
Oleksiuk Dmytro (aka Cr4sh)

 What do you think when you hear this term?

 What do you think when you hear this term?

 Rustock

 TDSS/Alureon

 ZeroAccess

 Carberp

 What do you think when you hear this term?

 Rustock

 TDSS/Alureon

 ZeroAccess

 Carberp

 My talk about another: rootkits for the target

attacks

 The purpose of malicious code puts certain requirements over it

 In general, the requirements are persistence and activity hiding, but

also there is some special cases

 Case #1: rootkits for the mass-spreading malware

 Prevent active infection curing by the popular anti-virus software

 Case #2: rootkits for the target attacks

 Prevent active infection detection even by the professional during

forensic analysis
 The main subject of this talk

 Specific requirements dictate the necessity of the
specific technical solutions

 All rootkits listed above in the case #1 and all
known «cyber-weapon» stuff are very easy
detectable

 We need to design something fundamentally new
that will be good enough for the case #2

 But first - let's look at the common rootkit detection

scenarios for better understanding of the task

 In order to be working the malicious code must get execution
somehow

 System service installation or using of the less obvious auto-run

capabilities (documented or not) of OS

▪ TDL 2, Rustock, Srizbi, Stuxnet, Duqu

 Infection of the existing executable file

▪ TDL 3, ZeroAccess, Virut

 OS booting control (modification of the boot code, partition table or
playing with the UEFI boot drivers and services)

▪ TDL 4, Mebroot, Olmarik, Rovnix, UEFI rootkit by @snare

http://twitter.com/snare

 Apart from getting the execution rootkits also have
to hide the evidences of their work (we're still
talking about rootkits?)

 Hidden objects and resources of the operating
system make the rootkit detection more easy

 How exactly?

 Step 1: collect the database (like name/path + hash) of interesting
resources (files, system registry, boot sectors) inside the environment
of presumably infected by rootkit OS

 Step 2: collect the same database but with the mounting of the target
OS system volume inside the environment of clear and trusted OS

 Step 3: diff of the two databases will show us the resources that were

hidden or locked by the rootkit inside the environment of the target OS

 Reliability is close to 100% in the absence of implementation errors
 Very hard for to bypass such detection

 I'm using this method successfully in the different practical cases

 Rootkit sample: Trojan.Srizbi.cx

 Rootkit sample: Win32.TDSS.aa

 Rootkit sample: Rootkit.Win32.Agent.aibm

 The malicious code also can have nothing to hide (because not
only rootkits are useful)

 Developers can masquerade the malicious module as a legitimate

program component (from OS or 3-rd party software)
 Actually, such case is much more harder for investigation and

detection than “true rootkit”, that hides any files/processes/registry
keys/etc.

 But we still can compare collected resources database with the
some reference

 Good system administrator always knows, exactly what software

and drivers are installed on his servers and workstations. Find
something extraneous among known components and data is a
much than possible

 So, for these reasons our ideal rootkit for target attacks is strictly
prohibited to use:

 All the regular ways of auto-run
 Existing files modification and new files creation
 Interfere in the process of OS booting with the modification of MBR, VBR,

NTFS $Boot and so on.

 But where should we store the malicious code and how to pass
execution into it?

 Maybe, firmware infection is the most obvious way?

 Yes: that’s a powerful technology and it can solve our tasks
 No: in practice – very expensive, depends on the specific hardware and

have a lot of other limitations

 Let’s store malicious code inside some REG_BINARY
or REG_SZ system registry value!

 The main goal: Windows system registry – is the millions of keys and
values

 There is no any complete documentation on all of these
 Usually, the forensic analysis is limited by checking only a small part of

registry keys (that stores critical system settings and known auto-run
locations)

 The main problem: how to execute a code, that located inside a

system registry value?

 Of course, the Windows haven’t any regular capabilities for that 
 But some registry keys can contain the data that very interesting and

sensitive itself
 Also, there are a lot of code and program components that read something

from the system registry, and, of course, such code can have vulnerabilities

 What interesting is kept in the system registry?

