com Requeed Brmware upgrade CLOSED
27 |Google 123 Main Street | Somewhere CA 112345 [Android bhitoilgoogs com st CLOSED
Export Your Job List
AddaJob
Heane
MST Wireless is a division of fvices

Check ot Unlocking

Figure 12.14 The server-side dispatcher screen

2 For more on development using MySQL, try the developer zone: http://dev.mysql.com/.

www.it-ebooks.info

http://android12.msi-wireless.com
http://android12.msi-wireless.com
http://dev.mysql.com/
http://www.it-ebooks.info/

12.5.3

Server code 353

Listing 12.19 Data definition for tbl_jobs

CREATE TABLE IF NOT EXISTS 'tbl_jobs' (

"jobid' int(11l) NOT NULL auto_increment, <%44" Unique record ID
'status' varchar (10) NOT NULL default 'OPEN',
‘identifier' varchar (50) NOT NULL, <@ User identification

'address' varchar (50) NOT NULL,
'city' varchar (30) NOT NULL,
'state' varchar(2) NOT NULL,
'zip' varchar (10) NOT NULL,
'customer' varchar (50) NOT NULL,
'product' wvarchar (50) NOT NULL,

'producturl' varchar (100) NOT NULL, q;;g‘, Product URL
'comments' varchar (100) NOT NULL,
UNIQUE KEY 'jobid' ('jobid')

) ENGINE=MyISAM DEFAULT CHARSET=ascii AUTO_INCREMENT=25 ;

Each row in this table is uniquely identified by the jobid @, which is an auto-
incrementing integer field. The identifier field (2) corresponds to the user ID/email
of the assigned mobile technician. The producturl field @ is designed to be a spe-
cific URL to assist the mobile technician in the field in quickly gaining access to help-
ful information for completing the assigned job.

The next section provides a road map to the server code.

PHP dispatcher code

The server-side dispatcher system is written in PHP and contains a number of files
working together to create the application. Table 12.3 presents a brief synopsis of each
source file to help you navigate the application if you choose to host a version of it
yourself.

Table 12.3 Server-side source code

Source file Description

addjob.php Form for entering new job information

closejob.php Used by the Android application to submit a signature

db.php Database connection information

export.php Used to export list of jobs to a CSV file

footer.php Used to create a consistent look and feel for the footer of each page
getjoblist.php Used by the Android application to request a job XML stream
header.php Used to create a consistent look and feel for the header of each page
index.php Home page, including the search form

manage.php Used to delete jobs on the web application

savejob.php Used to save a new job (called from addjob.php)

showjob.php Used to display job details and load into a form for updating
showjobs.php Displays all jobs for a particular user

www.it-ebooks.info

http://www.it-ebooks.info/

354

12.5.4

CHAPTER 12 Putting Android to work in a field service application

Table 12.3 Server-side source code (continued)

Source file Description
updatejob.php Used to save updates to a job
utils.php Contains various routines for interacting with the database

Of all these files, only two concern the Android application. We’ll discuss them in the
next section.

PHP mobile integration code

When the Android application runs the RefreshJobs Activity, the server side gener-
ates an XML stream. Without going into excessive detail on the serverside code, we
explain the getjoblist.php file in the following listing.

Listing 12.20 getjoblist.php

<?

require('db.php') ;
require('utils.php');

Stheuser = $_GET|['identifier'];
print (getJobsXML (Stheuser)) ;
?>

The getJobsxXML () function retrieves data from the database and formats each row
into an XML representation. It wraps the list of XML-wrapped job records in the <job-
list> tags along with the <?xml ...> header declaration to generate the expected
XML structure used by the Android application. Remember, this is the data ultimately
parsed by the SAX-based JobListHandler class, as shown in listing 12.11.

The other transaction that’s important to our Android field service application is
the closejob.php file, examined in the next listing.

