
Social Network-Based Botnet

Command-and-Control: Emerging Threats and
Countermeasures

Erhan J. Kartaltepe1, Jose Andre Morales1, Shouhuai Xu2, and Ravi Sandhu1

1 Institute for Cyber Security, University of Texas at San Antonio
{erhan.kartaltepe,jose.morales,ravi.sandhu}@utsa.edu

2 Department of Computer Science, University of Texas at San Antonio
shxu@cs.utsa.edu

Abstract. Botnets have become a major threat in cyberspace. In
order to effectively combat botnets, we need to understand a botnet’s
Command-and-Control (C&C), which is challenging because C&C strate-
gies and methods evolve rapidly. Very recently, botmasters have begun
to exploit social network websites (e.g., Twitter.com) as their C&C in-
frastructures, which turns out to be quite stealthy because it is hard to
distinguish the C&C activities from the normal social networking traffic.
In this paper, we study the problem of using social networks as botnet
C&C infrastructures. Treating as a starting point the current generation
of social network-based botnet C&C, we envision the evolution of such
C&C methods and explore social networks-based countermeasures.

Keywords: Botnet, command-and-control, social networks, security.

1 Introduction

The critical difference between botnets and other malware is that botmasters
use a Command-and-Control (C&C) to coordinate large numbers of individ-
ual bots (i.e., compromised computers) to launch potentially much more dam-
aging attacks. Botmasters also evolve their C&C strategies and methods very
rapidly to evade defenders’ countermeasures. Therefore, from a defender’s per-
spective, it is always important to understand the trends and practices of bot-
net C&C [8,15,19,23,29,11,26]. Previous studies have mainly focused on two
approaches: host-centric [31,36] and network-centric [16,18,17,3,7,8,14,23,20,6].
The host-centric approach aims to detect suspicious host activities, such as the
use of incoming network data as system call arguments. The network-centric ap-
proach attempts to detect suspicious network activities by (for example) identi-
fying network traffic patterns. The fact that a social network-based botnet C&C
on Twitter.com was detected by “digging around” [25] suggests that we need to
pursue more detection approaches.
Our contributions. Throughanapplication-centricapproach,we study theprob-
lem of botnets that use social networkwebsites as their C&C infrastructures. First,

J. Zhou and M. Yung (Eds.): ACNS 2010, LNCS 6123, pp. 511–528, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

512 E.J. Kartaltepe et al.

we characterize the current-generation of social network-based botnet C&C, de-
scribing their strengths and weaknesses. Our characterization, while inspired by
[25], is broader and deeper. Second, we envision how current social network-based
botnet C&C might evolve in the near future, which capitalize on their strengths
while diminishing their weaknesses. Third, we explore countermeasures for deal-
ing with both current and future generations of social network-based botnet C&C.
Since social network providers as well as client machines are victims of a social
network-based botnet C&C, both server-side and client-side countermeasures are
demonstrated and tested for both effectiveness and performance. Fourth, we dis-
cuss the limitations of the application-centric approachdemonstrated in this paper,
which suggests the need to integrate it with the aforementioned host-centric and
network-centricmethods because the three approaches are complementary to each
other.
Paper outline. Section 2 discusses related prior work. Section 3 presents a
characterization of the current generation of social network-based botnet C&C.
Section 4 envisions the next-generation of social network-based botnet C&C.
Sections 5 and 6 investigate server-end and client-end solutions to detecting
social network-based botnet C&C, respectively. Section 7 discusses how to in-
tegrate them and how they can benefit from host-centric and network-centric
approaches. Section 8 describes future work and concludes the paper.

2 Related Work

Network-centric approach. This approach aims to detect botnets by corre-
lating the network traffic of a computer population, including destination IP
addresses, server names, packet content, event sequences, crowd responses, pro-
tocol graphs and spatial-temporal relationships [16,18,17,3,7,8,14,23,20,6]. This
approach is especially useful when only network traffic data is available.
Host-centric approach. This approach aims to differentiate malicious from
benign processes running on host computers by observing that bot processes
often use data received from the network as parameters in system calls [31].
A detection technique based on a high rate of failed connection attempts to
remote hosts was recently presented in [36], which does not necessarily apply to
the type of botnets we consider in the present paper because the connections are
to popular social networking sites and are generally successful. This approach
often looks deeply into the software stack [36].
Application-centric approach. This approach looks into the application-
specific interactions. Previously, the focus has been put on IRC-based botnets
(see, e.g., [14]). Recently, the possibility of exploiting emails as a botnet C&C
was investigated [30], and the feasibility of detecting such botnets through their
resulting spam traffic was presented in [35,34,37,22]. In this paper we consider a
specific class of applications, namely web-based social networking. The concept
of social network-based botnet C&Cs can be dated back to 2007 [21,12,28,13],
but such botnets became a reality only very recently [2,25]. In particular, [25]

Social Network-Based Botnet Command-and-Control 513

served as the starting point of the present study. It should be noted that the fo-
cus of the present paper is only remotely related to the abuse of social networks
for other purposes [1].

3 Characterizing Current Social Network-Based Botnet

How Does Current Social Network-Based Botnet C&C Work? Jose
Narario first reported the actual use of social network as a botnet C&C [25],
although the concept had been proposed as early as 2007 [21,28]. We call such a
bot Naz, after its discoverer. At a high-level, Naz’s botnet used accounts with the
name upd4t3 owned by the botmaster on social network sites Twitter.com and
Jaiku.com. These bots received Base64-encoded commands from these accounts
to download malicious payloads onto the victimized bot computers. Since then,
other C&Cs were discovered with variations of the botnet’s scheme, such as the
Twitter.com account Botn3tControl, which was shutdown days later.

