
The A.R.F Project v2.0 1

TThhee AA..RR..FF PPrroojjeecctt

 Anti-Reversing Framework v2.0

Author: Kyriakos Economou

Contact: arfproject@hotmail.com

Programming Language: C++ /ASM x86

Compatibility: Win XP SP1 or above

IDE plug ‘n compile: Tested in MS Visual Studio 2010

Release Date: 26d/10m/2012

 IInnttrroo

After having dedicated some years in breaking software protections I have arrived to

some conclusions regarding how things work among software developing companies

regarding this matter.

A company that produces any type of software has always in mind the quality of the

final product to be released. This means that its coders dedicate all of their time in

developing the software that is going to be released by searching for bugs and errors

and by improving the code of the software.

However, when all this has come into an end, and it is time to release the software, all

companies have to, or at least they should, deal with another big decision which is of

course the “how” their product it is going to be protected by crackers.

For the big companies that have more money than time in their hands it is more easy

to decide because their budget can afford any type of commercial protections and it is

only a matter of taste regarding the quality of the protection that it is going to be

chosen.

However, even if these companies are able to choose among a variety of protections,

the impact of this decision can be destructive in zero time. Commercial protectors

offer much more quality than the free of the kind but they have a major flaw.

This flaw relies on the fact that before a company applies a well known commercial

protector, others have already done it which means that probably it has been already

reversed. So why should you spend money for a protection that you know that it has

been already cracked?!?

The A.R.F Project v2.0 2

From the other hand, crackers have usually much more time than money in their

hands and this is what makes them dangerous. They will usually try to break the

protection by themselves or read a tutorial about it and use it as a guide. In any case it

is just a matter of time before they say “Game Over!”

So then, why companies do not create their own custom protections?

The answer is simple, it requires time, money and people who know the basics of

reverse engineering, in other words how a cracker would attack the protection of the

software. All this would normally require a separate department of employees

dedicated to the development of the protection itself, but companies don’t seem to

approve this idea and you know the results.

But crackers, won’t they crack that protection too?

The answer is “Yes!” but as we have already said the entire game goes around a more

specific and relative concept which is the “time”. A custom protection must be

analyzed each time from scratch and if it is well developed it could take to crackers

much more time than you may think, so the company will have the opportunity to

gain time and money before the game arrives into an end.

So what if a company wants to use a commercial protector?

Even if they have the flaw that we discussed before, many commercial protectors are

very good and can keep a big amount of crackers especially newbies away. But even

in this case, why you should rely just to the protector itself?!?

Well, you shouldn’t and here it is where the A.R.F Project comes into the game. You

could use it in order to add an extra layer of protection inside the code of your

application itself that will protect your software when the protector will not.

Furthermore, it can be a good solution for single developers and companies that may

not afford neither in terms of money the use of a commercial protector nor in terms of

time the development of a custom protection from scratch.

The A.R.F Project is Free and comes with full source code and documentation of

the available anti-reversing methods.

This gives also the possibility to the developers to modify these methods at will,

combine them together and even more get inspired to create something better in less

time than ever before.

In addition, through the A.R.F Project you can understand how some of the most

famous anti-reversing tricks work and learn how an attacker would attempt to bypass

them, which will help you create your own custom software protection.

The available methods will constantly be updated and more methods are going to be

added in the days to come.

The A.R.F project offers plug ‘n compile compatibility with MS Visual Studio

(tested with 2008/2010 edition) and Embarcadero C++ Builder (tested with 2010

edition).

Greetings: This project is dedicated to all the people that I really respect for their

devotion to their passions without thinking about the consequences.

A big salute to my friends Yiannis, Alexandros, Panos, Kyprianos and Anna.

Enjoy,

Kyriakos Economou

The A.R.F Project v2.0 3

 AAvvaaiillaabbllee CCllaasssseess && MMeetthhooddss

TThhee llaayyoouutt iiss::

�� CCllaassss

 ii)) mmeetthhoodd

� DirectDebuggerDetection

 i) bool DebuggerPresent()

 ii) int RemoteDebuggerPresent()

� IndirectDebuggerDetection

 i) bool DebugString()

ii) int OpenServicesProcess()

� WindowDebuggerDetection

 i) bool SpecificWindowNameDetection(string
 windowname)

 ii) bool SpecificWindowClassDetection(string classname)

 iii) void SetListSize()

 iv) int GetListSize()

 v) bool ListWindowClassDetection(string * arraymemlocation , int
 listsize)

The A.R.F Project v2.0 4

� ProcessDebuggerDetection

 i) string * SetProcessList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ProcessDetection(string * arraymemlocation , int
 listsize)

� ModuleDebuggerDetection

 i) string * SetModulesList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ModuleDetection(string * arraymemlocation, int listsize)

� ParentProcessDetection

 i) int CheckParentProcess()

� CodeTraceTimeDetection

 i) DWORD StartExecutionTime()

 ii) DWORD EndExecutionTime()

 iii) DWORD GetTimeLimit()

 iv) DWORD GetTotalTime()

 v) void SetStartTime()

The A.R.F Project v2.0 5

 vi) void SetEndTime()

 vii) void SetTimeLimit()

 viii) void SetTotalTime()

 ix) bool IsCodeBeingTaced()

� HardwareBreakPointDetection

 i) int HwdBreakPoint()

 ii) bool HWdBreakPointSeh()

� ApiBreakPointDetection

 i) int ApiBreakPoint(char * DLL, char * API)