Listing 12.21 closejob.php

<?

require('db.php') ;

require('utils.php');

Sdata = file_get_contents('php://input');

$jobid = $_GET['jobid']l;

$f = fopen("~/pathtofiles/sigs/".$jobid.".Jjpg", "w");
fwrite ($f, $data) ;

fclose($f);
print (closeJob(S$S_GET['jobid'])) ;
?>

The POSTed image data is read via the file_get_contents () function. The secret is
the special identifier of php: //input. This is the equivalent of a binary read. This data
is read into a variable named $data. The jobid is extracted from the query String.
The image file is written out to a directory that contains signatures as JPEG files, keyed

www.it-ebooks.info

http://www.it-ebooks.info/

12.6

Summary 355

by the jobid as part of the filename. When a job has been closed and the signature is
requested by the Android application, this file is requested in the Android browser.
The closeJob() function (implemented in utils.php) updates the database to mark
the selected job as CLOSED.

That wraps up the review of the source code for this chapter’s sample application.

Summary

The intent of the sample application was to tie together many things learned in previ-
ous chapters into a composite application. Our field service application has real-world
applicability to the kind of uses an Android device is capable of bringing to fruition. Is
this sample application production ready? Of course not, but almost! That, as they say,
is an exercise for the reader.

Starting with a simple splash screen, this application demonstrates the use of
Handlers and displaying images stored in the resources section of an Android project.
Moving along to the main screen, a simple UI leads to different activities useful for
launching various aspects of the realistic application.

Communications with the server involve downloading XML data, while showing the
user a ProgressDialog along the way. Once the data stream commences, the data is
parsed by the SAX XML parser, using a custom Handler to navigate the XML document.

We demonstrated that managing jobs in a ListView is as easy as tapping on the
desired job in the list. The next screen, the ShowJobs Activity, allows even more
functionality, with the ability to jump to a Map showing the location of the job and
even a specific product information page customized to this job. Both of those func-
tions are as simple as preparing an Intent and a call to startActivity().

Once the mobile technician completes the job in the field, the CloseJob Activity
brings the touch-screen elements into play by allowing the user to capture a signature
from his customer. That digital signature is then stamped with additional, contextual
information and transmitted over the internet to prove the job was done. Jumping
back to what you learned earlier, it would be straightforward to add location-based
data to further authenticate the captured signature.

The chapter wrapped up with a quick survey of the server-side components to dem-
onstrate some of the steps necessary to tie the mobile and the server sides together.

The sample application is hosted on the internet and is free for you to test out with
your own Android application, and the full source code is provided for the Android
and server applications discussed in this chapter.

Now that we’ve shown what can be accomplished when exercising a broad range of
the Android SDK, the next chapter takes a decidedly different turn, as we explore the
underpinnings of Android a little deeper and look at building native C applications
for the Android platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Buwilding Androwd
applications in C

This chapter covers

Building an application in C
Using dynamic linking

Building a DayTime Server in C
Building a Daytime Client in Java

Up to this point, this book has presented a cross section of development topics in
an effort to unlock the potential of the Android platform for the purpose of deliv-
ering useful, and perhaps even fun, mobile applications. In chapter 12, you built a
comprehensive application, building on what we introduced in the prior chapters.
As you embark on this chapter, you’re temporarily leaving behind the comforts of
working strictly in the Android SDK, Java, and Eclipse. We’ll instead take a close
look at the underlying Linux underpinnings of the Android platform—and more
specifically, you’ll learn how to build an application in C, without the SDK.

The Android SDK is comprehensive and capable, but there may be times when
your application requires something more. This chapter explores the steps required
to build applications that run in the Linux foundation layer of Android. To accom-
plish this, we’re going to use the C programming language. In this chapter, we use

356

www.it-ebooks.info

http://www.it-ebooks.info/

13.1

13.1.1

Building Android apps without the SDK 357

the term Android/Linux to refer to the Linux underpinnings of the Android platform.
We also use the term Android/Java to refer to a Java application built using the Android
SDK and Eclipse.