RSS Feed Naz

Payload

http://twitter.com
1
2

Reroute
Service

http://bit.ly
3

4

Server

5
6

victim machine attacker site

Server

botmaster machine

7

success

connect to
h�p://twi�er .com

failure

connect to
h�p://jaiku.com

get RSS feed of
upd4t3's account

success

DNS query mansvelt.
freehos�a.com

decode
updates

failure

success

failure connect to
h�p://bit.ly

get
payload

success

failure

decode/
unzip

failure

end

replicate self
and payload files

success

Find gbpm.exe
and gbpm.dll

execute
gbpm.exe

success

end
failure

endstart

Fig. 1. Naz’s C&C attack flow (left) and control flow (right)

To understand the behavior of Naz’s botnet, we conducted two experiments.
The first confirmed and extended Naz’s C&C flow reported in [25]. Specifically,
we obtained and ran a Naz sample on a machine by replacing its references to
Twitter.com with a server under our control. This was necessary because the
Twitter.com account was shutdown by Twitter.com’s administrators shortly
after its detection. We used our own Base64-encoded messages with a bit.ly
URL we set up that redirected to the payload stored on our server. The payload
was a Base64-encoded, compressed archive containing two files: gbpm.exe and
gbpm.dll. These files were the originally identified payload package of Naz. In our
analysis, we reconstructed the original C&C flows described below and depicted
in the left-hand side of Figure 1.

1. The bot makes a HTTP GET request to upd4t3’s RSS (Really Simple Syndi-
cation) feed at Twitter.com.

2. Twitter.com returns the RSS feed, containing Base64-encoded text in the
description nodes.

514 E.J. Kartaltepe et al.

3. The bot decodes the Base64-encoded text, revealing one or more bit.ly
URLs, and makes a HTTP GET request to each. The bit.ly website provides
short aliases for long URLs.

4. Each bit.ly URL redirects to a malicious zip file hosted on an independent
attack server.

5. The bot downloads the malicious zip file as a payload.
6. The bot decodes and unzips the payload, replicates itself and the payload’s

uncompressed files, and then executes the payload’s contents.
7. The payload attempts to gather user information from the victim computer

and send it to a server selected by the botmaster.

To have a deeper understanding of the internal control flow of Naz, we con-
ducted further black-box testing using data provided by Network Monitor [9]
and CWSandbox [10], from which we draw the control flow details on the right-
hand side of Figure 1. We observed that the bot made a copy of itself and the
two files mentioned above in a temporary directory, and that when executing
gbpm.exe, the bot dynamically injected code into gbpm.exe’s process. Moreover,
we observed that Naz handled unexpected inputs as follows:

1. When we provided a URL to a bogus RSS feed, the bot failed to connect and in-
stead attempted to access an RSS feed from a Jaiku.com account. This
account name was hardwired in the bot program and had been deactivated by
Jaiku.com’s administrator. This second connection failure led the bot to issue
a DNS query on the domainname mansvelt.freehostia.com,after which the
bot stopped producing network traffic. The site mansvelt.freehostia.com
is currently unregistered and has no IP address.

2. When we placed plaintext sentences and URLs in our in-house RSS feed, the
bot read the RSS feeds but did not show evidence of decoding and using the
text in connection attempts.

3. When we modified the payload file to Base64-encoded only, compressed only,
and replaced it with an executable file, the bot did not attempt to unzip or
execute the file’s contents. When we renamed the two payload files gbpm.exe
and gbpm.dll, the bot did not attempt to execute the renamed gbpm.exe
file, implying that the bot was program name sensitive.

Finally, it is interesting to note that a dynamic analysis of gbpm.dll revealed
that the payload attempted to connect to a bank in Brazil. Moreover, both the
analysis in [25] and our independent experiments demonstrate that Naz’s botnet
C&C serves primarily as a Trojan downloader [32].

Strengths of Naz’s Botnet C&C. Naz’s botnet C&C has the following ad-
vantages when compared with other botnet C&C infrastructures and methods:

1. Abusing trusted popular websites as a C&C server. Social networks
and Web 2.0 sites such as Twitter.com, FaceBook.com, LinkedIn.com, and
YouTube.com are not only legitimate, with verifiable SSL or EV-SSL certifi-
cates, but also heavily used by millions of users. Due to this heavy usage,
light occasional traffic to one or more accounts is unlikely to be noticed

Social Network-Based Botnet Command-and-Control 515

compared to a user’s actual traffic pattern. This avoids any unnecessary and
sometimes suspicious DNS queries (e.g., for non-popular DNS names).

2. Exploiting popular port(s) for C&C communication. Port 80 is the
de facto standard for web traffic, and most network traffic will flow through
it. This helps bots blend in with benign traffic.

3. Abusing application features for automatic C&C. The botmaster
uses application features, such as RSS feeds, to automatically update bots.
Moreover, the commands are so light-weight that they cannot be easily dis-
cerned from normal social network traffic.

The above discussion demonstrates that botmasters have begun to exploit “hid-
ing in plain sight” to conduct stealthy botnet C&C. By piggybacking on the
reputation and legitimacy of social network websites, botnet C&C activities may
remain hidden, while defeating the “many eyes” defense [30].
Weaknesses of Naz’s Botnet C&C. We need to understand the weaknesses
of current generation of social network-based botnet C&Cs because these weak-
nesses will likely be absent in future generations. This is not meant to help the
attackers, rather it is meant to help the defenders look ahead. Our examination
shows that Naz’s botnet C&C has weaknesses, which are omitted due to space
limitation.

4 Envisioning Future Social Network-Based Botnet

In order to defeat future social network-based botnets, we must think ahead of
the attackers. For this purpose, we can show how the aforementioned weaknesses
of the current generation of social networks-based botnet C&Cs can be avoided.
Due to space limitation, details are omitted.

