
Advanced
Windows

Post-Exploitation
Malware

Forward Engineering

whoami /all
● @zerosum0x0
● @aleph___naught

Red Team @ RiskSense, Inc.

Agenda
● Start off slow, go off deep end

○ Standard stuff, and some big ideas

● Major topics include:
○ CPU internals
○ Kernel internals
○ Windows Programming

■ WINAPI
■ COM
■ .NET
■ Shellcode
■ EXE/DLL/SYS

○ Game Hacking
○ AV Evasion

Not Covered
● Malware we want is for pentests, not:

○ Bootkits
○ Ransomware
○ Anti-debugging
○ Red pill
○ Blue Pill
○ etc.

Pre-Requisites
● Programming knowledge

○ Any language will do, same basic concepts
○ Mostly C, a little C++ and x86/x64

■ Windows API applies to PowerShell, .NET, etc.

● Pentesting knowledge
○ Basic Windows post-exploitation

● Red team, blue team, reverse engineering

Additional Notes
● Format a little different than original Abstract
● Attackers are already using (most of) these techniques
● A lot of breadth

○ A lot of depth

● Demos/code
○ Windows 10 Redstone 3 x64
○ Examples stripped to barebone API calls

■ A lot of normal error checking not present

● Interactive
○ Don't be afraid to blurt out questions

CPU Architecture

ARM
● 1985
● RISC
● 32 and 64 bit
● Thumb Mode
● Windows

○ Embedded
○ IoT Core
○ Phone/Mobile

IA-32
● Also 1985
● Intel 80386

○ x86

● CISC
● Later, Pentium: PAE

○ 36-bit addressing

IA-64
● Itanium
● 2001
● 128 Integer registers
● 128 FP registers
● Instruction bundling

○ 3 * 41 + 5

● Disaster

AMD64
● 2003
● x64 proper

○ Backwards compatible with x86

x86/x64 CPU Modes
● Real mode

○ Unreal mode
● Protected mode

○ Virtual real mode

● System Management Mode
● Long mode

○ Compatibility mode

Privilege Rings
● PTE (Page Table Entries) has 2-bits

○ i.e. 4 modes

● User space
● Kernel space

General Purpose Registers
● AX - Accumulator
● BX - Base
● CX - Counter
● DX - Data
● SI - Source Index
● DI - Destination Index

R8-R15

● AL = Low 8 bits
● AH = High 8 bits
● AX = 16 bits
● EAX = 32 bits
● RAX = 64 bits

Windows x64 Fastcall
1. No more cdecl/stdcall/fastcall/thiscall/register/safecall madness
2. Function Arguments

a. Rcx
b. Rdx
c. R8
d. R9
e. Stack

FLAGS

Memory Map IO
● Reserved memory addresses
● BIOS data area
● VGA display memory

CR0

CR1
● Reserved

○ #UD exception when trying to access

CR2
● Page Fault Linear Address
● When page fault occurs, address accessed stored here

CR3
● Contains base address of page table entries
● Used when translating a virtual address to physical

CR4

Exceptions
● Faults
● Traps
● Aborts

IDT
● Interrupt Descriptor Table
● When interrupted, register states saved
● Function mappings for interrupts

○ 0 - division by 0
○ 1 - debug fault/trap
○ 3 - breakpoint (0xcc) trap
○ 8 - double fault abort
○ 13 - general protection fault/trap
○ 32-255 - available for software/hardware use

System Calls
● Transition from user to kernel, back
● Required to do anything interesting
● "Privilege gate"
● Special handler

○ mov ecx, 0xc0000082 ; IA32_LSTAR
○ rdmsr
○ eax+edx
○ wrmsr

Windows History

MS-DOS
● 1981 - 2000
● Real Mode
● Licensed 86-DOS to IBM

Windows 3.1
● Real mode no longer supported
● Introduced the Windows Registry
● First version to have command.com execute programs from GUI

Windows 95
● Compatible with 16-bit MS-DOS programs/drivers
● VxD in 32-bit protected mode
● Virtual real mode

OS/2
● Early IBM/Microsoft OS

○ Xenix Team

● command.com (MS-DOS Prompt) -> cmd.exe
● OS switches between protected and real mode
● Protected mode successor of DOS
● Legacy support = ETERNALBLUE