C language mastery on this platform is powerful because much of the C language
development process involves porting existing, open source Linux code to the mobile
platforms. This technique has the potential benefit of speeding up development for
adding future functionality to Android by leveraging existing code bases. Chapter 19
examines the Android Native Developer’s kit (NDK). Using the NDK, programmers
can leverage existing C code and map those routines to applications written in Java.
This chapter doesn’t use the NDK, but rather looks at building standalone C applica-
tions capable of running on the Android platform.

We demonstrate the specific steps of building an Android/Linux application in C.
We begin with a description of the environment and the required tool chain. After an
obligatory Hello World—caliber application, you’ll construct a more sophisticated
application that implements a DayTime Server. Ultimately, any application built for
Android/Linux needs to bring value to the user in some form. In an effort to meet
this objective, it’s desirable that Android/Java be able to interact in a meaningful
manner with our Android/Linux application. To that end, you’ll build a traditional
Android application using Java in Eclipse to interact with the Android/Linux server
application.

Let’s get started with an examination of the requirements for building your first C
application for Android.

Building Android apps without the SDK

Applications for Android/Linux are markedly different from applications constructed
with the Android SDK. Applications built with Eclipse and the context-sensitive Java
syntax tools make for a comfortable learning environment. In line with the spirit of
Linux development, from here on out all development takes place with command-
line tools and nothing more sophisticated than a text editor. Though the Eclipse envi-
ronment could certainly be leveraged for non-Java development, the focus of this
chapter is on core C language' coding for Android/Linux. The first place to start is
with the cross-compiling tool chain required to build Android/Linux applications.

The C compiler and linker tools

Building applications for Android/Linux requires the use of a cross-compiler tool
chain from CodeSourcery. The specific version required is the Sourcery G++ Lite Edition
Jfor ARM, found at https://support.codesourcery.com/GNUToolchain/release1479.
Once installed, the Sourcery G++ tool chain contributes a number of useful tools to
assist you in creating applications targeting Linux on ARM, which is the architecture of
the Android platform. The ARM platform is a 32-bit reduced instruction set computer

! For details on the C programming language, start here: www.cprogramming.com/.

www.it-ebooks.info

http://www.cprogramming.com/
https://support.codesourcery.com/GNUToolchain/release1479
http://www.it-ebooks.info/

358

13.1.2

CHAPTER 13 Building Android applications in C

(RISC) processor, used in numerous devices, including smartphones, PDAs, and tech-
nology appliances such as low-end routers and disk drive controllers. The Code-
Sourcery installation comes with a fairly comprehensive set of PDF documents
describing the main components of the tool chain, including the C compiler, the
assembler, the linker, and many more tools. A full discussion of these versatile tools is
well beyond the scope of this chapter, but three tools in particular are demonstrated
in the construction of this chapter’s sample applications. You’ll be using these tools
right away, so let’s briefly introduce them in this section.

The first and most important tool introduced is gee.? This tool is the compiler
responsible for turning C source files into object files and optionally initiating the link
process to build an executable suitable for the Android/Linux target platform. The
full name of the gcc compiler for our cross-compilation environment is arm-none-
linux-gnueabi-gcc. This tool is invoked from the command line of the development
machine. The tool takes command-line arguments of one or more source files, along
with zero or more of the numerous available switches.

The linker, arm-none-1linux-gnueabi-1d, is responsible for producing an execut-
able application for our target platform. When performing the link step, object code
along with routines from one or more library files are combined into a relocatable,
executable binary file, compatible with the Android Emulator’s Linux environment.
Whereas a simple application may be compiled and linked directly with gcc, the linker
is used when creating applications with more than one source file and/or more com-
plex application requirements.

If the linker is responsible for constructing applications from more than one con-
tributing component, the object dump utility is useful for dissecting, or disassembling,
an application. The objdump, or arm-none-1linux-gnueabi-objdump tool examines an
executable application—a binary file—and turns the machine instructions found
there into an assembly language listing file, suitable for analysis.

NOTE All of the examples in this chapter take place on a Windows XP work-
station. It’s also possible to use this tool chain on a Linux development
machine. Ifyou are using Linux for your development environment, you may
need to modify the build scripts slightly as the path separator is different and
the libraries will require a preceding dot (“.”).