 Settings, users password hashes, certificates and secret/public keys

 Maybe, anything else?

 Windows ACPI driver stores a copy of the DSDT table (that was read
from the firmware) inside a system registry

 sometimes this feature is used by enthusiasts to fix the hardware vendor

bugs

 DSDT – is the part of ACPI specification, this table stores machine-
independent subprograms, that are interpreting by ACPI driver in the
occurrence of different power events

 ACPI spec 4.0a, «5.2 ACPI System Description Tables»

 DSDT had already got under the attention of researchers

 «Implementing and Detecting an ACPI BIOS Rootkit» (John Heasman, Black

Hat 2006)
 I propose to modify the copy of DSDT inside the system registry, but not

inside the firmware

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

 DSDT can contain data objects and control methods

 They forming a hierarchical ACPI namespace

 Control methods are represented in the form of an AML byte-
code (ACPI Machine Language), in which compiles the programs
written in ASL (ACPI Source Language)

 Compilers and disassemblers are available in toolkits from Intel and

Microsoft

 It’s possible to browse ACPI namespace and debug the AML code
with the acpikd extension for WinDbg

 AML byte-code interpreter located inside the operating system
ACPI driver (ACPI.sys on Windows)

http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx

 ASL provides a lot of capabilities for working with the hardware
resources

 OperationRegion directive (ACPI spec 4.0a, «18.5.89 Declare Operation

Region») can give the access to the different memory regions

 Example: ASL code that writes 0x1337 into the
physical memory at 0x80000000

 Write ASL program, that generates the malicious machine code
directly into the physical memory, and then – patches OS kernel
for redirecting control flow to the generated code

 Read DSDT contents from the system registry

 Add written program into the code of some control method, that
will be called during OS startup

 Write modified DSDT back into the system registry

 PROFFIT!

 At the next reboot modified control method code will be interpreted

by ACPI driver and after that – our malicious code will be generated
and executed

 ASL code can work only with the physical memory, so, for accessing to
the virtual memory we need to make the address translation manually

 Windows stores PDE/PTE tables at the constant virtual addresses

0xC0300000/0xC0000000 (for x86)

 Then we should find the address of the some kernel mode code to
patch, the using of hardcoded address is possible
 Will work on NT 5.x
 Will not work NT 6.x because there is a kernel-mode ASLR

 … but it’s better to modify the code, that located in the SystemCallPad

field of the _KUSER_SHARED_DATA structure

 This structure located at the executable memory page with the constant

address 0xffdf0000 (at least – up to NT 6.1 including)
 The end of this page can be used to store the malicious code

DEMO:
vimeo.com/56595256

https://vimeo.com/56595256

 Unfortunately, considered DSDT modification works
fine only on the NT 5.x and gives the strange BSoD
on the NT 6.x:

 The reason – KeBugCheckEx call inside the ACPI.sys

 ACPI!MapPhysMem calls the
AmlpValidateFirmwareMemoryAddress function, that checks the
physical address from the OperationRegion for belonging to the I/O
ports addresses ranges

 If the control method code trying to read or write something different

(executable images that mapped to the memory, kernel structures and so
on) – ACPI.sys drops the system into the BSoD

 ACPI.sys reads the information about the allowed memory regions
from the special keys of the system registry, that located in
HARDWARE\DESCRIPTION\System\MultifunctionAdapter

 This key is not a permanent – it’s creating during the operating system

startup
 PnP driver puts I/O memory information inside it during the hardware

resources enumeration and initialization

 Well… we can try to put fake I/O memory information into the
system registry and corrupt the hive binary structure somehow
to prevent the system to modify data

 Also, the possible way is exploring the other ACPI features

 Already done by Alex Ionescu: «ACPI 5.0 Rootkit Attacks Against

Windows 8»

 One more variant: to find the vulnerability in the AML byte-code
interpreter code

 But stop, out primary task – is executing of the code, that is
located inside the system registry. Let’s leave ACPI and find
some different way

http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip

 Do you remember the local privileges escalation
vulnerability CVE-2010-4398 (MS11-010)?