Windows NT
● "New Technology"
● Multi-user OS

○ Proper process isolation

● Kernel free of 16-bit relics
● VxD Replaced by NT Drivers

○ Now, standard WDM (Windows Driver Model) since Win 98/2000

Windows 10
● Hardened kernel

○ Major rollouts such as Redstone 1/2/3

● x64 Long Mode capability
○ Kernel full of 32-bit relics

● Drivers must be signed
● UAC

Windows Ecosystem

NT Boot Sequence
● winload.exe

○ core drivers
○ ntoskrnl.exe

■ Smss.exe
● Wininit.exe

○ Services.exe
○ lsass.exe

● Csrss.exe
○ winsrv.dll
○ win32k.sys

● winlogon.exe
○ explorer.exe

*tree is simplified for the jist

SSDT
● Internal dispatch table for syscalls

○ NtCreateFile
○ NtOpenProcess
○ NtCreateThread

● EAX register
○ bits 0-11: system service number (SSN)
○ bits 12-13: service descriptor table (SDT)

■ KeServiceDescriptorTable (0x00)
■ KeServiceDescriptorTableShadow (0x01)

○ bits 14-31: reserved.

● dt _KUSER_SHARED_DATA
○ +0x308 SystemCall : Uint4B

Services
● Daemons that can auto-start

○ At boot
○ On demand

● Driver based
● DLL based

○ Svchost.exe

● Service Control Manager
○ sc.exe

Session 0
● Isolated, non-UI "desktop session"

○ Starting in Vista

● Hosts system services
● Mitigates certain exploit scenarios

Domains
● Central management system

○ Can push patches/policies
○ Asset inventory

● Active Directory
○ Since Windows 2000
○ Forests

● Domain Controller
○ Central login authority
○ Serve DNS

● Not a Workgroup
○ Maintain their own security

TIB
typedef struct _NT_TIB {
 struct _EXCEPTION_REGISTRATION_RECORD *ExceptionList;
 PVOID StackBase;
 PVOID StackLimit;
...
 PVOID ArbitraryUserPointer;
 struct _NT_TIB *Self;
...
 PPEB peb;
} NT_TIB;

PEB
typedef struct _PEB {

 BYTE Reserved1[2];

 BYTE BeingDebugged;

 BYTE Reserved2[1];

 PVOID Reserved3[2];

 PPEB_LDR_DATA Ldr;

 PRTL_USER_PROCESS_PARAMETERS ProcessParameters;

 BYTE Reserved4[104];

 PVOID Reserved5[52];

 PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;

 BYTE Reserved6[128];

 PVOID Reserved7[1];

 ULONG SessionId;

} PEB, *PPEB;

COM/OLE/DDE/ActiveX
● Component Object Model

○ Language neutral
○ Object oriented
○ Binary interface
○ Distributed

● Arguable precursor to .NET
○ Slightly different goals and implementation

■ AKA "still relevant"?

● Found EVERYWHERE in Windows

WMI
● Windows Management Instrumentation
● Useful for sysadmins (and attackers!)
● WQL

○ SQL-like syntax to get system info
■ SELECT * FROM win32_process

● Can be used to start programs
○ Remotely (pivot)

● wmic.exe
○ wmic /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get *

DEMO: WMIQuery

PatchGuard
● Kernel Patch Protection
● x64 only
● Introduced in XP/2003 SP1
● Prevents editing of critical kernel regions

○ Process Lists
○ System call table

DSE
● Driver Signature Enforcement
● Must have EV code signing certificate on drivers
● Forced for x64
● Only two official "bypasses"

○ Advanced Boot Options
○ Attach a kernel debugger

DeviceGuard Code Integrity
● Opt-in
● Whitelist allowed binaries
● Difficult to set up

○ Mess of registry
○ Mess of PowerShell

● Windows 10 S

Virtualization Based Security
● Opt-in
● Kernel is a small hypervisor
● Even "ring 0" cannot read/write certain memory
● Hardware enforcement for PatchGuard

WOW64
● %WINDIR%\SysWow64

○ C:\Windows\SysWow64

● Actually the 32-bit version
● Abstraction layer
● %WINDIR%\Sysnative

○ for access to 64-bit from a 32-bit context

Windows API Types
● Opaque pointers via HANDLE

○ ObReferenceObjectByHandle()
○ Reference counted in kernel mode

● DWORD = uint32
● QWORD = uint64
● BOOL = int
● PVOID = void*
● LPSTR = char *
● LPWSTR = short*
● LPTSTR = LPSTR || LPWSTR

Windows API Unicode
● UTF-16 Wide char != UNICODE_STRING
● The VS compiler will choose based on settings
● Unicode and ANSI version of most functions

○ e.g. LoadLibraryW() and LoadLibraryA()
○ Notable exception: GetProcAddress()

● Convert with:
○ MultiByteToWideChar()

○ WideCharToMultiByte()

.NET
● Abstraction layer above Windows API

○ Managed vs. Native code

● Exists in user-mode
○ Most heavy lifting by mscorlib.dll

● Many languages
○ C#
○ VB.NET
○ PowerShell
○ IronPython

● P/Invoke
○ Direct access to Windows API

Tokens

Tokens Overview
● Tokens are the permission system
● Can assign/remove privileges
● Every process has a token

