Buffer Overflow

Module 18

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow

Module 18

Engineered by Hackers. Presented by Professionals.

= [

Ethical Hacking and Countermeasures v8
Module 18: Buffer Overflow
Exam 312-50

Module 18 Page 2692 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Security News

Steam Gaming Platform Vulnerable to Remote Exploits; EERIT AN

50 Million at Risk

More than 50 million users of the Steam gaming and media distribution platform are at risk for remote compromise
because of weaknesses in the platform’s URL protocol handler, a pair of researchers at ReVuln wrote in a paper
released this week.

Luigi Auriemma and Donato Ferrante discovered a number of memory corruption issues, including buffer and heap
overflows that would allow an attacker to abuse the way the Steam client handles browser requests. Steam runs on

(Q) Windows, Linux and Mac OSX.

\ The steam:// URL protocol is used to connect to game servers, load and uninstall games, backup files, run games and
interact with news, profiles and download pages offered by Valve, the company that operates the platform. Attackers,
Auriemma and Ferrante said, can abuse specific Steam commands via steam:// URLs to inject attacks and run other
malicious code on victim machines.

vector, which enables attackers to exploit local issues in a remote fashion,” Auriemma and Ferrante wrote. “Because of
the big audience, the support for several different platforms and the amount of effort required to exploit bug via the
Steam Browser Protocol commands, Steam can be considered a high-impact attack vector”

.‘% “We proved that the current implementation of the Steam Browser Protocol handling mechanism is an excellent attack
T

http://threatpost.com

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction s Strictly Prohibited.

= Security News
News

an Steam Gaming Platform Vulnerable to Remote Exploits;
50 Million at Risk

Source: http://threatpost.com

More than 50 million users of the Steam gaming and media distribution platform are at risk for
remote compromise because of weaknesses in the platform’s URL protocol handler, a pair of
researchers at ReVuln wrote in a paper released this week.

Luigi Auriemma and Donato Ferrante discovered a number of memory corruption issues,
including buffer and heap overflows that would allow an attacker to abuse the way the Steam
client handles browser requests. Steam runs on Windows, Linux and Mac OSX.

The steam:// URL protocol is used to connect to game servers, load and uninstall games,
backup files, run games and interact with news, profiles and download pages offered by Valve,
the company that operates the platform. Attackers, Auriemma and Ferrante said, can abuse
specific Steam commands via steam:// URLs to inject attacks and run other malicious code on
victim machines.

“We proved that the current implementation of the Steam Browser Protocol handling
mechanism is an excellent attack vector, which enables attackers to exploit local issues in a

Module 18 Page 2693 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

remote fashion,” Auriemma and Ferrante wrote. “Because of the big audience, the support for
several different platforms and the amount of effort required to exploit bug via the Steam
Browser Protocol commands, Steam can be considered a high-impact attack vector.”

A large part of the problem rests in the fact that most browsers don’t ask for user permission
before interacting with the Steam client, and those that do, don’t explain there could be a
security issue. As a result, users could be tricked into clicking on a malicious steam:// URL or
redirect browsers via JavaScript to a malicious site, the paper said.

The paper details five new remotely exploitable vulnerabilities in not only Steam, but also in
the Source and Unreal game engines. Some of the games running on the affected platforms
include Half-Life 2 Counter-Strike, Team Fortress 2, Left 4 Dead, Nuclear Dawn, Smashball and
many others.

One of the more dangerous vulnerabilities discovered is involves the retailinstall command that
allows Steam to install or restore backups from a local directory. An attacker can abuse the
directory path to point to a remote network folder and then attack the function that processes
a .tga splash image which is vulnerable to an integer overflow attack. A heap-based overflow
results and an attacker could remotely execute code.

To exploit the Source game engine, Auriemma and Ferrante used a malicious .bat file placed in
the startup folder of the user’s account that executes upon the gamer’s next login.

The pair also found several integer overflow flaws in the Unreal gaming engine by taking
advantage of a condition where Unreal supports the loading of content from remote machines
via Windows WebDAV or a SMB share. Malicious content could be remotely injected in this
way.

Auto-update function vulnerabilities in a pair of games, All Points Bulletin and MicroVolts, were
also discovered and exploited. The researchers were able to exploit a directory traversal to
overwrite or create any malicious file.

Users reduce the impact of these issues by disabling the steam:// URL handler or using a
browser that doesn’t allow direct execution of the Steam Browser Protocol. Steam could also
deny the passing of command-line arguments to remote software.

.

Copyright © 2012 threatpost.com

By Michael Mimoso

http://threatpost.com/en us/blogs/steam-gaming-platform-vulnerable-remote-exploits-50-
million-risk-101912

Module 18 Page 2694 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

Exam 312-50 Certified Ethical Hacker

Module Objectives

Heap-Based Buffer Overflow

Why Are Programs and Applications
Vulnerable to Buffer Overflows?

Knowledge Required to Program
Buffer Overflow Exploits

Buffer Overflow Steps
Overflow Using Format String

Buffer Overflow Examples

L
[1

= & =

How to Mutate a Buffer Overflow
Exploit

Identifying Buffer Overflows

How to Detect Buffer Overflowsina
Program

BoF Detection Tools
Defense Against Buffer Overflows
Buffer Overflow Security Tools

Buffer Overflow Penetration Testing

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Objectives

Various security concerns, attack methods, and countermeasures have been discussed

in the previous modules. Buffer overflow attacks have been a source of worry from time to
time. This module looks at different aspects of buffer overflow exploits that include:

© Heap-Based Buffer Overflow

© Why Are Programs and Applications
Vulnerable to Buffer Overflows?

© Knowledge Required to Program
Buffer Overflow Exploits

© Buffer Overflow Steps
@ Overflow Using Format String

© Buffer Overflow Examples

Module 18 Page 2695

How to Mutate a Buffer Overflow
Exploit

Identifying Buffer Overflows

How to Detect Buffer Overflows in a
Program

BoF Detection Tools
Defense Against Buffer Overflows
Buffer Overflow Security Tools

Buffer Overflow Penetration Testing

Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow

Buffer
Overflow
Concepts

Buffer Buffer Buffer OBugler Buffer
Overflow Overflow Overflow C:Ent:‘: Overflow
Methodology Examples Detection Security Tools

measures
ﬁ
Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Flow

Many applications and programs are vulnerable to buffer overflow attacks. This is often
overlooked by application developers or programmers. Though it seems to be simple, it may
lead to severe consequences. To avoid the complexity of the buffer overflow vulnerability
subject, we have divided it into various sections. Before going technically deep into the subject,
first we will discuss buffer overflow concepts.

e p—
T Buffer Overflow Concepts Buffer Overflow Countermeasures
= 'y
4 ~ Buffer Overflow Methodology |/ / Buffer Overflow Security Tools
Buffer Overflow Examples ,% Buffer Overflow Pen Testing
.
(&
. Buffer Overflow Detection
Module 18 Page 2696 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures i
Buffer Overflow '

This section describes buffelﬂoverﬂows, various kinds o
heap-based), stack operations, shellcode, and NOPs

h

Module 18 Page 2697

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflows C|EH

A generic buffer overflow occurs when a program tries to store more dataina
buffer than it was intended to hold

When the Buffer Overflow example code shown below is compiled and run, an
array “Buffer” of size 11 bytes is allocated to hold the “AAAAAAAAAA” string

strepy() will copy the string "DDDDDDDDDDDD” into the array “Buffer”, which
will exceed the buffer size of 11 bytes, resulting in buffer overflow

Buffer Overflow Example Code
Hinclude<stdio.h>
intmain (intargc, char **argv)

9 10 11 12

D/DDDDIDIDID D DD D \o String

char Buffer|11]="AAAAAAAAAA"; Buffer [11]
strcpy(Buffer,"DDDDDDDDDDDD™);
printf{“%\n",Buffer);

return0;

Ll e R

}

This type of vulnerability is prevalent in UNIX- and NT-based systems

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction s Strictly Prohibited.

Buffer Overflows

Buffers have data storage capacity. If the data count exceeds the original, a buffer
overflow occurs. Buffers are developed to maintain finite data; additional information can be
directed wherever it is needed. The extra information may overflow into neighboring buffers,
destroying or overwriting the legal data. For example, the following C program illustrates how
a buffer overflow attack works, where an attacker easily manipulates the code:

#include<stdio.h>

int main (int arge , char **argv)

{
char target[5]="TTTT"”;
char attacker[11]="AAAAAAAAAAY ;
strepy(attacker,” DDDDDDDDDDDDDD”) ;
printf (*% \n”,target) ;
return 0;

}

Module 18 Page 2698 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

0 1 2 3 4 5 6 7 8 9 10 11 12

D DIDDDDDD DD D D \0o String
strcpy | WD WS SN SN S W W SIS U S S S — |
0o 1 2 3 4 5 6 7 8 9 10

AAAAAAAAAA NV Buffer [11]

012345l6?8910

DD DDDDDDDD DJ|D|\e| Overflow

FIGURE 18.1: Buffer Overflows

The program seems to be just another normal program written by a programmer. However, the
crux of this code lies in a small manipulation by the attacker, if examined closely. The actual
problem is explained step-by-step as follows:

1. During compilation of the program, the following lines of code are executed:
char target[5]="TTTT”;
char attacker[11]="AAAAAAAAAA”;
© At this point, a buffer called “target,” that can hold up to 5 characters, is created
2 Then, the program places 4 Ts into the “target” buffer

© The program then creates a buffer called “attacker” that can hold up to 11
characters

© Then, the program places 10 As into the “attacker” buffer
© The program compiles these two lines of code

The following is a snapshot of the memory in the system. The contents of the target and
attacker buffer are placed in the memory along with null characters, \0.

\OTTTT

\0AARAA

A A AAAA

== Stack Memory initially

1. After compiling the previously mentioned two lines of code, the compiler compiles the
following lines of code:

strcpy(attacker,” DDDDDDDDDDDDD”) ;
printf (“% \n”, target) ;

© Here, in this line of code, the sting copy function is used, which copies the 13 characters
of the letter D into the attacker buffer

Module 18 Page 2699 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

© After this, the program prints the content of the target buffer

2. The strncpy function of the C program copies the 13 D characters into the attacker
buffer, whose memory space is only 11 characters. Because there is no space for the
remaining “D” characters, it eats up the memory of the “target” buffer, destroying the
contents of the “target” buffer. Here is the snapshot of the system memory after the
strncpy function is executed:

\ON\O DD D
D D DD D
D D D D D

This is how buffer overflow occurs:

A program, which seemed to be less problematic, created a buffer overflow attack just by
manipulating one command. In the current scenario, the focus is primarily on the Application
Programming Interface (APIl), which is a set of programming conventions facilitating direct
communication with another piece of code; and the protocol, which is a set of data and
commands to be passed between programs. It is a fact that many programs use a standard
code set provided by the operating system when they want to use a protocol. The APls
associated with a program and the concerned protocol determines the nature of information
that can be exchanged by the program. For instance, consider a simple login form. The login
program can define the length of the input that can be accepted as the user name. However, if
the program does not check for length, it is possible that the storage space allotted for the data
may be used up, causing other areas in the memory to be used. If an attacker is able to detect
this vulnerability, he or she can execute arbitrary code by causing the web application to act
erroneously.

Module 18 Page 2700 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Why Are Programs and Applications

Vulnerable to Buffer Overflows?

Boundary checks are not done fully or, in most cases, they
are skipped entirely

Programming languages, such as C, have vulnerabilities in them
strcat(), strcpy(), sprintf (), vsprintf(), bcopy().,
) » and scanf (

C functions do not validate target buffer size

Programs and applications do not adhere to good
programming practices

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction s Strictly Prohibited.

|

<= || Why Are Programs and Applications Vulnerable to
¢~ Buffer Overflows?

