

DATA STRUCTURES
DEMYSTIFIED

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio FM:i

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

http://dx.doi.org/10.1036/007146994X

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio ii

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

DATA STRUCTURES
DEMYSTIFIED

JAMES KEOGH

& KEN DAVIDSON

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London

Madrid Mexico City Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio FM:iii

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

http://dx.doi.org/10.1036/007146994X

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.

0-07-146994-X

The material in this eBook also appears in the print version of this title: 0-07-225359-2.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol
after every occurrence of a trademarked name, we use names in an editorial fashion only, and to
the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps. McGraw-Hill
eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special
Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its
licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use
the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK
VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for
the content of any information accessed through the work. Under no circumstances shall McGraw-
Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has
been advised of the possibility of such damages. This limitation of liability shall apply to any
claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/007146994X

http://dx.doi.org/10.1036/007146994X

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio viii

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

������������

Want to learn more?
We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/007146994X

This book is dedicated to Anne, Sandy, Joanne,
Amber-Leigh Christine, and Graaf, without whose
help and support this book couldn’t be written.
—Jim

To Janice, Jack, Alex, and Liz.
—Ken

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio v

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ABOUT THE AUTHORS

Jim Keogh is a member of the faculty of Columbia University, where he teaches

courses on Java Application Development, and is a member of the Java Community

Process Program. He developed the first e-commerce track at Columbia and became

its first chairperson. Jim spent more than a decade developing advanced systems for

major Wall Street firms and is also the author of several best-selling computer books.

Ken Davidson is a member of the faculty of Columbia University, where he

teaches courses on Java Application Development. Ken has spent more than a de-

cade developing advanced systems for major international firms.

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2
blind folio vi

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

CONTENTS AT A GLANCE

CHAPTER 1 Memory, Abstract Data Types,
and Addresses 1

CHAPTER 2 The Point About Variables and Pointers 15

CHAPTER 3 What Is an Array? 33

CHAPTER 4 Stacks Using an Array 55

CHAPTER 5 Queues Using an Array 77

CHAPTER 6 What Is a Linked List? 93

CHAPTER 7 Stacks Using Linked Lists 113

CHAPTER 8 Queues Using Linked Lists 129

CHAPTER 9 Stacks and Queues: Insert, Delete,
Peek, Find 149

CHAPTER 10 What Is a Tree? 177

CHAPTER 11 What Is a Hashtable? 217

Final Exam 251

Answers to Quizzes and Final Exam 255

Index 271

vii

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

http://dx.doi.org/10.1036/007146994X

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio viii

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CONTENTS

Introduction xvii

CHAPTER 1 Memory, Abstract Data Types,
and Addresses 1

A Tour of Memory 2
Data and Memory 3

The Binary Numbering System 4
Reserving Memory 5

Abstract Data Type Groups 6
Memory Addresses 11

Real Memory Addresses 12
Abstract Data Types and Memory

Addresses 12
Quiz 13

CHAPTER 2 The Point About Variables and Pointers 15
Declaring Variables and Objects 16

Primitive Data Types and User-Defined
Data Types 16

User-Defined Data Type and Classes 19
Pointers 21

Declaring a Pointer 22
Data Type and Pointers 22

ix

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here

http://dx.doi.org/10.1036/007146994X

x Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

Assigning an Address to a Pointer 24
Accessing Data Pointed to by a Pointer 25
Pointer Arithmetic 27
Pointers to Pointers 29

Quiz 31

CHAPTER 3 What Is an Array? 33
An Array 33

Why an Array? 35
Arrays and Data Structures 35

Declaring an Array 38
Multidimensional Arrays 40

Why Use a Multidimensional Array? 40
Multidimensional Array in Memory 41
Declaring a Multidimensional Array 42
Assigning Values to a Multidimensional

Array 43
Referencing the Contents of

a Multidimensional Array 43
Pointers and Arrays 44
An Array of Pointers 45
An Array of Pointers to Pointers 48

More on an Array of Pointers to Pointers 49
Declaring and Using an Array of Pointers

to Pointers 50
Pointers to Pointers in Action 51

Quiz 53

CHAPTER 4 Stacks Using an Array 55
A Stack 56
Inside a Stack 56

Push 57
Pop 58

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CONTENTS xi

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

Creating a Stack in C++ 58
Creating a Push Member Function in C++ 61
Creating a Pop Member Function in C++ 62

Creating a Stack in Java 64
Creating a Push Member Method in Java 65
Creating a Pop Member Method in Java 66

Stack in Action Using C++ 67
Stack in Action Using Java 72
Quiz 75

CHAPTER 5 Queues Using an Array 77
A Queue 77

A Simple Queue vs. Priority Queue 78
The Business of Queues 78
The Array and the Queue 79
Enqueue 80
Dequeue 81

Queues Using an Array in C++ 83
Queues Using An Array in Java 89
Quiz 91

CHAPTER 6 What Is a Linked List? 93
A Linked List 94

The Real World and Linked Lists 95
The Structure of a Linked List 96

Single Linked List vs. Doubly Linked List 97
The Linked List Class 98
LinkedList Constructor Destructor 99
Appending a Node to a Linked List 100
Display the Linked List 101
Transverse the Linked List 103
Destroying a Linked List 104

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Linked Lists Using C++ 105
Linked Lists Using Java 109
Quiz 112

CHAPTER 7 Stacks Using Linked Lists 113
A Stack 114
LinkedList Class 114
The StackLinkedList Class 116

StackLinkedList Constructor and
Destructor 117

Pushing a Node onto a Stack-Linked List 117
Popping a Node from a Stack-Linked List 118
Determine If the Stack Is Empty 120

StackLinked List Using C++ 121
LinkedList Header File and LinkedList

Functions 121
StackLinkedList Header File and

StackLinkedList Source File 124
StackLinkedList Application 125

StackLinked List Using Java 127
Quiz 128

CHAPTER 8 Queues Using Linked Lists 129
A Queue 130
The Linked List Queue 130

Enqueue 134
Dequeue 135

Linked List Queue Using C++ 138
Linked List Queue Using Java 142
Quiz 147

CHAPTER 9 Stacks and Queues: Insert, Delete,
Peek, Find 149

The Enhanced LinkedList Class 150

xii Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CONTENTS xiii

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

removeNode(), removeNodeAt(),
and deleteRemove() 152

removeNodeAt() 156
deleteNode() 157
findNode() 158
insertNodeAt() 159
peek() 163
getSize() 164

Enhanced LinkedList Class Using C++ 164
Enhanced LinkedList Class Using Java 173
Quiz 176

CHAPTER 10 What Is a Tree? 177
A Tree 177

Why Use a Binary Tree? 178
Parts of a Binary Tree 179

Depth and Size 180
Why Use a Binary Tree? 181

The Key 183
Creating a Binary Tree 184

Constructor and Destructor 187
add() and addNode() 187
remove(), removeNode(), and

removeRootNode() 190
removeAll() and removeAllNodes() 194
get() and getNode() 195
contains() and containsNode() 197
displayInOrder() and

processNodesInOrder() 199
getSize(), getDepth(), and

getTreeDepth() 200
Binary Tree Using C++ 201

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

xiv Data Structures Demystified

Binary Tree Using Java 212
Quiz 216

CHAPTER 11 What Is a Hashtable? 217
A Hashtable 217

Problems with Hashing 219
Developing a Hashtable 220

The Hashtable Class 221
Constructor and Destructor 223
Inserting a New Entry 224
Retrieving a Value 225
find() 227
contains() 228
Remove an Entry 229
getSize() 232
hashString() 232
initIterator() 233
hasNext() and getNextKey() 234

Hashtable Using C++ 237
Hashtable Using Java 245
Quiz 249

Final Exam 251

Answers to Quizzes and Final Exam 255
Chapter 1 255
Chapter 2 256
Chapter 3 257
Chapter 4 258
Chapter 5 259
Chapter 6 259
Chapter 7 260
Chapter 8 261
Chapter 9 262

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10 262
Chapter 11 263

Final Exam 264

Index 271

CONTENTS xv

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio xvi

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

INTRODUCTION

This book is for everyone who wants to learn basic data structures using C++ and

Java without taking a formal course. It also serves as a supplemental classroom text.

For the best results, start at the beginning and go straight through.

If you are confident about your basic knowledge of how computer memory is al-

located and addressed, then skip the first two chapters, but take the quiz at the end of

those chapters to see if you are actually ready to jump into data structures.

If you get 90 percent of the answers correct, you’re ready. If you get 75 to 89 per-

cent correct, skim through the text of Chapters 1 and 2. If you get less than 75 percent

of the answers correct, then find a quiet place and begin reading Chapters 1 and 2.

Doing so will get you in shape to tackle the rest of the chapters on data structures. In

order to learn data structures, you must have some computer programming skills—

computer programming is the language used to create data structures. But don’t be

intimidated; none of the programming knowledge you need goes beyond basic pro-

gramming in C++ and Java.

This book contains a lot of practice quizzes and exam questions, which are similar

to the kind of questions used in a data structures course. You may and should refer to

the chapter texts when taking them. When you think you’re ready, take the quiz,

write down your answers, and then give your list of answers to a friend. Have your

friend tell you your score, but not which questions were wrong. Stay with one chap-

ter until you pass the quiz. You’ll find the answers in Appendix B.

There is a final exam in Appendix A, at the end of the book, with practical ques-

tions drawn from all chapters of this book. Take the exam when you have finished

all the chapters and have completed all the quizzes. A satisfactory score is at least

75 percent correct answers. Have a friend tell you your score without letting you

know which questions you missed on the exam.

xvii

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

We recommend that you spend an hour or two each day; expect to complete one

chapter each week. Don’t rush. Take it at a steady pace. Take time to absorb the mate-

rial. You’ll complete the course in a few months; then you can use this book as a com-

prehensive permanent reference.

xviii Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / FM

P:\010Comp\DeMYST\359-2\fm.vp
Wednesday, February 04, 2004 10:22:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

CHAPTER
1

Memory, Abstract
Data Types, and

Addresses

What is the maximum number of tries you’d need to find your name in a list of a mil-

lion names? A million? No, not even close. The answer is 20—if you structure the

list to make it easy to search and if you search the structure with an efficient search-

ing technique. Searching lists is one of the many ways data structures help you ma-

nipulate data that is stored in your computer’s memory. However, before you can

understand how to use data structures, you need to have a firm grip on how computer

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

memory works. In this chapter, you’ll explore what computer memory is and why

only zeros and ones are stored in memory. You’ll also learn what a Java data type is

and how to select the best Java data type to reserve memory for data used by your

program.

A Tour of Memory
Computer memory is divided into three sections: main memory, cache memory in

the central processing unit (CPU), and persistent storage. Main memory, also called

random access memory (RAM), is where instructions (programs) and data are

stored. Main memory is volatile; that is, instructions and data contained in main

memory are lost once the computer is powered down.

Cache memory in the CPU is used to store frequently used instructions and data

that either is, will be, or has been used by the CPU. A segment of the CPU’s cache

memory is called a register. A register is a small amount of memory within the CPU

that is used to temporarily store instructions and data.

A bus connects the CPU and main memory. A bus is a set of etched wires on the

motherboard that is similar to a highway and transports instructions and data be-

tween the CPU, main memory, and other devices connected to a computer (see

Figure 1-1).

2 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

Figure 1-1 A bus connects the CPU, main memory, persistent storage, and other

devices.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Persistent storage is an external storage device such as a hard disk that stores

instructions and data. Persistent storage is nonvolatile; that is, instructions and

data remain stored even when the computer is powered down.

Persistent storage is commonly used by the operating system as virtual memory.

Virtual memory is a technique an operating system uses to increase the main mem-

ory capacity beyond the random access memory (RAM) inside the computer. When

main memory capacity is exceeded, the operating system temporarily copies the

contents of a block of memory to persistent storage. If a program needs access to

instructions or data contained in the block, the operating system switches the block

stored in persistent storage with a block of main memory that isn’t being used.

CPU cache memory is the type of memory that has the fastest access speed. A

close second is main memory. Persistent storage is a distant third because persistent

storage devices usually involve a mechanical process that inhibits the quick transfer

of instructions and data.

Throughout this book, we’ll focus on main memory because this is the type of

memory used by data structures (although the data structures and techniques pre-

sented can also be applied to file systems on persistent storage).

Data and Memory
Data used by your program is stored in memory and manipulated by various data

structure techniques, depending on the nature of your program. Let’s take a close

look at main memory and how data is stored in memory before exploring how to

manipulate data using data structures.

Memory is a bunch of electronic switches called transistors that can be placed in

one of two states: on or off. The state of a switch is meaningless unless you assign

a value to each state, which you do using the binary numbering system.

The binary numbering system consists of two digits called binary digits (bits):

zero and one. A switch in the off state represents zero, and a switch in the on state

represents one. This means that one transistor can represent one of two digits.

However, two digits don’t provide you with sufficient data to do anything but

store the number zero or one in memory. You can store more data in memory by logi-

cally grouping together switches. For example, two switches enable you to store two

binary digits, which gives you four combinations, as shown Table 1-1, and these

combinations can store numbers 0 through 3. Digits are zero-based, meaning that

the first digit in the binary numbering system is zero, not 1. Memory is organized

into groups of eight bits called a byte, enabling 256 combinations of zeros and ones

that can store numbers from 0 through 255.

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

CHAPTER 1 Memory, Abstract Data Types, and Addresses 3

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

The Binary Numbering System
A numbering system is a way to count things and perform arithmetic. For example,

humans use the decimal numbering system, and computers use the binary numbering

system. Both these numbering systems do exactly the same thing: they enable us to

count things and perform arithmetic. You can add, subtract, multiply, and divide using

the binary numbering system and you’ll arrive at the same answer as if you used the

decimal numbering system.

However, there is a noticeable difference between the decimal and binary num-

bering systems: the decimal numbering system consists of 10 digits (0 through 9)

and the binary numbering system consists of 2 digits (0 and 1).

To jog your memory a bit, remember back in elementary school when the teacher

showed you how to “carry over” a value from the right column to the left column

when adding two numbers? If you had 9 in the right column and added 1, you

changed the 9 to a 0 and placed a 1 to the left of the 0 to give you 10:

9

+1

10

The same “carry over” technique is used when adding numbers in the binary num-

bering system except you carry over when the value in the right column is 1 instead

of 9. If you have 1 in the right column and add 1, you change the 1 to a 0 and place a 1

to the left of the 0 to give you 10:

1

+1

10

Now the confusion begins. Both the decimal number and the binary number seem

to have the same value, which is ten. Don’t believe everything you see. The decimal

number does represent the number 10. However, the binary number 10 isn’t the

value 10 but the value 2.

Switch 1 Switch 2 Decimal Value

0 0 0

0 1 1

1 0 2

1 1 3

Table 1-1 Combinations of Two Bits and Their Decimal Value Equivalents

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The digits in the binary numbering system represent the state of a switch. A com-

puter performs arithmetic by using the binary numbering system to change the state

of sets of switches.

Reserving Memory
Although a unit of memory holds a byte, data used in a program can be larger than a

byte and require 2, 4, or 8 bytes to be stored in memory. Before any data can be stored

in memory, you must tell the computer how much space to reserve for data by using

an abstract data type.

An abstract data type is a keyword of a programming language that specifies the

amount of memory needed to store data and the kind of data that will be stored in that

memory location. However, an abstract data type does not tell the computer how

many bytes to reserve for the data. The number of bytes reserved for an abstract data

type varies, depending on the programming language used to write the program and

the type of computer used to compile the program.

Abstract data types in Java have a fixed size in order for programs to run in all Java

runtime environments. In C and C++, the size of an abstract data type is based on the

register size of the computer used to compile the program. Theint andfloat data

types are the size of the register. A short data type is half the size of an int,

and a long data type is double the size of an int.

Think of an abstract data type as the term “case of tomatoes.” You call the ware-

house manager and say that you need to reserve enough shelf space to hold five cases

of tomatoes. The warehouse manager knows how many shelves to reserve because

she knows the size of a case of tomatoes.

The same is true about an abstract data type. You tell the computer to reserve

space for an integer by using the abstract data type int. The computer already

knows how much memory to reserve to store an integer.

The abstract data type also tells the computer the kind of data that will be stored at

the memory location. This is important because computers manipulate data of some

abstract data types differently than data of other abstract data types. This is similar

to how the warehouse manager treats a case of paper plates differently than a case

of tomatoes.

Table 1-2 contains a list of abstract data types. The first column contains

keywords for each abstract data type. The second column lists the corresponding

number of bits that are reserved in memory for a Java program. The third column

shows the range of values that can be stored in the abstract data type. And the last

column is the group within which the abstract data type belongs.

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

CHAPTER 1 Memory, Abstract Data Types, and Addresses 5

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You choose the abstract data type that best suits the data that you want stored in

memory, then use the abstract data type in a declaration statement to declare a vari-

able. A variable is a reference to the memory location that you reserved using the

declaration statement (see Chapter 2).

You should always reserve the proper amount of memory needed to store data be-

cause you might lose data if you reserve too small a space. This is like sending ten

cases of tomatoes to the warehouse when you only reserved space for five cases. If

you do this, the other five cases will get tossed aside.

Abstract Data Type Groups
You determine the amount of memory to reserve by determining the appropriate

abstract data type group to use and then deciding which abstract data type within the

group is right for the data.

There are four data type groups:

• Integer Stores whole numbers and signed numbers. Great for storing the

number of dollars in your wallet when you don’t need a decimal value.

• Floating-point Stores real numbers (fractional values). Perfect for storing

bank deposits where pennies (fractions of a dollar) can quickly add up to

a few dollars.

• Character Stores a character. Ideal for storing names of things.

• Boolean Stores a true or false value. The correct choice for storing

a yes or no or true or false response to a question.

6 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

Data Type Data Type Size

in Bits

Range of Values Group

byte 8 –128 to 127 Integers

short 16 –32,768 to 32,767 Integers

int 32 –2,147,483,648 to

2,147,483,647

Integers

long 64 –9,223,372,036,854,775,808

to 9,223,372,036,854,775,807

Integers

char 16 (Unicode) 65,536 (Unicode) Characters

float 32 3.4e-038 to 3.4e+038 Floating-point

double 64 1.7e-308 to 1.7e+308 Floating-point

boolean 1 0 or 1 Boolean

Table 1-2 Simple Java Data Types

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Integers
The integer abstract data type group consists of four abstract data types used to

reserve memory to store whole numbers: byte, short, int, and long, as de-

scribed in Table 1-2.

Depending on the nature of the data, sometimes an integer must be stored using

a positive or negative sign, such as a +10 or –5. Other times an integer is assumed to

be positive so there isn’t any need to use a positive sign. An integer that is stored with

a sign is called a signed number; an integer that isn’t stored with a sign is called an

unsigned number.

What’s all this hoopla about signed numbers? The sign takes up 1 bit of memory

that could otherwise be used to represent a value. For example, abytehas 8 bits, all of

which can be used to store an unsigned number from 0 to 255. You can store a signed

number in the range of –128 to +127.

C and C++ support unsigned integers. Java does not. An unsigned integer is a value

that is implied to be positive. The positive sign is not stored in memory. All integers in

Java are represented with a sign. Zero is stored as a positive number.

byte Abstract Data Type

The byte abstract data type is the smallest abstract data type in the integer group

and is declared by using the keywordbyte (see Figure 1-2). Programmers typically

use a byte abstract data type when sending data to and receiving data from a file or

across a network. The byte abstract data type is also commonly used when work-

ing with binary data that may not be compatible with other abstract data types.

Choose abytewhenever you need to move data to and from a file or across a network.

short Abstract Data Type

Theshort abstract data type is ideal for use in programs that run on 16-bit comput-

ers. However, most of those computers are on the trash heap and have been replaced

by 32-bit and 64-bit computers! (See Figure 1-3.) Therefore, the short is the least

used integer abstract data type. Choose a short if you ever need to store an integer

in a program that runs on a very old computer.

CHAPTER 1 Memory, Abstract Data Types, and Addresses 7

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

Figure 1-2 A byte abstract data type in Java reserves 8 bits of main memory.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

int Abstract Data Type

Theint abstract data type is the most frequently used abstract data type of the integer

group for a number of reasons (see Figure 1-4). Choose an int:

• For control variables in control loops

• In array indexes

• When performing integer math

long Abstract Data Type

A long abstract data type (see Figure 1-5) is used whenever using whole numbers

that are beyond the range of an int data type (refer to Table 1-2). Choose a long
when storing the net worths of Bill Gates, Warren Buffet, and you in a program.

Floating-Point
Abstract data types in the floating-point group are used to store real numbers in

memory. A real number contains a decimal value. There are two kinds of floating-

point data types: float and double (as described in Table 1-2). The float

Figure 1-3 A short abstract data type in Java reserves 16 bits of main memory.

Figure 1-4 An int abstract data type in Java reserves 32 bits of main memory.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

CHAPTER 1 Memory, Abstract Data Types, and Addresses 9

abstract data type is a single precision number, and a double is a double precision

number. Precision of a number is the number of places after the decimal point that

contains an accurate value.

The term floating-point refers to the way decimals are referenced in memory.

There are two parts of a floating-point number: the real number, which is stored as a

whole number, and the position of the decimal point within the whole number. This

is why it is said that the decimal point “floats” within the number.

For example, the floating-point value 43.23 is stored as 4323 (no decimal point).

Reference is made in the number indicating that the decimal point is placed after the

second digit.

float Abstract Data Type

The float abstract data type (see Figure 1-6) is used for real numbers that require

single precision, such as United States currency. Single precision means the value is

precise up to 7 digits to the right of the decimal. For example, suppose you divide

$53.50 evenly among 17 people. Each person would get $3.147058823529. Digits

to the right of $3.1470588 are not guaranteed to be precise because of the way a

float is stored in memory. Choose afloatwhenever you need to store a decimal

value where only 7 digits to the right of the decimal must be accurate.

Figure 1-5 A long abstract data type in Java reserves 64 bits of main memory.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

double Abstract Data Type

Thedouble abstract data type (see Figure 1-7) is used to store real numbers that are

very large or very small and require double the amount of memory that is reserved

with a float abstract data type. Choose a double whenever you need to store

a decimal value where more than 7 digits to the right of the decimal must be accurate.

Characters
A character abstract data type (see Figure 1-8) is represented as an integer value that

corresponds to a character set. A character set assigns an integer value to each char-

acter, punctuation, and symbol used in a language.

10 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

Figure 1-6 A float abstract data type in Java reserves 32 bits of main memory.

Figure 1-7 A double abstract data type in Java reserves 64 bits of main memory.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the letter A is stored in memory as the value 65, which corresponds

to the letter A in a character set. The computer knows to treat the value 65 as the letter

A rather than the number 65 because memory was reserved using the char abstract

data type. The keywordchar tells the computer that the integer stored in that memory

location is treated as a character and not a number.

There are two character sets used in programming, the American Standard Code

for Information Interchange (ASCII) and Unicode. ASCII is the granddaddy of

character sets and uses a byte to represent a maximum of 256 characters. However, a

serious problem was evident after years of using ASCII. Many languages such as

Russian, Arabic, Japanese, and Chinese have more than 256 characters in their lan-

guage. A new character set called Unicode was developed to resolve this problem.

Unicode uses 2 bytes to represent each character. Choose a char whenever you

need to store a single character in memory.

Boolean Abstract Data Type
A boolean abstract data type (see Figure 1-9) reserves memory to store a

boolean value, which is a true or false represented as a zero or one. Choose

a boolean whenever you need to store one of two possibilities in memory.

Memory Addresses
Imagine main memory as a series of seemingly endless boxes organized into groups of

eight. Each box holds a zero or one. Each group of eight boxes (1 byte) is assigned a

unique number called a memory address, as shown in Figure 1-10. It is very important

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

CHAPTER 1 Memory, Abstract Data Types, and Addresses 11

Figure 1-8 A char abstract data type in Java reserves 16 bits of main memory.

Figure 1-9 A boolean abstract data type in Java reserves 1 bit of main memory.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to keep this in mind as you learn about data structures; otherwise, you can easily

become confused.

A memory address is indirectly or directly used within a program to access all eight

boxes. For example, say your program tells the computer that you want to copy data

stored in memory location 423—that is, the box whose address is 423. The computer

goes to that memory location and copies the data (zero or one) from box 423 and copies

data from the next seven boxes. Those next seven boxes don’t have a memory address.

You could say that those seven boxes share the memory address of box 423.

Real Memory Addresses
Memory addresses are represented so far throughout this chapter as a decimal value,

such as “box 423.” In reality, memory addresses are a 32-bit or 64-bit number, depend-

ing on the computer’s operating system, and are represented as a hexadecimal value.

Hexadecimal is a numbering system similar to the decimal and binary numbering

systems. That is, hexadecimal values are used to count and they are used in arithmetic.

The hexadecimal numbering system has 16 digits from 0 through 9 and A through F,

which represents 10 through 15. Here is how memory address 258,425,506 is repre-

sented in hexadecimal notation 0x0F6742A2.

Abstract Data Types and Memory Addresses
Previously in this chapter you learned that you reserve memory for data by using an

abstract data type. Some abstract data types reserve memory in a size that is greater

than 1 byte. For example, the short abstract data type in Java reserves 2 bytes of

memory.

12 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

Figure 1-10 The memory address of the first byte is used to reference all bytes

reserved for an abstract data type.

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Since each byte of memory has its own memory address, you might assume a

short has two memory addresses because it uses 2 bytes of memory. That’s not the

case. The computer uses the memory address of the first byte to reference any ab-

stract data type that reserves multiple bytes of memory.

Let’s say that space was reserved in memory for a short abstract data type (see

Figure 1-10). Two memory locations are reserved, memory addresses 400 and 401.

However, only memory address 400 is used to reference the short. The computer

automatically knows that the value stored in memory address 401 is part of the value

stored in memory address 400 because the space was reserved using an short ab-

stract data type. Therefore, the computer copies all the bits from memory address 400

and all the bits from memory address 401 whenever a request is made by the program

to copy the integer stored at memory address 400.

Quiz
1. What is an abstract data type?

2. What abstract data type would be used to store a whole number?

3. Explain how a memory address is used to access an abstract data type that

is larger than 1 byte.

4. What is the difference between a float abstract data type and a double
abstract data type?

5. What is precision?

6. Explain how memory is organized within a computer.

7. What is a numbering system?

8. Why is the binary numbering system used in computing?

9. Why don’t you directly specify the number of bytes to reserve in memory

to store data?

10. Explain the impact signed and unsigned numbers have on memory.

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

CHAPTER 1 Memory, Abstract Data Types, and Addresses 13

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 14

P:\010Comp\DeMYST\359-2\ch01.vp
Monday, February 02, 2004 12:54:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
2

The Point About
Variables and

Pointers

Some programmers cringe at the mere mention of the word “pointer” because it

brings to mind complex, low-level programming techniques that are confounding.

Hogwash. Pointers are child play, literally. Watch a 15-month-old carefully and

you’ll notice that she points to things she wants, and that’s a pointer in a nutshell. A

pointer is a variable that is used to point to a memory address whose content you

want to use in your program. You’ll learn all about pointer variables in this chapter.

15

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

16 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Declaring Variables and Objects
Memory is reserved by using a data type in a declaration statement. The form of a

declaration statement varies depending on the programming language you use. Here

is a declaration statement for C, C++, and Java:

int myVariable;

There are three parts to this declaration statement:

• Data type Tells how much memory to reserve and the kind of data that

will be stored in that memory location

• Variable name A name used within the program to refer to the contents

of that memory location

• Semicolon Tells the computer this is an instruction (statement)

Primitive Data Types and User-Defined Data Types
In Chapter 1, you were introduced to the concept of abstract data types, which are

used to reserve computer memory. Abstract data types are divided into two categories,

primitive data types and user-defined data types. A primitive data type is defined by

the programming language, such as the data types you learned about in the previous

chapter. Some programmers call these built-in data types.

The other category of abstract data type, a user-defined data type, is a group of

primitive data types defined by the programmer. For example, let’s say you want to

store students’grades in memory. You’ll need to store 4 data elements: the student’s

ID, first name, last name, and grade. You could use primitive data types for each data

element, but primitive data types are not grouped together; each exists as separate

data elements.

A better approach is to group primitive data types into a user-defined data type to

form a record. You probably heard the term “record” used when you learned about

databases. Remember that a database consists of one or more tables. A table is similar

to a spreadsheet consisting of columns and rows. A row is also known as a record.

A user-defined data type defines columns (primitive data types) that comprise a row

(a user-defined data type).

The form used to define a user-defined data type varies depending on the pro-

gramming language used to write the program. Some programming languages, such

as Java, do not support user-defined data types. Instead, attributes of a class are used

to group together primitive data types; this is discussed later in this chapter.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the C and C++ programming languages, you define a user-defined data type by

defining a structure. Think of a structure as a stencil of the letter A. The stencil isn’t

the letterA, but it defines what the letterA looks like. If you want a letterA, you place

the stencil on a piece of paper and trace the letterA. If you want to make another letter

A, you use the same stencil and repeat the process. You can make as many letter A’s

as you wish by using the stencil.

The same is true about a structure. When you want the group of primitive data

types represented by the structure, you create an instance of the structure. An in-

stance is the same as the letterA appearing on the paper after you remove the stencil.

Each instance contains the same primitive data types that are defined in the structure,

although each instance has its own copy of those primitive data types.

Defining a User-Defined Data Type
A structure definition consists of four elements:

• struct Tells the computer that you are defining a structure

• Structure name The name used to uniquely identify the structure

and used to declare instances of a structure

• Structure body Open and close braces within which are primitive

data types that are declared when an instance of the structure is declared

• Semicolon Tells the computer this is an instruction (statement)

The body of a structure can contain any combination of primitive data types and

previously defined user-defined data types depending on the nature of the data re-

quired by your program. Here is a structure that defines a student record consisting

of a student number and grade. The name of this user-defined data type is

StudentRecord:

struct StudentRecord
{
int studentNumber;
char grade;

};

Declaring a User-Defined Data Type
You declare an instance of a user-defined data type using basically the same technique

that you used to declare a variable. However, you use the name of the structure in

place of the name of the primitive data type in the declaration station.

CHAPTER 2 The Point About Variables and Pointers 17

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s say that you want to create an instance of the StudentRecord structure

defined in the previous section. Here’s the declaration statement that you need to

declare in your program:

#include <iostream>
using namespace std;
struct StudentRecord
{

int studentNumber;
char grade;

} ;
void main()
{
StudentRecord myStudent;
myStudent.studentNumber = 10;
myStudent.grade = 'A';
cout << "grades: " << myStudent.studentNumber << " "

<< myStudent.grade << endl;
}

The declaration statement tells the computer to reserve memory the size required

to store the StudentRecord user-defined data type and to associate

myStudent with that memory location. The size of a user-defined data type is

equal to the sum of the sizes of the primitive data types declared in the body of the

structure.

The size of theStudentRecorduser-defined data type is the sum of the sizes of an

integer and achar. As you recall from Chapter 1, the size of a primitive data type is

measured in bits. The number of bits for the same primitive data type varies depending

on the programming language. Therefore, programmers refer to the name of the primi-

tive data type rather than the number of bits when reserving memory. The computer

knows how many bits to reserve for each primitive data type.

User-Defined Data Types and Memory
Data elements within the body of a structure are placed sequentially in memory when

an instance of the structure is declared within a program. Figure 2-1 illustrates mem-

ory reserved when the myStudent instance of StudentRecord is declared.

The instance name myStructure is an alias for the memory address that is

reserved for the first primitive data type defined in theStudentRecord structure,

which is memory address 1 in Figure 2-1. For the sake of simplicity, let’s say each

block shown in Figure 2-1 represents 1 byte of memory and the size of an int is

2 bytes.

18 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2 The Point About Variables and Pointers 19

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Each primitive data type of a structure has its own memory address. The first primi-

tive data type in this example is studentNumber, and its name references memory

location 1. The second primitive data type is grade, and its name references memory lo-

cation 2.

What happened to memory location 1? This can be confusing. Remember that

each byte of memory is assigned a unique memory address. Some primitive data

types are larger than a byte and therefore must occupy more than one memory address,

which is the case in this example with an int. The first primitive data type takes up

the first 2 bytes of memory. Therefore, the second primitive data type defined in the

structure is placed in the next available byte of memory, which is memory location 2.

Accessing Elements of a User-Defined Data Type
Elements of a data structure are accessed by using the name of the instance of the

structure and the name of the element separated by a dot operator. Let’s say that you

want to assign the grade A to the grade element of the myStudent instance of the

StudentRecord structure. Here’s how you would write the assignment statement:

myStudent.grade = 'A';

You use elements of a structure the same way you use a variable within your program

except you must reference both the name of the instance and the name of the element

in order to access the element. The combination of instance name and element name

is the alias for the memory location of the element.

User-Defined Data Type and Classes
Structures are used in procedure languages such as C. Object-oriented languages

such as C++ and Java use both structures and classes to group together unlike primitive

data types into a cohesive unit.

Figure 2-1 Memory for elements of a structure are placed in sequential memory

locations when an instance of the structure is declared.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

20 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

A class definition is a stencil similar in concept to a structure definition in that

both use the definition to create instances. A structure definition creates an instance

of a structure, while a class definition creates an instance of a class.

A class definition translates attributes and behaviors of a real life object into a

simulation of that object within a program. Attributes are data elements similar to

elements of a structure. Behaviors are instructions that perform specific tasks known

as either methods or functions, depending on the programming language used to

write the program. Java references these as methods and C++ references them as

functions.

Defining a Class
A class definition resembles a definition of a structure, as you can see in the following

example. A class definition consists of four elements:

• class Tells the computer that you are defining a class

• Class name The name used to uniquely identify the class and used to

declare instances of a class

• Class body Open and close braces within which are primitive data types

that are declared when an instance of the class is declared and definitions

of methods and functions that are members of the class

• Semicolon Tells the computer this is an instruction (statement)

The following class definition written in C++ defines the same student record that

is defined in the structure defined in the previous section of this chapter. However,

the class definition also defines a function that displays the student number and

grade on the screen.

class StudentRecord {
int studentNumber;
char grade;
void displayGrade() {

cout<<"Student: " << studentNumber << " Grade: "
<< grade << endl;

}
};

Declaring an Instance of a Class and a Look at Memory
You declare an instance of a class much the same way you declare a structure. That

is, you use the name of the class followed by the name of the instance of the class in

a declaration statement. Here is how an instance of the StudentRecord class is

declared:

StudentRecord myStudent;

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Memory is reserved for attributes of a class definition sequentially when an in-

stance is declared, much the same way as memory is reserved for elements of a struc-

ture. Figure 2-2 shows memory allocation for the myStudent instances of the

StudentRecord class. Notice that this is basically the same way memory for

a structure is allocated.

Methods and functions are stored separately in memory from attributes when an

instance is declared because methods and functions are shared among all instances

of the same class.

Accessing Members of a Class
Attributes, methods, and functions are referred to as members of a class. You access

members of an instance of a class using the name of the instance, the dot operator and

the name of the member, much the same ways as you access an element of a structure.

Here is how to access the grade attribute of the myStudent instance of the

StudentRecord class and call the displayGrade() method:

myStudent.grade = 'A';
myStudent.displayGrade();

Pointers
Whenever you reference the name of a variable, the name of an element of a struc-

ture, or the name of an attribute of a class, you are telling the computer that you want

to do something with the contents stored at the corresponding memory location.

CHAPTER 2 The Point About Variables and Pointers 21

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Figure 2-2 Memory for attributes of a class are placed in sequential memory locations

when an instance of the class is declared.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

22 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

In the first statement in the following example, the computer is told to store the

letterA into the memory location represented by the variablegrade. The last state-

ment tells the computer to copy the contents of the memory location represented by

the grade variable and store it in the memory location represented by the

oldGrade variable.

char grade = 'A';
char oldGrade;
oldGrade = grade;

A pointer is a variable and can be used as an element of a structure and as an attrib-

ute of a class in some programming languages such as C++, but not Java. However,

the contents of a pointer is a memory address of another location of memory, which

is usually the memory address of another variable, element of a structure, or attribute

of a class.

Declaring a Pointer
A pointer is declared similar to how you declare a variable but with a slight twist.

The following example declares a pointer called ptGrade. There are four parts of

this declaration:

• Data type The data type of the memory address stored in the pointer

• Asterisk (*) Tells the computer that you are declaring a pointer

• Variable name The name that uniquely identifies the pointer and is used

to reference the pointer within your program

• Semicolon Tells the computer this is an instruction (statement)

char *ptGrade;

Data Type and Pointers
As you will recall, a data type tells the computer the amount of memory to reserve and

the kind of data that will be stored at that memory location. However, the data type of a

pointer tells the computer something different. It tells the computer the data type of the

value at the memory location whose address is contained in the pointer.

Confused? Many programmers are confused about the meaning of the data type

used to declare a pointer, so you’re in good company. The best way to clear any con-

fusion is to get back to basics.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The asterisk (*) used when declaring a pointer tells the computer the amount of

memory to reserve and the kind of data that will be stored at that location. That is,

the memory size is sufficient to hold a memory address, and the kind of data stored

there is a memory address.

You’re probably wondering why you use a data type when declaring a pointer. Be-

fore answering that question, let’s make sure you have a firm understanding of point-

ers. The following example declares four variables. The first statement declares an

integer variable called studentNumber. The second statement declares a char
variable called grade. The last two statements each declare a pointer. Figure 2-3 de-

picts memory reserved by these statements. Assume that a memory address is 4 bytes

for this example.

int studentNumber;
char grade;
char *ptGrade;
int *ptStudentNumber;

The char data type in the ptGrade pointer declaration tells the computer that

the address that will be stored in ptGrade is the address of a character. As you’ll

see in the next section, the contents of the memory location associated with

ptGrade will contain the address of the grade variable.

Likewise, the int data type of the ptStudentNumber pointer states that

the contents of the memory location associated with ptStudentNumber will

contain the address of an integer variable, which will be the address of the

studentNumber variable.

Why does the computer need to know this? For now, let’s simply say that pro-

grammers instruct the computer to manipulate memory addresses using pointer

arithmetic. In order for the computer to carry out those instructions, the computer

must know the data type of the address contained in a pointer. You’ll learn pointer

arithmetic later in this chapter.

CHAPTER 2 The Point About Variables and Pointers 23

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Figure 2-3 Memory allocated when two pointers and two variables are declared

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

24 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Assigning an Address to a Pointer
An address of a variable is assigned to a pointer variable by using the address operator

(&). Before you learn about dereferencing a variable, let’s review an assignment state-

ment. The following assignment statement tells the computer to copy the value stored

at the memory location that is associated with the grade variable and store the value

into the memory location associated with the oldGrade variable:

oldGrade = grade;

An assignment statement implies that you want the contents of a variable and not

the address of the variable. The address operator tells the computer to ignore the im-

plied assignment and assign the memory address of the variable and not the content of

the variable.

The next example tells the computer by using the address operator to copy the ad-

dress of the variable to the pointer variable. That is, the memory address of the grade

variable is copied to the ptGrade pointer variable, and the memory address of the

studentNumber variable is assigned to the ptStudentNumber pointer:

ptGrade = &grade;
ptStudentNumber = &studentNumber;

Figure 2-4 depicts memory after the previous two statements execute. Notice that

the grade variable is an alias for memory address 3 and the studentNumber
variable is the alias for memory address 1. The content of ptGrade pointer is 3,

which is the memory address of the grade variable. Likewise, the content of pointer

ptStudentNumber is 1, which is the memory address of studentNumber.

Figure 2-4 Memory allocated after pointers are assigned memory addresses

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Accessing Data Pointed to by a Pointer
A pointer variable references a memory location that contains a memory address.

Sometimes a programmer wants to copy that memory address to another pointer

variable. This is accomplished by using an assignment statement as shown here:

ptOldGrade = ptNewGrade;

You’ll notice that this assignment statement is identical to assignment statements

used with any variable. Remember that the assignment statement tells the computer

to copy the contents of a variable regardless if the content is a memory address or any

other value.

Other times, programmers want to the use the content of the memory address

stored in the pointer variable. This may be tricky to understand, so let’s look at an exam-

ple to clear up any confusion. The following statements will be familiar to you be-

cause we’ve used them in examples throughout this chapter.

The first two statements declare variables, one of which is initialized with a value.

The next two statements declare pointer variables. And the last statement assigns the

address of the first variable to pointer variables. Figure 2-5 shows how memory

looks after these statements execute.

char oldGrade;
char grade = 'A';
char *ptGrade;
char *ptOldGrade;
ptGrade = &grade;

Let’s say a programmer wants to use the value stored in the grade variable to

display the grade on the screen. However, the programmer wants to use only the

ptGrade pointer to do this. Here’s how it is done.

CHAPTER 2 The Point About Variables and Pointers 25

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Figure 2-5 Memory allocated after values are assigned to variables

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

26 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

The programmer uses the pointer dereferencing operator (sometimes called the

dereferencing operator), which is the asterisk (*), to dereference the point variable.

Think of dereferencing as telling the computer you are referring to to go to the mem-

ory address contained in the pointer and then perform the operation. Without

dereferencing, the computer is told to use the contents of the pointer when perform-

ing the operation.

Let’s say that you want to copy the content of ptGrade to ptOldGrade.

Here’s how you would do it:

ptOldGrade = ptGrade;

Figure 2-6 shows you the effect this statement has on memory.

Now let’s suppose you want to copy the contents of grade to the oldGrade
variable, but you only want to use the ptGrade pointer. You do this by

dereferencing the ptGrade pointer variable using the asterisk (*) as the

dereferencing pointer operator as shown here:

char oldGrade = *ptGrade;

The previous statement tells the computer to go to the memory address contained

in theptGrade pointer variable and then perform the assignment operation, which

copies the value of memory address 2 to the memory address represented by the

oldGradevariable, which is memory address 1. The result is shown in Figure 2-7.

You can dereference a pointer variable any time you want to use the contents of

the memory address pointed to by the variable and use the dereference pointer vari-

able in any statement that you would use a variable.

Figure 2-6 Memory allocated after the value of the ptGrade is copied to

ptOldGrade.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 2 The Point About Variables and Pointers 27

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Pointer Arithmetic
Pointers are used to step through memory sequentially by using pointer arithmetic

and the incremental (++) or decremental (���) operator. The incremental operator

increases the value of a variable by 1, and the decremental operator decreases the

value of a variable by 1.

In the following example, the value of the studentNumber variable is incre-

mented by 1, making the final value 1235.

int studentNumber = 1234;
studentNumber++;

Likewise, the next example decreases the value of the studentNumber vari-

able by 1, resulting in the final value of 1233.

int studentNumber = 1234;
studentNumber--;

Pointer arithmetic uses the incremental and decremental operator in a similar but

slightly different way. The following statements declare two variables used to store

student numbers and two pointers each pointing to one of those variables. Figure 2-8

depicts memory allocation after these statements execute.

int studentNumber1 = 1234;
int studentNumber2 = 5678;
int *ptStudentNumber1;
int *ptStudentNumber2;
ptStudentNumber1 = &studentNumber1;
ptStudentNumber2 = &studentNumber2;

Figure 2-7 Memory allocated after the contents of the memory address pointed to by

ptGrade is copied to the oldGrade variable.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What would be the value stored in the pointer variablestudentNumber1 if the

studentNumber1 is incremented by 1 using the following statement?

ptStudentNumber1++;

This is tricky because the value ofptStudentNumber1 is 0. If you increment it by

one, the new value is 1. However, memory address 2 is the second half of the memory lo-

cation reserved for studentNumber1. This means that ptStudentNumber1
would point to the middle of the values of studentNumber1, which doesn’t make

sense.

That’s not what happens. The computer uses pointer arithmetic. Values are incre-

mented and decremented in pointer arithmetic using the size of a data type. That is, if

the memory address contains an integer and the memory address is incremented, the

computer adds the size of an integer to the current memory address.

Let’s return to Figure 2-8 and see how this works. ptStudentNumber1 con-

tains the memory address 1. If you go to memory address 1, you’ll notice that the

memory address stores an integer. In the example, the size of an integer is 2 bytes.

When ptStudentNumber1 is incremented using pointer arithmetic, the com-

puter adds 2 bytes to the address stored in ptStudentNumber1making the new

value 2, which is stored in ptStudentNumber1. Figure 2-9 shows the results of

incrementing using pointer arithmetic.

Decrementing a value using pointer arithmetic is very similar to incrementing

a value, except the size of a data type is subtracted from the value. Let’s return to

Figure 2-8 for a moment. If the following statement executed, the value of

ptStudentNumber2 would be 1 because the computer subtracts the size of an

integer (2 bytes) from the current value of the ptStudentNumber2 (2).

ptStudentNumber2--;

28 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Figure 2-8 Memory allocation before incrementing ptStudentNumber1

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers to Pointers
Imagine having a list of a million students along with their final grades and student

numbers and being asked to sort the list by last name, first name, and student number.

Intuitively, you might think about making two copies of this list, each placed in one

of the sort orders. However, this wastes memory. There is a better approach to sort

the list: use pointers to pointers.

You learned that a pointer is a variable that contains the memory address of another

variable. A pointer to a pointer is also a variable that contains the memory address,

except a pointer to a pointer contains the memory address of another pointer variable.

