ADVANCED SOFTWARE
EXPLOITATION ON ARM
MICROPROCESSORS

http:// www.dontstuffbeansupyournose.com

Stephen A. Ridley
Stephen C. Lawler

RuxCon Breakpoint 2012

Stephen A. Ridley
eeeeeeeeeeeeeee
“Practical ARM Exploitation”

A Dbit about us...

e Former coworkers doing infosec research for
a defense contractor ManTech

e Now we run a blog together, and try to work
together when we can

o www.dontstuffbeansupyournose.com

.dontstuffbeansupyo
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Who Are We”? (Ridley)

Currently: Independent Security Researcher (Xipiter)
Previously: Director of Information Security (at a bank),
Senior Consultant Matasano

Senior Security Researcher McAfee (founded Security
Architecture Group)

Kenshoto Founding Member, CSAW CTF
Judge (Reverse Engineering)

Guest Lecturer/Instructor (New York University, Netherland
Forensics Institute, Department of Defense, Google, £t al)

Who Are We”? (Lawler)

Currently: Independent Security Researcher, Software
Developer (Bits And Data Associates)

Previously: Principal at Mandiant, Principal at ManTech

Not originally a security guy, used to program Sonar
systems for the Navy

Specializing in research, Kernel development, Kernel
internals and Advanced Software Exploitation

Talk Outline

How did we get started with this stuff?

“Hardware Hacking for Software People” (ReCon Montreal
2011, SummerCon New York 2011)

Diving into ARM, developing the “Practical ARM Exploitation”
training.

Building ARM exploitation development environments
(emulated and “bare-metal”)

The “Advanced exploitation techniques” we discovered for our
training.

Talk Outline (cont’d)

e What the talk covers? (everything... ;-)
e ROP on ARM: A whole different world.

e Advanced Exploitation on ARM: Stack Flipping

e (Conclusions/Recap

A\WARNING - HEALTH AND SAFETY

BEFORE PLAYING, READ THE HEALTH
) SAFETY PRECAUTIONS BOOKLEY
IMPORTANT INFORMATION

ga10253% 41

<
]
®
=
§
"
y
4
s
b4
el
£

04-0xi ~"
D=OxE « -)

0d-S18/81C
23

04-810°%7

Chips speak to each other
with standard protocols!

Simple standard serial protocols are often used!
YOU MEAN TO TELL ME CHIPS USE SERIAL!? YES!!
RS-232, 12c¢, spi, Microwire, etc

e Serial comms have low pin-counts (some as low as one
wire)

e Found in: EEPROM, A2D/D2A convertors, LCDs,
temperature sensors, which means EVERYTHING!

Parallel: (hardly ever) requires 8 or more pins.

Where we found these
hardware interfaces.

What Uses it?

Analog to Digital Convertors. Found in:

® Dbatteries, convertors, temperature monitors

Bus Controllers. Found in:

e telecom, automotive, Hi-Fi systems, in your PC, consumer electronics
Real Time Clock/Calendar. Found in:

e telecom, consumers electronics, clocks, automotive, Hi-Fi systems,
PCs, terminals

LCD/LED Displays and Drivers. Found in:

e telecom, automotive, metering systems, Point of Sales, handhelds,
consumer electronics

Dip Switch. Found in:

e telecom, automotive, servers, batteries, convertors, control systems

How I've found it usetul:

e Routers

¢ BlackBox Hardware Pen'lests
e HDMI (HDCP protocol)
e VGA (DDC/CI protocol)
e EEPROM

: ¢

A0 []1
A1[7]2
A2[]3
Vss [|4

24XX256

!

>
¢
geL:

on cablemodem in the

\\ -, , \.'\:.‘.
\Sﬁlte at,uses a'Broadcoms'«.

SARidleys-MacBook-Air:Desktop sa7$./thing.py

——Return—-

> /Users/sa7/Desktop/thing.py(11)<module>()->None

-> import pdb; pdb.set_trace() hd b
Logs of 1t booting!!!
Value'246'0

MemSize:' '..iiiiienssnssnssnssnsens’ '8M

Flash' 'detected' '@2xbe@00000

Signature:' 'a806

ECOS Real Time Operating System!

Broadcom' 'BootLoader' 'Version:' '2.1.6d' 'releage' 'Gnu
Build' 'Date:' 'Apr' '29' '2004
Build' 'Time:' '17:54:32

Image' '1l' 'Program' 'Header: ' 'eCos' '-' 'hal_diag_init
' 'Signature:' 'a806 Init' 'device' /dev/ttydiag'
' ‘Control:' '0005 Init' 'tty' 'channel:' '802cdbb8
' 'Major' 'Rev:' '0400 Init' 'device' /dev/tty@'
' ‘Minor' ‘Rev:' '04ff Init' 'tty' 'channel:' '802cdbd8
‘" 'Build' 'Time:' '2004/5/8' '04:33:27' 'Z Init' 'device' /dev/haldiag’
" '"File' 'Length:' '756291' 'bytes HAL/diag' 'SERIAL' 'init
Load' 'Address:' '80010000 Init' 'device' /dev/ser@'
' ‘Filename:' 'ecram_sto.bin BCM' '33XX' 'SERIAL' 'init' '-' 'dev:' 'fffed
: 'HCS: ' '440a Set' 'output' 'buffer' '-' 'buf:' '802ffb80'
' ‘CRC: " '90cc24e0 Set' 'input' 'buffer' '-' 'buf:' '80300380' '
BCM' '33XX' 'SERIAL' 'config
‘255"
Image' '2' 'Program' 'Header: Reading' 'Permanent' 'settings' 'from' 'non-v
' ‘Signature:' 'a806 Checksum' 'for' 'permanent' 'settings:' '©Oxk
' ‘Control:"' '0005 Settings' 'were' 'read' 'and' 'verified.