With this brief introduction behind us, let’s build the obligatory Hello Android appli-
cation to run in the Linux foundation of the Android Emulator.

Building a Hello World application

The first thing we want you to accomplish with your journey into Android/Linux
development is to print something to the emulator screen to demonstrate that you're
running something on the platform outside the Android SDK and its Java application
environment. There’s no better way to accomplish this feat than by writing a variant of

2 For everything you’d want to know about gcc, go here: http://gcc.gnu.org/.

www.it-ebooks.info

http://gcc.gnu.org/
http://www.it-ebooks.info/

Building Android apps without the SDK 359

the Hello World application. At this point, there will be little talk of Android activities,
views, or resource layouts. Most code samples in this chapter are in the C language.
The following listing shows the code for your first Hello Android application.

Listing 13.1 Hello.c

#include <stdio.h>
int main(int argc,char * argvl([])
{ printf ("Hello, Android!\n");
return 0;

}
Virtually all C language applications require an #include header file containing func-
tion definitions, commonly referred to as prototypes. In this case, the application
includes the header file for the standard input and output routines, stdio.h. The stan-
dard C language entry point for user code is the function named main. The function
returns an integer return code (a value of 0 is returned in this simple example) and
takes two arguments. The first, argc, is an integer indicating the number of com-
mand-line arguments passed in to the program when invoked. The second, argv, is an
array of pointers to null-terminated strings representing each of the command-line
arguments. The first argument, argv[0], is always the name of the program execut-
ing. This application has but a single useful instruction, printf, which is to write to
standard output (the screen) a textual string. The printf function is declared in the
header file, stdio.h.

To build this application, you employ the gcc tool:

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic
You’ll notice a few things about this command-line instruction:

= The compiler is invoked with the full name: arm-none-1linux-gnueabi-gcc.

= The source file is named hello.c.

= The -static command-line switch is used to instruct gcc to fully link all
required routines and data into the resulting binary application file. In essence,
the application is fully standalone and ready to be run on the target Android
Emulator without any additional components. An application that’s statically
linked tends to be rather large, because so much code and data are included in
the executable file. For example, this statically linked application with basically
a single line of code weighs in at around 600 KB. Ouch! If this -static switch is
omitted, the application is built without any extra routines linked in. In this
case, the application will be much smaller, but it’ll rely on finding compatible
routines on the target system in order to run. For now, let’s keep things simple
and build the sample application in such a manner that all support routines are
linked statically.

= The output switch, -o, is used to request that the executable application be
assigned the name hellostatic. If this switch isn’t provided, the default applica-
tion name is a.out.

www.it-ebooks.info

http://www.it-ebooks.info/

360

13.1.3

CHAPTER 13 Building Android applications in C

Now that the application is built, it’s time for you to try it out on the Android Emula-
tor. To do this, you’ll rely on the adb tool introduced in chapter 2.

Installing and running the application

In preparation for installing and running the Hello
Android application, let’s take a tour of our build and test-
ing environment. You need to identify four distinct envi-
ronments and tools and clearly understand them when
building applications for Android/Linux: Android Emula-
tor, command-line CodeSourcery tools, adb or DDMS, and
adb shell.

The first environment to grasp is the big-picture archi-
tecture of the Android Emulator running essentially on
top of Linux, as shown in figure 13.1.

As presented in the early chapters of this book, there’s
a Linux kernel running underneath the pretty, graphical
face of Android. There exist device drivers, process lists,
and memory management, among other elements of a
sophisticated operating system.

Figure 13.1 Android runs
atop a Linux kernel.

As shown in the previous section, you need an environment in which to compile

your C code. This is most likely to be a command-prompt window on a Windows

machine, or a shell window on a Linux desktop machine, exercising the Code-

Sourcery tool chain. This is the second environment you need to be comfortable

operating within.