○ Generally never changes, unless you exploit

● Every thread has a token
○ Easy to change

● Different "impersonation" levels

Impersonation Levels
● SecurityAnonymous
● SecurityIdentification
● SecurityImpersonation
● SecurityDelegation

SIDs

Privileges

SeDebugPrivilege
● God mode privilege
● Can "debug" system level processes

○ Can open these processes and mess with them

● Careful granting to users/groups

Integrity Level
● UAC
● Split Token
● Strips ability to adjust certain privileges
● Levels

○ Low
■ Sandbox

○ Medium
■ Normal privileges

○ High
■ All privileges

getsystem() - Named Pipe
● Start a service

○ Just echos into a named pipe
■ cmd.exe /c echo "whatever" > \\.\pipe\whatever

● Another thread impersonates client of the pipe
● Steal token

○ Impersonation as SYSTEM

● Spawn a shell

DEMO: GETSYSTEM

BITS Manipulation
● Background Intelligent Transfer Service

○ Used for download jobs such as Windows update

● Can create a rogue BITS server
● SYSTEM will come by

○ SecurityIdentification only

MS15-050

Windows Registry

HKLM
● Requires administrator access
● SAM
● SECURITY
● SYSTEM
● SOFTWARE

HKCC
● HKLM\System\CurrentControlSet\Hardware Profiles\Current

HKCU
● Contains app settings
● Contains registered COM objects

HKCR
● HKCU\Software\Classes
● HKLM\Software\Classes

HKU
● Contains subkeys for each user

○ HKCU

A few "Autorun" Keys
1. HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Runonce
2. HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\Explorer\R

un
3. HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
4. HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run
5. HKCU\Software\Microsoft\Windows\CurrentVersion\Run
6. HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
7. %All Users ProfilePath%\Start Menu\Programs\Startup\
8. %Current User ProfilePath%\Start Menu\Programs\Startup\

.reg files

reg.exe
● CLI regedit.exe

○ reg save HKLM\SAM sam.dmp /y

● XP+

Exploit Mitigations

ASLR
● Address Space Layout Randomization
● Memory offsets are no longer static

○ Need to dynamically find locations, can't hardcode

● Windows 10 is going to full KASLR
○ Breaks primitives exploits like ETERNALBLUE relied on

DEP
● Data Execution Prevention
● Hardware Enforced memory protection

○ NX-bit

● Bypass: ROP
○ Mitigation: ASLR
○ Fix: Hardware Shadow Stacks

Hardware Shadow Stacks
● Coming soon!
● NSA Research:

○ "eliminates ROP completely"
○ "frustrates COP/JOP [call/jmp] to extinction"
○ https://github.com/iadgov/Control-Flow-Integrity/

● Store return addresses in 2 places
○ Normal Stack
○ Shadow stack

GS Cookies
● Stack canaries
● Entropy supplied by OS
● If blow a buffer, need to guess canary value

○ Checked in function prologue
■ Before RET to shellcode/ROP

○ Crash if changed

Control Flow Guard
● Windows 8.1 Update 3 and Windows 10
● Mitigation for Call Primitives

○ Bitmap checks if valid call site

SMEP/SMAP
● Supervisor Mode Execution Prevention
● Supervisor Mode Access Prevention
● User mode memory

○ Not allowed in Kernel!

● Mitigates many privesc exploits

EAF
● Export Address Table Access Filtering
● Introduced with EMET

○ Coming in Windows 10 Redstone 3
■ May be different technique?

● Hardware breakpoint on Address of Functions
○ ntdll.dll
○ Kernel32.dll

● Checks if calling code is in loaded module list

EAF+
● Export Address Table Access Filtering Plus
● Same idea as EAF, adds new module

○ KERNELBASE.DLL

EAF/EAF+ Bypasses
● Bypass: Use hardcoded offsets

○ Universal, but not practical

● Bypass: change a PEB module to shellcode location
○ Easy fix? Mark this non-writeable

● Bypass: walk IATs
○ user32.dll commonly loaded
○ Well...

IAF
● Import Address Table Access Filtering
● Not in EMET

○ Coming in Windows 10 Redstone 3

● Same idea as EAF, will protect IATs
● May be different technique?

