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ABSTRACT
We investigate the security of Diffie-Hellman key exchange as
used in popular Internet protocols and find it to be less secure
than widely believed. First, we present a novel flaw in TLS
that allows a man-in-the-middle to downgrade connections
to “export-grade” Diffie-Hellman. To carry out this attack,
we implement the number field sieve discrete log algorithm.
After a week-long precomputation for a specified 512-bit
group, we can compute arbitrary discrete logs in this group
in minutes. We find that 82% of vulnerable servers use a
single 512-bit group, allowing us to compromise connections
to 7% of Alexa Top Million HTTPS sites. In response, major
browsers are being changed to reject short groups.
We go on to consider Diffie-Hellman with 768- and 1024-bit

groups. A small number of fixed or standardized groups are
in use by millions of TLS, SSH, and VPN servers. Perform-
ing precomputations on a few of these groups would allow a
passive eavesdropper to decrypt a large fraction of Internet
traffic. In the 1024-bit case, we estimate that such com-
putations are plausible given nation-state resources, and a
close reading of published NSA leaks shows that the agency’s
attacks on VPNs are consistent with having achieved such
a break. We conclude that moving to stronger key exchange
methods should be a priority for the Internet community.

1. INTRODUCTION
Diffie-Hellman key exchange is widely used to establish

session keys in Internet protocols. It is the main key exchange
mechanism in SSH and IPsec and a popular option in TLS.
We examine how Diffie-Hellman is commonly implemented
and deployed with these protocols and find that, in practice,
it frequently offers less security than widely believed.
There are two reasons for this. First, a surprising number

of servers use weak Diffie-Hellman parameters or maintain
support for obsolete 1990s-era export-grade crypto. More
critically, the common practice of using standardized, hard-
coded, or widely shared Diffie-Hellman parameters has the
effect of dramatically reducing the cost of large-scale attacks,
bringing some within range of feasibility today.
The current best technique for attacking the key exchange

relies on compromising one of the private exponents (a, b)
by computing the discrete log of the corresponding public
value (ga mod p, gb mod p). With state-of-the-art number
field sieve algorithms, computing a single discrete log is more
difficult than factoring an RSA modulus of the same size.
However, an adversary who performs a large precomputation
for a prime p can then quickly calculate arbitrary discrete

logs in that group, amortizing the cost over all targets that
share this parameter. The algorithm can be tuned to reduce
individual log cost even further. Although this fact is well
known among mathematical cryptographers, it seems to have
been lost among practitioners deploying cryptosystems. We
exploit it to obtain the following results:
Active attacks on export ciphers in TLS. We identify a new
attack on TLS, in which a man-in-the-middle attacker can
downgrade a connection to export-grade cryptography. This
attack is reminiscent of the FREAK attack [6], but applies
to the ephemeral Diffie-Hellman ciphersuites and is a TLS
protocol flaw rather than an implementation vulnerability.
We present measurements that show that this attack applies
to 8.4% of Alexa Top Million HTTPS sites and 3.4% of all
HTTPS servers that have browser-trusted certificates. To
exploit this attack, we implemented the number field sieve
discrete log algorithm and carried out precomputation for a
512-bit Diffie-Hellman group used by 82% of the vulnerable
servers. This allows us to compute individual discrete logs in
minutes. Using our discrete log oracle, we can compromise
connections to 7% of the Top Million sites. Discrete logs
over larger groups have been computed before [7], but as far
we are aware, this is the first time they have been exploited
to expose concrete vulnerabilities in real-world systems.
We were also able to compromise Diffie-Hellman for many

other servers because of design and implementation flaws
and configuration mistakes. These include using a composite-
order subgroup in combination with short exponents, which is
vulnerable to a known attack of van Oorschot andWiener [49],
and the inability of clients to properly validate Diffie-Hellman
parameters without knowing the subgroup order (which TLS
has no provision to communicate). We implement these
attacks and discover several vulnerable implementations.
Risks from common 1024-bit groups. We explore the impli-
cations of these attacks for 768- and 1024-bit groups, which
are widely used in practice and still considered secure. We
provide new estimates for the computational resources neces-
sary to compute discrete logarithms in groups of these sizes,
concluding that 768-bit groups are within range of academic
teams, and 1024-bit groups may plausibly be within range
of state-level attackers. In both cases, computing individual
logs can be done efficiently after the initial precomputation.
We then examine evidence from published Snowden docu-
ments suggesting that NSA may already be exploiting this
capability to decrypt VPN traffic. We perform measurement
studies to examine the implications of such an attack on the
most commonly used groups in IKE, SSH, and TLS.

https://weakdh.org


p

polynomial
selection

sieving linear
algebra

log db

precomputation

y, g descent

x

individual log

Figure 1: The number field sieve algorithm for discrete log consists of a precomputation stage that depends only on
the prime p and a descent stage that computes individual logs. With sufficient precomputation, an attacker can quickly break
any Diffie-Hellman instances using a particular p.

Mitigations and lessons. As a short-term countermeasure in
response to our export-grade attacks on TLS, all mainstream
browsers are implementing a more restrictive policy on the
size of Diffie-Hellman groups they accept. We recommend
that TLS servers disable export-grade cryptography and
carefully vet the Diffie-Hellman groups they use. In the
longer term, we advocate that protocols migrate to stronger
Diffie-Hellman groups, such as those based on elliptic curves.

2. DIFFIE-HELLMAN CRYPTANALYSIS
Diffie-Hellman key exchange was the first published public-

key algorithm [13]. In the simple case of prime groups, Alice
and Bob agree on a prime p and a generator g of a multiplica-
tive subgroup modulo p. Alice sends ga mod p, Bob sends
gb mod p, and each computes a shared secret gab mod p.1
The security of Diffie-Hellman is not known to be equiva-

lent to the discrete log problem (except in certain groups [12,
32,33]), but computing discrete logs remains the best known
cryptanalytic attack. An attacker who can find the discrete
log x from y = gx mod p can easily find the shared secret.
Textbook descriptions of discrete log can be misleading

about the computational tradeoffs, for example balancing pa-
rameters to minimize overall time to compute a single discrete
log. In fact, as shown in Figure 1, a single large precompu-
tation on p can be used to efficiently break a large number
of different Diffie-Hellman exchanges made with that prime.
The typical case Diffie-Hellman is typically implemented
with prime fields and large group orders. In this case, the
most efficient discrete log algorithm is the number field sieve
(NFS) [19, 23, 42].23 The general technique is called index
calculus, and has four stages with different computational
properties. The first three steps are only dependent on the
prime p, and comprise most of the computation.
First is polynomial selection, in which one finds a polyno-

mial f(z) defining a number field Q(z)/f(z) for the computa-
tion. (For our cases, f(z) typically has degree 5 or 6.) This
parallelizes well and is only a small portion of the runtime.
1There is also a Diffie-Hellman exchange over elliptic curve
groups; we address only the “mod p” case in this paper.
2Recent spectacular advances in discrete log algorithms
have resulted in a quasi-polynomial algorithm for small-
characteristic fields [3], but these advances are not known to
apply to the prime fields used in practice.
3There is a closely related number field sieve algorithm for
factoring [11, 30], and in fact many parts of the implementa-
tions can be shared.