After fuzzing, the bugs begin to
show!

ro/zero=00000000' 'rl/at' '=00000000' 'r2/ve' ‘'=ffffffff' 'r3/vl' '=801f965c

r4/a0' '=00000010' 'r5/al' '=00000000' 'r6/a2' '=801f9adc' 'r7/a3' '=801f9c88
r8/t0' '=80549184' 'r9/tl' '=00000002' 'rl0/t2' '=36313733' 'rll/t3' '=37303030
ri2/t4' '=00281f40' 'r13/t5' '=FffEFffff' 'r14/t6' '=FFFFFFff' 'r15/t7' '=801f965c
r16/s@' '=807ee210' 'rl7/sl' '=00000000' 'rl8/s2' '=80300000' 'rl9/s3' '=80300000
r20/s4' '=80549184' 'r21/s5' '=80555b00' 'r22/s6' '=11110016' 'r23/s7' '=11110017
r24/t8' '=0028e550' 'r25/t9' '=ffffffff' 'r26/ke' '=805548a8' 'r27/kl' '=00000000

r28/gp' '=80554808' 'r29/sp' '=80554880' 'r30/fp' '=80555f80' 'r3l1/ra' '=80022674

PC' ':' 'Ox80022674' 'error' 'addr:' '0Ox80022650

cause:' 'Ox807ee210' 'status:’ '0x1000fc00 C ras h es ’ ' ’
® 0 0

BCM' 'interrupt' ‘'enable:' 'fffffff7' 'status:' '00000000

[)
entry' '800225f0° ‘called' 'from' '801fd150 |n the H I I P

entry' '801fde54' ‘called' 'from' '80l1lfaca4d
entry' '801fac9c’ 'called' 'from' '80138098
entry' '80138064' 'called' 'from' '80135964
entry' '801358f8' 'called' 'from' '80137cb8 S e rve r (thttP d)
entry' '80137c54' 'called' 'from' '801fbea8
entry' '801fbe98'’ 'called' 'from' '801fbb7c
entry' '801fbb58' 'called' 'from' '801fbed8
entry' '801fbec8'’ ‘called' 'from' '80205ae4
entry' '80205ad4’ 'called' 'from' '8001037c

entry' '80010358' 'Return' 'address' '(00000000)' 'invalid' 'or' 'not' 'found.' 'Trace'

Task:' 'tHttpd

— !mBugin-built-in HTTP server.
Handle: e 2 Stack Overflow. EXPLOITED.

'"Priority:"

...... a1 | I o QAL PR S | 1IN

Now that we have
crashes”? What next?

Time to get good at
Reverse Engineering
ARM and Exploitation.

My machines are x30,

where do we start with
ARM?

2
]
]

untitied folder

The First LabsQEMU: -~

LriCe Setting susten
¢ init memory: 320k
New USB device found,
New USB device strings:
Product: QEMU USB Keul
: Manufacturer: QEMU 0.15.50
- SerialNumber: 42
: QEMU 0.15.50 QEMU USB Keyboar

| sh 0003:0627:0001.0001: inowu
0=1/inputo
Loading, please
| 5.316955) udev [669): starting version
: Loading es grivers ... done.
: Running s/scripts/init-premount e,
: Mounting root file system ... Begin: Running

Running /scripts/init-bottom ... done,

: - St gin: Mon Oct 24 18:35:30 UTC 2011 on tty02
root@user-Studio-XPS-435T-9000: ~fovero-my-nano Welcome to Linaro 11.09 (development branch) (GNU/LA
4.024627] Console: switching to colour frame buffer device 128x48 '

4.061676) regulator init complete: VDAC: incomplete constraints, leaving on * Documentation: https://wikl.linaro.org/

3 4.065795) twl rtc twl rtc: setting system clock to 2011-10-24 18:34:51 UTC ' +# 1fcontig

1319481291) &tho Link u'<JU:E'f:'W&! HHaddr 52:54:00:12:34
.088562] Freeing init memory: 320K 1L GUar:2Jc. 260.1.0 0agt:1XC.160.2.59
ineto addr: fe80::5054:¢f:fel12:3456/64
IP BROADCAST RUNNING TICAST MTU:1500
.107971) usb 2-1: New USB device strings: Mfr=1, Product=4, SerialNumber=5 e T G e 10 vars:
v NALRELS-C e prss0U Groppeaiv ove Jns .

|

|

|

|

{

{ .107360) usb 2-1: New USB device found, idVendor=0627, idProduct=0001
|

{ -108673] usb 2-1: Product: QEMU USB Keyboard X packets:17 errors:0 dropped:0 overruns:
|

|

[V

{

E

Begin: Running /scripts/local-premount .., done,
| 2 5250) EXT4-fs (mmcblkOp2): mounted filesust
egin: Running /scripts/local-bottom ... done.