Confused? You’re not alone. The concept of a pointer to a pointer isn’t intuitive to

understand. However, we can clear up any confusion by declaring variables and storing

values into memory.

Let’s begin by declaring four char variables and initializing them with letters of

the alphabet. This is shown in the first statement of the following example. The sec-

ond statement declares a pointer called ptInitial and a pointer to a pointer

calledptPtInitial. A pointer is declared using a signal asterisk (*). A pointer to

a pointer is declared using a double asterisk (**).

char inital1 = 'D', inital2 = 'A', inital3 = 'C', inital4 = 'B';
char *ptInitial, **ptPtInitial;
ptInitial = &inital1;
ptPtInitial = &ptInitial;

With variables declared, the next two statements assign values to the pointer and

to the pointer to a pointer. In both cases, the ampersand (&) is used as the

dereferencing operator.

The ptInitial pointer variable is assigned the address of variable inital1,

which is memory address 1. The ptPtInitial pointer to a pointer variable is

CHAPTER 2 The Point About Variables and Pointers 29

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Figure 2-9 Memory allocation after incrementing ptStudentNumber1

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

assigned the memory address ofptInitial. The address ofptInitial is mem-

ory address 5. Figure 2-10 shows the allocated memory after these statements execute.

Programmers use a pointer to a pointer to tell a computer to use the contents of the

memory address contained in the pointer variable that the pointer to a pointer is

pointing to. This is a mouthful, so we’ll restate this using an example:

You can use the content of the inital1 variable by referencing the

ptPtInitial variable. Here’s how this is done:

cout << **ptPtInitial;

Thecout statement is used in C++ to display something on the screen. In this exam-

ple, you’re displaying the content of the initial1 variable, although it doesn’t seem

to be doing so. This statement is telling the computer to go to the memory address stored

in the ptPtInitial pointer to a pointer variable, which is memory address 5 (see

Figure 2-11). The content of that memory address is another memory address, which is

memory address 1. The computer is told to go to memory address 1 and display the con-

tent of that memory address, which is the letter D.

30 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

Figure 2-10 The pointer to a pointer variable is assigned the memory address of the

ptInitial pointer.

Figure 2-11 Two memory addresses are referenced when using a pointer to a pointer to

display a value on the screen.

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is a user-defined data type?

2. How do you determine the size of a structure?

3. Why would you use a structure?

4. Why happens when you declare an instance of a structure?

5. How do you access parts of a structure?

6. What is a pointer?

7. Why would you use a pointer in a program?

8. What is a pointer to a pointer?

9. Why would you use a pointer to a pointer in a program?

10. What is shown on the screen if you display the content of a pointer variable?

CHAPTER 2 The Point About Variables and Pointers 31

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 2

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 32

P:\010Comp\DeMYST\359-2\ch02.vp
Monday, February 02, 2004 1:05:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
3

What Is an Array?

Computer memory is like a small town—or a large town, depending on the amount

of memory available in the computer. Each byte of memory is a building that has its

own address called amemory address, and the town’s people are bits of data living in

those buildings. The small town inside your computer is a neighborly place. A pro-

gram refers to buildings by name rather than by address, and puts Mary’s grade in the

maryGrade building. However, being personable is troublesome when you need

to come up with hundreds of names for these buildings. That is, unless you use an

array. You’ll explore arrays, multidimensional arrays, pointer arrays, and an array of

pointers to pointers in this chapter.

An Array
An array is a way to reference a series of memory locations using the same name.

Each memory location is represented by an array element. An array element is simi-

lar to one variable except it is identified by an index value instead of a name. An

index value is a number used to identify an array element.

33

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Wednesday, February 11, 2004 9:29:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Now we’ll show you what an array looks like, with the three array elements

shown next. The array is called grades. The first array element is called

grades[0]. The zero is the index value. The square bracket tells the computer that

the value inside the square bracket is an index.

grades[0]
grades[1]
grades[2]

Each array element is like a variable name. For example, the following variables

are equivalent to array elements. There is no difference between array elements and

variables—well, almost no difference, but we’ll get to the differences in a moment.

For now, let’s explore how they are the same. Here are three integer variables:

int maryGrade;
int bobGrade;
int amberGrade;

You probably recall from your programming class that you store a value into a

memory location by using an assignment statement. Here are two assignment state-

ments. The first assigns a value to a variable, and the other assigns a value to an array

element. Notice that these statements are practically the same except reference is

made to the index of the array element in the second statement:

int grades[1];
maryGrade = 90;
grades[0] = 90;

Suppose you want to use the value stored in a memory location. There are a number

of ways to do this in a program, but a common way is to use another assignment state-

ment like the ones shown in the next example. The first assignment statement uses two

variables, the next assignment statement uses two array elements, and the last assign-

ment statement assigns the value referenced by a variable name and assigns that value

to an array element:

bobGrade = maryGrade;
grades[0] = grades[1];
grades[0] = bobGrade;

You’ve probably noticed a pattern developing. You use an array element the same

way you use a variable.

34 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 What Is an Array? 35

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Why an Array?
There are two important differences between an array element and a variable, and

those differences make working with large amounts of data a breeze. Suppose you

had to work with 100 grades to calculate the average grade. How would you do this?

The challenge isn’t applying the formula for calculating an average. You know

how that’s done. The challenge is to come up with 100 variable names and then refer-

ence all those variable names in a program. Ouch!

First, you’d need to sum all the grades by writing a statement similar to the fol-

lowing. (We’ll stop at three variables because it’s difficult to identify 100 vari-

ables—and we’d run out of space on this page.)

sum = maryGrade + bobGrade + amberGrade;

Now, here’s how a smart programmer meets this challenge using an array:

sum = 0;
for (int i = 0; i < 100; i++)

sum = sum + grades[i];

Big difference. The control variable of thefor loop is the index for the array ele-

ment, enabling the program to quickly walk through all array elements in two lines

of code. (The first statement has nothing to do with walking through all the array ele-

ments. It only initializes the sum variable with the total grades.)

The other difference between an array and a variable is that all the array elements are

next to each other in memory. Variables can be anywhere in memory. For example,

grades[0] is next togrades[1] in memory,grades[1] is next togrades[2]
in memory, and so on. In contrast, maryGrade andbobGrade variables can be any-

where in memory, even if they are declared in the same declaration statement.

You might be scratching your head right now thinking, that’s an interesting bit of

computer trivia. So what? But the location of array elements is important when

pointers (see Chapter 2) are used to manipulate data stored in memory. It is more

efficient to point to array elements than variables because the computer moves to the

next memory location when you point to the next array element.

Arrays and Data Structures
Some programmers might say that arrays are the backbone of data structures be-

cause an array enables a programmer to easily reorganize hundreds of values stored

in memory by using an array of pointers to pointers.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is a mouthful to say. So we drew a picture to show you the importance of

arrays in data structures. Figure 3-1 shows memory; you’ll remember this from the

previous chapters in this book. Each block is a byte. We’ll say that two bytes are

needed to store a memory address in memory. You need to store a memory address in

memory because you’ll use it to refer to other memory addresses in the “An Array of

Pointers” section of this chapter.

First, create an array calledletters and assign characters to it, as shown here:

char letters[3];
letters[0] = 'C';
letters[1] = 'B';
letters[2] = 'A';

You’ll notice in Figure 3-1 that each letter appears one after the other in memory.

This is because these values are assigned to elements of an array, and each array ele-

ment is placed sequentially in memory.

Next, create an array of pointers. As you’ll recall from Chapter 2, a pointer is a

variable that contains a memory address of another variable. In this example, you’ll

use an array of pointers instead of a pointer variable.

An array of pointers is nearly identical to a pointer variable except each array ele-

ment contains a memory address. Assign the memory address of each element of the

letters array to elements of theptLetters array, which is an array of pointers.

Here’s how this is done in C and C++:

char * ptLetters[3];
for (int i = 0; i < 3; i++)

ptLetters[i] = &letters[i];

36 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-1 Elements of an array are stored sequentially in memory.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3 What Is an Array? 37

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Remember from Chapter 2 that the ampersand (&), which is called the address

operator, tells the computer to assign the memory address of the element of the

letters array and not the contents of the element.

The final step is to create an array of pointers to pointers and then use it to change

the order of the letters array when printing the letters array on the screen. A

pointer to a pointer is a variable that contains the address of another pointer. In the

example, you use an array of pointers to a pointer where each element of the array is

like a pointer to a pointer variable. That is, each element is assigned an address of

a pointer.

Use the following code to assign the memory address of each element of the

ptLetters pointer array to the ptPtLetters pointer to pointer array. Notice

that you don’t use a for loop. This is because you need to change the order of the

letters array without changing theletters array itself. Figure 3-1 shows how

memory looks after the following code executes. If you printed elements of the

ptPtLetters array, what would be displayed on the screen?

char ** ptPTLetters[3];
ptPtLetters[0] = &ptLetters[2];
ptPtLetters[1] = &ptLetters[1];
ptPtLetters[2] = &ptLetters[0];

Here is the code that prints the ptPtLetters array:

for (i = 0; i <3; i++)
cout << **ptPtLetters[i] << endl;

The answer to the question isABC. Follow Figure 3-1 as we explain how this works.

The first element of the ptPtLetters array is located at memory address 10. The

content of memory address 10 is 8, which is memory address 8 because memory address

10 is the last element of the array ptLetters—a pointer. The value of memory ad-

dress 8 is 3, which is the memory address of the third element of the array letters.

When the computer sees theptPtLetters[i] statement for the first time, it goes

to the array elementptPtLetters[0] and reads its value, which is 8. The computer

then goes to memory address 8 and reads its content because memory address 8 is a

pointer. The content of memory address 8 is 3, which is the memory address of the third

element of the letters array. The computer reads the content of memory address 3

and displays the content on the screen.

This can be a bit tricky to follow unless you use Figure 3-1 as a guide; you can also

use Figure 3-1 to explain how the computer displays the other letters.

The importance of using arrays for data structures is that you can easily change

the order of data by using pointers and pointers to pointers without having to touch

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

38 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

the original data. Some smart programmer might tell you that you’re not saving any

time or memory by using pointers and pointers to pointers to rearrange an array of

characters. The programmer is correct. However, we’re juggling characters to illus-

trate how arrays and pointers to pointers work. In the real world, pointers typically

point to a whole group of information such as a client’s name, address, phone num-

ber, and other pertinent data. Instead of juggling all that information, you need only

to juggle memory addresses.

Declaring an Array
The way to declare an array depends on the programming language used to write

your program. In Java, there are two techniques for declaring an array. You can de-

clare and initialize an array either where memory is allocated at compile time or

where memory is dynamically allocated at runtime. Allocation is another way of

saying reserving memory.

Let’s begin by declaring an array where memory is reserved when you compile

your program. This technique is similar in Java, C, and C++, except in Java you must

initialize the array when the array is declared. There are four components of a state-

ment that declares an array. These components are a data type, an array name, the total

number of array element to create, and a semicolon (;). The semicolon tells the com-

puter that the preceding is a statement. Here’s the declaration statement in C and C++:

int grades[10];

In Java, you must initialize the array when the array is declared as shown here.

The size of the array is automatically determined by counting the number of values

within the braces. Therefore, there isn’t any need to place the size of the array within

the square brackets:

int[] grades = {0,0,0,0,0,0,0,0,0,0};

The data type is a keyword that tells the computer the amount of memory to re-

serve for each element of the array. In this example, the computer is told to reserve

enough memory to store an integer for each array element.

The array name is the name you use within a program to reference an array ele-

ment. The array name in this example is grades. The number within the square

brackets is the total number of elements that will be in the array. The previous state-

ments tell the computer to create an array of 10 elements.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Avoid making a common rookie mistake. Previously in this chapter you learned

that the index for the first array element is zero, not one. Therefore, the tenth array

element has the index value 9, not 10.

Some programs confuse an index with the total number of array elements. That is,

they use the value 9 within the square brackets when declaring an array because they

assume they are declaring 10 elements. In reality, they are declaring an array of 9 ele-

ments. The confusion stems from the fact that 9 is the index to reference the tenth

array element.

With a little practice you can avoid making this mistake. Remember that the value

within the square brackets in the statement that creates an array is not an index, al-

though it resembles an index. This value is the number of array elements you need.

That is, you insert the number 10 within the square brackets if you need 10 array ele-

ments. You use the index value of 9 if you want to access the tenth element.

In order to allocate memory at compile time, you must know the number of array

elements that you need. Sometimes you don’t know this, especially if your program

loads the array with data stored in a database. The amount of data stored in a data-

base typically fluctuates.

The solution in Java is to allocate memory at runtime. Programmers call this dy-

namically allocating memory. You dynamically allocate memory by using the new
operator when declaring the array, as shown here:

int grades[] = new int[10];

This example looks a little strange, but it creates the same array as is created in the

previous example. There are three things happening in this statement.

First, thenewoperator tells the computer to reserve 10 array elements, each the size

of anintdata type. Thenewoperator returns a reference to the allocated memory.

Next, a reference to anintdata type calledgrades is declared (intgrades[]).

Last, the reference to the memory allocation returned by the new operator is as-

signed to the reference declared in the program.

This can be confusing even for experienced programmers to understand. If you’re

confused, remember this visitor’s locker room example: a stadium has a locker room

with “Visitors” on the door. This is similar to the reference grades[].The visitor’s

locker room refers to the visiting team similar to the way grades[] refers to allo-

cated memory: each game brings in a different visiting team who is assigned to the vis-

itor’s locker room. This is similar to assigning allocated memory to the reference

grades[].

CHAPTER 3 What Is an Array? 39

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Multidimensional Arrays
The array described in this chapter is referred to as a one-dimensional array because

the array consists of one series of elements. However, an array can have more than

one series of elements. This is called a multidimensional array.

A multidimensional array consists of two or more arrays defined by sets of array

elements, as shown in Figure 3-2. Each set of array elements is an array. The first set

of array elements is considered the primary array, and the second and subsequent

sets of array elements are considered subarrays.

There are two arrays in the multidimensional array shown in Figure 3-2. Each ele-

ment of the first array points to a corresponding array. For example, letters[1]
in Figure 3-2 points to the array beginning with array element letters[1][0]
where the zero is the first element of the second array.

Although you can create an array with any size multidimension, many program-

mers limit an array to two dimensions. Any size greater than two dimensions be-

comes unwieldy to manage.

An analogy we find helpful is visualizing a table (rows and columns) for a two-di-

mensional array and a cube (or similar figure) for a three-dimensional array.

Why Use a Multidimensional Array?
A multidimensional array can be useful to organize subgroups of data within an

array. Let’s say that a student has three grades, a mid-term grade, a final exam grade,

40 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-2 A two-dimensional array is a multidimensional array consisting of

two arrays.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and a final grade. You can store all three grades for an endless number of students

in a two-dimensional array, as shown in Figure 3-3.

Figure 3-3 declares a multidimensional array of integers. The first set of array ele-

ments contains three array elements, one for each student. The second set of array

elements has four array elements. The first of the four elements contains the stu-
dent ID and the other three contain the three grades for that student ID.

In addition to organizing data stored in elements of an array, a multidimensional

array can store memory addresses of data in a pointer array and an array of pointers

to pointers, which are discussed later in “An Array of Pointers to Pointers.”

Multidimensional Array in Memory
Data stored in a multidimensional array is stored sequentially by sets of elements, as

shown in Figure 3-4. The first set of four array elements is placed in memory, fol-

lowed by the second set of four array elements, and so on.

The name of a multidimensional array references the memory address of the first

element of the first set of four elements. That is, grades is the equivalent of using

memory address 1 in Figure 3-4. You can use the name of a multidimensional array

as a pointer to the entire array.

The index of the first element of the first set of array elements points to the mem-

ory address where values assigned to array elements are stored.

CHAPTER 3 What Is an Array? 41

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-3 All three grades can be stored in a multidimensional array.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Referencing the index of the first dimension points to the memory address of the

first element of that dimension. For example, referencing grades[1] points to

memory address 9 in Figure 3-4. Memory address 9 is the first memory address of

contiguous memory where values of the second set of array elements that are associ-

ated with grades[1] are stored.

Declaring a Multidimensional Array
A multidimensional array is declared similar to the way you declare a one-dimen-

sional array except you specify the number of elements in both dimensions. For ex-

ample, the multidimensional array shown in Figure 3-3 is declared as follows in C or

C++:

int grades[3][4];

The first bracket ([3]) tells the compiler that you’re declaring 3 pointers, each

pointing to an array. This concept might be confusing because the term “pointer”

may make some programmers think of pointer variable or pointer array, which

you’ll learn about later in this chapter. However, we are not talking about a pointer

variable or pointer array. Instead, we are saying that each element of the first dimen-

sion of a multidimensional array reference a corresponding second dimension,

which is an array.

In this example, all the arrays pointed to by the first index are of the same size. The

second index can be of variable size. For example, the previous statement declares a

two-dimensional array where there are 3 elements in the first dimension and 4 ele-

ments in the second dimension.

The element grades[0] is said to “point” (just as you use your finger to point)

to the second dimension of the array, which is referenced as grades[0][0]. The

second dimension is considered an array. Therefore, programmers say that the first

element of a multidimensional array points to another array (that is, the second

dimension).

The data type tells the computer that each element of the array will contain an

integer data type. The data type is followed by the array name and two values that

42 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-4 Elements of a multidimensional array are stored sequentially in memory.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

indicate the size of each dimension used for the array. In this case, there are three sets

of four array elements.

You declare a multidimensional array and initialize its elements by using French

braces, as shown in Figure 3-5. There are three sets of inner French braces. Each of these

sets represents the first dimension of the array. There are four values within each set of

inner French braces. These values are assigned to each element of the second dimension

of the array.

Assigning Values to a Multidimensional Array
You assign a value to an element of a multidimensional array with an assignment

statement similar to the assignment statement that assigns a value to a single-dimen-

sional array, as shown here:

grades[0][0] = 1001;

You must specify the index for both dimensions. In this example, the integer1001,

which is a student ID, is assigned to the first element of the first set of elements in the

grades array.

Referencing the Contents of
a Multidimensional Array
The contents of elements of a multidimensional array can be used in a program by

referencing the index of both dimensions of the array element. Figure 3-6 shows you

how to display the final exam grade for the second student.

CHAPTER 3 What Is an Array? 43

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-5 Braces define sets of values to be assigned to array elements (the top

example is C and C++ and the bottom example is Java).

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the student ID is displayed by referencing the first element of the

second set, and the grade for the final exam is displayed by referencing the third ele-

ment of the second set.

Pointers and Arrays
There is a close-knit relationship between a pointer and an array. The array name is

like a pointer variable in that the array name by itself references the address of the

first element of the array. Confused? We’ll give you an example (see Figure 3-7) to

show how this works.

Java doesn’t permit a programmer to use pointers, so we use C++ code in Figure 3-7.

The example begins by declaring an array of characters calledletters that consists of

44 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-6 Display the contents of array elements by referencing the index of both sets

of array elements.

Figure 3-7 Use the array name as a pointer to the first array element.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 elements. Also declared is a character pointer calledptLetters. (You learned about

pointers in Chapter 2.)

Next, the character A is assigned to the first element of the array. The address of

the first array element is then assigned to the pointer variable. Figure 3-8 gives you a

glimpse of memory once the address of the first array element is assigned to the

pointer.

Figure 3-7 displays the letterA twice. The first time is by using the name of the ar-

ray as a pointer. Only the name of the array is used—the square brackets and index

are not. The A is displayed the second time by using the pointer. Using the asterisk

dereferences both the array name and the pointer. (You learned about dereferencing

in Chapter 2.)

You might be wondering why you’d use the array name as a pointer to the first ele-

ment of the array. Programmers do this to use pointer arithmetic (see the “Pointer

Arithmetic” section of Chapter 2) to access each array element without having to

reference an array index.

An Array of Pointers
Previously, you learned that pointers are the backbone of data structures. Some pro-

grammers feel that an array of pointers, also known as a pointer array, is the back-

bone of pointers. An array of pointers is an array whose elements are pointers. That

is, the value of each array element is a memory address similar to a pointer variable,

which you learned about in Chapter 2.

The benefit of using an array of pointers instead of several pointer variables is that

you can use a for loop to step through each element of the array to access memory

addresses that are assigned to the array. You’ll need to do this to efficiently access

and reorder values stored in memory.

An array of pointers is not available in all programming languages. For example,

Java doesn’t let programmers use pointers, so you won’t be able to create an array of

pointers in Java. However, you can create an array of pointers in C and C++.

NOTE: It is technically incorrect to say that Java doesn’t use pointers. Java does

use pointers, but a programmer doesn’t explicitly declare them. You can declare an

array whose data type is a Java object, and this is in fact an array of pointers. The

value of each array element is an object. When you switch those values to other

array elements, you are moving memory addresses and not the object itself.

CHAPTER 3 What Is an Array? 45

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

An array of pointers is declared using nearly the same format as declaring an

array of data types, with one exception. The name of the array must be preceded with

an asterisk, as shown here:

char *grades[10];

The asterisk tells the computer that the array is a pointer array where each element

can contain a memory address. The data type in this declaration statement tells the

computer that memory addresses stored in array elements are memory addresses

that contain a char value. This is the same pointer variable concept you learned in

Chapter 2.

As you probably recall from your programming course, a computer copies the

value of a variable in an assignment statement, as shown in the next example. The

first two statements in this example reserve a memory location large enough to store

a char and associate those memory addresses with the names finalGrade and

recordedGrade. The first statement also stores the value A in memory. The last

statement copies the value stored in the memory location represented by

finalGrade to the memory address represented by the recordedGrade.

char finalGrade = 'A';
char recordedGrade;
recordedGrade = finalGrade;

You assign a memory address of a variable to an element of an array of pointers by

placing the address operator (&) in front of a variable name in an assignment state-

ment to reference the variable. The ampersand (&) returns a pointer, and an asterisk

(*) dereferences the pointer and tells the computer that you want the value pointed to

by the pointer.

Referencing tells the computer to copy the memory address of the variable instead

of copying the value stored in the memory address. This is illustrated in the next

Figure 3-8 Memory allocation after the pointer is assigned the address of the first

array element

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

example where the address of the finalGrade variable is referenced, resulting in

the memory address of the finalGrade variable being assigned to the first ele-

ment of the ptRecordedGrades array. The ptRecordedGrades is an array

of pointers.

char finalGrade = 'A';
char *ptRecordedGrades[10];
ptRecordedGrades[0] = &finalGrade;

Programmers use an array of pointers in two ways: they use the address assigned

to array elements, and they use the content of the memory address assigned to an

array element. Let’s take a look at how to use addresses stored in an array of pointers.

The following example initializes three variables with grades and declares two

pointer arrays called ptGradeBook and ptRecordedGrade. The addresses of

the three variables are then assigned to each element of theptGradeBook pointer

array. A for loop then copies memory addresses stored in the ptGradeBook ar-

ray to the ptRecordedGrade array. Notice that the ampersand is not used in this

assignment expression because we want the content of each array element to be cop-

ied to the ptRecordedGrade array.

char bobGrade = 'A';
char maryGrade = 'B';
char amberGrade = 'A';
char *ptGradeBook[3];
char *ptRecordedGrade[3];
ptGradeBook [0] = &bobGrade;
ptGradeBook [1] = &maryGrade;
ptGradeBook [2] = &amberGrade;
for (int i = 0; i < 3; i++)

ptRecordedGrade[i] = ptGradeBook[i];

Now we’ll modify this program slightly in the next example by changing the

ptRecordedGrade array from an array of pointers to an array of integers. We’ll

then use thefor loop to copy the contents of the variables to therecordedGrade
by using the pointer array, as shown here:

char bobGrade = 'A';
char maryGrade = 'B';
char amberGrade = 'A';
char *ptGradeBook[3];
char recordedGrade[3];
ptGradeBook [0] = &bobGrade;
ptGradeBook [1] = &maryGrade;
ptGradeBook [2] = &amberGrade;

CHAPTER 3 What Is an Array? 47

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for (int i = 0; i < 3; i++)
recordedGrade[i] = *ptGradeBook[i];

The last statement in this example dereferences each element of the

ptGradeBook array by preceding the name of the array with an asterisk. This tells

the computer to first go to the memory address stored in the array element and then

copy the value stored at the memory address to the element of therecordedGrade
array element (see Figure 3-9).

An Array of Pointers to Pointers
The supercharger of pointers is an array of pointers to pointers because an array of

pointers to pointers enables you to reorganize tons of data in memory by simply re-

ferring to memory addresses. You were introduced to arrays of pointers to pointers at

the beginning of this chapter. You’ll now learn the ins and outs of using them.

Be forewarned: an array of pointers to pointers is one of the most abstract con-

cepts to grasp in programming. Therefore, it is critical that you draw a picture of

computer memory as you analyze a program that uses an array of pointers to point-

ers; otherwise, you are bound to become unnecessarily frustrated.

Let’s begin by recalling the basics. It probably seems that you read these terms count-

less times in the last chapter and this chapter, but these terms are so important to under-

standing an array of pointers to pointers that we’ll talk about them one more time.

A variable is a reference to a memory location used to store data that is described

in a data type. A pointer variable is the same as a variable except its contents are the

memory address of another variable. A pointer to a pointer, which you learned about

in Chapter 2, is a pointer variable. The contents of the pointer variable is a memory

address of another pointer variable.

48 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-9 Using the content pointed to by an array of pointers

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More on an Array of Pointers to Pointers
Before we show you how to use an array of pointers to pointers, let’s be sure that you

understand how arrays, arrays of pointers, and arrays of pointers to pointers join

forces to rearrange tons of data efficiently.

Think of an array as the storage place of the tons of data. The last thing you want to do

is to physically reorganize a lot of data in computer memory because it is inefficient.

Think of an array of pointers as the storage place for memory addresses of data stored

in an array. This is like a notepad where you jot down memory addresses of data.

Think of an array of pointers to pointers as the place where you reorganize the

data contained in the array by indirectly rearranging memory addresses contained in

the array of pointers. You can have any number of arrays of pointers to pointers, each

indirectly ordering the content of the array of pointers in a different order.

Let’s say that you have a list of three names, as shown in Figure 3-10. Each name

is assigned to elements of an array in reverse alphabetical order. You can reorder

those names without changing their order in the array by using an array of pointers

and an array of pointers to pointers.

In Figure 3-10, elements of the array of pointers are assigned the memory ad-

dresses of each element of the array. Elements of the array of pointers to pointers are

assigned the memory addresses of elements of the array of pointers. Notice that

these memory addresses are assigned in the reverse order that they appear in the

array of pointers, which indirectly references the array of names in reverse order—

that is, in alphabetical order.

CHAPTER 3 What Is an Array? 49

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-10 An array of pointers to pointers reorganizes names without changing the

order of the array that contains the names.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Declaring and Using an Array of Pointers to Pointers
An array of pointers to pointers is declared nearly the same way as you declare an

array of pointers, except two asterisks (**) are used before the name of the array, as

shown here:

string **ptPTStudents[3];

The data type of an array of pointers to pointers is used a little differently than the

data type of an array of pointers. Previously in this chapter, you learned that the data

type of an array of pointers refers to the data type stored at memory addresses that are

assigned to elements of the pointer array.

Suppose you declared an array of strings and an array of pointers to strings and

then assigned memory addresses of the string array to the pointer array. The data

type of the pointer array is a string data type, which tells the computer that elements

of the pointer array contain memory addresses of strings.

The data type of the array of pointers to pointers corresponds to the data type of

the pointers that are assigned to elements of the array of pointers to pointers. Let’s

say you assign elements of the pointer array to elements of the array of pointers to

pointers. Because the pointer array points to strings, the array of pointers to pointers

must also use the string data type.

The data type of an array of pointers to pointers tells the computer that the mem-

ory address contains a memory address that is a pointer. This pointer contains a

memory address of a string or whatever the data type specified when the pointer is

declared.

Assigning Values to Elements of
an Array of Pointers to Pointers

You assign a value to an element of an array of pointers to pointers the same way you

assign a value to an element of an array of pointers. That is, use the address operator

(&) to reference either a pointer variable or an element of an array of pointers, as

shown here:

ptPTStudents[0] = &ptStudents[0];

You’ll recall that the address operator tells the computer to assign the memory

address of a pointer variable or array element to the element of the array of pointers

to pointers, not the value stored at that address. The previous example assigns the

memory address of a pointer array to the element of the array of pointers to pointers.

It does not assign the contents of the ptStudents[0], which is also a memory

address.

50 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the Contents of an Array of Pointers to Pointers
Accessing the contents of an element of an array of pointers to pointers is nearly

identical to the way the content of an element of a pointer array is accessed. Previ-

ously, you learned that you dereference an element of a pointer array when you want

to tell the computer to use the content of the element, as shown here:

cout << *ptStudents[0] << endl;

An element of an array of pointers to pointers is accessed by using two asterisks

(**), as shown in this statement:

cout << **ptPTStudents[0] << endl;

Pointers to Pointers in Action
Now that you have a firm grasp on arrays and an array of pointers to pointers, we’ll

show you how you can harness the power of the array. Figure 3-10 is a diagram of how

an array containing three names is reordered using a pointer array and an array of

pointers to pointers. Figure 3-11 shows how to do this in C and C++. Remember that

Java does not permit programmers to use pointers directly, but understanding how

pointers work in C and C++ will help you understand how pointers are used in Java.

The program begins by declaring an array of strings calledstudents that is ini-

tialized with the names of three students. Notice the order of these names. The pro-

gram will use an array of pointers to pointers to reverse this order.

CHAPTER 3 What Is an Array? 51

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Figure 3-11 Using a pointer array and an array of pointers to pointers to display the

contents of an array of strings

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

52 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

Once the array of strings is declared, the program declares a pointer array and an

array of pointers to pointers, both of which have three elements. Two integers are

then declared and used as control variables for the for loop.

The firstfor loop displays elements of thestudents array to show the original

order in which names are stored in the array, as shown in the left stack in Figure 3-10.

The secondfor loop assigns memory addresses of each element of thestudents
array to elements of the pointer array, as shown in the center stack in Figure 3-10.

The third for loop uses the ptStudents array of pointers to display students

contained in thestudents array. Names appear in the same order shown in the left

stack in Figure 3-10.

The fourthfor loop assigns the memory address of each element in the pointer array

to elements of the array of pointers to pointers, which is called ptPtStudents. This

is where the program reorders names of thestudents array. It may look confusing at

first glance, but here’s what is happening.

Thei control variable is initialized to 0, and thex control variable is initialized to 2.

These determine the starting points in the array of pointers to pointers and the pointer

array. The ptPtStudents pointer to pointer array begins with the first element,

while the ptStudents array pointer begins with the last element. This is because

the program reverses the order in which names appear in the students array. The

last name will appear first in the reordered list.

Each time thefor loop is looped, the value of thei variable is incremented, causing

the program to move to the second and third elements of theptPtStudents array of

pointers to pointers. At the same time, the value of the x variable is decremented, caus-

ing theptStudents pointer array to move to the second and first elements, as shown

in the right stack in Figure 3-10.

The fifth for loop steps through elements of the ptPtStudents array of

pointers to pointers displaying the corresponding name in the students array on

the screen.

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is the difference between an array element and a variable?

2. What is an array of pointers?

3. How do you assign an address to an element of a pointer array?

4. What is an array of pointers to pointers?

5. How do you assign a value to an element of an array of pointers to pointers?

6. How do you display the contents of the memory addresses stored in an

element of a pointer array?

7. Why would you use an array of pointers to pointers?

8. How do you declare an array?

9. How do you display the contents of the memory addresses stored in an

element of an array of pointers to pointers?

10. How are elements of an array stored in memory?

CHAPTER 3 What Is an Array? 53

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 3

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 54

P:\010Comp\DeMYST\359-2\ch03.vp
Monday, February 02, 2004 1:18:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
4

Stacks Using
an Array

The term “stack” is one of the magical and sometimes imposing terms used in

computer programming that seems to imply an abstract concept that only a Ph.D.

from MIT—whoops, we should say Columbia University—can understand. Yet you

actually know all about stacks because you use a stack when playing cards, making

pancakes, and storing laundry. A stack is the way you groups things together by

placing one thing on top of another and then removing things one at a time from the

top of the stack. It is amazing that something this simple is a critical component of

nearly every program that is written. In this chapter, you’ll learn how to create and

use a stack in your programs.

55

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

56 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

A Stack
When you hear the term “stack” used outside the context of computer programming,

you might envision a stack of dishes on your kitchen counter. This organization is

structured in a particular way: the newest dish is on top and the oldest is on the bottom

of the stack.

Each dish in a stack is accessed using fifo: first in, first out. The only way to access

each dish is from the top of the stack. If you want the third dish (the third oldest on

the stack), then you must remove the first two dishes from the top of the stack. This

places the third dish at the top of the stack making it available to be removed.

There’s no way to access a dish unless the dish is at the top of the stack. You might

be thinking stacks are inefficient, and you’d be correct if the objective was to ran-

domly access things on the stack. There are other data structures that are ideal for

random access, which you’ll learn about throughout this book.

However, if the object is to access things in the order in which they were placed on

the stack, such as computer instructions, stacks are efficient. In these situations, using

a stack makes a lot of sense.

NOTE: Stacks and arrays are often bantered about in the same discussion, which

can easily lead to confusion, but they are really two separate things (see Figure 4-1).

An array stores values in memory; a stack tracks which array element is at the top

of the stack. When a value is popped off the stack, the value remains in memory

because the value is still assigned to an array element. Popping it only changes the

array element that is at the top of the stack.

Inside a Stack
Programmers use arrays to store values that are referenced by a stack. As you’ll recall

from Chapter 3, an array consists of a series of array elements, each of which is similar

in concept to a variable. The stack contains the index of the array element that is at

the top of the stack.

Figure 4-1 is the way some programmers envision an array used with a stack. This

example shows an array called stackwith 8 array elements. The entire array con-

tains values that are referenced by the stack. Three array elements are assigned values,

while the other array elements are empty and can be used when new items are placed

on the stack (see the upcoming section “Push”).

Mike is the first value placed on the stack. You know this because Mike is at the

bottom of the stack. Bob is the last item placed on the stack because Bob is the top

item on the stack.

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Stacks Using an Array 57

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

Push
Programmers use the term “push” to mean placing an item on a stack. Push is the di-

rection that data is being added to the stack. Think of this as pushing items down on the

stack to move the items already on the stack down to make room for the next item.

Here’s what actually happens. The new value is assigned to the next available array

element and the index of that array element becomes the top of the stack, as shown

in Figure 4-2. The program increments the current index of the stack by 1. In this ex-

ample, the index is incremented by 1, resulting in index 3 being at the top of the

stack, which is the index of the new values assigned to the array.

Figure 4-1 A stack and an array are two different things: an array stores values in

memory; a stack tracks which of the array elements is at the top of the stack.

Figure 4-2 The new value is assigned to the next array element and its index

becomes the top of the stack.

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

58 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

Pop
Popping is the reverse process of pushing: it removes an item from the stack. It is im-

portant to understand that popping an item off the stack doesn’t copy the item. Once an

item is popped from the stack, the item is no longer available on the stack, although the

value remains in the array.

Here’s what really happens. Remember that the top of the stack contains an index of

the array element whose value is at the top of the stack. In Figure 4-2, index 3 is at the

top of the stack, which means New Value in array element 3 is at the top of the stack.

When you pop New Value from the stack, you decrement the index at the top of

the stack. That is, you make its index 2 instead of 3. This makes Bob the new value

at the top of the stack (see Figure 4-3). Notice that New Value and array element 3

remain untouched in the array because popping a value from the stack only alters the

stack, not the underlying array.

Creating a Stack in C++
You can create a stack in C++ by defining a stack class and declaring an instance of

the class. The Stack class requires three attributes and several member functions,

which are defined as you learn about them. You’ll begin by defining a basic stack

class that has only the components needed to create the stack.

Figure 4-3 All values move toward the top of the stack when the top item is popped off

the stack.

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The class is calledStack, but you can call it any name you wish. This class defi-

nition is divided into a private access specifier section and a public access specifier

section. The private access specifier section has attributes and member functions

(although not in this example) that are accessible only by a member function defined

in this class. The public access specifier section has attributes (although not in this

example) and member functions that are accessible by using an instance of the class.

The private access specifier section of the Stack class defines three attributes:

size, top, and values, all of which are integers. The size attribute stores the

number of elements in the stack, thetop attribute stores the index of the top element

of the stack, and thevalues attribute is a pointer to the stack, which is an array. The

stack in this example is a stack of integer values, but you can use an array of any data

type, depending on the nature of your program.

Only one member function is defined in the Stack class, although we’ll define

other member functions for the class in upcoming sections of this chapter. For now,

let’s keep the example simple and easy to understand.

This member function is called Stack, which is the constructor of the class. A

constructor is a member function that has the same name as the class and is called

when an instance of the class is created. The code for this is on the next page.

Several things are happening in the constructor. First, the constructor receives an

integer as an argument that is passed when the instance of the Stack class is de-

clared. The integer determines the number of elements in the stack and is assigned to

the size variable.

The first statement might look a bit confusing. It appears that the value of thesize
variable from the argument list is being assigned to itself, but that’s not the case.

Actually, the size variable from the argument list is local to the Stackmember func-

tion. The this->size combination refers to the size attribute of the Stack class,

as shown here:

this->size = size;

Programmers use thethispointer within a member function to refer to the current

instance of the class. In this example, thethispointer uses the pointer reference (->)

to tell the computer to use the size attribute of the class. As you’ll remember from

your C++ programming class, the pointer reference is used when indirectly working

with a class member, and the dot operator is used when you are directly working with

a class member.

This allows the compiler to distinguish between a class variable and local variable

that have the same name. This means that the value of thesizevariable that is passed as

an argument to the Stackmember function is assigned to the size attribute, making

the value available to other members of the Stack class.

CHAPTER 4 Stacks Using an Array 59

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can see how the size attribute is used in the next statement. This statement

does two things. First, it allocates memory for the stack by using the new operator

(newint[size]). Thenew operator returns a pointer to the reserved memory lo-

cation. The size is thesize attribute of the class and determines the size of the array.

The array is an array of integers.

Next, the pointer to the array of integers is assigned to the values attribute of the

class. Thevalues attribute is a pointer variable that is defined in the private attribute

section of the Stack class.

The last statement in the Stackmember function assigns a –1 to the top attrib-

ute. The value of the top attribute is the index of the top element of the stack. A –1

means that that stack doesn’t have any elements. Remember from your program-

ming class that index values are memory offsets from the start of the array. Index 0

means “move 0 bytes from the start of the array.” So index –1 is just a convenient way

to say that the stack is empty.

We’ll expand on the definition of theStack class in the next section, but for now

let’s create an instance of the Stack class. The instance is declared within the

main() function of this example. Three things are happening here. First, the new
operator is creating an instance of the stack in memory. Thenew operator returns

a pointer to that memory location.

Next, the statement declares a reference to the stack, which is called myStack.

The reference is a pointer. The final step is to assign the pointer returned by the new

operator to the reference. You then use the reference (myStack) as the name of the

instance of the Stack class throughout the program.

public class Stack
{

private:
int size;
int top;
int* values;

public:
Stack(int size)
{

this->size = size;
values = new int[size];
top = -1;

}
};
void main(){

Stack *myStack = new Stack(10);
}

60 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Push Member Function in C++
Now that you’ve seen how to define a class that creates a stack, we’ll show you how

to define additional member functions that enable the class to push values onto the

stack. Pushing a value onto the stack is a two-step process. First, you must determine

if there is room on the stack for another value. If there is, you push the value onto the

stack; otherwise, you don’t.

We’ll create different member functions for each step, beginning by defining a

member function that determines if there is room on the stack. We’ll call it

isFull() and define it in the following code. TheisFull()member function is

simple. It compares the value of the top attribute with the one less than the value of

the size attribute.

The value of the top attribute is –1 when the instance of the stack is declared.

Suppose the value of size is 10. The condition expression in the if statement of

the isFull() member function determines if the value of top, which is –1, is 1

less than the value ofsize. Since the value ofsize is 10, the condition expression

compares –1 < 9. Iftop is greater than or equal to 9, then atrue is returned; other-

wise, a false is returned.

Why do you subtract 1 from the size of the stack? The value of thetop attribute is

an index of an array element. Remember that the index begins with zero. In contrast,

the size is actually the number of array elements in the stack. Therefore, the tenth array

element on the stack has an index of 9.

bool isFull()
{

if(top < size-1)
{

return false;
}
else
{

return true;
}

}

With the isFull() member function defined, we’ll move on to defining the

push() member function, as shown in the next example. The push() member

function pushes a value onto the stack. The value being pushed onto the stack is

passed as an argument to thepush()member function and is assigned to the variable

x in this example.

Before doing anything else, the push()member function determines if there is

room on the stack by calling the isFull() member function in the condition

CHAPTER 4 Stacks Using an Array 61

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

62 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

expression of the if statement. The condition expression might look a little strange

because the call is preceded by an exclamation point (!) so we’ll take apart the condi-

tion expression to explain what is really happening here.

Remember from your programming classes that statements within anif statement

execute only if the condition expression is true. This means the condition expres-

sion must be true for the value passed to the push() member function to be

placed on the stack.

Here’s a slight problem. We’re calling theisFull()member function to deter-

mine if there is room on the stack for another value. However, theisFull()member

function returns false if there is room and true if there isn’t room. A false
causes the push() member function to skip statements that place the value on the

stack. We really need the isFull() member function to return a true if there is

room available, not afalse. Rather than rewrite theisFull()member function,

we use the exclamation point to reverse the logic. As you remember from your pro-

gramming class, the exclamation point is the not operator—that is, a false is

treated as a true, which causes the value to be placed on the stack.

There are two statements within theif statement. The first statement increments

the value of thetop attribute, which is the index of the last value placed on the stack.

If the stack is empty, then the current value of the top attribute is –1. Incrementing –1

changes the value of the top attribute to 0, which is the index of the first array ele-

ment of the stack. The last statement in the if statement assigns the value passed to

the push() member function to the next available array element.

void push(int x)
{

if(!isFull())
{

top++;
values[top] = x;

}
}

Creating a Pop Member Function in C++
We still need a way to remove values from the stack. To do this, we need to define

two additional member functions, isEmpty() and pop(). The isEmpty()
member function determines if there are any values on the stack. The pop()mem-

ber function removes the value from the top of the stack.

Let’s define the isEmpty() member function in this next example. The

isEmpty()member function contains anif statement. The condition expression

of theif statement compares the value of thetop attribute to –1. Remember that –1

is the initial value of the top attribute when the instance of a stack is declared. If the

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Stacks Using an Array 63

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

top attribute is equal to –1, then atrue is returned because the stack is empty; other-

wise, a false is returned.

bool isEmpty()
{

if(top == -1)
{

return true;
}
else
{

return false;
}

}

Thepop()member function of theStack class has the job of changing the index

that is at the top of the stack and returning the value of the corresponding array to

the statement that calls the pop()member function. The next example defines the

pop() member function.

The first statement in the definition declares an integer variable called retVal
that stores the value returned by the pop() member function. The retVal is ini-

tialized to zero.

Next, the isEmpty()member function is called in the condition expression

of the if statement to determine if there is a value at the top of the stack. Notice the

exclamation point reverses the logic as it did in the pop() member function.

Statements within the if statement should only execute if the isEmpty()
member function returns a false, meaning the stack is not empty. Therefore, we

need to use the exclamation point to reverse the logic of the condition expression to

make the condition expressiontrue if theisEmpty()member function returns

a false.

Two steps occur within the if statement. First, the value at the top of the stack is

assigned to the retVal variable by referencing the values array using the index

contained in the top attribute. Next, the value of the top attribute is decremented.

The return retVal is then returned by the pop() member function.

int pop()
{
int retVal = 0;
if(!isEmpty())
{

retVal = values[top];
top--;

}
return retVal;

}

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Stack in Java
Many of the basic concepts that create a stack in C++ also create a stack in Java, as

you’ll see in the following example. The Stack class definition contains all the

members that are found in the definition of theStack class in the C++ example, al-

though the format of these class definitions is slightly different.

Java doesn’t permit the class definition to be grouped into private and public ac-

cess specifier sections. Instead, the keywords private and public precede the

name of the member. In this example, the attributessize andtop and the reference

to the values array are private and accessible only by a member method of the class.

Stack is a member method that is a constructor of the Stack class. Previously,

you learned that a constructor is a member method that is called when an instance of

the class is created. TheStack constructor requires that an integer representing the

size of the stack be passed to its argument list.

Statements within the Stack constructor are similar to the statements within

the Stack constructor in the C++ version of the Stack class. The first statement

assigns the integer passed to the Stack constructor to the size attribute of the

Stack class by using the this pointer.

The next statement declares an array of integers using thenew operator, which re-

turns a reference to the memory location of the array. This reference is assigned to

the values attribute, which is a reference to an array of integers.

The last statement assigns –1 to thetop attribute. As you’ll recall, thetop attrib-

ute contains the index of the array element that is at the top of the stack. The value –1

means that the stack is empty.