In the second stage, sieving, one factors ranges of integers
and number field elements in batches to find many relations
of elements, all of whose prime factors are less than some
bound B (called B-smooth). Sieving parallelizes well, but is
computationally expensive, because we must search through
and attempt to factor many elements. The time for this
step depends on heuristic estimates of the probability of
encountering B-smooth numbers in this search.
In the third stage, linear algebra, we construct a large,

sparse matrix consisting of the coefficient vectors of prime
factorizations we have found. A non-zero kernel vector of the
matrix modulo the order q of the group will give us logs of
many small elements. This database of logs serves as input
to the final stage. The difficulty depends on q and the matrix
size and can be parallelized in a limited fashion.
The final stage, called descent, actually deduces the dis-

crete log of the target y. We re-sieve until we can find a set
of relations that allow us to write the log of y in terms of the
logs in the precomputed database. This step is accomplished
in three phases: an initialization phase, which sieves to write
the target in terms of medium-sized primes, a middle phase,
in which these medium-sized primes are further sieved un-
til they can be represented by elements in the database of
known logs, and a final phase that actually reconstructs the
target using the log database. Crucially, descent is the only
NFS stage that involves y (or g), so polynomial selection,
sieving, and linear algebra can be done once for a prime p,
and reused to compute the discrete logs of many targets.
The running time of this algorithm is Lp(1/3, (64/9)1/3) =

exp
(
(1.923 + o(1))(log p)1/3(log log p)2/3). This is obtained

by carefully tuning the smoothness bound B and the siev-
ing range. Early articles (e.g. [19]) encountered technical
difficulties with descent and reported that the complexity
of this step would equal the precomputation; this may have
contributed to misconceptions about the performance of the
NFS for discrete logs. More recent analyses have improved
the complexity of descent to Lp(1/3, 1.442) [9], and later to
Lp(1/3, 1.232) [2], much cheaper than the precomputation
in practice.
The numerous parameters of the algorithm allow some

flexibility to reduce time on some computational steps at the
expense of others. For example, sieving more will result in
a smaller matrix, making linear algebra cheaper, and doing
more work in the precomputation makes the final descent
step easier. In §3.3 we show how exploiting these trade-offs
allows us to quickly compute 512-bit discrete logs in order

2



to perform an effective man-in-the-middle attack on TLS.
Improperly generated groups A different family of
algorithms runs in time exponential in group order, and they
are practical even for large primes when the group order is
small or has many small prime factors. To avoid this, most
implementations use “safe” primes, which have the property
that p− 1 = 2q for some prime q, so that the only possible
subgroups have order 2 or q. However, as we show in §3.5,
improperly generated groups are sometimes used in practice
and susceptible to attack.
The baby-step giant-step [44] and Pollard rho [41] algo-

rithms both take √q time to compute a discrete log in any
(sub)group of order q, while Pollard lambda [41] can find
x < t in time

√
t. These parallelize well [48], and precom-

putation can speed up individual log calculations. If the
factorization of the subgroup order q is known, one can
use any of the above algorithms to compute the discrete
log in each subgroup of order qei

i dividing q, and then re-
cover x using the Chinese remainder theorem. This is the
Pohlig-Hellman algorithm [40], which costs

∑
i
ei
√

qi using
baby-step giant-step or Pollard rho.
Standard primes Generating primes with special proper-
ties can be computationally burdensome, so many implemen-
tations use fixed or standardized Diffie-Hellman parameters.
A prominent example is the Oakley groups [39], which give
“safe” primes of length 768 (Oakley Group 1), 1024 (Oakley
Group 2), and 1536 (Oakley Group 5). These groups were
published in 1998 and have been used for many applications
since, including IKE, SSH, Tor, and OTR.
When primes are of sufficient strength, there seems to be

no disadvantage to reusing them. However, widespread reuse
of Diffie-Hellman groups can convert attacks that are at the
limits of an adversary’s capabilities into devastating breaks,
since it allows the attacker to amortize the cost of discrete
log precomputation among vast numbers of potential targets.

3. ATTACKING TLS
TLS supports Diffie-Hellman as one of several possible

key exchange methods, and about two-thirds of popular
HTTPS sites allow it, most commonly using 1024-bit primes.
However, a smaller number of servers also support legacy
“export-grade” Diffie-Hellman using 512-bit primes that are
well within reach of NFS-based cryptanalysis. Furthermore,
for both normal and export-grade Diffie-Hellman, the vast
majority of servers use a handful of common groups.
In this section, we exploit these facts to construct a novel

attack against TLS. First, we perform NFS precomputations
for the most popular 512-bit prime on the web, so that we
can quickly compute the discrete log for any key-exchange
message that uses it. Next, we show how a man-in-the-
middle, so armed, can attack connections between popular
browsers and any server that allows export-grade Diffie-
Hellman, by using a TLS protocol flaw to downgrade the
connection to export-strength and then recovering the session
key. We find that this attack with a single precomputation
can compromise about 6.9% of HTTPS servers among Alexa
Top 1M domains.

3.1 TLS and Diffie-Hellman
The TLS handshake begins with a negotiation to determine

the crypto algorithms used for the session. The client sends a
list of supported ciphersuites (and a random nonce cr) within

Source Popularity Prime
Apache 82 % 9fdb8b8a004544f0045f1737d0ba2e0b

274cdf1a9f588218fb435316a16e3741
71fd19d8d8f37c39bf863fd60e3e3006
80a3030c6e4c3757d08f70e6aa871033

mod_ssl 10% d4bcd52406f69b35994b88de5db89682
c8157f62d8f33633ee5772f11f05ab22
d6b5145b9f241e5acc31ff090a4bc711
48976f76795094e71e7903529f5a824b

(other) 8% (463 distinct primes)

Table 1: Top 512-bit DH primes for TLS. 8% of Alexa
Top 1M HTTPS domains allow DHE_EXPORT, of which 92%
use one of the two most popular primes, shown here.

the ClientHello message, where each ciphersuite specifies a key
exchange algorithm and other primitives. The server selects
a ciphersuite from the client’s list and signals its selection in
a ServerHello message (containing a random nonce sr).
TLS specifies ciphersuites supporting multiple varieties of

Diffie-Hellman. Textbook Diffie-Hellman with unrestricted
strength is called “ephemeral” Diffie-Hellman, or DHE, and
is identified by ciphersuites that begin with TLS_DHE_*.4 In
DHE, the server is responsible for selecting the Diffie-Hellman
parameters. It chooses a group (p, g), computes gb, and sends
a ServerKeyExchange message containing a signature over the
tuple (cr, sr, p, g, gb) using the long-term signing key from
its certificate. The client verifies the signature and responds
with a ClientKeyExchange message containing ga.

To ensure agreement on the negotiation messages, and to
prevent downgrade attacks [50], each party computes the
TLS master secret from gab and calculates a MAC of its view
of the handshake transcript. These MACs are exchanged
in a pair of Finished messages and verified by the recipients.
Thereafter, client and server start exchanging application
data, protected by an authenticated encryption scheme with
keys also derived from gab.
Export-grade Diffie-Hellman. To comply with 1990s-era U.S.
export restrictions on cryptography, SSL 3.0 and TLS 1.0
supported reduced-strength DHE_EXPORT ciphersuites that
were restricted to primes no longer than 512 bits. In all other
respects, DHE_EXPORT protocol messages are identical to
DHE. The relevant export restrictions are no longer in effect,
but many libraries and servers maintain support for back-
wards compatibility. Many TLS servers are still configured
with two groups: a strong 1024-bit group for regular DHE
key exchanges and a 512-bit group for legacy DHE_EXPORT.
This has been considered safe because most modern TLS
clients do not offer or accept DHE_EXPORT ciphersuites.
To understand how HTTPS servers in the wild use Diffie-

Hellman, we modified the ZMap [14] toolchain to offer DHE
and DHE_EXPORT ciphersuites and scanned TCP/443 on
both the full public IPv4 address space and the Alexa Top 1M
domains. The scans took place in March 2015. Of 539,000
HTTPS sites among Top 1M domains, we found that 68.3%
supported DHE and 8.38% supported DHE_EXPORT. Of

4TLS also supports a “static” Diffie-Hellman format, where
the server’s key exchange value is fixed and contained in
its certificate, but this is rarely used in practice. New ci-
phersuites that use elliptic curve Diffie-Hellman (ECDHE) are
gaining in popularity, but in this paper we focus exclusively
on the traditional prime-field (“mod p”) variety.
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Figure 2: DHE_EXPORT active downgrade attack. A
man-in-the-middle can force TLS clients to use export-
strength DH with any server that allows DHE_EXPORT. Then,
by finding the 512-bit discrete log, the attacker can learn
the session key and arbitrarily read or modify the contents.
Datafs refers to False Start [29] application data that some
TLS clients send before receiving the server’s Finished.