!‘

.109252] usb 2-1: Manufacturer: QEMU 0.15.50 collisions:0 txqueuelen:1000

.109649] usb 2-1: SerialNumber: 42 RX butes:2399 (2.3 KB) TX butes:1823 (1.8
.180389] input: QEMU 0.15.50 QEMU USB Keyboard as /devices/platform/usbhs- Interruot :80 ’

map.0/ohci-omap3.0/usb2/2-1/2-1:1.6/input/input2

4.197326] generic-usb 6003:0627:0001.0001: input: USB HID v1.11 Keyboard [0 1o Link e :Local Loopback

" MU ©.15.50 QEMU USB Keyboard] on usb-ohci-omap3.6-1/inputé inet addr:127.0,0.1 Mask:255.0.0.0

| 5.316955) udev[669]): starting version 167 inets addr: ::1/128 Scope:Hos

[12.225250) EXT4-fs (mmcblkep2): mounted filesystem with ordered data mode. 0 UP LOOPBACK RUNNING NTU:16436 Metric:1
pts: (null) RX packets:0 errors:0 dropped:0 overruns:(
fsck from util-linux-ng 2.17.2 X packets:0 errors:0 dropped:0 overruns:

rootfs: clean, 174737259072 files, 203698/1035264 blocks '-3quf#%fi“y 0.0 B
X oytes:o (0.0 i)

Using QEMU we got familiar with
ARM:

e Got comfortable with GDB
e We got familiar with ARM architecture and idiosyncracies

e We developed our techniques and tools for writing
Assembly Code and Shellcode on ARM

e We got familiar with how Interactive Disassembler (IDA)
examined ARM binaries

We wrote vulnerable apps and
developed our exploitation
techniques

e Basic Stack Overflows

e Stack Overflows with Return-To-LibC

e Stack Overflows with “No Execute Stack” (XN)
e Advanced Stack Overflows with XN

e Heap Overflows

e Heap Overflows with “No eXecute (XN)” protection

But we wanted

more...we wanted real
hardware ARM!

Finding a hardware ARM
Platform

e Almost every cellphone is ARM!
e Android phones are little ARM linux computers
e None of these systems are “Developer Friendly”
e We can not easily run our many tools on them:
e Janguages like Lua and Python
e shells

e GNU Utilities, compilers, etc.

Finding a “developer friendly”
hardware ARM Plattorm

e There are many “open” ARM platforms:
e Raspberry Pi
e BeagleBoard
e ARMini
e (CuBox, etc

e We tried many many systems, and ran into many
many problems with building custom Linux
distributions with adequate hardware support.

Finding a “developer friendly”
hardware ARM Platform

e After a lot of trouble, we decided on GumsStix platform, it
met our needs the best (although slightly expensive :-)

€ C (© www.gumstix.com T o
—)
g"mSIIX dream, design, deliver™
am B =) C0 :ﬁ K Like
Home Products Pricing Support Software Community D Search e —

computing by gumstix designing with gumstix news pressreleases about

gimstiy’

Communications
Education
Energy

» Instrumentation
Remote Data Collection

Robotics _— N) . P _)I
Transportation . - _ < ;) L
Dream, Design, Deliver: Gumstix Overo COM for development,
proof of concept and production of waterjet electronic control product

AA Tiny, Linux Overo® computer-on-module A Add industry leading options like LCD, HDMI,

Moving from emulation to “bare
metal hardware” development

e Ported the exploits, shellcode, and payloads to our new
hardware platform.

e Updated the Linux distribution image MANY times for “remote”
access

Moving from emulation to “bare
metal hardware” development

e We collected all of our exploitation tests and exploits into a
single image we could use for reference.

‘@00 root@linaro-nano: ~ — ssh — 114x50

7:rim arm sa7$ ssh root€10.0.0.106 8
root€10.0.0.106's password: -
Welcome to Linaro 11.09 (development branch) (GNU/Linux 3.0.0-1004-linaro-omap armv7l)

* Documentation: https://wiki.linaro.org/
Last login: Sat Sep 10 02:02:09 2011
root@linaro-nano:~# cat /proc/cpuinfo

CPU part
CPU revision

Processor : ARMv7 Processor rev 3 (v7l)

processor : 0

BOgoMIPS : 493.67

Features : swp half thumb fastmult vfp edsp thumbee neon vifpv3 tls
CPU implementer : Ox4l

CPU architecture: 7

CPU variant : Ox1

The Lab Exercises

Hardware : Gumstix Overo
Revision : 0000
Serial : 0000000000000000

root@linaro-nano:~# uname -a

Linux linaro-nano 3.0.0-1004-linaro-omap #5~ppa~natty-Ubuntu SMP PREEMPT Mon Aug 22 08:44:20 UTC 2011 armv7l armv?7
1 armv7l GNU/Linux

root@linaro-nano:~#¥ 1ls

labs

root@linaro-nano:~# 1ls -alt labs/

total 76

drwxr-xr-x 2 root root 4096 2012-02-27 21:02 basics_5
drwxr-xr-x 2 root root 4096 2012-02-27 21:02 basics_4
drwxr-xr-x 2 root root 4096 2012-02-27 21:02 basics_3
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 advanced_stack_xn
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 custom_rop_fullrootshell
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 multi_heap_lab
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 multi_heap_lab_xn
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 multi_heap_lab_xn_aslr
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 restore_harness
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_heap_unlink
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_heap_ wmw
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_stack
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 simple_stack_xn
drwxr-xr-x 19 root root 4096 2012-02-27 20:58 .

drwxr-xr-x 2 root root 4096 2012-02-27 20:58 basics_1
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 basics_1b
drwxr-xr-x 2 root root 4096 2012-02-27 20:58 basics_2
drwxr-xr-x 8 root root 4096 2012-02-27 20:58 bindshell
Arwxe————— 4 root root 4096 2012-02-27 18:45 ..

Word got out...

e Contacted by:

¢ Companies that needed training on ARM
exploitation

e Companies that needed ARM reverse engineering
and software exploitation work

e many others with products (vested interest) in
understanding ARM exploitation

SO0 we did a few contracts:

Penetration testing of many “black box devices”:

e Smart Power Meters, “Set top boxes”, new experimental
devices, new “secret” mobile devices from cellphone
manufacturers

We privately have developed techniques for exploiting
software running on ARM

Wrote exploits for all the above (Android, Windows 7
Mobile, Linux, etc)

Developed course material to get this information out.