In a completely networked world, no organization can afford to have its server go down, even
for a minute. In spite of organizations taking precautionary measures, exploits are finding their
way in to disrupt the networks due to the following reasons:

© Pressure on the deliverables—programmers are bound to make mistakes, which are
overlooked most of the time

© Boundary checking is not done or it is skipped in many of the cases

© Programming languages (such as C) that programmers still use to develop packages or
applications contain errors

© The strcat(), strcpy(), sprintf(), vsprintf(), bcopy(), gets(), and scanf() calls in the C
language can be abused because the functions quit testing if any buffer in the stack is
not as large as data copied into that buffer

€ Good programming practices are not followed

Module 18 Page 2701 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Understanding Stacks

ul Stack uses the Last-In-First-Out (LIFO) Bottom of SP points here

mechanism to pass arguments to b
memory

functions and refer the local variables
Buffer 2 :
o : Fill
| Vari p :
(Local Variable 2) : direction
v
| Itacts like a buffer, holding all of the : BP
. . z anywhere
information that the function needs within the
stack frame
A
i Stack
. The stack is created at the beginning : growth
of the execution of a function and Top of J, direction
released at the end of it the -
memory !

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

Understanding Stacks

A stack is a contiguous block of memory containing data. A close look at how memory

is structured is shown as follows:

TERT,

% Code Segment

When a program runs, both code and data are loaded into memory. The code refers to the
area where the instructions for the program are located. This segment contains all the compiled
executable code for the program. Write permission to this segment is disabled here, as the
code by itself does not contain any variables, and therefore has no need to write over itself. By
having the read-only and execute attributes, the code can be shared between different copies
of the program that are executing simultaneously.

1 Data Segment

The next section refers to the data, initialized and/or un-initialized, required by the
running of the code instructions. This segment contains all the global data for the program. A
read-write attribute is given, as programs would change the global variables. There is no
‘execute’ attribute set, as global variables are not usually meant for execution.

Module 18 Page 2702 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

r—@ Stack Segment

Consider the stack as a single-ended data structure with first in, last out data

ordering. This means that when two or more objects/elements are “pushed” onto the

stack, to retrieve the first element, the subsequent ones have to be “popped” off of the stack.

In other words, the most recent element remains on top of the stack. As shown previously,

there is a progression from a lower memory address to a higher memory address as one
moves down the stack.

Bottom of : SP points here
the L]
memory
Buffer 2
2 : Fill
(Local Variable 2) { direction
v
o Buffer 1
anywhere ml Variable 1’
within the
stack frame
A
Stack
: growth
Top of) direction
the :
memory 1
FIGURE 18.2: Stack Segment
Module 18 Page 2703 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Stack-Based Buffer Overflow

A stack-based bufferoverflow occurswhen a buffer has beenoverrunin the stack space ﬁc—
Attackerinjects malicious code on the stack and overflowsthe stack to overwrite the
return pointer so that the flow of control switches to the malicious code
Bottom of Stack Bottom of Stack Bottom of Stack
Data on Stack Data on Stack Data on Stack fr‘:a':i:a'a
Segment Segment Segment overwritten
SP>» End of Stack 4 Bytes Return Address 4 Bytes New Return Address — =====:= v
v
n Bytes More Data on n Bytes + Overwritten Data Malicious Code.
new data Ex.
Stack Segment on Stack Segment Execvel/bin/sh)
Sp-> End of Stack SP > End of Stack
A Normal Stack Stack when Attacker calls a Stack when attacker overflows
function buffer in function to smash the stack

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction s Strictly Prohibited.

(:-?i Stack-based Buffer Overflow

Stack-based buffer overflows have been considered the common type of exploitable
programming errors found in software applications. A stack overflow occurs when data is
written past a buffer in the stack space, causing unpredictability that can often lead to
compromise.

Since in the eyes of the non-security community, stack overflows have been the prime focus of
security vulnerability education, these bugs are becoming less prevalent in mainstream
software. Nevertheless, they are still important and warrant further examination and ongoing
awareness.

Over 100 functions within LibC have security implications. These implications vary from as little
as “pseudo randomness not sufficiently pseudorandom” (for example, srand ()) to “may vyield
remote administrative privileges to a remote attacker if the function is implemented
incorrectly” (for example, printf ()).

The overflow can overwrite the return pointer so that the flow of control switches to the
malicious code. C language and its derivatives offer many ways to put more data than
anticipated into a buffer.

Consider an example given as follows for simple uncontrolled overflow:

& The program calls the bof () function

Module 18 Page 2704 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

© Once in the bof () fun
resulting in a buffer

ion, a string of 20 As is cof

Bottom of Stack Bottom of Stack
| Data on Stack | Data on Stack
Segment _ Segment

SP->» Return Address
More Data on nB

Stack Segment
End of Stack End of Stack 1

A Normal Stack Stack when Attacker calls a
function

FIGURE 18.3: Stack-based Buffer O

Module 18 Page 2705 Ethical

Data on Stack
Segment

ew Return Address

Overwritten Data
on Stack Segment

End of Stack

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Understanding Heap

Heap is a memory segment used by a program and is allocated dynamically at run time with
functions such asmalloc (), calloec (), realloc ()inCand using new operator in C++

Control data is stored on the heap along with the data allocated using the malloc interface

Heap stores all instances or attributes, constructors, and methods of a class or object

! A= malloc(10); : C= malloc(4);
v
A A A A
: : Memory : : Memory : : Memory
Contents : Contents H Contents
Control Data Control Data Control Data

Simple Heap Contents

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

@ Understanding Heap

<" The heap is an area of memory utilized by an application and allocated dynamically at
runtime. It is common for a buffer overflow to occur in the heap memory space, and
exploitation of these bugs is different from stack-based buffer overflows. Heap overflows have
been the prominent software security bugs. Unlike stack overflows, heap overflows can be

inconsistent and can have varying exploitation technigues and consequences.

Heap memory is different from stack memory; in that heap, memory is persistent between
functions, with memory allocated in one function remaining allocated until explicitly freed. This
means that a heap overflow can occur, but it is not noticed until that section of memory is used
later. There is no concept of saved EIP in relation to a heap, but other important things are
stored in the heap and can be broken by overflowing dynamic buffers.

From a primitive point of view, the heap consists of many blocks of memory, some of which are
allocated to the program and some are free, but allocated blocks are often placed in adjacent
places of memory.

Module 18 Page 2706 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

! A= malloc (10) ; i = malloc(4) ;
v _ B U v
. AAAAAAA AAA - BBBBB BBB
A A A A
- Memory Memory Memory
Contents ' Contents : Contents
Control Data Control Data Control Data

Simple Heap Contents

FIGURE 18.4: Understanding Heap

Module 18 Page 2707 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Heap-Based Buffer Overflow

J Ifan application copies the data without checking whether it fits into the target destination, attackers can supply the
application with alarge data, overwriting the heap management information

J Attackers overflow buffers on the lower lower part of heap, overwriting other dynamic variables, which can have
unexpected and unwanted effects

} input=malloc(20); i output=malloc(20); .

Heap: Before Overflow

: input=malloc(20); : output=malloc(20);
v v

I fnordfnordfnordfnordf fno rdfnordfnord\0

Heap: After Overflow

Note: In most environments, this may allow the attacker to control the program’s execution

Heap-based Buffer Overflow

The heap is an area of memory utilized by an application and allocated dynamically at
runtime. It is common for buffer overflows to occur in the heap memory space, and
exploitation of these bugs is different from that of stack-based buffer overflows. Heap
overflows have been the prominent discovered software security bugs. Unlike stack overflows,
heap overflows can be inconsistent and have varying exploitation techniques.

An application dynamically allocates heap memory as needed. This allocation occurs through
the function call malloc (). The malloc () function is called with an argument specifying the
number of bytes to be allocated and returns a pointer to the allocated memory.

© Variables that are dynamically allocated with functions, such as malloc (), are created
on the heap.

© An attacker overflows a buffer that is placed on the lower part of heap, overwriting
other dynamic variables, which can have unexpected and unwanted effects.

© If an application copies data without first checking whether it fits into the target
destination, the attacker could supply the application with a piece of data that is large,
overwriting heap management information.

9 In most environments, this may allow the attacker to control over the program’s
execution.

Module 18 Page 2708 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Check what happens to the program when input grows past the allocated space. This happens
because there is no control over its size. Run the program several times with different input
strings.

[root@localhost]# ./heapl hackshacksuselessdata

input at 0x8049728: hackshacksuselessdata

output at 0x8049740: normal output

normal output

[root@localhost]# ./heapl

hackslhacks2hacks3hacks4dhacks5hacks6hacks7hackshackshackshackshackshack
shacks

input at 0x8049728:

hackslhacks2Zhacks3hacks4hacks5hackséhacks7hackshackshackshackshackshack
shacks

output at 0x8049740: hackshackshackshacksShacks6hacks?7
hackshacks5hackshackséhackshacks?7

[root@localhost]#./heapl"hackshackslhackshacks2hackshacks3hackshacks4wh
at have I done?"

Input at 0x8049728: hackshackslhackshacks2hackshacks3hackshacks4 what
have I done?

output at 0x8049740: what have I done?
what have I done?
[root@localhost]#
Thus, overwriting variables on the heap is easy and does not always cause crashes.

input=malloc(20); output=malloc(20);
v v

. XXXXXKXKKXXKKXXKXXXX plonal

output\0”

Heap: Before Overflow
¢ input=malloc(20); i output=malloc(20);
\4 v

. fnordfnordfnordfnordf fno rdfnordfnord\0

Heap: After Overflow

FIGURE 18.5: Heap-based Buffer Overflow

Module 18 Page 2709 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

{ Putone
% item on the |
{ topofthe :

Push and Pop operations
Returns the contents pointed to by
a pointer and changes the pointer

Extended Instruction Extended Stack Pointer Extended Base Pointer
Pointer ESP points to the current EBP serves as a static point
EIP points to the code that position on the stack and for referencing stack-based
po allows things to be added information like variables
T ety |y and removed from the stack and datain a function using
hi Y d h ! K using push and pop offsets, This almost always
this gets saved on the stac operations or direct stack points to the top of the stack
for later use pointer manipulations for a function

you are currently executing.

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

—— Stack Operations
TJ
A stack is implemented by the system for programs that run on the system. A variable
can be deployed within the processor itself and memory can also be allocated. The variable is
called the “register” and the region of memory is the “stack.” The register used to refer to the
stack as the “Stack Pointer” or SP. The SP points to the top of the stack, while the bottom of the

stack is a fixed address. The kernel adjusts the stack size dynamically at run time.

A stack frame, or record, is an activation record that is stored on the stack. The stack frame has
the following: the parameters to a function, its local variables, and the data required to restore
the previous stack frame, along with the value of the instruction pointer (pointer that points
the next instruction to be fetched at the function call) at the time of the function call.

The majority functionality of the stack involves adding and removing items from the stack. This
is accomplished with the help of two major operations. They are push and pop.

When the program is loaded, the stack pointer is set to the highest address. This will be the
topmost item in the stack. When an item is pushed onto the stack, two events take place.
Subtracting the size of the item in bytes from the initial value of the pointer reduces the stack
pointer. Next, all the bytes of the items in consideration are copied into the region of the stack
segment to which the stack pointer now points.

Module 18 Page 2710 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Similarly, when an item is popped from the stack, the size of the item in bytes is added to the
stack pointer. However, the copy of the item continues to reside on the stack. This will
eventually be overwritten when the next push operation takes place. Based on the stack design
implementation, the stack can come down (toward lower memory addresses) or go up (toward
higher memory addresses).

When a procedure is called, it is not the only item that pushes onto the stack. Among others is
the address of the calling procedure’s instruction immediately following the procedure call. This
is followed by the parameters to the called function. As the called function completes, it would
have popped its own local variables off the stack. The last instruction the called function runs is
a special instruction called a return. The top values of the stack are popped up and loaded into
the IP by the assembly language, a special processor instruction. At this point, the stack will
have the address of the next instruction of the calling procedure in it. The other concept that
the reader needs to appreciate in order to understand the complete essence of stack overflows
is the frame pointer.

Apart from the stack pointer, which points to the top of the stack, there is a frame pointer (FP)
that points to a fixed location within a frame. Local variables are usually referenced by their
offsets from the stack pointer. However, as the stack operations take place, the value of these
offsets vary. Moreover, on processors such as Intel-based processors, accessing a variable at a
known distance from the stack pointer requires multiple instructions. Therefore, a second
register may be used for referencing those variables and parameters whose relative distance
from the frame pointer does not change with stack operations. On Intel processors, the base
pointer (BP), also known as the Extended Base Pointer (EBP), is used.