� SehDbgDetection

i) bool CloseHandleExcepDetection(HANDLE invalid)

 ii) bool SingleStepExcepDetection()

 iii) bool OutputDebugStringExcepDetection()

� AntiAttach

 i) int AntiAttachSet()

 ii) void AntiAttachSelfDebug()

The A.R.F Project v2.0 6

� VirtualMachineDetection

 i) bool VMWareDetect()

 ii) bool VMWareRegKeyDetect()

 iii) bool VirtualPCDetect()

 iv) bool VirtualPCRegKeyDetect()

 v) bool VirtualBoxDetect()

 vi) bool VirtualBoxRegKeyDetect()

 vii) bool VMRegKeyDetect(char * VMname)

 viii) bool VMGenericDetect()

� SandBoxDetection

i) bool SandBoxLDRModDetect(DWORD moduleNameChksum)

� SpyProcessToolDetection

i) bool SpyLDRModDetect(DWORD moduleNameChksum)

ii) bool SpyLDRGenericDetect(DWORD modulesNumber)

� CheckSumCalculator

i) DWORD CalculateNameCheckSum(wchar_t * moduleName)

The A.R.F Project v2.0 7

MMeetthhooddss DDooccuummeennttaattiioonn

CCllaassss:: DDiirreeccttDDeebbuuggggeerrDDeetteeccttiioonn

 11.. DirectDebuggerDetection()

 This method is the constructor used in order to create a new instance of the class.

22.. bool DebuggerPresent()

This method uses the win API IsDebuggerPresent in order to directly detect if the

process is being debugged.

This method returns true if a debugger has been detected, otherwise it returns false.

 33.. int RemoteDebuggerPresent()

This method uses the win API CheckRemoteDebuggerPresent in order to directly

detect if the process is being debugged.

This method returns 1 if a debugger has been detected, 0 if a debugger has not been

detected, -1 if an error occurs while trying to obtain a valid handle to our process with

the necessary access rights, and -2 if the win API fails.

Note: Both methods will trigger a “false alarm” while you debug the

code in your IDE.

CCllaassss:: IInnddiirreeccttDDeebbuuggggeerrDDeetteeccttiioonn

11.. IndirectDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

The A.R.F Project v2.0 8

22.. bool DebugString()
This method uses the win API OutputDebugString in order to indirectly detect if the

process is being debugged. If a debugger is not attached then the return value will be

0 or 1 depending on the windows version. By retrieving the return value from EAX

immediately after the execution goes back to our code we can determine if the process

is being debugged.

This method returns true if a debugger has been detected, otherwise returns false.

Note: This method will trigger a “false alarm” while you debug the code

in your IDE.

33.. int OpenServicesProcess()

Our process normally does not have the SeDebugPrivilege enabled, which means that

we are not able to obtain a valid handle through OpenProcess win API to a vital

system process such as “services.exe” with process_all_access rights.

In case a debugger is attached to our process *and* has enabled the

SeDebugPrivilege we will manage to obtain such a handle so we can presume that

our process is being debugged.

This method returns 1 if a debugger has been detected, 0 if a debugger has not been

detected, -1 if we failed to obtain a snapshot of all running processes, and -2 if we

failed to retrieve info regarding the first running process.

Note: This detection method should not be used in case that you have

programmatically enabled the SeDebugPrivilege for the needs of your

application.

The debugger of your IDE may also enable the SeDebugPrivilege to the process,

which means that in that case this method will trigger a “false alarm” while you

debug your code.

CCllaassss:: WWiinnddoowwDDeebbuuggggeerrDDeetteeccttiioonn

11.. WindowDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool SpecificWindowNameDetection(string windowname)

The A.R.F Project v2.0 9

This method can be used in order to detect the window of a debugger or a specific

reversing tool through its title name. This it is achieved by trying to obtain a valid

handle to its top-level window by using the win API FindWindow.

33.. bool SpecificWindowClassDetection(string classname)

This method can be used in order to detect the window of a debugger or a specific

reversing tool through its class name. This it is achieved by trying to obtain a valid

handle to its top-level window by using the win API FindWindow.

Both methods will return true if the desired window has been detected, otherwise

they will return false.

44.. string * SetReverseToolsList()

This method will fill a dynamic array with a predefined list of some popular window

class names of debuggers and reversing tools and it will return a pointer to it.

It is the first parameter of ListWindowClassDetection method.

You may modify the list, but in case you do so, you must set the correct size in the

SetListSize method.

55.. void SetListSize()

This method sets the size of the list and it is used by GetListSize() method.

You should modify the size only in case that you have modified the size of the list

inside the SetReverseToolsList() method itself.

For example, in case that you have deleted or added one or more class names of

windows that you want to be detected through the ListWindowClassDetection
method.

66.. int GetListSize()

This method will use the SetListSize method and it will return the size of the list.

The A.R.F Project v2.0 10

It is used as the second parameter of ListWindowClassDetection method.

77.. bool ListWindowClassDetection(string * arraymemlocation , int
listsize)

This method is used in order to check through a list of popular windows class names

of debuggers and reversing tools if any of them is running.

Check methods above regarding the predefined list.

This method will return true if a debugger or a reversing tool from the predefined list

gets detected by its top-level window class name, otherwise it will return false.

CCllaassss:: PPrroocceessssDDeebbuuggggeerrDDeetteeccttiioonn

11.. ProcessDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22.. string * SetProcessList()

This method will fill a dynamic array with a predefined list of some popular process

names of debuggers and reversing tools and it will return a pointer to it.

It is the first parameter of ProcessDetection method.

You may modify the list, but in case you do so, you must set the correct size in the

SetListSize method.