Portable Executables

Types of PE Files
File Type Extension

Executable .exe

Dynamic-Link Library .dll

Device Driver .sys, .drv, .acm

ActiveX Component .ocx

Control Panel Extension .cpl

Extensible Firmware Interface .efi

Multilingual User Interface .mui

Screen Saver .scr

PE Anatomy

DOS Header
winnt.h

PE NT Headers
winnt.h

Signature = PE\0\0

File Header
winnt.h

Optional Header
winnt.h

Optional Header (cont.)
winnt.h

PE DLLCharacteristics
winnt.h

PE Data Directories
winnt.h

Export Directory

Import Descriptor

PE Section
winnt.h

Common Names for Sections
● .text - code
● .data - variables
● .rdata - constant variables
● .pdata - exceptions

PE Subsystems
winnt.h

RVA vs. File Offset
● Many structs have fields called "Relative Virtual Address"
● This is an offset after the Windows loader runs
● What about on disk"

○ Have to loop sections
○ See if falls within base address

DLLs

Entry Point
BOOL WINAPI DllMain(

 In HINSTANCE hinstDLL,

 In DWORD fdwReason,

 In LPVOID lpvReserved

);

RunDLL Entry Point
void CALLBACK EntryPoint(

HWND hwnd,

HINSTANCE hinst,

LPSTR lpszCmdLine,

int nCmdShow

);

DLL Load Order
1. Program directory
2. Current working directory
3. System directory
4. Windows directory
5. Path directories

Proxy DLL (Load Order Hijacking)

Reserved DLL List
● HKLM\System\Current Control Set\Control\Session Manager\KnownDLLs

NTDLL.DLL
● Loaded into every process

○ Besides minimal/pico processes
○ LdrInitializeThunk()

● Compatibility layer
○ Most, but not all, functions forward here
○ API can be broken by Microsoft

■ No guarantees like Windows API

● Generally, must manually resolve functions
○ Many kernel32.dll directly "forward"

● Allows Microsoft to make breaking changes
● Rarely used by non-malicious programs

○ "Native API"

KERNEL32.DLL
● Basic Windows API functionality

○ LoadLibraryA()
○ CreateProcess()

● Mostly forwards directly to NTDLL
○ No breaking changes

● Loaded into most processes

ADVAPI.DLL
● Service control functions

○ OpenSCManager()

● Logon functions
○ LogonUser()

KERNELBASE.DLL
● Designed so some systems can support sub-functionality
● Moved functionality out of:

○ ADVAPI.DLL
○ KERNEL32.DLL

● Function calls are either:
○ Forwarders
○ Stubs

GDI32.DLL
● Video rendering/output
● Font management
● In .NET: System.Drawing
● GDI+

SHELL32.DLL
● Regsvr32 installation

○ DllInstall()
○ DllRegisterServer()

● Path functions
○ PathFileExists()
○ PathAppend()

● Shell functions
○ ShellExecute()

WS2_32.DLL
● Windows Sockets
● Networking functionality

USER32.DLL
● Windowing GUI functions

○ MessageBoxA()

● Timers
● IPC

DINPUT8.DLL
● Not really updated in some time
● Good DLL to proxy for hacking video games

○ Also get direct access to input functions

● https://github.com/zerosum0x0/dinput-proxy-dll
○ Complete reverse engineering of internal structs and vtables

AppInit_DLLs
● Local Hooks
● Global Hooks
● Registry keys

○ HKLM\SOFTWARE\Microsoft\Windows NT \CurrentVersion\Windows
■ LoadAppInit_DLLs
■ RequireSignedAppInit_DLLs
■ AppInit_DLLs

● https://www.apriorit.com/dev-blog/160-apihooks

Code/DLL Injection

DLL Injection
● Migrate to another process
● Common for game hacking
● Common for malware
● Some sorcery for advanced stuff

Basic DLL Injection

Basic DLL Injection Downsides
● Touches disk
● DLL shows up in PEB_LDR_DATA

○ EnumProcessModules()
○ CreateToolhelp32Snapshot() - TH32CS_SNAPMODULE, TH32CS_SNAPMODULE32

■ Module32First()
■ Module32Next()

DLL Unlink
● PEB_LDR_DATA
● Remove DLL from list

○ Flink
○ Blink

● Won't show up with user mode tools
○ Effectively "lost"

Native DLL Injection
● Uses NTDLL.DLL functions instead

○ NtWriteProcessMemory()
○ NtCreateThreadEx()

● Generally, more params, more work
● Attempt at obfuscation

Reflective DLL Injection
https://github.com/stephenfewer/ReflectiveDLLInjection

ReflectiveLoader()
1. Searches backward in memory for DOS MZ header

a. _ReturnAddress() intrinsic

2. Resolve functions from PEB
a. LoadLibraryA()
b. GetProcAddress()
c. VirtualAlloc()
d. NtFlushInstructionCache()
e. Metasploit: VirtualLock()

