i
|
§

One good thing

1979 — 8086 and 8088 CPU

leads to another...

1982 — 80286 CPU

and another...

1985 — Intel386™ CPU

and another...

1989 — Intel486™ CPU

and anothet...

134

nnnnnnnnnnnnnnnnnnn

1993 — Pentium® Processor

and another...and

Pentium® Processor Family
Developer’s Manual

Volume 3: Architecture and
Programming Manual

1995 — Pentium® Processor
- (120 & 133 MHz)

other..

intal.
LITERATURE

For additional information on Intel products in the U.S. and Canada call Intel's Literature Center at (800) 548-
4725.

INTEL LITERATURE
P.O. Box 7641
Mt. Prospect, IL 60056-7641

To order literature outside of the U.S. and Canada contact your local international sales office.
CURRENT DATABOOKS

Product line databooks contain datasheets, application notes, article reprints, and other design information.
Databooks can be ordered in the U.S. and Canada by calling TAB/McGraw-Hill at 1-800-822-8158; outside of
the U.S. and Canada contact your local international sales office.

Title Orde:'nt\tlﬂmber ISBN
AUTOMOTIVE PRODUCTS 231792 N/A
EMBEDDED APPLICATIONS 270648 1-55512-242-6
EMBEDDED MICROCONTROLLERS 270646 1-55512-230-2
EMBEDDED MICROPROCESSORS 272396 1-55512-231-0
FLASH MEMORY (2 volume set) 210830 1-55512-232-9
Intel486™ MICROPROCESSORS and Related Products 241731 1-556512-1235-3
i960® PROCESSORS AND RELATED PRODUCTS 272084 1-55512-234-5
MILITARY AND SPECIAL PRODUCTS (2 volume set) 210461 N/A .
NETWORKING 297360 1-556512-236-1
OEM BOARDS, SYSTEMS & SOFTWARE 280407 1-66512-237-X
PACKAGING . 240800 1-55512-238-8
PENTIUM™ PROCESSORS and Related Products 241732 1-565512-239-6
PERIPHERAL COMPONENTS 296467 1-55512-240-X

A complete set of this information is available on CD-ROM through Intel's Data on Demand program, order number 240897.
For information about Intel's Data on Demand ask for item number 240952.

Pentium® Processor Family
Developer’s Manual

Volume 3:
Architecture and Programming Manual

NOTE: The Pentium® Processor Family Developer’s Manual consists
of three books: Pentium® Processor Order Number 241428; the
82496/82497/82498 Cache Controller and 82491/82492/82493 Cache
SRAM, Order Number 241429; and the Architecture and

Programming Manual, Order Number 241430.

Please refer to all three volumes when evaluating your design needs.

1995

PATENT NOTICE

Through its investment in computer technology, Intel Corporation (Intel) has acquired numerous proprietary rights, including
patents issued by the U.S. Patent and Trademark Office. Intel has patents covering the use or implementation of processors
in combination with other products, e.g., certain computer systems. System and method patents or pending patents, of Intel
and others, may apply to these systems. A separate license may be required for their use (see Intel Terms and Conditions
for details). Specific Intel patents include U.S. patent 4,972,338.

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever,
including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and
Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Comporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

*Other brands and names are the property of their respective owners.

1 Since publication of documents referenced in this document, registration of the Pentium, OverDrive and iCOMP
trademarks has been issued to Intel Corporation.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION 1995

intal.

TABLE OF CONTENTS

CHAPTER 1
GETTING STARTED PAGE
1.1, HOW TO USE THIS MANUAL ..ottt ettt sttt s e e 1-1
1.1.1. Part I—Application and Numeric Programming........cccceccvvveeineeiicciinerieencsieneeneenes 1-2
1.1.2. Part [I—System Programmingccccceeeviiiinieieeiininien st ssssreesssvaees e 1-2
1.1.3. Part H—Compatibilitycceveviuerireiiiiirciiece e e 1-4
1.1.4. Part IV—Optmizationccouiioiiiiiiee e 1-4
1.1.5. Part V—Instruction Set..........cooviieiiiiiiice e 1-4
1.1.6. APPENAICES.......eeiiiiiieciieeee et e et te e e s s st e e s e s e naeaaeanaaes 1-5
1.2. RELATED LITERATURE ..ottt ettt ettt et st s et s e 1-5
1.3. NOTATIONAL CONVENTIONScoooeiriieiitiiteertesee st eee e st aeeesee e s saessanae 1-5
1.3.1. Bit and Byte Order......cooo et 1-6
1.3.2. Undefined Bits and Software Compatibilityccccoviriiiiiiiiniiinies 1-6
1.3.3. INSLrUCtion OPErandsccccceiiiiiiiriiiiiee ettt s s a e e e 1-7
1.3.4. Hexadecimal NUMDEIS.........ccoiiiiiiiiiieiiceter et 1-7
1.3.5. Segmented AdAreSSINg........ccocuerririiieriieiete ettt s e eas 1-8
1.3.6. EXCEPHONS......eeiiiieiicctie e e e e 1-8
CHAPTER 2
INTRODUCTION TO THE INTEL PENTIUM® PROCESSOR FAMILY

PART | — APPLICATION AND

NUMERIC PROGRAMMING

CHAPTER 3
BASIC PROGRAMMING MODEL
3.1, MEMORY ORGANIZATIONcooiiirieiiiieieee et e e sree st sre s e sraee e s 3-1
3.1.1. Unsegmented or "Flat” Model ...t s e naan 3-2
3.1.2. Segmented MOdEloo i e s 3-3
B2, DATA TYPES ..ttt e e r e s e e e st e e s e nne e s aneene 3-4
3.3, RBEGISTERS ...ttt s s 3-8
3.3.1. General RegiSters.....cccciviiieiuiiieciieiieeie e et et e e s sene e s see e e e e e s e e ee s 3-8
3.3.2. Segment RegISIErSccuuiii ettt e 3-10
3.3.3. Stack Implementationcccoecieeeiiiiieinnieie e s e e e e e e 3-12
3.3.4. FIags RegISIeruuiieiieiiee e e e e e e e e e e s s e e s 3-13
3.3.4.1. STATUS FLAGS ... oottt ettt s see s sses s er e s sae e snre e s 3-14
3.3.4.2. CONTROL FLAGcoiiiiiiiiriteretente ettt ettt ssn e s 3-15
3.3.5. INSPUCHION POINEEN.....oiiiiiiiiin e 3-15
3.4. INSTRUCTION FORMATcoiiiiiiertetiitieiecestes it arsteesst e steesre e s ssesemee e et e e smseesaneneas 3-15
3.5. OPERAND SELECTION ..ottt sttt s st sae e s 3-17
3.5.1. Immediate OPErandsc..cevieiiieeiriiirenie et e st e s e e s snree e e e s 3-18
3.5.2. Register Operandsccccoceiierreeiceineteee st st 3-19
3.5.3. MemOry OPErands.......ccccceeeerrieeiriiieieirieeeeireessetesssresesseeeesesnraesssssesessssasssessanes 3-19
3.5.3.1. SEGMENT SELECTION ...ttt sttt 3-20

CONTENTS I nt9| ®

PAGE
3.56.3.2. EFFECTIVE-ADDRESS COMPUTATION....ccoiiiiiiiiiicie et 3-20
3.6. INTERRUPTS AND EXCEPTIONScooiiiiiiiiieinitieee et 3-23
CHAPTER 4
APPLICATION PROGRAMMING
4.1, DATA MOVEMENT INSTRUCTIONS........coooieiiiritiiiieccieen et 4-1
4.1.1. General-Purpose Data Movement INStructionscccoeveiiiiiiieeiiiiieciniiiecce 4-1
4.1.2. Stack Manipulation INStruCtioNS........c.coovviiiiiiiiiii e 4-2
4.1.3. Type Conversion INSrUCtiONS............cooiviiiiiiiiiiiiniiiie e 4-5
4.2. BINARY ARITHMETIC INSTRUCTIONS.......ccoiiiiieintieiiiiee et 4-6
4.2.1. Addition and Subtraction INStrUCtIONSccocoviiiiiiiiiiiiiiii e 4-7
422. Comparison and Sign Change InStructionccoccuevviiiiiiiiiiiiieicice e 4-8
4.2.3. Multiplication INStrUCtIONSc.eeieiiiiiiiiii i 4-8
4.2.4. DiVISION INSTIUCHONS ...eeeieiiiiiiiiiiiiiceee et e e e e 4-9
4.3. DECIMAL ARITHMETIC INSTRUCTIONS ..ottt 4-10
4.3.1. Packed BCD Adjustment INStructions............ccocveiiniiiiiiiiiieiniiii i 4-10
4.3.2. Unpacked BCD Adjustment INStructionscocccvvviiiiiiiiiiiiiniiieic e, 4-10
4.4, LOGICAL INSTRUCTIONS......coiititiitiniieenireesiteite e st e st e s aee e sneesneeaesaeeesaee e 4-11
4.4.1. Boolean Operation INStruCtionScoovviiiiiiiiiiiiiin e 4-11
4.4.2. Bit Test and Modify INStrUCLIONScovvviiiiiiiiiiiiiic e 4-12
44.3. Bit SCAN INSIIUCLIONSeveieeiiieieeciiie e 4-12
4.4.4. Shift and Rotate INStrUCHIONSueiiiiiiiiiiieii e 4-13
4441, SHIFT INSTRUCTIONS ...ttt et e e 4-13
4442, DOUBLE-SHIFT INSTRUCTIONS ...ttt 4-16
4.44.3. ROTATE INSTRUCTIONSooiiiiiiieciecrecce e 4-17
4.44.4. FAST "bit bit" USING DOUBLE-SHIFT INSTRUCTIONS.........ccccceerirenieeenenn 4-19
4445. FAST BIT STRING INSERT AND EXTRACTccootiiieiiiieenieeeneeniee e 4-19
4.45. Byte-Set-On-Condition INStructions...........cccveviiiiiiiiniiiiiieeeee e 4-23
4.4.6. TeSt INSIIUCHON.....ceiiiiiiiiiiiie e 4-23
4.5. CONTROL TRANSFER INSTRUCTIONSccooiiiiiiiiriit ettt 4-23
45.1. Unconditional Transfer INStruCtionsccooovieriiiiiiiiieee e, 4-23
45.1.1. JUMP INSTRUCTION ..ttt sttt st 4-24
45.1.2. CALL INSTRUCTIONS ..ottt ettt sttt 4-24
4.5.1.3. RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS 4-24
4.5.2. Conditional Transfer INStrUCHIONS..........cooiiiiiiiiiiii e 4-25
45.2.1. CONDITIONAL JUMP INSTRUCTIONSuiiiiiiiiiieeetieeeeitee e 4-25
4522, LOOP INSTRUCTIONSiitieiiiteeeriee ettt vtae e s e are e e aae e e e 4-26
45.2.3. EXECUTING A LOOP OR REPEAT ZERO TIMES.......cccccviiiiiiiiieiireeeeee 4-27
4.5.3. SOftWare INTEITUPESeveiiiiiiiiit e 4-27
4.6. STRING OPERATIONS.....coi ittt ittt ettt s et ettt ae e et st e e snaaeesaeenaaeans 4-28
4.6.1. Repeat PrefiXes........coouiiiiiiiiiet et 4-29
4.6.2. Indexing and Direction Flag Controlcccouivieiiieiininiiiein e 4-30
4.6.3. StriNg INSIUCHIONSeviiiiiiiiiii i e 4-30
4.7. INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES..........ccccccvenrirennnnn 4-31
4.8. FLAG CONTROL INSTRUCTIONS......ccoiiiiiieiiieiite et e 4-38
4.8.1. Carry and Direction Flag Control INStructionsccccccevvvieiiiiiiiiciniecnieenenes 4-38
4.8.2. Flag Transfer INStruCHONSciviiiiiiiiiiiii e 4-38
4.9. NUMERIC INSTRUCTIONS......ccottiiiiiitt ettt et ste e s 4-40
4.10. SEGMENT REGISTER INSTRUCTIONScoooiiiiiiieeiee et 4-40
4.10.1. Segment-Register Transfer INStruCtionscccecciiiiiiiiiiiiiiiiciie e 4-41
4.10.2. Far Control Transfer INStruCtions............ccceeeviiiiiiiiiecieee e 4-41
4.10.3. Data Pointer INStrUCHONS.ccuueiiiiiiiiiiiie e 4-41

|
“Ttel ® CONTENTS

PAGE
4.11. MISCELLANEQOUS INSTRUCTIONS ...ttt 4-42
4.11.1. Address Calculation INStrUCIONceiriiiiiiriiieeiicei e 4-43
4.11.2. No-Operation INStruCtioN.............cccoiiiiiiiiii e 4-43
4.11.3. Translate INStrUCHONccocoiiiiiiiie e 4-43
4.11.4. Byte Swap InStructionccocuiiiiiiiiiiiiii 4-43
4.11.5. Exchange-and-Add INSUCIONcooriiiiiriiiii e 4-45
4.11.6. Compare-and-Exchange Instructionsccccociiiiiiiiiiniies 4-45
4.11.7. CPUID INSrUCHONuitiiiiiiiiittittee ettt et e 4-46
CHAPTER 5
FEATURE DETERMINATION
5.1. CPU IDENTIFICATION. ..cci ittt eeietieeeeiee e etee st e et e sttt e st e e s bt eeeenseesnnaneeaeeas 5-1
5.2, FPUDETECTION. ... ittt ettt ettt ettt ree et e e s e e st esbee e e eeeeanes 5-2
5.3. SAMPLE CPUID IDENTIFICATION/FPU DETECTION CODE.........ccccoovvrriciiianannns 5-2
CHAPTER 6
NUMERIC APPLICATIONS
6.1. INTRODUCTION TO NUMERIC APPLICATIONSccoiiiiiiiiiie e 6-1
6.1.1. [1153 (o] Y 2O OO T TP UUUTPR RN 6-1
6.1.2. PeIfOMANCE. ..ottt 6-2
6.1.3. EASE Of USE...ueiiiiiieieeiiie ettt 6-2
6.1.4. APPHCAIIONS ... e 6-4
6.1.5. Programming Interface ... 6-5
6.2. ARCHITECTURE OF THE FLOATING-POINT UNITooviiiiiiiiiiiiieeeeieieeeeees 6-7
6.2.1. Numerical REJISIEISccoiiiiiiiiiiiiieeie it 6-7
6.2.1.1. THE FPU REGISTER STACKoiiitiiiitniie ettt 6-8
6.2.1.2. THE FPU STATUS WORD......cciiirieiiiieeteee ettt ettt e st ce e eeeeaveee e e e ennans 6-9
6.2.1.3. CONTROL WORD ..ottt sttt e s 6-11
6.2.1.4. THE FPU TAG WORD ..ottt ettt et a s e e e et e eneaeeeaennnes 6-14
6.2.1.5. OPCODE FIELD OF LAST INSTRUCTION ...ccoocutiiiiiiiiiiireee e, 6-15
6.2.1.6. THE NUMERIC INSTRUCTION AND DATA POINTERS.......ccccciviiriiereeees 6-16
6.2.2. Computation Fundamentalsocooiiiiiiiiniiiini 6-19
6.2.2.1. NUMBER SYSTEM......uiiiiiiiiiien ettt et e e e 6-19
6.2.2.2. DATA TYPES AND FORMATS ...ttt ee e 6-21
6.2.2.2.1. BiNary INtEOETS.eiiiuiiiiieree ittt st 6-21
6.2.2.2.2. Decimal INtEgerscoovviiiiiiiiiiiiii 6-21
6.2.2.2.3. Real NUMDBEISociiiiiiee et et 6-23
6.2.2.3. ROUNDING CONTROL ...eiiiitieeieierecee e eiiie et e et ae e ee e e erabeesreeas e ensaeaes 6-25
6.2.2.4. PRECISION CONTROL ...ttt ettt et 6-26
6.3. FLOATING-POINT INSTRUCTION SETooiiiiiiiiieieiiiie et 6-26
6.3.1. Source and Destination Operandscoooeeiiiiiiiiiiicicee e 6-27
6.3.2. Data Transfer INStruCtioNS...........ooiiiiiciiiiiii e 6-27
6.3.3. Nontranscendental INStrUCIONScc.ieiiiiiiiiiiii e 6-28
6.3.4. Comparison INSIUCHIONScciiiiiiiiiiiie ettt e e ee e e e 6-30
6.3.5. Transcendental INStrUCtIONScoiiiiiiiiiiie et 6-31
6.3.6. Constant INSIUCHONSccuuiiiiiii e 6-33
6.3.7. CoNtrol INStIUCHONS.......viiiiiieeii ettt 6-33
6.4. NUMERIC APPLICATIONS ...ttt ettt ettt ettt e s e s 6-35
6.4.1. High-Level Languagescuuiiiiiiiiiiiii e 6-36
6.4.1.1. C PROGRAMS ...ttt eebee e s e e e nanee 6-36
6.4.1.2. PLIM-BBB/48Beeeeenieieiieiee ettt ettt et e sttt e e e e st e e e ae e s 6-36

-
CONTENTS I nU ®

PAGE
6.4.1.3. ASMBBE/ABB........eeenreeerieeeiie ettt sttt e s e ettt e et e s aae st aenra s 6-38
6.4.1.3.1. Defining Data........ccceiiiiiiiiiiiiii e 6-38
6.4.1.3.2. Records and StrUCHUIES........c.cueiiveiiieiieeeieceee ettt 6-40
6.4.1.3.3. Addressing Methodscoceeiiiiiiiniicni e 6-41
6.4.1.4. COMPARATIVE PROGRAMMING EXAMPLE.......c..cccoviiiiiiiinieeieenivesae 6-42
6.4.1.5. CONCURRENT PROCESSING........cceioitiiiinieniien et 6-47
6.4.1.6. MANAGING CONCURRENCYcoooiiiiiitiiieiienie ettt e svresaee s 6-47
6.4.1.7. EXCEPTION SYNCHRONIZATION.......ciiiiiiecieeittencteeie e e sseeesrnressereeesnree s 6-49
6.4.1.8. PROPER EXCEPTION SYNCHRONIZATIONccccceieiiiniieeiiee it e esieeesene s 6-49
CHAPTER 7
SPECIAL COMPUTATIONAL SITUATIONS
7.1, SPECIAL NUMERIC VALUESooiitiiiiiieiie ettt ettt sree vt 7-1
7.1.1. Denormal Real NUMDETS......ccccoiiiiiiiiiiecee et 7-7
7.1.2. =] (o LT TP ORI OO PPN 7-9
7.1.3. 1)1 1] 472 PSPPSR 7-9
7.1.4. NaN (Not-a-NUMDET)coiiiiiiiiiiiciii et 7-15
7.1.4.1. SIGNALING NANS ...cooviiiiiiiiitie ettt ettt e s st e r s s e e e e s s e e e e aeaees 7-16
7.1.4.2. QUIET NANS. ..ottt ettt b e st sbe e e easaaen 7-16
71.5. INAEFINIEE ... s e e e e e e s e e e e e e e e e aeraaes 7-17
7.1.6. Encoding of Data TYPeS.......uuiiiiiiiiiiiiiei ettt 7-18
7.1.6.1. UNSUPPORTED FORMATS......coiitiiiitinienete ettt te e e s sntee s te e e s sraesnveeenes 7-18
7.1.7. NUMENC EXCEPHONSoiiiiiiiiiiitin ittt 7-18
7.1.8. Handling NUMeric EXCEPLIONSccoeiiuieiiiiiriiiiecriereesiire st e e s e e streeeeennes 7-19
7.1.8.1. AUTOMATIC EXCEPTION HANDLINGcetieieeiieeieenieeie e eve s 7-19
7.1.8.2. SOFTWARE EXCEPTION HANDLING......cccooiieiieeree e 7-20
7.1.9. INvalid OPErationceeiiiiiiiiiiee e e 7-21
7.1.9.1. STACK EXCEPTION.....coiiiiiite ettt ettt ettt see st neesba e e s v e 7-22
7.1.9.2. INVALID ARITHMETIC OPERATION ..ottt et 7-22
7.1.10. DIVISION DY ZEIO......eeiiiiiiiiiietie ettt et e s s e s s e e ae e e e e e e e eeanes 7-23
7111, Denormal OPerandccoooiiieiioiieeeienreee et e e ire e e ste e e e e e s e nre e e e senraeeeens 7-23
7.1.12. Numeric Overflow and Underflow.........cccccoviciiiiniine i 7-24
7.1.121 OVERFLOW ...ttt ettt s s e e s e st e e e e tae e e e enna s 7-24
7.1.12.2. UNDERFLOW. ..ottt st sttt st a st e e et s 7-26
7.1.18. Inexact (PreCiSion)..........c.coivuiiiiieietiiiiieceie s 7-27
7.1.14. EXCePON PriOMtY.......icoiiiiiiiiiiiiiie sttt sttt e s e be e 7-28
7.1.15. Standard Underflow/Overflow Exception Handlerccccooeeeieirivinninenecneeennne 7-28
CHAPTER 8
NUMERIC PROGRAMMING EXAMPLES
8.1. CONDITIONAL BRANCHING EXAMPLEccccteiieeiiiniteeiee st 8-1
8.2. EXCEPTION HANDLING EXAMPLESccooiiiiiieeintieeriteeteestee e sereestneeeeveeeeennens 8-4
8.3. FLOATING POINT TO ASCII CONVERSION EXAMPLES..........coccovvcieiireeiereeceeene 8-7
8.3.1. Function Partitioningc..coueeiiiiiiinie et 8-22
8.3.2. Exception Considerationsccieeiiiiiiiiiicini e 8-22
8.3.3. Special INSrUCLIONS........ccciiiiiiiiiiii e 8-22
8.3.4. Description of Operationcocc e e 8-23
8.3.5. SCaliNg the VAlUE.....ccoouiiiiiiiei e et 8-24
8.3.5.1. INACCURACY IN SCALING........ooiiiiiiiities ittt e e e 8-24
8.3.5.2. AVOIDING UNDERFLOW AND OVERFLOW.......cccccoviieieeecree ettt 8-24

Vi l

L
l ntd ® CONTENTS

PAGE
8.3.5.3.° FINAL ADJUSTMENTSoeiiieiiiiiiiiie ettt et 8-25
8.3.6. OUPUL FOMMAL....coiiiiiiiiiiiiicete et 8-25
8.4. TRIGONOMETRIC CALCULATION EXAMPLEScccocoimiiriiiiiiiiiciecceecceeee 8-25

PART Il — SYSTEM PROGRAMMING

CHAPTER 9
REAL-ADDRESS MODE SYSTEM ARCHITECTURE
9.1. ADDRESS TRANSLATION. ..ottt 9-1
9.2. REGISTERS AND INSTRUCTIONS.......ccciiitiiiiiriiitiin e 9-2
9.3. INTERRUPT AND EXCEPTION HANDLINGccccctiiiiiiiiiiiiiieniee et 9-3
9.4. REAL-ADDRESS MODE EXCEPTIONSccceoiiiiiiiiiiiiiic it 9-3
CHAPTER 10
PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW
10.1. SYSTEM REGISTERS ..ottt e e 10-1
1011, SYSEEM FIAGS. ..ceiiiiiiiierieciie e 10-2
10.1.2. Memory-Management Registers.........cccovuumiiiiiiiiiiiiiiniic 10-4
10.1.3. CoNtrol REGISIEISevii ittt 10-5
10.1.4. Debug RegiSters.........coiviiiiiiiiiiiiiiii e 10-9
10.2. SYSTEM INSTRUCTIONScoiiiiiiiiiiiiiie e 10-11
CHAPTER 11
PROTECTED-MODE MEMORY MANAGEMENT
11.1. SELECTING A SEGMENTATION MODEL........cccoiiiiiiiiiiiniiiiicieren e 11-2
11110 Flat MOdeloiiiii e 11-3
11.1.2. Protected Flat Model...........ccooviiiiiiiiiii e 11-4
11.1.3. Multisegment MOEL.......coomiiiiiiiie e 11-5
11.2, SEGMENT TRANSLATION ...coitiiiiiiiteiiiet ettt et e s 11-6
11.2.1. Segment Registers ..ot 11-9
11.2.2. Segment SelecCtors ... 11-10
11.2.3. Segment DESCHPOrScovuiiiiiiiiieriet et 11-11
11.2.4. Segment Descriptor Tables.........ccociiiiiiiiiiiiiiiii e 11-15
11.2.5. Descriptor Table Base Registers..........ccccoviriioriiiiiiiiiiniieee e 11-16
11.3. PAGE TRANSLATIONcoutiiiiiicti ittt ese et stee e 11-17
11.3.1. Paging OPtONS ...ccooiiii ettt st 11-18
11.3.2. LINEAI AAIESS ...cueiiuiiiiirieeecee ettt s eb e s 11-18
11.3.3. Page Tablesooiiiiiiie e 11-19
11.3.4. Page-Table ENtries ..ot e 11-19
11.3.4.1. PAGE FRAME ADDRESS.......c.coiiiiiiiiiiie ettt 11-20
11.3.4.2. PRESENT BIT .ottt s 11-20
11.3.4.3. ACCESSED AND DIRTY BITS ...ttt 11-21
11.3.4.4. READ/WRITE AND USER/SUPERVISOR BITSccoiiiiiiiiiiii e 11-22
11.3.4.5. PAGE-LEVEL CACHE CONTROL BITSccoiiiiiiiiiiiiiicceen e 11-22
11.3.5. Translation Lookaside BUffers..........ccccoccoiiiiiiiiiiiiiiii e, 11-22
11.4. COMBINING SEGMENT AND PAGE TRANSLATION.........cooeiiiniiienine e 11-23
1141, FIat MOEI ..o et e 11-23
11.4.2. Segments Spanning Several Pagescccccovviiiiiiiiiiniiiciiin e 11-23
11.4.3. Pages Spanning Several SEgMeNtsSccocveeiiiiiieiinieinicne e 11-23
11.4.4. Non-Aligned Page and Segment Boundaries.............cccccoeiiiniiiininncinnnncinnen, 11-24

I vii

CONTENTS Intd ®

PAGE
11.4.5. Aligned Page and Segment Boundariesccocveiviiciiiiiiininnieenciiee e, 11-24
11.4.6. Page-Table Per Segment..........cccovviiiniiiiiiiiiii e 11-25
CHAPTER 12
PROTECTION
12.1. SEGMENT-LEVEL PROTECTIONiitiiiiit ettt 12-1
12.2. SEGMENT DESCRIPTORS AND PROTECTION.......ccciiiiiiiiiicccrieeece e 12-2
12.2.1. TYPE ChECKING. ...teeiiiiieiiiii it 12-2
12.2.2. Limit CheCKING ...cciiiiiiiiiiee ettt e e st e e e e e e e e e e e 12-5
12.2.3. PriVIIEge LEVEISooriiiiiieiiieii ettt et 12-6
12.3. RESTRICTING ACCESS TO DATA ...ttt 12-8
12.3.1. Accessing Data in Code Segmentsocvciiiiiiieiiiiiniiiie e 12-10
12.4. RESTRICTING CONTROL TRANSFERS.........coiciiiiiiiiie e 12-10
12.5. GATE DESCRIPTORSooiitititii ittt sttt st ser e eneeeeeas 12-12
12.5.1. Stack SWItChiNGcevieeiiieiee et e 12-15
12.5.2. Returning from @ ProCedUre...........cccviiiiiiiiiiiiiiiiereee et e 12-18
12.6. INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEMcccccevueveunenn. 12-20
12.6.1. Privileged INStructionS...........ccccoeviiiiiiiiiiiniie e 12-20
12.6.2. Sensitive INSIIUCHIONScoiiiiiiiiiiiiiir e e 12-21
12.7. INSTRUCTIONS FOR POINTER VALIDATION......cccociiiiiieieiieeice e 12-21
12.7.1. Descriptor Validation...........couueiiiiiiiiiiiieie et are e 12-23
12.7.2. Pointer Integrity and RPL...........ccooiiiiiiiiiiiiicici e 12-23
12.8. PAGE-LEVEL PROTECTIONocoiiiiiiiiiiiiiiiie ettt 12-24
12.8.1. Page-Table Entries Hold Protection Parameters...............ccccecveveiriniennneeeneenn. 12-24
12.8.1.1. RESTRICTING ADDRESSABLE DOMAINcccceiiiiiiiiiiiiiiie e 12-25
12.8.1.2. TYPE CHECKING........coctiiiiiiiieiee ettt st et 12-25
12.8.2. Combining Protection of Both Levels of Page Tablesccccceceevriciieecccnnen... 12-26
12.8.3. Overrides to Page Protectioncccoccoiiiiiiiiiiiiicece e, 12-26
12.9. COMBINING PAGE AND SEGMENT PROTECTION........ccccoveineiriireeiieeieeenennn 12-27
CHAPTER 13
PROTECTED-MODE MULTITASKING
13.1. TASK STATE SEGMENT ...ttt ettt sttt st e s s eren e 13-2
13.2. TSS DESCRIPTOR ...ttt sttt ettt st e st ese e e s sreeaanans 13-4
13.3. TASK REGISTER ...ttt ettt ettt ettt et e e assea e s tnnaeeans 13-5
13.4. TASK GATE DESCRIPTOR......cuttiiiiiiiieei ettt e vee e e e e 13-6
13.5. TASK SWITCHING....c.cottiiiiiiiiiiteie ettt ettt 13-8
13.6. TASK LINKING ...ttt ettt sttt et e rat e e e ste e e e teeea 13-11
13.6.1. Busy Bit Prevents LOOPS.....c.ccuiiiiiieiiirie ettt 13-13
13.6.2. Modifying Task LINKAges.........c.cceiiiiiiiiiiiiiii e 13-14
13.7. TASK ADDRESS SPACE ...ttt ettt stee e 13-14
13.7.1. Task Linear-to-Physical Space Mapping.......ccc.cceeeveeriueeensieeniieieeniveesviee v 13-14
13.7.2. Task Logical Address SPaCe..........ccccviiueiiieiriniieiiiii ettt 13-15
CHAPTER 14
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS
14.1. EXCEPTION AND INTERRUPT VECTORScoccceiitiiiiieeiiee e eneceeie e e 14-1
14.2. INSTRUCTION RESTART ...cootiiiiiiiiiete ettt sttt ettt et esrnae e 14-3
14.3. ENABLING AND DISABLING INTERRUPTS.....c.c.ciiiiiiiiierieeeeie et 14-3
14.3.1. NMI Masks Further NMIS......ccooiiiiiieee ettt 14-3
14.3.2. IFMaSKS INTR ..cooiiieiiie ettt st s anae e 14-4

viii I

-
I ntd ® CONTENTS

PAGE
14.3.3. RF Masks Debug FaultSc.uiiiiiiiiiiiiiice e 14-4
14.3.4. MOV or POP to SS Masks Some Exceptions and Interruptscoeeeiine 14-5
14.4. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS.............. 14-5
14.5. INTERRUPT DESCRIPTOR TABLEcoioiitieiiiiiieiiie et 14-6
14.6. IDT DESCRIPTORSottt e 14-8
14.7. INTERRUPT TASKS AND INTERRUPT PROCEDURES...........ccooiiiiiiiieiice 14-9
14.7.1. Interrupt ProCeAUIES.......ccciiiiiiiiiiiiiiiiiiiiiiie e 14-10
14.7.1.1. STACK OF INTERRUPT PROCEDUREccooviiiiiiiiiiiiiiieeeieecceeeeen 14-11
14.7.1.2. RETURNING FROM AN INTERRUPT PROCEDUREcccovciiiiiiiiiiceen. 14-11
14.7.1.3. FLAG USAGE BY INTERRUPT PROCEDUREccccccecoiiiniiiniiiiiiiiiiee s 14-12
14.7.1.4. PROTECTION IN INTERRUPT PROCEDUREScoociiiiiiiiiiiiiiiieeeas 14-12
14.7.2. INEEITUPE TASKS cooeiiiiiiiiiiiiiiiiii e 14-12
14.8. ERROR CODEoiiiiiiiiieeitt ettt ettt ettt e e see e e eas 14-14
14.9. EXCEPTION CONDITIONSooiiiiiiiiittee ittt ettt et e et 14-14
14.9.1. Interrupt 0—Divide Error......c.c..oviiiiiiiiiiiiii e 14-15
14.9.2. Interrupt 1—Debug EXCEPLONSc.coiviiiiiiiiiiiiiiiii e 14-15
14.9.3. Interrupt 3—Breakpoint..........cocuiiiiiiiii 14-15
14.9.4. Interrupt 4—OVerfloWcccceiiiiiiiiiiiiiiii 14-16
14.9.5. Interrupt 5—Bounds ChecCK.........cccooeiiiiiiiiiiiiiiiiiii e 14-16
14.9.6. Interrupt 6—Invalid OpCodecoooiiiiiiiiiiiiiiiiei e 14-16
14.9.7. Interrupt 7—Device Not Availableccocoiiiiiiiii, 14-16
14.9.8. Interrupt 8—Double Fault.........cc.oviiiiiiiiii e 14-17
14.9.9. Interrupt 9—(Intel reserved. DO NOt USE.)ccovuiiiiiiiiiiiiiiiiiieniceeecereee e 14-18
14.9.10. Interrupt 10—Invalid TSS....coo i 14-18
14.9.11. Interrupt 11—Segment Not Present ..., 14-19
14.9.12. Interrupt 12—Stack EXCEPHIONoeveiiiiiiiiiieiiicieeeciereee e e 14-20
14.9.13. Interrupt 13—General ProteCtioncoooviiiiiiiiiiiiiiniiieeeeeeeecee e 14-21
14.9.14. Interrupt 14—Page Fault...........cccooiiiiiiiii e 14-22
14.9.14.1. PAGE FAULT DURING TASK SWITCHoitiiiiiiiinieeeeeiee e 14-23
14.9.14.2. PAGE FAULT WITH INCONSISTENT STACK POINTERccccccevviniiieeanns 14-23
14.9.15. Interrupt 16—Floating-Point Errorcceveeiiieiniece e 14-24
14.9.15.1. NUMERICS EXCEPTION HANDLINGcetiiiiiiiiniie et 14-25
14.9.15.2. SIMULTANEOUS EXCEPTION RESPONSE..........ccoociiiiiiiiieeieeiiceeeenn 14-26
14.9.16. Interrupt 17—Alignment CheCKcciiiiiiiiiiiiiicec e 14-27
14.9.17. Interrupt 18—Maching ChecKccoovriiiiiiiiiiiiii e 14-28
14.10. EXCEPTION SUMMARY ...ttt ettt et 14-28
14.11. ERROR CODE SUMMARY ...ttt ettt ettt eenieee e 14-30
CHAPTER 15
INPUT/OUTPUT
15.1. 1/O ADDRESSINGcoiiiitiiiiiiiieitt ettt ettt st aeeeeens 15-1
15.1.1. 1/O AAreSS SPACEceiimiiiiiiiiiieiiite ettt sttt e e e e e 15-1
15.1.2. Memory-Mapped H/O......c...ocoiiiiiiiiieie ittt 15-3
15.2. VO INSTRUCTIONSoooiiiiti ittt ettt e e e e e e 15-4
15.2.1. Register O INSIrUCIONScoovuiiiiiiiiiii e 15-4
15.2.2. BIOCK I/O INSIFUCHIONS......euiiiiiiiiiiiiiiieie e 15-4
15.3. PROTECTED-MODE /O ...ttt ettt ettt 15-5
15.3.1. /O PrvIlege LeVEl ...cceueiiiiiiee e 15-6
15.8.2. 1/O Permission Bit Mapccooieiiiiiiiiiiiie ittt 15-6
15.3.3. Paging and Caching..........ccccoviiiiiiiiiiiiiiii i 15-8
15.4. ORDERING OF /O .cciuniiiiiiieiiieee ettt ettt ee s 15-8

-
CONTENTS I ntd ®

CHAPTER 16

INITIALIZATION AND MODE SWITCHING PAGE
16.1. PROCESSOR INITIALIZATIONooiiiiiiiitenieereee ettt s e e 16-1
16.1.1. Processor State after Reset.........cccccvviiiiiiiiiiiiiiii e 16-2
16.1.2. First Instruction EXECULEdc.ooviiiiiiiiiiiiiiiiiiire e 16-5
16.2. FPU INITIALIZATION ...oetiiieeeie ettt ettt st st e s e e e e e 16-5
16.2.1. Configuring the Numerics Environmentoccccoiviiiiniiniininicnniecceee e 16-6
16.2.2. FPU Software Emulation............ccocvviiiniiiiiiiiiiiiinicecee e 16-8
16.3. CACHE ENABLINGcoiiiiiieeieeiieeteee ettt ettt seaee e s ie e e s 16-9
16.4. SOFTWARE INITIALIZATION IN REAL-ADDRESS MODEccccceviiiniiinreenenns 16-9
16.4.1. System Tables......c.cocouiiiiiiiiiiiiiiii 16-10
16.4.2. NMIINEITUPT ..cooiiie et re e 16-10
16.5. SOFTWARE INITIALIZATION IN PROTECTED MODE.........ccccctviiiiiniiirrennennne 16-10
16.5.1. System Tables.....c..ccccviiiiimiiiiiiiii 16-10
LRI [1] (=11 (U] o) =TS 16-11
16.5.83. PagiNg..ccciverieiiiiiiiiiiiiiie i s 16-11
1B8.5.4. TASKS .ueiieiiirieiiiiiiee e ettt ee ettt e st e s ettt e e st et et e e sttt e st e e e s et e e et re e s e bbte e e e abnaeeaeas 16-12
16.5.5. TLB, BTB and Cache TeStNG.......cccccvvtieiriireeeerriieeciiiee st estave e e snre e 16-12
16.6. MODE SWITCHINGooiiiiiiiiiieiie ettt ettt e e e 16-12
16.6.1. Switching to Protected Modecceeiiiiiiiiiiiniiiiii e 16-13
16.6.2. Switching Back to Real-Address Mode............oooiiimieiiiieiiiiiiiiiicnn s 16-13
16.7. INITIALIZATION AND MODE SWITCHING EXAMPLEcoooevviiiieeciiee e, 16-14
16.7.1. Goal Of this EXAmPIE....cccceiuiiiiiiiriieiieienier ettt ae e 16-14
16.7.2. Memory Layout FOllowing RESetcoovriiiiiiiiiieiieiieei e 16-14
16.7.3. The AlGOthMoeiiiiieee ettt ae e 16-15
16.7.4. TOOIUSAQE......eeiiiiiiiiiiiiiiiie ittt e ce e 16-17
16.7.5. STARTUP.ASM LIStNGcccviriiiiiiiiiiectieeeeiee et 16-18
16.7.6. MAIN.ASM S0oUICE COTEcoocvieiiiiiiiiieieiec et 16-26
16.7.7. SUPPOMING FIlES....eiiiiiiiiiieiiee ettt e 16-29
CHAPTER 17

DEBUGGING

17.1. DEBUGGING SUPPORTcoiiitiiiiiteeitieeie ettt et srte st e seestesssaeeassnsaeseaes 17-1
17.2. DEBUG REGISTERSooiitiieieeitt ettt st sttt a s e e 17-2
17.2.1. Debug Address Registers (DRO-DR3)........cccceevtriiiiiiiriiiiiiiieenriiee e 17-3
17.2.2. Debug Control Register (DR7)coeveiirieerteeeiiereee ettt e s see s e 17-3
17.2.3. Debug Status RegiSter (DRB).........ueeieiruiieerieeiieeteee e sree e ssvtee e e e srree e e sevnees 17-4
17.2.4. Debug Registers DR4 and DR5ccooocieiiiiiiiieiiiee et e e 17-5
17.2.5. Breakpoint Field ReCOgNItioN.......cccoiriimiiiiiiiin ittt esrveeeeee e 17-5
17.8. DEBUG EXCEPTIONS ...ttt ettt ettt tee st st e sae e e s naeaenaes 17-6
17.3.1. Interrupt 1—Debug EXCEPLIONSccccuviieiiiiiiiiieeeeeee et 17-6
17.3.1.1. INSTRUCTION-BREAKPOINT FAULTccceuttieiienieeeieeeeeenieeeereseeeesenee e 17-7
17.3.1.2. DATA MEMORY AND I/O BREAKPOINTS.....ccoeiiiiieiieieeesiceeeeesiree e 17-8
17.8.1.3. GENERAL-DETECT FAULT ...ttt 17-8
17.8.1.4. SINGLE-STEP TRAP ...ttt ettt e sttt s e s e 17-9
17.83.1.5. TASK-SWITCH TRAP ...ttt sttt ettt st 17-9
17.3.2. Interrupt 3—Breakpoint INStruction............cceeveiiiiiieiriii s 17-10

Intd ® CONTENTS

CHAPTER 18

CACHING, PIPELINING AND BUFFERING PAGE
18.1. INTERNAL INSTRUCTION AND DATA CACHEScooiiiiiiieiicirecieeec e 18-1
18.1.1. Data CACNE ..eeiiniiiiiiiiiiei it 18-2
18.1.2. Data Cache Update POliCIESc.cocueiecuiiiiiiiiiii e 18-3
18.1.3. INStrUCHON CaChe.....coiiiiiiiii e e 18-3
18.2. OPERATION OF THE INTERNAL CACHESocoiiiiiiiiiiiieciieecceecc e 18-3
18.2.1. Cache Control BitS.........eeiiuiiiiiiiiiiiieeiie e e 18-4
18.2.2. Cache Management INStruCtiONS..........uuuuiiiiiic 18-4
18.2.3. Self-Modifying Codecccoiiiiiiiiiiieiiie e 18-5
18.3. PAGE-LEVEL CACHE MANAGEMENTcciiiiiiiiieriie et 18-5
18.3.1. POD Biteoiiiiiiriiiee ettt sttt e s 18-6
18.3.2. PWT Bttt s e e e 18-6
18.4. ADDRESS TRANSLATION CACHES........cccciiiiiiiiiiieriiccree e 18-6
18.5. CACHE REPLACEMENT ALGORITHM ...ttt 18-7
18.6. EXECUTION PIPELINING AND PAIRING.......c.ccccoiiiiriiiniiicie e 18-7
18.7. WRITE BUFFERS ...coiiiieii ittt eee e et s st e s s et e e sreee e s s e 18-7
18.8. SERIALIZING INSTRUCTIONScoiiiiiiiitie ettt st e e s aeeeee 18-7
CHAPTER 19

MULTIPROCESSING

19.1. LOCKED BUS CYCLES........oiiiiiiieiiieetetecnte ettt st s 19-1
19.1.1. LOCK Prefix and the LOCK# Signalc.coooeiiiiiiiiiiiiiiiecs 19-2
19.1.2. AUtomMatic LOCKING ...ttt 19-2
19.2. MEMORY ACCESS ORDERINGcccctttiiiiiieiiiiiien ittt 19-3
19.3. Pentium® Processor (735\90, 815\100, 1000\120, 1110\133) INTEGRATED APIC..19-4
19.3.1. Interrupt Control Mechanism............ceeiiiiiiiiiiiiiii e 19-6
19.3.1.1. VALID INTERRUPTS ... ettt ettt ettt ettt e e e 19-6
19.3.1.2. INTERRUPT SOURGCES ...ttt ettt et e 19-6
19.3.1.3. BUS ARBITRATION ... ettt ettt e ee e e e s 19-6
19.3.1.4. THE LOCAL APIC STRUCTURE..........ctttiiiiiieiieireeeeeeee et ee e 19-7
19.3.1.5. INTERRUPT DESTINATION AND APIC IDcetviiiiiiiieiiee e 19-9
19.3.1.6. INTERRUPT DISTRIBUTION MODESccccetiiiiiiiieetieieceee e 19-11
19.3.1.7. LOCALVECTOR TABLE ...ttt ettt st ee e 19-12
19.3.1.8. INTER-PROCESSOR AND SELF INTERRUPTS......ccceciiiiirrieee e, 19-14
19.3.1.9. INTERRUPT ACCEPTANCE ...ttt ettt siete e 19-18
19.3.1.9.1. Interrupt Acceptance Decision Flow Chart.............cooooiiiiiiiiiiiiiiiniiiennnnn, 19-19
19.3.1.9.2. Task Priority Register.........cc.eeiiiiimiiiiiiiiiicc e 19-21
19.3.1.9.3. Processor Priority Register (PPR)coooiiiiiiiiiiiiiie e 19-21
19.3.1.9.4. Arbitration Priority Register (APR)ccooriiiiiiee e 19-21
19.3.1.9.5. Spurious INTEITUPTccoiiiiiiiiii it 19-22
19.3.1.9.6. End-Of-Interrupt (EOI) cooeeeveiiiiiiiiiii ettt 19-22
19.3.1.10. READING REMOTE APIC REGISTERS........ccccoiiiiiiiiriie e 19-22
19.3.1.11. LOCAL APIC STATE ..ottt ettt st 19-23
19.3.1.11.1. Spurious Interrupt Vector Register..........ccccerieiiiiiiiiiiiniiiiiieeeccvie 19-23
19.3.1.11.2. Local APIC Initialization...........ccooereiiiimiiiiiiien e 19-24
19.3.1.11.8. Local APIC State After Power-Up Reset and Init.........cccccooeiiiininnnnnenn... 19-24
19.3.1.12. LOCAL APIC VERSION REGISTERctiiiiiitireciieeieeie et eeee e 19-25
19.3.2. APIC Bus And Inter-APIC Communication Protocol...........cccceeeceeirivenieenieennn. 19-26
19.3.2.1. BUS ARBITRATION. ...ttt e e 19-26
19.3.2.2. BUS MESSAGE FORMATS.......oetiiiirieetee ettt sae e e a e 19-26
19.3.3. Error Handling IN APICccceiiiiieieiieceie ettt 19-33
19.3.4, THMBE ettt e e et e s e a e e e n et e ar e e e e e s 19-34

| xi

- 4
intal.

PAGE
19.3.4.1. OVERVIEW ..ottt s e 19-34
19.3.5. APIC Valid/Invalid Programming Combination.............c.ccccevviiiiiniiiniiniinienenen, 19-38
19.3.6. Software Visible Differences Between APIC and 82489DXcccocevrninrennnns 19-39
19.3.7. Dual Processing Bootup Handshake Protocol Sequence With Examples........... 19-40
CHAPTER 20
POWER MANAGEMENT
20.1. PENTIUM® PROCESSOR (510\60,567\66) POWER MANAGEMENT 20-1
20.1.1. Introduction to System Management Mode Architecture..............ccccoeevereiinnnnens 20-1
20.1.2. TerMINOIOGY.....ccetiiiiiiiiiiiiii it e reae e 20-1
20.1.3. Pentium® Processor System Management Interrupt Processing...........c.cccceeuuee. 20-2
20.1.3.1. SMBRAM et e e e e s eaea e 20-2
20.1.3.2. SMRAM STATE SAVE MAP ...ttt ettt et 20-4
20.1.3.3. EXIT FROM SMM......uiiiiiiiiiiiiiieiiriien ettt e et 20-6
20.1.4. System Management Mode Programming Model..........cccccccviiiiiiiiniiiec i, 20-7
20.1.41 SMM ENTRY Lottt e e e e s 20-7
20.1.4.2. PROCESSOR ENVIRONMENTc.uttiiiiiieiiiitee et e 20-9
20.1.4.3. EXECUTING SYSTEM MANAGEMENT MODE HANDLERc...ccccovurennenn. 20-10
20.1.4.4. EXCEPTIONS AND INTERRUPTS WITHIN SMMccccceoiiiiiiniiiinieeneeene 20-10
20.1.5. SMM FEatUreS....cccciiiiiiiiiiiiiice et 20-11
20.1.5.1. SMM REVISION IDENTIFIER ...c..ceiiitiiiiieiienieteeeeeeeseeeee e 20-11
20.1.5.2. HALT AUTO RESTART ..ottt 20-12
20.1.5.3. SMM BASE RELOCATIONcoitiiiieiriiiieeiieie et 20-12
20.1.6. Pentium® Processor SMM - Software Considerations...........c..ccccoeeeiiceerinnnneen. 20-14
20.1.6.1. SMM CODE CONSIDERATIONSccceiiiiiiiiiiieie e 20-14
20.1.6.2. EXCEPTION HANDLINGc.cocttiiiiiiteie ittt 20-15
20.1.6.3. HALT DURING SMM ..ottt et et 20-15
20.1.6.4. RELOCATING SMRAM TO AN ADDRESS ABOVE ONE MEGABYTE 20-15
20.2. PENTIUM® PROCESSOR (735\90, 815\100, 1000\120, 1110\133) POWER
MANAGEMENT ...ttt ettt e et e st e e eebr e e e sbeaeaaeeeeeas 20-16
20.2.1. System Management Mode Architecture.............cccccoieiiiiiiiiii e 20-16
20.2.2. Pentium® Processor (735\90, 815\100, 1000\120, 1110\133) Power Management
Differences vs. Pentium Processor (5610\60, 567\66)..............cccoeveeeereereieecennn. 20-16
20.2.3. System Management Interrupt Via APICcoooiririieiii s 20-17
20.2.4. 1/O INStruction RESLAM.........ceeviieriieiieeii ettt ste e saee e 20-17
20.2.4.1. ENABLING I/O INSTRUCTION RESTARTuttiiiiiieieeieeee e 20-17
20.2.4.2. SMRAM STATE SAVE MAPcoiiiiiitiiiit ittt 20-17
20.2.4.2.1. 1/0 Instruction Restart SIot..........coooveiiiiiii e 20-19
20.2.4.3. BACK-TO-BACK SMI# AND I/O INSTRUCTION RESTARTc.cccvvevrrerurinennn. 20-20
20.2.4.4. EXIT FROM SMM... ..ottt sttt e st e s e e e s snnnaaes 20-20
20.2.5. System Management Mode Revision Identifier..............ccccuvueimiiiiiiiiiieieiiiiiennns 20-20
20.2.6. SMM — Dual Processing Considerations..............ccccoceieiiiiiiiiniininiiece e 20-21
20.2.6.1. DP SMIDELIVERY ...cutiiiiiiiiee ettt ettt ettt reae e s 20-22
20.2.6.2. DP SMBRAMoiiiiiii ettt 20-22
20.2.6.3. DP SMIACTH ...ttt e st e e e s te e s ara e e e e s naeeaeeas 20-22

xii I
i

L)
InU ® CONTENTS

PART Ill — COMPATIBILITY

CHAPTER 21

MIXING 16-BIT AND 32-BIT CODE PAGE
21.1. USING 16-BIT AND 32-BIT ENVIRONMENTS.....cccoiiiiiiiierie e 21-1
21.2. MIXING 16-BIT AND 32-BIT OPERATIONS ..ottt 21-2
21.3. SHARING DATA AMONG MIXED-SIZE CODE SEGMENTS........ccccceviiiiiriinieeenn, 21-3
21.4. TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTS 21-4
21.4.1. Size of Code-Segment POINTE..........cccciiiriiieeciieee et 21-4
21.4.2. Stack Management for Control Transfer.........cccuvviieiiiiiiiiiiiieie e 21-4
21.42.1. CONTROLLING THE OPERAND SIZE FOR A CALL ...ccccciiiiiiiiiiie e, 21-7
21422, CHANGING SIZE OF A CALL.....ooiiiiiii ettt 21-7
21.4.3. Interrupt Control Transfers.......cc.uuiiiiciiiiieee ettt e e 21-8
21.4.4. Parameter Translationooooiiiiiiiiiiieee s 21-8
21.4.5. The Interface ProCeaUIecc..oiiiiiiiiiiei et 21-8
CHAPTER 22

VIRTUAL-8086 MODE

22.1. EXECUTING 8086 CPU CODE.........ccotiiiiiiiaeicee ettt 22-1
22.1.1. Registers and INSTrUCHONScooviiiiiiiiiiii e 22-2
22.1.2. Address Translation........cccceeiiiiiiiieriie e e e ee e e 22-3
22.2. STRUCTURE OF A VIRTUAL-8086 TASKcccceiiriiierenirtiienrteeessreeeeeiee e e aenees 22-4
22.2.1. Paging for Virtual-8086 Tasks.........ccccviiiiiiiiieiiciie et 22-4
22.2.2. Protection within a Virtual-8086 TasKccoeccueiiiiiiiiiiiiiiieieeee e 22-5
22.3. ENTERING AND LEAVING VIRTUAL-8086 MODE.........c.cccciimiiieiiiiiieenie e 22-5
22.3.1. Transitions Through Task SWItChes.........ccccvriiiiiieiiiiiiiii e, 22-7
22.3.2. Transitions Through Trap Gates and Interrupt Gatesccccovcievireecieeeennenn.. 22-8
22.4. SENSITIVE INSTRUCTIONS........ciiiiit ittt ettt et e e e e 22-9
22.5. VIRTUAL INTERRUPT SUPPORTttt ettt ee et ee e ee s 22-9
22.6. EMULATING 8086 OPERATING SYSTEM CALLScooiiiiieeeceeeeceeeee, 22-10
22.7. VIRTUAL O ..ttt et ettt e e neaea e s 22-10
b2 A TR VO B F- o] o T=Te 1 1 O O PSSRSO PPUPTR 22-11
22.7.2. Memory-Mapped l/O.......ccoo i 22-11
22.7.3. Special I/O BUFfErS.....ccooiiiiiiiiee ettt 22-12
22.8. DIFFERENCES FROM 8086 CPUccccooiiiiiiieiiiiiiereeree e e 22-12
22.9. DIFFERENCES FROM INTEL 286 CPUccc.ueeiiiiiiiiiiitieeeie e 22-15
22.9.1. PriVIIEgE LEVEL ..ottt 22-15
22.9.2. BUS LOCK ..ettiiiiiiiiiiiiiietie ettt et e s e e aaa e e e e e e e e e enate e e e e e eaeaas 22-16
22.10. DIFFERENCES FROM Intei386™ AND Intel486™ CPUSsc.ccccveveeinvecnnne. 22-16
CHAPTER 23

COMPATIBILITY

23.1. RESERVED BITS ... ittt ee ettt e s ete e e e e ennae s 23-1
28.2. INTEGER UNIT ..ottt ettt ettt et e s e e s e e e eane e e e eennnaeeas 23-2
23.2.1. New Functions and MOES.........cc.ccueiieiiiiiiiiientee ettt e 23-2
23.2.2. Serializing INSIIUCHIONScoiiiiiiiiiiieee ettt e 23-2
23.2.3. Detecting the Presence of New Featurescccceeveeiiiiiiniiiiee e 23-2
23.2.4. UNdefined OPCOAESoourieiiiiiiiirtee ettt ettt e ettt e s e e e re e e e e ane s 23-3
23.2.5. ClOCK COUNESceiiiiiiiiiiiiieieie ettt ettt e et e e et e e s et e e e s s tn e e e e saneeessateeeeeeanness 23-3
23.2.6. Initialization and ReSet.........coooiiiiiiiii e 23-3
23.2.6.1. INTEGER UNIT INITIALIZATION AND RESET......cccettiieiiiiieniiere e 23-3

I Xiii

CONTENTS I ntd ®

PAGE

23.2.6.2. FPU/NPX INITIALIZATION AND RESETcceitiiiiieeninreresnieesiie s seenessnneeans 23-4
23.2.6.3. Intel486 SX MICROPROCESSOR AND Intel487™ SX MATH COPROCESSOR

INITIALIZATION ..ottt ettt et see e e sabe e sabe s e e rsaaeannaes 23-7
23.2.7. NEW INSLUCHONS ...ttt st e e s e e e 23-8
23.2.7.1. NEW PENTIUM® PROCESSOR INSTRUCTIONS.........cccvevirriierie e 23-8
23.2.7.2. NEW Intel486 PROCESSOR INSTRUCTIONS........ccceootvrrirerireecie e 23-9
23.2.7.3. NEW Intel386 PROCESSOR INSTRUCTIONSccoiriiriiieiee e 23-9
23.2.8. Obsolete INSrUCHONS......cccoiiiiiiiii e 23-9
23.2.9. FlAagS coveiiiiiiiiir i e s e e e 23-9
23.2.9.1. NEW PENTIUM® PROCESSOR FLAGSccccctinierienientienie e see e 23-10
23.2.9.2. NEW Intel486 PROCESSOR FLAGScoiiiiiieiiieeiienee et 23-10
23.2.10. CoNtrol REGISIEIS........civiiieiiiiiieiiieee et iee e e s 23-11
23.2.10.1. PENTIUM® PROCESSOR CONTROL REGISTERS.........cccccccveiiiiririrerninnn. 23-11
23.2.10.2. Intel486 PROCESSOR CONTROL REGISTERS......c.ccceiiieiiiienieree e 23-12
23.2.11. Debug RegiSters........ccocvuiiiiiiiiiiiiiiii e 23-14
23.2.11.1. DIFFERENCES IN DRBeeeiiiiiiieniieniiie et ste e st s et s nrae s ennee s 23-14
23.2.11.2. DIFFERENCES IN DR7 ...ocouitiiiteitieeriteeee sttt et sba e s e e an e s e evae s 23-14
23.2.11.3. DEBUG REGISTERS 4 AND 5.......coiiviriiieeiieeiicenreeniesiee st e snae e seance e 23-14
23.2.12. Test RegiSterscccoiiiiiiiiiiiiiiiiic e 23-15
23.2.13. Model Specific REGIStErS.uueeiiiiiiiiiieteeeeere e a e 23-15
P2 T - S = (oT=T o (o] oI SRR 23-15
23.2.14.1. NEW PENTIUM® PROCESSOR EXCEPTIONSccccceeiiiriieciieieeee e 23-15
23.2.14.2. NEW Intel486 PROCESSOR EXCEPTIONScccoeriiirierriieernee e 23-16
23.2.14.3. NEW Intel386 PROCESSOR EXCEPTIONScccoiiviiiriirnniee e, 23-16
23.2.14.4. INTERRUPT PROPAGATION DELAYcccetiiiiiriieneeenierrnieseeesseee e e sraae e 23-16
23.2.14.5. PRIORITY OF EXCEPTIONS......ccicoiiiiiriiteienriie e eecee e esree e e esanssae e sanens 23-16
23.2.14.6. DIVIDE-ERROR EXCEPTIONS.......ccooiiiiieitien ittt 23-17
23.2.14.7. WRITES USING THE CS REGISTER PREFIX.......ccccociiiiiiinieiecriereieea, 23-17
23.2.14.8. NMIINTERRUPTS.....ccii ittt eccsrccette ettt e e e s e saae e e e e et eaearre e e e e s 23-17
23.2.14.9. INTERRUPT VECTOR TABLE LIMIT ..coriiiiiiiieeeeeeiecsre e 23-18
23.2.14.10. INTERRUPTS INSIDE SYSTEM MANAGEMENT MODEc.ccccvvrvureennnee. 23-18
23.2.15. Descriptor Types and Contents...........ccceeeeiieerieesiemniieeesiee et ceneree e e 23-18
23.2.16. Changes in Segment Descriptor LOAdScevvevieeirieeeieiieeeirieiee e 23-18
23.2.17. Task Switching and Task State Segments.........ccccccceviiiiiriininiie e, 23-18
23.2.17.1. PENTIUM® PROCESSOR TASK STATE SEGMENTScccoccivievieiireren. 23-18
23.2.17.2. TSS SELECTOR WRITESoiiiiiiiiieiice ettt ete e ste e sn et
23.2.17.3. ORDER OF READS/WRITES TO THE TSSccccciiieivienteeee e
23.2.17.4. USING A 16-BIT TSS WITH 32-BIT CONSTRUCTS.........cceevrvrvrrrrrrrereeeenne
23.2.17.4.1. Differences in I/O Map Base Addresses
23.2.17.4.2. Caching, Pipe-lining, Prefetching.........cccccceecvevruvrrnnnnen.
23.2.17.5. SELF MODIFYING CODE WITH CACHE ENABLED
28.2.18. PAGNgG..ciceeieriirciiiitientie ettt ettt ettt ettt st e s bt e et ennraeeraee s
23.2.18.1. PENTIUM® PROCESSOR PAGINGcocieeiiriietinieeterie et
23.2.18.2. Intel486 PROCESSOR PAGINGcccceiiuiiiiiiirie ettt scee e
23.2.18.3. ENABLING AND DISABLING PAGINGcccccvviiiniirier e
23.2.19. Stack OPerationsccciiiieiiiiiieiieiiiceirtiee s e eerre e s e e e e e e e s e e e e ra e aeeas
23.2.19.1. PUSH SP ...ttt sttt st s r e st e et
23.2.19.2. FLAGS PUSHED ON THE STACKciiiieiieriieeeer st sie s es e
23.2.19.3. SELECTOR PUSHES/POPS......ccccttiitiiiieeieeerte ettt e
23.2.19.4. ERROR CODE PUSHESc.ccieiiiiiitinite ettt ettt
23.2.19.5. FAULT HANDLING EFFECTS ON THE STACKcc.coviiiiiiinciirrec e,

xiv I

n
I ntd ® CONTENTS

PAGE
23.2.19.6. INTERLEVEL RET/IRET FROM A 16-BIT INTERRUPT OR CALL GATE....... 23-24
23.2.20. Mixing 16- and 32-Bit SEgMENLScovciiiiiiiiiieeeere e 23-24
23.2.21. Segment and Address Wraparoundcccceereeviiiiiminiininieiniceeceeceeeeen 23-25
23.2.21.1. SEGMENT WRAPAROUND........cottriieriitinrttieree st e e sitee e snaaesnnreee s 23-25
23.2.22. Write Buffers and Memory Ordering.......ccccoeecvevieeiieeiiresiiene e seeiriveeee e 23-26
28.2.23. BUS LOCKING.....ciiiiiiiiiiiiiiiiiiie i 23-26
28.2.24. BUS HOIG.....cooiiiiiieeettce e 23-27
23.2.25. Two Ways to Run Intel 286 CPU Tasks.......ccccccueeervirieeiriiieniieieerecceceeeee e 23-27
23.3. FLOATING-POINT UNIT ..ottt ettt ne e s s 23-28
23.3.1. Control Register BitS..........ccurieiiiiiiiiiiiiniiiicece et 23-28
23.3.1.1. EXTENSION TYPE (ET) BIT ..ciuiiiiiiiieiiieniieciie e 23-28
23.3.1.2. NUMERIC EXCEPTION (NE) BIT ..cocueiiiitieeiiiie ittt 23-28
23.3.1.3. MONITOR COPROCESSOR (MP) BITcoiiiiiieriiiiteieeeeneee e 23-29
23.3.1.4. FPU STATUS WORD.....coitiiiiieiiiiie ettt s ste e st 23-29
23.3.1.5. CONTROL WORDcuutiiiiiiiitiriit it siter et sttt e s ssre et ae s e s 23-30
28.3.1.6. TAG WORD.....coiciiiiietiee ettt ettt st ae e s aeraeeas 23-30
28.3.2. Dat@ TYPES...iiciiiiiiitiiiittiie e e s 23-30
23.3.2.1. NGNS e et e e e e e e e e e e e e e et e e e e e e e e ae e e arataaeaaaaaeens 23-31
23.3.2.2. PSEUDOZERO, PSEUDO-NaN, PSEUDEOQINFINITY, AND UNNORMAL
FORMATS ..ttt st e s st e s s sb e e st e e s e st e e annrnaaeees 23-31
23.3.3. EXCEPLIONS.....occtieiiiiiciieiicctiteee O, 23-31
23.3.3.1. DENORMAL EXCEPTIONSooiiiiiiiiiteeeitreriee ettt s 23-31
23.3.3.2. OVERFLOW EXCEPTIONS........cotiotiiiiitieenier ettt e 23-32
23.3.3.3. UNDERFLOW EXCEPTIONS........coocieiiiieeiieeenete s erreeeessneeeseeae e nraeae s 23-32
23.3.3.4. EXCEPTION PRECEDENCEcoccciiiiitieiiiee ettt 23-33
23.3.3.5. CS AND IP FOR FPU EXCEPTIONSccooiiiiiiiieeiiireniee e 23-33
23.3.3.6. FPUERROR SIGNALS........oetiiiiiieiitieesiee ettt st 23-33
23.3.3.7. INVALID OPERATION ON DENORMALS.cccoocoieiaiiiee e, 23-34
23.3.3.8. ALIGNMENT EXCEPTIONS.......ccccciitiiiiieniie ettt 23-34
23.3.3.9. SEGMENT FAULT DURING FLDENV.coccciiiiiiniienieteeeeeer e e 23-34
23.3.3.10. INTERRUPT 7 — DEVICE NOT AVAILABLEcoivrrterrireer e, 23-34
23.3.3.11. INTERRUPT 9 — COPROCESSOR SEGMENT OVERRUN...............c......... 23-34
23.3.3.12. INTERRUPT 13 — GENERAL PROTECTION........eottvriiiriirriee e e, 23-35
23.3.3.13. INTERRUPT 16 — FLOATING-POINT ERROR.........ccccccemvrrirrirrinririree e, 23-35
23.3.4. INSHUCHONS.....oiiiiiiiiii ittt ettt e e st e e e sae e e e ereee s 23-35
28.3.5. Transcendental INStrUCHONScccccuiiiiiiiiiiiieecec e 23-38
23.3.6. Obsolete INSIrUCIONScoiviiiiiiiiiite e 23-38
23.3.6.1. WAIT PREFIX DIFFERENCES.........ccoctertiiiieiiie et nee s se e se e enee 23-38
23.3.6.2. OPERANDS SPLIT ACROSS SEGMENTS/PAGEScc.ccecovervurrnnerncnnnnn. 23-39
23.3.6.3. FPU INSTRUCTION SYNCHRONIZATIONccoccviiirmriierinireeceeccnreeenn 23-39
23.3.7. Numeric Exceptions: Interrupt Sampling Windowcccccvvuveeeeiieicciinieecccennn, 23-39
23.3.7.1. USAGE OF THE “NO-WAIT” FLOATING-POINT INSTRUCTION CLASS.......23-41
PART IV — OPTIMIZATION
CHAPTER 24
OPTIMIZATION PAGE
24.1. ADDRESSING MODES AND REGISTER USAGEccccceeviiieinniieeeeeee e 24-1
24.2. ALIGNMENT ..ottt st et e s ee e e st e e sbe e beeenaraee s 24-2
2421, Code AlIGNMENt......cuuiiiiiiiiiiite ittt e eeste e e e e eanaeees 24-2
24.2.2. Data AlIGNMENT....cccomiiiiiiiiiiitre e e s te e s seae e st eae e e s sre e e e s e anree s 24-3

I XV

CONTENTS I nU ®

24.3. PREFIXED OPCODES........cccot ittt e 24-3
24.4. OPERAND AND REGISTER USAGE..........ccciiiiiiiiiniiciieit et 24-3
24.5. INTEGER INSTRUCTION SELECTIONc.cciiiiiiiiiiiiinniiie e ete e 24-4

PART V — INSTRUCTION SET

CHAPTER 25

INSTRUCTION SET

25.1. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES........cccccciiiiieen e, 25-1
25.1.1. Default Segment AtHDULEccoiiiiiiiiii e 25-1
25.1.2. Operand-Size and Address-Size Instruction Prefixes.......ccccccovvvuiieriiiiiininiinicnnn. 25-1
25.1.3. Address-Size Attribute for Stackccceeeiiiiiiiiiiii e 25-2
25.2. INSTRUCTION FORMATcoiiiiitiiitiee ettt ettt sttt ee e s st e s s et aa s s snaraneeas 25-2
252.1. MOAR/M and SIB BYtESuuuumiiiiiiiiiiiiiiiiiiiieiieiie et eeeeeeeeeeeeeeereeeee e e as 25-4
25.2.2. How to Read the Instruction Set Pages.....c...occuviiiiiiiiiiiiiiiie i 25-9
25.2.2.1. OPCODE COLUMNiiiiiiiit ittt ettt st e e reeae e s 25-9
25.2.2.2. INSTRUCTION COLUMN ...ccoiiiiiiiiiiieieiite ettt ettt 25-10
25.2.2.3. CLOCKS COLUMN.....cciiiiiiiiiiiiieiiieiie ettt 25-12
25.2.2.4. DESCRIPTION COLUMN ...ccoiiiiiiiiiiitieiiiit ettt aaae s 25-13
25.2.2.5. OPERATION ...ttt sttt ettt e e sttt e e st a e saartneee e e ensneees 25-13
25.2.2.6. DESCRIPTIONcoiiitiiiiiiiie ittt ettt ettt e s e e e 25-18
25.2.2.7. FLAGS AFFECTEDcoiiiiiiiiieiet ettt ettt s 25-18
25.2.2.8. PROTECTED MODE EXCEPTIONSuutiiiiiiieiiiee e e 25-19
25.2.2.9. REAL ADDRESS MODE EXCEPTIONS........ccoiiiritieiiireee e eeeveee e 25-20
25.2.2.10. VIRTUAL-8086 MODE EXCEPTIONScootiiiiirieiiiieeeieee e ee e 25-20
AAA—ASCII Adjust after Additioncooiveieiiiiiiiie e e 25-21
AAD—ASCII Adjust AX before DiVISIONcoccciiiiiiiiiiiiie e 25-23
AAM—ASCII Adjust AX after MUIIPIYcoooveiiiiiiiie e 25-24
AAS—ASCII Adjust AL after SUDractioncceevvieiiiiiieiieiiir e 25-25
ADC—AAD WIth CaITYeeiiiiiiieiitci ettt et et e s st nbe e e e e eanaeeees 25-27
1 B B Ve [PP PP 25-29
AND—LOGICAI ANDcoiiiiiiiiiiii e e 25-31
ARPL—Adjust RPL Field of SeIeCtOrcciiiiiiiiiiiiic ittt 25-33
BOUND—Check Array Index Against Boundsccccceeiviiiiiieeieiiieiecee e, 25-35
BSF—Bit SCAN FOMWAITcoiiiiiiiiiiiiiiiitr et et e e e s e s eaneaeee s 25-37
BSR—BIit SCAN REVEISE.....cciiiiiiiiiiiee i e 25-39
BSWAP—BYE SWaPccriiiiiiiiiiiiii e e 25-41
o e = 1 =T PRI 25-42
BTC—Bit Test and Complementcoooiiiiiiiiiini e 25-44
BTR—BIit Test and ReSet.....ccouiiiiiiiie e 25-46
BTS—Bit Test and Set..........ooiiiiiii et 25-48
CALL—Call ProCeAUIEeieieiiee ettt e e e et e e s e e e arate e e e e e eas 25-50
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword..............ccccvveeeennnee.. 25-57
CDQ—Convert Double 10 QUAAcuiiiiiiiiie e 25-58
CLC—CIlear Carmy FIAQccuriiiieiiiiieit et cee et re s e s e srbae e e e e e s s ntearebaeeeeeeeeeees 25-59
CLD—Clear DireCtON Flagovouurieeiieiiiitieeee sttt eeee e e e e siarae e eeeeaeeee e s e e e eans 25-60
CLI—Clear INterrupt FIagccooi ittt seree e s e s e r e e e e e e e e e e e e 25-61
CLTS—Clear Task-Switched FIag in CRO.......c..ccooiiiriiiir e 25-63
CMC—Complement Carry Flag........ccccoiiiiiiiiiiiiiie ettt s 25-64
CMP—Compare TWO OPErands............cccirruiiieiiiiiiiririe ettt ee et s e aee e e e anaes 25-65
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operandscccccvveveveervnveveenrnnee. 25-67
CMPXCHG—Compare and EXChanNGecccouviuiiiiiiieieiieeiee et ree et 25-70

-
intal.

PAGE
CMPXCHG8B—Compare and Exchange 8 Bytes...........cccoociiiiiiiiii, 25-72
CPUID—CPU Identificationcieeiiiiiiiieiiieeeeieiee et 25-74
CWD/CDQ—Convert Word to Double/Convert Double to Quad..........cccccoeevernniiiiieennenn. 25-76
CWDE—Convert Word to DOUDIEWOITuuiiiiiiiiiiiieie ettt e e 25-77
DAA—Decimal Adjust AL after Addition..........ooociiiiieeiiii e 25-78
DAS—Decimal Adjust AL after Subtraction..............eooveiiiiiiiiiiii 25-79
DEC—DECIremMENt DY T....iiiiiiiieiiiie ettt 25-80
DIV—UNSIGNEA DIVIAE......eei ettt et ceaneee e 25-81
ENTER—Make Stack Frame for Procedure Parameters...........cccvveeeeiiiniieiiiniiieece s 25-83
F2XMI—ComMPULE 2X—T .. .coiiiiiiiiiiiii i 25-85
FABS—ADSOIULE VAIUEeveiieieiieiiiiiieieete ettt e e e e et e beae s 25-86
FADD/FADDP/FIADD AUeutiieieiiiee et eeir e eete et e et e st e s et eeteeenneeaassaaeeaanns 25-87
FBLD—Load Binary Coded Decimal...........ccccoooiiiiiiiiiiiiiiiiiii e 25-89
FBSTP—Store Binary Coded Decimal and Pop.........cccuviriiiiiiiiiiiii e 25-91
FCHS—Change SigNcoooiiiiiiiiie ittt et s seeee e 25-92
FCLEX/FNCLEX—Clear EXCEPHONSictiiiiiiiitiiee ettt 25-93
FCOM/FCOMP/FCOMPP—ComMPAre REal.........ccuieiiiiiiiiiereiiiiiiieiie et neaeees 25-94
FOOSCO0SINEutierieieie ettt it et e e e ettt et e e e st bbe e reeesessatatt e e e e s s snebe e eaeeeseatnmtbbnteeeeestenenneane 25-96
FDECSTP—Decrement Stack-Top POINter..........oceiiiiiiiiiiiiiiiiiiiiie e 25-97
FDIV/FDIVP/FIDIV_DIVIAEeerietiiiieeiitiee ittt ettt et te e s er e e e 25-98
FDIVR/FDIVRP/FIDIVR—Reverse DiVide............ccoeiviiiiiiiiiiiiiiiici e 25-100
FFREE—Free Floating-Point Register...........ccooiiiiiiiiiic e 25-102
FICOM/FICOMP—COMPAre INTEGET......cutieiiiiiiiieiiieeeiiettte ettt s st e e e e enaneneees 25-103
FILD—L0Ad INtEUENeeeieiiiiie ettt 25-105
FINCSTP—Increment Stack-Top POINLETouuiiiiiiiiiiieiiiciiiiiieeieeece e eee e 25-106
FINIT/FNINIT—Initialize Floating-Point Unit.............ccccoeeiiiiiiiiiii e 25-107
e Rl E Y N) (o] (= [(=T 1] U SRR 25-109
FLD—L0ad REaI.....ciiiiiiiiiiiiiie ettt ettt e e e et ee e s baeneeees 25-110
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant 25-112
FLDCW—Load Control WOrKdccooiiiiiiiiieie ittt 25-114
FLDENV—Load FPU ENVIFONMENTccutiiiiiiiiiiiiiieiiirtiie e eeeeee e e e eee e e ereeireeeee e eaee e 25-116
FMUL/FMULP/FIMUL—MURIPIY ..ottt 25-118
FNOP—NO OpPerationccccoiiiiiiiiiiiiiiiiiiin i 25-120
FPATAN—Partial Arctangentc.ouiiiiiiiii e 25-121
FPREM—Partial RemMainder.......cooiuuiiiiiiiiieiiee ettt e et ee e e e e 25-122
FPREM1—Partial ReMaiNGder...........uueiiiiiiiiiiiiiiiiieiei ettt 25-124
FPTAN—Partial TANGENT........uuiiiiiiiiiiiiiiiiiire ettt et er e e aeeeeee 25-126
FRNDINT—ROUNG t0 INTEGET ..eiiieiiiiiiiiiiiie ettt et e e e e e eee e s nnenanes 25-128
FRSTOR—ReStore FPU Stateccovcuriiiiiecen et 25-129
FSAVE/FNSAVE—Store FPU Stateccccevieeeee. et ettt e et e e s e bbe e e e nre e nnnnee 25-131
RS O I o= - O PR 25-133
LRSS T O SRR 25-134
FSINCOS—SINE and COSINE....ccciiiiirriiiiieiei ittt e e e e e s et e e s e 25-135
FSQRT-—SqUAre ROO.......uuiiiiiiiiiiiiiieieee ettt e e e e e st e e e e e e eaes 25-137
FST/FSTP—St0re REal.......ueiiiiiiiiiiiiiiieeitee sttt ettt e e e e e e e st te e e e e e 25-138
FSTCW/FNSTCW-—Store Control WOord.........cc.ueviieiieeiiiiiiiine et ee e 25-140
FSTENV/FNSTENV—Store FPU ENVIrONMENtcccvviiiiieininiiiieeeeeeseesiieeeee e 25-141
FSTSW/FNSTSW—Store Status Wordcoueeiiiiiiiiiic e 25-143
FSUB/FSUBP/FISUB—SUDEIACT......c.uuriiiiiiiiiieeiiei ettt e e et e e 25-145
FSUBR/FSUBRP/FISUBR—Reverse Subtract............ccccevvcveeiriciiiiiiee e 25-147
L I I = PP PO STV TUPRRR 25-149
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real..........cccoecvvevieiiieiieniiee e 25-151

I xvii

CONTENTS I n'bl ®

PAGE
FWAIT WLttt e sttt e sttt e e s err e e s earee e s et b eeesssbeeeeeenannne 25-153
FXAM—EXAIMINE ...eeiiiieeiiiiiiiieee ettt ee s st e e e st e s et s e e e e e e e s e ns st rnteaeeeeeeenes 25-154
FXCH—Exchange Register CONteNtSccoocueiiiiiiiiiiiicccciriiree e 25-156
FXTRACT—EXxtract Exponent and Significand.............ccccconiiriiiiiiiiiiiinniiniecec e 25-158
FYL2X—COoMPULE ¥ X 102Xcuviiiiiiiiiiiiieiiiiciicciieiie et 25-160
FYL2XP1—Compute ¥ X [0G2(X +1) weeevreriiiirrerieeenriesie et 25-161
L [I o = O P 25-163
IDIV—SIgNed DIVIAEccueeeimrieiiieeiiee ittt re st en e sanes 25-164
IMUL—Signed MURIPIY.........ccoiiiiiiiiiiiiiiniic e 25-166
IN—INPUL frOM POrt......eeiiiiieeeee e 25-168
INC—INCrement bY 1coooiiiiiiiiiiii e 25-170
INS/INSB/INSW/INSD—Input from Port to Stringccocceviriieiiniiiiiiicceneeieee e 25-171
INT/INTO—Call to Interrupt Procedure.............ccoevueevieinniinieiiiieiiien st 25-173
INVD—Invalidate Cachecccceiiiiiiiiiiiiiiiiiiin e 25-181
INVLPG—Invalidate TLB ENrYccoiiuiiiiiiiiiieeiieeecceeiiee ettt e e s 25-183
IRET/IRETD—INterrupt REIUIMN ..ottt 25-184
Jec—Jump if Condition iS Met........ooeiiiiiiiiiiie 25-190
1Y e U T 1T o T PP 25-193
LAHF—Load Flags into AH REgIStercccciiiviiiiniiiiiiiiiiniie e 25-198
LAR—Load Access Rights Bytecccuuiiiiiiieiiiiiiiiiiicciiie et 25-199
LDS/LES/LFS/LGS/LSS—Load Full POINtErccceeiviiiiiieiiiiiiieceeceee e 25-201
LEA—Load Effective AdAresscccceeieiiiiiiiiiieiiiie it 25-204
LEAVE—High Level Procedure EXitcccevviieiiiiiiiiiiiiiiiicnicc e 25-206
LES—L0ad FUIl POINEET......uviiiieiiieiieiee ettt ettt e e e e e e e aens 25-207
LFS—L0ad FUll POINTETuuiiiiiiiiiiiiiiie ettt e e e e e e 25-208
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register........ccccoevvimiieireeeeennnennn. 25-209
LGS—L0ad FUIl POINETeiirieiiii ettt et 25-211
LLDT—Load Local Descriptor Table Register...........ccccceiriiiiiiiieniiiiiiieee e 25-212
LIDT—Load Interrupt Descriptor Table RegiSter............coviviiiiiiieiiiniiiiereeeeeeeee e 25-213
LMSW—Load Machine Status WOrdcccoieuiieriiiiiiiiniiie e 25-214
LOCK—Assert LOCK# Signal PrefiXcoocvieiiiieiniiiieiiein et 25-215
LODS/LODSB/LODSW/LODSD—Load String Operand..........c...ccceeevieeeineiiieeeeeeieieenenn. 25-217
LOOP/LOOPcond—Loop Control with CX Counter...........c.cooecvveeieeiiiinniiiiieieneeeeeee e, 25-219
LSL—Load Segment Limitcccceieiuireriiiiieieeee et ee st e e s s e e s 25-221
LSS—L0ad FUll POINEET.....ccciiieiieieiee ittt e e s s e e s ee e 25-223
LTR—Load Task REQISIEN......ccciiiiiiiiiieieeie ittt e 25-224
MOV—MOVE Data.....cccocoiiiiiiiiiiiiiiiieii it s ee e 25-225
MOV—Move to/from Control REGIStErsceiiiiiiiriiiiiiiiecteee et 25-228
MOV—Move to/from Debug Registersoocuriiieiiiiiiiiieeee e 25-229
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String.........ccccoccveenieenns 25-231
MOVSX—Move with Sign-Extendc..cccoeoviiiiiiiiiiiiiiie e 25-233
MOVZX—Move With Zero-EXtendccoouiiiiieiiiiiieiceie et e 25-234
MUL—Unsigned Multiplication of AL, AX, 0r EAXccuiiiiiiiiiiiieiii e 25-235
NEG—Two's Complement Negation...........ccceeiviuiiieiiiiiiiiiciiien e 25-237
NOP—NO OPErationccevviiiieiiiiiiiiiiiieee ettt erees e 25-238
NOT—One's Complement Negation...........cccceeieieiieniiinienien e 25-239
OR—Logical INCIUSIVE OR.......cccocoiiiiiiiiiiiiiii e 25-240
OUT—OULPUL 10 PO ...ttt e e e e s 25-242
OUTS/OUTSB/OUTSW/OUTSD—Output String to Portcooveieiiiiiieiieeeeieeeeceenn, 25-244
POP—Pop a Word from the Stackc.ceeeiiriiiiiiiiieiiiceeceeceee e 25-247
POPA/POPAD—Pop all General REgIStersc.ceiieeeiieiiiiiiiiiiieeee e 25-250
POPF/POPFD—Pop Stack into FLAGS or EFLAGS Register.........cccovveeniiieiniiennieennas 25-252

xviii I

-
'nu ® CONTENTS

PAGE
PUSH—Push Operand onto the Stack ..ot 25-254
PUSHA/PUSHAD—Push all General RegiSterscccoviiiirmiiiiiiiieiiiiiiieeeeeeee e 25-256
PUSHF/PUSHFD—Push Flags Register onto the Stackcccooccieiiiiiiiiiinicicne, 25-258
RCL/RCR/ROL/ROR-—ROAEceiitieeiieerieie ettt ettt 25-260
RDMSR—Read from Model Specific Registerccccvvoiiiiiniiiiinieeeeee e 25-263
RDTSC—Read from Time Stamp COUNEETccciiiiiiiiiiiiee et 25-265
REP/REPE/REPZ/REPNE/REPNZ—Repeat Following String Operation........................ 25-267
RET—Return from ProCeaUIEuuiiiiiiieiiiiiie ettt e e e 25-271
ROL/ROB—ROALE ...cvveeiieeitieeiee ettt et ettt et sttt e st et e e e ae e e et eanee s 25-275
RSM—Resume from System Management Modecccccevviiiiiniiiiinniciee e, 25-276
SAHF—St0re AH iNtO FIAGSeeieriiiiieiiee ettt e e e 25-277
SAL/SAR/SHL/SHR—SHhIft INStrUCtONScccuiiiiiiiiiiiie et 25-278
SBB—Integer Subtraction With BOITOWccooiuiiviiiiiiiiiiiiii e 25-281
SCAS/SCASB/SCASW/SCASD—Compare String Data...........cocceeeviieeiiieeiieairire s, 25-283
SETcc—Byte Set 0n Condition.........cooiiieeiiiiiieie ettt 25-285
SGDT/SIDT—Store Global/Interrupt Descriptor Table Register.............ccccovveereiniiiinnnnes 25-287
SHL/SHR—Shift INStIUCHONS....c.oteiiiiieiiii ettt 25-289
SHLD—Double Precision Shift Leftcooiiiiiiniier et 25-290
SHRD—Double Precision Shift Right..........ccoooiiiiii e, 25-292
SIDT—Store Interrupt Descriptor Table Register.........cccvvviiiriiiiiiiceec e 25-294
SLDT—Store Local Descriptor Table Register.........ccooviiiiiiiiiiiiiiiieieeee e 25-295
SMSW—Store Machine Status WOordcccceiiiiiiiiiiiiie e 25-297
STC—S6t Carry Flaguueeiiiiieeeit ettt et e e s e 25-298
STD—Set DIreCtion Flag.......cccceeoiiiiieiiiie et 25-299
STI—Set INterrupt FIagcoceiiiirii ettt a e 25-300
STOS/STOSB/STOSW/STOSD—Store String Datacooeeiiiieeniiiceiieiee e 25-302
STR—Store Task REgISter........cucuiiiiiiiieii ettt et e e e e e e e e aeaes 25-304
SUB—Integer SUbraction ... 25-305
TEST—Logical COMPAIEcccuiiiiiiiiiii e s 25-307
VERR, VERW—Verify a Segment for Reading or Writingcccceviviiiriiiiiiniinneeiens 25-308
WAITWaIL. ettt et e r e s st e et e e eas 25-310
WBINVD—Write-Back and Invalidate Cachec.ocveeiiiiiiiiiiieccce s 25-311
WRMSR—Write to Model Specific Register........cccccvvvviiiiiiiiiii e 25-313
XADD—Exchange and Add...........coccoiiiiiiiiiiiii et 25-315
XCHG—Exchange Register/Memory with Register...........ccooooviiiiiiiiiiiniieer e, 25-317
XLAT/XLATB—Table Look-up Translation.........ccccceeviieeiiiiiniiii e 25-319
XOR—Logical EXCIUSIVE ORcooiiiiiiiiii et 25-321
CHAPTER 26
PERFORMANCE MONITORING
26.1. MODEL SPECIFIC REGISTERS ...ttt ettt et et 26-1
26.1.1. Model Specific Register Usage ReStrCtionsccccoeeeiiiiiiiiiieiiiciee e 26-1
26.1.2. Model Specific Registers Related to Performance Monitoring............ccccccvveeeennnns 26-2
26.2. PERFORMANCE MONITORINGccccceiiiteriiiiien ettt eseee st eae s resaaae e 26-2
26.2. PERFORMANCE MONITORINGccccctiiiiiiteniiee ettt s eae s 26-2

I XiX

L)
intgl.