33.. void SetListSize()

This method sets the size of the list and it is used by GetListSize() method.

The A.R.F Project v2.0 11

You should modify the size only in case that you have modified the size of the list

inside the SetProcessList()method itself.

For example, in case that you have deleted or added one or more process names of

that you want to be detected through the ProcessDetection method.

44.. int GetListSize()

This method will use the SetListSize method and it will return the size of the list.

It is used as the second parameter of ProcessDetection method.

55.. int ProcessDetection(string * arraymemlocation , int listsize)

This method is used in order to check through a list of popular process names of

debuggers and reversing tools if any of them is running.

Check methods above regarding the predefined list.

This method will return 1 if a debugger or a reversing tool from the predefined list

gets detected through it process name, 0 if no suspect process has been detected, -1 if

an error occurs while trying to obtain a snapshot of all running processes, and -2 if an

error occurs while trying to retrieve info about the first running process.

CCllaassss:: MMoodduulleeDDeebbuuggggeerrDDeetteeccttiioonn

11)) ModuleDebuggerDetection()

This method is the constructor used in order to create a new instance of the class.

22)) string * SetModulesList()

This method will fill a dynamic array with a predefined list of some specific

modules/plugins of debuggers and reversing tools and it will return a pointer to it.

The A.R.F Project v2.0 12

It is the first parameter of ModuleDetection method.

You may modify the list, but in case you do so, you must set the correct size in the

SetListSize method.

33)) void SetListSize()

This method sets the size of the list and it is used by GetListSize() method.

You should modify the size only in case that you have modified the size of the list

inside the SetModulesList()method itself.

For example, in case that you have deleted or added one or more modules/plugins

names that you want to be detected through the ModuleDetection method.

44)) int GetListSize()

This method will use the SetListSize method and it will return the size of the list.

It is used as the second parameter of ModuleDetection method.

55)) int ModuleDetection(string * arraymemlocation, int listsize)

This method will take a list of all running processes and then for each process will go

through its loaded modules in order to detect a debugger or a reversing tool through

its own loaded modules and/or plugins.

Check methods above regarding the predefined list.

This method will return 1 if a debugger or a reversing tool gets detected through a

module name, 0 if no suspect module has been detected, -1 if an error occurs while

trying to obtain a snapshot of all running processes, and -2 if an error occurs while

trying to retrieve info about the first running process.

The A.R.F Project v2.0 13

CCllaassss:: PPaarreennttPPrroocceessssDDeetteeccttiioonn

11.. ParentProcessDetection()

This method is the constructor used in order to create a new instance of the class.

22.. int CheckParentProcess()

This method will retrieve the parent process id of our process and then will verify that

this id corresponds to the process id of windows explorer. If it is not then it means that

probably our process is being debugged or it has been launched through a loader that

will attempt to modify our code on run-time in memory.

This method will return 1 in case the parent of our process is not windows explorer, 0

if the parent is windows explorer, -1 if an error occurs while trying to obtain a

snapshot of all running processes, and -2 if an error occurs while trying to retrieve

info about the first running process.

Note: This method should not be used in case you plan to design an

application that it will be launched from another one that you already know that

it is legitimate.

This method will trigger a “false alarm” while you debug the code in your IDE.

CCllaassss:: CCooddeeTTrraacceeTTiimmeeDDeetteeccttiioonn

11.. CodeTraceTimeDetection()

This method is the constructor used in order to create a new instance of the class.

22.. DWORD StartExecutionTime()

This method is going to use the GetTickCount win API in order to retrieve the

number of milliseconds that have elapsed since the system was started and the result

is going to be stored for later.

It is used by the SetStartTime method in order to store the initial result.

This method returns the number of milliseconds that have elapsed since the system

was started.

The A.R.F Project v2.0 14

33.. DWORD EndExecutionTime()

This method is going to use the GetTickCount win API in order to retrieve the

number of milliseconds that have elapsed since the system was started and the result

is going to be stored for later.

It is used by the SetEndTime method in order to store the initial result.

This method returns the number of milliseconds that have elapsed since the system

was started.

44.. void SetStartTime()

This method uses the StartExecutionTime method and stores the value returned by

it.

55.. void SetEndTime()

This method uses the EndExecutionTime method and stores the value returned by it.

66.. void SetTimeLimit()

This method sets the time limit for execution of the code block that we want to 1000

ms.

You may change it to lower or to a higher value depending on your needs.

This method is used from the GetTimeLimit method.

77.. DWORD GetTimeLimit()

This method returns the value of the time limit by using the SetTimeLimit method.

This method is used by the IsCodeBeingTaced method.

88.. void SetTotalTime()

The A.R.F Project v2.0 15

This method sets the total time that has elapsed during the execution of a specified

code block of our choice.

It is used by the GetTotalTime method.

99.. DWORD GetTotalTime()

This method returns the value of the total time that has elapsed during the execution

of a specified code block of our choice by using the GetTotalTime method.

This method is used by the IsCodeBeingTaced method.

1100.. bool IsCodeBeingTaced()

This method will use the GetTotalTime method in order to retrieve the total time

that has elapsed during the execution of a specified code block of our choice and then

it will retrieve the time limit that we have set by using the GetTimeLimit method.

This method returns true if the value returned by GetTotalTime method is greater

than the value returned by GetTimeLimit method which means that our code is being

traced, otherwise it returns false.

Note: This method may trigger a “false alarm” while you debug the

code in your IDE.