5 Server-Side Countermeasures

5.1 The Detection Mechanism

A key observation behind our detection mechanism is that, regardless of the
channel, provider, or account, social network messages are in text. Thus, if bot-
masters want to use social networks for their C&C, they would encode their
commands textually. Moreover, just like legitimate messages may include web
links, so might C&C messages (e.g., links for downloading payload). These ob-
servations inspired us to distinguish between encoded and plain texts and to
follow unencoded links to their destination. Our detection mechanism can be
adopted by the webserver as shown in Figure 2, and the resulting system would
operate as follows (with steps 2 and 3 relevant to our countermeasure):

1. Alice logs into her social network and updates her status display using a
content form.

2. The social network’s content updater sends the text content to our server-end
system.

516 E.J. Kartaltepe et al.

3. The detection mechanism, which will be implemented as a classifier in our
prototype system, determines if the text is suspicious and returns a result.

4. The content form updates the database with the message and whether it
was marked suspicious.

5. Bob check’s Alice content display, either through a feed like RSS or by vis-
iting the site.

6. The content display requests the content from the database.
7. The database returns non-suspicious content; if a threshold level of suspicious

messages (determined by policy) has been reached, the database returns a
“suspicious account” message.

8. The content display shows those retrieved messages to the user, or a “suspi-
cious account” message if the suspicious message threshold has been reached.

1

Social Network

Alice

3C

Bob

Content
Form

Content
Display

Database

2

4

5
8

6 7

Library or Service

Detec�on
Mechanism

Fig. 2. Example scenario using our server-side detection mechanism

The server-side detection mechanism has the following advantages. First, it
is account agnostic because it looks for text attributes that are shared with en-
coded text rather than individual behavioral patterns. Second, it is language
agnostic because it looks at text for attributes that are shared with encoded
text rather than individual words. As a result, the detection mechanism is effec-
tive for any language using Roman characters (English, Spanish, French, etc.).
Third, it is easy to deploy because it can take advantage of light-weight machine
learning algorithms and thus make decisions in real-time. Moreover, the code is
easy to deploy as a library or software-as-a-service. Fourth, it can follow unen-
coded links to determine if the destination is a trusted source, say by using SSL
authentication as a trust infrastructure. In the next two subsections we analyze
the effectiveness and performance of our approach.

5.2 Prototype Implementation and Its Effectiveness and Limitations

Prototype implementation. To demonstrate the effectiveness of our system,
we instantiated the detection mechanism as Weka’s [33] J48 decision tree algo-
rithm (because it is quick and readily usable, but other tailored algorithms can
be used instead in a plug-and-play fashion) to classify input messages so as to
distinguish between Base64- or Hexadecimal-encoded text and natural language

Social Network-Based Botnet Command-and-Control 517

text. For links in the clear, by following links to their destination, we can mark
the content as “suspicious” if it is an atypical file (e.g., an executable, library,
encoded, or compressed file, or a combination of these). To build a pool of “non-
suspicious” text, we screenscraped 200 Twitter.com accounts to build a list of
4000 messages. Our pool of bot commands were 400 short random commands of
fifteen to thirty characters that were then encrypted using RC4 stream cipher
and then encoded, giving a 10:1 set of normal to suspicious text. We then split
the messages into a training set with 70% of both types and a test set with the
remaining 30%. Recognizing that altering the natural Base64 or Hexadecimal
alphabet with alternate characters such as spaces or punctuation could be used
to obfuscate the text, we also ran our classifier against such alternate encoding
schemes.

Effectiveness. For standard Base64 and Hexadecimal encoding schemes, our
classifier was able to quickly distinguish between our “normal” and “suspicious”
text samples in an account-agnostic way, no false positives and no false negatives,
for both Base64 and Hexadecimal encoding (see Table 1). Moreover, our classifier
maintained this accuracy even when the commands were obfuscated with other
words—the distinctiveness of the encoded commands was readily apparent. The
results were so perfect because the attributes we used—number of spaces in
the text, longest word, and shortest word—cleanly divided the “normal” and
“suspicious” text. To produce non-standard Base64 and Hexadecimal encoding
schemes, we randomly swapped ten of the standard alphabet with alternate
ones from a pool of space and punctuation characters. Our profiler was able
to distinguish between them in an account-agnostic way, with a false positive
rate of 0.0% and false negative rate of 1.25% for Alternate Base64 encodings,
and a false positive rate of 3.25% and false negative rate of 12.5% for Alternate
Hexadecimal encodings (see Table 1).

Table 1. Results with respect to various Base64 and Hexadecimal encodings

Base64 Hexadecimal Alt. Base64 Alt. Hexadecimal
Actual Actual Actual Actual Actual Actual Actual Actual
Positive Negative Positive Negative Positive Negative Positive Negative

Tested Positive 100% 0% 100% 0% 100% 1.25% 96.75% 12.5%
Tested Negative 0% 100% 0% 100% 0% 98.75% 3.25% 87.5%

The classifier’s accuracy dropped significantly when the commands were ob-
fuscated with other words, especially with Hexadecimal encoding schemes and
with spaces as alternate characters. We note that with such an encoding mecha-
nism, a priori knowledge of words or characters to excise from the message would
be necessary to extract the non-command content from the meaningful botnet
commands. This form of steganography is essentially indistinguishable from typ-
ical steganography, where a botmaster would hide the bot commands in such a
way as to not attract attention to themselves, i.e., using natural language words
as code for commands or URLs.

