
www.hakin9.org/enhakin9 2/20082

Attack

The primary concern is to understand the
flow of executing statements in a defini-
tive way so that reversing will be easy.

This is only possible if there are specific ways
to follow. The techniques will be practically
cited. This is undertaken as Real Time dissec-
tion of an executable. This article is designed
specifically to give hands-on experience in re-
versing a windows executable. We will reverse
engineer different binary structures to prove the
ingrained concepts. A number of tools will be
used in demonstrating a concept. Each single
technique is projected with use of a tool. This
helps the user in understanding the core con-
cepts and the usage of different tools.

The reversing of a binary basically revolves
around on three parameters. Time is a crucial
factor because targets have to be completed
in defined constraints of time. Resources are
important because it reflects the dependency
of a binary on other objects of system. The final
point is the Functionality of code. It encompass-
es the flow and direction of the statements. So
the overall approach is to walk along the trian-
gular edges for analysis. The practical analysis
of a binary is structured around the paradigm
shown below: see Figure 1.

All the versatility of an executable primarily
works on these benchmarks. The basic funda-
mental in reversing an executable is to check
the characteristics of that window executable.
We will examine a binary called afind.exe,
designed for proving reverse engineering con-
cepts. Through this a user will understand the
points to look for in a binary and type of tech-
nique to be applied.

Reverse
Engineering Binaries

Aditya K Sood aka 0kn0ck

Difficulty

This paper describes a Level 2 practical analysis of a window
binary. It covers the methodical approach to reverse engineer an
executable. The binary can be a console program or GUI based.
The point of this talk is to understand a hierarchical layout to
reverse an application within specific time limits.

What you will learn...
• The user will learn a practical way to dissect

executables
• New techniques of analyzing executables by

reversing the parameters
• Framing of reverse engineering as a process
• Hand held knowledge of active debugging and

disassembling

What you should know...
• The user should have basic skills of reverse

engineering
• Good understanding of Windows Executable
• Intermediate knowledge of debugging

Reverse Engineering Binaries

3hakin9 2/2008www.hakin9.org/en

Facts Regarding Binaries:

• The first fact regarding binaries
is the Association of Events. It
covers the executable behavior
of a binary. This is summed up
as the working effect on the
system. It is only possible if an
executable has an inter-facial
paradigm with the base system.
Due to this certain events oc-
curred in a system that changes
the state when a binary is ex-
ecuted. This process is termed
as Event Association.

• The second fact comprises
of the Algorithmic view. This
means whether an executable
is using a certain algorithm or
its working is independent.
The term independent is used
because there are a number of
binaries that only use easy func-
tions with any interdependency
among code objects. This proc-
ess is called Scrutinizing Algo-
rithmic Flow. The algorithms
can be directly applicable or
multi-staged. The directly appli-
cable algorithms have directed
flow. This means the algorithm
functionality is totally driven in
a single pattern. On the other
side, multi-step working is un-
dertaken and cross referenced
checks are performed during
the implementation of an algo-
rithm.

• The third fact relates to extracting
the overall information by looking
at the front end of a binary. This
process is termed as Front End
Checking. It is useful in analyzing
GUI-based programs and helps
the reverse engineer to under-
stand the working functionality on
front end objects. This technique
is general but very useful when
one is scratching any executable
on the system.

• The fourth fact is summed up as
the compression of an executa-
ble. This means whether an .exe
file is compressed or packed
with the help of a packer. So it is
absolutely crucial to have infor-
mation on that packer. After that, Figure 3. Executable Achilles is Identified with PEI

Figure 2. Wise in Action

Figure 1. Elements involved in the capture process

Attack

4 hakin9 2/2008 www.hakin9.org/en

the unpacking procedure should
be applied with help of a related
unpacker. This whole process of
leveraging packer information
and unpacking is called as Sani-
tizing Binary. It directly presents
the format of an executable prior
starting reverse engineering
process.

So these four factors should be in
a mind of a Reverse Engineer while
performing Level 2 analysis.