CCllaassss:: HHaarrddwwaarreeBBrreeaakkPPooiinnttDDeetteeccttiioonn

11.. HardwareBreakPointDetection()

This method is the constructor used in order to create a new instance of the class.

22.. int HwdBreakPoint()

The A.R.F Project v2.0 16

This method will use the win API OpenThread in order to obtain a valid handle with

the necessary access rights to the current thread the functions runs and then it will use

the GetThreadContext win API in order to check if any of the debug registers Dr0,

Dr1, Dr2, Dr3 is not equal to zero which means that one or more hardware

breakpoints have been set.

This method returns 1 if a hardware breakpoint is detected, 0 if no hardware

breakpoints are detected, -1 if an error has occurred while trying to obtain a valid

handle to the thread, and -2 if the GetThreadContext win API fails.

33.. bool HWdBreakPointSeh()

This method will attempt to detect HW BPs by forcing an exception and then reading

the values DR0-DR3 registers from the ThreadContext structure saved inside the

stack memory area.

It is considered a more stealthy way, since it does not require the use of any Windows

APIs.

CCllaassss:: AAppiiBBrreeaakkPPooiinnttDDeetteeccttiioonn

11.. ApiBreakPointDetection()

This method is the constructor used in order to create a new instance of the class.

22.. int ApiBreakPoint(char * DLL, char * API)

This method is used in order to detect any software breakpoints at the entry point of

an API.

It uses the LoadLibrary and GetProcAddress win APIs in order to obtain a handle

to the dll of our choice in order to retrieve the virtual address of the specified API in

memory.

It will then use a BYTE * pointer in order to check if in the first 5 bytes of the entry

point of the API there is a 0xCC byte which means that a software breakpoint has

been set there.

This method returns 1 if a software breakpoint has been detected, 0 if a software

breakpoint has not been detected, -1 if an error occurs while we try to obtain a valid

handle to the dll of our choice, and -2 if an error occurs while we try to retrieve the

virtual address of the selected API.

The A.R.F Project v2.0 17

CCllaassss:: SSeehhDDbbggDDeetteeccttiioonn

11.. SehDbgDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool CloseHandleExcepDetection(HANDLE invalid)

In this method we are using CloseHandle win API by pushing and invalid

handle to it.

If there is no debugger attached to our process CloseHandle will just return an error

code and the execution will continue.

However, if a debugger is attached then an exception will be raised and execution will

be transferred inside our SEH.

33.. bool SingleStepExcepDetection()

In this method we trigger a single step exception by pushing the EFLAGS to the stack

and then setting the trap flag bit.

Finally, we restore them back with the trap flag bit set.

If a debugger is attached it will intercept the exception raised during the execution of

the next instruction, so execution will never reach our SEH.

44.. bool OutputDebugStringExcepDetection()

In this method we send a string to the debugger by using the OutputDebugString

API. If a debugger is present the return address in EAX will be a valid VA inside the

process address space, otherwise if the process in not being debugger a memory

access violation will occur and we will know that no debugger is present. Since this

method is working the other way around, hence the exception occurs only if the

process is not being debugged; I consider it one of the stealthier to user.

*Be careful in case you use this one along with the void AntiAttachSelfDebug

method.*

Note: Some of hese methods may work or not depending on the

configuration of the debugger regarding exceptions.

For example, regarding the INVALID HANDLE exception in Olly Debugger, in

case you don’t pass the generated exception to the program, execution will never

reach our SEH, so the method will return false.

The A.R.F Project v2.0 18

However, if you have instructed the debugger to automatically ignore this

specific exception or you manually pass the exception to the program, then the

execution will be transferred to our SEH and the method will return true.

Of course this is just for detection purposes, but think what it can happen in this

case if the code inside your SEH creates some havoc to mislead the attacker.

CCllaassss:: AAnnttiiAAttttaacchh

11.. AntiAttach()

This method is the constructor used in order to create a new instance of the class.

22.. int AntiAttachSet()

This method can be used in order to forbid to a debugger to attach to our running

process.

More specifically, since it is known that each time a user mode debugger attaches to

our process, there will be a call to the APIs DebugUiRemoreBreakin and

DbgBreakPoint (exported by the ntdll) from our process, we can alter these 2

functions by changing their entry point with a RET instruction in order to forbid to

the debugger to successfully attach to our process.

This method uses the OpenProcess win API in order to obtain a valid handle with

read/write access rights to our process and the LoadLibrary and GetProcAddress in

order to retrieve the virtual addresses of the 2 APIs mentioned before.

It will then use the WriteProcessMemory win API in order to write a RET

instruction (0xC3) at the beginning of the 2 APIs mentioned before so that they will

not be able to be used and the debugger will not manage to attach to our process.

This method returns 1 if the antiattach has been se successfully, -1 if an error occurs

while trying to obtain a handle to our process, -2 if an error occurs while trying to

obtain a handle to the ntdll, -3 if an error occurs while we try to retrieve the address of

the 2 win APIs we are interested to, and -4 if an error occurs while we try to write a

RET instruction to the entrypoint of both APIs.

33.. void AntiAttachSelfDebug()

This method will create a child process and it will debug it on run time.

The A.R.F Project v2.0 19

The execution of the code will take place on the child process in which we will not be

able to attach a user mode debugger because it will be already being debugged by its

parent process.

This is a more sophisticated anti-attach method and anti-debug method since the

normal execution of the does not take place in the process we are currently debugging,

but from the child process.

Note: In case you decide to use this anti-attach method keep in mind

that you should use it inside your main() function as the first thing to do, or after

calling the previous method discussed in order to protect also the parent from

attaching a debugger to it on run-time.