Beneath the Stack definition in this example is the definition of the

StackExample application class, which is the Java application that creates an in-

stance of theStack class. You’ll remember this statement from your Java program-

ming class. Three things are happening here. On the right side of the assignment

operator, thenew operator declares an instance of the Stack class and passes 10 to

the constructor as the size of the stack. On the left side of the assignment operator,

the statement declares a reference to an instance of the Stack class called

myStack. The last step is that the assignment operator assigns a reference to the

instance of the Stack class returned by the new operator to the myStack refer-

ence. You’ll then use the myStack reference to access public members of the

Stack class.

public class Stack
{

private int size;
private int top;

64 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

private int[] values;
public Stack(int size)
{

this.size = size;
values = new int[size];
top = -1;

}
}
public class StackExample {

void main(String args[]){
Stack myStack = new Stack(10);

}
}

Creating a Push Member Method in Java
The Java versions of the push() member method also require that you define an

isFull()member method to determine if room is available to place another value

on the stack. The next example shows the definition of the isFull() member

method.

Notice that this is nearly identical to the C++ version, with two exceptions. The

method name begins with the keyword publicmaking it callable from within the

program using the instance of theStack class. In the C++ version, the isFull()
member method was placed beneath the public access specifier section of the class

definition. The other difference is the keyword that designates the data type of the

return value. In C++,bool is the keyword for a Boolean data type; the equivalent in

Java is boolean.

Inside the isFull()member method, the condition expression in the if state-

ment determines if the value of the top attribute (index) is less than one less the

value of the size attribute (total number of array elements).

public boolean isFull()
{

if(top < size-1)
{

return false;
}
else
{

return true;
}

}

CHAPTER 4 Stacks Using an Array 65

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

66 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

The Java version of the push()member method is defined in the next example.

This too is nearly identical to the C++ push()member function except the keyword

public precedes the signature of the member method.

The statement calling the push() member method passes it the value that is to be

placed on the top of the stack. This value is assigned to the variable x. Inside the method,

the isFull() member method is called in the condition expression of the if state-

ment to determine if there is room for the new value on the stack. As with C++, you must

reverse the logic of the value returned by the isFull()member method by using the

exclamation point. That is, when a false is returned (room is available on the stack),

the condition expression treats it astrue, enabling statements within theif statement

to be executed.

The first statement in the if statement increments the value of the top attribute,

which you’ll remember is an index. The other statement assigns the value of the variable

x to the array element.

public void push(int x)
{

if(!isFull())
{

top++;
values[top] = x;

}
}

Creating a Pop Member Method in Java
Two methods must be defined to pop a value off the top of the stack in Java. These

are isEmpty() and pop(), both of which are similar to the C++ versions. The

isEmpty()member method, shown in the next example, determines if there is

a value at the top of the stack by comparing the value of the top attribute to –1. The

value –1 is the initial value of the top attribute when the instance of the Stack
class is declared. The comparison is made in the condition expression of the if
statement. Depending on the result of the comparison, either a true or a false is

returned.

public boolean isEmpty()
{

if(top == -1)
{

return true;
}
else
{

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Stacks Using an Array 67

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

return false;
}

}

The pop() member method that is defined in the next example works the same

way as the C++ version. First, an integer variable calledretVal is declared and ini-

tialized to 0. This stores the value that is popped off the top of the stack and returned

to the statement that calls the pop() member method.

TheisEmpty()member method is called in the condition expression of theif
statement to determine if there is a value at the top of the stack. Again, the exclama-

tion point must be used to reverse the logic of the value returned by theisEmpty()
member method. A false is returned if there is a value at the top of the stack. The

exclamation point makes this a true enabling statement within the if statement to

execute.

The first statement within theif statement assigns the value of the top element of

the stack to the retVal variable. The other statement decrements the value of the

top attribute, which brings the next index of the array to the top of the stack.

The last statement in thepop()member method returns the value of the variable

retVal.

public int pop()
{

int retVal = 0;
if(!isEmpty())
{

retVal = values[top];
top--;

}
return retVal;

}

Stack in Action Using C++
Now that you understand how to create and use a stack, we’ll pick up the pace and

explore an industrial-strength stack. You’ve may have heard the term industrial

strength used in relation to programming and may be curious what this really means.

Industrial strength is a term used in industry that implies a product is designed to

withstand stress. Industrial strength can be used to describe any kind of product, but

in this case the product is the program that creates and uses a stack.

Programs used to illustrate the concepts of a stack in this chapter are bare bones

and lack the robust features that are found in industrial-strength programs. A bare-

bones program is what you need when you’re learning the concepts of stacks and

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

68 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

other data structures because the program contains only statements that pertain to

what you are learning.

However, once you learn the concept, you need to see how it’s applied in a real-

world program. That’s what we’ll be exploring in the “Stack in Action” sections of

this chapter. In this section, you’ll take a look at how a stack is created and used in an

industrial-strength C++ program. Later, you’ll see the Java version of this program.

TIP: From your programming classes, you learned to always build error-trapping

routines into your program to properly handle errors should they occur. Always

include such routines in your stack program. Three common errors to trap are

problems allocating memory for the stack, reacting to a full stack, and reacting to an

empty stack.

We’ll use as an example an industrial-strength C++ program that creates and uses

a stack. The program is contained within three files, stack.h, stack.cpp, and

stackDemo.cpp. The stack.h file is a header file that contains the definition

of the Stack class, which is the “blueprint” of the Stack class. The stack.cpp
file is a source code file that contains the implementation of the member functions of

the Stack class. The stackDemo.cpp file contains the source code for the C++

program that declares the instance of the Stack class and calls its member func-

tions. Let’s begin by taking a look at thestack.h header file, which is shown in the

next code example. As you’ll recall from your C++ classes, a header file typically

contains definitions and preprocessor instructions. A preprocessor is a program that

applies preprocessor instructions to source code before the code is compiled.

The stack.h header file contains one preprocessor instruction, #define,

which defines a symbol. Here we’ve defined the symbol DEFAULT_SIZE and

given it a value of 10. The preprocessor then replaces all occurrences ofDEFAULT_
SIZEwith 10 before the code is compiled. TheDEFAULT_SIZE is the default size

of the stack if theno argument is passed to the constructor. Function parameters in C

and C++ can be assigned default values in the function prototype as long as those ar-

guments are at the end of the argument list. If the size value is not passed in, it gets

defaulted to the value of DEFAULT_SIZE, which is 10 in our example.

The stack.h file also contains the definition of the Stack class. The Stack
class definition has the samesize,top, andvalues attributes you saw in the pre-

vious C++ example. However, the definition of member functions is different from

what you saw because member functions are implemented outside the class defini-

tion in thestack.cpp source code file. The header file contains only the prototype

of the functions, which make up the blueprint for the class.

From your C++ class, you’ll remember that only the prototype or signature of a

member function needs to be included in a class definition. The implementation of

the member function can be outside the class definition. There are two important

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

reasons for keeping the definition (header file) and implementation (source) in sepa-

rate files:

• It keeps your development environment cleaner and easier to understand.

• It allows you to provide a commercial software application programmer

interface to a programmer without handing over your source code. You

provide the programmer with your header files, which they will use to

compile their code (they only need header files to compile the code).

You provide your source code in the form of precompiled libraries that

are referenced by the programmer’s program during linking.

The class definition contains signatures of six member functions. The first member

function is calledStack, which is the constructor that you learned about previously

in this chapter. Previously, you learned that the constructor is passed an integer rep-

resenting the size of the stack. In the real-world version, the program sets a default

size that can be overridden when an instance of the class is created in the program.

The default size is specified by using the DEFAULT_SIZE, which is 10 (see

#define).

The next member function is ~Stack() and is the destructor of the class. A de-

structor is the last member function that is called when the instance of the class goes

out of scope and dies. A constructor must always be the same name as the class and

begin with a tilde (~). By definition, destructors cannot accept any arguments. The

purpose of the destructor is to free memory that is used by the stack or do any other

sort of cleanup that’s required.

The remaining member functions are the same functions that you learned about

previously in this chapter.

//stack.h
#define DEFAULT_SIZE 10
class Stack
{
private:

int size;
int top;
int* values;

public:
Stack(int size = DEFAULT_SIZE);
virtual ~Stack();
bool isFull();
bool isEmpty();
void push(int);
int pop();

};

CHAPTER 4 Stacks Using an Array 69

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Thestack.cpp file is a source code file that contains the implementation of the

Stack class’s member functions. We placed these in a different file from the class

definition because it is easier to read and maintain as well as for other reasons ex-

plained previously.

The file begins with the preprocessor instruction#include that tells the computer

to evaluate the contents of thestack.h file before compiling thestack.cpp file

so it “knows” about the Stack class definition before compiling the program.

Member functions in thestack.cpp file will be familiar to you because all except

one are the same member functions that you learned about previously in the chapter.

However, the names of the member functions might be confusing at first glance be-

cause each name begins with the name of the class followed by two colons (::). The

two colons are called the scope resolution operator.

You must precede the name of a member function with the class name and

scope resolution operator if the member function is defined outside the class defini-

tion. Think of this as telling the computer that the member function belongs to the

Stack class.

The~Stack()member function frees memory used by the stack. It does this by

using thedelete operator and referencing the name of the array used for the stack.

In this example, values is the name of the array.

To avoid memory leaks, freeing memory is important whenever memory is

dynamically allocated. The square brackets ([]) are used with delete because the

object being removed from memory was dynamically created.

The stack.cpp is compiled as you would compile any source code. The result

is an object file that is joined together with the compiled stackDemo.cpp source

code file by the linker to create an executable program called a load module.

//stack.cpp
#include "stack.h"
Stack::Stack(int size)
{

this->size = size;
values = new int[size];
top = -1;

}
Stack::~Stack()
{

delete[] values;
}
bool Stack::isFull()
{

if(top < size-1)
{

70 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return false;
}
else
{

return true;
}

}
bool Stack::isEmpty()
{

if(top == -1)
{

return true;
}
else
{

return false;
}

}
void Stack::push(int x)
{

if(!isFull())
{

top++;
values[top] = x;

}
}
int Stack::pop()
{

int retVal = 0;
if(!isEmpty())
{
retVal = values[top];
top--;

}
return retVal;

}

Finally, we come to the stackDemo.cpp program, which is the C++ program

that creates the instance of theStack class. The first statement creates the stack in a

three-step process. The first step is to use the new operator to allocate space in mem-

ory for theStack class by calling the constructor of the class. Thenew operator re-

turns the memory location of the stack. The second step is to declare a pointer called

stack. The last step is to assign the memory location returned by the new operator

to the stack pointer.

CHAPTER 4 Stacks Using an Array 71

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

72 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

In this example, we used the default size for the stack, which is 10 elements. We can

pass the Stack() constructor an integer to change the size of the stack.

Thepush()member function is called three times. Each time a different value is

placed on the stack. Notice that the -> pointer is used instead of the dot operator.

You must do this because stack is a pointer to an instance of the class and not the

instance itself.

The last portion of the stackDemo.cpp program calls the pop() member

three times. Each time a value is removed from the top of the stack and displayed on

the screen.

//stackDemo.cpp
void main() {

Stack *stack = new Stack();
stack->push(10);
stack->push(20);
stack->push(30);
for(int i=0; i<3; i++)
{

cout << stack->pop() << endl;
}

}

Stack in Action Using Java
The Java version of the stackDemo program combines the definition of the

Stack class and the stackDemo application class definition in the same file,

which is shown in the next example. Java doesn’t provide any facility for separating

the definition from the implementation as C and C++ do.

Usually, programmers will place the Stack class definition in a Java package

rather than in the Java application class. As you’ll recall from your Java programming

class, a Java package is a collection of Java class definitions that can be incorporated

into the Java source code. Packages are used partly to organize the classes into logical

groups, but more importantly packages are used for name resolution. The JDK has

three classes calledElement, but they reside in three different packages. You can tell

the JDK which one you’re referring to by using the package name. C++ uses

namespaces for the same purpose.

You’ll notice as you read through the next example that the Stack class defini-

tion contains the same attributes and member methods as described in previous Java

examples. However, there is a new attribute defined in the first statement of the class

definition: the DEFAULT_SIZE attribute, whose value determines the default size

of the stack, which is set to 10 elements.

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 4 Stacks Using an Array 73

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

The DEFAULT_SIZE attribute is available only to member methods of the class

as is signified by the keyword private. TheDEFAULT_SIZE is also designed as

static andfinal. The keywordstaticmeans that one copy of this attribute is

placed into memory, regardless of how many instances of the class are created. That

is, any member method of any instance can change the value of DEFAULT_SIZE,

and the change affects all instances. This is different than other nonstatic attributes

because each instance has its own set of nonstatic attributes. A change in the value of

one of the attributes doesn’t affect the same attribute of another instance. The key-

word final states that the value of DEFAULT_SIZE cannot be changed once this

statement initializes it. Attempts to change its value will cause an error.

Notice that there are two constructors defined for the Stack class. The no ar-
gument constructor calls the second constructor, passing it a value of DEFAULT_
SIZE to initialize the stack. Java does not permit default parameter values like C and

C++, so this is a way to accomplish the same thing in Java.

The Java application class definition performs basically the same functionality as

the statements in the main() function of the C++ program. The program creates a

stack and then uses the reference name to the stack and the dot operator to call the

push() method three times. The value passed to the push() member method is

placed on the stack each time.

The last portion of the Java application class definition calls the pop()member

method three times. The value returned by the pop() method is displayed on the

screen each time.

public class Stack
{

private static final int DEFAULT_SIZE = 10;
private int size;
private int top;
private int[] values;
public Stack()
{

this(DEFAULT_SIZE);
}
public Stack(int size)
{

this.size = size;
values = new int[size];
top = -1;

}
public boolean isFull()
{

if(top < size-1)
{

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return false;
}
else
{

return true;
}

}
public boolean isEmpty()
{

if(top == -1)
{

return true;
}
else
{

return false;
}

}
public void push(int x)
{

if(!isFull())
{

top++;
values[top] = x;

}
}
public int pop()
{

int retVal = 0;
if(!isEmpty())
{

retVal = values[top];
top--;

}
return retVal;

}
}
public stackDemo{

void main(String args[]){
Stack stack = new Stack();
stack.push(10);
stack.push(20);
stack.push(30);
for(int i=0; i<3; i++)

74 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
System.out.println(stack.pop());

}
}

}

Quiz
1. What is a stack?

2. What is the purpose of the push() member method?

3. What is the purpose of the pop() member method?

4. What is the purpose of the isFull() member method?

5. What is the purpose of the isEmpty() member method?

6. What kind of value is assigned to the top attribute?

7. Why is the top attribute initialized to –1?

8. What is the purpose of the keyword private?

9. What is the purpose of the keyword public?

10. What is the difference between a constructor and a destructor?

CHAPTER 4 Stacks Using an Array 75

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 4

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 76

P:\010Comp\DeMYST\359-2\ch04.vp
Monday, February 02, 2004 1:42:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
5

Queues Using
an Array

You probably never thought that waiting in line in the supermarket would help you

become a whiz at data structures, but it’s a big help: the checkout line at a supermar-

ket is similar to the way data structures are organized. We’re the “things” organized

by the supermarket line, and the same kind of organization is used for data within

your program. The checkout line in your program is called a queue. In this chapter,

you’ll learn the ins and outs of implementing a queue within your program.

A Queue
A queue is like the checkout line at the supermarket where the first customer is at the

front of the line, the second customer is next in line, and so on until you reach the last

customer who is at the back of the line. Customers check out of the supermarket in

77

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

P:\010Comp\DeMYST\359-2\ch05.vp
Wednesday, February 11, 2004 9:30:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

the order they arrive in the line. That is, the first customer is the first one to check out.

This is referred to as first in, first out (fifo).

The same concept applies to a queue in your program. A queue is a sequential orga-

nization of data. Data is accessible using fifo. That is, the first data in the queue is the

first data that is accessible by your program. In this chapter, you will explore the sim-

plest type of queue, a fixed size, first in, first out queue using an array. In Chapter 8,

you will learn how to build a priority queue using a linked list. With a priority queue,

the elements are removed based on two factors, the order they were placed in the queue

and the priority of the element.

A Simple Queue vs. Priority Queue
Programmers use one of two kinds of queues depending in the objective of the pro-

gram, a simple queue or a priority queue. A simple queue organizes items in a line

where the first item is at the beginning of the line and the last item is at the back of the

line. Each item is processed in the order in which it appears in the queue. The first

item in line is processed first, followed by the second item and then the third until the

last item on the line is processed. There isn’t any way for an item to cut the line and

be processed out of order.

A priority queue is similar to a simple queue in that items are organized in a line

and processed sequentially. However, items on a priority queue can jump to the front

of the line if they have priority. Priority is a value that is associated with each item

placed in the queue. The program processes the queue by scanning the queue for

items with high priority. These are processed first regardless of their position in the

line. All the other items are then processed sequentially after high priority items are

processed.

You’ll learn how to create and use a priority queue in Chapter 8. For now, we’ll

keep things simple by creating and using a simple queue.

The Business of Queues
Queues are very important in business applications that require items to be pro-

cessed in the order they are received. The supermarket checkout line is a queue that

most of us have experienced, but you won’t be creating a supermarket checkout line

in a program unless the program is designed to simulate a checkout line.

In the real world, queues are used in programs that process transactions. A trans-

action is a set of information such as an order form. Transaction information is re-

ceived by a program and then placed in a simple queue waiting to be processed by

another part of the program.

78 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Let’s return to a supermarket to see how this works. The cash register is a com-

puter that runs a transaction program that, among other things, processes the bar

code on each product scanned at the checkout counter.

One of the first steps to processing the bar code is to look up the price. There could

be 20 or more cash registers in a busy supermarket all trying to look up prices at the

same time. However, the computer can process only one bar code at a time. The pro-

gram that look ups prices manages the demand by using a simple queue in which

each new request is placed at the back of the queue, and the program looks up the bar

code that is at the front of the queue.

Many other applications use a simple queue to maintain the order in which to pro-

cess items. These include programs that process stock and bond trades and those that

process students registering for a course. Queues are also used within a computer to

manage printing.

The Array and the Queue
Data organized by a queue may be stored in an array. The queue determines the array

element that is at the front and back of the queue. The array is not the queue. Like-

wise, the queue is not the array. Both are two separate things. This is an important

concept to grasp and one that may be difficult to understand at first.

Take a look at Figure 5-1 and you’ll see how an array and a queue are different and

yet are linked together to organize data. The array is pictured as a block of elements.

CHAPTER 5 Queues Using an Array 79

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

Figure 5-1 The queue is different from the array used to store data that appears

in the queue.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

80 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

The queue is pictured as a circle. The empty boxes are where values are stored in the

queue, and the numbers correspond to the index of the array that is associated with

the queue. To the right of the circle are three values. The front and back values

store the index of the front and back of the queue. Thesize value is the number of el-

ements in the queue, which is 8 in this example.

Enqueue
A value is placed in the queue by performing the enqueue process, which consists of

two steps. The first step is to identify the array element that is at the back of the

queue. However, this is not necessarily the last element of the array. Remember that

the queue is not the array. The back of the queue is calculated by using the following

formula:

back = (back+1) % size

Figure 5-2 shows how to use the formula and gives the values for the front, back,

and size of the queue. The front and back variables are set to zero because the

queue is empty, and size is set to 8 because the array has 8 elements.

The next box shows the formula that identifies the back of the queue and assigns it

the value 90. To the right of this box is the same formula with variable names re-

placed by actual values. Let’s take a closer look at this and see how the back of the

queue is calculated.

The first operation occurs within the parentheses, where 1 is added to the value of

theback variable. The modulus operator determines where the next element should

be placed in the queue by performing an integer division and returning the remainder

of the division.

Although we’ve described a queue as a checkout line in the supermarket, a queue

is actually circular. This is illustrated in the calculation used to determine the back of

the queue, as shown here:

(7 + 1) % 8

When you get to the last element in the array at index 7, the calculation returns 0

(8 divided by 8 is 1 and the remainder is 0). So after the last element in the array, you

come around to the beginning of the array as the back of the queue. As you’ll see in

the “Queues Using an Array in C++” section of this chapter, you check to see if

you’re at the front of the queue before placing an item at the back of the queue so you

don’t overwrite the item at the front and corrupt the queue.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Queues Using an Array 81

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

The second step is to assign the value 90 to array element 1. That is, place the

value 90 at the back of the queue. Remember that values are added to the queue from

the back just as you go to the back of the checkout line to wait your turn at the super-

market. Notice that the value 90 is assigned to the array in Figure 5-2.

Dequeue
Dequeue is the process that removes a value from the front of the queue. It is impor-

tant to understand that the value is removed from the queue, not the array. The value

always remains assigned to the array until the value is either overwritten or the queue

is abandoned. You’ll see how to do overwrite later in this chapter.

Figure 5-2 The enqueue process places a new value at the back of the queue.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are two steps in the dequeue process, as illustrated in Figure 5-3. The initial

step is to calculate the index of the array element at the front of the queue using the

following expression:

front = (front+1) % 8

Notice that this expression is very similar to the expression used in the enqueue pro-

cess to calculate the index of the array element at the back of the queue. The first opera-

tion in this expression increments the value of the front variable. As you can see in

Figure 5-3, thefront variable is assigned the initial value zero. Therefore, the result of

the first operation is 1. The next operation is to apply the modulus operator, which is

identical to the modulus operation performed in the enqueue process. The result of this

operation is 1, meaning that the front of the queue is the array element whose index is 1.

This value is then assigned to the front variable. Previously in this chapter, you

learned that if you were at index 7 in the array, the result of this calculation would be

0 ((7+1)%8 = 0), so you would chase the queue around in a circle.

82 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

Figure 5-3 The dequeue process removes an item from the front of a queue.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The final step in the dequeue process is to use the value located at the front of the

queue. Typically, the dequeue process is a method, and the front of the queue is re-

turned to the statement that called the method.

In Figure 5-3, the array element values[1] is at the front of the queue. The value

assigned to this element is 90, which was placed at the back of the queue by the previous

enqueue process.

Notice that the value 90 remains assigned to thevalues[1] array element in Fig-

ure 5-3 because values assigned to the array associated with a queue are not affected

when a value is removed from the front of the queue. The queue keeps track of array el-

ements that are at the front and back of the queue, not the front or back of the array. In

this case, we’re using a simple integer array to illustrate the principles behind imple-

menting the queue data structure. You may come across more complex implementa-

tions, where each element in the array is a pointer to a class object or structure. In these

cases, you should be concerned about memory management when you perform

enqueue and dequeue operations.

Queues Using an Array in C++
Now that you understand how queues work with an array, it is time to create a real

queue. In this section, you’ll create a queue using C++. You’ll see the Java version of

this program later in this chapter.

The C++ queue program is organized into three files: the queue.h file, the

queue.cpp file, and the queueProgram.cpp file. The queue.h file, shown

next, sets the default size of the array and defines theQueue class. TheQueue class

declares size, front, and back attributes that store the array size and the index

of the front and back of the queue. The Queue class also declares a pointer that will

point to the array. In addition to these, theQueue class defines a set of member func-

tions that manipulate the queues. These are explained later in this section.

//queue.h
#define DEFAULT_SIZE 8
class Queue{

private:
const int size;
int front;
int back;
int* values;

public:
Queue(int size = DEFAULT_SIZE);
virtual ~Queue();

CHAPTER 5 Queues Using an Array 83

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bool isFull();
bool isEmpty();
void enqueue(int);
int dequeue();

};

The queue.cpp file contains the implementation of the member functions for

the Queue class. There are six member functions defined in this file: Queue(),
~Queue(), isFull(), isEmpty(), enqueue(), and dequeue().

The Queue() member function is a constructor, which is passed the size of the

array when an instance of theQueue class is declared. If the constructor is called with

no parameters, then the default size is used; otherwise, the value passed to the con-

structor is used. The value of the array size is assigned to the attribute size by the first

statement within the constructor.

The second statement uses thenew operator to declare an array of integers whose

size is determined by the size passed to the constructor. The new operator returns a

pointer to the array, which is assigned to the values pointer. The last two state-

ments in the constructor initialize the front and back attributes to zero.

The~Queue()member function is the destructor and uses the delete operator to re-

move the array from memory when the instance of theQueueclass goes out of scope.

The isFull() member function (see Figure 5-4) determines if there is room

available in the queue by comparing the calculated value of the back of the queue with

the value of the front of the queue, as in shown Figure 5-4. Notice that the expression

that calculates the back of the queue is very similar to the expression in the enqueue

process (see the “Enqueue” section of this chapter), and both produce the same result.

The queue is full when the back index is 1 behind the front. Placing another element in

the queue would overwrite the front element and corrupt the queue. The modulus op-

erator is used again to make this a circular queue, so when you’re at element 7 on the

back, the next element to look at is element 0.

The isFull()member function is called by the enqueue()member function

before an attempt is made to place a value on the back of the queue. The isFull()
member function returns atrue if no more room is available in the queue or afalse
if there is room available.

The isEmpty() member function determines (see Figure 5-5) if the queue is

empty by comparing theback andfront variables. If they have the same values, a

true is returned; otherwise, afalse is returned. TheisEmpty()member func-

tion is called within thedequeue()member function before it attempts to remove

the front item from the queue.

The enqueue()member function places an item at the back of the queue, as de-

scribed in the “Enqueue” section of this chapter. The enqueue()member function

is passed the value that is to be placed in the queue. However, before doing so, the

84 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Queues Using an Array 85

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

isFull() member function is called to determine if there is room available in the

queue. Notice in the following example that the isFull() member function is

called as the condition expression of theif statement. Also notice that thenotopera-

tor reverses thebool value returned by theisFull()method. That is, a false is re-

turned by the isFull() member function if room is available in the queue. The

condition expression in the if statement reverses this logic to true so that state-

ments within theif statement execute to place the new item on the back of the queue.

The dequeue()member function removes an item from the queue and returns

that item to the statement within the program that calls the dequeue() member

function. However, theisEmpty()member function is called in the condition ex-

pression of theif statement within thedequeue()member function, as shown in

the next code listing.

Thenot operator in this expression reverses the logic returned by the isEmpty()
member function. The isEmpty()member function returns a false if the queue is

Figure 5-4 The isFull() member function determines if there is room to place

another item on the back of the queue.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

86 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

not empty. The not operator changes this to true, enabling statements within the if
statement to remove the front item from the queue and return it to the statement that calls

the dequeue() member function.

//queue.cpp
#include "queue.h"
Queue::Queue(int size)
{

this->size = size;
values = new int[size];
front = 0;
back = 0;

}
Queue::~Queue()
{

delete[] values;
}

Figure 5-5 The isEmpty() member function determines if the queue contains

any values.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Queues Using an Array 87

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

bool Queue::isFull()
{

if((back+1) % size == front)
{

return true;
}
else
{

return false;
}

}
bool Queue::isEmpty()
{

if(back == front)
{

return true;
}
else
{

return false;
}

}
void Queue::enqueue(int x)
{

if(!isFull())
{

back = (back+1) % size;
values[back] = x;

}
}
int Queue::dequeue()
{

if(!isEmpty())
{

front = (front+1) % size;
return queue[front];

}
return 0;

}

The queueProgram.cpp is where all the action takes place. It is here that an

instance of the Queue class is declared and manipulated. As you can see in the next

example, the first statement in the program uses the new operator to declare an in-

stance of the Queue class and set the size to 8 elements. The new operator returns

a pointer that is assigned to a pointer to an instance of the Queue class.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The next three statements call the enqueue() member function three times to

place the values 10, 20, and 30 in the queue, respectively. The program concludes by

calling the dequeue() member function three times to display the contents of the

queue. Figure 5-6 shows the queue and the array after the last call to theenqueue()
member function is made.

//queueProgram.cpp
#include <iostream>
using namespace std;
void main(){

Queue *queue = new Queue(8);
queue->enqueue(10);
queue->enqueue(20);
queue->enqueue(30);
for(int i=0; i<3; i++)
{

cout << queue->dequeue() << endl;
}

}

88 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

Figure 5-6 Here’s the queue and the array after the last call to the enqueue()
member function is made.

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Queues Using an Array 89

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

Queues Using An Array in Java
A queue is implemented in Java similar to the way you implement it in C++ except

for a few tweaks, which we’ll talk about in this section. The code example in this sec-

tion is a queue using an array in a Java application. Two classes are defined in the ex-

ample: the Queue class and the Java application class queueArrayDemo().
TheQueue class defines the same set of attributes as is defined in the C++ version

of this program. However, instead of declaring an integer pointer, the Java version of

this program declares a reference to an array of integers, which is called values.

The Queue class defines seven member methods including two constructors.

Most of the member methods are the same as the member functions in the C++ pro-

gram. However, there are a few differences in the Java Queue class: it defines two

constructors, which are the first couple of member methods in the class definition.

The first version of the constructor is Queue(). The Queue() constructor is

called if the instance of theQueue() class is declared without the size of the queue

passed as a parameter to the constructor. TheQueue() constructor uses the default

size for the queue. As you’ll remember from your Java programming class, the

this(DEFAULT_SIZE) statement calls the Queue(int size) constructor

and passes it the default size of the queue. Java does not support default parameter

values like C++, so this is one way to achieve the same result.

The second version of the constructor isQueue(intsize). TheQueue(int
size) constructor is called whenever the size of the queue is passed as a parameter

to the constructor. The size is then assigned to thesize attribute of theQueue class

and sets the size of the array. The array is created using the new operator, and refer-

ence to the location of the array in memory is assigned to the values attribute of

the Queue class. The Queue(int size) constructor also initializes the front and

back attributes.

The remaining member methods defined in theQueue class definition are the same

as those defined in the Queue class definition in the C++ version of this program.

Beneath the Queue class definition is the Java application class definition called

queueArrayDemo. This class defines themain()method of the application that

contains nearly identical statements as those found in the main() function of the

C++ program.

The first statement creates an instance of theQueue class that contains an array of

8 elements. The next three statements call the method to place values 10, 20, and 30 in

the queue, respectively. Within thefor loop, thedequeue()method is called to re-

move each item from the queue. These items are then displayed on the screen.

class Queue
{

private static final int DEFAULT_SIZE = 8;

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

private int size;
private int front;
private int back;
private int[] values;
public Queue()
{

this(DEFAULT_SIZE);
}
public Queue(int size)
{

this.size = size;
values = new int[size];
front = 0;
back = 0;

}
public boolean isFull()
{

if((back+1) % size == front)
{

return true;
}
else
{

return false;
}

}
public boolean isEmpty()
{

if(back == front)
{

return true;
}
else
{
return false;

}
}
public void enqueue(int x)
{

if(!isFull())
{

back = (back+1) % size;
values[back] = x;

}

90 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 5 Queues Using an Array 91

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 5

}
public int dequeue()
{

if(!isEmpty())
{

front = (front+1) % size;
return values[front];

}
return 0;

}
}
public class queueArrayDemo{

public static void main(String args[]){
Queue queue = new Queue(8);
queue.enqueue(10);
queue.enqueue(20);
queue.enqueue(30);
for(int i=0; i<3; i++)
{

System.out.println(queue.dequeue());
}

}
}

Quiz
1. What is a queue?

2. What is the relationship between a queue and its underlying array?

3. Explain how the index of the front and back of the queue is calculated.

4. What is the purpose of the enqueue process?

5. What is the purpose of the dequeue process?

6. Why is the isFull() member method called?

7. Why is the isEmpty() member method called?

8. What happens to the data stored on the array when the data is removed from

the queue?

9. What is the purpose of setting the default size of the queue?

10. Why does the C++ version of the queue delete the underlying array from

memory using the destructor and the Java version of the queue does not?

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 92

P:\010Comp\DeMYST\359-2\ch05.vp
Monday, February 02, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
6

What Is a
Linked List?

Sports fans probably don’t realize that the coach uses a linked list all the time during

the game when switching players. In fact, the coach probably doesn’t realize it ei-

ther. Many teams have three strings of players. For example, in football, there’s the

starting quarterback, a backup quarterback, and a third string quarterback. The

coach has a list of their numbers. If the starter takes a hard hit, the coach looks at

the list for the number of the next quarterback. When the backup quarterback can’t

do the job, the coach looks at the list again and chooses either the previous quarter-

back (the starter) or the next quarterback (third string).

As you probably surmised, the list the coach uses is a linked list because it links

quarterbacks to the order in which they are called upon to play in the game. A linked

list is a list of elements that point to the current data (current quarterback), the previ-

ous data (quarterback who just left the game), and the next data (quarterback who

hasn’t entered the game). In this chapter, you’ll learn about single linked lists and

doubly linked lists and how linked lists work. In the next two chapters, you’ll learn

common uses for linked lists.

93

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

A Linked List
A linked list is a data structure that makes it easy to rearrange data without having to

move data in memory. Sound a little confusing? If so, picture a classroom of students

who are seated in no particular order. A unique number identifies each seat, as shown

in Figure 6-1. We’ve also included the relative height of each student, which we’ll

use in the next exercise.

Let’s say that a teacher needs to place students names in alphabetical order so she

can easily find a name on the list. One option is to have students change their seats so

that Adam sits in seat 1, Bob sits in seat 2, and Mary in seat 3. However, this can be

chaotic if there are a lot of students in the class.

Another option is to leave students seated and make a list of seat numbers that

corresponds to the alphabetical order of students. The list would look something like

this: 3, 1, and 2, as shown in Figure 6-1. The student in seat 3 is the first student who

appears in alphabetical order, followed by the student seated in seat 1, and so on.

Notice how this option doesn’t disrupt the class.

Suppose you want to rearrange students in size order. There’s a pretty good

chance that you won’t move students about the classroom. Instead, you’d probably

create another list of seat numbers that reflect each student’s height. Here’s the list:

1, 3, and 2, which is illustrated in Figure 6-1. The list can be read from bottom to top

for the shortest to tallest or vice versa for tallest to shortest.

Once the list is created, the teacher can simply go down the list to see which seat

contains the next student. To quiz students in alphabetical order, the teacher would

use the alphabetical list to see that the student sitting in seat 3 is alphabetically first,

followed by seat 1. The teacher can be tricky and call on the previous student by

looking at the list to determine the student’s seat.

94 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

Figure 6-1 Students are seated in a classroom in random order.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Programmers call this sort of list a linked list because each item on the list is linked to

the previous item and the next item. That is, the seat of the current student is linked to the

seat of the previous student and to the seat of the next student by the list.

The Real World and Linked Lists
It is very important to keep the real world in mind as you learn how to use a linked list;

otherwise, you’ll fall into the trap of thinking that a linked list is an abstract concept

that has little use in the real world. Actually, linked lists play a critical role in applica-

tions that help companies and governments manage data dynamically.

There are two versions of a linked list, a single link and a double link. A single link

list enables a program to move through the list in one direction, which is usually from

the front of the list moving to the end of the list. A doubly linked list enables the pro-

gram to move through the list in both directions. We’ll focus on the doubly linked list

for most of the examples in this chapter and then discuss the single link list toward the

end of the chapter.

Although we’ve mentioned that an entry in a linked list contains data and pointers

to the previous and next entries in the list, this is an oversimplification. The data

we’re talking about is typically a set of data such as customer information. Customer

information could be a customer ID, customer first name, customer last name, cus-

tomer street address, customer city, customer state, customer ZIP, and so on. Pro-

grammers call this a record. This means that an entry in a linked list may contain

several data elements. In our example, however, we’ll store only a single value of an

integer so that we can focus on the principle of how a linked list works. In reality, you

can add as many additional attributes to each node as you need.

Programmers choose linked lists over an array because linked lists can grow or

shrink in size during runtime. Another entry can be placed at the end of the last entry

on the linked list simply by assigning reference to the new entry in the last entry on

the linked list.

Likewise, the last entry can be removed from the linked list by simply removing

reference to it in the next element of the second-to-last entry on the linked list. This is

more efficient than using an array and resizing at runtime.

If you change the size of the array, the operating system tries to increase the array

by using memory alongside the array. If this location is unavailable, then the operat-

ing system finds another location large enough to hold elements of the array and new

array elements. Elements of the array are then copied to the new location.

If you change the size of a linked list, the operating system changes references to

the previous item and the next item on the list, which is fewer steps than changing the

size of an array.

CHAPTER 6 What Is a Linked List? 95

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

96 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

The Structure of a Linked List
Each entry in a linked list is called a node. Think of a node as an entry that has three

subentries. One subentry contains the data, which may be one attribute or many

attributes. Another points to the previous node, and the last points to the next node.

When you enter a new item on a linked list, you allocate the new node and then set

the pointers to previous and next nodes.

Programmers create a node in C++ by using either a structure or a class object;

our example uses a structure. As you’ll recall from your C++ programming course,

a structure is a user-defined data type. The following example is a structure used to

define a node. Figure 6-2 shows a node.

typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;

The structure might look a bit strange even if you are familiar with structures be-

cause this example uses a pointer to the structure itself as two of its attributes. We’ll

clear up any confusion by taking apart this example. The structure is called Node.

Figure 6-2 A node contains reference to the next node and the previous node in the

linked list and contains data that is associated with the current node.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The name of the structure creates an instance of the structure similar to how you use

a constructor to create an instance of a class and data type.

For now, let’s skip the second definition of the structure and turn our attention to

the last three statements within the structure. The first statement declares an integer

that stores the current data of the node. The next two statements declare pointers to

the previous and next nodes in the linked list.

The constructor initializes elements of the node when an instance of the node is

created. This works in a similar manner as a class constructor. As you’ll see in

“LinkedList Constructor Destructor,” you provide the current data to the structure

when you create a new node. This data is assigned to data in the argument list. The

value of data is then assigned to the data element of the instance of the structure.

Also, reference to the previous and next nodes are initialized to NULL, which tells

the program that there are no other elements of the linked list. The NULL is replaced

with reference to a node when a new node is added to the linked list.

Single Linked List vs. Doubly Linked List
Programmers call this a doubly linked list or bidirectional (Figure 6-3) because each

node contains reference to the previous and next node on the linked list. This en-

ables the programmer to traverse the linked list in both directions by referencing the

previous and next nodes. The node can be transformed into a single linked list (Fig-

ure 6-3) by only having one pointer in the structure that contains the address of the

next node. Typically, a node in a single linked list references the next node and not

the previous node, although nothing stops you from creating a backward reference

by using only the previous node reference.

The following example is nearly the same as the previous example except this is a

single direction node. You’ll notice that reference to the previous node is missing. This

means a programmer can only move down the linked list and not in both directions.

typedef struct Node
{

struct Node(int data)
{

this->data = data;
next = NULL;

}
int data;
struct Node* next;

} NODE;

CHAPTER 6 What Is a Linked List? 97

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Linked List Class
Programmers use aLinkedList class to create and manage a linked list. C++ pro-

grammers define their own LinkedList class while Java programmers use the

LinkedList collection class. You’ll learn about the LinkedList collection

class in the “Linked Lists Using Java” section of this chapter. For now, we’ll focus on

defining a LinkedList class in C++.

The LinkedList class definition consists of two data members and six func-

tion members, as shown in the example in this section. The two data members are

pointers to instances of the Node structure that was defined previously in this chap-

ter. The first pointer, front, references the first node on the linked list. The second

pointer, back, references the last node on the linked list.

The six member functions manipulate the linked list. The first member function is

the constructor of theLinkedList class and is called when an instance of the class

is declared. Following the constructor is the destructor. When you return memory to

the operating system by using the delete operator, the destructor is called. If you

98 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

Figure 6-3 A doubly linked list contains next and previous members, and a single

linked list contains only a next member.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

don’t call the delete operator, then the destructor never gets called and the appli-

cation causes a memory leak.

The appendNode() member function places a new node at the end of the

linked list. The appendNode() requires an integer representing the current data

of the node.

The next two member functions display the contents of the linked list. The

displayNodes() method displays the linked list in natural order (first to last).

The displayNodesReverse()member function displays the linked list in re-

verse order.

The last member function is destroyList() and is called to remove the in-

stance of the LinkedList from memory.

TheLinkedList class specification is defined in the header file, and the imple-

mentation is defined in the source file. We’ll take a closer look at the implementation

of these member functions in the next few sections of this chapter.

class LinkedList
{

private:
NODE* front;
NODE* back;

public:
LinkedList();

~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();

};

LinkedList Constructor Destructor
TheLinkedList constructor is a member function that is called when an instance

of theLinkedList is declared. The purpose of the constructor in the linked list ex-

ample is to initialize thefront andback pointers as shown in the following defini-

tion. Both the front and back pointers are assigned a NULL value, which is used

by the appendNode() member function to determine if the linked list is empty.

You’ll see how this is done in the next section.

LinkedList()
{

front = NULL;

CHAPTER 6 What Is a Linked List? 99

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

100 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

back = NULL;
}

The destructor is a member function called when the instance of the

LinkedList class is deleted using the delete operator. In the example shown next,

the destructor contains one statement that calls the destroyList() member

function.

The destroyList() member function deletes the contents of the linked list

but does not delete the linked list itself. That is, it removes all the nodes from the

linked list. You’ll see how this is done later in this chapter. The destroyList()
also resets the front and back pointers to NULL, signifying the linked list is empty of

nodes. The destructor is responsible for deallocating all the memory that was allo-

cated for the linked list. In this case, it would be all the nodes.

You might be wondering why we defined two member functions to perform basi-

cally the same task. We do so to enable the programmer to empty the linked list. This

way you can reset the contents of the linked list without destroying the instance of

the LinkedList class.

~LinkedList()
{

destroyList();
}

Appending a Node to a Linked List
TheappendNode()member function places a new node at the end of the linked list.

There are several steps that must be performed in order to add the node to the list. These

are shown in the following definition of the appendNode() member function:

void appendNode(int data)
{
NODE* n = new NODE(data);
if(back == NULL)
{

back = n;
front = n;

}
else
{

back->next = n;
n->previous = back;
back = n;

}
}

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The appendNode() member function requires one argument called data,

which is the current data for the node. The argument is passed to the instance of the

NODE structure. As you’ll recall from previous sections of this chapter, the value

passed to the NODE structure is assigned to the data element of the node.

The first statement in the appendNode() member function declares an in-

stance of the NODE structure by using the new operator, which returns a pointer to

the instance, which in turn is assigned to a pointer variable called n.

Once the new node is created, theappendNode()member function positions the

new node in the linked list. First, it determines if the linked list is empty by comparing

the back node to NULL. As you’ll recall, the back node is assigned a NULL when

an instance of the LinkedList class is declared and when the destroyList()
member function removes all the nodes from the list.

If the linked list is empty, then the new node is assigned to both the back and

front pointers. This means that the linked list contains one node after the

appendNode() member function is called, which is the new node.

However, if there is at least one node on the linked list, then a little shifting of

pointers must be performed. Theelse statement contains three statements that per-

form this shifting. The first statement assigns the pointer to the new node to the

next pointer of the last node on the linked list. Theback pointer is then assigned to

theprevious pointer of the new node. The new node is then assigned to theback
pointer, making the new node the first node on the linked list.

This can be a little confusing, so take a look at Figure 6-4. Figure 6-4 shows nodes

of the linked list. Assume that the linked list has two nodes before the new node is

appended to the list. This is represented in the top block.

The first step assigns the memory address of the new node to thenextmember of

the back node, which is shown in the second block of memory in Figure 6-4.

The second step assigns the memory address of theback node to theprevious
member of the new node. This links both nodes.

The third step replaces the memory address of the back node on the linked list

with the memory address of the new node. This places the new node at the beginning

of the linked list.

Display the Linked List
ThedisplayNodes()member function displays each node of the linked list, be-

ginning with the node at the front of the list and ending with the node at the back of

the list. This is shown in the next example:

void displayNodes()
{

cout << "Nodes:";

CHAPTER 6 What Is a Linked List? 101

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

102 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

NODE* temp = front;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->next;

}
}

The displayNodes() member function begins by displaying the word

“Nodes:” on the screen and then declares a pointer to a node, which is initialized

with the node that appears at the back of the linked list.

Before attempting to display data assigned to the node, displayNodes() de-

termines if there is a node at the back of the linked list. It does so by determining if

the node pointed to by the temp pointer is NULL. If so, the linked list is empty and

Figure 6-4 The appendNode() member function changes what nodes are pointed to

in the linked list.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

there is nothing to display. If not, the member function proceeds and displays the

data assigned to the node located at the back of the linked list.

A space is then displayed, followed by the data assigned the node. The

displayNode()member function uses the node’s next member to assign the pointer

to thenext node to thetemp pointer. The process continues by first determining if the

node isn’t NULL before displaying the data assigned to the node.

This process ends after the node at the back of the linked list is displayed because

the next member of the node at the back of the list is NULL.

Transverse the Linked List
The displayNodesReverse() member function displays the contents of a

linked list in reverse order, beginning with the node at the back of the linked list and

continuing until the first node is displayed. The following example shows the how

this is done:

void displayNodesReverse()
{

cout << "Nodes in reverse order:";
NODE* temp = back;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->previous;

}
}

You’ll notice that the displayNodesReverse()member function is nearly

the same as the displayNodes() member function described in the previous

section. However, there are two important differences between the two member

functions. The displayNodesReverse() member function assigns the

pointer to the node at the back of the list to the temp pointer, causing the node at

the back of the linked list to be displayed first. The displayNodes() member

function assigns the back pointer to the temp pointer, causing the last node on the

linked list to be displayed.