Module 18 Page 2711 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Shellcode

Buffers are soft targets for

attackers as they ove r.ﬂuw

easily due to poor coding
techniques

shellcode refersto code '.(hat
can be used 2s payloads in
the exploitation of @
softwarevuinerabi'litv

[T '
mmrt__@';'

Shellcode

"\x2d\x0b\xd8\x9a\xac\x15\xal\x6e\x2£\x0b\xdc\xda\x90\x0b\x80\x0e"
"\x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xal0\x10\xec\x3b\xbf\x£0"
"\xdc\x23\xbf\xfB8\xc0\x23\xbf\xfc\x82\x10\x20\x3b\xaa\x10\x3f\xf£f"

"\x91\xd5\x60\x01\x90\x1b\xc0\x0£\x82\x10\x20\x01\x91\xd5\x60\x01"

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

“ Shellcode

-

= Shellcode is a small code used as payload in the exploitation of a software
vulnerability. Shellcode is a technique used to exploit stack-based overflows. Shellcodes
exploit programming bugs in stack handling. Buffers are soft targets for attackers as they
overflow easily if the conditions match. Buffer overflow shellcodes, written in assemble
language, exploit vulnerabilities in stack and heap memory management

For example, the VRFY command helps the attacker to identify potential users on the target
system by verifying their email addresses. In addition, sendmail uses a set user ID of root and
runs with root privileges. If the attacker connects to the sendmail daemon and sends a block of
data consisting of 1,000 a’s to the VRFY command, the VRFY buffer is overrun as it was only
designed to hold 128 bytes.

However, instead of sending 1000 a’s, the attacker can send a specific code that can overflow
the buffer and execute the command /bin/sh. In this case, when the attack is carried out, a
special assembly code “egg” is transferred to the VRFY command, which is a part of the actual
string used to overflow the buffer. When the VRFY buffer is overrun, instead of the offending
function returning to its original memory address, the attacker executes the malevolent
machine code that was sent as a part of the buffer overflow data, which executes /bin/sh with
root privileges.

Module 18 Page 2712 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures '
Buffer Overflow

The following illustrates what an egg, specific to Linux X86, loo

Char shellcode [] = N

"\ xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\
“\x89\xf3\x8d\x4e\x08 8 56\x0c\xcd\ :\13
"\x80\xe8\xdc\xEE\XEE h ; '

P

Module 18 Page 2713

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

No Operations (NOPs)

Most CPUs have a No Most intrusion detection Attacker changes identified IP to start
Operation (NOP) instruction — systems (IDSs) look for anywhere within NOP area to create
it does nothing but advance signatures of NOP sleds multiple zero-day infections
the instruction pointer (polymorphism)
? * *
. ‘
"‘_‘T Attacker pads the beginning of the ADMmutate (by http://www.ktwo.ca) accepts |
q intended buffer overflow with a long a buffer overflow exploit as input and = |
run of NOP instructions (a NOP slide randomly creates a functionally equivalent
e = or sled) so the CPU will do nothing version
u— until it gets to the “main event” Note: It is the NOP sled that ADMutate L —|
(which preceded the “return pointer”) mutates (not the shellcode)

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

L@ No Operations (NOPs)

WWW
Even the best guess may not be good enough for an attacker to find the right address

on the stack. If the attacker is off by one byte, more or less, there can be a segmentation
violation or an invalid instruction. This can even cause the system to crash. The attacker can
increase the odds of finding the right address by padding his or her code with NOP instructions.

A NOP is just a command telling the processor to do nothing other than take up time to process
the NOP instruction itself. AlImost all processors have a NOP instruction that performs a null
operation. In the Intel architecture, the NOP instruction is 1 byte long and translates to 0x90 in
machine code. A long run of NOP instructions is called a NOP slide or sled, and the CPU does
nothing until it gets back to the main event (which precedes the “return pointer”).

Module 18 Page 2714 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Bottom of! o o F|II' . N

Memory : wegtlon NOP :
: Buffer Space is : NOP <--- N
- overwritten NOP - :
Buffer 2 : ; NOP E
(Local Variable 2) : ! NOP :
v | MachineCode: § °
Buffer 1 | execve(/bin/sh) :
(Local Variable 1) O E L O New Pointer to exec. S ,

overwritten
Return Pointer Fanctionkall

Function call Ar!“e“t’ :

Arguments :

Topof °© Normalstack Topof | smashedstack

Memory Memory

FIGURE 18.6: No Operations (NOPs)

By including NOPs in advance of the executable code, the attacker can avert a segmentation
violation if an overwritten return pointer lands execution in the NOPs. The program can
continue to execute down the stack until it gets to the attacker’s exploit. In the preceding
illustration, the attacker’s data is written into the allocated buffer by the function. As the data
size is not checked, the return pointer can be overwritten by the attacker’s input. With this
method, the attacker places the exploited machine’s code in the buffer and overwrites the
return pointer so that when the function returns, the attacker’s code is executed.

Module 18 Page 2715 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer
Overflow
Concepts

Buffer Buffer Buffer OBugler Buffer
Overflow Overflow Overflow C:Entz‘: Overflow
Methodology Examples Detection Security Tools

measures

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

+ Module Flow

x

So far, we have discussed the basic buffer overflow concepts, Now we will discuss the
buffer overflow methodology.

AT q
: Buffer Overflow Concepts Buffer Overflow Countermeasures
4 Buffer Overflow Methodology ‘ Buffer Overflow Security Tools
Buffer Overflow Examples X iﬂb Buffer Overflow Pen Testing

y
-

Buffer Overflow Detection

Hill
el

This section describes requirements to program buffer overflow exploits, buffer overflow steps,
and buffer overflow vulnerabilities.

Module 18 Page 2716 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Knowledge Required to Program

Buffer Overflow Exploits

b

Understanding of §rmmmmmmmmmees . Famllnla‘r\ty with
compiling and

stack and heap)
2 e debugging tools
memaory processes - * .
s ' such as gdb

KNderstandmgof ‘ Knowledge of C and
ow system calls oo :
work at the machine erl programming
language
code level

Knowledge of
assembly and
machine language

6 ™ ¢ 3

Copyright © by EG-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

& Knowledge Required to Program Buffer Overflow

Yl Exploits

Logically, the question that arises is why are stacks used when they pose such a threat to
security? The answer lies in the high-level, object-oriented programming languages, where
procedures or functions form the basis of every program.

A stack is used for storing context. For instance, if a procedure simply pushes all its local
variables onto the stack when it enters, and pops those off when it is over, its entire context is
cleaned up so that when the procedure calls another procedure, the called procedure can do
the same with its context, without the aid of the calling procedure's data. The flow of control is
determined by the procedure or function, which is resumed after the current one is done. The
stack implements the high-level abstraction. Apart from this, the stack also serves to
dynamically allocate local variables used in functions, passing parameters to functions, and to
return values from the function.

In fact, though several applications are written in C, programs written in C are particularly
susceptible to buffer overflow attacks. This is due to the fact that direct pointer variations are
permitted in C. Direct, low-level memory access and the pointer arithmetic is provided by C
without checking the bounds. Moreover, the standard C library provides unsafe functions (such

Module 18 Page 2717 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

as gets) that write an unbounded amount of user’s input into a fixed size buffer without any
boundary checking.

To program buffer overflow exploits, you should be acquainted with the following aspects:

© Understanding of stack and heap memory processes
© Understanding of how system calls work at the machine code level
2 Knowledge of assembly and machine language
@ Knowledge of C and Perl programming language
© Familiarity with compiling and debugging tools such as gdb
© exec() system calls How to guess some key parameters
9 How to guess some key parameters
Module 18 Page 2718 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Steps

Find the presence and location of buffer
overflow vulnerability

1

2 Write more data into the buffer
than it can handle

3 Overwrite the return address of
a function
4 Change the execution flow to

the hacker code

Copyright © by EG-Goumcil. Al Rights Reserved. Reproduction is Strictly Prohibited.

Buffer Overflow Steps

=== Buffer overflow can be carried out in four steps:

Step 1: In order to perform a buffer overflow attack, first you should check whether the target
application or program is vulnerable to buffer overflow or not. Typically buffer overflow occurs
when the input entered exceeds the size of the buffer. If there is any potential buffer overflow
vulnerability present in the program, then it displays an error when you enter a lengthy string
(exceeding the size of buffer). Thus, you can confirm whether a program contains a buffer
overflow vulnerability or not. If it is vulnerable, then find the location of the buffer overflow
vulnerability.

Step 2: Once you find the location of the vulnerability, write more data into the buffer than it
can handle. This causes the buffer overflow.

Step 3: When a buffer overflow occurs, it overwrites the memory. Using this advantage, you
can overwrite the return address of a function with the address of the shellcode.

Step 4: When the overwrite occurs, the execution flow changes from normal to the shell code.
Thus, you can execute anything you want.

Module 18 Page 2719 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow
- If the attacker inserts code as input, he or she has to know the

% exact address and size of the stack and make the return pointer

% / point to the code for execution

Copyright © by EE-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

Attacking a Real Program

Assuming that a string function is exploited, the attacker can
send a long string as the input. This string overflows the buffer
and causes a segmentation error

The return pointer of the function is
overwritten, and the attacker succeeds
in altering the flow of the execution

Attacking a Real Program

L
'] ® 4 L F
Lower Fill Lower ¢ ¢ Fill
Memory : Return Pointer Direction Memory Return Pointer “Direction
Address Address :
v v
-+« "abcdefghd¥%n™ » “abcdefg%d.255%n
Higher Normal Value Higher : Abnormal Value
Memory & ® Memory & ®
Address Address
FIGURE 18.7: Attacking a Real Program
Module 18 Page 2720 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Lower

» “abcdefgied.255%n

~
t/

MO|U3AD 13N

Higher
Memory &
Address.

Abnormal Value

FIGURE 18.8: Attacking a Real Program

The previous illustration depicts the way an abnormal input causes the buffer to overflow and
cause a segmentation error. Eventually, the return pointer is overwritten and the execution
flow of the function is interrupted. Now, if the attacker wants to make the function execute
arbitrary code of his or her choice, he or she can have to make the return pointer point towards
this code.

When attacking a real program, an attacker has to assume that a string function is being
exploited, and send a long string as the input. After passing the input string, the string
overflows the buffer and causes a segmentation error. The return pointer of the function is
overwritten, and the attacker succeeds in altering the flow of execution. If the user has to
insert his or her code in the input, he or she has to:

© Know the exact address on the stack.

9 Know the size of the stack.

© Make the return pointer point to his/her code for execution.
The challenges that the attacker faces are:

© Determining the size of the buffer.

© The attacker must know the address of the stack so that he or she can get his or her
input to rewrite the return pointer. For this, he or she must ascertain the exact address.

2 The attacker must write a program small enough that it can be passed through as input.
Usually, the goal of the attacker is to spawn a shell and use it to direct further commands.
The code to spawn a shell in C is as follows:

#include <stdio.h>
void main() {
char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;

execve (name [0] , name, NULL); }

Module 18 Page 2721 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

The attacker can place arbitrary code to be executed in the buffer that is to be overflowed and
overwrite the return address so that it points back into the buffer. For this, he or she must
know the exact location in the memory space of the program whose code has to be exploited. A
workaround for this challenge is to use a jump (JMP) and a CALL instruction. These instructions
allow relative addressing and permit the attacker to point to an offset relative to the
instruction pointer. This eliminates the need to know the exact address in the memory to which
the exploit code must point. As most operating systems mark the code pages with the read-
only attribute, this makes the previously discussed workaround an unfeasible one. The
alternative is to place the code to be executed into the stack or data segment and transfer
control to it. One way of achieving this is to place the code in a global array in the data
segment as shown in the previous code snippet.

Does the exploit work? Yes.

Nevertheless, in maximum buffer overflow vulnerabilities, it is the character buffer that is
subjected to the attack. Therefore, any null code occurring in the shell code can be considered
as the end of the string, and the code transfer can be terminated. The answer to this hindrance
lies in NOP.

Module 18 Page 2722 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Format String Problem C El_j

Problem if user =

: " Most likely program will
In C, consider this example of crash causing a DoS :

Format string problem: i I not, program will print
H memory contents

‘ . Similar exploit occurs
int func (char *user) using user = “%n"
{ F e, T
3 fprintf (stdout, user);
E)

Correct form is:

int func (char *user)

{
fprintf (stdout,
“¥s”, user); }

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

F_) Format String Problem

Format string problems usually occur when the input is supplied from untrusted sources
or when the data is passed as a format string argument to functions such as syslog(), sprintf(),
etc. The format string vulnerabilities in C/C++ can easily be exploited because of the %n
operator. If any program contains this kind of vulnerability, then the program's confidentiality
and the access control may be at risk because the format string vulnerability exploitation
results in information disclosure and execution of arbitrary code without the knowledge. Thus,
attackers can easily exploit the program or application containing format string vulnerabilities.