The next requirement is to copy your newly constructed binary executable applica-
tion to the Android Emulator. You can do so with a call to the adb utility or by using
the DDMS view in Eclipse. Both of these tools were demonstrated in chapter 2. Here’s

the syntax for copying the executable file to the Android Emulator:

adb push hellostatic /data/chl3/hellostatic

Cross compiling

The CodeSourcery tool chain isn’t designed to run on the Android/Linux environment
itself, so the development work being done here is considered to be cross-compiling.
The figures and example code presented in this chapter were taken from a Windows
development environment used by one of the authors. There are a number of long
path and directory structures in the Android SDK and the CodeSourcery tools. To help
simplify some of the examples and keep certain command-line entries from running
over multiple lines, we set up some drive mappings. For example, a drive letter of m:
seen in scripts and figures corresponds to the root location of source code examples
on the author’s development machine. Likewise, the g: drive points to the currently
installed Android SDK on the author’'s development machine. Note that this tech-
nique may also be used in Linux or Mac OS X environments with a “soft link” (1n)
command.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Android apps without the SDK 361

Note a few items about this command:

= The command name is adb. This command takes a number of arguments that
guide its behavior. In this case, the subcommand is push, which means to copy a
file to the Android Emulator. There’s also a pull option for moving files from
the Android Emulator filesystem to the local development machine’s hard drive.

= After the push option, the next argument, hellostatic in this case, represents
the local file, stored on the development machine’s hard drive.

= The last argument is the destination directory (and/or filename) for the trans-
ferred file. In this sample, you’re copying the hellostatic file from the current
working directory to the /data/ch13 directory on the Android Emulator.

Be sure that the desired target directory exists first! You can accomplish this with a
mkdir command on the adb shell, described next.

The final tool to become familiar with is the shell option of the adb tool. Using
this command, you can interact directly on the Android Emulator’s filesystem with a
limited shell environment. To enter this environment (assuming the Android Emula-
tor is already running), execute adb shell from the command line. When invoked,
the shell displays the # prompt, just as if you’d made a secure shell (ssh) or telnet con-
nection to a remote Unix-based machine. Figure 13.2 shows these steps in action.

Note the sequence shown in figure 13.2. First the application is built with a call to
gcc. Next you push the file over to the Android Emulator. You then connect to the
Android Emulator via the adb shell command, which gives you the # prompt, indi-
cating that you're now in the shell. Next you change directory (cd) to /data/chl3.
Remember that this is Linux, so the application by default may not be executable. A
call to chmod sets the file’s attributes, tuning on the executable bits and allowing the
application to be invoked. Finally, you invoke the application with a call to ./hello-
static. The search path for executable applications doesn’t by default include the cur-
rent directory on a Linux system, so you must provide a more properly qualified path,
which explains the ./ prefix. Of course, you can see that the application has run suc-
cessfully because you see the “Hello, Android!” text displayed on the screen.

v C\WINDDWS\ system32' cmd.exe - adb shell

m—none—linux-gnueabi-gcc hello.c —-static —o hellostatic

Figure 13.2 The build, copy, run cycle

www.it-ebooks.info

http://www.it-ebooks.info/

362

13.1.4

13.2

CHAPTER 13 Building Android applications in C

Congratulations! You have a successful, albeit simple, Android/Linux application
running on the Android Emulator. In the next section, we look at streamlining this
build process by combining the multiple build operations into a script.

C application build script

In the previous section, we reviewed each step in building and preparing to test our
application. Due to the rather tedious nature of executing each of these steps, you
likely want to utilize command-line tools when building C applications, as it greatly
speeds up the edit, compile, copy, debug cycle. This example with only a single C
source file is rather simplistic; when multiple source files must be linked together, the
thought of having a build script is appealing. The need for a build script (shown in
listing 13.2) is particularly evident where there are numerous source files to compile
and link, a situation you’ll encounter later in this chapter.
This listing shows the build script for our Hello Android application.

Listing 13.2 Build script for Hello Android, buildhello.bat

arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic

g:\tools\adb push hellostatic /data/chl3

g:\tools\adb shell "chmod 777 /data/chl3/hellostatic"

A call to arm-none-linux-gnueabi-gcc compiles the source