The other difference between the displayNodesReverse()member func-

t ion and the displayNodes() member funct ion is that in the

displayNodesReverse()member function the previous member of the node

is used to determine the next node to display. This enables nodes to be displayed in

reverse order. Figure 6-5 illustrates how the linked list is transversed.

CHAPTER 6 What Is a Linked List? 103

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

104 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

Destroying a Linked List
The destroyList()member function removes nodes from the linked list with-

out removing the linked list itself, as shown in the following example. Each node is

declared dynamically using the new operator, as you learned previously in this

chapter. This enables you to remove the node by using the delete operator.

void destroyList()
{

NODE* temp = back;
while(temp != NULL)
{

NODE* temp2 = temp;
temp = temp->previous;
delete temp2;

}
back = NULL;
front = NULL;

}

The destroyList() member function begins by declaring a temporary

pointer that is assigned the pointer to the node that is at the back of the linked list.

However, before the node is removed, the member function determines if there is a

node at the back of the linked list by testing whether the temp pointer is NULL. If

so, then thedestroyList()member function assumes there are no nodes on the

linked list. If the temp pointer isn’t NULL, then the member function proceeds to

delete the node.

Another temporary node is declared and assigned reference to the node pointed to

by the temp node. This is done because the temp pointer is assigned the next node

that is to be deleted from the linked list in the next statement.

The pointer to the next node is in the next member of the temp node, which is

then assigned to the temp pointer. This means that temp2 points to the node at the

back of the linked list andtemp now points to the node that is immediately previous

to the node at the back of the linked list. The node pointed to by temp2 is then de-

leted, as illustrated in Figure 6-6.

Figure 6-5 The previous member of each node transverses the linked list.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 What Is a Linked List? 105

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

This process continues until all the nodes are removed from the linked list. The final

step in thedestroyList()member function is to assign NULL values to the front

and back of the linked list, which indicates that the linked list is empty of any nodes.

Linked Lists Using C++
Now that you know the parts of a linked list and how to create and manipulate the

linked list using a class, we’ll put those parts together and create a real-world C++

application that uses a linked list.

Professional programmers organized a linked list C++ application into three files.

The first file is the header file that contains the definition of the NODE structure and

the LinkedList class definition. The second file is a source code file containing

Figure 6-6 The destroyList() member function removes nodes beginning

with the last node on the linked list and works its way to the beginning

of the linked list.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the implementation of member functions of the LinkedList class. The last file is

the application file that contains code that creates and uses theLinkedList class.

Let’s begin with the header file. LinkedList.h, shown in the code in this sec-

tion, is the header file for the C++ linked list example. This file contains two compo-

nents, the definition of the NODE structure and the definition of the LinkedList
class, which programmers called a class specification.

You’ll notice that both components were discussed in detail previously in this chap-

ter. You’ll also notice that the LinkedList class definition does not contain the im-

plementation of member functions. Instead, it contains prototypes of member

functions that are implemented in the source file. Keeping the specifications and im-

plementation in separate header and source files is common practice. Parts of the pro-

gram that use the class only care about the interface functions defined in the header

file; they don’t care about the implementation. This also allows you to precompile

your source code into library modules so the users of this class need only the headers

and modules.

//LinkedList.h
typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;
class LinkedList
{

private:
NODE* front;
NODE* back;

public:
LinkedList();

~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();

};

106 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Definitions of member functions for theLinkedList class are contained in the

LinkedList.cpp file as shown in the next code in this section. The file begins

with a preprocessor statement that tells the preprocessor to reference the contents of

the LinkedList.h file during preprocessing. The LinkedList.h file con-

tains the LinkedList class definition and the NODE structure definition, both of

which are required to resolve statements in theLinkedList.cpp that refer to the

class and node.

Each member function definition is this example is practically the same defini-

tion as those discussed in the last several sections of this chapter. The only exception

is that reference is made to the LinkedList class in the name of each member

function definition. This associates each definition with theLinkedList class for

the compiler.

//LinkedList.cpp
#include "LinkedList.h"
LinkedList::LinkedList()
{

front = NULL;
back = NULL;

}
LinkedList::~LinkedList()
{

destroyList();
}
void LinkedList::appendNode(int data)
{

NODE* n = new NODE(data);
if(back == NULL)
{

back = n;
front = n;

}
else
{

back->next = n;
n->previous = back;
back = n;

}
}
void LinkedList::displayNodes()
{

cout << "Nodes:";
NODE* temp = front;

CHAPTER 6 What Is a Linked List? 107

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->next;

}
}
void LinkedList::displayNodesReverse()
{

cout << "Nodes in reverse order:";
NODE* temp = back;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->previous;

}
}
void LinkedList::destroyList()
{

NODE* temp = back;
while(temp != NULL)
{

NODE* temp2 = temp;
temp = temp->previous;
delete temp2;

}
back = NULL;
front = NULL;

}

The last file is the C++ application that uses the linked list. We call the file

LinkedListDemo.cpp, which is shown next. It is amazing that the application

itself is so small when compared to all the code used to define the NODE structure

and the LinkedList class.

//LinkedListDemo.cpp
#include <iostream>
using namespace std;
void main(){

LinkedList * list = new LinkedList();
list->appendNode(10);
list->appendNode(20);
list->appendNode(30);
list->displayNodes();

108 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

list->displayNodesReverse();
delete list;}

The application begins by declaring an instance of the LinkedList class. As

you recall from earlier in this chapter, the constructor initializes the front and back

pointers.

The instance is declared using the new operator. The new operator returns a ref-

erence to the memory location of the instance. The same statement declares a pointer

to reference a LinkedList. You call this pointer list and assign it the reference to

the instance of the LinkedList class.

Next, the appendNode() member function is called three times. The

appendNode()member function appends a new node at the back of the linked list

and assigns the value passed to the appendNode() member function to the data

member of the node.

The last two statements in this example display the data member of each node on

the linked list. First, the displayNodes() member function is called to display

nodes in natural order, starting with the front of the linked list and ending with the

node at the back of the linked list.

Next, the displayNodesReverse() member function is called to do the

same as the displayNodes() member function, except it starts with the back

node and ends with the front node. Thedelete operator is then called to delete the

instances of the LinkedList class from memory.

Here is the output of the code example:

10

20

30

30

20

10

Linked Lists Using Java
A linked list is implemented differently in Java than it is in C++ because Java has a

LinkedList class defined as part of the Java collection framework, which is

found in the java.util package.

CHAPTER 6 What Is a Linked List? 109

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

110 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

The Java LinkedList class performs the same basic operations that we defined

in the C++ LinkedList class. In addition, the Java LinkedList class has other

features used to manipulate nodes in the linked list. You’ll learn about these in the next

two chapters, where theLinkedList class is used to implement other kinds of data

structures. For now, we’ll show you how to implement a linked list using Java.

The best thing about using the Java LinkedList class is that you simply de-

clare an instance of the LinkedList class and call member methods as required

by your program to manipulate the linked list.

The code example in this section is the Java version of the C++ application described

previously in this chapter. You’ll notice that both programs are similar, although the Java

application has some subtle differences.

The first statement in the Java program is the same statement as is in the C++ pro-

gram. It declares an instance of the LinkedList class. The next three statements

call the add()member method of the LinkedList class to create a new node at

the end of the linked list.

Theadd()member method is similar to theappendNode()member function

used in the C++ application. However, you probably noticed that the parameter

passed to theadd()method is somewhat different from the parameter passed to the

appendNode()member function. The parameter to the appendNode()mem-

ber function is an integer, which is a primitive data type. However, theadd()member

method requires an object and not a primitive data type.

As you’ll remember from your Java programming class, Java has a wrapper class

for primitive data types. A wrapper class definition contains a data member that is of

the corresponding primitive data type and defines member methods to manipulate the

data type.

This example declares an instance of the Integerwrapper class using the new
operator as the parameter to the add()member method. You pass to the construc-

tor of the Integer class the integer that you want placed in the new node. The in-

stance of the Integer class is an object, which is what the add() member

method expects to receive. All the Java collections require a data type that inherits

from the object. This is somewhat similar to the void pointer in C++. You’re not al-

lowed to store primitive data types in the collections as you can in C++.

Once three nodes are appended to the linked list, the program then displays the con-

tents of the linked list by using two for loops. The first for loop displays the linked

list in natural order. This has the same effect as if you called the displayNodes()
member function in the C++ program. The secondfor loop displays the linked list in

reverse order, which is identical to calling the displayNodesReverse()mem-

ber function in the C++ program.

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6 What Is a Linked List? 111

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

Both for loops call the size()member method of the LinkedList class to

determine the number of nodes that are contained in the linked list. The data member

of each node is retrieved by calling the get()method of the LinkedList class.

The get()method requires one parameter, which is the number of the node on the

list. In this example, the number is the integer value of the for loop.

The get() member method returns an object that must be type cast to an in-

stance of the Integer class.

(Integer)list.get(i);

The node is then assigned to an Integer object and displayed on the screen.

This is similar behavior with all the Java collection classes. With JDK 1.5, type safe

collections will be introduced that are similar to template classes in C++, and you’ll

have an option to specify the type of object in a collection so all this type casting will

not be necessary. It will also allow the compiler to do the type checking, leading to

fewer errors. This generic object reference has the same pitfall as the void pointer in

C++: it can lead to errors.

The only difference between both for loops is the expression used to determine

the direction of the loop. Otherwise, both loops are identical.

Here is the output of the following example:

10

20

30

30

20

10

import java.util.LinkedList;
public class LinkedListDemo {
public static void main(String[] args) throws IOException
{

LinkedList list = new LinkedList();
list.add(new Integer(10));
list.add(new Integer(20));
list.add(new Integer(30));
for(int i=0; i<list.size(); i++)
{

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Integer temp = (Integer)list.get(i);
System.out.println(temp);

}
for(int i=list.size()-1; i>=0; i--)
{

Integer temp = (Integer)list.get(i);
System.out.println(temp);

} }
}

Quiz
1. What is a linked list?

2. What is the benefit of using a linked list?

3. What is a node?

4. What are the elements of a node?

5. What advantage does a linked list have over an array?

6. Can a node reference more than one data element?

7. In Java, why can’t you pass a primitive data type to the add() method

of the LinkedList class?

8. How can a node be inserted in the middle of a linked list?

9. What is a doubly linked list?

10. What is a single linked list?

112 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 6

P:\010Comp\DeMYST\359-2\ch06.vp
Monday, February 02, 2004 1:59:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
7

Stacks Using
Linked Lists

Football fans know that piling on after the whistle will penalize the team (although

advertisers love it because it gives broadcasters time to run a few commercials while

the officials pull players off the pile). If you are not football fan, “piling on” is the un-

official football term for players jumping on other players during a tackle. If you are

a programmer, “piling on” is the unofficial computer term for a stack. You learned

about stacks back in Chapter 4 when you discovered how to use an array to create

your own stack. However, using arrays presents a problem: you cannot adjust the

size of the stack when the program runs. The solution? Use a linked list to create a

stack. You learned about linked lists in general in the last chapter. In this chapter,

you’ll learn how to use a linked list to create a stack.

113

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

A Stack
As you’ll recall from Chapter 4, a stack is a data structure that organizes data similar

to how you organize dishes in a stack on your kitchen counter. The newest dish is on

top and the oldest is on the bottom of the stack.

When accessing dishes, the last disk on the stack is the first dish removed from

the stack. If you want the third dish, you must remove the first two dishes from the

top of the stack first so that the third dish becomes the top of the stack and you can re-

move it. There is no way to remove a dish from anywhere other than the top of the

stack. You’d need to use a different kind of data structure (or stacking system) if you

wanted to randomly access dishes.

A stack is useful whenever you need to store and retrieve data in last in, first out

order. For example, your computer processes instructions using a stack in which the

next instruction to execute is at the top of the stack.

LinkedList Class
Although we discuss data as being stacked like a stack of dishes, it isn’t physically

stacked at all. Instead, data is linked together sequentially in a list, where the last data

always appears at the front of the list. Data is removed only from the front of the list.

You create this sequential list by using a linked list. In Chapter 6, you learned that

a linked list contains entries called nodes. A node has three subentries, data and two

pointers. The data subentry is the data stored on the stack. Pointers point to the previ-

ous node and the next node (Figure 7-1). When you enter a new item on a linked list,

you allocate the new node and then set the pointers to the previous and next nodes.

114 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

Figure 7-1 A node contains references to the previous node and the next node in the

linked list and contains data that is associated with the current node.

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A node is defined in C++ by using a structure, which is a user-defined data type.

The following structure defines a node:

typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;

The structure is called Node. The name of the structure creates an instance of the

structure similar to the way a constructor creates an instance of a class and data type.

Let’s skip the second definition of the structure and look at the last three statements

within the structure because statements at the beginning of the structure actually create

an instance of the structure and don’t define the structure. The first statement declares an

integer that stores the current data of the node. The next two statements declare pointers

to the previous and next nodes in the linked list.

The constructor initializes elements of the node when the node is created, which is

similar to the way constructors work in a class definition. You provide the current data

to the structure when you create a new node. This data is assigned to data in the argu-

ment list, which is then assigned to the data element of the instance of the structure.

The previous and next nodes are initialized to NULL , which indicates there are

no other elements of the linked list. The NULL is replaced with a reference to a node

when a new node is added to the linked list.

As you’ll recall from Chapter 6, aLinkedList class is defined to create and man-

age a linked list. There are two data members and six function members defined in the

LinkedList class. Data members are pointers to instances of the Node structure. The

first pointer is called front, and it references the first node on the linked list. The sec-

ond pointer is called back, and it references the last node on the linked list.

Both thefront andback pointers are declared in the protected access specifier

area of the class definition because the LinkedList class is inherited by the

StackLinkedList class, which you’ll learn about in the “The StackLinkedList

Class” section of this chapter. The StackLinkedList class uses the front and

back pointers.

The six member functions manipulate the linked list. These function members are

the constructor, destructor, appendNode(), displayNodes(),

CHAPTER 7 Stacks Using Linked Lists 115

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

displayReverseNodes(), and destroyNodes(). You learned about them

in Chapter 6.

Here is the LinkedList class definition. You’ll notice that this is nearly the same

as the LinkedList class definition you saw in Chapter 6, but there is a subtle differ-

ence. In Chapter 6, the front and back pointers were declared in the private access

specifier area of the class definition. Here they are defined in the protected access speci-

fier area because the StackLinkedList class will use them:

class LinkedList
{

protected:
NODE* front;
NODE* back;

public:
LinkedList();
~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();

};

The StackLinkedList Class
An efficient programmer does not repeat code if possible and instead inherits attributes

and behaviors of another class, defining aLinkedList class to create and manipulate

a linked list. An efficient programmer might also define a StackLinkedList class

to create and manipulate a stack-linked list. TheStackLinkedList class inherits at-

tributes and behaviors of theLinkedList class and then defines other behaviors that

are necessary to work with a stack-linked list.

In addition to the attributes and behaviors defined in theLinkedList class, the

StackLinkedList class requires five behaviors defined as member functions: a

constructor and destructor, push(), pop(), and isEmpty(). The

StackLinkedList class definition is shown here:

class StackLinkedList : public LinkedList
{

public:
StackLinkedList();
virtual ~StackLinkedList();
void push(int);

116 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Stacks Using Linked Lists 117

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

int pop();
bool isEmpty();

};

StackLinkedList Constructor and Destructor
The constructor and destructor of theStackLinkedList class may be confusing

the first time you look at them because both are empty and there aren’t any instruc-

tions specified in the body of the constructor and destructor, as shown here:

StackLinkedList()
{
}

~StackLinkedList()
{
}

The constructor is empty because the constructor of the LinkedList class is

called before the constructor of theStackLinkedList class. You’ll recall that the

StackLinkedList class inherits the LinkedList class. The LinkedList
class constructor initializes thefront andback pointers of the linked list to NULL.

Therefore, there is nothing else for theStackLinkedList class constructor to do.

Likewise, the destructor of theLinkedList class is called before the destructor

of the StackLinkedList class. The LinkedList class constructor deletes

all memory that is associated with the nodes of the linked list. Therefore, the destruc-

tor of the StackLinkedList class also has nothing to do.

Pushing a Node onto a Stack-Linked List
In Chapter 4, you learned that data is placed at the top of the stack and removed from

the top of the stack. Programmers call this pushing data onto the stack and popping

data off the stack. The same steps occur when using a linked list for the stack, but in-

stead of placing data at the next available index in an array, it is placed at the back of

the linked list.

You’ll need to define a push()member function for the StackLinkedList
class that is called whenever data is added to the stack. Remember that you are really

adding a node to the linked list and not simply data. Data is contained in the node.

To add a node to the stack, you use the same steps you use to add a node to a linked

list. This means that the appendNode() member function of the LinkedList
class can be used to place a new node on the stack. Therefore, all you need is to call

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

118 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

the appendNode() member function from the push() member function. Be-

cause appendNode() is public, you could just call appendNode directly to

push a node onto the stack, but putting a push() function in the stack class makes

this more intuitive to somebody using this class. This also helps hide the underlying

implementation so using the class is a little more straightforward.

As you’ll recall from Chapter 6, theappendNode()member function requires

one argument, which is the data that is assigned to the new node. You must define the

push() member function to accept the same data as its argument in order to pass

this data to the appendNode()member function. This is illustrated in the follow-

ing example. The push() member function requires an integer passed as an argu-

ment. The integer is then passed to the appendNode() member function within

the body of the push() function definition.

void push(int x)
{

appendNode(x);
}

Popping a Node from a Stack-Linked List
You’ll also need to define a member function to pop a node from the stack. In this ex-

ample, we’ll call it pop(). Because you’re using the linked list as the stack, the

pop() member function must remove the node from the back of the linked list.

Unfortunately, you cannot simply call a member function of the LinkedList
class to pop the node off the stack because the LinkedList class doesn’t define a

member function that removes a node from the linked list. If you had a member func-

tion in the base class for removeBack(), you could call that to pop a node off the

list. In this case, you’ll need to define apop() function in theStackLinkedList
class to do this. This will give you a last in, first out access to the stack.

Here is the definition of the pop()member function. Refer to the picture of the

stacked linked list in Figure 7-2 as you read to help you understand how the pop()
member function works.

int pop()
{

if (isEmpty())
{
return -1;

}
int retVal = back->data;
NODE * temp = back;

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (back->previous == NULL)
{

back = NULL;
front = NULL;

}
else
{

back = back->previous;
back->next = NULL;

}
delete temp;
return retVal;

}

First, you must determine if there is anything on the stack by calling the

isEmpty() member function. We’ll show you how this member function works

later in this section. For now, understand that the isEmpty()member function re-

turns a Boolean true if the stack is empty, or a Boolean false if it is not. You can

see in Figure 7-2 that the stack has two nodes on the stack, so it is not empty. There-

fore, the return statement in the if statement is not executed.

The pop() member function refers to the back attribute of the LinkedList
class. It is important to remember that the back attribute refers to the top of the

stack. Nodes will be removed from the back of the linked list to do a pop operation.

Therefore, the value of front is Node 2.

CHAPTER 7 Stacks Using Linked Lists 119

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

Figure 7-2 The pop() member function removes the node at the top of the stack,

which is the node at the front of the linked list.

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The value of Node 2 is assigned to the retVal variable, which is the value re-

turned by the pop()member function if there is a node on the stack. This pops the

value from the stack.

Next, the address of the back node, which is Node 2, is assigned to a temporary

pointer. The node that the temporary pointer points to is removed from memory with

the delete operator at the end of the pop() member function.

Next, you determine if the node at the back of the stack was the only node on the

linked list. You make this determination by seeing if the previous attribute of the node

is NULL. If the previous pointer on the back of the list is NULL, this indicates that

there’s only one node in the linked list.

Be careful when analyzing the pop() member function. Remember that the

back of the linked list is the top of the stack and that the bottom of the stack is the top

of the linked list.

If the pop() member function is removing the only node on the stack, then the

front andback attributes of theLinkedList class are set to NULL, indicating

there are no nodes left on the linked list after the pop() is executed.

However, if there is at least one node on the stack, statements within theelse state-

ment are executed, as in Figure 7-2. The first statement within the else statement

assigns the previous attribute of the back attribute as the new back. In Figure 7-2, the

previous attribute is 1. This tells you that Node 1 comes before Node 2. You then

assign Node 1 as the new back of the stack.

Remember that there isn’t a next node on the stack because you are always working

with the back of the linked list. Therefore, you need to assign NULL to the next attrib-

ute of the back node, which is Node 1. This makes Node 1 at the top of the stack.

The next to last statement removes the node from memory using thedelete op-

erator. The temporary pointer points to the memory address of the node that was re-

moved from the stack. The last statement returns the value of the node that was

removed from the stack.

Determine If the Stack Is Empty
Thepop()member function must determine if the stack is empty, or it will attempt

to remove a node that isn’t on the stack. The pop()member function determines if

the stack is empty by calling the isEmpty() member function, which you must

define as part of the StackLinkedList class.

The isEmpty()member function is a simple function, as shown next. It deter-

mines if the stack is empty by seeing if the value of the front attribute of the

LinkedList class is NULL. If so, then a Boolean true is returned; otherwise, a

Boolean false is returned. If the stack is empty, both front and back are equal

to NULL but you only need to check one of them.

120 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bool isEmpty()
{

if(front == NULL)
{

return true;
}
else
{

return false;
}

}

StackLinked List Using C++
Now that you have an understanding of components, you need to create a stack-

linked list. In this section, we’ll focus on assembling them into a working C++

application. Some programmers organize components of a stack-linked list into

five files: LinkedList.h, LinkedList.cpp, StackLinkedList.h,

StackLinkedList.cpp, and StackLinkedListDemo.cpp. All these

files are joined together at compile time to create the executable.

TheLinkedList.h file is the header file that contains the definition of the Node

structure and the definition of theLinkedList class. TheLinkedList.cpp is a

source code file that contains the implementation of member functions of the

LinkedList class, both of which you learned about in Chapter 6.

The StackLinkedList.h file is the header that contains the definition of the

StackLinkedList class. The StackLinkedList.cpp is the source code

file that contains the implementation of member functions of the

StackLinkedList class.

The StackLinkedListDemo.cpp contains the application. It is here where

an instance of the StackLinkedList class is declared and member functions

are called.

LinkedList Header File and LinkedList Functions
TheLinkedList.h file and theLinkedList.cpp file are shown in the following

code. These should look familiar to you because they are the same files described in

Chapter 6. However, there is one exception. Thefront andback attributes defined in

the LinkedList class in the LinkedList.h file are defined within the protected

access specifier section of the class definition. They appeared within the private access

CHAPTER 7 Stacks Using Linked Lists 121

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

specifier in the sample file in Chapter 6. The StackLinkedList class needs access

to these variables, so you protect them so they’re visible to the subclass.

Refer to Chapter 6 for a complete explanation of these files and member functions.

//LinkedList.h
typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;
class LinkedList
{

protected:
NODE* front;
NODE* back;

public:
LinkedList();
~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();

};

//LinkedList.cpp
#include "LinkedList.h"
LinkedList::LinkedList()
{

front = NULL;
back = NULL;

}
LinkedList::~LinkedList()
{

destroyList();
}
void LinkedList::appendNode(int data)

122 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Stacks Using Linked Lists 123

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

{
NODE* n = new NODE(data);
if(back == NULL)
{

back = n;
front = n;

}
else
{

back->next = n;
n->previous = back;
back = n;

}
}
void LinkedList::displayNodes()
{

cout << "Nodes:";
NODE* temp = front;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->next;

}
}
void LinkedList::displayNodesReverse()
{

cout << "Nodes in reverse order:";
NODE* temp = back;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->previous;

}
}
void LinkedList::destroyList()
{

NODE* temp = back;
while(temp != NULL)
{

NODE* temp2 = temp;
temp = temp->previous;
delete temp2;

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

124 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

}
back = NULL;
front = NULL;

}

StackLinkedList Header File and StackLinkedList
Source File
The StackLinkedList.h fi le contains the defini t ion of the

StackLinkedList class, as shown next. Below the StackLinkedList.h
file is the StackLinkedList.cpp file that contains the definitions of member

functions.

The class definition and each member function were explained in the “The

StackLinkedList Class” section of this chapter.

//StackLinkedList.h
class StackLinkedList : public LinkedList
{

public:
StackLinkedList();
virtual ~StackLinkedList();
void push(int);
int pop();
bool isEmpty();

};

//StackLinkedList.cpp
StackLinkedList.h
StackLinkedList::StackLinkedList()
{
}
StackLinkedList::~StackLinkedList()
{
}
void StackLinkedList::push(int x)
{

appendNode(x);
}
int StackLinkedList::pop()
{

if(isEmpty())
{

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Stacks Using Linked Lists 125

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

return -1;
}
int retVal = back->data;
NODE* temp = back;
if(back->previous == NULL)
{
back = NULL;
front = NULL;

}
else
{

back = back->previous;
back->next = NULL;

}
delete temp;
return retVal;

}
bool StackLinkedList::isEmpty()
{

if(front == NULL)
{

return true;
}
else
{

return false;
}

}

StackLinkedList Application
The StackLinkedListDemo.cpp file contains the actual stack application, as

shown in the following code listing. The application begins by declaring an instance

of the StackLinkedList class. Remember that this statement also indirectly

calls the constructor of the LinkedList class, which is inherited by the

StackLinkedList class.

The application then calls thepush()member function to push the values 10, 20,

and 30 onto the stack. ThedisplayNodes()member function is then called to dis-

play the values on the stack. The displayNodes()member function is a member

of the LinkedList class and is described in detailed in Chapter 6.

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The pop()member function is then called to remove the last node on the stack,

which is then displayed on the screen (see Figure 7-3). The program then calls the

delete operator to remove the stack from memory.

Here’s the output of this program:

Nodes: 10 20 30 10

//StackLinkedListDemo.cpp
#include <iostream>
using namespace std;
void main(){

StackLinkedList* stack = new StackLinkedList();
stack->push(10);
stack->push(20);
stack->push(30);
stack->displayNodes();
cout << stack->pop() << endl;
delete stack;

}

126 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

Figure 7-3 Before the pop() member function is called, there are three nodes on the

stack. Two nodes remain after pop() is called.

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7 Stacks Using Linked Lists 127

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

StackLinked List Using Java
Java’s version of the stack-linked list is less complex than the C++ version because

Java programmers use the Stack class defined in the java.util package. The

Stack class contains the push(), pop(), and empty()member methods simi-

lar to those that you define in the C++ version of the stack-linked list. Understanding

the basics of the C++ version helps you also understand the internal implementation

of the stack, which in turn helps you make better choices when you select from data

structures that have already been written, such as the Stack class in Java.

The following Java application is comparable to the C++ application that is dis-

cussed throughout this chapter. The application begins by declaring an instance of

the Stack class and then calls the push() member method to place three values

on the stack. The push()member method expects an object rather than an integer.

Therefore, integers are passed to the constructor of the Integerwrapper class, as

discussed in detail in the “Linked Lists Using Java” section of Chapter 6.

After the stack is loaded with data, the Java application determines if there is any

data stored on the stack by calling the empty() member method of the Stack
class. The empty() member method performs the same functionality as the

isEmpty() member function in the C++ application.

The empty() member method returns a Boolean true if the stack is empty;

otherwise, a Booleanfalse is returned. The program uses the not operator (!) to re-

verse the logic. That is, if theempty()member method returnsfalse, then state-

ments within the 0 loop execute.

The first statement within the while loop calls the pop() member method,

which returns anIntegerwrapper class object. Thepop()method returns an ob-

ject, so this must be typecast to an integer. The value is displayed using the Sys-
tem.out.println() method. Here’s what is displayed when you run this

application:

30

20

10

import java.util.*;
public class StackLinkedListDemo {

public static void main(String[] args)
{

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Stack stack = new Stack();
stack.push(new Integer(10));
stack.push(new Integer(20));
stack.push(new Integer(30));
while(!stack.empty())
{

Integer temp = (Integer)stack.pop();
System.out.println(temp);

}
}

}

Quiz
1. What is a stack-linked list?

2. How does a stack-linked list differ from a linked list?

3. What is the benefit of using a stack-linked list?

4. Where is the front of the stack in a stack-linked list?

5. What is the maximum number of nodes that you can have on a

stack-linked list?

6. Can a node on a stack-linked list have more than one data element?

7. Why does the StackLinkedList class inherit the LinkedList class?

8. Why is the constructor of the StackLinkedList class empty?

9. Why is the destructor of the StackLinkedList class empty?

10. What happens when you push a new node onto a stack?

128 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 7

P:\010Comp\DeMYST\359-2\ch07.vp
Monday, February 02, 2004 4:24:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
8

Queues Using
Linked Lists

Did you ever get ready to queue up to buy tickets for a hot concert, only to stand in the

parking lot because there wasn’t room at the ticket counter to accommodate all the fans?

This is a common scenario, but you may not realize that programmers experience a simi-

lar problem storing data using queues: there is not enough room on the queue for all the

data (just like the problem with all the fans) that must be processed. Box office staff still

wrestle with this problem, but programmers have arrived with a solution: they use a

linked list to create a queue. In this chapter, you’ll learn how and when to use a linked list

to queue data.

129

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

A Queue
In Chapter 5, you learned that a queue is a sequential organization of data where data

is accessible on a first in, first out (fifo) basis, which is similar to the line that you

stand in to buy concert tickets.

The queue in Chapter 5 was created using an array to store data. As you’ll recall,

the array is separate from the queue. Data is assigned to elements of the array. The

queue itself consists of two variables calledfront andback. Each points to the ar-

ray element that is at the front of the queue or at the back of the queue. When data is

removed from the front of the queue, the program changes the value of the front
variable to point to the next array element. However, the data removed from the

queue remains assigned to the array. That is, data isn’t removed from memory.

There is a serious problem with using arrays to store data for queues: you must

know the size of the array when you write the program. An array can store only a spe-

cific maximum number of elements at any point in time, similar to an architect de-

signing a specific space for a box office that can accommodate a maximum number

of fans at any point in time.

However, there is a difference between exceeding the number of array ele-

ments and overflowing the space around the box office: unlike the stadium, there is

no parking lot for fans to gather in while waiting to get in the queue to purchase tick-

ets inside a computer.

Programmers work around the size issue by using a linked list instead of an array

when creating a queue. As you learned in previous chapters, a linked list can grow

and shrink at runtime based on the needs of the application.

The Linked List Queue
Conceptually, a linked list queue is the same as a queue built using an array. Both

store data. Both place data at the front of the queue and remove data from the front of

the queue. However, in an array queue, data is stored in an array element. In a linked

list queue, data is stored in a node of a linked list. The linked list queue consists of

three major components: the node, the LinkedList class definition, and the

QueueLinkedList class definition. Collectively, they are assembled to orga-

nized data into a queue.

As you’ll recall from Chapter 6, a node is created in C++ as a user-defined data type

structure that contains three elements. These are the data and pointers to the previous

node and the next node on the linked list (Figure 8-1). The next code snippet is the user-

130 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

defined data type structure node that we used in Chapter 6. You’ll be using the following

user-defined data type structure in this chapter to create the linked list queue.

The name of the user-defined data structure is called Node in this example and is

used within the LinkedList class definition to declare instances of the node. The

last three statements in the structure declare an integer that stores the current data

and declares two pointers to reference the previous node and the next node on the

linked list.

Each time a node is created, the user-defined structure is passed data for the node.

Pointers to the previous node and to the next node are assigned NULL, which indi-

cates there isn’t a previous node or next node. NULL is replaced with reference

to a node once the new node is added to the linked list.

typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;

CHAPTER 8 Queues Using Linked Lists 131

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Figure 8-1 Each node points to the previous node and the next node.

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

132 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

next = NULL;
}
int data;
struct Node* previous;
struct Node* next;

} NODE;

TheLinkedList class creates and manages the linked list. As you’ll remember

from Chapter 6, the LinkedList class identifies the node that is the front of the

linked list and the node that is at the back of the linked list.

In addition, the LinkedList class defines member functions that manage

the linked list. These are the same member functions described in Chapter 6, a

constructor and destructor, appendNode(), displayNodes(),

displayNodesReverse(), anddestroyList().Here is theLinkedList
class definition that you’ll use to create the linked list queue:

class LinkedList
{

protected:
NODE* front;
NODE* back;

public:
LinkedList();
~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();

};

Programmers usually place the node structure and the LinkedList class defi-

nition in the same header file,LinkedList.h. Placing the code needed to create a

linked list in one file like this helps keep it organized. Programmers then use the pre-

processor directive #include to include LinkedList.h in any program that

uses a linked list.

The last component of the linked list queue is the QueueLinkedList class

definition. The QueueLinkedList class inherits the LinkedList class and

then defines member functions that are specifically designed to manage a queue.

You might wonder why you don’t simply define one class that combines the

LinkedList class and the QueueLinkedList class. Intuitively, this seems to

be a good idea because everything needed to create a linked list queue is contained in

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

one file. However, doing so repeats code, which is something programmers avoid if

possible.

For example, definitions of a node and theLinkedList class would be located in

two places. If you needed to upgrade either definition, you’d need to remember all the

places where they are defined in your code. A better approach is to place each defini-

tion in its own file (for example, LinkedList.h, QueueLinkedList.h) so

code won’t be repeated.

Here is the definition of theQueueLinkedList class that you’ll use to create a

queue. Programmers save this definition in a file called QueueLinkedList.h.

The QueueLinkedList class has five member functions: a constructor and destruc-

tor, enqueue(), dequeue(), and isEmpty().

//QueueLinkedList.h
#include "LinkedList.h"
class QueueLinkedList : public LinkedList
{

public:
QueueLinkedList();
virtual ~QueueLinkedList();
void enqueue(int);
int dequeue();
bool isEmpty();

};

The constructor and destructor of the QueueLinkedList class are empty, as

shown in the next code snippet. The constructor typically initializes data members of

an instance of the class. In the case of the linked list queue, initialization is per-

formed by the constructor of the LinkedList class, which is called before the

constructor of the QueueLinkedList class. This means there isn’t anything for

the constructor of the QueueLinkedList class to do.

The destructor typically frees memory used by an instance of a class. The linked

list used for the queue is removed by the destructor of the LinkedList class,

which is also called before the destructor of theQueueLinkedList class. There-

fore, there isn’t anything for the destructor of theQueueLinkedList to do either.

QueueLinkedList::QueueLinkedList()
{
}
QueueLinkedList::~QueueLinkedList()
{
}

CHAPTER 8 Queues Using Linked Lists 133

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Enqueue
The enqueue() member function of the QueueLinkedList class is called

whenever a new node is placed on the queue. As you see from the function definition

in the next code snippet, theenqueue()member function is sparse because it con-

tains only one statement, which calls the appendNode()member function of the

LinkedList class.

You don’t have to include additional statements in the enqueue() member

function because placing a node on the queue is the same process as appending a

node to the linked list. Each new node is placed at the back of the linked list. There-

fore, the appendNode() member function is all you need.

You may wonder why the new node is being placed on the back of the queue, but

it’s just because you’re reusing the same code in the LinkedList class. The new

node will be placed on the back of the queue like a line at the grocery store. Nodes

will be pulled off the front.

Theenqueue()member function has one argument, which is the data that is being

assigned to the new node. In this example, the node is used to store an integer. However,

you can store any type of data in a node. In fact, the data can be a pointer to a set of data

such as student information. To change this example from integer data to another type of

data, you’d need to change the data element in the Node structure to reflect the type

of data you want to store in the node.

Data received by the enqueue() member function is passed to the

appendNode() member function. Figure 8-2 illustrates how the

appendNode()member function places a new node at the back of the linked list.

At the top of the illustration is a linked list that contains two nodes. The

appendNode() is then called to add a new node to the back of this linked list.

The first step in this process assigns a reference to the new node to the next mem-

ber of the front node. The front node is Node 2 and is assigned the reference Node 3

as the value of the next node in the linked list. This makes Node 3 the back of the

linked list.

The second step assigns reference to Node 2 as the value of the previous node in

Node 3. This means the program looks at the value of the previous node of Node 3 to

know which node comes before Node 3 in the linked list.

The last step is to assign Node 3 as the new value of theback data member of the

LinkedList class.

void enqueue(int x)
{

appendNode(x);
}

134 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dequeue
The dequeue() member function of the QueueLinkedList class removes a

node from the front of the queue. Unfortunately, there aren’t any member functions

in the LinkedList class that remove a node from the back of the linked list.

Therefore, the dequeue() member function must do the job.

The dequeue() function begins by determining if there are any nodes on the

queue by calling the isEmpty(). The isEmpty() member function returns a

Boolean true if the queue is empty, in which case the dequeue() returns a –1.

A Boolean false is returned if there is at least one node on the queue.

Figure 8-3 shows how the dequeue() member function works. You’ll notice

there are three nodes on the queue, so the isEmpty()member function returns

a Boolean false, causing the program to remove the front node from the queue.

CHAPTER 8 Queues Using Linked Lists 135

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Figure 8-2 A new node is added to the queue at the back of the linked list.

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The removal process starts by assigning the data of the node at the front of the queue

to a variable calledretVal. The value of theretVal is returned by thedequeue()
member function in the last statement of the function.

Next, reference to the front node is assigned to the temp variable pointer. The

delete operator later in the function uses the temp variable to remove the back

node from memory.

Next, the function determines if there is another node on the queue by examining the

value of thenextmember of the front node. If the value of thenextmember is NULL,

there aren’t any other nodes on the queue. In this case, the front and backmembers

of the LinkedList class are set to NULL, indicating that the queue is empty.

However, if thenextmember of the front node is not NULL, the value of thenext
member of thefrontnode is assigned to the front member of theLinkedList class.

In this example, Node 2 is the next node following Node 1. Node 2 becomes the new

front of the queue.

136 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Figure 8-3 Node 1 is removed from the back of the queue by the dequeue()
member function.

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8 Queues Using Linked Lists 137

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Notice that the previousmember of Node 2 is set to Node 1. However, Node 1

no longer exists. Therefore, the previous member must be set to NULL because

there isn’t a previous node. Node 2 is the front of the queue.

The temp node is then deleted from memory. Remember that the temp node is a

pointer that points to Node 1, and Node 1 no longer exists in memory. The final state-

ment returns the value of the retVal variable, which is the data that was stored in

Node 1.

int dequeue()
{

if(isEmpty())
{

return -1;
}
int retVal = front->data;
NODE* temp = front;
if(front->next == NULL)
{

back = NULL;
front = NULL;

}
else
{

front = front->next;
front->previous = NULL;

}
delete temp;
return retVal;

}

TheisEmpty()member function determines if there are any nodes on the queue,

which is called by the dequeue() member function. The isEmpty() member

function examines the value of the front data member of the LinkedList class.

If the value of front is NULL, then the queue is empty; otherwise, the queue has at

least one node.

TheisEmpty()member function returns a Booleantrue if the value offront
is NULL, otherwise a Boolean false is returned as shown in the definition of the

isEmpty() here:

bool isEmpty()
{

if(front == NULL)

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
return true;

}
else
{

return false;
}

}

Linked List Queue Using C++
Now that you understand how to create a queue using a linked list, let’s assemble all

the pieces and build a working queue in C++. Programmers organize an application

into several files, each containing a distinct component of the application.

In the case of the demo queue application illustrated next, there are five distinct

components: the driver file (QueueLinkedListDemo.cpp), the header file that

contains the definition of the node and theLinkedList class (LinkedList.h),

the file that contains the implementation of member functions of the LinkedList
class (LinkedList.cpp), the header file that contains the definition of the

QueueLinkedList class (QueueLinkedList.h), and the file that contains

the implementation of member functions of the QueueLinkedList class

(QueueLinkedList.cpp).

The application is called QueueLinkedListDemo, and it uses a linked list to

create a queue, as shown in the next code. The application begins by declaring an in-

stance of the QueueLinkedList class using the new operator. It then declares a

pointer to an instance of the QueueLinkedList. The pointer is called queue,

which is assigned a reference to the instance created by the new operator.

The enqueue()member function is then called three times, each time another

node is placed on the queue. The queue shown in Figure 8-4 depicts the queue after

the last time the enqueue() method is called.

The dequeue() member function is then called to remove the first node from

the queue and display its data member on the screen. Figure 8-5 shows the queue

after the dequeue() member function is called.

138 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Figure 8-4 The queue after all three values are placed on the queue.

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The last statement in the program removes the queue from memory.

Each of the remaining components of the application was discussed in the previ-

ous section.

//QueueLinkedListDemo.cpp
#include <iostream>
using namespace std;
void main(){

QueueLinkedList* queue = new QueueLinkedList();
queue->enqueue(10);
queue->enqueue(20);
queue->enqueue(30);
cout << queue->dequeue() << endl;
delete queue;

}

//LinkedList.h
typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;
class LinkedList
{

protected:
NODE* front;
NODE* back;

public:
LinkedList();
~LinkedList();

CHAPTER 8 Queues Using Linked Lists 139

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Figure 8-5 The queue after the dequeue() member function is called

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();

};

//LinkedList.cpp
#include "LinkedList.h"
LinkedList::LinkedList()
{

front = NULL;
back = NULL;

}
LinkedList::~LinkedList()
{

destroyList();
}

void LinkedList::appendNode(int data)
{

NODE* n = new NODE(data);
if(front == NULL)
{

back = n;
front = n;

}
else
{

back->next = n;
n->previous = back;
back = n;

}
}

void LinkedList::displayNodes()
{

cout << "Nodes:";
NODE* temp = front;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->next;

}
}

140 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8 Queues Using Linked Lists 141

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

void LinkedList::displayNodesReverse()
{

cout << "Nodes in reverse order:";
NODE* temp = back;
while(temp != NULL)
{

cout << " " << temp->data;
temp = temp->previous;

}
}

void LinkedList::destroyList()
{

NODE* temp = back;
while(temp != NULL)
{

NODE* temp2 = temp;
temp = temp->previous;
delete temp2;

}
back = NULL;
front = NULL;

}

//QueueLinkedList.h
#include "LinkedList.h"
class QueueLinkedList : public LinkedList
{

public:
QueueLinkedList();
virtual ~QueueLinkedList();
void enqueue(int);
int dequeue();
bool isEmpty();

};

//QueueLinkedList.cpp
#include "QueueLinkedList.h"
QueueLinkedList::CQueueLinkedList()
{
}
QueueLinkedList::~CQueueLinkedList()
{
}
void QueueLinkedList::enqueue(int x)
{

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

142 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

appendNode(x);
}

int QueueLinkedList::dequeue()
{

if(isEmpty())
{

return -1;
}
int retVal = front->data;
NODE* temp = front;
if(front->next == NULL)
{

back = NULL;
front = NULL;

}
else
{

front = front->next;
front->previous = NULL;

}
delete temp;
return retVal;

}

bool QueueLinkedList::isEmpty()
{

if(front == NULL)
{

return true;
}
else
{

return false;
}

}

Linked List Queue Using Java
You learned in your Java programming class that Java has several Java collection

classes that create and manipulate data structures, and you learned in Chapter 6 that

the LinkedList class is one of those collection classes.

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, Java does not have a QueueLinkedList class. Therefore, you need

to define your own QueueLinkedList class to create a queue that is formed

using a linked list. The good news is that the QueueLinkedList class contains

only three member methods, and each has a simple definition.

The QueueLinkedList class requires that you define a constructor, an

enqueue()member method, and a dequeue()member method. The construc-

tor initializes the linked list, and the enqueue()and dequeue()member meth-

ods place data on the queue and remove data from the queue.

The QueueLinkedList class inherits the LinkedList collection class

and uses member methods of the LinkedList class to create and manipulate

the queue. This simplifies the task of defining member methods for the

QueueLinkedList class.

The purpose of the constructor is to create and initialize the linked list. The

LinkedList class constructor performs these tasks, which means the

QueueLinkedList class constructor needs to call the LinkedList class con-

structor. This is done by entering the super() statement in the

QueueLinkedList constructor definition as shown next:

public QueueLinkedList()
{

super();
}

The definition of the enqueue() member method places data at the back of the

queue. Fortunately, the LinkedList class defines the addLast() member method,

which does just that. Therefore, theenqueue()member method must simply call the

addLast() member method to place data at the end of the linked list.

The next code snippet is the definition of the enqueue()member method. The

enqueue() member method requires one argument, which is the data that is

placed on the queue. We use an integer in this example, but you can use data of any

data type.

The data is assigned to a wrapper class and then passed to theaddLast()member

method. As you’ll recall from your Java class, a wrapper class is a class that has member

methods defined to manipulate a primitive data type. TheInteger()wrapper class is

used in this example because we are using an integer. Java also has wrapper classes for

other primitive data types.

You must use a wrapper class because theaddLast()member method expects

to receive an object and not a primitive data type. Therefore, you need to pass the

primitive data type (variable x in this example) to the constructor of the wrapper

class. The constructor assigns the value of the primitive data type to a data member

of the wrapper class.