26.2.1. Performance Monitoring Feature OVerviewcccccovvciieiiiiiiiice e, 26-3
26.2.2. Time Stamp Counter - TSC........ouiiiiiiiiiiiiciee et e e e e e 26-3
26.2.3. Programmable Event Counters - CTRO, CTRT ... 26-3
26.2.4. Control and Event Select Register - CESR..........cccciiiiiiiii e, 26-4
26.2.4.1. EVENT SELECT - ESD, EST ...iiiiiiiiiiiiiiiie et 26-4
26.2.4.2. COUNTER CONTROL = CCO, CCT ...ooriiiiiieiiie ittt 26-4
26.2.4.3. PINCONTROL - PCO, PCT...ooiiiiiiiieiiiie e 26-5
26.2.5. EVENES oottt e s s 26-6

APPENDIX A
OPCODE MAP

APPENDIX B
FLAG CROSS-REFERENCE

APPENDIX C
STATUS FLAG SUMMARY

APPENDIX D
CONDITION CODE

APPENDIX E
NUMERIC EXCEPTION SUMMARY

APPENDIX F
INSTRUCTION FORMAT AND TIMING

APPENDIX G
REPORT ON TRANSCENDENTAL FUNCTIONS

APPENDIX H
ADVANCED FEATURES

Figures

[
o
=
=
o

Bit and Byte Order.........cuoiiiiiiiiii e
Segmented AdAreSSiNg.........coocciiiiiiiiii e
Fundamental Data TYPEeS.......cuuveieiriiieeiiiiieeriee et

Bytes, Words, Doublewords and Quadwords in Memory
(D (2= B Y o= TP O UUPUEP PSPPSRt
Application Register Set..........ccoviviiiiiiiiiiiin) e
An Unsegmented MemoOry ..o
A Segmented MEeMOKYcourmiimi e e e
SEACKS ettt et e e et e e s rreeae s
EFLAGS REQISTENoiiiiiiiiiie ettt e
Effective Address Computation..............oooeeriiiiiiiiinicccccccceee e,
PUSH INSTUCHION ...ttt e e e

g 1
. .o Pt SN D

-hcowmmmcpwwwoo—k'n
- = QONOOUO,A,WON=2=2Q

XX I

=
Inu ® CONTENTS

[
—_

O
—

Title Page
PUSHA INSIUCHONcoiiiiiieiiii ettt 4-3
POP INSIIUCHON .ottt et e e e e et tae e e e e e e e e eaes 4-4
POPA INSIIUCHION ...ttt e ee e e e e a e eeeas 4-4
SN EXYENSION. ...t 4-5
SHL/SAL INSIUCHON <.ttt et e 4-14
SHR INSIIUCTION ...ceiiiiiiiiiiie et eeae e 4-15
SAR INSEIUCHION ... e e e 4-15
SHLD INSHIUCHION ... 4-16
SHRD INSTUCHION ... ettt 4-17
ROL INSHUCHON e 4-18
ROR INSIIUCHION ...ttt sttt e e e s 4-18
RCL INSIIUCHION ...ttt e e e 4-18
RCR INSIUCHON ..t 4-19
NeStEd ProCeaUIESt 4-33
Stack Frame after Entering MAIN ..., 4-34
Stack Frame after Entering PROCEDURE A.......oooiiiiiiiiiccee e 4-35
Stack Frame after Entering PROCEDURE B.......oooiviiiiiiiiiiiiieee e, 4-36
Stack Frame after Entering PROCEDURE C......ccoocoiiiiiiiiiiiieienie e, 4-37
Low Byte of EFLAGS RegisSter.........oui i 4-39
Flags Used with PUSHF and POPFccciiiiiiiiii e 4-39
EAX Following the CPUID INStruCtioncceueiiiieiiiiiieceiieeeee et 4-47
Floating-Point Unit Register Set ..., 6-8
FPU Status WOrKd......ccooeiiiiiiieeeeeee ettt e e e 6-10
FPU Control Word FOMMALcooiiiiiiiiiiiiiiiic ettt et e e 6-13
TagWord Format ... 6-14
(0] oTeTeTe (= =i =1 o LT OO PSR PUPRURPRR 6-16
Protected-Mode Numeric Instruction and Data Pointer Image in Memory,
B2-Bit FOMMAL ..o 6-17

Real Mode Numeric Instruction and Data Pointer Image in Memory, 32-Bit Format6-17
Protected-Mode Numeric Instruction and Data Pointer Image in Memory,

16-Bit FOrMAat ..o 6-18
Real Mode Numeric Instruction and Data Pointer Image in Memory, 16-Bit Format6-18
Double-Precision Number System............cccooiiiiiiiiiiiniin e 6-20
Numerical Data FOrmMatsoueiiiiiiii e, 6-22
Instructions and Register Stack.........ccocccviiieiiiiiiniriieees e 6-46
Arithmetic Example Using Infinityc.oovviiiviiiiiii 7-20
Relationships Between Adjacent JOINScoocvvviiiieiiiiiiiicciieee e, 8-26
8086 Address TransIationcoceueiiiiiiiiiiii e 9-2
SYstemM Flags........oooiiiiiiiiii e 10-2
Memory Management RegiSterscoociiiiiiiiiniiiie e 10-4
(0701 g11 (o IR T=To 1151 (= £ T OO PR 10-6
Debug Registers..........ooviiiiiiii e 10-10
FIat MOAEI ...t et 11-4
Protected Flat MOdel.........ccooiiiiiiiiiiiieie et 11-5
Multisegment MOdel.........c..ooiiiiiiii e 11-6
TI Bit Selects Descriptor Table..........cooueiiiiiiiiirie e 11-8
Segment TransIatioN........c.covi it 11-9
Segment REegISIErsiiiiiiiiiiie e 11-9
SegMENt SEIECION ... e e 11-10
Segment DESCHPIONSccciiiiiiiiiie et 11-12
Segment Descriptor (Segment Not Present)ccccceveeiiiiiiiiieeeee, 11-15
Descriptor TabIESeeiiiiiiiieiee e 11-16
XXi

CONTENTS intal.

Figure
11-11.
11-12.
11-13.
11-14.
11-15.
11-16.
11-17.
12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.
12-10.
13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
15-1.
15-2.
16-1.
16-2.
16-3.
16-4.

16-5.
16-6.
17-1.
19-1.

19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
19-9.
19-10.

XXii

Title Page
Pseudo-Descriptor FOrmat...........ccocoeiiiiiiniiinin et 11-17
Format of a Linear Addresscocveeiiieiiiiiieniiie et 11-18
Page Translationooveiiiiiiniiie e 11-19
Format of Page Directory and Page Table Entries for 4K Pages..........cc.c........ 11-20
Format of a Page Table Entry for a Not-Present Page..............ccccooeviiine, 11-21
Combined Segment and Page Address Translation..........c.cccoceeeenivicnecnieeneee. 11-24
Each Segment Can Have Its Own Page Tablecccocoiiiiiiiii e 11-25
Descriptor Fields Used for Protection..........cccccerieriiiinniiieece e 12-3
Protection RINGSccoiiciiiiirircici et 12-8
Privilege Check for Data ACCESScccviiiveiniiiiiiiiiii it 12-9
Privilege Check for Control Transfer Without Gatec.cccovviiniiiiiiciinneine 12-11
Call GALEeeiiiiieie et eeee ettt e e et e et e s st e e e e s bn e sbeee e 12-12
Call Gate MeChaNISMoviiiiiiir it e e ee s e e e st 12-13
Privilege Check for Control Transfer with Call Gateccccocvieriieiiniciieennne 12-14
Initial Stack Pointers in @ TSS.....cc.uiiiiiiiiieeec e 12-16
Stack Frame during Interlevel Call ..ot 12-18
Protection Fields of a Page Table Entryccoovviiiiiiiiie 12-25
32-Bit Task State Segment ... 13-3
TSS DESCHPION ...teieeeeiie ettt et e e e s 13-4
TasSk REQISIOr ..ccciviiiiiiieiiiiiici et e 13-6
Task Gate DESCHPION......uueiiiiiieeitieee e e e e 13-7
Task Gates Reference Tasks.......cccuiiiireeeiiiinicieiienie et 13-8
NESEEA TASKS ..eeeieiiiiieiiiiei ittt 13-12
Overlapping Linear-to-Physical Mappingsc.coccceiniiiiniiiiiineiicccie e, 13-16
IDTR Locates IDT in MEmMOIY.....cccoui ittt ettt e s 14-7
IDT Gate DESCHPIOIScueiiiiniiie ittt sttt e e e e sbaee e e e 14-9
Interrupt Procedure Call..........cocoeeiiiiiiiiiiiiinii e 14-10
Stack Frame after Exception or Interrupt............coeeiiiiiiiiiiiiiiieeeeen 14-11
Interrupt Task SWItChccccoiniiiiiiii e 14-13
ErrOr COOB. ... uiiiiiiiiie ittt e e 14-14
Page Fault Error Code........cocuiiiiiiiiiieiieceiec ettt 14-23
Memory-Mapped I/O..........cccooviiiiiniiiii e e 15-3
1/0 Permission Bit Mapccieiiiiiiiiieiiie e 15-7
Contents of the EDX Register after Reset ... 16-2
Contents of CRO Register after Resetccccoeiiiiiiiiiiiin et 16-3
Processor State after ReSet.........cccvevvieiiiiiiii e 16-15
Constructing Temp_GDT and Switching to Protected Mode (Lines 162-172 of List
FII) vt eereeeeeeteteteeeeeteteeeteseeseeseaee s e s s eneseeaes et et e s s eeenseaea et ensaeneesesasnesneneneeseneeean 16-27
Moving the GDT, IDT and TSS from ROM to RAM (Lines 196-261 of List File)..16-28
Task Switching (Lines 282-296 of List File)c.cccveveriiieiiiirn e 16-29
DeEbUQ REGISTEISeiiiieitiee ettt 17-3
Local APIC Within a Pentium Processor (735\90, 815\100, 1000\120, 1110\133)-
Based MP Systemcccoiiiiiiiiiiiiiiii e 19-5
Local APIC SEHUCIUNEcoiciuiiiiiiiiiiiiin i e 19-8
Local APIC ID REGISTOr......ueeeiiieeieceeeee ettt et e e e s e 19-9
Logical Destination Register (LDR)cccociriiiriiiiiiieiiis e 19-10
Destination Format Register (DFR)c.oeiieiiiniiireeiiiceeeeeeee e 19-10
Local Vector Table (LVT) .ottt e e e e e e s s vnn e eeeae e e e 19-12
Interrupt Command Register (ICR)cccoociiiiiniiiii e 19-15
IRR, ISR and TMR RegiStersccuiriiiiiciiiieee et 19-19
Interrupt Acceptance Flow Chart for Local APIC.............ccccooviiniieiiiiinnieciieee 19-20
Task Priority Register (TPR) ...ccccuiiiiriie ettt ettt 19-21

“Ttel ® : CONTENTS

Figure
19-11.
19-12.
19-13.
19-14.
19-15.
19-16.
19-17.
20-1.
20-2.
20-3.
20-4.
20-5.
20-6.
20-7.
20-8.
21-1.
22-1.
22-2.
22-3.
23-1.
23-2.
23-3.
23-4.

25-1.
25-2.
25-3.
25-4.
26-1.

DODDPODDD D
OCONOOTLWN =

Title Page
EOI REGISIEN ...ttt 19-22
Remote Register (RR)coooiieiiiiiiiiieccii i 19-23
Spurious Interrupt Vector Register (SVR)........cccoviiiiiiiiiiiiiiic e 19-24
Local APIC Version REGIStEr......ccuiiiuueiiiiieiiei it 19-25
Error Status Register (ESR).....ccociiiiiieiiieccreecccee e 19-34
Divide Configuration Register...........cooiiiiiiiiiiiiii 19-35
Initial Count and Current Count RegiSterscceeeririiiiiiiiiieiiicieeeeeee e 19-35
Redirecting System Memory Addresses to SMRAMcccciriiiineniiiicciieenee, 20-3
Transition to and from System Management Modecccccceiiiiiiiiiiiniineennnn. 20-8
SMM ReVision [dentifier.......c..ueeiiieiieriiiee e e 20-11
Halt AUtO RESTarteeeieiieeee e 20-12
SMM Base ReloCationcoouiuiiiiiiieiiieie ettt 20-13
SMBAM USAGE...cieiiiieiiieiieeeeiiiiiitt ettt e e e e st e e e s s e e e erarnee e e e e e e e 20-14
1/0 Instruction Restart SIot ... 20-19
System Revision Identifier...........c.coiieieiiii e 20-21
Stack after Far 16- and 32-Bit Callsccccceeiiiiiiiiiiiieieeeceee, 21-6
8086 AdAress Translationceeeiiieiiiriiiiiicer e 21-3
Entering and Leaving Virtual-8086 Mode..........cccccceerimiiinninieiniieee s 21-6
Privilege Level 0 Stack after Interrupt in Virtual-8086 Mode...........c.cccccvveeennnnn. 21-7
Pentium® Processor EFLAGS RegIStercoouuiiiiiiiieiiiiiiieeeecireeceee e 23-10
Control Register EXtENSIONS........ccoviiiiiiiiiiiiiiieccr e 23-11
I/0 Map Base Address DifferenCesccceieiieiiiiiieciiiieeceerceeeeee e 23-20
The two cases that arise depending on the timing of the receipt of the external
IMEEITUPDT .o 23-40
INStrUCtioN FOrMALcoiiiiiiiiiiee e 25-3
ModR/M and SIB Byte FOrmatsccccuviiiiiiiiii e 25-5
Bit Offset for BIT[EAX,21] . .eeeeiiieiie ettt 25-17
Memory Bit INeXiNgG......coueviiiiiii e 25-18
Control and Event Select REQISIErcovvuiiiiiiiiiieiieec et 26-4
Tables
Title Page
Register NamMES ... 3-10
SHAtUS FIAGS .o eeiieie e et e e e 3-14
Default Segment Selection RUIES...........ccoooiiieiiiiiiiiiieeeeeeeee e 3-20
Exceptions and INterruptsccoooiiiiiiiiiiiii e 3-24
Operands for DIVISIONccuuiiiiiiiiiiiieee ettt ettt ee e e e e e 4-10
Bit Test and Modify INStruCtiONSouiiiiiiiiiicii e, 4-12
Conditional Jump INSTIUCIONScccoiiiiiiiiiiii e 4-26
Repeat INStrUCHONS. ... e 4-29
Flag Control INStrUCIONSvviiiiiieeiiiiceceree e 4-38
Numeric Processing Speed COMPAKSONSccoivereirirtieereiieeeeiiieeeeeree e eeeraeeeans 6-2
NUMETIC Data Ty PeS - . et 6-6
Principal Numeric INStruCtions..........ooooeciiiiiiiiiiie e, 6-7
Condition Code Interpretationccccoviiiiiieiiiniiii e 6-12
Correspondence Between FPU and [U Flag Bitsccccooiiiiniiiiinie 6-13
Summary of Format Parameters........c.coocveiimiiiiiinee e 6-23
Real Number NOtationc.ceeiiiiiiiereiete et 6-24
RoUNAING MOAES ...t et e s 6-26
Data Transfer INStruCtions..........coocuiiiiiiiiic it 6-27
XXiii

]
CONTENTS I ntd ®

Table
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.

7-1.
7-2.
7-3.
7-4.
7-5.

7-7.
7-8.
7-9.

7-10.
7-11.
7-12.
7-13.

9-1.

11-1.
12-1.
12-2.
12-3.
12-4.
13-1.
13-2.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
15-1.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-7.
16-8.
17-1.
17-2.
18-1.
18-2.

XXiv

Title Page
Nontranscendental Instructions (Besides Arithmetic).........ccccooeeciiieiiniiiieninnnn. 6-28
Basic Arithmetic Instructions and Operands.........ccccocceveerreeeeiinniciiiiiieeeee e 6-29
Comparison INSIIUCIONSccoiiiiiiiiiiiie e e 6-30
TEST Constants for Conditional Branching...........cccccceviviieeeiiccvinieeeee e, 6-31
Transcendental INStrUCHONSeeiiiiiiiii e, 6-31
Constant INSIUCHONSc..vviiiiiie et 6-33
Control INSTIUCHONS.....ccooiiiiiiiiiee e e s e 6-35
PL/M-386/486 BUilt-In Procedurescccvveirieieinieeiieieceeieee et 6-38
ASM386/486 Storage Allocation Directives...........cccccoviiiiiiciiie i, 6-39
Addressing Method EXamples..........cccoooiiiiiiiiiiiiiiiiiine e 6-42
Arithmetic and Nonarithmetic Instructionsc.cccoiviiiiiiii i, 7-2
Binary Integer ENCOAINGSooiiiiiiiiiiiiiiic e 7-3
Packed Decimal ENCOTINGS........ccccuriiiiiiiiiiiiiiiiiic e e 7-4
Single and Double Real ENcodingsccccooviiiiiiiiiiiiiieicee e 7-5
Extended Real ENCOAINGSccoiiiiiirimiiiiiiiieiiieeeee ettt se e 7-6
Unsupported FOrmMats ..ot e 7-7
DenormMalized ValUES.......c.couuuuiieiiiieiiiee ettt ettt e e e e e e e s neannes 7-8
Zero Operands and REeSUScooiuiiiiiiiiiiiiiii s 7-10
Infinity Operands and ReSUItScoouiiiiiiiiiiiiccc e 7-13
Rules for Generating QNaNScooiiiiiiiiiiie e 7-17
Masked Responses to Invalid Operationsccccoeceviiiiiiiieeiniiie e, 7-22
Masked Overflow RESUIScccooiiiiiiiiiiiiie e 7-25
Transcendental Core RANGEScoocciviriiieiiciiiei et 7-27
Exceptions and INtErruPEScoociiiiiiiiii e 9-4
Application SegmMENt TYPES......couuiiiiiiiiiee et 11-14
System Segment and Gate TYPES ...cocoiviiiiieeiiiiiieeie et 12-4
Interlevel Return CheCKS...........oiiiiiiiiieciec e 12-20
Valid Descriptor Types for LSL Instruction............ccocccvimviiiieniciie e 12-22
Combined Page Directory and Page Protection...........cccccooviviiiiiiiiiiiiiecnns 12-27
Checks Made during @ Task SWItCh ... 13-11
Effect of a Task Switch on Busy, NT and Link Fieldsccccccooeeiiiiiiiiiinnnninnn. 13-13
Exception and INterrupt VECIOrSuuviiiieiiiiiieieee ettt eaeees 14-2
Priority Among Simultaneous Exceptions and Interrupts...........ccccccoevvicieiinnnnnn. 14-6
Interrupt and Exception ClIassescccceeviieiiiiieiiiniiee et 14-17
Double Fault Conditions...........ceecuiieinieieeeiiee et ee e 14-17
Invalid TSS CoNditioNS.........uveeiiieiiiieie e e e 14-19
Alignment Requirements by Data TYPecccceeevviuiiiiieiieeniriiiiieeeee e e 14-27
EXCeption SUMMATY........coiiiiiiiieiee ettt 14-29
Error Code SUMMAIYoiiiiiiiiiiiie ettt ettt e e et e e eateae s s saeee e e eaeeea e 14-30
1/O SerialiZationc.cooeiiiiiiie it 15-9
Processor State Following Resetccccoiiiiiiiiiiiie e 16-4
FPU State Following FINIT or FNINITccoooiiiiiiiieieec e 16-6
EM and MP Bits Interpretationsccccoeeiiiiiiiiiiiniiieee e 16-7
Recommended Values by ProCessorcccoooveiriiiiieeiniieiniiee e 16-7
Action Taken for Different Combinations of EM, MP and TS..........c.cccccvvrvrennnn. 16-8
Software Emulation Settingscevviiiieiiiiiiiiiee e 16-9
The Algorithm and Related Listing Line Numbers..........ccccccoovviiiniieieeiccccininnns 16-16
Relationship Between BLD Item and ASM Source Fileccccocecceciiiicienneee. 16-18
Breakpointing EXamplesc..oiiiiiiiiiiieee et 17-6
Debug Exception Conditionsccoiiiiiiiiiiiiiice e 17-7
MESI Cache Line States...........ocoiiiiiiii i 18-2
Cache Operating MOdesc.ceuiiiiiieiiiiiecet ettt 18-4

intel.

CONTENTS
Table Title Page
19-1. 14-Cycle EOIMeSSagecoocuiiiiiiiiiiiiiii i 19-27
19-2. 21-Cycle Short MeSSage........coovuiiiiiiiiiiiiiiii e 19-28
19-3. 34-Cycle Non-Focused Lowest Priority MesSsage.........cccceeeeeivciiieeveeeeeiee e, 19-29
19-4. 39-Cycle Remote Read MeSSage.......cociiiiiiiiiiiieieiiiiiee et 19-31
19-5. APIC Bus Status Cycles Interpretation...............cccoiiiiiiiiiiic e, 19-33
19-6. APIC Registers Address Map..........ccccuuiiiiiiiiiiiiciiie e 19-36
19-7. Interrupt Command RegiSter..........iiiiiiiiiiiiiiiiiie e 19-38
19-8. Local Vector Table..........cuiiiiiiiiiiiiie e 19-39
20-1. SMRAM State Save Mapcooivuiiiiiiiiiiiie e 20-5
20-3. SMM Initial CPU Core Register Settingsccccceeriviiiceiiien i, 20-9
20-2. SMRAM State Save Map ..ot 20-18
22-1. Software Interrupt Operation.............ccccoiiiiiiiiiiii e 22-10
23-1. Processor State Following POWEr-Upcociiiiiiiiiiniiiiee e, 23-5
23-2. FPU and NPX State Following Power-Up ..o, 23-6
23-8. Recommended Values of the FP Related Bits for Intel486™ SX
Microprocessor/Intel487™ SX Math CoProcessor Systemcccooevviiiiireeennnnn. 23-7
23-4. EM and MP Bits Interpretationsccocceciiieoiiiiicec e 23-8
23-5. Cache Mode Differences Between the Pentium® and Intel486™ Processors23-13
25-1. Effective Size AtHDUIES ..o 25-2
25-2. 16-Bit Addressing Forms with the ModR/M Byte........cccoviviiiiiiniiiiiiiiiie, 25-6
25-3. 32-Bit Addressing Forms with the ModR/M Byte.........cccoovviiiiiiiiiiice, 25-7
25-4, 32-Bit Addressing Forms with the SIB Byteccccoovveviiiniiiiniiiic e, 25-8
25-5. Task Switch Times for EXCEPLIONS.........uveviiieiiiiiii e 25-13
25-6. EXCEPHIONS. . ceiiiiiiie it 25-19
26-1. Model Specific Registers Related to Performance Monitoring...............cceevvveennne. 26-2
26-2. Architectural Performance Monitoring Features.........oocvvevieeiiiiiiiiiiiieiieen i, 26-3
26-3. Model Specific Performance Monitoring Features...........ccccoevcienieieinieenie e, 26-3
26-4. Performance Monitoring EVENtS ...t 26-8
Examples
Examples Title Page
4-1, ENTER Definition.....c..coiiiiiii ettt 4-32
4-2. ASCII Arithmetic USINg BSWAP ..o e 4-44
5-1. CPU Identification and FPU Detection.............occccceiiiiiiiiieiiieeciiee e, 5-2
6-1. Modifying the Tag Word...........cuviiiiiiiiiie et ae e 6-14
6-2. Sample C Programc...ooiiiiiiiiiiiiii e 6-37
6-3. Sample NUmMeric CONSANTSeiiiiiiiiiiiiie et 6-39
6-4. Status Word Record Definitioncccceiiiiiiiiiiiin e 6-40
6-5. Structure Definition ... 6-41
6-6. Sample PL/M-386/486 Programc..ccovieiiiirerieeeeiniieeeeeeeeriniieneeeeeeveeessseaane 6-42
6-7. Sample ASM386/486 Program...........c.ueeeeeiuiieeeiiiieceieeeeniieeestiee e e e 6-43
8-1. Conditional Branching for COMPAres..........cccooriiviiiireinirsiiieiie e, 8-1
8-2. Conditional Branching for FXAMccccoiiiiiiiiiieeee et 8-2
8-3. Full-State Exception Handler ..ot 8-5
8-4. Reduced-Latency Exception Handlercccoooiiiiiiiiiniiiini e 8-6
8-5. Reentrant Exception Handlercocooiiiiiiiiiii e 8-6
8-6. Floating Point to ASCIl Conversion ROULINEccooiiiiiiiiiriiiiiiiiiecceee e, 8-8
8-7. Robot Arm Kinematics EXample...........cooviiiiiiiiiiiiiie et 8-27
16-1. STARTUPLASM L.ttt 16-18
16-2. MAINLASM Lot ettt e e e e e e e s beeaae e aeas 16-26
16-3. Batch File to Assemble, Compile and Build the Application.............ccccccoonne. 16-29
16-4. BUIIA FilE et 16-30
XXV

intal.

Getting Started

CHAPTER 1
GETTING STARTED

1.1. HOW TO USE THIS MANUAL

Chapter 1 provides an overview of this manual and the related Pentium® processor
documentation. Also included are some notational conventions regarding reserved bits,
instruction operands, number formats, addressing and exceptions found throughout the
manual.

Chapter 2 provides an introduction to Intel's Pentium processor family. The remainder of this
book presents the architecture of the Pentium processor in five parts:

® Part [—Application and Numeric Programming

Part II—System Programming

Part III—Compatibility

Part IV—Optimization

Part V—Instruction Set

® Appendices

The first three parts are explanatory, showing the purpose of architectural features,
developing terminology and concepts, and describing instructions as they relate to specific
purposes or to specific architectural features. The remaining parts are reference material for
programmers developing software for the Pentium processor.

The first two parts cover the operating modes and protection mechanism of the Pentium
processor. The distinction between application programming and system programming is
related to the protection mechanism of the Pentium processor. One purpose of protection is to
prevent applications from interfering with the operating system. For this reason, certain
registers and instructions are inaccessible to application programs. The features discussed in
Part I are those which are accessible to applications; the features in Part II are available only
to programs running with special privileges or programs running on systems where the
protection mechanism is not used.

The features available to application programs in protected mode and to programs in real-
address and virtual-8086 mode are the same. These features are described in Part I of this
book. The additional features available to system programs in protected mode are described
in Part II. Part III describes virtual-8086 mode, how to mix 16-bit and 32-bit code, and
compatibility considerations.

Part IV provides general optimization techniques for programming on Intel architectures. For
additional information refer to AP-500, Optimizations for Intel's 32-Bit Processors, order
number 241799.

I 1-1

]
GETTING STARTED I ntd ®

1.1.1. Part I—Application and Numeric Programming

This section presents the features used by most application programmers. It includes features
used in numeric applications which are object-code compatible with features provided by the
Intel486™ DX processor, and the Intel487™ SX, the Intel387™ DX, and the Intel387 SX
math coprocessors used with the Intel486 SX, Intel386™ DX and Intel386 SX processors,
respectively.

Chapter 3—Basic Programming Model: This chapter introduces the models of memory
organization, defines the data types, presents the register set used by applications, introduces
the stack, explains string operations, defines the parts of an instruction, explains address
calculations, and introduces interrupts and exceptions as they apply to application
programming.

Chapter 4—Application Programming: Chapter 4 surveys the integer instructions
commonly used for application programming. Instructions are considered in functionally
related groups; for example, string instructions are considered in one section, while control-
transfer instructions are considered in another. The concepts behind the instructions are
explained. Details of individual instructions are deferred until Part V, the instruction-set
reference.

Chapter 5—Feature Determination: This chapter discusses how to determine the CPU type
and the presence of a math coprocessor in order to determine what features are available to
an application. A program example is provided.

Chapter 6—Numeric Applications: This chapter gives an overview of the floating-point
unit and reviews the concepts of numerical computation. The "Architecture of the Floating-
Point Unit" section presents the floating-point registers and data types available to both
applications and systems programmers. The "Floating-Point Instructions" section of this
chapter surveys the instructions commonly used for numeric processing. Details of individual
instructions are deferred until Part V, the instruction-set reference. The "Numerics
Applications" section describes the Pentium processor's floating-point arithmetic facilities
and gives short programming examples in both assembly language and high-level languages.

Chapter 7—Special Computational Situations: This chapter discusses the special values
that can be represented in the real formats of the Pentium processor—denormal numbers,
zeros, infinities, NaNs (Not a Number)—as well as the numerical exceptions.

Chapter 8—Numeric Programming Examples: Chapter 8 provides detailed examples of
assembly-language numeric programming with the Pentium processor, including conditional
branching, conversion between floating-point values and their ASCII representations, and use
of trigonometric functions.

1.1.2. Part llI—System Programming

This section presents the features used by operating systems, device drivers, debuggers, and
other software which support application programs.

1-2 I

-
lntd ® GETTING STARTED

Chapter 9—Real-Address Mode System Architecture: This chapter explains the real-
address mode of the Pentium processor as it relates to the system programmer. In this mode,
the Pentium processor appears as a fast real-mode Intel 286 or Intel386 processor or a fast
8086 processor enhanced with additional instructions.

Chapter 10—Protected-Mode System Architecture Overview: Chapter 10 describes the
features of the Pentium processor used by system programmers. System-oriented registers
and data structures of the Pentium processor which are mentioned briefly in Part I are
discussed in detail. The system-oriented instructions are introduced in the context of the
registers and data structures they support. References to the chapters in which each register,
data structure, and instruction is discussed in more detail.

Chapter 11—Protected-Mode Memory Management: This chapter presents details of the
data structures, registers, and instructions which support segmentation and paging and
explains how system designers can choose between an unsegmented ("flat") model of
memory organization and a model with segmentation.

Chapter 12—Protection: This chapter discusses protection as it applies to segments and
pages. It explains the implementation of privilege rules, stack switching, pointer validation,
user and supervisor modes. The protection aspects of multitasking are deferred until the
following chapter.

Chapter 13—Protected-Mode Multitasking: Chapter 13 explains how the hardware of the
Pentium processor supports multitasking with context-switching operations and intertask
protection.

Chapter 14—Protected-Mode Exceptions and Interrupts: This chapter explains the basic
interrupt mechanisms of the Pentium processor, shows how interrupts and exceptions relate
to protection, discusses all possible exceptions including floating-point exceptions, listing
causes and including information needed to handle and recover from each exception.

Chapter 15—Input/Output: Chapter 15 describes the I/O features of the Pentium processor,
including I/O instructions, protection as it relates to I/O, and the I/O permission bit map.

Chapter 16—Initialization and Mode Switching: Chapter 16 defines the condition of the
processor and floating-point unit after reset initialization. It explains how to set up registers,
flags, and data structures. The steps necessary for switching between real-address and
protected modes are also identified.

Chapter 17—Debugging: Chapter 17 discusses how to use the debugging registers and other
debug features of the Pentium processor.

Chapter 18—Caching, Pipelining and Buffering: Chapter 18 explains the general concept
of caching and the specific mechanisms used by the internal cache on the Pentium processor.
It explains how the superscalar pipeline architecture of the Pentium processor and the
Translation Lookaside Buffer (TLB) relate to the system programmer.

Chapter 19—Multiprocessing: Chapter 19 explains the instructions and flags which support
multiple processors with shared memory.

I 1-3

L
GETTING STARTED I ntd ®

Chapter 20—System Management Mode: This chapter explains the operation of SMM
used to implement power management functions. Some possible customer differentiation
features are mentioned.

1.1.3. Part lll—Compatibility

This section explains the features of the architecture which support programs written for
earlier Intel processors. Three execution modes have support for 16-bit programming: 16-bit
operations can be performed in protected mode with or without using the operand-size prefix,
programs written for the 8086 processor or the real mode of the Intel 286 processor can run
in real mode on one of the 32-bit microprocessors, and a virtual machine monitor can be used
to emulate real mode using virtual-8086 mode, even while multitasking with 32-bit
programs.

Chapter 21—Mixing 16-Bit and 32-Bit Code: This chapter explains how to mix 16-bit and
32-bit modules within the same program or task. Any particular module can use both 16-bit
and 32-bit operands and addresses.

Chapter 22—Virtual-8086 Mode: Chapter 22 describes how to execute one or more 8086,
8088, 80186 or 80188 programs in a Pentium processor protected-mode environment.

Chapter 23—Compatibility: This chapter explains the programming differences between
the Intel 286, Intel386, and Intel486 processors. This chapter compares the floating-point unit
of the Intel486 and Pentium processors with the arithmetic of the numerics coprocessors used
with earlier Intel processors.

1.1.4. Part IV—Optimization

Chapter 24 discusses general optimization techniques for programming in the Intel
architecture environment. For additional information refer to AP-500, Optimizations for
Intel's 32-Bit Processors, order number 241799,

1.1.5. Part V—Instruction Set

Parts I, II and III present the general features of the instruction set as they relate to specific
aspects of the architecture. Part V, Chapter 25, presents the instructions in alphabetical order,
with detail needed by assembly language programmers and programmers of debuggers,
compilers, operating systems, etc. Instruction descriptions include an algorithmic description
of operations, effect on flag settings, effect of operand- and address-size attributes, and
exceptions which may be generated.

1-4 I

a
Intd ® GETTING STARTED

1.1.6. Appendices

The appendices present tables of encodings and other details in a format designed for quick
reference by programmers.

1.2. RELATED LITERATURE

The following books contain additional material related to Intel processors:

® Pentium® Processor Data Book, Order Number 241428

® 82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentium®
Processor, Order Number 241429

Intel486™ Microprocessor Data Book, Order Number 240440

Intel4d86™ Processor Hardware Reference Manual, Order Number 240552

Intel486™ DX Processor Programmer’s Reference Manual, Order Number 240486
Intel486™ SX CPU/Intel487™ SX Math CoProcessor Data Book, Order Number 240950
Intel486™ DX2 Microprocessor Data Book, Order Number 241245

Intel486™ Microprocessor Product Brief Book, Order Number 240459

Intel386™ Processor Hardware Reference Manual, Order Number 231732

Intel386™ DX Processor Programmer’s Reference Manual, Order Number 230985
Intel386™ SX Processor Programmer's Reference Manual, Order Number 240331
Intel386™ Processor System Software Writer's Guide, Order Number 231499

Intel386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
Management, Order Number 231630

376™ Embedded Processor Programmer's Reference Manual, Order Number 240314
80387 DX User's Manual Programmer's Reference, Order Number 231917

376™ High-Performance 32-Bit Embedded Processor, Order Number 240182
Intel386™ SX Microprocessor, Order Number 240187

Microprocessor and Peripheral Handbook (vol. 1), Order Number 230843

1.3. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual
easier to read.

I 1-5

]
GETTING STARTED l ntd ®

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of
the figure; addresses increase toward the top. Bit positions are numbered from right to left.
The numerical value of a set bit is equal to two raised to the power of the bit position. The
Pentium processor is a "little endian" machine; this means the bytes of a word are numbered
starting from the least significant byte. Figure 1-1 illustrates these conventions.

DATA STRUCTURE

31 23 15 7 0 <«—— BITOFFSET

GREATEST 28

ADDRESS 24

20

16
12
8

|

BYTE OFFSET

SMALLEST
ADDRESS

BYTE BYTE2 BYTE1 BYTEO

APM87

Figure 1-1. Bit and Byte Order

1.3.2. Undefined Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as undefined or reserved, it is essential for compatibility with future
processors that software treat these bits as having a future, though unknown, effect. The
behavior of reserved bits should be regarded as not only undefined, but unpredictable.
Software should follow these guidelines in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers
which contain such bits. Mask out the reserved bits before testing.
Do not depend on the states of any reserved bits when storing to memory or to a register.
Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same
register.

1-6 I

=
lntd ® GETTING STARTED

NOTE

Depending upon the values of reserved register bits will make software
dependent upon the unspecified manner in which the processor handles
these bits. Depending upon reserved values risks incompatibility with future
processors. AVOID ANY SOFTWARE DEPENDENCE UPON THE
STATE OF RESERVED PENTIUM PROCESSOR REGISTER BITS.

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the assembly language for the
Pentium processor is used. In this subset, an instruction has the following format:

label: mnemonic argument1, argument2, argument3

where:

® A label is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names
of registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL
In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is

the destination operand, and SUBTOTAL is the source operand. Some assembly languages
put the source and destination in reverse order.

1.3.4. Hexadecimal Numbers

Base 16 numbers are represented by a string of hexadecimal digits followed by the character
H. A hexadecimal digit is a character from the set (0, 1, 2, 3,4, 5,6, 7,8,9, A, B,C, D, E,
F). A leading zero is added if the number would otherwise begin with one of the digits A-F.
For example, OFH is equivalent to the decimal number 15.

Numbers are usually expressed in decimal notation (base 10). When hexadecimal (base 16)
numbers are used, they are indicated by an ‘H’ suffix. For example 16 = 10H.

L
GETTING STARTED “Ttel ®

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte number is used to
address memory. The memory which can be addressed with this number is called an address
space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a
program can keep its code (instructions) and stack in separate segments. Code addresses
would always refer to the code space, and stack addresses would always refer to the stack
space. An example of the notation used to show segmented addresses is shown below.

CS:EIP

This example refers to a byte within the code segment. The byte number is held in the EIP
register. CS identifies the code segment.

1.3.6. Exceptions

An exception is an event which typically occurs when an instruction causes an error For
example, an attempt to divide by zero generates an exception. However, some exceptions,
such as breakpoints, occur under other conditions. Some types of exceptions may provide
error codes. An error code reports additional information about the error. Error codes are
produced only for some exceptions. An example of the notation used to show an exception
and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may
not be able to report an accurate code. In this case, the error code is zero, as shown below.

#GP(0)

See Chapter 14, Protected-Mode Exceptions and Interrupts, for a list of exception mnemonics
and their description.

1-8 I

intal.

Introduction to the
Intel Pentium®
Processor Family

intgl.
CHAPTER 2

INTRODUCTION TO THE INTEL PENTIUM®
PROCESSOR FAMILY

In 1985, Intel introduced the first in a line of 32-bit microprocessors compatible with the
already broad base of existing Intel architecture software. That was the Intel386
microprocessor. The Intel 32-bit architecture has since grown to become the standard for
cost-effective, high performance computing with an installed base of over 40 million units.
Intel has continued to evolve and improve the basic implementation by incorporating the
most advanced computer design and silicon technology. The Intel Pentium family is the most
recent product of that effort.

The Intel Pentium processor, like its predecessor the Intel486 microprocessor, is fully
software compatible with the installed base of over 100 million compatible Intel architecture
systems. In addition, the Intel Pentium processor provides new levels of performance to new
and existing software through a reimplementation of the Intel 32-bit instruction set
architecture using the latest, most advanced, design techniques. Optimized, dual execution
units provide one-clock execution for "core" instructions, while advanced technology, such
as superscalar architecture, branch prediction, and execution pipelining, enables multiple
instructions to execute in parallel with high efficiency. Separate code and data caches
combined with wide 128-bit and 256-bit internal data paths and a 64-bit, burstable, external
bus allow these performance levels to be sustained in cost-effective systems. The application
of this advanced technology in the Intel Pentium processor brings "state of the art"
performance and capability to existing Intel architecture software as well as new and
advanced applications.

The Pentium processor has two primary operating modes and a "system management mode."
The operating mode determines which instructions and architectural features are accessible.
These modes are:

s Protected Mode

This is the native state of the microprocessor. In this mode all instructions and
architectural features are available, providing the highest performance and capability.
This is the recommended mode that all new applications and operating systems should
target.

Among the capabilities of protected mode is the ability to directly execute "real-address
mode" 8086 software in a protected, multi-tasking environment. This feature is known as
Virtual-8086 "mode" (or "V86 mode"). Virtual-8086 "mode" however, is not actually a
processor "mode," it is in fact an attribute which can be enabled for any task (with
appropriate software) while in protected mode.

e Real-Address Mode (also called ''real mode'')

This mode provides the programming environment of the Intel 8086 processor, with a
few extensions (such as the ability to break out of this mode). Reset initialization places

-
INTRODUCTION TO THE INTEL PENTIUM® PROCESSOR FAMILY Inu ®

2-2

the processor in real mode where, with a single instruction, it can switch to protected
mode.

System Management Mode

The Pentium microprocessor also provides support for System Management Mode
(SMM). SMM is a standard architectural feature unique to all new Intel microprocessors,
beginning with the Intel386 SL processor, which provides an operating-system and
application independent and transparent mechanism to implement system power
management and OEM differentiation features. SMM is entered through activation of an
external interrupt pin (SMI#), which switches the CPU to a separate address space while
saving the entire context of the CPU. SMM-specific code may then be executed
transparently. The operation is reversed upon returning.

Part 1

Application and
Numeric Processing

intal.

Basic Programming
Model

intal.

CHAPTER 3
BASIC PROGRAMMING MODEL

This chapter describes the application programming environment (except for the floating-
point features) as seen by assembly-language programmers. The chapter introduces the
architectural features which directly affect the design and implementation of application
programs. Floating-point applications are described separately in Chapter 6.

The basic programming model consists of these parts:

Memory organization
Data types

Registers

Instruction format

Operand selection
® Interrupts and exceptions

Note that input/output is not included as part of the basic programming model. System
designers can choose to make I/O instructions available to applications or can choose to
reserve these functions for the operating system. For this reason, the I/0 features are
discussed in Chapter 9 and Chapter 15.

This chapter contains a section for each feature of the architecture normally visible to
applications.

3.1. MEMORY ORGANIZATION

The memory on the bus of a Pentium processor is called physical memory. It is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address,
which ranges from zero to a maximum of 2°*-1 (4 gigabytes).

Memory management is a hardware mechanism for making reliable and efficient use of
memory. When memory management is used, programs do not directly address physical
memory. Programs address a memory model, called virtual memory.

Memory management consists of segmentation and paging. Segmentation is a mechanism for
providing multiple, independent address spaces. Paging is a mechanism to support a model of
a large address space in RAM using a small amount of RAM and some disk storage. Either or
both of these mechanisms can be used. An address issued by a program is a logical address.
Segmentation hardware translates a logical address into an address for a continuous,
unsegmented address space, called a linear address. Paging hardware translates a linear
address into a physical address.

I 3-1

n
BASIC PROGRAMMING MODEL Intd ®

Memory can appear as a single, "flat" address space like physical memory. Or, it can appear
as one or more independent memory spaces, called segments. Segments can be assigned
specifically for holding a program's code (instructions), data, or stack. In fact, a single
program can have up to 16,383 segments of different sizes and kinds. Segments can be used
to increase the reliability of programs and systems. For example, a program's stack can be
put into a different segment than its code to prevent the stack from growing into the code
space and overwriting instructions with data. Each segment defines a module.

Both the flat and segmented models can provide memory protection. Models intermediate
between these extremes also can be chosen. The reasons for choosing a particular memory
model and the manner in which system programmers implement a model are discussed in
Chapter 11.

Whether or not multiple segments are used, logical addresses are translated into linear
addresses by treating the address as an offset into a segment. Each segment has a segment
descriptor, which holds its base address and size limit. If the offset does not exceed the limit,
and no other condition exists which would prevent reading the segment, the offset and base
address are added together to form the linear address.

The linear address produced by segmentation is used directly as the physical address if bit 31
of the CRO register is clear (the CRO register is discussed in Chapter 10). This register bit
controls whether paging is used or not used. If the bit is set, the paging hardware is used to
translate the linear address into the physical address.

The paging hardware gives another level of organization to memory. It breaks the linear
address space into fixed blocks called pages. The logical address space is mapped into the
linear address space, which is mapped into some number of pages. A page can be in memory
or on disk. When a logical address is issued, it is translated into an address for a page in
memory, or an exception is issued. An exception gives the operating system a chance to read
the page from disk and update the page mapping. The program which generated the
exception then can be restarted without generating an exception.

If multiple segments are used, they are part of the programming environment seen by
application programmers. Paging, however, is invisible to the application programmer and is
not discussed in this chapter. See Chapter 11 for details on this subject.

3.1.1. Unsegmented or "Flat" Model

The simplest memory model is the flat model. Although there isn't a mode bit or control
register which turns off the segmentation mechanism, the same effect can be achieved by
mapping all segments to the same linear addresses. This will cause all memory operations to
refer to the same memory space.

In a flat model, segments can cover the entire range of physical addresses, or they can cover
only those addresses which are mapped to physical memory. The advantage of the smaller
address space is it provides a minimum level of hardware protection against software bugs;
an exception will occur if any logical address refers to an address for which no memory
exists.

32 I

-
lntd ® BASIC PROGRAMMING MODEL

3.1.2. Segmented Model

In a segmented model of memory organization, the logical address space consists of as many
as 16,383 segments of up to 4 gigabytes each, or a total as large as 2*° bytes (64 terabytes).
The processor maps this 64 terabyte logical address space onto the physical address space by
the address translation mechanism described in Chapter 11. Application programmers can
ignore the details of this mapping. The advantage of the segmented model is that offsets
within each address space are separately checked and access to each segment can be
individually controlled.

A pointer into a segmented address space consists of two parts (see Figure 3-1).

1. A segment selector, which is a 16-bit field which identifies a segment.

2. An offset, which is a 32-bit byte address within a segment.

N, OPERAND —
d J
15 0
— SEGMENT SELECTOR
31 0
OFFSET WITHIN SEGMENT

APM48

Figure 3-1. Segmented Addressing

The processor uses the segment selector to find the linear address of the beginning of the
segment, called the base address. Programs access memory using fixed offsets from this base
address, so an object-code module can be loaded into memory and run without changing the
addresses it uses (dynamic linking). The size of a segment is defined by the programmer, so a
segment can be exactly the size of the module it contains.

I 33

L]
BASIC PROGRAMMING MODEL Intd ®

3.2. DATATYPES

Bytes, words, doublewords, and quadwords are the principal data types (see Figure 3-2). A
byte is eight bits. The bits are numbered O through 7, bit O being the least significant bit
(LSB).

BYTE |BYTE
Address
N
5 7 0
HIGH Low
BYTE BYTE WORD
Address Address
N+1 N
31 15 0
HIGH WORD LOW WORD DOUBLEWORD
Address Address Address Address
N+3 N+2 N+1 N
63 47 31 15 0
1 1
HIGH DOUBILEWORD Low DOUBILEWORD QUADWORD

Address Address Address Address Address Address Address Address

N+7 N+6 N+5 N+4 N+3 N+2 N+1 N
APM4S

Figure 3-2. Fundamental Data Types

A word is two bytes occupying any two consecutive addresses. A word contains 16 bits. The
bits of a word are numbered from O through 15, bit 0 again being the least significant bit. The
byte containing bits 0-7 of the word is called the low byte; the byte containing bits 8-15 is
called the high byte. The low byte is stored in the byte with the lower address. The address of
the low byte also is the address of the word. The address of the high byte is used only when
the upper half of the word is being accessed separately from the lower half.

A doubleword is four bytes occupying any four consecutive addresses. A doubleword
contains 32 bits. The bits of a doubleword are numbered from O through 31, bit 0 again being
the least significant bit. The word containing bits 0-15 of the doubleword is called the low
word; the word containing bits 16-31 is called the high word. The low word is stored in the
two bytes with the lower addresses. The address of the lowest byte is the address of the
doubleword. The higher addresses are used only when the upper word is being accessed
separately from the lower word, or when individual bytes are being accessed.

A quadword is eight bytes occupying any eight consecutive addresses. A quadword contains
64 bits. The bits of a quadword are numbered from 0 to 64 with bit O being the least
significant bit. The doubleword containing bits 0-31 is called the low doubleword and the
doubleword containing bits 32-63 is called the high doubleword. The low doubleword is

34 I

-
Intd ® BASIC PROGRAMMING MODEL

stored in the four bytes with the lower addresses. The higher addresses are used only when
the upper doubleword is being accessed separately from the lower doubleword, or when
individual bytes are being accessed. Figure 3-3 illustrates the arrangement of bytes within
words, doublewords and quadwords.

DOUBLEWORD AT ADDRESS 0AH OEH
CONTAINS 7AFE0636H > A
7A 0DH
WORD AT ADDRESS 0BH FE 0CH
CONTAINS FEO6H
06 0BH
i AS 36 OAH | QUADWORD AT ADDRESS 6
BYTE AT ADDRESS 9 CONTAINS 7AFE06361FA4230BH
CONTAINS 1FH 1F 9H
A4 8H
23 H
WORD AT ADDRESS 6
CONTAINS 230BH 0B 6H Y
5H
4H
WORD AT ADDRESS 2 74 3H
CONTAINS 74CBH -
cB 2H
WORD AT ADDRESS 1
CONTAINS CB31H 31 1H
OH

APM43

Figure 3-3. Bytes, Words, Doublewords and Quadwords in Memory

Note that words do not need to be aligned at even-numbered addresses, doublewords do not
need to be aligned at addresses evenly divisible by four, and quadwords do not need to be
aligned at addresses evenly divisible by eight. This allows maximum flexibility in data
structures (e.g., records containing mixed byte, word, and doubleword items) and efficiency
in memory utilization. Because the Pentium processor has a 64-bit data bus, communication
between processor and memory takes place as byte, word, doubleword and quadword
transfers. Data can be accessed at any byte boundary, but multiple cycles can be required for
unaligned transfers. The Pentium processor considers a 2-byte or 4-byte operand that crosses
a 4-byte boundary and an 8-byte operand that crosses an 8-byte boundary to be misaligned.
For maximum performance, data structures (especially stacks) should be designed so,
whenever possible, word operands are aligned to even addresses, doubleword operands are

I 3-5

=
BASIC PROGRAMMING MODEL Intd ®

aligned to addresses evenly divisible by four, and quadwords are aligned to addresses evenly
divisible by eight.

Although bytes, words, and doublewords are the fundamental types of operands, the
processor also supports additional interpretations of these operands. Specialized instructions
recognize the following data types (shown in Figure 3-4):

3-6

Integer: A signed binary number held in a 32-bit doubleword, 16-bit word, or 8-bit byte.
All operations assume a two's complement representation. The sign bit is located in bit 7
in a byte, bit 15 in a word, and bit 31 in a doubleword. The sign bit is set for negative
integers, clear for positive integers and zero. The value of an 8-bit integer is from —128
to +127; a 16-bit integer from —32,768 to +32,767; a 32-bit integer from —2*' to +23! —1.

Ordinal: An unsigned binary number contained in a 32-bit doubleword, 16-bit word, or
8-bit byte. The value of an 8-bit ordinal is from 0 to 255; a 16-bit ordinal from O to
65,535; a 32-bit ordinal from 0 to 2°2 — 1. This is sometimes referred to as an unsigned
integer.

BCD Integer: A representation of a binary-coded decimal (BCD) digit in the range 0
through 9. Unpacked decimal numbers are stored as unsigned byte quantities. One digit
is stored in each byte. The magnitude of the number is the binary value of the low-order
half-byte; values O to 9 are valid and are interpreted as the value of a digit. The high-
order half-byte must be zero during multiplication and division; it can contain any value
during addition and subtraction.

Packed BCD Integer: A representation of binary-coded decimal digits, each in the range
0to 9. One digit is stored in each half-byte, two digits in each byte. The digit in bits 4 to
7 is more significant than the digit in bits O to 3. Values 0 to 9 are valid for a digit.

Near Pointer: A 32-bit effective address. A near pointer is an offset within a segment.
Near pointers are used for all pointers in a flat memory model, or for references within a
segment in a segmented model.

Far Pointer: A 48-bit logical address consisting of a 16-bit segment selector and a 32-bit
offset. Far pointers are used in a segmented memory model to access other segments.

Bit Field: A contiguous sequence of bits. A bit field can begin at any bit position of any
byte and can contain up to 32 bits.

Bir String: A contiguous sequence of bits. A bit string can begin at any bit position of
any byte and can contain up to 2*2- 1 bits.

Byte String: A contiguous sequence of bytes, words, or doublewords. A string can
contain from zero to 2*2 — 1 bytes (4 gigabytes).

Floating-Point Types: For a discussion of the data types used by floating-point
instructions, see Chapter 6.

-
“Ttel ® BASIC PROGRAMMING MODEL

7 0 BYTE INTEGER

[7-BIT MAGNITUDE
<> 1-BIT SIGN
15 2 € WORD INTEGER
(M 15-BIT MAGNITUDE
¢ N 1-BIT SIGN

> & DOUBLEWORD INTEGER
31-BIT MAGNITUDE

I I I l I ' 1-BIT SIGN

w
purs
o

m BYTE ORDINAL
8-BIT MAGNITUDE
16-BIT MAGNITUDE
0

DOUBLEWORD ORDINAL

I I l I I I 32-BIT MAGNITUDE

0
| ”l |'” T lI I 'I BCD INTEGER
; E 4-BIT DIGIT PER BYTE

m ml'rrr_rmg] PACKED BCD INTEGER
; 4-BIT DIGIT PER HALF-BYTE
31 0
R A SR AN KRN RAN | NEAR POINTER
P2 < 32-BIT OFFSET
Vel
47 31 0 FAR POINTER
MAALAAAY BARA SN AN RN SN RN BARIRRAN AR AN 32-BIT OFFSET
I > 16-BIT SELECTOR

A RAE A LA LA R SRR AR AN A BIT FIELD
UP TO 32 BITS

A
Y

A kT kB AA AL UF To 8 i
UP TO 4 GIGABITS

I—rn-rn-rrrrrrrn-l rrn-rn-rl I-m-l-;-rr-l-r-rrl-rrq BYTE STRING
UP TO 4 GIGABYTES
(4 A Y|
[N 7

APM44

Figure 3-4. Data Types

I 3.7

]
BASIC PROGRAMMING MODEL Intel ®

3.3. REGISTERS

The processor contains sixteen registers which can be used by an application programmer. As
Figure 3-5 shows, these registers can be grouped as:

General registers. These eight 32-bit registers are free for use by the programmer.

2. Segment registers. These registers hold segment selectors associated with different forms
of memory access. For example, there are separate segment registers for access to code
and stack space. These six registers determine, at any given time, which segments of
memory are currently available.

3. Status and control registers. These registers report and allow modification of the state of
the processor.

3.3.1. General Registers

The general registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and
EDI. These registers hold operands for logical and arithmetic operations. They also can hold
operands for address calculations (except the ESP register cannot be used as an index
operand). The names of these registers are derived from the names of the general registers on
the 8086 processor, the AX, BX, CX, DX, BP, SP, SI, and DI registers. As Table 3-1 shows, -
the low 16 bits of the general registers can be referenced using these names.

Each byte of the 16-bit registers AX, BX, CX, and DX also has another name. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

All of the general-purpose registers are available for address calculations and for the results
of most arithmetic and logical operations; however, a few instructions assign specific
registers to hold operands. For example, string instructions use the contents of the ECX, ESI,
and EDI registers as operands. By assigning specific registers for these functions, the
instruction set can be encoded more compactly. The instructions that use specific registers
include: double-precision multiply and divide, I/O, strings, translate, loop, variable shift and
rotate, and stack operations.

38 I

n
lntel ® BASIC PROGRAMMING MODEL

GENERAL REGISTERS
31 2 15 7 16-BIT 32-BIT
AH AL AX EAX
DH DL DX EDX
CH cL cX ECX
BH BL BX EBX
BP EBP
sl ES
DI EDI
SP ESP
SEGMENT REGISTERS
15 0
cs
ss
DS
ES
FS
Gs

STATUS AND CONTROL REGISTERS
31 0

EFLAGS
EIP

APM47

Figure 3-5. Application Register Set

I 39

-
BASIC PROGRAMMING MODEL lntd ®

Table 3-1. Register Names

8-Bit 16-Bit 32-Bit
AL AX EAX
AH
BL BX EBX
BH
CL CX ECX
CH
DL DX EDX
DH
SI ESI
Di EDI
BP EBP
SP ESP

3.3.2. Segment Registers

Segmentation gives system designers the flexibility to choose among various models of
memory organization. Implementation of memory models is the subject of Chapter 11.

The segment registers contain 16-bit segment selectors, which index into tables in memory.
The tables hold the base address for each segment, as well as other information regarding
memory access. An unsegmented model is created by mapping each segment to the same
place in physical memory, as shown in Figure 3-6.

At any instant, up to six segments of memory are immediately available. The segment
registers CS, DS, SS, ES, FS, and GS hold the segment selectors for these six segments. Each
register is associated with a particular kind of memory access (code, data, or stack). Each
register specifies a segment, from among the segments used by the program (see Figure 3-7).
Other segments can be used by loading their segment selectors into the segment registers.

The segment containing the instructions being executed is called the code segment. Its
segment selector is held in the CS register. The processor fetches instructions from the code
segment, using the contents of the EIP register as an offset into the segment. The CS register
is loaded as the result of interrupts, exceptions, and instructions which transfer control
between segments (e.g., the CALL, RET and JMP instructions).

Before a procedure is called, a region of memory needs to be allocated for a stack. The stack
holds the return address, parameters passed by the calling routine, and temporary variables
allocated by the procedure. All stack operations use the SS register to find the stack segment.
Unlike the CS register, the SS register can be loaded explicitly, which permits application
programs to set up stacks.

3-10 I

-
"Ttel ® BASIC PROGRAMMING MODEL

ONE PHYSICAL ADDRESS SPACE

DIFFERENT LOGICAL SEGMENTS

GS

FS

ES

DS

Ccs

APMS51

Figure 3-6. An Unsegmented Memory

DIFFERENT LOGICAL SEGMENTS DIFFERENT ADDRESS SPACE
IN PHYSICAL MEMORY

Ccs [
SS I
DS
ES il CODE
FS T SEGMENT

GS

STACK
SEGMENT

— DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

DATA
SEGMENT

APM49

Figure 3-7. A Segmented Memory

m
BASIC PROGRAMMING MODEL lntel ®

The DS, ES, FS, and GS registers allow as many as four data segments to be available
simultaneously. Four data segments give efficient and secure access to different types of data
structures. For example, separate data segments can be created for the data structures of the
current module, data exported from a higher-level module, a dynamically-created data
structure, and data shared with another program. If a bug causes a program to run wild, the
segmentation mechanism can limit the damage to only those segments allocated to the
program.

Depending on the structure of data (i.e., the way data is partitioned into segments), a program
can require access to more than four data segments. To access additional segments, the DS,
ES, FS, and GS registers can be loaded by an application program during execution. The only
requirement is to load the appropriate segment register before accessing data in its segment.

A base address is kept for each segment. To address data within a segment, a 32-bit offset is
added to the segment's base address. Once a segment is selected (by loading the segment
selector into a segment register), an instruction only needs to specify the offset. An operand
within a data segment is addressed by specifying its offset either in an instruction or a
general register. Simple rules define which segment register is used to form an address when
only an offset is specified.

3.3.3. Stack Implementation

Stack operations are supported by three registers:

1. Stack Segment (SS) Register. Stacks reside in memory. The number of stacks in a
system is limited only by the maximum number of segments. A stack can be up to 4
gigabytes long, the maximum size of a segment. One stack is available at a time—the
stack whose segment selector is held in the SS register. This is the current stack, often
referred to simply as "the" stack. The SS register is used automatically by the processor
for all stack operations.

2. Stack Pointer (ESP) Register. The ESP register holds an offset to the top-of-stack
(TOS) in the current stack segment. It is used by PUSH and POP operations, subroutine
calls and returns, exceptions, and interrupts. When an item is pushed onto the stack (see
Figure 3-8), the processor decrements the ESP register, then writes the item at the new
TOS. When an item is popped off the stack, the processor copies it from the TOS, then
increments the ESP register. In other words, the stack grows down in memory toward
lesser addresses.

3. Stack-Frame Base Pointer (EBP) Register. The EBP register typically is used to access
data structures passed on the stack. For example, on entering a subroutine the stack
contains the return address and some number of data structures passed to the subroutine.
The subroutine adds to the stack whenever it needs to create space for temporary local
variables. As a result, the stack pointer gets incremented and decremented as temporary
variables are pushed and popped. If the stack pointer is copied into the base pointer
before anything is pushed on the stack, the base pointer can be used to reference data

[]
Inte| ® BASIC PROGRAMMING MODEL

structures with fixed offsets. If this is not done, the offset to access a particular data
structure would change whenever a temporary variable is allocated or de-allocated.

When the EBP register is used to address memory, the current stack segment is
referenced (i.e., the SS segment). Because the stack segment does not have to be
specified, instruction encoding is more compact. The EBP register also can be used to
address other segments.

Instructions, such as the ENTER and LEAVE instructions, are provided which
automatically set up the EBP register for convenient access to variables.

STACK SEGMENT
31 0
i BOTTOM OF STACK
(INITIAL ESP VALUE)
SUBROUTINE
PASSED
VARIABLES

L e EBP

TOP OF STACK e ESP

PUSHES PUT THE POPS PUT THE
TOP OF STACK AT TOP OF STACK AT
LOWER ADDRESSES HIGHER ADDRESSES

APM50

Figure 3-8. Stacks

3.3.4. Flags Register

Condition codes (e.g., carry, sign, overflow) and mode bits are kept in a 32-bit register
named EFLAGS. Figure 3-9 defines the bits within this register.

The flags control certain operations and indicate the status of the Pentium processor. Besides
status and control flag bits, the flag register also contains system flags. See Chapter 10 for a
description of the system and control flags.

I 313

Ll
BASIC PROGRAMMING MODEL lntd ®

3.3.4.1. STATUS FLAGS

The status flags of the EFLAGS register report the kind of result produced from the
execution of arithmetic instructions, such as ADD, SUB, MUL, and DIV. The MOV
instruction does not affect these flags. Conditional jumps and subroutine calls allow a
program to sense the state of the status flags and respond to them. For example, when the
counter controlling a loop is decremented to zero, the state of the ZF flag changes, and this
change can be used to suppress the conditional jump to the start of the loop. The status flags
are shown in Table 3-2.

[31/50/29]25/27]26/25]24/23/22] 21/29]19]76]17]16] 15/ 14]13 12]17]10]5] 6/ 7]6]5]4/5]2]7]0]
11

X ID FLAG (ID)
X VIRTUAL INTERRUPT PENDING (VIP)
X VIRTUAL INTERRUPT FLAG (VIF)

X ALIGNMENT CHECK (AC)
X VIRTUAL 8086 MODE (VM)
X RESUME FLAG (RF)
X NESTED TASK (NT)
X /O PRIVILEGE LEVEL (IOPL)
S OVERFLOW FLAG (OF)
C DIRECTION FLAG (DF)
X INTERRUPT ENABLE FLAG (IF)
X TRAP FLAG (TF)
S SIGN FLAG (SF)
S ZERO FLAG (ZF)
S AUXILIARY CARRY FLAG (AF)
S PARITY FLAG (PF)
S CARRY FLAG (CF)

S INDICATES A STATUS FLAG
C INDICATES A CONTROL FLAG
X INDICATES A SYSTEM FLAG

“ BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED.
DO NOT USE. ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

APM45

Figure 3-9. EFLAGS Register

Table 3-2. Status Flags

Name Purpose Condition Reported
OF Overflow Result exceeds positive or negative limit of number range
SF Sign Result is negative (less than zero)
ZF Zero Result is zero
AF Auxiliary carry Carry out of bit position 3 (used for BCD)
PF Parity Low byte of result has even parity (even number of set bits)
CF Carry flag Carry out of most significant bit of result

L
Intd ® BASIC PROGRAMMING MODEL

3.3.4.2. CONTROL FLAG

The control flag DF of the EFLAGS register controls string instructions.
DF (Direction Flag, bit 10)

Setting the DF flag causes string instructions to auto-decrement, that is, to process strings
from high addresses to low addresses. Clearing the DF flag causes string instructions to auto-
increment, or to process strings from low addresses to high addresses.

3.3.56. Instruction Pointer

The instruction pointer (EIP) register contains the offset in the current code segment for the
next instruction to execute. The instruction pointer is not directly available to the
programmer; it is controlled implicitly by control-transfer instructions (jumps, returns, etc.),
interrupts, and exceptions.

The EIP register is advanced from one instruction boundary to the next. Because of
instruction prefetching, it is only an approximate indication of the bus activity which loads
instructions into the processor. See Chapter 18 for detailed information on prefetching.

3.4. INSTRUCTION FORMAT

The information encoded in an instruction includes a specification of the operation to be
performed, the type of the operands to be manipulated, and the location of these operands. If
an operand is located in memory, the instruction also must select, explicitly or implicitly, the
segment which contains the operand.

An instruction can have various parts and formats. The exact format of instructions is shown
in Appendix A; the parts of an instruction are described below. Of these parts, only the
opcode is always present. The other parts may or may not be present, depending on the
operation involved and the location and type of the operands. The parts of an instruction, in
order of occurrence, are listed below:

® Prefixes: one or more bytes preceding an instruction which modify the operation of the
instruction. The following prefixes can be used by application programs:

1. Segment override—explicitly specifies which segment register an instruction should
use, instead of the default segment register. The segment override prefixes include:
2EH CS segment override prefix
36H SS segment override prefix
26H ES segment override prefix
65H GS segment override prefix

2. Address size (67H)—switches between 16- and 32-bit addressing. Either size can be
the default; this prefix selects the non-default size.

I 3-15

n
BASIC PROGRAMMING MODEL lnt9| ®

3-16

3. Operand size (66H)—switches between 16- and 32-bit data size. Either size can be
the default; this prefix selects the non-default size.

4. Repeat—used with a string instruction to cause the instruction to be repeated for
each element of the string. The repeat prefixes include:

F3H REP prefix (used only with string instructions)
F3H REPE/REPZ prefix (used only with string instructions)
F2h REPNE/REPNZ prefix (used only with string instructions)

5. Lock (OFOH)—used to ensure exclusive use of shared memory in multiprocessor
environments. This prefix can only be used with the following instructions: BTS,
BTR, BTC, XCHG, ADD, OR, ADC, SBB, AND, SUB, XOR, NOT, NEG, INC,
DEC, CMPXCHG, CMPXCHSB, XADD

Zero or one bytes are reserved for each group of prefixes. The prefixes are grouped as
follows:

— Instruction Prefixes: REP, REPE/REPZ, REPNE/REPNZ, LOCK
— Segment Override Prefixes: CS, SS, DS, ES, FS, GS

— Operand Size Override

— Address Size Override

For each instruction, one prefix may be used from each group. The effect of redundant
prefixes (more than one prefix from a group) is undefined and may vary from processor
to processor.

Opcode: specifies the operation performed by the instruction. Some operations have
several different opcodes, each specifying a different form of the operation.

Register specifier: an instruction can specify one or two register operands. Register
specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

Addressing-mode specifier: when present, specifies whether an operand is a register or
memory location; if in memory, specifies whether a displacement, a base register, an
index register, and scaling are to be used.

SIB (scale, index, base) byte: when the addressing-mode specifier indicates the use of
an index register to calculate the address of an operand, an SIB byte is included in the
instruction to encode the base register, the index register, and a scaling factor.

Displacement: when the addressing-mode specifier indicates a displacement will be
used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is used
in the common case when the displacement is sufficiently small. The processor extends
an 8-bit displacement to 16 or 32 bits, taking into account the sign.

-
“Ttel ® BASIC PROGRAMMING MODEL

® Immediate operand: when present, directly provides the value of an operand.
Immediate operands can be bytes, words, or doublewords. In cases where an 8-bit
immediate operand is used with a 16- or 32-bit operand, the processor extends the eight-
bit operand to an integer of the same sign and magnitude in the larger size. In the same
way, a 16-bit operand is extended to 32 bits.

3.5. OPERAND SELECTION

An instruction acts on zero or more operands. An example of a zero-operand instruction is
the NOP instruction (no operation). An operand can be held in any of these places:
® In the instruction itself (an immediate operand).

® In a register (in the case of 32-bit operands, EAX, EBX, ECX, EDX, ESI, EDI, ESP, or
EBP; in the case of 16-bit operands AX, BX, CX, DX, SI, DI, SP, or BP; in the case of
8-bit operands AH, AL, BH, BL, CH, CL, DH, or DL; the segment registers; or the
EFLAGS register for flag operations). Use of 16-bit register operands requires use of the
16-bit operand size prefix if the current default operand size is 32 bits. (See Chapter 11
for information on setting the D-bit in the code segment descriptor to control default
operand size.)

® In memory.
® AtanI/O port. See Chapter 15 for information on I/0O.

Register and immediate operands are available on-chip—the latter because they are
prefetched as part of interpreting the instruction. Memory operands residing in the on-chip
cache can be accessed just as fast for most instructions.

Of the instructions which have operands, some specify operands implicitly; others specify
operands explicitly; still others use a combination of both. For example:

Implicit operand: AAM

By definition, AAM (ASCII adjust for multiplication) operates on the contents of the AX
register.

Explicit operand: XCHG EAX, EBX
The operands to be exchanged are encoded in the instruction with the opcode.
Implicit and explicit operands: PUSH COUNTER

The memory variable COUNTER (the explicit operand) is copied to the top of the stack (the
implicit operand).

Note that most instructions have implicit operands. All arithmetic instructions, for example,
update the EFLAGS register.

An instruction can explicitly reference one or two operands. Two-operand instructions, such
as MOV, ADD, and XOR, generally overwrite one of the two participating operands with the

I 3-17

-
BASIC PROGRAMMING MODEL Intd ®

result. This is one difference between the source operand (the one unaffected by the
operation) and the destination operand (the one overwritten by the result).

For most instructions, one of the two explicitly specified operands—either the source or the
destination—can be either in a register or in memory. The other operand must be in a register
or it must be an immediate source operand. This puts the explicit two-operand instructions
into the following groups:

® Register to register

Register to memory

Memory to register

Immediate to register

Immediate to memory

Certain string instructions and stack manipulation instructions, however, transfer data from
memory to memory. Both operands of some string instructions are in memory and are
specified implicitly. Push and pop stack operations allow transfer between memory operands
and the memory-based stack.

Several three-operand instructions are provided, such as the IMUL, SHRD, and SHLD
instructions. Two of the three operands are specified explicitly, as for the two-operand
instructions, while a third is taken from the CL register or supplied as an immediate. Other
three-operand instructions, such as the string instructions when used with a repeat prefix, take
all their operands from registers.

3.5.1. Immediate Operands

Certain instructions use data from the instruction itself as one (and sometimes two) of the
operands. Such an operand is called an immediate operand. It can be a byte, word, or
doubleword. For example:

SHR PATTERN, 2

One byte of the instruction holds the value 2, the number of bits by which to shift the
variable PATTERN.

TEST PATTERN, OFFFFOOFFH

A doubleword of the instruction holds the mask which is used to test the variable PATTERN.
IMUL CX, MEMWORD, 3

A word in memory is multiplied by an immediate 3 and stored into the CX register.

All arithmetic instructions (except divide) allow the source operand to be an immediate
value. When the destination is the EAX or AL register, the instruction encoding is one byte
shorter than with the other general registers.

3-18 I

L}
lntGI ® BASIC PROGRAMMING MODEL

3.5.2. Register Operands

Operands can be located in one of the 32-bit general registers (EAX, EBX, ECX, EDX, ESI,
EDI, ESP, or EBP), in one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, or
BP), or in one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, or DL). Sixty-
four bit operands are also used in 32-bit register pairs for operations such as DIV and MUL.
Register pairs are represented with a colon separating them. For example, in the register pair
EDX:EAX, EDX contains the high order bits and EAX contains the low order bits of the 64-
bit operand.

The Pentium processor has instructions for referencing the segment registers (CS, DS, ES,
SS, FS, and GS). These instructions are used by application programs only if system
designers have chosen a segmented memory model.