The basic of reversing a binary
starts from analyzing MSI install-
ers. The installers are used when
number of binaries are packed col-
lectively which serves the software
installation process. It is impera-
tive to undertake the intricacies
of windows installer because if
the installer service is not properly
configured in the system, the soft-

ware execution may be marginal-
ized. This is because the installer
is not able to decompress the files
in a right sequential manner there
by tempering the dependencies
of software. The installer check
is always performed by WISE en-
terprise edition. This software is
very reliable in analyzing the cross
functionality of objects that are pro-
viding software registration mech-
anism. When you analyze a MSI
file in WISE, there are number of
dialogs displayed comprising of
different functionality structure.
These dialogs include license
agreement, customer info etc. and
get displayed during installation
process. The WISE enables you
to circumvent the properties of dia-
logs to some extent and provides
control. This enables reverse engi-
neer to test the software installer.

The WISE provide recompilation
facility to remake the installer with
altered properties. Some installers
use CAB file, in that case a new
CAB file will be generated after
recompilation (Figure 2).

The above presented WISE lay-
out provides much information re-
garding an installer. All the dialogs
are arranged in a hierarchical way in
the form of tree. This representation
depicts the flow in which these dia-
logs are going to be executed. One
can easily interpret the properties
of any dialog. So control and time
constraint are marginal in a way
WISE provides functionality. One
can see Installer Version Wizard
entry above under which all major
installer modules are defined. The
reverse engineer can easily locate
the Installer function that provides
check. For Example, if a function
named as InstallApplication exists
one can get to it by looking at the
event related to it. The event pro-
vides functional specificity of that
dialog. Generally InstallApplication
takes parameter to true after the
registration check is performed.
The Reverse Engineer makes that
condition to true always by sup-
plying argument as 1. Afterwards,
the MSI file is recompiled and the

Figure 6. Hierarchical View of
HeadersFigure 5. Target AFind.exe is Packed with ASPPack

Figure 4. Executable DachlChk is Identified with PEID

Reverse Engineering Binaries

5hakin9 2/2008www.hakin9.org/en

condition is injected in it. It enables
the installer to find the condition
always true and without performing
any extensive checks the software
is installed. This process is utilized
by the professionals a lot.

But one cannot be sure that
every software works on this pat-
tern. This is termed to be PRE-
tempering of software installers. It
proves beneficial most of the time
but cannot be implemented all the
time to various software. For that we
have to jum p to core of the software
instructions. In this the reader is go-
ing to encounter the cross checks of
registration.

[1] Analyzing The Curvature of
a Binary: This means gathering in-
formation regarding the curvature
of an executable. It comprises the
language in which it is written and
protection mechanism used in it.
It is crucial to leverage informa-
tion based on this information. In
this, a Reverse Engineer tries to
find the identity of an executable.
This technique is called PEID
Traversing. It provides information
regarding:

• The language in which a specific
executable is constructed. It fur-
ther helps a reverse engineer
to understand the semantics of
language used and the required
inter-modular designing of func-
tions, or the import and export
of various functions in modules.
See Figure 3.

Figure 3 depicts an executable that is
written in Microsoft Visual C++. The
subsystem specified is Win 32 GUI
(Graphical User Interface). So the
base language is extracted easily.
No protection mechanism is used as
such in this.

• It provides the state of an ex-
ecutable. The state here cor-
responds to the Debug and
Release build of an executable.
This is very important from a re-
verse engineering point of view.
If an executable is found in De-
bug state, then it is very easy to Figure 9. Traversing Referenced String

Figure 8. Resource Hacker in Action

Figure 7. Afind.exe is edited with Exescope

Attack

6 hakin9 2/2008 www.hakin9.org/en

reverse it and debugging can be
performed stringently (Figure
4).

Figure 4 presents a structural view
of an executable and showing it is
in Debug state. This means that the
build type is Debug and the sym-
bols are present in it. The state is
clearly mentioned. The subsystem
is shown as Console. A simple
debugging operation of this execut-
able in Olly Debugger easily dis-
sects it internally.

• It provides an overview of the
Packing Mechanism. There
is a great difference between
a protection mechanism of
a software and simple execut-
able. The main difference lies in
the packing of code. It is easy to
compress an already compiled
executable with a packer. The
packer obfuscates the code in
the data and stack segments
of an executable and makes it
hard to reverse. The ID check-
ing provides information on the

packing status and the kind of
packer used. A packer is de-
fined as a program that packs
an application code based on
certain algorithm. It is neces-
sary because unpacking of the
executable is required to re-
verse it further. If this process is
not implemented and unpacking
is not done then it becomes very
hard to disseminate the param-
eters of an executable. Let's see
how to look at the PEID of target
executable (Figure 5).