In C, consider this example of a format string problem:
int func (char *user)

{
fprintf(stdout, user);

}

Problem if user = “%s%s%s%s%s%s%s”

Most likely, the program will crash, causing a DoS. If not, the program will print memory
contents. Full exploit occurs using user = “%n”

Module 18 Page 2723 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

Correct form is:
int func(char *
{
fprill;f(stdout,
} :

Module 18 Page 2724

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Overflow Using Format String C|EH

In C, consider this example of BoF
i using formatstring problem:
N

_‘char errmsgf
outbuf [512] ; o -
sprintf (errmsg, “Illegal
command: %$400s”, user);

sprintf(outbuf, errmsg) ;

Whatif user = “%500d
<nops> <shellcode>"

s” limitation %
s :. (.‘__-_ o

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

l:
= Overflow Using Format String

¥ B

@V.’j In C, the format string library functions take variable numbers of arguments. The
format string variable is the one that is always required. The format string contains format-
directive characters and printable characters. Format string overflow attacks are quite similar
to that of buffer overflow attacks since in both attacks the attacker attempts to change the
memory space and consequently runs arbitrary code. The only difference between these two
attacks is that the attacker launches the format string overflow attack by exploiting the
vulnerabilities in the variadic functions, such as format functions.

Format string overflow can be exploited in four ways:
2 Memory viewing
© Updating a word present in the memory
@ Making a buffer overflow by using minimum field size specifier
© Using %n format directive for overwriting the code
In C, consider this example of BoF using format string problem:
char errmsg[512], outbuf[512];
sprintf (errmsg, “lllegal command: %400s”, user);

Module 18 Page 2725 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures i

Buffer Overflow
: A

sprintf(outbuf, errmsg);)

If user = “%500d <nops> <shellcode>", this will bypass ““%4

Thus, the stack smashing buffe erflow attack is carried o

h

Module 18 Page 2726

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

When the function is done, it will jump to whatever address is on the stack

Put some code in the buffer and set the return address to point to it

Buffer overflow allows us to change the return address of a function

Copyright © by EE-Gouncil. All Rights Reserved. Reproduction is Strictly Prohibited.

LT Smashing the Stack

: Smashing the stack causes a stack to overflow. The stack is a first-in last-out form of
buffer to hold the intermediate results of an operation. If you try to store more data than the
stack's size, then it drops the excess data. The data that a stack holds may be critical for system

operation.

The general idea behind stack smashing is to overflow a buffer which in turn overwrites the
return address. If the attacker succeeds in smashing the stack, then he or she can overwrite the
address on the stack with the address of shellcode. When the function is done, it jumps to the
return address, i.e., the shellcode address. Thus an attacker can exploit the buffer overflow

vulnerability.

Module 18 Page 2727 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Once the Stack is Smashed...

€ He or she can then exploit a

& Once the vulnerable process is commandeered, the local buffer overflow

attacker has the same privileges as the process and can

gain normal access

vulnerability to gain super-user
access

== =)
= Dl

Create a backdoor
2 Using (UNIX-specific) inetd

£ Using Trivial FTP (TFTP) included with Windows
2000 and some UNIX flavors

[ﬂ]:[j
T —

Use Netcat

Use Netcat to make raw and
interactive connections
2 UNIX-specific GUI

Shoot back an Xterminal connection

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

— . Once the Stack is Smashed

|l # —

T There are two parts of the attacker’s input: an injection vector and a payload. They
may be separate or put together. The injection vector is the correct entry-point that is tied
unambiguously along with the bug itself. It is OS/target/application/protocol/encoding-
dependent. On the other hand, the payload is usually not tied to bugs at all and is contained by
the attacker’s ingenuity. Even though it can be independent of the injection vector, it still
depends on machine, processor, and so on.

Once the stack is smashed, the attacker can deploy his or her payload. This can be anything. For
example, in UNIX, a command shell can be spawned. For example, with /bin/sh in Windows
NT/2000 and a specific Dynamic Link Library (DLL), external stacks may be preferable and may
be used for further probing. For example, WININET.DLL can be used to send requests to and get
information from the network and to download code or retrieve commands to execute.

The attacker may launch a denial-of-service attack or he or she may use the system as a
launching point (ARP spoofing). The common attack is to spawn a remote shell. The exploited
system can be converted into a covert channel or it can simulate Netcat to make a raw,
interactive connection. The payload can be a worm that replicates itself and searches for fresh
targets. The attacker can also eventually install a rootkit and remain in stealth mode after
gaining super-user access.

Ethical Hacking and Countermeasures Copyright © by EG-Council

Module 18 Page 2728
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow

Buffer
Overflow
Concepts

Buffer
Overflow
Counter-
measures

Buffer
Overflow
Methodology

Buffer
Overflow
Examples

Buffer
Overflow
Security Tools

Buffer
Overflow
Detection

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Flow

So far, we have discussed buffer overflow concepts and the methodology. Now it’s
time to see buffer overflow examples.

lLE Buffer Overflow Concepts Buffer Overflow Countermeasures
A Buffer Overflow Methodology | Buffer Overflow Security Tools
Buffer Overflow Examples @ Buffer Overflow Pen Testing
'

Buffer Overflow Detection

Hil—
il

This section covers various buffer overflow examples.

Module 18 Page 2729 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Simple Uncontrolled Overflow

Example of Uncontrolled Stack Overflow Example of Uncontrolled Heap Overflow

J* Program to show a simple heap overflow*/

/* Program to show a simple uncontrolled overflow of the
stack*/

al

2:
3:
4

e I o e R

w

printf ("input at %p: %s\n", in, in);

at %p: %s\n", out, ou

e o

10:

FEEFEH

11: return 1; /*leaves the main function*

Copyright © by EE-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

Tl.—= Simple Uncontrolled Overflow
~~== Example of Uncontrolled Stack Overflow

/* stack3.c

This is a program to show a simple uncontrolled overflow of the stack. It
will overflow EIP with 0x41414141, which is AAAA in ASCII.

*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int bof ()

{
char buffer([8]; /* an 8 byte character buffer */
/*copy 20 bytes of A into the buffer*/
strcpy (buffer, "AAAAAAAAAAAAAAARAARRA") ;

/*return, this will cause an access violation due to stack corruption.
We also take EIP*/

return 1;

Module 18 Page 2730 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

}
int main(int arge, char **argv)
{
bof(); /*call our function*/

/*print a short message, execution will never reach this point because
of the overflow*/

printf ("Not gonna do it!\n");
return 1; /*leaves the main function*/

}

The main function in this program calls the bof() function. In the first line of bof() function code
a buffer of char type with 8-bit size is initiated. Later a string of 20 As is copied into the buffer.
This causes the buffer overflow because the size of buffer is just 8 bits,whereas the string
copied into the buffer is 20 bits. This leads to an uncontrolled overflow.

Example of Uncontrolled Heap Overflow

The following code is an example of uncontrolled head overflow.
/*heapl.c — the simplest of heap overflows*/
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

char *input = malloc (20);

char *output = malloc (20);

strcpy (output, "normal output");

strepy (input, argv[1l]):

printf ("input at %p: %s\n", input, input):;
printf ("output at %p: %s\n", output, output):
printf ("\n\n%s\n", output) ;

}

Module 18 Page 2731 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

#include <stdio.h>
main () {
char *name;
char *dangerous system command;
(char *) malloc(10) ;
dangerousisystemicamand = (char *) malloc(128) ;
printf("Address of name is %d\n", name);

printf ("Address of command is %d\n", dangemus_syste-_co_ami) 5

sprintf (dangex:ousisystemicumand , "echo %s", "Hello world!"™);
printf("What's your name?");
gets (name) ;

system(dangerous system command) ;

The first thing the program does is declare two string variables and assign memory to them
The "name" variable is given 10 bytes of memory (which will allow it to hold a 10-character string)
The "dangerous_system command" variable is given 128 bytes oy \\

¢ e
You have to understand that, in C, the memory chunks given to these variables will be located / - ‘ \
directly next to each other in the virtual memory space given to the program -

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

3

Simple Buffer Overflow in C

p————y

To understand how buffer overruns works, you need to look at the small C program
that follows:

#include <stdio.h>
main() {
char *name;
char *dangerous system command;
name = (char *) malloc (10);
dangerous_ system command = (char *) malloc(128);
printf ("Address of name is %d\n", name);
printf ("Address of command is %d\n", dangerous system command) ;
sprintf (dangerous system command, "echo %s", "Hello world!");
printf ("What's your name?") ;
gets (name) ;

system(dangerous system command);

Module 18 Page 2732 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

This program is designed to be run by a user on a console, but it illustrates the trouble that a
poorly written network daemon can cause.

The first thing the program does is to declare two string variables, and assigh memory to them.
The "name" variable is given 10 bytes of memory (which will allow it to hold a 10-character
string). The "dangerous_system_command" variable is given 128 bytes. The thing you have to
understand is that in C, the memory chunks given to these variables will be located directly next
to each other in the virtual memory space given to the program. If you run the program with a
short name, you can see how things are supposed to work:

[jturner@secure jturner]$./overrun

Address of name is 134518696

Address of command is 134518712

What's your name?James

Hello world!

[jturner@secure jturner]$

As you can see, the address given to the "dangerous_system_command" variable is 16 bytes

from the start of the "name" variable. The extra 6 bytes are overhead used by the "malloc"
system call to allow the memory to be returned to general usage when it is freed.

Module 18 Page 2733 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Simple Buffer Overflow in C:

Code Analysis

J The “gets” command, which reads a string from the standard input to the specified memory location, does not
have a "length" specification

J This means it will read as many characters as it takes to get to the end of the line, even if it overruns the end of
the memory allocated

J Knowing this, an attacker can overrun the "name" memory into the "dangerous_system_command" memory,
and run whatever command he or she wishes

goo overrun.c —o oOverrun [¥X]§ ./overrun
[¥XX]§ ./overrun Address of name is 134518696
Address of name is 134518696 Address of command is 134518712

Address of command is 134518712

What's your name?xmen

Hello world!

[xx]§ root:x:0:0:root: /root: /bin/bash
bin:x:1:1:bin:/bin:

The address given to the daemon:x:2:2:daemon : /sbin:

"dangerous system command" variable is 16 bytes adm:x:3:4: adm: /var/adm:

What your

v

name?0123456789123456cat/ ete/passwd

from the start of the "name" variable 1p:x:4:7:1p: /var/spool /1pd:

sync:x:5:0:sync: fsbin: /bin/sync
shutdown:x:6:0:shutdown: /sbhin: /sbin/shutdown
halt:x:7:0:halt: /sbin: /sbin/halt
mail:x:8:12:mail:/var/spool/mail

The extra 6 bytes are overhead used by the "malloc”
system call to allow the memory to be returned to general
usage when itis freed

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

.y, Simple Buffer Overflow in C: Code Analysis
N

After allocating the memory and printing the memory locations of the two variables,
the program generates a command that will later be sent to the "system" call, which causes it
to be executed as if it had been typed at a keyboard. In this case, all it does is print "Hello
world!” Then, it prompts the user for his or her name and reads it using the "gets" system call.
In a real network daemon, this might be printing a prompt and awaiting a command from the
client program such as a website address or email address.

The important thing to know is that "gets," which reads a string from standard input to the
specified memory location, DOES NOT have a "length" specification. This means it will read as
many characters as it takes to get to the end of the line, even if it overruns the end of the
memory allocated. Knowing this, a hacker can overrun the "name" memory into the
"dangerous_system_command" memory, and run whatever command they wish. For example:

[jturner@secure jturner]S ./overrun

Address of name is 134518696

Address of command is 134518712

What's your name?0123456789123456cat /etc/passwd
root:x:0:0:root:/root:/bin/bash

Module 18 Page 2734 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
Ip:x:4:7:1p:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/shin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail

By padding out the response to the name query to 16 character and then adding a system
command, the system command overwrites "echo Hello World!" with "cat /etc/passwd". As
you can see, this causes that command to be run instead of the appropriate one.