14.3 million IPv4 HTTPS servers with browser-trusted cer-
tificates, 23.9% supported DHE and 4.94% DHE_EXPORT.
While the TLS protocol allows servers to generate their

own Diffie-Hellman parameters, the overwhelming majority
use one of a handful of primes. As shown in Table 1, just
two 512-bit primes account for 92% of Alexa Top 1M do-
mains that support DHE_EXPORT, and 93% of all servers
with browser-trusted certificates that support DHE_EXPORT.
(Non-export DHE follows a similar distribution with longer
primes.) The most popular 512-bit prime was hard-coded
into many versions of Apache. Introduced in 2005 with
Apache 2.1.5, it was used until 2.4.7, which disabled export
ciphersuites. We found it in use by about 564,000 servers
with browser-trusted certificates.

3.2 Active Downgrade to Export-Grade DHE
Given the widespread use of these primes, an attacker with

the ability to compute discrete logs in 512-bit groups could
efficiently break DHE_EXPORT handshakes for about 8% of
Alexa Top 1M HTTPS sites, but modern browsers never
negotiate export-grade ciphersuites. To circumvent this, we
show how an attacker who can compute 512-bit discrete
logs in real time can downgrade a regular DHE connection
to use a DHE_EXPORT group, and thereby break both the
confidentiality and integrity of application data.
The attack is depicted in Figure 2 and relies on a flaw

in the way TLS composes DHE and DHE_EXPORT. When
a server selects DHE_EXPORT for a handshake, it proceeds
by issuing a signed ServerKeyExchange message containing
a 512-bit p512, but the structure of this message is identi-
cal to the message sent during standard DHE ciphersuites.
Critically, the signed portion of the server’s message fails
to include any indication of the specific ciphersuite that the
server has chosen. Provided that a client offers DHE, an
active attacker can re-write the client’s ClientHello to offer
a corresponding DHE_EXPORT ciphersuite accepted by the
server and remove other ciphersuites that could be chosen
instead. The attacker re-writes the ServerHello response to
replace the chosen DHE_EXPORT ciphersuite with a matching
non-export ciphersuite and forwards the ServerKeyExchange

message to the client as is. The client will interpret the
export-grade tuple (p512, g, gb) as valid DHE parameters cho-
sen by the server and proceed with the handshake. The client
and server have different handshake transcripts at this stage,
but an attacker who can compute b in real time can then
derive the master secret and connection keys to complete the
handshake with the client, and then freely read and write
application data pretending to be the server.
There are two remaining challenges in implementing this

active downgrade attack. The first is to compute individual
discrete logs in close to real time, and the second is to delay
handshake completion until the discrete log computation has
had time to finish. We address these in the next subsections.
Comparison with FREAK. The attack is reminiscent of the
recent FREAK [6] attack, in which an attacker downgrades
a regular RSA key exchange to one that uses export-grade
512-bit ephemeral RSA keys, relying on a bug in several
TLS client implementations. The attacker then factors the
ephemeral key to hijack future connections that use the same
key. The cryptanalysis takes several hours on commodity
hardware and is usable until the server decides to regenerate
a fresh ephemeral RSA key (typically when it restarts).
Our downgrade attack is due to a protocol flaw in TLS,

not an implementation bug. From a client perspective, the
only defense is to reject small primes in DHE handshakes.
Prior to this work, most popular browsers accepted p of
size ≥ 512 bits.5 Requiring larger groups would prevent the
downgrade attack. Our attack affects fewer HTTPS servers
than FREAK, but, as we shall see, the cost per broken
connection is far lower, since the precomputation for each
512-bit group can be used indefinitely against all servers that
use the group, and since each individual discrete logarithm
only takes a few minutes.
Previous Cross-Protocol Attacks Our attack and FREAK
both follow the same pattern as other cross-protocol attacks
discovered in TLS. As early as SSL 3.0, Schneier and Wagner
noted a related vulnerability that they called key exchange
rollback [50]. Mavrogiannopoulos et al. showed how explicit
curve ECDHE handshakes could be confused with DHE
handshakes [34]. All these attacks could be prevented by
additionally signing the ciphersuite in the ServerKeyExchange
message. We expect that TLS 1.3 will fix this protocol flaw.
More generally, our downgrade attack can also be intepreted
as a backwards compatibility attack [22] where one party
uses only strong cryptography but the other supports both
strong and weak ciphersuites.

3.3 512-bit Discrete Log Computations
We modified CADO-NFS [1] to implement the number

field sieve discrete log algorithm from §2 and applied it to two
512-bit primes, including the top DHE_EXPORT prime shown
in Table 1. Precomputation took 7 days, for each prime, after
which computing individual logs took a median time of 90 sec-
onds. We list the runtime for each stage of the computation
below. The times were about the same for both primes.
Precomputation As shown in Figure 1, the precompu-
tation phase includes the polynomial selection, sieving, and
linear algebra steps. For this precomputation, we deliberately
sieved more than strictly necessary. This enabled two opti-
5In our experiments, Internet Explorer, Chrome, Firefox,
Opera, all accepted 512-bit primes, whereas Safari allowed
groups as small as 16 bits.

4



30 60 90 120 150 180
0

0.5

1

Seconds

C
D

F
of

ke
ys

Figure 3: Individual discrete log time for 512-bit DH.
After a week-long precomputation for the most common
512-bit prime used for DHE_EXPORT, we can quickly break
TLS key exchanges that use it. Here we show the times for
computing 3,500 individual logs; the median is 90 seconds.

mizations: first, with more relations obtained from sieving,
we eventually obtain a larger database of known logs, which
makes the descent faster. Second, more sieving relations also
yield a smaller linear algebra step, which is desirable because
sieving is much easier to parallelize than linear algebra.
For the polynomial selection and sieving steps, we used

idle time on 2000–3000 CPU cores in parallel, of which most
CPUs were Intel Sandy Bridge. Polynomial selection ran
for about 3 hours, which in total corresponds to 7,600 core-
hours. Sieving ran for 15 hours, corresponding to 21,400
core-hours. This sufficed to collect 40,003,519 relations of
which 28,372,442 were unique, involving 15,207,865 large
primes of at most 27 bits (hence bound B from §2 is 227).
From this data set, we obtained a square matrix with

2,157,378 rows and columns, with 113 non-zero coefficients
per row on average. We solved the corresponding linear sys-
tem on a 36-node cluster with two 8-core Intel Xeon E5-2650
CPUs per node, connected with Infiniband FDR. We used
the block Wiedemann algorithm [10, 47] with parameters
m = 18 and n = 6. Using the unoptimized implementa-
tion from CADO-NFS [1] for linear algebra over GF(p), the
computation finished in 120 hours, corresponding to 60,000
core-hours. We expect that optimizations could bring this
cost down by at least a factor of three.
In total, the wall-clock time for each precomputation was

slightly over one week. The resulting database of known logs
for the descent occupies about 2.5 GB in ASCII format.
Descent Once this precomputation was finished, we were
able to run the final descent step to compute individual
discrete logs in minutes for targets in each of these groups.
In order to save time on individual computations, we imple-
mented a client-server architecture using the ZeroMQ mes-
saging library. The server maintains the precomputed data
in RAM and returns logs for values passed to it by clients.
We implemented the descent calculation in a mix of Python

and C. The first and second stages are parallelized and run
sieving in C, and the final discrete log is deduced in Python.
We ran the server on a machine with four 6-core Intel Xeon
E7-8893 CPUs and 2 TB of RAM. (The memory is overkill
for this application; 64 GB would be plenty.) On average,
computing individual logs took about 90 seconds, but the
time varied from 38–260 seconds (see Fig. 3). This is divided
between about 20 seconds for descent initialization and the
remainder on the middle phase, which is currently parallelized
only in a limited fashion. Further optimizations—such as

more effective parallelization or additional sieving—should
bring the median time well below a minute.
For purposes of comparison, a single 512-bit RSA factor-

ization using the CADO-NFS implementation takes about
eight days of wall-clock time on the computer used for the
descent, and about seven hours parallelized across 1,800 cores
of Amazon ec2 c4.8xlarge instances.