3. Emulate Windows Loader
a. Allocate memory for real DLL
b. Map sections according to PE headers
c. Fix up imports

4. Call DllMain()

Reflective DLL Injection Downsides
● Current techniques caught by EAF/IAF

○ Proposed bypass

● Sometimes imports additional required libraries into PEB
○ API Sets

■ api-ms-win-*.dll
■ ext-ms-win-*.dll

Inject DLL x86 -> x64
● QueueUserAPC()
● NtQueueApcThread()
● Shellcode sorcery

○ Transform

● /c/meterpreter/source/common/arch/win/i386/base_inject.c

ThreadContinue
● SetThreadContext()

○ Set remote thread's registers
○ Volatile registers not preserved

● NtContinue()
○ Set local thread's registers
○ Volatile registers preserved!

● Avoids CreateRemoteThread() and primitives

DEMO: threadcontinue

Atom Bombing
● Inject via "Atom Tables"

○ GlobalAddAtom()
○ GlobalGetAtomName()

■ write-what-where

● Queues an APC
○ NtQueueApcThread()

■ 3 parameters

● ROP chain
○ NtSetContextThread()
○ Allocate RWX memory
○ Copy shellcode from RW code cave
○ Execute

● Avoids WriteProcessMemory() and primitives

.NET Assembly Injection
● MSCOREE.DLL

○ CLRCreateInstance()
■ COM Object
■ Create .NET context in native land

● One per process
○ ExecuteInDefaultAppDomain()

■ Execute any CLR code

● https://blog.adamfurmanek.pl/2016/04/16/dll-injection-part-4/

Shim Engine / App Compat
● Backwards compatibility layer
● Increases Attack Surface
● User Shim Engine

○ shimeng.dll

● Kernel Shim Engine

Code Caves

Process Hollowing

Office Macros VBA
● Full access to WinAPI
● Load a DLL

○ Used by @hackerfantastic to "beat" Windows 10 S

Spoof Parent Process
● Vista+

○ CreateProcess() - LPPROC_THREAD_ATTRIBUTE_LIST

● XP and earlier
○ Inject a DLL...

Pre-Main Execution

C++ Instantiation of Global Object
● Constructors called before main
● On stack and heap

DEMO: IGO

TLS Callbacks
● Thread Local Storage
● Callbacks on thread execution

○ Including the main thread

DEMO: TLS

Inline Assembly
● __asm{};
● In x64, #include <intrin.h>

○ No naked functions
■ Generates prologues/epilogues

● Use clang or Intel compiler

Using 32-bit Registers on x64
● Good technique to shrink code size

○ No REX prefix byte (i.e. 0x48)

● Clear top 32 bits

DEMO: runshellcode

File System

File System and Filter Drivers
● Intercept most file I/O operations
● Often useful for hash-based AV

○ Log
○ Observe
○ Modify
○ Prevent

Alternate Data Streams
● Property of NTFS

○ Used for "dirty bit" of downloaded files
○ downloaded.file:Zone.Identifier

■ ZoneId=0: Local machine
■ ZoneId=1: Local intranet
■ ZoneId=2: Trusted sites
■ ZoneId=3: Internet
■ ZoneId=4: Restricted sites

● Commands:
○ type rootkit.exe > c:\windows\system32\fakelog.txt:rootkit.exe
○ start "c:\windows\system32\fakelog.txt:rootkit.exe"

■ XP--
○ mklink rootkit.exe c:\windows\system32\fakelog.txt:rootkit.exe
○ dir /r | findstr ":$DATA"

8dot3name
● Shortcut/autocomplete for paths
● C:\PROGRA~1\SOMEPA~1\SECOND~2\evil.dll
● Leads to tilde enum web vulnerabilities

Unquoted Service Paths
● Services that point to .exe

○ Have space in name
○ Do not use quotes

● Privilege escalation potential
○ Can hijack the .exe path
○ Service will run rogue .exe

UAC Bypasses

HKCU Trickery
● Medium integrity can write to HKCU
● Auto-elevating binaries
● eventvwr.exe by @enigma0x3

○ HKCU\Software\Classes\mscfile\shell\open\command

● sdclt.exe by @enigma0x3
○ HKCU\Software\Classes\exefile\shell\runas\command

● fodhelper.exe by winscripting.blog
○ HKCU\Software\Classes\ms-settings\shell\open\command

● UACME by @hFireF0X
○ Future work, 35+ methods

Stinger
● CIA Vault7/@tiraniddo
● Process:

○ Duplicate the token of an elevated process
○ Lower mandatory integrity level
○ Create a new restricted token
○ Impersonate
○ Secondary Logon service spawns a high IL process

Credential Theft

Asynchronous Keylogger
SHORT WINAPI GetAsyncKeyState(

 In int vKey

);