It shows that the executable is
packed with ASPack program. In
this way a Reverse Engineer is
able to find the relative statistics of
an executable which enhances the
analytical view. It encompasses the
properties of an executable.

[2] Structural Design of a Bi-
nary: This covers the checking of the
structural design of the binary that
is to be reverse engineered. The
understanding of binary structure is
necessary and how it is designed
(Figure 6).

The process is termed as PE
Editing. It is composed of reversing
a binary with an editor that dissects
it on the pattern of a Windows PE
executable. As a result of this, an
executable is disseminated into
required headers, section headers
and import /export functions. The
header object is divided into Exe
Headers, Coff Header, Optional
Header and Section Header.

Every single header consists of
requisite information of the binary.
An editor projects information of
a binary in a tree format which
is composed of various nodes
displaying different objects. The
Section Hader is divided into three
objects which are .text, .rdata and
.data. These objects hold unique
information related to the binary.
Various import modules depict
the kind of functions called from
system dynamic link libraries and
the cross referencing between
them. Let’s have a look at .text sec-
tional object and the information it
presents when the executable is
edited.

Listing 1. Import DLL Summary

Executable modules

Base Size Entry Name File version Path

00400000 0003C000 0040E753 Win Patro 9, 8, 1, 0 C:\Program Files\BillP Studios\Afindl\Afindl.exe

10000000 0000D000 100012BE PATROLPR 1.2.0.0 C:\Program Files\BillP Studios\Afindl\PATROLPRO.DLL

6BD00000 0000D000 6BD01A10 SYNCOR11 1.2.3 C:\WINNT\system32\SYNCOR11.DLL

759B0000 00006000 759B1A6A LZ32 5.00.2195.6611 C:\WINNT\system32\LZ32.DLL

77570000 00030000 77574164 WINMM 5.00.2161.1 C:\WINNT\system32\WINMM.dll

77820000 00007000 77821334 VERSION 5.00.2195.6623 C:\WINNT\system32\VERSION.dll

77A50000 000F7000 77A52CE2 ole32 5.00.2195.6692 C:\WINNT\system32\ole32.dll

77B50000 00089000 77B56484 COMCTL32 5.81 C:\WINNT\system32\COMCTL32.dll

77C70000 0004A000 77C798A5 SHLWAPI 5.00.3502.6601 C:\WINNT\system32\SHLWAPI.DLL

77D30000 00071000 77D34884 RPCRT4 5.00.2195.6701 C:\WINNT\system32\RPCRT4.DLL

77E10000 00065000 77E311C5 USER32 5.00.2195.6688 C:\WINNT\system32\USER32.DLL

77F40000 0003C000 GDI32 5.00.2195.6660 C:\WINNT\system32\GDI32.DLL

77F80000 0007B000 ntdll 5.00.2195.6685 C:\WINNT\system32\ntdll.dll

782F0000 00248000 782F1FE9 SHELL32 5.00.3700.6705 C:\WINNT\system32\SHELL32.dll

7C2D0000 00062000 7C2D17E4 ADVAPI32 5.00.2195.6710 C:\WINNT\system32\ADVAPI32.DLL

7C4E0000 000B9000 7C4ECE51 KERNEL32 5.00.2195.6688 C:\WINNT\system32\KERNEL32.DLL

Listing 2. Disassembled View

0040D6CF |. 68 EC644100 PUSH Afind.004164EC ; ASCII "GETREGNUMBER"

0040D6D4 |. 68 C0664100 PUSH Afind.004166C0 ; ASCII "Get Initial Values"

0040D6D9 |. E8 CE6FFFFF CALL Afind.004046AC

0040D6DE |. 6A 20 PUSH 20

0040D6E0 |. 68 E0A74100 PUSH Afind.0041A7E0

0040D6E5 |. 68 304B4100 PUSH Afind.00414B30 ; ASCII "RegNumber"

0040D6EA |. 57 PUSH EDI

0040D6EB |. 68 02000080 PUSH 80000002

Reverse Engineering Binaries

7hakin9 2/2008www.hakin9.org/en

Figure 7 presents the informa-
tion extracted from the .text object.
It is comprised of the Relative Virtual
Address Offset, Relocation Pointers,
Section flags, etc. In this way editing
a binary is considered a good ap-
proach to reversing a binary.