3.4 Active Attack Implementation
We implemented a man-in-the-middle network attacker

that sits between a TLS client (web browser) and any server
that supports DHE_EXPORT and uses the most common 512-
bit Apache group. Our implementation follows the message
sequence in Figure 2: it downgrades the connection towards
the server, computes the session keys, and takes over the
connection towards the client by impersonating the server.
The main challenge is to compute the shared secret gab

before the handshake completes in order to forge a Finished
message from the server. With our descent implementation,
the computation takes an average of 90 seconds, but there
are several ways an attacker can work around this delay:
Non-browser clients Different TLS clients impose dif-
ferent time limits for the handshake, after which they kill
the connection. Command-line clients such as curl and git
often run unattended, so they have long or no timeouts, and
we could hijack their connections without much difficulty.
TLS warning alerts Web browsers tend to have shorter
timeouts, but we can keep browser connections alive by
sending TLS warning alerts, which are ignored by the browser
but reset the handshake timer. For example, this allowed us
to keep Firefox’s TLS connections alive indefinitely. (Other
browsers closed the connection after a minute.) Although
the victim connection still takes much longer than usual,
the attacker might choose to compromise a request for a
background resource that does not delay rendering the page.
Ephemeral key caching Many TLS servers do not use
a fresh value b for each connection, but instead compute gb

once and reuse it for multiple negotiations, possibly until they
are restarted. Without enabling the SSL_OP_SINGLE_DH_USE
option, OpenSSL will reuse gb for the lifetime of a TLS
context. While both Apache and Nginx internally apply
this option, certain load balancers, such as stud [46], do not.
The F5 BIG-IP load balancers and hardware TLS frontends
will reuse gb unless the “Single DH” option is checked [51].
Microsoft Schannel caches gb for two hours—this setting
is hard-coded. For these servers, an attacker can compute
the discrete log of gb from one connection and use it to
attack later handshakes, avoiding the need to complete the
computation online. Based on a random sampling of IPv4
hosts serving browser-trusted certificates that support DHE,
we found that 17% of TLS servers reused gb at least once over
the course of 20 handshakes, and that 15% only used one
value. For DHE_EXPORT, only 0.1% reused gb, likely because
Microsoft IIS does not support 512-bit export ciphersuites.
TLS False Start Even when clients enforce shorter time-
outs and servers do not reuse values for b, the attacker can
still break the confidentiality of user requests if the client
supports the TLS False Start extension [29]. This extension
reduces connection latency by having the client send early
application data without waiting for the server’s Finished mes-
sage to arrive. Recent versions of Chrome, Internet Explorer,
and Firefox implement False Start, but their policies on
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when to enable this feature keeps changing between versions.
Firefox 35, Chrome 41, and Internet Explorer (Windows 10)
send False Start data with DHE.6 In these cases, a man-in-
the-middle can record the handshake and decrypt the False
Start payload at leisure. We note that this initial data sent
by a browser often contains sensitive user authentication
information, such as passwords and cookies.

3.5 Other Weak and Misconfigured Groups
In our scans, we found several other exploitable security

issues in the DHE configurations used by TLS servers.
512-bit primes in non-export DHE We found 2,631
servers with browser-trusted certificates (and 118 in the
Top 1M domains) that used 512-bit or weaker primes for
non-export DHE. In these instances, active attacks may
be unnecessary. If a browser negotiates a DHE ciphersuite
with one of these servers, a passive eavesdropper can later
compute the discrete log and obtain the TLS session keys
for the connection. An active attack may still be necessary
when the client’s ordering of ciphersuites would result in the
server not selecting DHE. In this case, as in the DHE_EXPORT
downgrade attack, an active attacker can force the server to
choose a vulnerable DHE ciphersuite.
As a proof-of-concept, we implemented a passive eaves-

dropper for regular DHE connections, and used it to decrypt
test connections to www.fbi.gov. Until April 2015, this server
used the default 512-bit DH group from OpenSSL, which
was the second group for which we performed the NFS pre-
computation, enabling the attack. The website no longer
supports DHE.
Attacks on Composite-Order Subgroups Failure to
generate Diffie-Hellman primes according to known best
practices can result in devastating attacks. Not every TLS
server uses “safe” primes. Out of approximately 70,000
distinct primes seen across both export and non-export TLS
scans, 4,800 were not safe, meaning that (p − 1)/2 was
composite. (Incidentally, we also found 9 composite p.)
These groups are not necessarily vulnerable, as long as g
generates a group with at least one sufficiently large subgroup
order to rule out the Pohlig-Hellman algorithm as an attack.
In some real-life configurations however, choosing such

primes can lead to an attack. For efficiency reasons, some
implementations use ephemeral keys gx with a short expo-
nent x; common suggested sizes are as small as 160 or 224
bits, intended to match the estimated strength of a 1024 or
2048-bit group. For safe p, such exponent lengths are not
known to decrease security, as the most efficient attack will
be the Pollard lambda algorithm. But if the order of the
subgroup generated by g has small factors, they can be used
to recover information about exponents. From a subset of
factors {qe1

1 . . . q
ek
k } with

∏
i
qei

i = z, Pohlig-Hellman can
recover x mod z in time

∑
i
ei
√

qi. If x ≤ z, this suffices to
recover x. If not, Pollard lambda can use this information
to recover x in time

√
x/z. This attack was first described

as hypothetical by van Oorschot and Wiener [49].
To see if TLS servers in the wild were vulnerable to this

attack, we tested various non-safe primes found in our scan.
For each non-safe prime p, we opportunistically factored
6 Firefox 36 disabled False Start for DHE, when Brian Smith
raised concerns about weak Diffie-Hellman groups, similar to
to those discussed in this paper: https://bugzilla.mozilla.org/
show_bug.cgi?id=952863.

p− 1 using Bernstein’s batch method [4]. We then ran the
GMP-ECM implementations of the Pollard p− 1 algorithm
and the ECM factoring methods [52] for 5 days parallelized
across 28 cores and discovered 36,447 prime factors.
We then examined the generators g used with each prime p.

We classified a tuple (p, g, y) sent by a server as interesting
if the prime factorization of p− 1 had revealed prime factors
of the order of g, and ordered them by the estimated work
required using Pohlig-Hellman and Pollard lambda to recover
a target private exponent x of length ranging from 64 to 256
bits. There were 753 (p, g) pairs where we knew factors of
the subgroup generated by g; these had been used for 40,903
connections across all of our scans.
We implemented the van Oorschot andWiener algorithm in