DEMO: asynclogger

Hook Keylogger
HHOOK WINAPI SetWindowsHookEx(

 In int idHook,

 In HOOKPROC lpfn,

 In HINSTANCE hMod,

 In DWORD dwThreadId

);

LRESULT CALLBACK LowLevelKeyboardProc(

 In int nCode,

 In WPARAM wParam,

 In LPARAM lParam

);

DEMO: hooklogger

ETW Keylogger
● Event Tracing for Windows

○ Helps tracking during debug

● Gets raw hardware data
● COM
● https://www.cyberpointllc.com/srt/posts/srt-logging-keystrokes-with-even

t-tracing-for-windows-etw.html

Password Filter DLL
BOOLEAN InitializeChangeNotify(void);

BOOLEAN PasswordFilter(

 In PUNICODE_STRING AccountName,

 In PUNICODE_STRING FullName,

 In PUNICODE_STRING Password,

 In BOOLEAN SetOperation

);

NTSTATUS PasswordChangeNotify(

 In PUNICODE_STRING UserName,

 In ULONG RelativeId,

 In PUNICODE_STRING NewPassword

);

Password Filters
● Enable password filters
● Modify registry (passfilter.bat)
● Reboot
● ClearText passwords captured

DEMO: passfilter

Inject winlogon.exe
● Inject a DLL into winlogon.exe

○ Keylogger

● Lock the workstation

DEMO: locklogger

MSGINA.DLL
● Graphical Identification and Authentication
● HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Winlogon\GinaDLL
● Older OS only

Winlogon Credential Providers
● Designed to implement 2FA etc.
● Implement one of two COM types

○ ICredentialProviderCredential
○ ICredentialProviderCredential2

● Fake Login Screen
○ Credential scraper!

Fake Logon Screen
● Credential Providers

○ Formerly MSGINA.DLL

● COM Objects
● Proxy real COM objects

○ Log password box
○ Forward to real COM

DEMO: fakelogon

Sekurlsa::logonPasswords
● Passwords stored obfuscated in LSASS.EXE
● Format changes with Windows versions
● SAMSRV.DLL
● GentilKiwi made Mimikatz

○ Parses these structures

● NotPetya

Credential Guard
● Opt-in
● Newer Mitigation
● LSASS memory untouchable

○ Hardware enforced

Print Screen
● Store clipboard data
● Emulate "Print Screen"
● Copy clipboard buffer
● Restore clipboard buffer

DEMO: printscreen

Screenshot
● Query screen device context
● Copy buffer to file
● GDI+

DEMO: screenshot

Function Hooking

Inline Hooks
● Intercept function calls

○ Overwrite prologue with jmp

● Trampolines

Raw Assembly Hook
● Patch first few bytes of function
● JMP rel

○ <2GB away, 5 bytes

● MOV reg, JMP reg
○ 12 bytes

● PUSH imm, RET
○ 12 bytes

● JMP [RIP + 0], imm
○ 14 bytes

● http://www.ragestorm.net/blogs/?p=107

DEMO: rawhook

Microsoft Detours
● Official function hooking library from Microsoft Research
● x64 is not free

Mhook
● http://codefromthe70s.org/mhook22.aspx
● Free support for x64

BOOL Mhook_SetHook(PVOID *ppSystemFunction, PVOID pHookFunction);

BOOL Mhook_Unhook(PVOID *ppSystemFunction);

Networking

Benefits of HTTP Channels
● Easy protocol to code for
● Blend in with existing traffic
● Built-in TLS/SSL encryption

IWebBrowser2
● IE COM Object
● Security Zones

DEMO: combrowser

WinINet.DLL
● Windows Internet API
● HTTP functionality

○ HTTPS

DEMO: httpbrowser

URLMON.DLL
● OLE32
● UrlDownloadToFile()

MPR.DLL
● List connected shares/printers

○ WNetOpenEnum()
○ WNetEnumResource()

● Connect
○ WNetUseConnection()

(Mostly) Berkley Compatible Sockets
● ws2_32.dll
● Not 100% compatible

○ But comparable
■ socket()
■ connect()
■ bind()
■ listen()
■ accept()
■ send()
■ recv()

Basic "Reverse Shell"
● Open socket

○ Connect to home

● Start process
○ cmd.exe

● Bind stdin/stderr/stdout handles to send/recv

DEMO: reverseshell

ToxicSerpent
● Listen to all traffic

○ socket()
■ SOCK_RAW

○ bind()
■ sin_port = 0

○ WSAIoctl()
■ RCVALL_ON

● Capture
● Poison
● Covert port knock C2

DEMO: toxicserpent

AV Evasion

File AV
● Constraint: hash-based comparisons

○ Entire file
○ Sections

● Bypass: use (crappy) encryption
○ XOR stream
○ Caesar Ciphers
○ etc.