518 E.J. Kartaltepe et al.

Limitations. Hiding commands in a social network-based C&C using steganog-
raphy makes it difficult for programs or even humans to identify the presence
of a command within a message. Since social network messages left by users
are unstructured content, a crafty adversary can hide a bot command within
a message in such a way that a human reading the message could not identify
the message as a command. Combined with encryption, reverse analysis—even
with a captured bot—may not yield the interpreted commands. Thus, running a
steganographic reversal algorithm on a C&C message would not return data that
was a clear bot command. [30]. However, our server-side solution coupled with
a client-side counterpart that detects when a process is acting on input from a
social network-based C&C would provide a complete solution to this emerging
threat. In Section 7 we will discuss how these limitations may be overcome in a
bigger solution framework.

5.3 Performance

Evaluation methodology and environment setup. In order to demonstrate
the efficiency of our server-side detection mechanism, we measured the perfor-
mance of our prototype. We implemented it into CompactSocial, a microblogging
service that emulates the constraints of Twitter.com. CompactSocial provides a
simple interface to both update a status message and view any account’s mes-
sages using a web browser. Moreover, an auto-updated RSS feed contains the
text of the last ten account updates. CompactSocial was written in Java 6, up-
date 11 and ran as a web application deployed to Apache Tomcat 6.0.20. When
used as a library, our server-end solution was deployed as a .jar file; when de-
ployed as a service, the classifier ran as a stand-alone web application deployed
to Apache Tomcat 6.0.20. The classifier and CompactSocial used shared crypto-
graphic keys for authentication. For processing incoming and outgoing messages,
Javas crypto library was used to compute any hash value or HMAC it needed,
in both cases using the SHA1 algorithm.

The system environment is depicted in Figure 3. Both servers reside within a
university campus network, and the CompactSocial clients are both within and
outside the campus network. The CompactSocial and text-classifier servers are
called mercury and apollo, respectively. There are two CompactSocial client
machines: minerva acted as an external computer within the LAN with autho-
rized access to mercury through a simple CompactSocial client, and mars was an
adversary client machine within the campus network, employing Naz+ to read

Local Area Network

Internet
mercury (server) apollo (server)

SpotBot
Compact

Social

venus (client)

Compact
Social Client

mars (adversary)

Naz+

minerva (client)

Compact
Social Client

Fig. 3. Integrating the server-side solution into real life systems

Social Network-Based Botnet Command-and-Control 519

updates made by minerva. A fifth machine, venus mimicked the minerva’s func-
tionality and tested the performance of the classifier on a non-dedicated internet
connection. The three servers, hermes, jupiter, and euclid recognized each other
by sharing some pair-wise keys. Table 2 reviews the concrete configurations of
the machines and networks.

Table 2. System settings (all machines use Intel Core 2 Duo, 2.93 GHz processor)

Machine Internet Connection Relevant Software

mercury Gigabit LAN Apache Tomcat 6.0.20, Sun JVM, CompactSocial
apollo Gigabit LAN Apache Tomcat 6.0.20, Sun JVM, classifier service

minerva Gigabit LAN Firefox 3.5, CompactSocial client

mars Gigabit LAN .NET 3.5 Framework, Naz+
venus 100 Megabit Cable Firefox 3.5, CompactSocial client

A CompactSocial client was developed in JavaScript to simulate a user up-
dating their status in the CompactSocial web application. The CompactSocial
client was developed as an addon and installed into Mozilla Firefox. Addition-
ally, Naz+ was developed as a Windows service and written in C#, targeting
the Microsoft .NET Framework, version 3.5. Naz+ periodically checked the RSS
feed for CompactSocial test account, parsed the XML for the description node
which contained the bot command as encrypted text (using a shared key with
mars who updated the status message), and executed the command.
Performance benchmarking. To examine the delay incurred by the classifier
when utilized by CompactSocial, time was marked before and after each trans-
action over 30000 requests at varying rates. We repeated this test ten times and
took the average over the runs. Figure 4 shows the results over varying requests
per second when the classifier was used as a library and a service.

When used as a library, our classifier performed roughly twice as fast than its
service counterpart, since no network traffic was required. At even 500 requests
per second, the classifier handled all requests without incident. In practice, a

1 10 50 100 500
0

25

50

75

100

125

Concurrent Requests/Second

Ti
m

e
(m

s)

Library Performance Analysis

1 10 50 100 500
0

50

100

150

200

250

Concurrent Requests/Second

Ti
m

e
(m

s)

Service Performance Analysis

Fig. 4. Classifier library (left) and service (right) performance analysis

520 E.J. Kartaltepe et al.

large-scale enterprise would use our server-side classifier as a service, whether
as an in-house server to make requests or a pay-as-you-go service to a third
party. In our preliminary testing, the classifier service handles 500 requests per
second on a non-dedicated machine with cycles to spare. In the advent that a
larger throughput was necessary, a load balancer can reduce the requests for a
particular machine to a manageable level.
Meeting the needs of real-life systems. For a social network provider like
Twitter.com, that has fifteen million users, and is increasing at roughly one mil-
lion users a month, we wondered how our classifier would stack up. A large per-
centage (85.3%) of Twitter.com accounts post less than once a day, whether due
to lost interest or not having much to post. We classify these accounts as “passive
users”. The vast majority (99.5%) of accounts post less than sixteen messages
daily, which would be a class of “active” users, who post regularly about events.
The remaining 0.5% post more than sixteen updates, although Twitter.com re-
stricts accounts to a 1000 updates per day limit. These are particularly engaged
users or are shared accounts by multiple people in an organization posting under
a common account. We classify these users as “explosive” users [5].

If all accounts hit their ceilings on Twitter.com, we’d have the posting rates in
Table 3. With fifteen million users, Twitter.com would handle a ceiling of 1410.7
messages per second (in actuality, most users do not hit these ceilings, so the
actual threshold is far less). In this worst case, assuming the one million account
per month growth rate and the same distribution of account usage, Twitter.com
will accommodate an uptick per month of nearly 100 messages per second.