This method should not be used along with the following debugger detection

methods because since the child process from which the application will run it

will be debugged by the parent process, those methods will trigger a “false

alarm”:

i) bool DebuggerPresent()

ii) int RemoteDebuggerPresent()

iii) bool DebugString()

iv) int CheckParentProcess()

 v) bool CloseHandleExcepDetection(HANDLE invalid)

 vi) bool SingleStepExcepDetection()

However, you could use the rest of the methods before or after calling

AntiAttachSelfDebug() in order to detect the presence of a debugger.

Those that will be used before calling AntiAttachSelfDebug() method will run at

both parent and child processes.

Those that will be used after calling AntiAttachSelfDebug() will run only in the

child process.

TIP: You could use also the above methods with a little bit of

imagination. In other words, since you know that your protected program will

constantly be debugged by its parent process, you could use those methods in the

opposite way after calling AntiAttachSelfDebug() so that if the child process is

not debugged, then our code it is probably under attack.

The A.R.F Project v2.0 20

CCllaassss:: VViirrttuuaallMMaacchhiinneeDDeetteeccttiioonn

11.. VirtualMachineDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool VMWareDetect()

This method will use the well known way of detecting VMware through the

communication port between VM and host by attempting to use a VMware system

call to retrieve its version.

33.. bool VMWareRegKeyDetect()

This method will attempt to detect VMware through a registry key.

44.. bool VirtualPCDetect()

This method will attempt to detect VirtualPC by using the well known method

through a specific virtual call.

55.. bool VirtualPCRegKeyDetect()

This method will attempt to detect VirtualPC through a registry key.

66.. bool VirtualBoxDetect()

This method will attempt to detect VirtualBox through the class name of a tray icon

belonging to one of its processes.

77.. bool VirtualBoxRegKeyDetect()

This method will attempt to detect VirtualBox through a registry key.

88.. bool VMRegKeyDetect(char * VMname)

The A.R.F Project v2.0 21

This method will attempt to detect VMWare,VBox,VPC through the name of their

virtual HD drive placed in registry and also any other virtual machine of which the

Virtual HD has the word “Virtual” in it.

Tested inputs:

VMware � “VMware”

VPC � “DiskVirtual”

VBOX � “DiskVBOX”

Other VM � “Virtual”

See the related code examples for more info.

99.. bool VMGenericDetect()

This method will attempt to “detect-by-assumption” a VM by analysing the system

resources along with the Windows version. Tested for Windows Vista and above.

Note: Read the comments inside the VirtualMachineDetection.h file

before using this one.

CCllaassss:: SSaannddBBooxxDDeetteeccttiioonn

11.. SandBoxDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool SandBoxLDRModDetect(DWORD moduleNameChksum)

This method goes through the PEB_LDR_DATA/LDR_MODULE structures and

calculates a custom non-case sensitive checksum based on the name of every module

loaded by the process which is compared against the DWORD moduleNameChksum

argument passed to this method. If the values match then the method returns true,

otherwise returns false.

You can calculate a custom checksum of the name of the module you want to be

detected using the CalculateNameCheckSum method from the CheckSumCalculator class

through a test project of your choice.

The A.R.F Project v2.0 22

Inside the SandBoxDetection.h file you can find the pre-computed custom checksum

for the name of SandBoxie’s injected dll (SbieDll.dll), which you can directly use.

Note: The checksum calculation method is assuming that

module names are stored in Unicode inside the LDR_MODULE

structure.

Compatibiliy: 32-bit applications only.

CCllaassss:: SSppyyPPrroocceessssTToooollDDeetteeccttiioonn

11.. SpyProcessToolDetection()

This method is the constructor used in order to create a new instance of the class.

22.. bool SpyLDRModDetect(DWORD moduleNameChksum)

This method works exactly the same way as the SandBoxDetection one. The extra

class was created only for logical reasons. Read the documentation of the

SandBoxLDRModDetect(DWORD moduleNameChksum) method on how to use also this one.

Inside the SpyProcessToolDetection.h file you can find the pre-computed custom

checksums for the names of the dlls that SpyStudio and Api Monitor tools inject

(DvAgent.dll and apimonitor-drv-x86.sys respectively), which you can directly use.

Of course also in this case you can use the custom checksum of the name of any other

module injected by a process monitoring tool.

Note: The checksum calculation method is assuming that

module names are stored in Unicode inside the LDR_MODULE

structure.

Compatibiliy: 32-bit applications only.

33.. bool SpyLDRGenericDetect(DWORD modulesNumber)

This method again goes through the PEB_LDR_DATA/LDR_MODULE structures,

but in this case it just enumerates the loaded modules.

The A.R.F Project v2.0 23

Finally, it will compare the final result with the modulesNumber parameter and if the

number of the loaded modules exceeds that number, it means that there is an

unexpected module injected into our process.

Note: This method can be powerful if used correctly, and can

be also used for SandBox applications which inject a dll into the

process.

However, keep in mind that in different Windows versions the

number of loaded modules can vary.

For example, in Windows 7 was introduced the kernelbase.dll which

is now loaded along with the kernel32.dll.

For this reason, always check in which version of Windows your

application is running and adjust the check accordingly.

You can do so by either using a Windows API such as GetVersion()

or even by going through the PEB.

Compatibiliy: 32-bit applications only.

CCllaassss:: CChheecckkSSuummCCaallccuullaattoorr

11.. CheckSumCalculator()

This method is the constructor used in order to create a new instance of the class.