Sandbox Execution
● Constraint: cannot bog down the system
● Bypass: do things to bog down the system

AV Bypass Ideas
● https://wikileaks.org/ciav7p1/cms/files/BypassAVDynamics.pdf
● A few methods:

○ malloc(TOO_MUCH_MEM)
○ Volatile for-loop increment
○ OpenProcess(PID=4) == NULL
○ InternetOpenURL(INVALID_URL) == NULL
○ VirtualAllocExNuma() != NULL
○ FlsAlloc() != FLS_OUT_OF_INDEXES
○ GetProcessMemoryInfo() <= THRESHOLD
○ Sleep()
○ CreateMutex() == ERROR_ALREADY_EXISTS

No Imports
● Static link C runtime

○ Or: don't use it

● Search PEB for kernel32.dll, get procedures from there
● Legit code section, no EAF

DEMO: Importless

Fake File Headers
● Used by a lot of malware

○ Spora ransomware

● HTA disguised as a PDF

Game Hacking

Important Objects
● Game State

○ Current zone
○ Expansions unlocked
○ Usually bigger in single-player games

● Player State
○ Currency
○ Run speed
○ XYZ

Finding Offsets
● Run speed

○ Base scan
○ "Spirit of Wolf"
○ Increased scan
○ "Snare"
○ Decreased scan
○ Repeat

● Player Coordinates
○ Base scan
○ Run up hill
○ Increased scan
○ Run down hill
○ Decreased scan
○ Repeat

Offset ASLR "Bypass"
● Static analysis offsets will change

○ ASLR

● GetModuleHandle(NULL)
○ .exe base address

DEMO: offsetfix

Dynamic States
● Values double-checked on server
● Values obscured by XOR keys

○ Templated getter/setters

● State offset randomized in heap
○ Hook a function that is known to take player state

■ Capture it in a global variable

Game Packets
● General format:

○ OPCODE
○ STRUCT

● Master function
○ SendGameMessage(OPCODE, STRUCT, SIZE)

● Symmetric encryption
○ Adds latency
○ Key is in memory
○ Master Function bypass

● PCAP
○ Twiddle unknowns
○ Breakpoints on send()/recv()

Anti-Cheat
● Check PEB for rogue DLLs

○ Reflectively inject
○ External memory writes

● Check static sections (hash regions)
○ .text/.rdata
○ Not: .data

● Function call counters
○ Increment 2 values

■ Callee
■ Caller

○ Check akin to stack canaries

● Generally don't leave game's process space
○ Though some do

● HW breakpoints/Kernel hypervisor

Legal Concerns?
● Your process space

○ Passive Hacks
■ Change your runspeed

○ Keyword: "your"

● Server
○ Spam attack packets

■ Timer checked only client-side
○ Keyword: "not yours"

● Profits
○ Asking for trouble

Kernel Mode Post-Exploitation

What are drivers?
● Run in ring0

○ Allows direct hardware communication

● Not necessarily for a hardware "device"
● R&D increased

○ Crashing a program, re-compile
○ Crashing a driver, BSOD

Standard Entry Point
DRIVER_INITIALIZE DriverEntry;

NTSTATUS DriverEntry(

 In struct _DRIVER_OBJECT *DriverObject,

 In PUNICODE_STRING RegistryPath

);

Driver Object
typedef struct _DRIVER_OBJECT {

 PDEVICE_OBJECT DeviceObject;

 PDRIVER_EXTENSION DriverExtension;

 PUNICODE_STRING HardwareDatabase;

 PFAST_IO_DISPATCH FastIoDispatch;

 PDRIVER_INITIALIZE DriverInit;

 PDRIVER_STARTIO DriverStartIo;

 PDRIVER_UNLOAD DriverUnload;

 PDRIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION+1];

} DRIVER_OBJECT, *PDRIVER_OBJECT;

I/O Request Packets (IRPs)
● The Driver Stack

○ The heart of all driver functionality

● I/O Manager
○ CreateFileA() -> IRP_MJ_CREATE

● Plug and Play
● Power Manager

Major Functions
IRP_MJ_CLEANUP
IRP_MJ_CLOSE
IRP_MJ_CREATE
IRP_MJ_DEVICE_CONTROL
IRP_MJ_FILE_SYSTEM_CONTROL
IRP_MJ_FLUSH_BUFFERS
IRP_MJ_INTERNAL_DEVICE_CONTROL
IRP_MJ_PNP
IRP_MJ_POWER
IRP_MJ_QUERY_INFORMATION
IRP_MJ_READ
IRP_MJ_SET_INFORMATION
IRP_MJ_SHUTDOWN
IRP_MJ_SYSTEM_CONTROL
IRP_MJ_WRITE

Nt vs. Zw
● Zw means nothing
● User Mode

○ NtReadFile == ZwReadFile

● Driver calls NtReadFile
○ Is previous mode user?