Developing the Course:

e Prepared our techniques so that we could publicly release
them:

¢ Finding new ROP gadgets on our custom ARM Linux
distribution and Android.

e Developing “user friendly” software exploitation examples.

e Developing “Rop Library” (with examples) which includes
35+ gadgets to build payloads with.

e “Filled in the Blanks” with additional information on IDA,
GDB, linking and loading, shellcoding.

What’s in our course:
3 to 5 Days

650 - 900 Slides in (15 lectures)

20 “Hands On” exploitation exercises on the ARM
hardware

100 Page Lab Manual with Lab Exercise questions and
detailed notes

ARM Microprocessor Architecture Notes

Many tools developed by us (C and Python libraries/
programs) to assist with reversing and exploitation.

What our course teaches for
LLinux and Android

e How to reverse engineer ARM binaries with IDA (IDA bugs)
¢ Debugging ARM binaries with GDB

e Exploiting Stack Overflows

e Defeating Stack Overflows with “No Execute Stack” (XN)

e [Exploiting Advanced Stack Overflows with XN

e [Exploiting Heap Overflows

e Heap Overflows with “No eXecute (XN)” protection

® Defeating ASLR

The Course Listing

How to reverse engineer ARM binaries with IDA (IDA bugs)
Debugging ARM binaries with GDB

Exploiting Stack Overflows

Defeating Stack Overflows with “No Execute Stack” (XN)
Exploiting Advanced Stack Overflows with XN

Exploiting Heap Overflows

Heap Overflows with “No eXecute (XN)” protection

Defeating ASLR

How the course has been going:

e We are AMAZED. A course like this has never been oftered
e [t sold out at Blackhat in the first two weeks.

e [t SOLD OUT at CanSecWest 2012.

e [t SOLD OUT at Blackhat Las Vegas 2012.

e MANY requests for private engagements of the course.

»

)
7~7 BN

- = 7'
) 3™
s mull =

-~

< B
"""'J'

0

N

..m..‘.

-
Ll

L] |

' &) ' o
-~--..ul !
'y

What does all this
research and the
popularity of our course
teach us?

We are in the “Post PC”
threat environment.

The world 1s changing...” The Post-PC
Exploitation Environment”:

e Why would hackers bother with your PC when there is a
GPS tracking device connected to a microphone always in
your pocket?

e We trust our phones and mobile devices more than our
computers and attackers know this.

e ARM Exploitation is fun and much easier than people think.

e Bugs are being found in everything from SMS messages in
your iPhone to the DVR you watch Netflix on. All of these
devices use ARM processors

Some Interesting Bits
from the Course:

Some Interesting Bits

from the Course:

ROP on ARM
(defeating XN, code-signing, et al.)

.xv Why bother with ROP?

—“Execute-Never”

— Allows virtual addresses to be marked with or without execute
permission

—If the CPU ever attempts to fetch an instruction from a virtual
address without execute permission, it raises an exception
(typically, delivers SIGSEGV to the offending process)

—Therefore, an exploit must direct PC towards valid executable
addresses

 Virtual address is marked executable by the operating system
» Address must contain valid ARM/THUMB machine code

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Why bother with ROP?
» Code-Signing

—Some platforms verity that executable memory
segments contain a valid digital signature

—Measure 1s primarily a method of protecting
revenue stream for application stores

—Therefore an exploit must redirect PC to valid
executable addresses

« [t is not possible to have a “retZlibc” attack that calls
“mprotect()” or equivalent to re-protect virtual
addresses with executable page permissions

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

ROP: General Technique

* General technique

— Find a number of “gadgets”

» A few instructions, ending in an indirect branch (pop {pc}, blx r3, etc)

» Typically, obtains values and branch targets from memory relative to SP
— Place these gadgets, one after the other, onto the call stack

» Such as via stack overflow vulnerability

— The “gadget chain” will constitute a computer program (a “return-oriented”
program)

— Profit!

» Allocate writeable, executable memory and copy shellcode into it

Re-protect existing virtual address space as executable and jump into it

Create a socket, connect out, and establish a reverse shell

Read contents of contacts list and send it to a remote serve via HT'TP

Really, you can create just about any computer program by using lots of gadgets on the
stack

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Ret2libc, Bouncepoints, and ROP

* One of our gadgets from early in the class:

—libc + 0x000918DC: POP {RO,R1,R2,R3,R12,LR};
BX R12

—Loads RO-R3 with values from the stack

—Branches to a function

—Initializes LR to return somewhere

 On ARM, it’s really impossible to do any
ret2libc without the use of a “bouncepoint”
aka “gadget”

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

ROP: Example mprotect() call

* Goal: Use mprotect() to re-protect the

stack as executable, and jump into it

00000000 400b0O8dc POP {RO,R1,R2,R3,R12,LR}; BX R12
00000008 bdffd000 RO: Page-aligned stack address

0000000c 00002000 R1: Length to mprotect

00000010 00000007 R2: PROT_READ |PROT_WRITE |PROT_EXEC
00000014 deadbeef R3: Unused value for R3

00000018 400abf90 R12: Address of mprotect()

0000001c bdffd100 LR: Address of the stack

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Example mmap() + memcpy/()
call

« Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the buffer.

« Step 1: call mmap, with that gadget that is useful for
making function calls

« Step 2: call memcpy. It’s destination address should be the

buffer we just mmap’d, it’s source address should be the
contents from R6 (we know, via gdb, that R6 happens to
point to our shellcode buffer at time of exploit).

« Step 3: jump into the buffer

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

- ROP: Example mmap() + memcpy/()
call

« Goal: Use mmap() to allocate writeable, executable

memory. Copy shellcode to this bufter. Jump to the buffer.
 Step 1: call mmap, with that gadget that is useful for

making function calls

— WAIT! mmap takes 6 arguments, not just 4
— mmap(addr, len, prot, flags, filedes, off)

— We can’t just use R0O-R3 for its arguments!