The Pentium processor also has instructions for changing the state of individual flags in the
EFLAGS register. Instructions have been provided for setting and clearing flags which often
need to be accessed. The other flags, which are not accessed so often, can be changed by
pushing the contents of the EFLAGS register on the stack, making changes to it while it's on
the stack, and popping it back into the register.

3.5.3. Memory Operands

Instructions with explicit operands in memory must reference the segment containing the
operand and the offset from the beginning of the segment to the operand. Segments are
specified using a segment-override prefix, which is a byte placed at the beginning of an
instruction. If no segment is specified, simple rules assign the segment by default. The offset
is specified in one of the following ways:

1. Most instructions which access memory contain a byte for specifying the addressing
method of the operand. The byte, called the modR/M byte, comes after the opcode and
specifies whether the operand is in a register or in memory. If the operand is in memory,
the address is calculated from a segment register and any of the following values: a base
register, an index register, a scaling factor, and a displacement. When an index register is
used, the modR/M byte also is followed by another byte to specify the index register and
scaling factor. This form of addressing is the most flexible.

2. A few instructions use implied address modes:

A MOV instruction with the AL, AX, or EAX register as either source or destination can
address memory with a doubleword encoded in the instruction. This special form of the
MOV instruction allows no base register, index register, or scaling factor to be used. This
form is one byte shorter than the general-purpose form.

String operations address memory in the DS segment using the ESI register, (the MOVS,
CMPS, OUTS, and LODS instructions) or using the ES segment and EDI register (the
MOVS, CMPS, INS, SCAS, and STOS instructions).

Stack operations address memory in the SS segment using the ESP register (the PUSH,
POP, PUSHA, PUSHAD, POPA, POPAD, PUSHF, PUSHFD, POPF, POPFD, CALL,
LEAVE, ENTER, INT, RET, IRET, and IRETD instructions, exceptions, and interrupts).

I 3-19

n
BASIC PROGRAMMING MODEL "Ttel ®

3.5.3.1. SEGMENT SELECTION

Explicit specification of a segment is optional. If a segment is not specified using a segment-
override prefix, the processor automatically chooses a segment according to the rules of
Table 3-3.

Table 3-3. Default Segment Selection Rules

Segment Used
Type of Reference Register Used Default Selection Rule
Instructions Code Segment Automatic with instruction fetch.
CS register
Stack Stack Segment All stack pushes and pops. Any memory reference which
SS register uses ESP or EBP as a base register.
Local Data Data Segment All data references except when relative to stack or string
DS register destination.
Destination Strings E-Space Segment Destination of string instructions.
ES register

Different kinds of memory access have different default segments. Data operands usually use
the main data segment (the DS segment). However, the ESP and EBP registers are used for
addressing the stack, so when either register is used, the stack segment (the SS segment) is
selected.

Segment-override prefixes are provided for each of the segment registers. Only the following
special cases have a default segment selection which is not affected by a segment-override
prefix:

® Destination strings in string instructions use the ES segment

® Destination of a push or source of a pop uses the SS segment

® Instruction fetches use the CS segment

3.5.3.2. EFFECTIVE-ADDRESS COMPUTATION

The modR/M byte provides the most flexible form of addressing. Instructions which have a
modR/M byte after the opcode are the most common in the instruction set. For memory
operands specified by a modR/M byte, the offset within the selected segment is the sum of
four components:

® A displacement

® A base register

® Anindex register

® A scaling factor (the index register can be multiplied by a factor of 2, 4, or 8)

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative value, with the exception of the
scaling factor. Figure 3-10 illustrates the full set of possibilities for modR/M addressing.

3-20 I

-
Inté ® BASIC PROGRAMMING MODEL

The displacement component, because it is encoded in the instruction, is useful for relative
addressing by fixed amounts, such as:

® Location of simple scalar operands.

® Beginning of a statically allocated array.

® Offset to a field within a record.

The base and index components have similar functions. Both use the same set of general
registers. Both can be used for addressing which changes during program execution, such as:
® Location of procedure parameters and local variables on the stack.

® The beginning of one record among several occurrences of the same record type or in an
array of records.

® The beginning of one dimension of multiple dimension array.
® The beginning of a dynamically allocated array.

The uses of general registers as base or index components differ in the following respects:

® The ESP register cannot be used as an index register.

® When the ESP or EBP register is used as the base, the SS segment is the default
selection. In all other cases, the DS segment is the default selection.

SEGMENT + BASE + (INDEX * SCALE) + DISPLACEMENT

EAX 1
cs ECX i
4 o eox | 2 NO DISPLACEMENT
B+ Eex A+ 4 EBX + { 8-BIT DISPLACEMENT
B Ese EBP 4 32-BIT DISPLACEMENT
ESI

Gs ESI Esl

EDI 8

APM42

Figure 3-10. Effective Address Computation

The scaling factor permits efficient indexing into an array when the array elements are 2, 4,
or 8 bytes. The scaling of the index register is done in hardware at the time the address is
evaluated. This eliminates an extra shift or multiply instruction.

The base, index, and displacement components can be used in any combination; any of these
components can be null. A scale factor can be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-
level languages and assembly language. Suggested uses for some combinations of address
components are described below.

I 3-21

L
BASIC PROGRAMMING MODEL Intd ®

DISPLACEMENT

The displacement alone indicates the offset of the operand. This form of addressing is used to
access a statically allocated scalar operand. A byte, word, or doubleword displacement can
be used.

BASE

The offset to the operand is specified indirectly in one of the general registers, as for "based"
variables.

BASE + DISPLACEMENT

A register and a displacement can be used together for two distinct purposes:

1. Index into an array when the element size is not 2, 4, or 8 bytes. The displacement
component encodes the offset of the beginning of the array. The register holds the results
of a calculation to determine the offset to a specific element within the array.

2. Access a field of a record. The base register holds the address of the beginning of the
record, while the displacement is an offset to the field.

An important special case of this combination is access to parameters in a procedure
activation record. A procedure activation record is the stack frame created when a subroutine
is entered. In this case, the EBP register is the best choice for the base register, because it
automatically selects the stack segment. This is a compact encoding for this common
function.

(INDEX * SCALE) + DISPLACEMENT

This combination is an efficient way to index into a static array when the element size is 2, 4,
or 8 bytes. The displacement addresses the beginning of the array, the index register holds
the subscript of the desired array element, and the processor automatically converts the
subscript into an index by applying the scaling factor.

BASE + INDEX + DISPLACEMENT

Two registers used together support either a two-dimensional array (the displacement holds
the address of the beginning of the array) or one of several instances of an array of records
(the displacement is an offset to a field within the record).

BASE + (INDEX * SCALE) + DISPLACEMENT

This combination provides efficient indexing of a two-dimensional array when the elements
of the array are 2, 4, or 8 bytes in size.

3-22 I

]
lnu ® BASIC PROGRAMMING MODEL

3.6. INTERRUPTS AND EXCEPTIONS

The processor has two mechanisms for interrupting program execution:

1. Exceptions are synchronous events which are responses of the processor to certain
conditions detected during the execution of an instruction.

2. Interrupts are asynchronous events typically triggered by external devices needing
attention.

Interrupts and exceptions are alike in that both cause the processor to temporarily suspend the
program being run in order to run a program of higher priority. The major distinction
between these two kinds of interrupts is their origin. An exception is always reproducible by
re-executing the program which caused the exception, while an interrupt can have a complex,
timing-dependent relationship with programs.

Application programmers normally are not concerned with handling exceptions or interrupts.
The operating system, monitor, or device driver handles them. More information on
interrupts for system programmers can be found in Chapter 14. Certain kinds of exceptions,
however, are relevant to application programming, and many operating systems give
application programs the opportunity to service these exceptions. However, the operating
system defines the interface between the application program and the exception mechanism
of the processor. Table 3-4 lists the interrupts and exceptions.

® A divide-error exception results when the DIV or IDIV instruction is executed with a
zero denominator or when the quotient is too large for the destination operand. (Sce
Chapter 3 for more information on the DIV and IDIV instructions.)

® A debug exception can be sent back to an application program if it results from the TF
(trap) flag.

® A breakpoint exception results when an INT3 instruction is executed. This instruction is
used by some debuggers to stop program execution at specific points.

® An overflow exception results when the INTO instruction is executed and the OF
(overflow) flag is set. See Chapter 3 for a discussion of the INTO instruction.

® A bounds-check exception results when the BOUND instruction is executed with an
array index which falls outside the bounds of the array. See Chapter 3 for a discussion of
the BOUND instruction.

® The device-not-available exception occurs whenever the processor encounters an escape
instruction and either the TS (task switched) or the EM (emulate coprocessor) bit of the
CRO control register is set.

® An alignment-check exception is generated for unaligned memory operations in user
mode (privilege level 3), provided both AM and AC are set. Memory operations at
supervisor mode (privilege levels 0, 1, and 2), or memory operations which default to
supervisor mode, do not generate this exception.

The INT instruction generates an interrupt whenever it is executed; the processor treats this
interrupt as an exception. Its effects (and the effects of all other exceptions) are determined

I 3-23

L]
BASIC PROGRAMMING MODEL Intd ®

by exception handler routines in the application program or the operating system. The INT
instruction itself is discussed in Chapter 25. See Chapter 14 for a more complete description
of exceptions.

Table 3-4. Exceptions and Interrupts

Vector
Number Description

0 Divide Error

1 Debugger Call

2 NMI Interrupt

3 Breakpoint

4 INTO-detected Overflow

5 BOUND Range Exceeded

6 Invalid Opcode

7 Device Not Available

8 Double Fault

9 (Intel reserved. Do not use.

Not used by Pentium® processor.)

10 Invalid Task State Segment

1 Segment Not Present

12 Stack Exception

13 General Protection

14 Page Fault

15 (Intel reserved. Do not use.)

16 Floating-Point Error

17 _ Alignment Check

18 Machine Check Exception

19-31 (Intel reserved. Do not use.)

32-255 Maskable Interrupts

3-24 I

intal.

Application
Programming

intal.

CHAPTER 4
APPLICATION PROGRAMMING

This chapter is an overview of the integer instructions which programmers can use to write
application software for the Pentium processor. The instructions are grouped by categories of
related functions. Additional application instructions for operating on floating-point operands
are described in Chapter 6.

The instructions not discussed in this chapter or Chapter 6 normally are used only by
operating-system programmers. System-level instructions are discussed in Part II.

The instruction set descriptions in Chapter 25 contain more detailed information on all
instructions, including encoding, operation, timing, effect on flags, and exceptions which
may be generated.

For information on the introduction of new instructions which may not be supported on
earlier versions of Intel architecture, see Chapter 23.

4.1. DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods for moving bytes, words, doublewords, or
quadwords between memory and the processor registers. They come in three types:

1. General-purpose data movement instructions.
2. Stack manipulation instructions.

3. Type-conversion instructions.

4.1.1. General-Purpose Data Movement Instructions

MOV (Move) transfers a byte, word, or doubleword from the source operand to the
destination operand. The MOV instruction is useful for transferring data along any of these
paths:

To a register from memory.

To memory from a register.

°
°

® Between general registers.

® Immediate data to a register.
°

Immediate data to memory.

The MOV instruction cannot move from memory to memory or from a segment register to a
segment register. Memory-to-memory moves can be performed, however, by the string move

I 4-1

n
APPLICATION PROGRAMMING Intd ®

instruction MOVS. A special form of the MOV instruction is provided for transferring data
between the AL, AX, or EAX registers and a location in memory specified by a 32-bit offset
encoded in the instruction. This form of the instruction does not allow a segment override,
index register, or scaling factor to be used. The encoding of this form is one byte shorter than
the encoding of the general-purpose MOV instruction. A similar encoding is provided for
moving an 8-, 16-, or 32-bit immediate into any of the general registers.

XCHG (Exchange) swaps the contents of two operands. This instruction takes the place of
three MOV instructions. It does not require a temporary location to save the contents of one
operand while the other is being loaded. The XCHG instruction is especially useful for
implementing semaphores or similar data structures for process synchronization.

The XCHG instruction can swap two byte operands, two word operands, or two doubleword
operands. The operands for the XCHG instruction may be two register operands, or a register
operand and a memory operand. When used with a memory operand, XCHG automatically
activates the LOCK signal. (See Chapter 16 for more information on bus locking.)

4.1.2. Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer (ESP register), then copies the source operand to
the top of stack (see Figure 4-1). The PUSH instruction often is used to place parameters on
the stack before calling a procedure. Inside a procedure, it can be used to reserve space on
the stack for temporary variables. The PUSH instruction operates on memory operands,
immediate operands, and register operands (including segment registers). A special form of
the PUSH instruction is available for pushing a 32-bit general register on the stack. This form
has an encoding which is one byte shorter than the general-purpose form.

BEFORE PUSHING DOUBLEWORD AFTER PUSHING DOUBLEWORD

31 0 31 0

<« ESP

DOUBLEWORD e ESP

APM27

Figure 4-1. PUSH Instruction

4-2 I

L]
Inté ® APPLICATION PROGRAMMING

PUSHA (Push All Registers) saves the contents of the eight general registers on the stack
(see Figure 4-2). This instruction simplifies procedure calls by reducing the number of
instructions required to save the contents of the general registers. The processor pushes the
general registers on the stack in the following order: EAX, ECX, EDX, EBX, the initial value
of ESP before EAX was pushed, EBP, ESI, and EDI. The effect of the PUSHA instruction is
reversed using the POPA instruction.

POP (Pop) transfers the word or doubleword at the current top of stack (indicated by the
ESP register) to the destination operand, and then increments the ESP register to point to the
new top of stack. See Figure 4-3. POP moves information from the stack to a general
register, segment register, or to memory. A special form of the POP instruction is available
for popping a doubleword from the stack to a general register. This form has an encoding
which is one byte shorter than the general-purpose form.

POPA (Pop All Registers) pops the data saved on the stack by PUSHA into the general
registers, except for the ESP register. The ESP register is restored by the action of reading
the stack (popping). See Figure 4-4.

BEFORE PUSHA INSTRUCTION AFTER PUSHA INSTRUCTION
31 0 31 0

<« ESP

EAX

ECX

EDX

EBX

OLD ESP

EBP

ESI

EDI <« EspP

APM28

Figure 4-2. PUSHA Instruction

I 4-3

L]
APPLICATION PROGRAMMING Intd ®

BEFORE POPPING A DOUBLEWORD AFTER POPPING A DOUBLEWORD
31 0 31 0

<«— ESP

DOUBLEWORD < ESP

APM25

Figure 4-3. POP Instruction

BEFORE POPA INSTRUCTION AFTER POPA INSTRUCTION
31 0 31 0

<« ESP

EAX

ECX
EDX

EBX

IGNORED

EBP

ESI

EDI < ESP

APM26

Figure 4-4. POPA Instruction

4-4 I

-
Intel ® APPLICATION PROGRAMMING

4.1.3. Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and
doublewords into 64-bit quantities (called quadwords). These instructions are especially
useful for converting signed integers, because they automatically fill the extra bits of the
larger item with the value of the sign bit of the smaller item. This results in an integer of the
same sign and magnitude, but a larger format. This kind of conversion, shown in Figure 4-5,
is called sign extension.

There are two kinds of type conversion instructions:
® The CWD, CDQ, CBW, and CWDE instructions which only operate on data in the EAX
register.

® The MOVSX and MOVZX instructions, which permit one operand to be in a general
register while letting the other operand be in memory or a register.

15 0
BEFORE SIGN
S{N|N|N[N|NIN[N|N|N[NIN|N[NININ| EXTENSION

31 15 (U
AFTER SIGN
S(s|s(s|s|S|sIs|s|S|S|S|S|S|S|S|S|N/NINININ|NINININININININININ] Cooo il

APM3s8

Figure 4-5. Sign Extension

CWD (Convert Word to Doubleword) and CDQ (Convert Doubleword to Quad-Word)
double the size of the source operand. The CWD instruction copies the sign (bit 15) of the
word in the AX register into every bit position in the DX register. The CDQ instruction
copies the sign (bit 31) of the doubleword in the EAX register into every bit position in the
EDX register. The CWD instruction can be used to produce a doubleword dividend from a
word before a word division, and the CDQ instruction can be used to produce a quadword
dividend from a doubleword before doubleword division. The CWD and CDQ instructions
are different mnemonics for the same opcode. Which one gets executed is determined by
whether it is in a 16- or 32-bit segment and the presence of any operand-size override
prefixes. See Chapter 25 for a detailed description of these instructions.

CBW (Convert Byte to Word) copies the sign (bit 7) of the byte in the AL register into
every bit position of the upper byte of the AX register.

-
APPLICATION PROGRAMMING I ntGI ®

CWDE (Convert Word to Doubleword Extended) copies the sign (bit 15) of the word in
the AX register into every bit position of the high word of the EAX register.

MOVSX (Move with Sign Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by using the value of the sign to fill empty positions.

MOVZX (Move with Zero Extension) extends an 8-bit value to a 16-bit value or an 8- or
16-bit value to 32-bit value by clearing the empty bit positions.

4.2. BINARY ARITHMETIC INSTRUCTIONS

The arithmetic instructions operate on numeric data encoded in binary. Operations include
the add, subtract, multiply, and divide as well as increment, decrement, compare, and change
sign (negate). Both signed and unsigned binary integers are supported. The binary arithmetic
instructions may also be used as steps in arithmetic on decimal integers. Source operands can
be immediate values, general registers, or memory. Destination operands can be general
registers or memory (except when the source operand is in memory). The basic arithmetic
instructions have special forms for using an immediate value as the source operand and the
AL, AX, or EAX registers as the destination operand. These forms are one byte shorter than
the general-purpose arithmetic instructions.

The arithmetic instructions update the ZF, CF, SF, and OF flags to report the kind of result
which was produced. The kind of instruction used to test the flags depends on whether the
data is being interpreted as signed or unsigned. The CF flag contains information relevant to
unsigned integers; the SF and OF flags contain information relevant to signed integers. The
ZF flag is relevant to both signed and unsigned integers; the ZF flag is set when all bits of the
result are clear.

Arithmetic instructions operate on 8-, 16-, or 32-bit data. The flags are updated to reflect the
size of the operation. For example, an 8-bit ADD instruction sets the CF flag if the sum of
the operands exceeds 255 (decimal).

If the integer is unsigned, the CF flag may be tested after one of these arithmetic operations
to determine whether the operation required a carry or borrow to be propagated to the next
stage of the operation. The CF flag is set if a carry occurs (addition instructions ADD, ADC,
AAA, and DAA) or borrow occurs (subtraction instructions SUB, SBB, AAS, DAS, CMP,
and NEG).

The INC and DEC instructions do not change the state of the CF flag. This allows the
instructions to be used to update counters used for loop control without changing the reported
state of arithmetic results. To test the arithmetic state of the counter, the ZF flag can be
tested to detect loop termination, or the ADD and SUB instructions can be used to update the
value held by the counter.

The SF and OF flags support signed integer arithmetic. The SF flag has the value of the sign
bit of the result. The most significant bit (MSB) of the magnitude of a signed integer is the
bit next to the sign—bit 6 of a byte, bit 14 of a word, or bit 30 of a doubleword. The OF flag
is set in either of these cases:

4-6 I

L]
Inté ® APPLICATION PROGRAMMING

® A carry was generated from the MSB into the sign bit but no carry was generated out of
the sign bit (addition instructions ADD, ADC, INC, AAA, and DAA). In other words, the
result was greater than the greatest positive number which could be represented in two's
complement form.

® A carry was generated from the sign bit into the MSB but no carry was generated into
the sign bit (subtraction instructions SUB, SBB, DEC, AAS, DAS, CMP, and NEG). In
other words, the result was smaller than the smallest negative number which could be
represented in two's complement form.

These status flags are tested by either kind of conditional instruction: Jcc (jump on condition
cc) or SETcc (byte set on condition).

4.2.1. Addition and Subtraction Instructions

ADD (Add Integers) replaces the destination operand with the sum of the source and
destination operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

ADC (Add Integers with Carry) replaces the destination operand with the sum of the source
and destination operands, plus 1 if the CF flag is set. If the CF flag is clear, the ADC
instruction performs the same operation as the ADD instruction. An ADC instruction is used
to propagate carry when adding numbers in stages, for example when using 32-bit ADD
instructions to sum quadword operands. The OF, SF, ZF, AF, PF, and CF flags are affected.

INC (Increment) adds 1 to the destination operand. The INC instruction preserves the state
of the CF flag. This allows the use of INC instructions to update counters in loops without
disturbing the status flags resulting from an arithmetic operation used for loop control. The
ZF flag can be used to detect when carry would have occurred. Use an ADD instruction with
an immediate value of 1 to perform an increment which updates the CF flag. A one-byte
form of this instruction is available when the operand is a general register. The OF, SF, ZF,
AF, and PF flags are affected.

SUB (Subtract Integers) subtracts the source operand from the destination operand and
replaces the destination operand with the result. If a borrow is required, the CF flag is set.
The operands may be signed or unsigned bytes, words, or doublewords. The OF, SF, ZF, AF,
PF, and CF flags are affected.

SBB (Subtract Integers with Borrow) subtracts the source operand from the destination
operand and replaces the destination operand with the result, minus 1 if the CF flag is set. If
the CF flag is clear, the SBB instruction performs the same operation as the SUB instruction.
An SBB instruction is used to propagate borrow when subtracting numbers in stages, for
example when using 32-bit SUB instructions to subtract one quadword operand from another.
The OF, SF, ZF, AF, PF, and CF flags are affected.

DEC (Decrement) subtracts 1 from the destination operand. The DEC instruction preserves
the state of the CF flag. This allows the use of the DEC instruction to update counters in
loops without disturbing the status flags resulting from an arithmetic operation used for loop
control. Use a SUB instruction with an immediate value of 1 to perform a decrement which

L]
APPLICATION PROGRAMMING Int9| ®

updates the CF flag. A one-byte form of this instruction is available when the operand is a
general register. The OF, SF, ZF, AF, and PF flags are affected.

4.2.2. Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from the destination operand. It updates the
OF, SF, ZF, AF, PF, and CF flags, but does not modify the source or destination operands. A
subsequent Jcc or SETcc instruction can test the flags.

NEG (Negate) subtracts a signed integer operand from zero. The effect of the NEG
instruction is to change the sign of a two's complement operand while keeping its magnitude.
The OF, SF, ZF, AF, PF, and CF flags are affected.

4.2.3. Multiplication Instructions

The processor has separate multiply instructions for unsigned and signed operands. The MUL
instruction operates on unsigned integers, while the IMUL instruction operates on signed
integers as well as unsigned.

MUL (Unsigned Integer Multiply) performs an unsigned multiplication of the source
operand and the AL, AX, or EAX register. If the source is a byte, the processor multiplies it
by the value held in the AL register and returns the double-length result in the AH and AL
registers. If the source operand is a word, the processor multiplies it by the value held in the
AX register and returns the double-length result in the DX and AX registers. If the source
operand is a doubleword, the processor multiplies it by the value held in the EAX register
and returns the quadword result in the EDX and EAX registers. The MUL instruction sets the
CF and OF flags when the upper half of the result is non-zero; otherwise, the flags are
cleared. The state of the SF, ZF, AF, and PF flags is undefined.

IMUL (Signed Integer Multiply) performs a signed multiplication operation. The IMUL
instruction has three forms:

1. A one-operand form. The operand may be a byte, word, or doubleword located in
memory or in a general register. This instruction uses the EAX and EDX (or AX and
DX) registers as implicit operands in the same way as the MUL instruction.

2. A two-operand form. One of the source operands is in a general register while the other
may be in a general register or memory. The result replaces the general-register operand.

3. A three-operand form; two are source operands and one is the destination. One of the
source operands is an immediate value supplied by the instruction; the second may be in
memory or in a general register. The result is stored in a general register. The immediate
operand is a two's complement signed integer. If the immediate operand is a byte, the
processor automatically sign-extends it to the size of the second operand before
performing the multiplication.

The three forms are similar in most respects:

4-8 I

L
Intd ® APPLICATION PROGRAMMING

The length of the product is calculated to twice the length of the operands.

The CF and OF flags are set when significant bits are carried into the upper half of the
result. The CF and OF flags are cleared when the upper half of the result is the sign-
extension of the lower half. The state of the SF, ZF, AF, and PF flags is undefined.

However, forms 2 and 3 differ from 1 because the product is truncated to the length of the
operands before it is stored in the destination register. Because of this truncation, the OF flag
should be tested to ensure that no significant bits are lost. (For ways to test the OF flag, see
the JO, INTO, and PUSHF instructions.)

Forms 2 and 3 of IMUL also may be used with unsigned operands because, whether the
operands are signed or unsigned, the lower half of the product is the same. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

4.2.4. Division Instructions

The Pentium processor has separate division instructions for unsigned and signed operands.
The DIV instruction operates on unsigned integers, while the IDIV instruction operates on
both signed and unsigned integers. In either case, a divide-error exception is generated if the
divisor is zero or if the quotient is too large for the AL, AX, or EAX register.

DIV (Unsigned Integer Divide) performs an unsigned division of the AL, AX, or EAX
register by the source operand. The dividend (the accumulator) is twice the size of the divisor
(the source operand); the quotient and remainder have the same size as the divisor, as shown
in Table 4-1.

Non-integral results are truncated toward 0. The remainder is always smaller than the divisor.
For unsigned byte division, the largest quotient is 255. For unsigned word division, the
largest quotient is 65,535. For unsigned doubleword division the largest quotient is 2*2-1. The
state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

IDIV (Signed Integer Divide) performs a signed division of the accumulator by the source
operand. The IDIV instruction uses the same registers as the DIV instruction.

For signed byte division, the maximum positive quotient is +127, and the minimum negative
quotient is —128. For signed word division, the maximum positive quotient is +32,767, and
the minimum negative quotient is —32,768. For signed doubleword division the maximum
positive quotient is 2*!-1, the minimum negative quotient is -2*!. Non-integral results are
truncated towards 0. The remainder always has the same sign as the dividend and is less than
the divisor in magnitude. The state of the OF, SF, ZF, AF, PF, and CF flags is undefined.

-
APPLICATION PROGRAMMING Inu ®

Table 4-1. Operands for Division

Operand Size
(Divisor) Dividend Quotient Remainder
Byte AX register AL register AH register
Word DX and AX AX register DX register
Doubleword EDX and EAX EAX register EDX register

4.3. DECIMAL ARITHMETIC INSTRUCTIONS

Decimal arithmetic is performed by combining the binary arithmetic instructions (already
discussed in the prior section) with the decimal arithmetic instructions. The decimal
arithmetic instructions are used in one of the following ways:

® To adjust the results of a previous binary arithmetic operation to produce a valid packed
or unpacked decimal result.

® To adjust the inputs to a subsequent binary arithmetic operation so that the operation will
produce a valid packed or unpacked decimal result.

These instructions operate only on the AL or AH registers. Most use the AF flag.

4.3.1. Packed BCD Adjustment Instructions

DAA (Decimal Adjust after Addition) adjusts the result of adding two valid packed decimal
operands in the AL register. A DAA instruction must follow the addition of two pairs of
packed decimal numbers (one digit in each half-byte) to obtain a pair of valid packed
decimal digits as results. The CF flag is set if a carry occurs. The SF, ZF, AF, PF, and CF
flags are affected. The state of the OF flag is undefined.

DAS (Decimal Adjust after Subtraction) adjusts the result of subtracting two valid packed
decimal operands in the AL register. A DAS instruction must always follow the subtraction
of one pair of packed decimal numbers (one digit in each half-byte) from another to obtain a
pair of valid packed decimal digits as results. The CF flag is set if a borrow is needed. The
SF, ZF, AF, PF, and CF flags are affected. The state of the OF flag is undefined.

4.3.2. Unpacked BCD Adjustment Instructions

AAA (ASCII Adjust after Addition) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAA instruction must follow the
addition of two unpacked decimal operands in the AL register. The CF flag is set and the
contents of the AH register are incremented if a carry occurs. The AF and CF flags are
affected. The state of the OF, SF, ZF, and PF flags is undefined.

4-10 I

-
Inbl ® APPLICATION PROGRAMMING

AAS (ASCII Adjust after Subtraction) changes the contents of the AL register to a valid
unpacked decimal number, and clears the upper 4 bits. An AAS instruction must follow the
subtraction of one unpacked decimal operand from another in the AL register. The CF flag is
set and the contents of the AH register are decremented if a borrow is needed. The AF and
CF flags are affected. The state of the OF, SF, ZF, and PF flags is undefined.

AAM (ASCII Adjust after Multiplication) corrects the result of a multiplication of two
valid unpacked decimal numbers. An AAM instruction must follow the multiplication of two
decimal numbers to produce a valid decimal result. The upper digit is left in the AH register,
the lower digit in the AL register. The SF, ZF, and PF flags are affected. The state of the AF,
OF, and CF flags is undefined.

AAD (ASCII Adjust before Division) modifies the numerator in the AH and AL registers to
prepare for the division of two valid unpacked decimal operands, so that the quotient
produced by the division will be a valid unpacked decimal number. The AH register should
contain the upper digit and the AL register should contain the lower digit. This instruction
adjusts the value and places the result in the AL register. The AH register will be clear. The
SF, ZF, and PF flags are affected. The state of the AF, OF, and CF flags is undefined.

4.4, LOGICAL INSTRUCTIONS

The logical instructions have two operands. Source operands can be immediate values,
general registers, or memory. Destination operands can be general registers or memory
(except when the source operand is in memory). The logical instructions modify the state of
the flags. Short forms of the instructions are available when an immediate source operand is
applied to a destination operand in the AL, AX, or EAX registers. The group of logical
instructions includes:

® Boolean operation instructions.
Bit test and modify instructions.
Bit scan instructions.

Rotate and shift instructions.

Byte set on condition.

4.4.1. Boolean Operation Instructions
The logical operations are performed by the AND, OR, XOR, and NOT instructions.

NOT (Not) inverts the bits in the specified operand to form a one's complement of the
operand. The NOT instruction is a unary operation which uses a single operand in a register
or memory. NOT has no effect on the flags.

I 4-11

-
APPLICATION PROGRAMMING "Ttel ®

The AND, OR, and XOR instructions perform the standard logical operations "and," "or,"
and "exclusive or." These instructions can use the following combinations of operands:

® Two register operands.

® A general register operand with a memory operand.

® An immediate operand with either a general register operand or a memory operand.

The AND, OR, and XOR instructions clear the OF and CF flags, leave the AF flag undefined,
and update the SF, ZF, and PF flags.

4.4.2. Bit Test and Modify Instructions

This group of instructions operates on a single bit which can be in memory or in a general
register. The location of the bit is specified as an offset from the low end of the operand. The
value of the offset either may be given by an immediate byte in the instruction or may be
contained in a general register.

These instructions first assign the value of the selected bit to the CF flag. Then a new value is
assigned to the selected bit, as determined by the operation. The state of the OF, SF, ZF, AF,
and PF flags is undefined. Table 4-2 defines these instructions.

Table 4-2. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit
BT (Bit Test) CF flag « Selected Bit No effect
BTS (Bit Test and Set) CF flag « Selected Bit Selected Bit « 1
BTR (Bit Test and Reset) CF flag « Selected Bit Selected Bit « 0
BTC (Bit Test and Complement) CF flag « Selected Bit Selected Bit < — (Selected Bit)

4.4.3. Bit Scan Instructions

These instructions scan a word or doubleword for a set bit and store the bit index (an integer
representing the bit position) of the first set bit into a register. The bit string being scanned
may be in a register or in memory. The ZF flag is set if the entire word is clear, otherwise the
ZF flag is cleared. In the former case, the value of the destination register is left undefined.
The state of the OF, SF, AF, PF, and CF flags is undefined.

BSF (Bit Scan Forward) scans low-to-high (from bit 0 toward the upper bit positions).
BSR (Bit Scan Reverse) scans high-to-low (from the uppermost bit toward bit 0).

4-12 I

]
ln.bl ® APPLICATION PROGRAMMING

4.4.4. Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand.

These instructions fall into the following classes:

® Shift instructions.
® Double shift instructions.
® Rotate instructions.

4.4.41. SHIFT INSTRUCTIONS

Shift instructions apply an arithmetic or logical shift to bytes, words, and doublewords. An
arithmetic shift right copies the sign bit into empty bit positions on the upper end of the
operand, while a logical shift right fills high order empty bit positions with zeros. An
arithmetic shift is a fast way to perform a simple calculation. For example, an arithmetic shift
right by one bit position divides an integer by two. A logical shift right divides an unsigned
integer or a positive integer, but a signed negative integer loses its sign bit.

The arithmetic and logical shift right instructions, SAR and SHR, differ only in their
treatment of the bit positions emptied by shifting the contents of the operand. Note that there
is no difference between an arithmetic shift left and a logical shift left. Two names, SAL and
SHL, are supported for this instruction in the assembler.

A count specifies the number of bit positions to shift an operand. Bits can be shifted up to 31
places. A shift instruction can give the count in any of three ways. One form of shift
instruction always shifts by one bit position. The second form gives the count as an
immediate operand. The third form gives the count as the value contained in the CL register.
This last form allows the count to be a result from a calculation. Only the low five bits of the
CL register are used.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the CF
flag is left with the value of the last bit shifted out of the operand. In a single-bit shift, the OF
flag is set if the value of the uppermost bit (sign bit) was changed by the operation.
Otherwise, the OF flag is cleared. After a shift of more than one bit position, the state of the
OF flag is undefined. On a shift of one or more bit positions, the SF, ZF, PF, and CF flags are
affected. On a shift of one or more bit positions the state of the AF flag is undefined. If the
count length is greater than or equal to the size of the operand, the value of the CF flag is
undefined.

SAL (Shift Arithmetic Left) shifts the destination byte, word, or doubleword operand left by
one bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). Empty bit positions are cleared. See Figure 4-6.

SHL (Shift Logical Left) is another name for the SAL instruction. It is supported in the
assembler.

SHR (Shift Logical Right) shifts the destination byte, word, or doubleword operand right by
one bit position or by the number of bits specified in the count operand (an immediate value
or a value contained in the CL register). Empty bit positions are cleared. See Figure 4-7.

I 4-13

-
APPLICATION PROGRAMMING I ntel ®

SAR (Shift Arithmetic Right) shifts the destination byte, word, or doubleword operand to
the right by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register). The sign of the operand is
preserved by clearing empty bit positions if the operand is positive, or setting the empty bits
if the operand is negative. See Figure 4-8.

Even though this instruction can be used to divide integers by an integer power of two, the
type of division is not the same as that produced by the IDIV instruction. The quotient
from the IDIV instruction is rounded toward zero, whereas the "quotient" of the SAR
instruction is rounded toward negative infinity. This difference is apparent only for negative
numbers. For example, when the IDIV instruction is used to divide -9 by 4, the result is -2
with a remainder of —1. If the SAR instruction is used to shift -9 right by two bits, the result
is 3. The "remainder" of this kind of division is +3; however, the SAR instruction stores
only the high-order bit of the remainder (in the CF flag).

INITIAL STATE:
CE OPERAND
X 10001000100010001000100010001111

AFTER 1-BIT SHL/SAL INSTRUCTION:

1 (—‘ 0001000100010001000100010001111060

AFTER 10-BIT SHL/SAL INSTRUCTION:

0 (— 0010001000100010001111000000000060

APM34

Figure 4-6. SHL/SAL Instruction

4-14 I

-
In'l'el ® APPLICATION PROGRAMMING

INITIAL STATE: OPERAND CF

10001000100010001000100010001 111 X

AFTER 1-BIT SHR INSTRUCTION:

0-—)01000100010001000100010001000111 » 1

AFTER 10-BIT SHR INSTRUCTION:

0—)00000000001000100010001000100010 0

APM36

Figure 4-7. SHR Instruction

INITIAL STATE (POSITIVE OPERAND):

OPERAND CF

010001000100010001000100010001 11 X

AFTER 1-BIT SAR INSTRUCTION:

‘i(;o1ooo1ooo1ooo1ooo1ooo1ooo1ooo11_) 1

INITIAL STATE (NEGATIVE OPERAND):

CF

11000100010001000100010001000111—) X

AFTER 1-BIT SAR INSTRUCTION

11100010001000100010001000100011} 1

APM33

Figure 4-8. SAR Instruction

I 4-15

u
APPLICATION PROGRAMMING IntG| ®

44.4.2. DOUBLE-SHIFT INSTRUCTIONS

These instructions provide the basic operations needed to implement operations on long
unaligned bit strings. The double shifts operate either on word or doubleword operands, as
follows:

® Take two word operands and produce a one-word result (32-bit shift).
® Take two doubleword operands and produce a doubleword result (64-bit shift).

Of the two operands, the source operand must be in a register while the destination operand
may be in a register or in memory. The number of bits to be shifted is specified either in the
CL register or in an immediate byte in the instruction. Bits shifted out of the source operand
fill empty bit positions in the destination operand, which also is shifted. Only the destination
operand is stored.

When the number of bit positions to shift is zero, no flags are affected. Otherwise, the CF
flag is set to the value of the last bit shifted out of the destination operand, and the SF, ZF,
and PF flags are affected. On a shift of one bit position, the OF flag is set if the sign of the
operand changed, otherwise it is cleared. For shifts of more than one bit position, the state of
the OF flag is undefined. For shifts of one or more bit positions, the state of AF flag is
undefined.

SHLD (Shift Left Double) shifts bits of the destination operand to the left, while filling
empty bit positions with bits shifted out of the source operand (see Figure 4-9). The result is
stored back into the destination operand. The source operand is not modified.

SHRD (Shift Right Double) shifts bits of the destination operand to the right, while filling
empty bit positions with bits shifted out of the source operand (see Figure 4-10). The result is
stored back into the destination operand. The source operand is not modified.

31 0

(—-' DESTINATION (MEMORY OR REGISTER) |(—

31] 0

__I SOURCE (REGISTER) I

APM35

Figure 4-9. SHLD Instruction

4-16 I

=
Intel ® APPLICATION PROGRAMMING

31 0

| SOURCE (REGISTER) |__

31 0
|—) L DESTINATION (MEMORY OR REGISTER) |—}

APM37

Figure 4-10. SHRD Instruction

4.4.43. ROTATE INSTRUCTIONS

Rotate instructions apply a circular permutation to bytes, words, and doublewords. Bits
rotated out of one end of an operand enter through the other end. Unlike a shift, no bits are
emptied during a rotation.

Rotate instructions use only the CF and OF flags. The CF flag may act as an extension of the
operand in two of the rotate instructions, allowing a bit to be isolated and then tested by a
conditional jump instruction (JC or JNC). The CF flag always contains the value of the last
bit rotated out of the operand, even if the instruction does not use the CF flag as an extension
of the operand. The state of the SF, ZF, AF, and PF flags is not affected.

In a single-bit rotation, the OF flag is set if the operation changes the uppermost bit (sign bit)
of the destination operand. If the sign bit retains its original value, the OF flag is cleared.
After a rotate of more than one bit position, the value of the OF flag is undefined.

ROL (Rotate Left) rotates the byte, word, or doubleword destination operand left by one bit
position or by the number of bits specified in the count operand (an immediate value or a
value contained in the CL register). For each bit position of the rotation, the bit which exits
from the left of the operand returns at the right. See Figure 4-11.

ROR (Rotate Right) rotates the byte, word, or doubleword destination operand right by one
bit position or by the number of bits specified in the count operand (an immediate value or a
value contained in the CL register). For each bit position of the rotation, the bit which exits
from the right of the operand returns at the left. See Figure 4-12.

RCL (Rotate Through Carry Left) rotates bits in the byte, word, or doubleword destination
operand left by one bit position or by the number of bits specified in the count operand (an
immediate value or a value contained in the CL register).

This instruction differs from ROL in that it treats the CF flag as a one-bit extension on the
upper end of the destination operand. Each bit which exits from the left side of the operand
moves into the CF flag. At the same time, the bit in the CF flag enters the right side. See
Figure 4-13.

I 4-17

L]
APPLICATION PROGRAMMING I ntd ®

RCR (Rotate Through Carry Right) rotates bits in the byte, word, or doubleword
destination operand right by one bit position or by the number of bits specified in the count
operand (an immediate value or a value contained in the CL register).

This instruction differs from ROR in that it treats CF as a one-bit extension on the lower end
of the destination operand. Each bit which exits from the right side of the operand moves into
the CF flag. At the same time, the bit in the CF flag enters the left side. See Figure 4-14.

31 0

IEI(_] DESTINATION (MEMORY OR REGISTER) | €—

APM31

Figure 4-11. ROL Instruction

31 0
I—)l DESTINATION (MEMORY OR REGISTER) |—|-)Ea

APM32

Figure 4-12. ROR Instruction

31
—Elé—l DESTINATION (MEMORY OR REGISTER) (——I

APM29

Figure 4-13. RCL Instruction

4-18 , I

L]
IntGI ® APPLICATION PROGRAMMING

31 0
I:) DESTINATION (MEMORY OR REGISTER) 9@_

APM30

Figure 4-14. RCR Instruction

4.44.4. FAST "bit bit" USING DOUBLE-SHIFT INSTRUCTIONS

One purpose of the double shift instructions is to implement a bit string move, with arbitrary
misalignment of the bit strings. This is called a "bit bit" (BIT BLock Transfer). A simple
example is to move a bit string from an arbitrary offset into a doubleword-aligned byte
string. A left-to-right string is moved 32 bits at a time if a double shift is used inside the
move loop.

MOV ESI, ScrAddr
MOV EDI, DestAddr
MOV EBX, DWordCnt

MOV CL,RelOffset ; relative offset Dest-Src
MOV EDX, [ESI] ; load first dword of source
ADD EST, 4 ; bump source address
BltLoop:
LODSD ; new low order part in EAX
SHLD EDX, EAX,CL ; EDX overwritten with aligned stuff
XCHG EDX,EAX ; Swap high and low dwords
STOSD ; Write out next aligned chunk
DEC EBX ; Decrement loop count

JNZ BltLoop

This loop is simple, yet allows the data to be moved in 32-bit chunks for the highest possible
performance. Without a double shift, the best which can be achieved is 16 bits per loop
iteration by using a 32-bit shift, and replacing the XCHG instruction with a ROR instruction
by 16 to swap the high and low words of registers. A more general loop than shown above
would require some extra masking on the first doubleword moved (before the main loop),
and on the last doubleword moved (after the main loop), but would have the same 32 bits per
loop iteration as the code above.

4.4.4.5. FAST BIT STRING INSERT AND EXTRACT

The double shift instructions also make possible:

® Fast insertion of a bit string from a register into an arbitrary bit location in a larger bit
string in memory, without disturbing the bits on either side of the inserted bits

I 4-19

L
APPLICATION PROGRAMMING l nU ®

® Fast extraction of a bit string into a register from an arbitrary bit location in a larger bit
string in memory, without disturbing the bits on either side of the extracted bits

The following coded examples illustrate bit insertion and extraction under
various conditions:

1. Bit String Insertion into Memory (when the bit string is 1-25 bits long, i.e., spans four
bytes or less):

; Insert a right-justified bit string from a register into
; a bit string in memory.

; Assumptions:

; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is an immediate value
; and the bit offset is held in a register.

; The ESI register holds the right-justified bit string

; to be inserted.

; The EDI register holds the bit offset of the start of the
; substring. :

; The EAX register and ECX are also used.

MOV ECX,EDI ; save original offset

SHR EDI, 3 ; divide offset by 8 (byte addr)
AND CL,7H ; get low three bits of offset
MOV EAX, [EDI]strg_base ; move string dword into EAX
ROR EAX,CL ; right justify old bit field
SHRD EAX,ESI,length ; bring in new bits

ROL EAX, length ; right justify new bit field
ROL EAX,CL ; bring to final position

MOV [EDI]strg_base, EAX ; replace doubleword in memory

2. Bit String Insertion into Memory (when the bit string is 1-31 bits long, i.e., spans five
bytes or less):

; Insert a right-justified bit string from a register into
; a bit string in memory.

; Assumptions:

; 1. The base of the string array is doubleword aligned.
; 2. The length of the bit string is an immediate value
; and the bit offset is held in a register.

; The ESI register holds the right-justified bit string

; to be inserted.

; The EDI register holds the bit offset of the start of the
; substring.

; The EAX, EBX, ECX, and EDI registers also are used.

4-20 I

MOV
SHR
SHL
AND
MOV
MOV
MOV
SHRD
SHRD
SHRD
ROL
MOV
SHLD
SHLD
MOV
MOV

ECX,EDI

EDI, 5

EDI, 2

CL, 1FH

EAX, [EDI]strg_base
EDX, [EDI]strg_base+4
EBX, EAX

EAX, EDX,CL

EAX, EBX,CL

EAX,ESI, length

EAX, length

EBX, EAX

EAX, EDX,CL

EDX, EBX,CL
[EDI]strg_base, EAX
[EDI]strg_base+4, EDX

APPLICATION PROGRAMMING

temp storage for offset

divide offset by 32 (dwords)
multiply by 4 (byte address)
get low five bits of offset
move low string dword into EAX
other string dword into EDX
temp storage for part of string
shift by offset within dword
shift by offset within dword
bring in new bits

right justify new bit field
temp storage for string

shift by offset within dword
shift by offset within dword
replace dword in memory
replace dword in memory

3. Bit String Insertion into Memory (when the bit string is exactly 32 bits long, i.e., spans
four or five bytes):

; Insert right-justified bit string from a register into
; a bit string in memory.

; Assumptions:

;1.
; 2.

; The ESI register holds
; The EDI register holds

The base of the string array is doubleword aligned.
The length of the bit string is 32 bits

and the bit offset is held in a register.

; substring.
; The EAX, EBX, ECX, and EDI registers also are used.

MOV
SHR
SHL
AND
MOV
MOV
MOV
SHRD
SHRD
MOV
MOV
SHLD
SHLD

EDX, EDI

EDI,S5

EDI, 2

CL,1FH

EAX, [EDI]strg_base
EDX, [EDI]strg_base+4
EBX, EAX

EAX, EDX

EDX, EBX

EAX,ESI

EBX, EAX

EAX, EDX

EDX, EBX

the 32-bit string to be inserted.
the bit offset to the start of the

save original offset

divide offset by 32 (dwords)
multiply by 4 (byte address)
isolate low five bits of offset
move low string dword into EAX
other string dword into EDX
temp storage for part of string
shift by offset within dword
shift by offset within dword
move 32-bit field into position
temp storage for part of string
shift by offset within dword
shift by offset within dword

4-21

=
APPLICATION PROGRAMMING lnu ®

4-22

MOV [EDI]strg_base, EAX ; replace dword in memory
MOV [EDI]strg_base, +4, EDX ; replace dword in memory

Bit string Extraction from Memory (when the bit string is 1-25 bits long, i.e., spans four
bytes or less):

; Extract a right-justified bit string into a register from
; a bit string in memory.

; Assumptions:

; 1) The base of the string array is doubleword aligned.
; 2) The length of the bit string is an immediate value
; and the bit offset is held in a register.

; The EAX register hold the right-justified, zero-padded

; bit string that was extracted.

; The EDI register holds the bit offset of the start of the
; substring.

; The EDI, and ECX registers also are used.

MOV ECX, EDI ; temp storage for offset

SHR EDI,3 ; divide offset by 8 (byte addr)
AND CL,7H ; get low three bits of offset
MOV EAX, [EDI]strg_base ; move string dword into EAX
SHR EAX,CL ; shift by offset within dword
AND EAX,mask ; extracted bit field in EAX

Bit string Extraction from Memory (when bit string is 1-32 bits long, i.e., spans five
bytes or less):

; Extract a right-justified bit string into a register from
; bit string in memory.

; Assumptions:

; 1) The base of the string array is doubleword aligned.
; 2) The length of the bit string is an immediate

; value and the bit offset is held in a register.

; The EAX register holds the right-justified, zero-padded

; bit string that was extracted.

; The EDI register holds the bit offset of the start of the
; substring.

; The EAX, EBX, and ECX registers also are used.

MOV ECX,EDI ; temp storage for offset

SHR EDI,S ; divide offset by 32 (dwords)
SHL EDI,2 ; multiply by 4 (byte address)
AND CL,1FH ; get low five bits of offset in
MOV EAX, [EDI]strg_base ; move low string dword into EAX

n
Intd ® APPLICATION PROGRAMMING

MOV EDX, [EDI]strg_base +4 ; other string dword into EDX
SHRD EAX,EDX,CL ; shift right by offset in dword
AND EAX,mask ; extracted bit field in EAX

4.4.5. Byte-Set-On-Condition Instructions

This group of instructions sets a byte to the value of zero or one, depending on any of the 16
conditions defined by the status flags. The byte may be in a register or in memory. These
instructions are especially useful for implementing Boolean expressions in high-level
languages such as Pascal.

Some languages represent a logical one as an integer with all bits set. This can be done by
using the SETcc instruction with the mutually exclusive condition, then decrementing the
result.

SETcc (Set Byte on Condition cc) loads the value 1 into a byte if condition cc is true; clears
the byte otherwise. See Appendix D for a definition of the possible conditions.

4.4.6. TestInstruction

TEST (Test) performs the logical "and" of the two operands, clears the OF and CF flags,
leaves the AF flag undefined, and updates the SF, ZF, and PF flags. The flags can be tested
by conditional control transfer instructions or the byte-set-on-condition instructions. The
operands may be bytes, words, or doublewords.

The difference between the TEST and AND instructions is that the TEST instruction does not
alter the destination operand. The difference between the TEST and BT instructions is that
the TEST instruction can test the value of multiple bits in one operation, while the BT
instruction tests a single bit.

4.5. CONTROL TRANSFER INSTRUCTIONS

The processor provides both conditional and unconditional control transfer instructions to
direct the flow of execution. Conditional transfers are taken only for certain combinations of
the state of the flags. Unconditional control transfers are always executed.

4.5.1. Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer execution to a destination in a
code segment. The destination can be within the same code segment (near transfer) or in a
different code segment (far transfer). The forms of these instructions which transfer
execution to other segments are discussed in a later section of this chapter. If the model of
memory organization used in a particular application does not make segments visible to
application programmers, far transfers are not used.

I 4-23

-
APPLICATION PROGRAMMING Intel ®

4.5.1.1. JUMP INSTRUCTION

JMP (Jump) unconditionally transfers execution to the destination. The JMP instruction is a
one-way transfer of execution; it does not save a return address on the stack.

The JMP instruction transfers execution from the current routine to a different routine. The
address of the routine is specified in the instruction, in a register, or in memory. The location
of the address determines whether it is interpreted as a relative address or an absolute
address.

Relative Address. A relative jump uses a displacement (immediate mode constant used for
address calculation) held in the instruction. The displacement is signed and variable-length
(byte or doubleword). The destination address is formed by adding the displacement to the
address held in the EIP register. The EIP register then contains the address of the next
instruction to be executed.

Absolute Address. An absolute jump is used with a 32-bit segment offset in either of the
following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register and execution continues.

4.5.1.2. CALL INSTRUCTIONS

CALL (Call Procedure) transfers execution and saves the address of the instruction
following the CALL instruction for later use by a RET (Return) instruction. CALL pushes
the current contents of the EIP register on the stack. The RET instruction in the called
procedure uses this address to transfer execution back to the calling program.

CALL instructions, like JMP instructions, have relative and absolute forms.

Indirect CALL instructions specify an absolute address in one of the following ways:

1. The program can jump to an address in a general register. This 32-bit value is copied
into the EIP register, the return address is pushed on the stack, and execution continues.

2. The destination address can be a memory operand specified using the standard
addressing modes. The operand is copied into the EIP register, the return address is
pushed on the stack, and execution continues.

4.5.1.3. RETURN AND RETURN-FROM-INTERRUPT INSTRUCTIONS

RET (Return From Procedure) terminates a procedure and transfers execution to the
instruction following the CALL instruction which originally invoked the procedure. The RET
instruction restores the contents of the EIP register which were pushed on the stack when the
procedure was called.

4-24 ' I

-
Intd ® APPLICATION PROGRAMMING

The RET instructions have an optional immediate operand. When present, this constant is
added to the contents of the ESP register, which has the effect of removing any parameters
pushed on the stack before the procedure call.

IRET (Return From Interrupt) returns control to an interrupted procedure. The IRET
instruction differs from the RET instruction in that it restores the EFLAGS register from the
stack. The contents of the EFLAGS register are stored on the stack when an interrupt occurs.

- 4,5.2. Conditional Transfer Instructions

The conditional transfer instructions are jumps which transfer execution if the states in the
EFLAGS register match conditions specified in the instruction.

4.5.2.1. CONDITIONAL JUMP INSTRUCTIONS

Table 4-3 shows the mnemonics for the jump instructions. The instructions listed as pairs are
alternate names for the same instruction. The assembler provides these names for greater
clarity in program listings.

A form of conditional jump instruction is available which uses a displacement added to the
contents of the EIP register if the specified condition is true. The displacement may be a byte
or doubleword. The displacement is signed; it can be used to jump forward or backward.

I 4-25

-
APPLICATION PROGRAMMING l nU ®

Table 4-3. Conditional Jump Instructions

Mnemonic Flag States Description

Unsigned Conditional Jumps

JA/UNBE (CF or ZF)=0 Above/not below nor equal
JAE/JNB CF=0 Above or equal/not below
JB/UNAE CF=1 Below/not above nor equal
JBE/JNA (CF oer ZF)=1 Below or equal/not above
JCe CF=1 Carry

JENZ ZF=1 Equal/zero

JNC CF=0 Not carry

JNE/UNZ ZF=0 Not equal/not zero
JNP/JPO PF=0 Not parity/parity odd
JP/JPE PF=1 Parity/parity even

Signed Conditional Jumps

JG/NLE ((SF xor OF) or ZF) =0 Greater/not less nor equal
JGE/JNL (SF xor OF)=0 Greater or equal/not less
JUINGE (SF xor OF)=1 Less/not greater nor equal
JLE/UNG ((SF xor OF) or ZF)=1 Less or equal/not greater
JNO OF=0 Not overflow

JNS SF=0 Not sign (non-negative)
JO OF=1 Overflow

JS SF=1 Sign (negative)

4.5.2.2. LOOP INSTRUCTIONS

The loop instructions are conditional jumps which use the value of the ECX register as a
count for the number of times to run a loop. All loop instructions decrement the contents of
the ECX register on each reposition and terminate when zero is reached. Four of the five loop
instructions accept the ZF flag as a condition for terminating the loop before the count
reaches zero.

LOOP (Loop While ECX Not Zero) is a conditional jump instruction which decrements the
contents of the ECX register before testing for the loop-terminating condition. If the contents
of the ECX register are non-zero, the program jumps to the destination specified in the
instruction. The LOOP instruction causes the execution of a block of code to be repeated
until the count reaches zero. When zero is reached, execution is transferred to the instruction
immediately following the LOOP instruction. If the value in the ECX register is zero when

4-26 l

| |
| n'tel ® APPLICATION PROGRAMMING

the instruction is first called, the count is pre-decremented to OFFFFFFFFH and the LOOP
runs 2*2 times.

LOOPE (Loop While Equal) and LOOPZ (Loop While Zero) are synonyms for the same
instruction. These instructions are conditional jumps which decrement the contents of the
ECX register before testing for the loop-terminating condition. If the contents of the ECX
register are non-zero and the ZF flag is set, the program jumps to the destination specified in
the instruction. When zero is reached or the ZF flag is clear, execution is transferred to the
instruction immediately following the LOOPE/LOOPZ instruction.

LOOPNE (Loop While Not Equal) and LOOPNZ (Loop While Not Zero) are synonyms
for the same instruction. These instructions are conditional jumps which decrement the
contents of the ECX register before testing for the loop-terminating condition. If the contents
of the ECX register are non-zero and the ZF flag is clear, the program jumps to the
destination specified in the instruction. When zero is reached or the ZF flag is set, execution
is transferred to the instruction immediately following the LOOPE/LOOPZ instruction.

4.5.2.3. EXECUTING A LOOP OR REPEAT ZERO TIMES

JECXZ (Jump if ECX Zero) jumps to the destination specified in the instruction if the ECX
register holds a value of zero. The JECXZ instruction is used in combination with the LOOP
instruction and with the string scan and compare instructions. Because these instructions
decrement the contents of the ECX register before testing for zero, a loop will run 232 times
if the loop is entered with a zero value in the ECX register. The JECXZ instruction is used to
create loops which fall through without executing when the initial value is zero. A JECXZ
instruction at the beginning of a loop can be used to jump out of the loop if the count is zero.
When used with repeated string scan and compare instructions, the JECXZ instruction can
determine whether the loop terminated due to the count or due to satisfaction of the scan or
compare conditions.

4.5.3. Software Interrupts

The INT, INTO, and BOUND instructions allow the programmer to specify a transfer of
execution to an exception or interrupt handler.

INTn (Software Interrupt) calls the handler specified by an interrupt vector encoded in the
instruction. The INT instruction may specify any interrupt type. This instruction is used to
support multiple types of software interrupts or to test the operation of interrupt service
routines. The interrupt service routine terminates with an IRET instruction, which returns
execution to the instruction following the INT instruction. '

INTO (Interrupt on Overflow) calls the handler for the overflow exception, if the OF flag
is set. If the flag is clear, execution continues without calling the handler. The OF flag is set
by arithmetic, logical, and string instructions. This instruction causes a software interrupt for
handling error conditions, such as arithmetic overflow.

BOUND (Detect Value Out of Range) compares the signed value held in a general register
against an upper and lower limit. The handler for the bounds-check exception is called if the

I 4-27

-
APPLICATION PROGRAMMING I ntd ®

value held in the register is less than the lower bound or greater than the upper bound. This
instruction causes a software interrupt for bounds checking, such as checking an array index
to make sure it falls within the range defined for the array.

The BOUND instruction has two operands. The first operand specifies the general register
being tested. The second operand is the base address of two words or doublewords at
adjacent locations in memory. The lower limit is the word or doubleword with the lower
address; the upper limit has the higher address. The BOUND instruction assumes that the
upper limit and lower limit are in adjacent memory locations. These limit values cannot be
register operands; if they are, an invalid-opcode exception occurs.

The upper and lower limits of an array can reside just before the array itself. This puts the
array bounds at a constant offset from the beginning of the array. Because the address of the
array already will be present in a register, this practice avoids extra bus cycles to obtain the
effective address of the array bounds.

4.6. STRING OPERATIONS

String operations manipulate large data structures in memory, such as alphanumeric
character strings. See also the section on I/O for information about the string I/O instructions
(also known as block I/O instructions).

The string operations are made by putting string instructions (which execute only one
iteration of an operation) together with other features of the instruction set, such as repeat
prefixes. The string instructions include:

® MOVS—Move String

® CMPS—Compare string
® SCAS—Scan string

® J.ODS—Load string

STOS—Store string

After a string instruction executes, the string source and destination registers point to the next
elements in their strings. The string instructions automatically increment or decrement the
contents of these registers by the number of bytes occupied by each string element. A string
element can be a byte, word, or doubleword. The string registers include:

® ESI—Source index register
® EDI—Destination index register

String operations can begin at higher addresses and work toward lower ones, or they can
begin at lower addresses and work toward higher ones. The direction is controlled by:

® DF—Direction flag

If the DF flag is clear, the registers are incremented. If the flag is set, the registers are
decremented. These instructions set and clear the flag:

4-28 '

n
IntQI ® APPLICATION PROGRAMMING

® STD—Set direction flag
® (CLD—Clear direction flag

To operate on more than one element of a string, a repeat prefix must be used, such as:

® REP—Repeat while the ECX register not zero
® REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set
® REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear

Exceptions or interrupts that occur during a string instruction leave the registers in a state
which allows the string instruction to be restarted. The source and destination registers point
to the next string elements, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration. All that is necessary to
restart the operation is to service the interrupt or fix the source of the exception, then execute
an IRET instruction.

4.6.1. Repeat Prefixes

The repeat prefixes REP (Repeat While ECX Not Zero), REPE/REPZ (Repeat While
Equal/Zero), and REPNE/REPNZ (Repeat While Not Equal/Not Zero) specify repeated
operation of a string instruction.

When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied.

For each repetition of the instruction, the string operation may be suspended by an exception
or interrupt. After the exception or interrupt has been serviced, the string operation can
restart where it left off. This mechanism allows long string operations to proceed without
affecting the interrupt response time of the system.

All three prefixes shown in Table 4-4 cause the instruction to repeat until the ECX register is
decremented to zero, if no other termination condition is satisfied. The repeat prefixes differ
in their other termination condition. The REP prefix has no other termination condition. The
REPE/REPZ and REPNE/REPNZ prefixes are used exclusively with the SCAS (Scan String)
and CMPS (Compare String) instructions. The REPE/REPZ prefix terminates if the ZF flag is
clear. The REPNE/REPNZ prefix terminates if the ZF flag is set. The ZF flag does not
require initialization before execution of a repeated string instruction, because both the SCAS
and CMPS instructions affect the ZF flag according to the results of the comparisons they
make.

Table 4-4. Repeat Instructions

Repeat Prefix Termination Condition 1 Termination Condition 2
REP ECX=0 None
REPE/REPZ ECX=0 ZF=0
REPNE/REPNZ ECX=0 ZF=1

I 4-29

-
APPLICATION PROGRAMMING I ntd ®

4.6.2. Indexing and Direction Flag Control

Although the general registers are completely interchangeable under most conditions, the
string instructions require the use of two specific registers. The source and destination strings
are in memory addressed by the ESI and EDI registers. The ESI register points to source
operands. By default, the ESI register is used with the DS segment register. A segment-
override prefix allows the ESI register to be used with the CS, SS, ES, FS, or GS segment
registers. The EDI register points to destination operands. It uses the segment indicated by
the ES segment register; no segment override is allowed. The use of two different segment
registers in one instruction permits operations between strings in different segments.

When ESI and EDI are used in string instructions, they automatically are incremented or
decremented after each iteration. String operations can begin at higher addresses and work
toward lower ones, or they can begin at lower addresses and work toward higher ones. The
direction is controlled by the DF flag. If the flag is clear, the registers are incremented. If the
flag is set, the registers are decremented. The STD and CLD instructions set and clear this
flag. Programmers should always put a known value in the DF flag before using a string
instruction.

4.6.3. String Instructions

MOYVS (Move String) moves the string element addressed by the ESI register to the location
addressed by the EDI register. The MOVSB instruction moves bytes, the MOVSW
instruction moves words, and the MOVSD instruction moves doublewords. The MOVS
instruction, when accompanied by the REP prefix, operates as a memory-to-memory block
transfer. To set up this operation, the program must initialize the ECX, ESI, and EDI
registers. The ECX register specifies the number of elements in the block.

CMPS (Compare Strings) subtracts the destination string element from the source string
element and updates the AF, SF, PF, CF and OF flags. Neither string element is written back
to memory. If the string elements are equal, the ZF flag is set; otherwise, it is cleared.
CMPSB compares bytes, CMPSW compares words, and CMPSD compares doublewords.

SCAS (Scan String) subtracts the destination string element from the EAX, AX, or AL
register (depending on operand length) and updates the AF, SF, ZF, PF, CF and OF flags.
The string and the register are not modified. If the values are equal, the ZF flag is set;
otherwise, it is cleared. The SCASB instruction scans bytes; the SCASW instruction scans
words; the SCASD instruction scans doublewords.

When the REPE/REPZ or REPNE/REPNZ prefix modifies either the SCAS or CMPS
instructions, the loop which is formed is terminated by the loop counter or the effect the
SCAS or CMPS instruction has on the ZF flag.

LODS (Load String) places the source string element addressed by the ESI register into the
EAX register for doubleword strings, into the AX register for word strings, or into the AL
register for byte strings. This instruction usually is used in a loop, where other instructions
process each element of the string as they appear in the register.

4-30 I

=
an ® APPLICATION PROGRAMMING

STOS (Store String) places the source string element from the EAX, AX, or AL register
into the string addressed by the EDI register. This instruction usually is used in a loop, where
it writes to memory the result of processing a string element read from memory with the
LODS instruction. A REP STOS instruction is the fastest way to initialize a large block of
memory.

4.7. INSTRUCTIONS FOR BLOCK-STRUCTURED LANGUAGES

These instructions provide machine-language support for implementing block-structured
languages, such as C and Pascal. They include ENTER and LEAVE, which simplify
procedure entry and exit in compiler-generated code. They support a structure of pointers and
local variables on the stack called a stack frame.

ENTER (Enter Procedure) creates a stack frame compatible with the scope rules of block-
structured languages. In these languages, a procedure has access to its own variables and
some number of other variables defined elsewhere in the program. The scope of a procedure
is the set of variables to which it has access. The rules for scope vary among languages; they
may be based on the nesting of procedures, the division of the program into separately-
compiled files, or some other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be
reserved on the stack for dynamic storage in the procedure being entered. Dynamic storage is
the memory allocated for variables created when the procedure is called, also known as
automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the
procedure. The nesting level is the depth of a procedure in the hierarchy of a block-structured
program. The lexical level has no particular relationship to either the protection privilege
level or to the I/O privilege level.

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access
the variables of a procedure. The set of stack frame pointers used by a procedure to access
the variables of other procedures is called the display. The first doubleword in the display is a
pointer to the previous stack frame. This pointer is used by a LEAVE instruction to undo the
effect of an ENTER instruction by discarding the current stack frame.

Example: ENTER 2048, 3

Allocates 2K bytes of dynamic storage on the stack and sets up pointers to two previous stack
frames in the stack frame for this procedure.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic
(automatic) local variables for the procedure by decrementing the contents of the ESP
register by the number of bytes specified in the first parameter. This new value in the ESP
register serves as the initial top-of-stack for all PUSH and POP operations within the
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions which

l 4-31

APPLICATION PROGRAMMING I ntd ®

specify the EBP register as a base register automatically address locations within the stack
segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level
is 0, the non-nested form is used. The non-nested form pushes the contents of the EBP
register on the stack, copies the contents of the ESP register into the EBP register, and
subtracts the first operand from the contents of the ESP register to allocate dynamic storage.
The non-nested form differs from the nested form in that no stack frame pointers are copied.
The nested form of the ENTER instruction occurs when the second parameter (lexical level)
is not zero.

The psuedo code in Example 4-1 shows the formal definition of the ENTER instruction.
STORAGE is the number of bytes of dynamic storage to allocate for local variables, and
LEVEL is the lexical nesting level.

Example 4-1. ENTER Definition

Push EBP
Set a temporary value FRAME_PTR := ESP
If LEVEL > 0 then
Repeat LEVEL-1 times
EBP := EBP-4
Push the doubleword pointed to by EBP
End Repeat
Push FRAME_PTR
End if
EBP := FRAME_PTR
. ESP := ESP-STORAGE

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A
level 2 procedure can access the variables of the main program, which are at fixed locations
specified by the compiler. In the case of level 1, the ENTER instruction allocates only the
requested dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure's stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to
its variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical
levels. The new stack frame does not include the pointer for addressing the calling
procedure's stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same
lexical level. In this case, each succeeding iteration of the re-entrant procedure can address
only its own variables and the variables of the procedures within which it is nested. A re-
entrant procedure always can address its own variables; it does not require pointers to the
stack frames of previous iterations.

4-32 I

|}
"Ttel ® APPLICATION PROGRAMMING

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels,
not those at parallel lexical levels (see Figure 4-15).

MAIN (LEXICAL LEVEL 1)
PROCEDURE A (LEXICAL LEVEL 2)
| PROCEDURE B (LEXICAL LEVEL 3) |

PROCEDURE C (LEXICAL LEVEL 3)

IPROCEDURE D (LEXICAL LEVEL 4) I

APM24

Figure 4-15. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to
the variables of nested procedures. In the figure, for example, if PROCEDURE A calls
PROCEDURE B which, in turn, calls PROCEDURE C, then PROCEDURE C will have
access to the variables of MAIN and PROCEDURE A, but not those of PROCEDURE B
because they are at the same lexical level. The following definition describes the access to
variables for the nested procedures in Figure 4-15.

1. MAIN has variables at fixed locations.
PROCEDURE A can access only the variables of MAIN.

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN.
PROCEDURE B cannot access the variables of PROCEDURE C or PROCEDURE D.

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN.
PROCEDURE C cannot access the variables of PROCEDURE B or PROCEDURE D.

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A, and
MAIN. PROCEDURE D cannot access the variables of PROCEDURE B.

In Figure 4-16, an ENTER instruction at the beginning of the MAIN program creates three
doublewords of dynamic storage for MAIN, but copies no pointers from other stack frames.
The first doubleword in the display holds a copy of the last value in the EBP register before
the ENTER instruction was executed. The second doubleword (which, because stacks grow
down, is stored at a lower address) holds a copy of the contents of the EBP register following
the ENTER instruction. After the instruction is executed, the EBP register points to the first
doubleword pushed on the stack, and the ESP register points to the last doubleword in the
stack frame.

I 4-33

-
APPLICATION PROGRAMMING I ntd ®

OLD EBP <— EBP
DISPLAY
MAIN'S EBP
DYNAMIC
STORAGE
<— ESpP

APM23

Figure 4-16. Stack Frame after Entering MAIN

When MAIN calls PROCEDURE A, the ENTER instruction creates a new display (see
Figure 4-17). The first doubleword is the last value held in MAIN's EBP register. The second
doubleword is a pointer to MAIN's stack frame which is copied from the second doubleword
in MAIN's display. This happens to be another copy of the last value held in MAIN's EBP
register. PROCEDURE A can access variables in MAIN because MAIN is at level 1.
Therefore the base address for the dynamic storage used in MAIN is the current address in
the EBP register, plus four bytes to account for the saved contents of MAIN's EBP register.
All dynamic variables for MAIN are at fixed, positive offsets from this value.

When PROCEDURE A calls PROCEDURE B, the ENTER instruction creates a new display.
(See Figure 4-18). The first doubleword holds a copy of the last value in PROCEDURE A's
EBP register. The second and third doublewords are copies of the two stack frame pointers in
PROCEDURE A's display. PROCEDURE B can access variables in PROCEDURE A and
MAIN by using the stack frame pointers in its display.

When PROCEDURE B calls PROCEDURE C, the ENTER instruction creates a new display
for PROCEDURE C. (See Figure 4-19). The first doubleword holds a copy of the last value
in PROCEDURE B's EBP register. This is used by the LEAVE instruction to restore
PROCEDURE B's stack frame. The second and third doublewords are copies of the two stack
frame pointers in PROCEDURE A's display. If PROCEDURE C were at the next deeper
lexical level from PROCEDURE B, a fourth doubleword would be copied, which would be
the stack frame pointer to PROCEDURE B's local variables.

Note that PROCEDURE B and PROCEDURE C are at the same level, so PROCEDURE C is
not intended to access PROCEDURE B's variables. This does not mean that PROCEDURE C
is completely isolated from PROCEDURE B; PROCEDURE C is called by PROCEDURE B,
so the pointer to the returning stack frame is a pointer to PROCEDURE B's stack frame. In
addition, PROCEDURE B can pass parameters to PROCEDURE C either on the stack or
through variables global to both procedures (i.e., variables in the scope of both procedures).

4-34 I

APPLICATION PROGRAMMING

DISPLAY

DYNAMIC
STORAGE

OLD EBP

MAIN'S EBP

MAIN'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

<«<— EBP

<— ESP

APM39

Figure 4-17. Stack Frame after Entering PROCEDURE A

4-35

APPLICATION PROGRAMMING

DISPLAY

DYNAMIC
STORAGE

OLD EBP

MAIN'S EBP

MAIN'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE A'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE B'S EBP

< EBP

<— ESP

APM4o

4-36

Figure 4-18. Stack Frame after Entering PROCEDURE B

L)
InU ® APPLICATION PROGRAMMING

OLD EBP
MAIN'S EBP

MAIN'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE A'S EBP

MAIN'S EBP

PROCEDURE A'S EBP

PROCEDURE B'S EBP

PROCEDURE B'S EBP (— EBP
MAIN'S EBP
PROCEDURE A'S EBP
PROCEDURE C'S EBP

DISPLAY

DYNAMIC
STORAGE

«<— EsP

APM41

Figure 4-19. Stack Frame after Entering PROCEDURE C

I 4-37

L
APPLICATION PROGRAMMING I ntd ®

LEAVE (Leave Procedure) reverses the action of the previous ENTER instruction. The
LEAVE instruction does not have any operands. The LEAVE instruction copies the contents
of the EBP register into the ESP register to release all stack space allocated to the procedure.
Then the LEAVE instruction restores the old value of the EBP register from the stack. This
simultaneously restores the ESP register to its original value. A subsequent RET instruction
then can remove any arguments and the return address pushed on the stack by the calling
program for use by the procedure.

4.8. FLAG CONTROL INSTRUCTIONS

The flag control instructions change the state of bits in the EFLAGS register, as shown in
Table 4-5.

Table 4-5. Flag Control Instructions

Instruction Effect
STC (Set Carry Flag) CF 1
CLC (Clear Carry Flag) CF«0
CMC (Complement Carry Flag) CF «~-CF
CLD (Clear Direction Flag) DF «0
STD (Set Direction Flag) DF «1

4.8.1. Carry and Direction Flag Control Instructions

The carry flag instructions are useful with instructions like the rotate-with-carry instructions
RCL and RCR. They can initialize the carry flag, CF, to a known state before execution of an
instruction which copies the flag into an operand.

The direction flag control instructions set or clear the direction flag, DF, which controls the
direction of string processing. If the DF flag is clear, the processor increments the string
index registers, ESI and EDI, after each iteration of a string instruction. If the DF flag is set,
the processor decrements these index registers.

4.8.2. Flag Transfer Instructions

Though specific instructions exist to alter the CF and DF flags, there is no direct method of
altering the other application-oriented flags. The flag transfer instructions allow a program to
change the state of the other flag bits using the bit manipulation instructions once these flags
have been moved to the stack or the AH register.

The LAHF and SAHF instructions deal with five of the status flags, which are used primarily
by the arithmetic and logical instructions.

4-38 l

-
I nU ® APPLICATION PROGRAMMING

LAHF (Load AH from Flags) copies the SF, ZF, AF, PF, and CF flags to the AH register
bits 7, 6, 4, 2, and 0, respectively (see Figure 4-20). The contents of the remaining bits 5, 3,
and 1 are left undefined. The contents of the EFLAGS register remain unchanged.

SAHF (Store AH into Flags) copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively (see Figure 4-20).

7 /6 /5 [4 /3 /2 [1 [0

THE BIT POSITIONS OF THE FLAGS ARE THE SAME,

WHETHER THEY ARE HELD IN THE EFLAGS REGISTER

OR THE AH REGISTER. BIT POSITIONS SHOWN AS
ARE INTEL RESERVED. DO NOT USE.

APM21

Figure 4-20. Low Byte of EFLAGS Register

The PUSHF and POPF instructions are not only useful for storing the flags in memory where
they can be examined and modified, but also are useful for preserving the state of the
EFLAGS register while executing a subroutine.

PUSHF (Push Flags) pushes the lower word of the EFLAGS register onto the stack (see
Figure 4-21). The PUSHFD instruction pushes the entire EFLAGS register onto the stack (the
RF and VM flags read as clear, however).

j€&— >»| PUSHFD/POPFD
Pi | PUSHFIPOPF

n BIT POSITIONS MARKED 0 OR 1 ARE INTEL RESERVED.
DO NOT USE.

APM22

Figure 4-21. Flags Used with PUSHF and POPF

I 4-39

-
APPLICATION PROGRAMMING I nu ®

POPF (Pop Flags) pops a word from the stack into the EFLAGS register. Only bits 11, 10,
8,7, 6,4, 2, and 0 are affected with all uses of this instruction. If the privilege level of the
current code segment is O (most privileged), the IOPL bits (bits 13 and 12) also are affected.
If the I/O privilege level (IOPL) is O, the IF flag (bit 9) also is affected. The POPFD
instruction pops a doubleword into the EFLAGS register, and it can change the state of the
AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a POPF instruction.

4.9. NUMERIC INSTRUCTIONS

The Pentium processor includes hardware and instructions for high-precision numeric
operations on a variety of numeric data types, including 80-bit extended real and 64-bit long
integer. Arithmetic, comparison, transcendental, and data transfer instructions are available.
Frequently-used constants are also provided, to enhance the speed of numeric calculations.

The numeric instructions are embedded in the instruction stream of the Pentium processor, as
though they were being executed by a single device having both integer and floating-point
capabilities. But the floating-point unit of the Pentium processor actually works in parallel
with the integer unit, resulting in higher performance.

Refer to Chapter 5 to confirm the presence of a Pentium processor floating-point unit.

Chapter 6 describes the numeric instructions in more detail.

4.10. SEGMENT REGISTER INSTRUCTIONS

There are several distinct types of instructions which use segment registers. They are grouped
together here because, if system designers choose an unsegmented model of memory
organization, none of these instructions are used. The instructions which deal with segment
registers include the following:

1. Segment-register transfer instructions.

MOV SegReg,
MOV ..., SegReg
PUSH Segkeg
POP SegReg

2. Control transfers to another executable segment.

JMP far
CALL far
RET far

3. Data pointer instructions.

LDS reg, 48-bit memory operand
LES reg, 48-bit memory operand
LFS reg, 48-bit memory operand

4-40 I

L]
Inu ® APPLICATION PROGRAMMING

LGS reg, 48-bit memory operand
LSS reg, 48-bit memory operand

4. Note that the following interrupt-related instructions also are used in unsegmented
systems. Although they can transfer execution between segments when segmentation is
used, this is transparent to the application programmer.

INT n
INTO
BOUND
IRET

4.10.1. Segment-Register Transfer Instructions

Forms of the MOV, POP, and PUSH instructions also are used to load and store segment
registers. These forms operate like the general-register forms, except that one operand is a
segment register. The MOV instruction cannot copy the contents of a segment register into
another segment register.

The POP and MOV instructions cannot place a value in the CS register (code segment); only
the far control-transfer instructions affect the CS register. When the destination is the SS
register (stack segment), interrupts are disabled until after the next instruction.

No 16-bit operand size prefix is needed when transferring data between a segment register
and a 32-bit general register.

4.10.2. Far Control Transfer Instructions

The far control-transfer instructions transfer execution to a destination in another segment by
replacing the contents of the CS register. The destination is specified by a far pointer, which
is a 16-bit segment selector and a 32-bit offset into the segment. The far pointer can be an
immediate operand or an operand in memory.

Far CALL. An intersegment CALL instruction places the values held in the EIP and CS
registers on the stack.

Far RET. An intersegment RET instruction restores the values of the CS and EIP registers
from the stack.

4.10.3. Data Pointer Instructions

The data pointer instructions load a far pointer into the processor registers. A far pointer
consists of a 16-bit segment selector, which is loaded into a segment register, and a 32-bit
offset into the segment, which is loaded into a general register.

I 4-41

-
APPLICATION PROGRAMMING I ntd ®

LDS (Load Pointer Using DS) copies a far pointer from the source operand into the DS
register and a general register. The source operand must be a memory operand, and the
destination operand must be a general register.

Example: LDS ESI, STRING_X

Loads the DS register with the segment selector for the segment addressed by STRING_X,
and loads the offset within the segment to STRING_X into the ESI register. Specifying the
ESI register as the destination operand is a convenient way to prepare for a string operation,
when the source string is not in the current data segment.

LES (Load Pointer Using ES) has the same effect as the LDS instruction, except the
segment selector is loaded into the ES register rather than the DS register.