22.. DWORD CalculateNameCheckSum(wchar_t * moduleName)

This method is not intended to be used in your application. You should only use it in

order to calculate a custom checksum of the name of the module you want to detect,

so that you can then check for its presence using the SpyLDRModDetect and

SandBoxLDRModDetect methods.

Note: The calculated checksum is not case sensitive, which means that the

checksum calculated for example.dll and ExAmPle.dll will be the same.

The A.R.F Project v2.0 24

IInniittiiaalliizzee aa nneeww oobbjjeecctt aanndd uussee tthhee aavvaaiillaabbllee mmeetthhooddss

� DirectDebuggerDetection

 i) bool DebuggerPresent()

 ii) int RemoteDebuggerPresent()

Include the DirectDebuggerDetection.h and add the

DirectDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

DirectDebuggerDetection * directdbg = new DirectDebuggerDetection();

Use the methods:

if(directdbg->DebuggerPresent())

{

 cout << endl << "Attached Debugger Detected!!!" << endl;

}

else{

 cout << endl << "No Attached Debugger Detected..." << endl;

 }

if(directdbg->RemoteDebuggerPresent() == 1)

{

 cout << endl << "Attached Debugger Detected!!!" << endl;

}

else if (directdbg->RemoteDebuggerPresent() == 0){

cout << endl << "No Attached Debugger Detected..." << endl;

}

The A.R.F Project v2.0 25

� IndirectDebuggerDetection

 i) bool DebugString()

ii) int OpenServicesProcess()

Include the IndirectDebuggerDetection.h and add the

IndirectDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

IndirectDebuggerDetection * indirectdbg = new

IndirectDebuggerDetection();

Use the methods:

if(indirectdbg->DebugString())

{

cout << endl << "User-mode debugger through message to debugger has

been Detected!!!" << endl;

}

else{

 cout << endl << "User-mode debugger through message to debugger has

Not been Detected..." << endl;

}

The A.R.F Project v2.0 26

if(indirectdbg->OpenServicesProcess()== 1)

{

 cout << endl << "Debugger Detected through OpenProcess to a system

process!!!" << endl;

}

else if(indirectdbg->OpenServicesProcess() == 0)

{

 cout << endl << "Debugger Not Detected through OpenProcess to a

system process..." << endl;

}

� WindowDebuggerDetection

 i) bool SpecificWindowNameDetection(string
 windowname)

 ii) bool SpecificWindowClassDetection(string classname)

 iii) void SetListSize()

 iv) int GetListSize()

 v) bool ListWindowClassDetection(string * arraymemlocation , int
 listsize)

Include the WindowDebuggerDetection.h and add the

WindowDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

WindowDebuggerDetection * windowdebug = new WindowDebuggerDetection();

The A.R.F Project v2.0 27

Use the methods:

//Detect Olly Debugger example through window class name

if(windowdebug->SpecificWindowClassDetection("OLLYDBG"))

{

 cout << endl << "Specific Window of Debugger/Reversing Tool

Detected through class name!!!" << endl;

}

else{

 cout << endl << "Specific Window of Debugger/Reversing Tool Not

Detected through class name..." << endl;

}

//Detect Olly Debugger example through window title

if(windowdebug->SpecificWindowNameDetection("OLLYDBG"))

{

 cout << endl << "Specific Window of Debugger/Reversing Tool

Detected through title name!!!" << endl;

}

else{

 cout << endl << "Specific Window of Debugger/Reversing Tool Not

Detected through title name..." << endl;

}

/*Detect a a debugger or a reversing tool from a predefined list

 of windows class names.

 Read the documentation above.*/

if(windowdebug->ListWindowClassDetection(windowdebug-

>SetReverseToolsList(),windowdebug->GetListSize()))

{

cout << endl << "A Window of Debugger/Reversing Tool has been

Detected through its class name from the predefined list!!!" << endl;

}

else{

The A.R.F Project v2.0 28

cout << endl << "A Window of Debugger/Reversing Tool has NOT been

Detected through its class name from the predefined list..." << endl;

}

� ProcessDebuggerDetection

 i) string * SetProcessList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ProcessListDetection(string * arraymemlocation , int
 listsize)

Include the ProcessDebuggerDetection.h and add the

ProcessDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ProcessDebuggerDetection * procdbg = new ProcessDebuggerDetection();

Use the methods:

if(procdbg->ProcessListDetection(procdbg->SetProcessList(), procdbg-

>GetListSize()) == 1)

{

 cout << endl << "Debugger/Reversing Tool running process

Detected from our process name list!!!" << endl;

}

else if(procdbg->ProcessListDetection(procdbg->SetProcessList(),

procdbg->GetListSize()) == 0)

{

 cout << endl << "Debugger/Reversing Tool running process Not

Detected from our process name list..." << endl;

The A.R.F Project v2.0 29

}

� ModuleDebuggerDetection

 i) string * SetModulesList()

 ii) void SetListSize()

 iii) int GetListSize()

 iv) int ModuleDetection(string * arraymemlocation, int listsize)

Include the ModuleDebuggerDetection.h and add the

ModuleDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ModuleDebuggerDetection * moddbg = new ModuleDebuggerDetection();

Use the methods:

if(moddbg->ModuleDetection(moddbg->SetModulesList(), moddbg->GetListSize()) ==

1)
{

 cout << endl << "Debugger/Reversing tool detected through loaded
modules!!!" << endl;

}

else if(moddbg->ModuleDetection(moddbg->SetModulesList(), moddbg-

>GetListSize()) == 0)

{

 cout << endl << "No Debugger/Reversing tool detected through loaded

modules...." << endl;