 Step 2: call memcpy.
« Step 3: jump into the buffer

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

http://www.dontstuffbeansupyournose.com Sy @

-~ ROP: Example mmap() + memcpy()
call

« Goal: Use mmap() to allocate writeable, executable
memory. Copy shellcode to this buffer. Jump to the bulffer.

« Step 1: call mmap, with that gadget that is useful for
making function calls

e Step 2: call memcpy. It’s destination address should be the
buffer we just mmap’d, it’s source address should be the
contents from R6 (we know, via gdb, that R6 happens to
point to our shellcode buffer at time of exploit).

— WAIT! How do we “pass” R6 as the “source” address for memcpy
(the 2rd grgument)? (How do we move R6 into R1? How can we
do so while ensuring RO contains the address returned by
mmap?)

httpy//ww ontstuffbeansupyournose.com

« Step 3: jump into the buti@hen a. riaey

Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing RO

» After searching and searching, we find the following
gadgets...

libc + 0x000a82d2

libc + 0x000a82d4

LDMIA.W R3, {RO, R1, R2, R3}
STMIA.W R4, {RO, R1, R2, R3}
B.N 0xA82A4

0xA82A4:
MOV RO, R5
POP {R4, R5}
BX LR

STMIA.W R4, {RO, R1, R2, R3}
B.N 0xA82A4

0xA82A4:
MOV RO, R5
POP {R4, R5}
BX LR

ROP: Moving R6 to R1, without changing RO

« After searching and searching, we find the following
gadgets...

Location Gadget
, MOV RO, R6
libc + 0x0001bd4c POP (R4, R5, R6, PC]
LDR LR, [SP], #4

libc + 0x00035d1e ADD SP, #12

BX LR

libc + 0x0004c9cc POP (R4, PC)
libc + 0x000b31c8 POP (R3, PC)

libc + 0x0001{39c POP (PC})
libc + 0x000a6a40 MOV R3, RO; BX LR

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

ROP: Moving R6 to R1, without changing RO

« Step 1: Load a good return address into LR

« Step 2: Load a fixed memory address ALPHA+8 into R4
« Step 3: Load a good return address (POP {PC}) into LR

« Step 4: Save RO (mmap’d address) o the address at R4

« Step 5: Load a fixed memory address ALPHA into R3

« Step 6: Load a fixed memory address ALPHA into R4

- Step 7: Load/save R2 from the address at R3/R4 (effectively moving the old
mmap’d address into R2)

« Step 8: Move R6 into RO

« Step 9: Load a fixed memory address ALPHA+4 into R4

« Step 10: Save RO into the address at R4

« Step 11: Load a fixed memory address ALPHA into R3

« Step 12: Load a fixed memory address ALPHA into R4

« Step 13: Load/save R1 and R3 from the address at R3/R4

« Step 14: Move R3 into RO

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

...later that day...after
much toil...

(Some

time later)

400b08dd pop {r0-r3,rl2,1r}; deadbeef

00000000 4003ad4d mov r(0, r6; pop
00001000 4010052c

00000007 deafbeef

00000022 deadbeef

400abecO mmap () 40054d1f ldr 1r, [sp], #4;
400af78b add sp, #12; pop {pc} 4003e39d pop {pc}
ffffffff 41414141

00000000 41414141

00000000 41414141

40054d1f 1dr 1r, [spl, #4; 400c72d5 stmia r4,
4003e39d pop {pc} 40100528

41414141 deadbeef

41414141 400d21cH9 pop {r3, pc}
41414141 40100528

4006b9cd pop {r4, pc} 400c72d3 ldmia r3,
40100530 deadbeef

400c72d5 stmia r4, deadbeef

40100528 400cb5a4l mov r0, r3; pop {pc}
deadbeef 4005e033 pop {r2, pc}
400d21c9 pop {r3, pc} 00000100

40100528 40075750 memcpy ()
400c72d3 ldmia r3, 400874bd bx r0

deadbeef

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Uhhhh.......this 1s hard.

» This is getting a little complicated

« Manually stitching together “gadgets” onto

the stack is error-prone and confusing

* |s there a better way??

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

exploit_help.py

« Python classes to make it easier to construct return-oriented
programs

« 35+ ARM Linux Gadgets
—Loading General Purpose Registers
—Calling from registers

—All the gadgets you need to call virtually any function with
any number of arguments.

—Students use this to build write the payloads that defeat
ASLR, NX, for a full connect-back rootshell (on the last
day)

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

exploit_help.py: Example

* NEXT_GADGET

gc = GadgetChain ([
LOAD AND BRANCH TO LR(junk = ’A’*12),
RET (),
LOAD R4 (r4 = 0x40020800),
SAVE SCRATCH REGS (r4 = Oxdeadbeef, r5 = Oxdeadbeef),
NEXT GADGET (),
WORD (0x40020800)

1)
explolit = exploit + gc.pack()

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

ROP on ARM Magic:

“Misaligned Instructions”
« Why don’t we have “POP {RO, PC}”?

 Because NOWHERE in the entire libc
binary does this instruction sequence
exist. So we had to settle for “POP {RO,
R2, PC}”

 But, take a look at the address of our POP
{RO, RZ, PC} gadget in IDA Pro

http://www.dontstuftb

Stephen A Ri dl ey
Stephen C. Lawler
“Practical ARM Exploitation”

ARM has many

Instruction modes
Recent ARM processors (e.g., ARMv7) support a

number of instruction modes.

Like most RISC architectures, ARM instructions
are fixed width and must be properly aligned.