 The another one vulnerability in the win32k.sys

 Incorrect usage of the RtlQueryRegistryValues kernel
function causes stack-based buffer overflow during
reading the registry value contents

 Because the RtlQueryRegistryValues – is really
overcomplicated

 Seems that even the Windows developers don’t know all

the documented features of the some kernel functions 

http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://msdn.microsoft.com/en-us/library/ff562046(v=VS.85).aspx

 The RtlQueryRegistryValues has a lot of options and different
data reading modes

 The most interesting stuff located in the

RTL_QUERY_REGISTRY_TABLE structure, that must be passed
to the RtlQueryRegistryValues as an argument

 The Flags field can contain the RTL_QUERY_REGISTRY_DIRECT flag:

 The MSDN quote about this flag: «The QueryRoutine member is not used

(and must be NULL), and the EntryContext points to the buffer to store the
value»

 From the type of the value, that you’re reading, depends on how
exactly the data will be written into the buffer

 REG_SZ, REG_EXPAND_SZ: «EntryContext must point to an initialized

UNICODE_STRING structure»
 Non-string data with size <=sizeof(ULONG): «The value is stored in the

memory location specified by EntryContext»
 Non-string data with size >sizeof(ULONG): «The buffer pointed to

by EntryContext must begin with a signed LONG value. The magnitude of
the value must specify the size, in bytes, of the buffer»

 The usage of the RtlQueryRegistryValues causes the BoF when:

 The code is trying to read REG_DWORD or REG_SZ value with the

RTL_QUERY_REGISTRY_DIRECT flag but without the correct type
value in the DefaultType field

 … and buffer, that pointed by the EntryContext field, has a non-zero
DWORD at the beginning (for example – when the EntryContext
points to the initialized UNICODE_STRING structure)

 … and attacker can replace the reading value (REG_DWORD or
REG_SZ) by malicious one, that has a REG_BINARY type

 Result –100% controllable overflow with the trivial

exploitation!

 Number of overwritten bytes – is the first DWORD value from the

EntryContext pointed buffer

 Simple PoC for the CVE-2010-4398 as a .REG file:

 The vulnerable code fragment in win32k.sys:

 Of course, Microsoft has released a path for the CVE-2011-4398

 That patch also adds some improvements and mitigations for the
RtlQueryRegistryValues function:

 The RTL_QUERY_REGISTRY_TYPECHECK flag has been added, if it is

specified – the RtlQueryRegistryValues will return an error in case of the
zero DefaultType field

 In Windows 8 the RTL_QUERY_REGISTRY_DIRECT flag works only for the
trusted registry keys (that can’t be overwritten under limited user account)

 But these improvements will not make the already written code more

secure

 On Windows 7 we still have a good LPE vector
 … and local-admin-to-ring0 on Windows 8

 Even reverse engineering of the vulnerabilities that
were already fixed can give you a valuable
experience

 As a result of the patched vulnerabilities discovery
it’s possible to obtain a new attack vector and a
"template" of the vulnerable code, that can be used
to find new zero-day vulnerabilities

 Let’s try to find zero-day vulnerabilities that are
similar to the CVE-2010-4398

 Fuzzing? Static dataflow analysis? Symbolic execution?

 Fuzzing? Static dataflow analysis? Symbolic execution?

 Keep it simple. IDA, win32k.sys and one hour of the time!

 Some interesting piece of code in win32k.sys:

 The win32!bInitializeEUDC function unsafely reading the
«FontLink» value (REG_DWORD) of the
«Software\Microsoft\Windows NT\CurrentVersion» key

 No DefaultType specified, EntryContext pointed buffer – is

uninitialized stack variable with the non-zero value

 We can trigger the vulnerability by replacing these values with
the REG_BINARY one

 Yes, it drops a system into the BSoD and we can
control the EIP value 

 Vulnerable function takes the execution from the NtUserInitialize
system call handler. Windows kernel is using this system call for the
per-session initialization of the Win32 subsystem

 So, the vulnerability can be triggered during the system boot, all that we

need – is just put the malicious value into the system registry

 There is a DEP and ASLR in the NT 6.x kernels, and we need to bypass
them absolutely blindly without any pre-interaction with the OS