CHAPTER 8 Queues Using Linked Lists 143

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice in the parameter of theaddLast()member method that the new opera-

tor declares the instance of the wrapper class (Integer) and returns a reference to

the instance, which is passed to the addLast() member method.

public void enqueue(int x)
{

addLast(new Integer(x));
}

The definition of the dequeue() member method is a little more complicated

than the other member methods of the QueueLinkedList class. The purpose of

the dequeue() member method is to remove data from the front of the queue, so

the first task the dequeue() member method performs is to determine if there is

any data on the queue. It does this by calling the size() member method of the

LinkedList class. This is similar to calling the isEmpty()member method of

the QueueLinkedList class in a C++ program.

The size() member method returns a zero if the linked list is empty. The

dequeue() member method then returns the zero to the statement that called

the dequeue() member method. A nonzero value is returned by the size()
member method if there is data on the linked list.

If there is data on the linked list, thedequeue()member method removes the data

from the first node on the linked list and assigns it to a variable calledtemp. Thetemp
variable refers to an instance of the Integer wrapper class. However, the

removeFirst()member method returns the value of the node, which is an integer in

this example. Therefore, the value returned by theremoveFirst()member method

must be cast as an instance of the Integer wrapper class (Integer) before it is assigned

to the temp variable.

You do this because in the next statement, you call the intValue() member

method of the Integer wrapper class to retrieve the data member of the wrapper

class, which is the value that is returned by the dequeue() member method.

Here is the definition of the dequeue() member method:

public int dequeue()
{

if(size() == 0)
{

return 0;
}
Integer temp = (Integer)removeFirst();
return temp.intValue();

}

Now that you understand how to define the QueueLinkedList class, let’s use

a queue in a Java application. The next piece of code is the complete Java applica-

144 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

tion. It begins with the definition of the QueueLinkedList class, which you

learned about in this section.

At the end of the application is the main() method. The first statement in the

main() method declares an instance of the QueueLinkedList() class called

queue. This is the same statement that is used in the C++ version of this application.

The enqueue() member method is called three times, placing the values 10, 20,

and 30 on the queue. The result is a queue that looks like Figure 8-4. The application then

removes the first data element from the queue and displays it on the screen by calling the

dequeue()member method. The value returned by thedequeue()method is then

displayed on the screen by calling the System.out.println() method.

Here’s what is displayed on the screen.

10

Next, the application places three more values on the queue by calling the

enqueue()member method, which places 40, 50, and 60 on the queue. Figure 8-6

shows the queue.

The last step in the application is to display each node on the linked list. Here’s the

output of the following program:

20

30

40

50

60

import java.util.*;
class QueueLinkedList extends LinkedList
{

public QueueLinkedList()
{

super();

CHAPTER 8 Queues Using Linked Lists 145

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

Figure 8-6 The queue after all values are placed on the queue

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

146 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

}
public void enqueue(int x)
{

addLast(new Integer(x));
}
public int dequeue()
{

if(size() == 0)
{

return 0;
}
Integer temp = (Integer)removeFirst();
return temp.intValue();

}
}
public class QueueLinkedListDemo {

public static void main(String[] args)
{

QueueLinkedList queue = new QueueLinkedList();
queue.enqueue(10);
queue.enqueue(20);
queue.enqueue(30);
System.out.println(queue.dequeue());
queue.enqueue(40);
queue.enqueue(50);
queue.enqueue(60);
while(queue.size() > 0)
{

System.out.println(queue.dequeue());
}

}
}

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is a queue linked list?

2. How does a queue linked list differ from an array queue?

3. What is the benefit of using a queue linked list?

4. Where are new nodes added to the queue?

5. Which node is removed from the queue when the dequeue() member

method is called?

6. Can a node on a queue linked list have more than one data element?

7. What form of access is used to add and remove nodes from a queue?

8. Why is the constructor of the QueueLinkedList class empty?

9. Why does the QueueLinkedList class inherit the LinkedList class?

10. What happens when dequeue() is called?

CHAPTER 8 Queues Using Linked Lists 147

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 8

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 148

P:\010Comp\DeMYST\359-2\ch08.vp
Monday, February 02, 2004 4:19:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER
9

Stacks and Queues:
Insert, Delete,

Peek, Find

When you began learning about programming, you probably started with a bare-

bones computer and then, once you learned how to program, you probably traded up

for a system that had all the bells and whistles. Learning how to use the

LinkedList class works in a similar way. The LinkedList class has basic

functionality that is useful when working with stacks and queues. However, it lacks

powerful features that are required to build industrial-strength applications. Now it

is time to learn how to use those features and upgrade theLinkedList class. We’ll

teach you how to do that in this chapter by introducing insert, peek, delete, and find

functionality to the LinkedList class and showing you how to use them in your

stack and queue applications.

149

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

The Enhanced LinkedList Class
You might wonder why you need to enhance the LinkedList class that was de-

fined in previously chapters. The simple answer is that you can increase the effi-

ciency of the LinkedList class and make it easier to use if you increase the

functionality of the class.

As you’ll recall, the LinkedList class creates an instance of the structure Node

that is defined in LinkedList.h. The Node structure has three elements: the data

stored in the node, a reference to the next node, and the previous node on the linked list.

TheLinkedList class that you used in previous chapters contains two data mem-

bers and six member functions. The data members are references to the node that is at

the front of the linked list and reference to the node that is at the back of the linked list.

The LinkedList class has member functions that append a node to the linked

list and display data assigned to nodes in forward or reverse order, as well as a func-

tion to destroy the linked list. In addition, the LinkedList class has a constructor

and destructor.

These data members and member functions are the barebones that are necessary

for the LinkedList class to operate. Now you’ll take a few steps forward and in-

crease the functionality of the LinkedList class to make it more useful when

working with a linked list application.

The first enhancement is to define a new data member called size. The size
data member is an integer that represents the number of nodes that are in the linked

list. (The index is used, butsize determines whether the list is empty or you passed

an invalid index.) It can be used any time the application needs to know the size of the

linked list.

Next, you need to define additional member functions, the first of which is the

removeNode() function. The removeNode() function enables you to easily re-

move a node from the linked list by specifying a reference to the node. The

removeNode() function then removes the node and relinks the link list. This function

is protected because it’s only used internally. The user of this class would not know the

pointers to the individual nodes. This is a convenient function to remove nodes.

Another useful function that you’ll define is removeNodeAt(), which removes

a node at a particular location in the linked list. The order in which nodes appear on the

list is referred to as the index order. The position of a node on the linked list is referred

to as the node’s index. The index is passed to the removeNodeAt() function to

specify the node that is to be removed from the linked list. The removeNodeAt()
function then removes the node and relinks the linked list. The node on the front of the

list is index 0; it then increments by one, moving toward the back of the list. The

appendNode() function adds nodes to the back of the linked list, so you can think

of this as a dynamic array moving from front to back.

150 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sometimes you may not know the index of the node that you want to remove from the

linked list. In that case, you need to define another function that removes a node based on

the data of the node, not the node’s index. You can call this functiondeleteNode().

The deleteNode() differs from the removeNodeAt() function by the way the

function identifies the node to remove from the linked list. The removeNodeAt()
function locates the node to remove by using the node’s index value. The

deleteNode() locates the node to remove by using the value of the data of the node,

which is passed to the deleteNode() function.

So far in this book, you’ve accessed nodes on a linked list in sequential order. How-

ever, nodes are accessed randomly in some real-world applications. The next new

function that you’ll define for theLinkedList class enables you to access a specific

node. This function is called findNode(), and it is used when you know the data

contained in the node but you don’t know the position of the node on the linked list. To

locate the node, you provide the function with the data stored in the node. The

findNode() function returns the index of the node.

The originalLinkedList class is capable of appending a new node to the linked

list. There will be situations when you’ll want to insert a new mode somewhere in the

middle of the linked list. To do this, you need to define theinsertNodeAt() func-

tion. TheinsertNodeAt() function will require two parameters. The first param-

eter is the index of the node that will be moved in the linked list to make room for the

new node. This becomes the index of the new node. The second parameter is the data

that will be assigned to the new node. The insertNodeAt() function creates the

new node and adjusts references within the linked list to link the new node to other

nodes in the linked list.

Another major enhancement to the LinkedList class is to retrieve data that is

stored at a specific node. Previously, two display functions were the only functions

that you could use to see the data in the linked list (these function didn’t return any-

thing, they just count all the nodes). Both functions print out all the data stored in a

linked list. Call the new function peek(). The peek() function requires that you

pass it the index of the node that contains the data you want to retrieve. It then returns

the data stored at that node.

The last enhancement that you’ll make to the LinkedList class is to define a

function that returns the number of nodes contained on the linked list. Call this func-

tiongetSize() and use it whenever you need to determine the size of the linked list.

The following example is the revisedLinkedList.h file that contains the defini-

tions of the node structure and the enhancedLinkedList class. Notice that thesize
data member and the removeNode() member function are placed within the pro-

tected access specifier area of the class definition. This is because neither is directly used

by the application. Instead, they are used by member functions of the LinkedList
class and by member functions that inherit from the LinkedList class.

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 151

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

152 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

All the other member functions are placed in the public access specifier area of the

LinkedList class definition and are available for direct use by the application. You’ll

learn how each new member function works in forthcoming sections of this chapter.

//LinkedList.h
typedef struct Node
{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;
class LinkedList
{

protected:
NODE* front;
NODE* back;
int size;
void removeNode(NODE* node);

public:
LinkedList();
virtual ~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();
void removeNodeAt(int);
int findNode(int);
void deleteNode(int);
void insertNodeAt(int,int);
int peek(int);
int getSize();

};

removeNode(), removeNodeAt(),
and deleteRemove()
Removing a node from a linked list is a tricky operation. First, you must disconnect

the node from the linked list. However, doing so breaks the link. There is no longer

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 153

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

anything connecting the previous node and the next node because the node you re-

moved was the link between them. This means that after removing a node, you must

link together the previous node and the next node.

You can enhance the LinkedList class to include three member functions

that remove a node from a linked list and then connect the previous node and next

node to each other. These functions areremoveNode(),removeNodeAt(), and

deleteNode().
The removeNode() function is passed a reference to the node that is to be re-

moved from the linked list and is called by theremoveNodeAt() function and the

deleteNode() function. You cannot call theremoveNode() function directly

from the application because it is a protected member of the class.

TheremoveNodeAt() function uses the index of a node to locate the node that

is to be removed. Once the node is found, its reference is passed to the

removeNode() function. Similarly, thedeleteNode() uses the data value of a

node to locate the node. Once found, thedeleteNode() retrieves the reference of

the node, which is then passed to the removeNode() function.

For examples in this section, you’ll use the linked list, shown in Figure 9-1, which

has five nodes, NodeA through NodeE, respectively. Each node holds a position in

the linked list, and each position is identified by an index value. Index values begin

with zero and are shown above the name of each node in Figure 9-1.

Begin by defining the removeNode() function, which is illustrated in the next

code listing. Reference to the node being removed is passed to theremoveNode()
function. TheremoveNode() function must determine which of four processes to

use to remove the node.

The first process is for theremoveNode() to determine if the node is the only node

on the linked list. It makes this determination by evaluating if the previous and the next

node are NULL. If so, the node being deleted is the only node on the list. The node is

then removed by assigning NULL to the back and front data members of the

LinkedList class. As you’ll recall from previous chapters, functions that retrieve

Figure 9-1 A linked list containing five nodes with each node identified by an index value

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data from a linked list always examine the front and back data members to determine if

each is NULL. If so, then the function knows the linked list does not contain any nodes.

If the node is not the only node on the linked list, the removeNode() function

must next determine if the node being removed is at the front of the linked list. It de-

termines this by examining the previous member of the node. If the node is at the

front of the linked list, then the previous member is NULL, and the

removeNode() function takes the following steps to remove the node:

1. The node pointed to by the deleted node’s next member is assigned to the

front data member of the LinkedList class. This makes it the front of

the linked list.

2. The previous member of the node that is now at the front of the linked list

is assigned a NULL value, indicating there is no previous node because you

removed its previous node. Here’s how this is done. It might look a little

confusing, but it’s easy to understand if you take apart this statement:

node->next->previous = NULL;

3. Say that you’re removing Node D. The next node is Node E. Now substitute

the numbers for the terms in this statement:

Node D->Node E->previous = NULL;

It’s clear that the previous member belongs to Node E.

In the third process, the removeNode() function determines if the node being

removed is at the back of the linked list. It does this by comparing the value of the

next member of the node to NULL. If the next member is NULL, then the node being

removed is the last node on the linked list.

The value of the previous member of the node is then assigned to the back mem-

ber of the LinkedList class. This moves the previous node to the back of the list

and in effect removes the node that is passed to the removeNode() function from

the linked list.

The value of the next member of the previous node is then set to NULL, indicating

there isn’t another node because it is at the back of the list. The statement that per-

forms this operator might seem confusing, but replacing references to node and pre-

vious with the node number should clear up any confusion. Here’s the statement:

node->previous->next = NULL;

Say that you’re removing NodeC. The previous node is NodeB. Now substitute

the numbers for the terms in this statement:

NodeC->NodeB->next = NULL;

154 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the node being deleted isn’t the only node on the linked list and isn’t the node at the

front or back of the linked list, the only other possibility is that the node is some-

where in the middle of the linked list.

The fourth process is to remove a node in the middle of the linked list and then link

together the previous and next nodes. I’ll illustrate this with an example because this

operation can be confusing.

Say that you’re removing NodeC. The previous node is NodeB and the next node

is NodeD. First, link NodeB to NodeD by using the following statement:

node->previous->next = node->next;

Replace node, previous, and next with the name of the actual node to better under-

stand this operation:

NodeC->NodeB->next = NodeC->NodeD;

Now that NodeB is linked to NodeD, you need to link NodeD to NodeB:

node->next->previous = node->previous;

Again, replace the node, shown next, and previous with names of nodes to see how

this operation works:

NodeC->NodeD->previous = NodeC->NodeB;

Both NodeB and NodeD are linked to each other, and NodeC is removed from the

linked list.

Although the node passed to the removeNode() function is no longer on the

linked list, it remains in memory. Therefore, you need to remove the node from

memory by calling delete. The final step is to adjust the value of the size member

of the LinkedList class to reflect one less node on the linked list. You do this by

decrementing the value of the size.

Figure 9-2 shows the linked list after the removeNode() function executes.

Notice that NodeC is no longer on the linked list, and the index values are adjusted to

reflect the new number of nodes on the linked list.

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 155

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

Figure 9-2 The linked list after NodeC is removed

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

156 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

void removeNode(NODE* node)
{

if(node->previous == NULL && node->next == NULL)
{

back = NULL;
front = NULL;

}
else if(node->previous == NULL)
{

front = node->next;
node->next->previous = NULL;

}
else if(node->next == NULL)
{

back = node->previous;
node->previous->next = NULL;

}
else
{

node->previous->next = node->next;
node->next->previous = node->previous;

}

delete node;
size--;

}

removeNodeAt()
The removeNodeAt() function removes a node by using the node’s index rather

than the reference to the node in memory. Remember, the index is the position of the

node on the linked list. Say you want to remove the third node of the linked list. You

simply pass the index 2 to theremoveNodeAt() function, andremoveNode()
performs the operation internally. You can’t call removeNode() directly, partly

because it’s protected, but also because outside this class you don’t have any knowl-

edge of the actual pointer values. Remember that the index begins with zero. There-

fore, you don’t need to know the actual reference of the node you want removed.

This is illustrated in the next code.

The first step in the removeNodeAt() function is to determine if the index is

valid. To do that, the removeNodeAt() function determines if the index is less

than zero or greater than one less than the size of the linked list. It uses the value of

the size member of theLinkedList class to determine the size of the linked list. If

either is true, then the index is invalid and no attempt is made to remove the node.

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, if both are false, the removeNodeAt() function begins the process

of removing the node from the list. This process has two steps. First, the index lo-

cates a reference to the corresponding node, and second, the removeNode()
function is called and passed the reference.

The removeNodeAt() function begins searching for reference to the node by

declaring a temporary pointer to a node called temp_node and assigning it the refer-

ence to the node at the front of the linked list. Next, afor loop iterates through each

node on the linked list until the node represented by the index is found. During each

iteration, the temp_node is assigned the node referenced by the next member of the

current temp_node.

When the index is reached, the value of the temp_node is reference to the node

that corresponds to the index that is passed to theremoveNodeAt() function. The

removeNode() function is called and passed the temp_node.

void removeNodeAt(int index)
{

if(index < 0 || index > size-1)
{

return;
}

NODE* temp_node = front;

for(int i=0; i<index; i++)
{

temp_node = temp_node->next;
}

removeNode(temp_node);
}

deleteNode()
The deleteNode() function uses data stored in a node to find and remove a cor-

responding node from the linked list. The deleteNode() function then searches

the linked list to locate and remove the node.

Here’s how this process works. First, a temporary node called temp_node is de-

clared and assigned reference to the node that is located at the front of the linked list.

If the temp_node is not NULL, then the list is not empty and the function determines

if the data matches the data member of the current node.

If it does, the temp_node is passed to theremoveNode() function, and the func-

tion is completed. If the data doesn’t match, the next node is assigned to the temp_

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 157

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

node, and the process continues until either the node containing the data is found or the

deleteNode() function reaches the end of the linked list.

void deleteNode(int data)
{

NODE* temp_node = front;

while(temp_node != NULL)
{

if(temp_node->data == data)
{

removeNode(temp_node);
return;

}
else
{

temp_node = temp_node->next;
}

}
}

findNode()
Let’s say that you need to access a particular node on a linked list, but you don’t

know the reference to the node or the position the node has on the linked list, al-

though you do know the data is stored in the node. You can locate the node by calling

the findNode() function.

ThefindNode() function requires that you pass it the data stored in the node. It

then uses the data to locate the node and return to you the index of the node, as shown

in the following example.

The process of finding a node begins when you declare an index variable that will

eventually be assigned the index of the node if the node is found. A temporary node

is also declared and assigned a reference to the node at the front of the linked list.

As long as the temp_node isn’t NULL, the findNode() function iterates

through the linked list. With each iteration, the data member of the current node is

compared to the data passed as an argument to the findNode() function.

If both are equal, then the current value of the index is returned, which is the index

of the node. If they are not equal, then the value of the next member of the current node

is assigned to temp_node and the index is incremented. A –1 is returned if the data isn’t

found in the linked list because the value –1 can never be a valid return value.

158 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int findNode(int data)
{

int index = 0;
NODE* temp_node = front;

while(temp_node != NULL)
{

if(temp_node->data == data)
{

return index;
}
else
{

temp_node = temp_node->next;
index++;

}
}

return -1;
}
int findNode(int data)

insertNodeAt()
The insertNodeAt() function places a new node at a specific location in the

linked list. Previously in this chapter, you learned that each position in a linked list is

identified by an index. The first location has the index value of 0, the second location

is index 1, and so on. You use the index to specify the location within the linked list

where you want to insert the new node.

The insertNodeAt() function requires two arguments, the location where the

node will be inserted within the linked list, and the data that will be stored in the node.

The following example shows how the new node is placed within the linked list.

The first step is for theinsertNodeAt() function to determine if the index passed

to the function is valid. It does so by determining if the index is less than zero or greater

than the size of the linked list (this information is contained in the size member of the

LinkedList class). If the index is invalid, then the insertNodeAt() terminates

and returns to the statement that called it. There’s a subtle difference in the index check-

ing here compared toremoveNodeAt(). If the index were equal tosize, this would

append a node onto the linked list. The index is out of range by 1, but that’s okay because

you’re going to add a new node onto the linked list, whereasremoveNodeAt()needs

a valid index so it checks (size –1), which is the last node in the linked list.

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 159

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

160 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

Once theinsertNodeAt() knows that that index is valid, it proceeds to create

the new node and then insert the node in the linked list. This process begins by creat-

ing an instance of the node structure and assigning it the data passed to the function

as an argument. The instance is then assigned to the new_node pointer.

Next, it must be determined if there are any nodes in the linked list. You do this by

evaluating the value of the size member of theLinkedList class. If the value is zero,

then the linked list is empty and the new node will become the only node in the list.

You place the new node in the list by assigning thenew_node pointer to both the

front member of the LinkedList class and to the back member of the

LinkedList class. The previous and next members of the node are already set to

NULL by default, so you don’t have to do anything to the new node.

front = new_node;
back = new_node;

If the linked list has one or more nodes, then the insertNodeAt() function

determines if the new node is to be inserted into the first position in the linked list by

evaluating the value of the index passed to the function. If the index value is zero,

then the new node will become the first node on the linked list.

Here’s how this is done. The new_node is assigned to the previous member of

the node assigned to the front member of the LinkedList class. Next, the next

member of new_node is assigned the node assigned to the front member of the

LinkedList class. Finally, the new_node is assigned the front member.

front->previous = new_node;
new_node->next = front;
front = new_node;

If the new node isn’t going to become the first node on the linked list, the

insertNodeAt() function decides if the node will become the last node on

the linked list by comparing the index to the size member of the LinkedList
class. If these values are equal, then the new node is placed at the back of the linked

list. Remember that index 0 is the front of the list and index (size –1) is the

back of the list.

Here’s how this is done. The new_node is assigned to the next member of the

node that is currently the back of the linked list. Next, the node at the back is assigned

to the previous member of the new_node. Finally, the new_node is assigned to the

back member of the LinkedList class.

back->next = new_node;
new_node->previous = back;
back = new_node;

At this point, if the new node hasn’t been inserted in either the front or back of the

linked list, then theinsertNodeAt() function assumes that the new node is to be

inserted into the middle of the linked list.

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This process begins by declaring a pointer called temp and assigning it the node at

the front of the linked list. Next, the function finds the node at the index. This node

will be moved to the right. However, it’s not set to the node previous, it’s set to the in-

dex position and the node in that position is moved to the right. It does this by using a

for loop. For each iteration, the node assigned to the next member of the temp node

is assigned to the temp node. This sounds confusing, but will become clearer if you

examine what is happening.

Say there are five nodes on the linked list, as shown in Figure 9-1. The front node

is NodeA, and the initial value of temp is NodeA. Say you want to insert NodeN at

index 2.

Before the first iteration, front = NodeE. During the first iteration, here’s what

happens:

temp = temp->next
temp = NodeA->NodeB
temp = NodeB

After the first iteration, temp is assigned NodeB and the value of i is 1, which is

less than the value of the index, so another iteration executes. Here’s what happens:

temp = temp->next
temp = NodeB->NodeC
temp = NodeC

The temp pointer now points to NodeC, and the value of i is 2, which is equal to

the value of the index, so there are no additional iterations and the temp pointer

points to NodeC.

Now that you’re at the desired location within the linked list, it is time to switch

pointers around to insert the new node into the list. Here’s how to do it:

new_node->next = temp;
new_node->previous = temp->previous;
temp->previous->next = new_node;
temp->previous = new_node;

Confused? If so, you’re not alone, because what is happening isn’t intuitive. I’ll

clarify the code by substituting nodes for pointers.

new_node->next = NodeC;
new_node->previous = NodeC->NodeB;
NodeC->NodeB->next = new_node;
NodeC->previous = new_node;

Figure 9-3 shows the linked list after the new node is inserted into index 2 position

of the list. I’ve called the new node NodeN.

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 161

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

162 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

The final step is to increment the size member of the LinkedList class to re-

flect the new node. Following is the complete definition of the insertNodeAt()
function:

void insertNodeAt(int index, int data)
{

if(index < 0 || index > size)
{

return;
}

NODE* new_node = new NODE(data);

if(size == 0)
{

front = new_node;
back = new_node;

}
else if(index == 0)
{

front->previous = new_node;
new_node->next = front;
front = new_node;

}
else if(index == size)
{

back->next = new_node;
new_node->previous = back;
back = new_node;

}
else
{

NODE* temp = front;

Figure 9-3 A new node called NodeN is placed in index position 2 within the linked list.

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 163

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

for(int i=0; i<index; i++)
{

temp = temp->next;
}

new_node->next = temp;
new_node->previous = temp->previous;

temp->previous->next = new_node;
temp->previous = new_node;

}

size++;
}

peek()
Thepeek() function retrieves data stored in a node specified by the index passed to the

peek() function. Thepeek() function requires one argument, which is the index of

the position within the linked list that contains the data you want to retrieve. The data is

then returned by the peek() function. In the following example, you’ll store and re-

trieve an integer, but you can also store and retrieve any kind of data by simply changing

the data type in the node definition.

Let’s take a closer look and see how thepeek() function works. It begins by val-

idating the index using the same validation procedures as discussed in the

removeNodeAt() function section of this chapter, except peek() checks that

the index is valid. If the index is invalid, then a zero is returned by the function.

If the index is valid, then a pointer called temp is declared and assigned the node

that is at the front of the linked list. The peek() function then proceeds to step

through the linked list, stopping at the node you’re interested in. This search process

is the same as in the insertNodeAt() function section.

When thepeek() function exits thefor loop, the temp pointer points to the node

that contains the data that must be returned by peek(). You then point to the data

member of the node in the return statement to return the data to the statement that

called the peek() function.

Here is the complete definition of the peek() function:

int peek(int index)
{
if(index < 0 || index > size-1)
{

return 0;
}

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

164 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

NODE* temp = front;

for(int i=0; i<index; i++)
{

temp = temp->next;
}

return temp->data;
}

getSize()
The getSize() function retrieves the value of the size member of the

LinkedList class. You’ll notice that the getSize() function contains one

statement that simply returns the value of the size member.

You might be wondering why you need the getSize() function since you

could make the sizemember accessible to the application by placing it in the pub-

lic access specifier of the LinkedList class.

As you’ll recall from your programming classes, most data members of a class

should be only accessible by a function member within the class or by a derived

class. This way, you always control access to the data and thereby protect the data

from inadvertent changes caused by the application. Allowing it to be changed ex-

ternally by a user of this class could lead to errors.

int getSize()
{

return size;
}

Enhanced LinkedList Class Using C++
You’ve seen how enhancements to the LinkedList class individually work; now

we’ll take a look at the entire application. I’ve divided the following application into

three files: the demo.cpp file, the LinkedList.h file, and the LinkedList.

file. All three files are shown in the following code listing. You can use the

LinkedList.h file and the LinkedList.cpp file, along with the specific files

for queues and stacks that you learned about in Chapter 7 and Chapter 8.

The demo.cpp file contains the C++ application that uses the enhanced

LinkedList class to create and manipulate a linked list. The LinkedList.h
file contains definitions of the node and of the LinkedList class. The

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 165

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

LinkedList.cpp file contains the definitions of member functions of the

LinkedList class. All three files are shown next.

Thedemo.cpp file is where all the action takes place. As you’ll see in the follow-

ing example, the application begins by declaring an instance of the LinkedList
class and then assigning the instance to a reference call list.

Next, the appendNode() function is called five times. The appendNode()
function is an original member function of the LinkedList class and appends a

new node to the linked list. The linked list shown at the top of Figure 9-4 is the linked

list after the last appendNode() function is called.

Once the linked list is created, the application calls the removeNodeAt(3)
function to remove the node located at index 3. The middle linked list in Figure 9-4

shows the status of the linked list after theremoveNodeAt(3) function executes.

The application then calls the findNode(20) function to locate the index of

the node that contains 20 as its data element. Based on the linked list shown at the

bottom of Figure 9-4, the findNode(20) function returns the index value 1.

The deleteNode(20) function is then called and removes the node from the

linked list that has 20 as the value of its data element. The linked list shown at the bottom

of Figure 9-4 illustrates the linked list after thedeleteNode(20) function is called.

Figure 9-4 The top is the linked list before the node is removed, the middle is after

removeNodeAt(3) is called, and the bottom is after deleteNode(2)
is called.

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

166 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

A new node is then inserted into the linked list by calling the

insertNodeAt(1, 35) function. This function inserts a new node at index 1 in

the linked list and assigns 35 to the data element of the node. Figure 9-5 is the linked

list after the insertNodeAt(1, 35) function is called.

Thepeek(3) function is called to retrieve the value of the node in the third index

position of the linked list. Based on the linked list shown in Figure 9-5, the

peek(3) function returns 50 as the data value of the node in index position 3.

The last function called is getSize(), which returns the size of the linked list.

As seen in Figure 9-5, the linked list has four nodes; therefore, the getSize()
function returns the value 4.

The last statement in the demo application uses the delete operator to remove

the instance of the LinkedList class from memory.

//demo.cpp
#include <iostream>
using namespace std;
void main(){

LinkedList* list = new LinkedList();
list->appendNode(10);
list->appendNode(20);
list->appendNode(30);
list->appendNode(40);
list->appendNode(50);
list->removeNodeAt(3);
int index = list->findNode(20);
list->deleteNode(20);
list->insertNodeAt(1, 35);
int data = list->peek(3);
int size = list->getSize();
delete list;

}

Figure 9-5 The linked list after the insertNodeAt(1) is called

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 167

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

//LinkedList.h
typedef struct Node{

struct Node(int data)
{

this->data = data;
previous = NULL;
next = NULL;

}
int data;
struct Node* previous;
struct Node* next;

} NODE;
class LinkedList
{

protected:
NODE* front;
NODE* back;
int size;
void removeNode(NODE* node);

public:
LinkedList();
virtual ~LinkedList();
void appendNode(int);
void displayNodes();
void displayNodesReverse();
void destroyList();
void removeNodeAt(int);
int findNode(int);
void deleteNode(int);
void insertNodeAt(int,int);
int peek(int);
int getSize();

};

//LinkedList.cpp
#include "LinkedList.h"
CLinkedList::CLinkedList()
{

front = NULL;
back = NULL;
size = 0;

}

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

168 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

CLinkedList::~CLinkedList()
{

destroyList();
}

void CLinkedList::appendNode(int data)
{

NODE* n = new NODE(data);

if(back == NULL)
{

back = n;
front = n;

}
else
{

back->next = n;
n->previous = back;
back = n;

}

size++;
}

void CLinkedList::displayNodes()
{

cout << "Elements: ";
NODE* temp = front;
while(temp != NULL)
{

cout << temp->data << " ";
temp = temp->next;

}

cout << endl;

}

void CLinkedList::displayNodesReverse()
{

cout << "Elements: ";
NODE* temp = back;
while(temp != NULL)

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 169

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

{
cout << temp->data << " ";
temp = temp->previous;

}

cout << endl;
}

void CLinkedList::destroyList()
{

NODE* temp = back;
while(temp != NULL)
{

NODE* temp2 = temp;
temp = temp->previous;
delete temp2;

}

back = NULL;
front = NULL;

}

void CLinkedList::removeNode(NODE* node)
{

if(node->previous == NULL && node->next == NULL)
{

back = NULL;
front = NULL;

}
else if(node->previous == NULL)
{

front = node->next;
node->next->previous = NULL;

}
else if(node->next == NULL)
{

back = node->previous;
node->previous->next = NULL;

}
else
{

node->previous->next = node->next;
node->next->previous = node->previous;

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

170 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

}

delete node;
size--;

}

void CLinkedList::removeNodeAt(int index)
{

if(index < 0 || index > size-1)
{

return;
}

NODE* temp_node = front;

for(int i=0; i<index; i++)
{

temp_node = temp_node->next;
}

removeNode(temp_node);
}

int CLinkedList::findNode(int data)
{

int index = 0;
NODE* temp_node = front;

while(temp_node != NULL)
{

if(temp_node->data == data)
{

// return the index of the node
return index;

}
else
{

temp_node = temp_node->next;
index++;

}
}

return -1;

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

void CLinkedList::deleteNode(int data)
{

NODE* temp_node = front;

while(temp_node != NULL)
{

if(temp_node->data == data)
{

removeNode(temp_node);
return;

}
else
{

temp_node = temp_node->next;
}

}
}

void CLinkedList::insertNodeAt(int index, int data)
{

if(index < 0 || index > size)
{

return;
}

NODE* new_node = new NODE(data);

if(size == 0)
{

front = new_node;
back = new_node;

}
else if(index == 0)
{

front->previous = new_node;
new_node->next = front;
front = new_node;

}
else if(index == size)
{

back->next = new_node;
new_node->previous = back;

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 171

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

back = new_node;
}
else
{

NODE* temp = front;

for(int i=0; i<index; i++)
{

temp = temp->next;
}

new_node->next = temp;
new_node->previous = temp->previous;

temp->previous->next = new_node;
temp->previous = new_node;

}

size++;
}

int CLinkedList::peek(int index)
{

if(index < 0 || index > size-1)
{

return 0;
}

NODE* temp = front;

for(int i=0; i<index; i++)
{

temp = temp->next;
}

return temp->data;

}

int CLinkedList::getSize()
{

return size;
}

172 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Enhanced LinkedList Class Using Java
As you’ve seen throughout this book, the LinkedList class is defined in the

java.util package and defines member methods that are similar in functionality

to member functions that were defined in the C++ example of this chapter.

Following is the Java version of the C++ application described in the previous

section. Both versions produce the same results. However, I’ve defined a

printList() method in the Java example that displays the linked list at various

times during the application.

Let’s walk through the Java version of the application to see how it works. The ap-

plication begins similar to the way the C++ begins in that it declares an instance of

theLinkedList class and assigns it to a reference called list. Theadd()method

is then called fives times to add nodes to the linked list. This is similar to the

appendNode() function in the C++ version of the application. The linked list is

then displayed on-screen by calling the printList()method defined later in the

application. Here’s what is displayed on-screen:

Initial List:
10
20
30
40
50

Next, the remove()method is called and is passed the index of the node that we

want removed from the linked list. This is similar to theremoveNodeAt() function

in the C++ version. Again, we call the printList()method to show the results of

calling the remove(3) method. Here’s the display:

Removed index 3:
10
20
30
50

The indexOf() method is called next to return the index of the node that con-

tains 20 as its data value. This is the same as the findNode() in the C++ version.

The indexOf() method requires an object rather than the data. In this example,

the data is an integer, therefore we need to declare an instance of the Integer
wrapper class and initialize the instance with the value 20. The declaration occurs

within the parameter of theindexOf()method. TheindexOf()method returns

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 173

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

174 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

the index value that is assigned to the index integer. If you pass in your own class,

you may need to implement a Comparator so the Java collection can determine

equality on the different Objects. The Comparator is similar to overloading the

quality operator in C++. The value of the index variable is then displayed on-

screen as follows:

Index of value 20: 1

Once again the remove()method is called. However, this time theremove()
method is passed data instead of an index. This causes theremove()method to re-

move the node from the linked list that contains 20 as its data value. This is similar to

the deleteNode() method shown in the C++ version. The printList()
method is called again to show how the linked list looks after the remove()
method is called. Here’s what is displayed on-screen:

Removed value 20:
10
30
50

Next, the application inserts a new node at index position 1 and assigns the new

node 35 as its value. Java doesn’t have an insertNodeAt()method like the one

you created in the C++ version. However, the add() method provides the same

functionality as long as you specify the index position at which you want to insert the

new node and provide it the data to store in the node. TheprintList()method is

called once again. Here’s the linked list following the execution of the add()
method:

Added 35 at index 1:
10
35
30
50

The LinkedList class in Java doesn’t have a peek() method, but the

get()method is used for the same purpose. In this example, the get()method

is passed the index value 3 and returns the data stored in the node located at the

third index position on the linked list. Next,get() returns an object, which is cast

to an integer. The data variable is then displayed on-screen. Here’s what appears on

the display:

Value at index 3: 50

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The application then calls thesize()method, which returns the size of the linked

list similar to the getSize() function defined in the C++ example. The size()
method returns an integer that is assigned the size variable, which is then displayed on-

screen. Here’s what is displayed:

Size of linked list: 4

import java.io.*;
import java.util.*;
public class demo
{

public static void main(String[] args)
{

LinkedList list = new LinkedList();
list.add(new Integer(10));
list.add(new Integer(20));
list.add(new Integer(30));
list.add(new Integer(40));
list.add(new Integer(50));
printList("Initial List", list);
list.remove(3);
printList("Removed index 3", list);
int index = list.indexOf(new Integer(20));
System.out.println("\nIndex of value 20: " + index);
list.remove(new Integer(20));
printList("Removed value 20", list);
list.add(1, new Integer(35));
printList("Added 35 at index 1", list);
Integer data = (Integer)list.get(3);
System.out.println("\nValue at index 3: " + data);
int size = list.size();
System.out.println("\nSize of linked list: " + size);

}
public static void printList(String header, LinkedList list)
{

System.out.println("\n" + header + ":");
for(int i=0; i<list.size(); i++)
{

Integer temp = (Integer)list.get(i);
System.out.println(temp);

}
}

}

CHAPTER 9 Stacks and Queues: Insert, Delete, Peek, Find 175

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Quiz
1. What is a linked list index?

2. What is the value of the first linked list index?

3. What is the difference between the removeNode() and deleteNode()
functions?

4. What is the return value of the findNode() function?

5. What is the difference between the insertNodeAt()and the

appendNode() functions?

6. What happens if an invalid index value is passed to a function?

7. Can a linked list store data other than integers?

8. Why would you define a getSize() function instead of having the appli-

cation access the size of the linked list directly?

9. Can the insertNodeAt() function place a node at the front or back of

a linked list?

10. Why is it important to enhance the functionality of the LinkedList class?

176 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 9

P:\010Comp\DeMYST\359-2\ch09.vp
Monday, February 02, 2004 2:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
10

What Is a Tree?

If you are going to our school (Columbia University), you travel down the road a bit

before seeing a fork in the road. You then have two choices: bear left and you’ll be on

campus; bear right and you’ll be lost. What does this have to do with a tree data struc-

ture? Everything. A tree data structure is similar to the road because it provides you

with a series of forks in the road that lead you down a path to reach a decision. In this

chapter, you’ll learn about the concept of trees, and we’ll show you how to build your

own tree data structure.

A Tree
When you read the word “tree” in the title of this chapter, you probably imagined

your favorite tree covered with a full coat of green leaves. However, this doesn’t

truly represent the tree that we’ll be talking about. Instead, envision a tree barren of

leaves, where all you can see are branches stretched in all directions. Each stem ter-

minates with only two branches, similar to a fork in the road. Those branches lead to

other stems and other forks.

177

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Wednesday, February 11, 2004 9:30:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

This type of tree is a binary tree. Binary means two, as you learned when you stud-

ied the binary numbering systems in your first computer course. The binary number-

ing system consists of two digits, zero and one.

A binary tree is a tree where each stem has not more than two branches (see Fig-

ure 10-1). Typically, the stem has two branches, but there can be situations when the

stem has one branch or simply terminates, resulting in no additional branches.

Why Use a Binary Tree?
Programmers use a binary tree as a model to create a data structure to encode logic

used to make complex decisions. Here’s how this works. Let’s say that a stem consists

of a set of program instructions. At the end of the stem, the program evaluates a binary

expression. You’ll recall that a binary expression evaluates to either a Boolean true
orfalse. Based on the evaluation, the program proceeds down one of two branches.

Each branch has its own set of program instructions.

178 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

Figure 10-1 A binary tree is a tree where each stem has no more than two branches.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The basic concept of a binary tree isn’t new to you because it uses Boolean logic that

you learned to implement using an if statement in your program. An if statement

evaluates an expression that results in a Boolean value. Depending on the Boolean value,

theif statement executes one of two sets of instructions. However, a binary tree is much

more than an if statement, as you’ll learn in this chapter.

Parts of a Binary Tree
Although we introduced the concept of a binary tree with terms commonly used

when referring to a tree, programmers established different terms to refer to parts of

a binary tree. Let’s take a moment to become familiar with those terms.

“Node” is the term used to describe a termination point. There are three kinds of

termination points in a binary tree (see Figure 10-2): the starting node, the ending

node, and the branch node. The starting node is called the root node, which is the top-

level node in the tree. The stem leading from the root node leads to the branch node.

CHAPTER 10 What Is a Tree? 179

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

Figure 10-2 A binary tree is comprised of several nodes, each of which are related to

other nodes on the tree.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The branch node is the fork in the road that links the root node to two branches. Each

branch terminates with a child node. Programmers call these the left branch and the

right branch.

As you can see, a binary tree defines a strong parent-child relationship among

nodes. A parent-child relationship is relative to a node. All nodes except the root node

have a parent node. However, some nodes have no children, while other nodes have

one or two child nodes. Programmers determine the parent-child relationship by se-

lecting a node, which is called the current node. The node that spawns the current node

is called the current node’s parent node. The node or nodes spawned by the current

node is called the child node.

The child node is also referred to as the left node or the right node, depending on

which direction the node branches from the current node. If the current node doesn’t

have any child nodes, then the current node is referred to as the leaf node. A leaf node

is located at the bottom of the tree. If you look at your favorite tree, you’ll notice that

the end of nearly every branch is either another branch (child node) or a leaf, and

that’s why programmers call a node with no child nodes a leaf node.

Depth and Size
A binary tree is described by using two measurements: tree depth and tree size (see

Figure 10-3). Tree depth is the number of levels in the tree. A new level is created each

time a current node branches to a child node. For example, one level is created when

the root node branches into child nodes.

The size of a tree is the number of nodes in the tree. For example, the first level

in Figure 10-3 has one node, which is the root node. The second level has up to

two nodes, which are the child nodes of the root. The third level may have up to

four nodes. Programmers estimate the size of a tree by using the following formula.

size � 2
depth

Let’s say the binary tree has five levels, which is a depth of 5. Here’s how you esti-

mate the size of the tree:

32 � 2
5

The size is an approximation because the tree may or may not be balanced. A bal-

anced tree is a binary tree where each current node has two child nodes. An unbalanced

tree is a binary tree where one or more current nodes have fewer than two child nodes.

This formula gives you a rough idea of how well balanced the tree is. Binary trees are

usually used for very large data sets. The formula is not terribly accurate for the small

tree shown in Figure 10-3.

180 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Why Use a Binary Tree?
Programmers use a binary tree to quickly look up data stored at each node on the bi-

nary tree. Let’s say that you need to find a student ID in a list of a million student IDs.

What is the maximum number of comparisons that you’ll need to make before find-

ing the student ID?

You could make a maximum of a million comparisons if you sequentially

searched the list of a million student IDs. More than a million comparisons are nec-

essary if you randomly selected student IDs from the list and then replaced those that

didn’t match back into the list.

However, you’d need to make a maximum of only 20 comparisons if student IDs

were stored in a binary tree. This is because of the way data is organized in a binary

tree. Data stored on the left node is less than data stored on all the right nodes at any

current node.

This might sound a little confusing, but an example will make this concept clear. Sup-

pose you had a list of five student IDs: 101, 102, 103, 104, and 105. These student IDs

are stored in a binary tree so that the center student ID is the root node, the student ID that

is less than the current node is stored on the left child node, and the student ID that is

more than the current node is stored on the right child node, as shown in Figure 10-4.

CHAPTER 10 What Is a Tree? 181

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

Figure 10-3 The number of levels in a tree defines a tree’s depth, and the number of

nodes defines the size of the tree

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The same pattern is applied to each child node. Thus, student ID 101 is the left

child of the node that contains student ID 102 because student ID 101 is less than stu-

dent ID 102. Likewise, student ID 105 is the right node of student ID 104 because

student ID is greater than student ID 105.

Let’s say you want to locate student ID 101 on the binary tree. First, you compare the

value of the root node to student ID 101. There’s no match. Because student ID 101 is

less than student ID 103, your next comparison uses the left child node. This eliminates

the need to compare all the nodes to the right of the node that contains student ID 103.

You can ignore half the student IDs because you know that student ID 101 isn’t the right

node or a child of the right node.

After comparing student ID 101 to student ID 102, you notice two things. First,

they don’t match. Second, student ID 102 is greater than student ID 101. This means

you compare the left child node to student ID 101. You ignore the right child node

and subsequent child nodes because they are greater than student ID 101. There

aren’t any right child nodes of student ID 102 in this example. The next comparison

results in a match. So, in a large binary tree, each time you do a comparison, you

eliminate another half of the remaining nodes from the search. If you had 1 million

nodes in the tree, you would divide 1 million by 2 about 20 times to reduce it down to

one node (2 ^ 20 is about 1 million). This way, you can find the node you’re looking

for by doing about 20 comparisons.

182 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

Figure 10-4 The left child node is always less than the parent node, and the right child

node is always greater than the parent node.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Programmers think of every node as the root node and all subsequent nodes as its

own subtree. They approach nodes in this way because functions that deal with trees

are recursive. A function works on a child node and performs the same functionality

as if the child node is the root node of the entire tree. That is, the value of the child

node is compared to the value of its left node and right node to determine which

branch of the tree to pursue.

The Key
Each node of a tree contains a key that is associated with a value similar to the rela-

tionship between a primary key of a database and a row within a table of the data-

base. A key is a value that is compared to search criteria. If the index and the search

criteria match, then the application retrieves data stored in the row that corresponds

to the key. The data is referred to as the value of the node, as shown in Figure 10-5.

Any data type can be used as the key. We use a string as the key in examples in this

chapter, but we could have chosen any data type. Unlike the primary key of a data-

base, the key to the tree doesn’t have to be in natural order. That is, the key doesn’t

have to be in alphabetical order or numerical order. In a typical tree implementation,

CHAPTER 10 What Is a Tree? 183

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

Figure 10-5 Each node has an index and a value; the index uniquely identifies the node

and retrieves the value of a node.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you would define a comparator to tell the tree how to order the nodes. In our case,

we’ll use the natural ordering sequence of a string so we can keep our focus on the

internal workings of the tree.