Mode determined by the high bit of the
instruction being executed. (TFlags $cpsr.t)

ARM Mode

e 32-bit instruction fixed-width and alignment

e Generally the most “featureful” of instruction modes

e Transitioned into by executing the following

instructions that load the PC with the instruction set

selection bit (the low order |
or LDM. As ofARMv7 this a!

pit) cleared: BX, BLX, LDR,
so includes: ADC, ADD,

AND, ASR, BIC, EOR, LSL,
ROR, RRX, RSB, RSC, SBC,

SR, MOV, MVN, ORR,
or SUB.

64

THUMB Mode

16-bit instruction fixed-width and alignment

Slightly less functionality than ARM mode instructions
(e.g., many 16-bit instructions can only access RO-R7)

THUMB-Z2, introduced in 2003, allows for 32-bit
instructions aligned on 16-bits and greater tfunctionality
when in THUMB mode

Transitioned into by executing the following
instructions that load the PC with the instruction set
selection bit (the low order bit) set: BX, BLX, LDR, or
LDM (aka POP). As ofARMv7 this also includes: ADC,
ADD, AND, ASR, BIG,. EQR..LaL,.LSR, MOV, MVN,
ORR,'ROR, RRX, RSB, R&&y+-$BC, or SUB. 65

ThumbEE Mode

e Similar to THUMB mode, but contains various
extensions to support run-time generated code (JIT
code)

e Transitioned into or out of via the ENTERX and
LEAVEX Instructions

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

66

Jazelle Mode

e Allows for native execution of Java bytecode

e Transitioned into via the BXJ instruction

.dontstuffbeansupyo
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

67

ROP on ARM Magic:
“Misaligned Instructions”

-text:00038502

-text:00038502 loc_38502 ; CODE XREF: _I0 vfscanf+41B6}]j
-text:00038502 236 1E 70 STRB R6, [R3] ; Store to Hemory
-text:00038504 230 4F FO 06 BA MOV . W R18, #8 ; Rd = 0p2

-text:000385088 2306 D7 F8 80 98 LDR.W R9, [R7,#var_s88] ; Load from HMemory
-text:00803856C 2306 FD F7 65 BD B.W loc_35F1A ; Branch

.text:00038510 -
.text:00038510

-text:00038510 loc_38518 ; CODE XREF: _I0_vfscanf+1A0CTj
-.text:00038510 230 4F EA 49 63 MOV . W R3, R9,LSL#1 ; Rd = 0p2

.text:00038514 230 B3 F5 88 7F CHP . W R3, #6x10808 ; Set cond. codes on Op1 - 0p2
-text:00038518 230 38 BF IT CC ; If Then

-text:0003851A 230 4F F4 80 73 MOUCC.W R3, #6x186 ; Rd = 0p2

| don’t see a POP {RO, R2, PC} there at all

 But wait a minute---

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

.text:00038502
.text:00038502
.text:00038504
.text:00038508
.text:00038508
.text:00838506C
.text:000638506D
.text:00038586E
.text:0003850F
.text:00038510
.text:00038518
.text:00038510
.text:00038510
.text:00038514
.text:00038518
.text:0003851A

230
238
230

238
230
238
230

230
238
238
238

1E
4F
D7

FD
F7
85
BD

4F
B3
38
4F

ROP on ARM Magic:
“Misaligned Instructions”

708
Fo
F8

EA
F5
BF
Fa

60 oA
88 96

49 83
88 7F

88 73

loc_38582 ; CODE XREF: _IO0 vufscanf+41B6}lj
STRB R6, [R3] : Store to Memory
MOV . W R18, #6 ; Rd = 0p2
LDR.W R9, [R7,#var_s88] ; Load from HMemory
DCB BxFD ;
DCB 6xF7 ; N
pce |5

DCB 6xBD ; +

loc_38518 ; CODE XREF: _I0_ufscanf+1Aa6CTj
MOU .Y R3, R9,LSL#1 ; Rd = 0p2
CHP .Y R3, #6x168 ; Set cond. codes on Op1 - 0p2

IT CC s If Then

MOUCC . W R3, #6x160 ; Rd = 0p2

e [f we undefine the instruction at 3850C
we see the bytes FD F7 05 BD

« What’s “05 BD” in

THUMB?

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

text:
.text:
.text:
text:
text:
.text:
-text:
-text:
.text:
text:
.text:
text:
text:
.text:
text:

00038502
00038502
0008385062
00038504
00038508
000838508
60638506C
8003850D
000385 6E
000385 6E
00038510
00638518
00038510
00038510
00038514

O

238
230
238

230
230

230

238
238

ROP on ARM Magic:
“Misaligned Instructions”

1E
uF
D7

FD
F7

685

4F
B3

70
FO 66 8a
F8 86 96

BD

EA 49 83
F5 86 7F

loc_38502

loc_38510

; CODE XREF: _IO0 vfscanf+41B6}j

STRB R6, [R3] ; Store to Hemory
MOU . W R18, #0 ; Rd = 0p2
LDR.W R9, [R7,#var_s80] ; Load from Hemory
DCB OxFD z
DCB OxF7 0
___________________ 4_ﬁ__ﬁ__ﬁ__ﬁ_*ﬁ_*ﬁ_*__*__*__*__*__*________ﬁ__ﬁ__ﬁ__ﬁ__ﬁ
POP {RB,R2,PC} Pop registers
; CODE XREF: 10 vfscanf+1Aa0CTj
MOU . W R3, R9,LSL#1 ; Rd = 0p2
CHP . W R3, #Ox160 ;

« Wow, 1t’s POP {RO, R2, PC}!
 This is common in ROP, taking advantage

f addressing ofisets to create
“unintended” opcode sequences

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Set cond. codes on 0Op1 - 0p2

Some ROP Tricks we teach: #1

* Goal: Read or write from scratch space

 Problem: We don’t know what address to use for
reads/writes of memory.