Sage, using a parallel Pollard rho implementation we wrote
in C using the GMP library. We used the distinguished
points method for collision detection; for a prime known in
advance, this implementation can be arbitrarily sped up by
precomputing a table of distinguished points.
We computed partial information about the server secret

exponent used in 460 exchanges, and were able to recover
the whole exponent used by 159 different hosts, 53 of which
authenticated with valid browser-trusted certificates. In
all cases, the vulnerable hosts used 512-bit prime moduli;
three of them used 160-bit exponents whereas the rest used
128-bit exponents. The smallest-order subgroup had 46
bits (which Pollard rho handles in seconds) and the largest-
order subgroup had 81 bits, which took 181260s–632012s in
our implementation. The Pollard lambda calculations used
interval width varying from 40 to 70 bits.
Our computations allowed us to hijack connections to a

variety of vulnerable TLS servers, including web interfaces for
VPN devices (48 hosts), communications software (21 hosts),
web conferencing servers (27 hosts), and ftp servers (6 hosts).
As a proof-of-concept, we modified our man-in-the-middle
attacker of §3.3 to impersonate a vulnerable server and cap-
ture user credentials. Compared to an attack using NFS, we
could compute the discrete log of the server ephemeral key,
with a delay hardly noticeable for browser users.
Misconfigured groups The Digital Signature Algorithm
(DSA) [37] uses primes p such that p− 1 has a 160, 224, or
256-bit prime factor q and g generates only a subgroup of
order q. When using properly generated DSA parameters,
these groups are secure for use in Diffie-Hellman key ex-
changes. Notably, DSA groups are hard-coded in Java’s
sun.security.provider package, and are used by default
in many Java-based TLS servers. However, some servers in
our scans used Java’s DSA primes as p, but mistakenly used
the DSA group order q in the place of the generator g. We
found 5,741 hosts misconfigured this way.
This substitution of q for g is likely due to a usability prob-

lem: the canonical ASN.1 representation of Diffie-Hellman
key exchange parameters (coming from PKCS#3) is a se-
quence (p, g), while that of DSA parameters (coming from
PKIX) is (p, q, g); we conjecture that the confusion between
these formats led to a simple programming error.
In a DSA group, the subgroup generated by q is likely

to have many small prime factors in its order, since for p
generated according to [37], (p − 1)/q is a random integer.
For Java’s sun.security.provider 512-bit prime, using q as
a generator leaks 290 bits of information about exponents at
a cost of roughly 240 operations. Luckily, since the provider
generates exponents of length max(n/2, 384) for n-bit p,
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this does not suffice to recover a full exponent. Still, this
misconfiguration bug results in a significant loss of security
and serves as a cautionary tale for programmers.

4. STATE-LEVEL THREATS TO DH
The previous sections demonstrate the existence of practi-

cal attacks against Diffie-Hellman key exchange as currently
used by TLS. However, these attacks rely on the ability to
downgrade connections to export-grade crypto or on the use
of unsafe parameters. In this section we address the following
question: how secure is Diffie-Hellman in broader practice,
as used in other protocols that do not suffer from downgrade,
and when applied with stronger groups?
To answer this question we must first examine how the

number field sieve for discrete log scales to 768- and 1024-bit
groups. As we argue below, 768-bit groups, which are still in
relatively widespread use, are now within reach for academic
computational resources, and performing precomputations
for a small number of 1024-bit groups is plausibly within
the resources of state-level attackers. The precomputation
would likely require special-purpose hardware, but would
not require any major algorithmic improvements beyond
what is known in the academic literature. We further show
that even in the 1024-bit case, the descent time—necessary
to solve any specific discrete logarithm instance within a
common group—would be fast enough to break individual
key exchanges in close to real time.
In light of these results, we next examine several stan-

dard Internet security protocols—IKE, SSH, and TLS—to
determine the vulnerability of these exchanges to attacks
by resourceful attackers. Although the cost of the precom-
putation for a 1024-bit group is several times higher than
for an RSA key of equal size, we observe that a one-time
investment could be used to attack millions of hosts, due to
widespread reuse of the most common Diffie-Hellman param-
eters. Unfortunately, our measurements also indicate that it
may be very difficult to sunset the use of fixed 1024-bit Diffie-
Hellman groups that have long been embedded in standards
and implementations.
Finally, we apply this new understanding to a set of

recently-published documents leaked by Edward Snowden [45],
to evaluate the hypothesis that the National Security Agency
has already implemented such a capability. We show that
this hypothesis is consistent with the published details of
the intelligence community’s cryptanalytic capabilities, and
indeed matches the known capabilities more closely than
other proposed explanations, such as novel breaks on RC4
or AES. We believe that this analysis may help to shed light
on unanswered questions about how NSA may be gaining
access to VPN, SSH, and TLS traffic.

4.1 Scaling NFS to 768- and 1024-bit DH
Estimating the cost for discrete log cryptanalysis at longer

key sizes is far from straightforward, due in part to the
complexity of parameter tuning, and to tradeoffs between
the sieving and linear algebra steps, which have very different
computational characteristics. (Much more attention has
gone to understanding 1024-bit factorization, but even there,
many published estimates are crude extrapolations of the
asymptotic complexity.) We attempt estimates for 768- and
1024-bit discrete log based on the existing literature and
our own experiments, but further work is needed for greater
confidence, particularly for the 1024-bit case. We summarize

all the costs, measured or estimated, in Table 2.
DH-768: Feasible with academic power. For the
768-bit case, we base our estimates on the recent discrete log
record at 596 bits [7] and the integer factorization record of
768 bits from 2009 [28]. While the algorithms for factorization
and discrete log are similar, the discrete log linear algebra
stage is many times more difficult, as the matrix entries are
no longer boolean. We can reduce overall time by sieving
more, thus generating a smaller input matrix to the linear
algebra step. Since sieving parallelizes better than linear
algebra, this tradeoff is desirable for large inputs.
A 596-bit factorization takes about 5 core-years, most

of it spent on sieving. In comparison, the record 596-bit
discrete log effort tuned parameters such that they spent
50 core-years on sieving. This reduced their linear algebra
calculation to 80 core-years. We used this same strategy in
our 512-bit experiments in §3.3.
Similarly, the 768-bit RSA factoring record spent more time

in sieving in order to save time in the linear algebra step. The
cost of sieving was around 1500 core-years, and the matrix
that was produced had 200M rows and columns. As a result
the linear algebra took 150 core-years, but taking algorithmic
improvements since 2009 into account and optimizing for the
total time7, we estimate that factoring an RSA-768 integer
would take 900 core-years in total.
For a 768-bit discrete log, we can expect that ten times

as much sieving as the RSA case would reduce the matrix to
around 150M rows. We extrapolate from experiments with
existing software that this linear algebra would take 28,500
core-years, for a total of 36,500 core-years. This is within
reach by computing power available to academics.
The descent step takes relatively little time. We experi-

mented with both CADO-NFS and a new implementation
with GMP-ECM based on the early-abort strategy described
in [5]. Using these techniques, the initial descent phase took
an average of around 1 core-day. The remaining phase uses
sieving much as in the precomputation; extrapolating from
experiments, the rest of the descent should take at most
1 core-day. In total, after precomputation, the cost of a
single 768-bit discrete log computation is around 2 core-days
and is easily parallelizable.
DH-1024: Plausible with state-level resources. Ex-
perimentally extrapolating sieving parameters to the 1024-bit
case is difficult due to the tradeoffs between the steps of the
algorithm and their relative parallelism. The prior work
proposing parameters for factoring a 1024-bit RSA key is
thin: [27] proposes large prime bounds of 42 bits, but the
proposed value of the sieving range I is clearly too small,
giving too few smooth results per sieving subtask. Since no
publicly available software can currently deal with values
of I larger than those proposed, we could not experimen-
tally update the estimates of this paper with more relevant
parameter choices.
Without better parameter choices, we resort to extrapolat-

ing from asymptotic complexity. For the number field sieve,
the complexity is exp

(
(k + o(1))(log N)1/3(log log N)2/3),

where N is the integer to factor or the prime modulus for
discrete log, and k is an algorithm-specific constant. This
formula is inherently imprecise, since the o(1) in the expo-
nent can hide polynomial factors. This complexity formula,
7We would lower the large prime bounds and increase the
sieving range compared to the parameters in [28].
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Sieving Linear Algebra Descent
I lpb core-years rows core-years core-time

RSA-512 14 29 0.5 4.3M 0.33 Timings with default CADO-NFS parameters.
DH-512 15 27 2.5 2.1M 7.7 10mins For the computations in this paper; may be suboptimal.

RSA-768 16 37 800 250M 100 Est. based on [28] with less sieving.
DH-768 17 35 8,000 150M 28,500 2 days Est. based on [7, 28] and own experiments.