[3] Hacking Binary Resources:
This technique comes in handy
when a Reverse Engineer is
analyzing a GUI based binary. As
we know, any GUI application is
compiled with a number of system

resources such as icons, menus,
drop boxes, bitmaps, string tables,
dialog boxes, etc. The resources
adhere to certain functions that are
called directly when the resource
is initialized. It depends on the
binary and the way it is written. It
is essential to edit a binary based
on the resources used in it. The
binary is reversed on the standard
benchmarks. The process is called
Stripping Binary Resources. In
this process the kind of resources

used in the building of a binary is
extracted with the help of Resource
Hacker. This tool is flexible and
practically applicable in viewing
the resources used in a simulating
a binary as Figure 8 shows.

The resources are placed in a hi-
erarchy from top to bottom on the left
side. The string table node is opened
and it is projecting the information
regarding strings used in a binary.
These strings provide information
regarding the association with differ-
ent type of functions that are used by
a binary. Although this resource Han-
dling method is used in cracking cer-
tain executables or crack programs,
this technique is very flexible and is
one of the favorable approaches of
reverse engineers.

[4] Incorporating DLL check
Through Import Address Table: It is
also a very good practice of analyzing.
It enables a Reverse Engineer to look
at the Dynamic Link Libraries loaded
during execution of a binary. This
process is summarized to check any
specific DLL loaded in the memory
that affects the working of a binary.

Sometimes a manually designed
DLL is coded by the developers to
cross check the objects in a binary
for certain purposes. Thus, if any
added DLL is found it becomes easy
to dissect it. First, check the associ-
ated remote events. The import DLL
of the required software is summa-
rized in Listing 1.

This clearly indicates the import
address table of a different module
which is loaded during the time of ex-
ecution. No specific DLL other than
the system’s DLLs can be seen. This
step is crucial to traverse through the
DLL table.

[5] Traversing the Referenced
Strings: This is one of the finest
methods to search a specific module
in a binary by looking at the strings.
This process is termed as Trapping
Strings. These strings are passed to
the core instructions. Then, it comes
to an arduous task for the Reverse
Engineer – searching through the
whole code. This technique comes
in handy because a string reference
address is provided in a Debugger. Figure 11. Structural View of Disassembled View

Figure 10. Checking Function Callings

Attack

8 hakin9 2/2008 www.hakin9.org/en

Listing 3. Disassembled View of Registry Functions

0040929B /$ 55 PUSH EBP

0040929C |. 8BEC MOV EBP,ESP

0040929E |. 81EC 0C080000 SUB ESP,80C

004092A4 |. 8D45 FC LEA EAX,DWORD PTR SS:[EBP-4]

004092A7 |. 50 PUSH EAX ; /pHandle

004092A8 |. 68 19000200 PUSH 20019 ; |Access = KEY_READ

004092AD |. 6A 00 PUSH 0 ; |Reserved = 0

004092AF |. FF75 0C PUSH DWORD PTR SS:[EBP+C] ; |Subkey

004092B2 |. C685 F4FBFFFF >MOV BYTE PTR SS:[EBP-40C],0 ; |

004092B9 |. FF75 08 PUSH DWORD PTR SS:[EBP+8] ; |hKey

004092BC |. C685 F4F7FFFF >MOV BYTE PTR SS:[EBP-80C],0 ; |

004092C3 |. FF15 14404100 CALL DWORD PTR DS:[<&ADVAPI32.RegOpenKey>; \RegOpenKeyExA

004092C9 |. 85C0 TEST EAX,EAX

004092CB |. 75 31 JNZ SHORT Afind.004092FE
004092CD |. 8D45 F4 LEA EAX,DWORD PTR SS:[EBP-C]

004092D0 |. 50 PUSH EAX ; /pBufSize

004092D1 |. 8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C] ; |

004092D7 |. 50 PUSH EAX ; |Buffer

004092D8 |. 8D45 F8 LEA EAX,DWORD PTR SS:[EBP-8] ; |

004092DB |. 50 PUSH EAX ; |pValueType

004092DC |. 6A 00 PUSH 0 ; |Reserved = NULL

004092DE |. FF75 10 PUSH DWORD PTR SS:[EBP+10] ; |ValueName

004092E1 |. C745 F4 000400>MOV DWORD PTR SS:[EBP-C],400 ; |

004092E8 |. FF75 FC PUSH DWORD PTR SS:[EBP-4] ; |hKey

004092EB |. FF15 2C404100 CALL DWORD PTR DS:[<&ADVAPI32.RegQueryVa>; \RegQueryValueExA