The A.R.F Project v2.0 30

}

� ParentProcessDetection

 i) int CheckParentProcess()

Include the ParentProcessDetection.h and add the

ParentProcessDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ParentProcessDetection * ppdetect = new ParentProcessDetection();

Use the methods:

if(ppdetect->CheckParentProcess() == 1)

{

cout << endl << "Debugger/Reversing Tool Detected through parent

process id check!!!" << endl;

}

else if(ppdetect->CheckParentProcess() == 0)

{

cout << endl << "No Debugger/Reversing Tool Detected through parent

process id check..." << endl;

}

The A.R.F Project v2.0 31

� CodeTraceTimeDetection

 i) DWORD StartExecutionTime()

 ii) DWORD EndExecutionTime()

 iii) DWORD GetTimeLimit()

 iv) DWORD GetTotalTime()

 v) void SetStartTime()

 vi) void SetEndTime()

 vii) void SetTimeLimit()

 viii) void SetTotalTime()

 ix) bool IsCodeBeingTaced()

Include the CodeTraceTimeDetection.h and add the

CodeTraceTimeDetectionFunc.cpp to your project.

Initialize a new instance of the class:

CodeTraceTimeDetection * tracetime = new CodeTraceTimeDetection();

Use the methods:

tracetime->SetStartTime();/* get the time before the execution of the

code block*/

/*the code block you want to check the execution time required goes

here*/

tracetime ->SetEndTime();/* get the time after the code block has

been executed*/

//perform the check

if(tracetime->IsCodeBeingTaced())

{

The A.R.F Project v2.0 32

 cout << endl << "Debugger Detected through execution time

check!!!" << endl;

}

else{

 cout << endl << "Debugger Not Detected through execution time

check..." << endl;

}

� HardwareBreakPointDetection

 i) int HwdBreakPoint()

 ii) bool HWdBreakPointSeh()

Include the HardwareBreakPointDetection.h and add the

HardwareBreakPointDetectionFunc.cpp to your project.

Initialize a new instance of the class:

HardwareBreakPointDetection * hwdbp = new

HardwareBreakPointDetection();

Use the methods:

if(hwdbp->HwdBreakPoint()==1)

{

 cout << endl << "Hardware Breakpoint has been Detected!!!" <<

endl;

}

else if(hwdbp->HwdBreakPoint()==0)

{

 cout << endl << "Hardware Breakpoint has Not been Detected..."

<< endl;

The A.R.F Project v2.0 33

}

if(hwdbp->HWdBreakPointSeh())

{

 cout << endl << "HW BP detected!" << endl;

}

else{

 cout << endl << "No HW BP detected..." << endl;

}

� ApiBreakPointDetection

 i) int ApiBreakPoint(char * DLL, char * API)

Include the ApiBreakPointDetection.h and add the

ApiBreakPointDetectionFunc.cpp to your project.

Initialize a new instance of the class:

ApiBreakPointDetection * apibp = new ApiBreakPointDetection();

Use the methods:

/* Example: Check for software breakpoint at the entrypoint of

OutputDebugStringA*/

if(apibp->ApiBreakPoint("kernel32","OutputDebugStringA") == 1)

{

 cout << endl << "Breapoint Detected on protected API!!!" <<

endl;

}

else if(apibp->ApiBreakPoint("kernel32","OutputDebugStringA") == 0){

The A.R.F Project v2.0 34

 cout << endl << "Breapoint Not Detected on protected API..."

<< endl;

}

� SehDbgDetection

i) bool CloseHandleExcepDetection(HANDLE invalid)

ii) bool SingleStepExcepDetection()

 iii) bool OutputDebugStringExcepDetection()

Include the SehDebuggerDetection.h and add the

SehDebuggerDetectionFunc.cpp to your project.

Initialize a new instance of the class:

SehDbgDetection * sehdbgdetect = new SehDbgDetection();

Use the methods:

if(sehdbgdetect->CloseHandleExcepDetection((HANDLE)0x90909090)) //push an
invalid handle

{

 cout << endl << "Debugger detected through CloseHandle() exception!!!"
<< endl;

}

else

{

 cout << endl << "Debugger Not detected through CloseHandle()

exception..." << endl;

The A.R.F Project v2.0 35

}

if(sehdbgdetect->SingleStepExcepDetection())

{

 cout << endl << "Debugger detected through Sigle Step exception!!!" << endl;

}

else{

 cout << endl << "Debugger NOT detected through Single Step exception..."

<< endl;

}

if(sehdbgdetect->OutputDebugStringExcepDetection())

cout << endl << "Debugger detected through OutputDebugString exception!" <<

endl;
}

else{

cout << endl << "Debugger NOT detected through OutputDebugString exception..."

<< endl;
}

� AntiAttach

 i) int AntiAttachSet()

 ii) void AntiAttachSelfDebug()

The A.R.F Project v2.0 36

Include the AntiAttach.h and add the AntiAttachFunc.cpp to your project.

Initialize a new instance of the class:

AntiAttach * antiattach = new AntiAttach();

Use the methods:

if(antiattach->AntiAttachSet() == 1)

{

cout << endl << "Parent Anti-Attach has been set succesfully!!!" <<

endl;

}

else{

 cout << endl << "There was an error while setting the Anti-

Attach..." << endl;

}

antiattach->AntiAttachSelfDebug();/*see the documentation for more

info*/

cout << endl << "SelfDebug Anti-Attach has been applied!!!" << endl;

� VirtualMachineDetection

 i) bool VMWareDetect()

 ii) bool VMWareRegKeyDetect()

 iii) bool VirtualPCDetect()

 iv) bool VirtualPCRegKeyDetect()

 v) bool VirtualBoxDetect()

 vi) bool VirtualBoxRegKeyDetect()

The A.R.F Project v2.0 37

 vii) bool VMRegKeyDetect(char * VMname)

 viii) bool VMGenericDetect()

Include the VirtualMachineDetection.h and add the

VirtualMachineDetectionFunc.cpp to your project.