« Solution: Just use a bukakheap’d address, or use
the .data/.bss section of libc.

—Specifically, the .bss section of libc ends at offset
Oxel528 from the start of the binary

—But pages must be allocated as multiples of the
PAGE_SIZE (4096)

—Meaning 0xe1528 — 0xe2000 is perfect “scratch space”

://www.dontstuffbeansupyourn & /

as it is unused by libc Serhena. kides © @
“Practical ARM Exploitation” :

Stephen C. Lawler

Some ROP Tricks we teach: #2

* Goal: Move the value in R2 into R1 (or R3

Into |

R2 or R1 into R3, etc.)

* Prob]

em: There are no gadgets to move

values in volatile registers to each other.

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Some ROP Tricks we teach: #2
— Use staggered

LOAD_R4: POP {R4, PC} scratch address to
Scratch Address -> R4 erte (for example)
SAVE SCRATCH REGS BOUNCE -> PC R?

SAVE SCRATCH REGS: STMIA R4..

— And then read from
that address minus 4,
thereby transferring
the value to R1

Scratch Address - 4 -> R4
deadbeef -> R5
LOAD R3 -> PC
LOAD R3: POP {R3, PC}
Scratch Address - 4 -> R3
RESTORE_SCRATCH REGS -> PC
RESTORE SCRATCH REGS: LDMIA R3..
deadbeef -> R4
deadbeef -> R5

Address of next gadget

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP Tricks we teach: #3

* Goal: We want to write an ASCII string (or

other data structure that is not merely 4

32-bi
* Prob]

t words) to somewhere in memory

em: The gadget to write to memory

(SAV.
32-bi

W SCRATCH_REGS) only works with
t register values

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Some ROP Tricks we teach: #3

» Goal: We want to write an ASCII string (or
other data structure that is not merely 4
32-bit words) to somewhere in memory

* Problem: The gadget to write to memory
(SAVE_SCRATCH_REGS) only works with
32-bit register values

e Solution: Just use SAVE SCRATCH REGS
in exploit_help.py

http://www.dontstuffbeansupyournose.co

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Some ROP Tricks we teach: #3

H E L L o | W [0 R L DI Nl | | _

48 45 4C 4C 4F 20 57 4F 52 4C 44 21 OA 00 00 OO
4C4C4548 4F57204F 21444C52 0000000A
RO R1 R2 R3

 Just visualize the data structure or string as individual byte values

« Convert those byte values to 32-bit numbers (remember, because of little-
endian encoding you have to do byteswapping when representing them as
numbers)

« Put the first 4 bytes into RO, as a little-endian number

« The second 4 bytes into R1, as a little-endian number

» Etc.

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Some More Interesting
Bits from our Course:

ROP and Stack Overflows

* ROP - Return Oriented Programming
—Sequence of gadgets placed on the stack

—Takes advantage of existing opcode sequences
to bypass XN or similar technology to prevent
execution of stack/heap data

—Obviously applicable in stack overflows
* Overflow call stack with data
* Overwrite “Saved LR” with address of your first gadget

* Call stack contains a chain of gadgets that can be
returned to, one after the other, because it was placed
there by the overflow

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

ROP and Heap Overflows

* ROP - Return Oriented Programming

—Obviously applicable in heap overflows?

* Use WWW, WMW, vtable overwrite, etc. to execute
your first gadget

* Call stack contains ... a chain of gadgets?
—No, it won’t obviously, we are exploiting a heap overflow
—OQOur chain of gadgets or ROP is on the heap somewhere
—We have no control of the call stack at all!!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

ROP and Heap Overflows

* ROP - Return Oriented Programming

—Obviously applicable in heap overflows?

* Use WWW, WMW, vtable overwrite, etc. to execute
your first gadget

* Call stack contains ... a chain of gadgets?
—No, it won’t obviously, we are exploiting a heap overflow
—OQOur chain of gadgets or ROP is on the heap somewhere
—We have no control of the call stack at all

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

What if there’s nothing on the
stack?

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

THE ANSWER: PIEVUTS!

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

What if there’s nothing on the
stack?

- If there is data we control on the stack we can
execute ROP with a heap overflow

* What if there really is nothing on the stack?

— Maybe we could copy data from the stack to the heap

« For example, our bouncepoint is a gadget that copies data from
R2 onto SP and then returns

- Doable, but consider your experience with gadgets. To do
something as simple as this usually requires several gadgets on
the stack, and we only control one function pointer

— Maybe we could move the address of the heap into SP and
return. That is, we have to “flip” the heap into becoming
the call stack

« Back when ROP was not a publicized technique, this was called
“‘writing an exploit”
« Now we have a special name for it and it is called “pievutting”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

ROP and Heap Overflows
(when nothing’s on the stack)

vuln calls oobj->virtual function

Call Stack Heap

Free Chunk(s)

SP

vuln frame VulnObject

overflow

OverwrittenObject

Free Chunk(s) “m
http://www.dontstuffbeansupyournos
/i
N

Stephen A. Ridley p iter
Stephen C. Lawler

“Practical ARM Exploitation”

ROP and Heap Overflows
(when nothing’s on the stack)

vuln calls some magical bouncepoint... and then we PWN?
Call Stack Heap

Free Chunk(s)

vuln frame VulnObject

overflow

OverwrittenObject

Free Chunk(s) “m
http://www.dontstuffbeansupyournos
1
N

Stephen A. Ridley ';piter
Stephen C. Lawler

“Practical ARM Exploitation”

et ASSOCIATES

Not so fast...