Example: LES EDI, DESTINATION_X

Loads the ES register with the segment selector for the segment addressed by
DESTINATION_X, and loads the offset within the segment to DESTINATION_X into the
EDI register. This instruction is a convenient way to select a destination for string operation
if the desired location is not in the current E-data segment.

LFS (Load Pointer Using FS) has the same effect as the LDS instruction, except the FS
register receives the segment selector rather than the DS register.

LGS (Load Pointer Using GS) has the same effect as the LDS instruction, except the GS
register receives the segment selector rather than the DS register.

LSS (Load Pointer Using SS) has the same effect as the LDS instruction, except the SS
register receives the segment selector rather than the DS register. This instruction is
especially important, because it allows the two registers which identify the stack (the SS and
ESP registers) to be changed in one uninterruptible operation. Unlike the other instructions
which can load the SS register, interrupts are not inhibited at the end of the LSS instruction.
The other instructions, such as POP SS, turn off interrupts to permit the following instruction
to load the ESP register without an intervening interrupt. Since both the SS and ESP registers
can be loaded by the LSS instruction, there is no need to disable or re-enable interrupts.

4.11. MISCELLANEOUS INSTRUCTIONS

The following instructions do not fit in any of the previous categories, but are no less
important.

The CMPXCHGSB and CPUID instructions are new instructions on the Pentium processor
and bring improved functionality by providing a single instruction to accomplish what
previously took multiple instructions on earlier microprocessors.

The BSWAP, XADD, and CMPXCHG instructions are not available on Intel386 DX or SX
microprocessors. An Intel386 CPU can perform the same operations in multiple instructions.
To use these instructions, always include functionally-equivalent code for Intel386 CPUs.

4-42 I

m
| I‘Itel ® APPLICATION PROGRAMMING

To determine whether these new instructions can be used, the type of processor in a system
needs to be determined. See Chapter 5 for code examples and information on determining the
type of the different processors.

4.11.1. Address Calculation Instruction

LEA (Load Effective Address) puts the 32-bit offset to a source operand in memory (rather
than its contents) into the destination operand. The source operand must be in memory, and
the destination operand must be a general register. This instruction is especially useful for
initializing the ESI or EDI registers before the execution of string instructions or initializing
the EBX register before an XLAT instruction. The LEA instruction can perform any indexing
or scaling which may be needed.

Example: LEA EBX, EBCDIC_TABLE

Causes the processor to place the address of the starting location of the table labeled
EBCDIC_TABLE into EBX.

4.11.2. No-Operation Instruction

NOP (No Operation) occupies a byte of code space. When executed, it increments the EIP
register to point at the next instruction, but affects nothing else.

4.11.3. Translate Instruction

XLATB (Translate) replaces the contents of the AL register with a byte read from a
translation table in memory. The contents of the AL register are interpreted as an unsigned
index into this table, with the contents of the EBX register used as the base address. The
XLAT instruction does the same operation and loads its result into the same register, but it
gets the byte operand from memory. This function is used to convert character codes from
one alphabet into another. For example, an ASCII code could be used to look up its EBCDIC
equivalent.

4.11.4. Byte Swap Instruction

BSWAP (Byte Swap) reverses the byte order in a 32-bit register operand. Bit positions 7..0
are exchanged with 31..24, and bit positions 15..8 are exchanged with 23..16. This instruction
is useful for converting between "big-endian" and "little-endian" data formats. Executing this
instruction twice in a row leaves the register in the same value as before. This instruction
also speeds execution of decimal arithmetic by operating on four digits at a time as shown in
Example 4-2.

-
APPLICATION PROGRAMMING I nU ®

Example 4-2. ASCII Arithmetic Using BSWAP
$Stitle('ASCII Add/Subtract with BSWAP')

name ASCII_arith
code segment er public use32

; Add a string of 4 ASCII decimal digits together.
; The upper nibble MUST be 3.

; DS: [ESI] points at operand 1

; DS: [EBX] points at operand 2

; DS: [EDI] points at the destination

addlOproc near
; Perform ASCII add using BSWAP instruction

7

mov eax, [esi] ; Get low four digits of first operand
bswapeax ; Put into big-endian form

add eax, 96969696H ; Adjust for addition so carries work
mov ecx, [ebx] ; Get low four digits of second operand
bswapecx ; Put into big-endian form

add eax, ecx ; Do the add with inter-digit carry
rcr ch,1 ; Save the carr flag

mov edx, eax ; Save the value

and eax, OFOFOFOFOH; Extract the uppernibble

sub eax, eax ; Zero out uppernibble of each byte
shr eax, 4 ; Prepare for fixup

and eax, OAOAQAQAH ; If non-zero upper nibble then form

; as adjustment value to lower nibble
add eax, edx ; Form adjusted lower nibble value

; Upper nibbles may be 1 from adjustment
or eax, 30303030H ; Convert back to ASCII

bswapeax ; Back to little-endien
mov [edi], eax ; Set destination
rcl «ch, 1 ; Restore carry
ret
addlo endp

; Subtract a string of 4 ASCII decimal digits together.
; The upper nibble must be 3.

; DS: [ESI] points at operand 1

; DS: [EBX] points at operand 2

; DS: [EDI] points at the destination

L]
I ntd ® APPLICATION PROGRAMMING

sublOproc near

; Perform ASCII subtract using BSWAP instruction.

mov eax, [esi] ; Get low four digits of first operand

bswap eax ; Put into big-endian form

mov ecx, [ebx] ; get low four digits of second operand

bswap ecx ; Put into big-endian form

sub eax,ecx ; Do the subtraction with inter-digit
borrow

rcr ch, 1 ; Save the carry flag

mov edx, eax ; Save the wvalue

and eax, OFOFOFQOFOH; Extract upper nibble, F if borrow
happened

sub edx, eax ; Zero out upper nibble of each byte

shr eax, 4 ; Prepare for fixup

and eax, 0AOAOAOAH ; If non-zero upper nibble then form

; 10 as adjustment value to lower nibble
add eax, edx ; Form adjusted lower nibble value

; upper nibbles may be 1 from adjustment
or eax, 30303030H ; Convert back to ASCII

bswapeax ; Convert to little-endian
mov [edi], eax ; Set to destination
rcl <ch, 1 ; Restore borrow
ret
subl0endp

code ends
end

4.11.5. Exchange-and-Add Instruction

XADD (Exchange and Add) takes two operands: a source operand in a register and a
destination operand in a register or memory. The source operand is replaced with the
destination operand, and the destination operand is replaced with the sum of the source and
destination operands. The flags reflect the result of the addition. This instruction can be
combined with LOCK in a multiprocessing system to allow multiple processors to execute
one do loop.

4.11.6. Compare-and-Exchange Instructions

CMPXCHG (Compare and Exchange) takes three operands: a source operand in a register,
a destination operand in a register or memory, and the accumulator (i.e., the AL, AX, or

I 4-45

=
APPLICATION PROGRAMMING Intd ®

EAX register, depending on operand size). If the values in the destination operand and the
accumulator are equal, the destination operand is replaced with the source operand.
Otherwise, the original value of the destination operand is loaded into the accumulator. The
flags reflect the result which would have been obtained by subtracting the destination
operand from the accumulator. The ZF flag is set if the values in the destination operand and
the accumulator were equal, otherwise it is cleared.

The CMPXCHG instruction is useful for testing and modifying semaphores. It performs a
check to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise
it gets the ID of the current owner. This is all done in one uninterruptible operation. In a
single processor system, it eliminates the need to switch to level O to disable interrupts to
execute multiple instructions. For multiple processor systems, CMPXCHG can be combined
with LOCK to perform all bus cycles atomically.

CMPXCHGSB (Compare and Exchange 8 Bytes) takes three operands: a destination
operand in memory, a 64-bit value in EDX:EAX and a 64-bit value in ECX:EBX.
CMPXCHGS8B compares the 64-bit value in EDX:EAX with the destination. If they are
equal, the 64-bit value in ECX:EBX is stored in the destination. If EDX:EAX and the
destination are not equal, the destination is loaded into EDX:EAX. The ZF flag is set if the
values in the destination and EDX:EAX are equal, otherwise it is cleared. The CF, PF, AF,
SF, and OF flags are unaffected. CMPXCHGS8B can be combined with LOCK to perform all
bus cycles in one uninterruptible operation.

4.11.7. CPUID Instruction

CPUID provides information to software about the the vendor and model of microprocessor
on which it is executing. By loading a zero into EAX and then executing the CPUD
instruction, the ECX, EDX, and EBX registers will contain a vendor identification string.
The EAX register will contain the highest input value understood by the CPUID instruction.
Software can then obtain additional information regarding which features are present by
moving a one (or up to the highest value returned in EAX previously) into EAX and
executing the CPUID instruction again.

When a one is loaded into the EAX register before executing the CPUID instruction, the
EAX register contains information regarding the family, model and stepping of the processor
as shown in Figure 4-22. Bits 8-11 of the EAX register indicate what family the processor
belongs to and will be 5 for the Pentium microprocessor. Bits 4-7 of the EAX register
indicate the model and will be O to indicate the first model in the Pentium processor family.
Bits 0-3 of the EAX register indicate the Stepping ID which is a unique identifier for each
revision level.

The EBX and ECX registers are reserved following execution of this instruction with an
input value of one, and the EDX register will contain information on which features are
present on a particular processor. For more information on the feature bits of EDX, see
Appendix H.

The ability to set and clear the ID flag in the EFLAGS register indicates whether the
processor supports the CPUID instruction. The CPUID instruction can be executed at any

4-46 I

-
|nte| ® APPLICATION PROGRAMMING

privilege level to serialize instruction execution. Serializing instruction execution guarantees
that any modifications to flags, registers, and memory for previous instructions are completed
before the next instruction is fetched and executed. For more information on serializing
operations, see Chapter 18.

ﬁl.902.9252726252423222/20 19 718 17 16 15 14 13 12/11 10 9 8)7 6 5 4/3 2 1 0

RESERVED 0101{o0o000(0000

FAMILY MODEL STEPPING

APM19

Figure 4-22. EAX Following the CPUID Instruction

l 4-47

intal.

Feature
Determination

intgl.

CHAPTER 5
FEATURE DETERMINATION

Identifying the type of processor present in a system may be necessary in order to determine
which features are available to an application. Chapter 23 contains a complete list of which
features are available for the different Intel architectures. The absence of an integrated
floating-point unit (FPU) or numeric processor extension (NPX) may also need to be
determined if software needs to emulate the floating-point instructions.

This chapter discusses processor identification, as well as on-chip FPU and NPX presence
detection and identification. Sample code is provided in Example 5-1.

5.1. CPU IDENTIFICATION

The setting of the flags stored by the PUSHF instruction, by interrupts, and by exceptions is
different on the 32 bit processors than that stored by the 8086 and Intel 286 processors in bits
12 and 13 (IOPL), 14 (NT), and 15 (reserved). These differences can be used to distinguish
what type of processor is present in a system while an application is running.

® 8086 processor — bits 12 through 15 are always set.
@ Intel 286 processor — bits 12 through 15 are always clear in real-address mode.

©® 32-bit processors — in real-address mode, bit 15 is always clear and bits 14 through 12
have the last value loaded into them. In , bit 14 has the last value loaded into it, bit 15
is always clear, and IOPL depends on the CPL (if CPL # 0, the IOPL is unchanged,
otherwise it is updated).

Other EFLAG register bits that can be used to differentiate between the 32-bit processors
include:

@ Bit 18 (AC), implemented on the Intel486 and Pentium processors, can be used to
distinguish an Intel386 processor from the Intel486 and Pentium processors as it will
always be clear on an Intel386 processor.

® Bit 21 (ID) can be used to determine if an application can execute the CPUID
instruction. This instruction supplies information to applications at runtime that
identifies Intel as the vendor, including family, model, stepping, and what features are
implemented on the processor in the system an application is running on. The ability to
set and clear this bit indicates that the CPUID instruction is supported by the processor.
See Chapter 25 for details on this instruction.

I 5-1

| |
FEATURE DETERMINATION Intel ®

5.2. FPU DETECTION

To determine whether an FPU or NPX is present in a system, applications can write to the
status and control word registers using the FNINIT instruction and then verify the correct
values are read back. Once an FPU or NPX is determined to be present, its type can then be
determined. In most cases, the processor type will determine the type of FPU or NPX,
however, an Intel386 microprocessor may work with either an Inte]287™ or Intel387 math
coprocessor. To determine which of these is present, the infinity of the coprocessor must be
checked. On the Intel287 math coprocessor, positive infinity is equal to negative infinity. On
the Intel387 math coprocessor, however, positive infinity is not equal to negative infinity.

5.3. SAMPLE CPUID IDENTIFICATION/FPU DETECTION CODE

Example 5-1 is the Intel recommended method of determing the processor type as well as the
presence and type of NPX or integrated FPU. This code has been modified from previous
versions of Intel's recommended CPU identification code by modularizing the printing
functions so that applications not running in a DOS environment can remove or change the
print function to conform to the appropriate environment. Note that this code (and previous
versions) is supported on the Intel 286 in real-address mode only. This example was created
using Microsoft's assembler directives.

Example 5-1. CPU Identification and FPU Detection

; Filename: cpuid32.msm

; This program has been developed by Intel Corporation.
; Software developers have Intel's permission to incorporate
; this source code into your software royalty free.

; Intel specifically disclaims all warranties, express or

; implied, and all liability, including consequential and other
; indirect damages, for the use of this code, including

; liability for infringement of any proprietary rights. Intel
; does not assume any responsibility for any errors which may

; appear in this code nor any responsibility to update it.

; This program contains three parts:

; Part 1: Identifies CPU type in the variable cpu_type:
; 0=8086 processor

; 2=Intel 286 processor

; 3=Intel386 (TM) processor

; 4=Tnteld86 (TM) processor

; 5=Pentium(R) processor

; Part 2: Identifies FPU type in the variable fpu_type:

52 I

n
“Ttel ® FEATURE DETERMINATION

; 0=FPU not present

; 1=FPU present

; 2=287 present (only if cpu_type=3)
; 3=387 present (only if cpu_type=3)

; Part 3: Prints out the appropriate message. This part can

; be removed if this program is not used in a DOS-based
; system. Portions affected are at the end of the

; data segment and the print procedure in the code

; segment.

; This program was assembled with Microsoft's Assembler MASM

; 6.0. While this program mostly uses 1l6-bit operands, some

; 32-bit operands are required to check the 32-bit EFLAGS

; register once it has been determined that the processor is at
; least an Intel386 processor. 32-bit operations are invoked by
; using the macro OPND32.

TITLE CPUID
DOSSEG

.model small
.stack 100h
.186

; The OPND32 macro takes either zero or two parameters.

; With zero parameters, it generates the 32-bit operand-size prefix.
; With two parameters, it generates the 32-bit operand-size prefix,
; followed by an opcode and a 32-bit immediate value. These
parameters

; are used to generate XOR AX,imm32 instructions.

OPND32 MACRO op_code, op_erand

db 66h ; Force 32-bit operand size
IFNB <op_code>
db op_code ; Optional opcode
IFNB <op_erand>
dd op_erand ; Optional 32-bit immediate value
ENDIF
ENDIF
ENDM

CPUID MACRO

db 0fh ; Opcode for CPUID instruction
db 0a2h

ENDM

TRUE equ 1

I 5-3

FEATURE DETERMINATION

FAMILY_ MASK
FAMILY_SHIFT
MODEL_MASK
MODEL_SHIFT
STEPPING_MASK
FPU_FLAG
MCE_FLAG
CMPXCHG8B_FLAG

.data
fp_status
vendor_id
cpu_type
model
stepping
id_flag
fpu_type
intel_proc
feature_flags

’

equ 0£f00h
equ 8

equ 0f0h

equ 4

equ 0fh

equ 1h

equ 80h

equ 100h

dw ?

db 12 dup (?)
db ?

db ?

db ?

db 0

db 0

db 0

dw 2 dup (0)

; Remove the remaining data declarations if not using the DOS-based
; print procedure

’

id_msg db
fp_8087 db
fp_80287 db
fp_80387 db
c8086 db
c286 db
c386 db
c486 db
c486nfp db
Inteld86_msg db
db
Pentium_msg db
db
modelmsg db
steppingmsg db
familymsg db
period db
dataCR db
intel_id db
fpu_msg db
mce_msg db
db
cmp_msg db
db
5-4

"This
" and

system has a$"

an 8087 math coprocessors$"
" and an 80287 math coprocessors$"
" and an 80387 math coprocessors$"
8086/8088 processor$"

80286 processor$"

80386 processor$"

"n
"n 80486 SX processor$"

13,10, "This system contains a Genuine "
"Intel486 (TM) processor",13,10,"$"
13,10, "This system contains a Genuine "
"Intel Pentium(R) processor",13,10,"$"

"Model: S$"
"Stepping: s"
13,10, "Processor Family: $"
“.",13,10,"s"

?,13,10,"s$"

"GenuineIntel™"

13,10, "This processor contains a FPU",13,10,
"This processor supports the "

"Machine Check Exception",13,10,"$"

"This processor supports the "

"CMPXCHG8B instruction",13,10,"$"

80486 DX processor or 80487 SX math coprocessor$"

llsll

]
| n'tel ® FEATURE DETERMINATION

not_intel db "t least an 80486 processor.",13,10

~e me =

start:

db "It does not contain a Genuine Intel part and as a "
db "result,",13,10,"the CPUID detection information "
db "cannot be determined at this time.",13,10,"S$"

This code identifies the processor and coprocessor

that are currently in the system. The program first
determines the processor id. When that is accomplished,
the program then determines whether a coprocessor
exists in the system. If a coprocessor or integrated
coprocessor exists, the program identifies

the coprocessor id. The program then prints out

the CPU and floating point presence and type.

.code

mov ax, @data

mov ds, ax ; set segment register
mov es, ax ; set segment register
pushf ; save for restoration at end
call get_cpuid

call get_fpuid

call print

popf

mov ax, 4c00h ; terminate program
int 21h

get_cpuid proc

7
’
’

i

This procedure determines the type of CPU in a system
and sets the cpu_type variable with the appropriate value.
All registers are used by this procedure, none are preserved.

Intel 8086 CPU check
Bits 12-15 of the FLAGS register are always set on the
8086 processor.

check_8086:

pushf ; push original FLAGS

pop ax ; get original FLAGS

mov cx, ax ; save original FLAGS

and ax, O0fffh ; clear bits 12-15 in FLAGS

push ax ; save new FLAGS value on stack
popf ; replace current FLAGS value
pushf ; get new FLAGS

pop ax ; store new FLAGS in AX

and ax, 0£000h ; 1f bits 12-15 are set, then CPU

5-5

FEATURE

check_80

check_80

!

5-6

L]
DETERMINATION l ntd ®

cmp ax, 0f000h ; is an 8086/8088
mov cpu_type, O ; turn on 8086/8088 flag
je end_get_cpuid ; jump if CPU is 8086/8088

Intel 286 CPU check
Bits 12-15 of the FLAGS register are always clear on the
Intel 286 processor in real-address mode.

286:

or cx, 0£000h ; try to set bits 12-15

push cx ; save new FLAGS value on stack
popf ; replace current FLAGS value
pushf ; get new FLAGS

pop ax ; store new FLAGS in AX

and ax, 0f000h ; 1f bits 12-15 clear, CPU=80286
mov cpu_type, 2 ; turn on 80286 flag

jz end_get_cpuid ; 1f no bits set, CPU is 80286

Intel386 CPU check

The AC bit, bit #18, is a new bit introduced in the EFLAGS
register on the Inteld86 DX CPU to generate alignment faults.
This bit cannot be set on the Intel386 CPU.

386:

It is now safe to use 32-bit opcode/operands

mov bx, sp ; save current stack pointer to align
and sp, not 3 ; align stack to avoid AC fault
OPND32

pushf ; push original EFLAGS

OPND32

pop ax ; get original EFLAGS

OPND32

mov cx, ax ; save original EFLAGS

OPND32 35h, 40000h ; f£flip (XOR) AC bit in EFLAGS
OPND32

push ax ; save new EFLAGS value on stack
OPND32

popf ; replace current EFLAGS value
OPND32

pushf ; get new EFLAGS

OPND32

pop ax ; store new EFLAGS in EAX

OPND32

xXor ax, cx ; can't toggle AC bit, CPU=80386
mov cpu_type, 3 ; turn on 80386 CPU flag

mov sp, bx ; restore original stack pointer
jz end_get_cpuid ; jump if 80386 CPU

n
lnu ® FEATURE DETERMINATION

and sp, not 3 ; align stack to avoid AC fault

OPND32

push cx

OPND32

popf ; restore AC bit in EFLAGS first
mov sp, bx ; restore original stack pointer

: Intel486 DX CPU, Intel487 SX NDP, and Inteld486 SX CPU check
; Checking for ability to set/clear ID flag (Bit 21) in EFLAGS
; which indicates the presence of a processor

; with the ability to use the CPUID instruction.

check_80486:

mov cpu_type, 4 ; turn on 80486 CPU flag
OPND32

mov ax, cx ; get original EFLAGS

OPND32 35h, 200000h ; flip (XOR) ID bit in EFLAGS
OPND32

push ax ; save new EFLAGS value on stack
OPND32

popf ; replace current EFLAGS value
OPND32

pushf ; get new EFLAGS

OPND32

pop ax ; store new EFLAGS in EAX
OPND32

Xor ax, cx ; can't toggle ID bit,

je end_get_cpuid ; CPU=80486

; Execute CPUID instruction to identify Intel as the wvendor,
; including family, model and stepping.

check_vwvendor:

mov id_flag, 1 ; set flag indicating use of CPUID
i ; inst.
OPND32
Xor ax, ax ; set up input for CPUID instruction
CPUID ; macro for CPUID instruction
OPND32
mov word ptr vendor_id, bx ; setup to test for vendor id
OPND32
mov word ptr vendor_id[+4], dx
OPND32
mov word ptr vendor_id[+8], cx
mov si, offset vendor_id
mov di, offset intel_id
mov cx, length intel_id

I 5.7

FEATURE DETERMINATION
compare:

repe cmpsb

or cx, Cx

inz end_get_cpuid
intel_processor:

mov intel_proc, 1

cpuid_data:
OPND32
cmp

31
OPND32
Xor
OPND32
inc
CPUID
mov
and

and
shr
mov

and
shr
mov

OPND32
mov

end_get_cpuid:
ret
get_cpuid endp

ax, 1
end_get_cpuid
ax, ax

ax

stepping, al

intal.

compare vendor id to "GenuineIntel"

if not zero, not an Intel CPU,

make sure 1 is a valid input
value for CPUID
if not, jump to end

otherwise, use as input to CPUID

and get stepping, model and family

stepping, STEPPING_MASK ; isolate stepping info

al, MODEL_MASK
al, MODEL_SHIFT

model, al

ax, FAMILY_MASK
ax, FAMILY_ SHIFT

cpu_type, al

feature_flags,

; isolate model info

; mask everything but family

; set cpu_type with family

; save feature flag data

I.***-k

get_fpuid proc

1

; This procedure determines the type of FPU in a system
; and sets the fpu_type variable with the appropriate value.
; All registers are used by this procedure, none are preserved.

; Coprocessor check
; The algorithm is to determine whether the floating-point

5-8

n
InU ® FEATURE DETERMINATION

; status and control words can be written to. If not, no

; coprocessor exists. If the status and control words can be
; written to, the correct coprocessor is then determined

; depending on the processor id. The Intel386 CPU can

; work with either an Intel287 NDP or an Intel387 NDP.

; The infinity of the coprocessor must be

; checked to determine the correct coprocessor id.

fninit ; reset FP status word

mov fp_status, 5abah; initialize temp word to
; non-zero value

fnstsw fp_status ; save FP status word

mov ax, fp_status ; check FP status word

cmp al, 0 ; see if correct status with
; written

mov fpu_type, O ; no fpu present

jne end_get_fpuid

check_control_word:

fnstcw fp_status ; save FP control word

mov ax, fp_status ; check FP control word

and ax, 103fh ; see if selected parts
; looks OK

cmp ax, 3fh ; check that 1's & 0's
; correctly read

mov fpu_type, O

jne end_get_fpuid

mov fpu_type, 1

; 80287/80387 check for the Intel386 CPU

check_infinity:

cmp cpu_type, 3

jne end_get_fpuid

£1ld1 ; must use default control from
FNINIT

fldz ; form infinity

fdiv ; 8087 and Intel287 NDP say +inf = -
inf

fld st ; form negative infinity

fchs ; Intel387 NDP says +inf <> -inf

fcompp ; see if they are the same and remove
them

fstsw fp_status ; look at status from FCOMPP

mov ax, fp_status

mov fpu_type, 2 ; store Intel287 NDP for fpu type

I 5-9

FEATURE DETERMINATION
sahf ;
jz end_get_fpuid ;
mov fpu_type, 3 ;
end_get_fpuid:
ret

get_fpuid endp

intgl.

see if infinities matched
jump if 8087 or Intel287 is present
store Intel387 NDP for fpu type

I.**‘k*****************

*

print proc

; This procedure prints the appropriate cpuid string and

; numeric processor presence status. If the CPUID instruction
; was supported, this procedure prints out cpuid info.

; All registers are used by this procedure, none are preserved.

cmp

information
je

mov
mov
int

print_86:

cmp
jne
mov
mov
int
cmp
je

mov
mov
int
jmp

print_286:
cmp
jne
mov
mov
int

5-10

id_flag, 1

print_cpuid_data

dx, offset id_msg
ah, 9h
21h

cpu_type, O
print_286

dx, offset c8086
ah, 9h

21h

fpu_type, 0
end_print

dx, offset fp_8087
ah, 9h

21h

end_print

cpu_type, 2
print_386

dx, offset c286
ah, Sh

21h

i
i

;

;

if set to 1, cpu supports
CPUID instruction
print detailed CPUID

print initial message

intgl.

cmp
je

mov
mov
int
jmp

print_386:
cmp
jne
mov
mov
int
cmp
je
cmp
jne
mov
mov
int
jmp

print_387:
mov
mov
int
jmp

print_486:
cmp
je
mov
mov
int
jmp

fpu_type, 0
end_print

dx, offset fp_80287
ah, 9h

21h

end_print

cpu_type, 3
print_486

dx, offset c386
ah, 9Sh

21h

fpu_type, O
end_print
fpu_type, 2
print_387

dx, offset fp_80287
ah, 9h

21h

end_print

dx, offset fp_80387
ah, 9h

21h

end_print

fpu_type, 0
print_Inteld86sx
dx, offset c486
ah, 9h

21h

end_print

print_Intel486sx:

mov
mov
int
jmp

dx, offset c486nfp
ah, 9h

21h

end_print

print_cpuid_data:

cmp_vendor:
cmp
jne

intel_proc, 1
not_GenuineIntel

FEATURE DETERMINATION

5-11

FEATURE DETERMINATION
cmp cpu_type, 4
jne check_Pentium
mov dx, offset Inteld86_msg
mov ah, 9h
int 21h
jmp print_family

check_Pentium:

message

print_family:

print_model:

print_stepping:

5-12

cmp
jne

mov
mov
int

mov
mov
int
mov
mov
add
mov
mov
int

mov
mov
int
mov
mov
add
mov
mov
int

mov
mov
int
mov
mov
add
mov

cpu_type, 5
print_features

dx, offset Pentium_msg
ah, 9h
21h

dx, offset familymsg
ah, 9h

21h

al, cpu_type

byte ptr dataCR, al
byte ptr dataCR, 30h
dx, offset dataCR
ah, 9h

21h

dx, offset modelmsg
ah, 9Sh

21h

al, model

byte ptr dataCR, al
byte ptr dataCR, 30h
dx, offset dataCR
ah, 9h

21lh

dx, offset steppingmsg
ah, 9h

21h

al, stepping

byte ptr dataCR, al
byte ptr dataCR, 30h
dx, offset dataCR

intal.

if cpu_type=4, print
Inteld486 CPU message

if cpu_type=5, print
Pentium processor

print family msg

convert to ASCII
print family info

print model msg

convert to ASCII
print model info

print stepping msg

convert to ASCII
print stepping info

-
I nté ® FEATURE DETERMINATION

mov ah, 9h
int 21h

print_features:

mov ax, feature_flags
and ax, FPU_FLAG ; check for FPU
jz check_MCE
mov dx, offset fpu_msg
mov ah, 9h
int 21h
check_MCE:
mov ax, feature_flags
and ax, MCE_FLAG ; check for MCE
jz check_ CMPXCHG8B
mov dx, offset mce_msg
mov ah, Sh
int 21h

check_ CMPXCHG8B:

mov ax, feature_flags

and ax, CMPXCHGS8B_FLAG ; check for CMPXCHGSB
jz end_print

mov dx, offset cmp_msg

mov ah, 9h

int 21h

Jjmp end_print

not_Genuinelntel:

mov dx, offset not_Intel
mov ah, 9h
int 21h
end_print:
ret

print endp

end start

I 5-13

intal.

Numeric
Applications

intal.

CHAPTER 6
NUMERIC APPLICATIONS

The Pentium processor contains a high-performance numerics processing element that
provides significant numeric capabilities and direct support for floating-point, extended-
integer, and BCD data types. The Pentium processor Floating-Point Unit (FPU) easily
supports powerful and accurate numeric applications through its implementation, with radix
2, of the IEEE Standard 754 for Floating-Point Arithmetic. The Pentium processor FPU
provides floating-point performance comparable to that of large minicomputers while
offering compatibility with object code for 8087, Intel287, Intel387 DX, Intel387 SX, and
Intel487 DX math coprocessors and the Intel486 DX processor.

6.1. INTRODUCTION TO NUMERIC APPLICATIONS

6.1.1. History

The 8087 numeric processor extension (NPX) was designed for use in 8086-family systems.
The 8086 was the first microprocessor family to partition the processing unit to permit high-
performance numeric capabilities. The 8087 NPX for this processor family implemented a
complete numeric processing environment in compliance with an early proposal for IEEE
Standard 754 for Binary Floating-Point Arithmetic.

With the Intel287 coprocessor NPX, high-speed numeric computations were extended to
80286 high-performance multitasking and multiuser systems. Multiple tasks using the
numeric processor extension were afforded the full protection of the 80286 memory
management and protection features.

The Intel387 DX and SX math coprocessors are Intel's third generation numerics processors.
They implement the final IEEE Std 754, adding new trigonometric instructions, and using a
new design and CHMOS-III process to allow higher clock rates and require fewer clocks per
instruction. Together, the Intel387 math coprocessor with additional instructions and the
improved standard brought even more convenience and reliability to numerics programming
and made this convenience and reliability available to applications that need the high-speed
and large memory capacity of the 32-bit environment of the Intel386 microprocessor.

The Intel486 processor FPU is an on-chip equivalent of the Intel387 DX math coprocessor
conforming to both IEEE Std 754 and the more recent, generalized IEEE Std 854. Having the
FPU on chip results in a considerable performance improvement in numerics-intensive
computation.

The Pentium processor FPU has been completely redesigned over the Intel486 processor FPU
while maintaining conformance to both the IEEE Std 754 and 854. Faster algorithms provide
at least three times the performance over the Intel486 processor FPU for common operations

=
NUMERIC APPLICATIONS l ntd ®

including ADD, MUL, and LOAD. Many applications can achieve five times the
performance of the Intel486 processor FPU or more with instruction scheduling and pipelined
execution.

6.1.2. Performance

Today, floating-point performance is more important than ever. Applications of personal
computer workstations, no longer limited to simple spreadsheets and business applications,
now include sophisticated algorithms such as lab data analysis and three-dimensional
graphics.

Table 6-1 compares the execution times of several Pentium processor numeric instructions
with the equivalent operations executed on a 66-MHz Intel486 DX2 processor. As indicated
in the table, the 66-MHz Pentium processor provides about three times the floating-point
performance of a 66-MHz Intel486 DX2 CPU. A 66-MHz Pentium processor multiplies 32-
bit and 64-bit floating-point numbers in about 45 nanoseconds. Of course, the actual
performance of the processor in a given system depends on the characteristics of the
individual application.

Table 6-1. Numeric Processing Speed Comparisons

Approximate Performance Ratio:
66-MHz Pentium® Processor +
Floating-Point Instruction 66-MHz Intel486™ DX2 CPU
FADD ST, ST(j) Addition 3.8
FDIV dword_var Division 2.2
FYL2X ST(0),ST(1) assumed Logarithm 3.1
FPATAN ST(0) assumed Arctangent 2.6
F2XM1 ST(0) assumed Exponentiation 4.8
FLD ST(0), ST(i) Data Transfer 4.0

The processor coordinates its integer and floating-point activities in a manner transparent to
software. Moreover, built-in coordination facilities allow the integer pipe(s) to proceed with
other instructions while the FPU is simultaneously executing numeric instructions. See
AP-500, Optimizations for Intel's 32-Bit Processors, order number 241799, on how to obtain
more information on floating-point instruction pairing as programs can exploit this
concurrency of execution to further increase system performance and throughput.

6.1.3. Ease of Use

The 32-bit Intel architectures, with their on-chip FPU (such as the Pentium and Intel486
processors) or NPX's (such as the Intel386 CPU with an Intel387 math coprocessor) are
explicitly designed to deliver stable, accurate results when programmed using straightforward

6-2 I

L
Intd ® NUMERIC APPLICATIONS

"pencil and paper" algorithms, bringing the functionality and power of accurate numeric
computation into the hands of the general user. IEEE Std 754 specifically addresses this
issue, recognizing the fundamental importance of making numeric computations both easy
and safe to use.

These NPX's and FPU's provide more than raw execution speed for computation-intensive
tasks; bringing the functionality and power of accurate numeric computation into the hands
of the general user. These features are available in most high-level languages available for
these processors.

For example, most computers can overflow when two single-precision floating-point
numbers are multiplied together and then divided by a third, even if the final result is a
perfectly valid 32-bit number. The FPU delivers the correctly rounded result. Other typical
examples of undesirable machine behavior in straightforward calculations occur when
computing financial rate of return, which involves the expression (1 + i)" or when solving for

roots of a quadratic equation:
-b=+ 5[b% - 4ac

2a

If a does not equal O, the formula is numerically unstable when the roots are nearly
coincident or when their magnitudes are wildly different. The formula is also vulnerable to
spurious over/underflows when the coefficients a, b, and ¢ are all very big or all very tiny.
When single-precision (4-byte) floating-point coefficients are given as data and the formula
is evaluated in the FPU's normal way, keeping all intermediate results in its stack, the FPU
produces impeccable single-precision roots. This happens because, by default and with no
effort on the programmer's part, the FPU evaluates all those subexpressions with so much
extra precision and range as to overwhelm almost any threat to numerical integrity.

If double-precision data and results were at issue, a better formula would have to be used,
and once again the FPU's default evaluation of that formula would provide substantially
enhanced numerical integrity over mere double-precision evaluation.

On most machines, straightforward algorithms will not deliver consistently correct results
(and will not indicate when they are incorrect). To obtain correct results on traditional
machines under all conditions usually requires sophisticated numerical techniques that go
beyond typical programming practice. General application programmers using
straightforward algorithms will produce much more reliable programs using the Intel
architectures. This simple fact greatly reduces the software investment required to develop
safe, accurate computation-based products.

Beyond traditional numerics support for scientific applications, the Intel architectures have
built-in facilities for commercial computing. They can process decimal numbers of up to 18
digits without round-off errors, performing exact arithmetic on integers as large as 2% or
10'8, Exact arithmetic is vital in accounting applications where rounding errors may
introduce monetary losses that cannot be reconciled.

The Intel FPU's contain a number of optional numerical facilities that can be invoked by
sophisticated users. These advanced features include directed rounding, gradual underflow,
and programmed exception-handling facilities.

I 6-3

"
NUMERIC APPLICATIONS l ntd ®

These automatic exception-handling facilities permit a high degree of flexibility in numeric
processing software, without burdening the programmer. While performing numeric
calculations, the processot automatically detects exception conditions that can potentially
damage a calculation (for example, X + 0 or VX when X < 0). By default, on-chip exception
logic handles these exceptions so that a reasonable result is produced and execution may
proceed without program interruption. Alternatively, the processor can invoke a software
exception handler to provide special results whenever various types of exceptions are
detected.

6.1.4. Applications

The Pentium processor FPU's versatility and performance make it appropriate for a broad
array of numeric applications. In general, applications that exhibit any of the following
characteristics can benefit by implementing numeric processing:

® Numeric data vary over a wide range of values, or include nonintegral values.
® Algorithms produce very large or very small intermediate results.

® Computations must be very precise; i.e., a large number of significant digits must be
maintained.

Performance requirements exceed the capacity of traditional microprocessors.

Consistently safe, reliable results must be delivered using a programming staff that is not
expert in numerical techniques.

Note also that the software development costs can be reduced and performance of systems
improved that use not only real numbers, but operate on multiprecision binary or decimal
integer values as well.

A few examples, which show how the Pentium processor might be used in specific numerics
applications, are described below.

® Business data processing—The FPU's ability to accept decimal operands and produce
exact decimal results of up to 18 digits greatly simplifies accounting programming.
Financial calculations that use power functions can take advantage of the Intel
architecture's exponentiation and logarithmic instructions. Many business software
packages can benefit from the speed and accuracy of the FPU.

® Simulation—The large (32-bit) memory space and raw speed of the processor make it
suitable for attacking large simulation problems, which heretofore could only be
executed on expensive mini and mainframe computers. For example, complex electronic
circuit simulations using SPICE can be performed. Simulation of mechanical systems
using finite element analysis can employ more elements, resulting in more detailed
analysis or simulation of larger systems.

® Graphics transformations—The FPU can be used in graphics applications such as
computer-aided design (CAD), with the FPU performing many functions concurrently

6-4 I

-
In'tel ® NUMERIC APPLICATIONS

with the execution of integer instructions; these functions include rotation, scaling, and
interpolation.

® Process control—The FPU solves dynamic range problems automatically, and its
extended precision allows control functions to be fine-tuned for more accurate and
efficient performance. Using the Pentium processor to implement control algorithms also
contributes to improved reliability and safety, while the processor's speed can be
exploited in real-time operations.

® Computer numerical control (CNC)—The FPU can move and position machine tool
heads with accuracy in real time. Axis positioning also benefits from the hardware
trigonometric support provided by the FPU.

® Robotics—The powerful computational abilities of the Pentium processor FPU are ideal
for on-board six-axis positioning.

® Navigation—Very small, lightweight, and accurate inertial guidance systems can be
implemented with the FPU. Its built-in trigonometric functions can speed and simplify
the calculation of position from bearing data.

® Data acquisition—The FPU can be used to scan, scale, and reduce large quantities of
data as it is collected, thereby lowering storage requirements and time required to
process the data for analysis.

® Digital Signal Processing (DSP)—AIll DSP-related applications, such as matrix
multiplication and convolution, can benefit from the pipelined instruction
implementation of the Pentium processor.

The preceding examples are oriented toward traditional numerics applications. There are, in
addition, many other types of systems that do not appear to the end user as computational,
but can employ the 32-bit Intel architecture's numerical capabilities to advantage. The
imaginative system designer has an opportunity similar to that created by the introduction of
the microprocessor itself. Many applications can be viewed as numerically-based if sufficient
computational power is available to support this view (e.g., character generation for a laser
printer). This is analogous to the thousands of successful products that have been built around
"buried” microprocessors, even though the products themselves bear little resemblance to
computers.

6.1.5. Programming Interface

The Intel architectures have a class of instructions known as ESCAPE instructions, all having
a common format. These ESC instructions are numeric instructions for the FPU. These
numeric instructions are part of a single integrated instruction set.

Numeric processing centers around the floating-point register stack. Programmers can treat
these eight 80-bit registers either as a fixed register set, with instructions operating on
explicitly-designated registers, or as a classical stack, with instructions operating on the top
one or two stack elements.

I 6-5

]
NUMERIC APPLICATIONS I nU ®

Internally, the FPU holds all numbers in a uniform 80-bit extended format. Operands that
may be represented in memory as 16-, 32-, or 64-bit integers, 32-, 64-, or 80-bit floating-
point numbers, or 18-digit packed BCD numbers, are automatically converted into extended
format as they are loaded into the FPU registers. Computation results are subsequently
converted back into one of these destination data formats when they are stored into memory
from the FPU registers.

Table 6-2 lists each of the seven numeric data types supported by the FPU, showing the data
format for each type. The table also shows the approximate range of normalized values that
can be represented with each type. Denormal values are also supported in each of the real
types, as required by IEEE Std 854. Denormals are discussed later in this chapter.

Table 6-2. Numeric Data Types

Significant
Digits Approximate Normalized
Data Type Bits (Decimal) Range (Decimal)

Word integer 16 4 -32,768 < x < + 32,767
Short integer 32 9 —2x10%<x<+2x10°
Long integer 64 18 —9x10®<x<+9x10"®
Packed decimal 80 18 —99...99 < x <+ 99...99 (18 digits)
Single real 32 7 1.18x 1078 < 1x1<3.40x 10%8
Double real 64 15-16 223x1073% ¢ x1<1.79 x 10508
Extended real* 80 19 3.37 x 1074922 ¢ | x| < 1.18 x 109932

* Equivalent to double extended format of IEEE Std 854.

All operands are stored in memory with the least significant digits starting at the initial
(lowest) memory address. Numeric instructions access and store memory operands using only
this initial address. See Chapter 24 for alignment strategies for the different processors.

Table 6-3 lists the numeric instructions by class. No special programming tools are necessary
to use the numerical capabilities, because all of the numeric instructions and data types are
directly supported by the Intel ASM386/ASM486 Assembler, by high-level languages from
Intel, and by assemblers and compilers produced by many independent software vendors.
Numeric routines can be written in assembly language or any of the following higher-level
languages from Intel:

® PIL/M-386/486

® (-386/486

® FORTRAN-386/486
® ADA-386/486

-
l ntel ® NUMERIC APPLICATIONS

Table 6-3. Principal Numeric Instructions

Class Instruction Types

Data Transfer Load (all data types), Store (all data types), Exchange

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, Divide Reversed, Square
Root, Scale, Extract, Remainder, Integer Part, Change Sign, Absolute Value

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, Sine, Cosine, Sine and Cosine, 2X1,Y -Loga(X),
Y -Logp (X+1)

Constants 0, 1, m, Log402, Loge2, Logo10, Logoe

Processor Control Load Control Word, Store Control Word, Store Status Word, Load Environment,

Store Environment, Save, Restore, Clear Exceptions, Initialize

All of these high-level languages provide programmers with access to the computational
power and speed of the 32-bit Intel architectures without requiring an understanding of its
architecture. Such architectural considerations as concurrency and synchronization are
handled automatically by these high-level languages. For the assembly language
programmer, specific rules for handling these issues are discussed in a later section of
this manual.

6.2. ARCHITECTURE OF THE FLOATING-POINT UNIT

To the programmer, the FPU appears as a set of additional registers, data types, and
instructions. Refer to Chapter 25 for detailed explanations of the numerical instruction set.
This section explains the numerical registers and data types of the FPU architecture.

6.2.1. Numerical Registers

The numerical registers consist of:

® FEight individually-addressable 80-bit numeric registers, organized as a register stack.
® Three 16-bit registers containing:

— The FPU status word.

— The FPU control word.

— The tag word.
® Error pointers, consisting of:

— Two 16-bit registers containing selectors for the last instruction and operand.

— Two 32-bit registers containing offsets for the last instruction and operand.

— One 11-bit register containing the opcode of the last non-control FPU instruction.

All of the numeric instructions focus on the contents of these FPU registers.

]
NUMERIC APPLICATIONS I ntel ®

6.2.1.1. THE FPU REGISTER STACK

The FPU register stack is shown in Figure 6-1. Each of the eight numeric registers in the
stack is 80 bits wide and is divided into fields corresponding to the processor’s extended real
data type.

FPU DATA REGISTERS
TAG
FIELD
79 78 64 63 0 1_0
R7 SIGN EXPONENT SIGNIFICAND
R6
R5
R4
R3
R2
R1
1
RO
15 0 47 0
CONTROL REGISTER INSTRUCTION POINTER
STATUS REGISTER DATA POINTER
TAG WORD

APMT

Figure 6-1. Floating-Point Unit Register Set

Numeric instructions address the data registers relative to the register on the top of the stack.
At any point in time, this top-of-stack register is indicated by the TOP (stack TOP) field in
the FPU status word. Load or push operations decrement TOP by one and load a value into
the new top register. A store-and-pop operation stores the value from the current TOP
register and then increments TOP by one. Like stacks in memory, the FPU register stack
grows down toward lower-addressed registers.

Many numeric instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative
to the TOP. The ASM386/486 Assembler supports these register addressing modes, using the
expression ST(0), or simply ST, to represent the current Stack Top and ST(i) to specify the
ith register from TOP in the stack (0 <i < 7). For example, if TOP contains 011B (register 3
is the top of the stack), the following statement would add the contents of two registers in the
stack (registers 3 and 5):

FADD ST, ST(2)

6-8 I

-
InU ® NUMERIC APPLICATIONS

The stack organization and top-relative addressing of the numeric registers can simplify
subroutine programming by allowing routines to pass parameters on the register stack. By
using the stack to pass parameters rather than using "dedicated" registers, calling routines
gain flexibility in how they use the stack. As long as the stack is not full, each routine simply
loads the parameters onto the stack before calling a particular subroutine to perform a
numeric calculation. The subroutine then addresses its parameters as ST, ST(1), etc., even
though TOP may, for example, refer to physical register 3 in one invocation and physical
register 5 in another. Programmers can use the numeric registers like a conventional stack as
described herein, or by using the pipelined architecture of the Pentium processor in
conjunction with the FXCH instruction, reduce stack bottleneck and move towards a random
register machine.

6.2.1.2. THE FPU STATUS WORD

The 16-bit status word shown in Figure 6-2 reflects the overall state of the FPU. This status
word may be stored into memory using the FSTSW/FNSTSW, FSTENV/ENSTENV, and
FSAVE/FNSAVE instructions, and can be transferred into the AX register with the FSTSW
AX/FNSTSW AX instructions, allowing the FPU status to be inspected by the Integer Unit.

a
NUMERIC APPLICATIONS I ntd ®

FPU BUSY
TOP OF STACK POINTER
— CONDITION CODE

15 /14/13/12/11/10/9/8/7 [6 /5 [4/3/2[1 [0/

WO

clc|clels|p|ulo|z|p|1}
PlEl

TOP 1511]0(s|F|E|E|E|E

L
ANA

ERROR SUMMARY STATUS

STACK FAULT

EXCEPTION FLAGS
PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION

ES IS SET IF ANY UNMASKED EXCEPTION BIT IS SET; CLEARED OTHERWISE.
SEE TABLE 4-1 FOR INTERPRETATION OF CONDITION CODE.

TOP VALUES:
000 = REGISTER 0 IS TOP OF STACK
001 = REGISTER 1 IS TOP OF STACK

111 = REGISTER 7 I'S TOP OF STACK
APM16

Figure 6-2. FPU Status Word

The four FPU condition code bits (C3-C,) are similar to the flags in a CPU: the processor
updates these bits to reflect the outcome of arithmetic operations. The effect of these
instructions on the condition code bits is summarized in Table 6-4. These condition code bits
are used principally for conditional branching. The FSTSW AX instruction stores the FPU
status word directly into the AX register, allowing these condition codes to be inspected
efficiently. The SAHF instruction can copy C;-C, directly to the CPU's flag bits to simplify
conditional branching. Table 6-5 shows the mapping of these bits to the CPU flag bits.

Bits 11-13 of the status word point to the FPU register that is the current Top of Stack (TOP).
The significance of the stack top has been described in the prior section on the register stack.

Figure 6-2 shows the six exception flags in bits 0-5 of the status word. Bit 7 is the exception
summary status (ES) bit. ES is set if any unmasked exception bits are set, and is cleared
otherwise. Bits 0-5 indicate whether the FPU has detected one of six possible exception
conditions since these status bits were last cleared or reset. (For definitions of exceptions,

6-10 |

L]
I nU ® NUMERIC APPLICATIONS

refer to Chapter 7.) They are "sticky" bits, and can only be cleared by the instructions FINIT,
FCLEX, FLDENV, FSAVE, and FRSTOR.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES
bit (bit 7 of the status word).

Bit 6 is the stack fault (SF) bit. This bit distinguishes invalid operations due to stack overflow
or underflow from other kinds of invalid operations. When SF is set, bit 9 (C,) distinguishes
between stack overflow (C, = 1) and underflow (C, = 0).

6.2.1.3. CONTROL WORD

The FPU provides the programmer with several processing options, which are selected by
loading a word from memory into the control word. Figure 6-3 shows the format and
encoding of the fields in the control word.

The low-order byte of this control word configures the numerical exception masking. Bits 0—
5 of the control word contain individual masks for each of the six floating-point exception
conditions recognized by the processor. The high-order byte of the control word configures
the FPU processing options, including

® Precision control
® Rounding control

The precision-control bits (bits 8-9) can be used to set the FPU internal operating precision
at less than the default precision (64-bit significand). These control bits can be used to
provide compatibility with the earlier-generation arithmetic processors having less precision
than the Intel 32-bit FPU's. The precision-control bits affect the results of only the following
five arithmetic instructions: ADD, SUB(R), MUL, DIV(R), and SQRT. No other operations
are affected by PC.

The rounding-control bits (bits 10-11) provide for the common round-to-nearest mode, as
well as directed rounding and true chop. Rounding control affects the arithmetic instructions
(refer to Section 6.3. in this chapter for lists of arithmetic and nonarithmetic instructions) and
certain nonarithmetic instructions, namely (FLD constant) and (FST(P)mem) instructions.

NUMERIC APPLICATIONS

Table 6-4. Condition Code Interpretation

intal.

FINCSTP, FDECSTP,
Constant Loads, FXTRACT,
FLD, FILD, FBLD, FSTP (ext.
real)

Instruction co Cc3 c2 Cc1
FCOM, FCOMP, FCOMPP, Result of Comparison Operands is not | Zero or O/U#
FTST, FUCOMPP, FICOM, Comparable
FICOMP
FXAM Operand class Sign or O/U#
FPREM, FPREM1 Q2 Q1 O=reduction QO or O/U#
complete
1=reduction
incomplete
FIST, FBSTP, FRINDINT, UNDEFINED Roundup or O/U#
FST, FSTP, FADD, FMUL,
FDIV, FDIVR, FSUB, FSUBR,
FSCALE, FSQRT, FPATAN,
F2XM1, FYL2X, FYL2XP1
FPTAN, FSIN, FCOS, UNDEFINED O=reduction Roundup or O/U#
FSINCOS complete (UNDEFINED) if
) C2=1)
1=reduction
incomplete
FCHS, FABS, FXCH, UNDEFINED Zero or O/U#

FLDENV, FRSTOR

Each bit loaded from memory

FLDCW, FSTENV,
FSTCW, FSTSW,
FCLEX

UNDEFINED

FINIT, FSAVE

Zero Zero

Zero

Zero

NOTES:

O/U# — When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes
between stack overflow (C1=1) and underflow (C1=0).

Reduction — If FPREM and FPREM1 produces a remainder that is les than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial remainder, which can be
used as input to further reduction. For FPTAN, FSIN, FCOS and FSINCOS, the reduction bit is set if the
operand at the top of the stack is too large. In this case, the original operand remains at the top of the stack.

Roundup — When the PE bit of the status word is set, this bit indicates whether the last rounding in the

instruction was upward.

UNDEFINED — Do not rely on any specific value in these bits.

6-12

intgl.

NUMERIC APPLICATIONS

Table 6-5. Correspondence Between FPU and IU Flag Bits

00—ROUND TO NEAREST OR EVEN

01 —ROUND DOWN (TOWARD -e)
10—ROUND UP (TOWARD +¢o)
11—CHOP (TRUNCATE TOWARD ZERO)

FPU Flag U Flag
co CF
C1 (none)
c2 PF
C3 ZF
RESERVED
(INFINITY CONTROL)*
ROUNDING CONTROL
PRECISION CONTROL
15/14/13/12/11/10/9 /8 /7 [6 /5 [4/3/2/ 1/ 0/
HERR
PlU|O|Z|D|1
XIX'X X R'C PIC X'XMMMMMM
AVAN ANAVANAVAVAVANAVAVAN
RESERVED
EXCEPTION MASKS
PRECISION
UNDERFLOW
OVERFLOW
ZERO DIVIDE
DENORMALIZED OPERAND
INVALID OPERATION
APM2
ROUNDING CONTROL PRECISION CONTROL

00—24 BITS (SINGLE PRECISION)
01—(RESERVED)

10—53 BITS (DOUBLE PRECISION)
11—64 BITS (EXTENDED PRECISION)

*THIS "INFINITY CONTROL" BIT IS NOT MEANINGFUL TO THE Intel387™ COPROCESSOR NPX, THE
Intel486™ PROCESSOR, OR THE PENTIUM® PROCESSOR FPU. TO MAINTAIN COMPATIBILITY WITH
Intel287™ MATH COPROCESSOR, THIS BIT CAN BE PROGRAMMED; HOWEVER, REGARDLESS OF
ITS VALUE, THE Intel387 COPROCESSOR NPX, THE Intel486 PROCESSOR FPU AND THE PENTIUM
PROCESSOR FPU TREATS INFINITY IN THE AFFINE SENSE (-c0 < +e0).

Figure 6-3. FPU Control Word Format

6-13

-
NUMERIC APPLICATIONS I ntd ®

6.2.1.4. THE FPU TAG WORD

The tag word (TW) indicates the contents of each register in the register stack, as shown in
Figure 6-4. The TW is used by the FPU itself to distinguish between empty and nonempty
register locations. Programmers of exception handlers may use this tag information to check
the contents of a numeric register without performing complex decoding of the actual data in
the register. The tag values from the TW correspond to physical registers 0-7. Programmers
must use the current top-of-stack (TOP) pointer stored in the FPU status word to associate
these tag values with the relative stack registers ST(0) through ST(7).

15 0
T T T T T T T T
TAG(7) | TAG(6) | TAG(5) | TAG(4) TAG(3) | TAG(2) TAG(1) | TAG(0)

1 1 1 1 1 1 1 !

TAG VALUES:

00 = VALID

01 =ZERO

10 = SPECIAL:INVALID(NaN, UNSUPPORTED), INFINITY, OR DENORMAL
11 =EMPTY

APM17

Figure 6-4. Tag Word Format

The exact values of the tags are generated during execution of the FSTENV and FSAVE
instructions according to the actual contents of the nonempty stack locations. During
execution of other instructions, the processor updates the TW only to indicate whether a
stack location is empty or nonempty. As a result, the FPU tag word may not be the same as
previously written when saving the FPU state, modifying the tag word, and reloading the
FPU state. This can be demonstrated using the following steps to modify the FPU tag word.
This example assumes FPU register 0 has the value 0 and tag(0)=11 (empty). Example 6-1
contains the actual assembly code to perform these steps.

FSAVE/FSTENY stores FPU state to memory M. M[tag(0)]=11 (empty).
Modify memory such that M[tag(0)]=10 (i.e., special, infinity, or denormal).
FLDENYV loads fp state from memory M to FPU.

FSAVE/FSTENY stores FPU state to memory M again. The value of M[tag(0)] will be
01 (i.e., indicates zero because FPU register 0 has the value of 0).

AW OO -

Example 6-1. Modifying the Tag Word

name tagword
stack stackseg 100
data segment rw uselé6

fpstate dw 7 dup (?)
fpstate2 dw 7 dup (?)

6-14 I

Ll
“Ttel ® NUMERIC APPLICATIONS

data ends

code segment er public uselé6
assume ds:data, ss:stack

start:

mov ax,data

mov ds,ax ; set segment register

finit ; initialize FPU

fldz ; load zero

mov bx, offset fpstate

fsave [bx] ; save FPU state

mov ax, [bx+4] ; tag word, AX should be 7FFFh,
; top of the fp stack has
; zero value and the rest are empty

mov word ptr [bx+4], 3FFFh ;>now change the zero tag (01) to
; the valid tag (00)

fldenv [bx]

mov bx, offset fpstate2 ; now the tag word is 3FFFh

fsave [bx] ; but we are saving 7FFFh to tag
; word

code ends

end start, ds:data, ss:stack

6.2.1.5. OPCODE FIELD OF LAST INSTRUCTION

The opcode field in Figure 6-5 describes the 11-bit format of the last non-control FPU
instruction executed. The first and second instruction bytes (after all prefixes) are combined
to form the opcode field. Since all floating-point instructions share the same five upper bits
in the first instruction byte (following prefixes), they are not stored in the opcode field. Note
that the second instruction byte is actually located in the low-order byte of the stored opcode
field.

I 6-15

-
NUMERIC APPLICATIONS I nU ®

7 0o 7 0

115 114 113 112 111 110 19 I8 7161514 1312110

2ND INSTRUCTION BYTE 18T '“an"T‘éCT'ON]

v v

10 8 7 0

12 1110 | 15 14 113 111 110 19 I8

OPCODE FIELD
APM11

Figure 6-5. Opcode Field

6.2.1.6. THE NUMERIC INSTRUCTION AND DATA POINTERS

The instruction and data pointers provide support for programmed exception-handlers.
Whenever the processor decodes an ESC instruction other than FINIT, FCLEX, FLDCW,
FSTCW, FSTSW, FSTSWAX, FSTENV, FLDENV, FSAVE, FRSTOR, and FWAIT, it saves
the instruction address opcode and the oeprand address (if present) in registers than can be
accessed by the user. Contents of these registers remain unchanged when any of the control
instructions listed above is executed. Contents of the operand address register are undefined
if the prior ESC instruction (which is not one of the above) did not have a memory operand.

These registers can be accessed by the ESC instructions FSTENV, FLDENV, FSAVE and
FRSTOR. The FINIT and FSAVE instructions clear these registers after writing them to
memory.

When stored in memory, the instruction and data pointers appear in one of four formats,
depending on the operating mode of the processor (protected mode or real-address mode) and
depending on the operand-size attribute in effect (32-bit operand or 16-bit operand). In
virtual-8086 mode, the real-address mode formats are used. Figures 6-6 through Figure 6-9
show these pointers as they are stored following an FSTENV instruction. The FSTENV and
FSAVE instructions store this data into memory, allowing exception handlers to determine
the precise nature of any numeric exceptions that may be encountered.

For all the Intel FPU and NPX architectures, the instruction address saved points to any
prefixes that preceded the instruction, except the 8087, for which the instruction address
points only to the ESC instruction opcode.

|]
| I'Ite| ® NUMERIC APPLICATIONS

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0
i RESERVED o CONTRO:L WORD OH
RESERVED = STATus: WORD 4H
e RESERVED TAG VSIORD 8H
: IP OFFSET : CH
0000 : OPCODE 10...00 | cs SELiECTOR 10H
DATA OPERAND OFFSET : 14H
RESERVED | OPERAND S:ELECTOR 18H

APM13

Figure 6-6. Protected-Mode Numeric Instruction and Data Pointer Image in Memory,

32-Bit Format

32-BIT REAL-ADDRESS MODE FORMAT

15 7 0

CONTROL WORD OH

STATUSI WORD 4H

TAG V:VORD 8H

INSTRUCTION P:OINTER 15...00 CH
INSTRIUCTION POINTER 31...16 W OPC:C)DE 10...00 10H
RESEEWED l OPERAND POINTER 15...00 14H
0000 OPER:AND POINTER 31...16 | 000000000000O0 | 18H

APM15

Figure 6-7. Real Mode Numeric Instruction and Data Pointer Image in Memory,
32-Bit Format

6-17

]
NUMERIC APPLICATIONS I ntd ®

16-BIT PROTECTED MODE FORMAT
15 7 0
CONTROL WORD OH
STATUS WORD 2H
TAG WORD 4H
IP OFFSET 6H
CS SELECTOR 8H
OPERAND: OFFSET AH
OPERAND S:ELECTOR CH
APM12

Figure 6-8. Protected-Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit Format

16-BIT REAL-ADDRESS MODE AND

VIRTUAL 8086 MODE FORMAT
15 7 0
CONTROL WORD OH
STATUS WORD 2H
TAG V:IORD 4H
INSTRUCTION P:OINTER 15..0 6H
IP 19..16 |o| opéonsw...o 8H
OPERAND P:OINTER 15..0 AH
DP 18..16 |o|ooo:oooooooo CH

APM14

Figure 6-9. Real Mode Numeric Instruction and Data Pointer Image in Memory,
16-Bit Format

6-18

-
lntd ® NUMERIC APPLICATIONS

6.2.2. Computation Fundamentals

This section covers numeric programming concepts that are common to all applications. It
describes the FPU's internal number system and the various types of numbers that can be
employed in numeric programs. The most commonly used options for rounding and precision
(selected by fields in the control word) are described, with exhaustive coverage of less
frequently used facilities deferred to later sections. Exception conditions that may arise
during execution of floating-point instructions are also described along with the options that
are available for responding to these exceptions.

6.2.2.1. NUMBER SYSTEM

The system of real numbers that people use for pencil and paper calculations is conceptually
infinite and continuous. There is no upper or lower limit to the magnitude of the numbers one
can employ in a calculation, or to the precision (number of significant digits) that may be
required to represent them. For any given real number, there are always arbitrarily many
numbers both larger and smaller. There are also arbitrarily many numbers between any two
real numbers. For example, between 2.5 and 2.6 are 2.51, 2.5897, 2.500001, etc.

While ideally it would be desirable for a computer to be able to operate on the entire real
number system, in practice this is not possible. Computers, no matter how large, ultimately
have fixed-size registers and memories that limit the system of numbers that can be
accommodated. These limitations determine both the range and the precision of numbers.
The result is a set of numbers that is finite and discrete, rather than infinite and continuous.
This sequence is a subset of the real numbers that is designed to form a useful approximation
of the real number system.

Figure 6-10 superimposes the basic floating-point number system on a real number line
(decimal numbers are shown for clarity, although the processor actually represents numbers
in binary). The dots indicate the subset of real numbers the processor can represent as data
and final results of calculations. The range of double-precision, normalized numbers is
approximately £2.23 x 107308 to +1.79 x 10308, Applications that are required to deal with
data and final results outside this range are rare.

I 6-19

[}
NUMERIC APPLICATIONS l ntel ®

NEGATIVE RANGE POSITIVE RANGE
< (NORMALIZED) —> <+ (NORMALIZED) —b>

3 4 5

: , =5-4-3 -2 -

lo. lo. b

1 1
1“ T y y L y 0
L 1.79 x10 306 1.79 x10 ~306 J L 2.23x 10 %%

———

1.79x103°°J

+2
L

th.ooooooooooooooo
(NOT REPRESENTABLE)

1.999999999999999
PRECISION

16 DIGITS

APM4

Figure 6-10. Double-Precision Number System

The finite spacing in Figure 6-10 illustrates that the FPU can represent a great many, but not
all, of the real numbers in its range. There is always a gap between two adjacent floating-
point numbers, and it is possible for the result of a calculation to fall in this space. When this
occurs, the FPU rounds the true result to a number that it can represent. Thus, a real number
that requires more digits than the FPU can accommodate (e.g., a 20-digit number) is
represented with some loss of accuracy. Notice also that the representable numbers are not
distributed evenly along the real number line. In fact, the same number of representable
numbers exists between any two successive powers of 2 (i.e., as many representable numbers
exist between 2 and 4 as between 65,536 and 131,072). Therefore, the gaps between
representable numbers are larger as the numbers increase in magnitude. All integers in the
range +2% (approximately £10'%), however, are exactly representable.

In its internal operations, the FPU actually employs a number system that is a substantial
superset of that shown in Figure 6-10. The internal format (called extended real) extends the
representable (normalized) range to about +3.37 x 1074932 to +1.18 X 10*32, and its precision
to about 19 (equivalent decimal) digits. This format is designed to provide extra range and
precision for constants and intermediate results, and is not normally intended for data or final
results.

From a practical standpoint, the processor's set of real numbers is sufficiently large and dense
so as not to limit the vast majority of applications. Compared to most computers, including
mainframes, the processor provides a very good approximation of the real number system. It

6-20 I

L
I ntd ® NUMERIC APPLICATIONS

is important to remember, however, that it is not an exact representation, and that computer
arithmetic on real numbers is inherently approximate.

6.2.2.2. DATA TYPES AND FORMATS

The processor recognizes seven numeric data types for memory-based values, divided into
three classes: binary integers, packed decimal integers, and binary reals. How these formats
are stored in memory are discussed later in this section (the sign is always located in the
highest-addressed byte).

Figure 6-11 summarizes the format of each data type. In the figure, the most significant
digits of all numbers (and fields within numbers) are the leftmost digits.

6.2.2.2.1. Binary Integers

The three binary integer formats are identical except for length, which governs the range that
can be accommodated in each format. The leftmost bit is interpreted as the number's sign:
O=positive and 1=negative. Negative numbers are represented in standard two's complement
notation (the binary integers are the only format to use two's complement). The quantity zero
is represented with a positive sign (all bits are 0). The word integer format is identical to the
16-bit signed integer data type; the short integer format is identical to the 32-bit signed
integer data type.

The binary integer formats exist in memory only. When used by the FPU, they are
automatically converted to the 80-bit extended real format. All binary integers are exactly
representable in the extended real format.

6.2.2.2.2. Decimal Integers

Decimal integers are stored in packed decimal notation, with two decimal digits "packed"
into each byte, except the leftmost byte, which carries the sign bit (O=positive, 1=negative).
Negative numbers are not stored in two's complement form and are distinguished from
positive numbers only by the sign bit. The most significant digit of the number is the leftmost
digit. All digits must be in the range 0-9.

I 6-21

NUMERIC APPLICATIONS I n
A MOST SIGNIFICANT BYTE LOWEST ADDRESSED BYTE
DATA A PRE-
FORMATS y CISION
E 7 o7 ofl7 ol7 o|7 of7 o|7 o7 o7 of7 o
. Iawo-s
WORD 16
INTEGER 10 BITS COMPLEMENT)
15 [
SHORT 102 32 Two's
INTEGER BiTs COMPLEMENT)
31]
LONG 1018 64 (Two's
INTEGER BITS COMPLEMENT)
63 [
PACKED 18 18
10 S| X [d_d d d d_d_d d d d d_d d_d d d
BCD DIGITS | |17|16|15|14|13|12|11|10| 9, 8,7, 6,5, 4, 3,“2, 1,do
79 7
SINGLE 16°%%| 23 |s| _BIASED | sianiFicanD
PRECISION BITS EXPONEN
31 23 0
DOUBLE 308 5g BIASED
PRECISION |10 BITs |S| EXPONENT SIGNIFICAND
63 51 [
EXTENDED | %493 BIASED
PRECISION |10 sits |s EXPONENT 3 SIGNIFICAND
79 64 63D [
(1) S=SIGNBIT (0 = positive, 1 = negative)
(2) dn =DECIMAL DIGIT (TWO PER BYTE)
(3) X=BITS HAVE NO SIGNIFICANCE; IGNORES WHEN LOADING,
ZEROS WHEN STORING
(4) D=POSITION OF IMPLICIT BINARY POINT
(5) I=INTEGER BIT OF SIGNIFICAND; STORED IN TEMPORARY REAL, IMPLICIT IN

SINGLE AND DOUBLE PRECISION
EXPONENT BIAS (NORMALIZED VALUES):
SINGLE: 127 (7FH)
DOUBLE: 1023 (3FFH)
EXTENDED REAL: 16383 (3FFFH)
(7) PACKED BCD: (-1) (D ...D)
(8) REAL: (-1) (2E-BIAS)(F F ...)

o1 APM3

Figure 6-11. Numerical Data Formats

The decimal integer format exists in memory only. When used by the FPU, it is
automatically converted to the 80-bit extended real format. All decimal integers are exactly

representable in the extended real format.

6-22

| |
|nte| ® NUMERIC APPLICATIONS

6.2.2.2.3. Real Numbers
The processor represents real numbers of the form:
(-1)2E(bpab1b2b3..bp.1)

where:

s =0orl

E =any integer between Emin and Emax, inclusive
b. =0orl

1
p = number of bits of precision

Table 6-6 summarizes the parameters for each of the three real-number formats.

The Pentium processor stores real numbers in a three-field binary format that resembles

scientific, or exponential, notation. The format consists of the following fields:

® The significand field, bOAblb2b3"bp-l,’ is the number's significant digits. (The term
"significand" is analogous to the term "mantissa" used to describe floating-point numbers
on some computers.)

® The exponent field, e = E+bias, locates the binary point within the significant digits (and
therefore determines the number's magnitude). (The term "exponent" is analogous to the
term "characteristic" used to describe floating-point numbers on some computers.)

® The 1-bit sign field, which indicates whether the number is positive or negative.
Negative numbers differ from positive numbers only in the sign bits of their significands.

Table 6-6. Summary of Format Parameters

Format
Parameter Single Double Extended
Format width in bits 32 64 80
p (bits of precision) 24 53 64
Exponent width in bits 8 1 15
Emax +127 +1023 +16383
Emin -126 -1022 -16382
Exponent bias +127 +1023 +16383

Table 6-7 shows how the real number 178.125 (decimal) is stored in the single real format.
The table lists a progression of equivalent notations that express the same value to show how
a number can be converted from one form to another. (The ASM386/486 and PL/M386/486
language translators perform a similar process when they encounter programmer-defined real
number constants.) Note that not every decimal fraction has an exact binary equivalent. The
decimal number 1/10, for example, cannot be expressed exactly in binary (just as the number

I 6-23

L)
NUMERIC APPLICATIONS lntd ®

1/3 cannot be expressed exactly in decimal). When a translator encounters such a value, it
produces a rounded binary approximation of the decimal value.

Table 6-7. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1478125E2

Scientific Binary 140110010001E111

Scientific Binary 140110010001E10000110

Biased Exponent)

Single Format (Normalized) Sign Biased Exponent Signifcand

0 10000110 01100100010000000000000

1, (implict)

The FPU usually carries the digits of the significand in normalized form. This means that,
except for the value zero, the significand contains an integer bit and fraction bits as follows:

1, fff...ff

where , indicates an assumed binary point. The number of fraction bits varies according to
the real format: 23 for single, 52 for double, and 63 for extended real. By normalizing real
numbers so that their integer bit is always a 1, the processor eliminates leading zeros in small
values (I X 1< 1). This technique maximizes the number of significant digits that can be
accommodated in a significand of a given width. Note that, in the single and double formats,
the integer bit is implicit and is not actually stored; the integer bit is physically present in the
extended format only.

If one were to examine only the significand with its assumed binary point, all normalized real
numbers would have values greater than or equal to one and less than two. The exponent
field locates the actual binary point in the significant digits. Just as in decimal scientific
notation, a positive exponent has the effect of moving the binary point to the right, and a
negative exponent effectively moves the binary point to the left, inserting leading zeros as
necessary. An unbiased exponent of zero indicates that the position of the assumed binary
point is also the position of the actual binary point. The exponent field, then, determines a
real number's magnitude.

In order to simplify comparing real numbers (e.g., for sorting), the processor stores exponents
in a biased form. This means that a constant, called a bias, is added to the true exponent
described above. As Table 6-6 shows, the value of this bias is different for each real format.
It has been chosen so as to force the biased exponent to be a positive value. This allows two
real numbers (of the same format and sign) to be compared as if they are unsigned binary
integers. That is, when comparing them bitwise from left to right (beginning with the
leftmost exponent bit), the first bit position that differs orders the numbers; there is no need
to proceed further with the comparison. A number's true exponent can be determined simply
by subtracting the bias value of its format.

6-24 I

-
l n'tel ® NUMERIC APPLICATIONS

The single and double real formats exist in memory only. If a number in one of these formats
is loaded into an FPU register, it is automatically converted to extended format, the format
used for all internal operations. Likewise, data in registers can be converted to single or
double real for storage in memory. The extended real format may be used in memory also,
typically to store intermediate results that cannot be held in registers.

Most applications should use the double format to store real-number data and results; it
provides sufficient range and precision to return correct results with a minimum of
programmer attention. The single real format is appropriate for applications that are
constrained by memory, but it should be recognized that this format provides a smaller
margin of safety. It is also useful for the debugging of algorithms, because roundoff problems
will manifest themselves more quickly in this format. The extended real format should
normally be reserved for holding intermediate results, loop accumulations, and constants. Its
extra length is designed to shield final results from the effects of rounding and
overflow/underflow in intermediate calculations. However, the range and precision of the
double format are adequate for most microcomputer applications.

6.2.2.3. ROUNDING CONTROL

Internally, the FPU employs three extra bits (guard, round, and sticky bits) that enable it to
round numbers in accord with the infinitely precise true result of a computation; these bits
are not accessible to programmers. Whenever the destination can represent the infinitely
precise true result, the FPU delivers it. Rounding occurs in arithmetic and store operations
when the format of the destination cannot exactly represent the infinitely precise true result.
For example, a real number may be rounded if it is stored in a shorter real format, or in an
integer format. Or, the infinitely precise true result may be rounded when it is returned to a
register.

The FPU has four rounding modes, selectable by the RC field in the control word (see
Figure 6-3). Given a true result b that cannot be represented by the target data type, the FPU
determines the two representable numbers a and c¢ that most closely bracket b in value (a < b
< ¢). The processor then rounds (changes) b to a or to ¢ according to the mode selected by
the RC field as shown in Table 6-8. Rounding introduces an error in a result that is less than
one unit in the last place to which the result is rounded.

® "Round to nearest” is the default mode and is suitable for most applications; it provides
the most accurate and statistically unbiased estimate of the true result.
® The "chop” or "round toward zero" mode is provided for integer arithmetic applications.

® "Round up" and "round down" are termed directed rounding and can be used to
implement interval arithmetic. Interval arithmetic is used to determine upper and lower
bounds for the true result of a multistep computation, when the intermediate results of
the computation are subject to rounding.

Rounding control affects only the arithmetic instructions (refer to Section 6.3. in this chapter
for lists of arithmetic and nonarithmetic instructions).

I 6-25

-
NUMERIC APPLICATIONS l ntel ®

Table 6-8. Rounding Modes

RC Field Rounding Mode Rounding Action
00 Round to Nearest Closer to b of aor c; if equally close, select
even number (the one whose least significant
bit is zero).
01 Round Down (toward -c-) a
10 Round up (toward +e<) c
11 Chop (toward 0) Smaller in magnitude of a or c.

NOTE: a<b<c; aand care successive representable numbers; b is not representable

6.2.2.4. PRECISION CONTROL

The FPU allows results to be calculated with either 64, 53, or 24 bits of precision in the
significand as selected by the precision control (PC) field of the control word. The default
setting (following FINIT), and the one that is best suited for most applications, is the full 64
bits of significance provided by the extended real format. The other settings are required by
the IEEE standard and are provided to obtain compatibility with the specifications of certain
existing programming languages. Specifying less precision nullifies the advantages of the
extended format's extended fraction length. When reduced precision is specified, the
rounding of the fractional value clears the unused bits on the right to zeros. Precision Control
affects only the instructions FADD, FSUB, FMUL, FDIV, and FSQRT.

6.3. FLOATING-POINT INSTRUCTION SET

The floating-point instructions available on the Pentium processor can be grouped into six
functional classes:

® Data Transfer Instructions
Nontranscendental Instructions

® Comparison Instructions
® Transcendental Instructions
® Constant Instructions

Control Instructions

In this chapter, the instruction classes are described as a collection of resources available to
programmers. For details of format, encoding, and execution times, see the instruction
reference pages in Chapter 25.

The Intel387 math coprocessors and the Intel486 and Pentium processors FPU's have more
instructions than the 8087/Intel287 math coprocessors. Some Intel386 DX microprocessor
systems use an Intel287 math coprocessor. See Chapter 5 for examples of how to identify the
processor type and determine what instructions are available.

6-26 I

-
I ntel ® NUMERIC APPLICATIONS

6.3.1. Source and Destination Operands

The typical floating-point instruction takes one or two operands, which can come from the
FPU register stack or from memory. Many instructions, such as FSIN, automatically operate
on the top FPU stack element. Others allow, or require, the programmer to code the
operand(s) explicitly along with the instruction mnemonic. Still others accept one explicit
operand and one implicit operand (usually the top FPU stack element).

Whether specified by the programmer or supplied by default, floating-point operands are of
two basic types, sources and destinations. A source operand provides an input to an
instruction, but is not altered by its execution. Even when an instruction converts the source
operand from one format to another (e.g., real to integer), the conversion is performed in an
internal work area to avoid altering the source operand. A destination operand may also
provide an input to an instruction; on execution, however, the instruction returns a result to
the destination, overwriting its previous contents.

Many instructions allow their operands to be coded in more than one way. For example,
FADD (add real) may be written without operands, with only a source, or with a destination
and a source. When both destination and source operands are specified, the destination must
precede the source on the command line, and both must come from the FPU stack.

Memory operands can be coded with any of the memory-addressing methods provided by the
ModR/M byte. To review these methods (BASE = (INDEX X SCALE) +
DISPLACEMENT), refer to Chapter 3. Floating-point instructions with memory operands
either read from memory or write to it; no floating-point instruction does both. For a detailed
description of each instruction, including its range of possible encodings, see the reference
pages in Chapter 25.

6.3.2. Data Transfer Instructions

These instructions (summarized in Table 6-9) move operands among elements of the register
stack, and between the stack top and memory. Any of the seven data types can be converted
to extended-real and loaded (pushed) onto the stack in a single operation; they can be stored
to memory in the same manner. The data transfer instructions automatically update the FPU
tag word to reflect whether the register is empty or full following the instruction.

Table 6-9. Data Transfer Instructions

Real Integer Packed Decimal
FLD Load Real FILD Load Integer FBLD Load Packed Decimal
FST Store Real FIST Store Integer
FSTP Store Real and Pop FISTP Store Integer and Pop FBSTP Store Packed Decimal
and Pop
FXCH Exchange register
Contents

I 6-27

-
NUMERIC APPLICATIONS | ntel ®

6.3.3. Nontranscendental Instructions

The nontranscendental instruction set provides a wealth of variations on the basic add,
subtract, multiply, and divide operations, and a number of other useful functions. These
range from a simple absolute value instruction to instructions which perform exact modulo
division, round real numbers to integers, and scale values by powers of two. Table 6-10
shows the nontranscendental operations provided, apart from basic arithmetic.

Table 6-10. Nontranscendental Instructions (Besides Arithmetic)

Mnemonic Operation

FSQRT Square Root

FSCALE Scale

FXTRACT Extract Exponent and Significand
FPREM Partial Remainder

FPREM1* IEEE Standard Partial Remainder
FRNDINT Round to Integer

FABS Absolute Value

FCHS Change Sign

* Not available on 8087 or Intel287™ math coprocessor.

The basic arithmetic instructions (addition, subtraction, multiplication and division) are
designed to encourage the development of very efficient algorithms. In particular, they allow
the programmer to reference memory as easily as the FPU register stack. Table 6-11
summarizes the available operation/operand forms that are provided for basic arithmetic. In
addition to the four normal operations, there are "reversed" subtraction and division
instructions which eliminate the need for many exchanges between ST(0) and ST(1). The
variety of instruction and operand forms give the programmer unusual flexibility:

® Operands can be located in registers or memory.
® Results can be deposited in a choice of registers.