RSA-1024 18 42 1,000,000 8.7B 120,000 Est. based on complexity formula.
DH-1024 19 40 10,000,000 5.2B 35,000,000 30 days Est. based on complexity formula and our experiments.

Table 2: Estimating costs for factoring and discrete log. For sieving, we give two important parameters: the large prime
bound lpb and a measure of how much sieving is happening per subprocess I. For linear algebra, all costs for DH are for safe
primes; for DSA primes with q of 160 bits, this should be divided by 6.4 for 1024 bits, 4.8 for 768 bits, and 3.2 for 512 bits.

with k = 1.923, describes the overall time for both discrete
log and factorization, which are both dominated by sieving
and linear algebra in the precomputation. The space com-
plexity (the size of the matrix in memory) is the square root
of this function, i.e. the same function, taking k = 0.9615.
Discrete log descent has a complexity of the same form as
well; [2, Chapter 4] gives k = 1.232, using an early-abort
strategy similar to the one in [5] mentioned above.
Evaluating the formula for 768- and 1024-bit N gives us

estimated multiplicative factors by which time and space will
increase from the 768- to the 1024-bit case. For precompu-
tation, the total time complexity will increase by a factor
of 1220, while space complexity will increase by a factor of
35. These are valid for both factorization and discrete log,
since they have the same asymptotic behavior. Hence, for
DH-1024, we get a total cost for the precomputation of about
45M core-years. The time complexity for each individual log
after the precomputation should be multiplied by 95.
For 1024-bit descent, we experimented with our early-

abort implementation to inform our estimates for descent
initialization, which should dominate the individual discrete
logarithm computation. Initialization for a random target in
Oakley Group 2 took 22 core-days, yielding a few primes of
at most 130 bits to be descended further. In twice this time,
we reached primes of about 110 bits. At this point, we were
certain to have bootstrapped the descent, and could continue
down to the large prime bound in a few more core-days if
proper sieving software were available. Thus we estimate
that a 1024-bit descent would take about 30 core-days, once
again easily parallelizable.

Costs in hardware Although 45M core-years is a huge
computational effort, it is not necessarily out of reach for a
nation state. Moreover, at this scale, significant cost savings
could be realized by developing application-specific hardware.
Sieving is a natural target for hardware implementation.

To our knowledge, the best prior description of an ASIC
implementation of 1024-bit sieving is the 2007 work of Geisel-
mann and Steinwandt [17]. In the following, we update their
estimates for modern techniques and adjust parameters for
discrete log. We increase their chip count by a factor of ten
to sieve more and save on linear algebra as above, giving
an estimate of 3M chips to complete sieving in one year.
Shrinking the dies from the 130 nm technology node used
in the paper to a more modern size reduces costs, as tran-
sistors are cheaper at newer technologies. With standard
transistor costs and utilization, this would cost about $2 per
chip to manufacture, after fixed design and tape-out costs
of roughly $2M [31]. This suggests that an $8M investment

would buy enough ASICs to complete the DH-1024 sieving
precomputation in one year.8
Estimating the financial cost for the linear algebra is more

difficult, since there has been little work on designing chips
that are suitable for the larger fields involved in discrete log.
To derive a rough estimate, we can begin with general purpose
hardware and the core-year estimate from Table 2. The
Titan supercomputer [38]—at 300,000 CPU cores, currently
the most powerful supercomputer in the U.S.—would take
117 years to complete the 1024-bit linear algebra stage. Titan
was constructed in 2012 for $94M, suggesting a cost of $11B
in supercomputers to finish this step in a year. In the context
of factorization, moving linear algebra from general purpose
CPUs to ASICs has been estimated to reduce costs by a
factor of 80 [16]. If we optimistically assume that a similar
reduction can be achieved for discrete log, the hardware cost
to perform the linear algebra for DH-1024 in one year is
plausibly on the order of hundreds of millions of dollars.
To put this dollar figure in context, the FY2012 bud-

get for the U.S. Consolidated Cryptologic Program (which
includes the NSA) was $10.5 billion9 [55]. The agency’s
classified 2013 budget request, which prioritized investment
in “groundbreaking cryptanalytic capabilities to defeat ad-
versarial cryptography and exploit internet traffic,” included
notable $100M increases in two programs [55]: “cryptanalytic
IT services” (to $247M), and a cryptically named “cryptanal-
ysis and exploitation services program C” (to $360M). NSA’s
leaked strategic plan for the period called for it to “continue
to invest in the industrial base and drive the state of the
art for high performance computing to maintain pre-eminent
cryptanalytic capability for the nation” [61].

4.2 Is NSA Breaking 1024-bit DH?
Our calculations suggest that it is plausibly within NSA’s

resources to have performed number field sieve precomputa-
tions for at least a small number of 1024-bit Diffie-Hellman
groups. This would allow them to break any key exchanges
made with those groups in close to real time. If true, this
would answer one of the major cryptographic questions raised
by the Edward Snowden leaks: How is NSA defeating the
encryption for widely used VPN protocols?
Classified documents published by Der Spiegel [45] indi-

cate that NSA is passively decrypting IPsec connections at
significant scale. The documents do not describe the crypt-
analytic techniques used, but they do provide an overview of
8Since a step of descent uses sieving, the same hardware could
likely be reused to speed calculations of individual logs.
9The National Science Foundation’s budget was $7 billion.
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Figure 4: NSA’s VPN decryption infrastructure. This
classified illustration published by Der Spiegel [65] shows
captured IKE handshake messages being passed to a high-
performance computing system, which returns the symmetric
keys for ESP session traffic. The details of this attack are
consistent with an efficient break for 1024-bit Diffie-Hellman.

the attack system architecture. After reviewing how IPsec
key establishment works, we will use the published informa-
tion to evaluate the hypothesis that the NSA is leveraging
precomputation to calculate discrete logs at scale.
IKE Internet Key Exchange (IKE) is the main key es-
tablishment protocol used for IPsec VPNs. There are two
versions, IKEv1 [20] and IKEv2 [24], which differ in message
structure but are conceptually similar. For the purpose of
brevity, we will use IKEv1 terminology.
Each IKE session begins with a Phase 1 handshake, in

which the client and server select a Diffie-Hellman group from
a small set of standardized parameters and perform a key
exchange to establish a shared secret, SKEYID. IKE provides
several authentication mechanisms, including symmetric pre-
shared keys (PSK). When IKEv1 is authenticated with a
PSK, this value is incorporated into the derivation of SKEYID.
This shared secret is used to encrypt and authenticate

a Phase 2 handshake. Phase 2 establishes the parameters
and key material, KEYMAT, for a cryptographic transport
protocol used to protect subsequent traffic, such as Encapsu-
lating Security Payload (ESP) [26] or Authenticated Header
(AH) [25]. In some circumstances, this phase includes an
additional round of Diffie-Hellman. Ultimately, KEYMAT is
derived from SKEYID, additional nonces, and the result of
the optional Phase 2 Diffie-Hellman exchange.
NSA’s VPN exploitation process The documents pub-
lished by Der Spiegel describe a system named TURMOIL
that is used to collect and decrypt VPN traffic. The evidence
indicates that this decryption is performed using passive
eavesdropping and does not require message injection or
man-in-the-middle attacks on IPsec or IKE. Figure 4, an
excerpt from one of the documents [65], illustrates the flow
of information through the TURMOIL system
The initial phases of the attack involve collecting IKE and

ESP payloads and determining whether the traffic matches
any tasked selector [63]. If so, TURMOIL transmits the
complete IKE handshake and may transmit a small amount
of ESP ciphertext to NSA’s Cryptanalysis and Exploitation
Services (CES) [54,63] via a secure tunnel. Within CES, a
specialized VPN Attack Orchestrator (VAO) system manages
a collection of high-performance grid computing resources
located in the Tordella Supercomputer Building at NSA