Table 3. Twitter.com usage analysis

15000000 users Percentage Update Rate Messages Per Day Messages Per Second
Passive users 85.3% 1/day 12795000 148.1
Active users 14.2% 16/day 34080000 394.5
Explosive users 0.5% 1000/day 75000000 868.1
Total users 100% — 121875000 1410.7

Because our server-side approach is account agnostic, it does not need to build
an account history for each user and as a result, would only need to check a few
messages to determine if the account is being used in a suspicious way. Given
the above scenario and a policy that checks periodically verifies one message
daily and the first three messages for a new user’s account, then our classifier
would only need to check fifteen million messages per day, or 173.7 messages
per second, with a monthly increase of 12.1 messages per second. If only active
and explosive accounts were targeted (which would be more likely behavior for a
botnet C&C), this would decrease to 25.6 messages per second with an increase
of 2.1 messages per second. Thus, even with these simple non-discriminating
policies and worst-case Twitter.com usage scenario, our classifier as a service can
handle an enterprise-level throughput of requests, and different policy strategies
may be employed to throttle down the throughput further.

Social Network-Based Botnet Command-and-Control 521

6 Client-Side Countermeasures

6.1 The Detection Mechanism

Detection attributes. We propose detecting social network-based botnet C&Cs
using three attributes: self-concealing, dubious network traffic, and unreliable
provenance.

– Self-Concealing: A self-concealing process is one which attempts to avoid
detection with the use of stealth mechanisms. We consider two specific in-
stances of this type:
Graphical User Interface. Many applications that read RSS feeds interact with

a user via a graphical user interface. Bots and other malware will attempt
to avoid detection, and as a result may run in the background as a ser-
vice or hidden process without an explicit interface. A process without
a graphical user interface can be identified as possibly self-concealing.

Human Computer Interaction. Most benign software works by reacting to
user input via a keyboard or mouse. Malware processes tend to run hid-
den and independent of user input and don’t require explicit keyboard
or mouse events provided by a user to perform a nefarious act. A pro-
cess without human/computer interaction can be identified as possibly
self-concealing.

– Dubious Network Traffic: A process with dubious network traffic is one
which engages in network communication with another machine in a covert
or devious way. We consider three specific instances of this type:
Social Network Request. Exclusively visiting social networking sites is not

suspicious; however, social network-based botnet C&C craftily abuse the
popularity and good name of social networking sites; thus, exclusive
requests to social networking or web 2.0 sites is considered a possible
trigger event for dubious network traffic.

Encoded Text Processing. Since social network-based bots read commands
as encoded text, processes making connections to sources that provide
encoded or encrypted text is anomalous. Accepting connections with
encoded text and processing it by decoding or decrypting it can be con-
sidered as possibly dubious network traffic.

Suspicious File Downloading. In general, applications do not download suspi-
cious files such as executable, library, compressed, or encoded/encrypted
files without permission (though they may download image or text files).
Social network-based C&C bot processes, on the other hand, act as Tro-
jan downloaders and almost exclusively save executables or DLLs to the
filesystem as malicious payload. Downloading such suspicious files can
be considered as dubious network traffic.

– Unreliable Provenance: A process with unreliable provenance is one
which lacks a reliable origin. We consider three specific instances:
Self-Reference Replication. This is a feature malware uses to survive disin-

fection on a host machine, occurring when a process copies itself into a

522 E.J. Kartaltepe et al.

newly created file or an existent file (by modifying it) on the file system
[24]. An installed file with its installer not having a verified signature
can be identified as possibly having an unreliable provenance.

Dynamic Code Injection. This is used by malware to insert malicious code
into the memory space of an active process. Its end goal is to modify the
process to perform nefarious deeds, possibly by piggybacking on that ap-
plication’s authorization settings. A process whose injector lacks a digital
signature can be identified as possibly having an unreliable provenance
since the injector’s origin cannot be established.

Verifiable Digital Signature. Digital signatures may be considered a hallmark
of trust between users and well established software. Most organizations
that publish software provide a signature for their program and related
files. Malware authors typically do not employ digital signatures; as a
consequence, a process running without a verifiable digital signature can
be identified as possibly having an unreliable provenance.

Detection model. We say a process P has the self-concealing attribute (Psc)
if it lacks a graphical user interface (Pgui = false) and does not accept human
computer interaction (Phci = false). More formally,

(¬Pgui) ∧ (¬Phci) → Psc.

We say a process P has the dubious network traffic attribute (Pdnt) if it performs
social network requests (Psnr = true) and encoded text processing (Petp = true)
or does suspicious file downloading (Psfd = true) (or both). More formally,

Psnr ∧ (Petp ∨ Psfd) → Pdnt.

We say a process P has the unreliable provenance attribute (Pup) if it performs
self-reference replication (Psrr = true) or does dynamic code injection (Pdci =
true), and also lacks a verified digital signature (Pvds = false). More formally,

(Psrr ∨ Pdci) ∧ (¬Pvds) → Pup.

Putting the above altogether, we classify a process P as being suspicious of being
a social network-based bot C&C process (Psnbb) if it is either self-concealing
(Psc = true) or has an unreliable provenance (Pup = true) (or both), and engages
in dubious network traffic (Pdnt = true). More formally,

(Psc ∨ Pup) ∧ Pdnt → Psnbb.