■ Extra checks
● Validation
● ProbeForRead()/ProbeForWrite()

● Driver calls ZwReadFile
○ Sets previous mode to kernel

■ Kernel components intrinsic trust

APC (Asynchronous Procedure Calls)
● Borrow a thread

○ Must be in an Alertable state
■ I.e. Sleeping

● Can be queued from kernel or user mode
● Useful for I/O completion

○ Queue back to initiator

DPC (Deferred Procedure Call)
● Each processor has a DPC Queue
● Useful to do work at a later time

○ Not a time critical function

● By definition: not a NT "thread"

IRQL
● Multi-layered interrupt priority system
● PASSIVE_LEVEL

○ User mode code, most kernel operations

● APC_LEVEL
○ During APCs, Page Faults

● DISPATCH_LEVEL
○ During DPCs, Thread Scheduler
○ Cannot be pre-empted

● DIRQL
○ Device interrupts

Filter Drivers
● File System Filters

○ Adds behavior to existing file system
■ Log
■ Observe
■ Modify
■ Prevent

● Minifilter

KMDF/UDMF
● KMDF

○ Higher-level interface to WDM
○ Not as powerful

● UMDF
○ Simpler to write/debug

■ No BSOD
○ Limited hardware interaction

■ USB
■ Firewire

Kernel Keyloggers
● Acting keyboard drivers
● Moderately difficult to write
● Moderately difficult to detect

Winsock Kernel (WSK)
● Network library for kernel mode
● Can be used for servers

○ HTTP.SYS
○ SRV.SYS

Thread Callback
NTSTATUS PsSetCreateThreadNotifyRoutine(
 In PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine
);

void SetCreateThreadNotifyRoutine(
 In HANDLE ProcessId,
 In HANDLE ThreadId,
 In BOOLEAN Create
);

Process Callback
NTSTATUS PsSetCreateProcessNotifyRoutine(
 In PCREATE_PROCESS_NOTIFY_ROUTINE NotifyRoutine,
 In BOOLEAN Remove
);

void SetCreateProcessNotifyRoutine(
 In HANDLE ParentId,
 In HANDLE ProcessId,
 In BOOLEAN Create
);

IOCTLs
● Control a driver from usermode

○ "Packets"
■ Opcode
■ In buffer
■ Out buffer

● Drop to ring0
○ Perform some function

● Root of many driver vulnerabilities
○ IOCTL does something unsafe

■ User-mode memory

CAPCOM.sys
https://github.com/tandasat/ExploitCapcom

WINIO.sys
http://blog.rewolf.pl/blog/?p=1630

NTIOLib.sys

Process Lists
● At least 3 "known" process lists

○ ActiveProcessLinks
○ MmProcessLinks
○ SessionProcessLinks

● PatchGuard
○ Checks 4, 5, 26, 27: Type x process list corruption

DKOM
● EPROCESS List

○ Unlink (hide) process by changing Flink/Blink

DEMO: puppetstrings

Protected Processes
● At least 3 revisions so far
● Other user mode processes can't touch you
● EProcess.Flags2

○ ProtectedProcess - NT 6.0/6.1

Reflective Driver Injection
● Possible, no published generic techniques
● Nation-state malware kinda does this
● As we see, worth exploring

Nation-State Malware

Turla
● Turla APT
● First use of puppet strings?

○ Loaded vulnerable VirtualBox driver
○ Disabled driver signature enforcement

■ Inspiration for DSEFix project by @hfiref0x

sKyWIper/Flame
● Modular components with LUA
● Stored recon data in SQLite
● DLL Injection

○ ZwCreateSection()/ZwMapViewOfSection()
○ LoadLibraryA()/LoadLibraryEx()

■ AKA in PEB
■ Used RWX sections

● Fake audio driver
● Forged a MD5 Microsoft signature

PeddleCheap
● Equation Group/Shadow Brokers
● DoublePulsar/DanderSpritz
● DLL injection

○ NtCreateSection()/NtMapViewOfSection()
○ AKA in PEB

Hammertoss
● APT29
● Communication via Twitter

○ Generates new handle every day

● Steganography
○ In JPGs after JEOF
○ Hashtags containing offsets and decryption keys

● Replaced wermgr.exe
○ Persistence via app crashes

Biggest Non-Secret
● Nation-State Malware uses same lame techniques as all malware

○ Besides the 0-days