Creating a Binary Tree
Let’s create a binary tree by first defining a structure. Call the structure Metadata be-

cause it describes data that is used in the binary tree, and “metadata” refers to data that

describes other data, such as how an employee ID can be used to get the employees

name. Metadata typically refers to name/value pairs, or in our case, key/value pairs.

Each instance of the data structure is a node on the binary tree and contains four

data elements. The first two data elements are thekey and thevalue. In this exam-

ple, both the key and value are char arrays. The size of these arrays is deter-

mined by the #define preprocessing directive at the top of this example. You set

the array size by using the preprocessing directive because you can easily change its

value in one place within the application without having to locate every place in the

code where the array sizes are used.

The other two data elements of the metadata structure are pointers called left
and right. Each of these points to a metadata structure. In other words, they point

to the next node on the left and on the right of the current node. This enables the ap-

plication to do two things. First, the application can move to the next level of the tree.

It can also access both the key and the value of nodes at the next level.

You might become confused when looking at the example of the structure defini-

tion because the structure uses itself to initialize data elements of the structure.

Here’s what’s happening. A key and related value are passed to the metadata struc-

ture when an instance of the metadata structure is declared, that is, when a new node

is inserted into the binary tree. Both of these are passed as char pointers because

they are arrays.

The application copies the key and the value to the data elements of the instance of

the metadata structure by using the strcpy() function. The strcpy() function

copies the second parameter to the first parameter. Notice thethis operator is used

in this example. As you’ll recall from your programming course, the this operator

tells the compiler that you want to refer to the data element of this instance of the

structure instead of the parameter that was passed in.

The last two data elements to be initialized are the left and right pointers. Both of

these are set to NULL because the new node doesn’t have a child node when the new

node is created. Later in this chapter, you’ll define a function that adds a child node

and replaces the NULL with reference to an actual node.

184 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 What Is a Tree? 185

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

#include <string.h>
#define SIZE_KEY 32
#define SIZE_VALUE 256
typedef struct Metadata
{

struct Metadata(char* key, char* value)
{

strcpy(this->key, key);
strcpy(this->value, value);
left = NULL;
right = NULL;

}
char key[SIZE_KEY];
char value[SIZE_VALUE];
struct Metadata* left;
struct Metadata* right;

} METADATA;

In addition to defining a structure, you’ll also define the BinarySearchTree
class. The BinarySearchTree class defines data members and member func-

tions that create and manipulate a node. As illustrated in the code that follows, the

class definition is organized into two areas, the private access specifier and the pub-

lic access specifier. As you’ll recall from your object-oriented programming class,

the application can only access data and member functions defined within the public

access specifier; members defined within the private access specifier area of the

class definition can only be accessed by member functions of the class. The private

access specifier section of the BinarySearchTree class defines two data mem-

bers,size androot. Thesize is an integer that stores the number of nodes on the

tree. The root is a pointer to an instance of the metadata structure. In other words,

root is the first node on the tree.

The private access specifier also contains nine member functions:

addNode()
getNode()
removeAllNodes()
processNodesInOrder()
getTreeDepth()

containsNode()
removeNode()

removeRootNode()
moveLeftMostNode()

These functions are used by functions defined in the public access specifier of the

class definition to manipulate nodes on the tree. You’ll learn how each of these func-

tions works later in this chapter.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The public access specifier contains the constructor and destructor for the class

and several member functions that enable the application to create and remove nodes

and manipulate nodes on the tree. Here is a list of those member functions. You’ll

learn how they work later in this chapter.

BinarySearchTree();

~BinarySearchTree()

add()

remove()

removeAll()

get()

contains()

displayInOrder()

getSize()

getDepth()

class BinarySearchTree

{

private:

int size;

METADATA* root;

bool addNode(METADATA** current_node, METADATA* new_node);

bool getNode(METADATA* current_node, char* key, char* value);

void removeAllNodes(METADATA* node);

void processNodesInOrder(METADATA* node);

int getTreeDepth(METADATA* node);

bool containsNode(METADATA* node, char* key);

bool removeNode(METADATA** node, char* key);

void removeRootNode(METADATA** node);

void moveLeftMostNode(METADATA** node, METADATA* root);

public:

BinarySearchTree();

virtual ~BinarySearchTree();

bool add(char* key, char* value);

bool remove(char* key);

void removeAll();

bool get(char* key, char* value);

bool contains(char* key);

void displayInOrder();

int getSize();

int getDepth();

};

186 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constructor and Destructor
The constructor of the BinarySearchTree class initializes the root data mem-

ber of the BinarySearchTree class with a NULL value. As you’ll recall from

the previous section, root is a pointer to an instance of the metadata structure and

points to the root node for the binary search tree once a node is added to the tree.

The constructor also initializes the size data member to zero. This means there

are no nodes on the tree. The size data member is incremented each time a new

node is inserted into the tree and decremented when a node is removed from the tree.

You’ll see how these steps are done later in this chapter.

The destructor removes all the nodes from the tree and releases memory used by

those nodes. The destructor doesn’t directly remove the nodes. Instead, it calls the

removeAll() member function that actually handles deleting nodes and releas-

ing memory.

The following are definitions of the constructor and the destructor for the

BinarySearchTree class:

BinarySearchTree()
{

root = NULL;
size = 0;

}
~BinarySearchTree()
{

removeAll();
}

add() and addNode()
You add a new node to the tree by calling the add() member function of the

BinarySearchTree class as shown in the next code snippet. The add() func-

tion requires two arguments, a pointer to the key of the new node and another pointer

to the node’s value. In this example, we call these key and value.

Before the node is added to the tree, the add() function validates both the key

and the value with two tests. First, it makes sure that the key and the value don’t

have a NULL value. Next, it tests to be sure that neither the key nor the value is larger

than the array size allocated for the key. It does so by comparing the length of the key

and the length of the value to the corresponding value defined in the #define pre-

processor directive. If any of these tests fail, then the add() function returns a

Booleanfalse to the statement in the application that calls theadd() function.

CHAPTER 10 What Is a Tree? 187

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

188 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

If the key and value are valid, then theadd() function proceeds to create the new

node. First, it declares an instance of the metadata structure and passes the key and

value to the instance. Previously in this chapter you learned that the key and value

become the initial values for corresponding data elements in the metadata structure.

The final step in the process of adding a new node to the tree is to call the

addNode() function. The addNode() function is defined within the private

access specifier in the BinarySearchTree class and is responsible for placing

the new node into the tree.

bool add(char* key, char* value)
{

if(key == NULL || value == NULL || strlen(key) > SIZE_KEY-1
|| strlen(value) > SIZE_VALUE-1)

{
return false;

}
METADATA* new_node = new METADATA(key, value);
return addNode(&root, new_node);

}

The addNode() function shown in the next code requires two arguments. The

first argument is a pointer to a pointer that points to the current node. The other argu-

ment is a pointer to the new node. The process of adding a new node to the tree begins

by theaddNode() function determining if the new node passed to is NULL. When

the value ofcurrent_node is NULL, then you’ve reached a leaf node on the tree.

This is where the addition takes place. All nodes are added as leaf nodes. If this is the

first node being added to the tree, then the leaf node also happens to be the root node.

The new node is assigned to the pointer field of current_node, and the size
data member is incremented. This adds the new node to the tree. The addNode()
function then returns a Boolean true, indicating that the operation is successful.

You need to pass a pointer to a pointer as the first argument because you’re going to

alter the data in that node. What you’re really passing is the address of the pointer

field in the parent node. By passing the address of the pointer, you can change the

pointer value in the parent. The pointer in the parent is changed to point to this new

child node that’s being added.

If the current node isn’t NULL, the next step is to find where in the tree the node is

to be added. This process is tricky because the new node must be located in a position

where it will be either less than or greater than its parent node.

Here’s how it works. The addNode() function compares the key of the current

node to the key of the new node using the strcmp() function. If the return value

of thestrcmp() function is less than zero, then the key of the new node is less than

the key of the current node. Then addNode() is called again recursively, but this

time reference to the left node of the current node is passed as the first argument to

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the addNode() function. As you’ll recall, the first argument is considered by the

addNode() function as the current node. In this case, the left node of the current

node is considered the current node. The second argument is the new node. Notice

that the addNode() function is recursively called until the addNode() function

finds a place for the new node. The first call to addNode() passes the first argu-

ment as the root node of the tree. Each subsequent call passes a root node of a

subtree. Remember that each node in the tree can be considered a root node for all

the nodes below it. The same rules apply at every node—all the nodes on the left are

less than and all the nodes on the right are greater than.

If the key of the new node is greater than the key of the current node, then a similar

process occurs except the current node’s right node is used instead of the left node

when addNode() is subsequently called.

This recursive process continues until the first argument to addNode() points

to NULL, which indicates a leaf node where the addition takes place.

If the key of the new node equals an existing node, then the new node is deleted

and the addNode() function returns a Boolean false. This is because all keys

must be unique: duplicate keys are not permitted on the tree.

bool addNode(METADATA** current_node, METADATA* new_node)
{

if(*current_node == NULL)
{

*current_node = new_node;
size++;
return true;

}
else
{

if(strcmp(new_node->key, (*current_node)->key) < 0)
{

return addNode(&((*current_node)->left), new_node);
}
else if(strcmp(new_node->key, (*current_node)->key) > 0)
{

return addNode(&((*current_node)->right), new_node);
}
else
{

delete new_node;
return false;

}
}

}

CHAPTER 10 What Is a Tree? 189

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

190 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

remove(), removeNode(), and removeRootNode()
Removing a node from the tree is a multiple-step process that begins when the appli-

cation calls the remove() member function as shown in the next code snippet

The remove() function requires the key of the node being removed. It then calls

theremoveNode()member function. TheremoveNode() function is a private

member of theBinarySearchTree class and therefore cannot be called directly

by the application.

The removeNode() function requires two parameters. The first is a reference

to the current node being evaluated, which is where the search begins. You begin the

search by passing the root node of the tree, then subsequent calls will pass the root of

a subtree. You always have to think about the tree as being a set of subtrees—each

node is a root for all the nodes below it. The second parameter is the key received by

the remove() function.

bool remove(char* key)
{

return removeNode(&root, key);
}

The removeNode() function shown in the next code snippet uses the value

passed by the remove() function to locate the node that is being deleted. Before

the search begins, theremoveNode() determines if a root node passed to it by the

remove() function is NULL. This may be the root node of the tree if this is the first

call to the function, or it may be the root of a subtree. If it’s NULL, then the Boolean

value false is returned because the node to remove was not found.

If the root node isn’t NULL, the search continues. The objective of the

removeNode() function is to find a key of a node in the tree that matches the key

passed by the remove() function. Once found, reference to the node that contains

the key is passed to the removeRootNode(), which actually removes the node

from the tree. The removeRootNode() may be removing the root node of the

tree or a root of a subtree.

The search begins by comparing the key of the root node passed by the re-
move() function to the key passed by the remove() function. If the keys match,

then the root node is passed to the removeRootNode() function where the node

is removed. The size data member is decremented to reflect that a node has been

removed from the tree. A Boolean true is then returned by the removeNode()
function.

If there isn’t a match, then theremoveNode() function determines if the key of

the root node is less than the key passed by the remove() function. If so, then the

removeNode() function compares the key of the left node to that of the key

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

passed by the remove() function. The removeNode() function is called recur-

sively until a match is found, at which time the removeRootNode() function is

called and passed the reference to the matching node.

If the key is greater than the key of the root node, then the key of the right node of

the root node is compared to the key. Again, theremoveNode() function is called

recursively until there is a match, at which time the removeRootNode() func-

tion is called and passed a reference to the matching node.

bool removeNode(METADATA** node, char* key)
{

if(*node != NULL)
{

if (strcmp(key, (*node)->key) == 0)
{

removeRootNode(node);
size--;
return true;

}
else if(strcmp(key, (*node)->key) < 0)
{

return removeNode(&((*node)->left), key);
}
else
{

return removeNode(&((*node)->right), key);
}

}
else
{

return false;
}

}

The removeRootNode() member function is the function that actually re-

moves a node from the tree. The term “root node” can sometimes be confusing be-

cause you intuitively assume that the root node is the first node on the tree. In reality,

any node can be a root node for all the nodes below it in the tree. Even if the node is a

leaf node, it’s still a root node of the subtree. It just so happens that this subtree con-

tains only one node. Therefore, we use the term root node in the name of this function.

The removeRootNode() function requires one argument, which is a pointer

to a pointer for the node being removed. The removal process begins by declaring a

pointer to the metadata structure. We call this pointer temp in the code example

shown next.

CHAPTER 10 What Is a Tree? 191

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Before removing the node, the removeRootNode() function determines if

the node has a right child and left child node. If both the left and right child nodes are

NULL, then no children exist and thedelete operator is called to release the mem-

ory associated with this node. Then the pointer field in the parent node is set to

NULL because this child node was removed. Note that if this were the only node in

the tree, this call would set the root node of the tree to NULL, which makes sense be-

cause the tree would be empty.

If one child isn’t NULL, then the right child is compared to NULL. This would be the

case if the node being deleted doesn’t have a right child. In this case, you change the

pointer field in the parent to the node on the left of the one being deleted. The root node is

assigned to thetemppointer to remember the location of the node that is being removed

from the tree. Next, reference to the left node is assigned to the parent node. The de-
lete operator then removes the node referenced by the temp pointer to release the

memory associated with the node being deleted.

If the right node isn’t NULL, then the removeRootNode() determines if the

left node is NULL. This follows similar logic to the previous example, except the node

being deleted doesn’t have a left child, so the pointer in the parent node is set to the

node on the right of the one being deleted. The reference to the root node is assigned to

thetemp pointer. Reference to the right node is then assigned to the parent node. The

deleteoperator then releases the memory associated with the node being removed.

The last—and most complex—scenario is if the node being removed has both a

left child and right child node. In this case, the removeRootNode() calls the

moveLeftMostNode() function and passes it the address of the right node.

void removeRootNode(METADATA** root)
{

METADATA* temp;
if((*root)->left == NULL && (*root)->right == NULL)
{

delete(*root);
*root = NULL;

}
else if((*root)->right == NULL)
{

temp = *root;
*root = (*root)->left;
delete(temp);

}
else if((*root)->left == NULL)
{

temp = *root;
*root = (*root)->right;

192 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

delete(temp);
}
else
{

moveLeftMostNode(&((*root)->right), *root);
}

}

The objective of themoveLeftMostNode() function is to find the node that will

replace the current root node of the subtree. To achieve this goal, you must move once to

the right and then go down the tree as far left as possible until you find the smallest node

on the right. The move to the right occurs when themoveLeftMostNode() is called

the first time. You then move left subsequent calls to the function. Once the smallest

value on the right is found, the node containing the smallest value becomes the new

root node.

Let’s see how this works by walking through the following definition of the

moveLeftMostNode() function. This function requires two arguments, the cur-

rent node being evaluated and the node that will be replaced. Remember, this func-

tion will copy the key and value from the smallest node on the right subtree to the

node that’s being removed. This replaces the node that’s being removed with one of

the leaf nodes, and then the leaf node is deleted.

If reference to the node being moved is not NULL and the left pointer of the node

being moved is NULL, then you’ve found the node that will be moved up to the posi-

tion of the one that’s to be removed. A pointer is declared and assigned to the node

being moved. Next, the key and the value of the node are copied to the key and value

of the root node. The root node in this case is the node that’s being removed from the

tree. Because you’re moving the leftmost child of the right subtree, this leftmost

child may have nodes to the right of it. The pointer value in the parent of the node that

is being moved is set to the right pointer in the one that’s being moved. This keeps

these subnodes intact. Finally, the delete operator removes the node.

If you haven’t found the leftmost node of the right subtree, then

moveLeftMostNode() is called again. This time, the left child node is passed as

the node to be moved to the root position. The root position is the node that is being

removed.

void moveLeftMostNode(METADATA** node, METADATA* root)
{

if(*node != NULL && (*node)->left == NULL)
{

METADATA* temp = *node;
strcpy(root->key, (*node)->key);
strcpy(root->value, (*node)->value);
*node = (*node)->right;

CHAPTER 10 What Is a Tree? 193

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

delete(temp);
}
else
{

moveLeftMostNode(&((*node)->left), root);
}

}

removeAll() and removeAllNodes()
The previous section showed you several functions that remove one node from the

tree. There are occasions when you’ll need to clear the entire tree of nodes. To do

this, you’ll need to call the removeAll() function.

The removeAll() function is shown in the next code snippet and performs two

operations. First, it calls the removeAllNodes() function, which is defined in the

private access specifier section of theBinarySearchTree class. This is the function

that actually removes all the nodes from the tree. The second operation is to reset the

root and size data members of the BinarySearchTree class. The root data

member is set to NULL, indicating there aren’t any nodes on the tree. Thesizedata mem-

ber is set to zero, indicating that the tree is empty. The removeAll() function is also

called by the destructor.

void removeAll()
{

removeAllNodes(root);
root = NULL;
size = 0;

}

TheremoveAllNodes() function, shown next, requires one argument, which

is a reference to the root node. As long as the root node isn’t NULL, the

removeAllNodes() function calls itself each time, passing it first the left child

node and then the right child node as the root node. The ordering of these calls is im-

portant. Remember that the root node is either the root node of the tree or the root of a

subtree. You must remove all the child nodes before removing the parent. You

recurse the left tree, recurse the right tree, then, when it returns to the caller, it’s safe

to delete the current node (root node) because all the children have been deleted. As

with all recursive functions, you have to define a stopping point. In this case, if you

are at a leaf node, the left and right pointers would be NULL and the calls to

removeAllNodes() would return (they would not continue the recursion) be-

cause the node would be NULL.

194 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A message is displayed on the screen stating the key and the value of the node that is

being removed from the tree. Thedeleteoperator is then used to remove the node.

void removeAllNodes(METADATA* node)
{

if(node != NULL)
{

removeAllNodes(node->left);
removeAllNodes(node->right);
cout << "Removing node - key: " << node->key << "\t"

<< node->value << endl;
delete node;

}
}

get() and getNode()
The get() member function of the BinarySearchTree class is called within

the application whenever you want to retrieve the value of a node. To retrieve a value,

you must provide the get() function with the search key and with the variable that

will store the value once the key is found.

Here’s how this works. As illustrated in the next code snippet, you pass the

get() function two arguments. The first argument is a reference to the search key.

In this example, the key is a string. Therefore, you pass theget() function a pointer

to a char, which you’ll recall from your programming class actually points to the

first character of the string. The second argument is also achar pointer. This points

to the first element of a character array that the get() function uses to store the

value of the node that is associated with the search key.

Let’s say that the search key is student ID “1234” and the value associated with

the key is “Bob Smith.” You pass the get() function “1234” and the get() func-

tion copies “Bob Smith” to the valuechar array if the search key “1234” is found in

a node of the tree. You then use the valuechar array throughout your application.

The get() function is defined in the public access specifier section of the

BinarySearchTree class and is therefore accessible to an application. How-

ever, the get() function simply calls the getNode()member function, which is

defined in the private access specifier section of the class. The getNode() func-

tion returns a Booleantrue if the search key is found; otherwise, a Booleanfalse
is returned. The return value also becomes the return value of theget() function.

bool get(char* key, char* value)
{

CHAPTER 10 What Is a Tree? 195

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

196 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

return getNode(root, key, value);
}

The getNode() function is where all the action occurs. Here the search is con-

ducted and the value of the node is copied to the value array. As illustrated next, the

getNode() function requires three arguments. The first argument is a reference to

the root node. The root node is the starting point of the search and is usually the up-

permost node of the tree, but it can be any node. The second argument is a reference

to the search key, which is a char pointer in this example. The third argument is a

reference to the variable that stores the value of the node that contains the search key.

Both the search key and the value variable are the same as those passed to theget()
function.

The getNode() begins processing by validating the root node. If the root node

is NULL, then the value argument is set to an empty string (it sets the first charac-

ter to NULL) and a Boolean false is returned by the getNode() function to in-

dicate that the key was not found in the tree.

If the root node isn’t NULL, then the search continues. ThegetNode() function

is called recursively. Each time it is called, it compares the search key with the key of

the root node. If they match, then the value of the root node is copied to the value
variable and a Boolean true is returned by the function.

If the search key doesn’t match the key of the root node, then the getNode()
function determines if the search key is less than or greater than the key of the root

node. Depending on the results of this comparison, the getNode() function calls

itself and uses either the left child or the right child of the root node as the root node

argument of the getNode() function. This process continues until either the

search key matches the key of the root node or the root node is NULL, indicating

the key doesn’t exist in the tree. This type of search is where the power of binary trees

comes into play. Notice that each time the function is called, by doing one compari-

son on the key, you eliminate half the remaining nodes from the search, so you’re

able to find the key very quickly even in a large data set.

bool getNode(METADATA* node, char* key, char* value)
{

if(node == NULL)
{

value[0] = '\0';
return false;

}
else
{

if(strcmp(key, node->key) == 0)
{

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

strcpy(value, node->value);
return true;

}
else if(strcmp(key, node->key) < 0)
{

return getNode(node->left, key, value);
}
else
{

return getNode(node->right, key, value);
}

}
}

contains() and containsNode()
Previously in this chapter, you learned that a key in a tree must be unique. You cannot

have two keys with the same key value. Don’t confuse key value with the value

stored in a node. A key value is the value of the key itself.

Before adding a new node to the tree, you should determine if the key of the new

node already exists in the tree. It is possible to construct a binary tree that allows du-

plicate keys, but this is not a common implementation and goes beyond the scope of

this chapter. In this case, you’ve defined a rule for the tree that states all the keys must

be unique.

You determine if the key already exists in the tree by calling the contains()
member function of the BinarySearchTree class, which is illustrated next.

Thecontains() function requires one argument, a reference to the key. It returns

a Boolean true if the key exists; otherwise, a Boolean false is returned.

You’ll notice that the contains() function is a simple function in that it has

one statement. This statement calls the containsNode()member function. The

containsNode() function searches the tree for the key and returns a Boolean

true if the key is found; otherwise, a Boolean false is returned, which is then

used as the return value of the contains() function.

The contains() function is defined in the public access specifier section of the

BinarySearchTree class. The containsNode() function is defined in the pri-

vate access specifier section of the same class.

bool contains(char* key)
{

return containsNode(root, key);
}

CHAPTER 10 What Is a Tree? 197

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

198 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

The containsNode() member function, as shown next, requires two argu-

ments. The first argument is a reference to the root node. Any node can be the root

node, but typically the first node of the tree is the root node because you want the

search for the key to begin at the top of the tree. The second argument is reference to

the key, which is the same key that is passed to the contains() function.

The process begins by determining if the root pointer is NULL. If the pointer is

NULL, then the key doesn’t exist and a Boolean false is returned; otherwise, the

key is compared and the search continues.

First, the containsNode() function compares the key to the key of the root

node. If there is a match, then a Boolean true is returned and the search ends. If

they are different, then thecontainsNode() determines if the key is less than the

key of the root node. If so, then thecontainsNode() calls itself and uses the left

child node of the root node as the new root node.

If the key isn’t less than the key of the root node, then the containsNode() de-

termines if the key is greater than the key of the root node. If so, then the

containsNode() calls itself using the right child node of the root node as the new

root node.

ThecontainsNode() is called recursively until either the key is found or until

the value of the root node is NULL, indicating that you’ve reached the end of the tree

without finding the key.

bool containsNode(METADATA* node, char* key)
{

if(node == NULL)
{

return false;
}
else
{

if(strcmp(key, node->key) == 0)
{

return true;
}
else if(strcmp(key, node->key) < 0)
{

return containsNode(node->left, key);
}
else
{

return containsNode(node->right, key);

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10 What Is a Tree? 199

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

}
}

}

displayInOrder() and processNodesInOrder()
You can display the contents of the tree by calling thedisplayInOrder()mem-

ber function of the BinarySearchTree class. As the name implies, the

displayInOrder() function is a public function that displays the key and

the value of all the left nodes followed by all the right nodes for each node in the tree.

As shown next, the displayInOrder() function has one statement that calls

the processNodesInOrder()member function of the BinarySearchTree
class. The processNodesInOrder() function is defined in the private access

specifier section of the class and is therefore unavailable to the application.

You must pass theprocessNodesInOrder() function one argument, which

is a reference to the root node. The root node is typically the first node of the tree, but

you can start displaying the contents of the tree from any node by passing it as the

argument to the processNodesInOrder() function.

void displayInOrder()
{

processNodesInOrder(root);
}

The definition of the processNodesInOrder() member function is illus-

trated next. You’ll notice that this is a recursive function and is called multiple times

in order to print nodes contained on the left and right branches of the tree.

Processing begins by determining if the root node is NULL. If so, you’re at the

end of tree. If it is not NULL, then the processNodesInOrder() is called

again and passed the left child of the root node. The key and value of the node is then

displayed on the screen.

This continues until keys and values of all the left nodes appear on the screen. A

similar process is followed to display the right children of the root node. For any

given node, all the left nodes will be printed first, then the node itself is printed, then

all the right nodes.

void processNodesInOrder(METADATA* node)

{

if(node != NULL)

{

processNodesInOrder(node->left);

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

200 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

cout << "key: " << node->key << "\tvalue: " << node->value << endl;

processNodesInOrder(node->right);

}

}

getSize(), getDepth(), and getTreeDepth()
Previously in this chapter, you learned that a tree is measured by its number of nodes

and levels. The number of nodes in a tree is called the size of the tree, and the number

of levels is the depth of the tree. We’ve defined member functions that you can use to

determine the size and the depth of a tree.

The first of these functions is called the getSize()member function, which is

shown next. This function simply returns the value of the size data member of the

BinarySearchTree class. Functions that add and remove nodes adjust the value

of the size data member so the size data member always reflects the current

number of nodes in a tree.

int getSize()
{

return size;
}

ThegetDepth()member function determines the number of levels in the tree.

This function calls the getTreeDepth() member function and passes it refer-

ence to the root node that is used as the starting level when calculating the depth of

the tree. It returns an integer that represents the number of levels of the tree.

The getDepth() function and the getSize() function are both defined in

the public access specifier section of the BinarySearchTree class. The

getTreeDepth() function is defined in the private access specifier.

int getDepth()
{

return getTreeDepth(root);
}

The getTreeDepth() function is shown next and performs all the calcula-

tions to determine the total number of levels in a tree. The getTreeDepth()
function requires one argument, which is a reference to the root node. This should be

the first node in the tree, although you can use any node. If you do use a node other

than the top node, the function calculates levels from that node to the end of the tree.

Levels previous to this node are not considered in the calculation.

The process starts by determining if the tree is empty. If so, then the root node is

NULL and a zero is returned. If the root node isn’t NULL, then the

getTreeDepth() function drills down each level of the tree by recursively calling

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

itself. You get a NULL parameter when you reach a leaf node. This doesn’t mean the

tree is empty, it just means you reached a leaf node. Then the recursive calls return, in-

crementing the count value through each recursion to add up the levels.

Each time the getTreeDepth() function is called, the left child node and the

right child node are passed to thegetTreeDepth() function and the function re-

turns an integer representing the level, which is assigned to either thedepth_left
variable or the depth_right variable.

Thedepth_left and thedepth_right variables are compared. If the value

of the depth_left variable is greater than the depth_right variable, the

depth_left variable is incremented and returned by the getTreeDepth()
function; otherwise, the depth_right variable is incremented and returned.

int getTreeDepth(METADATA* node)
{

int depth_left;
int depth_right;
if(node == NULL)
{

return 0;
}
else
{

depth_left = getTreeDepth(node->left);
depth_right = getTreeDepth(node->right);
if(depth_left > depth_right)
{

return depth_left + 1;
}
else
{

return depth_right + 1;
}

}
}

Binary Tree Using C++
Now that you’ve learned the pieces of the BinarySearchTree class, let’s as-

semble them into a working application. You’ll organize the application into three

fi les , BinaryTreeDemo.cpp , BinarySearchTree.h , and

BinarySearchTree.cpp. BinaryTreeDemo.cpp is the application file

CHAPTER 10 What Is a Tree? 201

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that contains the code that creates and manipulates the tree.

BinarySearchTree.h contains the definition of the structure used to build a

node and the defini t ion of the BinarySearchTree class .

BinarySearchTree.cpp contains the definition of member functions of the

BinarySearchTree class. All these files are listed in the next code snippet.

Previously in this chapter, we discussed the structure used to create a node and the

BinarySearchTree class definition. In addition, each member function was

discussed in the preceding section of this chapter.

All that remains is for you to take a close look at how the application creates and

manipulates a tree. To do this, you’ll explore the BinaryTreeDemo application,

which creates a tree and stores two nodes: IDs (keys) and first names (values). It then

manipulates these nodes. Here is the application:

//BinaryTreeDemo.cpp

#include <iostream.h>

#include <time.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include "BinarySearchTree.h"

void main()

{

BinarySearchTree* tree = new BinarySearchTree();

char key[SIZE_KEY];

char value[SIZE_VALUE];

int i;

cout << "Adding three keys and values into the tree." << endl;

for(i=0; i<3; i++)

{

if (i==0)

{

strcpy(key,"345");

strcpy(value,"Bob");

}

if (i==1)

{

strcpy(key,"123");

strcpy(value,"Mary");

}

if (i==2)

{

strcpy(key,"999");

strcpy(value,"Sue");

202 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

if (!tree->contains(key))

{

cout << "Adding node - key: " << key << " value: " << value

<< endl;

tree->add(key, value);

}

else

{

cout << "Generated duplicate key: " << key << endl;

}

}

cout << "\nIn order traversal of tree:" << endl;

tree->displayInOrder();

cout << "\nDepth of tree before removing nodes: " << tree->getDepth()

<< endl;

cout << "Size of tree before removing nodes: " << tree->getSize()

<< endl;

cout << "\nRetrieving one value from the tree:" << endl;

if(tree->get("123", value))

{

cout << " Value: " << value << endl;

}

cout << "\nRemoving one node from the tree:" << endl;

if(tree->contains("123"))

{

tree->remove("123");

}

cout << "\nIn order traversal of tree:" << endl;

tree->displayInOrder();

cout << "\nDepth of tree after removing nodes: " << tree->getDepth()

<< endl;

cout << "Size of tree after removing nodes: " << tree->getSize()

<< endl;

cout << "\nDestroying the tree:" << endl;

delete tree;

}

The application begins by declaring an instance of theBinarySearchTree class

and assigns it to a reference called tree. Next, two char arrays are declared and an

int is declared. The char arrays are called key and value, and the size of these

arrays is established by using the macro defined in the BinarySearchTree.h file.

The arrays store an ID and a first name that is assigned to a node on the tree. The int
controls the for loop.

CHAPTER 10 What Is a Tree? 203

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The for loop then adds each ID and first name to the tree. For each iteration, the

strcpy() function is called to copy a string that contains either an ID or a first

name to the key and value array. You use an if statement to determine which set of

ID and first name to copy to the arrays.

Once the set of strings is copied to the arrays, the application calls the con-
tains()member function to determine if the key already exists in the tree. Remem-

ber that each key must be unique. The contains() function returns a Boolean

true if the key is contained in the tree. You reverse the logic with thenot operator so

that a Boolean true is treated as a Boolean false. This means that statements

within the if statement will not execute if the key already exists in the tree.

If the key doesn’t exist, then the application displays the key and value on the screen

before calling the add() member function to place the key and value on the tree, as

shown here:

Adding three keys and values into the tree.
Adding node - key: 345 value: Bob
Adding node - key: 123 value: Mary
Adding node - key: 999 value: Sue

Figure 10-6 illustrates keys and values organized on the tree.

If the key does exist, then a message is displayed on the screen telling everyone

that the key is a duplicate key.

After all three IDs and first names are placed on the tree, the application manipu-

lates nodes on the tree. The first manipulation is to call the displayInOrder()
member function that displays keys and values of each node, as shown next:

204 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

Figure 10-6 Regardless of the order in which data is added to the tree, the left child

node is less than the parent node and the right child node is greater than

the parent node.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In order traversal of tree:
key: 123 value: Mary
key: 345 value: Bob
key: 999 value: Sue

Next, the application displays the depth and the size of the tree by calling the

getDepth() and getSize() member functions. The result is displayed on

the screen, as shown here:

Depth of tree before removing nodes 2
Size of tree before removing nodes 3

Remember that the depth of a tree is the number of levels on the tree. In this exam-

ple, there are two levels. The first level contains the root node, and the second level

contains the left child node and the right child node.

Next, the application retrieves the value associated with key 123 by calling the

get() member function. The get() member function returns a Boolean value

true if the key is found; otherwise, a Boolean false is returned. If the key is

found, then the value is displayed on the screen, as shown here. Remember that the

first name associated with the key 123 is assigned to thevalue array by theget()
function.

Retrieving one value from the tree:
Value Mary

Next, the application removes the node that contains the key 123. First, the con-
tains() function is called to determine if the tree contains a key that has the

value 123. If so, a Boolean true is returned; otherwise, a Boolean false is re-

turned. Because there is a node containing 123 as a key, the remove() member

function is called and passed the string 123 to remove the node.

ThedisplayInOrder() function is called once again to display the tree after

the node is removed. Here’s what is displayed on the screen. Notice that the node

containing 123 no longer exists in the tree (see Figure 10-7).

Removing one node from the tree:
In order traversal of tree:
key: 345 value: Bob
key: 999 value: Sue

Finally, the application calls thegetDepth() andgetSize() functions to dis-

play the depth and size of the tree after the node is removed. Here’s what is displayed:

Depth of tree after removing nodes 2
Size of tree after removing nodes 2

The application finishes removing the tree by calling the delete operator. Re-

member that the destructor of the BinarySearchTree class calls the

CHAPTER 10 What Is a Tree? 205

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

206 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

removeAllNodes() member function that displays keys and values of nodes

that are removed. Here’s what is displayed:

Removing node - key: 345 Bob

Removing node - key: 999 Sue

// BinarySearchTree.h"

#include <string.h>

#define SIZE_KEY 32

#define SIZE_VALUE 256

typedef struct Metadata

{

struct Metadata(char* key, char* value)

{

strcpy(this->key, key);

strcpy(this->value, value);

left = NULL;

right = NULL;

}

char key[SIZE_KEY];

char value[SIZE_VALUE];

struct Metadata* left;

struct Metadata* right;

} METADATA;

class BinarySearchTree

{

private:

int size;

METADATA* root;

Figure 10-7 The left child node is removed from the tree; the tree still has a depth of

two levels.

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bool addNode(METADATA** current_node, METADATA* new_node);

bool getNode(METADATA* current_node, char* key, char* value);

void removeAllNodes(METADATA* node);

void processNodesInOrder(METADATA* node);

int getTreeDepth(METADATA* node);

bool containsNode(METADATA* node, char* key);

bool removeNode(METADATA** node, char* key);

void removeRootNode(METADATA** node);

void moveLeftMostNode(METADATA** node, METADATA* root);

public:

BinarySearchTree();

virtual ~BinarySearchTree();

bool add(char* key, char* value);

bool remove(char* key);

void removeAll();

bool get(char* key, char* value);

bool contains(char* key);

void displayInOrder();

int getSize();

int getDepth();

};

// BinarySearchTree.cpp

#include <iostream.h>

#include "BinarySearchTree.h"

BinarySearchTree::BinarySearchTree()

{

root = NULL;

size = 0;

}

BinarySearchTree::~BinarySearchTree()

{

removeAll();

}

bool BinarySearchTree::add(char* key, char* value)

{

if(key == NULL || value == NULL || strlen(key) > SIZE_KEY-1

|| strlen(value) > SIZE_VALUE-1)

{

return false;

}

METADATA* new_node = new METADATA(key, value);

return addNode(&root, new_node);

}

CHAPTER 10 What Is a Tree? 207

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bool BinarySearchTree::addNode(METADATA** current_node, METADATA* new_node)

{

if(*current_node == NULL)

{

*current_node = new_node;

size++;

return true;

}

else

{

if(strcmp(new_node->key, (*current_node)->key) < 0)

{

return addNode(&((*current_node)->left), new_node);

}

else if(strcmp(new_node->key, (*current_node)->key) > 0)

{

return addNode(&((*current_node)->right), new_node);

}

else

{

delete new_node;

return false;

}

}

}

bool BinarySearchTree::remove(char* key)

{

return removeNode(&root, key);

}

function

bool BinarySearchTree::removeNode(METADATA** node, char* key)

{

if(*node != NULL)

{

if (strcmp(key, (*node)->key) == 0)

{

removeRootNode(node);

size--;

return true;

}

else if(strcmp(key, (*node)->key) < 0)

{

return removeNode(&((*node)->left), key);

}

208 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

else

{

return removeNode(&((*node)->right), key);

}

}

else

{

return false;

}

}

void BinarySearchTree::removeRootNode(METADATA** root)

{

METADATA* temp;

if((*root)->left == NULL && (*root)->right == NULL)

{

delete(*root);

*root = NULL;

}

else if((*root)->right == NULL)

{

temp = *root;

*root = (*root)->left;

delete(temp);

}

else if((*root)->left == NULL)

{

temp = *root;

*root = (*root)->right;

delete(temp);

}

else

{

moveLeftMostNode(&((*root)->right), *root);

}

}

void BinarySearchTree::moveLeftMostNode(METADATA** node, METADATA* root)

{

if(*node != NULL && (*node)->left == NULL)

{

METADATA* temp = *node;

strcpy(root->key, (*node)->key);

strcpy(root->value, (*node)->value);

*node = (*node)->right;

delete(temp);

CHAPTER 10 What Is a Tree? 209

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

else

{

moveLeftMostNode(&((*node)->left), root);

}

}

void BinarySearchTree::removeAll()

{

removeAllNodes(root);

root = NULL;

size = 0;

}

void BinarySearchTree::removeAllNodes(METADATA* node)

{

if(node != NULL)

{

removeAllNodes(node->left);

removeAllNodes(node->right);

cout << "Removing node - key: " << node->key << "\t" << node->value

<< endl;

delete node;

}

}

bool BinarySearchTree::get(char* key, char* value)

{

return getNode(root, key, value);

}

bool BinarySearchTree::getNode(METADATA* node, char* key, char* value)

{

if(node == NULL)

{

value[0] = '\0';

return false;

}

else

{

if(strcmp(key, node->key) == 0)

{

strcpy(value, node->value);

return true;

}

else if(strcmp(key, node->key) < 0)

{

return getNode(node->left, key, value);

210 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

else

{

return getNode(node->right, key, value);

}

}

}

bool BinarySearchTree::contains(char* key)

{

return containsNode(root, key);

}

bool BinarySearchTree::containsNode(METADATA* node, char* key)

{

if(node == NULL)

{

return false;

}

else

{

if(strcmp(key, node->key) == 0)

{

return true;

}

else if(strcmp(key, node->key) < 0)

{

return containsNode(node->left, key);

}

else

{

return containsNode(node->right, key);

}

}

}

void BinarySearchTree::displayInOrder()

{

processNodesInOrder(root);

}

void BinarySearchTree::processNodesInOrder(METADATA* node)

{

if(node != NULL)

{

processNodesInOrder(node->left);

cout << "key: " << node->key << "\tvalue: " << node->value << endl;

processNodesInOrder(node->right);

CHAPTER 10 What Is a Tree? 211

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

212 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

}

}

int BinarySearchTree::getSize()

{

return size;

}

int BinarySearchTree::getDepth()

{

return getTreeDepth(root);

}

int BinarySearchTree::getTreeDepth(METADATA* node)

{

int depth_left;

int depth_right;

if(node == NULL)

{

return 0;

}

else

{

depth_left = getTreeDepth(node->left);

depth_right = getTreeDepth(node->right);

if(depth_left > depth_right)

{

return depth_left + 1;

}

else

{

return depth_right + 1;

}

}

}

Binary Tree Using Java
A tree data structure can also be incorporated into a Java application by using the

TreeMap collection class that is defined in thejava.util package. TheTreeMap
class has many member methods that are comparable to member functions that you de-

fined in the C++ BinarySearchTree class. However, the TreeMap class is miss-

ing two methods that you used in the C++ application, the displayInOrder()and

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

getTreeDepth() member functions. You can define your own

displayInOrder()method to display keys and values stored in nodes of the tree,

but there isn’t any way of calculating the depth of a tree in Java. This is an implementa-

tion detail that’s hidden from the end user.

At the end of this section is the Java equivalent of the C++ application presented

previously in this chapter. The Java application creates a tree and places the same

three keys and values on the tree and then manipulates those values the same way as

the C++ application manipulated those values.

Let’s see how the Java application works. It begins by declaring an instance of the

TreeMap class and assigning it to the tree reference. TheTreeMap class is similar

to theBinarySearchTree class defined in the C++ version of this application.

The application then declares two strings to store the key and value of a node.

These are initialized to NULL. The application also declares an integer to control the

for loop. The for loop assigns strings to the key and value variables and then

adds each key and value to the tree.

Similar to the C++ version of the application, the Java version calls the

containsKey() method that is a member of the TreeMap class. This method

returns a Boolean true if the key already exists in the tree; otherwise, a Boolean

false is returned. As with the C++ version, thenot operator is used to reverse the

logic of the value returned by the containsKey().

The put() member method of the TreeMap class places the key and value on

the tree. The put()method is similar to the add()member function that you de-

fined in the C++ version of this application. Each time a new key and value is added

to the tree, the key and value are displayed on the screen, as shown here:

Adding three keys and values into the tree.
Adding node - key: 345 value: Bob
Adding node - key: 123 value: Mary
Adding node - key: 999 value: Sue

Next, thedisplayInOrder()method is called to display the contents of the tree

on the screen. The displayInOrder()method is defined at the bottom of the Java

listing. Here’s how it works. First thekeySet()method is called to copy the contents

of the tree to a key set. Think of a key set as a two-column table where one column con-

tains keys and the other corresponding values. Each row is a node of the tree.

Next, an instance of the Iterator class is created. As you’ll remember from

your Java programming course, the Iterator class has member methods that en-

able you to move through a list such as a key set. In this example, the Iterator
class returns the key of each row in the key set. The key is then passed to the get()
member method of the TreeMap class to retrieve the value associated with the key.

Both the key and the value are then displayed on the screen, as shown next.

CHAPTER 10 What Is a Tree? 213

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In order traversal of tree:
key: 123 value: Mary
key: 345 value: Bob
key: 999 value: Sue

After the contents of the tree is displayed on the screen, the application displays

the size of the tree by calling the size() member method of the TreeMap class.

Here’s what is displayed on the screen. Remember that the size is the number of

nodes on the tree.

Size of tree before removing nodes 3

The application then calls the get()member method to retrieve the value asso-

ciated with the key 123. If the value isn’t NULL, then the application displays the

key and the value on the screen, as shown here:

Retrieving a value from the tree:
Found key: 999 value: Mary

Next, the application removes the node whose key is 123 by first calling the

containsKey()member method of theTreeMap class to determine if there is a

node that has 123 as a key. If so, the remove() member method is called and

passed the key 123 to remove the node. A message is displayed on the screen, as

shown here, to indicate that the node is being removed:

Removing a node from the tree:
Removing key 999

To show the resul t of the node being removed, you cal l the

displayInOrder() method to display the contents of the tree and call the

size()member method to display the size of the tree. Here’s what is displayed on

the screen when these methods are called:

In order traversal of tree:
key: 345 value: Bob
key: 999 value: Sue

Size of tree after removing nodes 2

Here is the program that creates and manipulates the tree in Java:

import java.lang.*;

import java.text.*;

import java.util.*;

public class BinarySearchTreeDemo

{

public static void main(String[] args)

{

214 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TreeMap tree = new TreeMap();

String key = null;

String value = null;

int i;

System.out.println("Adding three keys and values into the tree.");

for(i=0; i<3; i++)

{

if (i==0)

{

key ="345";

value="Bob";

}

if (i==1)

{

key ="123";

value="Mary";

}

if (i==2)

{

key="999";

value="Sue";

}

if (!tree.containsKey(key))

{

System.out.println("Adding node - key: " + key + " value: "

+ value);

tree.put(key, value);

}

else

{

System.out.println("Generated duplicate key: " + key);

}

}

System.out.println("\nIn order traversal of tree:");

displayInOrder(tree);

System.out.println("\nSize of tree before removing nodes: "

+ tree.size());

System.out.println("\nRetrieving a value from the tree:");

value = (String)tree.get("123");

if(value != null)

{

System.out.println("Found key: " + key + " value: " + value);

}

System.out.println("\nRemoving a node from the tree:");

CHAPTER 10 What Is a Tree? 215

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if(tree.containsKey("123"))

{

System.out.println("Removing key: " + key);

tree.remove("123");

}

System.out.println("\nIn order traversal of tree:");

displayInOrder(tree);

System.out.println("\nSize of tree after removing nodes: "

+ tree.size());

}

private static void displayInOrder(TreeMap tree)

{

Set keys = tree.keySet();

Iterator ii = keys.iterator();

while(ii.hasNext())

{

String key = (String)ii.next();

String value = (String)tree.get(key);

System.out.println("key: " + key + "\tvalue: " + value);

}

}

}

Quiz
1. What is a tree?