004092F1 |. 85C0 TEST EAX,EAX

004092F3 |. 74 1B JE SHORT Afind.00409310
004092F5 |. FF75 FC PUSH DWORD PTR SS:[EBP-4] ; /hKey

004092F8 |. FF15 00404100 CALL DWORD PTR DS:[<&ADVAPI32.RegCloseKe>; \RegCloseKey

004092FE |> 68 36434100 PUSH Afind.00414336 ; /String2 = ""

00409303 |. FF75 14 PUSH DWORD PTR SS:[EBP+14] ; |String1

00409306 |. FF15 F4404100 CALL DWORD PTR DS:[<&KERNEL32.lstrcpyA>] ; \lstrcpyA

0040930C |. 33C0 XOR EAX,EAX

0040930E |. C9 LEAVE

0040930F |. C3 RETN

00409310 |> 837D F8 02 CMP DWORD PTR SS:[EBP-8],2

00409314 |. 56 PUSH ESI

00409315 |. 8B35 F4404100 MOV ESI,DWORD PTR DS:[<&KERNEL32.lstrcpy>; KERNEL32.lstrcpyA

0040931B |. 57 PUSH EDI

0040931C |. 75 41 JNZ SHORT Afind.0040935F
0040931E |. 8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C]

00409324 |. 50 PUSH EAX ; /String2

00409325 |. 8D85 F4F7FFFF LEA EAX,DWORD PTR SS:[EBP-80C] ; |

0040932B |. 50 PUSH EAX ; |String1

0040932C |. FFD6 CALL ESI ; \lstrcpyA

0040932E |. BF FF030000 MOV EDI,3FF

00409333 |. 57 PUSH EDI ; /DestSizeMax => 3FF (1023.)

00409334 |. 8D85 F4FBFFFF LEA EAX,DWORD PTR SS:[EBP-40C] ; |

0040933A |. 50 PUSH EAX ; |DestString

0040933B |. 8D85 F4F7FFFF LEA EAX,DWORD PTR SS:[EBP-80C] ; |

00409341 |. 50 PUSH EAX ; |SrcString

00409342 |. FF15 F0404100 CALL DWORD PTR DS:[<&KERNEL32.ExpandEnvi>; \ExpandEnvironmentStringsA

00409348 |. 3BC7 CMP EAX,EDI

0040934A |. 76 13 JBE SHORT Afind.0040935F
0040934C |. 8D85 F4F7FFFF LEA EAX,DWORD PTR SS:[EBP-80C]

00409352 |. 68 105C4100 PUSH Afind.00415C10 ; ASCII

 "Registry Error #1023: String can not be expanded"

00409357 |. 50 PUSH EAX

00409358 |. E8 4FB3FFFF CALL Afind.004046AC

0040935D |. 59 POP ECX

0040935E |. 59 POP ECX

0040935F |> FF75 FC PUSH DWORD PTR SS:[EBP-4] ; /hKey

00409362 |. FF15 00404100 CALL DWORD PTR DS:[<&ADVAPI32.RegCloseKe>; \RegCloseKey

Reverse Engineering Binaries

9hakin9 2/2008www.hakin9.org/en

Thus, you can find the string related
to any operation and it is redirected
to the required code for further anal-
ysis (see Figure 9).

By incorporating this technique
large code analysis becomes easier.
In Figure 9 you can see that GE-
TREGNUMBER string is passed.

A reference address is provided with
respect to that. This address pro-
vides some information on the use
of this function in the defined code
of software. In this process specific
information is collected, as you can
see below:

Text strings referenced in Afind:

 .text, item 641 Address=0040D6CF

 Disassembly=PUSH afind.004164EC Text

 string=ASCII "GETREGNUMBER"

Text strings referenced in Afind:

 .text, item 642 Address=0040D6D4

 Disassembly=PUSH afind.004166C0 Text

 string=ASCII "Get Initial Values"

Text strings referenced in Afind:

 .text, item 643 Address=0040D6E5 Dis

 assembly=PUSHafind.00414B30 Text

 string=ASCII "RegNumber"

The above mentioned strings are
used for code analysis related to
specific process only. Reviewing
whole code line by line is of no use to
a Reverse Engineer.