So what can be done to prevent this? First, use the fgets system call, which specifies a
maximum length, will eliminate the possibility altogether. By changing the "gets" call to:

fgets(name, 10, stdin);

The problem is solved:

[jturner@secure jturner]S ./overrun

Address of name is 134518768

Address of command is 134518784

What's your name?01234567890123456cat /etc/passwd
Hello world!

[jturner@secure jturner]$

But, since many sites run software that they do not have source code to (commercial
databases, for example), you cannot protect yourself from all buffer overruns. The other
important step you need to take is to turn off any network services you do not use, and only
run the ones you do use at a permission level that meets the needs of the program. For
example, do not run a database as root; give it its own user and group. That way, if it is
exploited, it cannot be used to take over the system.

Buffer overruns are one of those things that every first-year programming student should be
taught to avoid. That attackers still use it with such frequency is an indication of how far we
have to go in the quest for truly reliable and secure software.

Module 18 Page 2735 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Exploiting Semantic Comments

in C (Annotations)

Adding “@" after the “/*” Annotationscan be defined by
LCLint using clauses

@ Adding “@” after the “/*” which is
considered acommentin C) is recognized as
syntactic entities by the LCLint tool

@ Describe assumptions about buffers that
are passed to functions

@ Constrain the state of buffers when
functions return; assumptions and
constraints used in the example below:
minSet, maxSet, minRead, and maxRead

@ So, ina parameterdeclaration, it indicates
that the value passed for this parameter may
notbe NULL

SIBBIBBBBBEES
'

@ Example: /*@ this value may not be null@*/

char *strcpy (char *sl, const char *s2)

/*@requires maxSet (sl) >= maxRead (s2)@*/

/*@ensures maxRead (s51) == maxRead (s52)
— /\ result == sl@*/;rr

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

~ . Exploiting Semantic Comments in C (Annotations)

e [

Though many run-time approaches have been proposed to mitigate the risk
associated with buffer overflows, they are not widely used. Hence, static analysis of a
program's source code came into practice to detect buffer overflows. This can be accomplished
with the help of the LCLint tool. It performs static detection of buffer overflows by exploiting
semantic comments added to the source code. Thus, it enables local checking of
interprocedural properties.

Adding “@” after the “/*”

& Adding “@” after the “/*” which is considered a comment in C) is recognized as
syntactic entities by the LCLint tool

© So, in a parameter declaration, it indicates that the value passed for this parameter may
not be NULL

& Example: /*@ this value need not be null@*/

Module 18 Page 2736 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Annotations can be defined by LCLint using clauses
© Describe assumptions about buffers that are passed to functions

© Constrain the state of buffers when functions return assumptions and constraints used
in the example below: minSet, maxSet, minRead, and maxRead
char , const char *s2)
/*@requires maxSet(sl) >= maxRead(s2)@*/
/*@ensures maxRead (sl) == maxRead(s2)

/\ result == sl1@*/;rr

Module 18 Page 2737 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

How to Mutate a Buffer
L]
Overflow Exploit
For the NOP For the “Main
Portion Event"

2 Randomly replace the S Apply XOR to combine code ~ Randomly tweak LSB of
NOPs with functionally with a random key the pointer to land in the
equivalent segments of unintelligible to IDS. The NOP-zone
the code (e.g.: x++; x-; ? CPU code must also decode
NOP NOP) the gibberish in time to

execute payload. The e

XORing makes the payload
polymorphic and and “

V v therefore hard to spot

VN

S (2) (3)

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

_“~ How to Mutate a Buffer Overflow Exploit

=== Most IDSes look for signs of NOP sleds. Detecting an array of NOPs can be indicative
of a buffer overflow exploit across the network. ADMutate takes the concept a bit further. It
accepts a buffer overflow exploit as input and randomly creates a functionally equivalent
version (polymorphism, part deux).

ADMutate substitutes the conventional NOPs with operationally inert commands. ADMutate
encodes the shellcode with a simple mechanism (xor) so that the shellcode will be unique to
any NIDS sensor. This allows it to bypass shellcode signature analysis. XORing encodes the
shellcode with a randomly generated key. It modulates the return address and the least
significant byte is altered to jump into different parts of the stack. It also allows the attacker to
apply different weights to generate ASCII equivalents of machine language code and to tweak
the statistical distribution of resulting characters. This formulates the traffic as the “standard”
for a given protocol, from a statistical perspective, for example, more heavily weighted
characters "<" and ">" in HTTP protocol. To further reduce the pattern of the decoder, out-of-
order decoders are supported. This allows the user to specify where in the decoder certain
operational instructions are placed. ADMutate was developed to offend IDS signature checking
by manipulation of buffer overflow exploits. It uses techniques borrowed from virus creators
and works on Intel, Sparc, and HPPA processors. The likely targets are Linux, Solaris, IRIX, HPUX,
OpenBSD, UnixWare, OpenServer, TRU64, NetBSD, and FreeBSD.

Module 18 Page 2738 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow

Buffer
Overflow
Concepts

Buffer Buffer Buffer nggr;w Buffer
Overflow Overflow Overflow Counter- Overflow
Methodology Examples Detection Security Tools

measures

&l

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Flow

So far, we have discussed what buffer overflow is and how to exploit it. Now it’s time
to discuss how to detect buffer overflows.

1: Buffer Overflow Concepts Buffer Overflow Countermeasures
4 Buffer Overflow Methodology _ /' Buffer Overflow Security Tools
Buffer Overflow Examples ~ i% Buffer Overflow Pen Testing

=y
-

Buffer Overflow Detection

Jiil
At

This section focuses on various buffer overflow detection methods such as testing for heap and
stack overflows, formatting string conditions, and buffer overflow detection tools.

Module 18 Page 2739 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Identifying Buffer Overflows

STEP 1 STEP 2 STEP 3
lssue re o If web server
Run web server) quests crashes, search
, with long tags
on local machine " core dump for
" ”n t f' d
$85$5 $5555” to fin

overflow location

u
f
(K

STEP 6 STEP 5 STEP 4
Use IDA-Pro to Use PO S
5 tools such as
construct an disassemblers
exploit and debuggers codeBioder,
P 68 eEye Retina, etc.

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

Identifying Buffer Overflows

W&: In order to identify the buffer overflow vulnerability, follow the steps mentioned as
follows:

© Step 1: Run web server on local machine

© Step 2: Issue requests with long tags-all long tags end with “$5555”

© Step 3: If the web server crashes, search core dump for “S$55S5” to find overflow

location

© Step 4: Using automated tools such as codeBlocker, eEye Retina, etc.

© Step 5: Use disassemblers and debuggers

© Step 6: Use IDA-Pro to construct an exploit
Module 18 Page 2740 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow
How to Detect Buffer Overflows
L]
in a Program
[« .
| 9 Local Variables
3 In this case, the attacker can look for strings declared as local
\
i > variables in functions or methods, and verify the presence of
bty

boundary checks

FTTTITIIILIIITIIT I

Standard Functions

It is also necessary to check for improper use of standard <
functions, especially those related to strings and input or output

LAAA | Another way is to feed the application with huge amounts of data and check for
- - abnormal behavior

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

—. How to Detect Buffer Overflows in a Program

To identify buffer overflows, you need to examine programs systematically in order
to discover vulnerabilities. There are basically two main ways to detect buffer overflow
vulnerabilities:

© The first method is to look at the source code:

The attacker looks for strings declared as local variables in functions or methods and
verifies the presence of a boundary check or use of “SAFE” C functions. In addition, it is
also necessary to check for the improper use of standard functions, especially those
related to strings and input/output.

© The second method is to feed the huge volumes of data to the application and check for
abnormal behavior.

To start with, you can attempt to reverse the code using a disassembler or debugger and
examine the code for vulnerabilities.

Disassembly starts from the entry point of the program and then proceeds with all routes of
execution to search for the functions that are external to the main flow of the program. The
user may keep his or her focus on functions lying outside main () and check those subroutines
that take strings as their input or generate them as output.

Module 18 Page 2741 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

As already mentioned, programs written in C are particularly susceptible, because the language
does not have any built-in bounds checking, and overflows are undetected as they write past
the end of a character array. The standard C library offers many functions for the purpose of
copying or appending strings that do not perform any boundary check. These include strcat (),
strepy (), sprintf (), and vsprintf (). These functions operate on null-terminated strings and do
not check for an overflow resulting from a received string.

The gets () function reads a line from stdin into a buffer until a terminating new line or EOF
occurs. It does not check for any buffer overflows. The scanf() function also gives rise to
potential overflows, if the program attempts to match a sequence of non-white-space
characters (%s) or a non-empty sequence of characters from a specified set (%[]).

The array pointed to by the char pointer is inadequate to accept the entire sequence of
characters, and the optional maximum field width is not specified. If the target of any of these
functions is a buffer of static size, and its arguments are derived from user input, there is a good
chance of encountering a buffer overflow.

Most attackers point out that ingenuity is critical for exploiting buffer overflow vulnerabilities.
This is true especially when one has to guess a few parameters. For instance, if the attacker is
looking at software that assists in communication such as FTP, he or she may be looking at
commands that are typically used and how they are implemented.

For example, the attacker can search for text and pick out a suspect variable from a table. He or
she can then go on and check the code for any boundary checks and functions such as strcpy()
that take input directly from the buffer. The emphasis can be on local variables and
parameters. The attacker can then test the code by providing malformed input and observe the
resulting behavior of the code.

Another method is to adopt a brute force approach by using an automated tool to bombard the
program with excessive amounts of data and cause the program to crash in a meaningful way.
The attacker can then examine the register dump to check whether the data bombarding the
program made its way into the instruction pointer.

What happens after the buffer overflow vulnerability is discovered? After discovering a
vulnerability, the attacker can observe carefully how the call obtains its user input and how it is
routed through the function call. He or she can then write an exploit, which makes the software
do things it would not do normally. This can range from simply crashing the machine to
injecting code so that the attacker can gain remote access to the machine. He or she might then
use the compromised system as a launch base for further attacks.

However, the greatest threat comes from a malicious program such as a worm that is written
to take advantage of the buffer overflow.

Module 18 Page 2742 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Heap Overflow

Conditions: heap.exe

Two registers EAX and ECX,
can be populated with user-
supplied addresses

Test for heap overflows by
supplying longer input
strings than expected

. Allow overwriting function : i 1. A pointer exchange taking : i 1. One of the addresses can
pointers place after the heap i point to a function pointer :
: : management routine which needs to be :
comes into action i overwritten, for example
i : UEF (Unhandled Exception :
filter)

. Exploit memory
management structures
for arbitrary code
execution

. The other address can be
the address of user
supplied code that needs
to be executed

On the next slide, when the MOV instructions shown in the left pane of the
screenshot are executed, the overwrite takes place. When the function is called, the
user-supplied code gets executed

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

==, Testing for Heap Overflow Conditio ns: heap.exe

== A heap is memory that is allocated dynamically; these are dynamically removed
(example delete, free) and created (example new, malloc). In some cases, heaps are reallocated
by the programmer. Each memory chunk in a heap is associated with boundary tags containing
information about memory management.

Heap-based buffer overflow causes overwriting the control information. This leads to an access
violation when the heap management routine frees the buffer. This overflow vulnerability
allows an attacker to overwrite a desired memory location with a user-controlled value, when
executed in a controlled fashion. Thus, it allows an attacker to overwrite function pointers and
other addresses stored in TEB, GOP, or .dtors structures with the shellcode's address.

There are many ways in which the heap overflow vulnerability can be exploited to execute
shellcode by overwriting function pointers. In order to exploit these vulnerabilities, certain
conditions need to exist in the code. Hence, identifying or locating these vulnerabilities
requires closer examination when compared to stack overflow vulnerabilities.

You can test for heap overflows by supplying input strings longer than expected. Heap
overflow in a Windows program may appear in various forms. The most common one is pointer
exchange taking place after the heap management routine frees the buffer.

Two registers EAX and ECX, can be populated with user-supplied addresses:

Module 18 Page 2743 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures i
Buffer Overflow '

A
9 One of the addresses can point to a function point
example, UEF (Unhandled Exception filter)

© The other address can he address of user- | pll

h

Module 18 Page 2744

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Heap Overflow clEH
Conditions: heap.exe (Cont'q) e e

BYIE =
HOUZX ECX, WORD FIR
HOU ER, TRIORD

]
860801 1
F 77FE2C08
. 2809 sue > .