Initialize a new instance of the class:

VirtualMachineDetection * VM = new VirtualMachineDetection();

Use the methods:

if(VM->VMWareDetect())

{

 cout << endl << "VMWare Detected through communication port!" << endl;

}

else{

cout << endl << "No VMWare Detected through communication port..." << endl;

}

if(VM->VirtualPCDetect())
{

 cout << endl << "VPC Detected through virtual call!" << endl;
}

else{

 cout << endl << "No VPC Detected through virtual call..." << endl;

}

if(VM->VirtualBoxDetect())

{

 cout << endl << "VBOX Detected through tray icon!" << endl;

The A.R.F Project v2.0 38

}

else{

 cout << endl << "NO VBOX Detected through tray icon..." << endl;
}

if(VM->VMWareRegKeyDetect())

{

 cout << endl << "VMWare RegKey Method 1 Detected!" << endl;

}

else{

 cout << endl << "No VMWare RegKey Method 1 Detected..." << endl;

}

if(VM->VMRegKeyDetect("VMware"))

{

 cout< < endl << "VMWare VirtualHD Detected!" << endl;
}

else{

 cout << endl << "No VMWare VirtualHD Detected..." << endl;

}

if(VM->VirtualBoxRegKeyDetect())

{

 cout << endl << "VBox RegKey Method 1 Detected!" << endl;

}

else{

 cout << endl << "No VBox RegKey Method 1 Detected..." << endl;

}

if(VM->VMRegKeyDetect("DiskVBOX"))

{

 cout << endl << "VBOX VirtualHD Detected!" << endl;

}

The A.R.F Project v2.0 39

else{

 cout << endl << "No VBOX VirtualHD Detected..." << endl;

}

if(VM->VirtualPCRegKeyDetect())

{

 cout << endl << "VPC RegKey Method 1 Detected!" << endl;

}

else{

 cout << endl << "No VPC RegKey Method 1 Detected..." << endl;

}

if(VM->VMRegKeyDetect("DiskVirtual"))
{

 cout << endl << "VPC VirtualHD Detected!" << endl;

}

else{

 cout << endl << "No VPC VirtualHD Detected..." << endl;

}

if(VM->VMGenericDetect())

{

 cout << endl << "Generic VM running Win Vista or Above Detected!" <<

endl;
}

else{

cout << endl << "No Generic VM running Win Vista or Above Detected..." << endl;

}

The A.R.F Project v2.0 40

� SandBoxDetection

i) bool SandBoxLDRModDetect(DWORD moduleNameChksum)

Include the SandBoxDetection.h and add the SandBoxDetectionFunc.cpp to your

project.

Initialize a new instance of the class:

SandBoxDetection * sandbox = new SandBoxDetection();

Use the methods:

if(sandbox->SandBoxLDRModDetect(sandbox->sandBoxieChksum))

{

 cout << endl << "Sandboxie DLL Detected through LDR_DATA!" << endl;

}

else{

cout << endl << "No Sandboxie DLL Detected through LDR_DATA..." << endl;

}

� SpyProcessToolDetection

i) bool SpyLDRModDetect(DWORD moduleNameChksum)

Include the SpyProcessToolDetection.h and add the

SpyProcessToolDetectionFunc.cpp to your project.

Initialize a new instance of the class:

SpyProcessToolDetection * spyproc = new SpyProcessToolDetection();

The A.R.F Project v2.0 41

Use the methods:

if(spyproc->SpyLDRModDetect(spyproc->spyStudioChksum))

{

 cout << endl << "SpyStudio DLL Detected through LDR_DATA!" << endl;

}

else{

 cout << endl << "No SpyStudio DLL Detected through LDR_DATA..." << endl;
}

if(spyproc->SpyLDRModDetect(spyproc->apiMonitorChksum))
{

 cout << endl << "API Monitor DLL Detected through LDR_DATA!" << endl;

}

else{

cout << endl << "No API Monitor DLL Detected through LDR_DATA..." << endl;

}

if(spyproc->SpyLDRGenericDetect(4))

{

cout << endl << "Process monitoring tool detected through generic method!" <<

endl;

}

else{

cout << endl << "No Process monitoring tool was detected through generic
method..." << endl;

}

� CheckSumCalculator

i) DWORD CalculateNameCheckSum(wchar_t * moduleName)

Include the CheckSumCalculator.h and add the CheckSumCalculatorFunc.cpp to

your project.

The A.R.F Project v2.0 42

Initialize a new instance of the class:

CheckSumCalculator * chksum = new CheckSumCalculator();

Use the methods:

wchar_t * test = L"DvAgent.dll"; // name of module injected by SpyStudio

cout << hex << chksum->CalculateNameCheckSum(test) << endl;

Final Note: Most of the methods will return an error code in case

something goes wrong in the implementation.

Check the documentation about the return values of each function and the

corresponding possible error codes they may return.

Don’t forget that the purpose of the detection methods is just to detect and not to

provide countermeasures.

It is always up to you to decide what it should happen if a debugger is detected

by using any of the detection methods provided here.

Always remember that imagination is the best anti-reversing method!