2. What is the relationship between parent node and child nodes?

3. What are a key and a value?

4. What is a root node?

5. What is the purpose of a left child node and a right child node?

6. What is a leaf node?

7. What is the depth of a tree?

8. What is the size of a tree?

9. How do you calculate the size of a tree?

10. Can a tree have a duplicate key?

216 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 10

P:\010Comp\DeMYST\359-2\ch10.vp
Monday, February 02, 2004 2:37:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
11

What Is a
Hashtable?

Hashtable is one of those programming terms whose definition is illusive. Hash

means “mishmash,” and a table is the organization of data into columns and rows,

but a table containing mishmash data seems useless to an application. Not necessar-

ily! Programmers use a hashtable to store and retrieve large amounts of information

efficiently. You’ll learn how this is done and how to use hashtables in your applica-

tion in this chapter.

A Hashtable
Object-oriented applications that mimic real life must store and retrieve large

amounts of information. Previously in this book, you learned that information is as-

sociated with an object and stored in an instance of a class that represents the object

within the application.

217

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Wednesday, February 11, 2004 9:31:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

Objects are stored using one of a number of data structures. The choice of data struc-

ture depends on the nature of the application. A hashtable is a common data structure to

store objects that have a key/value relationship.

A hashtable is an array of pointers to data. Data takes the form of a user-defined

structure that consists of up to three elements: the key, the value, and a pointer to the in-

stance of the next structure in the hashtable. The pointer is used only if your collisions

are handled in the manner described in this chapter; otherwise, it is not required.

The key uniquely identifies the value. Each user-defined structure in the

hashtable must have a unique key. The value is data that is associated with the key,

and it can appear more than once in the hashtable. Think of a key as a student ID and

the corresponding value as a student’s name. Each student is assigned a unique stu-

dent ID, but two or more students can have the same name.

What makes a hashtable interesting is the way in which the program assigns a user-

defined structure to an array element of the hashtable. The program hashes the key of a

user-defined structure to determine which array element is assigned the user-defined

structure.

A bit confused? If so, you’re not alone, because this concept isn’t intuitive. To

clear up any confusion, look at Figure 11-1, which shows three entries in the

hashtable. I simplified this illustration by using blocks to represent each instance of

the user-defined structure that contains the key/value of the entry. Later in this chap-

ter, you’ll see the actual user-defined structure used for hashtable entries.

218 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

Figure 11-1 The hashtable is an array whose elements point to user-defined structures

that contain data.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 11-1 also shows the index that represents the hashtable. Notice that each

array element points to a user-defined structure. The user-defined structure contains

the actual data for the entry of the hashtable.

Each user-defined structure is assigned to a specific array element based on the

user-defined structure’s key. The key is translated into a number that is the array in-

dex. This number is called a hash value and is created by using the process called

hashing. The hash value becomes the array index of the array element that points to

the user-defined structure whose key is hashed. Each index in Figure 11-1 is the hash

value of the key of the user-defined structure.

You can think of hashing as a way to come up with the index of the array element

associated with an entry in the hashtable. You’ll learn how to perform hashing in

your application later in this chapter.

Hashing achieves an even distribution of index values, which makes finding in-

formation faster than if a string of bits is in a natural order. In a natural order, words

and names follow a predictable pattern. By shuffling the bits that make up words and

names, a program no longer treats those bits as a text string and instead randomizes

the bits to make them more efficient to search.

Hashing is a high-speed scheme for taking a key that has natural sequence (alpha-

betical or numerical order) and pseudo-randomizing it. If the key is a name, certain let-

ters appear more often than other letters, and certain sequences of characters occur

more frequently than other characters. Hashing moves the bits around to produce an

even distribution of hash values, which is needed to quickly search a hashtable.

The result of hashing is a number that has no real significance, but it is used as an

array index to store and retrieve information that is associated with an entry that is

stored in a hashtable. Indexes shown in Figure 11-1 are hash values of the corre-

sponding key of the user-defined structure pointed to by the array element.

Problems with Hashing
Hashing is not perfect. Occasionally, a collision occurs when two different keys hash

into the same hash value and are assigned to the same array element. Programmers

have come up with various techniques for dealing with this conflict.

A common way to deal with a collision is to create a linked list of entries that have

the same hash value. For example, say that the key of each entry hashes to the same

hash value, and this results in both being assigned to the same array element of the

hashtable, as shown in Figure 11-2.

Because two entries cannot be assigned the same array element, the programmer

creates a linked list. The first user-defined structure is assigned to the pointer in the

array element. The second isn’t assigned to any array element and is instead linked

to the first user-defined structure, thereby forming a linked list.

CHAPTER 11 What Is a Hashtable? 219

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As you’ll see later in this chapter, the program locates an entry in a hashtable by ref-

erencing the hashed value of the entry. The hash value is the index of the array element

that points to the entry. You can probably see the dilemma: the index points only to the

first entry, not the second.

Programmers work around this problem by having the program read the key of

the first entry. If the key isn’t the one the program seeks, the program looks at the

next entry in the linked list. It continues down the linked list until the program finds

the desired entry or reaches the end of the linked list.

Developing a Hashtable
Creating and using a hashtable in your application is a two-step process. The first step

is to define a user-defined structure similar to the way you defined nodes in a tree or a

linked list. The second step is to define a Hashtable class. The Hashtable class

declares an instance of the user-defined structure and defines member data and mem-

ber functions that are used to add, remove, and manipulate information stored in the

hashtable.

220 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

Figure 11-2 A linked list connects user-defined structures whose keys hash to the same

hash value.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Hashtable Class
The first step to using a hashtable in your application is to define a user-defined

structure and then define the Hashtable class, which interacts with the hashtable

within the application.

Begin by defining the user-defined structure, as shown here:

typedef struct Metadata
{

struct Metadata(char* key, char* value)
{

strcpy(this->key, key);
strcpy(this->value, value);
next = NULL;

}
char key[SIZE_KEY];
char value[SIZE_VALUE];
struct Metadata* next;

} METADATA;

I called this structure metadata because metadata is data that describes data, simi-

lar to a column name on a spreadsheet. You’ll assign data to the structure once an in-

stance of metadata is declared in the Hashtable class.

The metadata structure has three members. The first member is a char array

called key that stores the key of a key/value pair. The second member is a char ar-

ray called value because it stores the corresponding value of the key/value pair. The

last member is a pointer to another metadata structure, which is called next. This en-

ables the application to link together structures at a given index.

The size of both character arrays is determined by the value of the#definemacro

called SIZE_KEY and SIZE_VALUE. These are defined in the HashTable.h
header file (see “Hashtable Using C++”).

You’ll notice that a constructor is defined inside the structure definition. This en-

ables the application to pass the structure initial values for the key and value, which

are then assigned the corresponding character arrays. It also initializes the pointer to

the next node in the linked list. You’ll see how this is used later.

Once the metadata structure is defined, you need to define theHashtable class,

which declares an instance of the metadata structure and defines member functions

that interact with the metadata structure.

Here’s the definition of the Hashtable class:

class Hashtable
{

private:

CHAPTER 11 What Is a Hashtable? 221

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int tablesize;
METADATA** table;
int size;
METADATA* current_entry;
int current_index;
long hashString(char* key);
METADATA* find(char* key);

public:
Hashtable(int tablesize = DEFAULT_TABLESIZE);
virtual ~Hashtable();
bool put(char* key, char* value);
bool get(char* key, char* value);
bool contains(char* key);
bool remove(char* key);
void removeAll();
int getSize();
void initIterator();
bool hasNext();
void getNextKey(char* key);

};

The Hashtable class is organized into the private access specifier and public

access specifier sections. The private access specifier section contains five data

members and two member functions.

The first data member is an integer called tablesize, which is later assigned

the size of the array of pointers that stores entries in the hashtable. Next is a pointer to

a pointer called table, an array of metadata pointers that will store information in

the hashtable. Each entry in the table is a pointer to a linked list of entries. NULL in-

dicates there isn’t an entry at this index.

The third data member of theHashtable class is an integer calledsize that is

later assigned the number of entries in the hashtable. The last two data members are

current_entry and current_index. The current_entry data member is a

pointer to the current entry in the metadata structure, and the current_index is an in-

teger representing the current key. Both iterate entries in the hashtable.

Two functions are declared within the private access specifier of the

Hashtable class: hashString() and find(). The hashString() func-

tion hashes a key in a key/value pair and returns the hash code. The returned hash

code is the index where the entry resides in the hashtable, the index in the array of

metadata pointers. The find() function searches a hashtable for a particular key

and returns a pointer to the metadata structure that contains that key. Both functions

are called by other member functions and are described in detail later in this chapter.

222 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The public access specifier section of the Hashtable class contains member

functions that create and interact with the hashtable. Each of these functions is dis-

cussed in forthcoming sections of this chapter.

Constructor and Destructor
The constructor of the Hashtable class initializes data members and creates the

hashtable, as illustrated in the following code snippet. The size of the array of pointers

(tablesize) is passed to the constructor when the application declares an instance

of the Hashtable class. The value passed to the constructor must be an integer,

which is assigned to the tablesize data member of the Hashtable class.

The constructor allocates an array of metadata pointers, which will store the data

in the hashtable. This array is assigned to the table member of the class. Previ-

ously, you learned that the table data member is an array of pointers that point to

metadata structures.

Once the instance of the Hashtable class is declared, the constructor uses a

for loop to initialize elements of the table array to NULL. Thesize data mem-

ber is initialized to zero, indicating there aren’t any entries in the hashtable. How-

ever, you can increase the size of the hashtable by passing the tablesize to the

constructor. In Figure 11-3, the hashtable size is five elements.

Hashtable(int tablesize)
{

size = 0;
this->tablesize = tablesize;
table = new METADATA*[tablesize];
for(int i=0; i<tablesize; i++)
{

table[i] = NULL;
}

}

The destructor of theHashtable class is shown in the next code snippet. It per-

forms two actions. First, the destructor calls the removeAll() member function

to remove all entries from the hashtable. After entries are deleted, the constructor de-

letes the array of pointers referenced by the table data member. It does this by using

the delete operator.

~Hashtable()
{

removeAll();
delete[] table;

}

CHAPTER 11 What Is a Hashtable? 223

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inserting a New Entry
You insert a new entry into the hashtable by calling the put() member function,

which is available directly to the application because it is declared in the public

access specifier section of the Hashtable class.

Theput() function is shown in the following code snippet. It requires two argu-

ments. The first argument is a char pointer called key that contains the key of the new

entry. The second argument is a char pointer called value that references the value of

the new entry. The put() function returns a Boolean true if the new entry is in-

serted into the hashtable; otherwise, a Boolean false is returned.

As you’ll recall, each key must be unique. Before the new entry is placed in the

hashtable, the put() function determines if the key already exists by calling the

find() member function and passing find() the key.

The keys stored in the hashtable are exactly the same as the key passed into the

find() function. The hash determines which bucket it goes in, and then find()
compares keys to find the desired key. You’ll learn how thefind() function works

later in this chapter.

The find() function returns a NULL if the key isn’t found; otherwise, the

find() function returns a pointer to the metadata structure that contains the key. If

the find() function doesn’t return a NULL, the key is already in the hashtable,

and the put() function returns a false.

However, if the find() function returns a NULL, a new entry is placed in the

hashtable by first declaring a new instance of the metadata structure, which is then

passed the key and the value of the new entry. Reference to the instance is assigned to

a pointer called entry.

224 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

Figure 11-3 The constructor declares an array of pointers where each element of the

array points to an instance of the metadata structure.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, the hashString() member function is called and passed the key of the

new entry. ThehashString() function hashes the key and returns a hash number

that is used as the array index for the entry in the hashtable. The hash number is as-

signed to the integer called bucket. You’ll learn how the hashString() function

operates later in this chapter.

The bucket integer is then used as the array index of the table data member of the

Hashtable class. As you’ll remember from the previous section of this chapter,

the table data member is an array of metadata pointers. This means that the ta-

ble[bucket] references the element of the hashtable that will be assigned the new entry.

Before the entry is assigned to this element, the current element in that bucket is

assigned to the next member of the instance of the metadata called entry that is de-

clared in theput() function. After this assignment, the new entry is assigned to the

table[bucket] element of the hashtable. In effect, what this does is make the new en-

try the first entry in a linked list defined at this point in the array. If there was no entry

at this index, the value of the index would be NULL. This would assign NULL to the

next pointer of the new entry, which is okay because the new entry is the only entry in

the linked list.

The put() function then increments the size data member of the Hashtable
class, indicating an additional entry has been placed in the hashtable. The put()
function then returns a Boolean true. Figure 11-4 illustrates the hashtable if you

pass 111 as the key and Bob as the value to the put() function.

bool put(char* key, char* value)
{

if(find(key) != NULL)
{

return false;
}
METADATA* entry = new METADATA(key, value);
int bucket = hashString(key);
entry->next = table[bucket];
table[bucket] = entry;
size++;
return true;

}

Retrieving a Value
You can retrieve a value stored in a hashtable by calling theget()member function,

which is illustrated in the next code snippet. The get() function requires two argu-

ments. The first argument is a char pointer that references the key of the entry that you

CHAPTER 11 What Is a Hashtable? 225

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

226 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

want to retrieve. The second argument is a char pointer that references the value of the

entry. Theget() function copies the value of the entry from the hashtable to this char

pointer if the key is found in the hashtable. If the key is found, then a Booleantrue is

returned by the get() function; otherwise, a Boolean false is returned.

The get() function searches the hashtable by calling the find() function

and passing it the key received as the first argument to the get() function. The

find() function hashes the key before searching for the key in the hashtable.

The find() function then either returns a reference to the metadata structure that

contains the key, or returns a NULL.

Theget() function assigns the return value of thefind() function to a pointer

called temp, which is a pointer to a metadata structure. Theget() function then de-

termines if the temp pointer is NULL. If so, then the first array element of the value

argument is assigned the NULL character (sets value to an empty string) and the

get() function returns a Boolean false, indicating that this key does not exist in

the hashtable.

If temp isn’t NULL, it means the find() function found the key in the hashtable

and it returns a reference to the metadata that contains the entry. The value of the entry is

then copied to the value argument, and the get() function returns a Boolean true.

Figure 11-4 Here’s what happens after the first entry is placed on the hashtable by

calling the put() function.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bool get(char* key, char* value)
{

METADATA* temp = find(key);
if(temp == NULL)
{

value[0] = '\0';
return false;

}
else
{

strcpy(value, temp->value);
return true;

}
}

find()
You called the find()member function several times in other member functions.

Now let’s take a close look at how the find() member function works. As you’ll

recall, the purpose of thefind() function is to search the hashtable for a key. If the

key is found, then thefind() function returns a reference to the metadata structure

that contains the key and the corresponding value. If the key isn’t found, then

find() returns a NULL.

The find() function requires one argument, a reference to the key. The key is

then passed to thehashString()member function, which hashes the key and re-

turns a hash number that corresponds to the key. It does this because keys stored in

the hashtable are hash number representations of the actual key. Therefore, the key

must be converted to its corresponding hash number for the find() function to lo-

cate the entry in the array of pointers.

The hash number returned by the hashString() function is assigned to the

bucket integer, which is used as the index to identify the entry in the table array that is

the hashtable. The value of the table array element is a reference to a metadata struc-

ture, which is then assigned to the temp pointer of the metadata structure.

As long as the temp pointer isn’t NULL, thefind() function uses thestrcmp()
function to compare the key element of the metadata structure pointed to by temp with

the key passed to thefind() function. At this point, the temp variable is being used to

iterate the linked list. If there is a match, then the metadata structure pointed to by the

temp pointer is returned. If there isn’t a match, then the next member of the temp

metadata structure is assigned to the temp pointer, and thefind() function continues

by making another comparison.

CHAPTER 11 What Is a Hashtable? 227

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If there isn’t a match after the find() function has examined all the entries in

the hash index, then the find() function returns a NULL.

METADATA* find(char* key)
{

int bucket = hashString(key);
METADATA* temp = table[bucket];
while(temp != NULL)
{

if(strcmp(key, temp->key) == 0)
{

return temp;
}
temp = temp->next;

}
return NULL;

}

contains()
The purpose of the contains()member function is to determine if a key exists

in the hashtable. As you can see by the following definition, the contains()
function is simple to construct, but it has a critical role in working with hashtables.

As you learned previously in this chapter, each key of a hashtable must be unique.

Thecontains() function enables your application to ensure that keys are unique by

determining if the key already exists in the hashtable.

The contains() function requires one argument, which is a reference to the

key that you want to know exists in the hashtable. The contains() function re-

turns a Booleantrue if the key exists or a Booleanfalse if the key isn’t found.

The contains() function determines if the key exists by calling the find()
function and passing it the key. In the previous section of this chapter, you learned

that thefind() function returns either a reference to the metadata that contains the

key or a NULL. Thecontains() function determines which of these is returned.

If a NULL is returned by thefind() function, then the contains() function

returns a Boolean false; otherwise, if the find() function returns reference to

the metadata that contains the key, a Boolean true is returned.

bool contains(char* key)
{

if(find(key) == NULL)
{

return false;

228 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 What Is a Hashtable? 229

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

}
else
{

return true;
}

}

Remove an Entry
You’ll need to call the remove() member function whenever your application

needs to remove an entry from the hashtable. Theremove() function, shown in the

next code snippet, requires one argument, which is a reference to the key of the entry

that you want to remove from the hashtable. If the key is found and the entry success-

fully removed, then the remove() function returns a Boolean true; otherwise,

a Boolean false is returned.

The remove() function hashes the key of the entry you want to remove by call-

ing the hashString() function and passing it a reference to the key received

as the argument to theremove() function. ThehashString() function returns

the hash number for this key, which is then assigned to an integer called bucket.

The bucket is used as the array index of the table data member of the

Hashtable class. Thetable[bucket] references the element of the hashtable

that contains the linked list, which must be searched to find the entry. This value is

assigned to a temp pointer that will be used to iterate the list.

The remove() function then determines if the entry exists by comparing the

temp pointer to NULL. If it is NULL, then a Booleanfalse is returned to the state-

ment that calls the remove() function. If temp isn’t NULL, then at least one entry

exists in the linked list, and the remove() function determines where the entry ap-

pears in the hashtable linked list.

First, theremove() function determines if the entry is the first node on the linked

list by using thestrcmp() function to compare the key of the entry to the key passed

to the remove() function. If they match, then the strcmp() function returns a

zero, and the remove() function knows that the entry is the first node on the linked

list. If the entry isn’t the first node, then theremove() function must iterate through

the linked list to locate the entry.

If the entry is the first node, then the remove() function switches entries on the

linked list. As you learned earlier in this chapter, the temp metadata contains three

elements: the key, the value, and a reference to the next entry called next.

Reference to the next entry is assigned to the table[bucket] array element,

which currently contains reference to the entry that is being removed from the

hashtable. This makes the next entry the first entry in the linked list because the cur-

rent entry is the first entry in the linked list.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

After this switch is made, the remove() function uses the delete operator to

deallocate the current entry, which is pointed to by the temp pointer. It is at this point the

entry is removed from the hashtable. Theremove() function then decrements the size

data member to reflect the removal of the entry and returns a Booleantrue, indicating

that the entry was successfully removed.

If the entry isn’t the first node on the linked list, the remove() function must

step through the entire linked list looking for the entry. It does this by assigning ref-

erence to the next metadata structure, which is the next entry, to the temp_next
pointer. As long as the temp_next pointer isn’t NULL, the remove() function

calls the strcmp() function to compare the key member of the temp_next
metadata structure to the key passed as an argument to the remove() function.

If they match, the entries are switched using the same steps as if the entry is the

first node on the linked list. If they don’t match, then the next entry (metadata struc-

ture) is assigned to thetemp_next pointer and the search continues. If the key can-

not be located in the linked list after the search is exhausted, the remove()
function returns a Boolean false.

bool remove(char* key)
{

int bucket = hashString(key);
METADATA* temp = table[bucket];
if(temp == NULL)
{

return false;
}
else if(strcmp(key, temp->key) == 0)
{

table[bucket] = temp->next;
delete temp;
size--;
return true;

}
else
{

METADATA* temp_next = temp->next;
while(temp_next != NULL)
{

if(strcmp(key, temp_next->key) == 0)
{

temp->next = temp_next->next;
delete temp_next;
size--;
return true;

230 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 What Is a Hashtable? 231

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

}
temp = temp->next;
temp_next = temp_next->next;

}
}
return false;

}

Another way to remove entries from a hashtable is to call theremoveAll() func-

tion. TheremoveAll() function, shown in the next code snippet, deletes all entries

in the hashtable. To do this, theremoveAll() function uses afor loop to iterate all

the entries in the hashtable. At each entry, the while loop executes to transverse the

linked list to delete all entries that are linked to the hashtable entry. Once entries on

the linked list are deleted, thefor loop moves to the next entry in the hashtable and re-

peats the process until all linked entries and all entries on the hashtable are removed.

It begins by declaring a pointer called temp that points to a metadata structure.

The temp pointer is then assigned the first element in the hashtable array, which is

called table.

As long as the temp pointer isn’t NULL, theremoveAll() function assigns refer-

ence to the next metadata associated with the current entry (metadata structure) to the

next pointer. The key and value of the current entry are then displayed on the screen be-

fore thedeleteoperator is called to remove the entry pointed to by the temp pointer.

The entry pointed to by the next pointer is then assigned to the temp pointer, and the

removeAll() function returns to the top of the while loop and continues by re-

moving the next entry from the hashtable. This continues until the temp pointer is

NULL, which means that the hashtable is empty. (When temp is NULL, one linked list

is finished, then Java returns to the outer loop again to process the next linked list.) The

removeAll() function then sets the size data member of the Hashtable class

to zero, indicating there are no entries in the hashtable.

void removeAll()
{

for(int i=0; i<tablesize; i++)
{

METADATA* temp = table[i];
while(temp != NULL)
{

METADATA* next = temp->next;
cout << "Removing node - key:" << temp->key <<

"\t" << temp->value << endl;
delete temp;
temp = next;

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
}
size = 0;

}

getSize()
The getSize() member function is the simplest function of the Hashtable
class because it reads the size data member of the Hashtable class and returns

its value to the statement that calls the getSize() function. The getSize()
function definition is listed in the next code snippet.

Why should you use the getSize() function instead of giving the application

access to thesize data member? To protect the integrity of the data. If you gave the

application direct access to the size data member, statements within the applica-

tion could assign an incorrect value tosize. By controlling access to size to only

function members of the hashtable, you protect the integrity of the data.

int getSize()
{

return size;
}

hashString()
ThehashString()member function is another function called by other member

functions of the Hashtable class whenever a function needs to convert a key to a

hash number key. The hashString() function requires one argument, a char

pointer to the key that is being hashed. The hash number that corresponds to the key

is then returned by the hashString() function as a long.

The definition of thehashString() function is listed in the next code snippet.

The hashing process begins by first determining the length of the key by calling the

strlen() function. The length is assigned to an integer that we call n. You’ll also

declare a long called h and initialize it to zero to store intermediate values of the hash

key during the hashing process.

The hashing process works at the bit level of the key and, in effect, randomizes

bits that comprise the key. The hashString() function iterates through each

character of the key by using the for loop. During each iteration, the bits that com-

prise the value of the h variable are shifted (h << 2), and the bits of the current charac-

ter of the key are added to the shifted bits. The result is then assigned to the h

variable. This process continues until the last character of the key is hashed.

232 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 What Is a Hashtable? 233

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

The hashString() then calculates the modulus value, the final hashed value

(h), and the table size (h % tablesize). The modulus value can be either a positive or

negative value. However, the hashed key must be a positive value. Therefore, the

hashString() function returns the absolute value of the hashed key (abs(h %

tablesize)).

long hashString(char* key)
{

int n = strlen(key);
long h = 0;
for(int i=0; i<n; i++)
{

h = (h << 2) + key[i];
}
return abs(h % tablesize);

}

NOTE: The goal of hashing is to take a data set of keys and produce a nicely

distributed sequence of indices. Although programmers agree that the hashtable

size should be a prime number, there are various algorithms for hashing. However,

all hashing algorithms have one thing in common: they use bit shifting.

There isn’t a perfect hashing function. Some hashing functions work better on a

given dataset than others. Programmers typically test a wide variety of hash

functions on a dataset before settling on the best one to use for a specific dataset.

initIterator()
The initIterator()member function initializes some class variables that tra-

verse all the entries in the linked list. The initIterator() function doesn’t re-

quire any arguments and doesn’t return any value, as shown in the next code snippet.

TheinitIterator() is called by the displayAll() function that is defined

by the application to display the content of the hashtable. You’ll learn more about the

displayAll() function in the “Hashtable Using C++” section of this chapter.

When called, the initIterator() function assigns values to two data mem-

bers of the Hashtable class. The current_entry data member is assigned

NULL, and the current_index data member is assigned the value of the

tablesize data member.

Next, afor loop finds the first entry in the hashtable. During each loop, the current

element of the table array is compared to NULL. If the element is NULL, the search

continues to search for the element of the table array that isn’t NULL. The first ele-

ment that isn’t NULL is the first entry in the hashtable.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once the first entry is found, the value of the corresponding element of the table ar-

ray is assigned to the current_entry. This value is a reference to the metadata

structure that contains the key and value for that entry. The index of the element is then

assigned to the current_index data member. The initIterator() function

then returns.

TheinitIterator() function is used by thedisplayAll() function to de-

termine the first entry in the hashtable before thehasNext() andgetNextKey()
member functions are called. Both these functions directly access the current_
entry andcurrent_index data members of theHashtable class. These func-

tions are discussed in detail in the next section of this chapter.

void initIterator()
{

current_entry = NULL;
current_index = tablesize;
for(int i=0; i<tablesize; i++)
{

if(table[i] == NULL)
{

continue;
}
else
{

current_entry = table[i];
current_index = i;
break;

}
}

}

hasNext() and getNextKey()
An application iterates the hashtable by calling the hasNext() and

getNextKey() member functions. These two functions are used together with

initIterator() to retrieve all the keys from a hashtable. The hasNext()
function determines if there is another entry in the hashtable based on the current

state of the iterator. As illustrated next, the hasNext() function doesn’t require

any arguments and returns a Boolean true if another entry exists or a Boolean

false if the end of the hashtable is reached.

The hasNext() function makes this determination by comparing the value of the

current_entry data member to NULL. If the value of the current_entry is

234 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NULL, then thehasNext() function returns a Booleanfalse; otherwise, a Boolean

true is returned.

bool hasNext()
{

if(current_entry == NULL)
{

return false;
}
else
{

return true;
}

}

As you’ll recall from the “initIterator()” section, the current_entry and

current_index are data members of the Hashtable class. The current_
entry data member contains a reference to the current entry in the hashtable, and

thecurrent_index holds the index value of thetable array that references the

current entry.

The getNextKey() function retrieves the key of the entry pointed to by the

current_entry data member. The getNextKey() function then moves to

the next entry in the hashtable by first trying to go to the next element in the linked

list. If the next element is NULL, it moves to the next array index and iterates the ar-

ray to find the next entry.

The following code snippet is the definition of the getNextKey() function. In

it, the getNextKey() function requires one argument. The argument is a char

pointer to an array called key. The getNextKey() function copies the key of

the current entry to this array, which is then accessed by the statement that calls the

getNextKey() function.

Before the process begins, thegetNextKey() function determines if the value

of the current_entry is NULL. If so, a NULL character is assigned to the first

element of the key array (it sets key to an empty string), and the getNextKey()
returns without further processing.

If the value of the current_entry data member isn’t NULL, then the key of

the metadata structure that contains the current entry is copied to the key pointer by

calling the strcpy() function. Once copied, the getNextKey() function sets

out to locate the next entry. It does this by referencing the next member of the

metadata structure that contains the current entry.

The value of the next member is compared to NULL in an if statement. If the

next member isn’t NULL, indicating there is another entry in the linked list at this

index, the value of the next member is assigned to thecurrent_entry data mem-

ber, making the next entry the current entry of the hashtable.

CHAPTER 11 What Is a Hashtable? 235

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, if the value of the next member is NULL, then thegetNextKey() func-

tion steps through each element of the table array to find an array element whose

value isn’t NULL. When it finds one, thegetNextKey() function copies the value of

the array element to the current_entry data member and copies the index of that

array element to thecurrent_index data member. ThegetNextKey() function

then returns to the statement that called it.

If the remaining elements of the table array are NULL, there are no more entries in the

hashtable. The getNextKey() function then assigns a NULL value to the cur-
rent_entry and assigns the value of the tablesize data member to the cur-
rent_index data member. These keys and values are pulled from the hashtable in no

particular order; generally, hashtables do not support ordering of the data.

void getNextKey(char* key)
{

if(current_entry == NULL)
{

key[0] = '\0';
return;

}
strcpy(key, current_entry->key);
if(current_entry->next != NULL)
{

current_entry = current_entry->next;
}
else
{
for(int i=current_index+1; i<tablesize; i++)
{

if(table[i] == NULL)
{

continue;
}
current_entry = table[i];
current_index = i;
return;

}
current_entry = NULL;
current_index = tablesize;

}
}

236 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:00:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 What Is a Hashtable? 237

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

Hashtable Using C++
Now that you understand how the components of the Hashtable class work, it is

time to assemble them into a working C++ application. I organized the application

into three files: the HashtableDemo.cpp file that contains the application; the

HashTable.h file that contains the definitions of the metadata structure and the

Hashtable class, and theHashtable.cpp file that contains the implementation

of member functions. You’ll find all three files in the code at the end of this section.

In this section, we’ll focus on how to use the Hashtable class in an application.

You already learned how member functions and data members of the Hashtable
class work.

The application begins by declaring an instance of the Hashtable class and

assigning reference to it to the hashtable pointer. You then declare two char arrays

using the SIZE_KEY and SIZE_VALUEmacro defined to set the size of the array.

These arrays store strings that contain the key and the value of data that you’ll be

entering into the hashtable.

Next, the strcpy() function is called to copy the key and value to the key and

value arrays. Before you can insert these into the hashtable, you must first determine if

the key already exists in the hashtable by calling thecontains()member function

of the Hashtable class. The contains() member function returns a Boolean

true if the key already exists; otherwise, a Boolean false is returned. Notice the

not operator (!) reverses the logic of the return value. You do this to execute state-

ments contained within the if statement.

If the key doesn’t exist in the hashtable, then the application displays a message

on the screen telling that the key and value are being inserted. The actual insertion

occurs by calling the put() member function of the Hashtable class. The

put() function requires that the key and the value be passed as arguments.

This process is repeated in order to insert two additional key/value pairs into the

hashtable. Each of these is also displayed on the screen as shown here. Figure 11-5

illustrates the hashtable.

Adding node - key: 389 value: Mary
Adding node - key: 415 value: Henry
Adding node - key: 999 value: Joe

Once all three new entries have been inserted into the hashtable, the application

calls the displayAll() function. The displayAll() function is a stand-

alone function and not a member of theHashtable class. Its sole purpose is to dis-

play the content of the hashtable. ThedisplayAll() function is defined beneath

the main() function in this example.

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here’s what is displayed on the screen when this function is called:

Current nodes in hashtable:
key: 415 value: Henry
key: 999 value: Joe
key: 389 value: Mary

The application then calls the remove()member function of the Hashtable
class to remove the entry that has 415 as its key. Once again, the displayAll()
function is called to demonstrate that the entry was actually removed from the

hashtable.

After removing 415:

Current nodes in hashtable:
key: 999 value: Joe
key: 389 value: Mary

In its final step, the application destroys the hashtable by using thedelete oper-

ator. The destructor is automatically called before the hashtable is destroyed. The

destructor calls the removeAll() member function of the Hashtable class,

which displays each entry before removing them from the hashtable. Here’s what is

displayed on the screen when all the entries are removed:

Destroying hashtable:
Removing node - key:999 Joe
Removing node - key:389 Mary

//HashtableDemo.cpp
#include <iostream.h>

238 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

Figure 11-5 The hashtable created after the put() function is called for the last time

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

#include <time.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "Hashtable.h
void displayAll(Hashtable* hashtable);
void main()
{

Hashtable* hashtable = new Hashtable();
char key[SIZE_KEY];
char value[SIZE_VALUE];
strcpy(key, "389");
strcpy(value, "Mary");
if(!hashtable->contains(key))
{

cout << "Adding node - key: " << key << " value: "
<< value << endl;

hashtable->put(key, value)
}
strcpy(key, "415");
strcpy(value, "Henry");
if(!hashtable->contains(key))
{

cout << "Adding node - key: " << key << " value: "
<< value << endl;

hashtable->put(key, value);
}
strcpy(key, "999");
strcpy(value, "Joe");
if(!hashtable->contains(key))
{

cout << "Adding node - key: " << key << " value: "
<< value << endl;

hashtable->put(key, value);
}
displayAll(hashtable);
hashtable->remove("415");
cout << "After removing 415:" << endl;
displayAll(hashtable);
cout << "\nDestroying hashtable:" << endl;
delete hashtable;

}
void displayAll(Hashtable* hashtable)
{

CHAPTER 11 What Is a Hashtable? 239

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

char key[SIZE_KEY];
char value[SIZE_VALUE];
cout << "\nCurrent nodes in hashtable:" << endl;
hashtable->initIterator();
while(hashtable->hasNext())
{

hashtable->getNextKey(key);
hashtable->get(key, value);
cout << "key: " << key << "\tvalue: " << value << endl;

}
}

//HashTable.h
#include <string.h>
#define SIZE_KEY32
#define SIZE_VALUE256
#define DEFAULT_TABLESIZE101
typedef struct Metadata
{

struct Metadata(char* key, char* value)
{

strcpy(this->key, key);
strcpy(this->value, value);
next = NULL;

}
char key[SIZE_KEY];
char value[SIZE_VALUE];
struct Metadata* next;

} METADATA;
class Hashtable
{

private:
int tablesize;
METADATA** table;
int size;
long hashString(char* key);
METADATA* find(char* key);
METADATA* current_entry;
int current_index;

public:
Hashtable(int tablesize = DEFAULT_TABLESIZE);
virtual ~Hashtable();
bool put(char* key, char* value);

240 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bool get(char* key, char* value);
bool contains(char* key);
bool remove(char* key);
void removeAll();
int getSize();
void initIterator();
bool hasNext();
void getNextKey(char* key);

};

//Hashtable.cpp
#include <iostream.h>
#include <stdlib.h>
#include "HashTable.h"
Hashtable::Hashtable(int tablesize)
{

size = 0;
this->tablesize = tablesize;
table = new METADATA*[tablesize];
for(int i=0; i<tablesize; i++)
{

table[i] = NULL;
}

}
Hashtable::~Hashtable()
{

removeAll();
delete[] table;

}
bool Hashtable::put(char* key, char* value)
{

if(find(key) != NULL)
{

return false;
}
METADATA* entry = new METADATA(key, value);
int bucket = hashString(key);
entry->next = table[bucket];
table[bucket] = entry;
size++;
return true;

}
bool Hashtable::get(char* key, char* value)
{

CHAPTER 11 What Is a Hashtable? 241

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

METADATA* temp = find(key);
if(temp == NULL)
{

value[0] = '\0';
return false;

}
else
{

strcpy(value, temp->value);
return true;

}
}
bool Hashtable::contains(char* key)
{

if(find(key) == NULL)
{

return false;
}
else
{

return true;
}

}
bool Hashtable::remove(char* key)
{

int bucket = hashString(key);
METADATA* temp = table[bucket];
if(temp == NULL)
{

return false;
}
else if(strcmp(key, temp->key) == 0)
{

table[bucket] = temp->next;
delete temp;
size--;
return true;

}
else
{

METADATA* temp_next = temp->next;
while(temp_next != NULL)
{

if(strcmp(key, temp_next->key) == 0)

242 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
temp->next = temp_next->next;
delete temp_next;
size--;
return true;

}
temp = temp->next;
temp_next = temp_next->next;

}
}
return false;

}
void Hashtable::removeAll()
{

for(int i=0; i<tablesize; i++)
{

METADATA* temp = table[i];
while(temp != NULL)
{

METADATA* next = temp->next;
cout << "Removing node - key:" << temp->key <<

"\t" << temp->value << endl;
delete temp;
temp = next;

}
}
size = 0;

}
int Hashtable::getSize()
{

return size;
}
METADATA* Hashtable::find(char* key)
{

int bucket = hashString(key);
METADATA* temp = table[bucket];
while(temp != NULL)
{

if(strcmp(key, temp->key) == 0)
{

return temp;
}
temp = temp->next;

}

CHAPTER 11 What Is a Hashtable? 243

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return NULL;
}
long Hashtable::hashString(char* key)
{

int n = strlen(key);
long h = 0;
for(int i=0; i<n; i++)
{

h = (h << 2) + key[i];
}
return abs(h % tablesize);

}
void Hashtable::initIterator()
{

current_entry = NULL;
current_index = tablesize;
for(int i=0; i<tablesize; i++)
{

if(table[i] == NULL)
{

continue;
}
else
{

current_entry = table[i];
current_index = i;
break;

}
}

}
bool Hashtable::hasNext()
{

if(current_entry == NULL)
{

return false;
}
else
{

return true;
}

}
void Hashtable::getNextKey(char* key)
{

if(current_entry == NULL)

244 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 11 What Is a Hashtable? 245

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

{
key[0] = '\0';
return;

}
strcpy(key, current_entry->key);
if(current_entry->next != NULL)
{

current_entry = current_entry->next;
}
else
{
for(int i=current_index+1; i<tablesize; i++)
{

if(table[i] == NULL)
{

continue;
}
current_entry = table[i];
current_index = i;
return;

}
current_entry = NULL;
current_index = tablesize;

}
}

Hashtable Using Java
The Java version of the hashtable application is simpler than the C++ version because

the Java version defines theHashtable class in the Java Collection Classes that are

defined in the java.util package. The java.util package contains two classes that are de-

signed to work with hashtables: Hashtable and HashMap class. The primary dif-

ference between them is the way they work with thread access.

The Hashtable class is a synchronized class, which means instances of the

Hashtable class are safe to use for multiple thread access. TheHashMap class is

not synchronized and therefore is safe to use only when one thread uses an object.

You can think of a thread as a process that accesses an object. Multiple processes can

access an instance of the Hashtable class concurrently without any errors. How-

ever, a single process can access an instance of the HashMap class.

Let’s take a look a how to create a Java version of the C++ application that you

saw in the previous section of this chapter. The application is shown in the code at the

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

end of this section. Begin by declaring an instance of the Hashtable collections

class and assigning this instance to the reference called hashtable.

Next, declare two instances of the String class called key and value and assign

each the first key and value that will be inserted into the hashtable. Before entering

these into the hashtable, you must determine if the hashtable already contains the key.

You do this by calling the containsKey() member method of the Hashtable
class. This is the equivalent of thecontains()member function in the C++ version

of this application.

The application displays the key/value pair on the screen before calling the

put() member method of the Hashtable class to insert the key/value pair into

the hashtable. The put() method is the Java version of the put() member func-

tion that you built in the C++ application.

This process is repeated twice, resulting in three entries being placed into the

hashtable. Here’s what appears on the screen once all three key/values are in the

hashtable:

Adding node - key: 389 value: Mary
Adding node - key: 415 value: Henry
Adding node - key: 999 value: Joe

Next, the application retrieves the entry that has 415 as its key. It does this by call-

ing theget()member method of theHashtable class and passing it the key. The

get()method returns either the object containing the key/value or NULL. The re-

turn value is cast to a String object and assigned to the value’s string. If the value

doesn’t contain NULL, the application proceeds to display the value on the screen,

as shown here:

Retrieving a value out of the hashtable:
Found key: 999 value: Henry

The application then displays the size of the hashtable and all the entries contained in

the hashtable. The size of the hashtable is determined by calling the size()member

method of theHashtableclass. The size is displayed on the screen, as shown here:

Size of hashtable before removing nodes: 3

Entries are displayed by calling the displayEntries() method. The

displayEntries() method is a stand-alone method that is defined below

the main() method in the application.

The displayEntries() method works by creating a key set of keys con-

tained in the hashtable. As you’ll recall from your Java programming course, a set is

an object that contains a set of values that can be manipulated by an iterator. An

iterator is another class that has member methods to move up and down values in the

set and interact with those values.

246 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ThekeySet()member method of theHashtable class creates the set that con-

tains keys from the hashtable. Once the set is created, the displayEntries()
method creates an iterator. The hasNext() and next() member methods of the

iterator step through the set of keys.

First, the hasNext() method is called within the condition expression of the

while loop to determine if there is a next entry in the set. ThehasNext()method re-

turns a Booleantrue if there is another entry; otherwise, a Booleanfalse is returned.

If there is another entry, the application calls the next()method, which moves

to the next entry in the set and returns the key of that entry. The key is returned as an

object, so you need to convert the object to a string, which is assigned to the key

string. The key is passed to the get()method of the hashtable to retrieve the value

associated with the key. The get()method returns an object that must be cast to a

string so it can be assigned to the value string. Both the key and value are displayed

on the screen, as shown here.

Contents of the hashtable:
key: 415 value: Henry
key: 999 value: Joe
key: 389 value: Mary

Next, the application removes the entry that has 415 as its key by calling the re-
move()member method of the Hashtable class. After the entry is removed, the

application displays the size of the hashtable and the contents of the hashtable, as

shown here:

Removing an entry from the hashtable:

Size of hashtable after removing node: 2

Contents of the hashtable:
key: 999 value: Joe
key: 389 value: Mary

import java.lang.*;
import java.text.*;
import java.util.*;
public class HashtableExample
{

public static void main(String[] args)
{

Hashtable hashtable = new Hashtable();
String key;
String value;

CHAPTER 11 What Is a Hashtable? 247

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

key = "389";
value = "Mary";
if (!hashtable.containsKey(key))
{

System.out.println("Adding node - key: " + key +
" value: " + value);

hashtable.put(key, value);
}
key = "415";
value = "Henry";
if (!hashtable.containsKey(key))
{

System.out.println("Adding node - key: " + key +
" value: " + value);

hashtable.put(key, value);
}
key = "999";
value = "Joe";
if (!hashtable.containsKey(key))
{

System.out.println("Adding node - key: " + key +
" value: " + value);

hashtable.put(key, value);
}
System.out.println("\nRetrieving a value out of the

hashtable:");
value = (String)hashtable.get("415");
if(value != null)
{

System.out.println("Found key: " + key + " value:
" + value);

}
System.out.println("\nSize of hashtable before

removing nodes: " + hashtable.size());
System.out.println("\nContents of the hashtable:");
displayEntries(hashtable);
System.out.println("\nRemoving an entry from the

hashtable:");
hashtable.remove("415");
System.out.println("\nSize of hashtable after

removing node: " + hashtable.size());
System.out.println("\nContents of the hashtable:");
displayEntries(hashtable);

}

248 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

private static void displayEntries(Hashtable hashtable)
{

Set keys = hashtable.keySet();
Iterator ii = keys.iterator();
while(ii.hasNext())
{

String key = (String)ii.next();
String value = (String)hashtable.get(key);
System.out.println("key: " + key + "\tvalue: "

+ value);
}

}
}

Quiz
1. What is hashing?

2. Why is it necessary to hash?

3. What is a hashtable?

4. What is the result of hashing?

5. How is a key hashed?

6. Can a key entered by an application be directly compared to a key in

a hashtable?

7. What programming technique is used for hashing in all hashing functions?

8. Why are data members of the Hashtable class stored in the private

access specifier?

9. At what level is hashing performed?

10. Is there one hashing function used in all applications for hashing?

CHAPTER 11 What Is a Hashtable? 249

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 11

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 250

P:\010Comp\DeMYST\359-2\ch11.vp
Monday, February 02, 2004 3:01:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Final Exam

1. What is a numbering system?

2. What is the binary numbering system?

3. What is the purpose of an abstract data type?

4. What is a variable?

5. What is the integer abstract data type group?

6. What does the term “floating-point” mean?

7. What is a character?

8. What is the difference between single and double precision?

9. What is an instance of a structure?

10. What kind of data type is a structure?

11. How do you reference an element of an instance of a structure?

12. What are three major elements of every class definition?

13. What is the difference between a class definition and a structure definition?

14. What is the hexadecimal numbering system?

15. How do you assign an address to a pointer?

16. What value is stored in a pointer variable?

251

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix A

P:\010Comp\DeMYST\359-2\appa.vp
Monday, February 02, 2004 3:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

17. Why do you use pointer arithmetic?

18. What is a pointer-to-pointer variable?

19. What is an array of elements?

20. What is an index?

21. What is an array of pointers?

22. What is a multidimensional array?

23. What is the purpose of using a multidimensional array?

24. What is the relationship between a pointer and an array?

25. What is the relationship between a stack and an array?

26. What is the action called that places data on a stack?

27. What is the action called that removes data from a stack?

28. Using an array, how do you determine whether the stack is empty?

29. Using an array, how do you determine whether the stack is full?

30. What is a queue?

31. Where is data organized in a queue stored?

32. What does the term “circular queue” mean?

33. What is the modulus operator used for with respect to circular queues?

34. When would you implement a queue using a linked list instead of an array?

35. What is the action called that places data on a queue?

36. What is the action called that removes data from a queue?

37. What is a linked list?

38. What is an entry in a linked list called?

39. How are nodes linked together in a linked list?

40. What is a doubly linked list?

41. What is the purpose of a doubly linked list?

42. What is used to define a node of a linked list?

43. How do you delete an element from the middle of a linked list?

44. How do you delete a node from the front of a linked list?

45. How do you append a node onto a linked list?

46. How do you put a new node onto the front of the linked list?

47. What condition tells you the linked list is currently empty?

252 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix A

P:\010Comp\DeMYST\359-2\appa.vp
Monday, February 02, 2004 3:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

48. What condition tells you there’s only one node on the linked list?

49. What is the size limitation on a linked list?

50. What is the destructor typically used for in a linked list?

51. What is a hashtable?

52. What is the key used for in a hashtable?

53. What is hashing?

54. What is the result of hashing?

55. What is the significance of a hash value?

56. What major problem occurs with hashing?

57. How do you overcome the major problem that occurs with hashing?

58. Ideally, how should a hash function behave with respect to the values it

generates? If you feed in a list of keys, what would you expect for the output?