« 8990 3CFFFFFF

« 661590E HOU
. 8B45 Co

. 2845 1@

3BC7 cH
~BFE3 34150300
oY BYIE USILESI*6). AL BOPEEZAE
AND BYTE PTR DS:(ESI+71.0 .
ST EBL. EBX
d

. 5346 B8
> 8066 07 00
« 2608
.ugFS-i BCO00000
77FERIER
PR SSi1

Juros Fronm 636CE, 77FE5311

Address | Her durp

Acoess valation when wiking to [41141411 - use ShWF7/FE/FS 1o pass exception to proaram

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction isStrictly Prohibited.

Testing for Heap Overflow Conditions: heap.exe
(Cont’d)

Let us consider the following example of heap overflow vulnerability:

OllyDbg - heap.exe - [CPU - main thread, module ntdil]
| View Dobug Plugins

«Wx| »u v

I WORD TR

4141 3=
m TIFESSCE, TTPES3IL

Aasress [Hex s [escu | . TR ~

Access violabon viven waitng Lo [41414141] - use Shitof 7/FBFS lo pass emcephion ko orogam P

FIGURE 18.9: Testing for Heap Overflow Conditions in heap.exe

Module 18 Page 2745 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

The two registers shown, EAX and ECX, can be populated with user-supplied addresses used to
overflow the heap buffer. One address points to a function pointer such as Unhandled
Exception Filter (UEF) that needs to be overwritten, and the other holds the address of the
arbitrary code. The overwrite takes place when the MOV instructions are executed. When the
function is called, the arbitrary code gets executed.

In addition to this method, the heap-based buffer overflows can be identified by reverse
engineering the application binaries and using fuzzing techniques.

Module 18 Page 2746 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Steps for Testing for Stack Overflow
in OllyDbg Debugger

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

Steps for Testing for Stack Overflow in OllyDbg
—=— Debugger

Stack buffer overflow occurs when the variable data size larger than the buffer size is placed in
the program stack without bound checking. This can be a serious vulnerability and may even
cause denial-of-service attacks. A stack overflow vulnerability allows an attacker to take
control of the instruction pointer. This may lead to severe consequences. Therefore, you need
to test your application or processes against stack overflow vulnerabilities.

Similar to heap-based buffer overflow testing, the stack overflow vulnerability can also be
tested by supplying a large amount of input data than the normal or expected. However, this
alone is not enough. In addition to sending a large amount of input data, you need to inspect
the execution flow of the application and the responses to check whether an overflow has
occurred or not. You can do this in four steps with the help of a debugger, a computer program
used to test other programs. Here we are testing for stack overflow with the help of the
OllyDbg debugger. The first step in testing for stack overflow is to attach a debugger to the
target application or process. Once you successfully attach the program, you need to generate
the malformed large input data for the target application to be tested. Now, supply the
malformed input to the application and inspect the responses in a debugger. The ollydbg
debugger allows you to observe the execution flow and the state of registers when the stack

Module 18 Page 2747 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

overflow gets triggered. On the next slide, we will ¢
example. '

Module 18 Page 2748

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

Buffer Overflow

Testing for Stack Overflow in

OllyDbg Debugger

o"ypb’ D;m(l)nsttrat‘i[(‘)n of h:{)\.:i an a_t[t;:cker can mfr(\;urite ’ ‘
Debugger e instruction pointer (wi user—supp ie .
values) and control program execution —
Step 1 Step 2 Step 3 Step 4 Step 5
Testing Launch Alarge Open the EIP contains
“sample.exe” for “sample.exe” sequence of executable with the value
stack overflows: in a debugger characters such the supplied “41414141",
#includecstdio.h> as “A”, can be arguments which
int main(int arge, supplied in the (AAAAAAAA...) represents the
char *argv(]) argument field and continue hexadecimal
ilm_ . - as shown in execution. The “AAAA"
printE("copying figure 1 in next result is shown
into buffer”); P
stropy (buff

argv[1l]); retum 0;
}

. _

Copyright © by EG-Goumcil. Al Rights Reserved. Reproduction is Strictly Prohibited.

: » Testing for Stack Overflow in OllyDbg Debugger

==—""" Here we are going to demonstrate how an attacker can overwrite the instruction
pointer (with user-supplied values) and control program execution. Consider the following
example of "sample.exe" to test for stack overflows:

nn
L'l

#include<stdio.h>

int main(int argc,char *argv[])

{

char buff[20]; printf("copying into buffer") ;
strepy (buff, argv[1l]):;

return 0;

}

Launch the sample.exe in OllyDbg debugger. The sample.exe accepts command line arguments.
So you can supply a large sequence of characters such as 'A' in the argument field as shown in
figure 1 on the next slide. Now open sample.exe with the supplied arguments (AAAAAAAAA....)
and continue execution. The result is shown in figure 2 on the next slide. From the figure 2 in

Ethical Hacking and Countermeasures Copyright © by EG-Council

Module 18 Page 2749
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures i
Buffer Overflow '

next slide, it is clear that the EIP (Extended Instruc

The hexadecimal representation of character ‘A’ is
“AAAA." h

h

Module 18 Page 2750

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Stack Overflow in clen
OllyDbg Debugger (Contq) e o e

Registers (FPU]
1, BAGEEEEE

I [s])

BE3I26FB4
82414141

ESP BB12FEEC ASCIT "ARARARAARARNARAAARANR
EBF 41414141

ESI P808aRz22
01 ooaagaad
i3 4141414_[::‘

B0010246

Figure 2

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

Pjﬁ-:r—

~— Testing for Stack Overflow in OllyDbg Debugger
—_—— (Cont’d)

nRnR

< 1 Registers (FPU) <]
- jnirl. i8] M |
- oo m |
,"1 .
—
FIGURE 18.10: Testing for Stack Overflow in OllyDbg Debugger
Module 18 Page 2751 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

N
<i

@; Testing for Format String Conditions Using IDA Pro

Testing for Format String

Conditions Using IDA Pro

>

Format String Manipulating
Vulnerabilities Input Parameters
Format string vulnerabilities Attacker manipulates input
are most often exploited parameters to include %x or %n
within: type specifies

For example, a legitimate request like:

http://hostname/cgi-bin/

@ Web servers

e App“tat-lDl’l servers query.cgi?name= john&code=45765
)) is changed into:
© Web applications utilizing http://hostname/cgi-bin/
C/C++ based code query.cgi?name=

Jjohn%x.%x.%x8&code=45765%x. %x

[\%

@ CGI scripts writtenin C

|

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

Applications can be tested for format string vulnerabilities by supplying format type
specifiers in application input. Format string vulnerabilities usually appear in web servers,
application servers, or web applications utilizing C/C++ based code or CGI scripts written in C.
Most of these format string vulnerabilities are resulting because of the insecure call to error
reporting or logging function like syslog().

An attacker manipulates input parameters to include %x or %n type specifiers in a CGl script.
Consider a legitimate example:

http://hostname/cgi-bin/query.cgi?name= john&code=45765
Attacker can manipulate this to
http://hostname/cgi-bin/query.cgi?name= john%x.%x.%x&code=45765%x.%x

If the routine processing the altered request contains any format string vulnerability, then it
prints out the stack data to browser.

Module 18 Page 2752 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Testing for Format String

Conditions Using IDA Pxo (Contd)

Attacker identifies the presence of a
format string vulnerability by checking
instances of code (assembly fragments)

Ci_UBBAHGEHET he TS5 Tr ingTSenter eaTs i

J When the disassemblyis examined
using |IDA Pro:

Row pax, [ebprarg &
mow pcx, [eaxed

x
BUsh_ offset T1_GA_EZ0ILLETICIS SRR
call pELCY

€ The address of a format type specifier
being pushed on the stack is clearly visible
before a call to print is made

-
int main(int argc, char **argv) ﬁ

{ printf ("The string entered ' 4 ‘
is\n"); “

Command Prompt

printf(“%s”,argv[1]) ; —

return 0;}

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

@) Testing for Format String Conditions Using IDA Pro
~ (Cont’d)
An attacker identifies the presence of a format string vulnerability by checking instances of
code (assembly fragments). Consider the following example code:
int main(int argc, char **argv)
{ printf ("The string entered is\n");
printf (“%s” ,argv([1l]) ;
return 0;}

Examine the disassembly of the code using IDA Pro. You can clearly see the address of format
type specifier being pushed on the stack before a call to printf is made.

No offset will be pushed on the stack before calling printf, when the same code is compiled
without "%s" as an argument.

Module 18 Page 2753 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

W

El IDA Vie

Le?$CFs?SARE =

C@_02DIL

Ethical Hacking and Countermeasures
Buffer Overflow

Exam 312-50 Certified Ethical Hacker

Exploit Description

‘Node Tree

swas Log Dedug Log Data View

— 2 T —

ttp, i
D //h:ww:mmunirysec. com

P ————— |

BoF Detection Tool: Immunity
CANVAS

s Log Debug Log Data View

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

—————

mannn

BoF Detection Tool: Immunity CANVAS

Source: http://www.immunitysec.com

Immunity's CANVAS is an exploit development framework for penetration testers and security
professionals. It allows you to discover how vulnerable you really are. It comes with packaged
vulnerability exploitation modules for scripting and framework for developing original exploits.
Thus, it provides a way for any organization to have a picture of their security posture, without

guesswork or estimation.

Current Stalus. Canvas Log Debug Log Data View

Tent Status Canvas Log Debug Log Data View

Nade Tree Explolt Description

FIGURE 18.12: Immunity CANVAS Screenshot

Module 18 Page 2755

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

BoF Detection Tools

1l .
{!.'m!' Immunity Debugger b BLAST
5 J http://www.immunityinc.com *_'!T_‘ http://mtc.epfl.ch
-—!- —-\-V-J
I OllyDbg Stack Shield
T‘ http://www.ollydbg.de = ’ = N http://www.angelfire.com
—_— R
& '
B Splint & Valgrind
’_k '\ http://www.splint.org L - http://valgrind.org
s S—
£ = . *
(& BOON f PolySpace C Verifier
http://www.cs.berkeley.edu http://www. mathworks.in
- -
il Flawfinder > '. Insure++
= http://www.dwheeler.com “ .@ http://www. parasoft.com
S

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.
-

\/ -/ BoF Detection Tools

In addition to OllyDbg Debugger, IDA Pro, and Immunity CANVAS, many other tools
have the capability to detect buffer overflows. A few buffer overflow detection tools are listed

as follows:

@ Immunity Debugger available at http://www.immunityinc.com

& OllyDbg available at http://www.ollydbg.de

© Splint available at http://www.splint.org

© BOON available at http://www.cs.berkeley.edu

© Flawfinder available at http://www.dwheeler.com

© BLAST available at http://mtc.epfl.ch

@ Stack Shield available at http://www.angelfire.com

© Valgrind available at http://valgrind.org

@ PolySpace C Verifier available at http://www.mathworks.in

@ |nsure++ available at http://www.parasoft.com

Module 18 Page 2756 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow

Buffer
Overflow
Concepts

Buffer Buffer Buffer OBu:Ier Buffer
Overflow Overflow Overflow C:Ent::’ Overflow
Methodology Examples Detection Security Tools

measures

&l

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

Module Flow

—— So far, we have discussed the buffer overflow vulnerability, how to exploit it, and how
to detect it. Once you detect buffer overflows, you should immediately apply or take
countermeasures to protect your resources from being compromised. There are many reasons
for buffer overflow exploits. The countermeasures to be applied may vary depending on the
kind of buffer overflow vulnerability.

e p—
= Buffer Overflow Concepts Buffer Overflow Countermeasures
= 'y
4 ~ Buffer Overflow Methodology |/ / Buffer Overflow Security Tools
Buffer Overflow Examples ,% Buffer Overflow Pen Testing
.
(&
. Buffer Overflow Detection
Module 18 Page 2757 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

L
4
b,

A
This section suggests various countermeasures to d
vulnerabilities. Thus, it can help you to prevent buffer ove

ok
h N

Module 18 Page 2758

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Defense Against Buffer Overflows C|EH
—

.

‘........I.
‘ll.ll..ll.
*........I..