® Operands can be a variety of numerical data types: extended real, double real, single
real, short integer or word integer, with automatic conversion to extended real performed
by the FPU.

6-28 I

L]
Intel ® NUMERIC APPLICATIONS

Table 6-11. Basic Arithmetic Instructions and Operands

Mnemonic Operand Forms:
Instruction Form Form Destination, Source
Classical Stack Fop {ST(1), ST}
Classical Stack, extra pop FopP {ST(1), ST}
Register Fop ST(i), ST or ST, ST(i)
Register, pop FopP ST(i), ST
Real Memory Fop {ST} single-real/double-real
Integer Memory Flop {ST} word-integer/short-integer
NOTES:
Braces ({ }) surround implicit operands; these are not coded, but are supplied by the assembler.
op = ADD DEST « DEST + SRC

SuUB DEST « ST — Other Operand
SUBR DEST « Other Operand — ST
MUL DEST « DEST x SRC
DIv DEST « DEST + SRC
DIVR DEST « SRC + DEST

Five basic instruction forms can be used across all six operations, as shown in Table 6-11.
The classical stack form can be used to make the FPU operate like a classical stack machine.
No operands are coded in this form, only the instruction mnemonic. The FPU picks the
source operand from the stack top (ST) and the destination from the next stack element
(ST(1)). After performing its calculation, it returns the result to ST(1) and then pops ST,
effectively replacing the operands by the result.

The register form is a generalization of the classical stack form; the programmer specifies the
stack top as one operand and any register on the stack as the other operand. Coding the stack
top as the destination provides a convenient way to access a constant, held elsewhere in the
stack, from the top stack. The destination need not always be ST, however. The basic two-
operand instructions allow the use of another register as the destination. Using ST as the
source allows, for example, adding the stack top into a register used as an accumulator.

Often the operand in the stack top is needed for one operation but then is of no further use in
the computation. The register pop form can be used to pick up the stack top as the source
operand, and then discard it by popping the stack. Coding operands of ST(1), ST with a
register pop mnemonic is equivalent to a classical stack operation: the top is popped and the
result is left at the new top.

The two memory forms increase the flexibility of the nontranscendental instructions. They
permit a real number or a binary integer in memory to be used directly as a source operand.
This is useful in situations where operands are not used frequently enough to justify holding
them in registers. Note that any memory-addressing method can be used to define these
operands, so they can be elements in arrays, structures, or other data organizations, as well as
simple scalars.

I 6-29

-
NUMERIC APPLICATIONS I ntd ®

6.3.4. Comparison Instructions

The instructions of this class allow numbers of all supported real and integer data types to be
compared. Each of these instructions (Table 6-12) analyzes the top stack element, often in
relationship to another operand, and reports the result as a condition code (flags C0, C2, and
C3) in the status word.

Table 6-12. Comparison Instructions

Mnemonic Operation
FCOM Compare Real
FCOMP Compare Real and Pop
FCOMPP Compare Real and Pop Twice
FICOM Compare Integer
FICOMP Compare Integer and Pop
FTST Test
Fucowm* Unordered Compare Real
FUCOMP* Unordered Compare Real and Pop
FUCOMPP* Unordered Compare Real and Pop Twice
FXAM Examine

*Not available on 8087 and Intel287™ math coprocessors.

The basic operations are compare, test (compare with zero), and examine (report type, sign,
and normalization). Special forms of the compare operation are provided to optimize
algorithms by allowing direct comparisons with binary integers and real numbers in memory,
as well as popping the stack after a comparison.

The FSTSW AX (store status word) instruction can be used after a comparison to transfer the
condition code to the AX register for inspection. The TEST instruction is recommended for
using the FPU flags (once they are in the AX register) to control conditional branching. First
check to see if the comparison resulted in unordered. This can happen, for instance, if one of
the operands is a NaN. TEST the contents of the AX register against the constant 0400H; this
will clear ZF (the Zero Flag of the EFLAGS register) if the original comparison was
unordered, and set ZF otherwise. The JNZ instruction can then be used to transfer control (if
necessary) to code that handles the case of unordered operands. With the unordered case now
filtered out, TEST the contents of the AX register against the appropriate constant from
Table 6-13, and then use the corresponding conditional branch.

6-30 I

n
Inte| ® NUMERIC APPLICATIONS

Table 6-13. TEST Constants for Conditional Branching

Order Constant Branch
ST > Operand 4500H Jz
ST < Operand 0100H JINZ
ST = Operand 4000H JINZ
Unordered 0400H JNZ

It is not always necessary to filter out the unordered case when using this algorithm for
conditional jumps. If the software has been thoroughly tested, and incorporates periodic
checks for QNaN results (as recommended previously), then it is not necessary to check for
unordered every time a comparison is made.

Instructions other than those in the comparison group can update the condition code. To
ensure that the status word is not altered inadvertently, store it immediately following a
comparison operation.

6.3.5. Transcendental Instructions

The instructions in this group (Table 6-14) perform the time-consuming core calculations for
all common trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic,
logarithmic, and exponential functions. The transcendentals operate on the top one or two
stack elements, and they return their results to the stack. The trigonometric operations
assume their arguments are expressed in radians. The logarithmic and exponential operations
work in base 2.

Table 6-14. Transcendental Instructions

Mnemonic Operation

FSIN* Sine

FCOS* Cosine

FSINCOS* Sine and Cosine

FPTAN** Tangent

FPATAN Arctangent of ST(1) + ST

FOXM1 ™ 2X—1;Xisin ST

FYL2X Y xlogoX; Yisin ST(1), Xisin ST
FYL2XP1 Y xloga(X + 1); Y is in ST(1), Xis in ST

*Not available on 8087 and Intel287™ math coprocessors.
**Operand range extended over 8087 and Intel287 math coprocessors.

The Pentium processor uses new algorithms for transcendental instructions, achieving a
higher level of accuracy for the same instructions than the Intel486 processor. Accuracy is

I 6-31

-
NUMERIC APPLICATIONS l ntd ®

measured in terms of units in the last place (ulp). For a given argument x, let f{x) and F(x) be
the correct and computed (approximate) function values respectively. The error in ulps is
defined to be

(x) - Fx)
2k -63

where k is an integer such that 1 < 2‘kf(x) <2.

On the Pentium processor, the worst case error on functions is less than 1 ulp when rounding
to the nearest-even and less than 1.5 ulps when rounding in other modes. The functions are
guaranteed to be monotonic, with respect to the input operands, throughout the domain
supported by the instruction. See Appendix G for detailed information on transcendental
accuracy.

The trigonometric functions accept a practically unrestricted range of operands, whereas the
other transcendental instructions require that arguments be more restricted in range. FPREM
or FPREMI can be used to bring the otherwise valid operand of a periodic function into
range. Prologue and epilogue software can be used to reduce arguments for other instructions
to the expected range and to adjust the result to correspond to the original arguments if
necessary. The instruction descriptions in the reference pages of Chapter 25 document the
allowed operand range for each instruction.

When the argument of a trigonometric function is in range, it is automatically reduced by the
appropriate multiple of 27 (in 66-bit precision), by means of the same mechanism used in the
FPREM and FPREMI1 instructions. The value of 7 used in the automatic reduction has been
chosen so as to guarantee no loss of significance in the operand, provided it is within the
specified range. The internal value of 7 in hexadecimal is:

4 * 0.CO90FDAA22168C234C

A program may use an explicit value for w in computations whose results later appear as
arguments to trigonometric functions. In such a case (in explicit reduction of a trigonometric
operand outside the specified range, for example), the value used for © should be the same as
the full 66-bit internal w. This will insure that the results are consistent with the automatic
argument reduction performed by the trigonometric functions. The 66-bit T cannot be
represented as an extended-real value, so it must be encoded as two or more numbers. A
common solution is to represent 7 as the sum of a highm which contains the 33 most-
significant bits and a lown which contains the 33 least-significant bits. When using this two-
part 7, all computations should be performed separately on each part, with the results added
only at the end.

The complications of maintaining a consistent value of ® for argument reduction can be
avoided, either by applying the trigonometric functions only to arguments within the range of
the automatic reduction mechanism, or by performing all argument reductions (down to a
magnitude less than 1/4) explicitly in software.

6-32 I

]
"Ttel ® NUMERIC APPLICATIONS

6.3.6. Constant Instructions

Each of these instructions, shown in Table 6-15, pushes a commonly used constant onto the
stack. (ST(7) must be empty to avoid an invalid exception.) The values have full extended
real precision (64 bits) and are accurate to approximately 19 decimal digits. Because an
external real constant occupies 10 memory bytes, the constant instructions, which are only
two bytes long, save storage and improve execution speed, in addition to simplifying
programming.

Table 6-15. Constant Instructions

Mnemonic Operation
FLDZ Load +0.0
FLDA1 Load +1.0
FLDPI Load ©
FLDL2T Load logp 10
FLDL2E Load logoe
FLDLG2 Load log4g2
FLDLN2 Load loge2

The constants used by these instructions are stored internally in a format more precise than
extended real. When loading the constant, the FPU rounds the more precise internal constant
according the RC (rounding control) bit of the control word. However, in spite of this
rounding, the precision exception is not raised (to maintain compatibility). When the
rounding control is set to round to nearest, the FPU produces the same constant that is
produced by the 8087 and Intel287 numeric coprocessors.

6.3.7. Control Instructions

The FPU control instructions are shown in Table 6-16. The FSTSW instruction is commonly
used for conditional branching. The remaining instructions are not typically used in
calculations; they provide control over the FPU for system-level activities. These activities
include initialization of the FPU, numeric exception handling, and task switching.

I 6-33

-
NUMERIC APPLICATIONS "Ttel ®

As shown in Table 6-16, certain instructions have alternative mnemonics. The instructions
which initialize the FPU, clear exceptions, or store (all or part of) the FPU environment come
in two forms:

® Wair—the mnemonic is prefixed only with an F, such as FSTSW. This form checks for
unmasked numeric exceptions.

® No-wait—the mnemonic is prefixed with an FN, such as FNSTSW. This form ignores
unmasked numeric exceptions.

When a control instruction is coded using the no-wait form of the mnemonic, the
ASM386/Intel486 processor assembler does not precede the ESC instruction with a WAIT
instruction. The processor does not test for a floating-point error condition before executing a
control instruction.

The only no-wait instructions are those shown in Table 6-16. All other floating-point
instructions are automatically synchronized by the processor; all operands are transferred
before the next instruction is initiated. Because of this automatic synchronization, non-
control floating-point instructions need not be preceded by a WAIT instruction in order to
execute correctly.

Exception synchronization relies on the WAIT instruction. Since the Integer Unit and the
FPU operate in parallel, it is possible in the case of a floating-point exception for the
processor to disturb information vital to exception recovery before the exception-handler can
be invoked. Coding a WAIT or FWAIT instruction in the proper place can prevent this. See
the next section for details.

6-34 I

intel.

NUMERIC APPLICATIONS
Table 6-16. Control Instructions
Mnemonic Operation
FINIT / ENINIT Initialize FPU
FLDCW Load Control Word
FSTCW/FNSTCW Store Control Word
FSTSW/FNSTSW Store Status Word
FSTSW AX/FNSTSW AX* Store Status Word to AX Register
FCLEX/FNCLEX Clear Exceptions
FSTENV/FNSTENV Store Environment
FLDENV Load Environment
FSAVE/FNSAVE Save State
FRSTOR Restore State
FINCSTP Increment Stack Top Pointer
FDECSTP Decrement Stack Top Pointer
FFREE Free Regiser
FNOP No Operation
FWAIT Report FPU Error

*Not available on 8087 math coprocessor.

It should also be noted that the 8087 instructions FENI and FDISI and the Intel287 math
coprocessor instruction FSETPM perform no function in the Pentium, Intel486 and Intel386
processors and Intel387 coprocessors. If these opcodes are detected in the instruction stream,
the 32-bit processors perform no specific operation and no internal states are affected.
Chapter 23 contains a more complete description of the differences between floating-point
operations on the Pentium and Intel486 processors and on the 8087, Intel287, and Intel387
DX numeric coprocessors.

6.4. NUMERIC APPLICATIONS

This section describes how programmers in assembly language and in a variety of higher-
level languages can make use of the Intel486 processor’s numerics capabilities.

The level of detail in this section is intended to give programmers a basic understanding of
the software tools that can be used for numeric programming, but this information does not
document the full capabilities of these facilities. Complete documentation is available with
each program development product.

I 6-35

[]
NUMERIC APPLICATIONS I nte| ®

6.4.1. High-Level Languages

A variety of Intel high-level languages are available that automatically make use of the
numeric instruction set when appropriate. These languages include C-386/486 and PL/M-
386/486. In addition, many high-level language compilers optimized for the Pentium
processor are available from independent software vendors.

Each of these high-level languages has special numeric libraries allowing programs to take
advantage of the capabilities of the FPU. No special programming conventions are necessary
to make use of the FPU when programming numeric applications in any of these languages.

Programmers in PL/M-386/486 and ASM386/486 can also make use of many of these library
routines by using routines contained in the Support Library. These libraries implement many
of the functions provided by higher-level languages, including exception handlers, ASCII-to-
floating-point conversions, and a more complete set of transcendental functions than that
provided by the processor's numeric instruction set.

6.4.1.1. C PROGRAMS

C programmers automatically cause the C compiler to generate Intel486 processor numeric
instructions when they use the double and float data types. The float type corresponds to the
single real format; the double type corresponds to the double real format. The statement
#include {math.h) causes mathematical functions such as sin and sqrt to return values of
type double. Example 6-2 illustrates the ease with which C programs can make use of the
processor’s numerics capabilities.

6.4.1.2. PL/M-386/486

Programmers in PL/M-386/486 can access a very useful subset of the FPU's numeric
capabilities. The PL/M-386/486 REAL data type corresponds to the single real (32-bit)
format. This data type provides a range of about 8.43 x 107 <1 X | < 3.38 x 108, with about
seven significant decimal digits. This representation is adequate for the data manipulated by
many microcomputer applications.

6-36 l

-
| ntd ® NUMERIC APPLICATIONS

Example 6-2. Sample C Program

/*********************‘k‘k**************************************
* *

* SAMPLE C PROGRAM *

**/

/** Include stdio.h if necessary **/
/** Include math declarations for transcendentals and others **/

#include <math.h>
#define PI 3.1415926535897943

main()

double sin_result, cos_result;
double angle_deg = 0.0, angle_rad;
int i, no_of_trial=4;

for (i = 1; i <= no_of_trial; i++) {
angle_rad = angle_deg * PI / 180.0;
sin_result = sin (angle_rad);
cos_result = cos (angle_rad);
printf("sine of %f degrees equals %f\n", angle_deg, sin_result);
printf("cosine of %f degrees equals %f\n\n", angle_deg,
cos_result);
angle_deg = angle_deg + 30.0;
}
/** etc. **/

}

The utility of the REAL data type is extended by the PL/M-386/486 compiler's practice of

holding intermediate results in the extended real format. This means that the full range and

precision of the processor are utilized for intermediate results. Underflow, overflow, and

rounding exceptions are most likely to occur during intermediate computations rather than

during calculation of an expression's final result. Holding intermediate results in extended-

precision real format greatly reduces the likelihood of overflow and underflow and eliminates -
roundoff as a serious source of error until the final assignment of the result is performed.

The compiler generates floating-point instructions to evaluate expressions that contain REAL
data types, whether variables or constants or both. This means that addition, subtraction,
multiplication, division, comparison, and assignment of REALs will be performed by the
FPU. INTEGER expressions, on the other hand, are evaluated by the Integer Unit.

Five built-in procedures (Table 6-17) give the PL/M-386/486 programmer access to FPU
control instructions. Prior to any arithmetic operations, a typical PL/M-386/486 program will
set up the FPU using the INITSREAL$MATHSUNIT procedure and then issue
SET$REAL$MODE to configure the FPU. SETSREAL$MODE loads the FPU control word,
and its 16-bit parameter has the format shown previously for the control word. The

I 6-37

-
NUMERIC APPLICATIONS I ntd ®

recommended value of this parameter is 033EH (round to nearest, 64-bit precision, all
exceptions masked except invalid operation). Other settings may be used at the programmer's
discretion.

Table 6-17. PL/M-386/486 Built-In Procedures

Procedure FPU Control Instruction Description
INITSREALSMATHSUNIT FINIT Initialize FPU
SET$REAL$MODE FLDCW Set exception masks, rounding

precision, and infinity controls.
GET$REAL$ERROR FNSTSW& FNCLEX Store, then clear, exception flags.
SAVES$REAL$STATUS FNSAVE Save FPU state.
RESTORES$REAL$STATUS FRSTOR Restore FPU state.

If any exceptions are unmasked, an exception handler must be provided in the form of an
interrupt procedure that is designated to be invoked via interrupt vector number 16. The
exception handler can use the GETSREALSERROR procedure to obtain the low-order byte
of the FPU status word and to then clear the exception flags. The byte returned by
GETS$REALSERROR contains the exception flags; these can be examined to determine the
source of the exception.

The SAVESREAL$STATUS and RESTORE$SREALS$STATUS procedures are provided for
multitasking environments where a running task that uses the FPU may be preempted by
another task that also uses the FPU. It is the responsibility of the operating system to issue
SAVESREALS$STATUS before it executes any statements that affect the FPU; these include
the INITSREALSMATH$UNIT and SETSREALSMODE procedures as well as arithmetic
expressions. SAVESREALSSTATUS saves the FPU state (registers, status, and control
words, etc.) on the memory stack. RESTORE$REALSSTATUS reloads the state information;
the preempting task must invoke this procedure before terminating in order to restore the
FPU to its state at the time the running task was preempted. This enables the preempted task
to resume execution from the point of its preemption.

6.4.1.3. ASM386/486

The ASM386/486 assembly language provides programmers with complete access to all of
the facilities of the processor.

6.4.1.3.1. Defining Data

The ASM386/486 directives shown in Table 6-18 allocate storage for numeric variables and
constants. As with other storage allocation directives, the assembler associates a type with
any variable defined with these directives. The type value is equal to the length of the storage
unit in bytes (10 for DT, 8 for DQ, etc.). The assembler checks the type of any variable
coded in an instruction to be certain that it is compatible with the instruction. For example,

6-38 _ I

-
Intd ® NUMERIC APPLICATIONS

the coding FIADD ALPHA will be flagged as an error if ALPHA's type is not 2 or 4, because
integer addition is only available for word and short integer (doubleword) data types. The
operand's type also tells the assembler which machine instruction to produce; although to the
programmer there is only an FIADD instruction, a different machine instruction is required
for each operand type.

Table 6-18. ASM386/486 Storage Allocation Directives

Directives Interpretation Data Types
DW Define Word Word integer
DD Define Doubleword Short integer, short real
DQ Define Quadword Long integer, long real
DT Define Tenbyte Packed decimal, temporary real

On occasion it is desirable to use an instruction with an operand that has no declared type.
For example, if register BX points to a short integer variable, a programmer may want to
code FIADD [BX]. This can be done by informing the assembler of the operand's type in the
instruction, coding FIADD DWORD PTR [BX]. The corresponding overrides for the other
storage allocations are WORD PTR, QWORD PTR, and TBYTE PTR.

The assembler does not, however, check the types of operands used in processor control
instructions. Coding FRSTOR [BP] implies that the programmer has set up register BP to
point to the location (probably in the stack) where the processor's 94-byte state record has
been previously saved.

The initial values for numeric constants may be coded in several different ways. Binary
integer constants may be specified as bit strings, decimal integers, octal integers, or
hexadecimal strings. Packed decimal values are normally written as decimal integers,
although the assembler will accept and convert other representations of integers. Real values
may be written as ordinary decimal real numbers (decimal point required), as decimal
numbers in scientific notation, or as hexadecimal strings. Using hexadecimal strings is
primarily intended for defining special values such as infinities, NaNs, and denormalized
numbers. Most programmers will find that ordinary decimal and scientific decimal provide
the simplest way to initialize numeric constants. Example 6-3 compares several ways of
setting the various numeric data types to the same initial value.

Example 6-3. Sample Numeric Constants

; THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126
; NOTE TWO'S COMPLEMENT STORAGE OF NEGATIVE BINARY INTEGERS.

’

EVEN ; FORCE WORD ALIGNMENT

WORD_INTEGER DW 1111111110000010b ;BIT STRING

SHORT_INTEGER DD OFFFFFF82H ;HEX STRING MUST START
;WITH DIGIT

LONG_INTEGER DQ -126 ;ORDINAL DECIMAL

I 6-39

-
NUMERIC APPLICATIONS an ®

SINGLE_REAL DD -126.0 ;NOTE PRESENCE OF
DOUBLE_REAL DD -1.26e2 ; SCIENTIFIC
PACKED_DECIMAL DT -126 ;ORDINARY DECIMAL INTEGER

; IN THE FOLLOWING, SIGN AND EXPONENT IS 'C005'
; SIGNIFICAND IS '7300...00', 'R' INFORMS ASSEMBLER THAT
i THE STRING REPRESENTS A REAL DATA TYPE.

EXTENDED_REAL DT 0CO057E00000000000000R ; HEX STRING

Note that preceding numeric variables and constants with the ASM386/486 EVEN directive
ensures that the operands will be word-aligned in memory. The best performance is obtained
when data transfers are aligned. See Chapter 24 for alignment strategies for the different
processors. All numeric data types occupy integral numbers of words so that no storage is
"wasted" if blocks of variables are defined together and preceded by a single EVEN
declarative.

6.4.1.3.2. Records and Structures

The ASM386/486 RECORD and STRUC (structure) declaratives can be very useful in
numeric programming. The record facility can be used to define the bit fields of the control,
status, and tag words. Example 6-4 shows one definition of the status word and how it might
be used in a routine that polls the FPU until it has completed an instruction.

Example 6-4. Status Word Record Definition

; RESERVE SPACE FOR STATUS WORD
STATUS_WORD
; LAY OUT STATUS WORD FIELDS
STATUS RECORD
& BUSY: 1,
COND_CODE3 : 1,
STACK_TOP: 3,
COND_CODE2 :
COND_CODEL1 :
COND_CODEOQ :
INT_REQ:
S_FLAG:
P_FLAG:
U_FLAG:
O_FLAG:
Z_FLAG:
D_FLAG:
I_FLAG: 1
; REDUCE UNTIL COMPLETE
REDUCE :

FPREM1

~

PR RPRRRP PR

R R R R R R RRRRRRR

6-40 I

=
Inu ® NUMERIC APPLICATIONS

FNSTSW STATUS_WORD
TEST STATUS_WORD, MASK_COND_CODE2
JNZ REDUCE

Because structures allow different but related data types to be grouped together, they often
provide a natural way to represent "real world" data organizations. The fact that the structure
template may be "moved" about in memory adds to its flexibility. Example 6-5 shows a
simple structure that might be used to represent data consisting of a series of test score
samples. This sample structure can be reorganized, if necessary, for the sake of more
efficient execution. If the two double real fields were listed before the integer fields, then
(provided that the structure is instantiated only at addresses divisible by eight) all the fields
would be optimally aligned for efficient memory access and caching. A structure could also
be used to define the organization of the information stored and loaded by the FSTENV and
FLDENV instructions.

Example 6-5. Structure Definition

SAMPLE STRUC

N_OBSDD ? ; SHORT INTEGER

MEAN DQ ? ; DOUBLE REAL

MODE DW ? ; WORD INTEGER

STD_DEV DQ ? ; DOUBLE REAL

; ARRAY OF OBSERVATIONS -- WORD INTEGER

TEST_SCORES DW 1000 DUP (?)
SAMPLE ENDS

6.4.1.3.3. Addressing Methods

Numeric data in memory can be accessed with any of the memory addressing methods
provided by the ModR/M byte and (optionally) the SIB byte. This means that numeric data
types can be incorporated in data aggregates ranging from simple to complex according to
the needs of the application. The addressing methods and the ASM386/486 notation used to
specify them in instructions make the accessing of structures, arrays, arrays of structures, and
other organizations direct and straightforward. Table 6-19 gives several examples of numeric
instructions coded with operands that illustrate different addressing methods.

I 6-41

NUMERIC APPLICATIONS

intgl.

Table 6-19. Addressing Method Examples

Coding Interpretation

FIADD ALPHA ALPHA is a simple scalar (mode is direct).

FDIVR ALPHA.BETA BETA is a field in a structure that is “overlaid” on
ALPHA (mode is direct).

FMUL QWORD PTR [BX] BX contains the address of a long real variable (mode
is register indirect).

FSUB ALPHA [SI] ALPHA is an array and Sl contains the offset of an
array element from the start of the array (mode is
indexed).

FILD [BP].BETA BP contains the address of a structure on the CPU
stack and BETA is a field in the structure (mode is
based).

FBLD TBYTE PTR [BX] [DI} BX contains the address of a packed decimal array
and DI contains the offset of an array element (mode
is based indexed).

6.4.1.4. COMPARATIVE PROGRAMMING EXAMPLE

Examples 6-6 and 6-7 show the PL/M-386/486 and ASM386/486 code for a simple numeric
program, called ARRSUM. The program references an array (X$ARRAY), which contains
0-00 single real values; the integer variable NSOF$X indicates the number of array elements
the program is to consider. ARRSUM steps through X$ARRAY accumulating three sums:

® SUMSX, the sum of the array values

® SUMSINDEXES, the sum of each array value times its index, where the index of the

first element is 1, the second is 2, etc.

® SUMSSQUARES, the sum of each array element squared

Example 6-6. Sample PL/M-386/486 Program

/***

*

*

* ARRAYSUM MODULE *

*

*

***/

array$sum: do;
declare (sumx, sumindexes, sum$squares) real;
declare xS$array(100) real;
declare (nofx, i) integer;
declare control $ FPU literally '033eh’';

/ *Assume x$array and n$of$x are initialized */
call initS$real$mathS$unit;

6-42

I ntel ® NUMERIC APPLICATIONS

call set$realSmode(control $ FPU);

/* Clear sums */
sumx, sumindexes, sumSsquares = 0.0;

/* Loop through array, accumulating sums */
do i = 0 to nSofs$x - 1;
sum$Sx = sum$x + xXSarray(i);
sum$indexes = sumS$indexes + (xSarray(i)*float(i+l));
sum$Ssquares = sum$squares + (xSarray(i)*xSarray(i));
end;

/* etc. */

end array$sum;

Example 6-7. Sample ASM386/486 Program

name arraysum

I

Define initialization routine

extrn initFPU:far

; Allocate space for data

data segment rw public

control_FPU dw 033eh
n_of_x dd ?

x_array dd 100 dup(?)
sum_squares dd ?
sum_indexes dd ?

sum_x dd ?

data ends

i

Allocate CPU stack space

stack stackseg 400

7

Begin code

code segment er public

assume ds:data, ss:stack

start:

’

1

mov ax, data

mov ds, ax

mov ax, stack

mov ss, ax

mov esp, stackstart stack

Assume X_array and n_of_x have been initialized

Prepare the FPU or its emulator

call initFPU
fldcwcontrol_ FPU

6-43

-
NUMERIC APPLICATIONS | ntel ®

; Clear three registers to hold running sums

fldz
fldz
fldz

; Setup ECX as loop counter and ESI as index into x_array

mov ecx, n_of_x
imul ecx
mov esi, eax

; ESI now contains index of last element + 1
; Loop through x_array and accumulate sum

sum_next:
; Back up one element and push on the stack

sub esi, type x_array
fld x_arraylesi]

; Add to the sum and duplicate x on the stack

fadd st(3), st
fld st

; Square it and add into the sum of (index+1) and discard

fmul st, st
faddpst (2), st
fmul n_of_x
faddpst(2), st

; Reduce index for next iteration
loop sum_next
; Pop sums into memory

pop_results:
fstp sum_squares
fstp sum_indexes
fstp sum_x
fwait
; Etc.
code ends
end start, ds:data, ss:stack

(A true program, of course, would go beyond these steps to store and use the results of these
calculations.) The control word is set with the recommended values: round to nearest, 64-bit
precision, interrupts enabled, and all exceptions masked except invalid operation. It is
assumed that an exception handler has been written to field the invalid operation if it occurs,
and that it is invoked by interrupt pointer 16.

6-44 I

]
InU ® NUMERIC APPLICATIONS

The PL/M-386/486 version of ARRAYSUM is very straightforward and illustrates how easily
the numerics capabilities of the Intel486 processor can be used in this language. After
declaring variables, the program calls built-in procedures to initialize the FPU and to load to
the control word. The program clears the sum variables and then steps through X$ARRAY
with a DO-loop. The loop control takes into account PL/M-386/486's practice of considering
the index of the first element of an array to be 0. In the computation of SUMSINDEXES, the
built-in procedure FLOAT converts I+1 from integer to real because the language does not
support "mixed mode" arithmetic. One of the strengths of the Intel486 processor FPU, of
course, is that it does support arithmetic on mixed data types (because all values are
converted internally to the 80-bit extended-precision real format).

The ASM386/486 version defines the external procedure INITFPU, which makes the
different initialization requirements of the processor and its emulator transparent to the
source code. After defining the data and setting up the segment registers and stack pointer,
the program calls INITFPU and loads the control word. The computation begins with the
next three instructions, which clear three registers by loading (pushing) zeros onto the stack.
As shown in Figure 6-12, these registers remain at the bottom of the stack throughout the
computation while temporary values are pushed on and popped off the stack above them.

I 6-45

NUMERIC APPLICATIONS

intal.

ST(0)
ST(1)
ST(2)

ST(0)
ST(1)
sT(2)
ST(3)

ST(0)
ST(1)
ST(2)
ST(3)
ST(4)

ST(0)
ST(1)
ST(2)
ST(3)

FLDZ, FLDZ, FLDZ

_FLD X_ARRAY[ESI]

_____ s
0.0 SUM_SQUARES sT(0) 25
0.0 SUM_INDEXES ST(1)

0.0 SUM_X sT(2) 0.0
ST(3) 0.0

—

— -—
FADD ST(3),ST - FLD ST

25 X_ARRAY (19) sr(-o‘:) 25
0.0 SUM_SQUARES sT(1) 25
0.0 SUM_INDEXES ST(2) 0.0
25 SUM_X ST(3) 0.0
ST(@) 25

-— - -

FMUL ST,ST - FADDP ST(2),ST

6.25 X_ARRAY (19) 2 sT(d) 25
25 X_ARRAY (19) sT(1) 6.25
0.0 SUM_SQUARES ST(2) 0.0
0.0 SUM_INDEXES STQ) 25

25 SUM_X —

~
_
~
FMUL N_of_X — FADDP ST(2),ST
50.0 X_ARRAY (19)'20 ST(d) 6.25
6.25 SUM_SQUARES ST(1) 50.0
0.0 SUM_INDEXES sT(2) 25
25 SUM_X

X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES
SUM_X

X_ARRAY (19)
X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES
SUM_X

X_ARRAY (19)
SUM_SQUARES
SUM_INDEXES
SUM_X

SUM_SQUARES
SUM_INDEXES
SUM_X

APM9

Figure 6-12. Instructions and Register Stack

The program uses the LOOP instruction to control its iteration through X_ARRAY; register
ECX, which LOOP automatically decrements, is loaded with n_of_x the number of array
elements to be summed. Register ESI is used to select (index) the array elements. The
program steps through X_ARRAY from back to front, so ESI is initialized to point at the
element just beyond the first element to be processed. The ASM386/486 TYPE operator is
used to determine the number of bytes in each array element. This permits changing

6-46

a
I nU ® NUMERIC APPLICATIONS

X_ARRAY to a double-precision real array by simply changing its definition (DD to DQ)
and reassembling.

Figure 6-12 shows the effect of the instructions in the program loop on the FPU register
stack. The figure assumes that the program is in its first iteration, that N_OF_X is 20, and
that X_ARRAY(19) (the 20th element) contains the value 2.5. When the loop terminates, the
three sums are left as the top stack elements so that the program ends by simply popping
them into memory variables.

6.4.1.5. CONCURRENT PROCESSING

Because the Intel Pentium Processor Integer Unit (IU) and FPU execution units are separate,
it is possible for the FPU to execute numeric instructions in parallel with integer instructions.
This simultaneous execution of different instructions is called concurrency.

No special programming techniques are required to gain the advantages of concurrent
execution; numeric instructions are simply placed in line with the integer instructions.
Integer and numeric instructions are initiated in the same order as they are encountered in the
instruction stream. However, because numeric operations performed by the FPU generally
require more time than integer operations, the IU can often execute several instructions
before the FPU completes a numeric instruction previously initated.

This concurrency offers obvious advantages in terms of execution performance, but
concurrency also imposes several rules that must be observed in order to assure proper
synchronization of the IU and FPU .

All Intel high-level languages automatically provide for and manage concurrency in the FPU.
Assembly-language programmers, however, must understand and manage some areas of
concurrency in exchange for the flexibility and performance of programming in assembly
language. This section is for the assembly-language programmer or well-informed high-
level-language programmer.

6.4.1.6. MANAGING CONCURRENCY

The activities of numeric programs can be split into two major areas: program control and
arithmetic. The program control part performs activities such as deciding what functions to
perform, calculating addresses of numeric operands, and loop control. The arithmetic part
simply adds, subtracts, multiplies, and performs other operations on the numeric operands.
The processor is designed to handle these two parts separately and efficiently.

Concurrency management is required to check for an exception before letting the processor
change a value just used by the FPU. Almost any numeric instruction can, under the wrong
circumstances, produce a numeric exception. For programmers in higher-level languages, all
required synchronization is automatically provided by the appropriate compiler. For
assembly-language programmers exception synchronization remains the responsibility of the
programmer.

I 6-47

| |
NUMERIC APPLICATIONS | ntel ®

A complication is that a programmer may not expect their numeric program to cause numeric
exceptions, but in some systems, they may regularly happen. To better understand these
points, consider what can happen when the FPU detects an exception.

Depending on options determined by the software system designer, the processor can perform
one of two things when a numeric exception occurs:

® The FPU can provide a default fix-up for selected numeric exceptions. Programs can
mask individual exception types to indicate that the FPU should generate a safe,
reasonable result whenever that exception occurs. The default exception fix-up activity is
treated by the FPU as part of the instruction causing the exception; no external indication
of the exception is given. When exceptions are detected, a flag is set in the numeric
status register, but no information regarding where or when is available. If the FPU
performs its default action for all exceptions, then the need for exception
synchronization is not manifest. However, as will be shown later, this is not sufficient
reason to ignore exception synchronization when designing programs that use the FPU.

® As an alternative to the default fix-up of numeric exceptions, the IU can be notified
whenever an exception occurs. When a numeric exception is unmasked and the
exception occurs, the FPU stops further execution of the numeric instruction and signals
this event. On the next occurrence of an ESC or WAIT instruction, the processor traps to
a software exception handler. The exception handler can then implement any sort of
recovery procedures desired for any numeric exception detectable by the FPU. Some
ESC instructions do not check for exceptions. These are the nonwaiting forms FNINIT,
FNSTENV, ENSAVE, FNSTSW, EFNSTCW, and FNCLEX.

When the FPU signals an unmasked exception condition, it is requesting help. The fact that
the exception was unmasked indicates that further numeric program execution under the
arithmetic and programming rules of the FPU is unreasonable.

If concurrent execution is allowed, the state of the processor when it recognizes the exception
is undefined. It may have changed many of its internal registers and be executing a totally
different program by the time the exception occurs. To handle this situation, the FPU has
special registers updated at the start of each numeric instruction to describe the state of the
numeric program when the failed instruction was attempted.

Exception synchronization ensures that the FPU is in a well-defined state after an unmasked
numeric exception occurs. Without a well-defined state, it would be impossible for exception
recovery routines to determine why the numeric exception occurred, or to recover
successfully from the exception.

The following two sections illustrate the need to always consider exception synchronization
when writing numeric code, even when the code is initially intended for execution with
exceptions masked. If the code is later moved to an environment where exceptions are
unmasked, the same code may not work correctly. An example of how some instructions
written without exception synchronization will work initially, but fail when moved into a
new environment, is shown in the following section.

6-48 I

L]
I ntel ® NUMERIC APPLICATIONS

6.4.1.7. EXCEPTION SYNCHRONIZATION

In the following examples, three instructions are shown to load an integer, calculate its
square root, then increment the integer. The synchronous execution of the FPU will allow
this program to execute correctly when no exceptions occur on the FILD instruction.

Incorrect Error Synchronization:

FILD COUNT ; FPU instruction
INC COUNT ; integer instruction alters operand
FSQRT ; subsequent FPU instruction -- error

; from previous FPU
; instruction detected here

Proper Error Synchronization:

FILD COUNT ; FPU instruction

FSQRT ; subsequent FPU instruction -- error from
; previous FPU
; instruction detected here

INC COUNT ; integer instruction alters operand

This situation changes if the numeric register stack is extended to memory. To extend the
FPU stack to memory, the invalid exception is unmasked. A push to a full register or pop
from an empty register sets SF and causes an invalid exception.

The recovery routine for the exception must recognize this situation, fix up the stack, then
perform the original operation. The recovery routine will not work correctly in the first
example shown in the figure. The problem is that the value of COUNT is incremented before
the exception handler is invoked, so that the recovery routine will load an incorrect value of
COUNT, causing the program to fail or behave unreliably.

6.4.1.8. PROPER EXCEPTION SYNCHRONIZATION

Exception synchronization relies on the WAIT instruction. Whenever an unmasked
numerical exception occurs, the FPU asserts an error-condition signal internal to the
processor. When the next WAIT instruction (or an ESC instruction other than FNINIT,
FNCLEX, FNSTSW, FNSTSW AX, FNSTCW, FNSTENV, FNSAVE) is encountered, the
error-condition signal is acknowledged and a software exception handler is invoked. (See
Chapter 7 and section 23.3.7 for a more detailed discussion of the various floating-point
error-reporting mechanisms and Pentium processor implementation specifics respectively.) If
this WAIT or ESC instruction is properly placed, the processor will not yet have disturbed
any information vital to recovery from the exception. A WAIT instruction should also be
placed after the last floating-point instruction in an application so that any unmasked
exceptions will be serviced before the task completes.

6-49

intgl.

Special
Computational
Situations

intgl.

CHAPTER 7
SPECIAL COMPUTATIONAL SITUATIONS

Besides being able to represent positive and negative numbers, the numerical data formats
may be used to describe other entities. These special values provide extra flexibility, but
most users will not need to understand them in order to use the numerics capabilities of the
processor successfully. This section describes the special values that may occur in certain
cases and the significance of each. The numeric exceptions are also described, for writers of
exception handlers and for those interested in probing the limits of numeric computation.

The material presented in this section is mainly of interest to programmers concerned with
writing exception handlers. Many readers will only need to skim this section.

When discussing these special computational situations, it is useful to distinguish between
arithmetic instructions and nonarithmetic instructions. Nonarithmetic instructions are those
that have no operands or transfer their operands without substantial change; arithmetic
instructions are those that make significant changes to their operands. Table 7-1 defines these
two classes of instructions.

7.1. SPECIAL NUMERIC VALUES

The numerical data formats encompass encodings for a variety of special values in addition
to the typical real or integer data values that result from normal calculations. These special
values have significance and can express relevant information about the computations or
operations that produced them. The various types of special values are:

Denormal real numbers

Zeros

Positive and negative infinity

NaN (Not-a-Number)

Indefinite

® Unsupported formats

The following sections explain the origins and significance of each of these special values.
Tables 7-2 through Tables 7-6 show how each of these special values is encoded for each of
the numeric data types.

I 7-1

SPECIAL COMPUTATIONAL SITUATIONS

intgl.

Table 7-1. Arithmetic and Nonarithmetic Instructions

Nonarithmetic Instructions

Arithmetic Instructions

FABS

FCHS

FCLEX

FDECSTP

FFREE

FINCSTP

FINIT

FLD (register-to-register)
FLD (extended format from memory)
FLD constant

FLDCW

FLDENV

FNOP

FRSTOR

FSAVE

FST(P) (register-to-register)
FSTP (extended format to memory)
FSTCW

FSTENV

FSTSW

FWAIT

FXAM

FXCH

F2XM1

FADD (P)
FBLD

FBSTP
FCOMP(P)(P)
FCOS
FDIV(R)(P)
FIADD
FICOM(P)
FIDIV(R)
FILD

FIMUL
FIST(P)
FISUB(R)
FLD (conversion)
FMUL(P)
FPATAN
FPREM
FPREM1
FPTAN
FRNDINT
FSCALE
FSIN
FSINCOS
FSQRT
FST(P) (conversion)
FSUB(R)(P)
FTST
FUCOM(P)(P)
FXTRACT
FyYL2X
FYL2XP1

intal.

SPECIAL COMPUTATIONAL SITUATIONS

Table 7-2. Binary Integer Encodings

Class Sign Magnitude

Positives
(Largest) 0 11..11
(Smallest) 0 00..01
Zero 0 00..00

Negatives
(Smallest) 1 1111
(Largest/Indefinite™) 1 00..00
Word: 15 bits
Short: 31 bits
Long: 63 bits

NOTES:

*If this encoding is used as a source operand (as in an integer load or integer arithmetic instruction), the FPU

interprets it as the largest negative number representable in the format... 21

delivers this encoding to an integer destination in two cases:

1. If the result is the largest negative number.

5 231 or-263 The FPU

2. As the response to a masked invalid operation exception, in which case it represents the special value

integer indefinite.

7-3

]
SPECIAL COMPUTATIONAL SITUATIONS Intd ®

Table 7-3. Packed Decimal Encodings

Magnitude
Class Sign digit digit digit digit digit
Positives
Largest 0 0000000 1001 1001 1001 1001 1001
Smallest 0 0000000 0000 0000 0000 0000 0001
Zero 0 0000000 0000 0000 0000 0000 0000
Negatives
Zero 1 0000000 0000 0000 0000 0000 0000
Smallest 1 0000000 0000 0000 0000 0000 0000
Largest 1 0000000 1001 1001 1001 1001 1001
Indefinite* 1 1111111 | 1111 1111 uuuu* Uuuu Uuuu
—1 byte— —9 bytes—

* The packed decimal indefinite is stored by FBSTP in response to a masked invalid operation exception.
Attempting to load this value via FBLD produces an undefined resuit.

v
** UUUU means bit values are undefined and may contain any value.

7-4 I

L
Intd ® SPECIAL COMPUTATIONAL SITUATIONS

Table 7-4. Single and Double Real Encodings

Significand
Class Sign Biased Exponent ff-ff*
Positive NaNs
0 11..11 11..11
Quiet
0 11..11 10..00
0 11.11 01..11
Signaling . . .
0 1.1 00..01
Infinity 0 11..11 00..00
Positive Reals
0 11..10 11..11
Normals
0 00..01 00..00
0 00..00 11.11
Denormals
0 00..00 00..01
Zero 0 00..00 00..00
Negative Reals
Zero 1 00..00 00..00
1 00..00 00..01
Denormals
1 00..00 11.11
1 00..01 00..00
Normals . . X
1 11.10 11.11
Infinity 1 1.1 00..00
Negative NaNs
1 11..11 00..01
Signaling
1 11.11 01..11
1 (Indefinite) 11.11 10..00
Quiet . . .
1 11.11 11..11
Single: —8 bits— —23 bits—
Double: —11 bits— —52 bits—

*Integer bit is implied and not stored.

I 7-5

SPECIAL COMPUTATIONAL SITUATIONS

Table 7-5. Extended Real Encodings

intgl.

Significand
Class Sign Biased Exponent ff-ff*
Positive NaNs
0 11..11 111..11
Quiet
0 11.11 110..00
0 11..11 101..11
Signaling
0 11..11 100..01
Infinity 0 11..11 100..00
Positive Reals
0 11..10 11111
Normals
0 00..01 1.00..00
0 00..00 111.11
Pseudodenormals . . .
0 00..00 100..01
0 00..00 011.11
Denormals
0 00..00 000..01
Zero 0 00..00 0 00..00
Negative Reals
Zero 1 00..00 0 00..00
1 00..00 000..01
Denormals
1 00..00 011..11
1 00..00 111..11
Pseudodenormals . . .
1 00..00 100..00
1 00..01 1 00..00
Normals
1 11.10 111.11
Infinity 1 11..11 1 00..00
Negative NaNs
1 11..11 100..01
Signaling
1 11.11 101..11
1 (Indefinite) 11..11 110..00
Quiet . .
1 11..11 111.11
—15 bits— —64 bits—

*Integer bit is implied and not stored.

7-6

-
I ntd ® SPECIAL COMPUTATIONAL SITUATIONS

Table 7-6. Unsupported Formats

Significand
Class Sign Biased Exponent f\f-ff*
Positive Pseudo-NaNs

0 11..11 0, 1111
Quiet : . .

0 11.11 0 10..00

0 11..11 001..11
Signaling . .

0 11..11 0 00..01
Pseudoinfinity 0 11..11 0 00..00

Positive Reals

0 11..10 011..11
Unnormals

0 00..01 0 00..00

Negative Reals

1 11..10 011..01
Unnormals . -

1 00..01 000..00
Pseudoinfinity 1 11.11 0 00..00

Negative Pseudo NaNs

1 11.11 001..11
Signaling

1 11.11 000..01

1 11..11 011.11
Quiet . . .

1 11.11 010..00

—15 bits— —64 bits—

*Integer bit is implied and not stored.

7.1.1. Denormal Real Numbers

The processor generally stores nonzero real numbers in normalized floating-point form; that
is, the integer (leading) bit of the significand is always a one. (Refer to the previous section
for a review of operand formats.) This bit is explicitly stored in the extended format, and is
implicitly assumed to be a one (1,) in the single and double formats. Since leading zeros are
eliminated, normalized storage allows the maximum number of significant digits to be held
in a significand of a given width.

When a numeric value becomes very close to zero, normalized floating-point storage cannot
be used to express the value accurately. The term tiny is used here to precisely define what
values require special handling. A number R is said to be tiny when -2 <R <0 or 0 < R

I 7.7

-
SPECIAL COMPUTATIONAL SITUATIONS Intd ®

< 42Emin (Ag defined in the previous section, Emin is —126 for single format, —1022 for
double format, and —16382 for extended format.) In other words, a nonzero number is tiny if
its exponent would be too negative to store in the destination format.

To accommodate these instances, the processor can store and operate on reals that are not
normalized, i.e., whose significands contain one or more leading zeros. Denormals typically
arise when the result of a calculation yields a value that is tiny.

Denormal values have the following properties:

® The biased floating-point exponent is stored at its smallest value (zero)
® The integer bit of the significand (whether explicit or implicit) is zero

The leading zeros of denormals permit smaller numbers to be represented, at the possible
cost of some lost precision (the number of significant bits is reduced by the leading zeros). In
typical algorithms, extremely small values are most likely to be generated as intermediate,
rather than final, results. By using the extended real format for holding intermediate values,
quantities as small as =3.37 x 107*2 can be represented; this makes the occurrence of
denormal numbers a rare phenomenon in numerical applications. Nevertheless, the processor
can load, store, and operate on denormalized real numbers when they do occur.

Denormals receive special treatment by the processor in three respects:

® The processor avoids creating denormals whenever possible. In other words, it always
normalizes real numbers except in the case of tiny numbers.

® The processor provides the unmasked underflow exception to permit programmers to
detect cases when denormals would be created.

® The processor provides the denormal operand exception to permit programmers to detect
cases when denormals enter into calculations.

Denormalizing means incrementing the true result's exponent and inserting a corresponding
leading zero in the significand, shifting the rest of the significand one place to the right.
Denormal values may occur in any of the single, double, or extended formats. Table 7-7
shows the range of denormalized values in each format.

Table 7-7. Denormalized Values

Smallest Magnitude Largest Magnitude
Format (Exact) (Approx.) (Exact) (Approx.)
Single Precision 2-149 10—46 2-126_5-150 10-38
Double Precision 2-1074 10-324 2-1022_5-1075 10-308
Extended o—16445 104951 5-16382_o-16445 104932

Denormalization produces either a denormal or a zero. Denormals are readily identified by
their exponents, which are always the minimum for their formats; in biased form, this is
always the bit string: 00..00. This same exponent value is also assigned to the zeros, but a

7-8 I

=
an ® SPECIAL COMPUTATIONAL SITUATIONS

denormal has a nonzero significand. A denormal in a register is tagged special. Tables 7-2
through Table 7-6 show how denormal values are encoded in each of the real data formats.

The denormalization process causes loss of significance if low-order one-bits are shifted off
the right of the significand. In a severe case, all the significand bits of the true result are
shifted out and replaced by the leading zeros. In this case, the result of denormalization is a
true zero, and, if the value is in a register, it is tagged as a zero.

Denormals are rarely encountered in most applications. Typical debugged algorithms
generate extremely small results only during the evaluation of intermediate subexpressions;
the final result is usually of an appropriate magnitude for its single or double format real
destination. If intermediate results are held in temporary real, as is recommended, the greater
range of this format makes underflow very unlikely. Denormals are likely to arise only when
an application generates a great many intermediates, so many that they cannot be held on the
register stack or in extended format memory variables. If storage limitations force the use of
single or double format reals for intermediates, and small values are produced, underflow
may occur, and, if masked, may generate denormals.

When a denormal number in single or double format is used as a source operand and the
denormal exception is masked, the FPU automatically normalizes the number when it is
converted to extended format.

7.1.2. Zeros

The value zero in the real and decimal integer formats may be signed either positive or
negative, although the sign of a binary integer zero is always positive. For computational
purposes, the value of zero always behaves identically, regardless of sign, and typically the
fact that a zero may be signed is transparent to the programmer. If necessary, the FXAM
instruction may be used to determine a zero's sign.

A programmer can code a zero, or it can be created by the FPU as its masked response to an
underflow exception. If a zero is loaded or generated in a register, the register is tagged zero.
Table 7-8 lists the results of instructions executed with zero operands and also shows how a
zero may be created from nonzero operands.

7.1.3. Infinity

The real formats support signed representations of infinities. These values are encoded with a
biased exponent of all ones and a significand of 1,00..00; if the infinity is in a register, it is
tagged special. :

A programmer can code an infinity, or it can be created by the FPU as its masked response to
an overflow or a zero divide exception. Note that depending on rounding mode, the masked
response may create the largest valid value representable in the destination rather than
infinity.

I 7-9

SPECIAL COMPUTATIONAL SITUATIONS

intgl.

The signs of the infinities are observed, and comparisons are possible. Infinities are always
interpreted in the affine sense; that is, —o < (any finite number) < +co. Arithmetic on
infinities is always exact and, therefore, signals no exceptions, except for the invalid
operations specified in Table 7-9.

Table 7-8. Zero Operands and Results

Operation Operands Result
FLD, FLBD +0 *Q
FILD +0 +0
FST, FSTP, FRNDINT +0 *0
+X +0'
-X -0’
FBSTP +0 *0
FIST,FISTP 10 *0
+X -0°
-X -0*
FCHS +0 -0
-0 +0
FABS 10 +0
Addition +0 plus +0 +0
-0 plus -0 -0
40 plus -0, -0 plus+0 +0?
—X plus +X, +X plus—-X +0
+0 plus £ X, + X plus 0 #X
Subtraction +0 minus — 0 +0
-0 minus +0 -0
+0 minus + 0, =0 minus +0?
-0 +0?
+X minus +X, =X minus —#X
-X #X
+0 minus +X
+X minus +0
7-10

intal.

SPECIAL COMPUTATIONAL SITUATIONS

Table 7-8. Zero Operands and Results (Contd.)

Operation Operands Result
Multiplication +0 x +0 0
+0 x £X, £X x 0 0
+X x+Y, X x =Y +0'
X x =Y, =X x +Y -0’

Division +0+ 0 Invalid Operation
+X + 0 oo (Zero Divide)
X + oo 0
+0 ++X, -0 + =X +0
+0 + =X, -0+ +X -0
=X+ =Y, +X = +Y +0!
X+ =Y, X+ +Y -0'
FPREM, FPREMH1 +0 rem 0 Invalid Operation
+X rem 0 Invalid Operation
+0 rem +X +0
-0 rem =X -0
+XremxY +0 'Y exactly divides X
-Xrem Y -0 'Y exactly divides X
FSQRT +0 *0
Compare 0 : +X +0 < +X
+0:+0 +0=10
+0:-X +0 >-X
FTST +0 +0=0
FXAM +0 C3=1;C2=C1=Co0=0
-0 C3=C1=1;C2=Co0=0
FSCALE +0 scaled by —o *0
+0 scaled by +eo Invalid Operation
+0 scaled by X *0
FXTRACT +0 ST = +0,ST(1) = oo,
-0 Zero divide

ST = —0,ST(1) = —,

SPECIAL COMPUTATIONAL SITUATIONS

intgl.

Table 7-8. Zero Operands and Resuits (Contd.)

Operation Operands Result
Zero divide
FPTAN +0 *0
FSIN (or SIN result of FSINCOS) +0 *0
FCOS (or COS result of FSINCOS) | +0 +1
FPATAN +0++X *0
+0+-X *TT
+X ++0 #n/2
+0 ++0 *Q
+0+-0 *TT
+oo + +0 +n/2
—o0 + 0 —n/2
0 ++ o0 *Q
10+ —o *TT
F2XM1 +0 +0
-0 -0
FYL2X 1Y x log(+0) Zero Divide
+0 x log(+0) Invalid Operation
FYL2XP1 +Y x log(x0+1) *0
-Y x log(+0+1) -0
NOTES:

X and Ydenote nonzero positive operands

Sign of original X operand.

4':*& *RA WD =

7-12

When extreme underflow denormalizes the result to zero.

Sign determined by rounding mode: + for nearest, up, or chop, — for down
When 0 < X < 1 and rounding mode is not up.
When -1 < X < 0 and rounding mode is not down.
Sign of original zero operand.

Complement of sign of original X operand.

intal.

SPECIAL COMPUTATIONAL SITUATIONS

Table 7-9. Infinity Operands and Results
Operation Operands Result
FLD,FBLD Foo oo
FST,FSTP,FRNDINT +oo *o0
FCHS +oo —oo
—oo +oo
FABS Foo Foo
Addition +oo PIUS +o0 +oo
—oo plus —oo —oo
+o0 plus —eo Invalid Operation
—co pluS +oo Invalid Operation
+o0 plus +X *oo
+X plus +eo *oo0
Subtraction +oo MINUS —oo +oo
—eo MINUS +eo —oo
+e0 MINUS +oo Invalid Operation
—oo MINUS —oo Invalid Operation
oo minus X *oo
+X minus eo —%oo
Multiplication too X too oo
oo X 1Y, Y X oo o
oo X 1Y, Y X too)
+0 X oo, Foo X +0 Invalid Operation
Division too + too Invalid Operation
oo + X oo
+X + %o 0
FPREM,FPREM1 +o0 rem oo Invalid Operation
+oo rem +X Invalid Operation
+X rem oo $X,Q=0
FSQRT —oo Invalid Operation
+oo +oo

7-13

SPECIAL COMPUTATIONAL SITUATIONS

Table 7-9. Infinity Operands and Results (Contd.)
Operation Operands Result

Compare +o00 1 400 Hoo = 400

+o0 ! —o0 +00> —o0

—o0 % Foo0 —o0 < +o0

+oo 1 X +o0 > X

—oo 1 X —o < X

X 1 oo X < +oo

X1 —o X > 400

Foo 0> 0
FTST —oo — <0
FSCALE +eo scaled by — Invalid Operation

+eo scaled by +oo *oo

+oo scaled by £X *oo

+0 scaled by — +01

+0 scaled by « Invalid Operation

+Y scaled by +e foo

+Y scaled by — #0
FXTRACT Foo ST = %00, ST(1) = 400
FXAM +oo C0=C2=1,C1=C3=0

—co C0=C1=C2=1;C3=0
FPATAN Foo + £X *1/2

Y + oo #0

1Y + —eo #n

Foo + too *T/4

Foot *3m/4

too + +0 */2

+0 + 4oo +0

+0 + —e0 +1

=0 + 400 -0

=0+ —co -n

7-14

intel.

SPECIAL COMPUTATIONAL SITUATIONS

Table 7-9. Operands and Results (Contd.)

Operation Operands Result
F2XM1 +oo +oo
—oo -1
FYL2X e X log (1) Invalid Operation
+o0 X log (X>1) *oo
+eo X log (0<X<1) —%oo
+Y x 10g (+e0) foo
0 x log (+e<) Invalid Operation
1Y x log (—eo) Invalid Operation
FYL2XP1 +e0 x log (1) Invalid Operation
+eo x log (X>0) *oo
+eo x lOg —oo
(-1<X<0) oo
1Y x log (+o0) Invalid Operation
0 x log (+e0) Invalid Operation
=Y x log (—)
NOTES:
X Zero or nonzero, positive, finite operand
Y Nonzero positive, finite operand
* Sign of original infinity operand.
* Complement of sign of original infinity operand

$ Sign of original operand.
Sign of the original Y operand.
1 Sign of original zero operand.

7.1.4. NaN (Not-a-Number)

A NaN (Not a Number) is a member of a class of special values that exists in the real formats
only. A NaN has an exponent of 11..11B, may have either sign, and may have any
significand except 1,00..00B, which is assigned to the infinities. A NaN in a register is
tagged special.

There are two classes of NaN: signaling (SNaN) and quiet (QNaN). Among the QNaNs, the
value real indefinite is of special interest.

I 7-15

L
SPECIAL COMPUTATIONAL SITUATIONS an ®

7.1.4.1. SIGNALING NaNs

A signaling NaN is a NaN that has a zero as the most significant bit of its fraction. The rest
of the significand may be set to any value. The FPU never generates a signaling NaN as a
result; however, it recognizes signaling NaNs when they appear as operands. Arithmetic
operations (as defined at the beginning of this chapter) on a signaling NaN cause an invalid-
operation exception (except for load operations from the stack, FXCH, FCHS, and FABS).

By unmasking the invalid operation exception, the programmer can use signaling NaNs to
trap to the exception handler. The generality of this approach and the large number of NaN
values that are available provide the sophisticated programmer with a tool that can be applied
to a variety of special situations.

For example, a compiler could use signaling NaNs as references to uninitialized (real) array
elements. The compiler could preinitialize each array element with a signaling NaN whose
significand contained the index (relative position) of the element. If an application program
attempted to access an element that it had not initialized, it would use the NaN placed there
by the compiler. If the invalid operation exception were unmasked, an interrupt would occur,
and the exception handler would be invoked. The exception handler could determine which
element had been accessed, since the operand address field of the exception pointers would
point to the NaN, and the NaN would contain the index number of the array element.

7.1.4.2. QUIET NaNs

A quiet NaN is a NaN that has a one as the most significant bit of its significand. The
processor creates the quiet NaN real indefinite (defined below) as its default response to
certain exceptional conditions. The processor may derive other QNaNs by converting an
SNaN. The processor converts a SNaN by setting the most significant bit of its significand to
one, thereby generating a QNaN. The remaining bits of the significand are not changed;
therefore, diagnostic information that may be stored in these bits of the SNaN is propagated
into the QNaN.

The processor will generate the special QNaN, real indefinite, as its masked response to an
invalid operation exception. This NaN is signed negative; its significand is encoded 1,
100..00. All other NaNs represent values created by programmers or derived from values
created by programmers.

Both quiet and signaling NaNs are supported in all operations. A QNaN is generated as the
masked response for invalid-operation exceptions and as the result of an operation in which
at least one of the operands is a QNaN. The processor applies the rules shown in Table 7-10
when generating a QNaN.

7-16 l

]
I ntd ® SPECIAL COMPUTATIONAL SITUATIONS

Table 7-10. Rules for Generating QNaNs

Operation Action

Real operation on an SNaN and a QNaN. Deliver the QNaN operand.

Real operation on two SNaNs. Deliver the QNaN that results from converting the
SNaN that has the larger significand.

Real operation on two QNaNs. Deliver the QNaN that has the larger significand.

Real operation on an SNaN and another number. Deliver the QNaN that results from converting the
SNaN.

Real operation on a QNaN and another number. Deliver the QNaN.

Invalid operation that does not involve NaNs. Deliver the default QNaN real indefinite.

Note that handling of a QNaN operand has greater priority than all exceptions except certain
invalid-operation exceptions (refer to the section "Exception Priority" in this chapter).

Quiet NaNs could be used, for example, to speed up debugging. In its early testing phase, a
program often contains multiple errors. An exception handler could be written to save
diagnostic information in memory whenever it was invoked. After storing the diagnostic
data, it could supply a quiet NaN as the result of the erroneous instruction, and that NaN
could point to its associated diagnostic area in memory. The program would then continue,
creating a different NaN for each error. When the program ended, the NaN results could be
used to access the diagnostic data saved at the time the errors occurred. Many errors could
thus be diagnosed and corrected in one test run.

In embedded appl‘ications which use computed results in further computations, an undetected
QNaN can invalidate all subsequent results. Such applications should therefore periodically
check for QNaNs and provide a recovery mechanism to be used if a QNaN result is detected.

7.1.5. Indefinite

For each numeric data type, one unique encoding is reserved for representing the special
value indefinite. The processor produces this encoding as its response to a masked invalid-
operation exception.

In the case of reals, the indefinite value is a QNaN as discussed in the prior section.

Packed decimal indefinite may be stored with a FBSTP instruction; attempting to use this
encoding in a FBLD instruction, however, will have an undefined result; thus indefinite
cannot be loaded from a packed decimal integer.

I 7-17

SPECIAL COMPUTATIONAL SITUATIONS lntd ®

In the binary integers, the same encoding may r 1present either indefinite or the largest
negative number supported by the format (- 215 or 26) The processor will store this
encoding as its masked response to an mvalld operatlon or when the value in a source
register represents or rounds to the largest negative integer representable by the destination.
In situations where its origin may be ambiguous, the invalid-operation exception flag can be
examined to see if the value was produced by an exception response. When this encoding is
loaded or used by an integer arithmetic or compare operation, it is always interpreted as a
negative number; thus, indefinite cannot be loaded from a binary integer.

7.1.6. Encoding of Data Types

Table 7-2 through Table 7-5 show how each of the special values just described is encoded
for each of the numeric data types. In these tables, the least-significant bits are shown to the
right and are stored in the lowest memory addresses. The sign bit is always the left-most bit
of the highest-addressed byte.

7.1.6.1. UNSUPPORTED FORMATS

The extended format permits many bit patterns that do not fall into any of the previously
mentioned categories. Table 7-6 shows these unsupported formats. Some of these encodings
were supported by the Intel287 math coprocessor; however, most of them are not supported
by the Intel387 math coprocessor, Intel486 processor, and Pentium processor FPUs. These
changes are required due to changes made in the final version of IEEE Std 754 that
eliminated these data types.

The categories of encodings formerly known as pseudo-NaNs, pseudoinfinities, and
unnormal numbers are not supported. The Intel387 math coprocessor, Intel486 processor and
Pentium processor FPU's raise the invalid-operation exception when they are encountered as
operands.

The encodings formerly known as pseudodenormal numbers are not generated by the
Pentium processor; however, they are correctly utilized when encountered as operands. The
exponent is treated as if it were 00..01 and the mantissa is unchanged. The denormal
exception is raised.

7.1.7. Numeric Exceptions

The FPU can recognize six classes of numeric exception conditions while executing numeric
instructions:

1. I— Invalid operation

— Stack fault

— IEEE standard invalid operation
2. Z—Divide-by-zero

7-18 I

=
Intd ® SPECIAL COMPUTATIONAL SITUATIONS

D—Denormalized operand
O—Numeric overflow

U—Numeric underflow

A

P—Inexact result (precision)

7.1.8. Handling Numeric Exceptions
When numeric exceptions occur, the processor takes one of two possible courses of action:

® The FPU can itself handle the exception, producing the most reasonable result and
allowing numeric program execution to continue undisturbed.

® A software exception handler can be invoked to handle the exception.

Each of the six exception conditions described above has a corresponding flag bit in the FPU
status word and a mask bit in the FPU control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the processor takes an appropriate default
action and continues with the computation. If the exception is unmasked (mask = 0), a
software exception handler is invoked immediately before execution of the next WAIT or a
floating-point instruction other than FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, FNSAVE. Depending on the value of the NE bit of the CRO control register, the
exception handler is invoked either (NE = 1) through interrupt vector 16 or (NE = 0) through
an external interrupt.

Note that when exceptions are masked, the FPU may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked
response. For example, the FPU could detect a denormalized operand, perform its masked
response to this exception, and then detect an underflow.

7.1.8.1. AUTOMATIC EXCEPTION HANDLING

The processor has a default fix-up activity for every possible exception condition it may
encounter. These masked-exception responses are designed to be safe and are generally
acceptable for most numeric applications.

As an example of how even severe exceptions can be handled safely and automatically using
the default exception responses, consider a calculation of the parallel resistance of several
values using only the standard formula (Figure 7-1). If R1 becomes zero, the circuit
- resistance becomes zero. With the divide-by-zero and precision exceptions masked, the
processor will produce the correct result.

I 7-19

n
SPECIAL COMPUTATIONAL SITUATIONS Inté ®

T -

@ L4

EQUIVALENT RESISTANCE =

R1 R2 Ra

APM8

Figure 7-1. Arithmetic Example Using Infinity

By masking or unmasking specific numeric exceptions in the FPU control word,
programmers can delegate responsibility for most exceptions to the processor, reserving the
most severe exceptions for programmed exception handlers. Exception-handling software is
often difficult to write, and the masked responses have been tailored to deliver the most
reasonable result for each condition. For the majority of applications, masking all exceptions
yields satisfactory results with the least programming effort. Certain exceptions can usefully
be left unmasked during the debugging phase of software development, and then masked
when the clean software is actually run. An invalid-operation exception for example,
typically indicates a program error that must be corrected.

The exception flags in the FPU status word provide a cumulative record of exceptions that
have occurred since these flags were last cleared. Once set, these flags can be cleared only by
executing the FCLEX (clear exceptions) instruction, by reinitializing the FPU with FINIT, or
by overwriting the flags with an FRSTOR or FLDENV instruction. This allows a
programmer to mask all exceptions, run a calculation, and then inspect the status word to see
if any exceptions were detected at any point in the calculation.

7.1.8.2. SOFTWARE EXCEPTION HANDLING

If the Pentium processor and Intel486 processor FPU encounters an unmasked exception
condition, a software exception handler is invoked immediately before execution of the next
WAIT or non-control floating-point instruction. The exception handler is invoked either

7-20 I

L]
I ntd ® SPECIAL COMPUTATIONAL SITUATIONS

through interrupt vector 16 or through an external interrupt, depending on the value of the
NE bit of the CRO control register.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately before
the execution of the next non-control floating-point or WAIT instruction. Interrupt 16 is an
operating-system call that invokes the exception handler. Chapter 14 contains a general
discussion of exceptions and interrupts.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception causes
the processor to freeze immediately before executing the next non-control floating-point or
WAIT instruction. The frozen processor waits for an external interrupt, which must be
supplied by external hardware in response to the FERR# output of the processor. (Regardless
of the value of NE, an unmasked numerical exception causes the FERR# output to be
activated.) In this case, the external interrupt invokes the exception-handling routine. If NE =
0 but the IGNNE# input is active, the processor disregards the exception and continues. Error
reporting via external interrupt is supported for DOS compatibility. Chapter 23 contains
further discussion of compatibility issues.

If the Intel387 math coprocessor NPX encounters an unmasked exception condition, it
signals the exception to the Intel386 CPU using the ERROR# status line between the two
processors. See Chapter 23 for differences in FPU exception handling.

The exception-handling routine is normally a part of the systems software. The routine must
clear (or disable) the active exception flags in the FPU status word before executing any FP
instructions that cannot complete execution when there is a pending FP exception. Otherwise,
the FP instruction will trigger the FPU interrupt again, and the system will be caught in an
endless loop. In any event, the routine must clear (or disable) the active exception flags in the
FPU status word after handling them, and before IRET(D). Typical exception responses may
include:

® Incrementing an exception counter for later display or printing

® Printing or displaying diagnostic information (e.g., the FPU environment and registers)

® Aborting further execution, or using the exception pointers to build an instruction that
will run without exception and executing it

Applications programmers should consult their operating system's reference manuals for the
appropriate system response to numerical exceptions. For systems programmers, some details
on writing software exception handlers are provided in Chapter 14.

7.1.9. Invalid Operation

This exception may occur in response to two general classes of operations:

1. Stack operations
2. Arithmetic operations

I 7-21

-
SPECIAL COMPUTATIONAL SITUATIONS Inté ®

The stack flag (SF) of the status word indicates which class of operation caused the
exception. When SF is 1 a stack operation has resulted in stack overflow or underflow; when
SF is 0, an arithmetic instruction has encountered an invalid operand.

7.1.9.1. STACK EXCEPTION

When SF is 1, indicating a stack operation, the O/U# bit of the condition code (bit C1)
distinguishes between stack overflow and underflow as follows:

O/U# =1 Stack overflow—an instruction attempted to push down a nonempty stack
location.
O/U#=0 Stack underflow—an instruction attempted to read an operand from an

empty stack location.

When the invalid-operation exception is masked, the FPU returns the QNaN indefinite. This
value overwrites the destination register, destroying its original contents.

When the invalid-operation exception is not masked, an exception handler is invoked. TOP is
not changed, and the source operands remain unaffected.

7.1.9.2. INVALID ARITHMETIC OPERATION

This class includes the invalid operations defined in IEEE Std 854. The FPU reports an
invalid operation in any of the cases shown in Table 7-11. Also shown in this table are the
FPU's responses when the invalid exception is masked. When unmasked, an exception
handler is invoked, and the operands remain unaltered. An invalid operation generally
indicates a program error.

Table 7-11. Masked Responses to Invalid Operations

Condition Masked Response

Any arithmetic operation on an unsupported format. Return the QNaN indefinite.

Any arithmetic operation on a signaling NaN. Return a QNaN (refer to the section “Rules for
Generating QNaNs”).

Compare and test operations: one or both operands | Set condition codes “not comparable.”
is a NaN.

Addition of opposite-signed infinities or subtraction of | Return the QNaN indefinite.
like-signed infinities.

Multiplication: e x 0; or 0 X . Return the QNaN indefinite.
Division: oo + e; or 0 + 0. Return the QNaN indefinite.
Remainder instructions FPREM, FPREM1 when Return the QNaN indefinite; set C, = 0.

modulus (divisor) is zero or dividend is co.

Trigonometric instructions FCOS, FPTAN, FSIN, Return the QNaN indefinite; set C,=0.
FSINCOS when argument is .

7-22 I

-
Intd ® SPECIAL COMPUTATIONAL SITUATIONS

Table 7-11. Masked Responses to Invalid Operations (Contd.)

Condition Masked Response

FSQRT of negative operand (except FSQRT Return the QNaN indefinite.
(-0) = -0), FYL2X of negative operand (except
FYL2X (-0) = —s), FYL2XP1 of operand more
negative than —1.

FBSTP instruction when source register is empty, a | Store packed decimal indefinite.
NaN, =, or exceeds 18 decimal digits.

FXCH instruction when one or both registers are Change empty registers to the QNaN indefinite and
tagged empty. then perform exchange.

7.1.10. Division by Zero

If an instruction attempts to divide a finite nonzero operand by zero, the FPU will report a
zero-divide exception. This is possible for F(I)DIV(R)(P) as well as the other instructions that
perform division internally: FYL2X and FXTRACT. The masked response for FDIV is to
return an infinity signed with the exclusive OR of the sign of the two operands. FYL2X
returns an infinity signed with the opposite sign of the non-zero operand. For FXTRACT,
ST(1) is set to —o; ST is set to zero with the same sign as the original operand. If the divide-
by-zero exception is unmasked, an exception handler is invoked; the operands remain
unaltered.

7.1.11. Denormal Operand

If an arithmetic instruction attempts to operate on a denormal operand, the FPU reports the
denormal-operand exception. Denormal operands may have reduced significance due to lost
low-order bits, therefore it may be advisable in certain applications to preclude operations on
these operands. This can be accomplished by an exception handler that responds to unmasked
denormal operand exceptions. Most users will mask this exception so that computation may
proceed; any loss of accuracy will be analyzed by the user when the final result is delivered.

When this exception is masked, the FPU sets the DE-bit in the status word, then proceeds
with the instruction. Gradual underflow and denormal numbers will produce results at least
as good as, and often better than what could be obtained from a machine that flushes
underflows to zero. In fact, a denormal operand in single- or double-precision format will be
normalized to the extended-real format when loaded into the FPU. Subsequent operations
will benefit from the additional precision of the extended-real format used internally.

When this exception is not masked, the DE-bit is set and the exception handler is invoked.
The operands are not changed by the instruction and are available for inspection by the
exception handler.

I 723

SPECIAL COMPUTATIONAL SITUATIONS lntd ®

The Pentium processor FPU, Intel486 processor FPU, and Intel387 math coprocessors handle
denormal values differently than the 8087 and Intel287 math coprocessors. This change is
due to revisions in the IEEE standard before being approved. The difference in operation
occurs when the denormal exception is masked. The Pentium processor FPU, Intel486
processor FPU, and Intel387 math coprocessors will automatically normalize denormals. The
8087 and Intel287 math coprocessors will generate a denormal result.

The difference in denormal handling is usually not an issue. The denormal operand exception
is normally masked for the Intel387 math coprocessor, Intel486 processor. and Pentium
processor FPUs. For programs that also run on an Intel287 math coprocessor, the denormal
exception is often unmasked and an exception handler is provided to normalize any denormal
values. Such an exception handler is redundant for the Pentium processor, Intel486 processor
and Intel387 DX math coprocessor FPUs. The default exception handler should be used. See
Chapter 23 for more information on the handling of exceptions by the various Intel
architectures.

A program can detect at run time whether it is running on a Pentium processor, Intel486
processor, or Intel387 math coprocessor FPU or the older 8087/Intel287 math coprocessors.
See Chapter 5 for example code sequences to determine the presence of 8087/Intel287 and
Intel387 math coprocessors, as well as processor type. This example can be used to
selectively mask the denormal exception for Intel387 DX math coprocessor, Intel486
processor or Pentium processor FPUs. A denormal exception handler should also be provided
to support 8087/Intel287 math coprocessors. This code example can also be used to set a flag
to allow use of new instructions added to the Intel387 math coprocessor, Intel486 processor,
and Pentium processor FPUs beyond the instructions of the 8087/Intel287 math coprocessors.

7.1.12. Numeric Overflow and Underflow

If the exponent of a numeric result is too large for the destination real format, the FPU
signals a numeric overflow. Conversely, if the exponent of a result is too small to be
represented in the destination format, a numeric underflow is signaled. If either of these
exceptions occur, the result of the operation is outside the range of the destination real
format.

Typical algorithms are most likely to produce extremely large and small numbers in the
calculation of intermediate, rather than final, results. Because of the great range of the
extended-precision format, overflow and underflow are relatively rare events in most
numerical applications.

7.1.12.1. OVERFLOW

The overflow exception can occur whenever the rounded true result would exceed in
magnitude the largest finite number in the destination format. The exception can occur in the
execution of most of the arithmetic instructions and in some of the conversion instructions;
namely, FST(P), F(I)ADD(P), F(I)SUB(R)(P), F()MUL(P), FDIV(R)(P), FSCALE, FYL2X,
and FYL2XP1.

7-24 I

-
"Ttel ® SPECIAL COMPUTATIONAL SITUATIONS

The response to an overflow condition depends on whether the overflow exception is
masked:

® Overflow exception masked. The value returned depends on the rounding mode as
Table 7-12 illustrates.

® Overflow éxception not masked. The unmasked response depends on whether the
instruction is supposed to store the result on the stack or in memory:

— If the destination is the stack, then true result is divided by 224376 and rounded. (The
bias 24,576 is equal to 3 x 2!3) The significand is rounded to the appropriate
precision (according to the precision control (PC) bit of the control word, for those
instructions controlled by PC, otherwise to extended precision). The roundup bit
(C1) of the status word is set if the significand was rounded upward. The biasing of
the exponent by 24,576 normally translates the number as nearly as possible to the
middle of the exponent range so that, if desired, it can be used in subsequent scaled
operations with less risk of causing further exceptions. With the instruction
FSCALE, however, it can happen that the result is too large and overflows even after
biasing. In this case, the unmasked response is exactly the same as the masked
round-to-nearest response, namely =+ infinity. The intention of this feature is to
ensure the trap handler will discover that a translation of the exponent by —24574
would not work correctly without obliging the programmer of Decimal-to-Binary or
Exponential functions to determine which trap handler, if any, should be invoked.

— If the destination is memory (this can occur only with the store instructions), then no
result is stored in memory. Instead, the operand is left intact in the stack. Because
the data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as
the standard requires. The exception handler should ultimately store a value into the
destination location in memory if the program is to continue.

Table 7-12. Masked Overflow Results

Rounding Mode Sign of True Resuit Result

To nearest + Foo

Toward —eo + Largest finite positive number
Toward +eo + Foo

- Largest finite negative number

Toward zero + Largest finite positive number

- Largest finite negative number

I 7-25

L
SPECIAL COMPUTATIONAL SITUATIONS InU ®

7.1.12.2. UNDERFLOW

Underflow can occur in the execution of the instructions FST(P), FADD(P), FSUB(RP),
FMUL(P), F(DDIV(RP), FSCALE, FPREM(1), FPTAN, FSIN, FSINCOS, FPATAN,
F2XM1, FYL2X, and FYL2XP1.

Two related events contribute to underflow:

1. Creation of a tiny (denormal) result which, because it is so small, may cause some other
exception later (such as overflow upon division).

2. Creation of an inexact result; i.e., the delivered result differs from what would have been
computed were both the exponent range and precision unbounded.

Which of these events triggers the underflow exception depends on whether the underflow
exception is masked:

1. Underflow exception masked. The underflow exception is signaled when the result is
both tiny and inexact.

2. Underflow exception not masked. The underflow exception is signaled when the result is
tiny, regardless of inexactness.

The response to an underflow exception also depends on whether the exception is masked:

1. Masked response. The result is denormal or zero. The precision exception is also
triggered.

2. Unmasked response. The unmasked response depends on whether the instruction is
supposed to store the result on the stack or in memory.

— If the destination is the stack, then the true result is multiplied by 224576 and

rounded. (The bias 24,576 is equal to 3 x 2!3.) The significand is rounded to the
appropriate precision (according to the precision control (PC) bit of the control
word, for those instructions controlled by PC, otherwise to extended precision). The
roundup bit (C1) of the status word is set if the significand was rounded upward.
The biasing of the exponent by 24,576 normally translates the number as nearly as
possible to the middle of the exponent range so that, if desired, it can be used in
subsequent scaled operations with less risk of causing further exceptions. With the
instruction FSCALE, however, it can happen that the result is too tiny and
underflows even after biasing. In this case, the unmasked response is exactly the
same as the masked round-to-nearest response, namely +0. The intention of this
feature is to ensure the trap handler will discover that a translation by +24576 would
not work correctly without obliging the programmer of Decimal-to-Binary or
Exponential functions to determine which trap handler, if any, should be invoked.