6.2 Effectiveness and Limitations

Evaluation methodology and environment setup. To examine the effec-
tiveness of the detection model described above, we collected data with respect
to our detection attributes for both benign and malicious processes in order to
distinguish them. For this purpose, we considered eighteen benign applications,

Social Network-Based Botnet Command-and-Control 523

Table 4. Client-side test set (“SN-Based Bot” stands for “Social Network-Based Bot”)

Application Type Application Type Application Type
AOL Explorer Web Browser Internet Explorer Web Browser RSS Bandit RSS Aggregator
Avant Web Browser K-Meleon Web Browser RSS Owl RSS Aggregator
Bobax Traditional Bot Maxthon Web Browser SeaMonkey Web Browser
BlogBridge RSS Aggregator Mercury RSS Aggregator Snarfer RSS Aggregator
FeedDemon RSS Aggregator Naz SN-Based Bot Tweetdeck Twitter Client
FireFox Web Browser Naz+ SN-Based Bot Twhirl Twitter Client
Flock Web Browser Opera Web Browser Virut Traditional Bot
Google Chrome Web Browser Ozdok Traditional Bot Waledac Traditional Bot

four traditional bots, and the malicious Naz and prototype Naz+ bots (listed
in Table 4). To provide a wide breadth, the benign applications are a broad
selection of the most popular web browsers, RSS aggregators, Twitter clients,
and RSS aggregators which read subscription feeds. Testing was performed using
VMWare Workstation running Microsoft Windows SP3 using NAT for Internet
access. Each application was executed separately for a period of four hours, fol-
lowed by post-analysis. During testing of the eighteen benign applications, we
interacted with each application by subscribing to and viewing different RSS
feeds; attempting to subscribe to bogus RSS feeds, updating all RSS feeds ev-
ery hour, reading individual feed articles. These tests were done to provide a
wide range of expected and unexpected scenarios for each application to deal
with while recording their behavior. In addition, we used a number of sensors to
gather information about each process. Tracing of the three detection attributes
described in Section 6.1 occurred from the moment a process starts executing.

Network traffic was collected using Windows Network Monitor [9]. Keyboard
and mouse input was collected with a modified version of GlobalHook. Digi-
tal signatures were verified using SigCheck. Self-reference replication and dy-
namic code injection were accomplished with kernel hooks implementing known
techniques [24]. The presence of a user interface was recorded by observing the
creation of any window upon executing each application using EasyHook. User
input, network traffic, graphical user interface interaction, self-reference replica-
tion and dynamic code injection were all recorded in real-time. For Virut and
Waledac, static analysis and previous executions of these bots yielded their du-
bious network traffic results. Digital signatures were verified after the four hour
testing of each process.

Effectiveness. The results are summarized in Table 5 and highlight some ob-
servations below. First, we observe that all benign applications lacked the self-
concealing attribute as they all utilized a graphical user interface and accepted
inputs from the user, such as reading an article, following a link, or updating
an RSS feed. All bots but Virut demonstrated the self-concealing attribute since
they did not have a graphical user interface or accept user input, although it
appears that the command prompt window Virut displays may be accidental.
Second, all applications but Naz and Naz+ possessed the dubious network traffic
attribute; RSS applications did not download suspicious files, but all of the bots
did. All bots but Virut read inordinate amounts of encoded text; legitimate RSS

524 E.J. Kartaltepe et al.

Table 5. Client-Side detection results (“IE” stands for “Internet Explorer”)

Application Self-Concealing Unreliable Provenance Dubious Network Traffic Result
Graphical Human Self- Dynamic Verifiable Social Encoded Suspicious Social

User Computer Reference Code Digital Network Text File Network-
Interface Interaction Replication Injection Signature Request Processing Download Based Bot?

AOL Explorer Y Y N N Y N N N N
Avant Y Y N N Y N N N N

BlogBridge Y Y N N Y N N N N
FeedReader Y Y N N Y N N N N

Firefox Y Y N N Y N N N N
Flock Y Y N N Y N N N N
IE Y Y N N Y N N N N

Chrome Y Y N N Y N N N N
K-Meleon Y Y N N Y N N N N
Maxthon Y Y N N Y N N N N
Mercury Y Y N N Y N N N N
Opera Y Y N N Y N N N N

RSS Bandit Y Y N N Y N N N N
RSS Owl Y Y N N Y N N N N

SeaMonkey Y Y N N Y N N N N
Snarfer Y Y N N Y N N N N

Tweetdeck Y Y N N N Y N N N
Twhirl Y Y N N N Y N N N

Bobax N N Y Y N N Y Y N
Ozdok N N Y Y N N Y Y N
Virut Y N Y Y N N N Y N

Waledac N N Y Y N N Y Y N

Naz N N Y Y N Y Y Y Y
Naz+ N N N N N Y Y Y Y

reader applications generally did not. Additionally, only Naz and Naz+ com-
municated nearly exclusively with social networking sites (benign processes read
from them only a fraction of the time, and traditional bots made no such commu-
nication requests). Third, all benign applications did not exhibit the unreliable
provenance attribute; none attempted to replicate itself or inject code into an-
other process, and they all possessed a verifiable digital signature. On the other
hand, all bots tested displayed this attribute, as they all copied themselves or
injected code into other processes (except Naz+), and lacked a verifiable digital
signature.

Of note is that no social network-based bot was misclassified as a benign
process and no benign application or traditional bot was misclassified as a so-
cial network-based bot. We reiterate that our goal is to detect social network-
based botnet C&C, which explains why the other bots Bobax, Ozdok, Virut and
Waledac were not classified as social network-based bots. These bots may be
detected by using complementary host-centric or network-centric approaches, or
by applying the relaxed dubious network traffic attribute described above. This
also justifies why the countermeasures presented in the paper need be integrated
into a comprehensive defense framework.
Limitations. A limitation of our effectiveness analysis is the lack of real-time
analysis of other social network-based botnet C&C, due to other botnets undis-
covered in the wild. Moreover, our analysis is conducted in post-analysis. We
plan to develop an implementation of this technique to provide real-time data
gathering and evaluation. Another limitation is that any one sensor can be de-
feated if the malware author knows the concrete details of its implementation;
knowledge of the high-level detection model is not enough. For example, if we
only seek .exe and compressed files, a malicious file can purposely be renamed
to .jpg or .html which would bypass our file download sensor. In this case, the

Social Network-Based Botnet Command-and-Control 525

bot’s internal logic will have extra overhead, possibly checking every file in the
network traffic with these file extension to identify the malicious one, thus mak-
ing this approach infeasible. Malware in general are known to have attributes
that trigger many of these sensors [32] and thus it is unlikely that a bot process
will effectively work and bypass all our sensors.