Manual
Auditing
of the Code

Safer C
Library Support

Disabling
Stack Execution

Compiler
Techniques

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction is Strictly Prohibited.

=-§\ Defense against Buffer Overflows

The errors in programs are the main cause of buffer flow problems. These problems
are responsible for security vulnerabilities using which the attacker tries to gain unauthorized
access to a remote host. Attackers easily insert and execute attack code. To avoid such
problems, some protection measures have to be taken. Protection measures to defend against
buffer overflows include:

Manual auditing of code

—— Search for the use of unsafe functions in the C library like strcpy() and replace them
with safe functions like strncpy(), which takes the size of the buffer into account. Manual
auditing of the source code must be undertaken for each program.

Compiler techniques

= Range checking of indices is defined as a defense that guarantees 100% efficiency
from buffer overflow attacks. Java automatically checks if an array index is within the proper
bounds. Use compilers like Java, instead of C, to avoid buffer overflow attacks.

Module 18 Page 2759 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Safer C library support
— N

A robust alternative is to provide safe versions of the C library functions where it
attacks by overwriting the return address. It works with the binaries of the target program's
source code and does not require access to the program's source code. It can be handled
according to the occurrence of the threat without any vendors operating against it. It is
available for Windows 2000 systems and is an effective technique.

T

.m;“" Disabling stack execution

oo™
‘—fﬁ This is an easy solution that provides an option to install the OS-disabling stack

execution. The idea is simple, inexpensive, and relatively effective against the current crop of
attacks. A weakness in this method is that some programs depend on the execution of the
stack.

Module 18 Page 2760 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Preventing BoF Attacks

Use type safe languages Implement run-time

(Java, ML) checking
Mark stack as non- g
. A Address
execute, randomize 2 .
) obfuscation
stack locations
Static source code 3 Randomize location of
analysis functions in libc

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

@ Preventing BoF Attacks

\

A buffer overflow attack occurs when large amounts of data are sent to the system,
more than it is intended to hold. This attack usually occurs due to insecure programming.
Often this may lead to a system crash. To avoid such problems, some preventive measures are
adopted. They are:

2 Implement run-time checkingAddress obfuscation

© Randomize location of functions in libcStatic source code analysis

© Mark stack as non-execute, random stack location
© Use type safe languages (Java, ML)
Module 18 Page 2761 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Programming Countermeasures (|/EH

Design programs with security Consider using “safer”
in mind LW compilers such as StackGuard

Disable Stack Execution (it's
possible with hardware 'q Prevent return addresses
segmentation, or software L\ from being overwritten

segmentation such as DEP)
" Validate arguments and reduce

the amount of code that runs
with root privilege

Test and debug the code to
find errors

Prevent all sensitive
information from being
overwritten

Prevent use of dangerous
functions: gets, strcpy, etc.

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

-

Programming Countermeasures

—
Wb

e 9 Design programs with security in mind.

@

Disable dtack execution (possible on Solaris).

@

Test and debug the code to find errors.
© Prevent use of dangerous functions: gets, strcpy, etc.

© Consider using “safer” compilers such as StackGuard.

(¢)]

Prevent return addresses from being overwritten.

© Validate arguments and reduce the amount of code that runs with root privilege.

@

Prevent all sensitive information from being overwritten.

Module 18 Page 2762 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Programming Countermeasures

(Cont'd)

Maike chan to the Clanguage itself 3t the Gnguame level to raduce the
H =43 o=y
risk of buffer overflows

Use static or dynamic source code analyzers at the source coda lavel to
check the code for buffer overflow problams

Change the compiler at the compiler level that does bounds checking or
protects addresses from overwriting

N Change the rules at the operating system level for which memory pages are
allowed to hold executable data

| T B/

Make use of safe libraries

Make use of tools that can detect buffer averfiow vulnerabiites

Copymget B by EE-Canndl 2w mmement WememEocTos i3 TasTy PrbEoms

& Programming Countermeasures (Cont’d)

—

9 Make changes to the C language itself at the language level to reduce the risk of buffer
overflows.

© Use static or dynamic source code analyzers at the source code level to check the code
for buffer overflow problems.

9 Change the compiler at the compiler level that does bounds checking or protects
addresses from overwriting.

© Change therules at the operating system level for which memory pages are allowed to
hold executable data.

© Make use of safe libraries.

© Make use of tools that can detect buffer overflow vulnerabilities.

Module 18 Page 2763 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Data Execution Prevention (DEP)

DEP is a set of hardware and software
technologies that monitors programs to

verify whether they are using system e 3 D
memory safely and securely
— wisual Effects | Advanced | Data Execution Prevention
It prevents applications from accessing e—3
7. 2 Data Execution Prevention (DEP) helps protect
memory that_wa§n t aSSIgHEd ‘_forthe é against damay ses and cther security
process and lies in another region e— 3 fhreats. s :
) [ulrr on DEP for essential Windows programs and serviczs
When a violation is attempted, hardware- Turn on DEP for all programs and services except those I
H H select:
enforced DEP detects code that is running — elect

from these locations and raises an exception

To prevent Malicious code from taking

advantage of exception-handling

mechanisms, Windows uses Software e—
enforced DEP

Your computer's processor supports hardware-based DEP,

DEP helps in preventing code execution from

within data pages, such as the defaultheap l ’
pages, memory pool pages, and various

stack pages, where code is not executed

from the default heap and the stack

OK Cancel

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

Data Execution Prevention (DEP)

Data execution prevention (DEP) is a set of hardware and software technologies that
monitors programs to verify whether they are using system memory safely and securely. It
prevents the applications that may access memory that wasn’t assigned for the process and lies
in another region. When an execution occurs, hardware-enforced DEP detects code that is
running from these locations and raises an exception. To prevent malicious code from taking
advantage of exception-handling mechanisms in Windows, use software-enforced DEP.

DEP helps in preventing code execution from data pages, such as the default heap pages,
memory pool pages, and various stack pages, where code is not executed from the default heap
and the stack.

Module 18 Page 2764 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

against from viruses and other security
threats.

©£:vnmwmmmmwm

(O Turn on DEP for all programs and services except those 1

Your computer's processor supports hardware-based DEP.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Enhanced Mitigation Experience

Toolkit (EMET)

Enhanced Mitigation Experience Toolkit (EMET) is designed to make it more difficult for
an attacker to exploit the vulnerabhilities of software and gain access to the system

It supports mitigation techniques that prevent common attack techniques, primarily
related to stack overflows and the techniques used by malware to interact with the
operating system as it attempts a compromise

It improves the resiliency of Windows to the exploitation of buffer overflows

Space Layout
Randomization (ASLR)

New in EMET 3.0 is mandatory
address space layout
randomization (ASLR), as well
as non-ASLR-aware modules

It prevents common technigues
used for exploiting stack
overflows in Windows by
performing SEH chain

It marks portions of process
memory non-executable,
making it difficult to exploit
memory corruption
vulnerabilities

validation on all new Windows Versions

Copyright © by EG-Goumecil. Al Rights Reserved. Reproduction s Strictly Prohibited.

Enhanced Mitigation Experience Toolkit (EMET)

Enhanced Mitigation Experience Toolkit (EMET) is designed to make it more difficult
for an attacker to exploit the vulnerabilities of software and gain access to the system. It
supports mitigation techniques that prevent common attack techniques, primarily related to
stack overflows and the techniques used by malware to interact with the operating system as it
attempts the compromise. It improves the resiliency of Windows to the exploitation of buffer
overflows.

© Structure Exception HandlerOverwrite Protection (SEHOP):

It prevents common technigues used for exploiting stack overflows in Windows by
performing SEH chain validation.

© Dynamic Data Execution Prevention (DDEP):

It marks portions of a process’s memory non-executable, making it difficult to exploit
memory corruption vulnerabilities.

© Address Space Layout Randomization (ASLR):

New in EMET 2.0 is mandatory address space layout randomization (ASLR), as well as
non-ASLR-aware modules on all new Windows Versions.

Module 18 Page 2766 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

EMET System Configuration

Settings

Enhanced Mitigation Expenence Toolkit

http://www.microsoft.com

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

[m* EMET System Configuration Settings

== Source: http://www.microsoft.com

The Enhanced Mitigation Experience Toolkit (EMET) was designed specifically for preventing
vulnerabilities in software from being exploited. After installation, you need to configure EMET
to provide protection for software. System and application are the two main categories you
need to configure on EMET. To configure both these categories, you need to click the respective
button present on the right side of the EMET main window. The system status display may vary
from one operating system to the other.

The System Configuration section is used to configure system-wide (i.e., no need to explicitly
define the process to be protected) specific mitigations such as DEP, SEHOP, and ASLR. In
operating systems such as Windows 7, when the system configuration is set to maximum
security, the DEP option will be set to Always On, SEHOP to Application Opt Out, and ASLR to
Application Opt In modes. But, setting DEP to Always On may cause all applications that are not
compatible with DEP to crash. This in turn may cause system instability. Hence, if you wish to
accomplish stability, then it is recommended to set all these settings to Application Opt In.

Module 18 Page 2767 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

- ——

Stuctured Excepton Hander Overwrite Protection (SEHOP) E Appheaton Opt In

2990 000200200209

qm_ IR

Data Exeauton Preventon (DE9)

m FBRefp AP ERERAEEE

System Stotis

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

EMET Application Configuration clen
Settings e st

—ﬂ-

Application Configuration

Structured Exception Handler Ovenwrite Protection (SEHOF)

DEP SEHOP EAF MandatoryASLR. BottorUpASLR.

Address Soace Laveut Randamizatien (ASLR)

Using the Application Configuration dialog box, we can
add application(s) to be configured by EMET

This helps harden applications that have not been
compiled (by the original vendor) with specific security
countermeasures.

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

) EMET Application Configuration Settings

Contrary to system configuration, application configuration enables mitigations such
as DEP per application rather than system-wide. In order to configure applications, you need to
click the Configure Apps button in EMET's main window. This will prompt you with the
Application Configuration window of EMET. By default, this window will be blank. If you want to
protect any particular program, then click the Add button and specify the path where the
executables of the programs are installed.

inhanced Migaton bperence Tookn = c Nll| | (5 Application Configuration (===l

Fie
Appacatons

Ao Name. DEP SotiomUpASLE

oo Ml age reaptor ey ENF Mancator yASLR
oo | 8| 8B 8 | B &8 | 8 | B |

Ao]

FIGURE 18.15: EMET Application Configuration Settings

Module 18 Page 2769 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow

Buffer
Overflow
Concepts

Buffer Buffer Buffer OBugler Buffer
Overflow Overflow Overflow C:ﬁnt:‘: Overflow
Methodology Examples Detection Security Tools

measures

&l

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

- Module Flow

- So far, we have discussed what buffer overflow is, how to exploit it, buffer overflow
examples, detection methods, and countermeasures. In addition to countermeasures, there are
some automated buffer overflow security tools that detect and prevent the exploitation of
buffer overflows.

o Buffer Overflow Concepts \ Buffer Overflow Countermeasures
4~ Buffer Overflow Methodology |~ /' Buffer Overflow Security Tools
Buffer Overflow Examples @ Buffer Overflow Pen Testing
A =

Buffer Overflow Detection

Wil

BN

This section lists and describes buffer overflow security tools.

Module 18 Page 2770 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

/GS

http://www.microsoft.com

The Buffer overrun attack exploits -

poor coding practices that " Function
programmers adopt when writing N Parameters
and handling the C and C++ string i il
functions

/GS compiler switch can be
activated from the Code
Generation option page on the
C/C++ tab

The /GS switch provides a “speed
bump,” or cookie, between the
buffer and the return address that

* callee
. . ;. save '
helps in preventing buffer overrun - pegisters -

If an overflow writes over the

return address, it will have to v
overwrite the cookie putin Exception
between it and the buffer, . . Handler Frame
resulting in a new stack layout: =«--sepsereseeeeees 4 o

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

H /GS

Source: http://www.microsoft.com

The buffer overrun attack utilizes poor coding practices that programmers adopt when writing
and handling the C and C++ string functions. The /GS compiler switch can be activated from the
Code Generation option page on the C/C++ tab. The /GS switch provides a “speed bump,” or
cookie, between the buffer and the return address that helps in preventing buffer overrun.