— If the destination is memory (this can occur only with the store instructions), then no
result is stored in memory. Instead, the operand is left intact in the stack. Because
the data in the stack is in extended-precision format, the exception handler has the
option either of reexecuting the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as

7-26 I

a
nU ® SPECIAL COMPUTATIONAL SITUATIONS

the standard requires. The exception handler should ultimately store a value into the
destination location in memory if the program is to continue.

7.1.13. Inexact (Precision)

This exception condition occurs if the result of an operation is not exactly representable in
the destination format. For example, the fraction 1/3 cannot be precisely represented in
binary form. This exception occurs frequently and indicates that some (generally acceptable)
accuracy has been lost.

By their nature, the transcendental instructions cause the inexact exception for their core
cases. This means that some special cases where results are represented exactly will
nonetheless cause the inexact exception, e.g. arguments into logy which are integer powers of
2. Table 7-13 lists the core cases for each of the transcendental instructions.

Table 7-13. Transcendental Core Ranges

Instruction Core Range

FSIN lo1<2%

FCOS 191<2%

FSINCOS 1o1<2%

FPTAN lo1<2%

FPATAN no restriction

F2XM1 -1<X<1

FYL2X* X>0

FYL2XP1* -(1-(¥2/2)) < ST < V2 -1
NOTES: For these 2-operand instructions, Y should be normal for the core cases.

The C1 (roundup) bit of the status word indicates whether the inexact result was rounded up
(C1 =1) or chopped (C1 =0).

The inexact exception accompanies the underflow exception when there is also a loss of
accuracy. When underflow is masked, the underflow exception is signaled only when there is
a loss of accuracy; therefore the precision flag is always set as well. When underflow is
unmasked, there may or may not have been a loss of accuracy; the precision bit indicates
which is the case.

This exception is provided for applications that need to perform exact arithmetic only. Most
applications will mask this exception. The FPU delivers the rounded or over/underflowed
result to the destination, regardless of whether a trap occurs.

7-27

nu
SPECIAL COMPUTATIONAL SITUATIONS I ntd ®

7.1.14. Exception Priority

The processor deals with exceptions according to a predetermined precedence. Precedence in
exception handling means that higher-priority exceptions are flagged and results are
delivered according to the requirements of that exception. Lower-priority exceptions may not
be flagged even if they occur. For example, dividing an SNaN by zero causes an invalid-
operand exception (due to the SNaN) and not a zero-divide exception; the masked result is
the QNaN real indefinite, not «. A denormal or inexact (precision) exception, however, can
accompany a numeric underflow or overflow exception.

The precedence among numeric exceptions is as follows:

1. Invalid operation exception, subdivided as follows:
a. Stack underflow.
b. Stack overflow.
c. Operand of unsupported format.
d. SNaN operand.

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing with
it has precedence over lower-priority exceptions. For example, a QNaN divided by zero
results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

4. Denormal operand. If masked, then instruction execution continues, and a lower-priority
exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.

6. Inexact result (precision).

7.1.15. Standard Underflow/Overflow Exception Handler

As long as the underflow and overflow exceptions are masked, no additional software is
required to cause the output of the processor to conform to the requirements of IEEE Std 854.
When unmasked, these exceptions give the exception handler an additional option in the case
of store instructions. No result is stored in memory; instead, the operand is left intact on the
stack. The handler may round the significand of the operand on the stack to the destination's
precision as the standard requires, or it may adjust the operand and reexecute the faulting
instruction.

7-28 I

intal.

Numeric
Programming
Examples

intgl.

CHAPTER 8
NUMERIC PROGRAMMING EXAMPLES

The following sections contain examples of numeric programs written in ASM386/486.
These examples are intended to illustrate some of the techniques useful for programming
numeric applications.

8.1. CONDITIONAL BRANCHING EXAMPLE

As discussed earlier, several numeric instructions post their results to the condition code bits
of the FPU status word. Although there are many ways to implement conditional branching
following a comparison, the basic approach is as follows:

® Execute the comparison.

® Store the status word. (The FPU status word can be stored directly into AX register.)

® Inspect the condition code bits.

® Jump on the result.

Example 8-1 is a code fragment that illustrates how two memory-resident double-format real
numbers might be compared (similar code could be used with the FTST instruction). The
numbers are called A and B, and the comparison is A to B.

Example 8-1. Conditional Branching for Compares

A DO ?

B DQ ?
FLD A ; LOAD A ONTO TOP OF FPU STACK
FCOMPB ; COMPARE A;B POP A
FSTSWAX ; STORE RESULT TO AX REGISTER

; CPU AX REGISTER CONTAINS CONDITION CODES
; (RESULTS OF COMPARE)
i LOAD CONDITION CODES INTO FLAGS

SAHF

; USE CONDITONAL JUMPS TO DETERMINE ORDERING OF A TO B

| 8-1

NUMERIC PROGRAMMING EXAMPLES

JP A_B_UNORDERED ; TEST C2 (PF)

JB A_LESS ; TEST CO (CF)

JE A_EQUAL ; TEST C3 (ZF)
A_GREATER: ; CO (CF) =0, C3 (2F) =0
A_EQUAL : ; CO (CF) 1, C3 (ZF) =0
A_LESS ; CD (CF) =1, C3 (ZF) =0

A_B_UNORDERED: ; C2 (PF) =1

The comparison itself requires loading A onto the top of the FPU register stack and then
comparing it to B, while popping the stack with the same instruction. The status word is then
written into the AX register.

A and B have four possible orderings, and bits C3, C2, and CO of the condition code indicate
which ordering holds. These bits are positioned in the upper byte of the FPU status word so
as to correspond to the zero, parity, and carry flags (ZF, PF, and CF), when the byte is
written into the flags. The code fragment sets ZF, PF, and CF of the EFLAGS register to the
values of C3, C2, and CO of the FPU status word, and then uses the conditional jump
instructions to test the flags. The resulting code is extremely compact, requiring only seven
instructions.

The FXAM instruction updates all four condition code bits. Example 8-2 shows how a jump
table can be used to determine the characteristics of the value examined. The jump table
(FXAM_TBL) is initialized to contain the 32-bit displacement of 16 labels, one for each
possible condition code setting. Note that four of the table entries contain the same value,
"EMPTY." The first two condition code settings correspond to "EMPTY." The two other
table entries that contain "EMPTY" will never be used on the 32-bit processors with
integrated FPU or the Intel387 math coprocessor, but may be used if the code is executed
with an Intel287 math coprocessor.

Example 8-2. Conditional Branching for FXAM

i JUMP TABLE FOR EXAMINE ROUTINE

FXAM-TBL DD POSS_UNNORM, POS NAN, NEG_UNNORN, NEG_NAN,

& POS_NORM, POS_INFINITY, NEG_NORM,
& NEG_NFINITY, POS_ZERO, EMPTY, NEG_ZERO
& EMPTY, POS_DENORM, EMPTY, NEG_DENORM, EMPTY

8-2

a
“Ttel ® NUMERIC PROGRAMMING EXAMPLES

; EXAMINE ST AND STORE RESULT (CONDITION CODES)
FXAM

XOR EAX, EAX ; CLEAR EAX

FSTSWAX

; CALCULATE OFFSET INTO JUMP TABLE

AND AX, 0100011100000000B ; CLEAR ALL BITS EXCEPT C3,
Cc2-C0

SHR EAX, 6 ; SHIFT C2-CO INTO PLACE
(000XXX00)

SAL AH, 5 ; POSITION C3 (00X00000)

OR AL, AH ; DROP C3 IN ADJACENT TO C2

(00XXXX00)
XOR AH, AH ; CLEAR OUT THE OLD COPY OF

C3

; JUMP TO THE ROUTINE ' ADDRESSED' BY CONDITION CODE
JMP FXAM TBL[EAX]

; HERE ARE THE JUMP TARGETS, ONE TO HANDLE
; EACH POSSIBLE RESULT OF FXAM

POS_UNNORM:
POS_ﬁAM:
NEG_&NNOM:
NEG_&AM:
POS_&ORM:
POS_iNFINITY:
NEG_&ORM:
NEG_iNFINITY:
POS_éERO:
EMPT%:

NEG_ZERO:

8-3

-
NUMERIC PROGRAMMING EXAMPLES Intd ®

POS_DENORM:
NEG_DENORM:

The program fragment performs the FXAM and stores the status word. It then manipulates
the condition code bits to finally produce a number in register AX that equals the condition
code times 2. This involves zeroing the unused bits in the byte that contains the code, shifting
C3 to the right so that it is adjacent to C2, and then shifting the code to multiply it by 2. The
resulting value is used as an index that selects one of the displacements from FXAM_TBL
(the multiplication of the condition code is required because of the 2-byte length of each
value in FXAM_TBL). The unconditional JMP instruction effectively vectors through the
jump table to the labeled routine that contains code (not shown in the example) to process
each possible result of the FXAM instruction.

8.2. EXCEPTION HANDLING EXAMPLES

There are many approaches to writing exception handlers. One useful technique is to
consider the exception handler procedure as consisting of "prologue," "body," and "epilogue”
sections of code. This procedure is invoked via interrupt number 16.

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, interrupts
have been disabled by hardware. The prologue performs all functions that must be protected
from possible interruption by higher-priority sources. Typically, this involves saving registers
and transferring diagnostic information from the FPU to memory. When the critical
processing has been completed, the prologue may re-enable interrupts to allow higher-
priority interrupt handlers to preempt the exception handler. The standard "prologue” not
only saves the registers and transfers diagnostic information from the FPU to memory but
also clears the FP exception flags in the status word. Alternatively, when it is not necessary
for the handler to be re-entrant, another technique may also be used. In this technique, the
exception flags are not cleared in the "prologue" and the body of the handler must not
contain any FP instructions that cannot complete execution when there is a pending FP
exception. Please refer to section 6.3.7 where these instructions are classified. Note that the
handler must still clear the exception flag(s) before executing the IRET. If the exception
handler uses neither of these techniques the system will be caught in an endless loop.

The body of the exception handler examines the diagnostic information and makes a
response that is necessarily application-dependent. This response may range from halting
execution, to displaying a message, to attempting to repair the problem and proceed with
normal execution. ’

The epilogue essentially reverses the actions of the prologue, restoring the processor so that
normal execution can be resumed. The epilogue must not load an unmasked exception flag
into the FPU or another exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton exception
handlers. They show how prologues and epilogues can be written for various situations, but

u
lntd ® NUMERIC PROGRAMMING EXAMPLES

provide comments indicating only where the application dependent exception handling body
should be placed.

The first two are very similar; their only substantial difference is their choice of instructions
to save and restore the FPU. The tradeoff here is between the increased diagnostic
information provided by FNSAVE and the faster execution of FNSTENV. For applications
that are sensitive to interrupt latency or that do not need to examine register contents,
FNSTENV reduces the duration of the "critical region," during which the processor does not
recognize another interrupt request.

After the exception handler body, the epilogues prepare the processor to resume execution
from the point of interruption (i.e., the instruction following the one that generated the
unmasked exception). Notice that the exception flags in the memory image that is loaded into
the FPU are cleared to zero prior to reloading (in fact, in these examples, the entire status
word image is cleared).

Example 8-3 and Example 8-4 assume that the exception handler itself will not cause an
unmasked exception. Where this is a possibility, the general approach shown in Example 8-5
can be employed. The basic technique is to save the full FPU state and then to load a new
control word in the prologue. Note that considerable care should be taken when designing an
exception handler of this type to prevent the handler from being reentered endlessly.

Example 8-3. Full-State Exception Handler

SAVE_ALL PROC
; SAVE REGISTERS, ALLOCATE STACK SPACE
; FOR FPU STATE IMAGE

PUSH EBP

MOV EBP, ESP
SUB ESP, 108
;SAVE FULL FPU STATE, ENABLE INTERRUPTS
FNSAVE [EBP-108]
STI

; APPLICATION-DEPENDENT EXCEPTION HANDLING
; CODE GOES HERE

; CLEAR EXCEPTION FLAGS IN STATUS WORD
; (WHICH IS IN MEMORY)
; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], OH
FRSTOR [EBP-108]

; DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP

I 8-5

-
NUMERIC PROGRAMMING EXAMPLES Intd ®

POP EBP

; RETURN TO INTERRUPTED CALCULATION
IRET

SAVE_ALL ENDP

Example 8-4. Reduced-Latency Exception Handler

SAVE__ENVIRONMENT PROC
; SAVE REGISTERS, ALLOCATE STACK SPACE
; FOR FPU ENVIRONMENT

PUSH EBP
MOV EBP, ESP
SUB ESP, 28
; SAVE ENVIRONMENT, ENABLE INTERRUPTS
FNSTENV .. [EBP-28]
STI

; APPLICATION-DEPENDENT EXCEPTION HANDLING
; CODE GOES HERE

; CLEAR EXCEPTION FLAGS IN STATUS WORD
; (WHICH IS IN MEMORY)
; RESTORE MODIFIED ENVIRONEMNT IMAGE

MOV BYTE PTR [EBP-24], OH
FLDENV [EBP-28]

; DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
POP EBP

; RETURN TO INTERRUPTED CALCULATION

IRET
SAVE_ENVRIONEMNT ENDP
Example 8-5. Reentrant Exception Handler
LOCAL_CONTROL DW ? ; ASSUME INITIALIZED

8-6 I

Int9| ® NUMERIC PROGRAMMING EXAMPLES

REENTRANT PROC

’
’

’

SAVE REGISTERS, ALLOCATE STACK SPACE
FOR FPU STATE IMAGE

PUSH EBP
MOV EBP, ESP
SUB ESP, 108

SAVE STATE, LOAD NEW CONTROL WORD,
ENABLE INTERRUPTS

FNSAVE [EBP-108]
FLDCW LOCAL_CONTROL
STI

APPLICATION-DEPENDENT EXCEPTION HANDLING

CODE GOES HERE

AN UNMASKED EXCEPTION GENERATED HERE WILL

CAUSE THE EXCEPTION HANDLER TO BE REENTERED.

IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED
ON THE STACK.

CLEAR EXCEPTION FLAGS IN STATUS WORD
(WHICH IS IN MEMORY)
RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], OH
FRSTOR [EBP-108]

DEALLOCATE STACK SPACE, RESTORE REGISTERS
MOV ESP, EBP
POP EBP

RETURN TO POINT OF INTERRUPTION
IRET

REENTRANT ENDP

8.3. FLOATING POINT TO ASCil CONVERSION EXAMPLES

Numeric programs must typically format their results at some point for presentation and
inspection by the program user. In many cases, numeric results are formatted as ASCII

8-7

NUMERIC PROGRAMMING EXAMPLES Intd ®

strings for printing or display. This example shows how floating-point values can be
converted to decimal ASCII character strings. Example 8-6 was developed using Intel's
assemblers. Modification will need to be made to meet the requirements of other vendor's
assemblers or their interface to high level languages.

Shortness, speed, and accuracy were chosen rather than providing the maximum number of
significant digits possible. An attempt is made to keep integers in their own domain to avoid
unnecessary Conversion errors.

Using the extended precision real number format, this routine achieves a worst case accuracy
of three units in the 16th decimal position for a noninteger value or integers greater than
10'8, This is double precision accuracy. With values having decimal exponents less than 100
in magnitude, the accuracy is one unit in the 17th decimal position.

Higher precision can be achieved with greater care in programming, larger program size, and
lower performance.

Example 8-6. Floating Point to ASCIl Conversion Routine

SOURCE

+1 $title ('Convert a floating point number to ASCII')

name floating_to_ascil
public floating to_ascii
extrn get_power_10:near, tos_status:near

; This subroutine will convert the floating point

; number in the top of the NPX stack to an ASCII

; string and separate power of 10 scaling value

; (in binary). The maximum width of the ASCII string

; formed is controlled by a parameter which must be

; >1. Unnormal values, denormal values, and pseudo

; zeros will be correctly converted. However,

; unnormals and pseudo zeros are no longer supported

; formats on the Inteld486 processor in conformance with
; the IEEE floating point standard) and hence

; not generated internally. A returned value will

; indicate how many binary bits of precision were lost
; in an unnormal or denormal value. The magnitude

; (in terms of binary power) of a psuedo zero will also
; be indicated. Integers less than 10**18 in magnitude
; are accurately converted if the destination ASCII

; string field is wide enough to hold all the digits.

; Otherwise the value is converted to scientific notation.

8-8 I

-
Intd ® NUMERIC PROGRAMMING EXAMPLES

; The status of the conversion is indentified by the
; return value, it can be:

i
; 0 Conversion complete, string size is defined
; 1 invalid arguments
; 2 exact integer conversion, string_size is defined
; 3 indefinite
; 4 + NAN (Not A Number)
; 5 - NAN
; 6 + Infinity
; 7 - Infinity
8

pseudo zero found, string size is defined
; The PLM-386/486 calling convention is:

; floating_to_ascii:

; procedure (number, denormal_ptr,string_ptr, size_ptr,
; field_size, power_ptr) word external:

; declare (denormal_ptr, string_ptr, size_ptr)
; pointer;

; declare field_size word,

; string_size based size_ptr word;

; declare number real;

; declare denormal integer based denormal_ptr;
; declare power integer based power_ptr;

; end floating to_ascii;

; The floating point value is expected to be

; on the top of the FPU stack. This subroutine

; expects 3 free entries on the FPU stack and

; will pop the passed value off when done. The

; generated ASCII string will have a leading

; character either '-' or '+' indicating the sign
; of the value. The ASCII decimal digits will

; immediately follow. The numeric value of the

; ASCII string is (ASCII STRING.)*10 power. If

; the given number was zero, the ASCII string will
; contain a sign and a single zero character. The
; value string_size indicates the total length of
; ASCII string including the sign character.

; String(0) will always hold the sign. It is

; possible for string size to be less than

; field_size. This occurs for zeroes of integer

; values. A psuedo zero will return a special

; return code. The denormal count will indicate

; the power of two originally associated with the

I 8-9

L
NUMERIC PROGRAMMING EXAMPLES Intd ®

; value. The power of ten and ASCII string will
; be as if the value was an ordinary zero.

; This subroutine is accurate up to a maximum of

; 18 decimal digits for integers. Integer values

; will have a decimal power of zero associated

; with the item. For non-integers, the result will be
; accurate to within 2 decimal digits of the 16th

; decimal place(double precision). The exponeniate

; instruction is also

used for scaling the value into

; the range acceptable for the BCD data type. The
; rounding mode in effect on entry to the
; subroutine is used for the conversion.

; The following registers are not transparent:

eax ebx edx esi edi eflags

; Define the stack layout.

’

ebp_save equ
es_save

return_ptr equ
power_ptr equ
field_size equ
size_ptr equ
string_ptr equ
denormal_ptr equ
parms_size equ

&

&

; Define Constants
BCD DIGITS equ
WORD_SIZE equ
BCD_SIZE equ
MINUS

NAN

INFINITY equ
INDEFINITE equ
PSUDO-ZERO equ
INVALID

ZERO

8-10

dword ptr [ebp]

equ

ebp_save + size ebp_save

es_save + size es_save
return_ptr + size return_ptr
power_ptr + size power_ptr
field_size + size field_size
size_ptr + size size_ptr
string ptr + size string ptr

size power_ptr + size field_size +

used
18
10

equ
equ

w

equ
equ

size size_ptr + size string_ptr +
size denormal_ptr

; number of digits in bcd_value

1 ; Define return values

4 ; The exact values chosen

; here are important. They must

; correspond to the possible return

; values and be in the same numeric

-2 ; order as tested by the program.

]
Intdcm NUMERIC PROGRAMMING EXAMPLES

DENORMAL equ -6
UNNORMAL equ -8
NORMAL equ O

EXACT equ 2

; Define layout of temporary storage area.

’

power_two equ word ptr [EBP - WORD_SIZE]
bcd_value equ tbyte ptr power_two - BCD_SIZE
bcd_byte equ byte ptr bcd_value

fraction equ bcd_value

local_size equ size power_two + size bcd_value

; Allocate stack space for the temporaries so

; the stack will be big enough

stack stackseg (local_size+6) ; allocate stack
; space for locals

code segment public er
extrn power_table:gword
;Constants used by this function
even ; Optimize for 16 bits
constl0 dw ; Adjustment value for
; too big BCD

; Convert the C3,C2, Cl, CO encoding from tos_status
; into meaningful bit flags and values.

status_table db UNNORMAL, NAN, UNNORMAL + MINUS,

& NAN + MINUS, NORMAL, INFINITY,

& NORMAL + MINUS, INFINITY + MINUS,

& ZERO, INVALID, ZERO + MINUS, INVALID,

& DENORMAL, INVALID, DENORMAL + MINUS, INVALID

floating_to_ascii proc

call tos_status ; Look at status of ST(0)
; Get descriptor from table

movzxeax, sStaus_tableleax]

cmp al, INVALID ; Look for empty ST(0)
jne not_empty

I 8-11

=
NUMERIC PROGRAMMING EXAMPLES Inté ®

; ST(0) is empty! Return the status value.

ret parms_size

; Remove infinity from stack and exit.

found_infinity:

fstp st (0)

jmp short exit_proc
; String space is too small
; Return invalid code.

small_string:

mov al, INVALID
exit_proc:

leave

pop es

ret parms_size

; OK to leave fstp running

; Restore stack setup

; ST(0) is NAN or indefinite. Store the
; value in memory and look at the fraction
; field to separate indefinite from an ordinary NAN.

NAN_or_indefinite:
fstp fraction ;

test al, MINUS ;
fwait

jz exit_proc ;

mov ebx,0C0000000H

~e

; Compare bits 63-32

remove value from stack
; for examination
Look at sign bit
; Insure store is done
Can't be indefinite if positive

Match against upper 32 bits of fraction

sub ebx, dword ptr fraction + 4

; Bits 31-0 must be zero

or ebx, dword ptr fraction

jnz exit_proc

; Set return value for idefinite value

mov al, INDEFINITE
jmp exit_proc

; Allocate stack space for local variables
; and establish parameter addressability.

8-12

-
|nU ® NUMERIC PROGRAMMING EXAMPLES

not_empty:
push es ; Save working register
enterlocal_size, 0 ; Setup stack addressing

; check for enough string space
mov ecx, field_size
cmp ecx, 2
31 small_string

dec ecx ;adjust for sign character
; See if string is too large for BCD
cmp ecx,BCD_DIGITS

jbe size_ok

; Else set maximum string size
mov ecx, BCD_DIGITS

size_ok:
cmp al,INFINITY ;Look for infinity
; Return status value for + or - inf
jge found_infinity
cmp al, NAN ; Look for NAN INDEFINITE

jge NAN_or_indefinite
; Set default return values and check that
; the number is normalized.
fabs ;use positive value
only
; sign bit in al
has true sign of

;i value
xor edx,edx ; form 0 constant
mov edi, denormal_ptr ; zero denormal count
mov [edi]l, dx
mov ebx, power_ptr ; zero power of ten value
mov [ebx], dx
mov dl, al
and dl, 1
add dl, EXACT
cmp al, ZERO ; Test for zero
jae convert_integer ; skip power code if value is zero
fstp fraction
fwait

mov al, bcd_byte +7

l 8-13

]
NUMERIC PROGRAMMING EXAMPLES Intd®

or byte ptr bcd_byte +7, 80h
fld fraction
fxtract

test al, 80h
jnz normal_value

fld1l

fsub

ftst

fstswax

sahf

jnz set_unnormal_count
; Found a psuedo zero

’

fldlg2 ; Develop power of ten

estimate
add dl, PSUEDO_ZERO - EXACT
fmulpst(2), st
fxch ; Get power of ten
fistpword ptr [ebx] ; set power of ten
jmp convert_integer

set_unnormal_count:

fxtract ; Get original fraction,
; now normalized

fxch ; Get unnormal count

fchs

fistpword ptr [edi] ; set unnormal count

; Calculate the decimal magnitude associated
; with this number to within one order. This
; error will always be inevitable due to

; rounding and lost precision. As a result,

; we will deliberately fail to consider the
; LOG10 of the fraction value in calculating
; the order. Since the fraction will always
; be 1 <= £ < 2, its LOG1l0 will not change

; the basic accuracy of the function. To

; get the decimal order of magnitude, simply
; multiply the power of two by LOG10(2) and
; truncate the result to an integer.

normal_value:

fstp fraction ; Save the fraction field
; for later use

8-14

]
lntd ® NUMERIC PROGRAMMING EXAMPLES

fist power_two ; Save power of two
£1dlg2 ; Get LOG10(2)
; Power_two is now safe
to use
fmul ; Form LOG10(of exponent of
number)
fistpword ptr [ebx] ; Any rounding mode will work here

; Check if the magnitude of the number rules
; out treating it is an integer.

; CX has the maximum number of decimal digits
; allowed.

fwait ; Wait for power-ten to be
valid

; Get power of ten of value
movsxsi, word ptr [ebx]
sub esi, ecx ; Form scaling factor necessary in ax
ja adjust_result ; Jump if number will not fit

; The number is between 1 and 10**(field_size).
; Test if it is an integer.

fild power_two ; Restore original number
sub dl, NORMAL_EXACT ; Convert to exact return value
fld fraction
fscale ; Form full value, this
; is safe here
fst st(l) ; Copy value for compare
frndint ; Test if its an integer
fcomp ; Compare values
fstswax ; Save status
sahf ; C3=1 implies it was an integer

jnz convert_integer

fstp st (0) ; Remove non integer value
add dl, NORMAL_EXACT ; Restore original return

; Scale the number to within the range allowed

; by the BCD format. The scaling operation should
; produce a number within one decimal order of

; magnitude of the largest decimal number

; representative within the given string width.

; The scaling power of ten value is in si.

-
NUMERIC PROGRAMMING EXAMPLES lntd ®

’

adjust_result:

mov eax,esi ; Setup for powld
mov word ptr [ebx], ax ; Set initial power
; of ten
return value
neg eax ; Subtract one for each
order of
; magnitude
the value is scaled by
call get_power_10 ; Scaling factor is returned
as
; exponent
and fraction
fld fraction ; Get fraction
fmul ; Combine
fractions
mov esi, ecx ; Form power of ten of the
maximum
shl esi, 3 ; BCD value to fit in
; the string
fild power_two ; combine powers of two
faddpst (2), st
fscale ; Form full wvalue
; exponent
was safe
fstp st(1) ; remove exponent
; Test the adjusted value against a table
; of exact powers of ten. The combined errors
; of the magnitude estimate and power function
; can result in a value one order of magnitude
; too small or too large to fit correctly in
; the BCD field. To handle this problem, pretest
; the adjusted value, if it is too small or
; large, then adjust it by ten and adjust the
; power of ten value.
test_power:
; compare against exact power entry. Use the next
; entry since cx has been decremenated by one
fcom power_tablel[esi]+type power_table
fstswax ; No wait is necessary
sahf ; I£f C3 = CO0 = 0 then

ib test_for_small ; too big

L
Intd ® NUMERIC PROGRAMMING EXAMPLES

fdiv constl0 ; Else adjust value
and dl, not EXACT Remove exact flag

inc word ptr [ebx] Adjust power of ten value
jmp short in_range Convert the value to a BCD

~e N0 o~

; integer
test_for_small:
fcom power_table[esi]; Test relative size
fstswax ; no wait is nessesary
sahf ; If CO = 0 then
H st (0) >=
lower_bound
jc in_range ; Convert the value to a
; BCD integer
fimulconstl0 ; Adjust value into range
dec word ptr [ebx] ; Adjust power of ten value
in_range:
frndint ; Form integer value
; Assert: 0 <= TOS <= 999,999,999,999,999,999
; The TOS number will be exactly representable
; in 18 digit BCD format.
convert_integer:
fbstpbcd_value ; Store as BCD format number
i
; While the store BCD runs, setup registers
; for the conversion to ASCII.
!
mov esi, BCD_SIZE-2 ; Initial BCD index value
mov c¢x, 0F04h ; Set shift count and mask
mov ebx, 1 ; Set initial size of ASCII

; Field for sign
mov edi, string_ptr; Get address of start of
; ASCII string
mov ax,ds ; Copy ds to es
mov es, ax

cld ; Set autoincrement mode
mov al, '+' ; Clear sign field
test dl, MINUS ; Look for negative value
jz positive_result
mov al, '-'
positive_result:
stosb ; Bump string pointer

; past sign
and dl, not MINUS ; Turn off sign bit

I 8-17

L]
NUMERIC PROGRAMMING EXAMPLES 'nU ®

fwait ; Wait for fbstp to finish

;Register usage:

; ah: BCD byte value in use

; al: ASCII character value

; dx: Return value

; ch: BCD mask = 0OFh

; cl: BCD shift count = 4

; ebx: ASCII string field width

; esi: BCD field index

; edi: ASCII string field pointer
; ds,es: ASCII string segment base

;Remove leading zereos from the number.
7

skip_leading_zeroes:

mov ah, bcd_bytelesi] ; Get BCD byte
mov al,ah ; Copy value
shr al,cl ; Get high order digit
and al, OFh ; Set zero flag
jnz enter_odd ; Exit loop if leading

; non zero found
mov al, ah ; Get BCD byte again
and al, 0fh ; Get low order digit
jnz enter_even ; Exit loop if non zero

; digit found
dec esi ; Decrement BCD index
jns skip_leading_zeroes

; The significand was all zeroes.

mov al, '0’ ; Set initial zero

stosb

inc ebx ; Bump string length
jmp short exit_with_value

; Now expand the BCD string into digit
; per byte values 0-9.

digit_loop:

mov ah,bcd_bytelesil ; Get BCD byte
mov al,ah
shr al,cl ; Get high order digit

enter_odd:

Intd ® NUMERIC PROGRAMMING EXAMPLES

area

add al, '0' ; Convert to ASCII

stosb ; Put digit into ASCII
; string area

mov al,ah ; Get low order digit

and al,OFh

inc ebx ; Bump field size counter

enter_even:

add al, 'O ; Convert to ASCII

stosb ; Put digit into ASCII

inc ebx ; Bump field size counter

dec esi ; Go to next BCD byte

jns digit_loop

Conversion complete. set the string
size and reminder.

exit_with_value:

mov edi,size_ptr

mov word ptr [edi],bx

mov eax,edx ; set return value
jmp exit_proc

floating_ to_ascii endp

~~ +

~e Ne o Ne

code ends
end

1 stitle(calculate the value of 10**eax)
This subroutine will calculate the
value of 10**eax. For values of

0 <= eax <19, the result will exact.
All registers are transparent

and results are returned on the TOS
as two numbers, exponent in st(l) and
fraction is st(0). The exponent value
can be larger than the largest
exponent of an extended real format
number. Three stack entries are used.

name get_power 10
public get_power_10, power_table

stack stackseg 8

code segment public er

I

-
NUMERIC PROGRAMMING EXAMPLES Intd ®

; Use exact values from 1.0 to lel8.
even ; optimize 16 bit access
power_table dg 1.0,1e,1e2,1e3
dg led,le5,1e6,1e7
dg 1e8,1e9,1el0,1lell
dg lel2, 1lel3, 1leld,lel5
dg lel6,1lel7, 1lels8

get_power_10 proc

cmp eax, 18 ; Test for 0 <=
ax < 19
ja out_of_range

f1d power_table[eax*8] ; Get exact value
fxtract ; Separate
power
; and
fraction
ret ; OK to
leave fxtract running

; Calculate the value using the

; exponentiate instruction. The following
; relations are used:

; 10**x= 2** (log2(10) *x)

; 2** (I+F) = 2**I * 2%**F

; 1f st(1) - I and st(0) = 2**F then

; fscale produces 2** (I+F)

out_of-range:

fldlat ; TOS =
LOG2(10)

enter4, 0

; Save power of 10 value, P
mov [edp-4], eax

; TOS,X= LOG2(10)*P = LOG2(10**Pp)
fimul dword ptrledp-4]

£1d1 ; Set TOS =
1.0

fchs

fld st(1l) ; Copy power
value

8-20 l

intgl.

base two
frndint
inf < I <= x

I is an integer

Rounding mode does

matter

fxch st(2)
st(l) = 1.0
=1I

fsub st,st(2)
< TOS <= 1.0

; Restore original rounding control
pop eax
fx2ml
2**(F) - 1.0
leave
stack
fsubr
2** (F)
ret
leave fsubr running

get_power_10 endp
code ends
end

+1 $Title(Determine TOS register contents)

This subroutine will return a value
; from 0-15 in eax corresponding

; to the contents of FPU TOS. All

; registers are transparent and no

; errors are possible. The return

; value corresponds to ¢3,c2,cl,c0

; of FXAM instuction.

~

name
public

tos_status
tos_status

i

7

TOS,F = x

NUMERIC PROGRAMMING EXAMPLES

; in
TOS = I: -

; where

; not
TOS = x,

i st(2)
- TI:

; -1.0
TOS =
Restore
Form
OK to

8-21

-
NUMERIC PROGRAMMING EXAMPLES InU ®

stackstackseg 6
code segment public er

tos_statusproc

fxam ; Get status of TOS register
fstswax ; Get current status

mov al,ah ; Put bits 10-8 into bits 2-0

and eax,4007h ; Mask out bits c¢3,c2,cl,c0

shr ah, 3 ; Put bits ¢3 into bit 11

or al, ah ; Put ¢3 into bit 3

mov ah, 0 ; Clear return value

ret

tos_status endp

code ends
end

8.3.1. Function Partitioning

Three separate modules implement the conversion. Most of the work of the conversion is
done in the module FLOATING__TO_ASCII. The other modules are provided separately,
because they have a more general use. One of them, GET_POWER_10, is also used by the
ASCII to floating-point conversion routine. The other small module, TOS_STATUS,
identifies what, if anything, is in the top of the numeric register stack.

8.3.2. Exception Considerations

Care is taken inside the function to avoid generating exceptions. Any possible numeric value
is accepted. The only possible exception is insufficient space on the numeric register stack.

The value passed in the numeric stack is checked for existence, type (NaN or infinity), and
status (denormal, zero, sign). The string size is tested for a minimum and maximum value. If
the top of the register stack is empty, or the string size is too small, the function returns with
an error code.

Overflow and underflow is avoided inside the function for very large or very small numbers.

8.3.3. Special Instructions

The functions demonstrate the operation of several numeric instructions, different data types,
and precision control. Shown are instructions for automatic conversion to BCD, calculating

8-22 I

]
Intd ® NUMERIC PROGRAMMING EXAMPLES

the value of 10 raised to an integer value, establishing and maintaining concurrency, data
synchronization, and use of directed rounding on the FPU.

Without the extended precision data type and built-in exponential function, the double
precision accuracy of this function could not be attained with the size and speed of the shown
example.

The function relies on the numeric BCD data type for conversion from binary floating-point
to decimal. It is not difficult to unpack the BCD digits into separate ASCII decimal digits.
The major work involves scaling the floating-point value to the comparatively limited range
of BCD values. To print a 9-digit result requires accurately scaling the given value to an
integer between 10® and 10°. For example, the number +0.123456789 requires a scaling
factor of 10° to produce the value +123456789.0, which can be stored in 9 BCD digits. The
scale factor must be an exact power of 10 to avoid changing any of the printed digit values.

These routines should exactly convert all values exactly representable in decimal in the field
size given. Integer values that fit in the given string size are not be scaled, but directly stored
into the BCD form. Noninteger values exactly representable in decimal within the string size
limits are also exactly converted. For example, 0.125 is exactly representable in binary or
decimal. To convert this floating-point value to decimal, the scaling factor is 1000, resulting
in 125. When scaling a value, the function must keep track of where the decimal point lies in
the final decimal value.

8.3.4. Description of Operation

Converting a floating-point number to decimal ASCII takes three major steps: identifying the
magnitude of the number, scaling it for the BCD data type, and converting the BCD data type
to a decimal ASCII string.

Identifying the magnitude of the result requires finding the value X such that the number is
represented by I x 10%, where 1.0 <1< 10.0. Scaling the number requires multiplying it by a
scaling factor 105, so that the result is an integer requiring no more decimal digits than
provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD conversion put the number in a form
easy to convert to decimal ASCII by host software.

Implementing each of these three steps requires attention to detail. To begin with, not all
floating-point values have a numeric meaning. Values such as infinity, indefinite, or NaN
may be encountered by the conversion routine. The conversion routine should recognize
these values and identify them uniquely.

Special cases of numeric values also exist. Denormals have numeric values, but should be
recognized because they indicate that precision was lost during some earlier calculations.

Once it has been determined that the number has a numeric value, and it is normalized
(setting appropriate denormal flags, if necessary, to indicate this to the calling program), the
value must be scaled to the BCD range.

I 8-23

n
NUMERIC PROGRAMMING EXAMPLES l n@ ®

8.3.5. Scaling the Value

To scale the number, its magnitude must be determined. It is sufficient to calculate the
magnitude to an accuracy of 1 unit, or within a factor of 10 of the required value. After
scaling the number, a check is made to see if the result falls in the range expected. If not, the
result can be adjusted one decimal order of magnitude up or down. The adjustment test after
the scaling is necessary due to inevitable inaccuracies in the scaling value.

Because the magnitude estimate for the scale factor need only be close, a fast technique is
used. The magnitude is estimated by multiplying the power of 2, the unbiased floating-point
exponent, associated with the number by log;¢2. Rounding the result to an integer produces
an estimate of sufficient accuracy. Ignoring the fraction value can introduce a maximum
error of 0.32 in the result.

Using the magnitude of the value and size of the number string, the scaling factor can be
calculated. Calculating the scaling factor is the most inaccurate operation of the conversion
process. The relation 10¥=2X*1°&10) js used for this function. The exponentiate instruction
F2XM1 is used.

Due to restrictions on the range of values allowed by the F2XM1 instruction, the power of 2
value is split into integer and fraction components. The relation 20+5 = 21 % 2F allows using
the FSCALE instruction to recombine the 2F value, calculated through F2XM1, and the 2!
part.

8.3.5.1. INACCURACY IN SCALING

The inaccuracy in calculating the scale factor arises because of the trailing zeros placed into
the fraction value of the power of two when stripping off the integer valued bits. For each
integer valued bit in the power of 2 value separated from the fraction bits, one bit of
precision is lost in the fraction field due to the zero fill occurring in the least significant bits.

Up to 14 bits may be lost in the fraction because the largest allowed floating-point exponent
value is 2'*~1. These bits directly reduce the accuracy of the calculated scale factor, thereby
reducing the accuracy of the scaled value. For numbers in the range of 10**°, a maximum of
8 bits of precision are lost in the scaling process.

8.3.5.2. AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are separated to avoid underflow and
overflow in calculating the scaling values. For example, to scale 107*%* to 10® requires a
scaling factor of 10%*%, which cannot be represented by the the Intel FPU's.

By separating the exponent and fraction, the scaling operation involves adding the exponents
separate from multiplying the fractions. The exponent arithmetic involves small integers, all
easily represented by the Intel FPU's.

8-24 I

-
an ® NUMERIC PROGRAMMING EXAMPLES

8.3.5.3. FINAL ADJUSTMENTS

It is possible that the power function (Get_Power_10) could produce a scaling value such that
it forms a scaled result larger than the ASCII field could allow. For example, scaling
9.9999999999999999 x 10*°° by 1.00000000000000010 x 107*%% produces
1.00000000000000009 x 10'8. The scale factor is within the accuracy of the FPU and the
result is within the conversion accuracy, but it cannot be represented in BCD format. This is
why there is a post-scaling test on the magnitude of the result. The result can be multiplied or
divided by 10, depending on whether the result was too small or too large, respectively.

8.3.6. Output Format

For maximum flexibility in output formats, the position of the decimal point is indicated by a
binary integer called the power value. If the power value is zero, then the decimal point is
assumed to be at the right of the rightmost digit. Power values greater than zero indicate how
many trailing zeros are not shown. For each unit below zero, move the decimal point to the
left in the string.

The last step of the conversion is storing the result in BCD and indicating where the decimal
point lies. The BCD string is then unpacked into ASCII decimal characters. The ASCII sign
is set corresponding to the sign of the original value.

8.4. TRIGONOMETRIC CALCULATION EXAMPLES

In this example, the kinematics of a robot arm is modeled with the 4 X 4 homogeneous
transformation matrices proposed by Denavit and Hartenberg!2. The translational and
rotational relationships between adjacent links are described with these matrices using the D-
H matrix method. For each link, there is a 4 X 4 homogeneous transformation matrix that
represents the link's coordinate system (L;) at the joint (J;) with respect to the previous link's
coordinate system (Ji_;, Li_;). The following four geometric quantities completely describe
the motion of any rigid joint/link pair (J;, L;), as Figure 8-1 illustrates.

6,= The angular displacement of the x; axis from the x;.; axis by rotating around the z; ,
axis (anticlockwise).

d;= The distance from the origin of the (i-1)'" coordinate system along the z; ; axis to the
X; axis.

a,= The distance of the origin of the i coordinate system from the z; ; axis along the —x;
axis.

o;= The angular displacement of the z; axis from the z;_; about the x; axis (anticlockwise).

1}, Denavit and R S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices", J. Applied
Mechanics, June 1955, pp. 215-221.

2¢s. George Lee, "Robot Arm Kinematics, Dynamics, and Control," IEEE Computer, Dec. 1982.

I 8-25

-
NUMERIC PROGRAMMING EXAMPLES In‘tel ®

X1

Z

JOINT 11 .
1
Xi

APM1

Figure 8-1. Relationships Between Adjacent Joints

i
The D-H transformation matrix Ai_ for adjacent coordinate frames (from joint;_; to joint; is
calculated as follows:
i

A =T, 4% Tz,e X Ty, xTy o

where:

T,q represents a translation along the z;_; axis

T, represents a rotation of angle 6 about the z;_ ; axis
T4 represents a translation along the x; axis

Ty o represents a rotation of angle o about the x; axis

8-26 I

-
lnte| ® NUMERIC PROGRAMMING EXAMPLES

[~ cos®;, —coso,sin6; sin o; sin 6; cos ©; 7
) sin®, coso;cos®; —sino;cosB; sin6;
L
A=
0 sin o; Ccos 0o d;
- 0 0 0 1 —

The composite homogeneous matrix T which represents the position and orientation of the
joint/link pair with respect to the base system is obtained by successively multiplying the D-
H transformation matrices for adjacent coordinate frames.

Example 8-7 illustrates how the transformation process can be accomplished using the
floating-point capabilities of the Intel architectures. The program consists of two major
procedures. The first procedure TRANS_PROC is used to calculate the elements in each D-H
matrix, A The second procedure MATRIXMUL_PROC finds the product of two
successive D lH matrices.

Ty=Ag XAl X ... XA,

Example 8-7. Robot Arm Kinematics Example

NAME ROT_MATRIX_CAL

; This example illustrates the use

; of the Intel486™ floating point

; instuctions, in paticular, the

; FSINCOS function which gives both
; the SIN and COS values.

; The program calculates the

; composite matrix for base to end-
; effector transformation.

; Only the kinematics is considered in
; this example.

; If the composite matrix mentioned above
; 1s given by:

; tln = Al x A2 ... X An

; Tln is found by successively calling

; trans_proc and matrixmul_proc until

; all matrices have been exhausted.

; trans_proc calculates entries in each

; A(Al,...,An) while matrixmul_proc
; performs the matrix multiplication for

l 8-27

-
NUMERIC PROGRAMMING EXAMPLES Intd ®

; Al and Ai+l. matrixmul_proc in turn
; calls matrix_row and matrix_elem to
; do the multiplication.

; Define stack space

trans_stack stackseg 400

; Define the matrix structure for
; 4x4 transformational matrices

a_matrix struc

all dg ?
al2 dg ?
alld dg ?
ald dg ?
a2l dg ?
a22 dq ?
a23 dg ?
a24 dag ?
a3l dg Oh
a32 dg ?
a33 dg ?
a34 dag ?
a4l dg Oh
a42 dg Oh
a43 dq Oh
ad44 dg 1h

a_matrix ends

; Assume One joint in the storage
; allocation and hence for

; two seats of parameters; however,
; more joints are possible

alp_deg struc
alpha_degldd ?
alpha_deg2dd ?
alp_deg ends

tht_deg struc

theta_deg dd ?
tht_deg ends

8-28 I

intel.

a_array struc
Al dd
A2 dd
A_array ends

D_array struc
D1 dg ?
D2 dg ?
D_array ends

; trans-data is the data segment

’

trans_datasegment rw public

Amx a_matrix<>
Bmx a_matrix<>
Tmx a _marix<>

ALPHA_DEG alp_deg<>
THETA_DEG tht_deg<>
A_VECTOR A_array<>
D_VECTOR D_array<>

ZERO dd 0
d180 dd 180
NUM_JOINT equ 1
NUM_ROW equ 4
NUM_COL equ 4
REVERSE db 1h

trans_data ends

assume ds:trans_data, es:trans_data

; Trans code contains the procedures
; for calculating matrix elements and

; matrix multiplications

trans_code segment er publlic
trans_proc proc far

; Calculate alpha and theta in radians
; from their values in degrees

fldpi
fdiv d180

NUMERIC PROGRAMMING EXAMPLES

8-29

-
NUMERIC PROGRAMMING EXAMPLES Intd ®

; Duplicate pi/180

fld

st (0)

fmul gword ptr ALPHA_DEG[ecx*8]

fxch

st (1)

fmul gword ptr THETA_DEG[ecx*8]

; theta(radians)
; alpha(radians) in ST (1)

in ST and

; Calculate matrix elements
= cos theta
= -cos alpha * sin thet

; all
; al2
; al3
; ald
; a2l
; a22
; a23
; a24
; a32
; a33
; a3d4d
; a3l
; add

sin alpha * sin theta

= A *cos theta

= sin
= cos
= sin
= A *
= sin
= cos

=D

theta

alpha * cos theta
alpha * cos theta
sin theta

alpha

alpha

= a4l = a2 = a43 = 0.0

=1

; ebx contains the offset for the matrix

8-30

fsincos

fld
fst
fmul
fstp
fxch
fst
fld
fmul
fstp
fld

st (0)
[ebx] .
gword
[ebx]
st (1)
[exDb]
st
qword

[ebx] .

st (2)

fsincos

fst

[ebx]

fxch st(1l)

fst

[ebx]

; cos theta in ST
; sin theta inst(1)
; duplicate cos theta
all ; cos theta in all
ptr A_VECTOR[ecx*8]

.al4 ; A* cos theta in al4

; sin theta in ST

.a2l ; sin theta in a2l

; duplicate sin theta
ptr A_VECTOR[ecx*8]
a24 ; A * sin theta in a24
; alpha in ST
; cos alpha in ST
;sin alpha in ST(1)
;sin theta in ST(2)
;cos theta in ST (3)

.a33 ;cos alpha in a33

;sin alpha in ST

.a32 ;8in sin alpha in a32

]
InU ® NUMERIC PROGRAMMING EXAMPLES

fld st (2) ;sin theta in ST
;sin alpha in ST (1)
fmul st,st (1) ;sin alpha * sin theta
fstp [ebx].al3 ;stored in a 13a
fmul st,st(3) ;costheta * sin alpha
fchs ;cos theta * sin alpha
fstp [ebx].a23 ;stored in a23
fld st(2) ;cos theta in ST

;cos alpha in ST (1)
;sin theta in ST (2)
;cos theta in ST (3)

fmul st,st (1) ;jcos theta * cos alpha
fstp [ebx].a22 ;stored in a22
fmul st,st (1) ;cos alpha * sin theta

; To take advantage of parallel operations
; between the IU and FPU
push eax ;save eax

; also move D into a34 in a faster way
mov eax, dword ptr D_VECTOR[ecx*8]
mov dword ptr [ebx + 88], eax
mov eax, dword ptr D_VECTOR[ecx * 8 + 4]
mov dword ptr [ebx + 92], eax

pop eax jrestore eax
fchs ;jcos alpha * sin theta
fstp [ebx].al2 ;stored in al2
;and all nonzero
elements
;have been calculated
ret

trans_proc endp

matrix_elem proc far

; This procedure calculates the dot product of the ith row
; of the first matrix and the jth column of the second

; matrix:

; TIJ where TIJ = sum of Aik x Bkj over k

; parameters passed from the calling routine,

; matrix_row:

; ESI = (i-1)*8
; EDI = (j-1)*8

I 8-31

L]
NUMERIC PROGRAMMING EXAMPLES Intd ®

; local register, EBP = (k-1)*8

push ebp ; save ebp
push ecx ; ecx to be used as a tmp reg
mov ecx, esi ; save it for later indexing

; locating the element in the first matrix, A
imul ecx, NUM_COL ; ecx contains offset due
; to preceding rows; the
; offset is from the

beginning

; of the matrix

xor ebp, ebp ; clear ebp, which will be

; used as a temp reg to
index (k)

; across the ith row of the
first

; matrix as well as down the
jth

; column of the second
matrix

; clear Tij for accumulating Aik*Bkj
mov dword ptr [edx][edi], ebp
mov dword ptr [edx][edi+4], ebp

push ecx ; save on stack: esi * num_col =
; the offset of the
beginning of
; the ith row from the
; beginning of the A matrix

NXT_k:
add ecx, ebp ;jget to the kth column entry
;jof the ith row of the A
matrix

; load Aik into FPU
fld qword ptr [eax] [ecx]

8-32 I

-
lntd ® NUMERIC PROGRAMMING EXAMPLES

; locating Bkj
mov ecx, ebp
imul ecx, NUM_ROW ; ecx contains the offset of the
; beginning of
the kth row from
; the beginning
of the B matrix
add ecx, edi ; get to the jth column
; of the kth row
of the B matrix
fmul gqword ptr [ebx][ecx] ;Aik & BkjJ
pop ecx ;esi * num_col in ecx again
push ecx ;also at top of program
stack

; add to the result in the output matrix, Tij
add ecx, edi

; accumulating the sum of Aik * Bkj
fadd qword ptr [edx] [ecx]
fstp gword ptr [edx] [ecx]

; increment k by 1, i.e., ebp by 8
add ebp, 8

; Has k reached the width of the matrix yet?
cmp ebp, NUM_COL*8
j1 NXT_k

; Restore registers

pop ecx ;jclear esi_num_col from stack
pop ecx jrestore ecx

pop ebp ;restore ebp

ret

matrix_elem endp

matrix_row proc far
xor edi, edi
jscan across a row

NXT_COL:
call matrix_elem
add edi, 8
cmp edi, NUM_COL*8
j1 NXT_COL
ret

I 8-33

NUMERIC PROGRAMMING EXAMPLES

matrix_row endp

matrixmul_proc proc far
; This procedure does the matrix multiplication by calling
; matrix_row to calculate entries in each row.

I

; The matrix multiplication is performed in the following

; manner,

; Tij = Aik x Bkj
; where i and j denote the row and column

; respectively and k is the index for scanning
; across the ith row of the first matrix and

; the jth

mov
indexing
mov
mov
mov

column of the second matrix.

ebp,

edx,
ebx,
eax,

esp

dword ptr [ebp+4] i
dword ptr [ebp+8] H
dword ptr [ebp+12] ;

; setup esi and edi
; edi points to the column
; esi points to the row

Xor

NXT_ROW:

esi, esi

call matrix_row

add
cmp
jl
ret
pointers

esi, 8

esi, NUM_ROW*S8
NXT_ROW

12

matrixmul_ proc endp

trans_code ends

; use base pointer for

offset Tmx in edx
offset Bmx in ebx
offset Amx in eax

; clear esi

;pop off matrix

I.**

7

’

Main Program

’

;**

8-34

Intd ® NUMERIC PROGRAMMING EXAMPLES

main_code segment er

START:

mov esp, stackstart trans_stack

pushad ;save all registers

ECX denotes the number of joints where
number of matrices = NUM_JOINT + 1

Find the first matrix (from the base of the
system to the first joint) and call it Bmx

XOor ecx, ecx ;1lst matrix
mov ebx, offset Bmx
call trans_proc ; is Bmx

inc ecx

NXT_MATRIX:

From the 2nd matrix and on, it will be stored in Amx.

The result from the first matrix mult. is stored in

Tmx but will be accessed as Bmx in the next multiplication.
As a matter of fact, the roles of Bmx and Tmx alternate in
successive multiplications. This is achieved by reversing
the order of the Bmx and Tmx pointers being passed onto the
program stack. Thus, this is invislbe to the matrix
mutliplication procedure.

REVERSE serves as the indicator

REVERSE = 0 means that the result is to be placed in Tmx

mov ebx, offset Amx ;find Amx
call trans_proc

inc ecx

Xor REVERSE, 1h

jnz Bmx_as_Tmx

No reversing. Bms as the second input
matrix while Tmx as the output matrix.
push offset Amx
push offset Bmx
push offset Tmx
jmp CONTINUE

Reversing. Tmx as the second input
matrix while Bms as the output matrix.

8-35

n
NUMERIC PROGRAMMING EXAMPLES I ntd ®

Bmx_as_Tmx:
push offset Amx

push offset Tmx ;reversing the
push offset Bmx ;pointers passed
CONTINUE:

" call matrixmul_proc
cmp ecx, NUM_JOINT
jle NXT_MATRIX

; if REVERSE = 1 then the final answer
; will be in Bmx, otherwise in Tmx.

popad
main_code ends

end START, ds:trans_data, ss:trans_stack

8-36 I

Part 11

System Programming

intal.

Real-Address Mode
System Architecture

CHAPTER 9
REAL-ADDRESS MODE SYSTEM
ARCHITECTURE

The real-address mode of the Pentium processor runs programs written for the 8086, 8088,
80186, or 80188 processors, or for the real-address mode of Intel 286, Intel386, or Intel486
Processors.

The architecture of the processor in this mode is almost identical to that of the 8086, 8088,
80186, and 80188 processors. To a programmer, a 32-bit processor in real-address mode
appears as a high-speed 8086 processor or real-mode Intel 286 processor with extensions to
the instruction set and registers. The principal features of this architecture are defined in
Chapter 3 and Chapter 4.

This chapter discusses certain additional topics which complete the system programmer's
view of real-address mode:

® Address formation.

® Interrupt and exception handling.

® Real-address mode exceptions.

For information on input and output both in real-address mode and protected mode, refer to
Chapter 15.

9.1. ADDRESS TRANSLATION

In real-address mode, the processor does not interpret selectors by referring to descriptors;
instead, it forms linear addresses as an 8086 processor would. It shifts the selector left by
four bits to form a 20-bit base address. The effective address is extended with four clear bits
in the upper bit positions and added to the base address to create a linear address, as shown in
Figure 9-1.

I 9-1

u
REAL-ADDRESS MODE SYSTEM ARCHITECTURE Intd ®

19181716151413121110 9 8 7 6 5 4 3 2 1 0
BASE I 16-BIT SEGMENT SELECTOR]; 00 Ol

+ 19181716151413121110 9 8 7 6 5 4 3 2 1 0
OFFSET Io 00 0| 16-BIT EFFECTIVE ADDRESS

2019181716151413121110 9 8 7 8 6§ 4 3 2 1 0
FXXXXXXXXXXXXXXXXXXXXI

LINEAR
ADDRESS

APMé69

Figure 9-1. 8086 Address Translation

Because of the possibility of a carry, the resulting linear address may have as many as 21
significant bits. An 8086 program may generate linear addresses anywhere in the range 0 to
10_FFEFH (1 megabyte plus approximately 64K bytes) of the linear address space. (Note,
however, that on the Intel486 and Pentium processors, the A20M# signal can be used in real-
address mode to mask address signal A20, thereby mimicking the 20-bit wrap-around
behavior of the 8086 processor.) Because paging is not available in real-address mode, the
linear address is used as the physical address.

Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the
Pentium processor can generate 32-bit effective addresses using an address override prefix;
however in real-address mode, the value of a 32-bit address may not exceed 65,535 without
causing an exception. For full compatibility with Intel 286 real-address mode, pseudo-
protection faults (interrupt 12 or 13 with no error code) occur if an effective address is
generated outside the range 0 through 65,535.

9.2. REGISTERS AND INSTRUCTIONS

The register set available in real-address mode includes all the registers defined for the 8086
processor plus the new registers introduced with the Intel386 processor and Intel387
coprocessor: FS, GS, debug registers, control registers, test registers, and floating-point unit
registers. New instructions which explicitly operate on the segment registers FS and GS are
available, and the new segment-override prefixes can be used to cause instructions to use the
FS and GS registers for address calculations.

The instruction codes which generate invalid-opcode exceptions include instructions from
protected mode which move or test protected-mode segment selectors and segment
descriptors, i.e., the VERR, VERW, LAR, LSL, LTR, STR, LLDT, and SLDT instructions.
Programs executing in real-address mode are able to take advantage of the new application-
oriented instructions added to the architecture with the introduction of the 80186, 80188,
Intel 286, Intel386, Intel486, and Pentium processors.

9-2 I

-
Intd ® REAL-ADDRESS MODE SYSTEM ARCHITECTURE

Unlike the 8086 and Intel 286 processors, but like the Intel386 and Intel486 processors, the
Pentium processor offers an operand-size override prefixe which enables access to 32-bit
operands. This prefix should not be used, however, if compatibility with the 8086 or Intel
286 processors is desired.

9.3. INTERRUPT AND EXCEPTION HANDLING

Interrupts and exceptions in real-address mode work much as they do on an 8086 processor.
Interrupts and exceptions call interrupt procedures through an interrupt table. The processor
scales the interrupt or exception identifier by four to obtain an index into the interrupt table.
The entries of the interrupt table are far pointers to the entry points of interrupt or exception
handler procedures. When an interrupt occurs, the processor pushes the current values of the
CS and IP registers onto the stack, disables interrupts, clears the TF flag, and transfers
control to the location specified in the interrupt table. An IRET instruction at the end of the
handler procedure reverses these steps before returning control to the interrupted procedure.
Exceptions do not return error codes in real-address mode.

The primary difference in the interrupt handling of the 32-bit processors in real-address mode
compared to the 8086 processor is that the location and size of the interrupt table depend on
the contents of the IDTR register. Ordinarily, this fact is not apparent to programmers,
because, after reset initialization, the IDTR register contains a base address of 0 and a limit
of 3FFH, which is compatible with the 8086 processor. However, the LIDT instruction can
be used in real-address mode to change the base and limit values in the IDTR register. See
Chapter 9 for details on the IDTR register, and the LIDT and SIDT instructions. If an
interrupt occurs and its entry in the interrupt table is beyond the limit stored in the IDTR
register, a double-fault exception is generated.

9.4. REAL-ADDRESS MODE EXCEPTIONS

The processor reports some exceptions differently when executing in real-address mode than
when executing in protected mode. Table 9-1 details the real-address-mode exceptions.

REAL-ADDRESS MODE SYSTEM ARCHITECTURE

Table 9-1. Exceptions and Interrupts

in

Does the Return Address

Stack Exception

CS, DS, ES, FS, GS
Segment Overrun

12

13

Stack operation crosses address
limit (beyond offset FFFFH)

Word memory reference beyond
offset FFFFH. An attempt to execute
ast the end of CS segment

Point to the
Source of the Instruction Which Caused
Description Vector Exception the Exception?

Divide Error 0 DIV and IDIV instructions yes
Debug 1 Any 1
NMI 2 Nonmaskable Interrupt yes
Breakpoint 3 INT instruction no
Overflow 4 INTO instruction no
Bounds Check 5 BOUND instruction yes
Invalid Opcode 6 Reserved opcodes and improper yes

use of LOCK prefix
Device not available 7 ESC or WAIT instructions yes
Double Fault Interrupt table limit too small, fault yes

occurring while handling another

fault
Reserved 9

yes

yes

Reserved 15

Floating-Point Error 16 ESC or WAIT instructions yes?
Intel Reserved 18-31

Software Interrupt 0-255 INT ninstructions no
Maskable Interrupt 32-255 yes

NOTES:

1. Some debug exceptions point to the faulting instruction, others point to the following instruction. The
exception handler can test the DR6 register to determine which has occurred.

2. Floating-point errors are reported on the first ESC or WAIT instruction after the ESC instruction which

generated the error.

3. Exceptions 10, 11, 14 and 17 do not occur in Real Mode, but are possible in virtual 8086 mode.

intgl.

10

Protected-Mode
System Architecture
Overview

intel.
CHAPTER 10

PROTECTED-MODE SYSTEM ARCHITECTURE
OVERVIEW

Many of the architectural features of the processor are used only by system programmers.
This chapter presents an overview of these features. Application programmers may need to
read this chapter, and the following chapters which describe the use of these features, in
order to understand the hardware facilities used by system programmers to create a reliable
and secure environment for application programs. The system-level architecture also supports
powerful debugging features which application programmers may wish to use during
program development.

The system-level features of the architecture include:

Memory Management

Protection

Multitasking

Exceptions and Interrupts
Input/Output

Initialization and Mode Switching
FPU Management

Debugging

Cache Management

Multiprocessing

These features are supported by registers and instructions, all of which are introduced in the
following sections. The purpose of this chapter is not to explain each feature in detail, but
rather to place the remaining chapters about protected mode and systems programming in
perspective. When a register or instruction is mentioned, it is accompanied by an explanation
or a reference to a following chapter.

10.1. SYSTEM REGISTERS

The registers intended for use by system programmers fall into these categories:

® EFLAGS Register

® Memory-Management Registers
® Control Registers

® Debug Registers

I 10-1

-
PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW Intel ®

The system registers control the execution environment of application programs. Most
systems restrict access to these facilities by application programs (although systems can be
built where all programs run at the most privileged level, in which case application programs
are allowed to modify these facilities).

10.1.1. System Flags

The system flags of the EFLAGS register control I/O, maskable interrupts, debugging, task
switching, and the virtual-8086 mode. An application program should ignore these system
flags, and should not attempt to change their state. In some systems, an attempt to change the
state of a system flag by an application program results in an exception. These flags are
shown in Figure 10-1.

31 /30/29/25/27/26/25/24/23/22/21 /20/19/18/17/16/15/14/13 12/11/10/9 /8 /7 /6 /5 /4 /3 /2/7 [0/

D IDENTIFICATION FLAG

VIP VIRTUAL INTERRUPT PENDING
VIF VIRTUAL INTERRUPT FLAG

AC ALIGNMENT CHECK
VM VIRTUAL 8086 MODE
RF RESUME FLAG
NT NESTED TASK FLAG
IOPL /O PRIVILEGE LEVEL:
IF INTERRUPT ENABLE FLAG
TF TRAP FLAG

BIT POSITIONS SHOWN AS 0 OR 1 ARE INTEL RESERVED. DO NOT USE.
ALWAYS SET THEM TO THE VALUE PREVIOUSLY READ.

PP0066

Figure 10-1. System Flags

ID (Identification Flag, bit 21)

The ability of a program to set and clear the ID flag indicates that the processor supports the
CPUID instruction. Refer to Chapter 25 for details about CPUID.

VIP (Virtual Interrupt Pending Flag, bit 20)

The VIP flag together with the VIF enable each applications program in a multitasking
environment to have virtualized versions of the system's IF flag. For more on the use of these
flags in virtual-8086 mode and in protected mode, refer to Appendix H.

10-2 I

L]
Intd ® PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

VIF (Virtual Interrupt Flag, bit 19)
The VIF is a virtual image of IF (the interrupt flag) used with VIP.

AC (Alignment Check Mode, bit 18)

Setting the AC flag and the AM bit in the CRO register enables alignment checking on
memory references. An alignment-check exception is generated when reference is made to an
unaligned operand, such as a word at an odd byte address or a doubleword at an address
which is not an integral multiple of four. Alignment-check exceptions are generated only in
user mode (privilege level 3). Memory references which default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by a memory
reference in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when
exchanging data with other processors, such as the i860™ microprocessor, which require all
data to be aligned. The alignment-check exception can also be used by interpreters to flag
some pointers as special by misaligning the pointer. This eliminates overhead of checking
each pointer and only handles the special pointer when used.

VM (Virtual-8086 Mode, bit 17)

Setting the VM flag places the processor in virtual-8086 mode, which is an emulation of the
programming environment of an 8086 processor. See Chapter 22 for more information.

RF (Resume Flag, bit 16)

The RF flag temporarily disables debug faults so that an instruction can be restarted after a
debug fault without immediately causing another debug fault. The debugger sets this flag
with the IRETD instruction when returning to the interrupted program. The RF flag is not
affected by the POPF, POPFD or IRET instructions. See Chapter 14 and Chapter 17 for
details.

NT (Nested Task, bit 14)

The processor sets and tests the nested task flag to control chaining of interrupted and called
tasks. The NT flag affects the operation of the IRET instruction. The NT flag is affected by
the POPF, POPFD, and IRET instructions. Improper changes to the state of this flag can
generate unexpected exceptions in application programs. See Chapter 13 and Chapter 14 for
more information on nested tasks.

IOPL (I/O Privilege Level, bits 12 and 13)

The I/0 privilege level is used by the protection mechanism to control access to the I/O
address space. The privilege level of the code segment currently executing (CPL) and the
IOPL determine whether this field can be modified by the POPF, POPFD, and IRET
instructions. See Chapter 15 for more information.

I 10-3

]
PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW Intd ®

IF (Interrupt-Enable Flag, bit 9)

Setting the IF flag puts the processor in a mode in which it responds to maskable interrupt
requests (INTR interrupts). Clearing the IF flag disables these interrupts. The IF flag has no
effect on either exceptions or nonmaskable interrupts (NMI interrupts). The CPL and IOPL
determine whether this field can be modified by the CLI, STI, POPF, POPFD, and IRET
instructions. See Chapter 14 for more details about interrupts.

TF (Trap Flag, bit 8)

Setting the TF flag puts the processor into single-step mode for debugging. In this mode, the
processor generates a debug exception after each instruction, which allows a program to be
inspected as it executes each instruction. Single-stepping is just one of several debugging
features of the processor. If an application program sets the TF flag using the POPF, POPFD,
or IRET instructions, a debug exception is generated. See Chapter 14 and Chapter 17 for
more information.

10.1.2. Memory-Management Registers

Four registers of the processor specify the locations of the data structures which control
segmented memory management, as shown in Figure 10-2. Special instructions are provided
for loading and storing these registers. The GDTR and IDTR registers can be loaded with
instructions which get a six-byte block of data from memory. The LDTR and TR registers
can be loaded with instructions which take a 16-bit segment selector as an operand. The
remaining bytes of these registers are then loaded automatically by the processor from the
descriptor referenced by the operand.

SYSTEM ADDRESS REGISTERS
32-BIT LINEAR BASE ADDRESS LIMIT
47 1615 0
GDTR | |
IDTR [|
SYSTEM SEGMENT
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
15 0 32-BIT LINEAR BASE ADDRESS __ 32-BIT SEGMENT LIMIT __ ATTRIBUTES
TR [SELECTOR 1 171 T11
LDTR [SELECTOR 1 11

APM65

Figure 10-2. Memory Management Registers

Most systems protect the instructions which load memory-management registers from use by
application programs (although a system in which no protection is used is possible).

10-4 I

-
Intd ® PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

GDTR Global Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the global descriptor
table (GDT). When a reference is made to data in memory, a segment selector is used to find
a segment descriptor in the GDT or LDT. A segment descriptor contains the base address for
a segment. See Chapter 11 for an explanation of segmentation.

LDTR Local Descriptor Table Register

This register holds the 32-bit base address, 32-bit segment limit, descriptor attributes, and
16-bit segment selector for the local descriptor table (LDT). The segment which contains the
LDT has a segment descriptor in the GDT. There is no segment selector for the GDT. When
a reference is made to data in memory, a segment selector is used to find a segment
descriptor in the GDT or LDT. A segment descriptor contains the base address for a segment.
See Chapter 11 for an explanation of segmentation.

IDTR Interrupt Descriptor Table Register

This register holds the 32-bit base address and 16-bit segment limit for the interrupt
descriptor table (IDT). When an interrupt occurs, the interrupt vector is used as an index to
get a gate descriptor from this table. The gate descriptor contains a pointer used to start up
the interrupt handler. See Chapter 14 for details of the interrupt mechanism.

TR Task Register

This register holds the 32-bit base address, 32-bit segment limit, descriptor attributes, and
16-bit segment selector for the task currently being executed. It references a task state
segment (TSS) descriptor in the global descriptor table. See Chapter 13 for a description of
the multitasking features of the processor.

10.1.3. Control Registers

Figure 10-3 shows the format of the control registers CR0, CR1, CR2, CR3, and CR4. Most
systems prevent application programs from loading the control registers (although an
unprotected system would allow this). Application programs can read these registers; for
example, reading CRO to determine if a numerics coprocessor is present. Forms of the MOV
instruction allow these registers to be loaded from or stored in general registers. For example:

MOV EAX, CRO
MOV CR3, EBX

Refer to Chapter 16 for a list of the initial values of all these registers.

I 10-5

L)
PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW Intel ®

1 CR4
PAGE DIRECTORY BASE CR3
PAGE FAULT LINEAR ADDRESS CR2

CR1

CRoO

“&E VAR 21 2B 25 A B % 2\ W B\INNTIAG A A2 A0 © 8 T B\S)\A\3N2\4\0

APMé63

Figure 10-3. Control Registers

The CRO register contains system control flags, which control modes or indicate states which
apply generally to the processor, rather than to the execution of an individual task. A
program should not attempt to change any of the reserved bit positions. Reserved bits should
always be set to the value previously read.

PG (Paging, bit 31 of CR0)

This bit enables paging when set and disables paging when clear. See Chapter 11 for more
information about paging. See Chapter 16 for information on how to enable paging.

When an exception is generated during paging, the CR2 register has the 32-bit linear address
which caused the exception. See Chapter 14 for more information about handling exceptions
generated during paging (page faults).

When paging is used, the CR3 register has the 20 most-significant bits of the address of the
page directory (the first-level page table). The CR3 register is also known as the page-
directory base register (PDBR). Note that the page directory must be aligned to a page
boundary, so the low 12 bits of the register are not used as address bits. Unlike the Intel386
DX processor, the Intel486 and Pentium processors assign functions to two of these bits.
These are:

® PCD (Page-Level Cache Disable, bit 4 of CR3)

The state of this bit is driven on the PCD pin during bus cycles which are not paged, such
as interrupt acknowledge cycles, when paging is enabled. It is driven during all bus
cycles when paging is not enabled. The PCD pin is used to control caching in an external
cache on a cycle-by-cycle basis.

10-6 I

L
lntd ® PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

® PWT (Page-Level Writes Transparent, bit 3 of CR3)

The state of this bit is driven on the PWT pin during bus cycles which are not paged,
such as interrupt acknowledge cycles, when paging is enabled. It is driven low during all
bus cycles when paging is not enabled. The PWT pin is used to control write through in
an external cache on a cycle-by-cycle basis.

CD (Cache Disable, bit 30 of CRO)

This bit enables the internal cache fill mechanism when clear and disables it when set. Cache
misses do not cause cache line fills when the bit is set. Note that cache hits are not disabled;
to completely disable the cache, the cache must be invalidated. See Chapter 18 for
information on caching.

NW (Not Writethrough, bit 29 of CR0)

This bit enables writethroughs and cache invalidation cycles when clear and disables
invalidation cycles and writethroughs which hit in the cache when set. See Chapter 18 for
information on caching.

AM (Alignment Mask, bit 18 of CR0)

This bit allows alignment checking when set and disables alignment checking when. clear.
Alignment checking is performed only when the AM bit is set, the AC flag is set, and the
CPL is 3 (user mode).

WP (Write Protect, bit 16 of CR0)

When set, this bit write-protects pages against supervisor-level writes. When this bit is clear,
read-only pages can be written by a supervisor process. This feature is useful for
implementing the copy-on-write method of creating a new process (forking) used by some
operating systems, such as UNIX*.

NE (Numeric Error, bit 5 of CR0)

This bit enables the standard mechanism for reporting floating-point numeric errors when set.
When NE is clear and the IGNNE# input is active, numeric errors are ignored. When the NE
bit is clear and the IGNNE# input is inactive, a numeric error causes the processor to stop
and wait for an interrupt. The interrupt is generated by using the FERR# pin to drive an input
to the interrupt controller (the FERR# pin emulates the ERROR# pin of the Intel287 and
Intel387 DX math coprocessors). The NE bit, IGNNE# pin, and FERR# pin are used with
external logic to implement PC-style error reporting.

ET (Extension Type, bit 4 of CR0)

This bit is one to indicate support of Intel387 DX math coprocessor instructions (on the
Pentium microprocessor, this bit is reserved).

l 10-7

-
PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW InU ®

TS (Task Switched, bit 3 of CR0)

The processor sets the TS bit with every task switch and tests it when interpreting floating-
point arithmetic instructions. This bit allows delaying save/restore of numeric context until
the numeric data is actually used. The CLTS instruction clears this bit.

EM (Emulation, bit 2 of CR0)

When the EM bit is set, execution of a numeric instruction generates the device-not-available
exception. The EM bit must be set when the processor does not have a floating-point unit.

MP (Monitor coProcessor, bit 1 of CR0)

On the Intel 286 and Intel386 DX processors, the MP bit controls the function of the WAIT
instruction, which is used to synchronize with a coprocessor. When running Intel 286 and
Intel386 DX CPU programs on processors with the Intel486 processor and Pentium processor
FPUs, this bit should be set. The MP bit should be reset in the Intel486 SX CPU.

PE (Protection Enable, bit 0 of CR0)

Setting the PE bit enables segment-level protection. See Chapter 12 for more information
about protection. See Chapter 16 for information on how to enable paging.

The CR4 register contains bits that enable certain architectural extensions. This register is
new with the Pentium microprocessor.

VME (Virtual-8086 Mode Extensions, bit 0 of CR4)

Setting this bit to 1 enables support for a virtual interrupt flag in virtual-8086 mode. This
feature can improve the performance of virtual-8086 applications by eliminating the
overhead of faulting to a virtual-8086 monitor for emulation of certain operations. Refer to
Appendix H for more information on this feature.

PVI (Protected-Mode Virtual Interrupts, bit 1 of CR4)

Setting this bit to 1 enables support for a virtual interrupt flag in protected mode. This feature
can enable some programs designed for execution at privilege level O to execute at privilege
level 3. Refer to Appendix H for more information on this feature.

TSD (Time Stamp Disable, bit 2 of CR4)

Setting this bit to 1 makes RDTSC (read from time stamp counter) a privileged instruction.
Refer to Chapter 25 for details on the RDTSC instruction.

DE (Debugging Extensions, bit 3 of CR4)

Setting this bit to 1 enables I/O breakpoints. Refer to Chapter 17 for more information on
debugging.

10-8 I

InU ® PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

PSE (Page Size Extensions, bit 4 of CR4)

Setting this bit to 1 enables four-megabyte pages. Refer to Appendix H for information about
this feature.

MCE (Machine Check Enable, bit 6 of CR4)

Setting this bit to 1 enables the machine check exception.

Notes

All new features (VME, PVI, TSD, DE and PSE) in the CPUID feature flag should be
qualified with the CPUID instruction and are model specific.

10.1.4. Debug Registers

The debug registers bring advanced debugging abilities to the processor, including data
breakpoints and the ability to set instruction breakpoints without modifying code segments
(useful in debugging ROM-based software). Only programs executing at the highest privilege
level can access these registers. See Chapter 17 for a complete description of their formats
and use. The debug registers are shown in Figure 10-4.

I 10-9

PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

BREAKPOINT 3 LINEAR ADDRESS

| i i

I I T

BREAKPOINT 2 LINEAR ADDRESS

i |
I T

BREAKPOINT 1 LINEAR ADDRESS

Il L |
I | !

—+

BREAKPOINT 0 LINEAR ADDRESS

] !]
A 20 29 28 27 26 25 28023 2221 20 A3 AB AT A5 143210 A0 9 3\1 & 5 A4 3 2 A O

DR7

DR6

DR5

DR4

DR3

DR2

DR1

DRO

RESERVED BITS. DO NOT DEFINE.

APMé64

10-10

Figure 10-4. Debug Registers

L]
lnté ® PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

10.2. SYSTEM INSTRUCTIONS

System instructions deal with functions such as:
1. Verfication of pointer parameters (see Chapter 12):

Useful to Protected from
Instruction Description Application? Application?
ARPL Adjust RPL No No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
2. Addressing descriptor tables (see Chapter 11):
Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register Yes No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
3. Multitasking (see Chapter 13):
Useful to Protected from
Instruction Description Application? Application?
LTR Load Task Register No Yes
STR Store Task Register Yes No
4. Floating-point numerics (see Chapter 6):
Useful to Protected from
Instruction Description Application? Application?
CLTS Clear TS bitin CRO No Yes
ESC Escape Instructions Yes No
WAIT Wait Until Coprocessor Not Yes No
Busy
10-11

PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

intgl.

5. Input and output (see Chapter 15):
Useful to Protected from
Instruction Description Application? Application?
IN Input Yes Can be
ouT Output Yes Can be
INS Input String Yes Can be
OouUTS Output String Yes Can be
6. Interrupt control (see Chapter 14):
Useful to Protected from
Instruction Description Application? Application?
CLI Clear IF flag Can be Can be
STI Set IF flag Can be Can be
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
7. Debugging (see Chapter 17):
Useful to Protected from
Instruction Description Application? Application?
MoV Load and store debug No Yes
registers
8. Cache Management (see Chapter 18):
Useful to Protected from
Instruction Description Application? Application?
INVD Invalidate cache, No Yes
no writeback .
WBINVD Invalidate cache, No Yes
with writeback
INVLPG Invalidate TLB entry No Yes
10-12

-
Intd ® PROTECTED-MODE SYSTEM ARCHITECTURE OVERVIEW

9. System Control:

Useful to Protected from
Instruction Description Application? Application?
SMSW Store MSW Yes No
LMSW Load MSW No Yes
MOV Load And Store Control No Yes
Register
HLT Halt Processor No Yes
LOCK Bus Lock No No
RSM Return from system No Yes
management mode

The SMSW and LMSW instructions are provided for compatibility with the 16-bit
Intel 286 processor. Programs for 32-bit processors such as the Pentium microprocessor
should not use these instructions. Instead, they should access the Control Registers using
forms of the MOV instruction. The LMSW instruction does not affect the PG, CD, NW,
AM, WP, NE or ET bits, and it cannot be used to clear the PE bit.

The HLT instruction stops the processor until an enabled interrupt or RESET signal is
received. (Note that the NMI and SMI interrupts are always enabled.) A special bus
cycle is generated by the processor to indicate halt mode has been entered. Hardware
may respond to this signal in a number of ways. An indicator light on the front panel
may be turned on. An NMI interrupt for recording diagnostic information may be
generated. Reset initialization may be invoked. Software designers may need to be aware
of the response of hardware to halt mode.

The LOCK instruction prefix is used to invoke a locked (atomic) read-modify-write
operation when modifying a memory operand. The LOCK# signal is asserted and the
processor does not respond to requests for bus control during a locked operation. This
mechanism is used to allow reliable communications between processors in
multiprocessor systems.

In addition to the chapters mentioned above, detailed information about each of these
instructions can be found in the instruction reference chapter, Chapter 25.

I 10-13

intal.

11

Protected-Mode
Memory
Management

intel.
CHAPTER 11

PROTECTED-MODE MEMORY MANAGEMENT

Memory management is a hardware mechanism which lets operating systems create
simplified environments for running programs. For example, when several programs are
running at the same time, they must each be given an independent address space. If they all
had to share the same address space, each would have to perform difficult and time-
consuming checks to avoid interfering with the others.