59. Many different hashing algorithms have been developed to provide a more even

distribution of hash values. What is the essence of the hashing algorithm—in

other words, what do these functions typically have in common?

60. With a hashtable, suppose your dataset gets unexpectedly large and you

have an excessive number of collisions. How could you deal with this?

61. How do you insert a node into a hashtable?

62. How do you delete a node from a hashtable?

63. How do you look up a value in a hashtable?

64. How do you list out all the values in a hashtable?

65. How would you check if a hashtable is empty?

66. What is a binary tree?

67. What is the purpose of a branch node in a binary tree?

68. What is the starting node of a binary tree called?

69. What is the node in a binary tree called that spawns another node?

70. What are nodes at the end of a binary tree called?

71. If you have 1,000 nodes in a balanced binary tree, approximately how many

comparisons do you need to do to find a particular node?

72. How is the maximum depth of a tree defined?

73. If a binary tree is well balanced, approximately how many nodes are in the

tree given the depth of the tree?

Final Exam 253

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix A

P:\010Comp\DeMYST\359-2\appa.vp
Monday, February 02, 2004 3:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

254 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix A

74. What condition do you check for to see if a node in a binary tree is a leaf node?

75. How do you delete a node from a binary tree that has two child nodes?

76. How do you delete a node from the binary tree that has one child node?

77. How do you delete a leaf node from a binary tree?

78. What is the basic rule for where the nodes get placed into a binary tree?

79. How do you insert a node into a binary tree?

80. How would you check if a binary tree is empty?

81. What is a recursive function?

82. When searching for a key in a binary tree, what stops the recursive

function calls?

83. What is the sequence of function calls to do an “in order” traversal of

a binary tree?

84. What is a pointer?

85. What is memory allocation?

86. What does the new operator return?

87. Does Java use pointers?

88. How do you declare an array of pointers?

89. How do you declare an array of pointers to pointers?

90. If an int pointer is incremented using pointer arithmetic, how many bytes

is the pointer incremented?

91. How is a binary tree’s depth defined?

92. What is a balanced binary tree?

93. Must all binary trees be balanced?

94. What is the purpose of a key in a binary tree?

95. What is metadata?

96. What is the purpose of the this operator?

97. What does a private access specifier do?

98. If next and previous are pointers to the next and previous nodes, then

what does this statement do?

node->next->previous = NULL;

99. What is fifo?

100. What is the purpose of a public access specifier?

P:\010Comp\DeMYST\359-2\appa.vp
Monday, February 02, 2004 3:02:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes
and Final Exam

Chapter 1
1. An abstract data type is a keyword of a programming language that specifies

the amount of memory needed to store data and the kind of data that will be

stored in that memory location.

2. An integer: byte, short, int, or long.

3. Each memory address represents 1 byte of memory. Some abstract data

types, such as an int, reserve 2 bytes of memory. Technically, data stored

in this memory location has two memory address: one address for the first

byte of memory and another address for the second byte of memory. How-

ever, the computer references only the address of the first byte of memory

when accessing that memory location.

4. The double abstract data type is used to store real numbers that are

very large or very small and require double the amount of memory that

is reserved with a float abstract data type.

255

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

5. Precision refers the accuracy of the decimal portion of a value.

6. Memory consists of a series of switches called transistors. Each transistor

stores a binary digit (bit). Transistors are logically organized into groups

of 8 switches called a byte. Each byte is uniquely identified by a memory

address.

7. A numbering system is a logical method used to count and perform arithmetic

using digits to represent items. Each numbering system has a different number

of digits. The decimal numbering systems has 10 digits, from 0 through 9.

The binary numbering systems has 2 digits, 0 and 1. All numbering systems

can be used to count and perform arithmetic, regardless of the number of

digits contained in the numbering system.

8. The binary numbering system is used in computing because it contains

2 digits that can be stored by changing the state of a transistor. Off

represents 0 and On represents 1.

9. A programmer doesn’t specify the exact number of bytes to reserve in

memory because the computer language determines the most efficient

number of bytes to represent a data type.

10. The sign takes up 1 bit of memory that could otherwise be used to represent

a value. For example, a byte has 8 bits, all of which can be used to store

an unsigned number from 0 to 255. You can store a signed number in the

range of –128 to +127.

Chapter 2
1. A user-defined data type is a group of primitive data types defined by the

programmer.

2. The size of a structure is the sum of the sizes of all the primitive data types

within the structure.

3. You use a structure to group together related data.

4. When you declare an instance of a structure, memory is reserved for all

the primitive data types defined within the structure.

5. You access parts of a structure by referring to the name of the instance

of the structure followed by the dot operator, which is then followed by

a primitive data type that is defined within the structure.

6. A pointer is a variable and can be used as an element of a structure and

as an attribute of a class in some programming languages such as C++, but

not Java. However, the contents of a pointer is a memory address of another

256 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

location of memory, which is usually the memory address of another variable,

element of a structure, or attribute of a class.

7. You use a pointer in a program in order to reduce the number of times data

is copied within memory.

8. A pointer to a pointer is a variable whose value is an address of another

pointer variable.

9. You use a pointer to a pointer in a program in order to arrange data without

having to move data in memory.

10. The address is shown on the screen if you display the content of a pointer

variable.

Chapter 3
1. The name of a variable references one memory location. The name of an

array references one or multiple memory locations when used in conjunction

with an index. If a programmer needs to access multiple variables, the

programmer must explicitly specify variable names within the program.

If a programmer needs to access multiple elements of array, the programmer

can use the array name followed by an index value within a for loop.

2. An array of pointers is an array whose elements store memory addresses

of variables or elements of another array.

3. You assign a memory address to an element of a pointer array by using the

address operator, which is the ampersand (&), in an assignment statement

such as

ptLetters[0] = &letters[2];

4. An array of pointers to pointers is an array whose elements can store a

memory address. This memory address is the memory address of either

a pointer variable or an element of a pointer array.

5. You assign a value to an element of an array of pointers to pointers by using

the address operator, as shown here. However, the value must be a memory

address of a pointer.

ptPtLetters[0] = & ptLetters[0];

6. You display the contents of the memory addresses stored in an element of

a pointer array by preceding the element with an asterisk, as shown here:

cout << * ptLetters[0] << endl;

Answers to Quizzes and Final Exam 257

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

258 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

7. You would use an array of pointers to pointers to reorder large amounts of

data stored in memory without having to move the data. Instead of moving

the data, you reorder reference to the data’s memory address.

8. An array is declared by specifying the data type, array name, and number

of elements contained in the array, as shown here:

char letters[3];

9. You display the contents of the memory addresses indirectly referenced in

an element of an array of pointers to pointers by preceding the array name

with two asterisks, as shown here:

cout << * ptPtLetters[0] << endl;

10. Elements of an array are stored sequentially in memory.

Chapter 4
1. A stack is the way you groups things together by placing one thing on top

of another and then removing them one at a time from the top of the stack.

2. The push() member method places a value onto the top of a stack.

3. The pop() member method removes the value from the top of a stack,

which is then returned by the pop() member method to the statement

that calls the pop() member method.

4. The isFull() member method determines if there is room for one more

value on the stack.

5. The isEmpty() member method determines if a value is at the top of the

stack and is called before an attempt is made to remove the value.

6. The value at the top attribute is an index.

7. The top attribute is initialized to –1 because when the attribute is incremented

by the push()member method, the new value of the top attribute is zero,

which is the index of the first element of the array used to create the stack.

8. The keyword private means that the attribute or member method is

accessible only by a member method. The instance of the class cannot

directly access a private member of the class.

9. The keyword public means that the attribute or member method is

accessible to member methods and from the instance of the class.

10. A constructor is a member method of a class that is called when an instance

of the class is declared. A destructor is a member method of a class that is

called when the instance of the class falls out of scope.

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes and Final Exam 259

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

Chapter 5
1. A queue is an organization of data where data is stored at the back of the queue

and removed from the front of the queue using the first in, first out method.

2. Data stored in a queue is actually stored in an array. The queue tracks which

array element is at the front of the queue and which array element is at the

back of the queue.

3. The index of the front and back of the queue is calculated by modulus

division. First, the value of either the front or back attribute is incremented

depending on whether you are calculating the index of the front of the queue

or the index of the back of the queue. The result is then divided by the size

of the queue using modulus division. The remainder is the index of the array

element that is either the front or the back of the queue, depending on which

you are calculating.

4. The enqueue process places data at the back of the queue.

5. The dequeue process removes data from the front of the queue.

6. The isFull() member method is called within the enqueue process

to determine if there is room to place another item in the queue.

7. The isEmpty() member method is called within the dequeue process

to determine if there is an item in the queue to be removed.

8. Removing data from the queue does not remove data from the underlying

array. The data remains in the array after the data is removed from the queue.

9. The default size of the queue prevents an error should the programmer

forget to pass the size of the queue to the constructor of the Queue class.

10. The destructor in the C++ version of this program removes the underlying

array from memory once the instance of the Queue class goes out of scope.

Java doesn’t have a destructor. Instead, Java has a garbage collector that

automatically removes the underlying array from memory some time after

the instance of the Queue class goes out of scope. Therefore, there is no

need to explicitly remove the array from memory in the Java version of

this program.

Chapter 6
1. A linked list is a data structure consisting of elements called nodes.

Each node points to the next and the previous node, thereby linking

nodes together to form a linked list.

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2. The benefit of using a linked list is to join together large amounts of data

and manipulate the data without having to rearrange data in memory.

3. A node is an element of a linked list.

4. A node has three elements. These are the current data and pointers to the

previous node and the next node on the linked list.

5. A linked list can grow and shrink in size dynamically at runtime, whereas

an array is set to a fixed size at compile time.

6. Yes, a node can reference more than one data element if the current data

element of the node is a pointer to a group of data such as an instance of

a class, a structure, or an array.

7. The add() method of the LinkedList class in Java requires that an

object be passed to it rather than a primitive data type. You must use a

Java wrapper class to create the object. The Java wrapper class contains

a primitive data type used to store data.

8. You can insert a node in the middle of a linked list by repointing the previous

and the next elements of existing nodes to the new node.

9. A doubly linked list is a linked list consisting of nodes that have both the

previous and next elements. This links the node to the previous node and

the next node.

10. A single linked list is a linked list consisting of nodes that have only

the next element and not the previous element. This links the node to

only the next node in the linked list. There is no way for the node to

reference the previous node in the linked list.

Chapter 7
1. A stack-linked list is a data structure that uses a linked list to create a stack.

2. A stack-linked list accesses data last in, first out; a linked list accesses data

first in, first out.

3. The benefit of using a stack-linked list is that the number of nodes on the

stack can increase or decrease as needed while the program runs.

4. The front of the stack in a stack-linked list is at the back of the linked list.

5. There can be a nearly unlimited number of nodes on a stack-linked list,

restricted only by the amount of available memory in the computer.

6. Yes, a node on a stack-linked list can have more than one data element,

which is also true of a node on a linked list.

260 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes and Final Exam 261

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

7. The StackLinkedList class inherits the LinkedList class because

the StackLinkedList class uses attributes and member functions of the

LinkedList class.

8. The constructor of the StackLinkedList class is empty because

the constructor of the LinkedList class is called when an instance

of the StackLinkedList class is declared. The constructor of the

LinkedList class initializes the node and attributes that are later used

by the StackLinkedList class.

9. The destructor of the StackLinkedList class is empty because the

destructor of the LinkedList class is called prior to the destructor of

the StackLinkedList class. This is because the LinkedList class

is inherited by the StackLinkedList class.

10. When you push a new node onto a stack, the new node is placed at the front

of the linked list.

Chapter 8
1. A queue linked list is a data structure that organizes data similar to a line in

the supermarket, where the first one in line is the first one out.

2. The size of a queue linked list can change during runtime. The size of an

array queue is set at compile time and cannot change at runtime.

3. A queue linked list can expand and shrink in size when an application runs,

depending on the needs of the application.

4. New nodes are added to the back of the queue.

5. The node at the front of the queue is removed when the dequeue()member

method is called.

6. Yes, a node on a queue linked list can have more than one data element if

you redefine the node structure to accommodate additional data.

7. First in, first out is the method used to access nodes on a queue.

8. The constructor of the QueueLinkedList class is empty because

initialization of data members of the LinkedList class is performed

by the constructor of the LinkedList class. The constructor of

the LinkedList class is called before the constructor of the

QueueLinkedList class is called.

9. The QueueLinkedList class inherits the LinkedList class because

the LinkedList class contains data members and function members

that are necessary to manage the linked list that is used for the queue.

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

10. When dequeue() is called, the value of the data member of the node at

the front of the queue is returned to the statement that called the dequeue()
member function. The front node is then deleted from memory and the next

node on the queue is designated the front of the queue.

Chapter 9
1. A linked list index is an integer that represents the position of a node

in a linked list.

2. The value of the first index is zero.

3. The removeNode() requires a reference to the node that is to be removed,

while the deleteNode() function requires the value of the data element

of the node that is being removed.

4. The return value of the findNode() function is the index position

of the node.

5. The insertNodeAt() function specifies the index of where to insert the

new node into the linked list. The appendNode() function appends the new

node to the list without requiring the programmer to specify where to place the

new node in the linked list.

6. Functions that use an index value always determine if the index passed to

them is valid before using the index value. If an invalid index is received,

the function terminates without further processing.

7. Yes, a linked list can store data other than integers. Integers were used in

this chapter as an example, but you can modify the data type of the data in

the definition of the node to change the kind of data stored in the linked list.

8. You use the getSize() function instead of having the application access

the size of the linked list directly to protect the data from inadvertently being

changed by the application. If the application needs to change the data, then

the appropriate function is called and the function changes the data.

9. Yes, the insertNodeAt() function can place a node at the front or back

of a linked list if you pass the appropriate index to this function.

10. You enhance the functionality of the LinkedList class to more easily

manipulate a linked list.

Chapter 10
1. A tree is a data structure where data is stored in nodes. Nodes are arranged

in branches where each node can expand into 0, 1, or 2 other nodes.

262 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2. A parent node is a node that branches into one or two other nodes, which

are called child nodes.

3. A key is a component of a node that identifies the node. An application

searches keys to locate a desired node. A value is also a component of

a node that is used to store data.

4. A root node is another term for a parent node.

5. The left child node has a key that is less than the key of its parent node. The

right child node has a key that is greater than the key of its parent node.

6. A leaf node is the last node on a branch and does not have any child nodes.

7. The depth of a tree is the number of levels of a tree.

8. The size of a tree is the number of nodes on the tree.

9. You calculate the size of a tree by using the following formula:

size ≈ 2
depth

If the depth is 5 levels, then the size is 32, as shown here:

32 ≈ 2
5

10. No, a tree cannot have a duplicate key.

Chapter 11
1. Hashing is the technique of scrambling bits of a key into a hash number.

2. Hashing assures that the format of keys is uniform and unique.

3. A hashtable is a table in which each entry consists of a hashed key and

a value; the hashed key retrieves entries.

4. Hashing results in a hash number that has no real significance beyond

it being used as the key for an entry.

5. A hash key is created by bit shifting a hashed value and then adding to

the value bits of a character of the key entered by the application.

6. No. A key entered by the application must be hashed before it can be

compared to a key in the hashtable.

7. Bit shifting is the common programming technique used for hashing in

all hashing functions.

8. Data members of the Hashtable class are stored in the private access

specifier to ensure the integrity of the data. Only member functions can

assign and retrieve values of these data members.

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

Answers to Quizzes and Final Exam 263

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. Hashing occurs at the bit level.

10. There isn’t one hashing function that’s used in all applications for hashing.

Developers test a wide variety of hashing functions before determining the

best to use on a particular dataset.

Final Exam
1. A numbering system is a way to count things and perform arithmetic.

2. The binary numbering system is a number system that uses two digits to

count things and perform arithmetic.

3. The purpose of an abstract data type is to specify the amount of memory

needed to store data and the kind of data that will be stored in that memory

location.

4. A variable is a reference to the memory location that you reserved using the

declaration statement.

5. The integer abstract data type group consists of four abstract data types used

to reserve memory to store whole numbers.

6. The term “floating-point” refers to the way in which decimals are refer-

enced in memory. There are two parts of a floating-point number. The first

part is the real number, which is stored as a whole number. The second part

is reference to the position of the decimal point within the whole number.

7. A character is represented as an integer value that corresponds to a character

set. A character set assigns an integer value to each character, punctuation,

and symbol used in a language.

8. Single precision refers to the accuracy of the first 7 numbers to the right

of the decimal point. Double precision refers to the accuracy of the first

15 numbers to the right of the decimal point.

9. A structure definition is like a cookie cutter in that it describes the shape

of something. A cookie cutter describes the shape of a cookie. A structure

definition describes the size and data type of a group of primitive data types.

You use a cookie cutter to make cookies. You use a structure to declare an

instance of the structure in memory.

10. A structure is a user-defined data type.

11. An element of an instance of a structure is referenced by using the dot

operator, such as myStudent.grade.

12. Keyword class, class name, and class body.

264 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

13. A class definition defines both data and methods/functions. A structure

definition defines only data.

14. The hexadecimal numbering system consists of 16 digits that are

represented as 0 through 9 and A through F.

15. An address of a variable is assigned to a pointer variable by using the

address operator (&).

16. A pointer variable stores the address of another memory location.

17. Pointers are used to step through memory sequentially by using pointer

arithmetic and the incremental (++) or decremental (− −) operator. The

incremental operator increases the value of a variable by 1 and the

decremental operator decreases the value of a variable by 1.

18. A pointer to a pointer is also a variable that contains a memory address

except a pointer to a pointer contains the memory address of another

pointer variable.

19. An array element is similar to one variable except it is identified by the

name of the array and an index value.

20. An index value is a number used to identify an array element.

21. An array of pointers is nearly identical to a pointer variable except each

array element contains a memory address.

22. A multidimensional array consists of two or more arrays defined by sets

of array elements. Each set of array elements is an array.

23. A multidimensional array is useful in some situations to organize subgroups

of data within an array.

24. There is a close-knit relationship between a pointer and an array. The array

name is like a pointer variable in that the array name by itself references the

address of first element of the array.

25. A stack and an array are two different things. An array stores values in memory.

A stack tracks which of the array elements is at the top of the stack.

26. Push is the action that places data on a stack.

27. Pop is the action that removes data from a stack.

28. The value of the top index is –1.

29. The value of the top index is equal to the number of elements in the array

minus 1.

30. A queue is a sequential organization of data. A queue is like the checkout

line at the supermarket where the first customer is at the front of the line

Answers to Quizzes and Final Exam 265

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

266 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

and the second customer is next in line, and so on, until you reach the last

customer who is at the back of the line.

31. Data organized in a queue is stored in an array or a linked list.

32. A circular queue is a queue implemented using an array. When the elements

at the end of the array are used up, you start over at the beginning so the

queue chases itself around in a circle.

33. The modulus operator can be used to make a linear pattern into a circular

pattern. When the last element is used up, the modulus operator will take

you back to the first element.

34. When you don’t know the number of nodes ahead of time. The linked list

implementation is only limited by the amount of memory on the machine.

35. Enqueue is the action that places data on a queue.

36. Dequeue is the action called that removes data from a queue.

37. A linked list is a data structure that makes it easy to rearrange data without

having to move data in memory.

38. An entry in a linked list is called a node.

39. Each member of a node points to the next node in the linked list.

40. A doubly linked list is a linked list where each member of a node points

to the previous node and to the next node in the linked list.

41. A doubly linked list is used to enable a program to move up and down

the linked list.

42. A structure definition is used to define a node of a linked list.

43. Declare a temporary pointer to the node being deleted. Change the next

pointer in the previous node to the value of the next pointer in the node

being deleted. Change the previous pointer in the next node to the value

of the previous pointer in the node being deleted. Delete the node.

44. Declare a temporary pointer to the front node. Change the value of the front

pointer to the next pointer in the node being deleted. Change the value of

the previous pointer in the next node to NULL. Use the temporary pointer

to delete the node.

45. Use the back pointer to get a reference to the last node on the linked list.

Change the value of the next pointer in the back node to the address of the

new node. Set the previous pointer of the new node to the current back node.

Change the back pointer to the address of the new node.

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Answers to Quizzes and Final Exam 267

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

46. Use the front pointer to get a reference to the first node on the linked list.

Change the value of the previous pointer in the front node to the address of

the new node. Set the next pointer of the new node to the current front node.

Change the front pointer to the address of the new node.

47. The front and back pointers are both NULL. You only need to check one

of them.

48. The front and back pointers both point to the same node.

49. The size is limited by the amount of memory on the machine.

50. The destructor typically releases all the memory that was allocated for the

linked list.

51. A hashtable is a common data structure used to store objects that have a key

value relationship.

52. A key is translated into a number that is used as the array index of the array

element that references the value that is associated with the key.

53. Hashing is the process of translating the key into the array index of the

array element that references the value that is associated with the key.

54. Hashing produces a hash value.

55. There is no real significance of a hash value other than it is a number used

as an array index.

56. Hashing is not perfect. Occasionally, a collision occurs when two different

keys hash into the same hash value and therefore are assigned to the same

array element.

57. A common way to deal with a collision is to create a linked list of entries

that have the same hash value.

58. In the most ideal case, the hash function should produce an even distribution

of values for a given set of keys. The result is a minimum number of collisions.

59. Hashing typically uses bit shifting to pseudo-randomize the generated

values. How could you deal with this?

60. You could make the hashtable array larger, then rehash all the keys and

insert them accordingly into the new hashtable.

61. Call the hashing algorithm with the key. Go to the array and see if the value

in the array index is NULL. If it is, then change this value to the address of

the new node. If the array index is not NULL, then set the next pointer in the

new node to the value at the array index and set the array index to the address

of the new node. This makes the new node the first entry in the linked list.

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

268 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

62. Call the hashing algorithm with the key. Go to that index in the array.

Traverse the linked list and find the value, and then delete this entry from

the linked list. The entry is deleted by setting the next pointer in the previous

node to the next pointer of the node being deleted.

63. Call the hashing algorithm with the key. Go to that array index and traverse

the linked list until you find that key. Return the associated value.

64. Iterate the array. At each index, if it contains a value other than NULL,

iterate the linked list and list out the values.

65. Iterate the hashtable array and see if all the values are NULL. If all the

values are NULL, the hashtable is empty.

66. A binary tree is a tree where each stem has not more than two branches

Typically the stem has two branches, but there can be situations when the

stem has one branch or simply terminates resulting in no additional branches.

67. The branch node is the fork in the road that links the root node to two

branches.

68. The starting node is called the root node, which is the top-level node

in the tree.

69. A parent node spawns another node in a binary tree.

70. Nodes at the end of a binary tree are called leaf nodes.

71. Ten. 2^10 ~= 1000.

72. The depth is the number of hops to get to the “lowest” node in the tree.

73. 2^n – 1 where n is the depth of the tree.

74. Both the child node pointers are set to NULL.

75. Replace the node being deleted with the leftmost child of the right subtree.

You could also replace it with the rightmost child of the left subtree.

76. Change the value of the pointer in the parent node to the value of the child

node, and then delete the node.

77. Change the value of the pointer in the parent node to NULL, and then delete

the node.

78. All the nodes to the right have a key greater than the current node and all

the nodes to the left have a key less than the current node. This rule applies

to each and every node of the tree.

79. Start at the root of the tree. If the key is greater than this node, move to

the right. If the key is less than this node, move to the left. Continue until

a NULL pointer is found, and then change the value of this pointer to the

address of the new node.

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

80. The tree is empty if the root node of the tree is NULL.

81. A recursive function is a function that calls itself.

82. One of two conditions—either the key is found or a NULL pointer is found.

83. For each node, look to the left, process the node, and then look to the right.

84. A pointer is a variable whose value is an address of a location in memory.

85. Memory allocation is the task of reserving memory in order to store data

in memory.

86. The new operator returns an address of memory.

87. It is a misnomer that Java doesn’t use pointers. Java does use pointers, but

a programmer doesn’t explicitly declare pointers. You can declare an array

whose data type is a Java Object—an array of pointers. The value of each

array element is an Object. When you switch those values to other array

elements, you are moving memory addresses and not the Object itself.

88. An array of pointers is declared by preceding the array name with an asterisk.

89. An array of pointers to pointers is declared by preceding the array name

with two asterisks.

90. An int pointer is incremented by the number of bytes of an int.

91. The number of nodes on the tree defines a binary tree’s depth.

92. A balanced binary tree is where each node except for a leaf node has two

children nodes.

93. No.

94. The key and the search criteria are compared to each other.

95. “Metadata” is the term that refers to data that describes other data such

as how an employee ID can be used to get the employee’s name.

96. The this operator tells the compiler that you want to refer to the data

element of this instance of the structure instead of the parameter that was

passed in.

97. Members defined within the private access specifier area of the class

definition can only be accessed by member functions of the class.

98. This statement assigns the NULL value to the next node’s previous pointer.

99. First in, first out.

100. Members defined within the public access specifier area of a class definition

can be accessed by member functions of the class and from outside the class.

Answers to Quizzes and Final Exam 269

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Appendix B

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 270

P:\010Comp\DeMYST\359-2\appb.vp
Monday, February 02, 2004 3:07:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

INDEX

-- (decremental operator), 27–28

& (address operator), 24, 37

* (pointer dereferencing operator), 23, 26

++ (incremental operator), 27–28

A
abstract data types, 5–6

groups, 6–11

and memory addresses, 12–13

See also data types

add(), 187–189

addNode(), 187–189

address operators, 37

addresses

assigning to pointers, 24

memory, 11–13

allocation of memory, 38

dynamic memory allocation, 39

answers

to final exam, 264–269

to quizzes, 255–264

appendNode(), 150

arrays

compared to variables, 35

and data structures, 35–38

declaring, 38–39

defined, 33–34

elements, 33

multidimensional, 40–44

names, 38

one-dimensional, 40

of pointers, 36–38

and pointers, 44–45

of pointers, 45–48

of pointers to pointers, 48–52

and queues, 79–80

queues using an array in C++, 83–88

queues using an array in Java, 89–91

vs. stacks, 56

B
binary digits, 3, 4

binary numbering system, 3, 4–5

binary trees

creating, 184–201

271

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Index

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2004 by The McGraw-Hill Companies. Click here for terms of use.

defined, 178

depth and size, 180–181

keys, 183–184

nodes, 179–180

parts of, 179–181

reasons to use, 178–179, 181–184

using C++, 201–212

using Java, 212–216

BinarySearchTree class, 185–186

constructors and destructors, 187

Boolean data type groups, 6, 11

buses, 2

byte abstract data type, 7

bytes, 3

C
C++

binary trees using, 201–212

creating a pop member in, 62–63

creating a push member in, 61–62

enhanced LinkedList class using,

164–172

hashtables using, 237–245

linked list queues using, 138–142

linked lists using, 105–109

queues using an array in, 83–88

StackLinked List using, 121–126

stacks in, 58–63, 67–72

cache memory, 2, 3

character data type groups, 6, 10–11

character sets, 10–11

classes

accessing members of, 21

BinarySearchTree class, 185–187

declaring instances of, 20–21

defining, 20

Hashtable class, 221–223

LinkedList, 98–99, 114–116

StackLinked List, 116–121

user-defined data types and, 19–20

wrapper, 143–144

constructors, 59

BinarySearchTree class, 187

hashtables, 223–224

LinkedList, 99–100

QueueLinkedList class, 133

StackLinked List, 117

contains(), 197–199, 228–229

containsNode(), 197–199

D
data structures, 96–97

and arrays, 35–38

elements of, 17

data types, 38

abstract, 5–11, 12–13

Java, 6

and pointers, 22–23

primitive, 16–17

user-defined, 16–19

declaration statements, 16

decremental operators, 27–28

deleteNode(), 151, 157–158

dequeue, 81–83, 85, 135–138

See also queues

dereferencing operators, 26

destroying linked lists, 104–105

destructors

BinarySearchTree class, 187

hashtables, 223–224

272 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

LinkedList, 99–100

QueueLinkedList class, 133

StackLinked List, 117

displayInOrder(), 199–200

double abstract data type, 10

E
enhanced LinkedList class, 150–164

using C++, 164–172

using Java, 173–175

enqueue, 80–81, 84–85, 134–135

See also queues

error-trapping, 68

exam, final, 251–254

answers, 264–269

See also quizzes

F
fifo. See first in, first out

final exam, 251–254

answers, 264–269

See also quizzes

find(), 224, 227–228

findNode(), 151, 158–159

first in, first out, 130

See also queues

float abstract data type, 9–10

floating-point data type groups, 6, 8–10

G
get(), 195–197, 225–227

getDepth(), 200–201

getNextKey(), 234–236

getNode(), 195–197

getSize(), 151, 164, 200–201, 232

getTreeDepth(), 200–201

H
hashString(), 225, 227, 232–233

hashtables

constructors and destructors, 223–224

defined, 217–219

developing, 220–236

Hashtable class, 221–223

inserting a new entry, 224–225

metadata, 221

problems with hashing, 219–220

removing an entry, 229–232

retrieving a value, 225–227

using C++, 237–245

using Java, 245–249

hasNext(), 234–236

hexadecimal numbering system, 12

I
incremental operators, 27–28

index value, 33

industrial strength, 67

initIterator(), 233–234

insertNodeAt(), 151, 159–163

int abstract data type, 8

integer data type groups, 6, 7–8

isEmpty(), 120–121, 135, 137

J
Java

binary trees using, 212–216

INDEX 273

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Index

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

creating a pop member method in,

66–67

creating a push member method in,

65–66

enhanced LinkedList class using,

173–175

hashtables using, 245–249

linked list queues using, 142–146

linked lists using, 109–112

queues using an array in, 89–91

StackLinked List using, 127–128

stacks in, 64–67, 72–75

use of pointers, 45

K
keys, 183–184

See also binary trees

L
linked list queues, 130–133

constructors and destructors, 133

dequeue, 135–138

enqueue, 134–135

using C++, 138–142

using Java, 142–146

linked lists, 94–95

appending nodes to, 100–101

classes, 98–99, 114–116

constructors and destructors, 99–100

destroying, 104–105

displaying, 101–103

enhanced LinkedList class, 150–175

functions, 121–124

header files, 121–124

queues, 130–146

single vs. double, 95, 97–98

StackLinked List class, 116–121

structure of, 96–105

transversing, 103–104

using C++, 105–109

using Java, 109–112

long abstract data type, 8, 9

M
main memory. See RAM

memory, 2–3

addresses, 11–13

allocation, 38

for attributes of a class, 21

data and, 3–5

dynamic memory allocation, 39

multidimensional arrays in, 41–42

reserving, 5–11

metadata, 221

moveLeftMostNode(), 192–194

multidimensional arrays, 40

assigning values to, 43

declaring, 42–43

in memory, 41–42

reasons to use, 40–41

referencing contents of, 43–44

See also arrays

N
nodes, 96, 114–115

appending to linked lists, 100–101

in a binary tree, 179–180

274 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

popping from a stacked-linked list,

118–120

pushing onto a stacked-linked list,

117–118

See also binary trees; linked lists

numbering system

binary, 3, 4–5

hexadecimal, 12

O
objects, declaring, 16–21

P
parent-child relationships, 180

peek(), 151, 163–164

persistent storage, 2, 3

pointers, 21–22

accessing data pointed to, 25–27

arithmetic, 27–29

and arrays, 44–45

arrays of, 36–38, 45–48

arrays of pointers to pointers, 48–52

assigning addresses to, 24

data types and, 22–23

declaring, 22

and Java, 45

pointer dereferencing operators, 26

to pointers, 29–30, 37, 48–52

popping, 58

creating a pop member in C++,

62–63

creating a pop member method in

Java, 66–67

nodes from a stacked-linked list,

118–120

See also pushing

precision, 9

primitive data types, 16–17

private access specifiers, 59

processNodesInOrder(), 199–200

public access specifiers, 59

pushing, 57

creating a push member in C++,

61–62

creating a push member method in

Java, 65–66

nodes onto a stacked-linked list,

117–118

See also popping

put(), 224

Q
queues, 130

arrays and, 79–80

constructors and destructors, 133

defined, 77–78

dequeue, 81–83, 85, 135–138

enqueue, 80–81, 84–85, 134–135

linked list, 130–146

simple vs. priority, 78

uses for, 78–79

using an array in C++, 83–88

using an array in Java, 89–91

quizzes

answers, 255–264

Chapter 1, 13

INDEX 275

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Index

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10, 216

Chapter 11, 249

Chapter 2, 31

Chapter 3, 53

Chapter 4, 75

Chapter 5, 91

Chapter 6, 112

Chapter 7, 128

Chapter 8, 147

Chapter 9, 176

See also final exam

R
RAM, 2

data and memory, 3–5

See also memory

random access memory. See RAM

real memory addresses, 12

real numbers, 8

referencing, 46–48

registers, 2

remove(), 190–194, 229–231

removeAll(), 194–195, 231–232

removeAllNodes(), 194–195

removeNode(), 150, 152–157, 190–194

removeNodeAt(), 150, 152–153,

156–157

removeRootNode(), 190–194

S
short abstract data type, 7–8

signed numbers, 7

single precision, 9

StackLinked List class, 116–121

application, 125–126

constructors and destructors, 117

functions, 121–124

header files, 121–125

source files, 124–125

using C++, 121–126

using Java, 127–128

stacks, 55, 56, 114

in C++, 58–63, 67–72

contents of, 56–58

determining if the stack is empty,

120–121

in Java, 64–67, 72–75

popping, 58, 62–63, 66–67

pushing, 57, 61–62, 65–66

storage, persistent, 2, 3

strcpy(), 184

structures, 96–97

and arrays, 35–38

elements of, 17

T
transistors, 3

transversing linked lists, 103–104

trees, 177–179

See also binary trees

276 Data Structures Demystified

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Chapter 1

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

U
unsigned integers, 7

unsigned numbers, 7

user-defined data types, 16–17

accessing elements of, 19

and classes, 19–20

declaring, 17–18

defining, 17

and memory, 18–19

V
variables, 6

compared to arrays, 35

declaring, 16–21

defined, 48

pointer, 48

virtual memory, 3

W
wrapper classes, 143–144

INDEX 277

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 / Index

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 278

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company
Australia Pty. Ltd.
TEL +61-2-9900-1800
FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)
McGraw-Hill Hellas
TEL +30-210-6560-990
TEL +30-210-6560-993
TEL +30-210-6560-994
FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores
S.A. de C.V.
TEL +525-1500-5108
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
carlos_ruiz@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580
FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN
McGraw-Hill/
Interamericana de España, S.A.U.
TEL +34-91-180-3000
FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
emea_queries@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne
TEL +1-510-420-7700
FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 279

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 280

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 281

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Demystified / Data Structures Demystified / Keogh & Davidson / 225359-2 /
blind folio 282

P:\010Comp\DeMYST\359-2\index.vp
Wednesday, February 04, 2004 10:23:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

	Terms of Use
	Want to learn more?
	About the Authors
	Contents at a Glance
	Contents
	Introduction
	Chapter 1 Memory, Abstract Data Types, and Addresses
	A Tour of Memory
	Data and Memory
	The Binary Numbering System

	Reserving Memory
	Abstract Data Type Groups

	Memory Addresses
	Real Memory Addresses
	Abstract Data Types and Memory Addresses

	Quiz

	Chapter 2 The Point About Variables and Pointers
	Declaring Variables and Objects
	Primitive Data Types and User-Defined Data Types
	User-Defined Data Type and Classes

	Pointers
	Declaring a Pointer
	Data Type and Pointers
	Assigning an Address to a Pointer
	Accessing Data Pointed to by a Pointer
	Pointer Arithmetic
	Pointers to Pointers

	Quiz

	Chapter 3 What Is an Array?
	An Array
	Why an Array?
	Arrays and Data Structures

	Declaring an Array
	Multidimensional Arrays
	Why Use a Multidimensional Array?
	Multidimensional Array in Memory
	Declaring a Multidimensional Array
	Assigning Values to a Multidimensional Array
	Referencing the Contents of a Multidimensional Array

	Pointers and Arrays
	An Array of Pointers
	An Array of Pointers to Pointers
	More on an Array of Pointers to Pointers
	Declaring and Using an Array of Pointers to Pointers
	Pointers to Pointers in Action

	Quiz

	Chapter 4 Stacks Using an Array
	A Stack
	Inside a Stack
	Push
	Pop

	Creating a Stack in C++
	Creating a Push Member Function in C++
	Creating a Pop Member Function in C++

	Creating a Stack in Java
	Creating a Push Member Method in Java
	Creating a Pop Member Method in Java

	Stack in Action Using C++
	Stack in Action Using Java
	Quiz

	Chapter 5 Queues Using an Array
	A Queue
	A Simple Queue vs. Priority Queue
	The Business of Queues
	The Array and the Queue
	Enqueue
	Dequeue

	Queues Using an Array in C++
	Queues Using an Array in Java
	Quiz

	Chapter 6 What Is a Linked List?
	A Linked List
	The Real World and Linked Lists

	The Structure of a Linked List
	Single Linked List vs. Doubly Linked List
	The Linked List Class
	LinkedList Constructor Destructor
	Appending a Node to a Linked List
	Display the Linked List
	Transverse the Linked List
	Destroying a Linked List

	Linked Lists Using C++
	Linked Lists Using Java
	Quiz

	Chapter 7 Stacks Using Linked Lists
	A Stack
	LinkedList Class
	The StackLinkedList Class
	StackLinkedList Constructor and Destructor
	Pushing a Node onto a Stack-Linked List
	Popping a Node from a Stack-Linked List
	Determine If the Stack Is Empty

	StackLinked List Using C++
	LinkedList Header File and LinkedList Functions
	StackLinkedList Header File and StackLinkedList Source File
	StackLinkedList Application

	StackLinked List Using Java
	Quiz

	Chapter 8 Queues Using Linked Lists
	A Queue
	The Linked List Queue
	Enqueue
	Dequeue

	Linked List Queue Using C++
	Linked List Queue Using Java
	Quiz

	Chapter 9 Stacks and Queues: Insert, Delete, Peek, Find
	The Enhanced LinkedList Class
	removeNode(), removeNodeAt(), and deleteRemove()
	removeNodeAt()
	deleteNode()
	findNode()
	insertNodeAt()
	peek()
	getSize()

	Enhanced LinkedList Class Using C++
	Enhanced LinkedList Class Using Java
	Quiz

	Chapter 10 What Is a Tree?
	A Tree
	Why Use a Binary Tree?

	Parts of a Binary Tree
	Depth and Size

	Why Use a Binary Tree?
	The Key

	Creating a Binary Tree
	Constructor and Destructor
	add() and addNode()
	remove(), removeNode(), and removeRootNode()
	removeAll() and removeAllNodes()
	get() and getNode()
	contains() and containsNode()
	displayInOrder() and processNodesInOrder()
	getSize(), getDepth(), and getTreeDepth()

	Binary Tree Using C++
	Binary Tree Using Java
	Quiz

	Chapter 11 What Is a Hashtable?
	A Hashtable
	Problems with Hashing

	Developing a Hashtable
	The Hashtable Class
	Constructor and Destructor
	Inserting a New Entry
	Retrieving a Value
	find()
	contains()
	Remove an Entry
	getSize()
	hashString()
	initIterator()
	hasNext() and getNextKey()

	Hashtable Using C++
	Hashtable Using Java
	Quiz

	Final Exam
	Answers to Quizzes and Final Exam
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Final Exam

	Index

	Chapter 1 Memory, Abstract Data Types, and Addresses:
	A Tour of Memory:
	Introduction:
	Data and Memory:
	The Binary Numbering System:
	Reserving Memory:
	Real Memory Addresses:
	Abstract Data Types and Memory Addresses:
	Memory Addresses:
	Chapter 2 The Point About Variables and Pointers:
	Declaring Variables and Objects:
	Primitive Data Types and User-Defined Data Types:
	User-Defined Data Type and Classes:
	Pointers:
	Declaring a Pointer:
	Data Type and Pointers:
	Assigning an Address to a Pointer:
	Accessing Data Pointed to by a Pointer:
	Pointer Arithmetic:
	Quiz:
	Abstract Data Type Groups:
	Chapter 3 What Is an Array?:
	Why an Array?:
	Pointers to Pointers:
	Declaring an Array:
	An Array:
	Why Use a Multidimensional Array?:
	Multidimensional Array in Memory:
	Assigning Values to a Multidimensional Array:
	Arrays and Data Structures:
	Referencing the Contents of a Multidimensional Array:
	Pointers and Arrays:
	An Array of Pointers:
	Multidimensional Arrays:
	An Array of Pointers to Pointers:
	More on an Array of Pointers to Pointers:
	Declaring and Using an Array of Pointers to Pointers:
	Pointers to Pointers in Action:
	Chapter 4 Stacks Using an Array:
	Declaring a Multidimensional Array:
	Inside a Stack:
	Pop:
	Push:
	Creating a Push Member Function in C++:
	Creating a Stack in C++:
	Creating a Push Member Method in Java:
	Creating a Pop Member Function in C++:
	Creating a Pop Member Method in Java:
	Stack in Action Using C++:
	Stack in Action Using Java:
	Chapter 5 Queues Using an Array:
	A Simple Queue vs:
	 Priority Queue:

	Creating a Stack in Java:
	The Business of Queues:
	The Array and the Queue:
	Queues Using an Array in C++:
	Queues Using An Array in Java:
	Chapter 6 What Is a Linked List?:
	A Linked List:
	The Real World and Linked Lists:
	The Structure of a Linked List:
	Single Linked List vs:
	 Doubly Linked List:

	LinkedList Constructor Destructor:
	Appending a Node to a Linked List:
	Display the Linked List:
	Transverse the Linked List:
	Destroying a Linked List:
	The Linked List Class:
	Linked Lists Using Java:
	Chapter 7 Stacks Using Linked Lists:
	A Stack:
	LinkedList Class:
	StackLinkedList Constructor and Destructor:
	Linked Lists Using C++:
	Popping a Node from a Stack-Linked List:
	Pushing a Node onto a Stack-Linked List:
	The StackLinkedList Class:
	LinkedList Header File and LinkedList Functions:
	StackLinkedList Header File and StackLinkedList Source File:
	Determine If the Stack Is Empty:
	StackLinkedList Application:
	StackLinked List Using Java:
	Chapter 8 Queues Using Linked Lists:
	A Queue:
	The Linked List Queue:
	StackLinked List Using C++:
	Enqueue:
	Dequeue:
	Linked List Queue Using C++:
	Linked List Queue Using Java:
	Chapter 9 Stacks and Queues: Insert, Delete, Peek, Find:
	The Enhanced LinkedList Class:
	removeNode(), removeNodeAt(), and deleteRemove():
	deleteNode():
	findNode():
	insertNodeAt():
	peek():
	removeNodeAt():
	Enhanced LinkedList Class Using Java:
	Chapter 10 What Is a Tree?:
	A Tree:
	Enhanced LinkedList Class Using C++:
	Parts of a Binary Tree:
	Why Use a Binary Tree?:
	Depth and Size:
	Creating a Binary Tree:
	add() and addNode():
	remove(), removeNode(), and removeRootNode():
	removeAll() and removeAllNodes():
	get() and getNode():
	contains() and containsNode():
	displayInOrder() and processNodesInOrder():
	getSize(), getDepth(), and getTreeDepth():
	Binary Tree Using C++:
	The Key:
	Chapter 11 What Is a Hashtable?:
	A Hashtable:
	Binary Tree Using Java:
	The Hashtable Class:
	Constructor and Destructor:
	Inserting a New Entry:
	Retrieving a Value:
	find():
	contains():
	Remove an Entry:
	getSize():
	hashString():
	initIterator():
	Problems with Hashing:
	hasNext() and getNextKey():
	Hashtable Using C++:
	Hashtable Using Java:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Developing a Hashtable:
	Chapter 2:
	Chapter 3:
	Chapter 4:
	Chapter 5:
	Chapter 6:
	Chapter 7:
	Chapter 10:
	Chapter 11:
	Chapter 1:
	Index:
	Chapter 8:
	Chapter 9:
	Copyright © 2004 by The McGraw-Hill Companies:
	 Click here for terms of use:

