Attack

Reverse

Engineering Binaries

Aditya K Sood aka OknOck

Difficulty
o0

he primary concern is to understand the
T flow of executing statements in a defini-

tive way so that reversing will be easy.
This is only possible if there are specific ways
to follow. The techniques will be practically
cited. This is undertaken as Real Time dissec-
tion of an executable. This article is designed
specifically to give hands-on experience in re-
versing a windows executable. We will reverse
engineer different binary structures to prove the
ingrained concepts. A number of tools will be
used in demonstrating a concept. Each single
technique is projected with use of a tool. This
helps the user in understanding the core con-
cepts and the usage of different tools.

The reversing of a binary basically revolves
around on three parameters. Time is a crucial
factor because targets have to be completed
in defined constraints of time. Resources are
important because it reflects the dependency
of a binary on other objects of system. The final
point is the Functionality of code. It encompass-
es the flow and direction of the statements. So
the overall approach is to walk along the trian-
gular edges for analysis. The practical analysis
of a binary is structured around the paradigm
shown below: see Figure 1.

hakin9 2/2008

www.hakin9.org/en

(This paper describes a Level 2 practical analysis of a window
binary. It covers the methodical approach to reverse engineer an
executable. The binary can be a console program or GUI based.
The point of this talk is to understand a hierarchical layout to
reverse an application within specific time limits.

All the versatility of an executable primarily
works on these benchmarks. The basic funda-
mental in reversing an executable is to check
the characteristics of that window executable.
We will examine a binary called afind.exe,
designed for proving reverse engineering con-
cepts. Through this a user will understand the
points to look for in a binary and type of tech-
nique to be applied.

e
What you will learn...

* The user will learn a practical way to dissect
executables

* New techniques of analyzing executables by
reversing the parameters

» Framing of reverse engineering as a process

» Hand held knowledge of active debugging and
disassembling

What you should know...

* The user should have basic skills of reverse
engineering

* Good understanding of Windows Executable

* Intermediate knowledge of debugging

Reverse Engineering Binaries

Facts Regarding Binaries:

The first fact regarding binaries
is the Association of Events. It
covers the executable behavior
of a binary. This is summed up
as the working effect on the
system. It is only possible if an
executable has an inter-facial
paradigm with the base system.
Due to this certain events oc-
curred in a system that changes
the state when a binary is ex-
ecuted. This process is termed
as Event Association.

The second fact comprises
of the Algorithmic view. This
means whether an executable
is using a certain algorithm or
its working is independent.
The term independent is used
because there are a number of
binaries that only use easy func-
tions with any interdependency
among code objects. This proc-
ess is called Scrutinizing Algo-
rithmic Flow. The algorithms
can be directly applicable or
multi-staged. The directly appli-
cable algorithms have directed
flow. This means the algorithm
functionality is totally driven in
a single pattern. On the other
side, multi-step working is un-
dertaken and cross referenced
checks are performed during
the implementation of an algo-
rithm.

The third fact relates to extracting
the overall information by looking
at the front end of a binary. This
process is termed as Front End
Checking. It is useful in analyzing
GUI-based programs and helps
the reverse engineer to under-
stand the working functionality on
front end objects. This technique
is general but very useful when
one is scratching any executable
on the system.

The fourth fact is summed up as
the compression of an executa-
ble. This means whether an .exe
file is compressed or packed
with the help of a packer. So it is
absolutely crucial to have infor-
mation on that packer. After that,

Resources

Functionality

Figure 1. Elements involved in the capture process

% Wise for Windows Installer 5.2 - Enterprise Edition - IManage Clustering Serviee £.5wsi

File FEdt Comporent Rume Largusom Took Reports Yiew Helo

b@d : ACLAEY R T T
S Foatues Diiapegms | [P viicons vaard
2 Procsct | [0 Tables "Dlangs | [ntaWelkcane Wizaid
a i "l B SotusPregres
12 [Patchielcoms \Wizare - SenpComphitaSicesss
@ PalchWelons e setuplntarrioted

@ SplotBitmap

@ Loemsadgreemert
OuD B pece

(@ DestinatienF older

(41 Adrminhiatnitl seation

4 CastemBetup

(3 Admin\wWecons

Irslalta/ el Weard
@ Instalweloore

(3 ReadyTalnstal

= LeorseAgroamert =]
DU S pace

& Deslinslur s

@ Cunenstun

= AdminNetvolLovation

& SelupCompleteEiror

___'___"'_""—‘-—-—.,___‘___‘__.___[:il_og’ and Installer Checks

Detailed Information of Various

141 GetupTyos
lo Adminwecone

[Setuninmaruiptsd

= Maintsnance Dialags
= |l Patohis/elooma \Wiaard
(9 Pachwetoms
(i EplasnBitmap
il Inatalusnineren
(% Custemerlnfo
@ Leorswhgimanrt

Inslalation Bxperl W8I Scrlpl

i eetocting Detals from the right-clide mer. P

The Itemne on he Olakbgs tb are & subset of the actions in MEL Sarigt, Dialoge we & type of Actan; MEL Bar gt shows all
actions, but the Dialogs tab shows onl the dalog actions, The Dialoas tab also organizes the dialoas sccarding t the
conditicns undsr which they appear. The Insall Olaings apoear durirg the initial Istallation of the appicaton. The
taintenance Qinlogs sppear when the senip pregram Ik opened after the application s Installec, The acirain Dialogs sppesr
whergver an adrmmnieranve inacllation & run.

On e Dlabge tab, you can edi: the leol, conterts, and beravior of dialogs. The Layout meru bacoees active, and a floating

nlhar appaare, FAch AOLIABE Yl With B Ak) AcH PEW FARIPAR T HIAIBGS, Brllt BYIte CmiTRie, AP AMGARIPS Yo
dlalog contant. You also can edt the propartiss of the dialoq isel by rignt-clicking the dialog name in e left pane and

Compile Tasl Drabug Run Dilirlbule

Figure 2. Wise in Action

PB PEID v0.93

File: |D:\tools\Achilles.exe

Entrypoint: |00007C40
File Offset: |D0007C40
Linker Info: |6.0

EP Section: [.text
First Bytes: |55,88,EC,6A
Subsystem: |Win32 GUI

7

.4’

Visual C++ 6.0

Microsoft Yisual C++ 6.0

| options | | about || Ext |

[V Stay ontop

Figure 3. Executable Achilles is Identified with PEI

www.hakin9.org/en

hakin9 2/2008

>><< Attack

the unpacking procedure should
be applied with help of a related
unpacker. This whole process of
leveraging packer information
and unpacking is called as Sani-
tizing Binary. It directly presents
the format of an executable prior
starting reverse engineering
process.

ware execution may be marginal-
ized. This is because the installer
is not able to decompress the files
in a right sequential manner there
by tempering the dependencies
of software. The installer check
is always performed by WISE en-
terprise edition. This software is
very reliable in analyzing the cross
functionality of objects that are pro-
viding software registration mech-
anism. When you analyze a MSI
file in WISE, there are number of
dialogs displayed comprising of
different functionality structure.
These dialogs include license
agreement, customer info etc. and
get displayed during installation
process. The WISE enables you
to circumvent the properties of dia-
logs to some extent and provides
control. This enables reverse engi-
neer to test the software installer.

So these four factors should be in
a mind of a Reverse Engineer while
performing Level 2 analysis.

The basic of reversing a binary
starts from analyzing MSI install-
ers. The installers are used when
number of binaries are packed col-
lectively which serves the software
installation process. It is impera-
tive to undertake the intricacies
of windows installer because if
the installer service is not properly
configured in the system, the soft-

O PEID v0.93

File: |D:\tools\DACLchk.exe

Entrypoint: |[0DDO33EF EP Section: |.text
File Offset: [000027EF First Bytes: [S5,8B,EC,6A | > |

Linker Info: [6.0

Subsystem: |Win32 console

| Microsoft Yisual C++ 6.0 [Debug]

[Multi Scan I | Task Uiewer' I Options I | About | | Exit I

The WISE provide recompilation
facility to remake the installer with
altered properties. Some installers
use CAB file, in that case a new
CAB file will be generated after
recompilation (Figure 2).

The above presented WISE lay-
out provides much information re-
garding an installer. All the dialogs
are arranged in a hierarchical way in
the form of tree. This representation
depicts the flow in which these dia-
logs are going to be executed. One
can easily interpret the properties
of any dialog. So control and time
constraint are marginal in a way
WISE provides functionality. One
can see Installer Version Wizard
entry above under which all major
installer modules are defined. The
reverse engineer can easily locate
the Installer function that provides
check. For Example, if a function
named as InstallApplication exists
one can get to it by looking at the
event related to it. The event pro-
vides functional specificity of that
dialog. Generally InstallApplication
takes parameter to true after the
registration check is performed.
The Reverse Engineer makes that
condition to true always by sup-
plying argument as 1. Afterwards,
the MSI file is recompiled and the

¥t eXeScope - D:\tools'\AFind.exe

File Edit Query View Help

Jv Stay ontop

>l

Figure 4. Executable DachIChk is Identified with PEID

7% PEID v0.93 I =101 x|

File: |D:\tools\aFind.exe

Entrypoint: [Eﬁﬁlzum EP Section: |.aspack
File Offset: [00006EOL First Bytes: [60,E8,03,00

Linker Info: |6.0 Subsystem: |Win32 console E]

v Packer

ﬁASPack 2.12 -» plexey Solodovnikov
T Mulki Scan | | Task Yiewer | | Options I |

sbout || Ext |

SE

[V stay on top

Figure 5. Target AFind.exe is Packed with ASPPack

hakin9 2/2008

www.hakin9.org/en

HMRZ aRED

[=I- Header
Exe Header
Coff Header
~— ptional Header
=} Section Header

= mport
kemel32.dll
user32.dll

Figure 6. Hierarchical View of
Headers

Reverse Engineering Binaries

% exesScope - D:\tools\AFind.exe condition is injected in it. It enables
e Pk ey ayensen the installer to find the condition
B 22| aA [) BT |) NoLogaing always true and without performing
£l Header iee e [iieais any extensive checks the software
Exe Header q
000001ED .test Section Name
Coff Header WOOHES DO it is installed. ThIS process is utilized
plional Header | DOOOOTEC OO0OTO00 RVA/Offset by the professionals a lot.
Secleon Header 000001F0 00005800 Size of Raw Data
L. 000001F4 00000400 Pointer to Fraw Data But one cannot be sure that
00000TFE 00000000 Peinter to Relacs :
00000TFC 0000000 Pointer to Line Numbers every software works on this pat-
00000200 0000 MNumber of Relocs i i _
00000202 0000 Number of Line Mumbers tern. T.hIS is termed tO be PRE
00000204 CO000040 Section Flags (Wiiteable, Readable, Initialized data) tempering of software installers. It
=Hmp .- .
kemel32.dl proves beneficial most of the time
uwerdzdl but cannot be implemented all the
time to various software. For that we
have to jum p to core of the software
instructions. In this the reader is go-

ing to encounter the cross checks of
Figure 7. Afind.exe is edited with Exescope registration.

[1] Analyzing The Curvature of
a Binary: This means gathering in-

EAResource Hacker - St G .-J.D.J.’El

File Edit View Action Hel . .
: seiidiitin formation regarding the curvature
#-(Z] Bitmap : i
& Icon Carmpile:Sotip of an executable. It comprises the
) =
0@ Menu language in which it is written and
) Dialo STRINGTABLE protection mechanism used in
=3 (String Table LANGUAGE LANG ENGLISH, SUBLANG ENGLISH US It is crucial to leverage informa-
=3 2502 :{wozn ikl tion based on this information. In
1 ar roxy \ . .
o il e eron 40021: relest Findaer this, a Reverse Engineer tries to
|5} . . .
‘; 0241 40022, "Stop Proxy" find the identity of an executable.
o e This technique is called PEID
’ erver ata indow
} Traversing. It provides information
L regarding:
» The language in which a specific
executable is constructed. It fur-
i l l] ther helps a reverse engineer
ine: | i % H
2 to understand the semantics of
Figure 8. Resource Hacker in Action language used and the required
inter-modular designing of func-
- “'D"“ oo K| tions, or the import and export
e View ugns Ophions. ndow . . .
= of various functions in modules.
KR I T 5 T !-lEIMITIWIHlCIfIKIBIRI~--ISI EE2| :
[@ CPU - main thicad. module WinPaln g _iolxi See Figure 3.
3 Text stiings referenced in WinPatio:. text _!
T LT O — 1 - 1 = Figure 3 depicts an executable that is
G4c0sNe, HOD § o, BBd164FC | RSC “Eicanup) g . p .
4e06CE P gadtedec {BSCIL GET mmf"'a}au.as--] written in Microsoft Visual C++. The
et By St (BEGHL roeR subsystem specified is Win 32 GUI
fao7es PUsh it g — (Graphical User Interface). So the
i d ns Seri . .
docdes s seazeaes™ ESELL MR base language is extracted easily.
LA n
400ag41 P 9a416cE9 EEIL racials No protection mechanism is used as
4203A2 PU! S24166F0 RECIL "HS Sanz Sexif
160330 PU 2416212 |REEIT »Rbo g | . .
42| PU @eal6 RSCIL "Tray Nessage” such in this.
EE| PU! 22416710 |BSCIIT "ApDlication Exit'™
420R28 | PUSH 231676 |BSEIY pUlaPatrolEx; oxe E
T TR TR + It provides the state of an ex-
ecutable. The state here cor-
responds to the Debug and
Release build of an executable.
This is very important from a re-
verse engineering point of view.
If an executable is found in De-

Figure 9. Traversing Referenced String bug state, then it is very easy to

www.hakin9.org/en hakin9 2/2008

Attack

reverse it and debugging can be
performed stringently (Figure
4).

Figure 4 presents a structural view
of an executable and showing it is
in Debug state. This means that the
build type is Debug and the sym-
bols are present in it. The state is
clearly mentioned. The subsystem
is shown as Console. A simple
debugging operation of this execut-
able in Olly Debugger easily dis-
sects it internally.

* It provides an overview of the
Packing Mechanism. There
is a great difference between
a protection mechanism of
a software and simple execut-
able. The main difference lies in
the packing of code. It is easy to
compress an already compiled
executable with a packer. The
packer obfuscates the code in
the data and stack segments
of an executable and makes it
hard to reverse. The ID check-
ing provides information on the

packing status and the kind of
packer used. A packer is de-
fined as a program that packs
an application code based on
certain algorithm. It is neces-
sary because unpacking of the
executable is required to re-
verse it further. If this process is
not implemented and unpacking
is not done then it becomes very
hard to disseminate the param-
eters of an executable. Let's see
how to look at the PEID of target
executable (Figure 5).

It shows that the executable is
packed with ASPack program. In
this way a Reverse Engineer is
able to find the relative statistics of
an executable which enhances the
analytical view. It encompasses the
properties of an executable.

[2] Structural Design of a Bi-
nary: This covers the checking of the
structural design of the binary that
is to be reverse engineered. The
understanding of binary structure is
necessary and how it is designed
(Figure 6).

The process is termed as PE
Editing. It is composed of reversing
a binary with an editor that dissects
it on the pattern of a Windows PE
executable. As a result of this, an
executable is disseminated into
required headers, section headers
and import /export functions. The
header object is divided into Exe
Headers, Coff Header, Optional
Header and Section Header.

Every single header consists of
requisite information of the binary.
An editor projects information of
a binary in a tree format which
is composed of various nodes
displaying different objects. The
Section Hader is divided into three
objects which are .text, .rdata and
.data. These objects hold unique
information related to the binary.
Various import modules depict
the kind of functions called from
system dynamic link libraries and
the cross referencing between
them. Let’s have a look at .text sec-
tional object and the information it
presents when the executable is
edited.

Listing 1. Import DLL Summary

Executable modules

Base Size Entry Name File version Path

00400000 0003C000 0040E753 Win Patro 9, 8, 1, 0 C:\Program Files\BillP Studios\Afindl\Afindl.exe
10000000 0000D000 100012BE PATROLPR 1.2.0.0

6BD00000 0000D000 6BD01A10 SYNCOR11 1.2.3 C:\WINNT\system32\SYNCOR11.DLL
759B0000 00006000 T59B1A6GA Lz32 5.00.2195.6611 C:\WINNT\system32\LZ32.DLL
77570000 00030000 77574164 WINMM 5.00.2161.1 C:\WINNT\system32\WINMM.d11l
77820000 00007000 77821334 VERSION 5.00.2195.6623 C:\WINNT\system32\VERSION.d11l
77A50000 000F7000 TTA52CE2 ole32 5.00.2195.6692 C:\WINNT\system32\ole32.d1ll
77B50000 00089000 77B56484 COMCTL32 5.81 C:\WINNT\system32\COMCTL32.d11l
77C70000 00042000 77CT798A5 SHLWAPI 5.00.3502.6601 C:\WINNT\system32\SHLWAPI.DLL
77D30000 00071000 77D34884 RPCRT4 5.00.2195.6701 C:\WINNT\system32\RPCRT4.DLL
77E10000 00065000 77E311C5 USER32 5.00.2195.6688 C:\WINNT\system32\USER32.DLL
77840000 0003C000 GDI32 5.00.2195.6660 C:\WINNT\system32\GDI32.DLL
77F80000 0007B000 ntdll 5.00.2195.6685 C:\WINNT\system32\ntdll.dll
782F0000 00248000 782F1FE9 SHELL32 5.00.3700.6705 C:\WINNT\system32\SHELL32.d11l
7C2D0000 00062000 7C2D17E4 ADVAPI32 5.00.2195.6710 C:\WINNT\system32\ADVAPI32.DLL
7C4E0000 000B9000 TC4ECES1 KERNEL32 5.00.2195.6688 C:\WINNT\system32\KERNEL32.DLL

Listing 2. Disassembled View

C:\Program Files\BillP Studios\Afind1\PATROLPRO.DLL

0040D6CF |. 68 EC644100 PUSH Afind.004164EC ASCII "GETREGNUMBER"
0040D6D4 |. 68 C0664100 PUSH Afind.004166C0 ASCII "Get Initial Values"
0040D6D9 |. E8 CE6FFFFF CALL Afind.004046AC
0040D6DE |. 6A 20 PUSH 20
0040D6E0 |. 68 E0A74100 PUSH Afind.0041A7E0
0040D6ES |. 68 304B4100 PUSH Afind.00414B30 ; ASCII "RegNumber"
0040D6EA |. 57 PUSH EDI
\\OO4OD6EB |. 68 02000080 PUSH 80000002

~

hakin9 2/2008

www.hakin9.org/en

Reverse Engineering Binaries

Figure 7 presents the informa-
tion extracted from the .text object.
It is comprised of the Relative Virtual
Address Offset, Relocation Pointers,
Section flags, etc. In this way editing
a binary is considered a good ap-
proach to reversing a binary.

[3] Hacking Binary Resources:
This technique comes in handy
when a Reverse Engineer is
analyzing a GUI based binary. As
we know, any GUI application is
compiled with a number of system

resources such as icons, menus,
drop boxes, bitmaps, string tables,
dialog boxes, etc. The resources
adhere to certain functions that are
called directly when the resource
is initialized. It depends on the
binary and the way it is written. It
is essential to edit a binary based
on the resources used in it. The
binary is reversed on the standard
benchmarks. The process is called
Stripping Binary Resources. In
this process the kind of resources

Plugins Options Window Help

41 2] _J_JEIJH_J__I_J__LJ_JJ

" Re glunb

\l Program entry point

Figure 10. Checking Function Callings

OllyDbg - safsriiot=skeugs [CPU - main thread. module
.F'Te View Debug Plugns Options Window Help

00403298
o . 8BEC |MOV EBP,ESP

. 81EC 0CO80000|SUEB ESP,80C

. 8D4§ FC LEA EAX,DWORD PTR SS: [EBP-4]
. 50 PUSH EAX

. 68 19000200 |PUSH 20019

. 6A 00 |PUSH O

. FF75 0OC PUSH DWORD PTR SS: [EBP+C)

. Ce85 F4FBFFFF MOV BYTE PTR S5: [EBP-40C],0
. FF75 0% |PUSH DWORD PTR S8: [EBP+8]

. C&85 F4F7FFFF MOV BYTE PTR SS:[EBP-80C],0
. FF1s
. B85C0
~75 31
. 8D45 F4

. 50

. 8D85 F4FBFFFF

| TEST EAX,BAX

JNZ SHORT WinPatro.O0403ZFE
|LEA BAX,DWORD BTR S§: [EBP-CI
PUSH EAX

| PUSH EAX

|LEA EAX,DWORD PTR SS: [EBP-8]
5 PUSH EAX

- 6A 00 PUSH O

. FE78 10 |PUSH DWORD PTR SS:(EBP+10]

. €745 F4 00040(MOV DWORD PTR $8: [EEP-C],400
. FF75 FC PUSH DWORD PTR SS: [EBP-4)

. 85C0

| TEST BAX, BAX

Bl x| »u| w3 21 o 5 vE|m[z|w[n]c|/]x[B[R].[s] E]E]2] |
ré 55 |PUSH EEP i

14404100 |CALL DWORD PTR DS: [<GADVAPI3Z.RegOpenKes

LEA EAX,DWORD PTR SE: [EBP-40C])

. FFlS 20404100 |CALL DWORD PTR DS: [<4ADVAPIZZ. RegQueryV:

hKey
LReglueryValueBxk

74 1B |JE SHORT WinPatro.00409310
. FF7?5 FC PUSH DWORD PTR £S5: [EBP-4] hKe
. FFlS5 00404100 CALL DWORD PTR DS: [<4ADVAPI3Z.RegCloseKs REgClQSeKey
> 68 36434100 |PUSH WinPatro.00414336) g2 = un
. FF75 14 | PUSH DWORD PTR SS: [EBP+14] [», ol FET 4
. FFLS F4404100|CALL DWORD PTR DE: [<GKERNEL3Z.lstrcpyhs|Llstrcpyd ¥CH 0
. 33C0 |XOR ERX,EAX
. C3 | LEAVE
. c3 | RETHN
> 837D F8 02 |CHMP DWORD PTR SS: [EBP-8],2
. 56 PUSH ESI
. 8B3% F4404100 MOV ESI,DWORD PTR DS: [<SKERNEL3Z.lstrcpj kernel3Z.lstrcpyd
REET |PUSH EDI
.75 4l |INZ SHORT WinPatro.OD40S3SF
. 8D85 F4FBFFFF | LEA EAX,DUORD PTR §S:[EBP-40C]
- 50 | PUSH EAX StringZ
. 8D85 F4F7FFFF | LEA EAX,DUORD PTR SS:[EBP-830C]
. 50 PUSH EAX Stringl
. FFDE CALL ESI lstrcpyd -
T T I S——
Program entry point lirPaused

Figure 11. Structural View of Disassembled View

used in the building of a binary is
extracted with the help of Resource
Hacker. This tool is flexible and
practically applicable in viewing
the resources used in a simulating
a binary as Figure 8 shows.

The resources are placed in a hi-
erarchy from top to bottom on the left
side. The string table node is opened
and it is projecting the information
regarding strings used in a binary.
These strings provide information
regarding the association with differ-
ent type of functions that are used by
a binary. Although this resource Han-
dling method is used in cracking cer-
tain executables or crack programs,
this technique is very flexible and is
one of the favorable approaches of
reverse engineers.

[4]1 Incorporating DLL check
Through Import Address Table: It is
also a very good practice of analyzing.
It enables a Reverse Engineer to look
at the Dynamic Link Libraries loaded
during execution of a binary. This
process is summarized to check any
specific DLL loaded in the memory
that affects the working of a binary.

Sometimes a manually designed
DLL is coded by the developers to
cross check the objects in a binary
for certain purposes. Thus, if any
added DLL is found it becomes easy
to dissect it. First, check the associ-
ated remote events. The import DLL
of the required software is summa-
rized in Listing 1.

This clearly indicates the import
address table of a different module
which is loaded during the time of ex-
ecution. No specific DLL other than
the system’s DLLs can be seen. This
step is crucial to traverse through the
DLL table.

[5] Traversing the Referenced
Strings: This is one of the finest
methods to search a specific module
in a binary by looking at the strings.
This process is termed as Trapping
Strings. These strings are passed to
the core instructions. Then, it comes
to an arduous task for the Reverse
Engineer — searching through the
whole code. This technique comes
in handy because a string reference
address is provided in a Debugger.

hakin9 2/2008

www.hakin9.org/en

Attack

00409298 /$
0040929C |.
0040929E |.
00409224 |.
00409227 |.
00409228 |.
0040922D |.
0040922AF |.
004092B2 |.
004092B9 |.
004092BC |.
004092c3 |.
004092c9 |.
004092CB |.
004092cD |.
00409200 |.
00409201 |.
004092D7 |.
004092D8 |.
004092DB |.
004092DC |.
004092DE |.
004092E1 |.
004092E8 |.
004092EB |.
004092F1 |.
004092F3 |.
004092F5 |.
004092F8 |.
004092FE |>
00409303 |.
00409306 |.
0040930C |.
0040930E |.
0040930F |.
00409310 |>
00409314 |.
00409315 |.
0040931B |.
0040931C |.
0040931E |.
00409324 |.
00409325 |.
00409328 |.
0040932Cc |.
0040932E |.
00409333 |.
00409334 |.
00409332 |.
0040933B |.
00409341 |.
00409342 |.
00409348 |.
00409342 |.
0040934C |.
00409352 |.

"Registry
00409357
00409358
0040935D
0040935E
0040935F
00409362

I
I
I
I
| >
I

Listing 3. Disassembled View of Registry Functions

55 PUSH EBP

8BEC MOV EBP,ESP

81EC 0C080000 SUB ESP,80C

8D45 FC LEA EAX,DWORD PTR SS:[EBP-4

50 PUSH EAX ; /pHandle

68 19000200 PUSH 20019 ; |Access = KEY READ
6A 00 PUSH 0 ; |Reserved = 0
FF75 0C PUSH DWORD PTR SS: [EBP+C] ; | Subkey

C685 F4FBFFFF >MOV BYTE PTR SS:[EBP-40C],0 ;

FF75 08 PUSH DWORD PTR SS: [EBP+8] ; | hKey

C685 FAFTFFFF >MOV BYTE PTR SS:[EBP-80C],0 ;o

FF15 14404100 CALL DWORD PTR DS: [<&ADVAPI32.RegOpenKey>; \RegOpenKeyExA
85C0 TEST EAX,EAX

75 31 JNZ SHORT Afind.004092FE

8D45 F4 LEA EAX,DWORD PTR SS:[EBP-C]

50 PUSH EAX ; /pBufSize

8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C] ;

50 PUSH EAX ; |Buffer

8D45 F8 LEA EARX,DWORD PTR SS:[EBP-8] ;

50 PUSH EAX ; |pValueType

6A 00 PUSH 0 ; |Reserved = NULL
FF75 10 PUSH DWORD PTR SS: [EBP+10] ; |ValueName
C745 F4 000400>MOV DWORD PTR SS:[EBP-C],400 ;

FF75 FC PUSH DWORD PTR SS: [EBP-4] ; |hKey

FF15 2C404100 CALL DWORD PTR DS: [<&ADVAPI32.RegQueryVa>; \RegQueryValueExA
85C0 TEST EAX,EAX

74 1B JE SHORT Afind.00409310

FF75 FC PUSH DWORD PTR SS: [EBP-4] ; /hKey

FF15 00404100 CALL DWORD PTR DS:[<&ADVAPI32.RegCloseKe>; \RegCloseKey
68 36434100 PUSH Afind.00414336 ; /String2 = ""

FF75 14 PUSH DWORD PTR SS: [EBP+14] ; |Stringl

FF15 F4404100 CALL DWORD PTR DS: [<&KERNEL32.lstrcpyA>] ; \lstrcpyA

33c0 XOR EAX,EAX

Cc9 LEAVE

C3 RETN

837D F8 02 CMP DWORD PTR SS:[EBP-8],2

56 PUSH ESIT

8B35 F4404100
57

75 41

8D85 F4FBFFFF
50

8D85 FAFTFFFF
50

FFD6

BF FF030000
57

8D85 FA4FBFFFF
50

8D85 FAFTFFFF
50

FF15 F0404100
3BC7

76 13

8D85 FAFTFFFF
68 105C4100

50
E8 4FB3FFFF
59
59

MOV ESI,DWORD PTR DS: [<&KERNEL32.lstrcpy>;
PUSH EDI

JNZ SHORT Afind.0040935F

LEA EAX,DWORD PTR SS:[EBP-40C]

PUSH EAX ;
LEA EAX,DWORD PTR SS:[EBP-80C] ;
PUSH EAX ;
CALL ESI ;
MOV EDI, 3FF

PUSH EDI ;
LEA EAX,DWORD PTR SS:[EBP-40C] ;
PUSH EAX ;
LEA EAX,DWORD PTR SS:[EBP-80C] ;
PUSH EAX ;

CALL DWORD PTR DS:[<&KERNEL32.ExpandEnvi>;
CMP EAX,EDI

JBE SHORT Afind.0040935F

LEA EAX,DWORD PTR SS:[EBP-80C]

KERNEL32.1lstrcpyA

/String2
|

|Stringl
\lstrcpyA

/DestSizeMax => 3FF
|

|DestString

|

|SrcString

(1023.)

\ExpandEnvironmentStringsA

PUSH Afind.00415C10 ; ASCII
Error #1023: String can not be expanded"

PUSH EAX

CALL Afind.004046AC

POP ECX

POP ECX

PUSH DWORD PTR SS: [EBP-4] ; /hKey

FF75 FC
FF15 00404100

CALL DWORD PTR DS:[<&ADVAPI32.RegCloseKe>;

\RegCloseKey

hakin9 2/2008

www.hakin9.org/en

Reverse Engineering Binaries

Thus, you can find the string related
to any operation and it is redirected
to the required code for further anal-
ysis (see Figure 9).

a N
Listing 4. Instructions to be manipulated

By incorporating this technique
large code analysis becomes easier.
In Figure 9 you can see that GE-
TREGNUMBER string is passed.

0040D71E |.
0040D721 |.

83C4 28 ADD ESP, 28
68 584B4100 PUSH Afind.00414B58 ; /String2
~ ngen
LEA EAX,DWORD PTR SS:[EBP-18] ;o
PUSH EAX ;
[Stringl
CALL ESI ;
\lstrcmpiA

0040D726 |. 8D45 E8
0040D729 |. 50

0040D72A |. FFD6

0040D72C 85C0 TEST EAX,EAX
0040D72E |. 75 09 JNZ SHORT Afind.0040D739

_ /

P [=] 3
=181

OllyDbg - MATASIENS - [CPU - main thread. module gkl
File View Debug FPlugins Options Window Help

Slex| vin] v+ Eu 4] vlemiT{win|c[/[k[B[R].-|5] =[F]?]

i4|] . 56 PUSH ESI a
. 8B35 F4404100 MOV ESI,DWORD PTR DS: [<GKERNEL3Z.lstrepy kernel32.lstrcpyhd

. 57 PUSH EDI

w78 dl JNZ SHORT +.0040935F

. 8D85 F4FBFFFF| LEA EAX,DUORD PTR 85: [RBP-40C]
. 50 PUSH BAaX [

. ©D85 F4F7FFFF LEAL EAX,DWORD PTR §S: [EBP-20C]

. 50 PUSH BAX

. FFDE CALL ESI

. EF FFO30000 MOV EDI,3FF

. 582 PUSH EDI Dest8izeMax =» 3FF {1023.) E

. ©D85 F4FBFFFF LEA EAX,DWORD PTR SS: [EBP-40C] I

. 50 PUSH EAX DestString P

. £D85 F4P7FFFR LEL EAX,DUORD PTR 8S: [BBP-80C] 2

. 50 PUSH BAX =

. FF15 F0404100 CALL DUORD PTR DS: [<GKERNEL3Z.ExpandEnvi LExpandEnvironnentStringsi 30

. 8BC7 CHP EAX,EDI 0
6513 JBE _SHORT 1™ DO040335E

. D85 F4F7FFFF LEA EAX,DVORD PTR $S: [EBP-80C] a0

. 68 105C4100 |PUSH ' 5.00415C10 ASCII "Registry Error $1023: |

. 50 PUSH EiX EFL

. E@ 4FB3FFFF | CALL .0040464C 3

. 59 POP ECX

. 59 POP ECX

PUSH DWORD PTR §5: [EBP-4) hRey

. FF15 00404100 CALL DWORD PTR DS: [<GADVAPI3Z.RegCloseK{LRegCloseKey

Address iHax danp !.\SCII I

Analysing WinPatro: 254 heuristical procedures, 686 calks to known, 381 calls to guessed functions

Stringl EST
lstrcpya EDI

SreString

¥
=y
!
-3
@0
]
a

Figure 12. Detail Lookup of Instructions

OllyDbg - SRS - [CPU - main thread. module S@EEINE

Fﬂe View Debug Plugins Options ‘“Window Help
Bl x| w0 s+ E1 A 4 L]E[m|T[w/H]c|/]K[B[R].. 5]
004 C|| . 8B3D F8404100 MOV EDI,DWORD PTR DS: [<SKERNEL3Z.lstrcat kernel3Z.lstrcath a
10 . EB 2E JHP SHORT "' ™-*- ~_004095AZ I
> FF75 0C rPUSH DWORD PTR SS: [EBP+C] StringZ
. FF?5 FC PUSH DWORD PTR S$5: [EBP-4) [3‘.‘.1‘1:.-;1
. FF15 BC414100 || CALL DWORD PTR DS: [<SKERNEL3Z.lstrcmpiillstroupild
. 85co TEST EAX, EAX
.74 16 JE SHORT © -+ 00409594
. FF75 FC PUSH DWORD PTR SS: [EBP-4)
. 8D85 FCF7FFFF || LEA EAX,DWORD PTR S$S: [EBP-204]
. 50 PUSH E&X
. FFD? CALL EDI {i
. 56 PUSH ESI
8D85 FCF7FFFF || LEA EAX,DWORD PTR SS: [EBP-804]
50 PUSH EAX
FFD7? CALL EDI
> 56 PUSH ESI
. 6A 00 PUSH O
Eg C3500000 CALL J040EEEE
> 85C0 TEST EAX,EAX
. 59 POP BCX
=458 POP ECX
8945 FC MOV DWORD PTR SS: [EBP-4] ,RAX
~75 C9 LJNZ SHORT 004039574 =
laarTr | :m
[ﬁnabsing WinPatro: 254 heuristical procedures, 686 calls to known, 381 calls to guessed functions r__ Paused

Figure 13. Strings View

www.hakin9.org/en

A reference address is provided with
respect to that. This address pro-
vides some information on the use
of this function in the defined code
of software. In this process specific
information is collected, as you can
see below:

Text strings referenced in Afind:
.text, item 641 Address=0040D6CF
Disassembly=PUSH afind.004164EC Text
string=ASCII "GETREGNUMBER"
Text strings referenced in Afind:
.text, item 642 Address=0040D6D4
Disassembly=PUSH afind.004166C0 Text
string=ASCII "Get Initial Values"
Text strings referenced in Afind:
.text, item 643 Address=0040D6E5 Dis
assembly=PUSHafind.00414B30 Text
string=ASCII "RegNumber"

The above mentioned strings are
used for code analysis related to
specific process only. Reviewing
whole code line by line is of no use to
a Reverse Engineer.

[6] Analyzing Code Flow in Bi-
naries: At this point, we have got
the structural design of the binary
that is a must-know about param-
eters. For better understanding of
the code simulation, it is important
to determine the code flow of a bi-
nary. In order to execute required
functios we need to execute the
instructions collected together. The
process of code flow analysis is crit-
ical from an analytical point of view.
The cross referenced functions are
analyzed. The CALL instruction, af-
ter the passing of strings, is used to
call the remote functions. This proc-
ess is shown in Figure 10.

We can see two call procedures
that are undertaken in Figure 10.
The first one is at address 00409298
and second call procedure is at
oo40car3. These are the calling ad-
dresses where the remote function
is defined. The inclusion of these
functions is directly referenced by
calling CALL procedure. To dig
deeper, a Reverse Engineer has to
traverse through these remote mod-
ules in order to analyze other codes.
It makes it easier to understand the
code flow and lets us look for other

hakin9 2/2008

)><(Attack

differential code structures. With-
out wasting any time, the Reverse
Engineer can jump to the required
address to see what is being called.
In Figure 11 the call at oo409298 is
made.

The module points to routine
presented in Figure 11. One can
look clearly at registry functions
that play a crucial part. The re-
quired code in this executable is
used for some kind of registration
process by the executable. The
registration process comprises
of passing user and registration
code. As soon as the strings are
passed to the registration argu-
ment, a procedure is defined and
strings are queried with the reg-
istry settings. The system’s APls
like RegOpenKey, RegQuery-
Value and RegCloseKey are used.
Once the string is passed through
a specified procedure, the strings
are compared through strcnp func-
tion. This is done to check whether
strings are processed in the cor-
rect manner or not. Our analysis
is defined on the basis that are
practically feasible.

It is time to look up the output in
detail as shown in Figure 12.

This layout is of some concern
because direct string compare
function is being used. Once the
strings are matched and there is
success the ExpandEnvironment-
Strings module is called and ex-
ecuted. It provides the information
on the environmental objects after
the string matching operation.

This code is one of the prime
points to test registration proc-
esses. It is one of the main code
section of a dissected binary. Other
remote functions will be related to
it. The Reverse Engineer further
traverses code and finds out what
is presented in Figure 13.

The code specified above holds
a routine after another string com-
parison. If strings are compared in
a well defined manner then JUMP
is allowed to make at the address
0040959a. The code flow analysis
is very helpful in determining the
working state of a binary.

hakin9 2/2008

[7] Byte Patching: It is a tech-
nique of changing the flow of
decisive instructions. In this, the
required byte is patched with ma-
nipulated arguments to completely
reverse the direction of execution.
It means when a single instruction
is used to check the condition of
authenticity of program, the action
can be reversed by tempering the
contents of registers. This plays a
crucial role in breaking the registra-
tion code of software. This process
is entirely applicable in CALL/JMP
instruction duo.

As we know, these specified
instructions are used to control
the flow of execution. A vernacular
change in instruction alters the state
of execution. This is considered to
be Flow Tempering and the last step
in reversing an application prior to

patching in full. The underlined three
factors have to be noticed first:

» Checking the protection on in-
staller

» Traversing
check

* Analyzing the algorithm specifi-
cally and the context in which itis
applied

the Registration

These factors are crucial for revers-
ing an application.

Let us put it into practice as
shown in Listing 2.

This is the code used to dissect
the functional calling of GETREG-
NUMBER string. During this analysis
the required code is presented (see
Listing 3).

This code shows the use of reg-
istry functions for querying some

e
Tools

OllyDbg

N

Olly Debugger is a user mode debugger. The beauty of Olly is that it appears to have
been designed from the ground up as a reversing tool, and as such it has a very
powerful built-in disassembler. OllyDbg’s greatest strength is in its disassembler,
which provides powerful code-analysis features. OllyDbg’s code analyzer can iden-
tify loops, switch blocks, and other key code structures. One of the most reliable
tools preference of any reverse engineer.

Fetch: http://www.ollydbg.de/

Resource Hacker
It is Resource hacking tool and it works on the concept of object hooking of . Res files.
It hooks all the objects present in the binary with properties. It enable the reverse en-
gineer to tamper the characteristics of an object. The another preferential part is the
recompiling function of this tool.

Fetch: http://angusj.com/resourcehacker/

PEID
PEID is a portable executable identifier tool. This tool provides the information regard-
ing the present structure of a binary.

Fetch: http.//www.peid.info/

WISE
It support advanced installation authoring in either Windows* Installer (.MSI) or
WiseScript formats. With exclusive features for development teams of any size,
Wise Installation Studio helps you create high-quality installations for complex
environments. It is also used as a reverse engineering tool for analyzing the Binary
Installer.

Fetch: http.//www.altiris.com/Products/WiselnstallStudio.aspx

EXESCOPE
eXeScope can analyze, display various information, and rewrite resources of execut-
able files, that is, EXE, DLL, OCX, etc. without source files.

Fetch: http://hp.vector.co.jp/authors/VA003525/emysoft. htm#6

Other tools you can find at http://exetools.com

www.hakin9.org/en

Reverse Engineering Binaries

~
On the 'Net
* http://www.openrce.org
* http://www.openrce.org/blog/browse/aditya_ks
* http://www.nynaeve.net/
* http://home.arcor.de/idapalace/— Index of IDAPalace
« http://www.exetools.com
About the Author
Aditya K Sood aka 0knOck is an independent security researcher and founder of
SecNiche Security, a security research arena. He is a regular speaker at confer-
ences like XCON, OWASP, CERT-IN etc. Other projects include Mlabs, CERA,
TrioSec etc.
Website: http://www.secniche.org

J

value. The register specific view
will let us understand the arguments
passed to various functions. The
prime aspect is to look after strcmp
functions and the return values. This
shows the flow control because the
return value is controlled with JMP/
CALL instruction to near and far
pointers that then points to certain
addresses (see Listing 4).

The the code in Listing 4 is ex-
tracted from the reversed view of the
software. The Reverse Engineer can
analyze the flow. TEST operation is
used followed by strcmp instruction.

Remember, one can encounter
a number of instructions like this
in a code. The testing can be per-
formed one by one to check the pro-
gram flow. This is called Debugging
Iteration. The reverser manipulates
the code as:

0040D72A |. FFD6 CALL ESI
P\
lstrcmpiA
0040D72C 85C0 XOR
EAX, EAX
0040D72E |. 75 09 JNZ SHORT

Afind.0040D739

or:

0040D72A |. FFD6 CALL ESI
\lstrcmpiA

0040D72C 85C0 TEST
EAX, EAX

0040D72E |. 75 09 JZ SHORT

Afind.0040D739

In the first layout the instruction
is changed with XOR operation
and the rest of code is to remain
the same. In the second part a
reverser does not temper the TEST
instruction but changes the JNZ
to JZ. Both the conditions totally
change the status of an application.
When these bytes are patched with
certain other modifications, the
executable is considered to be as
patched.

Above presented techniques are
helpful in examining a binary from
scratch.

Conclusion

It has been rightly stated To have
control of the system, you have
to capture the source. This ad-
age holds the reverse engineering
nature. Reverse engineering is all
about understanding the source of
an object and analyzing the working
behavior. The real taste of knowl-
edge about internals of any binary
executable lies in reverse engineer-
ing. This process not only helps in
knowing the hidden instances of
code but also the inter facial effect
with system. The motto is to learn
new techniques and the art of re-
verse engineering. The techniques
are useful when a time constraint is
subjected during analysis. To com-
plete targets in a required period
of time, a good layout of reverse
engineering procedure should be
implemented. ®

www.hakin9.org/en

hakin9 2/2008

