
Dynamic Functions in Dyalog APL
John Scholes – Dyalog Ltd.

john@dyalog.com

A Dynamic Function (D-Fn) is a new function definition style, which bridges the gap between named
function expressions such as rank„½°½ and APL’s conventional ‘header’ style definition. Dynamic
Functions are so called because they can be defined ‘on the fly’ at run time.

Simple Expressions

The simplest form of D-Fn is: {expr} where expr is an APL expression containing '¸'s and '¾'s
representing the left and right argument of the function respectively. For example:

 {(+/¾)÷½¾} 1 2 3 4 © Arithmetic mean
2.5
 2 {(¸-Œio)+¼1+¾-¸} 5 © Sequence ¸ ... ¾
2 3 4 5
 {{¾*0.5}+/¾*2} 3 4 © Pythagorus (Note inner D-Fn).
5

A D-Fn can be used in any function context ...

 {¸+÷¾}/25½1 © Repeated fraction.
1.618033989

... and of course, assigned a name:

 root„{¾*÷¸} © ¸'th root.

D-Fns are ambivalent. Their right (and if present, left) arguments are evaluated irrespective of whether
these are subsequently referenced within the function body.

 2{¾}3
3
 4{¸}5
4

Guards

A guard is a boolean-single valued expression followed by ':'. A simple expression can be preceded by a
guard, and any number of guarded expressions can occur separated by 'ª's.

¸<0: © Left arg negative.

0=¾: © Right arg simple scalar.

Guards are evaluated in turn (left to right) until one of them yields a 1. Its corresponding expr is then
evaluated as the result of the D-Fn. A guard is equivalent to an If-Then-Else or Switch-Case construct.

 {¾=0:'zero' ª ¾¬0:'non zero'} 3
non zero

A final simple expr can be thought of as a default case:

 {2|¾:'odd' ª 'even'} 3 © Parity.
odd
 {¾<0:'neg' ª ¾=0:'zero' ª 'pos'} 0 © Signum.
zero

The 'ª's can be replaced by newlines. For readability, extra null phrases 'ª ª ª ...' can be
included. The parity example above becomes:

 { © Parity
 2|¾: 'odd' © Odd case
 'even' © Even case
 } 4
even

Named D-Fns can be reviewed using the system editor:)ed or ŒCR/ŒFX, and note that you can comment
them in the normal way using '©'.

The following example interprets a dice throw:

 dice„{
 ¾6 6: 'Box Cars'
 ¾1 1: 'Snake Eyes'
 =/¾: 'Pair'
 7=+/¾: 'Seven'
 'Unlucky'
 }

Local Definition

The final piece of D-Fn syntax is the local definition. An expression whose principal function is a simple or
vector assignment, introduces a name that is local to the D-Fn. The name is localised dynamically as the
assignment is executed. As we shall see later, this mechanism can be used to define local nested D-Fns.

 mean„{ © Arithmetic mean.
 sum„+/¾
 num„½¾

 sum÷num
 }

 roots „ { © Real roots of quadratic.
 a b c„¾ © Coefficients.
 d„(b*2)-4×a×c © Discriminant.

 d<0: « © No roots
 d=0: -b÷2×a © One root
 d>0: (-b+¯1 1×d*0.5)÷2×a © Two roots
 }

A nuance: the special syntax ¸„expr is executed only if the D-Fn is called with no left argument. This is
equivalent to, but neater than: –(0=Œnc'Larg')/'Larg„...' in a conventionally defined function.

 root„{ © ¸'th root
 ¸„2 © Default to sqrt.
 ¾*÷¸
 }

 root 64 © Square root.
8
 3 root 64 © Cube root.
4

Recursion

D-Fns use recursion in place of iteration. Reference to the current function can of course use the function’s
name explicitly. However because we allow unnamed D-Fns, we need a special symbol to represent self-
reference. '’' does the job.

'’' has a further small advantage in that a recursive function can be renamed without having to locate and
change explicit self references within the function body.

 fact„{ © Factorial.
 ¾=0: 1
 ¾×’ ¾-1 © !
 }

 gcd„{ © Euclid's greatest common divisor.
 ¾=0: ¸
 ¾ ’ ¾|¸ © *
 }

 fib„{ © ¾'th Fibonacci number.
 1‰¾: ¾
 +/’¨¾-1 2 © !
 }

 ack„{ © Ackermann's function.
 ¸=0: ¾+1
 ¾=0: (¸-1)’ 1 © *
 (¸-1)’ ¸ ’ ¾-1 ©*!
 }

 osc „ { © Oscillate - probably returns 1.
 1=¾: 1
 2|¾: ’ 1+3×¾ © *
 ’ ¾÷2 © *
 }

These examples show that D-Fns contain a minimum of syntactic baggage - allowing the underlying
algorithms to ‘shine through’. For example, compare the osc example above with the equivalent coding
using:

Control structures Conventional Branching

 ’ z„osc n ’ z„osc n
[1] :If 1=n [1] …(1=n)/0,z„1
[2] z„1 [2] …(2|n)/odd
[3] :ElseIf 2|n [3] …0,z„osc n÷2
[4] z„osc 1+3×n [4] odd:z„osc 1+3×n
[5] :Else ’
[6] z„osc n÷2
[7] :End
 ’

A happy consequence of reducing syntax is that the interpreter has less work to do. D-Fns significantly out-
perform their conventionally defined counterparts.

Tail Calls

In the previous examples, the recursive calls marked (©*) are said to be tail calls or tail-recursive calls
whereas those marked (©!) are not. A function call is a tail call if its result is passed back unchanged to its
own calling environment.

Tail calls can be implemented in the interpreter by re-entering the current instance of the function, rather
than creating a new one. This delivers a substantial performance benefit, both in terms of execution time
and workspace used.

It is often possible to turn a ‘stack-call’ into a tail call by accumulating the result on the way into, rather
than on the way out of, the recursion. In general, this technique employs an auxiliary function that takes an
accumulating argument. APL's infix syntax is particularly suited to this technique as we can use the left
argument exclusively to accumulate result-so-far, and the right argument to specify work outstanding.
Evaluation consists of moving work from the incoming right argument into the left argument of the next
recursive call. Note that in these and following examples, Œml migration level is set to 3. In particular, †¾
means first.

 fact„{ © Tail recursive Factorial.
 1 {
 ¾=0: ¸
 (¸×¾)’ ¾-1 © *
 } ¾
 }

 fib„{ © Tail recursive Fibonacci.
 0 1 {
 ¾=0: †¸
 (1‡¸,+/¸)’ ¾-1 © *
 } ¾
 }

We can simplify the coding by expressing the auxiliary function as a dyadic case of the outer monadic
function:

 fact„{
 ¸„1
 ¾=0: ¸
 (¸×¾)’ ¾-1 © *
 }

 sieve„{ © Sieve of Eratosthenes.
 ¸„« © No primes yet.
 next„1†¾ © Next prime and ...
 mask„×next|¾ © Mask of non-multiples.
 ^/1‡mask:¸,¾ © No multiples, finished.
 (¸,next)’ mask/¾ © Sieve out further primes.© *
 }

 sieve 1‡¼20 © Sieve primes from 2 .. 20
2 3 5 7 11 13 17 19

It's easy to check if a call is a tail call by tracing it. Tail calls appear to re-use the current trace window,
whereas stack-calls pop up a new one.

D-Ops: Dynamic Operators

The operator equivalent of a D-Fn refers to its left and right operand using '¸¸' and '¾¾' respectively. A
D-Op is distinguished from a D-Fn by the presence of either of these symbols anywhere in the definition. A
D-Op containing only '¸¸'s is monadic, whereas one that contains at least one '¾¾', is dyadic. The
Dyalog system editor distinguishes these cases and colours the braces that surround the operator
accordingly.

 else„{ © Condition f else g ...
 ¸: ¸¸ ¾ © True: apply left operand.
 ¾¾ ¾ © False: apply right operand.
 }

 inner„{ © Inner product.
 ¸¸/œ(‡¸)°.¾¾‡³¾
 }

For recursive D-Ops, there are two kinds of self reference: '’' refers to the current derived function, that
is, the operator bound with its operand(s). When the operands are functions, this is the most frequently used
form of self reference. However, if the operands are arrays, we often need a recursive reference to the
operator itself and then we would use: '’’'.

 pow„{ © Explicit function power.
 ¸=0: ¾ © Apply function operand ¸ times.
 (¸-1)’ ¸¸ ¾ © ¸¸ ¸¸ ¸¸ ... ¾ © *
 }

 until„{ © Conditional function power.
 ¾¾ ¾: ¾ © Until ¾¾,
 ’ ¸¸ ¾ © Apply ¸¸ ¸¸ ... © *
 }

 limit„{ © Function power limit.
 z„¸¸ ¾ © Apply operand until
 z¾: ¾ © ... it has no effect.
 ’ z © Else, repeat. © *
 }

 perv„{ © Scalar pervasion, apply ...
 1=¸ ¾: ¸ ¸¸ ¾ © ... fn between simple scalars.
 ¸ ’¨¾ © ... else, traverse each arg. © !
 }

 saw„{ © Simple-array-wise.
 1‰¾: ¸¸ ¾ © Simple: apply operand.
 ’¨¾ © Nested: visit each sub-array © !
 }

Re-writing pow to take its function as right operand and its count as left operand requires that the recursion
refer to the operator (’’) rather than its derived function:

 pow„{ © Explicit function power.
 ¸¸=0: ¾ © Apply function operand ¸¸ times.
 (¸¸-1)’’ ¾¾ ¾¾ ¾ © ¾¾ ¾¾ ¾¾ ... ¾ © *
 }

Example: Pythagorean triples

The following sequence shows an example of combining Dynamic Functions and Operators in an attempt to
find Pythagorean triples: (3 4 5)(5 12 13) ...

 sqrt„{¾*0.5} © Square root.

 sqrt 9 16 25
3 4 5

 hyp„{sqrt+/œ¾*2} © Hypoteneuse of triangle.

 hyp(3 4)(4 5)(5 12)
5 6.403124237 13

 intg„{¾=˜¾} © Whole number?

 intg 2.5 3 4.5
0 1 0

 pyth„{intg hyp ¾} © Pythagorean pair?

 pyth(3 4)(4 9)(5 12)
1 0 1

 pairs„{,¼¾ ¾} © Pairs of numbers 1..¾.

 pairs 3
 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3

 filter„{(¸¸ ¾)/¾} © Op: ¾ filtered by ¸¸.

 pyth filter pairs 12 © Pythagorean pairs 1..12
 3 4 4 3 5 12 6 8 8 6 9 12 12 5 12 9

So far, so good, but we have some duplicates: For example, (6 8) is just double (3 4).

 rpm„{ © Relatively prime?
 ¾=0:¸=1 © C.f. Euclid's gcd.
 ¾ ’ ¾|¸
 }/¨ © Note the /¨

 rpm(2 4)(3 4)(6 8)(16 27)
0 1 0 1

 rpm filter pyth filter pairs 20
 3 4 4 3 5 12 8 15 12 5 15 8

We can use an operator to combine the tests:

 and„{ © Lazy parallel 'And'.
 mask„¸¸ ¾ © Left predicate selects...
 mask\¾¾ mask/¾ © args for right predicate.
 }

 pyth and rpm filter pairs 20
 3 4 4 3 5 12 8 15 12 5 15 8

Better, but we still have some duplicates: (3 4) (4 3).

 less„{</œ¾}
 less(3 4)(4 3)
1 0

 less and pyth and rpm filter pairs 40
 3 4 5 12 7 24 8 15 9 40 12 35 20 21

And finally, as promised, triples:

 {¾,hyp ¾}¨less and pyth and rpm filter pairs 40
 3 4 5 5 12 13 7 24 25 8 15 17 9 40 41 12 35 37 20 21 29

A larger example

Tokens uses nested local D-Fns to split an APL expression into its constituent tokens. Note that all calls
on the inner functions: lex, acc, and the unnamed D-Fn in each token case, are tail calls. In fact, the only
stack calls are those on function: all, and the unnamed function: {¾Ÿ¯1²¾}, within the ‘Char literal’
case.

 tokens„{ © Lex of APL src line.

 alph„ŒA,ŒÁ,'_‘�',26†17‡ŒAV © Alphabet for names.

 all„{+/^\¸¹¾} © No. of leading ¸¹¾.

 acc„{(¸,†/¾)lexœ‡/¾} © Accumulate tokens.

 lex„{

 0=½¾:¸ ª hd„†¾ © Next char else finished.

 hd=' ':¸{ © White Space.
 size„¾ all' '
 ¸ acc size ¾
 }¾

 hd¹alph:¸{ © Name
 size„¾ all alph,ŒD
 ¸ acc size ¾
 }¾

 hd¹'Œ:':¸{ © System Name / Keyword
 size„¾ all hd,alph
 ¸ acc size ¾
 }¾

 hd='''':¸{ © Char literal
 size„+/^\{¾Ÿ¯1²¾}¬\hd=¾
 ¸ acc size ¾
 }¾

 hd¹ŒD,'¯':¸{ © Numeric literal
 size„¾ all ŒD,'.¯E'
 ¸ acc size ¾
 }¾

 hd='©':¸ acc(½¾)¾ © Comment

 ¸ acc 1 ¾ © Single char token.
 }

 (0½›'')lex,¾
 }

 display tokens'xtok„size†srce © Next token'
.…---.
| .…---. .…. .…---. .…. .…---. .…-. .…-----------. |
| |xtok| |„| |size| |†| |srce| | | |© Next token| |
| '----' '-' '----' '-' '----' '--' '------------' |
'¹---'

Summary

The syntax of a D-Fn / D-Op is shown in the railway diagram:

 .-…-------…----. © Null phrase,
 |-…--LDEF„EXPR-| © Local definition,
 |-…-GUARD:EXPR-| © Guarded result expression,
 |-…-----¸„EXPR-| © Default left argument,
-…-{-+-…-------EXPR-+-}-…- © Unguarded result expression,
 '-„-------ª--„-' © ... separated by ª-s.

LDEF: Definition local to the D-Fn using simple or vector assignment.
GUARD: Expression which evaluates to a Boolean single.
EXPR: Arbitrary APL expression.

Following special characters are substituted:

¸: Function Left Argument.
¾: Function Right Argument.
’: Function (and Derived Function) Self reference.

¸¸: Operator Left Operand.
¾¾: Operator Right Operand.
’’: Operator Self reference.

Phrases are evaluated in turn until an unguarded EXPR, or one whose guard evaluates to 1, is encountered.
The corresponding EXPR is then evaluated as the result of the D-Fn.

Conclusion

D-Fns give us the opportunity to combine the power of expression of APL with an alternative and in some
circumstances, more convenient functional framework.

They encourage (but don't compel), the programming of ‘pure’ functions. There is evidence to suggest that
coding in such a style produces more reliable software.

D-Fns provide true local functions. They encourage the use of sub-functions that may otherwise be avoided
owing to a (perceived) degradation in performance or code readability. For example, it is often tempting to
replace a call on a small function applied under each (¨) by embedding the code directly in the calling line
and peppering it with '¨'s or '°'s.

Using D-Fns in this situation improves both speed and readability. For example:

 †°½°½¨vec => {†½½¾}¨vec © Number of axes.
 +/¨^\¨CVEX¹¨›Œtc => {+/^\¾¹Œtc}¨CVEX © Leading TC chars.

To coin a phrase: “D-Fns provide a new Lo-Cal wrapper for our familiar APL expressions.”

Implementation Status

These ideas were first presented in the Dyadic Vendor Forum at APL96 where they appeared to meet with
general approval. D-Fns were introduced with APL/W version 8.1 release 1 in early 1997. Coding examples
such as those included in this article show that they have a reasonably wide application and measurements
of their performance have been particularly pleasing.

Dfns Email Group

To subscribe to an email discussion group, devoted to D-fns, send email to dfns@dyalog.com,
with subject: SUBSCRIBE

mailto:dfns@dyalog.com

	To subscribe to an email discussion group, devoted to D-fns, send email to dfns@dyalog.com, with subject: SUBSCRIBE