Memory management consists of segmentation and paging. Segmentation is used to give
each program several independent, protected address spaces. Paging is used to support an
environment where large address spaces are simulated using a small amount of RAM and
some disk storage. System designers can choose to use either or both of these mechanisms.
When several programs are running at the same time, either mechanism can be used to
protect programs against interference from other programs.

Segmentation allows memory to be completely unstructured and simple, like the memory
model of an 8-bit processor, or highly structured with address translation and protection. The
memory management features apply to units called segments. Each segment is an
independent, protected address space. Access to segments is controlled by data which
describes its size, the privilege level required to access it, the kinds of memory references
which can be made to it (instruction fetch, stack push or pop, read operation, write operation,
etc.), and whether it is present in memory.

Segmentation is used to control memory access, which is useful for catching bugs during
program development and for increasing the reliability of the final product. It also is used to
simplify the linkage of object code modules. There is no reason to write position-independent
code when full use is made of the segmentation mechanism, because all memory references
can be made relative to the base addresses of a module's code and data segments.
Segmentation can be used to create ROM-based software modules, in which fixed addresses
(fixed, in the sense that they cannot be changed) are offsets from a segment's base address.
Different software systems can have the ROM modules at different physical addresses
because the segmentation mechanism will direct all memory references to the right place.

In a simple memory architecture, all addresses refer to the same address space. This is the
memory model used by 8-bit microprocessors, such as the 8080 processor, where the logical
address is the physical address. The 32-bit processors in protected mode can be used in this
way by mapping all segments into the same address space and keeping paging disabled. This
might be done where an older design is being updated to 32-bit technology without also
adopting the new architectural features.

An application also could make partial use of segmentation. A frequent cause of software
failures is the growth of the stack into the instruction code or data of a program.
Segmentation can be used to prevent this. The stack can be put in an address space separate
from the address space for either code or data. Stack addresses always would refer to the
memory in the stack segment, while data addresses always would refer to memory in the data

L
PROTECTED-MODE MEMORY MANAGEMENT Intd ®

segment. The stack segment would have a maximum size enforced by hardware. Any attempt
to grow the stack beyond this size would generate an exception.

A complex system of programs can make full use of segmentation. For example, a system in
which programs share data in real time can have precise control of access to that data.
Program bugs appear as exceptions generated when a program makes improper access. This
is useful as an aid to debugging during program development, and it also can be used to
trigger error-recovery procedures in systems delivered to the end user.

Segmentation hardware translates a segmented (logical) address into an address for a
continuous, unsegmented address space, called a linear address. If paging is enabled, paging
hardware translates a linear address into a physical address. If paging is not enabled, the
linear address is used as the physical address. The physical address appears on the address
bus coming out of the processor.

Paging is a mechanism used to simulate a large, unsegmented address space using a small,
fragmented address space and some disk storage. Paging provides access to data structures
larger than the available memory space by keeping them partly in memory and partly on
disk.

Paging is applied to units of 4 kilobytes called pages. When a program attempts to access a
page which is on disk, the program is interrupted in a special way. Unlike other exceptions
and interrupts, an exception generated due to address translation restores the contents of the
processor registers to values which allow the exception-generating instruction to be re-
executed. This special treatment enables instruction restart; that is, it allows the operating
system to read the page from disk, update the mapping of linear addresses to physical
addresses for that page, and restart the program. This process is transparent to the program.

Paging is optional. If an operating system never enables the paging mechanism, linear
addresses will be used as physical addresses. This might be done where a design using a 16-
bit processor is being updated to use a 32-bit processor. An operating system written for a 16-
bit processor does not use paging because the size of its address space is so small (64K bytes)
that it is more efficient to swap entire segments between RAM and disk, rather than
individual pages.

Paging would be enabled for operating systems, such as UNIX, which can support demand-
paged virtual memory. Paging is transparent to application software, so an operating system
intended to support application programs written for 16-bit processors can run those
programs with paging enabled. Unlike paging, segmentation is not transparent to application
programs. Programs which use segmentation must be run with the segments they were
designed to use.

11.1. SELECTING A SEGMENTATION MODEL

A model for the segmentation of memory is chosen on the basis of reliability and
performance. For example, a system which has several programs sharing data in real time
would get maximum performance from a model which checks memory references in
hardware. This would be a multisegment model.

-
Intd ® PROTECTED-MODE MEMORY MANAGEMENT

At the other extreme, a system which has just one program may get higher performance from
an unsegmented or "flat" model. The elimination of "far" pointers and segment-override
prefixes reduces code size and increases execution speed. Context switching is faster,
because the contents of the segment registers no longer have to be saved or restored.

Some of the benefits of segmentation also can be provided by paging. For example, data can
be shared by mapping the same pages onto the address space of each program.

11.1.1. Flat Model

The simplest model is the flat model. In this model, all segments are mapped to the entire
physical address space. A segment offset can refer to either code or data areas. To the
greatest extent possible, this model removes the segmentation mechanism from the
architecture seen by either the system designer or the application programmer. This might be
done for a programming environment like UNIX, which supports paging but does not support
segmentation.

A segment is defined by a segment descriptor. At least two segment descriptors must be
created for a flat model, one for code references and one for data references. Both descriptors
have the same base address value. Whenever memory is accessed, the contents of one of the
segment registers are used to select a segment descriptor. The segment descriptor provides
the base address of the segment and its limit, as well as access control information (see
Figure 11-1).

ROM usually is put at the top of the physical address space, because the processor begins
execution at FFFF_FFFOH. RAM is placed at the bottom of the address space because the
initial base address for the DS data segment after reset initialization is O.

For a flat model, each descriptor has a base address of 0 and a segment limit of 4 gigabytes.
By setting the segment limit to 4 gigabytes, the segmentation mechanism is kept from
generating exceptions for memory references which fall outside of a segment. Exceptions
could still be generated by the paging or segmentation protection mechanisms, but these also
can be removed from the memory model.

L]
PROTECTED-MODE MEMORY MANAGEMENT Intd ®

SEGMENT CODE AND DATA SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY
r cs EPROM 4G
r ss
L= 3
[ACCESS [LIMIT DRAM
| BASE ADDRESS |
I ES I_____,) BASE ADDRESS |-) 0
. - /
| Gs

APM93

Figure 11-1. Flat Model

11.1.2. Protected Flat Model

The protected flat model is like the flat model, except the segment limits are set to include
only the range of addresses for which memory actually exists. A general-protection exception
will be generated on any attempt to access unimplemented memory. This might be used for
systems in which the paging mechanism is disabled, because it provides a minimum level of
hardware protection against some kinds of program bugs.

In this model, the segmentation hardware prevents programs from addressing nonexistent
memory locations. The consequences of being allowed access to these memory locations are
hardware-dependent. For example, if the processor does not receive a READY# signal (the
signal used to acknowledge and terminate a bus cycle), the bus cycle does not terminate and
program execution stops.

Although no program should make an attempt to access these memory locations, an attempt
may occur as a result of program bugs. Without hardware checking of addresses, it is
possible that a bug could suddenly stop program execution. With hardware checking,
programs fail in a controlled way. A diagnostic message can appear and recovery procedures
can be attempted.

An example of a protected flat model is shown in Figure 11-2. Here, segment descriptors
have been set up to cover only those ranges of memory which exist. A code and a data
segment cover the EPROM and DRAM of physical memory. The code segment base and
limit can optionally be set to allow access to DRAM area. The data segment limit must be set
to the sum of EPROM and DRAM sizes. If memory-mapped I/O is used, it can be addressed
just beyond the end of DRAM area.

=
|ntd ® PROTECTED-MODE MEMORY MANAGEMENT

SEGMENT SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY
4G
ACCESS |_LIMIT
BASE ADDRESS EPROM
> Muwomio
[AccEss | LmMiT
| DS } > Hores 505
] N

APM97

Figure 11-2. Protected Flat Model

11.1.3. Multisegment Model

The most sophisticated model is the multisegment model. Here, the full capabilities of the
segmentation mechanism are used. Each program is given its own table of segment
descriptors, and its own segments. The segments can be completely private to the program,
or they can be shared with specific other programs. Access between programs and particular
segments can be individually controlled.

Up to six segments can be ready for immediate use. These are the segments which have
segment selectors loaded in the segment registers. Other segments are accessed by loading
their segment selectors into the segment registers (see Figure 11-3).

Each segment is a separate address space. Even though they may be placed in adjacent
blocks of physical memory, the segmentation mechanism prevents access to the contents of
one segment by reading beyond the end of another. Every memory operation is checked
against the limit specified for the segment it uses. An attempt to address memory beyond the
end of the segment generates a general-protection exception.

The segmentation mechanism only enforces the address range specified in the segment
descriptor. It is the responsibility of the operating system to allocate separate address ranges
to each segment. There may be situations in which it is desirable to have segments which
share the same range of addresses. For example, a system can have both code and data stored
in a ROM. A code segment descriptor would be used when the ROM is accessed for
instruction fetches. A data segment descriptor would be used when the ROM is accessed as
data.

-
PROTECTED-MODE MEMORY MANAGEMENT Intd ®

SEGMENT SEGMENT PHYSICAL
REGISTERS DESCRIPTORS MEMORY

[ACCESS | __LIMIT
BASE ADDRESS

JACCESS | _LIMIT
BASE ADDRESS

“ [ACCESS | _LmiT_|
BASE ADDRESS

ES

BASE ADDRESS

[LIMIT_|
BASE ADDRESS
[ACCESS | _LIMIT
BASE ADDRESS

ACCESS LIMIT
BASE ADDRESS

ACCESS LIMIT
BASE ADDRESS

ACCESS LIMIT
BASE ADDRESS

[ACCESS [T]
[_BASE ADDRESS] —>

APMS5

Figure 11-3. Multisegment Model

11.2. SEGMENT TRANSLATION

A logical address consists of the 16-bit segment selector for its segment and a 32-bit offset
into the segment. The logical address is checked for access rights and range. If it passes these
tests, the logical address is translated into a linear address by adding the offset to the base
address of the segment. The base address comes from the segment descriptor, a data structure
in memory which provides the size and location of a segment, as well as access control
information. The segment descriptor comes from one of two tables; the global descriptor
table (GDT) or the local descriptor table (LDT). There is one GDT for all programs in the
system and one LDT for each separate program being run. If the operating system allows,
different programs can share the same LDT. The system also can be set up with no LDTs; all
programs will then use the GDT.

Every logical address is associated with a segment (even if the system maps all segments into
the same linear address space). Although a program can have thousands of segments, only six
can be available for immediate use. These are the six segments whose segment selectors are

-
Intd ® PROTECTED-MODE MEMORY MANAGEMENT

loaded in the processor. The segment selector holds information used to translate the logical
address into the corresponding linear address.

Separate segment registers exist in the processor for each kind of memory reference (code
space, stack space, and data spaces). They hold the segment selectors for the segments
currently in use. Access to other segments requires loading a segment register using a form of
the MOV instruction. Up to four data spaces can be available at the same time, thus
providing a total of six segment registers.

When a segment selector is loaded, the base address, segment limit, and access control
information also are loaded into the segment register. The processor does not reference the
descriptor tables in memory again until another segment selector is loaded. The information
saved in the processor allows it to translate addresses without making extra bus cycles. In
systems in which multiple processors have access to the same descriptor tables, it is the
responsibility of software to reload the segment registers when the descriptor tables are
modified. If this is not done, an old segment descriptor cached in a segment register might be
used after its memory-resident version has been modified.

The segment selector contains a 13-bit index into one of the descriptor tables. The index is
scaled by eight (the number of bytes in a segment descriptor) and added to the 32-bit base
address of the descriptor table. The base address comes from either the global descriptor
table register (GDTR) or the local descriptor table register (LDTR). These registers hold the
linear address of the beginning of the descriptor tables. A bit in the segment selector specifies
which table to use, as shown in Figure 11-4.

I 1-7

u
PROTECTED-MODE MEMORY MANAGEMENT InU ®

GLOBAL LOCAL
::&"gg; DESCRIPTOR DESCRIPTOR
TABLE TABLE

Ti=0 ¢ Ti=1 ¢
1] ; |

—> —>

SELECTOR
I LIMIT | LIMIT

[Bascabbress | ¢P™R [BASE ADDRESS LDTR

APM107

Figure 11-4. TI Bit Selects Descriptor Table

The translated address is the linear address, as shown in Figure 11-5. If paging is not used, it
is also the physical address. If paging is used, a second level of address translation produces
the physical address. This translation is described in Section 11.3.

PROTECTED-MODE MEMORY MANAGEMENT

LOGICAL [2 A 2
ADDRESS L SELECTOR | OFFSET |

DESCRIPTOR TABLE

} SEGMENT BASE)
DESCRIPTOR ADDRESS
31 0

LINEAR l
ADDRESS

APM106

Figure 11-5. Segment Translation

11.2.1. Segment Registers

Each kind of memory reference is associated with a segment register. Code, data, and stack
references each access the segments specified by the contents of their segment registers.
More segments can be made available by loading their segment selectors into these registers
during program execution.

Every segment register has a "visible" part and an "invisible" part, as shown in Figure 11-6.
There are forms of the MOV instruction to load the visible part of these segment registers.
The invisible part is loaded by the processor.

VISIBLE PART INVISIBLE PART

SELECTOR BASE ADDRESS, LIMIT, ETC. cs

Ds

ES

FS

GS

APM104

Figure 11-6. Segment Registers

-
PROTECTED-MODE MEMORY MANAGEMENT Intd ®

The operations which load these registers are instructions for application programs (described
in Chapter 4). There are two kinds of these instructions:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS
instructions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL and JMP
instructions. These instructions change the contents of the CS register as an incidental
part of their function.

When one of these instructions is executed, the visible part of the segment register is loaded
with a segment selector. The processor automatically loads the invisible part of the segment
register with information (such as the base address) from the descriptor table. Because most
instructions refer to segments whose selectors already have been loaded into segment
registers, the processor can add the logical-address offset to the segment base address with no
performance penalty.

11.2.2. Segment Selectors

A segment selector points to the information which defines a segment, called a segment
descriptor. A program may have more segments than the six whose segment selectors occupy
segment registers. When this is true, the program uses forms of the MOV instruction to
change the contents of these registers when it needs to access a new segment.

A segment selector identifies a segment descriptor by specifying a descriptor table and a
descriptor within that table. Segment selectors are visible to application programs as a part of
a pointer variable, but the values of selectors are usually assigned or modified by link editors
or linking loaders, not application programs. Figure 11-7 shows the format of a segment
selector.

51413121110 9 8 7 6 5 4 3/2/1 Off

INDEX T RP)
TABLE INDICATOR —A
0=GDT
1=LDT

REQUESTOR PRIVILEGE LEVEL
00 = MOST PRIVILEGED

11 = LEAST
APM105

Figure 11-7. Segment Selector

11-10 I

Intd ® PROTECTED-MODE MEMORY MANAGEMENT

Index: Selects one of 8192 descriptors in a descriptor table. The processor multiplies the
index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the descriptor table (from the GDTR or LDTR register).

Table Indicator bit: Specifies the descriptor table to use. A clear bit selects the GDT; a set
bit selects the current LDT.

Requestor Privilege Level: When this field of a selector contains a privilege level having a
greater value (i.e., less privileged) than the program, it effectively overrides the program's
privilege level for accesses that use that selector. When a program uses a less privileged
segment selector, memory accesses take place at the lesser privilege level. This is used to
guard against a security violation in which a less privileged program uses a more privileged
program to access protected data.

For example, system utilities or device drivers must run with a high level of privilege in
order to access protected facilities such as the control registers of peripheral interfaces. But
they must not interfere with other protected facilities, even if a request to do so is received
from a less privileged program. If a program requested reading a sector of disk into memory
occupied by a more privileged program, such as the operating system, the RPL can be used
to generate a general-protection exception when the less privileged segment selector is used.
This exception occurs even though the program using the segment selector would have a
sufficient privilege level to perform the operation on its own.

Because the first entry of the GDT is not used by the processor, a selector which has an index
of 0 and a table indicator of O (i.e., a selector which points to the first entry of the GDT) is
used as a "null selector." The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access
memory. This feature can be used to initialize unused segment registers.

11.2.3. Segment Descriptors

A segment descriptor is a data structure in memory which provides the processor with the
size and location of a segment, as well as control and status information. Descriptors
typically are created by compilers, linkers, loaders, or the operating system, but not
application programs. Figure 11-8 illustrates the general descriptor format. All types of
segment descriptors use a variation of this basic format.

I _ 11-11

u
PROTECTED-MODE MEMORY MANAGEMENT ' nu ®

31 30 29 28 27 26 25 24/23/22/21/20/19 18 17 16/15/14 15/12[11 10 9 8/7 6 & 4 3 2 7 0f

SEG D
LIMIT |P| P |S| TYPE BASE 23:16
19:16 L

BASE 31:24 +4

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00 +0

S\ NVW AWV MDD N NVBATANSANAN2MNNY 37T 85 A3 21\ Q0N

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE
BASE SEGMENT BASE ADDRESS
D/B DEFAULT OPERATION SIZE
(0 = 16-BIT SEGMENT; 1 = 32-BIT SEGMENT)
DPL DESCRIPTOR PRIVILEGE LEVEL
G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT
s DESCRIPTOR TYPE
(0= SYSTEM; 1 = APPLICATION)
SEGMENT TYPE
RESERVED

APM102

Figure 11-8. Segment Descriptors

Base: Defines the location of the segment within the 4-gigabyte physical address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment
base values should be aligned to 16-byte boundaries to allow programs to maximize
performance by aligning code/data on 16-byte boundaries.

Granularity bit: Turns on scaling of the Limit field by a factor of 4096 (2'?). When the bit
is clear, the segment limit is interpreted in units of one byte; when set, the segment limit is
interpreted in units of 4K bytes. Note that the twelve least significant bits of the address are
not tested when scaling is used. For example, a limit of O with the Granularity bit set results
in valid offsets from O to 4095. Also note that only the Limit field is affected. The base
address remains byte granular.

Limit: Defines the size of the segment. The processor puts together the two limit fields to
form a 20-bit value. The processor interprets the segment size in one of two ways, depending
on the setting of the Granularity bit:

1. If the Granularity bit is clear, the segment size is from 1 byte to 1 megabyte, in
increments of 1 byte.

2. If the Granularity bit is set, the segment size is from 4 kilobytes to 4 gigabytes, in
increments of 4K bytes.

11-12 I

L]
Intd ® PROTECTED-MODE MEMORY MANAGEMENT

For expand-up segments, a logical address can have an offset ranging from 0 to the limit.
Other offsets generate exceptions. Expand-down segments reverse the sense of the Limit
field; they can be addressed with any offset except those from O to the limit (see the Type
field, below). This is done to allow segments to be created in which increasing the value held
in the Limit field allocates new memory at the bottom of the segment's address space, rather
than at the top. Expand-down segments are intended to hold stacks, but it is not necessary to
use them. If a stack is going to be put in a segment which does not need to change size, it can
be a normal data segment.

S bit: Determines whether a given segment is a system segment or a code or data segment. If
the S bit is set, then the segment is either a code or a data segment. If it is clear, then the
segment is a system segment.

D bit/B bit: In a code segment, this bit is called the D bit, and it indicates the default length
for operands and effective addresses. If the D bit is set, then 32-bit operands and 32-bit
effective addressing modes are assumed. If it is clear, then 16-bit operands and addressing
modes are assumed. In a data segment, this bit is called the B bit, and it controls two aspects
of stack operation:

1. The size of the stack pointer register. If B = 1, pushes, pops and calls all use 32-bit ESP
register; if B = 0, stack operations use the 16-bit SP register.

2. The upper bound of an expand-down stack. In expand-down segments, the Limit field
specifies the lower bound of the stack segment, while the upper bound is an address of
all 1-bits. If B =1, the upper bound is FFFF_FFFFH; if B =0, the upper bound is
FFFFH.

Type: The interpretation of this field depends on whether the segment descriptor is for an
application segment or a system segment. System segments have a slightly different
descriptor format, discussed in Chapter 12. The Type field of a memory descriptor specifies
the kind of access which may be made to a segment, and its direction of growth (see Table
11-1).

For data segments, the three lowest bits of the type field can be interpreted as expand-down
(E), write enable (W), and accessed (A). For code segments, the three lowest bits of the type
field can be interpreted as conforming (C), read enable (R), and accessed (A).

Data segments can be read-only or read/write. Stack segments are data segments which must
be read/write. Loading the SS register with a segment selector for any other type of segment
generates a general-protection exception. If the stack segment needs to be able to change
size, it can be an expand-down data segment. The meaning of the segment limit is reversed
for an expand-down segment. The valid offsets in an expand-down segment are those which
generate exceptions in expand-up segments. Expand-up segments must be addressed by
offsets which are equal or less than the segment limit. Offsets into expand-down segments
always must be greater than the segment limit. This interpretation of the segment limit causes
memory space to be allocated at the bottom of the segment when the segment limit is
decreased, which is correct for stack segments because they grow toward lower addresses. If
the stack is given a segment which does not change size, the segment does not need to be
expand-down.

I 11-13

L]
PROTECTED-MODE MEMORY MANAGEMENT Intd ®

Table 11-1. Application Segment Types

1 10 9 8 Descriptor
Type E w A Type Description
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
1 10 9 8 Descriptor
Type C R A Type Description
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

Code segments can be execute-only or execute/read. An execute/read segment might be used,
for example, when constants have been placed with instruction code in a ROM. In this case,
the constants can be read either by using an instruction with a CS override prefix or by
placing a segment selector for the code segment in a segment register for a data segment.

Code segments can be either conforming or non-conforming. A transfer of execution into a
more privileged conforming segment keeps the current privilege level. A transfer into a non-
conforming segment at a different privilege level results in a general-protection exception,
unless a task gate is used (see Chapter 13 for a discussion of multitasking). System utilities
which do not access protected facilities, such as data-conversion functions (e.g.,
EBCDIC/ASCII translation, Huffman encoding/decoding, math library) and some types of
exceptions (e.g., Divide Error, INTO-detected overflow, and BOUND range exceeded) may
be loaded in conforming code segments.

The A (accessed) bit of the Type field is set by the processor to indicate that a segment has
been loaded into a segment register. By clearing the A-bit initially, then testing it later,
software can monitor segment usage. For example, a program development system might
clear all of the Accessed bits for the segments of an application. If the application crashes,
the states of these bits can be used to generate a map of all the segments accessed by the
application. Unlike the breakpoints provided by the debugging mechanism (Chapter 17), the
usage information applies to segment usage rather than linear address matches.

The processor may update the Type field when a segment is accessed, even if the access is a
read cycle. If the descriptor tables have been put in ROM, it may be necessary for hardware
to prevent the ROM from being enabled onto the data bus during a write cycle. It also may
be necessary to return the READY# signal to the processor when a write cycle to ROM
occurs, otherwise the cycle does not terminate. These features of the hardware design are

11-14 I

-
InU ® PROTECTED-MODE MEMORY MANAGEMENT

necessary for using ROM-based descriptor tables with the Intel386 DX processor, which
always sets the Accessed bit when a segment descriptor is loaded. The Intel486 and Pentium
processors, however, only set the Accessed bit if it is not already set. Writes to descriptor
tables in ROM can be avoided by setting the Accessed bits in every descriptor.

DPL (Descriptor Privilege Level): Defines the privilege level of the segment. This is used
to control access to the segment, using the protection mechanism described in Chapter 12.

Segment-Present bit: If this bit is clear, the processor generates a segment-not-present
exception when a selector for the descriptor is loaded into a segment register. This is used to
detect access to segments which have become unavailable. A segment can become
unavailable when the system needs to create free memory. Items in memory, such as
character fonts or device drivers, which currently are not being used are deallocated. An item
is deallocated by marking the segment "not present" (this is done by clearing the Segment-
Present bit). The memory occupied by the segment then can be put to another use. The next
time the deallocated item is needed, the segment-not-present exception will indicate the
segment needs to be loaded into memory. When this kind of memory management is
provided in a manner invisible to application programs, it is called virtual memory. A system
can maintain a total amount of virtual memory far larger than physical memory by keeping
only a few segments present in physical memory at any one time.

Figure 11-9 shows the format of a descriptor when the Segment-Present bit is clear. When
this bit is clear, the operating system is free to use the locations marked Available to store its
own data, such as information regarding the whereabouts of the missing segment.

1 0292827 262524232221 20 19 18 17 16/15/14 13/12/11 10 9 8/7 6 & 4 3 2 1 0.:E
5
AVAILABLE o| p [S| TYPE | AVAILABLE +4
L
AVAILABLE {40

3\ NWWZ WB WD 2 WA WRATARADAAAIAN2WANY 3 T & § A3 °2 4 QF:E

APM103

Figure 11-9. Segment Descriptor (Segment Not Present)

11.2.4. Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors. There are two kinds of
descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

I 11-15

-
PROTECTED-MODE MEMORY MANAGEMENT lntd ®

There is one GDT for all tasks, and an LDT for each task being run. A descriptor table is an
array of segment descriptors, as shown in Figure 11-10. A descriptor table is variable in
length and can contain up to 8192 (2'*) descriptors. The first descriptor in the GDT is not
used by the processor. A segment selector to this "null descriptor” does not generate an
exception when loaded into a data segment register (DS, ES, FS, or GS), but it always
generates an exception when an attempt is made to access memory using the descriptor. By
initializing the segment registers with this segment selector, accidental reference to unused
segment registers can be guaranteed to generate an exception.

GLOBAL DESCRIPTOR TABLE LOCAL DESCRIPTOR TABLE
] I
+38 +38
| |
+30 +30
L |
+28 +28
| I
+20 +20
I [
+18 I +18
I
+10 +10
[I
1 48 +8
FIRST DESCRIPTOR IN |
|_GDTISNOTUSED | +0 +0
LDT DESCRIPTOR
GDTR REGISTER A (0T ENTRY £2)
[M] ACCESS | LIMIT
BASE ADDRESS | BASE ADDRESS

NOTE: ADDRESSES SHOWN IN HEXADECIMAL
APMS1

Figure 11-10. Descriptor Tables

11.2.5. Descriptor Table Base Registers

The processor finds the global descriptor table (GDT) and interrupt descriptor table (IDT)
using the GDTR and IDTR registers. These registers hold 32-bit base addresses for tables in
the linear address space. They also hold 16-bit limit values for the size of these tables.

When the IDTR and GDTR registers are loaded or stored, a 48-bit "pseudo-descriptor"” is
accessed in memory, as shown in Figure 11-11. To avoid alignment check faults in user
mode (privilege level 3). the pseudo-descriptor should be located at an odd word address
(i.e., an address which is 2 MOD 4). This causes the processor to store an aligned word,

11-16 I

-
Intd ® PROTECTED-MODE MEMORY MANAGEMENT

followed by an aligned doubleword. User-mode programs normally do not store pseudo-
descriptors, but the possibility of generating an alignment check fault can be avoided by
aligning pseudo-descriptors in this way.

BIT POSITION —3» a7 16 15 0
I BASE ADDRESS LiMIT
BYTE ORDER —)» 5 3 3 2 i 0

APM98

Figure 11-11. Pseudo-Descriptor Format

The base addresses of the GDT and IDT should be aligned on an eight-byte boundary to
maximize performance of cache line fills.

The limit values for both the GDT and IDT are expressed in bytes. As with segments, the
limit value is added to the base address to get the address of the last valid byte. A limit value
of zero results in exactly one valid byte. Because segment descriptors are always eight bytes
long, the limit should always be one less than an integral multiple of eight (i.e., 8N — 1). The
LGDT and SGDT instructions write and read the GDTR register; the LIDT and SIDT
instructions write and read the IDTR register.

A third descriptor table is the local descriptor table (LDT). It is identified by a 16-bit
segment selector held in the LDTR register. The LLDT and SLDT instructions write and read
the segment selector in the LDTR register. The LDTR register also holds the base address
and limit for the LDT, but these are loaded automatically by the processor from the segment
descriptor for the LDT (which is taken from the GDT). The LDT should be aligned on an
eight-byte boundary to maximize performance of cache line fills.

11.3. PAGE TRANSLATION

A linear address is a 32-bit address into a uniform, unsegmented address space. This address
space can be a large physical address space (i.e., an address space composed of several
gigabytes of RAM), or paging can be used to simulate this address space using a small
amount of RAM and some disk storage. When paging is used, a linear address is translated
into its corresponding physical address, or an exception is generated. The exception gives the
operating system a chance to read the page from disk (perhaps sending a different page out to
disk in the process), then restart the instruction which generated the exception.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have a fixed
size. If segmentation is the only form of address translation which is used, a data structure
which is present in physical memory will have all of its parts in memory. If paging is used, a
data structure can be partly in memory and partly in disk storage.

I 11-17

-
PROTECTED-MODE MEMORY MANAGEMENT Intd ®

The information which either maps linear addresses into physical addresses or raises
exceptions is held in data structures in memory called page tables. As with segmentation, this
information is cached within the CPU to minimize the number of bus cycles required for
address translation. Unlike segmentation, the address translation caches are completely
invisible to application programs. The processor's caches for address translation information
are called translation lookaside buffers (TLB). The TLBs satisfy most requests for reading
the page tables. Extra bus cycles occur only when the TLBs cannot satisfy a request. This
typically happens when a page has not been accessed for a long time.

11.3.1. Paging Options

Paging is enabled when bit 31 (the PG bit) of the CRO register is set. This bit usually is set by
the operating system during software initialization. (Refer to Chapter 16 for information on
how to change PG.) When paging is enabled, a second stage of address translation is used to
generate the physical address from the linear address. If paging is not enabled, the linear
address is used as the physical address. The PG bit must be set if the operating system is
running more than one program in virtual-8086 mode or if demand-paged virtual memory is
used.

11.3.2. Linear Address

Figure 11-12 shows the format of a linear address for a 4K page.

] SO 292827 25 M2322/21 20191817 16151413 72/)11 10 9 8 7 6 5 4 3 2 1 0,

FORMAT
FOR

4 KBYTE
PAGE

DIR TABLE OFFSET

APM94

Figure 11-12. Format of a Linear Address

Figure 11-13 shows how the processor translates the DIRECTORY, TABLE, and OFFSET
fields of a linear address into the physical address by consulting page tables. The addressing
mechanism uses the DIRECTORY field as an index into a page directory. It uses the TABLE
field as an index into the page table determined by the page directory. It uses the OFFSET
field to address an operand within the page specified by the page table.

11-18 I

-
Int9| ® PROTECTED-MODE MEMORY MANAGEMENT

11.3.3. Page Tables

A page table is an array of 32-bit entries. A page table is itself a page, and contains 4096
bytes of data or at most 1K 32-bit entries. Four kilobyte pages, including page directories and
page tables, are aligned to 4K-byte boundaries. Two levels of tables are used to address a
page of memory. At the highest level is a page directory. A page directory holds up to 1K
entries that address page tables of the second level. A page table of the second level
addresses up to 1K pages in physical memory. All the tables addressed by one page directory,
therefore, can address 1M (2%%) four-Kbyte pages. If each page contains 4K (2!°) bytes, the
tables of one page directory can span a linear address space of four gigabytes (22° x 2!2 =
22). For information on support of page sizes larger than 4K, see Appendix H.

I DIR | TABLE | OFFSET

I ——J PAGE FRAME

PAGE TABLE

PHYS ADDRESS
PAGE DIRECTORY

[pG TBL ENTRY >
>

) DIR ENTRY

APM96

Figure 11-13. Page Translation

The physical address of the current page directory is stored in the CR3 register, also called
the page directory base register (PDBR). Memory management software has the option of
using one page directory for all tasks, one page directory for each task, or some combination
of the two. See Chapter 16 for information on initialization of the CR3 register. See
Chapter 13 for how the contents of the CR3 register can change for each task.

11.3.4. Page-Table Entries

Page-table and page-directory entries for 4K pages have one of the formats shown by Figure
11-14. For information on page-table and page-directory formats for pages larger than 4K,
see Appendix H.

I 11-19

-
PROTECTED-MODE MEMORY MANAGEMENT lntd ®

PRESENT
WRITABLE
USER
WRITE-THROUGH
CACHE DISABLE

ACCESSED
PAGE SIZE (0 INDICATES 4 KBYTE)
AVAILABLE FOR SYSTEMS PROGRAMMER USE —vV %

131 FO 29 28 27 2625 2423222120 19 18 17 16 15 14 13 12/11 10 9/8/7/6/5/4

3
PAGE DIR PP
ENTRY PAGE FRAME ADDRESS 31..12 AVAIL clwlujw|p
D|T
PRESENT
WRITABLE
USER
WRITE-THROUGH
CACHE DISABLE
ACCESSED
DIRTY
AVAILABLE FOR SYSTEMS PROGRAMMER USE W
(31 30292827 26252423221 207918 17716 15 14 13 12/11 10 9/8 7/6/5/4/3/2/7/0
PAGE TABLE PP
ENTRY PAGE FRAME ADDRESS 31..12 AVAILL clwlujwip
D|T

RESERVED BY INTEL CORPORATION (SHOULD BE ZERO)
APM99

Figure 11-14. Format of Page Directory and Page Table Entries for 4K Pages

11.3.4.1. PAGE FRAME ADDRESS

The page frame address specifies the physical starting address of a page. In a page directory,
the page frame address is the address of a page table. In a second-level page table, the page
frame address is the address of the four kilobyte page that contains the desired memory
operand or instructions.

11.3.4.2. PRESENT BIT

The Present bit indicates whether the page frame address in a page table entry maps to a page
in physical memory. When set, the page is in memory.

When the Present bit is clear, the page is not in memory, and the rest of the page table entry
is available for the operating system, for example, to store information regarding the

11-20 I

]
Int9| ® PROTECTED-MODE MEMORY MANAGEMENT

whereabouts of the missing page. Figure 11-15 illustrates the format of a page table entry
when the Present bit is clear.

(31 02928272625 24232221 2019 18171615714 13127110 9 8 7 6 5 4 3 2 1/0/

APM100

Figure 11-15. Format of a Page Table Entry for a Not-Present Page

If the Present bit is clear in either level of page tables when an attempt is made to use a page
table entry for address translation, a page-fault exception is generated. In systems which
support demand-paged virtual memory, the following sequence of events then occurs:

1. The operating system copies the page from disk storage into physical memory.

2. The operating system loads the page frame address into the page table entry and sets its
Present bit. Other bits, such as the dirty and accessed bits, may be set, too.

3. Because a copy of the old page table entry may still exist in a translation lookaside
buffer (TLB), the operating system invalidates them. See Section 11.3.5. for a discussion
of TLBs and how to invalidate them.

4. The program which caused the exception is then restarted.

Note that there is no Present bit in CR3 for the page directory itself. The page directory may
be not-present while the associated task is suspended, but the operating system must ensure
that the page directory indicated by the CR3 image in a process's TSS is present in physical
memory before the process is dispatched. The page directory must also remain in memory as
long as the task is active.

11.3.4.3. ACCESSED AND DIRTY BITS

These bits provide data about page usage in both levels of page tables. The Accessed bit is
used to report read or write access to a page or to a second-level page table. The Dirty bit is
used to report write access to a page. These bits are set by the hardware; however, the
processor does not implicitly clear either of these bits.

The processor sets the Accessed bit in both levels of page table before a read or write
operation to a page. The processor sets the Dirty bit before a write operation to an address
mapped by that page table entry. Only the Dirty bit in the second-level page table is used; the
processor does not use the Dirty bit of the page directory.

The operating system may use the Accessed bit when it needs to create some free memory by
sending a page or second-level page table to disk storage. By periodically clearing the

l 11-21

-
PROTECTED-MODE MEMORY MANAGEMENT InU ®

Accessed bits in the page tables, it can see which pages have been used recently. Pages
which have not been used are candidates for sending out to disk.

The operating system may use the Dirty bit when a page is sent back to disk. By clearing the
Dirty bit when the page is brought into memory, the operating system can see if it has
received any write access. If there is a copy of the page on disk and the copy in memory has
not received any writes, there is no need to update disk from memory.

See Chapter 19 for how the processor updates the Accessed and Dirty bits in multiprocessor
systems.

11.3.4.4. READ/WRITE AND USER/SUPERVISOR BITS

The Read/Write and User/Supervisor bits are used for protection checks applied to pages,
which the processor performs at the same time as address translation. See Chapter 12 for
more information on protection.

11.3.4.5. PAGE-LEVEL CACHE CONTROL BITS

The PCD and PWT bits are used for page-level cache management. Software can control the
caching of individual pages or second-level page tables using these bits. See Chapter 18 for
more information on caching.

11.3.5. Translation Lookaside Buffers

The processor stores the most recently used page table entries in on-chip caches called
translation lookaside buffers or TLBs. The Pentium microprocessor has separate TLB's for
the data and instruction caches. Most paging is performed using the contents of the TLBs.
Bus cycles to the page tables in memory are performed only when the TLBs do not contain
the translation information for a requested page.

The TLBs are invisible to application programs (with PL>0), but not to operating systems
(PL=0). Operating-system programmers must invalidate the TLBs (dispose of their page
table entries) immediately following and every time there are changes to entries in the page
tables (including when the present bit is set to zero). If this is not done, old data which has
not received the changes might be used for address translation and as a result, subsequent
page table references could be incorrect.

The operating system can invalidate the TLBs by loading the CR3 register. The CR3 register
can be loaded in either of two ways:

1. Explicit loading using MOV instructions, such as:
MOV CR3, EAX

2. Implicit loading by a task switch which changes the contents of the CR3 register. (See
Chapter 13 for more information on task switching.)

11-22 l

]
Intd ® PROTECTED-MODE MEMORY MANAGEMENT

When the mapping of an individual page is changed, the operating system should use the
INVLPG instruction. Where possible, INVLPG invalidates only an individual TLB entry;
however, in some cases, INVLPG invalidates the entire instruction-cache TLB.

11.4. COMBINING SEGMENT AND PAGE TRANSLATION

Figure 11-16 combines Figure 11-5 and Figure 11-13 to summarize both stages of translation
from a logical address to a physical address when paging is enabled. Options available in
both stages of address translation can be used to support several different styles of memory
management.

11.4.1. Flat Model

When a 32-bit processor is used to run software written without segments, it may be
desirable to remove the segmentation features of the processor. The 32-bit processors do not
have a mode bit for disabling segmentation, but the same effect can be achieved by mapping
the stack, code, and data spaces to the same range of linear addresses. The 32-bit offsets used
by 32-bit processor instructions can cover a four-gigabyte linear address space.

When paging is used, the segments can be mapped to the entire linear address space. If more
than one program is being run at the same time, the paging mechanism can be used to give
each program a separate address space.

11.4.2. Segments Spanning Several Pages

The architecture allows segments which are larger than the size of a page. For example, a
large data structure may span thousands of pages. If paging were not used, access to any part
of the data structure would require the entire data structure to be present in physical memory.
With paging, only the page containing the part being accessed needs to be in memory.

11.4.3. Pages Spanning Several Segments

Segments also can be smaller than the size of a page. If one of these segments is placed in a
page which is not shared with another segment, the extra memory is wasted. For example, a
small data structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page
by itself. If many semaphores are used, it is more efficient to pack them into a single page.

I 11-23

-
PROTECTED-MODE MEMORY MANAGEMENT Intel ®

LOGICAL ADDRESS
15 0 31 0
SELECTOR OFFSET
DESCRIPTOR TABLE

»>| . SEGMENT >
DESCRIPTOR

LINEAR ADDRESS (4K PAGE)

——-—>| DIR I TABLE I OFFSET J 4K PAGE FRAME

OPERAND

PAGE TABLE

PAGE DIRECTORY

PG TBL ENTRY [—>»

—>» | 4KDIR ENTRY |—>

APM30

Figure 11-16. Combined Segment and Page Address Translation

11.4.4. Non-Aligned Page and Segment Boundaries

The architecture does not enforce any correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another.
Likewise, a segment can contain the end of one page and the beginning of another.

11.4.5. Aligned Page and Segment Boundaries

Memory-management software may be simpler and more efficient if it enforces some
alignment between page and segment boundaries. For example, if a segment which can fit in

11-24 I

a
Int9| ® PROTECTED-MODE MEMORY MANAGEMENT

one page is placed in two pages, there may be twice as much paging overhead to support
access to that segment.

11.4.6. Page-Table Per Segment

An approach to combining paging and segmentation which simplifies memory-management
software is to give each segment its own page table, as shown in Figure 11-17. This gives the
segment a single entry in the page directory which provides the access control information
for paging the segment.

PAGE FRAMES

LDT PAGE DIRECTORY PAGE TABLES

PTE

PTE

I) PTE
DESCRIPTOR |—3> PDE
DESCRIPTOR |—3» PDE

PTE

PTE

LDT PAGE DIRECTORY PAGE TABLES

V.V VvV ¥

PAGE FRAMES

APM92

Figure 11-17. Each Segment Can Have Its Own Page Table

I 11-25

intgl.

Protection

12

intel.

CHAPTER 12
PROTECTION

Protection is necessary for reliable multitasking. Protection can be used to prevent tasks from
interfering with each other. For example, protection can keep one task from overwriting the
instructions or data of another task.

During program development, the protection mechanism can give a clearer picture of
program bugs. When a program makes an unexpected reference to the wrong memory space,
the protection mechanism can block the event and report its occurrence.

In end-user systems, the protection mechanism can guard against the possibility of software
failures caused by undetected program bugs. If a program fails, its effects can be confined to
a limited domain. The operating system can be protected against damage, so diagnostic
information can be recorded and automatic recovery attempted.

Protection can be applied to segments and pages. Two bits in a processor register define the
privilege level of the program currently running (called the current privilege level or CPL).
The CPL is checked during address translation for segmentation and paging.

Although there is no control register or mode bit for turning off the protection mechanism,
the same effect can be achieved by assigning privilege level O (the highest level of privilege)
to all segment selectors, segment descriptors, and page table entries.

12.1. SEGMENT-LEVEL PROTECTION

Protection provides the ability to limit the amount of interference a malfunctioning program
can inflict on other programs and their data. Protection is a valuable aid in software
development because it allows software tools (operating system, debugger, etc.) to survive in
memory undamaged. When an application program fails, the software is available to report
diagnostic messages, and the debugger is available for post-mortem analysis of memory and
registers. In production, protection can make software more reliable by giving the system an
opportunity to initiate recovery procedures.

Each memory reference is checked to verify that it satisfies the protection checks. All checks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address
translation, there is no performance penalty. There are five protection checks:

Type check

Limit check

Restriction of addressable domain

Restriction of procedure entry points

EAEE A

Restriction of instruction set

I 12-1

-
PROTECTION I nu ®

A protection violation results in an exception. See Chapter 14 for an explanation of the
exception mechanism. This chapter describes the protection violations which lead to
exceptions.

12.2. SEGMENT DESCRIPTORS AND PROTECTION

Figure 12-1 shows the fields of a segment descriptor which are used by the protection
mechanism. Individual bits in the Type field also are referred to by the names of their
functions.

When the operating system creates a descriptor, its sets the protection parameters. In general,
application programmers do not need to be concerned about protection parameters.

When a program loads a segment selector into a segment register, the processor loads both
the base address of the segment and the protection information. The invisible part of each
segment register has storage for the base, limit, type, and privilege level. While this-
information is resident in the segment register, subsequent protection checks on the same
segment can be performed with no performance penalty.

12.2.1 .‘ Type Checking

In addition to the descriptors for application code and data segments, the processor has
descriptors for system segments and gates. These are data structures used for managing tasks
(Chapter 13) and exceptions and interrupts (Chapter 14). Table 12-1 lists all the types defined
for system segments and gates. Note that not all descriptors define segments; gate descriptors
hold pointers to procedure entry points.

12-2 I

=
I nU ® PROTECTION

DATA SEGMENT DESCRIPTOR

1 30 29 28 27 26 25 24/23/22/21/20/19 18 17 16/15/14 13/12/11/10/9 /8 /7 6 5 4 3 2 1
D
BASE31:24 |G LIMIT |41 b [1]o|Elw|a| BASE 23:16 +4
19:16 P
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0
ANDBURBVAD22 N VAT ARNSWAAIAN2AMANWE 8T & 5 A3 2 A
CODE SEGMENT DESCRIPTOR
7 30 29 28 27 25 25 24/23/22/21/20/19 18 17 16/15/14 13/12/11/10/9/8/7 6 5 4 3 2 1
D
BASE 31:24 LIMIT 1, 5 14[1|c|r|a| BASE23:16 +4
19:16 ;
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0

N WNWWE WD N N W ABBATWNTWANIA2WANY T & 5 A3 20

SYSTEM SEGMENT DESCRIPTOR

7 30 29 28 27 26 25 24, 1/20/19 18 17 16/15/14 13/12[11 10 9 8/7 6 5 4 3 2 71
D
BASE 31:24 LM_MT 11 P (0| TYPE BASE 23:16 +4
19:16 L
SEGMENT BASE 15:00 SEGMENT LIMIT 15:00 +0
NNV RZTWBHWD2 A NVARATRNSANINL2M09 3\ 8 § A3 212

ACCESSED E EXPAND-DOWN
BIG G GRANULARITY
CONFORMING R READABLE
DEFAULT LIMIT SEGMENT LIMIT

DESCRIPTOR PRIVILEGE LEVEL w WRITABLE
RESERVED

APM72

Figure 12-1. Descriptor Fields Used for Protection

H 12-3

-
intal.

Table 12-1. System Segment and Gate Types

Type
Decimal Binary Description
0 0000 Reserved
1 0001 Available 16-Bit TSS
2 0010 LDT
3 0011 Busy 16-Bit TSS
4 0100 16-Bit Call Gate
5 0101 Task Gate
6 0110 16-Bit Interrupt Gate
7 0111 16-Bit Trap Gate
8 1000 Reserved
9 1001 Available 32-Bit TSS
10 1010 Reserved
11 1011 Busy 32-Bit TSS
12 1100 32-Bit Call Gate
13 1101 Reserved
14 1110 32-Bit Interrupt Gate
15 1111 32-Bit Trap Gate

The Type fields of code and data segment descriptors include bits which further define the
purpose of the segment (see Figure 12-1):

® The Writable bit in a data-segment descriptor controls whether programs can write to the
segment.

® The Readable bit in an executable-segment descriptor specifies whether programs can
read from the segment (e.g., to access constants stored in the code space). A readable,
executable segment may be read in two ways:

1. With the CS register, by using a CS override prefix.

2. By loading a selector for the descriptor into a data-segment register (the DS, ES, FS,
or GS registers).

Type checking can be used to detect programming errors which would attempt to use
segments in ways not intended by the programmer. The processor examines type information
on two kinds of occasions:

12-4 I

L]
I ntd ® PROTECTION

1. When a selector for a descriptor is loaded into a segment register. Certain segment
registers can contain only certain descriptor types; for example:

— The CS register only can be loaded with a selector for an executable segment.

— Selectors of executable segments which are not readable cannot be loaded into data-
segment registers.

— Only selectors of writable data segments can be loaded into the SS register.

2. When instructions access segments whose descriptors are already loaded into segment
registers. Certain segments can be used by instructions only in certain predefined ways;
for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if the writable bit is not set.
— No instruction may read an executable segment unless the readable bit is set.

12.2.2. Limit Checking

The Limit field of a segment descriptor prevents programs from addressing outside the
segment. The effective value of the limit depends on the setting of the G bit (Granularity bit).
For data segments, the limit also depends on the E bit (Expansion Direction bit). The E bit is
a designation for one bit of the Type field, when referring to data segment descriptors.

When the G bit is clear, the limit is the value of the 20-bit Limit field in the descriptor. In
this case, the limit ranges from 0 to F_FFFFH (2%° - 1 or 1 megabyte). When the G bit is set,
the processor scales the value in the Limit field by a factor of 2'% In this case the limit
ranges from OFFFH (2'2 - 1 or 4K bytes) to FFFF_FFFFH (2*2 - 1 or 4 gigabytes). Note that
when scaling is used, the lower twelve bits of the address are not checked against the limit;
when the G bit is set and the segment limit is 0, valid offsets within the segment are 0
through 4095.

For all types of segments except expand-down data segments, the value of the limit is one
less than the size, in bytes, of the segment. The processor causes a general-protection
exception in any of these cases:

® Attempt to access a memory byte at an address > limit

® Attempt to access a memory word at an address > (limit — 1)

® Attempt to access a memory doubleword at an address > (limit — 3)

® Attempt to access a memory quadword at an address > (limit — 7)
For expand-down data segments, the limit has the same function but is interpreted
differently. In these cases the range of valid offsets is from (limit + 1) to 232 _ 1if B-bit=1

and 2'® — 1 if B-bit = 0. An expand-down segment has maximum size when the segment limit
is 0.

Limit checking catches programming errors such as runaway subscripts and invalid pointer
calculations. These errors are detected when they occur, so identification of the cause is

I 12-5

=
PROTECTION I nt9I ®

easier. Without limit checking, these errors could overwrite critical memory in another
module, and the existence of these errors would not be discovered until the damaged module
crashed, an event which may occur long after the actual error. Protection can block these
errors and report their source.

In addition to limit checking on segments, there is limit checking on the descriptor tables.
The GDTR, LDTR, and IDTR registers contain a 16-bit limit value. It is used by the
processor to prevent programs from selecting a segment descriptor outside the descriptor
table. The limit of a descriptor table identifies the last valid byte of the table. Because each
descriptor is eight bytes long, a table which contains up to N descriptors should have a limit
of 8N - 1.

A selector may be given a zero value. Such a selector refers to the first descriptor in the
GDT, which is not used. Although this descriptor can be loaded into a segment register, any
attempt to reference memory using this descriptor will generate a general-protection
exception.

12.2.3. Privilege Levels

The protection mechanism recognizes four privilege levels, numbered from 0 to 3. The
greater numbers mean lesser privileges. If all other protection checks are satisfied, a general-
protection exception is generated if a program attempts to access a segment using a less
privileged level (greater privilege number) than that applied to the segment.

Although no control register or mode bit is provided for turning off the protection
mechanism, the same effect can be achieved by assigning all privilege levels the value of 0.
(The PE bit in the CRO register is not an enabling bit for the protection mechanism alone; it
is used to enable protected mode, the mode of program execution in which the full 32-bit
architecture is available. When protected mode is disabled, the processor operates in real-
address mode, where it appears as a fast, enhanced 8086 processor.)

Privilege levels can be used to improve the reliability of operating systems. By giving the
operating system the greatest privilege (numerically lowest privilege level), it is protected
from damage by bugs in other programs. If a program crashes, the operating system has a
chance to generate a diagnostic message and attempt recovery procedures.

Another level of privilege can be established for other parts of the system software, such as
the programs which handle peripheral devices. If a device driver crashes, the operating
system should be able to report a diagnostic message, so it makes sense to protect the
operating system against bugs in device drivers. A device driver, however, may service an
important peripheral such as a disk drive. If the application program crashes, the device
driver should not corrupt the directory structure of the disk, so it makes sense to protect
device drivers against bugs in applications. Device drivers should be given an intermediate
privilege level between the operating system and the application programs. Application
programs are given the least privilege (numerically greatest level).

Figure 12-2 shows how these levels of privilege can be interpreted as rings of protection. The
center is for the segments containing the most critical software, usually the kernel of an
operating system. Outer rings are for less critical software.

12-6 I

Intd ® PROTECTION

The following data structures contain privilege levels:

The lowest two bits of the CS segment register hold the current privilege level (CPL).
This is the privilege level of the program being run. The lowest two bits of the SS
register also hold a copy of the CPL. Normally, the CPL is equal to the privilege level of
the code segment from which instructions are being fetched. The CPL changes when
control is transferred to a code segment with a different privilege level.

Segment descriptors contain a field called the descriptor privilege level (DPL). The DPL
is the privilege level applied to a segment.

Segment selectors contain a field called the requestor privilege level (RPL). The RPL is
intended to represent the privilege level of the procedure which created the selector. If
the RPL is a less privileged level than the CPL, it overrides the CPL. When a more
privileged program receives a segment selector from a less privileged program, the RPL
causes the memory access to take place at the less privileged level.

Privilege levels are checked when the selector of a descriptor is loaded into a segment
register. The checks used for data access differ from those used for transfers of execution
among executable segments; therefore, the two types of access are considered separately in
the following sections.

12-7

u
PROTECTION I ntd ®

PROTECTION RINGS

OPERATING SYSTEM KERNEL

OPERATING SYSTEM
SERVICES (DEVICE
DRIVERS, ETC.)

APPLICATIONS

APM78

Figure 12-2. Protection Rings

12.3. RESTRICTING ACCESS TO DATA

To address operands in memory, a segment selector for a data segment must be loaded into a
data-segment register (the DS, ES, FS, GS, or SS registers). The processor checks the
segment's privilege levels. The check is performed when the segment selector is loaded. As

Figure 12-3 shows, three different privilege levels enter into this type of privilege check.

The three privilege levels which are checked are:

1.

12-8

The CPL (current privilege level) of the program. This is held in the two least-significant
bit positions of the CS register.

The DPL (descriptor privilege level) of the segment descriptor of the segment containing
the operand.

The RPL (requestor's privilege level) of the selector used to specify the segment
containing the operand. This is held in the two lowest bit positions of the segment

]
an ® PROTECTION

register used to access the operand (the SS, DS, ES, FS, or GS registers). If the operand
is in the stack segment, the RPL is the same as the CPL.

OPERAND SEGMENT DESCRIPTOR

1 30 29 28 27 26 25 24/23/22/21/20/19 18 17 16/15/14 13/12 11 10 9 8/7 6 5 4 3 2 1 0/]
b %

P
L]

N NDVBT WDV 20N WV VAT WNSWAINANWN 8T & 5 A A QE

+0

CURRENT CODE SEGMENT REGISTER

CPL I

OPERAND SEGMENT SELECTOR

RPL }

VYV

PRIVILEGE
CHECK

CPL CURRENT PRIVILEGE LEVEL
DPL DESCRIPTOR PRIVILEGE LEVEL
RPL REQUESTED PRIVILEGE LEVEL

APM76

Figure 12-3. Privilege Check for Data Access

Instructions may load a segment register only if the DPL of the segment is the same or a less
privileged level (greater privilege number) than the less privileged of the CPL and the
selector's RPL.

The addressable domain of a task varies as its CPL changes. When the CPL is 0, data
segments at all privilege levels are accessible; when the CPL is 1, only data segments at
privilege levels 1 through 3 are accessible; when the CPL is 3, only data segments at
privilege level 3 are accessible.

Systems that use only two of the four possible privilege levels should use levels 0 and 3.

I 12-9

]
PROTECTION I nu ®

12.3.1. Accessing Data in Code Segments

It may be desirable to store data in a code segment, for example, when both code and data
are provided in ROM. Code segments may legitimately hold constants; it is not possible to
write to a segment defined as a code segment, unless a data segment is mapped to the same
address space. The following methods of accessing data in code segments are possible:

1. Load a data-segment register with a segment selector for a nonconforming, readable,
executable segment.

2. Load a data-segment register with a segment selector for a conforming, readable,
executable segment.

3. Use a code-segment override prefix to read a readable, executable segment whose
selector already is loaded in the CS register.

The same rules for access to data segments apply to case 1. Case 2 is always valid because
the privilege level of a code segment with a set Conforming bit is effectively the same as the
CPL, regardless of its DPL. Case 3 is always valid because the DPL of the code segment
selected by the CS register is the CPL.

12.4. RESTRICTING CONTROL TRANSFERS

Control transfers are provided by the JMP, CALL, RET, INT, and IRET instructions, as well
as by the exception and interrupt mechanisms. Exceptions and interrupts are special cases
discussed in Chapter 14. This chapter discusses only the JMP, CALL, and RET instructions.

The near forms of the JMP, CALL, and RET instructions transfer program control within the
current code segment, and therefore are subject only to limit checking. The processor checks
that the destination of the JMP, CALL, or RET instruction does not exceed the limit of the
current code segment. This limit is cached in the CS register, so protection checks for near
transfers do not degrade performance.

The operands of the far forms of the JMP and CALL instruction refer to other segments, so
the processor performs privilege checking. There are two ways a JMP or CALL instruction
can refer to another segment:

1. The operand selects the descriptor of another executable segment.
2. The operand selects a call gate descriptor.

As Figure 12-4 shows, two different privilege levels enter into a privilege check for a control
transfer which does not use a call gate:

1. The CPL (current privilege level).
2. The DPL of the descriptor of the destination code segment.

12-10 I

L]
Intd ® PROTECTION

DESTINATION CODE SEGMENT DESCRIPTOR

71 30 29 28 27 26 25 24, 7, 19 18 17 16/15/14 13/12 11 10 9 8/7 6 &5 4 3 2 1 0
TYPE -
1]1]c]aa

| I

+4

—— [~ 0 O

+0

I\ N 2D 2B 2T 2% 25 2203220200 A8 1T WRNSWA A2 W0 9 B\T & 5 Af3 2]\

CURRENT CODE SEGMENT REGISTER

cm.jI ‘
c CONFORMING BIT
CPL CURRENT PRIVILEGE LEVEL P'g:’l'éggE
DPL DESCRIPTOR PRIVILEGE LEVEL

APM74

Figure 12-4. Privilege Check for Control Transfer Without Gate

Normally the CPL is equal to the DPL of the segment which the processor is currently
executing. The CPL may, however, be greater (less privileged) than the DPL if the current
code segment is a conforming segment (as indicated by the Type field of its segment
descriptor). A conforming segment runs at the privilege level of the calling procedure. The
processor keeps a record of the CPL cached in the CS register; this value can be different
from the DPL in the segment descriptor of the current code segment.

The processor only permits a JMP or CALL instruction directly into another segment if either
of the following privilege rules is satisfied:

® The DPL of the segment is equal to the CPL.

® The segment is a conforming code segment, and its DPL . is less (more privileged) than
the CPL.

Conforming segments are used for programs, such as math libraries and some kinds of
exception handlers, which support applications but do not require access to protected system
facilities. When control is transferred to a conforming segment, the CPL does not change,
even if the selector used to address the segment has a different RPL. This is the only
condition in which the CPL may be different from the DPL of the current code segment.

I 12-11

PROTECTION I ntd ®

Most code segments are not conforming. For these segments, control can be transferred
without a gate only to other code segments at the same level of privilege. It is sometimes
necessary, however, to transfer control to higher privilege levels. This is accomplished with
the CALL instruction using call-gate descriptors, which is explained in Chapter 13. The JMP
instruction may never transfer control to a nonconforming segment whose DPL does not
equal the CPL.

12.5. GATE DESCRIPTORS

To provide protection for control transfers among executable segments at different privilege
levels, the processor uses gate descriptors. There are four kinds of gate descriptors:

® (Call gates
® Trap gates
® Interrupt gates
® Task gates

Task gates are used for task switching and are discussed in Chapter 13. Chapter 14 explains
how trap gates and interrupt gates are used by exceptions and interrupts. This chapter is
concerned only with call gates. Call gates are a form of protected control transfer. They are
used for control transfers between different privilege levels. They only need to be used in
systems in which more than one privilege level is used. Figure 12-5 illustrates the format of a
call gate.

32-BIT CALL GATE

1 3029282762524 232221 2079 718 17 1t /15/14 13/12/11 10 9 8/7 6 5/4 3 2 1 0
D
OFFSET IN SEGMENT 31:16 Pl p |o|1100[0o0o0| BWORD & .,
P COUNT
SEGMENT SELECTOR OFFSET IN SEGMENT 15:00 +0

ANNDBVOWHADV22 WV ABIT WIS WAANI2\VMN 8T 8 § A3 21\ 0Q

DPL DESCRIPTOR PRIVILEGE LEVEL

P SEGMENT PRESENT
APM70

Figure 12-5. Call Gate

A call gate has two main functions:

1. To define an entry point of a procedure.
2. To specify the privilege level required to enter a procedure.

12-12 I

-
I ntd ® PROTECTION

CALL and JMP instructions use call gate descriptors in the same manner as code segment
descriptors. When the hardware recognizes that the segment selector for the destination refers
to a gate descriptor, the operation of the instruction is determined by the contents of the call
gate. A call gate descriptor may reside in the GDT or in an LDT, but not in the interrupt
descriptor table (IDT).

The selector and offset fields of a gate form a pointer to the entry point of a procedure. A call
gate guarantees that all control transfers to other segments go to a valid entry point, rather
than to the middle of a procedure (or worse, to the middle of an instruction). The operand of
the control transfer instruction is not the segment selector and offset within the segment to
the procedure's entry point. Instead, the segment selector points to a gate descriptor, and the
offset is not used. Figure 12-6 shows this form of addressing.

|<——' DESTINATION ADDRESS ————)|

15 0 31 NOT USED 0
| seector | [oOFFSETwiTHIN SEGMENT |
DESCRIPTOR TABLE
OFFSET DPL l COUNT | care

SELECTOR OFFSET DESCRIPTOR
PASE | pPL l BASE CODE SEGMENT

(BASE DESCRIPTOR

PROCEDURE ENTRY
POINT

APM71

Figure 12-6. Call Gate Mechanism

As shown in Figure 12-7, four different privilege levels are used to check the validity of a
control transfer through a call gate.

I 12-13

PROTECTION | n

CALL GATE

130292827 262524232221 2019 18 17 16/15/14 13/12 11 10 9 8/7 6 &§/4 3 2 1 0
D

|

ANNBVDABTAWBADLNNWVSTWNEWNWINRNWNI BT /S a3°21\R

+0

DESTINATION CODE SEGMENT DESCRIPTOR

7 30 29 28 27 26 25 24/23 1/20/19 18 17 16/15/14 13/12 11 10 9 8/7 6 5 4 3 2 1 p

D
P
L

+0

ANDBTRBUDR2ANWARVT WNSWWN2WWE 3\1 8 s A3R \R

CURRENT CODE SEGMENT REGISTER

Y

CALL GATE SELECTOR
l
RPL I]
CPL CURRENT PRIVILEGE LEVEL PRIVILEGE
DPL DESCRIPTOR PRIVILEGE LEVEL CHECK
RPL REQUESTED PRIVILEGE LEVEL

APM75

Figure 12-7. Privilege Check for Control Transfer with Call Gate

12-14

-
lnt9| ® PROTECTION

The privilege levels checked during a transfer of execution through a call gate are:

1. The CPL (current privilege level).

2. The RPL (requestor's privilege level) of the segment selector used to specify the call
gate.

3. The DPL (descriptor privilege level) of the gate descriptor.
4. The DPL of the segment descriptor of the destination code segment.

The DPL field of the gate descriptor determines from which privilege levels the gate may be
used. One code segment can have several procedures which are intended for use from
different privilege levels. For example, an operating system may have some services which
are intended to be used by both the operating system and application software, such as
routines to handle character I/O, while other services may be intended only for use by
operating system, such as routines which initialize device drivers.

Gates can be used for control transfers to more privileged levels or to the same privilege
level (though they are not necessary for transfers to the same level). Only CALL instructions
can use gates to transfer to more privileged levels. A JMP instruction can use a gate only to
transfer control to a code segment with the same privilege level, or to a conforming code
segment with the same or a more privileged level.

For a JMP instruction to a nonconforming segment, both of the following privilege rules
must be satisfied; otherwise, a general-protection exception is generated.

® MAX (CPL,RPL) < gate DPL
® Destination code segment DPL = CPL

For a CALL instruction (or for a JMP instruction to a conforming segment), both of the
following privilege rules must be satisfied; otherwise, a general-protection exception is
generated.

® MAX (CPL,RPL) < gate DPL
® Destination code segment DPL < CPL

12.5.1. Stack Switching

A procedure call to a more privileged level does the following:

1. Changes the CPL.
2. Transfers control (execution).

3. Switches stacks.
All inner protection rings (privilege levels 0, 1, and 2), have their own stacks for receiving
calls from less privileged levels. If the caller were to provide the stack, and the stack was too

small, the called procedure might crash as a result of insufficient stack space. Instead, the
processor prevents less privileged programs from crashing more privileged programs by

l 12-15

PROTECTION an ®

creating a new stack when a call is made to a more privileged level. The new stack is
created, parameters are copied from the old stack, the contents of registers are saved, and
execution proceeds normally. When the procedure returns, the contents of the saved registers
restore the original stack.

The processor finds the space to create new stacks using the task state segment (TSS), as
shown in Figure 12-8. (Chapter 13 discusses the TSS in more detail.) Each task has its own
TSS. The TSS contains initial stack pointers for the inner protection rings. The operating
system is responsible for creating each TSS and initializing its stack pointers. (If the
operating system does not use TSSs for multitasking, it still must allocate at least one TSS
for this stack-related purpose.) An initial stack pointer consists of a segment selector and an
initial value for the ESP register (an initial offset into the segment). The initial stack pointers
are strictly read-only values. The processor does not change them while the task runs. These
stack pointers are used only to create new stacks when calls are made to more privileged
levels. These stacks disappear when the called procedure returns. The next time the
procedure is called, a new stack is created using the initial stack pointer.

32-BIT TASK STATE SEGMENT

NOTE: BYTE ADDRESSES ARE IN HEXADECIMAL
APM73

Figure 12-8. Initial Stack Pointers in a TSS

When a call gate is used to change privilege levels, a new stack is created by loading an
address from the TSS. The processor uses the DPL of the destination code segment (the new
CPL) to select the initial stack pointer for privilege level 0, 1, or 2.

12-16 I

n
Intd ® PROTECTION

The DPL of the new stack segment must equal the new CPL; if not, a TSS fault is generated.
It is the responsibility of the operating system to create stacks and stack-segment descriptors
for all privilege levels which are used. The stacks must be read/write as specified in the Type
fields of their segment descriptors. They must contain enough space, as specified in the Limit
fields, to hold the contents of the SS and ESP registers, the return address, and the parameters
and temporary variables required by the called procedure.

As with calls within a privilege level, parameters for the procedure are placed on the stack.
The parameters are copied to the new stack. The parameters can be accessed within the
called procedure using the same relative addresses which would have been used if no stack
switching had occurred. The count field of a call gate tells the processor how many
doublewords (up to 31) to copy from the caller's stack to the stack of the called procedure. If
the count is 0, no parameters are copied.

If more than 31 doublewords of data need to be passed to the called procedure, one of the
parameters can be a pointer to a data structure, or the saved contents of the SS and ESP
registers may be used to access parameters in the old stack space.

The processor performs the following stack-related steps in executing a procedure call
between privilege levels.

1. The stack of the called procedure is checked to make certain it is large enough to hold
the parameters and the saved contents of registers; if not, a stack exception is generated.

2. The old contents of the SS and ESP registers are pushed onto the stack of the called
procedure as two doublewords (the 16-bit SS register is zero-extended to 32 bits; the
zero-extended upper word is Intel reserved; do not use).

3. The parameters are copied from the stack of the caller to the stack of the called
procedure.

4. A pointer to the instruction after the CALL instruction (the old contents of the CS and
EIP registers) is pushed onto the new stack. The contents of the SS and ESP registers
after the call point to this return pointer on the stack.

Figure 12-9 illustrates the stack frame before, during, and after a successful interlevel
procedure call and return.

I 12-17

-
PROTECTION Inu ®

NEW STACK:
OLD STACK AFTER CALL, OLD STACK, AFTER RETURN
BEFORE CALL: BEFORE RETURN: WITH FAR RET N (N = 3):
oLDSS
(ESP
OLD ESP
PARM 1
PARM 1
PARM 2
PARM 2
PARM 3 (ESP
PARM 3
oLD Cs
OLDEIP (ESP

APMT79

Figure 12-9. Stack Frame during Interlevel Call

The TSS does not have a stack pointer for a privilege level 3 stack, because a procedure at
privilege level 3 cannot be called by a less privileged procedure. The stack for privilege level
3 is preserved by the contents of the SS and EIP registers which have been saved on the stack
of the privilege level called from level 3.

A call using a call gate does not check the values of the words copied onto the new stack.
The called procedure should check each parameter for validity. A later section discusses how
the ARPL, VERR, VERW, LSL, and LAR instructions can be used to check pointer values.

12.5.2. Returning from a Procedure

The near forms of the RET instruction only transfer control within the current code segment,
therefore are subject only to limit checking. The offset to the instruction following the CALL
instruction is popped from the stack into the EIP register. The processor checks that this
offset does not exceed the limit of the current code segment.

The far form of the RET instruction pops the return address which was pushed onto the stack
by an earlier far CALL instruction. Under normal conditions, the return pointer is valid,
because it was generated by a CALL or INT instruction. Nevertheless, the processor
performs privilege checking because of the possibility that the current procedure altered the
pointer or failed to maintain the stack properly. The RPL of the code-segment selector
popped off the stack by the return instruction should have the privilege level of the calling
procedure.

A return to another segment can change privilege levels, but only toward less privileged
levels. When a RET instruction encounters a saved CS value whose RPL is numerically

12-18 I

In.bl ® PROTECTION

greater (less privileged) than the CPL, a return across privilege levels occurs. A return of this
kind performs these steps:

1.

The checks shown in Table 12-2 are made, and the CS, EIP, SS, and ESP registers are
loaded with their former values, which were saved on the stack.

The old contents of the SS and ESP registers (from the top of the current stack) are
adjusted by the number of bytes indicated in the RET instruction. The resulting ESP
value is not checked against the limit of the stack segment. If the ESP value is beyond
the limit, that fact is not recognized until the next stack operation. (The contents of the
SS and ESP registers for the returning procedure are not preserved; normally, their
values are the same as those contained in the TSS.)

The contents of the DS, ES, FS, and GS segment registers are checked. If any of these
registers refer to segments whose DPL is less than the new CPL (excluding conforming
code segments), the segment register is loaded with the null selector (Index = 0, TI = 0).
The RET instruction itself does not signal exceptions in these cases; however, any
subsequent memory reference using a segment register containing the null selector will
cause a general-protection exception. This prevents less privileged code from accessing
more privileged segments using selectors left in the segment registers by a more
privileged procedure.

12-19

-
PROTECTION ' ntd ®

Table 12-2. Interlevel Return Checks

Type of Check Exception Type Error Code

Top-of-stack + 7 must be within stack segment limit Stack 0

RPL of return code segment must be greater than the CPL Protection Return CS
Return code segment selector must be non-null Protection Return CS
IIf{e.ttum code segment descriptor must be within descriptor table Protection Return CS
imi

Return segment descriptor must be a code segment Protection Return CS
Return code segment is present Segment not present Return CS
DPL of return non-conforming code segment must equal RPL of Protection Return CS

return code segment selector, or DPL of return conforming code
segment must be less than or equal to RPL of return code
segment selector

ESP + N + 15" must be within the stack segment limit Stack fault 0
Segment selector at ESP + N + 12* must be non-null Protection Return SS
Segment descriptor at ESP + N + 12* must be within descriptor Protection Return SS
table limit

Stack segment descriptor must be read/write Protection Return SS
Stack segment must be present Stack fault Return SS
Old stack segment DPL must be equal to RPL of old code Protection Return SS
segment

Old stack segment selector must have an RPL equal to the DPL Protection Return SS

of the old stack segment

* N is the value of the immediate operand supplied with the RET instruction.

12.6. INSTRUCTIONS RESERVED FOR THE OPERATING SYSTEM

Instructions which can affect the protection mechanism or influence general system
performance can only be executed by trusted procedures. The processor has two classes of
such instructions:

1. Privileged instructions—those used for system control.

2. Sensitive instructions—those used for I/O and I/O-related activities.

12.6.1. Privileged Instructions

The instructions which affect protected facilities can be executed only when the CPL is 0
(most privileged). If one of these instructions is executed when the CPL is not 0, a general-
protection exception is generated. These instructions include:

12-20 I

intal.

PROTECTION

CLTS —~Clear Task-Switched Flag
HLT —Halt Processor

INVD —Invalidate Cache

INVLPG —Invalidate TLB Entry
LGDT —Load GDT Register

LIDT —Load IDT Register

LLDT —Load LDT Register
LMSW —Load Machine Status Word
LTR —JLoad Task Register

MOV to/from CRn —DMove to Control Register n
MOV to/from DRn —Move to Debug Register n
WBINVD —Writeback and Invalidate Cache

12.6.2. Sensitive Instructions

Instructions which deal with I/O need to be protected, but they also need to be used by
procedures executing at privilege levels other than O (the most privileged level). The
mechanisms for protection of I/O operations are covered in detail in Chapter 15.

12.7. INSTRUCTIONS FOR POINTER VALIDATION

Pointer validation is necessary for maintaining isolation between privilege levels. It consists
of the following steps:

1. Check whether the supplier of the pointer is allowed to access the segment.
2. Check whether the segment type is compatible with its use.
3. Check whether the pointer offset exceeds the segment limit.

Although the processor automatically performs checks 2 and 3 during instruction execution,
software must assist in performing the first check. The ARPL instruction is provided for this
purpose. Software also can use steps 2 and 3 to check for potential violations, rather than
waiting for an exception to be generated. The LAR, LSL, VERR, and VERW instructions are
provided for this purpose.

LAR (Load Access Rights) is used to verify that a pointer refers to a segment of a
compatible privilege level and type. The LAR instruction has one operand: a segment
selector for the descriptor whose access rights are to be checked. Conforming code segments
may be accessed from any privilege level. Any other segment descriptor must be readable at
a privilege level which is numerically greater (less privileged) than the CPL and the
selector's RPL. If the descriptor is readable, the LAR instruction gets the second doubleword
of the descriptor, masks this value with 0OFxFFOOH, stores the result into the specified 32-bit
destination register, and sets the ZF flag. (The x indicates that the corresponding four bits of

I 12-21

=
PROTECTION l nté ®

the stored value are undefined.) Once loaded, the access rights can be tested. All valid de-
scriptor types can be tested by the LAR instruction. If the RPL or CPL is greater than the
DPL, or if the segment selector would exceed the limit for the descriptor table, zero is
returned, and the ZF flag is cleared.

LSL (Load Segment Limit) allows software to test the limit of a segment descriptor. If the
descriptor referenced by the segment selector (in memory or a register) is readable at the
CPL, the LSL instruction loads the specified 32-bit register with a 32-bit, byte granular limit
calculated from the concatenated limit fields and the G bit of the descriptor. This only can be
done for descriptors which describe segments (data, code, task state, and local descriptor
tables); gate descriptors are inaccessible. (Table 12-3 lists in detail which types are valid and
which are not.) Interpreting the limit is a function of the segment type. For example,
downward-expandable data segments (stack segments) treat the limit differently than other
kinds of segments. For both the LAR and LSL instructions, the ZF flag is set if the load was
successful; otherwise, the ZF flag is cleared.

Table 12-3. Valid Descriptor Types for LSL Instruction

Type Code Descriptor Type Valid?
0 Reserved No
1 Reserved No
2 LDT Yes
3 Reserved No
4 Reserved No
5 Task Gate No
6 Reserved No
7 Reserved No
8 Reserved No
9 Available 32-bit TSS Yes
A Reserved No
B Busy 32-bit TSS Yes
C 32-bit Call Gate No
D Reserved No
E 32-bit Interrupt Gate No
F 32-bit Trap Gate No

An additional check, the alignment check, can be applied at CPL = 3. When both the AM bit
in CRO and the AC flag are set, unaligned memory references generate exceptions. This is
useful for programs which use the low two bits of pointers to identify the type of data
structure they address. For example, a subroutine in a math library may accept pointers to
numeric data structures. If the type of this structure is assigned a code of 10 (binary) in the

12-22 I

L]
“Tbl ® PROTECTION

lowest two bits of pointers to this type, math subroutines can correct for the type code by
adding a displacement of —10 (binary). If the subroutine should ever receive the wrong
pointer type, an unaligned reference would be produced, which would generate an exception.
Alignment checking accelerates the processing of programs written in symbolic-processing
(i.e., Artificial Intelligence) languages such as Lisp, Prolog, Smalltalk, and C++. It can be
used to speed up pointer tag type checking.

12.7.1. Descriptor Validation

The processor has two instructions, VERR and VERW, which determine whether a segment
selector points to a segment which can be read or written using the CPL. Neither instruction
causes a protection fault if the segment cannot be accessed.

VERR (Verify for Reading) verifies a segment for reading and sets the ZF flag if that
segment is readable using the CPL. The VERR instruction checks the following:

® The segment selector points to a segment descriptor within the bounds of the GDT or an
LDT.

® The segment selector indexes to a code or data segment descriptor.
® The segment is readable and has a compatible privilege level.

The privilege check for data segments and nonconforming code segments verifies that the
DPL must be a less privileged level than either the CPL or the selector's RPL. Conforming
segments are not checked for privilege level.

VERW (Verify for Writing) provides the same capability as the VERR instruction for
verifying writability. Like the VERR instruction, the VERW instruction sets the ZF flag if
the segment can be written. The instruction verifies the descriptor is within bounds, is a
segment descriptor, is writable, and has a DPL which is a less privileged level than either the
CPL or the selector's RPL. Code segments are never writable, whether conforming or not.

12.7.2. Pointer Integrity and RPL

The requestor’s privilege level (RPL) can prevent accidental use of pointers which crash
more privileged code from a less privileged level.

A common example is a file system procedure, FREAD (file_id, n_bytes, buffer_ptr). This
hypothetical procedure reads data from a disk file into a buffer, overwriting whatever is
already there. It services requests from programs operating at the application level, but it
must run in a privileged mode in order to read from the system I/O buffer. If the application
program passed this procedure a bad buffer pointer, one which pointed at critical code or data
in a privileged address space, the procedure could cause damage which would crash the
system.

Use of the RPL can avoid this problem. The RPL allows a privilege override to be assigned
to a selector. This privilege override is intended to be the privilege level of the code segment
which generated the segment selector. In the above example, the RPL would be the CPL of

I 12-23

.
PROTECTION I ntd ®

the application program which called the system level procedure. The processor
automatically checks any segment selector loaded into a segment register to determine
whether its RPL allows access.

To take advantage of the processor's checking of the RPL, the called procedure need only
check that all segment selectors passed to it have an RPL for the same or a less privileged
level as the original caller's CPL. This guarantees that the segment selectors are not more
privileged than their source. If a selector is used to access a segment which the source would
not be able to access directly, i.e. the RPL is less privileged than the segment's DPL, a
general-protection exception is generated when the selector is loaded into a segment register.

ARPL (Adjust Requested Privilege Level) adjusts the RPL field of a segment selector to be
the larger (less privileged) of its original value and the value of the RPL field for a segment
selector stored in a general register. The RPL fields are the two least significant bits of the
segment selector and the register. The latter normally is a copy of the caller's CS register on
the stack. If the adjustment changes the selector's RPL, the ZF flag is set; otherwise, the ZF
flag is cleared.

12.8. PAGE-LEVEL PROTECTION

Protection applies to both segments and pages. When the flat model for memory
segmentation is used, page-level protection prevents programs from interfering with each
other.

Each memory reference is checked to verify that it satisfies the protection checks. All checks
are made before the memory cycle is started; any violation prevents the cycle from starting
and results in an exception. Because checks are performed in parallel with address
translation, there is no performance penalty. There are two page-level protection checks:

1. Restriction of addressable domain.

2. Type checking.

A protection violation results in an exception. See Chapter 14 for an explanation of the
protected-mode exception mechanism. This chapter describes the protection violations which
lead to exceptions.