6.3 Performance Analysis

In order to measure the client-side countermeasure’s performance, we used Pass-
Mark’s PerformanceTest 7.0 benchmarking to gather information on its CPU
usage [27]. We benchmarked the baseline case with no data collection running,
and then ran the data collector tracking zero to five processes after an hour
of data collection had passed. Running the data collector added a 4.8% over-
head to the overall system, and running it to track one to five processes had
between a 13.3% and 28.9% overhead (See also Figure 5). With optimization,
these numbers could be lowered further.

0 1 2 3 4 5
0

10

20

30

Collecting Data on n Processes

O
ve

rh
ea

d
co

st
 (%

)

CPU Benchmarking

Fig. 5. CPU utilization for our client-side countermeasure process tracker

7 Integrating Server- and Client-Side Countermeasures

Integrated solution. As discussed above, the server-side and client-side coun-
termeasures are integral parts of our client/server solution to detecting social
network-based botnet C&C. When each type of countermeasures deployed alone,
they can be defeated in certain ways. Integrating our server-side classifier into a
social network webserver is straightforward whether it operates as a library or
service, and integrating the client-side detection algorithms into existing mal-
ware detection schemes or operating its sensors as its own detection framework
is equally as uncomplicated. Because both systems are stand-alone, there is no
need to have the systems interoperate. Indeed, a user that has the client-side so-
lution installed while using a social network that employs the server-side solution
gains the benefits of both.

526 E.J. Kartaltepe et al.

Limitations. Even when our classifier is utilized by a social network provider
and a machine has our client solution installed, using both still has some lim-
itations. Specifically, if the botmaster employs steganography into their social
network-based C&C, the server-side solution in its current form will not detect
that message being passed. Employing steganography in such a way will diffuse
the content in the message, essentially expanding the text [4]. In this case, if
using popular social networks like Twitter.com or FaceBook.com with character
length limitations, spreading a command over multiple messages would likely
be required. More specifically, our approach can benefit from host-centric and
network-centric approaches as follows.

– A bot that reads steganographic commands and can evade our
client-side sensors. One way for a bot to evade the client-side sensors is to
exist at the kernel level. Since some of the client-side solution sensors exist at
the user-level, the bot can effectively bypass enough of these sensors to mask
its presence on the machine. Additionally, a bot that with intimate knowl-
edge of the implementation details of the client-side sensors can maneuver
around our countermeasures, such as writing code that falsifies sensor data.
A host-centric approach to capture additional anomalous information at the
kernel level would help mitigate this attack.

– A bot that reads steganographic commands and masquerades as
a benign process. A bot that behaves as a benign process would have to
lack the self-concealing or unreliable provenance attribute. By masquerading
as a benign application, say by presenting itself as a graphical application
that masks its true purpose, a bot could exist with such an interface. This
bot would additionally have to trick the user into starting it and keeping
it running, which might prove difficult. To avoid possessing an unreliable
provenance, this bot would have to have a digital signature, which is diffi-
cult to forge. Additionally, it must not dynamically inject code into another
source or replicate itself, which are hallmark signs of bots, since they wish
to inculcate themselves into the host machine. A network-centric solution
is necessary to analyze network layer data for similar events occurring from
many machines in a network during a small timeframe.

– A bot that reads steganographic commands and runs scripts. A bot
that behaves as a social network-based bot but downloads text files instead
of executables will not be classified as a social network-based bot, although it
would be marked as a possibly suspicious bot. If the bot contains or is aware
of a scripting engine such as a Python interpreter, the bot can run the script
instead of an executable. A host-centric approach to contain general purpose
malware or prevent or alert the user of script/program execution would help
stop this attack. Additionally, a network-centric strategy to detect script
file downloads would help prevent the scripts from being downloaded to the
client machine.

Social Network-Based Botnet Command-and-Control 527

8 Conclusion and Future Work

We systematically studied a social network-based botnet and its C&C and dis-
cussed their future evolutions. We investigated, prototyped, and analyzed both
server-side and client-side countermeasures, which are integral parts of a solution
to the emerging threat of social network-based botnets. We also discussed how
our solution can benefit from host-centric and network-centric botnet detection
solutions so as to formulate a comprehensive defense against botnets.

Our future work includes: (1) implementing the client-side countermeasures
as real-time detection systems, (2) improving the server-side classifier to detect
steganography, (3) handling multiple stepping stones in payload redirection, and
(4) and porting the client-side countermeasures to other platforms.

Acknowledgments. This work is partially supported by grants from AFOSR,
ONR, AFOSR MURI, and the State of Texas Emerging Technology Fund.