[6] Analyzing Code Flow in Bi-
naries: At this point, we have got
the structural design of the binary
that is a must-know about param-
eters. For better understanding of
the code simulation, it is important
to determine the code flow of a bi-
nary. In order to execute required
functios we need to execute the
instructions collected together. The
process of code flow analysis is crit-
ical from an analytical point of view.
The cross referenced functions are
analyzed. The CALL instruction, af-
ter the passing of strings, is used to
call the remote functions. This proc-
ess is shown in Figure 10.

We can see two call procedures
that are undertaken in Figure 10.
The first one is at address 0040929B
and second call procedure is at
0040CAF3. These are the calling ad-
dresses where the remote function
is defined. The inclusion of these
functions is directly referenced by
calling CALL procedure. To dig
deeper, a Reverse Engineer has to
traverse through these remote mod-
ules in order to analyze other codes.
It makes it easier to understand the
code flow and lets us look for other Figure 13. Strings View

Figure 12. Detail Lookup of Instructions

Listing 4. Instructions to be manipulated

0040D71E |. 83C4 28 ADD ESP,28

0040D721 |. 68 584B4100 PUSH Afind.00414B58 ; /String2

= "de"

0040D726 |. 8D45 E8 LEA EAX,DWORD PTR SS:[EBP-18] ; |

0040D729 |. 50 PUSH EAX ;

|String1

0040D72A |. FFD6 CALL ESI ;

\lstrcmpiA

0040D72C 85C0 TEST EAX,EAX

0040D72E |. 75 09 JNZ SHORT Afind.0040D739

Attack

10 hakin9 2/2008 www.hakin9.org/en

differential code structures. With-
out wasting any time, the Reverse
Engineer can jump to the required
address to see what is being called.
In Figure 11 the call at 0040929B is
made.

The module points to routine
presented in Figure 11. One can
look clearly at registry functions
that play a crucial part. The re-
quired code in this executable is
used for some kind of registration
process by the executable. The
registration process comprises
of passing user and registration
code. As soon as the strings are
passed to the registration argu-
ment, a procedure is defined and
strings are queried with the reg-
istry settings. The system’s APIs
like RegOpenKey, RegQuery-
Value and RegCloseKey are used.
Once the string is passed through
a specified procedure, the strings
are compared through strcmp func-
tion. This is done to check whether
strings are processed in the cor-
rect manner or not. Our analysis
is defined on the basis that are
practically feasible.

It is time to look up the output in
detail as shown in Figure 12.

This layout is of some concern
because direct string compare
function is being used. Once the
strings are matched and there is
success the ExpandEnvironment-
Strings module is called and ex-
ecuted. It provides the information
on the environmental objects after
the string matching operation.

This code is one of the prime
points to test registration proc-
esses. It is one of the main code
section of a dissected binary. Other
remote functions will be related to
it. The Reverse Engineer further
traverses code and finds out what
is presented in Figure 13.

The code specified above holds
a routine after another string com-
parison. If strings are compared in
a well defined manner then JUMP
is allowed to make at the address
0040959A. The code flow analysis
is very helpful in determining the
working state of a binary.

[7] Byte Patching: It is a tech-
nique of changing the flow of
decisive instructions. In this, the
required byte is patched with ma-
nipulated arguments to completely
reverse the direction of execution.
It means when a single instruction
is used to check the condition of
authenticity of program, the action
can be reversed by tempering the
contents of registers. This plays a
crucial role in breaking the registra-
tion code of software. This process
is entirely applicable in CALL/JMP
instruction duo.

As we know, these specified
instructions are used to control
the flow of execution. A vernacular
change in instruction alters the state
of execution. This is considered to
be Flow Tempering and the last step
in reversing an application prior to

patching in full. The underlined three
factors have to be noticed first:

• Checking the protection on in-
staller

• Traversing the Registration
check

• Analyzing the algorithm specifi-
cally and the context in which it is
applied

These factors are crucial for revers-
ing an application.

Let us put it into practice as
shown in Listing 2.

This is the code used to dissect
the functional calling of GETREG-
NUMBER string. During this analysis
the required code is presented (see
Listing 3).