12.8.1. Page-Table Entries Hold Protection Parameters

Figure 12-10 highlights the fields of a page table entry which control access to pages. The
protection checks are applied for both first- and second-level page tables.

12-24 I

-
I ntd ® PROTECTION

l’”?ﬂ!ﬂll@fﬁﬂﬂ&tl'ﬂ 1318171675 14 13:12/11:10 -9 /& 7 [6/5/4/8/2/1 0:
. PAGE FRAME ADDRESS 3112 |avalL |00 [o|ajciw|/ |/ |p|
RIRE : RN NN\
RW READ/WRITE
u/s USER/SUPERVISOR APM77

Figure 12-10. Protection Fields of a Page Table Entry

12.8.1.1. RESTRICTING ADDRESSABLE DOMAIN

Privilege is interpreted differently for pages than for segments. With segments, there are four
privilege levels, ranging from O (most privileged) to 3 (least privileged). With pages, there
are two levels of privilege:

1. Supervisor level (U/S=0)—for the operating system, other system software (such as
device drivers), and protected system data (such as page tables).

2. User level (U/S=1)—for application code and data.

The privilege levels used for segmentation are mapped into the privilege levels used for
paging. If the CPL is 0, 1, or 2, the processor is running at supervisor level. If the CPL is 3,
the processor is running at user level. When the processor is running at supervisor level, all
pages are accessible. When the processor is running at user level, only pages from the user
level are accessible.

12.8.1.2. TYPE CHECKING

Only two types of pages are recognized by the protection mechanism:

1. Read-only access (R/'W=0).
2. Read/write access (R/W=1).

When the processor is running at supervisor level with the WP bit in the CRO register clear
(its state following reset initialization), all pages are both readable and writable (write-
protection is ignored). When the processor is running at user level, only pages which belong
to user level and are marked for read/write access are writable. User-level pages which are
read/write or read-only are readable. Pages from the supervisor level are neither readable nor
writable from user level. A general-protection exception is generated on any attempt to
violate the protection rules.

Setting the WP bit in the CRO register enables supervisor-mode sensitivity to write-protected
pages.

I 12-25

-
PROTECTION I ntd ®

The supervisor write-protect feature is also useful for implementing the copy-on-write
strategy used by some operating systems, such as UNIX, for task creation (also called forking
or spawning). When a new task is created, it is possible to copy the entire address space of
the parent task. This gives the child task a complete, duplicate set of the parent's segments
and pages. An alternative strategy, copy-on-write, saves memory space and time by mapping
the child's segments and pages to the same segments and pages used by the parent task. A
private copy of a page gets created only when one of the tasks writes to the page. By using
the WP bit, the supervisor can detect an attempt to write to a user- or supervisor-level page,
and can copy the page at that time.

12.8.2. Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page directory entry (first-level page table)
may differ from those of its second-level page table entry. The processor checks the
protection for a page by examining the protection specified in both the page directory (first-
level page table) and the second-level page table. Table 12-4 shows the protection provided
by the possible combinations of protection attributes when the WP bit is clear.

12.8.3. Overrides to Page Protection
Certain accesses are checked as if they are privilege-level O accesses, for any value of CPL:

® Access to segment descriptors (LDT, GDT, TSS and IDT).

® Access to inner stack during a CALL instruction, or exceptions and interrupts, when a
change of privilege level occurs.

12-26 I

PROTECTION

intal.

Table 12-4. Combined Page Directory and Page Table Protection

Page Directory Entry Page Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write

*If the WP bit of CRO is set, the access type is determined by the R/W bits of the page directory and page
table entries

12.9. COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor first evaluates segment protection, then evaluates
page protection. If the processor detects a protection violation at either the segment level or
the page level, the operation does not go through; an exception occurs instead. If an
exception is generated by segmentation, no paging exception is generated for the operation.

For example, it is possible to define a large data segment which has some parts which are
read-only and other parts which are read-write. In this case, the page directory (or page table)
entries for the read-only parts would have the U/S and R/W bits specifying no write access
for all the pages described by that directory entry (or for individual pages specified in the
second-level page tables). This technique might be used, for example, to define a large data
segment, part of which is read-only (for shared data or ROMmed constants). This defines a
flat data space as one large segment, with flat pointers used to access this flat space, while
protecting shared data, shared files mapped into the virtual space, and supervisor areas.

I 12-27

intal.

13

Protected-Mode
Multitasking

intel.

CHAPTER 13
PROTECTED-MODE MULTITASKING

The Pentium processor provides hardware support for multitasking. A task is a program
which is running, or waiting to run while another program is running. A task is invoked by an
interrupt, exception, jump, or call. When one of these forms of transferring execution is used
with a destination specified by an entry in one of the descriptor tables, this descriptor can be
a type which causes a new task to begin execution after saving the state of the current task.
There are two types of task-related descriptors which can occur in a descriptor table: task
state segment descriptors and task gates. When execution is passed to either kind of
descriptor, a task switch occurs.

A task switch is like a procedure call, but it saves more processor state information. A task
switch transfers execution to a completely new environment, the environment of a task. This
requires saving the contents of nearly all the processor registers, including the EFLAGS
register and the segment registers. Unlike procedures, tasks are not re-entrant. A task switch
does not push anything on the stack. The processor state information is saved in a data
structure in memory, called a task state segment.

The registers and data structures which support multitasking are:

® Task state segment.

® Task state segment descriptor.
® Task register.

® Task gate descriptor.

With these structures, the processor can switch execution from one task to another, saving the
context of the original task to allow the task to be restarted. The processor also offers two
other task-management features:

1. Interrupts and exceptions can cause task switches (if needed in the system design). The
processor can not only perform a task switch to handle the interrupt or exception, but it
can automatically switch back when the interrupt or exception returns. This mechanism
can handle interrupts that occur during interrupt tasks.

2. With each switch to another task, the processor also can switch to another LDT. This can
be used to give each task a different logical-to-physical address mapping. This is an
additional protection feature, because tasks can be isolated and prevented from
interfering with one another. The PDBR register also is reloaded. This allows the paging
mechanism to be used to enforce the isolation between tasks.

I 13-1

PROTECTED-MODE MULTITASKING I ntel ®

Use of the multitasking mechanism is optional. In some applications, it may not be the best
way to manage program execution. Where extremely fast response to interrupts is needed,
the time required to save the processor state may be too great. A possible compromise in
these situations is to use the task-related data structures, but perform task switching in
software. This allows a smaller processor state to be saved. This technique can be one of the
optimizations used to enhance system performance after the basic functions of a system have
been implemented.

13.1. TASK STATE SEGMENT

The processor state information needed to restore a task is saved in a type of segment, called
a task state segment or TSS. Figure 13-1 shows the format of a TSS for tasks designed for 32-
bit CPUs (compatibility with 16-bit 80286 tasks is provided by a different kind of TSS; see
Chapter 23). The fields of a TSS are divided into two main categories:
1. Dynamic fields the processor updates with each task switch. These fields store:

— The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI).

— The segment registers (ES, CS, SS, DS, FS, and GS).

— The flags register (EFLAGS).

— The instruction pointer (EIP).

— The selector for the TSS of the previous task (updated only when a return is
expected).

2. Static fields the processor reads, but does not change. These fields are set up when a task
is created. These fields store:

— The selector for the task's LDT.
— The CR3 register.
— The logical address of the stacks for privilege levels 0, 1, and 2.

— The T-bit (debug trap bit) which, when set, causes the processor to raise a debug
exception when a task switch occurs. (See Chapter 17 for more information on
debugging.)

— The base address for the I/O permission bit map and interrupt redirection bitmap. If
present, these maps are stored in the TSS at higher addresses. The base address
points to the beginning of the I/O map and the end of the 32-byte interrupt map. (See
Chapter 15 for more information about the I/O permission bit map and Chapter 22
for more information about interrupt redirection.)

13-2 I

-
InU ® PROTECTED-MODE MULTITASKING

31 15 0

1/0O MAP BASE ADDRESS T| 64
SELECTOR FOR TASK'S LDT 60

GS 5C

FS 58

DS 54

SSs 50

cs 4C

ES 48

EDI 44

ESI 40
EBP 3C
ESP 38
EBX 34
EDX 30
ECX 2C
EAX 28
EFLAGS 24
EIP 20
CR3 (PDBR) 1C
S§S2 18

14

S§S1 10

c

SS0 8

4

LINK (OLD TSS SELECTOR) 0

ADDRESSES ARE SHOWN IN HEXADECIMAL.

NOTE: BITS MARKED AS 0 ARE RESERVED. DO NOT USE.
APMB2

Figure 13-1. 32-Bit Task State Segment

13-3

PROTECTED-MODE MULTITASKING I ntd ®

If paging is used, it is important to avoid placing a page boundary within the part of the TSS
which is read by the processor during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time. In addition, if paging is used, the pages corresponding to the old task’s TSS,
the new task’s TSS, and the descriptor table entries for each should be marked as present and
read/write. It is an unrecoverable error to receive a page fault or general-protection exception
after the processor has started to read the TSS.

13.2. TSS DESCRIPTOR

The task state segment, like all other segments, is defined by a descriptor. Figure 13-2 shows
the format of a TSS descriptor.

TSS DESCRIPTOR

91 30 29 28 27 26 25 24/23/22/21/20/19 18 17 16/15/14 13/12/11 10 9 8/7 6 5 4 3 2 1 0f

LIMIT
19:16

TYPE
1 [o|a|1

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

BASE 31:24 Gjojo|v

o
b

BASE 23:16

-
-
o

S\ NWWA WB2U DR WARARNTRNEAAIN2NMNNN 3T &S A3 20\ Q

AVL AVAILABLE FOR USE BY SYSTEM SOFTWARE
B BUSY BIT

BASE SEGMENT BASE ADDRESS

DPL DESCRIPTOR PRIVILEGE LEVEL

G GRANULARITY
LIMIT SEGMENT LIMIT
P SEGMENT PRESENT

TYPE SEGMENT TYPE
APM61

Figure 13-2. TSS Descriptor

The Busy bit in the Type field indicates whether the task is busy. A busy task is currently
running or waiting to run. A Type field with a value of 9 indicates an inactive task; a value of
11 (decimal) indicates a busy task. Tasks are not recursive. The processor uses the Busy bit
to detect an attempt to call a task whose execution has been interrupted.

The Base, Limit, and DPL fields and the Granularity bit and Present bit have functions
similar to their use in data-segment descriptors. The Limit field must have a value equal to or
greater than 67H, one byte less than the minimum size of a task state. An attempt to switch to
a task whose TSS descriptor has a limit less than 67H generates an exception. A larger limit
is required if an I/O permission map is used. A larger limit also may be required for the
operating system, if the system stores additional data in the TSS.

13-4 I

=
I ntel ® PROTECTED-MODE MULTITASKING

A procedure with access to a TSS descriptor can cause a task switch. In most systems, the
DPL fields of TSS descriptors should be less than 3, so only privileged software can perform
task switching.

Access to a TSS descriptor does not give a procedure the ability to read or modify the
descriptor. Reading and modification only can be done using a data descriptor mapped to the
same location in memory. Loading a TSS descriptor into a segment register generates an
exception. TSS descriptors only may reside in the GDT. An attempt to access a TSS using a
selector with a set TI bit (which indicates the current LDT) generates an exception.

13.3. TASK REGISTER

The task register (TR) is used to find the current TSS. Figure 13-3 shows the path by which
the processor accesses the TSS.

The task register has both a visible part (i.e., a part which can be read and changed by
software) and an invisible part (i.e., a part maintained by the processor and inaccessible to
software). The selector in the visible portion indexes to a TSS descriptor in the GDT. The
processor uses the invisible portion of the TR register to retain the base and limit values from
the TSS descriptor. Keeping these values in a register makes execution of the task more
efficient, because the processor does not need to fetch these values from memory to reference
the TSS of the current task.

The L'TR and STR instructions are used to modify and read the visible portion of the task
register. Both instructions take one operand, a 16-bit segment selector located in memory or
a general register.

LTR (Load task register) loads the visible portion of the task register with the operand,
which must index to a TSS descriptor in the GDT. The LTR instruction also loads the
invisible portion with information from the TSS descriptor. The LTR instruction is a
privileged instruction; it may be executed only when the CPL is 0. The LTR instruction
generally is used during system initialization to put an initial value in the task register;
afterwards, the contents of the TR register are changed by events which cause a task switch.

STR (Store task register) stores the visible portion of the task register in a general register
or memory.

I 13-5

-
PROTECTED-MODE MULTITASKING l nu ®

TASK STATE SEGMENT
<<
VISIBLE PART INVISIBLE PART
SELECTOR BASE ADDRESS SEGMENT LIMIT R
GLOBAL
DESCRIPTOR TABLE
l N
I
[
1
»[— TSSDESCRIPTOR —

I
]
I
|

APM60

Figure 13-3. Task Register

13.4. TASK GATE DESCRIPTOR

A task gate descriptor provides an indirect, protected reference to a task. Figure 13-4
illustrates the format of a task gate.

13-6 I

a
! nU ® PROTECTED-MODE MULTITASKING

TASK GATE DESCRIPTOR

1371 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16/15/14 13/1911 10 8 8/7 6 &5 4 3 2 1 08

+4

TSS SEGMENT SELECTOR +0

VA NBV RV WBBWBABR2 NV RATRNESAIV2MWD &7 & 5 A3 2\ Q\

DPL DESCRIPTOR PRIVILEGE LEVEL
P SEGMENT PRESENT
TYPE SEGMENT TYPE
APMs8

Figure 13-4. Task Gate Descriptor

The Selector field of a task gate indexes to a TSS descriptor. The RPL in this selector is not
used.

The DPL of a task gate controls access to the descriptor for a task switch. A procedure may
not select a task gate descriptor unless the selector's RPL and the CPL of the procedure are
numerically less than or equal to the DPL of the descriptor. This prevents less privileged
procedures from causing a task switch. (Note that when a task gate is used, the DPL of the
destination TSS descriptor is not used.)

A procedure with access to a task gate can cause a task switch, as can a procedure with
access to a TSS descriptor. Both task gates and TSS descriptors are provided to satisfy three
needs:

1. The need for a task to have only one Busy bit. Because the Busy bit is stored in the TSS
descriptor, each task should have only one such descriptor. There may, however, be
several task gates which select a single TSS descriptor.

2. The need to provide selective access to tasks. Task gates fill this need, because they can
reside in an LDT and can have a DPL which is different from the TSS descriptor's DPL.
A procedure which does not have sufficient privilege to use the TSS descriptor in the
GDT (which usually has a DPL of 0) can still call another task if it has access to a task
gate in its LDT. With task gates, the operating system can limit task switching to
specific tasks.

3. The need for an interrupt or exception to cause a task switch. Task gates also may reside
in the IDT, which allows interrupts and exceptions to cause task switching. When an
interrupt or exception supplies a vector to a task gate, the processor switches to the
indicated task.

Figure 13-5 illustrates how both a task gate in an LDT and a task gate in the IDT can identify
the same task.

I 13-7

PROTECTED-MODE MULTITASKING

In

tel.

LOCAL GLOBAL
DESCRIPTOR TABLE DESCRIPTOR TABLE

TASK STATE

SEGMENT

I
— TASK GATE —j —TSS DESCRIPTOR —]

INTERRUPT
DESCRIPTOR TABLE

I
— TASK GATE

APMS9

Figure 13-5. Task Gates Reference Tasks

13.5. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

1. The current task executes a JMP or CALL to a TSS descriptor.
2. The current task executes a JMP or CALL to a task gate.

3. An interrupt or exception indexes to a task gate in the IDT.

4. The current task executes an IRET when the NT flag is set.
13-8

L)
an ® PROTECTED-MODE MULTITASKING

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all ordinary
mechanisms of the processor which can be used in circumstances in which no task switch
occurs. The descriptor type (when a task is called) or the NT flag (when the task returns)
make the difference between the standard mechanism and the form which causes a task
switch.

To cause a task switch, a JMP or CALL instruction can transfer execution to either a TSS
descriptor or a task gate. The effect is the same in either case: the processor transfers
execution to the specified task.

An exception or interrupt causes a task switch when it indexes to a task gate in the IDT. If it
indexes to an interrupt or trap gate in the IDT, a task switch does not occur. See Chapter 14
for more information on the interrupt mechanism.

An interrupt service routine always returns execution to the interrupted procedure, which
may be in another task. If the NT flag is clear, a normal return occurs. If the NT flag is set, a
task switch occurs. The task receiving the task switch is specified by the TSS selector in the
TSS of the interrupt service routine.

A task switch has these steps:

1. Check that the current task is allowed to switch to the new task. Data-access privilege
rules apply to JMP and CALL instructions. The DPL of the TSS descriptor and the task
gate must be numerically greater (e.g., lower privilege level) than or equal to both the
CPL and the RPL of the gate selector. Exceptions, interrupts, and IRET instructions are
permitted to switch tasks regardless of the DPL of the destination task gate or TSS
descriptor.

2. Check that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H). Errors restore any changes made in the processor state
when an attempt is made to execute the error-generating instruction. This lets the return
address for the exception handler point to the error-generating instruction, rather than the
instruction following the error-generating instruction. The exception handler can fix the
condition which caused the error, and restart the task. The intervention of the exception
handler can be completely transparent to the application program.

3. Save the state of the current task. The processor finds the base address of the current TSS
in the task register. The processor registers are copied into the current TSS (the EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDL ES, CS, SS, DS, FS, GS, and EFLAGS registers,
and the instruction pointer).

4. Load the TR register with the selector to the new task's TSS descriptor, set the new task's
Busy bit, and set the TS bit in the CRO register. The selector is either the operand of a
JMP or CALL instruction, or it is taken from a task gate.

5. Load the new task's state from its TSS and continue execution. The registers loaded are
the LDTR register; the PDBR (CR3); the EFLAGS register; the general registers EIP,
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI; and the segment registers ES, CS, SS, DS,
FS, and GS. Any errors detected in this step occur in the context of the new task. To an
exception handler, the first instruction of the new task appears not to have executed.

I 13-9

L
PROTECTED-MODE MULTITASKING I ntd ®

Note that the state of the old task is always saved when a task switch occurs. If the task is
resumed, execution starts with the instruction which normally would have been next. The
registers are restored to the values they held when the task stopped running.

Every task switch sets the TS (task switched) bit in the CRO register. The TS bit is useful to
system software for coordinating the operations of the integer unit with the floating-point
unit. The TS bit indicates that the context of the floating-point unit may be different from
that of the current task. Chapter 6 discusses the TS bit and the FPU in more detail.

Exception service routines for exceptions caused by task switching (exceptions resulting
from steps 5 through 17 shown in Table 13-1 may be subject to recursive calls if they attempt
to reload the segment selector which generated the exception. The cause of the exception (or
the first of multiple causes) should be fixed before reloading the selector.

The privilege level at which the old task was running has no relation to the privilege level of
the new task. Because the tasks are isolated by their separate address spaces and task state
segments, and because privilege rules control access to a TSS, no privilege checks are
needed to perform a task switch. The new task begins executing at the privilege level
indicated by the RPL of the new contents of the CS register, which are loaded from the TSS.

13-10 I

L)
Intd ® PROTECTED-MODE MULTITASKING

Table 13-1. Checks Made during a Task Switch

Step Condition Checked Exception1 Error Code Reference
1 TSS descriptor is present in memory NP New Task’s TSS
2 TSS descriptor is not busy TS (for IRET); GP (for | Task’s backlink TSS
JMP, CALL, INT)
3 ;rgas segment limit greater than or equal to TS New Task’s TSS
4 Registers are loaded from the values in the TSS
5 LDT selector of new task is valid® TS New Task’s LDT
6 Code segment DPL matches selector RPL TS New Code Segment
7 SS selector is valid® TS New Stack Segment
8 Stack segment is present in memory SF New Stack Segment
9 Stack segment DPL matches CPL TS New stack segment
10 LDT of new task is present in memory TS New Task’s LDT
11 CS selector is valid® TS New Code Segment
12 Code segment is present in memory NP New Code Segment
13 Stack segment DPL matches selector RPL TS New Stack Segment
14 DS, ES, FS, and GS selectors are valid® TS New Data Segment
15 DS, ES, FS, and GS segments are readable TS New Data Segment
16 DS, ES, FS, and GS segments are present in NP New Data Segment
memory
17 DS, ES, FS, and GS segment DPL greater TS New Data Segment
than or equal to CPL (unless these are
conforming segments)

NOTES: Future Intel processors may use a different order of checks.

1. NP = Segment-not-present exception, GP = General-protection exception, TS = Invalid-TSS exception,
SF = Stack exception.

2. Aselector is valid if it is in a compatible type of table (e.g., an LDT selector may not be in any table except
the GDT), occupies an address within the table's segment limit, and refers to a compatible type of
descriptor (e.g., a selector in the CS register only is valid when it indexes to a descriptor for a code
segment; the descriptor type is specified in its Type field).

13.6. TASK LINKING

The Link field of the TSS and the NT flag are used to return execution to the previous task.
The NT flag indicates whether the currently executing task is nested within the execution of
another task, and the Link field of the current task's TSS holds the TSS selector for the
higher-level task, if there is one (see Figure 13-6).

' 13-11

PROTECTED-MODE MULTITASKING

intgl.

TOP LEVEL NESTED MORE DEEPLY CURRENTLY
TASK TASK NESTED EXECUTING
TASK TASK
TSS TsS TSS EFLAGS
NT=1
NT=0 NT=1 NT=1
I LINK LINK LINK TR REGISTER

APM56

Figure 13-6. Nested Tasks

When an interrupt, exception, jump, or call causes a task switch, the processor copies the
segment selector for the current task state segment into the TSS for the new task and sets the
NT flag. The NT flag indicates the Link field of the TSS has been loaded with a saved TSS
selector. The new task releases control by executing an IRET instruction. When an IRET
instruction is executed, the NT flag is checked. If it is set, the processor does a task switch to
the previous task. Table 13-2 summarizes the uses of the fields in a TSS which are affected

by task switching.

13-12

-
|nte| ® PROTECTED-MODE MULTITASKING

Table 13-2. Effect of a Task Switch on Busy, NT and Link Fields

Effect of CALL
Instruction or Effect of IRET
Field Effect of Jump Interrupt Instruction
Busy bit of new task Bit is set. Must have been | Bit is set. Must have been | No change. Must be set.
clear before. clear before.
Busy bit of old task Bit is cleared. No change. Bitis Bit is cleared.
currently set.
NT flag of new task No change. Flag is set. No change.
NT flag of old task No change. No change. Flag is cleared.
Link field of new task. No change. Loaded with selector No change.
for old task’s TSS.
Link field of old task. No change. No change. No change.

Note that the NT flag may be modified by software executing at any privilege level. It is
possible for a program to set its NT bit and execute an IRET instruction, which would have
the effect of invoking the task specified in the Link field of the current task's TSS. To keep
spurious task switches from succeeding, the operating system should initialize the Link field
of every TSS it creates.

13.6.1. Busy Bit Prevents Loops

The Busy bit of the TSS descriptor prevents re-entrant task switching. There is only one
saved task context, the context saved in the TSS, therefore a task only may be called once
before it terminates. The chain of suspended tasks may grow to any length, due to multiple
interrupts, exceptions, jumps, and calls. The Busy bit prevents a task from being called if it is
in this chain. A re-entrant task switch would overwrite the old TSS for the task, which would
break the chain.

The processor manages the Busy bit as follows:

When switching to a task, the processor sets the Busy bit of the new task.

2. When switching from a task, the processor clears the Busy bit of the old task if that task
is not to be placed in the chain (i.e., the instruction causing the task switch is a JMP or
IRET instruction). If the task is placed in the chain, its Busy bit remains set.

3. When switching to a task, the processor generates a general-protection exception if the
Busy bit of the new task already is set.

In this way, the processor prevents a task from switching to itself or to any task in the chain,
which prevents re-entrant task switching.

The Busy bit may be used in multiprocessor configurations, because the processor asserts a
bus lock when it sets or clears the Busy bit. This keeps two processors from invoking the
same task at the same time. (See Chapter 19 for more information on multiprocessing.)

I 13-13

L
PROTECTED-MODE MULTITASKING l ntd ®

13.6.2. Modifying Task Linkages

Modification of the chain of suspended tasks may be needed to resume an interrupted task
before the task which interrupted it. A reliable way to do this is:

1. Disable interrupts.

2. First change the Link field in the TSS of the interrupting task, then clear the Busy bit in
the TSS descriptor of the task being removed from the chain.

3. Re-enable interrupts.

13.7. TASK ADDRESS SPACE

The LDT selector and PDBR (CR3) field of the TSS can be used to give each task its own
LDT and page tables. Because segment descriptors in the LDTs are the connections between
tasks and segments, separate LDTs for each task can be used to set up individual control over
these connections. Access to any particular segment can be given to any particular task by
placing a segment descriptor for that segment in the LDT for that task. If paging is enabled,
each task can have its own set of page tables for mapping linear addresses to physical
addresses.

It also is possible for tasks to have the same LDT. This is a simple and memory-efficient way
to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments
accessed through segment descriptors in this table.

13.7.1. Task Linear-to-Physical Space Mapping

The choices for arranging the linear-to-physical mappings of tasks fall into two general
classes:

1. One linear-to-physical mapping shared among all tasks. When paging is not enabled, this
is the only choice. Without paging, all linear addresses map to the same physical
addresses. When paging is enabled, this form of linear-to-physical mapping is obtained
by using one page directory for all tasks. The linear space may exceed the available
physical space if demand-paged virtual memory is supported.

2. Independent linear-to-physical mappings for each task. This form of mapping comes
from using a different page directory for each task. Because the PDBR (page directory
base register) is loaded from the TSS with each task switch, each task may have a
different page directory.

The linear address spaces of different tasks may map to completely distinct physical
addresses. If the entries of different page directories point to different page tables and the

13-14 I

o
lntd ® PROTECTED-MODE MULTITASKING

page tables point to different pages of physical memory, then the tasks do not share any
physical addresses.

The task state segments must lie in a space accessible to all tasks so that the mapping of TSS
addresses does not change while the processor is reading and updating the TSSs during a task
switch. The linear space mapped by the GDT also should be mapped to a shared physical
space; otherwise, the purpose of the GDT is defeated. Figure 13-7 shows how the linear
spaces of two tasks can overlap in the physical space by sharing page tables.

13.7.2. Task Logical Address Space

By itself, an overlapping linear-to-physical space mapping does not allow sharing of data
among tasks. To share data, tasks must also have a common logical-to-linear space mapping;
i.e., they also must have access to descriptors which point into a shared linear address space.
There are three ways to create shared logical-to-physical address-space mappings:

1. Through the segment descriptors in the GDT. All tasks have access to the descriptors in
the GDT. If those descriptors point into a linear-address space which is mapped to a
common physical-address space for all tasks, then the tasks can share data and
instructions.

2. Through shared LDTs. Two or more tasks can use the same LDT if the LDT selectors in
their TSSs select the same LDT for use in address translation. Segment descriptors in the
LDT addressing linear space mapped to overlapping physical space provide shared
physical memory. This method of sharing is more selective than sharing by the GDT; the
sharing can be limited to specific tasks. Other tasks in the system may have different
LDTs which do not give them access to the shared areas.

3. Through segment descriptors in the LDTs which map to the same linear address space. If
the linear address space is mapped to the same physical space by the page mapping of
the tasks involved, these descriptors permit the tasks to share space. Such descriptors are
commonly called aliases. This method of sharing is even more selective than those listed
above; other descriptors in the LDTs may point to independent linear addresses which
are not shared.

I 13-15

L)
PROTECTED-MODE MULTITASKING I ntd ®

PAGE
1SS PAGE
DIRECTORIES TABLES PAGE FRAMES
TASK A TSS TASK A
9 PAGE
PTE [—
TASK A
PTE |——>| PAGE
posR [—3| poE [~ pre |—
PDE [
SHARED PT > T::gEA
> | snareo
PTE PAGE
; PTE
TASK B TSS | | SHARED
PAGE
TASK B
PoBR |—»| PDE - PTE > s
PDE —) PTE
TASKB
ohce PAGE
PAGE
Tss DIRECTORIES TABLES PAGE FRAMES

APMS7

Figure 13-7. Overlapping Linear-to-Physical Mappings

13-16 I

intal.

Protected-Mode
Exceptions and
Interrupts

intgl.

CHAPTER 14
PROTECTED-MODE EXCEPTIONS AND
INTERRUPTS

Exceptions and interrupts are forced transfers of execution to a task or a procedure. The task
or procedure is called a handler. Interrupts occur at random times during the execution of a
program, in response to signals from hardware. Exceptions occur when instructions are
executed which provoke exceptions. Usually, the servicing of interrupts and exceptions is
performed in a manner transparent to application programs. Interrupts are used to handle
events external to the processor, such as requests to service peripheral devices. Exceptions
handle conditions detected by the processor in the course of executing instructions, such as
division by zero.

There are two sources for interrupts and two sources for exceptions:

1. Interrupts

— Maskable interrupts, which are received on the CPU's INTR input pin. Maskable
interrupts do not occur unless the interrupt-enable flag (IF) is set.

— Nonmaskable interrupts, which are received on the NMI (Non-Maskable Interrupt)
input of the processor. The processor does not provide a mechanism to prevent
nonmaskable interrupts.

2. Exceptions

— Processor-detected exceptions. These are further classified as faults, traps, and
aborts.

— Programmed exceptions. The INTO, INT 3, INT n, and BOUND instructions may
trigger exceptions. These instructions often are called "software interrupts,” but the
processor handles them as exceptions.

This chapter explains the features of the processor which control and respond to interrupts.

14.1. EXCEPTION AND INTERRUPT VECTORS

The processor associates an identifying number with each different type of interrupt or
exception. This number is called a vector.

The NMI interrupt and the exceptions are assigned vectors in the range O through 31. Not all
of these vectors are currently used by the processor; unassigned vectors in this range are
reserved for possible future uses. Do not use unassigned vectors.

The vectors for maskable interrupts are determined by hardware. External interrupt
controllers (such as Intel's 8259A Programmable Interrupt Controller) put the vector on the

I 14-1

n
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS I nU ®

processor's bus during its interrupt-acknowledge cycle. Any vectors in the range 32 through
255 can be used. Table 14-1 shows the assignment of exception and interrupt vectors.

Table 14-1. Exception and Interrupt Vectors

Vector Number

Description

© oo N oo 0O~ O N

S S U Gy
N o o0~ W N <+ O

18
19-31
32-255

Divide Error

Debug Exception

NMI Interrupt

Breakpoint

INTO-detected Overflow
BOUND Range Exceeded
Invalid Opcode

Device Not Available
Double Fault

CoProcessor Segment Overrun (reserved)
Invalid Task State Segment
Segment Not Present

Stack Fault

General Protection

Page Fault

(Intel reserved. Do not use.)
Floating-Point Error
Alignment Check

Machine Check*

(Intel reserved. Do not use.)

Maskable Interrupts

*Machine check is a model-specific exception, available on the Pentium® microprocessor only. It may not be
continued or may not be continued with a compatible implementation in future processor generations.

Exceptions are classified as faults, traps, or aborts depending on the way they are reported
and whether restart of the instruction which caused the exception is supported.

Faults—A fault is an exception which is reported at the instruction boundary prior to the
instruction in which the exception was detected. The fault is reported with the machine
restored to a state which permits the instruction to be restarted. The return address for the
fault handler points to the instruction which generated the fault, rather than the instruction

following the faulting instruction.

14-2

-
Intd ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

Traps—A trap is an exception which is reported at the instruction boundary immediately
after the instruction in which the exception was detected.

Aborts—An abort is an exception which does not always report the location of the instruction
causing the exception and does not allow restart of the program which caused the exception.
Aborts are used to report severe errors, such as hardware errors and inconsistent or illegal
values in system tables.

14.2. INSTRUCTION RESTART

For most exceptions and interrupts, transfer of execution does not take place until the end of
the current instruction. This leaves the EIP register pointing at the instruction which comes
after the instruction which was being executed when the exception or interrupt occurred. If
the instruction has a repeat prefix, transfer takes place at the end of the current iteration with
the registers set to execute the next iteration. But if the exception is a fault, the processor
registers are restored to the state they held before execution of the instruction began. This
permits instruction restart.

Instruction restart is used to handle exceptions which block access to operands. For example,
an application program could make reference to data in a segment which is not present in
memory. When the exception occurs, the exception handler must load the segment (probably
from a hard disk) and resume execution beginning with the instruction which caused the
exception. At the time the exception occurs, the instruction may have altered the contents of
some of the processor registers. If the instruction read an operand from the stack, it is
necessary to restore the stack pointer to its previous value. All of these restoring operations
are performed by the processor in a manner completely transparent to the application
program.

When a fault occurs, the EIP register is restored to point to the instruction which received the
exception. When the exception handler returns, execution resumes with this instruction.

14.3. ENABLING AND DISABLING INTERRUPTS

Certain conditions and flag settings cause the processor to inhibit certain kinds of interrupts
and exceptions.

14.3.1. NMI Masks Further NMis

While an NMI interrupt handler is executing, the processor disables additional calls to the
procedure or task which handles the interrupt until the next IRET instruction is executed.
This prevents stacking up calls to the interrupt handler. It is recommended that interrupt
gates be used for NMI's in order to disable nested maskable interrupts, since an IRET
instruction from the maskable-interrupt handler would re-enable NMI.

I 14-3

]
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS Inté ®

14.3.2. IF Masks INTR

The IF flag can turn off servicing of interrupts received on the INTR pin of the processor.
When the IF flag is clear, INTR interrupts are ignored; when the IF flag is set, INTR
interrupts are serviced. As with the other flag bits, the processor clears the IF flag in response
to a RESET signal. The STI and CLI instructions set and clear the IF flag.

CLI (Clear Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) put the IF flag
(bit 9 in the EFLAGS register) in a known state. These instructions may be executed only if
the CPL is an equal or more privileged level than the IOPL. A general-protection exception
is generated if they are executed with a lesser privileged level.

The IF flag also is affected by the following operations:

® The PUSHF instruction stores all flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified form back into the
EFLAGS register.

® Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

® Interrupts through interrupt gates automatically clear the IF flag, which disables
interrupts. (Interrupt gates are explained later in this chapter).

14.3.3. RF Masks Debug Faults

The RF flag in the EFLAGS register is used to prevent servicing an instruction breakpoint
fault multiple times. RF works as follows:

® The processor does not set the RF bit in the EFLAGS image that it pushes onto the stack
of the handler. Normally the RF image on the stack does not need to be changed by
software.

® RF itself is set by the fault handler when it executes the IRETD instruction to return to
the faulting instruction. IRETD transfers the EFLAGS image from the stack into the
EFLAGS register. (POPF and POPFD do not transfer the RF image into the EFLAGS
register.)

® RF is cleared by the processor at successful termination of every instruction, except after
the IRET instruction and after JMP, CALL, or INT instructions that cause a task switch.
Therefore, RF remains set for no more than one instruction — the one executed
immediately after the IRET.

® When set, RF causes the processor to suppress reporting of instruction breakpoint faults.

Because instruction breakpoint faults are the highest priority faults, they are always reported
before any other faults for the same instruction. RF is zero for the first attempt to execute the
instruction and one for all attempts to restart the instruction after an instruction breakpoint or
any other fault. This ensures that an instruction breakpoint fault is reported only once. (See
Chapter 17 for more information on debugging.)

14-4 I

]
Int€| ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

14.3.4. MOV or POP to SS Masks Some Exceptions and Interrupts

Software which needs to change stack segments often uses a pair of instructions; for
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded but before the
ESP register has been loaded, these two parts of the logical address into the stack space are
inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step
trap exceptions after either a MOV to SS instruction or a POP to SS instruction, until the
instruction boundary following the next instruction is reached. General-protection faults may
still be generated. If the LSS instruction is used to modify the contents of the SS register, the
problem does not occur.

14.4. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. The priority among classes of exception and interrupt
sources is shown in Table 14-2. While priority among these classes is consistent throughout
the architecture, exceptions within each class are implementation-dependent and may vary
from processor to processor. The processor first services a pending exception or interrupt
from the class which has the highest priority, transferring execution to the first instruction of
the handler. Lower priority exceptions are discarded; lower priority interrupts are held
pending. Discarded exceptions are re-issued when the interrupt handler returns execution to
the point of interruption.

I 14-5

-
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS |nté ®

Table 14-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Class Descriptions
Highest | Class 1 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set, T bit in TSS set, or data/IO
breakpoint)
Class 2 External Interrupts

- NMI Interrupts
- Maskable Interrupts

Faults from fetching next instruction
Class 3 - Code Breakpoint Fault
Class 4 Faults from fetching or decoding the next instruction

- Code Segment Limit Violation

- Page Fault on Prefetch

- lilegal Opcode

- Instruction length > 15 bytes

- Coprocessor Not Available
Lowest | Class5 Faults on Execut.ing an Instruction
- General Detection

- FP error (from previous FP instruction)
- Interrupt on Overflow

- Bound

- Invalid TSS

- Segment Not Present

- Stack Exception

- General Protection

- Data Page Fault

- Alignment Check

14.5. INTERRUPT DESCRIPTOR TABLE

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a
descriptor for the procedure or task which services the associated event. Like the GDT and
LDTs, the IDT is an array of 8-byte descriptors. Unlike the GDT, the first entry of the IDT
may contain a descriptor. To form an index into the IDT, the processor scales the exception
or interrupt vector by eight, the number of bytes in a descriptor. Because there are only 256
vectors, the IDT need not contain more than 256 descriptors. It can contain fewer than 256
descriptors; descriptors are required only for the interrupt vectors which may occur.

The IDT may reside anywhere in physical memory. As Figure 14-1 shows, the processor
locates the IDT using the IDTR register. This register holds both a 32-bit base address and
16-bit limit for the IDT. The LIDT and SIDT instructions load and store the contents of the
IDTR register. Both instructions have one operand, which is the address of six bytes in
memory.

14-6 I

-
Intd ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

IDTR REGISTER

47 16 15 0
IDT BASE ADDRESS | IDT LIMIT

i INTERRUPT
DESCRIPTOR TABLE

GATE FOR
INTERRUPT #N

GATE FOR
INTERRUPT #3

GATE FOR
INTERRUPT #2

GATE FOR
INTERRUPT #1

A\

APM123

Figure 14-1. IDTR Locates IDT in Memory

If a vector references a descriptor beyond the limit, the processor enters shutdown mode. In
this mode, the processor stops executing instructions until an NMI interrupt is received or
reset initialization is invoked. The processor generates a special bus cycle to indicate it has
entered shutdown mode. Software designers may need to be aware of the response of
hardware to receiving this signal. For example, hardware may turn on an indicator light on
the front panel, generate an NMI interrupt to record diagnostic information, or invoke reset
initialization.

LIDT (Load IDT register) loads the IDTR register with the base address and limit held in
the memory operand. This instruction can be executed only when the CPL is 0. It normally is
used by the initialization code of an operating system when creating an IDT. An operating
system also may use it to change from one IDT to another.

SIDT (Store IDT register) copies the base and limit value stored in IDTR to memory. This
instruction can be executed at any privilege level.

I 147

-
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS an ®

14.6. IDT DESCRIPTORS

The IDT may contain any of three kinds of descriptors:

® Task gates
® Interrupt gates
® Trap gates

Figure 14-2 shows the format of task gates, interrupt gates, and trap gates. (The task gate in
an IDT is the same as the task gate in the GDT or an LDT already discussed in Chapter 13.)

14-8 l

-
ln@ ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

TASK GATE

/77302.925272&‘252427?_?2]20/.9/3 17 16/15/14 13/12 11 10 9 8/7 € 5 4 3 2 1

RESERVED |p|pPL|o 0 1 0 1| RESERVED

TSS SEGMENT SELECTOR RESERVED :

J\NBRUNBRBABRA DWW BNGAANINRNANY ST 85 &3 72 13 Q{:

INTERRUPT GATE

7,

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16/15/14 13/12 11 10 9 8/7 6 5/4 3 2 1 0

OFFSET 31..16 P|DPL|0 1 1 1 0|0 0 0|RESERVED

SEGMENT SELECTOR OFFSET 15..0

\RNBDBNWVBHUMBRANDWRANT VNS WMRBR2NND 87 95 A3 2 A o\

TRAP GATE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16/15/14 13/12 11 10 9 8/7 6 5/4 3 2 1 o/

OFFSET 31..16 plopL{o 1 1 1 1|0 o olrESERVED || +4

SEGMENT SELECTOR OFFSET 15..0

S\ NV BRA VDWWV A DNV ARNSAAAIN2ANN 81 8 5 &3 24 Q.

DPL DESCRIPTOR PRIVILEGE LEVEL
OFFSET OFFSET TO PROCEDURE ENTRY POINT
P SEGMENT PRESENT BIT

RESERVED DO NOT USE
SELECTOR SEGMENT SELECTOR FOR DESTINATION

CODE SEGMENT
APM122

Figure 14-2. IDT Gate Descriptors

14.7. INTERRUPT TASKS AND INTERRUPT PROCEDURES

Just as a CALL instruction can call either a procedure or a task, so an exception or interrupt
can "call" an interrupt handler as either a procedure or a task. When responding to an
exception or interrupt, the processor uses the exception or interrupt vector to index to a

I 14-9

-
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS Inu ®

descriptor in the IDT. If the processor indexes to an interrupt gate or trap gate, it calls the
handler in a manner similar to a CALL to a call gate. If the processor finds a task gate, it
causes a task switch in a manner similar to a CALL to a task gate.

14.7.1. Interrupt Procedures

An interrupt gate or trap gate indirectly references a procedure which runs in the context of
the currently executing task, as shown in Figure 14-3. The selector of the gate points to an
executable-segment descriptor in either the GDT or the current LDT. The offset field of the
gate descriptor points to the beginning of the exception or interrupt handling procedure.

DESTINATION
IDT CODE SEGMENT

|
T INTERRUPT
OFFSET PROCEDURE
INTERRUPT __ [INTERRUPT OR +—> (>
VECTOR __IEAEFAIE_
[
|

SEGMENT SELECTOR

GDT OR LDT
BASE ADDRESS

APM124

Figure 14-3. Interrupt Procedure Call

The processor calls an exception or interrupt handling procedure in much the same manner as
a procedure call; the differences are explained in the following sections.

14-10 I

PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

intgl.

14.7.1.1. STACK OF INTERRUPT PROCEDURE

Just as with a transfer of execution using a CALL instruction, a transfer to an exception or
interrupt handling procedure uses the stack to store the processor state. As Figure 14-4
shows, an interrupt pushes the contents of the EFLAGS register onto the stack before pushing
the address of the interrupted instruction.

CHANGE, NO ERROR CODE

NO PRIVILEGE LEVEL NO PRIVILEGE LEVEL
CHANGE, NO ERROR CODE CHANGE, WITH ERROR CODE
<— OLDESP <«— OLDESP
OLD EFLAGS OLD EFLAGS
[oLbcs] oLbcs
OLD EIP <«— NEWESP OLD EIP

ERRORCODE | <€— NEWESP

PRIVILEGE LEVEL PRIVILEGE LEVEL

CHANGE, WITH ERROR CODE

UNUSED <— E3F oM UNUSED <— 737 FROM
1 OLD SS | OLD SS
OLD ESP OLD ESP
OLD EFLAGS OLD EFLAGS
! oLD CS | oLDcs
OLD EIP <«— NEWESP OLDEIP
ERROR CODE | <€— NEWESP

APM127

Figure 14-4. Stack Frame after Exception or Interrupt

Certain types of exceptions also push an error code on the stack. An exception handler can
use the error code to help diagnose the exception.

14.7.1.2. RETURNING FROM AN INTERRUPT PROCEDURE

An interrupt procedure differs from a normal procedure in the method of leaving the
procedure. The IRET instruction is used to exit from an interrupt procedure. The IRET
instruction is similar to the RET instruction except that it increments the contents of the ESP

I 14-11

PROTECTED-MODE EXCEPTIONS AND INTERRUPTS lntel ®

register by an extra four bytes and restores the saved flags into the EFLAGS register. The
IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed
only if CPL <IOPL.

14.7.1.3. FLAG USAGE BY INTERRUPT PROCEDURE

Interrupts using either interrupt gates or trap gates cause the TF flag to be cleared after its
current value is saved on the stack as part of the saved contents of the EFLAGS register. In
so doing, the processor prevents instruction tracing from affecting interrupt response. A
subsequent IRET instruction restores the TF flag to the value in the saved contents of the
EFLAGS register on the stack.

The difference between an interrupt gate and a trap gate is its effect on the IF flag. An
interrupt which uses an interrupt gate clears the IF flag, which prevents other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the IF
flag to the value in the saved contents of the EFLAGS register on the stack. An interrupt
through a trap gate does not change the IF flag.

14.7.1.4. PROTECTION IN INTERRUPT PROCEDURES

The privilege rule which governs interrupt procedures is similar to that for procedure calls:
the processor does not permit an interrupt to transfer execution to a procedure in a less
privileged segment (numerically greater privilege level). An attempt to violate this rule
results in a general-protection exception.

Because interrupts generally do not occur at predictable times, this privilege rule effectively
imposes restrictions on the privilege levels at which exception and interrupt handling
procedures can run. Either of the following techniques can be used to keep the privilege rule
from being violated.

® The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used by handlers for certain exceptions (divide error, for example).
These handlers must use only the data available on the stack. If the handler needs data
from a data segment, the data segment would have to have privilege level 3, which
would make it unprotected.

® The handler can be placed in a code segment with privilege level 0. This handler would
always run, no matter what CPL the program has.

14.7.2. Interrupt Tasks

A task gate in the IDT indirectly references a task, as Figure 14-5 illustrates. The segment
selector in the task gate addresses a TSS descriptor in the GDT.

14-12 I

-
"Ttel ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

10T TsS
L
!
!
INTERRUPT — TASK GATE
VECTOR T
|
I
TSS SELECTOR
GDT

T TSS BASE ADDRESS

!
[~ TSSDESCRIPTOR —
[

|
[

APM125

Figure 14-5. Interrupt Task Switch

When an exception or interrupt calls a task gate in the IDT, a task switch results. Handling an
interrupt with a separate task offers two advantages:

® The entire context is saved automatically.

® The interrupt handler can be isolated from other tasks by giving it a separate address
space. This is done by giving it a separate LDT.

A task switch caused by an interrupt operates in the same manner as the other task switches
described in Chapter 13. The interrupt task returns to the interrupted task by executing an
IRET instruction.

Some exceptions return an error code. If the task switch is caused by one of these, the
processor pushes the code onto the stack corresponding to the privilege level of the interrupt
handler.

When interrupt tasks are used in an operating system, there are actually two mechanisms
which can dispatch tasks: the software scheduler (part of the operating system) and the
hardware scheduler (part of the processor's interrupt mechanism). The software scheduler
needs to accommodate interrupt tasks which may be dispatched when interrupts are enabled.

I 14-13

L]
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS Intd ®

14.8. ERROR CODE

With exceptions related to a specific segment, the processor pushes an error code onto the
stack of the exception handler (whether it is a procedure or task). The error code has the
format shown in Figure 14-6. The error code resembles a segment selector; however instead
of an RPL field, the error code contains two one-bit fields:

1. The processor sets the EXT bit if an event external to the program caused the exception.

2. The processor sets the IDT bit if the index portion of the error code refers to a gate
descriptor in the IDT.

I 292827 262524232221 20191817 16/15 14 13 121110 9 8 7 6 5 4 3/2/1/0f

SELECTOR INDEX

APM121

Figure 14-6. Error Code

If the IDT bit is not set, the TI bit indicates whether the error code refers to the GDT (TI bit
clear) or to the LDT (TI bit set). The remaining 13 bits are the upper bits of the selector for
the segment. In some cases the error code is null (i.e., all bits in the lower word are clear).

The error code is pushed on the stack as a doubleword or word, according to current default
size. This is done to keep the stack aligned on addresses which are multiples of four. The
upper half of the doubleword is reserved.

14.9. EXCEPTION CONDITIONS

The following sections describe conditions which generate exceptions. Each description
classifies the exception as a fault, trap, or abort. This classification provides information
needed by system programmers for restarting the procedure in which the exception occurred:

©® Faults—The saved contents of the CS and EIP registers point to the instruction which
generated the fault.

® Traps—The saved contents of the CS and EIP registers stored when the trap occurs point
to the instruction to be executed after the instruction which generated the trap. If a trap is
detected during an instruction which transfers execution, the saved contents of the CS
and EIP registers reflect the transfer. For example, if a trap is detected in a JMP
instruction, the saved contents of the CS and EIP registers point to the destination of the
JMP instruction, not to the instruction at the next address above the JMP instruction.

14-14 I

-
Intel ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

® Aborts—An abort is an exception which permits neither precise location of the
instruction causing the exception nor restart of the program which caused the exception.
Aborts are used to report severe errors, such as hardware errors and inconsistent or
illegal values in system tables.

14.9.1. Interrupt 0—Divide Error

The divide-error fault occurs during a DIV or an IDIV instruction when the divisor is zero.

14.9.2. Interrupt 1—Debug Exceptions

The processor generates a debug exception for a number of conditions; whether the exception
is a fault or a trap depends on the condition, as shown below:

Instruction address breakpoint fault
Data address breakpoint trap
General detect fault
Single-step trap
Task-switch breakpoint trap

The processor does not push an error code for this exception. An exception handler can
examine the debug registers to determine which condition caused the exception. See
Chapter 17 for more detailed information about debugging and the debug registers.

14.9.3. Interrupt 3—Breakpoint

The INT 3 instruction generates a breakpoint trap. The INT 3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode. The operating system or a debugging tool can use a data segment mapped to the
same physical address space as the code segment to place an INT 3 instruction in places
where it is desired to call the debugger. Debuggers use breakpoints as a way to suspend
program execution in order to examine registers, variables, etc.

The saved contents of the CS and EIP registers point to the byte following the breakpoint. If
a debugger allows the suspended program to resume execution, it replaces the INT 3
instruction with the original opcode at the location of the breakpoint, and it decrements the
saved contents of the EIP register before returning. See Chapter 17 for more information on
debugging.

I 14-15

n
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS Intel ®

14.9.4. Interrupt 4—Overflow

The overflow trap occurs when the processor executes an INTO instruction with the OF flag
set. Because signed and unsigned arithmetic both use some of the same instructions, the
processor cannot determine when overflow actually occurs. Instead, it sets the OF flag when
the results, if interpreted as signed numbers, would be out of range. When doing arithmetic
on signed operands, the OF flag can be tested directly or the INTO instruction can be used.

14.9.5. Interrupt 5—Bounds Check

The bounds-check fault is generated when the processor, while executing a BOUND
instruction, finds that the operand exceeds the specified limits. A program can use the
BOUND instruction to check a signed array index against signed limits defined in a block of
memory.

14.9.6. Interrupt 6—Invalid Opcode

The invalid-opcode fault is generated when an invalid opcode is detected by the execution
unit. (The exception is not detected until an attempt is made to execute the invalid opcode;
i.e., prefetching an invalid opcode does not cause this exception.) No error code is pushed on
the stack. The exception can be handled within the same task.

This exception also occurs when the type of operand is invalid for the given opcode.
Examples include an intersegment JMP instruction using a register operand, or an LES
instruction with a register source operand.

A third condition which generates this exception is the use of the LOCK prefix with an
instruction which may not be locked. Only certain instructions may be used with bus locking,
and only forms of these instructions which write to a destination in memory may be used. All
other uses of the LOCK prefix generate an invalid-opcode exception.

Following is a list of undefined opcodes that are reserved by Intel. These opcodes, even
though undefined, do not generate interrupt 6.

® D6
® Fi

14.9.7. Interrupt 7—Device Not Available

The device-not-available fault is generated by either of two conditions:

® The processor executes an ESC instruction, and the EM bit of the CRO register is set.

® The processor executes a WAIT instruction (with MP=1) or ESC instruction, and the TS
bit of the CRO register is set.

14-16 I

=
In.td ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

Interrupt 7 thus occurs when the programmer wants ESC instructions to be handled by
software (EM set), or when a WAIT or ESC instruction is encountered and the context of the
floating-point unit is different from that of the current task.

On the Intel 286 and Intel386 processors, the MP bit in the CRO register is used with the TS
bit to determine if WAIT instructions should generate exceptions. For programs running on
the Pentium and Intel486 DX processors, and Intel487 SX coprocessors, the MP bit should
always be set. For programs running on the Intel486 SX processor, MP should be clear.

14.9.8. Interrupt 8—Double Fault

Normally, when the processor detects an exception while trying to call the handler for a prior
exception, the two exceptions can be handled serially. If, however, the processor cannot
handle them serially, it signals the double-fault exception instead. To determine when two
faults are to be signaled as a double fault, the processor divides the exceptions into three
classes: benign exceptions, contributory exceptions, and page faults. Table 14-3 shows this
classification. Then, comparing the classes of the first and second exception, the processor
signals a double-fault in the cases indicated by Table 14-4.

Table 14-3. Interrupt and Exception Classes

Class Vector Number Description
1 Debug Exceptions
2 NMI Interrupt
Benign 3 Breakpoint
Exceptions 4 Overflow
and Interrupts 5 Bounds Check
6 Invalid Opcode
7 Device Not Available
16 Floating-Point Error
0 Divide Error
Contributory 10 Invalid TSS
Exceptions 11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 14-4. Double Fault Conditions

Second Exception
First Exception Benign Contributory Page Fault
Benign OK OK OK
Contributory OK Double Fault OK
Page Fault OK Double Fault Double Fault

I 14-17

u
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS Intd ®

An initial segment or page fault encountered while prefetching instructions is outside the
domain of Table 14-4. Any further faults generated while the processor is attempting to
transfer control to the appropriate fault handler could still lead to a double-fault sequence.

The processor always pushes an error code onto the stack of the double-fault handler;
however, the error code is always 0. The faulting instruction may not be restarted. If any
other exception occurs while attempting to call the double-fault handler, the processor enters
shutdown mode. This mode is similar to the state following execution of an HLT instruction.
No instructions are executed until an NMI interrupt or a RESET signal is received. If the
shutdown occurs while the processor is executing an NMI interrupt handler, then only a
RESET can restart the processor. The processor generates a special bus cycle to indicate it
has entered shutdown mode.

14.9.9. Interrupt 9—(Intel reserved. Do not use.)

Interrupt 9, the coprocessor-segment overrun abort, is generated in Intel386 CPU-based
systems with an Intel387 math coprocessor when the Intel1386 CPU detects a page or segment
violation while transferring the middle portion of an Intel387 math coprocessor operand. This
interrupt is generated neither by the Pentium processor nor by the Intel486 processor;
interrupt 13 occurs instead.

14.9.10. Interrupt 10—Invalid TSS

An invalid-TSS fault is generated if a task switch to a segment with an invalid TSS is
attempted. A TSS is invalid in the cases shown in Table 14-5. An error code is pushed onto
the stack of the exception handler to help identify the cause of the fault. The EXT bit
indicates whether the exception was caused by a condition outside the control of the program
(e.g., if an external interrupt using a task gate attempted a task switch to an invalid TSS).

14-18 l

-
"Ttel ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

Tabie 14-5. Invalid TSS Conditions

Error Code Index Description
TSS segment TSS segment limit less than 67H
LDT segment Invalid LDT or LDT not present
Stack segment Stack segment selector exceeds descriptor table limit
Stack segment Stack segment is not writable
Stack segment Stack segment DPL not compatible with CPL
Stack segment Stack segment selector RPL not compatible with CPL
Code segment Code segment selector exceeds descriptor table limit
Code segment Code segment is not executable
Code segment Non-conforming code segment DPL not equal to CPL
Code segment Conforming code segment DPL greater than CPL
Data segment Data segment selector exceeds descriptor table limit
Data segment Data segment not readable

This fault can occur either in the context of the original task or in the context of the new task.
Until the processor has completely verified the presence of the new TSS, the exception
occurs in the context of the original task. Once the existence of the new TSS is verified, the
task switch is considered complete; i.e., the TR register is loaded with a selector for the new
TSS and, if the switch is due to a CALL or interrupt, the Link field of the new TSS
references the old TSS. Any errors discovered by the processor after this point are handled in
the context of the new task.

To ensure a TSS is available to process the exception, the handler for an invalid-TSS
exception must be a task called using a task gate.

14.9.11. Interrupt 11—Segment Not Present

The segment-not-present fault is generated when the processor detects that the present bit of
a descriptor is clear. The processor can generate this fault in any of these cases:

® While attempting to load the CS, DS, ES, FS, or GS registers; loading the SS register,
however, causes a stack fault.

® While attempting to load the LDT register using an LLDT instruction; loading the LDT
register during a task switch operation, however, causes an invalid-TSS exception.

® While attempting to use a gate descriptor which is marked segment-not-present.

This fault is restartable. If the exception handler loads the segment and returns, the
interrupted program resumes execution.

I 14-19

L]
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS In.td ®

If a segment-not-present exception occurs during a task switch, not all the steps of the task
switch are complete. During a task switch, the processor first loads all the segment registers,
then checks their contents for validity. If a segment-not-present exception is discovered, the
remaining segment registers have not been'checked and therefore may not be usable for
referencing memory. The segment-not-present handler should not rely on being able to use
the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should check all segment registers before trying to
resume the new task; otherwise, general protection faults may result later under conditions
which make diagnosis more difficult. There are three ways to handle this case:

1. Handle the segment-not-present fault with a task. The task switch back to the interrupted
task causes the processor to check the registers as it loads them from the TSS.

2. Use the PUSH and POP instructions on all segment registers. Each POP instruction
causes the processor to check the new contents of the segment register.

3. Check the saved contents of each segment register in the TSS, simulating the test which
the processor makes when it loads a segment register.

This exception pushes an error code onto the stack. The EXT bit of the error code is set if an
event external to the program caused an interrupt which subsequently referenced a not-
present segment. The IDT bit is set if the error code refers to an IDT entry (e.g., an INT
instruction referencing a not-present gate).

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. A not-present indication in a gate descriptor, however, usually
does not indicate that a segment is not present (because gates do not necessarily correspond
to segments). Not-present gates may be used by an operating system to trigger exceptions of
special significance to the operating system.

14.9.12. Interrupt 12—Stack Exception

A stack fault is generated under two conditions:

® As a result of a limit violation in any operation which refers to the SS register. This
includes stack-oriented instructions such as POP, PUSH, ENTER, and LEAVE, as well
as other memory references which implicitly or explicitly use the SS register (for
example, MOV AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction
generates this exception when there is too little space for allocating local variables.

® When attempting to load the SS register with a descriptor which is marked segment-not-
present but is otherwise valid. This can occur in a task switch, a CALL instruction to a
different privilege level, a return to a different privilege level, an LSS instruction, or a
MOV or POP instruction to the SS register.

When the processor detects a stack exception, it pushes an error code onto the stack of the
exception handler. If the exception is due to a not-present stack segment or to overflow of the
new stack during an interlevel CALL, the error code contains a selector to the segment which

14-20 I

@
nU ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

caused the exception (the exception handler can test the present bit in the descriptor to
determine which exception occurred); otherwise, the error code is 0.

An instruction generating this fault is restartable in all cases. The return address pushed onto
the exception handler's stack points to the instruction which needs to be restarted. This
instruction usually is the one which caused the exception; however, in the case of a stack
exception from loading a not-present stack-segment descriptor during a task switch, the
indicated instruction is the first instruction of the new task.

When a stack exception occurs during a task switch, the segment registers may not be usable
for addressing memory. During a task switch, the selector values are loaded before the
descriptors are checked. If a stack exception is generated, the remaining segment registers
have not been checked and may cause exceptions if they are used. The stack fault handler
should not expect to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. The exception handler should check all segment
registers before trying to resume the new task; otherwise, general protection faults may result
later under conditions where diagnosis is more difficult.

14.9.13. Interrupt 13—General Protection

All protection violations which do not cause another exception cause a general-protection
exception. This includes (but is not limited to):

Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments.
Exceeding the segment limit when referencing a descriptor table.

Transferring execution to a segment which is not executable.

Writing to a read-only data segment or a code segment.

Reading from an execute-only code segment.

0O 6 ©¢ 0 © ©

Loading the SS register with a selector for a read-only segment (unless the selector
comes from a TSS during a task switch, in which case an invalid-TSS exception occurs).

(+]

Loading the SS, DS, ES, FS, or GS register with a selector for a system segment.

Loading the DS, ES, FS, or GS register with a selector for an execute-only code
segment.

Loading the SS register with the selector of an executable segment.
Accessing memory using the DS, ES, FS, or GS register when it contains a null selector.
Switching to a busy task.

Violating privilege rules.

© 6 @ © ©

Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).

® [Loading the CRO register with a set PG bit (paging enabled) and a clear PE bit
(protection disabled).

I 14-21
3

L]
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS I ntd ®

® Interrupt or exception through an interrupt or trap gate from virtual-8086 mode to a
handler at a privilege level other than 0.

® Attempting to write a one into a reserved bit of CR4.

The general-protection exception is a fault. In response to a general-protection exception, the
processor pushes an error code onto the exception handler's stack. If loading a descriptor
causes the exception, the error code contains a selector to the descriptor; otherwise, the error
code is null. The source of the selector in an error code may be any of the following:

® An operand of the instruction.

® A selector from a gate which is the operand of the instruction.
® A selector from a TSS involved in a task switch.

14.9.14. Interrupt 14—Page Fault

A page fault occurs when paging is enabled (the PG bit in the CRO register is set) and the
processor detects one of the following conditions while translating a linear address to a
physical address:

® The page-directory or page-table entry needed for the address translation has a clear
Present bit, which indicates that a page table or the page containing the operand is not
present in physical memory.

® The procedure does not have sufficient privilege to access the indicated page.

If a page fault is caused by a page level protection violation, the access bits in the page-
directory are set when the faults occur. The access bit in the page table is only set if there
are no page level protection violations.

The processor provides the page fault handler two items of information which aid in
diagnosing the exception and recovering from it:

® An error code on the stack. The error code for a page fault has a format different from
that for other exceptions (see Figure 14-7). The error code tells the exception handler
three things:

a. Whether the exception was due to a not-present page, to an access rights violation,
or to use of a reserved bit.

b. Whether the processor was executing at user or supervisor level at the time of the
exception.

c. Whether the memory access which caused the exception was a read or write.

® The contents of the CR2 register. The processor loads the CR2 register with the 32-bit
linear address which generated the exception. The exception handler can use this address
to locate the corresponding page directory and page table entries. If another page fault
occurs during execution of the page fault handler, the handler will push the contents of
the CR2 register onto the stack.

14-22 I

u
Inté ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

16029252725252423221207973 RGNS 14 13120110878 7:6.:5:4::3)2)1
' ulw|

RESERVED 1|/

S|R

P 0 THE FAULT WAS CAUSED BY A NOT-PRESENT PAGE.

1 THE FAULT WAS CAUSED BY A PAGE-LEVEL PROTECTION VIOLATION.
W/R 0 THEACCESS CAUSING THE FAULT WAS A READ.

1 THE ACCESS CAUSING THE FAULT WAS A WRITE.
U/S 0 THE ACCESS CAUSING THE FAULT ORIGINATED WHEN THE

PROCESSOR WAS EXECUTING IN SUPERVISOR MODE.

1 THE ACCESS CAUSING THE FAULT ORIGINATED WHEN THE
PROCESSOR WAS EXECUTING IN USER MO!

APM126

Figure 14-7. Page Fault Error Code

14.9.14.1. PAGE FAULT DURING TASK SWITCH

These operations during a task switch cause access to memory:

1. Write the state of the original task in the TSS of that task.

2. Read the GDT to locate the TSS descriptor of the new task.

3. Read the TSS of the new task to check the types of segment descriptors from the TSS.
4

May read the LDT of the new task in order to verify the segment registers stored in the
new TSS.

A page fault can result from accessing any of these operations. In the last two cases the
exception occurs in the context of the new task. The instruction pointer refers to the next
instruction of the new task, not to the instruction which caused the task switch (or the last
instruction to be executed, in the case of an interrupt). If the design of the operating system
permits page faults to occur during task-switches, the page-fault handler should be called
through a task gate.

14.9.14.2. PAGE FAULT WITH INCONSISTENT STACK POINTER

Special care should be taken to ensure that a page fault does not cause the processor to use an
invalid stack pointer (SS:ESP). Software written for Intel 16-bit processors often uses a pair
of instructions to change to a new stack; for example:

MOV SS, AX
MOV SP, StackTop

With the 32-bit processors, because the second instruction accesses memory, it is possible to
get a page fault after the selector in the SS segment register has been changed but before the

I 14-23

L]
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS I ntel ®

contents of the SP register have received the corresponding change. At this point, the two
parts of the stack pointer SS:SP (or, for 32-bit programs, SS:ESP) are inconsistent. The new
stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the handling of the page fault
causes a stack switch to a well defined stack (i.e., the handler is a task or a more privileged
procedure). However, if the page fault occurs at the same privilege level and in the same task
as the page fault handler, the processor will attempt to use the stack indicated by the
inconsistent stack pointer.

In systems which use paging and handle page faults within the faulting task (with trap or
interrupt gates), software executing at the same privilege level as the page fault handler
should initialize a new stack by using the LSS instruction rather than an instruction pair
shown above. When the page fault handler is running at privilege level O (the normal case),
the problem is limited to programs which run at privilege level 0, typically the kernel of the
operating system.

14.9.15. Interrupt 16—Floating-Point Error

A floating-point-error fault signals an error generated by a floating-point arithmetic
instruction. Interrupt 16 can occur only if the NE bit in the CRO register is set. Numeric
processing exceptions have already been introduced previously in Chapter 7.

If NE = 1, an unmasked floating-point exception results in interrupt 16, immediately before
the execution of the next non-control floating-point or WAIT instruction. Interrupt 16 is an
operating-system call that invokes the exception handler. Chapter 14 contains a general
discussion of exceptions and interrupts.

If NE = 0 (and the IGNNE# input is inactive), an unmasked floating-point exception causes
the processor to freeze immediately before executing the next non-control floating-point or
WAIT instruction. The frozen processor waits for an external interrupt, which must be
supplied by external hardware in response to the FERR# output of the Intel486 or Pentium
processors (the FERR# is similar to the ERROR# pin of the Intel387 math coprocessor).
Regardless of the value of NE, an unmasked numerical exception causes the FERR# output
of the Intel486 and Pentium processors to be activated. In this case. the external interrupt
invokes the exception-handling routine. If NE = O but the IGNNE# input is active, the
processor disregards the exception and continues. Error reporting via external interrupt is
supported for DOS compatibility. Chapter 23 contains further discussion of compatibility
issues.

When handling numeric errors, the processor has two responsibilities:
® It must not disturb the numeric context when an error is detected.
® It must clear the error and attempt recovery from the error.

Although the manner in which programmers may treat these responsibilities varies from one
implementation to the next, most exception handlers will include these basic steps:

14-24 I

-
lntel ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

® Store the FPU environment (control, status, and tag words, operand and instruction
pointers) as it existed at the time of the exception.

® (lear the exception bits in the status word.
© Enable interrupts if disabled due to an INTR, NMI, or SMI exception.

® Identify the exception by examining the status and control words in the saved
environment.

® Take some system-dependent action to rectify the exception.

Return to the interrupted program and resume normal execution.

14.9.15.1. NUMERICS EXCEPTION HANDLING

Recovery routines for numeric exceptions can take a variety of forms. They can change the
arithmetic and programming rules of the FPU. These changes may redefine the default fix-up
for an error, change the appearance of the FPU to the programmer, or change how arithmetic
is defined on the FPU.

A change to an exception response might be to perform denormal arithmetic on denormals
loaded from memory. A change in appearance might be extending the register stack into
memory to provide an "infinite" number of numeric registers. The arithmetic of the FPU can
be changed to automatically extend the precision and range of variables when exceeded. All
these functions can be implemented on the processor via numeric exceptions and associated
recovery routines in a manner transparent to the application programmer.

Some other possible application-dependent actions might include:

® Incrementing an exception counter for later display or printing

® Printing or displaying diagnostic information (e.g., the FPU environment and registers)
® Aborting further execution

® Storing a diagnostic value (a NaN) in the result and continuing with the computation

Notice that an exception may or may not constitute an error, depending on the application.
Once the exception handler corrects the condition causing the exception, the floating-point
instruction that caused the exception can be restarted, if appropriate. This cannot be
accomplished using the IRET instruction, however, because the trap occurs at the ESC or
WAIT instruction following the offending ESC instruction. The exception handler must
obtain (using FSAVE or FSTENV) the address of the offending instruction in the task that
initiated it, make a copy of it, execute the copy in the context of the offending task, and then
return via IRET to the current instruction stream.

In order to correct the condition causing the numeric exception, exception handlers must
recognize the precise state of the FPU at the time the exception handler was invoked, and be
able to reconstruct the state of the FPU when the exception initially occurred. To reconstruct
the state of the FPU, programmers must understand that different classes of exceptions are
recognized at different times (before or after) execution of a numeric instruction.

I 14-25

-
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS InU ®

Invalid operation, zero divide, and denormal operand exceptions are detected before an
operation begins, whereas overflow, underflow, and precision exceptions are not raised until
a true result has been computed. When a before exception is detected, the FPU register stack
and memory have not yet been updated, and appear as if the offending instructions has not
been executed.

When an after exception is detected, the register stack and memory appear as if the
instruction has run to completion; i.e., they may be updated. (However, in a store or store-
and-pop operation, unmasked over/underflow is handled like a before exception; memory is
not updated and the stack is not popped.) The following programming examples include an
outline of several exception handlers to process numeric exceptions.

14.9.15.2. SIMULTANEOUS EXCEPTION RESPONSE

In cases where multiple exceptions arise simultaneously, the FPU signals one exception
according to the precedence list below. This means, for example, that an SNaN divided by
zero results in an invalid operation, not in a zero-divide exception; the masked result is the
QNaN real indefinite, not . A denormal or inexact (precision) exception, however, can
accompany a numeric underflow or overflow exception.

The precedence among numeric exceptions is as follows:

1. Invalid operation exception, subdivided as follows:
— Stack underflow.
— Stack overflow.
— Operand of unsupported format.
— SNaN operand.

2. QNaN operand. Though this is not an exception, if one operand is a QNaN, dealing with
it has precedence over lower-priority exceptions. For example, a QNaN divided by zero
results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or zero divide.

Denormal operand. If masked, then instruction execution continues, and a lower-priority
exception can occur as well.

5. Numeric overflow and underflow. Inexact result (precision) can be flagged as well.
Inexact result (precision).

14-26 I

-
Intd ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

14.9.16. Interrupt 17—Alignment Check

An alignment-check fault can be generated for access to unaligned operands. For example, a
word stored at an odd byte address, or a doubleword stored at an address which is not an
integer multiple of four. Table 14-6 lists the alignment requirements by data type. To enable
alignment checking, the following conditions must be true:

® AM bit in the CRO register is set

® AC flag is set

® CPL is 3 (user mode)

Table 14-6. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By
WORD 2
DWORD 4
Short REAL 4
Long REAL 8
TEMPREAL 8
Selector 2
48-bit Segmented Pointer 4
32-bit Flat Pointer 4
32-bit Segmented Pointer 2
48-bit “Pseudo-Descriptor” 4
FSTENV/FLDENV save area 4 or 2, depending on operand size
FSAVE/FRSTOR save area 4 or 2, depending on operand size
Bit String 4

Alignment checking is useful for programs which use the low two bits of pointers to identify
the type of data structure they address. For example, a subroutine in a math library may
accept pointers to numeric data structures. If the type of this structure is assigned a code of
10 (binary) in the lowest two bits of pointers to this type, math subroutines can correct for the
type code by adding a displacement of —10 (binary). If the subroutine should ever receive the
wrong pointer type, an unaligned reference would be produced, which would generate an
exception.

Alignment-check faults are generated only in user mode (privilege level 3). Memory
references which default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check faults, even when caused by a memory reference made in user
mode.

l 14-27

u
PROTECTED-MODE EXCEPTIONS AND INTERRUPTS Intd ®

Storing a 48-bit pseudo-descriptor (the memory image of the contents of a descriptor table
base register) in user mode can generate an alignment-check fault. Although user-mode
programs do not normally store pseudo-descriptors, the fault can be avoided by aligning the
pseudo-descriptor to an odd word address (i.e., an address which is 2 MOD 4).

FSAVE and FRSTOR instructions generate unaligned references which can cause alignment-
check faults. These instructions are rarely needed by application programs.

14.9.17. Interrupt 18—Machine Check

Machine check is a model-specific exception, available only on the Pentium microprocessor.
It may or may not be continued with a compatible implementation on future processor
generations. Use the CPUID instruction feature flag register to determine the presence of this
feature.

14.10. EXCEPTION SUMMARY

Table 14-7 summarizes the exceptions recognized by the Pentium processor.

14-28 I

Intd ® PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

Table 14-7. Exception Summary

Return Address
Vector Points to Faulting Exception Source of the
Description Number Instruction? Type Exception
Division by Zero 0 Yes FAULT DIV and IDIV
instructions
Debug Exceptions 1 1 1 Any code or data
reference
Breakpoint 3 No TRAP INT 3 instruction
Overflow 4 No TRAP INTO instruction
Bounds Check 5 Yes FAULT BOUND instruction
Invalid Opcode 6 Yes FAULT Reserved Opcodes
Device Not 7 Yes FAULT ESC and WAIT
Available instructions
Double Fault 8 Yes ABORT Any instruction
Invalid TSS 10 Yes? FAULT JMP, CALL, IRET
instructions, interrupts,
and exceptions
Segment Not 11 Yes? FAULT Any instruction which
Present changes segments
Stack Fault 12 Yes FAULT Stack operations
General Protection 13 Yes FAULT/TRAP® Any code or data
reference
Page Fault 14 Yes FAULT Any code or data
reference
Floating-Point Error 16 Yes FAULT ESC and WAIT
instructions
Alignment Check 17 Yes FAULT Any data reference
Machine Check 18 - - (model dependent)
Software Interrupt 0to 255 No TRAP INT ninstructions
NOTES:

1.

2.
3.

Debug exceptions are either traps or faults. The exception handler can distinguish between traps and
faults by examining the contents of the DR6 register.

Restartability is conditional during task switches as documented in section 7.5.

All general-protection faults are restartable. If the fault occurs while attempting to call the handler, the
interrupted program is restartable, but the interrupt may be lost.

Floating-point errors are not reported until the first ESC or WAIT instruction following the ESC instruction
which generated the error.

14-29

PROTECTED-MODE EXCEPTIONS AND INTERRUPTS

14.11. ERROR CODE SUMMARY

Table 14-8 summarizes the error information that is available with each exception.

Table 14-8. Error Code Summary

intgl.

Vector Is an Error
Description Number Code Generated?
Divide Error 0 No
Debug Exceptions 1 No
Breakpoint 3 No
Overflow 4 No
Bounds Check 5 No
Invalid Opcode 6 No
Device Not Available 7 No
Double Fault 8 Yes (always zero)
Invalid TSS 10 Yes
Segment Not Present 11 Yes
Stack Fault 12 Yes
General Protection 13 Yes
Page Fault 14 Yes (special format)
Floating-Point Error 16 No
Alignment Check 17 Yes (always zero)
Machine Check 18 (model dependent)
Software Interrupt 0-255 No

14-30

intal.

15

Input/Output

intal.

CHAPTER 15
INPUT/OUTPUT

Input/output is accomplished through I/O ports, which are registers connected to peripheral
devices. An I/O port can be an input port, an output port, or a bidirectional port. Some I/O
ports are used for carrying data, such as the transmit and receive registers of a serial
interface. Other I/O ports are used to control peripheral devices, such as the control registers
of a disk controller.

The input/output architecture is the programmer's model of how these ports are accessed. The
discussion of this model includes:

® Methods of addressing I/O ports.

® Instructions which perform I/O operations.

® The I/O protection mechanism.

15.1. 1/O ADDRESSING

The processor allows I/O ports to be addressed in either of two ways:

® Through a separate I/O address space accessed using I/O instructions.

® Through memory-mapped I/O, where I/O ports appear in the address space of physical
memory.

The use of a separate I/O address space is supported by special instructions and a hardware
protection mechanism. When memory-mapped I/O is used, the general-purpose instruction
set can be used to access I/O ports, and protection is provided using segmentation or paging.
Some system designers may prefer to use the I/O facilities built into the processor, while
others may prefer the simplicity of a single physical address space.

Hardware designers use these ways of mapping I/O ports into the address space when they
design the address decoding circuits of a system. I/O ports can be mapped so that they appear
in the I/O address space or the address space of physical memory (or both).

15.1.1. /O Address Space

The processor provides a separate I/O address space, distinct from the address S]i)ace for
physical memory, where I/O ports can be placed. The I/O address space consists of 2'¢ (64K)
individually addressable 8-bit ports; any two consecutive 8-bit ports can be treated as a 16-bit
port, and any four consecutive ports can be a 32-bit port. Extra bus cycles are required if a
port crosses the boundary between two doublewords in physical memory.

I 15-1

u
INPUT/OUTPUT Intd ®

The M/IO# pin of the processor indicates when a bus cycle to the I/O address space occurs.
When a separate I/O address space is used, it is the responsibility of the hardware designer to
make use of this signal to select I/O ports rather than memory. In fact, the use of the separate
I/0 address space simplifies the hardware design because these ports can be selected by a
single signal; unlike other processors, it is not necessary to decode a number of upper address
lines in order to set up a separate I/O address space.

A program can specify the address of a port in two ways. With an immediate byte constant,
the program can specify:

® 256 8-bit ports numbered O through 255.
® 128 16-bit ports numbered 0, 2, 4, . . ., 252, 254.
® 64 32-bit ports numbered 0, 4, 8, . . ., 248, 252.

Using a value in the DX register, the program can specify:

® 8-bit ports numbered 0 through 65535.
© 16-bit ports numbered 0, 2, 4, . . ., 65532, 65534.
® 32-bit ports numbered 0, 4, 8, . . ., 65528, 65532.

The processor can transfer 8, 16, or 32 bits to a device in the I/O space. Like words in
memory, 16-bit ports should be aligned to even addresses so that all 16 bits can be
transferred in a single bus cycle. Like doublewords in memory, 32-bit ports should be aligned
to addresses which are multiples of four. The processor supports data transfers to unaligned
ports, but there is a performance penalty because an extra bus cycle must be used.

The IN and OUT instructions move data between a register and a port in the I/O address
space. The instructions INS and OUTS move strings of data between the memory address
space and ports in the I/O address space.

I/0 port addresses OF8H through OFFH are reserved for use by Intel Corporation. Do not
assign I/O ports to these addresses.

The exact order of bus cycles used to access ports which require more than one bus cycle is
undefined and is not guaranteed to remain the same in future Intel products. If software needs
to produce a particular order of bus cycles, this order must be specified explicitly. For
example, to load a word-length port at 4H followed by loading a word port at 2H, two word-
length instructions must be used, rather than a single doubleword instruction at 2H.

Note that, although the processor automatically masks parity errors for certain types of bus
cycles, such as interrupt acknowledge cycles, it does not mask parity for bus cycles to the I/O
address space. Programmers may need to be aware of this behavior as <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>