If an overflow writes over the return address, it will have to overwrite the cookie put in
between it and the buffer, resulting in a new stack layout:

© Function parameters

© Function return address

© Frame pointer

9 Cookie

© Exception Handler frame

© Locally declared variables and buffers

© Callee save registers

Module 18 Page 2771 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

BoF Security Tool: BufferShield

- BufferShield allows you to detect e |P"°° urat
and prevent the exploitation of buffer Lotection Scops | Teut |
overflows, responsible for the majority Global Settings
of code injection attacks ¥ Teminaie piocesse; e

Ccode execubon
' Show interacti Ve WaIning message

' Check apphication stack

W Check .data segment

[V Check dynamic application heap

¥ Check virtual memaory

@ Terminates applications in questionif a ¥ ASLR (Address Space Layout Alandomaaton|
buffer overflow was detected

d Features:

© Detectscode execution onthe stack,
default heap, dynamic heap, virtual
memory, and data segments

Note: By default all options ae enabled

A i
L Status
Up and running.

/ _ﬁi‘i&--
_ Corcel |

s | /”cn/-//’r—f;/‘
= 1 T — manage-corm

m— http://WwWW-s

Copyright © by EG-Goumcil. All Rights Reserved. Reproduction is Strictly Prohibited.

@Il BoF Security Tool: BufferShield

Source: http://www.sys-manage.com

BufferShield a security tool that prevents the exploitation of buffer overflows. It allows you to
detect and prevent the exploitation of buffer overflows, responsible for the majority of security
related problems.

Key features of BufferShield:

© |t detects code execution on the stack, default heap, dynamic heap, virtual memory, and
data segments

© It can terminate applications in question if a buffer overflow was detected
© Itreports to the Windows event log in case of any detected overflows

2 |t allows the definition of a protection scope to either protect only defined applications
or to exclude certain applications or memory ranges from being protected

© |t utilizes Intel XD / AMD NX hardware based technology if available

2 It has SMP support

Module 18 Page 2772 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
Buffer Overflow

© It uses Address Space Layout Randomization (ASLR)

Module 18 Page 2773

¥ Sys-Manage BufferShield Configuration
Setings | Protection Scope | Test |

- Global Settings
[V Teminate processes i detecting unwanted code executiorf
[V Show interactive warning message

¥ Check application stack

[% Check .data segment

[V Check vitual memory

[V ASLR (Address Space Layout Randomization)

Note: By default all options are enabled.

~ Status
Up and unning...

| oK I Cancel I Apply I

Help

FIGURE 18.16: BufferShield

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

BoF Security Tools

e ﬁ DefenseWall == FireFuzzer

http://www.softsphere.com http://code.google.com

:. 1 TIED Ej. BOON

—-— http://www.security.iitk.ac.in http://www.cs.berkeley.edu

L . R The Enhanced Mitigation
LibsafePlus ¢ £ . Toolki &
E’ L =] http://www.security.iitk.ac.in Xperience loo it
| :" http://support.microsoft.com

) . CodeSonar® Static Analysis
[“ Comodo Memory Firewall ¥
. http://www.comodo.com k] TOU'
=== http://www.grammatech.com
= o
“=—==| Clang Static Analyzer _ CORE IMPACT Pro
http://clang-analyzer.llvm.org fa— http://www.coresecurity.com
S —

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

oy BoF Security Tools

In addition to /GS and BufferSheild, many other buffer overflow security tools are
readily available in the market. A more buffer overflow security tools that can detect and
prevent buffer overflows are listed as follows:

& DefenseWall availble at http://www.softsphere.com

© TIED available at http://www.security.iitk.ac.in

© LibsafePlus available at http://www.security.iitk.ac.in

& Comodo Memory Firewall available at http://www.comodo.com

@ Clang Static Analyzer available at http://clang-analyzer.llvm.org

© FireFuzzer available at http://code.google.com

© BOON available at http://www.cs.berkeley.edu

© The Enhanced Mitigation Experience Toolkit available at http://support.microsoft.com

© CodeSonar® Static Analysis Tool available at http://www.grammatech.com

© CORE IMPACT Pro available at http://www.coresecurity.com

Module 18 Page 2774 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Flow

Buffer
Overflow
Concepts

Buffer Buffer Buffer OBugler Buffer
Overflow Overflow Overflow C:ﬁnt:‘: Overflow
Methodology Examples Detection Security Tools

measures

Buffer
Overflow
Pen Testing

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

Module Flow

So far, we have discussed all the necessary elements required to test the security of an
application or program against buffer overflow vulnerabilities. Now it’s time to test the security
of an application, service, or program. The test conducted to check the security of your own
application by simulating the actions of an attacker or external user is called penetration

testing.
s =
I Buffer Overflow Concepts , Buffer Overflow Countermeasures
| M, y
4 = Buffer Overflow Methodology |~/ Buffer Overflow Security Tools
Buffer Overflow Examples ,2?%] Buffer Overflow Pen Testing
\d! ’j
(&
1 Buffer Overflow Detection
Module 18 Page 2775 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures i
Buffer Overflow '

This section provides a detailed step-by-step process of
service, or program against buffer overflow flaws.

h

Module 18 Page 2776

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Penetratios

©

Buffer overflow penetration testing is based on the assumption that the application

will result in a system crash or in extraordinary behavior when supplied with ol
format type specifiers and input strings that are longer than expected

(O8]

Skills of a Penetration Tester

Understanding of how Understating of memory I)
buffer overflow attack . management in various) 1

works operating environments

. - .) Understanding of -

Proficiency in running X

. programming languages ee

debuggers, disassemblers, p
such as C/C++, assembly,

Y and fuzzers .

and machine language

Copyright © by EG-Gouncil. All Rights Reséred: Reproduction s Strictly Probibited.

<~ Buffer Overflow Penetration Testing

W

Buffer overflow penetration testing is based on the assumption that the application
will result in a system crash or an extraordinary behavior when supplied with format type
specifies and input strings that are longer than expected. A penetration tester’s job is to not

only scan for the vulnerabilities in the applications or server, but also he need to exploit them
to gain access to the remote server.

A good pen tester should possess the following skills:
© Understanding of how buffer overflow attack works
© Understating of memory management in various operating environments

& Understanding of programming languages such as C/C++, assembly, and machine

language
© Proficiency in running debuggers, disassemblers, and fuzzers
Module 18 Page 2777 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Penetration

L]
Testing (contq)
Search for calls to insecure library functions

(© sarT
- such as gets(), strcpy(), strcat(), printf, fprintf,
Y

- |’ ‘I sprintf, snprintf, vfprintf, vprintf, vsprintf,
m o) and vsnprintf that may result in buffer
i,

application overflow if not used properly

Perform static code analysis using tools such

X as Flawfinder
e No Sou..|rce is Reverse engineer app) Reverse engineer the application using
: L §'> code using disassemblers disassemblers such as IDA Pro and OllyDbg
v : - to analyze code of compiled software in
Yes v : v order to identify buffer overflow condition
P — Attach a debuggerto) Attacha drjbu;.{gr’r (OllyDbg, IDA Ero] to the
the target application target application, supply a large input data,
- s - and inspect responses in a debugger to
v : v identify the buffer flow condition; repeat
P —— Supplya Ith:s s:'ep with different inputs of variable
insecure library functions : large input data ezt
v § v s ||
Perform static code Inspectresponses | > ‘a 5 f&r
analysis using tools in a debugger . .
- ‘w

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

i Buffer Overflow Penetration Testing (Cont’d)

An application can be tested against buffer overflows by supplying a larger amount of
input data than the usual. Then you should observe the application's responses and execution
flow to check whether an overflow occurred or not. To test the application against buffer
overflow with all possible cases, follow these steps:

Step 1: Locate the target application

In order to perform penetration testing, first you should locate the target application on which
you want to conduct the test. Then check whether the source code of the target application is
available or not.

If the source is not available, then go to step 4 to perform static code analysis using tools and if
the source is available, then review the code.

Step 2: Review code

Review the source code of the application to find the vulnerabilities in the application
development and try to exploit those vulnerabilities. Test for common vulnerabilities such as
buffer overflows, format string exploits, etc.

Module 18 Page 2778 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow
Step 3: Search for calls to insecure library functions

Library functions make the application development easy but all the library function calls are
not secure. Though they seem to be normal, they can be exploited. Hence, you should search
for insecure library function calls and secure them from exploitation.

Step 4: Perform static code analysis using tools

Static code analysis allows you to test the application without actually executing the
application. This is usually done with the help of automated tools such as RATS and Flawfinder.

Step 5: Reverse engineer app code using disassemblers

Reverse engineer app code involves testing the assembly code with help of disassemblers
passively. In this method of testing, various sections of the code are scanned for vulnerable
assembly fragment signatures.

Step 6: Attach a debugger to the target application

In order to locate and validate a buffer overflow vulnerability, you need to attach a debugger
to the target application.

Step 7: Supply a large amount of input data

Create a larger string than the actual size and supply it as input data to the application and
observe the responses of the application to the given input.

Step 8: Inspect responses in a debugger

The debugger attached to the application allows you to see the execution flow and state of
registers when the buffer overflow gets exploited.

Module 18 Page 2779 Ethical Hacking and Countermeasures Copyright © by EG-GCouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Buffer Overflow Penetration

TéStiIl.g' (Cont’d)

@ J Supply format type specifiers in the input such as %x or %n
I > Supply format type
specifiers in the input J Use fuzzing techniques that provide invalid, unexpected, or random
data to the application inputs and observe application behavior

v

J Use fuzzing tools such as Spike and Brute Force Binary Tester (BFB) for
Use fuzzing techniques to automated fuzzing testing
Ll e Rpplkcstian < Any extraordinary application behavior or crash indicates a successful
H buffer overflow attack
¥

Document all the findings

,,qu"

'cg;a;gu:rl fﬂ'ﬁ'ﬂ’g’”

Wa@i@igr 1 reTee10100

Copyright © by EG-Goumeil. Al Rights Reserved. Reproduction s Strictly Prohibited.

fu 4 Buffer Overflow Penetration Testing (Cont’d)
= /

o Step 9: Supply format type specifiers in the input

Supply format type specifiers such as %x or %n in the application input to test for format string
vulnerabilities that in turn may lead to buffer overflows.

Step 10: Use fuzzing techniques to overflow the application

Provide invalid, unexpected, or random data as input to the target application using fuzzing
techniques and then observe the application behavior. This way you can find whether the
application is vulnerable to buffer overflows or not. You can also conduct automated fuzzing
test with the help of fuzzing tools such as Spike and Brute Force Binary Tester (BFB).

Step 11: Document all the findings

Documenting all the findings is the last and the most important step that should be carefully
carried out. It is the most important step because in this step you need to document all the
critical information that can lead to exploitation. Sometimes even a small piece of information
left out may lead to great losses for a company. Therefore, this step should be done carefully.

Module 18 Page 2780 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
Buffer Overflow

Module Summary

O A buffer overflow occurs when a program or process tries to store more
data in a buffer (temporary data storage area) than it was intended to hold

J Buffer overflow attacks depend on lack of boundary testing, and a machine that can
execute a code that residesin the data or stack segment

< A stack-based buffer overflow occurs when a buffer has been overrunin the stack
space

d Buffer overflow vulnerability can be detected by skilled auditing of the code as well as
boundarytesting

< Shellcode is machine level code used as payload in the exploitation of a software
vulnerability

Countermeasuresinclude checking the code, disabling stack execution, supporting a
safer C library, and using safer compiler techniques

Tools like stackguard, Immunix, and vulnerability scanners help in securing systems

Copyright © by EG-Goumeil. All Rights Reserved. Reproduction is Strictly Prohibited.

Module Summary

 —

9 A buffer overflow occurs when a program or process tries to store more
data in a buffer (temporary data storage area) than it was intended to hold.

© Buffer overflow attacks depend on the lack of boundary testing and a machine that can
execute a code that resides in the data or stack segment.

© A stack-based buffer overflow occurs when a buffer has been overrun in the stack space.

© A buffer overflow vulnerability can be detected by skilled auditing of the code as well
as boundary testing.

© Shellcode is small code used as payload in the exploitation of a software vulnerability.

© Countermeasures include checking the code, disabling stack execution, supporting a
safer C library, and using safer compiler techniques.

© Tools such as stackguard, Immunix, and vulnerability scanners help in securing systems.

Module 18 Page 2781 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