This code shows the use of reg-
istry functions for querying some

Tools
OllyDbg
Olly Debugger is a user mode debugger. The beauty of Olly is that it appears to have
been designed from the ground up as a reversing tool, and as such it has a very
powerful built-in disassembler. OllyDbg’s greatest strength is in its disassembler,
which provides powerful code-analysis features. OllyDbg’s code analyzer can iden-
tify loops, switch blocks, and other key code structures. One of the most reliable
tools preference of any reverse engineer.

Fetch: http://www.ollydbg.de/

Resource Hacker
It is Resource hacking tool and it works on the concept of object hooking of .Res files.
It hooks all the objects present in the binary with properties. It enable the reverse en-
gineer to tamper the characteristics of an object. The another preferential part is the
recompiling function of this tool.

Fetch: http://angusj.com/resourcehacker/

PEID
PEID is a portable executable identifier tool. This tool provides the information regard-
ing the present structure of a binary.

Fetch: http://www.peid.info/

WISE
It support advanced installation authoring in either Windows* Installer (.MSI) or
WiseScript formats. With exclusive features for development teams of any size,
Wise Installation Studio helps you create high-quality installations for complex
environments. It is also used as a reverse engineering tool for analyzing the Binary
Installer.

Fetch: http://www.altiris.com/Products/WiseInstallStudio.aspx

EXESCOPE
eXeScope can analyze, display various information, and rewrite resources of execut-
able files, that is, EXE, DLL, OCX, etc. without source files.

Fetch: http://hp.vector.co.jp/authors/VA003525/emysoft.htm#6

Other tools you can find at http://exetools.com

Reverse Engineering Binaries

11hakin9 2/2008www.hakin9.org/en

value. The register specific view
will let us understand the arguments
passed to various functions. The
prime aspect is to look after strcmp
functions and the return values. This
shows the flow control because the
return value is controlled with JMP/
CALL instruction to near and far
pointers that then points to certain
addresses (see Listing 4).

The the code in Listing 4 is ex-
tracted from the reversed view of the
software. The Reverse Engineer can
analyze the flow. TEST operation is
used followed by strcmp instruction.

Remember, one can encounter
a number of instructions like this
in a code. The testing can be per-
formed one by one to check the pro-
gram flow. This is called Debugging
Iteration. The reverser manipulates
the code as:

0040D72A |. FFD6 CALL ESI

 ; \

lstrcmpiA

0040D72C 85C0 XOR

 EAX,EAX

0040D72E |. 75 09 JNZ SHORT

 Afind.0040D739

or:

0040D72A |. FFD6 CALL ESI

 ;

 \lstrcmpiA

0040D72C 85C0 TEST

 EAX,EAX

0040D72E |. 75 09 JZ SHORT

Afind.0040D739

In the first layout the instruction
is changed with XOR operation
and the rest of code is to remain
the same. In the second part a
reverser does not temper the TEST
instruction but changes the JNZ
to JZ. Both the conditions totally
change the status of an application.
When these bytes are patched with
certain other modifications, the
executable is considered to be as
patched.

Above presented techniques are
helpful in examining a binary from
scratch.

Conclusion
It has been rightly stated To have
control of the system, you have
to capture the source. This ad-
age holds the reverse engineering
nature. Reverse engineering is all
about understanding the source of
an object and analyzing the working
behavior. The real taste of knowl-
edge about internals of any binary
executable lies in reverse engineer-
ing. This process not only helps in
knowing the hidden instances of
code but also the inter facial effect
with system. The motto is to learn
new techniques and the art of re-
verse engineering. The techniques
are useful when a time constraint is
subjected during analysis. To com-
plete targets in a required period
of time, a good layout of reverse
engineering procedure should be
implemented. l

About the Author
Aditya K Sood aka 0kn0ck is an independent security researcher and founder of
SecNiche Security, a security research arena. He is a regular speaker at confer-
ences like XCON, OWASP, CERT-IN etc. Other projects include Mlabs, CERA,
TrioSec etc.
Website: http://www.secniche.org

On the 'Net
• http://www.openrce.org
• http://www.openrce.org/blog/browse/aditya_ks
• http://www.nynaeve.net/
• http://home.arcor.de/idapalace/ – Index of IDAPalace
• http://www.exetools.com