« AWESOME! So we can easily PWN heap overflows now!

 But...

—YO(l:I,I are probably never going to find MOV SP, RO in compiled
code

—Think about it, how often does a compiler move a register
into SP?
« Adding and subtracting to SP occurs all the time...

» ... only time you’d move a value into SP is to restore SP from a stack
frame register

 gcc (at least) almost always uses R7 for the frame register
« Unlikely that a volatile register like RO would ever be used for this
purpose
—What about “mis-aligned” instruction sequences?
« Could definitely get us the MOV SP, RO
« But, not in the libc.so binary on your QEMU VM’s...

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Flipping R77?

* R7 as frame register?
—libc + 0x0004C652

« MOV SP, R7; POP {R4, R5, Ro6, R7, R8, R9, R1O0,
PC}

—Restores SP from the “frame register” in R7

—But what if the function we’ve exploited
doesn’t have a frame register?

—If it happened to store “our data” in R7, we
could use this as our “pievut”

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Flipping R77?

* Flipping R7 into SP

—Nice, if R7 happens to point to some data we
control

—But think about it. There are FIFTEEN registers

on ARM. What is the likelihood R7 points to
our data?

—We’d rather be able to use RO as our pivot
because RO will always point to data we
control (at least for vtable overwrites)

Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Flipping RO?

* So we scan through libc looking for
“pievuts” and we eventually luck into...

—libc + 0004194

-text:0004F944 020 EO 1B SUBS RO, R4, R7 ; Rd = 0p1 - 0p2
.text:0004F946 0620 81 23 MOUS R3, #1 ; Rd = 0p2
.text:0004F948 020 41 46 MOV R1, R8 ; Rd = 0p2
: 32 46 HOU B2. B6 - Bd = 0p2
_text:0004F94C 620 40 FO 30 E9 BLX mremap ; Branch with Link and Exchange {(immediat
. . MOUS RT, WO 5 RO = Op2
-text:0004F952 626 BO F1 FF 3F CHP . W RO, H#OxXFFFFFFFF ; Set cond. codes on Op1 - 0p2
.text:0004F956 020 B85 46 MOV R5, R8 ; Rd = 0p2
.text:0004F958 020 CF D@ BEQ loc_4F8FA ; Branch
.text:0004F95A 020 C4 19 ADDS R4, RO, R7 ; Rd = 0Op1 + 0p2

 Wait what???

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Flipping RO?

* Let’s see what happens if the processor
executed that instruction in ARM mode
instead of THUMB. ..

-text:0004F944

.text:0004F944 loc_uF94y ; CODE XREF: sub_4F8C0+38Tj
.text:0004F9%44 620 EO 1B SuBS RO, R4, R7 ; Rd = 0p1 - 0p2
.text:0004F9%46 620 61 23 MOUS R3, #1 ; Rd = 0p2

.text:0004F248 020 41 46 MOV R1, R8 ; Rd = 0p2

.text:0004F94A 620 32 46 MOV R2, R6 : Rd = 0p2

.text:0004F94C CODE32

.text:0004F94C 620 48 FO 30 E9 LDMDB ROt*, {R6,R12-PC} ; Load Block from HMemory
.text:0004F958 CODE16

.text:0004F950 0620 68 24 MOUS R4, #8 ; Rd = 0p2

.text:0004F952 626 BO F1 FF 3F CHP . W RO, H#OxXFFFFFFFF ; Set cond. codes on Op1 - 0p2
.text:0004F956 620 65 46 MOV RS, R8 ; Rd = 0p2

.text:0004F958 020 CF D@ BEQ loc_4F8FA ; Branch

.text:0004F95A 620 C4 19 ADDS R4, RO, R7 ; Rd = 0Op1 + 0p2

http://www.dontstuffbeansupyournose.com
Stephen A. Ridley

Stephen C. Lawler
“Practical ARM Exploitation”

Flipping RO?

 Let’s spell LDMDB RO!, {R6,R12-PC} out

* |t means:
—LDMDB RO!, {R6,R12,R13,R14,PC}
—LDMDB RO!, {R6,R12,SP.LR,PC}

* Thank goodness for ARM/THUMB mode
switching!

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

+SP
LR
+ PC

O0acl
0acC

eC
eC

0acl

eC

Flipping RO?

 What does LDMDB RO!, {R6,R12-PC} do?
—LDMDB - Load Multiple Decrement Before

—RO will be subtracted by 0x14 first and then
registers are loaded

*R6 loaded from original RO-0x14
*R12 loaded from original RO-0x10

from origina
from origina

from origina

RO-0x0C
RO-0x08

RO-0x04

.donts eans
Stephen A. Ridley
Stephen C. Lawler
“Practical ARM Exploitation”

Flipping RO?

But what do we put in to SP?
What address to use?

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Flipping RO?

But what do we put in to SP?
What address to use?

USE BUKAKHEAP!!

.dontstuffbeansu
Stephen A. Ridley
Stephen C. Lawler

“Practical ARM Exploitation”

Conclusions & Take-Aways

The world is changing, we are entering (if not already in) a
“post-pc” exploitation environment.

ARM shellcoding and exploitation is fun! Easier that people
think

ROP on ARM actually yields many useful an interesting
gadgets because of the mixed instruction modes

NX as well as all of the modern protections on both Linux
and Android can be bypassed with nuances of the ARM
Microprocessor.

“Advanced Software
Exploitation on ARM”

http://www.dontstuffbeansupyournose.com

Stephen A. Ridley: @s7ephen stephen@sa7ori.org
Stephen C. Lawler: stephenlawler@bitsanddata.com

THANKS FOR LISTENING!!!!