Headquarters and in a data center at Oak Ridge National
Lab, which perform the computation required to generate the
ESP session key [59, 60, 65]. VAO also maintains a database,
CORALREEF, that stores cryptographic values, including a
set of known PSKs and the resulting “recovered” ESP session
keys [58,59,65].
The ESP traffic itself is buffered for up to 15 minutes [62],

until CES can respond with the recovered ESP keys if they
were generated correctly. Once keys have been returned, the
ESP traffic is decrypted via hardware accelerators [57] or
in software [66,67]. From this point, decrypted VPN traffic
is re-injected into TURMOIL processing infrastructure and
passed to other systems for storage and analysis [67]. The
documents indicate that NSA is recovering ESP keys at large
scale, with a target of 100,000 per hour [62].
Evidence for a discrete log attack While the ability
to decrypt VPN traffic does not by itself indicate a defeat
of Diffie-Hellman, there are several features of IKE and the
VAO’s operation that support this hypothesis.
The IKE protocol has been extensively analyzed [8, 35],

and is not believed to be exploitable in standard configu-
rations under passive eavesdropping attacks. In order to
recover the session keys for the ESP or AH protocols, the
attacker must at minimum recover the SKEYID generated
by the Phase 1 exchange. Absent a vulnerability in the key
derivation function or transport encryption, this requires
the attacker to recover a Diffie-Hellman shared secret after
passively observing an IKE handshake.
While IKE is designed to support a range of Diffie-Hellman

groups, our Internet-wide scans (§4.3) show that the vast
majority of IKE systems select one particular 1024-bit DH
group, Oakley Group 2, even when offered stronger groups.
Given an efficient oracle for solving the discrete logarithm

problem, attacks on IKE are possible provided that the
attacker can obtain the following: (1) a complete two-sided
IKE transcript, including the Diffie-Hellman ephemeral keys
ga and gb as well as the nonces and cookies transmitted by
both sides of the connection, and (2) in IKEv1 only, the PSK
used in deriving SKEYID.
Both of the above requirements are also present in the

NSA’s VPN attack system. As Figure 4 illustrates, a hard
requirement of the VAO is the need to obtain the complete
two-sided IKE transcript [58]. The published documents
indicate that this requirement substantially increases the
complexity of the attack execution, since IKE transcripts
must be reassembled (“paired”) whenever the interaction
traverses multiple network paths [53,54,56,64].
The attack system also seems to require knowledge of the

PSK. Several documents describe techniques for analysts
to locate a PSK, including using a database of router con-
figurations [68, 69], the CORALREEF database of known
PSKs [58], previously decrypted SSH traffic [58], or system
administrator “chatter” [68]. Additionally, NSA is willing to
“[r]un attacks to recover PSK” [58].

Of course, this explanation is not dispositive. The possi-
bility remains that NSA could defeat IPsec using alternative
means. Certain published NSA documents refer to soft-
ware “implants” on VPN devices, indicating that the use of
targeted malware is a piece of the collection strategy [58];
however, the same documents also note that decryption of
the resulting traffic does not require IKE handshakes, and
thus appears to be an alternative mechanism to the VAO
attack described above. The most compelling argument for
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a pure cryptographic attack is the generality of the VAO
approach, which appears to succeed across a broad swath of
non-compromised devices.

4.3 Effects of a 1024-bit Break
In this section, we use Internet-wide scanning to assess

the impact of a hypothetical DH-1024 break on three popu-
lar protocols: IKE, SSH, and HTTPS. Our measurements
indicate that these protocols, as they are commonly used,
would be subject to widespread compromise by a state-level
attacker who had the resources to invest in precomputation
for a small number of common 1024-bit groups.
IKE We measured how IPsec VPNs use Diffie-Hellman in
practice by scanning a 1% random sample of the public IPv4
address space for IKEv1 and IKEv2 (the protocols used to
initiate an IPsec VPN connection) in May 2015. We used
the ZMap UDP probe module to measure support for Oakley
Groups 1 and 2 (the two popular 1024-bit or smaller, built-in
groups), and which group servers prefer. To test support
for individual groups, we offered only the single group in
question. To detect default behavior, we offered servers a
variety of DH groups, with the lowest priority groups being
Oakley Groups 1 and 2. When measuring server preference,
we scanned with the 3DES symmetric cipher—the most
commonly supported symmetric cipher in our single group
scans. Because of this, the percentages we present for IKEv1
and IKEv2 are a lower-bound for the number of servers that
prefer Oakley Groups 1 and 2.
Of the 80K hosts that responded with a valid IKE packet,

44.2% were willing to accept an offered proposal from at least
one scan. The majority of the remaining hosts responded
with a NO-PROPOSAL-CHOSEN message regardless of our pro-
posal. Many of these may be site-to-site VPNs that reject
our source address. We consider these hosts “unprofiled” and
omit them from the results here.
We found that 31.8% of IKEv1 and 19.7% of IKEv2 servers

support Oakley Group 1 (768-bit) while 86.1% and 91.0%
respectively supported Oakley Group 2 (1024-bit). In our
sample of IKEv1 servers, 2.6% of profiled servers preferred
the 768-bit Oakley Group 1—which is within cryptanalytic
reach today for moderately resourced attackers—and 66.1%
preferred the 1024-bit Oakley Group 2. For IKEv2, 5.8%
of profiled servers chose Oakley Group 1, and 63.9% chose
Oakley Group 2. This coincides with our anecdotal findings
that most VPN clients only offer Oakley Group 2 by default.
SSH All SSH handshakes complete either a finite field
Diffie-Hellman or elliptic curve Diffie-Hellman exchange as
part of the SSH key exchange. The SSH protocol explicitly
defines support for Oakley Group 2 (1024-bit) and Oakley
Group 14 (2048-bit), but also allows a server-defined group,
which can be negotiated through an auxiliary Diffie-Hellman
Group Exchange (DH GEX) handshake [15].
In order to measure how SSH uses DH in practice, we

implemented the SSH protocol in the ZMap toolchain and
scanned 1% random samples of the public IPv4 address space
in April 2015. We find that 98.9% of SSH servers support
the 1024-bit Oakley Group 2, 77.6% support the 2048-bit
Oakley Group 14, and 68.7% support DH-GEX.
During the SSH handshake, the client and server select the

client’s highest priority mutually supported key exchange
algorithm. Therefore, we cannot directly measure what algo-
rithm servers will prefer in practice. In order to estimate this,
we performed a scan in which we mimicked the algorithms

offered by OpenSSH 6.6.1p1, the latest version of OpenSSH.
In this scan, 21.8% of servers preferred the 1024-bit Oakley
Group 2, and 37.4% preferred a server-defined group. 10% of
the server-defined groups were 1024-bit, but, of those, near
all provided Oakley Group 2 rather than a custom group.
Combining these equivalent choices, we find that a state-

level attacker who performed NFS precomputations for the
1024-bit Oakley Group 2 (which has been in standards for
almost two decades) could passively eavesdrop on connections
to 3.6M (25.7%) publicly accessible SSH servers.
HTTPS DHE is commonly deployed on web servers.
68.3% of Alexa Top 1M sites support DHE, as do 23.9%
of sites with browser-trusted certificates. Of the Top 1M
sites that support DHE, 84% use a 1024-bit or smaller group,
with 94% of these using one of five groups.