References

1. Athanasopoulos, E., Makridakis, A., Antonatos, S., Antoniades, D., Ioannidis, S.,
Anagnostakis, K., Markatos, E.: Antisocial networks: Turning a social network into
a botnet. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS,
vol. 5222, pp. 146–160. Springer, Heidelberg (2008)

2. Balatzar, J., Costoya, J., Flores, R.: The real face of koobface: The largest web 2.0
botnet explained. Technical report, Trend Micro (2009)

3. Binkley, J.R., Singh, S.: An algorithm for anomaly-based botnet detection. In:
Proc. Reducing Unwanted Traffic on the Internet, SRUTI ’06 (2006)

4. Chapman, M., Davida, G.I.: Plausible deniability using automated linguistic stego-
nagraphy. In: Conference on Infrastructure Security (October 2002)

5. Cheng, A., Evans, M.: Inside twitter: An in-depth look inside the twitter world,
http://www.sysomos.com/insidetwitter

6. Collins, M., Reiter, M.: Hit-list worm detection and bot identification in large
networks using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.)
RAID 2007. LNCS, vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

7. Collins, M., Shimeall, T., Faber, S., Janies, J., Weaver, R., De Shon, M., Kadane,
J.: Using uncleanliness to predict future botnet addresses. In: Proc. IMC ’07 (2007)

8. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: understanding,
detecting, and disrupting botnets. In: Proc. SRUTI ’05 (2005)

9. Microsoft Corporation. Network monitor 3.3,
http://go.microsoft.com/fwlink/?LinkID=103158&clcid=0x409

10. CWSandbox.org. Cwsandbox—behavior-based malware analysis,
http://www.cwsandbox.org

11. Dagon, D., Gu, G., Lee, C., Lee, W.: A taxonomy of botnet structures. In: Choi,
L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol. 4697, Springer, Heidelberg
(2007)

12. DigiNinja. Kreiosc2: Poc using twitter as its command and control channel,
http://www.digininja.org

13. Easton, T., Johnson, K.: Social zombies. In: DEFCON ’09 (2009)

http://www.sysomos.com/insidetwitter
http://go.microsoft.com/fwlink/?LinkID=103158&clcid=0x409
http://www.cwsandbox.org
http://www.digininja.org

528 E.J. Kartaltepe et al.

14. Goebel, J., Holz, T.: Rishi: identify bot contaminated hosts by irc nickname eval-
uation. In: Proc. HotBots ’07 (2007)

15. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B., Dagon, D.: Peer-to-peer
botnets: overview and case study. In: Proc. HotBots ’07 (2007)

16. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Security ’08
(2008)

17. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
malware infection through ids-driven dialog correlation. In: USENIX Security ’07
(2007)

18. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control
channels in network traffic. In: Proc. NDSS ’08 (2008)

19. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and mit-
igation of peer-to-peer-based botnets: a case study on storm worm. In: LEET ’08
(2008)

20. Hu, X., Knysz, M., Shin, K.G.: Rb-seeker: Auto-detection of redirection botnets.
In: Proc. NDSS ’09 (2009)

21. Finjan Software Inc. Web security trends report q4 2007. Technical report, Finjan
Software Inc. (2007), http://www.finjan.com/Content.aspx?id=827

22. John, J., Moshchuk, A., Gribble, S., Krishnamurthy, A.: Studying spamming bot-
nets using botlab. In: Proc. NSDI ’09 (2009)

23. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale botnet detection and charac-
terization. In: Proc. HotBots ’07 (2007)

24. Morales, J.A., Clarke, P.J., Deng, Y., Kibria, B.G.: Identification of file infecting
viruses through detection of self-reference replication. Journal in Computer Virol-
ogy (2008)

25. Nazario, J.: Twitter based botnet command and control (2009), http://asert.

arbornetworks.com/2009/08/twitter-based-botnet-command-channel
26. Nazario, J., Holz, T.: As the net churns: Fast-flux botnet observations. In: Proc.

MALWARE ’08 (2008)
27. PassMark.com. Passmark performancetest 7.0,

http://www.passmark.com/products/pt.htm
28. Poland, S.: How to create a twitter bot (2007),

http://blog.stevepoland.com/how-to-create-a-twitter-bot/
29. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to un-

derstanding the botnet phenomenon. In: Proc. IMC ’06 (2006)
30. Singh, K., Srivastava, A., Giffin, J., Lee, W.: Evaluating email’s feasibility for

botnet command and control. In: Proc. DSN
31. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In:

Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108.
Springer, Heidelberg (2007)

32. Szor, P.: The Art of Computer Virus Research and Defense. Symantec Press (2005)
33. Weka 3 data mining software, http://www.cs.waikato.ac.nz/ml/weka/
34. Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming bot-

nets: signatures and characteristics. In: Proc. SIGCOMM ’08, pp. 171–182 (2008)
35. Zhao, Y., Xie, Y., Yu, F., Ke, Q., Yu, Y., Chen, Y., Gillum, E.: Botgraph: large

scale spamming botnet detection. In: Proc. NSDI ’09 (2009)
36. Zhu, Z., Yegneswaran, V., Chen, Y.: Using failure information analysis to detect

enterprise zombies. In: Proc. Securecomm ’09 (2009)
37. Zhuang, L., Dunagan, J., Simon, D., Wang, H., Osipkov, I., Hulten, G., Tygar, J.:

Characterizing botnets from email spam records. In: Proc. LEET ’08 (2008)

http://www.finjan.com/Content.aspx?id=827
http://asert.arbornetworks.com/2009/08/twitter-based-botnet-command-channel
http://asert.arbornetworks.com/2009/08/twitter-based-botnet-command-channel
http://www.passmark.com/products/pt.htm
http://blog.stevepoland.com/how-to-create-a-twitter-bot/
http://www.cs.waikato.ac.nz/ml/weka/

	Social Network-Based Botnet Command-and-Control: Emerging Threats and Countermeasures
	Introduction
	Related Work
	Characterizing Current Social Network-Based Botnet
	Envisioning Future Social Network-Based Botnet
	Server-Side Countermeasures
	The Detection Mechanism
	Prototype Implementation and Its Effectiveness and Limitations
	Performance

	Client-Side Countermeasures
	The Detection Mechanism
	Effectiveness and Limitations
	Performance Analysis

	Integrating Server- and Client-Side Countermeasures
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