 Good thing – there is no stack cookies in win32!bInitializeEUDC

 Exploit should not violate the normal execution flow and global state

of the OS kernel, if it will – BSoD and unbootable OS

 Need to restore overwritten stack frames and correctly pass the execution

from the shellcode back to the win32k.sys

 Overflow happens too close to the bottom of the stack, we have only
about 70 bytes for the shellcode

 It’s not possible to do the spray or something, because we can’t interact

with the OS at the exploitation stage, all that we have – is the data that
overwrites the stack

 A little fail: I haven’t got the ROP chain with the short enough length
for DEP/ASLR bypass inside the Windows kernel environment (and it
seems that nobody has)

 The shortest what I know – has a 68 bytes length without the shellcode
 See the «Bypassing Windows 7 kernel ASLR» by Stéfan LE BERRE

 Compromise solution – to disable the DEP inside the Windows boot
loader configuration

 … and enable it for the user-mode processes back when the shellcode has

been successfully executed

 There is no way to disable ASLR

 But it seems that it’s not a very critical for the vulnerability that I’m talking

about

http://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf

 I’m using the JMP ESP that is located at the constant address
inside the KUSER_SHARED_DATA for defeating the kernel ASLR

 70 bytes is a pretty enough for the egg-hunting stage 1
shellcode, that locates and executes stage 2 shellcode in the
kernel-space virtual memory by the binary signature lookup

 Stage 2 shellcode is originally located inside some another registry

value – Windows kernel maps the big parts of the registry hives in
the virtual memory

 Also, in stage 1 shellcode I’m finding an address of the
MmIsAddressValid kernel function

 Stage 1 shellcode is obtaining the kernel image base from the _KPCR

structure (we can access it via FS segment register)

 Whole stage 1 assembly code:

 For the OS code execution state normalization the stage 2
shellcode must perform some operations, that weren’t executed
in the win32k.sys code because of the buffer overflow

 It sets the WIN32_PROCESS_FLAGS flag inside the Win32 Process

Information structure (W32PROCESS) for the current process
 It finds the address of the non-exportable function

win32k!UserInitialize and calls it manually

 Then, the stage 2 shellcode loads, initializes and runs the ring 0
payload

 After that, the stage 2 shellcode sets the return address and ESP

values in order to return the execution of the current system
call back to the system calls manager (nt!_KiFastCallEntry) with
the STATUS_SUCCESS return value

 Regular Windows kernel mode driver PE image

 Is also stored inside the system registry value

 It hides itself from the modern anti-rootkits

 In order to avoid unknown executable code detection it moves itself in the

memory over discardable sections of some default Windows drivers

 It installs the kernel mode network backdoor

 Undetectable NDIS miniport level hooks allows to monitor the incoming

network traffic on all of the interfaces
 When network backdoor finds the magic sequence in the traffic – it injects

meterpreter/bind_tcp payload (from the Metasploit framework) for
execution into the WINLOGON.EXE user mode process

http://www.metasploit.com/modules/payload/windows/meterpreter/bind_tcp

DEMO:
vimeo.com/56625551

https://vimeo.com/56625551

Check out the rootkit source code on GitHub!
github.com/Cr4sh/WindowsRegistryRootkit

https://github.com/Cr4sh/WindowsRegistryRootkit
https://github.com/Cr4sh/WindowsRegistryRootkit

 I’m not reported about these win32k.sys vulnerability into the
Microsoft

 Not very critical vulnerability because of the strange practical use-cases

 Vulnerable systems – all the NT 6.x (up to the Windows 8), for x86 and

x64

 Seems that stable exploitation of vulnerability in the
win32!bInitializeEUDC function is impossible on the x64 Windows
version

 The win32k!bInitializeEUDC function have the stack cookies on

Windows x64 because of the stack frames elimination
 Impossible to exploit such cases completely blindly, without the pre-

interaction with the OS

root@cr4.sh
@d_olex

http://twitter.com/d_olex