Despite widespread support for DHE, a passive eavesdrop-
per can only decrypt connections that organically agree to
use Diffie-Hellman. We can estimate the number of sites for
which this will occur by offering the same sets of ciphersuites
as Chrome, Firefox, and Safari. While these the offered
ciphers differ slightly between browsers, this turns out to
result in negligible differences in whether DHE is chosen.
Approximately 24.7% of browser connections with HTTPS-

enabled Top 1M sites (and 10% with browser-trusted sites)
will negotiate DHE with one of the ten most popular 1024-
bit primes; 17.9% of connections with Top 1M sites could
be passively eavesdropped given the discrete log of a single
1024-bit prime. The most popular site that negotiates a
DHE ciphersuite using one of the two most common 1024-bit
primes is sohu.com (ranked 31st globally).
Mail TLS is also used to secure email transport. SMTP,
the protocol used to relay messages between mail servers,
allows a connection to be upgraded to TLS by issuing the
STARTTLS command. POP3S and IMAPS, used by end users
to fetch received mail, wrap the entire connection in TLS.
We studied 1% samples of the public IPv4 address space

for IMAPS, POP3, and SMTP+StartTLS. We found that
50.7% of SMTP servers supported STARTTLS, 41.4% support
DHE, and 14.8% supported DHE_EXPORT ciphers. 15.5% of
SMTP servers used one of ten most common 1024-bit groups.
For IMAPS, 8.4% of servers supported DHE_EXPORT and

75% supported DHE. However, the ten most common 1024-
bit primes account for only 5.4% of servers. POP3S deploy-
ment is similar, with 8.9% of servers supporting DHE_EXPORT
and 74.9% supporting DHE, but with the ten most common
1024-bit primes accounting for only 4.8% of servers.

If each of the top ten 1024-bit primes used by each protocol
were broken, this would affect approximately 1.7M SMTP
servers, 276K IMAPS servers, and 245K POP3S servers.
Using our downgrade attack of §3.3, an attacker with modest
resources can hijack connections to approximately 1.6M
SMTP servers, 429K IMAPS servers, and 454K POP3S.

5. RECOMMENDATIONS
Our findings indicate that one of the key recommenda-

tions from security experts in response to the threat of mass
surveillance—promotion of DHE-based ciphersuites offering
“perfect forward secrecy” for TLS over RSA-based cipher-
suites—may have actually reduced security for many hosts.
In this section, we present concrete recommendations to re-
cover the expected security of Diffie-Hellman as it is used in
mainstream Internet protocols.
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If the attacker can precompute for . . .
all 512-bit groups all 768-bit groups one 1024-bit group ten 1024-bit groups

HTTPS Top 1M w/ active downgrade 45,100 (8.4%) 45,100 (8.4%) 205,000 (37.1%) 309,000 (56.1%)
HTTPS Top 1M 118 (0.0%) 407 (0.1%) 98,500 (17.9%) 132,000 (24.0%)
HTTPS Trusted w/ active downgrade 489,000 (3.4%) 556,000 (3.9%) 1,840,000 (12.8%) 3,410,000 (23.8%)
HTTPS Trusted 1,000 (0.0%) 46,700 (0.3%) 939,000 (6.56%) 1,430,000 (10.0%)

IKEv1 IPv4 – 64,700 (2.6%) 1,690,000 (66.1%) 1,690,000 (66.1%)
IKEv2 IPv4 – 66,000 (5.8%) 726,000 (63.9%) 726,000 (63.9%)

SSH IPv4 – – 3,600,000 (25.7%) 3,600,000 (25.7%)

Table 3: Estimated impact of Diffie-Hellman attacks. We use Internet-wide scanning to estimate the number of real-
world servers for which typical connections could be compromised by attackers with various levels of computational resources.
For HTTPS, we provide figures with and without downgrade attacks on the chosen ciphersuite. All others are passive attacks.

Increase minimum key strengths As a short-term mit-
igation, server operators should disable DHE_EXPORT and
configure DHE ciphersuites to use freshly-generated groups of
at least 1024 bits or, preferably, 2048 bits or larger. Browsers
and clients should raise the minimum accepted size for Diffie-
Hellman groups to at least 1024 bits, to avoid downgrade
attacks when communicating with servers that still support
smaller groups.
Our analysis suggests that 1024-bit discrete log may be

within reach of state-level actors. As such, 1024-bit DHE
(and 1024-bit RSA) must be phased out in the near term.
We recommend clients to raise the minimum DHE group size
to 2048 bits as soon as server configurations allow. Server op-
erators should move to 2048-bit or larger groups to facilitate
this transition.
Avoid fixed-prime groups In the medium term, employ-
ing negotiated Diffie-Hellman groups can help mitigate some
of the damage caused by NFS-style precomputation for very
common fixed groups. A current IETF draft [18] proposes
a negotiated group extension to TLS. However, we note
that it is possible to create trapdoored primes [43] that are
computationally difficult to detect. At the very least, primes
should be checked to be safe primes, or groups should use
a verifiable generation process such as the one proposed in
FIPS 186 [37], and the process for generating primes within
the TLS session should be fixed so as to thwart the risk of
trapdoors.
Transition to elliptic curves In the long term, transi-
tioning to elliptic curve Diffie-Hellman (ECDH) key exchange
avoids all known feasible cryptanalytic attacks. Current el-
liptic curve discrete log algorithms for strong curves do not
gain as strong an advantage from precomputation. Unfortu-
nately, the most widely supported ECDH parameters, those
specified by NIST, are now viewed with suspicion due to
NSA influence on their design, despite no known or suspected
weaknesses. These curves are undergoing scrutiny and new
curves, such as Curve25519, are being standardized by the
IRTF for use in Internet Protocols. We recommend transi-
tioning to elliptic curves as a long-term solution. This is in
line with the recommendation in Huang et al. [21].
Don’t deliberately weaken crypto Our downgrade at-
tack on export-grade 512-bit Diffie-Hellman groups in TLS
illustrates the fragility of cryptographic “front doors”. Al-
though the key sizes originally used in DHE_EXPORT were
intended to be tractable only to the NSA, two decades of algo-
rithmic and computational improvements have significantly
lowered the bar to attacks on such key sizes. Despite a policy

change and attempts to remove support for DHE_EXPORT,
the technical debt induced by the additional complexity has
left implementations vulnerable for decades. In combina-
tion with FREAK [6], our attacks warn of the long-term
debilitating effects of deliberately weakening cryptography.
Improve communication The NFS algorithm for dis-
crete logarithms allows an attacker to perform a single pre-
computation, after which computing individual logs in that
group has a much lower marginal cost. Although the cheaper
cost of individual discrete logs was known to cryptographers,
it appears to not have been as widely understood by im-
plementers. Indeed, many implementations believed RSA
key exchange to be inferior to Diffie-Hellman, which offered
forward secrecy. Ironically, the opposite appears to be true:
for a medium-value target, a fresh, well-generated 1024-bit
RSA key would be significantly more expensive to factor than
a 1024-bit discrete log in a group for which precomputation
has already been done.
A key lesson from this state of affairs is that cryptographers

and creators of practical systems need to communicate better.
Systems builders should be aware of the difficulty of crypto-
graphic attacks and tradeoffs, and cryptographers should be
aware of how systems are actually being implemented and
used in practice.

6. DISCLOSURE AND RESPONSE
We notified both client and server software developers of

the vulnerabilities discussed in this work. As a result of our
disclosure, Microsoft Internet Explorer [36], Mozilla Firefox,
and Google Chrome have increased the minimum size of
the groups they accept for DHE to 1024 bits, and OpenSSL
and Apple Safari are expected to follow suit. On the server
side, we notified Apache, Oracle, IBM, Cisco, and various
hosting providers. Akamai has removed all support for export
ciphersuites. In the medium-term, many TLS developers
plan to support a new extension that allows clients and
servers to negotiate a few well-known groups of size 2048-bits
and higher, and to gracefully reject weak ones [18]. We will
be able to report on the full vendor response in the final
version of this paper.

7. CONCLUSION
The Diffie-Hellman key exchange is a cornerstone of many

cryptographic protocols. Despite its relative simplicity and
elegance, practical complications and technical debt over
decades have left modern implementations vulnerable to
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attack from even low-resource adversaries. Additionally, due
to a breakdown in communication between cryptographers
and system implementers, there is evidence that suggests
the way we are using Diffie-Hellman in today’s protocols is
insufficient to protect against state-level actors. As we move
to using newer key exchanges, it is important to ensure that
our implementations and protocols remain adaptable and
can be easily updated to the relevant dynamic changes in
the underlying cryptographic requirements.
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